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Preface

This volume, edited by Nikolaos Matsatsinis, Yannis Marinakis, and Panos Pardalos,
contains peer-reviewed papers from the 13th Learning and Intelligent Optimization
(LION-13) Conference, held in Chania, Crete, Greece, during May 27–31, 2019.

The LION-13 conference continued the successful series of the constantly
expanding and worldwide recognized LION events (LION-1: Andalo, Italy, 2007;
LION-2 and LION-3: Trento, Italy, 2008 and 2009; LION-4: Venice, Italy, 2010;
LION-5: Rome, Italy, 2011; LION-6: Paris, France, 2012; LION-7: Catania, Italy,
2013; LION-8: Gainesville, USA, 2014; LION-9: Lille, France, 2015; LION-10:
Ischia, Italy, 2016; LION-11: Nizhny Novgorod, Russia, 2017; and LION-12:
Kalamata, Greece, 2018). This edition was organized by Nikolaos Matsatsinis and
Yannis Marinakis from the Decision Support Systems Laboratory (ERGA.S.Y.A.) at
the Technical University of Crete, Greece, and Panos Pardalos from the Center for
Applied Optimization at the University of Florida, USA, who were conference general
and Technical Program Committee chairs.

Like its predecessors, the LION-13 international meeting explored advanced
research developments in interconnected fields such as mathematical programming,
global optimization, machine learning, and artificial intelligence. The location of
LION-13 in Chania, Crete, Greece, was an excellent occasion for researchers to meet
and consolidate research and personal links.

A total of 38 papers were accepted for oral presentation and presented during the
conference. The following three plenary lecturers shared their current research direc-
tions with the LION-13 participants:

– Xin-She Yang, Middlesex University London, UK: “Open Problems and Analysis
of Nature-Inspired Algorithms”

– Panos Pardalos, Center for Applied Optimization, University of Florida, USA:
“Sustainable Interdependent Networks”

– Marco Dorigo, IRIDIA Lab, Université Libre de Bruxelles, Belgium: “Controlling
Robot Swarms”

A total of 31 papers were accepted for publication in this LNCS volume after
thorough peer reviewing (up to three review rounds for some manuscripts) by the
members of the LION-13 Program Committee and independent reviewers. These
papers describe advanced ideas, technologies, methods, and applications in optimiza-
tion and machine learning.

The editors thank all the participants for their dedication to the success of LION-13
and are grateful to the reviewers for their valuable work. The support of the
Springer LNCS editorial staff is greatly appreciated.



The editors express their gratitude to the organizers and sponsors of the LION-13
international conference:

– Technical University of Crete
– Region of Crete
– Region of Crete, Regional Unit of Chania
– Cooperative Bank of Chania
– ARIAN Maritime S.A.
– Masters in Technology and Innovation Management
– Smart Tours
– Technical Chamber of Greece, Branch of Western Crete

Their support was essential for the success of this event.

November 2019 Nikolaos Matsatsinis
Yannis Marinakis

Panos Pardalos
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A Hybrid Immunological Search
for the Weighted Feedback Vertex

Set Problem

Vincenco Cutello(B), Maria Oliva, Mario Pavone(B), and Rocco A. Scollo

Department of Mathematics and Computer Science, University of Catania,
V.le A. Doria 6, 95125 Catania, Italy

cutello@unict.it, mpavone@dmi.unict.it

Abstract. In this paper we present a hybrid immunological inspired
algorithm (Hybrid-IA) for solving the Minimum Weighted Feedback
Vertex Set (M W F V S) problem. MWFV S is one of the most inter-
esting and challenging combinatorial optimization problem, which finds
application in many fields and in many real life tasks. The proposed algo-
rithm is inspired by the clonal selection principle, and therefore it takes
advantage of the main strength characteristics of the operators of (i)
cloning; (ii) hypermutation; and (iii) aging. Along with these operators,
the algorithm uses a local search procedure, based on a deterministic
approach, whose purpose is to refine the solutions found so far. In order
to evaluate the efficiency and robustness of Hybrid-IA several experi-
ments were performed on different instances, and for each instance it was
compared to three different algorithms: (1) a memetic algorithm based
on a genetic algorithm (MA); (2) a tabu search metaheuristic (XTS);
and (3) an iterative tabu search (ITS). The obtained results prove the
efficiency and reliability of hybrid-IA on all instances in term of the best
solutions found and also similar performances with all compared algo-
rithms, which represent nowadays the state-of-the-art on for MWFV S
problem.

Keywords: Immunological algorithms · Immune-inspired
computation · Metaheuristics · Combinatorial optimization · Feedback
vertex set · Weighted feedback vertex set

1 Introduction

Immunological inspired computation represents an established and rich family of
algorithms inspired by the dynamics and the information processing mechanisms
that the Immune System uses to detect, recognise, learn and remember foreign
entities to the living organism [11]. Thanks to these interesting features, immuno-
logical inspired algorithms represent successful computational methodologies in
search and optimization tasks [4,20]. Although there exist several immune theo-
ries at the basis of immunological inspired computation that could characterize
c© Springer Nature Switzerland AG 2020
N. F. Matsatsinis et al. (Eds.): LION 13 2019, LNCS 11968, pp. 1–16, 2020.
https://doi.org/10.1007/978-3-030-38629-0_1
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their natural application to anomaly detection and classification tasks, one that
has been proven to be quite effective and robust is based on the clonal selection
principle. Algorithms based on the clonal selection principle work on a popula-
tion of immunological cells, better known as antibodies, that proliferate, i.e. clone
themselves – the number of copies depends on the quality of their foreign entities
detection – and undergo a mutation process usually at a high rate. This process,
biologically called Affinity Maturation, makes these algorithms very suitable in
functions and combinatorial optimization problems. This statement is supported
by several experimental applications [6–8,18], as well as by theoretical analyses
that prove their efficiency with respect to several Randomized Search Heuristics
[14,15,23,25].

In light of the above, we have designed and developed an immune inspired
hypermutation algorithm - based precisely on the clonal selection principle -
in order to solve a classical combinatorial optimization problem, namely the
Weighted Feedback Vertex Set (WFV S).

In addition, we take into account what clearly emerges from the evolution-
ary computation literature: in order to obtain good performances and solve
hard a combinatorial optimization problem, it is necessary to combine together
metaheuristics and other classical optimization techniques, such as local search,
dynamic programming, exact methods, etc. For this reason, we have designed a
hybrid immunological algorithm, by including some deterministic criteria inside
in order to refine the found solutions and to help the convergence of the algorithm
towards the global optimal solution.

The hybrid immunological algorithm proposed in this paper, hereafter simply
called Hybrid-IA, takes advantage of the immunological operators of cloning,
hypermutation and aging, to carefully explore the search space and properly
exploit the information learned, but it also makes use of local search for improv-
ing the quality of the solutions, and deterministically trying to remove that
vertex that break off one or more cycles in the graph, and has the minor weight-
degree ratio. The many experiments performed have proved the fruitful impact
of such a greedy idea, since it was almost always able to improve the solutions,
leading the Hybrid-IA towards the global optimal solution. For evaluating the
reliability and efficiency of Hybrid-IA, many experiments on several different
instances have been performed, taken by [2] and following the same experimental
protocol proposed in it. Hybrid-IA was also compared with other three meta-
heuristics: Iterated Tabu Search (ITS) [3]; eXploring Tabu Search (XTS) [1,9];
and Memetic Algorithm (MA) [2]. From all comparisons performed and analysed,
Hybrid-IA proved to be always competitive and comparable with the best of
the three metaheuristics. Furthermore, it is worth emphasizing that Hybrid-IA

outperforms the three algorithms on some instances, since, unlike them, it is
able to find the global best solution.

2 The Weighted Feedback Vertex Set Problem

Given a directed or undirected graph G = (V,E), a feedback vertex set of G is a
subset S ⊂ V of vertices whose removal makes G acyclic. More formally, if S ⊂ V
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we can define the subgraph G[S] = (V \S,EV \S) where EV \S = {(u, v) ∈ E :
u, v ∈ V \S}. If G[S] is acyclic, then S is a feedback set. The Minimum Feedback
Vertex Set Problem (MFV S) is the problem of finding a feedback vertex set
of minimal cardinality. If S is a feedback set, we say that a vertex v ∈ S is
redundant if the induced subgraph G[S\{v}] = ((V \S) ∪ {v}, E(V \S)∪{v}, w) is
still an acyclic graph. It follows that S is a minimal FV S if it doesn’t contain any
redundant vertices. It is well known that the decisional version of the MFV S is
a NP-complete problem for general graphs [12,17] and even for bipartite graphs
[24].

If we associate a positive weight w(v) to each vertex v ∈ V , let S be any subset
of V, then its weight is the sum of the weights of its vertices, i.e.

∑
v∈S w(v). The

Minimum Weighted Feedback Vertex Set Problem (MWFV S) is the problem of
finding a feedback vertex set of minimal weight.

The MWFV S problem is an interesting and challenging task as it finds
application in many fields and in many real-life tasks, such as in the context of
(i) operating systems for preventing or removing deadlocks [22]; (ii) combina-
torial circuit design [16]; (iii) information security [13]; and (iv) the study of
monopolies in synchronous distributed systems [19]. Many heuristics and meta-
heuristics have been developed for the simple MFV S problem, whilst very few,
instead, have been developed for the weighted variant of the problem.

3 Hybrid-IA: A Hybrid Immunological Algorithm

Hybrid-IA is an immunological algorithm inspired by the clonal selection prin-
ciple, which represents an excellent example of bottom up intelligent strategy
where adaptation operates at local level, whilst a complex and useful behaviour
emerges at global level. The basic idea of this metaphor is how the cells adapt
for binding and eliminate foreign entities, better known as Antigene (Ag). The
key features of Hybrid-IA are the cloning, hypermutation and aging operators,
which, respectively, generate new populations centered on higher affinity values;
explore the neighborhood of each solution into the search space; and eliminate
the old cells and the less promising ones, in order to keep the algorithm from
getting trapped into a local optimal. To these immunological operators, a local
search strategy is also added, which, by restoring one or more cycles with the
addition of a previously removed vertex, it tries again to break off the cycle,
or the cycles, by conveniently removing a new vertex that improves the fitness
of the solution. Usually the best choice is to select the node with the minimal
weight-degree ratio. The existence of a cycle, or more cycles, is computed via the
well-know procedure Depth First Search (DFS) [5]. The aim of the local search
is then to repair the random choices done by the stochastic operators via more
locally appropriate choices.

Hybrid-IA is based on two main entities, such as the antigen that repre-
sents the problem to tackle, and the B cell receptor that instead represents a
point (configuration) of the search space. Each B cell, in particular, represents
a permutation of vertices that determines the order of the nodes to be removed:
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starting from the first position of the permutation, the relative node is selected
and removed from the graph, and this is iteratively repeated, following the order
in the permutation, until an acyclic graph is obtained, or, in general, there are
no more vertices to be removed. Once an acyclic graph is obtained, all possible
redundant vertices are restored in V . Now, all removed vertices represent the
S set, i.e. a solution to the problem. Such process is outlined in simple way in
Algorithm 1. Some clarification about Algorithm 1:

– Input to the Algorithm is an undirected graph G = (V,E);
– given any X ⊆ V by dX(v) we denote the degree of vertex v in the graph

induced by X, i.e. the graph G(X) obtained from G by removing all the
vertices not in X.

– if, given any X ⊆ V a vertex v has degree dX(v) ≤ 1, such a vertex cannot
be involved in any cycle. So, when searching for a feedback vertex set, any
such a vertex can simply be ignored, or removed from the graph.

– the algorithm associates deterministically a subset S of the graph vertices to
any given permutation of the vertices in V. The sum of the weights of the
vertices in S will be the fitness value associated to the permutation.

Algorithm 1. Create Solution
X ← V
P ← permutation(V )
S ← ∅
for u ∈ P do
if u ∈ X and G(X) not acyclic then

X ← X \ {u}
S ← S ∪ {u}
while ∃v ∈ X : dX(v) < 2 do

X ← X \ {u}
end while

end if
end for
Removing all redundant vertices from S
return S

At each time step t, we maintain a population of B cells of size d that we label
P (t). Each permutation, i.e. B cell, is randomly generated during the initializa-
tion phase (t = 0) using a uniform distribution. A summary of the proposed
algorithm is shown below. Hybrid-IA terminates its execution when the fixed
termination criterion is satisfied. For our experiments and for all outcomes pre-
sented in this paper, a maximum number of generations has been considered.
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Algorithm 2. Hybrid-IA (d, dup, ρ, τB)
t ← 0;
P (t) ← Initialize Population(d);
Compute Fitness(P (t));
repeat

P (clo) ← Cloning (P (t), dup);
P (hyp) ← Hypermutation(P (clo), ρ);
Compute Fitness(P (hyp));
(P (t)

a , P
(hyp)
a ) ← Aging(P (t), P (hyp), τB);

P (select) ← (μ + λ)-Selection(P (t)
a , P

(hyp)
a );

P (t+1) ← Local Search(P (select));
Compute Fitness(P (t+1));
t ← t + 1;

until (termination criterion is satisfied)

Cloning Operator: It is the first immunological operator to be applied, and
it has the aim to reproduce the proliferation mechanism of the immune system.
Indeed it simply copies dup times each B cell producing an intermediate popula-
tion P (clo) of size d× dup. Once a B cell copy is created, i.e. the B cell is cloned,
to this is assigned an age that determines its lifespan, during that it can mature,
evolves and improves: from the assigned age it will evolve into the population
for producing robust offspring until a maximum age reachable (a user-defined
parameter), i.e. a prefixed maximum number of generations. It is important to
highlight that the assignment of the age together to the aging operator play a key
role on the performances of Hybrid-IA [10,21], since their combination has the
purpose to reduce premature convergences, and keep an appropriate diversity
between the B cells.

The cloning operator, coupled with the hypermutation operator, performs
a local search around the cloned solutions; indeed the introduction of a high
number of blind mutations produces individuals with higher fitness function
values, which will be after selected to form ever better progenies.

Inversely Hypermutation Operator: This operator has the aim to explore
the neighborhood of each clone taking into account, however, the quality of the
fitness function of the clone it is working on. It acts on each element of the
population P (clo), performing M mutations on each clone, whose number M is
determined by an inversely proportional law to the clone fitness value: the higher
is the fitness function value, the lower is the number of mutations performed on
the B cell. Unlike of any evolutionary algorithm, no mutation probability has
been considered in Hybrid-IA.

Given a clone x, the number of mutations M that it will be undergo is
determined by the following potential mutation:

α = e−ρf̂(x), (1)
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where α represents the mutation rate, and f̂(x) the fitness function value nor-
malized in [0, 1]. The number of mutations M is then given by

M = 
(α × �) + 1�, (2)

where � is the length of the B cell. From Eq. 2, is possible to note that at least
one mutation occurs on each cloned B cell, and this happens to the solutions
very close to the optimal one. Since any B cell is represented as a vertices per-
mutation that determines their removing order, the position occupied by each
vertex in the permutation becomes crucial for the achievement of the global best
solution. Consequently, the hypermutation operator adopted is the well-known
Swap Mutations, through which the right permutation, i.e. the right removing
order, is searched: for any x B cell, choices two positions i and j, the vertices xi

and xj are exchanged of position, becoming x′
i = xj and x′

j = xi, respectively.

Aging Operator: This operator has the main goal to help the algorithm for
jumping out from local optimal. Simply it eliminates the old B cells from the
populations P (t) and P (hyp): once the age of a B cell exceeds the maximum
age allowed (τB), it will be removed from the population of belonging indepen-
dently from its fitness value. As written above, the parameter τB represents the
maximum number of generations allowed so that every B cell can be considered
to remain into the population. In this way, this operator is able to maintain a
proper turnover between the B cells in the population, producing high diversity
inside it, and this surely help the algorithm to avoid premature convergences
and, consequently, to get trapped into local optima.

An exception about the removal may be done for the best current solution
that is kept into the population even if its age is older than τB . This variant of
the aging operator is called elitist aging operator.

(μ+λ)-Selection Operator: Once the aging operator ended its work, the best
d survivors from both populations P

(t)
a and P

(hyp)
a are selected for generating

a temporary population P (select that, afterwards, will be undergo to the local
search. For this process the classical (μ + λ)-Selection operator has been consid-
ered, where, in our case, μ = d and λ = (d × dup). In a nutshell, this operator
reduces the offspring B cell population (P (hyp)

a ) of size λ ≥ μ to a new popula-
tion (P (select) of size μ = d. Since this selection mechanism identifies the d best
elements between the offspring set and the old parent B cells, then it guarantees
monotonicity in the evolution dynamics. Nevertheless, may happens that all sur-
vived B cells are less than the required population size (d), i.e. da < d. This can
easily happens depending on the chosen age assignment, and fixed value of τB .
In this case, the selection mechanism randomly generates d − da new B cells.

Local Search: The main idea at the base of this local search is to repair in
a proper and deterministic way the solutions produced by the stochastic muta-
tion operator. Whilst the hypermutation operator determines the vertices to be
removed in a blind and random way, i.e. choosing them independently of its
weight, then the local search try to change one, or more of them with another
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node of lesser weight, improving thus the fitness function of that B cell. Given
a solution x, all vertices in x are sorted in decreasing order with respect their
weights. Then, starting from vertex u with largest weight, the local search pro-
cedure iteratively works as follows: the vertex u is inserted again in V \ S, gen-
erating then one or more cycles; via the classical DFS procedure, are computed
the number of the cycles produced, and, thus one of these (if there are more) is
taken into account, together with all vertices involved in it. These last vertices
are now sorted in increasing way with respect their weight-degree ratio; thus,
the vertex v with smaller ratio is selected to break off the cycle. Of course, may
also happens that v break off also more cycles. Anyway, if from the removal of
v the subgraph becomes acyclic, and this removal improves the fitness function
then v is considered for the solution and it replaces u; otherwise the process is
repeated again taking into account a new cycle. At the end of the iterations, if
the sum of the new removed vertices (i.e. the fitness) is less to the previous one,
then such vertices are inserted in the new solution in place of vertex u.

4 Results

In this section all analysis, experiments, and comparisons of Hybrid-IA are pre-
sented in order to measure the goodness of the proposed approach. The main goal
of these experiments is obviously to prove the reliability and competitiveness of
the Hybrid-IA with respect the state-of-the-art, but also to test the efficiency
and the computational impact provided by the designed local search. Thus, for
properly evaluating the performances of the proposed algorithm, a set of bench-
mark instances proposed in [3] have been considered, whose set includes grid,
toroidal, hypercube, and random graphs. Each instance considered, besides to
the topology, differs in the number of vertices; number of edges; and range of val-
ues for the vertices weights. In this way, as suggested in [2], is possible to inspect
the computational performances of Hybrid-IA with respect to the density of
the graph and weight ranges. Further, Hybrid-IA has been also compared with
three different algorithms, which represent nowadays the state-of-the-art for the
WFVS problem: Iterated Tabu Search (ITS) [3]; eXploring Tabu Search (XTS)
[1,9]; and Memetic Algorithm (MA) [2]. All three algorithms, and their results,
have been taken in [2].

Each experiment was performed by Hybrid-IA with population size d = 100,
duplication parameter dup = 2, maximum age reachable τB = 20, mutation
rate parameter ρ = 0.5, and maximum number of generations maxgen = 300.
Further, each experiment reported in the tables below is the average over five
instances with the same characteristics but different assignment of the vertices
weights. The experimental protocol used, and not included above, has been taken
by [2]. It is important to highlight that in [2] a fixed maximum number of genera-
tors is not given, but the authors use a stop criterion based on a formula (MaxIt)
that depends on the density of the graph: the algorithm will end its evolution
process when it will reach MaxIt consecutive iterations without improvements.
Note that this threshold is reset every time an improvement occurs. From a sim-
ple calculus, it is possible to check how 300 generations used in this work are
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almost always lowest or equal to the minimum ones performed by the algorithms
presented in [2], considering primarily the simplicity of fitness improvements in
the first steps of the generations.

4.1 Dynamic Behaviour

Before to presents the experiments, and comparisons performed, the dynamic
behavior and the learning ability of Hybrid-IA are presented. An analysis on
the computational impact, and convergence advantages provided by the use of
the local search developed has been conducted as well.

In Fig. 1, left plot, is shown the dynamic behavior of Hybrid-IA, where are
displayed the curves of the (i) best fitness, (ii) average fitness of the popula-
tion, and (iii) average fitness of the cloned hypermutated population over the
generations. For this analysis the squared grid instance S SG9 has been consid-
ered, whose features, and weights range are shown in Table 1. From this plot is
possible to see how Hybrid-IA go down quickly in a very short generations to
acceptable solutions for then oscillating between values close to each other. This
oscillatory behavior, with main reference to the cloned hypermutated population
curve, proves how the algorithm Hybrid-IA has good solutions diversity, which
is surely helpful for the search space exploration. These fluctuations are instead
less pronounced in the curve of the average fitness of the population, and this
is due to the use of the local search that provides greater convergence stability.
Last curve, the one of the best fitness, indicates how the algorithm takes the best
advantage of the generations, managing to still improve in the last generations.
Since this is one of few instances where Hybrid-IA didn’t reach the optimal
solution, inspecting this curve we think that likely increasing the number of
generations (even just a little), Hybrid-IA will be able to find the global best.
Right plot of Fig. 1 shows the comparison between the average fitness values of
the survivors’ population (P (select)), and the one produced by the local search.
Although they show a very similar parallel behavior, this plot proves the useful-
ness and benefits produced by the local search, which is always able to improve
the solutions generated by the stochastic immune operators. Indeed the curve of
the average fitness produced by the local search is always below to the survivors
one.

Besides the convergence analysis, it becomes important also to understand
the learning ability of the algorithm, i.e. how many information it is able to gain
during all evolutionary process, which affects the performances of any evolution-
ary algorithm in general. For analyzing the learning process we have then used
the well-known entropy function, Information Gain, which measures the quan-
tity of information the system discovers during the learning phase [6,7,18]. Let
Bt

m be the number of the B cells that at the timestep t have the fitness function
value m; we define the candidate solutions distribution function f

(t)
m as the ratio

between the number Bt
m and the total number of candidate solutions:

f (t)
m =

Bt
m

∑h
m=0 Bt

m

=
Bt

m

d
. (3)
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Fig. 1. Convergence behavior of the average fitness function values of P (t), P (hyp),
and the best B cell versus generations on the grid S SG9 instance (left plot). Average
fitness function of P (select) vs. average fitness function P (t) on the random S R23
instance (right plot).

It follows that the information gain K(t, t0) and entropy E(t) can be defined as:

K(t, t0) =
∑

m

f (t)
m log(f (t)

m /f (t0)
m ), (4)

E(t) =
∑

m

f (t)
m log f (t)

m . (5)

The gain is the amount of information the system learned compared to the
randomly generated initial population P (t=0). Once the learning process begins,
the information gain increases until to reach a peak point.
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Fig. 2. Learning during the evolutionary process. Information gain curves of Hybrid-
IA with local search strategy (left plot) and without it (right plot). The inset plots, in
both figures, display the relative standard deviations.

Figure 2 shows the information gain obtained with the use of the local search
mechanism (left plot), and without it (right plot) when Hybrid-IA is applied
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to the random S R23 instance. In both plots we report also the standard devi-
ation, showed as inset plot. Inspecting both plots is possible to note that with
the using of the local search, the algorithm quickly gains high information until
to reach the higher peak within the first generations, which exactly corresponds
to the achievement of the optimal solution. It is important to highlight that the
higher peak of the information gain corresponds to the lower point of the stan-
dard deviation, and then this confirm that Hybrid-IA reaches its maximum
learning at the same time as it show less uncertainty. Due to the determinis-
tic approach of the local search, once reached the highest peak, and found the
global optimal solution, the algorithm begins to lost information and starts to
show an oscillatory behavior. The same happens for the standard deviation.
From the right plot, instead, without the use of the local search, Hybrid-IA

gains information more slowly. Also for this version, the higher peak of informa-
tion learned corresponds to the lowest uncertainty degree, and in this temporal
window Hybrid-IA reaches the best solution. Unlike the curve produced with
the use of the local search, once found the optimal solution and reached the
highest information peak, the algorithm starts to lost information as well but its
behavior seems to be more steady-state.
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Fig. 3. Information Gain and standard deviation.

The two curves of the information gain have been compared and showed
in Fig. 3 (left plot) over all generations. The relative inset plot is a zoom of
the information gain behavior over the first 25 generations. From this plot is
clear how the local search approach developed helps the algorithm to learn more
information already from the first generations, and in a quickly way; the inset
plot, in particular, highlight the important existing distance between the two
curves. From an overall view over all 300 generations, it is possible to see how
the local search gives more steady-state even after reaching the global optimal.
In the right plot of the Fig. 3 is instead shown the comparison between the two
standard deviations produced by Hybrid-IA with and without the use of the
local search. Of course, as we expected, the curve of the standard deviation using
the local search is taller as the algorithm gains higher amount of information
than the version without local search.
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Finally, from the analysis of all these figures – from convergence speed to
learning ability – clearly emerges how the local search designed and developed
helps Hybrid-IA in having an appropriate and correct convergence towards the
global optimum, and a greater amount of information gained.

4.2 Experiments and Comparisons

In this subsection all experimental results and comparisons done with the state-
of-the-art are presented in order to evaluate the efficiency, reliability and robust-
ness of the Hybrid-IA performances. Many experiments have been performed,
and the benchmark instances proposed in [2] have been considered for our tests
and comparisons. In particular, Hybrid-IA has been compared with three dif-
ferent metaheuristics: ITS [3], XTS [1,9], and MA [2]. As written in Sect. 4, the
same experimental protocol proposed in [2] has been used. Tables 1 and 2 show
the results obtained by Hybrid-IA on different sets of instance: squared grid
graph, no squared grid graph, and toroidal graph in Table 1; hypercube graph and
random graphs in Table 2. In both tables are reported: the name of the instance
in 1st column; number of vertices in 2nd; number of edges in 3rd; lower and
upper bounds of the vertex weights in 4th and 5th; and optimal solution K∗

in 6th. In the next columns are reported the results of Hybrid-IA (7th) and
of the other three algorithms compared. It is important to clarify that for the
grid graphs (squared and not squared) n and m indicate the number of the rows
and columns of the grid. The last column of both tables shows the difference
between the result obtained by Hybrid-IA and the best result among the three
compared algorithms. Further, in each line of the tables the best results among
all are reported in boldface.

On the squared grid graph instances (top of Table 1) is possible to see how
Hybrid-IA is able to reach the optimal solution in 8 instances over 9, unlike of
MA that instead reaches it in all instances. However, in this instance (S SG7)
the performances showed by Hybrid-IA are very close to the optimal solution
(+0.2), and anyway better than the other two compared algorithms. On the not
square grid graphs (middle of Table 1) instead Hybrid-IA reaches the optimal
solution on all instances (9 over 9), outperforming all three algorithms on the
instance S NG7, where none of the three compared algorithms is able to find the
optimal solution. Also on the toroidal graphs (bottom of Table 1) Hybrid-IA is
able to reaches the global optimal solution in 9 over 9 instances. In the overall,
inspecting all results in Table 1, is possible to see how Hybrid-IA shows com-
petitive and comparable performances to MA algorithm, except in the instance
S SG7 where it shows slight worst results, whilst instead it is able to outper-
form MA in the instance S NG7 where it reaches the optimal solution unlike of
MA. Analysing the results with respect the other two algorithms, is clear how
Hybrid-IA outperform ITS and XTS on all instances.

In Table 2 are presented the comparisons on the hypercube, and random
graphs, which present larger problem dimensions with respect the previous ones.
Analysing the results obtained on the hypercube graph instances, it is very clear
how Hybrid-IA outperform all three algorithms in all instances (9 over 9),
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Table 1. Hybrid-IA versus MA, ITS and XTS on the set of the instances: squared
grid; not squared grid and toroidal graphs.

Instance

n m Low Up K∗
Hybrid-IA ITS XTS MA ±

Squared grid graphs

S SG1 5 5 10 25 114.0 114.0 114.0 114.0 114.0 =

S SG2 5 5 10 50 199.8 199.8 199.8 199.8 199.8 =

S SG3 5 5 10 75 312.4 312.4 312.6 312.4 312.4 =

S SG4 7 7 10 25 252.0 252.0 252.4 252.0 252.0 =

S SG5 7 7 10 50 437.6 437.6 439.8 437.6 437.6 =

S SG6 7 7 10 75 713.6 713.6 718.4 717.4 713.6 =

S SG7 9 9 10 25 442.2 442.4 444.2 442.8 442.2 +0.2

S SG8 9 9 10 50 752.2 752.2 754.6 753.0 752.2 =

S SG9 9 9 10 75 1134.4 1134.4 1138.0 1134.4 1134.4 =

Not squared grid graphs

S NG1 8 3 10 25 96.8 96.8 96.8 96.8 96.8 =

S NG2 8 3 10 50 157.4 157.4 157.4 157.4 157.4 =

S NG3 8 3 10 75 220.0 220.0 220.0 220.0 220.0 =

S NG4 9 6 10 25 295.6 295.6 295.8 295.8 295.6 =

S NG5 9 6 10 50 488.6 488.6 489.4 488.6 488.6 =

S NG6 9 6 10 75 755.0 755.0 755.0 755.2 755.0 =

S NG7 12 6 10 25 398.2 398.2 399.8 398.8 398.4 −0.2

S NG8 12 6 10 50 671.8 671.8 673.4 671.8 671.8 =

S NG9 12 6 10 75 1015.2 1015.2 1017.4 1015.4 1015.2 =

Toroidal graphs

S T1 5 5 10 25 101.4 101.4 101.4 101.4 101.4 =

S T2 5 5 10 50 124.4 124.4 124.4 124.4 124.4 =

S T3 5 5 10 75 157.8 157.8 157.8 158.8 157.8 =

S T4 7 7 10 25 195.4 195.4 197.4 195.4 195.4 =

S T5 7 7 10 50 234.2 234.2 234.2 234.2 234.2 =

S T6 7 7 10 75 269.6 269.6 269.6 269.6 269.6 =

S T7 9 9 10 25 309.6 309.8 310.4 309.8 309.8 =

S T8 9 9 10 50 369.6 369.6 370.0 369.6 369.6 =

S T9 9 9 10 75 431.8 431.8 432.2 432.2 431.8 =

reaching even the optimal solution on the S H7 instance where instead the three
algorithms fail. On the random graphs Hybrid-IA still shows comparable results
to MA on all instances, even reaching the optimum on the instances S R20
and S R23 where instead MA, and the other two algorithms fail. In the overall,
analyzing all results of this table is easy to assert that Hybrid-IA is comparable,
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Table 2. Hybrid-IA versus MA, ITS and XTS on the set of the instances: hypercube
and random graphs.

Instance

n m Low Up K∗
Hybrid-IA ITS XTS MA ±

Hypercube graphs

S H1 16 32 10 25 72.2 72.2 72.2 72.2 72.2 =

S H2 16 32 10 50 93.8 93.8 93.8 93.8 93.8 =

S H3 16 32 10 75 97.4 97.4 97.4 97.4 97.4 =

S H4 32 80 10 25 170.0 170.0 170.0 170.0 170.0 =

S H5 32 80 10 50 240.6 240.6 241.0 240.6 240.6 =

S H6 32 80 10 75 277.6 277.6 277.6 277.6 277.6 =

S H7 64 192 10 25 353.4 353.4 354.6 353.8 353.8 −0.4

S H8 64 192 10 50 475.6 475.6 476.0 475.6 475.6 =

S H9 64 192 10 75 503.8 503.8 503.8 504.8 503.8 =

Random graphs

S R1 25 33 10 25 63.8 63.8 63.8 63.8 63.8 =

S R2 25 33 10 50 99.8 99.8 99.8 99.8 99.8 =

S R3 25 33 10 75 125.2 125.2 125.2 125.2 125.2 =

S R4 25 69 10 25 157.6 157.6 157.6 157.6 157.6 =

S R5 25 69 10 50 272.2 272.2 272.2 272.2 272.2 =

S R6 25 69 10 75 409.4 409.4 409.4 409.4 409.4 =

S R7 25 204 10 25 273.4 273.4 273.4 273.4 273.4 =

S R8 25 204 10 50 507.0 507.0 507.0 507.0 507.0 =

S R9 25 204 10 75 785.8 785.8 785.8 785.8 785.8 =

S R10 50 85 10 25 174.6 174.6 175.4 176.0 174.6 =

S R11 50 85 10 50 280.8 280.8 280.8 281.6 280.8 =

S R12 50 85 10 75 348.0 348.0 348.0 349.2 348.0 =

S R13 50 232 10 25 386.2 386.2 389.4 386.8 386.2 =

S R14 50 232 10 50 708.6 708.6 708.6 708.6 708.6 =

S R15 50 232 10 75 951.6 951.6 951.6 951.6 951.6 =

S R16 50 784 10 25 602.0 602.0 602.2 602.0 602.0 =

S R17 50 784 10 50 1171.8 1171.8 1172.2 1172.0 1171.8 =

S R18 50 784 10 75 1648.8 1648.8 1649.4 1648.8 1648.8 =

S R19 75 157 10 25 318.2 318.2 321.0 320.0 318.2 =

S R20 75 157 10 50 521.6 522.2 526.2 525.0 522.6 −0.4

S R21 75 157 10 75 751.0 751.0 757.2 754.2 751.0 =

S R22 75 490 10 25 635.8 635.8 638.6 635.8 635.8 =

S R23 75 490 10 50 1226.6 1226.6 1230.6 1228.6 1227.6 −1.0

S R24 75 490 10 75 1789.4 1789.4 1793.6 1789.4 1789.4 =

S R25 75 1739 10 25 889.8 889.8 891.0 889.8 889.8 =

S R26 75 1739 10 50 1664.2 1664.2 1664.8 1664.2 1664.2 =

S R27 75 1739 10 75 2452.2 2452.2 2452.8 2452.2 2452.2 =
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and sometime the best, with respect to MA also on this set of instances, winning
even on three instances the comparison with it. Extending the analysis to the
comparison with ITS and XTS algorithms, it is quite clear that Hybrid-IA

outperforms them in all instances, finding always better solutions than these
two compared algorithms.

Finally, from the analysis of the convergence behavior, learning ability, and
comparisons performed it is possible to clearly assert how Hybrid-IA is com-
parable with the state-of-the-art for the MWFV S problem, showing reliable
and robustness performances, and good ability in information learning. These
efficient performances are due to the combination of the immunological opera-
tors, which introduce enough diversity in the search phase, and the local search
designed, which instead refine the solution via more appropriate and determin-
istic choices.

5 Conclusion

In this paper we introduce a hybrid immunological algorithm, simply called
Hybrid-IA, which takes advantage by the immunological operators (cloning,
hypermutation and aging) for carefully exploring the search space, introducing
diversity, and avoiding to get trapped into a local optima, and by a Local Search
whose aim is to refine the solutions found through appropriate choices and based
on a deterministic approach.

The algorithm was designed and developed for solving one of the most chal-
lenging combinatorial optimization problems, such as the Weighted Feedback
Vertex Set, which simply consists, given an undirected graph, in finding the sub-
set of vertices of minimum weight such that their removal produce an acyclic
graph. In order to evaluate the goodness and reliability of Hybrid-IA, many
experiments have been performed and the results obtained have been com-
pared with three different metaheuristics (ITS, XTS, and MA), which represent
nowadays the state-of-the-art. For these experiments a set of graph benchmark
instances has been considered, based on different topologies: grid (squared and
no squared), toroidal, hypercube, and random graphs.

An analysis on the convergence speed and learning ability of Hybrid-IA

has been performed in order to evaluate, of course, its efficiency but also the
computational impact and reliability provided by the developed local search.
From this analysis, clearly emerges how the developed local search helps the
algorithm in having a correct convergence towards the global optima, as well as
a high amount of information gained during the learning process.

Finally, from the results obtained, and the comparisons done, it is possible to
assert how Hybrid-IA is competitive and comparable with the WFV S state-of-
the-art, showing efficient and robust performances. In all instances tested it was
able to reach the optimal solutions, except in only one (S SG7). It is important
to point out how Hybrid-IA has been instead the only one to reach the global
optimal solutions on 4 instances, unlike the three compared algorithms.
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Abstract. Determining if a graph displays a clustered structure prior
to subjecting it to any cluster detection technique has recently gained
attention in the literature. Attempts to group graph vertices into clus-
ters when a graph does not have a clustered structure is not only a
waste of time; it will also lead to misleading conclusions. To address
this problem, we introduce a novel statistical test, the δ-test, which is
based on comparisons of local and global densities. Our goal is to assess
whether a given graph meets the necessary conditions to be meaningfully
summarized by clusters of vertices. We empirically explore our test’s
behavior under a number of graph structures. We also compare it to
other recently published tests. From a theoretical standpoint, our test
is more general, versatile and transparent than recently published com-
peting techniques. It is based on the examination of intuitive quantities,
applies equally to weighted and unweighted graphs and allows compar-
isons across graphs. More importantly, it does not rely on any distribu-
tional assumptions, other than the universally accepted definition of a
clustered graph. Empirically, our test is shown to be more responsive to
graph structure than other competing tests.

1 Introduction

Graph clustering has been very well and very broadly covered in the literature
(e.g., [2,8,14,15,29,30]). Nonetheless, objective measures of a graph’s suitabil-
ity for clustering are lacking. There are multiple graph clustering and commu-
nity detection techniques in the literature and they all rely on the unmentioned
assumption that the graph has a clustered (community) structure, to begin with.
However, not all graphs have this type of structure. It is important to determine
if a graph is a good candidate for clustering, before any vertex-grouping effort is
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undertaken. Applying clustering techniques to a graph that does not have a clus-
tered structure is not only a waste of time; it will inevitably lead to misleading
conclusions.

In this article, our objective is to provide a test to determine if a graph
meets the prerequisite conditions for it to have a meaningful cluster structure
or if it displays no significant clustered structure. Here, our goal is not to iden-
tify graph clusters and their component vertices or assess the quality of the
clusters identified by an algorithm. Our goal is to assess whether a given graph
meets the necessary conditions to be meaningfully summarized by grouping its
vertices into clusters; whether its vertices are concentrated within densely inter-
connected subgraphs. In other words, our aim is to provide a technique for
accurately answering the question recently posed by Chiplunkar et al. [9], “(...)
given access to a graph G = (V, E), can we quickly determine whether the graph
can be partitioned into a few clusters with good inner conductance (...)?”, using
statistical sampling and hypothesis testing.

We want to assess whether a graph is more likely to be partition-able, like
the graph shown in Fig. 1a, or if it has a cluster-less structure as in Fig. 1b.1

Fig. 1. Graphs displaying clustered and unclustered structure

It is important to note that we are not looking to determine if all vertices
are grouped within clusters, but if a significant amount of them may belong to
separate clusters. We want to determine if clusters might be a good model for the
graph, if clusters might help us properly partition the graph in a meaningful way.
For example, a graph may have a small number of clusters that contain a small
fraction of vertices while the rest of the graph is randomly connected; or a graph
may have most of its vertices contained in densely connected clusters with a very
small number of vertices that do not belong to clusters. In the first instance, we
would not want to conclude that the graph displays a clustered structure, since
clusters are uninformative features of the graph and are not useful indicators for

1 Also, note that in this article we assume undirected graphs with no self-loops.
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its partitioning. Meanwhile, in the second instance, we would want to conclude
that clusters are likely to offer a meaningful picture of a graph’s structure.

With a view on large data sets, we develop a test that only relies on small
samples from the graph and does not examine the graph in its entirety. Here, we
follow the examples of many authors who have inferred various graph properties
through sampling (e.g., [3,11,12,17–19]).

The rest of this article is organized as follows. We begin with a review of
previous work in the field, describe and justify our methods, compare them to
recent techniques from the literature and share results from our empirical tests.
As a point of comparison, we also implement the techniques proposed by Gao
and Lafferty [17,18] and empirically compare their performance to our method’s
performance.

2 Related Work

Our work is primarily inspired by the recent work of Gao and Lafferty [17,18],
who use sampling and statistical testing to determine if a network has community
structure. We are also guided by the question, “(...) given access to a graph
G = (V, E), can we quickly determine whether the graph can be partitioned into
a few clusters with good inner conductance (...)?”, which was recently posed by
Chiplunkar et al. [9].

While a formal definition of “community structure” remains a topic of debate
(e.g., [15,30]), virtually all authors agree a cluster (or community) is a subset
of vertices that exhibit a high-level of interconnection between themselves and
a low-level of connection to vertices in the rest of the graph [14,27,28,33] (we
quote these authors, but their definition is very common across the literature).

The graph testing (through sampling) literature is very rich. Many authors
have proposed tests for various graph properties other than the existence of
clusters (e.g., [3,11,19,20,25]). Tests for clustering have also been studied in
the past. For example, Arias-Castro and Verzelen [4,32] set up clustering as
a hypothesis test. They use the Erdős-Rényi random (ER) graph [1,13] as a
null model, but their alternative hypothesis is the existence of only one dense
subgraph. Czumaj et al. [10] describe a test of clustering, but they impose a
restrictive κ − φ model as their benchmark. Bikel and Sarkar develop tests for
graph spectra, in order to determine if a graph follows the ER model [7].

As mentioned earlier, Gao and Lafferty [17,18] propose clustering tests, but
their tests focus on vertex triplets and asymptotic properties. More recently, Jin
et al. [23] raise the point that testing for clustering remains a non-trivial problem
and propose potentially (computationally) costly tests based on the number of
paths and cycles of fixed length. Also, very recently Chiplunkar et al. [9] propose
a test of clustering based on a restrictive κ−φ model, while He et al. [22] highlight
the problem as still being unresolved.

Unfortunately, most of these authors’ approaches are restrictive and rely on
rigid models for their hypotheses tests. Indeed, Ugander et al. [31] claim that
incomplete non-empty k−node subgraphs are infrequent not just in social net-
works, but there exist mathematical reasons why such subgraphs are infrequent
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in general settings. They proved a theoretical upper bound on their probabil-
ity of occurrence. Later, Yin and Leskovec discussed the need to look at more
complex structures, in order to gain an understanding of complex network struc-
tures [34]. Finally, it is important to remember that closed triplet frequencies
and clustering coefficients may be higher than under the ER hypothesis, while
the network does not exhibit clustering [16].

The choice of null hypothesis is also a topic of debate in the literature. In
addition to most of the authors above who focus on clustering, Elenberg et al. [12]
approximate 3-profile counts by sampling and use the ER graph as a null model.
Unfortunately, the ER random graph model has been described as overly sim-
plistic to model real-world networks (e.g., [1,5,6,16]).

Gao and Lafferty [18] use the ER model to prove a central limit theorem for
their estimators of wedges and triangles. However, as pointed out by those same
authors [17], the ER model may be an insufficient null hypothesis. Meanwhile,
other authors (e.g., [23]) set up a more general null hypothesis of only one single
cluster and an alternative hypothesis of more than one.

3 Methods

We develop a test whose successful fulfillment forms a necessary condition for
a graph (network) to exhibit a clustered (community) structure. It is founded
on statistical hypothesis testing; the reliability of the conclusions it leads to is
transparent and rooted in statistical theory.

Unlike many authors’ recent work on the topic, our technique does not rely
on any assumptions on the structure of the null graph, beyond what is implied
by the definition of an unclustered graph structure. In addition, our technique
detects anomalies in density, not just specific sub-structures like triangles or
other fixed-length structures. It also makes no assumptions on the number of
clusters, as in the case of κ − φ models.

3.1 Underlying Assumptions and Densities

Our test only relies on the assumption that graphs composed of more than one
cluster are characterized by the presence of subsets of densely connected vertices
with sparse connections to the rest of the graph. This assumption is a direct
consequence of the fact that a cluster can be described as a subset of vertices
that are densely connected to each other but only sparsely connected to vertices
outside their cluster. Therefore, a clustered connection pattern translates into
heterogeneous local densities across the graph. A clustered graph is characterized
by pockets of highly connected nodes leading to high local densities that are
significantly higher than the graph’s overall density.

The links between density and clustered patterns of connectivity were shown
in Miasnikof et al. [26]. Under such a pattern of connectivity, it is expected
that the densities of induced subgraphs obtained by sampling vertices within a
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neighborhood will exhibit, on average, higher densities than the graph’s global
density. An example of this heterogeneous density is shown in Fig. 2, where
the graph’s global density is K = 0.43, while each of its constituent cluster
(subgraph) densities are k1 = 0.83, k2 = 1.

Fig. 2. Heterogeneous densities

On the other hand, if a graph has no meaningful cluster structure, we should
not observe a significant number of vertices falling into densely inter-connected
subgraphs which are sparsely connected to other vertices on the graph, as seen in
Fig. 1b. A non-clustered structure implies that any two vertices have a roughly
uniform probability of being connected. This homogeneity can be statistically
inferred by the absence of a statistically significant difference between the mean
density of a sample of randomly chosen induced subgraphs and the graph’s global
density.

Unlike much of the current work on this topic (e.g., [4,7,12,32]), our null
model does not rely on the assumption of an ER graph and does not make any
assumptions on the number of clusters (e.g., [9]). Our proposed technique does
not impose any model on the null other than its lack of clustering reflected in
a homogeneous density across the graph. Our null graph is simply a general
graph with a near constant density, on average. This null hypothesis includes all
graphs without clustered structure, not only ER graphs, but any other type of
non-clustered graph. The configuration model graph and a graph which contains
a small number of clusters while most of the edges are randomly connected are
both examples of such general unstructured graphs. Our simulated data sets
described in Sect. 3.6 and our empirical tests in Sect. 3.7 include both these
examples.
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3.2 (Sub)Graph Densities and the δ Statistic

Consider a graph G = (V,E), with |V | = N . First, we randomly sample a
subset of S = sN vertices, where s ∈ (0, 1] is a parameter which determines the
proportion of total vertices we wish to sample. We call these vertices the root
nodes.

Then, for each root node i ∈ {1, . . . , S}, we take all its neighboring vertices
and consider the local subgraph induced by them. Let Ei denote the set of edges
in the local induced subgraph formed by the neighbors of node i and ni denote
the number of these neighbors. In the case of unweighted graphs, |Ei| (or |E|
when dealing with the full graph) represents the cardinality of the set (number
of edges). In the case of weighted graphs, |Ei| (or |E|) represents the sum of edge
weights.

We compute the local induced subgraph density as

ki =
|Ei|

0.5 × ni(ni − 1)
.

Then, the mean local density for S induced local subgraphs is computed as

K̄� =
1
S

S∑

i=1

ki.

At the graph level, the global density is computed as

K =
|E|

0.5 × N(N − 1)
.

Finally, we introduce the δ statistic, the normalized mean of the ki, as a
measure of divergence between the global and mean local densities:

δ =
K̄�

K
− 1.

With the help of Fig. 3, we illustrate this sampling procedure and the com-
putation of the δ statistic. We begin by sampling two vertices labelled v1 and v2
(we have S = 2) and compute the densities of the two local induced subgraphs
(k1, k2). Our δ statistic is then computed as follows:

k1 =
|E1|

0.5 × n1(n1 − 1)
=

2
0.5 × 3 × 2

= 0.67,

k2 =
|E2|

0.5 × n2(n2 − 1)
=

3
0.5 × 3 × 2

= 1,

K̄� =
1
2
(k1 + k2) =

1
2

(0.67 + 1) = 0.84,

K =
|E|

0.5 × N(N − 1)
=

12
0.5 × 8 × 7

= 0.43,

δ =
K̄�

K
− 1 =

0.84
0.43

− 1 = 0.95.
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Fig. 3. Heterogeneous densities

3.3 Statistical Hypotheses

On the basis of our assumptions on densities, we posit the following relationships
between clustering and density:

1. If a graph does not display a clustered structure, then, on average, there
should be no statistically significant difference between local densities and
the graph’s global density (homogeneity);

2. If a graph does display a clustered structure, then, on average, there should
be a statistically significant difference between the densities of local induced
subgraphs and the graph’s global density (heterogeneity);

3. If a graph G1 has a more strongly clustered structure than a graph G2, then
its mean local density should also be significantly greater, in a statistical sense
(relative heterogeneity).

In summary, the existence of meaningful clusters implies that, on average, local
connectivity should be significantly stronger than the graph’s overall density.
Here, we draw the reader’s attention to the fact that our technique seeks to
statistically determine the presence of locally strong atypical densities. Our app-
roach is more general than the recent work which focuses on triangles or other
fixed-length cycles or restrictive κ − φ models (e.g., [9,17,18,23]).

On the basis of the above-mentioned relationships, we formulate the following
statistical hypotheses, which can be tested using the appropriate t-tests:

– Under the null hypothesis that a graph does not have a clustered structure,
i.e., it has a uniform density, we test for E(ki) = K ⇒ E(δ) = 0 by using a
one-tailed Student t-test;

– Alternatively, if the graph does have heterogeneous density, we expect E(ki) >
K ⇒ E(δ) > 0, since it is greater than under the null;
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– Under the null hypothesis that a graph G1 has equally strong clustered struc-
ture as a graph G2, we test for E (δG1) = E (δG2), again by using a one-tailed
Student t-test;

– Alternatively, if a graph G1 has a more heterogeneous density structure than
a graph G2, we expect E (δG1) > E (δG2).

3.4 Algorithm

As mentioned in the previous section, our δ test statistic can be used to answer
two related but distinct questions:

1. Does a graph display heterogeneity in its density?
2. Does a graph G1 have a more heterogeneous density than a graph G2?

In the first question, we ask whether a graph meets the necessary condition to
have a clustered structure. In the second, we ask if one graph meets this condition
more strongly than another. These questions can be answered by following these
steps:

– Sample S induced subgraphs, each containing ni vertices (i ∈ {1, . . . , S});
– Compute the local densities ki = |Ei|

0.5×ni(ni−1) for each of the S subgraphs;

– Compute graph density K = |E|
0.5×N(N−1) , for graph G = (V,E) with |V | = N ;

– Compute the mean of the local densities: K̄� = 1
S

∑S
i=1 ki;

– Normalize the mean and obtain our test statistic: δ = K̄�

K − 1;
– In the case of a single-graph test, perform a one-tailed t-test; the null hypoth-

esis is E(δ) = 0, the alternative is E(δ) > 0;
– In the case of a two-graph test, perform a two-sample (unpaired with unequal

variance) one-tailed t-test on the δ statistics of graphs G1, G2; the null hypoth-
esis is E(δG1) = E(δG2), the alternative is E(δG1) > E(δG2)

3.5 Methodological Comparison to Other Recently Published
Techniques

In Table 1, we compare key features of recently published test techniques that
have inspired our own work. In the first column, we display the features asso-
ciated with the methods proposed by Chiplunkar et al. [9]. In the second, we
display the features of Gao and Lafferty’s two recently published tests [17,18].
Finally, in the last column we display the features of our own δ test.

In Table 1, we see that our test is more general and versatile than recently
published tests. We make no distributional assumptions and impose no gener-
ative model on the graph. Our test applies to weighted and unweighted graphs
equally and is rooted in statistical testing methodology.
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Table 1. A comparison of recently published clustering tests

Chip et al. G-L Tests δ Test

Requires number of clusters as input Y N N

Assumes generative model Y N N

Provides statistical confidence intervals N Y Y

Imposes distribution on null NA Y N

Applies to weighted and unweighted graphs Y N Y

3.6 Empirical Examples

In this section, we begin with the δ for each graph and single graph t-tests for
the following ten graphs. We then perform two-sample t-tests (with unequal
variance), to compare each pair of graphs (our weighted graph is assessed sepa-
rately). With the exception of our Stanford University SNAP “real-world” graph
[24,35], all graphs were generated using the Networkx library [21]. Details of each
graph’s characteristics are provided below, in Table 2.

– Scenario 1: generated using the Erdős-Rényi model (ER);
– Scenario 2: generated using the degree-corrected stochastic block model

(SBM);
– Scenario 3: (connected) caveman (CC);
– Scenario 4: generated using the Barabási-Albert model with an out-degree of

3 (BA3);
– Scenario 5: generated using the Barabási-Albert model with an out-degree of

5 (BA5);
– Scenario 6: generated using the Watts-Strogatz model (WS);
– Scenario 7: generated using the configuration model with an underlying power

law with exponent of 3 (CM);
– Scenario 8: a merger of two connected caveman graphs of 75 vertices each

and an ER graph of 850 vertices (MD);
– Scenario 9: a “real-world” graph. Here, we converted the SNAP “Eu-core

network” into an undirected graph with no self-loops (EUC);
– Scenario 10: a weighted (connected) caveman (CCw).

3.7 Empirical Results

The tables below contain the p-values for our one-sample and two-sample δ
statistics. In Table 3, the diagonal entries are for the one-sample t-tests, while the
off diagonal elements are for the two-sample graph vs graph t-tests. These tests
were done on graph samples consisting of a set of randomly selected (without
replacement) root nodes of size equal to 25% of all graph nodes.

As expected, our one-sample test does not reject the null hypothesis of homo-
geneous density for the ER and configuration model (CM) graphs, whose edges
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Table 2. Test graph characteristics (N denotes total number of vertices, |ci| number
of vertices in cluster i, p edge probability)

Graph Graph characteristics

ER N = 1, 000, p = 0.333

SBM N = 1, 000, |ci| = 91, 21, 333, 555

CC Num cliques = 10, size of cliques = 100

BA3 N = 1, 000, out-degree = 3

BA5 N = 1, 000, out-degree = 5

WS N = 1, 000, k = 14, p = 0.2

CM N = 1, 000, exp = 3

MD One ER and two CC, N = 1, 000 = 850 + 2 × (3 × 25)

EUC N = 1, 005 in 42 known clusters

CCw Num cliques = 12, size of cliques = 100, w ∈ [0, 1]

Table 3. P-Values for δ (unweighted graphs)

ER WS BA3 BA5 CC SBM EUC CM MD

ER 0.64 1.00 1.00 1.00 1.00 1.00 1.00 0.75 0.92

WS 0.00 0.00 1.00 1.00 1.00 0.00 1.00 0.25 0.00

BA3 0.00 0.00 0.00 0.15 1.00 0.00 1.00 0.03 0.00

BA5 0.00 0.00 0.85 0.00 1.00 0.00 1.00 0.06 0.00

CC 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

SBM 0.00 1.00 1.00 1.00 1.00 0.00 1.00 0.69 0.00

EUC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CM 0.25 0.75 0.97 0.94 1.00 0.31 1.00 0.25 0.25

MD 0.08 1.00 1.00 1.00 1.00 1.00 1.00 0.75 0.08

are randomly connected. The null is also not rejected in the case of the “merged
graph” in which only a small number of vertices belong to densely connected sub-
graphs while most of the vertices are randomly connected. On the other hand,
the null is correctly rejected in cases where the graph is known to have a strongly
clustered structure (SBM, CC, EUC).

Our two-sample test accurately classifies the ER graph as not having a more
heterogeneous density than any of the other graphs. It also confirms the EUC
and CC graphs are more clustered than all other graphs.

We also perform a one-sample test on a weighted graph, a weighted connected
caveman graph. The p-value for that test is p = 0.00, which confirms the graph
is indeed clustered.
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Other Tests. Because of their similar approach, we also perform the EZ and T 2

tests presented by Gao and Lafferty [17,18], as a point of comparison. However,
because these tests do not lend themselves to pairwise comparison or weighted
graphs, we are only able to compare one-sample tests on unweighted graphs.

Table 4. p-Value comparisons

Graph EZ test T 2 test δ test

ER 1.00 0.82 0.64

WS 1.00 0.00 0.00

BA3 1.00 0.00 0.00

BA5 1.00 0.00 0.00

CC 0.99 0.00 0.00

SBM 0.97 0.00 0.00

EUC 1.00 0.00 0.00

CM 1.00 0.00 0.25

MD 1.00 0.00 0.08

CCw N.A N.A 0.00

In Table 4, we observe how our test is more responsive to graph structure
than either of the Gao-Lafferty tests. The p-values of the EZ test are completely
unaffected by the graph’s structure and the null hypothesis of an ER graph is
never rejected. The T 2 test performs slightly better, since it correctly rejects the
null in all but the ER case. However, unlike our δ test, it is unable to detect the
lack of clustering in the configuration model (CM) and “merged” (MD) graphs.
Also, neither of these competing tests is designed for graph-to-graph comparisons
or defined for weighted graphs.

4 Conclusion

In this article, we present a test for clusterability of a graph that is based on
heterogeneity of local densities. We show how variations in densities can be used
as indicators of a probable clustered structure. Our tests perform as expected
and compare very favorably to recently published competing techniques.

Our future work will focus on sensitivity to sample sizes under various graph
structures. We also intend to examine the cases of weighted graphs more closely.
Currently, the topics of random and clustered weighted graphs remain subjects
of debate.
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Abstract. Over the last years, binary decision diagrams (BDDs) have
become a powerful tool in the field of combinatorial optimization. They
are directed acyclic multigraphs and represent the solution space of
binary optimization problems in a recursive way. During their construc-
tion, merging of nodes in this multigraph is applied to keep the size
within polynomial bounds resulting in a discrete relaxation of the origi-
nal problem. The longest path length through this diagram corresponds
then to an upper bound of the optimal objective value. The algorithm
deciding which nodes to merge is called a merging heuristic. A commonly
used heuristic for layer-wise construction is minimum longest path length
(minLP) which sorts the nodes in a layer descending by the currently
longest path length to them and subsequently merges the worst ranked
nodes to reduce the width of a layer. A shortcoming of this approach is
that it neglects the (dis-)similarity between states it merges, which we
assume to have negative impact on the quality of the finally obtained
bound. By means of a simple tie breaking procedure, we show a way
to incorporate the similarity of states into minLP using different dis-
tance functions to improve dual bounds for the maximum independent
set problem (MISP) and the set cover problem (SCP), providing empiri-
cal evidence for our assumption. Furthermore, we extend this procedure
by applying similarity-based node merging also to nodes with close but
not necessarily identical longest path values. This turns out to be ben-
eficial for weighted problems where ties are substantially less likely to
occur. We evaluate the method on the weighted MISP and tune param-
eters that control as to when to apply similarity-based node merging.

Keywords: Binary decision diagrams · Top-down construction ·
Merging heuristic · State similarity · Tie breaking

1 Introduction

In the last decade, decision diagrams (DDs) have emerged as a new tool in
the field of combinatorial optimization. Originally, they were conceived by Lee
[10] in circuit design as a compact representation for binary functions. In the
optimization context, they were introduced by Hadzic and Hooker [7] as a tool for
post-optimality analysis. Since then, DDs have been used to obtain strong dual
c© Springer Nature Switzerland AG 2020
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bounds by means of a new form of discrete relaxation [6], as constraint stores for
advanced constraint propagation in constraint programming [7], for obtaining
promising heuristic solutions [4], and for a new branching scheme leading to a
general purpose branch-and-bound framework [3]. For a comprehensive book on
DDs for optimization, see [2].

A DD for a given problem is a directed acyclic graph G = (V,A) with node
set V and arc set A containing dedicated root and target nodes r, t ∈ V . An
exact DD represents all feasible solutions of the underlying problem in the sense
that there is a one-to-one correspondence between r–t paths and feasible solu-
tions. Therefore exact DDs for hard problems typically have exponential size. In
the layer-wise, top-down construction of relaxed DDs, one restricts the size by
merging nodes whenever a layer would exceed a specified width. Merging is done
in such a way that no feasible solution is lost, but new paths, corresponding to
infeasible solutions, may emerge. Assuming maximization, a longest path from
the root to the terminal node represents a solution that is usually infeasible for
the original problem but yields a dual bound. The tightness of this bound is
determined by the maximum width of the layers, the ordering of the decision
variables [1] and the merging heuristic, i.e., the selection of the nodes that are
merged. Algorithms building on a DD can strongly benefit from a stronger bound
or a more compact DD that yields the same bound. The latter holds in partic-
ular when the once constructed DD is then traversed many times as in bound
strengthening schemes like the value enumeration method [6] that incrementally
strengthens integral bounds when there is no path with the current bound that
corresponds to a feasible solution.

In this paper, we show how to improve the commonly used merging heuris-
tic minimum longest path (minLP) for two benchmark problems, namely the
maximum independent set (MISP) and the set cover problem (SCP). Section 2
reviews related work. In Sect. 3, we formally introduce binary decision diagrams
(BDDs) based on dynamic programming formulations and provide the concrete
modeling of the MISP and SCP. In Sect. 4, we introduce a state similarity-based
tie breaking procedure for the minLP merging heuristic with the aim to improve
the quality of obtained dual bounds. The approach is specifically instantiated
for MISP and SCP. We then generalize the method by applying the similarity-
based merging not just in case of ties but already when longest path values of
nodes are sufficiently close. This turns out to be particularly meaningful in case
of the weighted MISP, since there ties are substantially less likely to occur. More
generally, for other problems we also provide suggestions on how to construct
meaningful merging distance functions. In Sect. 5 we present our computational
study, where the effectiveness of our tie breaking approach on compact BDDs
with small widths for the MISP, weighted MISP, and SCP is demonstrated. We
conclude in Sect. 6.

2 Related Work

Our work builds upon the classic top-down construction method of BDDs as
described by Bergman et al. in [5] and [6], whose results we also use as a baseline
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for the MISP and SCP in our computational study. In limited-width BDDs, nodes
are merged to achieve a discrete relaxation of the solution space; the selection of
which nodes to merge is called merging heuristic, see Sect. 4. The pairwise minLP
merging heuristic was introduced in [6], in its bulk form in [5]. The size of a BDD
is crucially determined by the order in which the decision variables are processed
as elaborated on in [1]. The minState variable ordering heuristic selects in each
layer dynamically the next decision variable for which the least successor nodes
can be derived to aim for keeping the BDD small in a greedy way. Together, the
minState variable ordering heuristic and the minLP merging heuristic provide
strong bounds for the MISP on random and DIMACS graphs, as presented in [5].
The possible impact of state (dis-)similarity is already addressed and a minimum
distance pairwise merging heuristic is suggested in [6], on which we focus in this
paper in Sect. 4. In [9], a clustering algorithm is used to partition DD nodes
into approximate equivalence classes for solving a multi-dimensional bin packing
problem.

3 Binary Decision Diagrams (BDDs)

We consider a combinatorial optimization problem (COP) C = 〈S, f〉, where S
is the finite search space and f : S → R the objective function to be maximized.
Every element x ∈ S is represented by an assignment of values to n binary
decision variables xi ∈ {0, 1}, i = 1, . . . , n. Hence, S ⊂ {0, 1}n and f : {0, 1}n →
R. The goal is to find an optimal solution x∗, i.e., for which the objective value
z∗ = f(x∗) ≥ f(x′) ∀x′ ∈ S:

z∗ = max
x∈S

f(x) (1)

We restrict f to be a separable function of the decision variables f(x) =∑n
i=1 fi(xi) which allows us to state the COP in a recursive formulation. For

a well-defined ordering in a recursion, a variable ordering π : {1, . . . , n} →
{1, . . . , n}, with π being bijective, is assumed. A partial assignment of the deci-
sion variables of length k, under the ordering π is then defined by an ordered
tuple (dπ1 , . . . , dπk

) ∈ {0, 1}k, k ∈ {0, . . . , n}, where k = 0 corresponds to an
empty assignment.

Definition 1 (State). A state si ∈ S is a mapping from an i-partial assign-
ment. It determines the subset Fsi

⊆ {0, 1}n−i of feasible decisions for remain-
ing variables xπ(i+1), . . . , xπ(n), the feasible completions of the current partial
assignment. If two partial assignments have the same state, they have the same
feasible completions.

The representation of a state needs to be concretely defined for the problem at
hand, for example by means of sets or reals. This admits a recursive enumeration
of the state space Sn+1 
 (s0, . . . , sn) corresponding to the search space S by
defining a state transition function:

τ : {0, 1} × S → S (2)
(d, si) �→ τ(d, si) = si+1 (3)
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We can now formulate our maximization problem recursively over the states via
Bellman equations ∀i ∈ {0, . . . , n − 1}:

z∗(si) = max
d∈{0,1}

{fπi
(d) + z∗(τ(d, si)) | d ∃c ∈ Fsi

: c = (d, . . . )} (4)

z∗(sn) = 0 (5)

If for a given si there exists a feasible completion c ∈ Fsi
for which we can set

the next decision variable xπi+1 to d, i.e., ∃c ∈ Fsi
: c = (d, . . . ), we say that the

state admits a d-transition. The root state s0 corresponds to an empty partial
assignment, s1 to when the first variable xπ1 has been assigned, and so forth.
Clearly, Fs0 = S and Fsn

= ∅.
A binary decision diagram (BDD) in our context is a directed acyclic lay-

ered multigraph with layers L, |L| = n + 1 and represents this state space enu-
meration graphically. Layer 0 contains only the root node r representing the
root state s(r) = s0 and layer n the terminal node t representing the terminal
state s(t) = sn. Each node u in layer l is thus associated with a state s(u). If
s(u) = s(u′) for nodes u, u′ in a given layer, they admit by definition the same
feasible completions and can therefore be superimposed to reduce the size of the
BDD. Except for the terminal node, each node u has a d-labeled outgoing arc
a = (u, v) for each d admissible by Fs(u), representing the possible decisions at
state s(u). source(a) = u is called the source (node) of the arc and target(a) = v
the target (node) respectively. The arcs point downwards, the layer of the target
must always be greater than the one of the source.

Every arc receives a label d(a) ∈ {0, 1} to encode a binary decision. If a
path starts at the root node and finally leads to some node v, which we denote
by prv, this corresponds to a k-partial assignment (d((r, u1)), . . . , d((uk−1, v))),
where d((u, v)) is the aforementioned label of arc (u, v). Every arc is assigned
a weight fπi

(d), contributing to the length of paths going trough the decision
diagram, for instance fπ(i)(d) = cπi

d when we are given constant objective func-
tion contributions cπi

for each decision variables xπ(i) set to one. In exact BDDs,
there is by construction a one-to-one mapping between paths prt and feasible
solutions S. For maximization problems, paths of longest length correspond to
its optimal solutions. In general, the exact decision diagrams grow exponential in
size in the number of decision variables. The focus in this paper lies on limited-
width, relaxed DDs, where layers have a maximum number β of nodes to keep
the DD size bounded by β|L| nodes. The contained paths represent a superset
of the search space S and, thus, a discrete relaxation of the original problem.
This is achieved by also superimposing nodes that have different states, which
is called merging.

Definition 2 (Merging of nodes). When nodes u, v are merged into a node
w, all incoming arcs of u, v are redirected to the new node w and the states
s(u), s(v) are merged into s(w) in a way that no feasible paths, i.e., solutions in
the search space are lost. Therefore, Fs(w) ⊃ Fs(u) ∪ Fs(v).

The length of a longest path in a relaxed BDD is an upper bound on the
optimal objective value to the original problem. Our first specific problem we
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Fig. 1. Two relaxed BDDs for a simple graph instance on the right. Left with maximum
width β = 1, in the center with β = 2, both having the same longest path length of 2
with optimal solutions of zero-indexed vertices {{0, 3}, {0, 4}, {1, 2}, {1, 4}}.

consider is the maximum independent set problem (MISP). It is defined on an
undirected simple graph G = (V,E) as finding a maximum subset of nodes
I ⊂ V , s.t. no pair of nodes in I are adjacent. A proper state si is the subset of
the vertices for which no decision has been yet made and for which no neighbor
has been selected so far. The transition function is

τ : {0, 1} × 2V → 2V (6)
(0, si) �→ si+1 = τ(0, si) = si − {πi} (7)
(1, si) �→ si+1 = τ(1, si) = si − {πi} − N(πi) (8)

where N(πi) ⊂ V is the neighborhood of the i-th considered vertex πi. The root
state s0 is V , the terminal state ∅. A natural merging operator ⊕ of k states is
given by the set union:

⊕ ({u1, . . . , uk}) �→ w : s(w) =
k⋃

j=1

s(uj) (9)

Two examplary BDDs for a simple MISP instance of width β = 1 and β = 2
are depicted in Fig. 1. For each arc the weight and the corresponding decision
variable is shown. The label is indicated by a dotted arc for a 0-transition and a
solid arc for a 1-transition. When reducing the maximum width from 2 to 1, we
see that a merging is applied in the second layer of states {2, 4} and {2, 3, 4}.

As a second fundamental problem, we consider the classical set cover problem
(SCP). Given a universe U and a set of sets S with S 
 S ⊂ U and

⋃
S∈S S = U ,

we seek to find a S∗ ⊂ S with minimum cardinality so that
⋃

S∈S∗ S = U , i.e., a
minimum set covering. A proper state si is the set of elements that still have to
be covered. To ensure that all paths are feasible, a set j has to be selected (i.e.,
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1 X ← {1, . . . , n}, P ← {r};
2 for l ← 1 to n do
3 πl ← next-decision-variable(l, P, X);
4 X ← X − πl;
5 Ll ← P ′ ⊂ P for which xπl can bet set to 1;
6 while |Ll| > β do
7 Ll ← merge-nodes(Ll, l);
8 end
9 foreach u ∈ Ll do

10 foreach d ∈ {0, 1} do
11 if s(u) admits d-transition then
12 create vd;
13 s(vd) = τ(d, s(u));
14 create arc (u, vd) with label d and weight fπ(l)(d);

15 end

16 end

17 end

18 end

Algorithm 1. Relaxed limited-width layered binary decision diagram con-
struction algorithm, adapted from [3, p. 12].

its decision variable set to 1) if there exists an element in si that can only be
covered by selecting j, since all other possible decision variables have been set
to 0. A natural merging operator ⊕ of k states is given by the set intersection:

⊕ ({u1, . . . , uk}) �→ w : s(w) =
k⋂

j=1

s(uj) (10)

Throughout this paper, we focus on the top-down layer-wise construction
algorithm [5] for relaxed binary decision diagrams with maximum width β as
described in Algorithm 1.

It facilitates zero-suppressing long arcs, a dynamic variable ordering by the
function next-decision-variable and merging of nodes by the function merge-
nodes. As concrete variable ordering heuristic, we consider here minState [5]
which selects as next decision variable the one that yields the least number of
one-transitions from the current nodes for the next layer. A simple, yet effective
and commonly used merging heuristic is minLP [5], which sorts the nodes u in a
layer by the longest path lengths from the root node to them, denoted by zlp(u),
in decreasing order and merges the tail into one node so that the resulting layer
is of maximum width β, see Algorithm 2. In the minLP approaches described in
the literature so far, to the best of our knowledge, no tie breaking mechanism
for the sorting is explicitly specified which gives rise to the next section.
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1 Function merge-nodes(Ll, l)

2 T ← sorted nodes of Ll in decreasing order of zlp(u);
3 T ′ ← T without first β − 1 nodes of T ;
4 Ll = Ll\T ′;
5 w ← ⊕T ;
6 if ∃w′ ∈ Ll|s(w) = s(w′) then
7 w′ ← w′ ⊕ w;
8 else
9 Ll = Ll ∪ {w};

10 end

Algorithm 2. minLP merging heuristic in the bulk variant where all nodes
to be merged are merged within one step into one single node.

4 State Similarity

We consider two different merging heuristic patterns: pairwise merging and bulk
merging. Both face a layer l with a set of nodes Ll where |Ll| exceeds the
maximum width β. Pairwise merging is a form of iterative merging where pairs
of nodes are selected and merged until the desired layer width has been reached.
In contrast, bulk merging selects and merges the necessary number of nodes in
a single iteration. The bulk minLP merging heuristic as introduced in the last
section in Algorithm 2 sorts the nodes in a layer according to the longest path
length to them and merges the last |Ll| − β + 1 nodes into one. It generalizes
to rank based merging, which sorts nodes in a layer according to some criterion
and merges the required number of tail nodes. If the criterion can be calculated
easily, a clear benefit is the O(|Ll| log |Ll|) runtime complexity, whereas pairwise
mergings needs in general at least O(|Ll|2) time.

The rationale behind minLP is to consider nodes with smaller zlp(u) less
promising to be part of an overall longest path in the completed DD and therefore
less critical when merged in order to finally obtain a tight upper bound. This
strategy is supported by the minState variable ordering heuristic, which keeps
the size of the layers before merging as small as possible, therefore reducing the
number of nodes that need to be merged.

A shortcoming of this approach is that it neglects information that could be
obtained from the states of the nodes themselves, in particular the similarity
between states. Intuitively, merging similar states will usually lead to less new
paths corresponding to infeasible solutions than merging very different states.
If two states are comparable, for instance by the subset relation for sets or
the total order for reals, we denote s(u1) � s(u2) when s(u1) is greater than
s(u2). If s(u1) � s(u2), then Fs(u1) ⊇ Fs(u2). One way merging of nodes u, v
introduces infeasible solutions is by increasing the size of feasible completions
Fs(w) ⊃ Fs(u) ∪ Fs(v), which gives rise to a definition for a meaningful distance
function:

Definition 3 (Merging distance between two nodes). A merging distance
between two nodes u, v is a non-negative function d : Ll × Ll → R

+
0 . For any
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1 Function merge-nodes(Ll, l)

2 T ← pairs of nodes (u, v), u, v ∈ Ll for which (zlp(u), zlp(v)) is minimal;
3 T ′ ← pairs of nodes (u, v) ∈ Ll for which d(u, v) is minimal;
4 select (u, v) ∈ T ′ randomly;
5 Ll = Ll\{u, v};
6 w ← u ⊕ v;
7 if ∃w′ ∈ Ll|s(w) = s(w′) then
8 w′ ← w′ ⊕ w;
9 else

10 Ll = Ll ∪ {w};
11 end

Algorithm 3. Iterative minLP merging function with similarity-based tie
breaking.

triple of nodes u1, u2, v ∈ Ll, we demand that if Fs(u1⊕v) ⊃ Fs(u2⊕v), d(u1, v) ≥
d(u2, v) should hold.

The goal is to find a distance function for a specific problem such that greater
distance means a higher probability of introducing new paths and thus new
represented solutions in the decision diagram, even if the states of the nodes are
uncomparable. To consider a merging distance in the current state-of-the-art
merging heuristics, we first look at an iterative minLP variant, where we find
the use of the state similarity as a straightforward extension in form of a tie
breaking mechanism. This becomes relevant when there are two pairs of nodes
(u1, v), (u2, v), s(u1) �= s(u2) for which (zlp(u1), zlp(v)) = (zlp(u2), zlp(v))—then
we simply take the pair with minimal distance according to d, see Algorithm 3.
In the case of bulk minLP, a tie breaking is necessary when multiple nodes with
the same rank go through the merging boundary, see Fig. 2, which separates the
nodes to be merged from those to be kept as they are. Since the iterative minLP
merging always takes pairs of nodes with currently smallest ranks with respect
to zlp, an alternative implementation is to first do a bulk merge of the nodes that
have rank less than the one causing the need for tie breaking and then switch to
merging nodes pairwise:

1. For a given layer l with nodes Ll, sort the nodes according to their current
longest path length zlp(u) in decreasing order.

2. If the rank r of the β − 1-th node equals the rank of the β-th node, then we
select all nodes with that rank r into a tie breaking set T ⊂ Ll; otherwise we
do a simple minLP bulk merging.

3. Let B be the set of nodes that have a rank <r. We merge them yielding a
node w with state s(w) that is either still at the end of the ordered list or is
absorbed by another node, if there already exists a node w′ with s(w) = s(w′).

4. Finally, we iteratively merge pairs of nodes out of T ∪{w} (or T if w has been
absorbed) until the desired width β is reached. In each iteration, we choose
the pair u, v that currently has minimal distance d(u, v).
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rank(u) 1 2 3 4 5 6 7 7 7 7 7 12 13 14 15

zlp(u) 9 9 8 7 7 7 6 6 6 6 6 5 4 3 1

T B

Fig. 2. Example layer with |Ll| = 15 nodes sorted by longest path length zlp(u), which
is shown in the nodes. Let the maximum width be β = 10. All nodes with longest path
value 6 (bold) are now subject to tie breaking.

When considering weighted problems, ties are in general substantially less
likely to occur than in unweighted counterparts—still, we want to take the state
similarity into account when differences in the longest path lengths are small.
For that purpose, we introduce a parameterized hybrid merging algorithm, which
is based on the minLP ordering but artificially introduces a region of nodes of
similar longest path value around the merging boundary with which we deal
as with the tie breaking region above. This region is determined by parameters
δl, δr. To have meaningful parameters tunable between 0 and 1, regardless of the
absolute values of the longest path lengths, we first normalize those according
to the following transformation:

z̃lp(u) =
zlp(u) − minv∈Ll

zlp(v)
maxv∈Ll

zlp(v) − minv∈Ll
zlp(v)

(11)

The reference value is obtained by taking the normalized path value z̃lpref of
the node immediately right to the merging boundary, i.e., the node with the
largest value to be merged, if regular minLP would be applied. Now, two regions
(contiguous sets of nodes in the ordered view of the layer) are defined:

1. bulk merging region B := {u ∈ Ll | z̃lp(u) ∈ (z̃lpref − δr, 0.]}
2. pairwise merging region T := {u ∈ Ll | z̃lp(u) ∈ [z̃lpref + δl, z̃

lp
ref − δr]}

Let w ← ⊕B be the node resulting from the bulk merging of B, and Ll−T−B
are the nodes that are kept as they are. The pairwise merging is now performed
iteratively by always selecting a node pair with minimum distance d from T ∪ w
and replacing the two nodes by the merged node until the desired layer width is
reached. Setting δl = 0.0, δr = 0.0 yields the bulk-iterative hybrid as described
before that only considers pairwise merging for real ties, whereas δl = 1.0, δr =
1.0 would completely ignore the longest path information and only focus on
iteratively finding two minimum distance nodes to merge. For the choice of the
pairwise merging region T in an example layer, see Fig. 3.

As mentioned before, it is crucial to conceive a meaningful distance function
for a concrete problem. Notice that each node u in a layer has a maximum
remaining path length maxe∈Fsi=s(u) f(e), where f(e = (dπi+1 , . . . , dπn

)) is the
length of the feasible completion (see Definition 1), which is clearly not known
to us during the construction of the DD at layer l. Still, a possible construction
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rank(u) 1 2 3 4 5 6 7 7 7 7 7 12 13 14 15

z̃lp(u) 1. 1. .875 .75 .75 .75 .625 .625 .625 .625 .625 .5 0.375 .25 0.

T B

Fig. 3. Example layer with |Ll| = 15 nodes sorted by normalized longest path length
z̃lp(u), which is also shown in the nodes. Let the maximum width be β = 10,
δl = δr = .125. All nodes with normalized longest path value .625 ± .125 (bold) are
now subject to pairwise merging.

1 Function merge-nodes(Ll, l)

2 z̃lp(u) ← zlp(u)−minv∈Ll
zlp(v)

maxv∈Ll
zlp(v)−minv∈Ll

zlp(v)
∀u ∈ Ll;

3 B ← {u ∈ Ll|z̃lp(u) ∈ (z̃lp
ref − δr, 0.]};

4 T ← {u ∈ Ll|z̃lp(u) ∈ [z̃lp
ref + δl, z̃

lp
ref − δr]};

5 Ll = Ll\B;
6 w ← ⊕B;
7 include-node-into-layer(w, Ll, l);
8 while |Ll| > β do
9 T ′ ← pairs of nodes (u, v) ∈ T for which d(u, v) is minimal;

10 select (u, v) ∈ T ′ for which max{zlp(u), zlp(v)} is minimal;
11 Ll = Ll\{u, v};
12 T = T\{u, v};
13 w ← u ⊕ v;
14 include-node-into-layer(w, Ll, l);

15 end

16 Function include-node-into-layer(w, Ll, l)
17 if ∃w′ ∈ Ll|s(w) = s(w′) then
18 w′ ← w′ ⊕ w;
19 else
20 Ll = Ll ∪ {w};
21 end

Algorithm 4. Bulk-iterative minLP-state similarity-based hybrid merging
algorithm with parameters δl, δr.

scheme to formulate a distance between u and v is to consider the maximum
increase of the maximum remaining path lengths that u and v experience by
being merged to w = u ⊕ v:

d(u, v) = max{ max
e∈Fs(w)

f(e) − max
e∈Fs(u)

f(e), max
e∈Fs(w)

f(e) − max
e∈Fs(v)

f(e)} (12)

This is can be made use of by approximating the maxima by an upper bound
function zub(u):

dub(u, v) = max{zub(w) − zub(u), zub(w) − zub(v)} (13)
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For the MISP a first coarse upper bound to consider is given by the cardinality
of the state |s(u)|, which is only reasonably tight for sparse graphs, but might
still be meaningful since we are only interested in the maximum increase:

dMISP
coarse(u, v) = max{|s(u) ∪ s(v)| − |s(u)|, |s(u) ∪ s(v)| − |s(v)|} (14)

In the weighted MISP (MWISP) case, we sum over the vertex weights of the
remaining vertices defined by the state, zubMWISP(u) =

∑
j∈s(u) fj(xj = 1) to get

a coarse upped bound. With SCP, we are facing a minimization problem; there
the distance can be defined as maximum lower bound change:

dlb(u, v) = max{zlb(u) − zlb(w), zlb(v) − zlb(w)} (15)

In this case, the calculation of a bound on the maximum remaining path length
takes a little more work: We go over the remaining elements to be covered and
if at the i-th, we increase a counter by one, if none of its covering sets was also
a covering set for some j < i. The resulting counter value is a lower bound for
the number of sets to cover the universe.

Another construction method is to take only the maximum remaining path
length after merging w = u ⊕ v:

d̃(u, v) = max
e∈Fs(w)

f(e) (16)

The rationale is that it should be less likely to merge nodes that have high upper
bounds even if they are similar with respect to d(u, v), to balance the resulting
upper bounds over the layer:

d̃ub(u, v) = zub(w) (17)

As a baseline, we suggest to also include the weighted Hamming distance dH . It
sums the weights of elements that are part of state s(u) but not s(v) or vice versa;
for the unweighted case this amounts simply the cardinality of the symmetric
set difference.

To summarize, the main idea of these construction methods was to greedily
impede the estimated growth in bound by the remaining layers of the decision
diagram induced by merging. One subtlety is that a problem specific upper
bound does not take future merging operations into account but considers the
case when we would continue constructing the BDD without merging.

5 Computational Study

We tested the relaxed DD construction applying the minLP merging heuristic
with simple tie breaking based on the natural node order as done in [3] (i.e.,
the classic minLP) and minLP with our new similarity-based tie breaking using
different distance functions for the MISP on random graphs from [5] with n = 200
and densities from {0.1, 0.2 . . . , 0.9} (20 instances per combination) and on the
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Fig. 4. Comparison of relative bounds of relaxed BDDs with β = 10 obtained with the
classic minLP merging heuristic and with minLP with similarity-based tie breaking
using different distance functions. Left: plotted over densities with means and error
bars of 1σ; right: scatter plot for classic minLP vs. minLP with d̃ub based tie breaking.

DIMACS [8] max clique set instances1. For the SCP, we created random instances
with n = 500 elements that are covered by exactly k = 20 sets each following
the creation procedure for structured random instances from [6]. The constraint
matrices describing which sets cover which elements follow a specific staircase like
structure with limited bandwidths from {21, . . . , 27}, and there are 20 instances
per bandwidth. For the weighted MISP, we used 64 extended DIMACS graphs
that we could solve to optimality in which vertex i ∈ {1, . . . , n} has weight
i mod 200 + 12. All tests were conducted on an Intel Xeon E5-2640 processor
with 2.40 GHz in single-threaded mode and a memory limit of 8 GB.

On the left side of Fig. 4 we see the performance of the different tie breaking
distance functions from Sect. 4 in comparison to the classic minLP approach in
terms of the obtained relative bounds (i.e., obtained bounds divided by known
optimal objective values) on the MISP random graph instances when compiling
relaxed BDDs of maximum width β = 10. The tie breaking that seeks for pairs
for which merging yields the smallest trivial upper bound (cardinality of state
set), gives the strongest results. Differences among the approaches are generally
larger for sparser graphs and start to vanish for denser graphs. This is plausible
since the trivial upper bound is tighter for sparser graphs. The difference reaches
a maximum for density 0.3 of about 40%. On its right side Fig. 4 shows a scatter
plot with the relative bounds obtained for the DIMACS graph instances for
classic minLP and our minLP with similarity-based tie breaking with the upper
bound distance function. The median of the pairwise difference is 36% in favor of
our tie breaking. A Wilcoxon signed rank sum test indicated that this difference
is significant with an error probability of less than one percent.

Mean values of relative upper bounds and corresponding standard deviations
for the different densities and algorithm variants are listed in Table 1 for β = 10

1 http://www.andrew.cmu.edu/user/vanhoeve/mdd/code/opt bounds bdd-
instances.tar.gz.

2 https://github.com/jamestrimble/max-weight-clique-instances/tree/master/
DIMACS.

http://www.andrew.cmu.edu/user/vanhoeve/mdd/code/opt_bounds_bdd-instances.tar.gz
http://www.andrew.cmu.edu/user/vanhoeve/mdd/code/opt_bounds_bdd-instances.tar.gz
https://github.com/jamestrimble/max-weight-clique-instances/tree/master/DIMACS
https://github.com/jamestrimble/max-weight-clique-instances/tree/master/DIMACS
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Table 1. Mean relative upper bounds ūrel and standard deviations of relaxed BDDs
over the 20 random graphs per density p obtained by the different merging heuristics
for DD widths β ∈ {10, 100}.

p β = 10 β = 100

minLP dH dub d̃ub minLP dH dub d̃ub

ūrel σub ūrel σub ūrel σub ūrel σub ūrel σub ūrel σub ūrel σub ūrel σub

0.10 1.90 0.03 1.83 0.04 1.79 0.04 1.61 0.04 1.63 0.03 1.57 0.04 1.56 0.04 1.49 0.03

0.20 2.21 0.07 2.09 0.07 2.02 0.06 1.82 0.06 1.80 0.06 1.70 0.04 1.67 0.05 1.62 0.06

0.30 2.38 0.10 2.15 0.08 2.09 0.07 1.92 0.08 1.80 0.08 1.63 0.04 1.63 0.06 1.63 0.07

0.40 2.37 0.09 2.01 0.08 2.00 0.09 1.85 0.09 1.69 0.07 1.51 0.07 1.54 0.06 1.50 0.07

0.50 2.26 0.09 1.88 0.07 1.85 0.07 1.80 0.08 1.54 0.08 1.38 0.06 1.39 0.05 1.40 0.06

0.60 2.07 0.09 1.70 0.06 1.69 0.07 1.63 0.08 1.35 0.05 1.21 0.05 1.24 0.04 1.22 0.04

0.70 1.91 0.11 1.52 0.08 1.50 0.11 1.50 0.08 1.22 0.07 1.12 0.05 1.11 0.06 1.11 0.07

0.80 1.55 0.16 1.24 0.11 1.26 0.12 1.22 0.11 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

0.90 1.26 0.15 1.16 0.12 1.19 0.11 1.16 0.12 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

Fig. 5. Comparison of relative bounds of relaxed BDDs with β = 10 for weighted
DIMACS instances for classical minLP vs. minLP with similarity-based merging in
configuration C3 with distance function d̃ub.

and β = 100. For selected DIMACS instances relative upper bound values are
shown likewise in Table 2. For the weighted DIMACS graph instances, where
real ties are virtually non-existent, we tuned the left and right threshold param-
eters δl and δr for the region to which similarity-based merging is applied with
irace [11] and test on a different set of weighted DIMACS graphs where the
vertices have been randomly permuted. Here, we always used the superior upper
bound distance function. On the left side of Fig. 5 we see boxplots comparing
the raced parameter configurations with the classical minLP approach. The right
side of Fig. 5 shows the comparison of the DDs’ relative bounds when using the
most promising configuration C3 = (0.185, 0.043). We observe that occasion-
ally worse bounds are obtained but still in the clear majority of the cases the
state similarity-based merging yields tighter bounds, which is also confirmed
by a Wilcoxon signed rank sum test with an error probability of less than one
percent. The median of the pairwise differences is 0.05.
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Table 2. Relative upper bounds of relaxed BDDs obtained with different merging
heuristics and widths β ∈ {10, 100} for selected DIMACS instances.

inst β = 10 β = 100

minLP dH dub d̃ub minLP dH dub d̃ub

brock200 1 2.29 2.14 2.14 1.90 1.81 1.62 1.67 1.67

C500.9 3.05 3.00 2.81 2.47 2.61 2.46 2.40 2.28

gen400 p0.9 55 2.25 2.13 2.04 1.82 1.91 1.82 1.80 1.73

keller4 1.91 1.55 1.64 1.55 1.45 1.18 1.18 1.18

MANN a45 1.34 1.34 1.21 1.30 1.08 1.32 1.27 1.19

p hat300-3 2.19 2.11 2.08 1.86 1.86 1.75 1.81 1.69

p hat700-2 2.59 2.45 2.32 2.18 2.14 1.98 1.95 1.93

Fig. 6. Comparison of relative bounds of relaxed BDDs with β = 10 for staircase-like
set cover problem instances with n = 500 elements to cover with varying bandwidths
bw ∈ {21, . . . , 27} obtained with the classic minLP merging heuristic and with minLP
with similarity-based tie breaking using different distance functions. Left: plotted over
different bandwidths with error bars for 1σ; right: scatter plot for classic minLP vs.
minLP with tie-breaking based on d̃ub.

In Fig. 6, we see the results for analogous comparisons for the set cover prob-
lem. As this is a minimization problem, we seek high lower bound values. Again,
the lower bound distance turns out to be the most promising and gives statisti-
cally significant improvements with a median increase in the lower bound value
of 0.08.

6 Conclusion and Future Work

We presented a possibility to improve the minLP merging heuristic in the layer-
wise construction of a relaxed BDD. This extension turns in case of ties to
a pairwise merging strategy that considers the state similarities for deciding
which nodes to merge next. For unweighted problems, ties occur naturally
and we obtain significant improvements for MISP random graphs, DIMACS
instances, and for the set cover problem with random staircase-like instances.
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In the weighted case, due to too few real ties, we generalized the method by con-
sidering a range of nodes with close longest path lengths for our similarity-based
merging. We see a small but significant improvement for weighted DIMACS
instances, after having tuned the corresponding parameters. The computational
overhead introduced by our approach depends on the number of ties or the
parameters δl and δr in the generalized variant as well as the applied distance
function. However, since minLP still is the dominant criterion for deciding which
nodes to merge, the set of nodes to be processed by the pairwise similarity-based
merging is typically quite restricted. Our focus was on obtaining relaxed DDs of
small width that provide stronger bounds. Such DDs are particularly important
when they are used in some further algorithm many times, as frequently is the
case in practical applications. Then, an overhead in the DD’s construction will
quickly pay off. Our ongoing research is concerned with achieving more effect
on weighted instances, testing on further problem classes and reducing the time
complexity so that state similarity-based approaches become also more effective
for larger decision diagram width.
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Abstract. We consider one problem of partitioning a finite set of points
in Euclidean space into clusters so as to minimize the sum over all clus-
ters of the intracluster sums of the squared distances between clusters
elements and their centers. The centers of some clusters are given as
an input, while the other centers are unknown and defined as centroids
(geometrical centers). It is known that the general case of the problem is
strongly NP-hard. We show that there exists an exact polynomial algo-
rithm for the one-dimensional case of the problem.

Keywords: Minimum Sum-of-Squares Clustering · Euclidean space ·
NP-hard problem · One-dimensional case · Polynomial solvability

1 Introduction

The subject of this study is one strongly NP-hard problem of partitioning a finite
set of points in Euclidean space into clusters. Our goal is to analyze the com-
putational complexity of the problem in the one-dimensional case. The research
is motivated by the openness of the specified mathematical question, as well as
by the importance of the problem for some applications, in particular, for Data
analysis, Data mining, Pattern recognition, and Data processing.

The paper has the following structure. In Sect. 2, the problem formulation
is given. In the same section, a connection is established with a well-known
problem that is the closest to we consider one. The next section presents auxiliary
statements that reveal the structure of the optimal solution to the problem.
These statements allow us to prove the main result. In Sect. 4, our main result
of the polynomial solvability of the problem in the 1D case is presented.

2 Problem Formulation, Its Sources and Related
Problems

In the well-known clustering K-Means problem, an N -element set Y of points in
d-dimension Euclidean space and a positive integer K are given. It is required to
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find a partition of the input set Y into non-empty clusters C1, . . . , CK minimizing
the sum

K∑

k=1

∑

y∈Ck

‖y − y(Ck)‖2,

where y(Ck) = 1
|Ck|

∑
y∈Ck

y is the centroid of the k-th cluster.
Another common name of K-Means problem is MSSC (Minimum Sum-of-

Squares Clustering). In statistics, this problem is known from the last century
and is associated with Fisher (see, for example, [1,2]). In practice (in a wide
variety of applications), this problem arises when there is the following hypoth-
esis on a structure of some given numerical data. Namely, one has assumption
that the set Y of sample (input) data contains K homogeneous clusters (sub-
sets) C1, . . . , CK , and in all clusters, the points are scattered around the corre-
sponding unknown mean values y(C1), . . . , y(CK). However, the correspondence
between points and clusters is unknown. Obviously, in this situation, for the cor-
rect application of classical statistical methods (hypothesis testing or parameter
estimating) to the processing of sample data, at first it is necessary to divide the
data into homogeneous groups (clusters). This situation is typical, in particular,
for the above-mentioned (see Sect. 1) applications.

The K-Means strong NP-hardness was proved relatively recently [3]. The
polynomial solvability of this problem on a line was proved in [4] in the last
century. The cited paper presents an algorithm with O(KN2) running time that
implements a dynamic programming scheme. This well-known algorithm relies
on an exact polynomial algorithm for solving the well-known Nearest neighbor
search problem [5]. Note that the polynomial solvability in O(KN log N)-time
of the 1D case of the K-Means problem follows directly from earlier (than [4])
results obtained in [6–9]. In the cited papers, the authors have proved the faster
polynomial-time algorithms for some special cases of the Nearest neighbor search
problem. Nevertheless, in recent years, for the one-dimensional case of the K-
Means problem, some new exact algorithms with O(KN log N) running time
have been constructed. An overview of these algorithms and their properties can
be found in [10,11].

The object of our research is the following problem that is close in its formu-
lation to K-Means and is poorly studied.

Problem 1 (K-Means and Given J-Centers). Given an N -element set Y of
points in d-dimension Euclidean space, a positive integer K, and a tuple
{c1, . . . , cJ} of points. Find a partition of Y into non-empty clusters C1, . . . , CK ,
D1, . . . ,DJ such that

F =
K∑

k=1

∑

y∈Ck

‖y − y(Ck)‖2 +
J∑

j=1

∑

y∈Dj

‖y − cj‖2 → min,

where y(Ck) is the centroid of the k-st cluster.
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On the one hand, Problem1 may be considered as some modification of K-
Means. On the other hand, the introduced notation allows us to call Problem1
as K-Means and Given J-Centers.

Unlike K-Means, Problem 1 models an applied clustering problem in which
for a part of clusters (i.e., for D1, . . . ,DJ ) the quadratic scatter data centers
(i.e., c1, . . . , cJ ) are known in advance, i.e., they are given as input instance.
This applied problem is also typical for Data analysis, Data mining, Pattern
recognition, and Data processing. In particular, the two-cluster Problem1, i.e.,
1-Mean and Given 1-Center, is related to the solution of the applied signal pro-
cessing problem. Namely, this two-clusters problem is related with the problem
of joint detecting a quasi-periodically repeated pulse of unknown shape in a pulse
train and evaluating this shape under Gaussian noise with given zero value (see
[12–14]). In this two-cluster Problem1, the zero mean corresponds to the clus-
ter with the center specified at the origin. Apparently, the first mention has
been made in [12] on this two-cluster Problem 1. It should be noted that simpler
optimization problems induced by the applied problems of noise-proof detec-
tion and discrimination of impulses of specified shapes are typical, in particular,
for radar, electronic reconnaissance, hydroacoustics, geophysics, technical and
medical diagnostics, and space monitoring (see, for example, [15–17]).

Problem 1 strong NP-hardness was proved in [18–20]. Note that the K-Means
problem is not equivalent to Problem1 and is not a special case of it. Therefore,
the solvability of Problem1 in the 1D case requires independent study. This
question until now remained open.

The main result of this paper is the proof of Problem1 polynomial solvability
in the one-dimensional case.

3 Some Auxiliary Statements: Properties of the
Problem1 Optimal Solution in the 1D Case

In what follows, we assume that d = 1. Below we will call by Problem 1D the
one-dimensional case of Problem1.

Our proof is based on the few given below auxiliary statements, which reveal
the structure of Problem 1D optimal solution. For briefness, we present these
statements without proofs, limiting ourselves to the presentation of their ideas.

Denote by C∗
1 , . . . , C∗

K , D∗
1 , . . . ,D∗

J the optimal clusters in Problem 1D.

Lemma 1. If in Problem 1D cm < c�, where 1 ≤ m ≤ J , 1 ≤ � ≤ J , then for
each x ∈ D∗

m and z ∈ D∗
� the inequality x ≤ z holds.

Lemma 2. If in Problem 1D y(C∗
m) < y(C∗

� ), where 1 ≤ m ≤ K, 1 ≤ � ≤ K,
then for each x ∈ C∗

m and z ∈ C∗
� the inequality x ≤ z holds.

Lemma 3. For an optimal solution of Problem 1D, the following statements are
true:

(1) If y(C∗
m) < c�, where 1 ≤ m ≤ K, 1 ≤ � ≤ J , then for each x ∈ C∗

m and
z ∈ D∗

� the inequality x ≤ z holds.



On Polynomial Solvability of One Clustering Problem on a Line 49

(2) If y(C∗
m) > c�, where 1 ≤ m ≤ K, 1 ≤ � ≤ J , then for each x ∈ C∗

m and
z ∈ D∗

� the inequality x ≥ z holds.

The proof of Lemmas 1–3 is carried out by the contrary method using the fol-
lowing equality

(x − cm)2 + (z − c�)2 = 2(x − z)(c� − cm) + (z − cm)2 + (x − c�)2.

The validity of this equality follows from the well-known formula for the sum of
squares of the trapezoid diagonals.

Lemma 4. In Problem 1D, for each k ∈ {1, . . . , K} and j ∈ {1, . . . , J} it is
true that y(C∗

k) �= cj.

Lemma 5. In Problem 1D, for each k, j ∈ {1, . . . , K}, k �= j, it is true that
y(C∗

k) �= y(C∗
j ).

The proof of Lemmas 4 and 5 is carried out by the contrary method.
Lemmas 1–5 establish the relative position of the optimal clusters D∗

1 , . . . ,D∗
J

and C∗
1 , . . . , C∗

K on a line. These lemmas are the base of the following statement.

Theorem 1. Let in Problem 1D points y1, . . . , yN of Y, and points c1, . . . , cJ

be ordered so that

y1 < . . . < yN ,

c1 < . . . < cJ .

Then optimal partition of Y into clusters C∗
1 , . . . , C∗

K ,D∗
1 , . . . ,D∗

J corresponds to
a partition of the positive integer sequence 1, . . . , N into disjoint segments.

4 Polynomial Solvability of the Problem in the 1D Case

The following theorem is the main result of the paper.

Theorem 2. There exists an algorithm that finds an optimal solution of Prob-
lem 1D in polynomial time.

Our proof of Theorem1 is constructive. Namely, we justify an algorithm that
implements a dynamic programming scheme and allows one to find an exact
solution of Problem 1D in O(KJN2) time.

The idea of the proof is as follows. Without loss of generality, we assume
that the points y1, . . . , yN of Y, as well as the points c1, . . . , cJ are ordered as in
Theorem 1.

Let Ys,t = {ys, . . . , yt}, where 1 ≤ s ≤ t ≤ N , be a subset of t − s + 1 points
of Y with numbers from s to t.

Let

f j
s,t =

t∑

i=s

(yi − cj)2, j = 1, . . . , J,
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fs,t =
t∑

i=s

(yi − y(Ys,t))2,

where y(Ys,t) is the centroid of the subset Ys,t.
We prove that the optimal value of the Problem1 objective function is found

by the following formula
F ∗ = FK,J(N),

and the values

Fk,j(n), k = −1, 0, 1, . . . ,K; j = −1, 0, 1, . . . , J ; n = 0, . . . , N,

are calculated by the recurrent formulas. The formula

Fk,j(n) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if n = k = j = 0;
+∞, if n = 0; k = 0, . . . ,K; j = 0, . . . , J ; k + j �= 0;
+∞, if k = −1; j = −1, . . . , J ; n = 0, . . . , N ;
+∞, if j = −1; k = −1, . . . , K; n = 0, . . . , N ;

(1)

sets the initial and boundary conditions for subsequent calculations. Formula (1)
follows from the properties of the optimal solution. The basic formula

Fk,j(n) = min
{ n

min
i=1

{
Fk−1,j(i − 1) + fi,n

}
,

n
min
i=1

{
Fk,j−1(i − 1) + f j

i,n

}}
,

k = 0, . . . , K; j = 0, . . . , J ; n = 1, . . . , N, (2)

defines recursion. In general, the formulas (1), (2) implement the forward
algorithm.

Further, we have proved that the optimal clusters C∗
1 , . . . , C∗

K ,D∗
1 , . . . ,D∗

J

may be found using the following recurrent rule, that implements the backward
algorithm.

The step-by-step rule looks as follows:

Step 0. k := K, j := J , n := N .
Step 1. If

n
min
i=1

(
Fk−1,j(i − 1) + fi,n

)
≤

n
min
i=1

(
Fk,j−1(i − 1) + f j

i,n

)
,

then
C∗

k = {yi∗ , yi∗+1, . . . , yn},

where
i∗ = arg

n
min
i=1

(
Fk−1,j(i − 1) + fi,n

)
;

k := k − 1; n := i∗ − 1.
If, however,

n
min
i=1

(
Fk−1,j(i − 1) + fi,n

)
>

n
min
i=1

(
Fk,j−1(i − 1) + f j

i,n

)
,
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then
D∗

j = {yi∗ , yi∗+1, . . . , yn},

where
i∗ = arg

n
min
i=1

(
Fk,j−1(i − 1) + f j

i,n

)
;

j := j − 1; n := i∗ − 1.
Step 2. If k > 0 or j > 0, then go to Step 1; otherwise — the end of
calculations.

The validity of this rule we have proved by induction.
Finally, we have proved that the running time of the algorithm is O(KJN2),

that is, the algorithm is polynomial. The algorithms running time is defined
by the complexity of implementation of formula (2). This formula is calculated
O(KJN) times and every calculation of Fk,j(n) requires O(N) operations.

5 Conclusion

In the present paper, we have proved the polynomial solvability of the one-
dimensional case of one strongly NP-hard problem of partitioning a finite set of
points in Euclidean space. The construction of approximate efficient algorithms
with guaranteed accuracy bounds for the general case of Problem 1 and faster
polynomial-time exact algorithms for the 1D case of this problem seems to be
the directions of future studies.
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Abstract. In the past, combinatorial structures have been used only to
tune parameters of neural networks. In this paper, we employ for the first
time, neural networks and Boltzmann machines for the construction of
covering arrays (CAs). In past works, Boltzmann machines were success-
fully used to solve set cover instances. For the construction of CAs, we
consider the equivalent set cover instances and use Boltzmann machines
to solve these instances. We adapt an existing algorithm for solving gen-
eral set cover instances, which is based on Boltzmann machines and
apply it for CA construction. Furthermore, we consider newly designed
versions of this algorithm, where we consider structural changes of the
underlying Boltzmann machine, as well as a version with an additional
feedback loop, modifying the Boltzmann machine. Last, one variant of
this algorithm employs learning techniques based on neural networks to
adjust the various connections encountered in the graph representation
of the considered set cover instances. Supported by an experimental eval-
uation our findings can act as a beacon for future applications of neural
networks in the field of covering array generation and related discrete
structures.

Keywords: Neural networks · Boltzmann machines · Covering arrays

1 Introduction

Various approaches have been applied for the construction and optimization
of CAs, for a survey see for example [11]. Artificial Neural Networks (ANN)
have been applied successfully in various fields of computer science, especially
in optimization [10], and recently significant effort has been spent to replicate
the decisions of human experts using artificial intelligence [9]. The covering array
generation problem is known to be tightly coupled with hard combinatorial opti-
mization problems, see [5] and references therein.

In this paper, to the best of our knowledge, we employ for the very first time
neural network models based on Boltzmann machines (BM) to optimization of
c© Springer Nature Switzerland AG 2020
N. F. Matsatsinis et al. (Eds.): LION 13 2019, LNCS 11968, pp. 53–68, 2020.
https://doi.org/10.1007/978-3-030-38629-0_5
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CA generation, i.e. the construction of CAs with a small number of rows. We
would like to note that constructing a BM architecture corresponding to a par-
ticular optimization problem is a difficult task, since one has to construct the
topology of the architecture to reflect the particular nature of a given problem.
This difficulty has been first noted in [1], where the authors tried to combine
neural computation with combinatorial optimization for a different class of prob-
lems.

This paper is structured as follows. In Sect. 2 we give the preliminaries needed
for this paper. Next, in Sect. 3 we describe how Boltzmann machines can be used
for the construction of covering arrays. In Sect. 4 this approach is extended by
means of allowing for different learning strategies. Finally, in Sect. 5 the results
of our experiments are documented while Sect. 6 concludes our work.

2 Preliminaries

In this section we give the definitions needed in this paper. Related notions for
covering arrays and set covers can be also found in [4] while the needed definitions
regarding graphs can be also found in [12].

Definition 1. A covering array CA(N ; t, k, v) is an N×k array (c1, . . . , ck) with
the properties that for all j ∈ {1, . . . , k} the values in the j-th column cj belong
to the set {0, . . . , v − 1}, and for each selection {cj1 , . . . , cjt} ⊆ {c1, . . . , ck} of
t different columns, the subarray that is comprised by the columns cj1 , . . . , cjt ,
has the property that every t-tuple in {0, . . . , v − 1}t appears at least once as
a row. The smallest integer N for which a CA(N ; t, k, v) exists is called the
covering array number for t, k, v and is denoted as CAN(t, k, v). Covering Arrays
achieving this bound are called optimal.

In this work we only consider binary CAs, i.e. CAs over the alphabet {0, 1},
which we denote as CA(N ; t, k). For given t and k we also say we are given a CA
instance, when we want to construct a CA(N ; t, k). An example of a CA(4; 2, 3, 2)
is given by the array A in relation (1).

Definition 2. For positive integers t, k and v, a t-way interaction is a set
{(p1, x1), . . . , (pt, xt)} with the property that xi ∈ {0, . . . , v − 1}, ∀i ∈ {1, . . . , t}
and 1 ≤ p1 < . . . < pt ≤ k.

We represent t-way interactions as vectors of length k with t positions speci-
fied and the others unspecified (see Example 1). With this notion CAs can be
characterized as arrays which rows cover all t-way interactions for given t and k.

Definition 3. A set cover (SC) of a finite set U is a set S of non-empty subsets
of U whose union is U . In this context, U is called the universe and the elements
of S the blocks.

A typical optimization problem for set covers is the minimal set cover problem.
That is, for given (U,S), to find a subset C ⊆ S of minimal cardinality, such that⋃ C = U . We call (U,S) also an SC instance.
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Definition 4. For a graph G = (V,E) (in this work we only consider undirected
graphs) with vertex set V and edges E ⊆ V ×V , a vertex cover is a subset C of V ,
such that each edge in E is incident to at least one vertex of C. An independent
set of G is a set of vertices I ⊆ V , such that no two vertices in I are adjacent,
i.e. I × I ∩ E = ∅.

Finally, we also consider the concept of Boltzmann machines, see also [1].

Definition 5. A Boltzmann machine (BM) is a (stochastic) neural network,
with an underlying undirected graph G = (V,E). The neurons correspond to
the vertex set V and can be in two states, either on or off. The edges of the
graph correspond to the connections (synapses) between the neurons, i.e. the edge
{ui, uj} ∈ E represents the symmetric connection between neuron ui and uj. A
Boltzmann machine M is now defined as a pair (G,Ω), where Ω ⊆ R

E ×{0, 1}V

is a set of allowable states. For ω = (we1 , we2 , . . . , we|E| , uv1 , . . . , uv|V |) the vector
w = (we1 , we2 , . . . , we|E|) describes the weight we of each edge e ∈ E, and κ =
(uv1 , . . . , uv|V |) describes for all neurons vi ∈ V if it is on (uvi

= 1), or off
(uvi

= 0). The consensus function of the Boltzmann machine M is the function
F : Ω → R, defined by F (κ) =

∑
{i,j}∈E w{i,j}uiuj.

3 A Boltzmann Machine for Covering Arrays

In this section we set up a Boltzmann machine that reflects a given CA instance.
To this extent, we first explain how the problem of generating a CA can be
interpreted as a set cover problem, following [4]. In a second step we recapitulate
the work of [3], where Boltzmann machines where successfully used to compute
solutions to set cover problems. Our aim in this work is to combine these works
so that we can use Boltzmann machines to compute covering arrays.

3.1 Encoding CA Problems as Set Cover Problems

Next, we explain how to interpret the problem of computing a CA as an SC
problem. This connection has been explained in an extensive way, for example,
in [4], where the interested reader is referred to for the details. Here we content
ourself with repeating the key ideas, guided by means of an example. When we
want to construct a CA for given strength t and number of columns k, this can
be interpreted as an SC instance (U,S), where the universe U consists of all
t-way interactions. Each block in S corresponds to a row that can appear in a
CA and is defined as the set of t-way interactions this row covers. To make this
connection more explicit, we review Example 3.3 of [4]:

Example 1. Assume we want to construct a CA(N ; 2, 3, 2) with minimal N . We
translate this problem into a minimal set cover problem. Each 2-way interaction
needs to be covered, thus U = {(0, 0,−), (0, 1,−), (1, 0,−), (1, 1,−), (0,−, 0),
(0,−, 1), (1,−, 0), (1,−, 1), (−, 0, 0), (−, 0, 1), (−, 1, 0), (−, 1, 1)}. Each vector of
{0, 1}3 which can appear as a row in a CA(N ; 2, 3, 2) is identified with the set
of 2-way interactions it covers, e.g. the row (0, 0, 1) is mapped to the block
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{(0, 0,−), (0,−, 1), (−, 0, 1, )}. Thus we get the SC instance (U,S) correspond-
ing to the CA instance with parameters t = 2 and k = 3, where

S = {{(0, 0,−), (0,−, 0), (−, 0, 0, )},{(0, 0,−), (0,−, 1), (−, 0, 1, )},
{(0, 1,−), (0,−, 0), (−, 1, 0, )},{(0, 1,−), (0,−, 1), (−, 1, 1, )},
{(1, 0,−), (1,−, 0), (−, 0, 0, )},{(1, 0,−), (1,−, 1), (−, 0, 1, )},
{(1, 1,−), (1,−, 0), (−, 1, 0, )},{(1, 1,−), (1,−, 1), (−, 1, 1, )}}.

Provided this correspondence, it is therefore possible to map the minimal
set cover C = {{(0, 0,−), (0,−, 0), (−, 0, 0, )},{(0, 1,−), (0,−, 1), (−, 1, 1, )},{(1,
0,−), (1,−, 1), (−, 0, 1, )},{(1, 1,−), (1,−, 0), (−, 1, 0, )}} of (U,S) to the opti-
mal CA(4; 2, 3, 2)

A =

⎛
⎜⎜⎝
0 0 0
0 1 1
1 0 1
1 1 0

⎞
⎟⎟⎠ . (1)

3.2 Boltzmann Machines for Set Cover Problems

Fig. 1. An overview.

We now give an overview of how SC instances can
be solved with Boltzmann machines, following the
work presented in [3], which serves us as a point
of reference. A high level view of the procedure we
follow can be found in Fig. 1.

In the following paragraphs we make explicit the connections between set cov-
ers, vertex covers and independent sets. Consider a given SC instance (U,S), we
can construct an edge labelled graph GS = (V,E, �) representing this instance,
as follows. The node set V is defined to be the set of blocks S, such that each
block is represented by a node of the graph. For the set of (undirected) edges
E, we define E := {{Si, Sj}|Si ∩ Sj 	= ∅} and the labelling function of the edges
� : E → P(U) : {Si, Sj} 
→ Si ∩ Sj , i.e. we label each edge with the set of
elements of U its adjacent vertices cover in common. We call these labels also
label sets. At this point we would like to remark, that we can assume without
loss of generality, that each element of the universe U appears in at least two
blocks and hence in at least one label set.

Assume now we are given a vertex cover V = {S1, . . . , Sr} of GS , then V rep-
resents already a set cover of U . This holds, since the vertices (i.e. sets) S1, . . . , Sr

cover all edges of GS , the labels of which are subsets of the Si and already cover
the whole universe U . Further in [3] reduced graphs G′

S are considered, where
for each element u ∈ U exactly one edge of E(GS) is allowed to keep u in its
label set. Hence, a vertex cover of the reduced graph still constitutes a set cover
of (U,S), see Proposition 1 of [3]. Generalizing this approach, in our work we
consider reduced graphs G′

S = (V,E(G′
S)), where for each u ∈ U at least one

edge of E(G′
S) has u in its label set. We thus maintain the property that a vertex

cover of a reduced graph G′
S constitutes a set cover of U . We give an example
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of these two different types of reduced graphs in Example 3 and Fig. 3. Consid-
ering that a vertex cover C of a graph G = (V,E) is exactly the complement
of an independent set V \ C of G (see also Remark 1 of [3]), the analogue of
Proposition 1 of [3] also holds for reduced graphs as considered in this work:

Proposition 1. The complement of a maximal independent set of a reduced
graph G′

S (where each element of U appears in the label of at least one edge) is
a set cover for (U,S).

Sketch of Proof. The complement of an independent set is a vertex cover. A
vertex cover contains vertices such that each edge is incident to at least one
vertex. The label set of an edge is a subset of the sets corresponding to its
adjacent vertices. Since each element of U appears in at least one label of an
edge of the reduced graph G′

S , the sets corresponding to the nodes of the vertex
cover are a set cover of U . ��

Before we describe how Boltzmann machines can be used to find independent
sets of graphs which yield set covers, respectively CAs for our purpose, we fix
some notations and consider some examples. We use the notation Gt,k for the
graph that corresponds to the set cover instance (U,S), which corresponds again
to a CA instance for given t and k, and call it the underlying graph of the CA
instance.

Fig. 2. G2,3 underlying the CA
instance t = 2, k = 3.

Example 2. Continuing Example 1 the graph
G2,3 corresponding to the set cover (U,S) is
depicted in Fig. 2. Although self-contained,
graph G2,3 is not very representative for the
general CA instances we have to deal with,
since there are exactly two rows that share a
2-way interaction, there is a one-to-one corre-
spondence between edges and 2-way interac-
tions. This is also the reason why we omitted
the set notation for the labels, as label sets
are singletons in this case.

Example 3. To give a better impression on
the instances we have to deal with, we also give an example of a partial graph in
Fig. 3, where a subgraph of the graph G2,5 is given. Labels occur right next to
the edges they belong to. The green coloured 2-way interactions are selected to
reside in the label set of the edges. In the middle of Fig. 3 we depict the reduced
graph G′

2,5 as it is described in [3]. Rightmost we show the reduced graph G′
2,5

as we consider them in this work.

3.3 Computing CAs with Boltzmann Machines

Following [3], the neural network is constructed isomorphic to the graph G′
S ,

where neurons correspond to vertices and synapses correspond to edges. Each
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neuron Si is in state ui, which can be either on or off, represented by ui ∈
{0, 1}. Synapses, i.e. edges of G′

S , are assigned weights according to Eq. (2). At
any time the configuration of the network is defined by the vector of all states
(ui)i∈V of the neurons. For any configuration κ = (ui)i∈V the consensus F (κ) is
defined as the following quadratic function of the states of the neurons, and the
weights of the synapses: F (κ) =

∑
i,j ω(ei,j)uiuj . The defined weights (loops ei,i

have positive, other edges have negative weights) and the consensus function F
reflect the target of finding a maximal set of vertices, that are not adjacent.1

Respectively, we want to activate as many non-connected neurons as possible.
In fact local maxima of F correspond to maximal (not necessary maximum)
independent sets of the graph G′

S , which in turn yield set covers, considering the
complement on GS . We refer the interested reader to [3] for more details.

Fig. 3. From left to right: subgraph of the underlying graph of the CA instance t = 2,
k = 5; a subgraph of a reduced graph as it can occur due to the method described in
[3]; a subgraph of the reduced graph as consider in our work.

Remark 1. To better illustrate the connections between the different structures,
we give an overview of the introduced concepts and notions as follows:

– Rows of CAs correspond to blocks of SCs, which are further mapped to ver-
tices of BMs. These serve as neurons for the devised neural network.

– Analogue t-way interactions correspond to elements of the universe in terms
of set covers. These serve as labels of edges that define the weight of the
synapses of the devised neural network.

In Algorithm 2 we give a high level description of the algorithm developed
in [3], modified in this work in order to be applied to CA instances. The initial
weights of the edges (line 3) are set according to Eq. (2). Thereafter a simulated
annealing (SA) algorithm is run on the Boltzmann Machine to find a local maxi-
mum of the consensus F , where initially all synapses are in state off (i.e. the state
vector κ equals the all zero vector). A pseudo code of such a simulated annealing
algorithm is given in Algorithm 1, taking as input a graph G with weights for the
edges, denoted by ω(G). Further, a starting temperature T0, a final temperature
Tf and a factor α for the cooling schedule is required. In each step a random
neuron is selected to change its state. In case the change in the consensus func-
tion ΔF (κ) = (1 − 2ui)(ω(eii) +

∑
j ω(eij)uj) is positive the change in state ui

is accepted, otherwise it is refuted with probability (1 − 1/(1 + exp(−ΔF/T )).
1 Note that we do not consider vertices as being adjacent to themselves by their loops.
In this work we rather use loops to represent the weight of vertices.
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The cooling schedule of the SA algorithm is based on the schedule developed
by Lundy and Mees [6]. In this cooling schedule it is required that only one
iteration is executed at each temperature. In particular, we implemented the
cooling schedule (line 11) according to the recursive function Tn+1 = Tn/(1 +
αTn) where n is the iteration number and α, a small positive value close to zero
depending on the instance, that allows for fast convergence.

We describe our algorithmic design using a variety of building blocks. In
this way, a compact presentation of the devised algorithms is ensured and also
flexibility in terms of their evaluation which is presented in Sect. 5.

The first building block introduced is that of InitialGraph, which is a
procedure that transforms the underlying graph Gt,k to a subgraph G′

t,k, to
which the Boltzmann machine is reduced and on which the simulated annealing
algorithm runs. In all presented versions we instantiate this building block with
a randomized procedure, which selects for each t-way interaction a random edge
of E(Gt,k), such that the t-way resides in the label set of the edge. Edges selected
this way reside in G′

t,k and keep all their labels, where Edges that get not selected
are deleted. See also Example 3.

The second building block used to devise our algorithms is that of Initial-

Weight, which is a procedure that assigns a weight to each edge of G′
S . One

way considered to instantiate this building block is via BMweight, assigning
the weights as described in [3]

ω(eij) =

{
−(max{1/|Si|, 1/|Sj |} + ε), i 	= j

1/|Si|, i = j
(2)

Note, that this weighting comes down to a uniform weighting, as |Si| = |Sj | for
all i, j when considering CA instances.

Using these algorithmic building blocks, we can describe the algorithm of
[3] applied to CA instances as an instance of Algorithm 2, Instantiating Ini-

tialGraph with RandomGraph and InitialWeights according to (2). The
simulated annealing algorithm is run once, to find a maximal independent set I
on G′

t,k, the complement of which is returned and constitutes a CA.
Combining the reductions of CAs to SCs and SCs to independent sets on

reduced graphs G′
S (Fig. 1), it is possible to state the following corollary of the

works presented in [4] and [3] (Theorem 1), which proves the correctness of the
previously described algorithm.

Corollary 1. Maxima of F induce configurations of the BM-network corre-
sponding to Covering Arrays.

Algorithm 2 serves as a base line for the development of our own learning
algorithms, which we describe in the next section.

4 Finding Covering Arrays with Neural Networks

In this section, we describe the algorithms we have devised to find CAs with
neural networks. We start with the algorithm described in [3], which serves as
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a starting point for the development of the algorithms presented in this work,
where we incrementally built upon this baseline algorithm and extend it with
various features. In detail, as a first extension we consider a weight update for
the underlying BM and a second extension introduces a notion of graph update
for the underlying graph (which is part of the BM).

Algorithm 1. SA
1: INPUT: G, ω(G)
Require: T0, Tf , α
2: T ← T0, κ ← 0 � κ is the vector of states
3: while T > Tf do
4: randomly choose neuron Si

5: change state: ui ← ui + 1(mod 2)
6: if ΔF (κ) > 0 then
7: keep κ
8: else
9: with probability 1/(1 + exp(−ΔF/T )) keep κ
10: end if
11: T ← T/(1 + αT )
12: end while
13: return κ

Algorithm 2. BMforCA

1: INPUT: t, k
Require: ε
2: G′

t,k ← InitialGraph(Gt,k)

3: ω(G′
t,k) ← InitialWeight(G′

t,k, ε) � Assign weights

4: I ← SA(G′
t,k, ω(G′

t,k))

5: return CA(|V | − |I|; t, k, 2) = V \ I

Before we describe the algorithmic extensions we made to Algorithm 2, we
would like to mention that our initial experiments with Algorithm2 were not sat-
isfactory. Due to the good experimental results in [3], reporting to find smaller
SCs than other heuristics, we expected that Algorithm2 would produce CAs
with a small number of rows. Yet, our objective is still not achieved, i.e. having
a learning algorithm capable of further reducing the number of rows in a CA.
We believe that this is the case, since the approach of finding small set covers as
the complements of large independent sets of vertices on corresponding graphs
is badly suited for graphs that have a relative high density, i.e. on average, ver-
tices are highly connected. It seems that the condition of finding an independent
set of nodes on the reduced graph G′

S , is too strong of a sufficient condition to
actually find small SCs for such instances. To illustrate this we give the following
example of a general SC instance, which is highly connected and the algorithm
described in [3] is badly suited.
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Example 4. Consider the following set cover
instance (U,S), U = {a, b, c, . . . , k, l,m} and S =
{S1, . . . , S13} where a ∈ Si for all i = 1, . . . ,
13 and S1 = {a,m}, S2 = {a,m, b, c}, S3 = {a, b,
c, d}, S4 = {a, c, d, e}, S5 = {a, d, e, f}, S6 = {a, e,
f, g}, S7 = {a, f, g, h}, S8 = {a, g, h, i}, S9 = {a, h,
i, j}, S10 = {a, i, j, k}, S11 = {a, j, k, l}, S12 = {a, k, l,m}, S13 = {a, l,m, b}. The
graph representing the set cover instance (U,S) is the complete graph with 13
vertices. In the figure above we give an example of a reduced graph of this set
cover instance, in the sense of [3], i.e. each element of the universe appears as
a label of exactly one edge. A maximal (even maximum) independent set of
nodes can be identified as I = {S1, S3, S5, S7, S9, S11, S13}. Then the comple-
ment C = {S2, S4, S6, S8, S10, S12} constitutes a minimal vertex cover of this
graph, and hence C is a cover of the universe U . Though, C is not a minimal set
cover, since C′ = {S2, S5, S8, S11} also constitutes a cover of U of smaller size.
In fact it is not hard to see that C′ is a minimal set cover of (U,S).

We take this example as a further motivation to modify the approach of
[3], towards relaxing the target of finding an independent set on the reduced
graph G′

S . Finding independent sets is encoded in the consensus function F (as
introduced in Subsect. 3.3), that characterizes independent sets through local
maxima, as long as weights of vertices are positive, and the weights of the edges
are smaller than the negative vertex weights. Using the same consensus function,
our approach is to increase the edge weights, such that local maxima of F can
originate also from vertex sets containing adjacent vertices. From this we gain,
that when maximizing consensus F more neurons are in state on, hence the
complement, the neurons in state off will be less than in the original approach
of [3]. On the downside, we might lose the property that these neurons in state off
translate to a set cover, respectively a CA in our case. We address this issue by
evaluating the returned solution, and updating the weights of the edges. Then
we maximize the consensus F for the updated instance. The key idea behind
this approach is, that the neural network decreases the weights of those edges
that carry elements as labels that where not covered in the previous iteration.
This modifies the network, such that in the next iteration it is less likely that
all neurons connected by such edges are turned on and hence some will remain
turned off, which means they will be part of the suggested solution of the set
cover. We detail our edge updates and additional learning features in the next
section. The experimental results provided in Sect. 5 fully justify this approach.

4.1 Weight Updates: A First Step Towards Learning

New Initial Weights. The first change we made to the algorithm as it is presented
in [3] is that we changed the computation of the edge weights. This is done by
assigning the weights as a function of |Si ∩ Sj | instead of max(|Si|, |Sj |). The
number of t-way interactions two rows Si and Sj cover in common depends on
the number of positions in which these rows are equal, we hence can compute
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|Si ∩Sj | =
(
k−dij

t

)
, where dij denotes the hamming distance2 of the two rows Si

and Sj . We thus considered two additional instantiations of the building block
InitialWeights:

– HDweight1: ω(eij) = −(
k−dij

t

) · 1/
(
k
t

)

– HDweight1: ω(eij) = − ( k
dij

)−1

( k
�k/s�)

for i 	= j in both cases and ω(eii) = 1 for the loops. In Sect. 5 we will also compare
the results when the initial edge weighting HDweight1 and HDweight2 are
used in Algorithm 2.

Weight Updates: Learning in Epochs. Another improvement to the algorithm
presented in [3] was achieved by extending it by means of epochs in which the
weights of the edges connecting neurons get updated. This algorithmic extension
was implemented for two reasons: First and foremost we wanted the neural net-
work to be able to adapt to given problem instances. Second, since we gave the
neural network more freedom by weakening the consensus function F by assigning
larger weights to edges using our newly introduced versions of InitialWeights,
we are not guaranteed anymore that the output of the SA algorithm constitutes
an independent set and hence its complement must not constitute a CA.

In short, we lose the guarantee of a feasible solution as it was guaranteed
by Corollary 1. Therefore we enabled the neural network with the capability to
increase or decrease the weight of edges, depending on whether the elements in
their label sets were covered in the solution returned in the previous epoch or
not. This new algorithmic building block WeightUpdate can be described as
procedure that modifies the weight of the edges of the underlying graph Gt,k, in
the following way. Whenever a t-way interaction is covered more than twice in
the solution of the previous epoch, all edges that have this interaction in its label
set get an increment of 1/cov in weight (recall that edge weights are initialized
negative), where cov is the total number of covered t-way interactions. Opposite,
every edge carrying an interaction that was not covered by the solution returned
in the previous epoch gets a proportional decrement in weight. The weights of
some edges get smaller and in the next epoch it is less likely that both vertices
adjacent to such an edge will be in the independent set to be constructed. This
in turn means, that at least one of the vertices will be in the complement, i.e.
the return of the next epoch.

We present Algorithm 3 in terms of a pseudocode. First a reduced graph G′
t,k

is constructed and initial weights are assigned. Further a global best solution
is recorded in Imax, which is initially set empty. Then a number e of epochs
is run, where in each epoch x runs of SA are executed, where we keep the
solution I maximizing the consensus F over these x runs. The weight update
CoverWeight is based on this solution I. If I is larger than Imax we store
it accordingly, before entering the next epoch. Finally if V \ I covers all t-way
interactions, a CA is found and returned.
2 The hamming distance of two vectors is defined as the number of positions in which
these two disagree.
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4.2 Graph Updates: An Additional Layer for Learning

In our experiments we recognized that the quality of the solution produced by
Algorithm 3 highly depends on the random graph that is chosen in the initial-
ization step.

Algorithm 3. BMforCAlearning

1: INPUT: t, k
Require: e, x
2: G′

t,k ← InitialGraph(Gt,k), ω(G′
t,k) ← InitialWeights(G′

t,k) � Initialization

3: Imax ← ∅
4: while epoch count ≤ e do
5: run SA on G′

t,k x times, store I maximizing consensus

6: ω(G′
t,k) ← WeightUpdate(G′

t,k, I)

7: if |Imax| < |I| then
8: Imax ← I
9: end if
10: end while
11: if V \ I covers all t-way interactions then return CA(|V | − |Imax|; t, k, 2) = V \ Imax

12: else return V \ Imax with additional coverage information
13: end if

Thus we strived to enhance the learning rate of the neural network with a
functionality capable to update the reduced graph that the Boltzmann machine
runs on. We describe this additional layer of learning next. A pseudo code
description can be seen in Algorithm 4. The graph updates essentially happen
in an additional layer of learning phases, built upon Algorithm3. Therefore, the
initialization as well as lines 6–12 of Algorithm 4 are the same as the initialization
and the lines 4–10 of Algorithm3 where variable Imax gets renamed to Ilearn).
Around these epochs n learning phases are run, where at the beginning of each
learning phase the Ilearn parameter is reset to the empty set. At the end of each
learning phase a graph update based on Imax occurs and a bias update based to
the best solution Ilearn found during this learning phase. Both procedures act
on the underlying graph Gt,k and are explained more detailed as follows.

For the key procedure GraphUpdate we introduce the following instances:

– RandomGraph: This procedure selects a new random graph, just as in the
random initialization.

– BestEdges: In each learning phase a subset L of the nodes (respectively
rows) of V \ Imax is randomly selected. For each row in L we flip a random
position to create a second row, to which we draw an edge in the graph. By
only flipping one position we generate a row that shares the maximal number
of t-way interactions with the original row. The edge thus constructed has a
large label set. Thereafter for each t-way interaction that is not covered by
any of the rows in L, we generate a random edge having this interaction as
a label, just as in InitialGraph. With this strategy the neural network can
reduce the number of edges in the new reduced graph.
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To guide the neural network and enable it to learn from solutions previously
found, we added the additional functionality of BiasUpdate. The bias update
acts on the neurons, rather than on the synapses of the neural network. In our
encoding it can be realized as a weight update, acting exclusively on the loops, by
adding a certain, relatively small, δ to the weight of the loops. The bias update
is a way to reward vertices that were part of previous solutions, so that the
Boltzmann network has a larger tendency to include them in future solutions.
This is due to the structure of the consensus function F (see Subsect. 3.3) which
value increases whenever a vertex with an increased weight ω(eii)+δ is activated,
instead of a vertex with edge weight ω(eii). Vertices being part of Ilearn in several
learning phases are incrementally rewarded through this bias update.

Remark 2. Note that due to bias updates, and also updates of edge weights the
cumulative weight in the whole network is not constant over several learning
phases. Adopting our weight updates such that the total weight of the network
is constant over time is considered as part of future work.

Algorithm 4. BMforCAlearningGraph

1: INPUT: t, k
Require: e, x, n, δ
2: G′

t,k ← InitialGraph(Gt,k), ω(G′
t,k) ← InitialWeights(G′

t,k) � Initialization

3: Imax ← ∅
4: while learning phases ≤ n do
5: Ilearn ← ∅
6: while epoch count ≤ e do
7: run SA on G′

t,k x times, store I maximizing consensus

8: ω(G′
t,k) ← WeightUpdate(G′

t,k, I)

9: if |Ilearn| < |I| then
10: Ilearn ← I
11: end if
12: end while
13: if |Imax| < |Ilearn| then
14: Imax ← Ilearn

15: end if
16: G′

t,k ← GraphUpdate(Gt,k, Imax)

17: Gt,k ← BiasUpdate(Ilearn, δ)
18: end while
19: return V \ Imax with coverage information

5 Experimental Evaluation

In this section we report experimental results for different configurations of our
algorithms which serves as a proof of concept for their validity and efficiency.
Tuning the parameters of neural networks for search problems has been subject
to a number of related works (e.g. with genetic algorithms [2] or combinatorial
approaches [7,8]) but an evaluation in that direction is beyond the scope of this
paper, and is left for future work. Once, again here we want to demonstrate
the premise of our approach especially when compared to past works related
with BMs and SCs. We implemented the algorithms in C# and performed the
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experiments in a workstation equipped with 8 GB of RAM and an i5-Core. In
the experiments conducted we used the following settings regarding the simu-
lated annealing algorithm. Temperatures and the factor α were set as T0 = 1,
Tf = 0.001, α = 0.005. The number of inner SA cycles x for configurations of
Algorithm 3 was set to 5. One SA cycle takes around 20 ms of execution time.
Finally we would like to remark that although the numbers seem very small,
bear in mind that for a CA instance (t, k), the underlying graphs grow exponen-
tially in k, e.g. for the CA instance (2, 10) the underlying graph G2,10 has 1024
vertices, each having 1012 edges to other vertices.

5.1 Tested Configurations of Algorithm2

With our first experiments we compare different Configurations of Algo-
rithm2, using different instantiations of InitialWeights. Configuration 2.1
uses BMweight, Configuration 2.2 uses HDweight1 and Configuration 2.3
uses HDweight2. Table 1 documents the results of our experiments. In the first
column we specify the CA instance, the second column headed by CAN lists
the number of rows of the respective optimal CAs. In the remaining columns,
headed by min, avg, max we document the smallest, average and maximal size of
the generated covering arrays for each configuration. Additionally in the column
headed by avg % cov we document the average percentage of t-way interactions
covered over all generated arrays. Since we deal with randomized algorithms
(recall that the procedure InitialGraph is randomized), we executed 100 indi-
vidual runs of each configuration. Note that Configuration 2.1 always returns a
CA, due to Corollary 1. As discussed in Sect. 4 we abandoned the conceptions of
[3] with our weight initialization, which is the reason why the other two config-
urations also return arrays with less than 100% coverage of t-way interactions.
Nevertheless considering the sizes of the generated CAs, we can see that the algo-
rithms with the initial weights computed with HDweight1 and HDweight2

generate much smaller covering arrays. Especially Configuration 2.2, producing
the smallest covering arrays of these three versions, seems to prioritize smaller
size over coverage of t-way interactions, having also the smallest percentage in
t-way interactions covered over all returned CAs. In our evaluation of Configura-
tion 2.1 we could not produce amazing results as documented in [3] achieved for
general set cover instances. We believe this is mostly due to the graphs underly-
ing the CA instances, being very dense compared to underlying graphs of general
SC instances.

Summarizing these experiments we can see that the initial weighting of edges
in the graph, respectively of synapses in the neural network, is crucial for the
quality of the output of the tested algorithms.
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Table 1. Results of the experiments with configurations of Algorithm 2.

(t, k) CAN Configuration 2.1 Configuration 2.2 Configuration 2.3

min avg max avg %

cov

min avg max avg %

cov

min avg max avg %

cov

(2,3) 4 4 4 4 100 4 4 4 51.5 4 4 4 100

(2.4) 4 7 8.3 10 100 5 6.14 7 85.04 5 6.15 7 93.71

(2.5) 5 13 15.16 18 100 6 8.22 10 94.75 8 10.25 12 98.83

(2.6) 6 23 26.9 31 100 9 11.90 15 98.42 12 15.22 19 99.63

(2.7) 6 41 45.62 51 100 11 13.63 17 98.33 18 23.39 29 99.95

(2.8) 6 65 72.37 81 100 11 14.60 19 97.26 23 28.69 34 99.98

(2.9) 6 97 106.04 116 100 12 13.77 15 94.74 24 31.75 39 99.99

(2.10) 6 138 146.36 158 100 12 12.67 14 86.23 25 33.22 42 99.99

5.2 Tested Configurations of Algorithm3

In this subsection we document the results of our experiments with different
configurations of Algorithm3, to evaluate the efficiency of the introduced weight
update, in combination with the different weight initializations. Thus we com-
pared Configuration 3.1 using BMweight, Configuration 3.2 using HDweight1

and Configuration 3.3 using HDweight2, each using the WeightUpdate. The
results can be found in Table 2, which have been generated over 10 individual
runs for each configuration. Summarizing, first and foremost it is remarkable,
that the deployed learning in form of weight updates nullified the severe dif-
ference in the number of rows of the generated CAs, as it is witnessed in the
versions of Algorithm 2. Further it is notable that due to the weight update the
number of rows of the smallest CAs generated decreases, even when comparing
to Configuration 2.2 which scaled the best in the previous subsection. Addition-
ally all Configurations always returned CAs (attained 100% coverage of t-way
interactions). Hence, we omit the column with the average coverage information.

Table 2. Results of experiments with configurations of Algorithm 3.

(t, k) CAN Configuration 3.1 Configuration 3.2 Configuration 3.3

min avg max min avg max min avg max

(2,3) 4 4 4 4 4 4 4 4 4 4

(2.4) 4 5 6.2 7 5 5.9 6 5 6 7

(2.5) 5 6 6.8 8 6 6.2 7 6 6.5 8

(2.6) 6 6 7.9 9 6 7.8 9 6 7.6 9

(2.7) 6 8 9.6 11 6 9.2 12 7 9.9 12

(2.8) 6 10 11.2 13 10 11.1 12 9 10.8 12

(2.9) 6 9 11.6 13 11 13 15 11 12.6 14

(2.10) 6 11 13.1 15 11 12.9 14 11 13.1 14
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5.3 Tested Configurations of Algorithm4

We evaluated the two configurations of Algorithm4 as given by Table 3, Config-
uration 4.1 uses the graph update BestEdges and Configuration 4.2 uses the
graph update RandomGraph. We ran them for the CA instances (t = 2, k = 6)
and (t = 3, k = 5), where we limited them to 60 and 70 learning phases respec-
tively. Each learning phase contains 20 epochs, and a bias update at the end,
where a the weight of the vertices (i.e. rows) in Ilearn is increased by 0.01. For
the BestEdges graph update 50% of the rows in V \ Imax were used to con-
struct the new graph. The graphs in Figs. 4a and b depict the evaluation of the
best found solution after each learning phase which is normalized to the ideal
solution. These experiments show that the Configuration using BestEdge as
graph update converges faster towards the ideal solution.

Table 3. Benchmark configurations for Algorithm4.

Building block Configuration

Config. 4.1 Config. 4.2

InitialWeight HDweight1 HDweight1

WeightUpdate On On

GraphUpdate BestEdges RandomGraph

BiasUpdate On On

Fig. 4. Configuration 4.1 (green) and 4.2 (red) for the CA instances (t = 2, k = 6)
(left) and (t = 3, k = 5) (right). (Color figure online)

6 Conclusion

The cornerstone of this paper is the use of artificial neural networks for CA
problems, where we presented for the first time neural models for the construc-
tion of covering arrays. Combining the works of [4] and [3], we were able to
devise Boltzmann machines for the construction of covering arrays and enhance
them with learning capabilities in form of weight updates, graph updates and
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bias updates. The first experiment results confirm that the application of neural
networks to the CA generation problem can lead to optimal solutions and pave
the way for future applications.

Acknowledgements. This research was carried out as part of the Austrian COMET
K1 program (FFG).

References

1. Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines. Wiley, Hobo-
ken (1988)

2. Bashiri, M., Geranmayeh, A.F.: Tuning the parameters of an artificial neural net-
work using central composite design and genetic algorithm. Scientia Iranica 18(6),
1600–1608 (2011)

3. Hifi, M., Paschos, V.T., Zissimopoulos, V.: A neural network for the minimum set
covering problem. Chaos, Solitons Fractals 11(13), 2079–2089 (2000)

4. Kampel, L., Garn, B., Simos, D.E.: Covering arrays via set covers. Electron. Notes
Discrete Math. 65, 11–16 (2018)

5. Kampel, L., Simos, D.E.: A survey on the state of the art of complexity problems
for covering arrays. Theoret. Comput. Sci. 800, 107–124 (2019)

6. Lundy, M., Mees, A.: Convergence of an annealing algorithm. Math. Program.
34(1), 111–124 (1986)

7. Ma, L., et al.: Combinatorial testing for deep learning systems. arXiv preprint
arXiv:1806.07723 (2018)
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Abstract. We consider the three-dimensional Bin Packing Problem inwhich a set
of boxes must be packed into the minimum number of identical bins. We present
a heuristic that iteratively creates new sequences of boxes that defines the packing
order used to generate a new solution. The sequences are generated retaining,
adaptively, characteristics of previous sequences for search intensification and
diversification. Computational experiments of the effectiveness of this approach
are presented and discussed.

Keywords: Three-dimensional · Non-guillotine · Bin Packing · Heuristics

1 Introduction

In this paper, we address the Bin Packing Problem (BPP) in which it is intended to pack,
orthogonally and without overlapping, a given set of m small boxes into the minimum
number of identical bins. We consider the three-dimensional case where boxes and bins
are characterized by their length, height and depth. The boxes cannot be rotated, and no
additional constraints are considered, e.g. cargo stability (see Bortfeldt and Wäscher [1]
for a recent overview on constraints encountered in practice).

The three-dimensional BPP is strongly NP-hard as it generalizes the strongly NP-
hard one-dimensional BPP (see Martello et al. [2]). Following the typology of Wäscher
et al. [3], the problem addressed in this paper is classified as Single Bin Size Bin Packing
Problem (SBSBPP).

Several solution methods to solve this problem were proposed and are next briefly
described in chronological order.Martello andVigo [2] demonstrated that theContinuous

Lower Bound
(
CLB = �

∑m
i=1 li hi di
LHD �

)
for the SBSBPP has a 1

8 worst-case performance

ratio and presented new lower bounds that are used in a Branch-and-Bound algorithm.
Fekete and Schepers [4] presented lower bounds that dominate those presented in [2].

Lodi et al. [5] presented a Tabu Search (see Glover [6]) framework based on a new
constructive heuristic for the neighbourhood evaluation.
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Faroe et al. [7] presented a Guided Local Search (GLS, see Voudouris and Tsang
[8]) heuristic that starts with a number of bins obtained through a greedy heuristic, and
iteratively decreases this number searching for a feasible packing.

Boschetti [9] proposed new lower bounds that dominate the previous ones.
Fekete et al. [10] presented a two-level tree search algorithm for multi-dimensional

packing problems using the data structure for characterizing feasible packings proposed
by Fekete and Schepers [11].

Crainic et al. [12] proposed a two-level heuristic based on Tabu Search using the
graph-theoretical characterization of feasible packings proposed by Fekete and Schepers
[11]. The first level of this heuristic tries to reduce the number of bins, while the second
optimizes the packing of the bins.

Parreño et al. [13] presented a Greedy Randomized Adaptive Search Procedure
(GRASP, see Feo and Resende [14]) with Variable Neighbourhood Descent (VND, see
Hansen et al. [15]) for the two- and three-dimensional SBSBPP.

Crainic et al. [16] proposed a greedy heuristic, called Greedy Adaptive Search
Procedure (GASP), that allies greedy algorithms with learning mechanisms.

Gonçalves and Resende [17] presented a Biased Random-key Genetic Algorithm
(BRKGA, seeGonçalves andResende [18]) for the two- and three-dimensional SBSBPP.

Hifi et al. [19] presented two heuristics using a simple strategy based on integer
linear programming heuristics without using any improvement based on metaheuristics.

Zudio et al. [20] presented a BRKGA/VND based on the work of Gonçalves and
Resende [17].

Zhao et al. [21] presented a recent review on the solution methods found in the liter-
ature for three-dimensional cutting and packing problems and an extensive comparison
of the performance of these solutions methods on standard benchmark instances.

This paper presents a heuristic for solving the three-dimensional SBSBPP and is
organized as follows. Section 2 presents a description of our heuristic. Computational
experiments on standard benchmark instances are presented in Sect. 3 and in Sect. 4
conclusions and future work directions are provided.

2 Adaptive Sequence-Based Heuristic

We propose a heuristic, denoted hereafter as Adaptive Sequence-based Heuristic (ASH),
that iteratively creates a new sequence of boxes that defines the packing order. An ASH
based heuristic was presented byOliveira andGamboa [23] to solve the two-dimensional
SBSBPP.

Themain concept behind the proposed heuristic is that if a good solutionwas obtained
packing the boxes following some ordering (Sbase), it is possible that a better solution
exists changing the order of few boxes, creating a new packing sequence Scurrent . If no
improvement is obtained with this new ordering, it may be the case that an ordering with
more changes can lead to a better solution. So, we incrementally allow more changes to
the base ordering. When an ordering generates a new best solution, this will replace the
base ordering to be used in the next iterations. The main steps of the proposed heuristic
are shown in Fig. 1.
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Fig. 1. ASH main steps.

Initializing the base sequence of boxes (Sbase) ordered by non-increasing volume,
iteratively, a new sequence (Scurrent ) is generated that is used to create a new solution.

We generate new sequences with a method based on the BubbleSearch proposed
by Lesh and Mitzenmacher [22] that creates new orderings based on the Kendall-
tau distance between permutations. In [22], BubbleSearch-based heuristics compared
favourably against similar GRASP-based variations for the two-dimensional rectangu-
lar Strip Packing Problem and the Job Shop Scheduling Problem. The Randomized
BubbleSearch can be implemented as a simple stochastic process (see Belov et al. [23]
and Zubaran and Ritt [24]), depicted in Fig. 2 and next briefly described.

Fig. 2. Sequence generator.

While there are items of the base sequence (Sbase) that are not in the new sequence
(Scurrent ), a random number is generated iteratively for each item of Sbase that is not
already in Scurrent . If the generated number is greater than the permutation probability
(α), the item is copied to Scurrent at the next empty position. Otherwise, the item will
be copied in a following iteration.

If the solution generated with Scurrent is the best one so far, this ordering replaces
Sbase and α is set to its minimum value αmin . Otherwise, Sbase is inaltered and α is
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updated tomin {α + αinc, αmax }.When a new best solution is found, we seek to intensify
the search near to this solution, which is accomplished by setting α to its minimum value,
aiming to generate sequences that are very similar to the base.While incrementally higher
α allows to diversify the search space producing sequences that differ more from the
base sequence.

The boxes are packed, following the ordering given by the current box sequence, one
at a time, into the empty rectangular space (ERS), i.e., maximal empty space interval,
that have space to pack it inside and that has the highest number of common edges
(highest volume as tie-breaker) among all the available ERSs present in the current
opened bin. The boxes are placed at the bottom-left-back position of the ERSs. A new
bin is opened when no more boxes can be packed inside the currently opened bin, if
any. The Difference Process, presented in Lai and Chan [25], is used to keep track of
the ERSs that are generated during the packing. This process, first, places the box inside
the given ERS, then generates the new ERSs that result from the intersection of the box
with the existing ERS and removes intersected ERSs. The last phase removes the ERSs
that are infinitely thin or are totally inscribed by other ERSs.

ASH iterates until a maximum number of iterations has been performed or the opti-
mality is guaranteed, i.e., if the solution value is equal to the Continuous Lower Bound

(CLB = �
∑m

i=1 li hi di
LHD �, see Martello and Vigo [2]).

3 Computational Results

The proposed heuristic was implemented in C and the tests were run on a computer with
an Intel Core i7-4800MQ at 2.70 GHz with 8 Gb RAM and operating system Linux
Ubuntu 18.04.

We tested our algorithm on the dataset generated by Martello et al. [2] which gener-
ator is available at http://hjemmesider.diku.dk/~pisinger/codes.html. This dataset con-
tains 320 instances divided into 8 classes. The classes are composed of 4 groups of 10
instances each with an identical number of boxes to pack (m ∈ [50, 100, 150, 200]).

Each instance was run only once generating at most 2500 solutions with αmin , αmax ,
and αinc set to 0.1, 0.65, and 0.002, respectively.

Table 1 presents the computational results obtained by ASH solving all the instances
of the dataset considered. Each row gives the number of boxes (third column), the cumu-
lative number of bins (fourth column) and the running time in seconds (fifth column)
solving the 10 instances of each class. The first and second columns denote the class and
dimensions of the bins for each class, respectively.

Table 2 shows the number of bins obtained solving the instances of the dataset above
described by other state-of-the-art algorithms (identified in the first column). The second
column presents the results solving classes 1, 4, 5, 6, 7 and 8, while the last column of
this table presents the results obtained solving all the classes. The last line of this table
presents the results obtained by ASH. The symbol - denotes that the respective algorithm
does not present results for the complete dataset.

Comparing with the most similar heuristic to ASH, namely the Randomized Con-
structive presented by Parreño et al. [13], the results are effectively very promising as

http://hjemmesider.diku.dk/%7episinger/codes.html
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Table 1. ASH results.

Class Bin size m Bins Time (s)

1 100 × 100 × 100 50 134 0.9

100 270 2.3

150 372 4.0

200 516 6.1

2 100 × 100 × 100 50 141 0.8

100 258 2.4

150 374 4.1

200 502 6.2

3 100 × 100 × 100 50 133 0.9

100 265 2.3

150 380 4.1

200 506 6.3

4 100 × 100 × 100 50 294 0.7

100 590 2.0

150 870 3.7

200 1192 5.7

5 100 × 100 × 100 50 84 1.6

100 151 3.6

150 203 6.0

200 273 8.4

6 10 × 10 × 10 50 99 0.7

100 192 1.6

150 293 2.6

200 377 3.9

7 40 × 40 × 40 50 74 1.6

100 124 3.6

150 159 5.9

200 237 7.9

8 100 × 100 × 100 50 92 1.3

100 189 3.0

150 242 5.2

200 299 7.6



74 Ó. Oliveira et al.

Table 2. Literature results.

Algorithm Classes 1, 4-8 Classes 1-8

L2002-TS [5] 7320 9863

F2003 [7] 7302 –

C2009 [12] 7298 –

Constructive [13] 7514 10148

Randomized Constructive [13] 7330 9877

GRASP/VND [13] 7286 9813

GASP [16] 7364 –

BRKGA [17] 7258 9777

EHGH2 [19] 7565 –

BRKGA/VND [20] 7253 9771

ASH 7326 9885

the latter were obtained with (1) a pre-processing stage that tries to create an equiva-
lent problem easiest to solve, (2) imposing a limit of 50000 iterations and (3) choosing
randomly one of the corner selection strategies at each iteration.

ASH, with a maximum of 2500 iterations, obtained results equivalent to those
obtained by the Randomized Constructive and setting the maximum number of iter-
ations with the same value, i.e., 50000, ASH obtained 7309 and 9858 bins for classes
1, 4–8 and 1–8, respectively. The results obtained by ASH with 50000 iterations were
slightly better than the ones obtained by the Tabu Search proposed by Lodi et al. [5].

ASH obtained very good results, comparing favourably against more complex
approaches. Considering most of the other approaches, ASH is simpler to implement
and to parametrize (i.e., maximum number of iterations, and minimum, maximum and
increment of the probability α). GRASP needs a Restricted Candidate List and improve-
ment methods, Tabu Search requires neighbourhood structures and memory strategies,
and Genetic Algorithms needs chromosomes and an evolutionary process. The results
show that this heuristic, although simple, can generate high-quality solutions using small
computing times. ASH can be considered a competitive approach for solving the SBS-
BPP as the literature algorithms obtain their results through a higher number of iteration
or population size, use of improvement methods, and/or requiring a high execution time
(most of the referred algorithms have set a computational time limit).

Although not directly comparable between approaches because in addition to the dif-
ferent technologies used, e.g., hardware, programming language and operating systems,
most of the approaches used for comparison impose a time limit for their execution, we
consider that the execution time of ASH is very low, thereby giving a large margin for
improvements.

ASH is fast, simple to implement and can be an effective approach to solve the 3D
SBSBPP. We consider that the results presented instigate more research for a solution
method based on the ASH. Extensions of this work will be done trying to improve the
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results obtained. Combinations between ASH and search methods (in particular with
other metaheuristics) will be part of our future research. ASH can be further enhanced
for even better results with the inclusion of search strategies, such as local search after
the cutting plan generation, or with more sophisticated ones such as a Path Relinking
(see Glover et al. [26]) as a final phase of this heuristic.

Another research direction that will be interesting to follow is to evaluate alternative
placement methods, as the selection of the ERS to use and the selection of the position
inside the ERS to place the current box can originate very distinct packing layouts.

4 Conclusion

We present a heuristic for the three-dimensional Single Bin Size Bin Packing Problem.
This heuristic creates, at each iteration, a new sequence of boxes thatwill be used to create
a new solution. The generated sequences retain, in an adaptive manner, characteristics of
previous sequences providing intensification and diversification on the explored solution
space. To assess the performance of the proposed heuristic computational experiments
have been performed on standard benchmark instances, validating its effectiveness. The
computational results show that our approach is competitivewith other proposed solution
methods for the problems considered. Noteworthy the implementation simplicity and
the little parameterization required by this approach. Combinations between ASH and
search strategies, and new placement rules can be studied to improve the results. Also,
as the proposed approach seems to be very promising, we intend to apply it to other
combinatorial optimization problems.

Acknowledgement. This project is funded byPortuguese funds throughFCT/MCTES (PIDDAC)
under the project CIICESI_2017-03.
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Abstract. This paper proposes a Sequential Model Based Optimization frame-
work for solving optimization problems characterized by a black-box, multi-
extremal, expensive and partially defined objective function, under unknown con-
straints. This is a typical setting for simulation-optimization problems, where
the objective function cannot be computed for some configurations of the deci-
sion/control variables due to the violation of some (unknown) constraint. The
framework is organized in two consecutive phases, the first uses a Support Vector
Machine classifier to approximate the boundary of the unknown feasible region
within the search space, the second uses Bayesian Optimization to find a globally
optimal (feasible) solution. A relevant difference with traditional Bayesian Opti-
mization is that the optimization process is performed on the estimated feasibility
region, only, instead of the entire search space. Some results on three 2D test
functions and a real case study for the Pump Scheduling Optimization in Water
Distribution Networks are reported. The proposed framework proved to be more
effective and efficient than Bayesian Optimization approaches using a penalty for
function evaluations outside the feasible region.

Keywords: Sequential Model Based Optimization · Bayesian Optimization ·
Constrained Global Optimization · Pump Scheduling Optimization · Water
Distribution Networks

1 Introduction

Sequential Model Based Optimization (SMBO), and more precisely Bayesian Opti-
mization (BO) [1], has been proven to be effective and sample efficient in optimizing
black-box expensive functions [2–11]. Moreover, it is currently the standard approach,
in the Machine Learning community, for solving automatic algorithm configuration and
hyper-parameter tuning [12–14]. Its building blocks are a probabilistic surrogate model
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– usually a Gaussian Process (GP) – to approximate the black-box function and an
acquisition function to choose the next promising point to evaluate, balancing between
exploitation and exploration.

Although SMBOhas been usually adopted for solving black-box optimizationwithin
bounded-box search spaces [1–3, 7, 8, 15], more interesting and realistic cases are related
to Constrained Global Optimization (CGO) [16–18], where the search space – aka fea-
sible region – is defined by a set of more complex constraints than simple thresholds on
the value of the variables. A specific setting is related to partially defined objective func-
tions, meaning that the function to be optimized cannot be computed (i.e., it is undefined)
outside the feasible region [16, 19–21]. Furthermore, the most challenging setting arises
when constraints are unknown. Relevant prior results on BO with unknown constraints
are presented in [22–26], with some of them proposing new acquisition functions, such
as Integrated Expected Conditioned Improvement (IECI) [27] and a modification of the
Predictive Entropy Search (PES) [28]. Most of these results use independent GPs to
model the objective function and the constraints, requiring two strong assumptions: a
priori knowledge about the number of constraints and the independence among objective
function and all the constraints. The assumption of independence permits to compute a
probability of feasibility simply as the product of individual probability with respect to
every constraint. The result is multiplied for the acquisition function, usually Expected
Improvement (EI), in order to optimize the objective function while satisfying, with high
probability, the constraints.

The main contribution of this paper is the development of a method which does not
require any of the two previous assumptions. The basic idea proposed is to use Support
VectorMachine (SVM) [29, 30] to sequentially estimate andmodel the unknown feasible
region (Ω), aka “feasibility determination”, without any assumption on the number of
constraints as well as their independence. Indeed, only one SVM classifier is learned
to model the boundary of the feasible region instead of one GP for every constraint.
The adoption of SVM has been previously suggested in [31] where a Probabilistic SVM
(PSVM) is used to calculate the overall probability of feasibility while the optimization
schema alternates between (i) a global search for the optimal solution, depending on both
this probability and the estimated value of the objective function – modelled through
a GP – and (ii) a local refinement of the PSVM through an adaptive local sampling
schema.

Analogously, our approach, namely SVM-CBO (SVMconstrainedBO), is organized
in two phases, but they are consecutive and not alternating: the first is aimed to provide
a first estimate of Ω (feasibility determination) and the second is “vanilla” BO [1]
performed on such an estimate, only. Themotivation is that we are interested in obtaining
a good approximation of the overall feasible region, and not only close to the optimal
solution (i.e., feasibility determination is a goal per-se, in our approach).Another relevant
difference is that SVM-CBOusesmore efficiently the available “budget” (i.e., maximum
number of function evaluations): at every iteration, of both phase 1 and 2, we perform
just one function evaluation, while in the boundary refinement of [31] a given number n p

of function evaluations (namely, auxiliary samples) is performed in the neighborhood
of the next point to evaluate (namely, update region), with the aim to locally refine the
boundary estimate.
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The importance of feasibility determination has been specifically highlighted in real-
life problems, such as Pump Scheduling Optimization (PSO) in a Water Distribution
Networks (WDN) [32, 33]. While [32] presents an adaptive random search approach
to approximate feasible region while optimizing the objective function, [33] proposes
a BO framework where infeasibility is treated by assigning a fixed penalty as value of
the objective function. As reported in [34], penalty can be also assigned directly to the
acquisition function, with the aim to quickly move away from infeasible regions (we
refer as “BO with penalty”).

The SVM-CBO approach proposed in this paper was tested on a set of test functions
and a PSO case study. As main result, the proposed SVM-CBO approach proved to be
more effective and efficient when compared to the BO with penalty.

2 Support Vector Machine Based Constrained Bayesian
Optimization

2.1 Problem Formulation

We start with the definition of the problem, that is:

min
x∈Ω⊂X⊂Rd

f (x)

where f (x) has the following properties: it is black-box, multi-extremal, expensive and
partially defined. The last feature means that f (x) is undefined outside that feasible
region Ω [16, 19–21], which is a subset of overall bounded-box search space X ⊂ R

d .
Moreover, we consider the case that constraints defining the feasible region are also
black-box. This can be a typical setting in optimization problems where the objective
function is computed by a, usually time consuming, simulation process/software for
each x ∈ X [35].

We introduce some notation that will be used in the following:

• DΩ
n = {(xi , yi )}i=1,..,n is the feasibility determination dataset;

• D f
l = {(xi , f (xi ))}i=1,..,l is the function evaluations dataset, with l ≤ n (because

f (x) is partially defined on X ) and where l is the number of feasible points out of the
n evaluated so far;

and xi is the i-th evaluation point and yi = {+1,−1} defines if xi is feasible or infeasible,
respectively. Thus, it is easy to notice that the feasibility determination dataset, DΩ

n , is
exactly in the form of any generic dataset which SVM classification can be applied on.

2.2 Phase 1 – Feasibility Determination

The first phase of the approach aims to find an estimate Ω̃ of the actual feasible region
Ω , in M function evaluations (Ω̃M = Ω̃). The sequence of function evaluations is
determined according to an SMBO process whose surrogate model approximates the
boundary of the feasible region, instead of the objective function. The current estimate
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of the feasible region is denoted by Ω̃n . As surrogate model we use the (non-linear)
separation hyperplane of an SVM classifier, trained on the set DΩ

n . The SVM classifier
uses an RBF kernel to model feasible regions with non-linear boundaries. Let denote
with hn(x) the argument of the SVM-based classification function [29, 30]:

hn(x) =
nSV∑

i=1

αi yi k(xi , x) + b

where αi and yi are the Lagrangian coefficient and the “feasibility label” of the i-th
support vector, respectively, k(., .) is the kernel function (i.e., an RBF kernel, in this
study), b is the offset and nSV is the number of support vectors. The boundaries of
the estimated feasible region Ω̃n are given by hn(x) = 0 (i.e. non-linear separation
hyperplane). The SVM-based classification function provides the estimated feasibility
for any x ∈ X:

ỹ = sign(hn(x)) =
{+1 i f x ∈ Ω̃n

−1 i f x /∈ Ω̃n

With respect to the aim of the first phase, we propose an acquisition function aimed
at identifying the next promising point depending on two different goals:

• Improving the estimate of the feasible region;
• Discovering possible disconnected feasible regions

To deal with the first goal, we use the distance from the boundaries of the currently
estimated feasible region Ω̃n , using the following formula from the SVM classification
theory:

dn(hn(x), x) = |hn(x)| =
∣∣∣∣∣

nSV∑

i=1

αi yi k(xi , x) + b

∣∣∣∣∣

To deal with the second goal, we introduce the concept of “coverage of the search
space”, defined by:

cn(x) =
n∑

i=1

e
−‖xi−x‖2

2σ2c

So, cn(x) is a sum of n RBF functions centred on the points evaluated so far, with
σc a parameter to set the width of the corresponding bell-shaped curve.

Finally, the acquisition function for phase 1 is given by the sum of dn(hn(x), x) and
cn(x), and the next promising points is identified by solving the following optimization
problem:

xn+1 = argmin
x∈X

{dn(hn(x), x) + cn(x)}

Thus, we want to select the point associated to minimal coverage (i.e., max uncer-
tainty) and minimal distance from the boundary of the current estimated feasible region.
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This allows to balance between improving the estimate of the feasible region and discov-
ering possible disconnected feasible regions (in less explored areas of the search space).
It is important to highlight that, in phase 1, the optimization is performed on the overall
bounded-box search space X. After the function evaluation of the new point xn+1, the
following information is available:

yn+1 =
{ +1 i f xn+1 ∈ Ω; f (xn+1) is de f ined

−1 i f xn+1 /∈ Ω : f (xn+1) is not de f ined

and the following updates are performed:

• Feasibility determination dataset and estimated feasible region Ω̃n+1

DΩ
n+1 = DΩ

n ∪ {(xn+1, yn+1)}
hn+1(x)|DΩ

n+1
n ← n + 1

• Only if x ∈ Ω , function evaluations dataset

D f
l+1 = D f

l ∪ {(xl+1, f (xl+1))}
l ← l + 1

The SMBO process for phase 1 is repeated until n = M .

2.3 Phase 2 – Bayesian Optimization in the Estimated Feasible Region

In this phase a traditional BO process is performed, but with the following relevant
differences:

• the search space is not a bounded-box but the estimated feasible region Ω̃n identified
in phase 1

• the probabilistic surrogate model of the objective function – a GP, in this study – is
fitted only using the feasible solutions observed so far, D f

l• the acquisition function – Lower Confidence Bound (LCB), in this study – is defined
on Ω̃n , only

Thus, the next point to evaluate is given by:

xn+1 = argmin
x∈Ω̃n

{LCBn(x) = μn(x) − βnσn(x)}

where μn(x) and σn(x) are the mean and the standard deviation of the current proba-
bilistic surrogate model and βn is the inflate parameter to deal with the trade-off between
exploration and exploitation for this phase. Theoretically motivated guidelines for set-
ting and scheduling βn to achieve optimal regret are presented in [36]. It is important
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to highlight that, contrary to phase 1, the acquisition function is here minimized on Ω̃n ,
only, instead of the entire bounded-box search domain X. The point xn+1 is just expected
to be feasible, according to Ω̃n , but the information on its actual feasibility is known
only after having checked whether f (xn+1) can or cannot be computed (i.e. it is defined
or not in xn+1). Subsequently, the feasibility determination dataset is updated as follows:

DΩ
n+1 = DΩ

n ∪ {(xn+1, yn+1)}
and according to the two alternative cases:

• xn+1 is actually feasible: xn+1 ∈ Ω , yn+1 = +1;
the function evaluations dataset is updated as follows: D f

l+1 = D f
l ∪{(xl+1, f (xl+1))},

with l ≤ n is the number of the feasible solutions with respect to all the points
observed so far. The current estimated feasible region Ω̃n can be considered accurate
and retraining of the SVM classifier can be avoided: Ω̃n+1 = Ω̃n

• xn+1 is actually infeasible: xn+1 /∈ Ω , yn+1 = −1;
the estimated feasible region must be updated to reduce the risk for further infeasible
evaluations

hn+1(x)|D f
l+1 ⇒ Ω̃n+1

The phase 2 continues until the overall available budget n = N is reached.

3 Experimental Setting

3.1 Test Functions

The SVM-CBO approach has been validated on three well-known 2D test functions for
CGO, that are: Rosenbrock constrained to a disk [37], Rosenbrock constrained to a line
and a cubic [37, 38], and Mishra’s Bird constrained [39]. Table 1 summarizes the three
test problems considered, more precisely summarizes the analytical expressions of both
objective functions and relative constraints (i.e. feasible region). This information is
considered unknown for the experimental tests: both objective functions and constraints
are all black-box. Table 2 summarizes other information about the test functions, more
precisely the initial bounded box search space, the global minimizer, the associated
value of objective function and a graphical representation of the partially defined test
functions.
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Table 1. Test functions: analytical expression of the test objective functions and relative
constraints

Test function f (x) (Unknown) constraints

Rosenbrock constrained to a
disk

f (x1, x2) =
(1 − x1)

2 + 100
(
x1 + x22

)2
x21 + x22 ≤ 2

Rosenbrock constrained to a
cubic and a line

f (x1, x2) =
(1 − x1)

2 + 100
(
x1 + x22

)2
(x1 − 1)3 − x2 + 1 < 0
and
x1 + x2 − 2 < 0

Mishra’s bird constrained sin(x2)e(1−cos(x1))2 +
cos(x1)e(1−sin(x2))2 +
(x1 − x2)

2

(x1 + 5)2 + (x2 + 5)2 < 25

3.2 Pump Scheduling Optimization Case Study

The goal of PSO is to identify the pump schedule (i.e., the status of each pump over
time) associated to the lowest energy cost while satisfying hydraulic feasibility (i.e.,
water demand satisfaction, pressure level within a given operational range, etc.). Status
of a pump is its activation – in the case of an ON/OFF pump – or its speed – in the case
of a Variable Speed Pump (VSP), leading to discrete or continuous decision variables,
respectively. Thus, a general formulation of the PSO, involving both the two types of
decision variables (i.e. a WDN with both ON/OFF pumps and VSP), is reported as
follows:

OBJECTIVE FUNCTION (minimizing the energy costs)

min

{
C = �t

∑T

t=1
ctE

(
∑Nb

kb=1
γ xtkb Q

t
kb

Ht
kb

ηkb
+

∑Nv

kv=1
γ xtkv

Qt
kv

Ht
kv

ηkv

)}

where:

• C – total energy cost over time steps
• �t – time step width
• Ct

E – energy cost attimet
• γ – specific weight of water
• Qt

k j
– water flow provided through the pump kj attimet

• Ht
k j

– head loss on pump kj attimet
• ηk j – efficiency of the pump kj

and the decision variables are:

• xtkb ∈ {0, 1} wi th t = 1, . . . , Tand kb = 1, . . . , Nb − status of pump kb at time
t (i.e.ON = 1, OFF = 0)

• xtkv
∈ [0, 1]wi th t = 1, . . . , T and kv = 1, . . . , Nv − speed of pump kv at time t

where Nb is the number of ON/OFF pumps and Nv is the number of VSPs.
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The time horizon usually adopted in PSO is one day with hourly time steps, leading
to T = 24 time steps overall. This choice is basically motivated by the energy tariffs
which are typically characterized by a different energy price depending on the hour of
the day.

Although the PSO objective function has an apparently closed expression, its exact
resolution through mathematical programming requires to approximate the flow equa-
tions (linearization or convexification) which regulates the hydraulic behaviour of a
pressurized WDN. More recent approaches address the optimization of the objective
function by considering it as “black-box”, computing the value associated to a given
schedule through a hydraulic simulation software which solves all the flow equations.
Naturally, hydraulic simulation is performed at the selected time resolution – usually
hourly basis for 24 h – which is adopted for the input data (i.e. demand at consumption
points) aswell as the outputs obtained at the end of a simulation run (i.e. pressure at nodes,
flow/velocity on the pipes). Depending on the size and complexity of the WDN, time
required for a complete simulation can significantly change. This means that in the case
of very large and complex WDN evaluating a schedule may also become significantly
expensive in terms of time.

Although not expressed in the formulation above, there exists a set of hydraulic
constraints which are checked by the hydraulic simulation software. Even in papers
reporting the analytical formulation of the constraints, such as in [40], this check is
usually verified by running a simulation. In the case a given pump schedule does not
satisfy at least one of the hydraulic constraints the value of the objective function cannot
be computed, therefore it is partially defined. The hydraulic simulation software used in
this study is EPANET 2.0 and a detailed list of errors/warnings provided by EPANET,
with respect to hydraulic unfeasibility of a pump schedule, is reported in [41].

PSO is computationally hard to solve through an exhaustive search, due to the large
number of possible pump schedules even for a very tinyWDN. A simpleWDN, consist-
ing of just 1ON/OFFpump, and considering an hourly resolution and a 24-hours horizon,
leads to an optimization problem with 24 discrete decision variables and, consequently,
224 (i.e., more than 16 million) possible pump schedules.

In this paper we have addressed PSO on a real-life WDN in Milan, Italy. The water
distribution service in the urban area of Milan is managed by Metropolitana Milanese
(MM) through a cyber-physical system consisting of: a transmission network (550 wells
and pipelines bringing water to 29 storage and treatment facilities located inside the city)
and a distribution network (26 different pump stations spread over the city - 95 pumps
overall - which take water from the storage and treatment facilities and supply it to the
final customers, about 1.350.000 habitants). Financial burden for MM is approximately
16.000.000 e for energy costs, with 45% of them due to pumping operations in the
distribution network [42]. During the project ICeWater - co-founded by the European
Union - a PressureManagement Zone (PMZ), namely “Abbiategrasso”, was identified in
the South of the city and isolated from the rest of the network. The EPANETmodel of the
Abbiategrasso PMZ, reported in the following Fig. 1, was presented in [42]: it consists of
7855 nodes, 6073 pipes, 1961 valves, 1 reservoir and 4 pumps. Two of them, the oldest
ones, are ON/OFF, while the other two, the newest ones installed in 2014, are VSPs.
As previously reported in [42], preliminary results showed that two pumps are enough
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to match supply and demand within the PMZ. This consideration allows for limiting
the number of decision variables (only two pumps are, at most, active simultaneously)
and quantify which is the economic return of MM in using VSPs instead of ON/OFF
pumps. Already in the ON/OFF pumps case (i.e., binary decision variables) the overall
number of possible pump schedules is huge, more precisely 22∗24 = 248 possible pump
schedules, that is about 2.81∗1014, in any case too large to perform an exhaustive search.

Fig. 1. EPANET model of the Pressure Management Zone (PMZ) “Abbiategrasso”, in Milan,
Italy

The Time-Of-Use (TOU) tariff in place for the real-life case study is:

• (low-price) 0.0626 e/kWh between 00:00–7:00 and between 23:00–24:00
• (mid-price) 0.0786 e/kWh between 08:00–19:00
• (high-price) 0.0806 e/kWh between 07:00–08:00 and between 19:00–23:00

All the available data for the study, including the reported energy tariff, are related
to the year 2014.

3.3 SVM-CBO Settings

Experimental Setting for Test Functions
The proposed constrained SMBO framework was validated by considering an overall
budget of 100 function evaluations, divided as follows:
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• 10 for initialization through Latin Hypercube Sampling (LHS);
• 60 for feasibility estimation (phase 1)
• and 30 for SMBO constrained to estimated feasible region (phase 2)

This budget is clearly insufficient to solve the CGO test functions, that is SMBO
cannot guarantee an optimal solution differing less than a given ε from the optimum
value function [5]. On the other hand, it is important to highlight that the main benefit
of SMBO is to obtain a good solution under very limited budget. Thus, the goal of
the experiments was to validate whether the proposed approach is more effective, and
efficient, than BO approaches which use penalties for function evaluations outside the
feasible region.

In the case of BO with penalty, the overall budget has been divided as follows:

• 10 evaluations for initialization (LHS)
• and 90 for BO (that is the sum of budget used for phase 1 and phase 2 in the proposed
approach).

It is important to highlight that, for each independent run, the initial set of solutions
identified through LHS is the same for SVM-CBO and BO with penalty. This allows to
avoid differences in the values of the gap metric due to different initialization.

To compare the approaches we have considered the so-called Gap metric [43, 44]
that measures the improvement obtained along the SMBO process with respect to global
optimum f (x∗) and the initial best solution f (x0) obtained from the initialization step:

Gn =
∣∣ f

(
x+) − f (x0)

∣∣
| f (x∗) − f (x0)|

where f
(
x+)

is the “best seen” up to iteration n. Gap metrics varies in the range [0, 1].
For statistical significance, the gap metrics has been computed on 30 different runs,

performed for every test function and for both SVM-CBO and BO with penalty.

Experimental Setting for Pump Scheduling Optimization
The number of overall objective function evaluations (i.e. EPANET simulation runs) has
been fixed at 1200, organized as follows, for the SVM-CBO:

• 400 for the initial design, via LHS;
• 400 for phase 1 (feasibility determination)
• 400 for phase 2 (Constrained Bayesian Optimization on the estimate of the feasible
region)

As far as the BO with penalty is concerned, the overall budget is dived in:

• 400 for initial design, via LHS
• 800 for the BO process

For a robust comparison, SVM-CBO and BO with penalty share the same initial
design. They also share all the other choices, more precisely the probabilistic surrogate
model (GP) and the acquisition function (LCB, with βn = 1), so that the difference
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in the result can be only motivated by the usage, or not, of the estimate of the feasible
region. Since the value f (x∗) is not known for this case study, the Gap metrics cannot
be used as metric. The minimum value of the objective function observed at the end of
the approaches, that is the energy cost associated to the best seen pump schedule, has
been directly considered as metric.

3.4 Computational Setting

All the experiments have been performed on the following system: intel i7 (3.4 GHz)
processor with 4 cores and 16 Gb of RAM. The proposed approach has been developed
starting from the R package named “mlrMBO”, a flexible and comprehensive toolbox
for model-based optimization (MBO). This package does not address CGO: we have
extended it in order to deal with unknown constraints, feasibility determination and
partially defined acquisition function.

4 Results

4.1 Results on Test Functions

The following set of figures show the Gap metric computed for every test function with
respect to the number of function evaluations, excluding the initialization through LHS.

Fig. 2. Comparison of gap metrics for the proposed SVM-CBO approach vs BOwith penalty, for
each one of the five test functions, respectively
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The value of Gap metric at iteration 0 is the best seen at the end of the initialization step
(i.e., f (x0) in the Gap metric formula). Each graph compares the Gap metric provided
by SVM-CBO and BO with penalty, respectively. Both the average and the standard
deviation of the Gap metric, computed on 30 independent runs for each approach, are
depicted. The higher effectiveness of the proposed approach is clear, even considering
the variance in the performances. End of phase 1 is represented by a vertical dotted line
in the charts; a significant improvement of the SVM-CBO’s Gap metric is observed after
this phase, in every test case. It is important to remind that phase 1 of the SVM-CBO
is aimed at approximating the unknown feasible region, while the optimization process
only starts with phase 2. Thus, the relevant shift in the Gap metric is motivated by the
explicit model of the feasible region learned in phase 1.

Results on the two Rosenbrock test cases are particularly interesting: although the
SVM-CBO’s Gap metric is initially lower, on average, than that offered by BO with
penalty, this situation abruptly changes when phase 2 starts (Fig. 2).

4.2 Results on the PSO Case Study

For this experiment the Gap metrics has no sense, because the BO with penalty was
not able to provide any improvement with respect to the energy cost identified on the
initial design, that is 172.89e. On the contrary, SVM-CBO was able to further reduce
the energy to 168.60e, by identifying a new and more efficient pump schedule. A
significantly relevant result is that the improvement has been registered exactly at the
starting of phase 2, just like in the test functions. This result further proves that solving
feasibility determination and constraining the following sequential optimization process
to an accurate estimate of the feasible region can significantly improve the effectiveness
and efficiency of the SMBO process.

As already reported by the authors in their previous work [33], assigning a penalty
to function evaluations outside the feasible region has the aim to move towards feasible
points/regions. Although this is usual workaround adopted in the PSO literature, it is
quite naïve because the penalty does not depend on the entity of violation. This leads to
almost “flat” objective functions, especially when the unknown feasible region results
extremely narrow with respect to the overall search space. As already reported, the real-
life PSO case study seems to be characterized by this kind of situation: in the following
figure it is possible to see the how much narrow is feasible region with respect first (x)
and the second (y) VSP, respectively. To have a 2D representation, the first hour of the
day is considered, only, while the value of the z-value is the energy cost at the end of the
day (only for feasible pump schedules) (Fig. 3).
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Fig. 3. Objective function and feasible region for a subset of decision variables of the real life
PSO case study: x and y are the speed of the first and second pump, respectively, for the first hour
of the day only.

Since BO gives, along the sequential optimization process, some chance to explore
unseen regions of the search space, there is some opportunity to get to the feasible
region. This chance increases when the optimization process is performed only within
the current estimate of the feasible region (phase 2 of SVM-CBO), as proven by the
results obtained.

5 Conclusions

The proposed SVM-CBO proved to be an effective and efficient approach for the
constrained global optimization of black-box, multi-extremal, expensive and partially
defined objective functions under unknown constraints. The capability to accurately
estimate the boundary of the feasible region allows to both solve the feasibility estima-
tion problem and to significantly improve with respect to Bayesian Optimization with
penalty. The main limitation of SVM-CBO is that it does not allow any sensitivity anal-
ysis, since the SVM classifier models the overall boundary of the feasible region instead
of each individual constraint.
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17. Paulavičius, R., Žilinskas, J.: Advantages of simplicial partitioning for Lipschitz optimization
problems with linear constraints. Optim. Lett. 10(2), 237–246 (2016)

https://doi.org/10.1007/978-1-4614-8042-6
https://doi.org/10.1007/978-1-4939-7199-2
https://doi.org/10.1007/978-0-387-74740-8
https://doi.org/10.1007/978-3-030-00473-6_28


92 A. Candelieri et al.

18. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints: Sequen-
tial and Parallel Algorithms. Springer, Boston (2013). https://doi.org/10.1007/978-1-4615-
4677-1

19. Donskoi, V.I.: Partially defined optimization problems: an approach to a solution that is based
on pattern recognition theory. J. Sov. Mathematics 65(3), 1664–1668 (1993)

20. Rudenko, L.I.: Objective functional approximation in a partially defined optimization
problem. J. Math. Sci. 72(5), 3359–3363 (1994)

21. Sergeyev, Y.D., Kvasov, D.E., Khalaf, F.M.: A one-dimensional local tuning algorithm for
solving GO problems with partially defined constraints. Optim. Lett. 1(1), 85–99 (2007)

22. Hernández-Lobato, J.M., Gelbart, M.A., Adams, R.P., Hoffman, M.W., Ghahramani, Z.: A
general framework for constrained Bayesian optimization using information-based search. J.
Mach. Learn. Res. 17(1), 5549–5601 (2016)

23. Gorji Daronkolaei, A., Hajian, A., Custis, T.: Constrained bayesian optimization for problems
with piece-wise smooth constraints. In: Bagheri, E., Cheung, J.C.K. (eds.) Canadian AI 2018.
LNCS (LNAI), vol. 10832, pp. 218–223. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-89656-4_18

24. Picheny, V., Gramacy, R.B., Wild, S., Le Digabel, S.: Bayesian optimization under mixed
constraints with a slack-variable augmented Lagrangian. In Advances in Neural Information
Processing Systems, pp. 1435–1443 (2016)

25. Feliot, P., Bect, J., Vazquez, E.: A bayesian approach to constrained single-andmulti-objective
optimization. J. Global Optim. 67(1–2), 97–133 (2017)

26. Gramacy, R.B., Lee, H.K.M., Holmes, C., Osborne, M.: Optimization Under Unknown
Constraints. In: Bayesian Statistics 9 (2012)

27. Bernardo, J., et al.: Optimization under unknown constraints. Bayesian Stat. 9(9), 229 (2011)
28. Hernández-Lobato, J.M., Gelbart, M.A., Hoffman, M.W., Adams, R.P., Ghahramani, Z.: Pre-

dictive entropy search for bayesian optimization with unknown constraints. In: Proceedings
of the 32nd International Conference on Machine Learning, vol. 37 (2015)

29. Scholkopf, B., Smola, A.J.: Learningwith Kernels: Support VectorMachines, Regularization,
Optimization, and Beyond. MIT Press, Cambridge (2001)

30. Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York (2008). https://
doi.org/10.1007/978-0-387-77242-4

31. Basudhar,A.,Dribusch,C., Lacaze, S.,Missoum, S.: Constrained efficient global optimization
with support vector machines. Struct. Multidiscip. Optim. 46(2), 201–221 (2012)

32. Tsai, Y.A., et al.: Stochastic optimization for feasibility determination: an application to water
pump operation in water distribution network. In: Winter Simulation Conference 2018 (WSC
2018) December 9–12, Gothenburg, Sweden (2018)

33. Candelieri, A., Perego, R., Archetti, F.: Bayesian optimization of pump operations in water
distribution systems. J. Global Optim. 71(1), 213–235 (2018)

34. Letham, B., Karrer, B., Ottoni, G., Bakshy, E.: Constrained Bayesian optimization with noisy
experiments. Bayesian Anal. 14, 495–519 (2018)

35. Hartfiel, D.J., Curry, G.L.: On optimizing certain nonlinear convex functions which are
partially defined by a simulation process. Math. Program. 13(1), 88–93 (1977)

36. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.: Gaussian process optimization in the
bandit setting:No regret and experimental design. In: Proceedings of International Conference
on Machine Learning, pp. 1015–1022 (2010)

37. Neve, A.G., Kakandikar, G.M., Kulkarni, O.: Application of grasshopper optimization algo-
rithm for constrained and unconstrained test functions. Int. J. Swarm Intel. EvolComput.
6(165), 2 (2017)

38. Simionescu, P.A., Beale, D.G.: New concepts in graphic visualization of objective functions.
In ASME 2002 International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, pp. 891–897 (2002)

https://doi.org/10.1007/978-1-4615-4677-1
https://doi.org/10.1007/978-3-319-89656-4_18
https://doi.org/10.1007/978-0-387-77242-4


Optimizing Partially Defined Black-Box Functions Under Unknown Constraints 93

39. Mishra, S.K.: Some new test functions for global optimization and performance of repulsive
particle swarm method. MPRA Paper No. 2718 (2008)

40. Castro Gama, M.E., Pan, Q., Salman, M.A.: Jonoski, Multivariate optimization to decrease
total energy consumption in the water supply system of Abbiategrasso (Milan, Italy). Environ.
Eng. Manag. J. 14(9), 2019–2029 (2015)

41. Rossman, L.A.: EPANET2 User’s Manual. U.S. Environmental Protection Agency,Washing-
ton, DC (2000)

42. Castro-Gama,M., Pan, Q., Lanfranchi, E.A., Jomoski, A., Solomatine, D.P.: Pump scheduling
for a large water distribution network. Milan, Italy. Procedia Eng. 186, 436–443 (2017)

43. Huang, D., Allen, T.T., Notz, W.I., Zheng, N.: Global optimization of stochastic black-box
systems via sequential Kriging meta-models. J. Global Optim. 3(34), 441–466 (2006)

44. Hoffman, M.D., Brochu, E., De Freitas, N.: Portfolio Allocation for Bayesian Optimization.
In: UAI, pp. 327–336 (2011)



A Hessian Free Neural Networks Training
Algorithm with Curvature Scaled

Adaptive Momentum

Flora Sakketou(B) and Nicholas Ampazis

Department of Financial and Management Engineering, University of the Aegean,
Chios, Greece

{fsakketou,n.ampazis}@fme.aegean.gr

Abstract. In this paper we propose an algorithm for training neural net-
work architectures, called Hessian Free algorithm with Curvature Scaled
Adaptive Momentum (HF-CSAM). The algorithm’s weight update rule
is similar to SGD with momentum but with two main differences arising
from the formulation of the training task as a constrained optimization
problem: (i) the momentum term is scaled with curvature information (in
the form of the Hessian); (ii) the coefficients for the learning rate and the
scaled momentum term are adaptively determined. The implementation
of the algorithm requires minimal additional computations compared to
a classical SGD with momentum iteration since no actual computation of
the Hessian is needed, due to the algorithm’s requirement for computing
only a Hessian-vector product. This product can be computed exactly
and very efficiently within any modern computational graph framework
such as, for example, Tensorflow. We report experiments with different
neural network architectures trained on standard neural network bench-
marks which demonstrate the efficiency of the proposed method.

Keywords: Training algorithms · Deep neural networks ·
Optimization

1 Introduction

The most commonly used method for training deep neural networks is, undoubt-
edly, Stochastic Gradient Descent (SGD) [15]. At any time step t, SGD computes
the gradient of the network’s loss/cost function L(wt) over subsets of the train-
ing set (known as mini-batches) with respect to the network’s synaptic weights
(which we can group into a single column vector w). The iterations of SGD can
then be described as:

wt+1 = wt + dwt = wt − ηGt (1)

where Gt is the gradient at the current time step t and η the leaning rate which
is heuristically determined.
c© Springer Nature Switzerland AG 2020
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SGD can be extended with the incorporation of a momentum term into its
update rule in order to accelerate learning [17]. The momentum term is simply
vector of weight updates at the previous time step, and thus its iterations can
be described as:

wt+1 = wt + dwt (2)

dwt = −ηGt + αdwt−1 (3)

where α is known as the momentum coefficient. The momentum term actu-
ally mimics the inclusion of second order information in the training process
and provides iterations whose form is similar to the Conjugate Gradient (CG)
method [4]. The major difference with the CG method, however, is that the
coefficients regulating the weighting between the gradient and the momentum
term are heuristically selected, whereas in the CG algorithm these coefficients
are adaptively determined.

One disadvantage of SGD is that the gradient is scaled (by the learning rate)
uniformly in all directions, which is known to hinder learning for most real world
problems. Thus, due to these problematic weights updates, the weights of the
network themselves eventually become poorly scaled and increasingly harder to
optimize [9]. It is interesting to note that the incorporation of the momentum
term in the SGD weight update rule does not alleviate this problem since it
simply adds an extra term which is also uniformly scaled in all directions (at
the previous time step). In order to address this problem, a number of adaptive
methods have been proposed which attempt to diagonally scale the gradient via
estimates of the cost function’s curvature. The most well know examples of such
methods are Adam [6] and RMSprop [18]. In essence these methods compute an
adaptive learning rate for scaling the gradient of each individual weight of the
network.

Ideally, the gradient should be rescaled by taking into account the curvature
information, which is exactly the update rule given by Newton’s method [1].
Unfortunately the computational cost for computing the Hessian matrix and its
inverse renders the method prohibitive for most practical problems. However
regardless of our inability to practically utilize Newton’s method, we could still
exploit the implicit scaling provided by the curvature information (in the form
of the Hessian).

In this paper we illustrate that such a methodology can be achieved by for-
mulating the training task as a constrained optimization problem whose solution
effectively offers the necessary framework for successfully incorporating a cur-
vature scaled momentum term into an SGD with momentum iteration. In our
derived learning rule, the momentum term is scaled by the local curvature infor-
mation given by the Hessian which effectively shifts the whole weight update
vector towards eigendirections of the curvature matrix. This has the beneficial
effect to shift updates away from directions of low-curvature which, by defini-
tion, persistently provide slower changes and are amplified by classical SGD with
momentum [17]. The proposed algorithm derived from our framework, called
Hessian Free with Curvature Scaled Adaptive Momentum (HF-CSAM) requires
no actual computation of the Hessian due to its requirement for computing
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only a Hessian-vector product. This product can be computed exactly and very
efficiently within any modern computational graph framework such as, for exam-
ple, within the Tensorflow framework [14]. An additional benefit of the proposed
algorithm is that unlike SGD with momentum, where the values of the hyper-
parameters for the learning rate and the momentum coefficient are constant, its
corresponding hyperparameters are adaptively determined.

2 The HF-CSAM Algorithm

The main idea in the formulation of the algorithm is that while trying to
minimize the network’s loss/cost function L(wt) at time step t, then a one-
dimensional minimization in the direction dwt−1 at the previous time step t− 1
followed by a second minimization in the direction dwt at the current time step
t, does not guarantee that the cost function has been minimized on the subspace
spanned by both of these directions. This can be achieved by the selection of
conjugate directions which form the basis of the CG method.

Two vectors dwt and dwt−1 are non-interfering or mutually conjugate with
respect to Ht = ∇2L(wt) when

dwt
THtdwt−1 = 0 (4)

Therefore, the objective is to reach a minimum of the cost function L(wt) (from
now on abbreviated simply as Lt) with respect to the synaptic weights, and
simultaneously to maximize incrementally at each epoch the following quantity,
without compromising the need for a decrease in the cost function:

Φt =dwt
THtdwt−1 (5)

The strategy which we adopt for the solution of this constrained optimization
problem follows the methodology for incorporating additional knowledge in the
form of constraints in neural network training originally proposed in [13]. To this
end, we will adopt an epoch-by-epoch (i.e. mini-batch) optimization framework
with the following objectives:

1. At each epoch t of the learning process, the vector wt will be incremented
by dwt, so that the search for an optimum new point in the space of wt is
restricted to a hypersphere of known radius δP centered at the point defined
by the current wt

dwT
t dwt = (δP )2 (6)

2. At each epoch t, the objective function Lt must be decremented by a quantity
δQt, so that, at the end of learning, L is rendered as small as possible. To first
order, we can substitute the change in Lt by its first differential and demand
that

dLt = δQt (7)
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Consequently the learning rule can be derived by solving the following con-
strained optimization problem:

Maximize equation (5) (Φt = max) w.r.t dwt

subject to dwT
t dwt = (δP )2

dLt = δQt

This constrained optimization problem can be solved analytically by a method
similar to the constrained gradient ascent technique introduced in optimal con-
trol in [2], and leads to a generic update rule for w as follows:

First, we introduce suitable Lagrange multipliers λ1 and λ2 to take into
account Eqs. (7) and (6) respectively. If δP is small enough, the changes to Φt

induced by changes in wt can be approximated by the first differential dΦt. Thus,
secondly, we introduce the function φt

φt = Φt + λ1(δQt − dLt) + λ2[(δP )2 − dwT
t dwt] (8)

On evaluating the differentials involved in the right hand side and substituting
Φt, we readily obtain

φt = dwT
t · F t + λ1(δQt − Gt · dwt) + λ2[(δP )2 − dwT

t dwt] (9)

where F t and Gt are given by

F t = ∂Φt/∂wt = Htdwt−1 , Gt = ∂Lt/∂wt (10)

To maximize φt at each epoch, we demand that

dφt = (F t − λ1Gt − 2λ2dwt) · d2wt = 0 (11)

and
d2φt = −2λ2d

2wT
t d2wt < 0 (12)

Hence, the factor multiplying d2wt in Eq. (11) should vanish, and therefore we
obtain

dwt = − λ1

2λ2
Gt +

1
2λ2

F t

= − λ1

2λ2
Gt +

1
2λ2

Ht · dwt−1 (13)

Equation (13) constitutes the weight update rule, provided that λ1 and λ2 can
be evaluated in terms of known quantities. This can be done as follows:
From Eqs. (6), (10) and (11) we obtain

λ1 =
IGF − 2λ2δQt

IGG
(14)

with IGG and IGF given by

IGG = ||Gt||2, IGF = GT
t F t (15)
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It remains to evaluate λ2. To this end, we substitute (13) into (7) to obtain

4λ2
2(δP )2 = IFF + λ2

1IGG − 2λ1IGF (16)

where IFF is given by
IFF = F t

TF t (17)

Finally, we substitute (14) into (16) and solve for λ2 to obtain

λ2 =
1
2

[
IGG(δP )2 − (δQt)2

IFF IGG − I2GF

]−1/2

(18)

Note that the positive square root value has been chosen for λ2 in order to satisfy
Eq. (12).

In effect, the weight updates as given by Eq. (13) are formed at each epoch
as a linear combination of the cost function’s gradient Gt with respect to the
network’s weights and of the product between the Hessian at the current epoch
Ht and the vector of weight updates dwt−1 at the immediately preceding epoch.
This weight update rule is similar to that of SGD with momentum but with two
major differences.

Firstly, the most obvious difference is that the momentum term dwt−1 is
weighted by the current curvature of the cost function (in the form of the Hes-
sian). This has the advantage of taking into account the underlying geometry
of the space defined by the synaptic weights. The weighting of the momentum
term by a matrix which has the same shape with the local quadratic approxima-
tion of the cost function, reflects the scaling of the problem and allows for the
correct weighting of its coordinates among all possible directions. This has the
effect that directions for which the model may differ most from the true func-
tion are restricted more than those directions for which the curvature is small
[5]. An important observation here is that we do not actually need to explicitly
compute the Hessian matrix, but we rather need its product with the vector
dwt−1. For functions that can be computed using a computational graph there
are automatic methods available for computing Hessian-vector products exactly,
e.g. by using the Rv{.} operator [11].

The second important difference of the proposed algorithm, is that unlike
SGD with momentum, where the values of the hyperparameters for the learning
rate and the momentum coefficient are constant, the corresponding hyperparam-
eters in the weight update rule are chosen adaptively as shown by Eqs. (14) and
(18).

Let us now discuss our choice for δQ. This choice is dictated by the demand
that the quantity under the square root in Eq. (18) should be positive. It is easy
to show that the term IFF IGG − I2GF is always positive by the Cauchy-Schwarz
inequality [12]. Now, since IGG = ||Gt||2 ≥ 0, it follows that care must be taken
to ensure that IGG(δP )2 > (δQ)2. The simplest way to achieve this is to select
δQ adaptively by setting

δQ = −ξδP
√

IGG (19)
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with 0 < ξ < 1. Consequently, the proposed generic weight update algorithm
has two free parameters, namely δP and ξ.

An important observation is that the algorithm’s objective is to reach a
minimum of the cost function with respect to the weight vector w while simul-
taneously trying to maintain the conjugacy between successive minimization
directions, through the maximization of the quantity Φt given by Eq. (5). Since
this conjugacy can be achieved only when Φt = 0, this means that we have
already made the assumption that Φt is bounded above by zero, that is:

Φt ≤ 0 (20)

In order to test the validity of this assumption, we can substitute (5), (13), (15)
and (17) in the above relation, so that we can directly obtain

− λ1

2λ2
GT

t dwt−1 +
1

2λ2
dwT

t−1F t ≤ 0

− λ1IGF + IFF ≤ 0 (21)

Lagrange multiplier λ1 is given by (14) in which the expression for the second
Lagrange multiplier λ2 is involved. Therefore, by substituting (19) into (18) we
can obtain

λ2 =
1
2

[
A

IGG(δP )2(1 − ξ2)

]1/2

(22)

where
A = IFF IGG − I2GF (23)

Based on the relations (19), (22) and (23), Eq. (14) can, therefore, be written as

λ1 =
IGF +

[
A

(1−ξ2)

]1/2

ξ

IGG
(24)

Substituting the above expression into relation (21) and taking into account (23)
we can obtain the result

IGF

[
A

(1 − ξ2)

]1/2

ξ ≥ A (25)

Due to the fact that A and ξ are positive, the above inequality can hold only
when IGF > 0. The quantity IGF is the inner product between the current
gradient vector Gt and the vector computed by the product of the Hessian
with the momentum term dwt−1. If, at every epoch, the size of the weight
changes was determined by an exact line minimization technique then this inner
product would be equal to zero. In our case where the size of the step is limited
within a hypersphere, due to (6), the sign of IGF is determined by the value of
the parameter δP . If this value is large then the movement along the direction
dwt−1 overshoots the minimum resulting in the sign of IGF being negative. On
the other hand if the size of δP is conservatively selected, then IGF is positive
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and hence Eq. (25) holds. Therefore extra care should be taken at every epoch
for monitoring the sign of IGF . In case that the sign is positive then the weight
update rule is given by Eq. (13) due to the demand for maximization of Φt.
On the contrary, if due to the size of δP the sign of IGF is negative, then in
this case we demand the minimization of the quantity Φt. The effect that this
demand has on the learning rule is actually minimal since the only expression
that changes in the optimization formalism is the sign on the right-hand side
of (18), which is the expression for calculating Lagrange multiplier λ2 (which in
this case should be negative). Therefore, in this way, we not only ensure that
the quantity Φt is maximized (or minimized) appropriately, but also that the
minimum (or maximum) that we seek is equal to zero.

3 Experimental Results

The performance of the proposed HF-CSAM algorithm was evaluated on the
training of multilayer networks (MLP) and Convolutional Neural Networks
(CNN) on two standard benchmark datasets, namely the MNIST [8] and
CIFAR10 [7] datasets. Details on the network architectures for each of these
benchmarks are mentioned on the corresponding paragraphs of this section dis-
cussing the performance of the algorithms for each of these problems.

Due to its nature, the performance of HF-CSAM was evaluated against the
following neural network training algorithms: SGD with momentum, Adam and
RMSprop. All experiments were carried within the Tensorflow framework using
the Keras high-level API [3]. The algorithm’s source code as well as all the helper
scripts for running the experiments are available at Github1. For each dataset
and for each network architecture we performed 5 training trials starting from
different random initializations of the networks’ weights. In all trials Adam and
RMSProp were employed with their default learning rate values as defined in
their Keras API implementation, that is 0.001. For SGD we utilized the default
learning rate value defined in the Keras API implementation (0.01), and we
chose a sensible fixed value for the momentum coefficient (0.7) for all trials. For
HF-CSAM the value of ξ was set to 0.99 for all trials. For the MNIST dataset
we set a value of δP = 0.1 for the MLP network and δP = 0.3 for the CNN
network. For the CIFAR10 dataset the value of δP was set to 0.07 for both
networks. However similar performances were recorded with 0.8 < ξ < 0.99 and
0.05 < δP < 0.5, indicating that the results are not very sensitive to the exact
values of these parameters.

In order to obtain fair comparisons, the weights initializations of the networks
trained with the aforementioned algorithms were initialized from the same ran-
dom seed for the 5 trials.

1 https://github.com/flo3003/HF-CSAM.

https://github.com/flo3003/HF-CSAM
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3.1 Results on the MNIST Dataset

Table 1. Neural networks architectures for the MNIST dataset: (a) MLP and (b) CNN

model = Sequential ()
model.add(Dense(512 , bias_initializer =’zeros’, activation=’relu’, input_shape

=(784 ,)))
model.add(Dropout(0.2))
model.add(Dense(512 , bias_initializer =’zeros’, activation=’relu’))
model.add(Dropout(0.2))
model.add(Dense(num_classes , bias_initializer =’zeros’, activation=’softmax ’))

(a)

model = Sequential ()
model.add(Conv2D(32, bias_initializer =’zeros’, kernel_size=(3, 3),

activation=’relu’,
input_shape=input_shape))

model.add(Conv2D(64, (3, 3), bias_initializer =’zeros’, activation=’relu’))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten ())
model.add(Dense(128 , bias_initializer =’zeros’, activation=’relu’))
model.add(Dropout(0.5))
model.add(Dense(num_classes , bias_initializer =’zeros’, activation=’softmax ’))

(b)

Table 1 shows the Keras API definitions of the neural network architectures
utilized for the MNIST dataset. As shown in Table 1(a) the MLP network con-
sists of two dense hidden layers, each with 512 units with RELU activations [10]
and a dropout rate [16] of 0.2, and a dense output softmax layer for the 10 classes
of the problem. Table 1(b) shows the CNN architecture for the same problem
which consists of two sequential 2D convolution layers with RELU activation
functions, of size 32 and 64 respectively, followed by a max pooling 2D layer
with dropout rate of 0.25. This feeds into a dense hidden layer of 128 units with
RELU activations and a dropout rate of 0.5. Finally, as is the case with MLP,
the CNN network has a dense output softmax layer for the 10 classes of the
problem.

Figure 1 shows the experimental results obtained when training the neural
network architectures with the different optimization algorithms. For each algo-
rithm we report the results obtained for the average validation loss and accuracy
over the 5 training trials.

From Fig. 1(a) we can see that, for the MLP case, HF-CSAM achieves the low-
est validation loss, followed (in ascending order) by Adam, SGD, and RMSprop.
HF-CSAM achieves around 37% lower validation loss compared to the worst per-
former (RMSprop), and around 12% lower validation loss compared to Adam,
which is usually considered to be the state of the art neural networks training
algorithm. For the CNN architecture HF-CSAM achieves 24% lower validation
loss than that of the worst performer (in this case SGD) and comparable per-
formance (to the order of 3 decimal places) to that of Adam and RMSProp.

From Fig. 1(b) we can see that for the MLP architecture, and at this level
of validation loss, HF-CSAM outperforms SGD in terms of validation accuracy,
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(a) Validation Loss (b) Validation Accuracy

Fig. 1. Experimental results of the MNIST dataset: (a) Validation Loss, (b) Validation
Accuracy

and is tied with both Adam and RMSprop. The exact same behavior also holds
for the CNN architecture where HF-CSAM, Adam, and RMSprop practically
achieve the same level of validation accuracy.

3.2 Results on the CIFAR10 Dataset

Table 2 shows the Keras API definitions of the neural network architectures
utilized for the CIFAR10 dataset. As shown in Table 2(a) the MLP network
consists of three dense hidden layers, the first with 1024 units and the second
and third with 512 units with RELU activations and a dropout rate of 0.2, and
a dense output softmax layer for the 10 classes of the problem. Table 2(b) shows
the CNN architecture for the same problem which consists of four sequential 2D
convolution layers with RELU activation functions, the first two of size 32 and
next two of size 64, the second and fourth layers are followed by a max pooling
2D layer with dropout rate of 0.25. This feeds into a dense hidden layer of 512
units with RELU activations and a dropout rate of 0.5. Finally, as is the case
with MLP, the CNN network has a dense output softmax layer for the 10 classes
of the problem.

Figure 2 shows the experimental results obtained when training the neural
network architectures with the different optimization algorithms. Again, for each
algorithm we report the results obtained for the average validation loss and
accuracy over the 5 training trials.

From Fig. 2(a) we can see that, for the MLP case, HF-CSAM achieves the low-
est validation loss, followed (in ascending order) by SGD, Adam, and RMSprop.
HF-CSAM achieves around 15% lower validation loss compared to the worst
performer (RMSprop), and around 6% lower validation loss compared to Adam.
For the CNN architecture all algorithms practically achieve the same level of
validation loss.
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(a) Validation Loss (b) Validation Accuracy

Fig. 2. Experimental results of the CIFAR10 dataset: (a) Validation Loss, (b) Valida-
tion Accuracy

Table 2. Neural networks architectures for the CIFAR10 dataset: (a) MLP and
(b) CNN

model = Sequential ()
model.add(Flatten(input_shape=(32, 32, 3)))
model.add(Dense(1024 , bias_initializer =’zeros’))
model.add(Activation(’relu’))
model.add(Dropout(0.2))
model.add(Dense(512 , bias_initializer =’zeros’))
model.add(Activation(’relu’))
model.add(Dropout(0.2))
model.add(Dense(512 , bias_initializer =’zeros’))
model.add(Activation(’relu’))
model.add(Dropout(0.2))
model.add(Dense(10, bias_initializer =’zeros’))
model.add(Activation(’softmax ’))

(a)

model = Sequential ()
model.add(Conv2D(32, (3, 3), padding=’same’, input_shape=x_train.shape[1:],

bias_initializer =’zeros’))
model.add(Activation(’relu’))
model.add(Conv2D(32, (3, 3), bias_initializer =’zeros’))
model.add(Activation(’relu’))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding=’same’, bias_initializer =’zeros’))
model.add(Activation(’relu’))
model.add(Conv2D(64, (3, 3), bias_initializer =’zeros’))
model.add(Activation(’relu’))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten ())
model.add(Dense(512 , bias_initializer =’zeros’))
model.add(Activation(’relu’))
model.add(Dropout(0.5))
model.add(Dense(num_classes , bias_initializer =’zeros’))
model.add(Activation(’softmax ’))

(b)
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From Fig. 2(b) we can see that for the MLP architecture, and at this level of
validation loss, HF-CSAM achieves similar validation accuracy level with that
of SGD which is around 12% higher than the accuracy achieved by Adam and
around 16% higher than that of RMSprop. For the CNN architecture, HF-CSAM
achieves the best validation accuracy, followed (in descending order) by SGD,
Adam, and RMSprop. It is very interesting to note that for this problem, and for
both the MLP and CNN architectures, the validation accuracy performances of
Adam and RMSprop are inferior to the performance of SGD. This is in agreement
with the findings of [19] which highlights the inability of adaptive methods such
as Adam and RMSprop to perform on par with SGD in terms of generalization
ability. The authors of [19] suggest that the lack of generalization performance of
adaptive methods stems from the non-uniform scaling of the gradient. However as
we observe from the figure, HF-CSAM generalizes in a fashion comparable to that
of SGD despite its non-uniform scaling in its weight update rule. This is quite
intriguing, and we believe that it can be attributed to the uniform scaling of the
gradient of HF-CSAM’s weight updates. HF-CSAM does not scale the gradient
directly in a non-uniform fashion, but utilizes the curvature information in the
momentum term. Thus, its sequence of updates may allow HF-CSAM to shift
away from paths followed by adaptive methods such as Adam and RMSprop,
and to converge to points with similar generalization performance with that of
SGD, while maintaining its adaptive benefits. We obviously plan to investigate
this interesting behavior in more detail in the near future.

4 Conclusions

In this paper we have proposed an efficient algorithm (HF-CSAM) for the train-
ing of deep neural networks. The algorithm has been derived from the formu-
lation of the training task as a constrained optimization problem attempting
to introduce conjugate directions of motion within a framework similar to that
of the CG algorithm and SGD with momentum. The algorithm produces itera-
tions similar to SGD with an additional adaptive momentum term that is scaled
by the Hessian. However no actual computation of the Hessian is needed, due
to the requirement for computing only a Hessian-vector product, which can be
computed exactly and very efficiently within any modern computational graph
framework. In addition the algorithm’s hyperparameters for the gradient scal-
ing and the momentum coefficient are adaptively determined, even though its
formalism involves two free parameters which should be adjusted to achieve
optimum performance. Experiments with different neural network architectures
on standard neural network benchmarks revealed that its results are not very
sensitive to the exact values of the free parameters, and that its performance
is competitive to that of other adaptive training algorithms. The same results
also revealed that its generalization ability is similar to that of SGD which in
recent studies has been shown to be superior to that of more advanced adaptive
methods. All these findings point to the conclusion that the proposed algorithm
stands as a promising new tool for the efficient training of deep neural networks
whenever the employment of adaptive methods is required.
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Abstract. We introduce the following version of an “inefficient” bin
packing problem: maximize the number of bins under the restriction that
the total content of any two bins is larger than the bin capacity. There
is a trivial upper bound on the optimum in terms of the total size of the
items. We refer to the decision version of this problem with the number
of bins equal to the trivial upper bound as Irreducible Bin Packing.
We prove that this problem is NP-complete in an ordinary sense and
derive a sufficient condition for its polynomial solvability. The problem
has a certain connection to a routing open shop problem which is a
generalization of the metric TSP and open shop, known to be NP-hard
even for two machines on a 2-node network. So-called job aggregation
at some node of a transportation network can be seen as an instance of
a bin packing problem. We show that for a two-machine case a positive
answer to the Irreducible Bin Packing problem question at some node
leads to a linear algorithm of constructing an optimal schedule subject
to some restrictions on the location of that node.
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1 Introduction

The classical Bin Packing Problem (BPP) is probably one of the most studied
and discussed combinatorial optimization problems. It can be formulated as
follows. Given a bin capacity B and a set of n integer numbers from (0, B]
(representing sizes of items) one have to pack items into some number of bins
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not exceeding each bin’s capacity. The classical objective is to minimize the
number of bins used. In other words, the set of items should be partitioned into
the minimum number of subsets so that the total size of the items in each subset
would be at most B. The BPP is one of the first known NP-hard problems
[17,20]. A survey of various approximation algorithms for it can be found in
[13].

Many variants and generalizations of BPP have been studied over the last
decades, including but not limited to the following list.

– Geometric BPP including 2-dimensional [25], 3-dimensional [26] and multidi-
mensional [11] BPP, various forms of bins and items [4–6].

– Online version of BPP [13,14,28].
– Additional restrictions on elements and bins (conflicts, precedence con-

straints, etc) [16,24,27].
– Inverse BPP—maximizing the number or the total size of packed items into

a fixed number of bins [12].
– Bin Covering problem (BCP) [1,15,19]—the capacity of bins is unbounded

and the goal is to maximize the number of bins containing items of the total
size of at least given threshold W .

– Maximum resource BPP [7]—to maximize the number of bins provided there
exists such an ordering of bins that no item in a current bin can fit into any
previous bin.

The latter two problems can be seen as examples of bin packing with “inef-
ficient” objective to maximize the number of bins, which stands in contrast to
the classical BPP goal. Some motivation for that is suggested in [7]: consider the
situation from the point of view of some transportation company which receives
payment proportional to the number of trucks used to ship a set of items for the
client. The objective to maximize the number of trucks serves in that company’s
best interest. However some restrictions on the feasibility of packing are neces-
sary for at least the two following reasons: so that the client does not consider
himself deceived, and so that the optimization problem wouldn’t be too trivial
to investigate. The Bin Covering problem and the Maximum resource BPP offer
different restrictions for that matter.

The problem considered in this paper has the same objective to maximize
the number of bins with the following restriction: the total size of the contents of
any two bins should be strictly greater than the bin capacity. Note that such a
formulation was suggested at [7], but to the best of our knowledge has not been
studied yet. We call our problem the Irreducible Bin Packing (IBP) to stress
out that the number of bins in any solution cannot be reduced by combining
of any two bins. The motivation from [7] fits our problem as well. However we
have totally different reason to study such a problem, as it turned out to be very
helpful for the research of the routing open shop problem—a generalization of the
metric traveling salesman problem (TSP) and the open shop scheduling problem.
The metric TSP hardly needs a special introduction. The open shop problem
([18]) can be described as follows. Given a set of machines M = {M1, . . . ,Mm}
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and a set of jobs J = {J1, . . . , Jn} one has to perform operations of each job
by each machine. A non-negative processing time pji is given for each operation
(which is essentially a pair (Jj ,Mi)). Operations of the same job or of the same
machine cannot be processed simultaneously. The goal is to construct a feasible
schedule of processing all the operations minimizing the makespan, denoted as
Cmax—the maximum completion time of an operation. Following the standard
three-field notation for scheduling problems (see for instance [23]) the open shop
problem with m machines is denoted as Om||Cmax. The notation O||Cmax is used
in the case when the number of machines is not bounded by any constant. The
O2||Cmax problem is solvable in linear time by a well-known Gonzalez-Sahni
algorithm [18], and the optimal makespan always coincides with the standard

lower bound C̄ = max

{
max

i

n∑
j=1

pji,max
j

m∑
i=1

pji

}
. Following [21], this property

of an instance is referred to as the normality (see Sect. 2 for details). In case
m � 3 the normality is not guaranteed: for O3||Cmax the optimal makespan can
reach as much as 4

3 C̄ [30]. The Om||Cmax problem is NP-hard for the case of
three and more machines [18]. A polynomial time approximation scheme for that
problem can be found in [29]. On the other hand, the O||Cmax problem is NP-
hard in a strong sense. Moreover, for any ρ < 5

4 no ρ-approximation algorithm
for the O||Cmax problem exists unless P = NP [31].

The input of the routing open shop problem combines inputs of the TSP and
Om||Cmax in the following way. The machines from set M are mobile, and have
to perform operations of jobs from J in the open shop environment. Jobs are
located at the nodes of transportation network described by an edge-weighted
graph G = 〈V,E〉. Machines are initially located at a specific node referred to as
the depot and have to come back after completing all the operations. The goal is
to minimize the makespan Rmax which is in this case defined as the completion
time of last machine’s activity—either returning of a machine to the depot or
processing of some job from the depot. We denote the routing open shop problem
with m machines as ROm||Rmax or ROm|G = X|Rmax if we want to specify the
structure of the transportation network. This model was introduced in [2]. It is
obviously NP-hard even for a single machine as it contains a metric TSP as a
special case. Moreover it was proved in [3] that even a simplest version of the
problem with two machines and two nodes (i.e. RO2|G = K2|Rmax there Kp is
the complete graph with p nodes) is NP-hard. An FPTAS for RO2|G = K2|Rmax

was described in [22]. A series of approximation algorithms and detailed review
for ROm||Rmax can be found in [8] and references therein.

The standard lower bound R̄ on the optimal makespan of ROm||Rmax was
introduced in [2]. It generalizes the known bound C̄, taking the necessary travel
times into account (see Sect. 2). Following [9] we extend the definition of normal-
ity on the routing open shop problem: we call the instance normal if its optimal
makespan equals R̄. In contrast with the O2||Cmax problem, the normality is
not guaranteed even for the RO2|G = K2|Rmax. It is shown in [2] that for that
simplest case the optimal makespan can reach 6

5 R̄ bound. However, there is a
bunch of known normal special cases of the problem RO2||Rmax. Two sufficient
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normality conditions of an instance of RO2|G = K2|Rmax problem are described
in [22] in terms of the properties of the Gonzalez-Sahni schedule for the under-
lying open shop instance. On top of that, a wide special class of instances of
RO2|G = tree|Rmax problem with guaranteed normality can be found in [10].

We investigate the routing open shop problem in order to find more nor-
mal classes of instances. We discovered that there are such classes that can be
described with the help of the IBP problem. The main goal of this paper is to
study the relations between these two problems.

The paper is organized as follows. The formulation of the routing open
shop problem together with necessary notation and definitions can be found
in Sect. 2. Section 3 presents the formulation and investigation of the IBP prob-
lem, including complexity and sufficient condition of polynomial solvability. The
main result—the connection between these two problems—is presented in Sect. 4,
followed by some conclusions and open questions in Sect. 5.

2 Routing Open Shop: Formal Description and Notation

We use the following notation to describe an instance of the ROm||Rmax prob-
lem. The transportation network is represented by an undirected graph G =
〈V ;E〉, V = {v0, . . . , vp−1}, node v0 is the depot. Jobs from set J = {J1, . . . , Jn}
are distributed among the nodes and the set of jobs located at v ∈ V is denoted
by J (v). We assume that J (v) is not empty for each node with possible excep-
tion of the depot. A nonnegative weight function τ is defined on the set E, τ(e)
represents travel time of each machine over an edge e ∈ E. Machines from set
M = {M1, . . . ,Mm} are initially located at the depot v0 and have to travel
between the nodes to execute jobs. Operation of a machine Mi on a job Jj

takes pji time units, no preemption is allowed. Different operations of the same
machine or of the same job cannot be processed simultaneously. A machine has
to be at a node v in order to process operations of any job from J (v). Each
machine has to return to the depot after processing of all the operations.

Machines are allowed to visit each node multiple times, therefore we assume
each machine takes the shortest path while traveling between the nodes. The
length of the shortest path between nodes v and u is denoted by dist(v, u).

A schedule S can be described by specifying starting times of each operation:

S = {sji|i = 1, . . . , m; j = 1, . . . , n}.

A completion time of each operation is denoted by cji = sji + pji.
Let the job Jj ∈ J (v) be the last job processed by the machine Mi in a

schedule S. Then the return moment of machine Mi is Ri(S) = cji + dist(v, v0).
The makespan of the schedule S is the maximal return moment Rmax(S) =
max Ri(S).

Definition 1. A schedule S is referred to as feasible if each of the following
conditions holds:
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1. for each i1 �= i2 ∈ {1, . . . , m}, j1 �= j2 ∈ {1, . . . , n}
(sj1i1 , cj1i1) ∩ (sj1i2 , cj1i2) = (sj1i1 , cj1i1) ∩ (sj2i1 , cj2i1) = ∅;

2. if the machine Mi processes the job Jj1 ∈ J (v) before the job Jj2 ∈ J (u) then

sj2i � cj1i + dist(v, u);

3. if the job Jj ∈ J (v) is the first job to be processed by the machine Mi then

sji � dist(v0, v).

The goal is to construct a feasible schedule with minimum makespan.
We use the following notation.

�i =
n∑

j=1

pji—load of machine Mi;

�max = max �i—maximum machine load;

dj =
m∑

i=1

pji—length of job Jj ;

dmax(v) = max
j∈J (v)

dj—maximum length of job from v;

Δ(v) =
∑

j∈J (v)

dj—load of node v;

Δ =
∑

v∈V

Δ(v) =
∑

j∈J
dj—total load of the instance;

T ∗—length of the shortest route over the graph G (TSP optimum).

The following standard lower bound was introduced in [3]:

R̄ = max

{
�max + T ∗,max

v∈V

(
dmax(v) + 2dist(v0, v)

)}
(1)

Note that (1) implies

Δ =
m∑

i=1

�i � m�max � m(R̄ − T ∗). (2)

We use the following definition inherited from [21].

Definition 2. A feasible schedule S for a problem instance I is referred to as
normal if Rmax(S) = R̄(I). Instance I is normal if it admits constructing of a
normal schedule.

A class K of instances of the routing open shop problem is normal if each
instance from K is normal. A normal class K is referred to as efficiently normal
if there exists a polynomial-time algorithm constructing a normal (and hence
optimal) schedule for each instance from K.

The main goal of the paper is to describe new normal and efficiently normal
classes of instances of the routing open shop problem based on the properties of
the Irreducible Bin Packing problem introduced in the next section.
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3 Irreducible Bin Packing

In this section we derive some properties of the IBP problem that are helpful for
solving RO2||Rmax. An input of a bin packing problem includes the bin capacity
B and a set of the items sizes D = {δ1, . . . , δn} where δi � B for all i. We use
notation 〈B; δ1, . . . , δn〉 or 〈B;D〉 for such an instance.

Definition 3. Let I = 〈B;D〉 be an instance of bin packing problem and B =
(B1, . . . ,BN ) is a partition of D. Partition B is referred to as a feasible solution
for instance I if Bi

.=
∑

δ∈Bi

δ � B for all i ∈ {1, . . . , N}.

The classical BPP can be formulated as looking for a feasible solution mini-
mizing number of bins N . In our problem we search for a feasible solution with
maximum N under a certain additional restriction.

Definition 4. A feasible solution B for instance I is called irreducible if Bi +
Bj > B for all i �= j ∈ {1, . . . , N}.

The Irreducible Bin Packing (IBP) problem can be described in the
following way: given an input I = 〈B;D〉, find an irreducible solution B for I
maximizing the number of bins N .

We use the following auxiliary notation for any problem instance I:

Δ =
n∑

i=1

δi;

δmax = max{δ1, . . . , δn};
M =

⌈
Δ
B

⌉
.

Note that the notation Δ is also used as a total load of an instance of the rout-
ing open shop problem (see Sect. 2). This is not accidental and will be explained
in Sect. 4.

The IBP problem has some similarity to a Bin Covering Problem with a

threshold W =
⌈

B + 1
2

⌉
>

B

2
. Obviously any solution feasible to the BCP is

irreducible, however the opposite is not true. To be precise, in any irreducible
solution Bi � W for each i with a possible exception of one bin, therefore the
BCP optimum is a lower bound on the IBP optimum and those optima differ
by at most 1. Nevertheless the IBP problem is strongly NP-hard (same as BCP;
can be shown by reduction from 3-Partition problem [17]). On the other hand,
that reduction doesn’t work if M is bounded by some constant, which is exactly
the case interesting for us. Hereafter we assume M is an integer constant greater
than 1.

There is a trivial upper bound on a number of bins in any irreducible solution.

Proposition 1. For any irreducible solution B = (B1, . . . ,BN )

M � N � 2M − 1. (3)
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Proof. The first inequality is straightforward from Definition 3. Lets prove the
second one. Note that

Δ � MB. (4)

Suppose N � 2M . Then we have at least M disjunctive pairs of bins. By
Definition 4, for each pair (i, j) we have Bi + Bj > B and therefore Δ > MB,
a contradiction with (4). �	

In fact, we are mostly interested in studying a decision version of the IBP
problem. The formulation depends on an integer parameter M � 2, and we use
notation IBP(M) for that problem.

IBP(M).
Input: I = 〈B;D〉, Δ � MB.
Question: Does there exist an irreducible solution for I with N = 2M − 1?

Definition 5. And instance I = 〈B;D〉 with Δ � MB is referred to as M -
irreducible if the answer to IBP(M) for instance I is positive.

A class K of M -irreducible instances is called efficiently M -irreducible if there
exists a polynomial time algorithm for construction of an irreducible solution with
N = 2M − 1 for any instance from K.

Theorem 1. For any M � 2 the IBP(M) problem is NP-complete.

Proof. We use reduction from a well-known NP-complete Partition problem

[17]. Let E = {e1, . . . , ek} be an input for the Partition,
k∑

i=1

ei = 2E. Without

loss of generality assume
E � 2M − 1, (5)

since we can scale up the values from E to accommodate this inequality. Consider
the following instance I for an IBP(M) problem:

I = 〈2E − 2; δ0, . . . , δk+2M−4〉,

there δ0 = E − 1 is a special item and δi = ei for i = 1, . . . , k are small items. In
case M > 2 the instance also contains large items δk+1 = · · · = δk+2M−4 = E.

Note that due to (5) for this instance Δ = (2M −1)E−1 = 2ME−(E+1) �
2ME − 2M = MB, so the instance is valid for the IBP(M) problem.

Suppose a partition of E into two equally sized subsets E1 and E2 exists. Then
the following solution is M -irreducible for I:

B1 = {δ0},B2 = {δk+1}, . . . ,B2M−3 = {δk+2M−4},

B2M−2 and B2M−1 correspond to E1 and E2.

Now consider a M -irreducible solution 〈B1, . . . ,B2M−1〉 for I. Let us prove
that in this case a partition of E exists.
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Without loss of generality assume δ0 ∈ B1 and large items belong to sets
B2, . . . ,B2M−3. By Definition 4 we have B2M−2 +B2M−1 > B = 2E − 2. On the
other hand the last two bins only contain small items, hence

2E − 1 � B2M−2 + B2M−1 �
∑

ei = 2E. (6)

Consider two cases.
Case 1. B1 = {δ0}.
In this case B1 = E − 1 and hence by the irreducibility of the solution

min{B2M−2, B2M−1} > E − 1. Due to (6) we have B2M−2 = B2M−1 = E
implying the partition of E into two equally sized sets.

Case 2. B1 contains more than one element.
The only possibility in this case is that there is one small item of size exactly

1 in the first bin (otherwise B2M−2 + B2M−1 � B). Therefore B1 = E and
by irreducibility min{B2M−2, B2M−1} > E − 2 implying {B2M−2, B2M−1} =
{E − 1, E}. This means that the set E is partitioned into three subsets of sizes
1, E − 1 and E, hence the equal partition exists. �	

It is easy to observe that the following condition is necessary for the M -
irreducibility of the instance I:

Δ(I) >

(
M − 1

2

)
B. (7)

A sufficient condition, together with a polynomial-time procedure to obtain an
irreducible solution with N = 2M − 1, is given in the next.

Theorem 2. Let I be an instance of the IBP(M) problem and

Δ(I) >

(
M − 1

2

)
B + (2M − 3)δmax, (8)

Then I is M -irreducible and such solution for I can be found in linear time.

Proof. Suppose D = {δ1, . . . , δn}. Construct a solution for instance I using the
following procedure.

0. Set t = 0.
1. For each i = 1, . . . , 2M − 3

(a) Find j > t such that
j−1∑

k=t+1

δj � B

2
<

j∑
k=t+1

δj .

(b) Set Bi = {δt+1, . . . , δj}, Bi =
j∑

k=t+1

δj , xi = Bi − B
2 , t = j.

2. Set x∗ = min{x1, . . . , x2M−3}.

3. Find j > t such that
j−1∑

k=t+1

δj � B

2
− x∗ <

j∑
k=t+1

δj .

4. Set B2M−2 = {δt+1, . . . , δj}, B2M−2 =
j∑

k=t+1

δj , y = B2M−2 − B
2 + x∗, t = j.
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5. Set B2M−1 = {δt+1, . . . , δn}, B2M−1 =
j∑

k=t+1

δn.

It is sufficient to prove that the solution B = (B1, . . . ,B2M−1) is irreducible.
Note that (4) and (8) imply δmax < B

2 , therefore for each i = 1, . . . , 2M − 2 we
have Bi � B. Let

Δ′ =
2M−2∑

i=1

Bi = (M − 1)B +
∑

xi − x∗ + y > (M − 1)B, (9)

thus B2M−1 = Δ − Δ′ < B and the solution B is feasible. On the other hand
Δ′ � (M − 1)B + (2M − 3)δmax, and by (8) B2M−1 > B

2 . By the construction
Bi > B

2 and Bi + B2M−2 > B for each i = 1, . . . , 2M − 3. By (9) and (8)

B2M−2 + B2M−1 > B −
2M−3∑

i=1

xi + (2M − 3)δmax � B, therefore the solution B
is irreducible. �	
Note that the condition (8) is presented in its best form: the equality Δ =(
M − 1

2

)
B+(2M−3)δmax is not sufficient for the M -irreducibility of an instance.

Consider the following counterexample. Let I = 〈4M − 6; 1, . . . , 1︸ ︷︷ ︸
4M2−6M

〉, in this case

Δ = 4M2 − 6M =
(
M − 1

2

)
B + (2M − 3)δmax. Assume there is an irreducible

solution (B1, . . . ,B2M−1) and without loss of generality for each i = 1, . . . , 2M−2
we have Bi > B

2 . Let Bmin = min{B1, . . . , B2M−2} = B
2 + 1 + x = 2M − 2 + x,

x � 0. Then

B2M−1 � Δ − (2M − 2)Bmin = 2M − 4 − (2M − 2)x.

Therefore we have

Bmin + B2M−1 � 2M − 2 + x + 2M − 4 − (2M − 2)x = B − (2M − 3)x � B

contradicting the irreducibility of B.
So, the answer to the IBP(M) question is negative in case Δ �

(
M − 1

2

)
B

and positive in case Δ >
(
M − 1

2

)
B + (2M − 3)δmax. For

(
M − 1

2

)
B < Δ �

min{MB,
(
M − 1

2

)
B + (2M − 3)δmax} the IBP(M) problem is NP-complete.

4 The Main Result: The Connection Between IBP(2) and
RO2||Rmax

In this section we use the following simplified notation for the two-machine
routing open shop problem. The processing times of operations of the job Jj

are denoted as aj and bj instead of pj1 and pj2. We also use the same notation
(aj , bj) to denote the operations themselves. Starting and completion times of
operations are denoted as s(aj), s(bj), c(aj) and c(bj).

The main result is based on the instance reduction procedure by means of
the following jobs aggregation operation.
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Definition 6. Let I be an instance of ROm||Rmax problem, v ∈ V and K ⊆
J (v). By the operation of jobs aggregation of set K we understand the following
instance transformation:

J (v) → J (v) \ K ∪ {JjK}, pjKi =
∑

Jj∈K
pji.

Basically that means that the set of jobs K is substituted with a new job JjK with
processing times equal to the total processing times if the respective operations
of jobs from K.

This operation and its properties in application to the RO2||Rmax problem
are described in detail in [9]. One obvious property of the jobs aggregation oper-
ation is its reversibility : any feasible schedule for the transformed instance can
be easily treated as a feasible schedule for the initial instance with the same
makespan.

Machine loads are preserved by any jobs aggregation operation, however the
standard lower bound might increase in case then the length of a new job is
greater than dmax(v). Moreover, let Ĩ is an instance obtained from I by aggre-
gation of set K ⊆ J (v). Then

R̄(Ĩ) = R̄(I) ⇐⇒
∑

Jj∈K
dj + 2dist(v0, v) � R̄(I). (10)

Definition 7. A jobs aggregation of set K is referred to as legal if it preserves
the standard lower bound. An instance is called irreducible if no legal jobs aggre-
gation is possible.

Suppose an instance I ′ is obtained from I by legal aggregation operations.
In this case, if I ′ is normal then I is normal as well. In this section we study
irreducible instances and sufficient conditions of their normality.

Definition 8. A node v is referred to as overloaded if the aggregation of set
J (v) is not legal. Otherwise the node v is underloaded.

It was shown in [9] that any instance of RO2||Rmax contains at most one
overloaded node.

Due to (10) the procedure of legal aggregations at node v ∈ V can be seen
as an instance of a bin packing problem with δj = dj and B = R̄ − 2dist(v0, v).
Moreover, as soon as 2dist(v0, v) � T ∗, (2) implies

∑
δj � 2B and we actually

have an instance of the IBP(2) problem. The node is called superoverloaded if
the correspondent instance of IBP(2) problem is 2-irreducible. Note that due to
(7) any superoverloaded node is overloaded as well.

By Proposition 1 there always exists a legal jobs aggregation into at most
three jobs at an overloaded node. (It was shown in [9] that such an aggregation
can be done in linear time.) Any irreducible instance contains single job at each
underloaded node and two or three jobs at overloaded one (if any). In the latter
case that node is superoverloaded.
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Theorem 3. Let I be an instance of RO2||Rmax with a superoverloaded node v
and one of the following conditions holds:

1. v = v0;
2. there exists an optimal Hamiltonian walk σ on the graph G such that v is

adjacent to v0 in σ.

Then I is normal.

Proof. Consider the following enumeration of the nodes of G. In case v = v0 enu-
merate nodes according to any optimal Hamiltonian walk (v0, v1, . . . , vp−1, v0).
Otherwise we use enumeration consistent with σ = (v0 = v1, v2, . . . , vp−1, v, v0).

Denote τ = dist(v0, v) and T = T ∗ − τ . Note that T � τ due to metric
properties of distances.

Perform legal jobs aggregation at each node in the following way: for each
underloaded node vk, k = 1, . . . , p − 1 jobs from J (vk) are aggregated into a
single job Jk, and jobs from J (v) are aggregated into three jobs Jα, Jβ and Jγ

according to an irreducible solution of the underlying IBP(2) problem. Denote
the obtained irreducible instance by Ĩ. Let us prove that Ĩ is normal.

Without loss of generality assume

aα � min{bα, aγ , bγ}. (11)

(This can be achieved by renaming of machines and/or jobs Jα, Jγ .)
As soon as Ĩ is irreducible, the following inequality holds:

dα + dβ + 2τ > R̄, (12)

which due to (2) implies

p−1∑
j=1

dj + dγ + 2T < R̄. (13)

Further we describe schedules by specifying a partial order of operations,
represented graphically by so-called schemes. On such schemes nodes represent
operations and linear orders of operations of every job and every machine are
given. Two auxiliary nodes S and F represent starting and finishing event of the
schedule and have null weight. Weights of other nodes are respective processing
times. A weight of arc connecting two operations of the same machine represent
the distance between the respective nodes. The resulting schedule is an early
one: each operation starts as early as possible without violation of feasibility (see
Definition 1) and of the partial order given by the scheme. It is a well-known
fact that the makespan of such an early schedule coincides with the weight of
the critical path in the scheme, i.e. a path of maximum weight.

Construct early schedules S1 and S2 according to the schemes from Figs. 1
and 2 respectively.
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S F

a1· · ·ap−1aγaα aβ

bα bβbγbp−1· · ·b1

τ

τ

T

T

Fig. 1. A scheme of the schedule S1.

S F

a1· · ·ap−1aγ aαaβ

bα bβbγbp−1· · ·b1

τ

τ

T

T

Fig. 2. A scheme of the schedule S2.

Note that due to (11) in schedule S1 we have c(aα) � c(bγ) and hence 2τ +
aα + bα + bβ � �2 + T ∗, therefore

Rmax(S1) = max

⎧⎨
⎩�1 + T ∗, �2 + T ∗,

p−1∑
j=1

dj + dγ + 2T, 2τ + aα + aβ + bβ

⎫⎬
⎭ .

Due to (1) and (13) we have

Rmax(S1) � max{R̄, 2τ + aα + aβ + bβ}. (14)

Accordingly,

Rmax(S2) � max

⎧⎨
⎩R̄,

p−1∑
j=1

dj + bγ + aα + max{aγ , bα} + 2T

⎫⎬
⎭ . (15)

It sufficient to prove that at least one of the schedules S1 and S2 is normal.
Assume otherwise, then by (14) and (15) we have

Rmax(S1) = 2τ + aα + aβ + bβ ,

due to (11)

Rmax(S2) =
p−1∑
j=1

dj + bγ + aα + max{aγ , bα} + 2T �
p−1∑
j=1

dj + bγ + aγ + bα + 2T,

and due to (2)

Rmax(S1) + Rmax(S2) � 2τ + aα + dβ +
p−1∑
j=1

dj + dγ + bα + 2T = Δ + 2T∗ � 2R̄.

Theorem is proved by contradiction. �	
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Conditions of the Theorem 3 describes a normal class of instances of the
RO2||Rmax problem. However this class is not efficiently normal: in order to
construct a normal schedule we need an optimal solution of an underlying TSP,
which might be hard to obtain, and an irreducible solution for an IBP problem,
which is also hard to get. In the next theorem we consider a special case of the
routing open shop problem denoted as RO2|easy − TSP |Rmax (see [8]). The
easy − TSP option refers to a case when the underlying TSP problem on the
graph G is solvable in polynomial time (due to specific graph structure or to the
properties of the distance function), or the time complexity of the TSP is not
taken into account.

Theorem 4. Let I be an instance of RO2||Rmax with an overloaded node v with

Δ(v) >
3
2
(
R̄ − 2dist(v0, v)

)
+ dmax(v) (16)

and one of the following condition holds:

1. v = v0;
2. there exists an optimal Hamiltonian walk σ on the graph G such that v is

adjacent to v0 in σ.

Then a normal schedule for I can be constructed in O(n + tTSP) there tTSP is a
running time of solving the underlying TSP.

Proof. Straightforward from Theorems 2 and 3. �	
In particular we have the following

Corollary 1. The existence of a node v satisfying (16) is sufficient for efficient
normality of classes of instances of RO2|G = K2|Rmax, RO2|G = K3|Rmax and
RO2|G = tree|Rmax problems.

5 Concluding Remarks

We introduced the IBP(M) problem and described new normal (Theorem 3)
and efficiently normal (Theorem 4) classes of instances of RO2||Rmax based on
the properties of the IBP(2).

We plan the following directions for future research.

1. Find new sufficient conditions of 2-irreducibility and efficient 2-irreducibility
of an instance of the IBP(2) problem to extend normal and efficiently normal
classes from Theorems 3 and 4.

2. Investigate the connection between IBP(m) and ROm||Rmax for m > 2.
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Abstract. The problem of generating surgery schedules is formulated
as a mathematical model with probabilistic constraints. The approach
presented is a new method for tackling probabilistic constraints using
machine learning. The technique is inspired by models that use slacks
in capacity planning. Essentially support vector classification is used to
learn a linear constraint that will replace the probabilistic constraint.
The data used to learn this constraint is labeled using Monte Carlo
simulations. This data is iteratively discovered, during the optimization
procedure, and augmented to the training set. The linear support vec-
tor classifier is then updated during search, until a feasible solution is
discovered. The stochastic surgery model presented is inspired by real
challenges faced by many hospitals today and tested on real-life data.

Keywords: Support vector classification · Surgery scheduling ·
Stochastic mixed integer programming · Monte Carlo simulations

1 Introduction

Hospitals worldwide are facing the pressure of an aging society and increasing
costs while simultaneously dealing with nursing shortages. Patient flow from the
operating rooms (ORs) highly influences the workload on downstream resources
such as wards, post anesthesia care unit (PACU) and intensive care unit (ICU).
It is important to balance the patient flow to the downstream resources, not
only to level the workload, but also to hedge against last minute cancellations.
Scheduling surgeries is undeniable a challenging task where several stakehold-
ers [1,5,10,16], with competing objectives, are involved. The focal point of a
scheduler is to keep the operating room well utilized. In general the goal is to
maximize the overall throughput and so minimize the overall waiting time for
patients. Scheduling too many surgeries may cause an unbalanced flow which
may result in resource blocking.

In practice, due to their complexity, nurses create schedules by hand. When
scheduling they typically use the expected surgery time and the expected length
of stay. This information is available using historical data and the nurse’s experi-
ence. However, as pointed out by [8] using the expected surgery times will leave
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the ORs underutilized. Studies have revealed the importance of incorporating
stochastic elements to the scheduling process and especially to surgery times
[3,9,11–13]. The models and techniques that have been proposed vary signifi-
cantly. Each hospital is unique and typically requires specialized models. The
flexibility of a mixed integer programming (MIP) model makes it possible to
tailor the solution to the different requirements made by the hospitals. Never-
theless, parts of the problem, remain identical [15].

Assuming that the surgery time distributions are available, for any given
surgery, a number of different optimization approaches can be applied. Essen-
tially filling the operating room can be considered a stochastic knapsack prob-
lem. In this case the capacity of the knapsack is analogous to the time available
in the OR. In [12] a stochastic MIP model for the assignment of surgeries to
operating days and rooms is proposed. This model is complex and considers
not only the uncertainty in surgery duration but also emergency arrivals and
operator’s capacity. The main goal is to minimize the under- and the overtime
costs of the operating rooms and the costs of exceeding the defined capacity
of the system. A two-stage stochastic programming model and a robust model
are presented in [3]. The results indicate that a robust model can provide high
quality solutions in a shorter amount of computational time. In stochastic pro-
gramming it is desirable to provide the probability distribution functions of the
underlying stochastic parameters. Alternatively, realizations from these distribu-
tions, or historical data, can be used to create scenarios. In robust optimization
the uncertainty is described by an upper and lower limit on stochastic parame-
ters. The technique uses then a min-max approach guaranteeing the feasibility
and optimality of the solution against all instances of the parameters within an
uncertainty set. Both techniques will require various parameter settings and will
not necessarily guarantee that a given OR will go over the time limit set for the
OR. An alternative approach to tackle the OR time capacity constraint is by
introducing a planned slack to each surgery day and room. The slack is used to
hedge against uncertainty in the total surgery duration [7]. By planning a slack
to each surgery day and room, the risk of overtime is minimized.

Similarly to the methods cited above a MIP formulation will be used, how-
ever, all generated operating room day schedules (ORDS) will be validated using
Monte-Carlo simulations. The technique has many similarities with the tech-
nique described in [14] where a column generation technique is used to generate
ORDS. A column generation approach is needed since generating all possible
ORDS is intractable in general. In order to apply the column generation app-
roach the uncertainty is tackled using a planned slack [14], similar to that in [7].
Our ORDS will be verified by a Monte-Carlo simulation during search and so
a completely different approach is needed. The idea is then to learn to classify
which ORDS are feasible and non-feasible using a linear support vector (SV)
classifier. Then this classifier is added to the MIP model as a linear constraint.

Our analysis is based on real life data. The data is obtained from the National
University Hospital of Iceland, which contains information on all surgical activ-
ities spanning the last ten years. We will use this data to generate different
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instances, which will be used for our experiments. This work is the result of a
close collaboration with the hospital and is inspired by the practical challenges
faced by the hospital.

The paper is organized as follows. The following section provides a discus-
sion on the sources of uncertainty faced in surgery scheduling and a complete
description of the MIP model for the surgery scheduling problem. In Sect. 3 the
SV ORDS classifier is introduced and the procedure for building this model while
iteratively solving the MIP model. The potential and properties of this technique
are investigated in Sect. 4. The paper concludes discussion and conclusion.

2 Stochastic Surgery Scheduling

In practice, when schedules are created by hand, the expected time for the
surgery is commonly used. The mean is usually larger than the median, as the
time typically follows the log-normal distribution [17]. As a result the operat-
ing room is underutilized and effectively a slack is introduced to the schedule.
Nevertheless, the variance on the time of completion of the last surgery of the
day is quite high. Therefore, the likelihood of going over the set time limit may
be high. For example, the Erasmus MC tolerates a 30% probability of going
into overtime [7]. For the frequently performed surgeries accurate simulations
are possible using historical data. Less frequent operations will have less reli-
able data and may require insights from the team to estimate the time required.
When estimating the mean time of a surgery the operator is commonly taken
into consideration. Nevertheless, as pointed out by [2], there may also exist other
causes for variations in surgery time that depend on the patient’s characteristics.
As for the time between surgery, it may not necessarily be due to cleaning alone
but the different setup required by the surgery to follow. Separating the data by
these different characteristics will reduce variability.

Some ORs may be kept open longer to accommodate for acute surgeries and
so going into overtime may be acceptable. However, when too many operating
rooms are observed to be going over then surgeries will be canceled. Keeping the
probability of going over the set time limit is, therefore, of paramount impor-
tance. Let zo,r,d,s ∈ {0, 1} indicate when surgery s is performed by operator o
in an operating room r on day d with capacity dr,d. Then the probability α of
going into overtime may be bounded by the probabilistic constraint

Pr
[
f(zr,d) ≥ dr,d

] ≤ α (1)

where f(zr,d) denotes the distribution function for the stochastic sum of all
surgical procedures, including the time between surgeries, for room r on day d.

Assuming the time distributions are available, for any given surgery, a num-
ber of different optimization approaches can be applied. However, the only
exact way of solving this problem is by trying all operating room day sched-
ules (ORDS). A technique described in [14] attempts to do precisely this. In this
case a column generation approach is needed since generating all possible ORDS
is intractable in general. When generating the columns a sub-problem is solved
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and the stochastic capacity constraint (1) is approximated using a planned slack.
As a result this technique must validate the solution found using a Monte-Carlo
simulation. The planned slack technique essentially assumes that the variance
of the total surgery time and mean are known. The amount of slack depends
on the accepted probability of overtime. When using a planned slack δo,r,d the
capacity constraint is reduced to

∑

s∈So

zo,r,d,sμs + δo,r,d ≤ dr,d ∀o ∈ O (2)

where μs is the mean time needed for surgery s. Determining the planned slack
can be done in a straight forward manner when the distributions are known. For
example in [7], the surgery times are assumed to be normally distributed. Then

δo,r,d = β

√ ∑

s∈So

zo,r,d,sσ2
s (3)

where σ2
s is the variance of surgery s. The parameter β is adjusted to achieve

a suitable probability of going into overtime. However, in general the central
limit theorem will have limited application here, since the number of surgeries
performed will commonly range from one to four. Furthermore, the individual
surgery times are far from normal. Any reliable estimate on the planned slack,
in practice, will require Monte Carlo simulations based on historical data.

The flexibility of using the MIP formulation for the stochastic surgery prob-
lem will now be illustrated. In this model we will consider the elective surgery
for general surgery at the National University Hospital of Iceland. Each patient
is assigned to an operator (surgeon) and so there are as many patient lists as
there are operators. Each operator must then be assigned to a room and day.
Furthermore, patients are selected from the patient list and assigned to one of
the days assigned to their operator. In general the operator room day schedule
belongs to a single operator, however, is is possible to create shared ORDS in
the case where two surgeons share a room during the day.

Any given surgery can only be performed once, so
∑

d∈D,r∈R,o∈O:s∈So

zo,r,d,s ≤ 1, ∀, s ∈ S (4)

where So ⊆ S are the surgeries on operator o’s patient list. A surgeon can also
not be operating in more than one room on any given day. This can be forced
by the condition ∑

r∈R
yo,r,d ≤ 1, ∀d ∈ D, o ∈ O (5)

where the variable yo,r,d ∈ {0, 1} indicates that the operator is using room r on
day d and is determined by the constraint

zo,r,d,s ≤ yo,r,d ∀(o, r, d, s) ∈ O × R × D × So (6)
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Furthermore, only one operator can be in any room at any given day,
∑

o∈O
yo,r,d ≤ 1, ∀d ∈ D, r ∈ R (7)

Additional conditions could be added here to force operators or patients
to specific days or rooms. The flexibility of the MIP formulation is such that
it will easily accommodate for any additional hospital specific conditions. One
such condition, we will force, is that an operator should perform at least one
operation per week, or for a given week v with working days Dv,

∑

s∈So,d∈Dv,r∈R
zo,r,d,s ≥ 1, ∀o ∈ O (8)

This condition can also be easily extended to allow for the operator’s planned
roster and days off by using operator specific days Dv

o .
Now we define a continuous variable wd denoting the expected number in

the ward at any given day d. For every surgery it is assumed that it is known
whether a surgery will require the patient to enter the ward. Historical data can
be used to estimate the probability of being in the ward on day j for surgery s,
denoted by Wj,s. Then wd may be computed as follows,

wd =
∑

r∈R,s∈So,j∈{0,...,m}:
d−j∈D

Wj,szo,r,d−j,s, ∀d ∈ D (9)

where m is some maximal number of expected ward days, for example one week.
Typically the ward is a limited resource and so an upper bound may be forced
on wd ≤ w and typically also a lower bound wd ≥ w, as one does not want the
limited resource to be underutilized. A similar condition may be used for the
PACU and ICU and other costly resources in use by the hospital.

Unlike the master surgery scheduling (MSS) problem presented in [14], where
the goal is to solve for the allocated time per specialty within the hospital, the
formulation here focuses on master operator schedule. The problem is in essence
the same in nature, however, here we will be forcing the ward capacities and
limiting the number of operating rooms. Both are limited hospital resources.
These conditions will have a significant effect on the schedules created since the
operators have different case mixes.

The object will now simply be maximizing the throughput, this may be
defined by the objective

max
z

∑

(o,r,d,s)∈O×R×D×So

zo,r,d,s (10)

which will be the maximum number of surgeries performed.
Let us now turn to the problem of determining the planned slack. Determin-

ing the planned slack can be almost impossible to achieve in practice and so an
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alternative technique must be devised. Here we will propose using a support vec-
tor (SV) machine that predicts which ORDS are feasible using a linear classifier.
The classifier is then added to our MIP model as follows:

∑

s∈So

ωszo,r,d,s + b ≥ 0 ∀(o, r, d) ∈ O × R × D (11)

and an alternative version will be illustrated using one SV ORDS classifier for
each operator o, or

∑

s∈So

ωs,ozo,r,d,s + bo ≥ 0 ∀(o, r, d) ∈ O × R × D (12)

The training of the weights ωo and bias bo is presented in the following section.

3 SV-ORDS Classifier

The number of feasible and infeasible ORDS can be generated using random
sampling and labelling using Monte-Carlo simulation. The initial training data
generated must be balanced for each operator, nevertheless, the number of infea-
sible solutions will typically be far greater than the feasible ones. However, find-
ing feasible solutions will in general be possible when assigning fewer surgeries
to the ORDS. Once the initial data set has been constructed the first classifier
may be learned. The SVM classifier applied here solves the 2-norm soft margin
optimization problem:

min
ω ,b

〈
ω · ω

〉
+ C

�∑

i=1

ξ2i

subject to
ui

(〈
ω · xi

〉
+ b

) ≥ 1 − ξi

where ui ∈ {1,−1} labels the ORDS xi (x ∈ {0, 1}) as feasible or not and ξ ≥ 0,
i = 1, . . . , �. When all the xi ORDS are for a specific operator o only, then we
denote the classifier by the pair (ωo, bo) using the subscript o.

The entire SVORDS procedure may now be described as follows:

1. Generate the initial training data (X,u) of size � using randomly generated
ORDS and labelling using Monte-Carlo simulations, based on historical data.
Set counter k to zero.

2. Generate the classifier (ω, b) using (X,u).
3. Solve the MIP problem described in the previous section.
4. Extract the ORDS from the MIP solution and use a Monte Carlo simulation

to verify that they will not result in overtime with α probability. Denote this
new data by (X,u)k (the size of this training set will be the number of ORs
times planned days).

5. If the new ORDS are not all feasible augment them to the training data
(X,u) = (X,u) ∪ (X,u)k, let k = k + 1 and return to step 2.
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When there is a need to re-train the classifier it may be necessary to put more
weight on the new ORDS data created. One would like them to be classified
correctly, so that the infeasible ORDS do not re-appear in the next iteration.
A simple approach would to append them more than once to the data set. For
example, if you would like these new ORDS to weight ten times more than any
other single ORDS in the current data set, then just add them ten times.

4 Experimental Study

For the experiments we will create a master operating schedules for one surgical
speciality known as general surgery. The experiments will be performed on a
32 GB Intel core i7-7700 3.60 GHz with 4 cores. The MIP model is programmed
in Python 3.7 using Gurobi version 8.1.0 [6] and the SVM classifier used is
LIBLINEAR version 2.21 [4].

4.1 Instance Generation

In this study a large data set was obtained from the National University Hospital
of Iceland. The data consists of information on all surgical activities spanning
10 years. Even though one might have years of historical data at hand, only
the most recent data should be used, as surgery times and length of stay have
been shown to either decrease or increase with time and so too do the surgeries
performed.

To create a good master operator schedule, one must identify the surgeries
that are most likely to occur within each planning cycle. As each patient is
assigned to an operator o, each will have their own waiting list So of patients.
Typically, no two surgeons will perform exactly the same set of procedures.
Hence, differentiating between the surgeons is required in practice when finding
the frequencies of surgeries. However, for simplification, it is assumed that each
waiting list is equal in size for all of the surgeons. Typically the operator’s list
is in the 100 s and so one might consider the shortened lists used in this study
as patients with higher and equal priority. The length of the list will be limited
to twice the maximum number required to fit the available OR surgery time. In
Table 1 a summary of the main characteristics of the most frequently performed
surgeries, by the operators, is presented.

For the computational experiments we will examine how different parameter
settings will influence the results of the models with respect to total number
of patients scheduled. Based on the scheduling practices of Landspitalinn, it is
assumed that each dr,d has a capacity of 450 min and that ORs are closed during
the weekend. The number of operating rooms available to general surgery is two.
The maximum number of ORDS created is, therefore, 10 for a 5-day working
week. As discussed previously, it is not necessarily undesirable to run an OR into
overtime. In the real life settings, two out of the seven ORs are kept open longer
for acute surgeries that continue, when possible, after the elective program. It
can be assumed here that α ≈ 0.25. The upper limit on the ward capacity will
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Table 1. Summary of main characteristics of most frequently performed surgeries by
the nine operators

Operator Number of
surgery types

Mean surgery
time

Mean ward
probability

Mean ward
length of stay

A 9 184 (min.) 0.4 2.4 (days)

B 6 137 0.5 2.9

C 9 188 0.5 2.6

D 10 167 0.7 3.2

E 11 162 0.6 3.4

F 5 214 0.4 3.7

G 7 90 0.1 2.0

H 12 143 0.3 2.5

I 13 84 0.1 2.3

be forced at w = 8, as is the case at the hospital in question. A lower bound
w = 2 will ensure that the ward is utilized.

4.2 Results

The first result presented is the classification accuracy of the linear support
vector machine when all feasible ORDS are known. This model will then be used
as the starting model for our SVORDS procedure where the MIP is solved using
this classifier. The final experiment investigates the performance of SVORDS
when the initial model is weak, that is, initially created from a smaller training
set.

Classification Accuracy. When the number of patients per operator is 20
it is possible to generate all ORDS for our test function. Each ORDS is vali-
dated using a Monte Carlo simulation using 1000 realizations. In this case they
are 544.131 and the number of feasible ORDS are 31.843. When sampling the
infeasible ORDS uniformly and randomly one can create a balanced data set
of 63.686 samples. The resulting classifier gives the confusion matrix presented
in Table 2 for the training data. The accuracy of the classifier is very high or
greater than 99%. We would expect using single classifiers for each operator to
be of equal accuracy or even greater. Out of the 63.686 samples, 439 examples
that were actually infeasible were predicted to be feasible. This case is perhaps
not as serious as in the case where a solution is indeed feasible and is predicted
to be infeasible. In the former case these ORDS can be trained to be excluded
and the MIP solved again. In the latter case, one would be unaware of these
missing ORDS. If they were part of the optimal solution, the optimal solution
would no longer be reachable. To get a better understanding of the performance
of this approach, to understand how critical these misclassified ORDS are, we
need to solve some problems.
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Table 2. Confusion matrix using all feasible ORDS for training a single linear classifier.

� = 63.686 Predicted: feasible Predicted: infeasible

Actual: feasible 31.839 4 31.843

Actual: infeasible 439 31404 31.843

32.278 31408

Model Using All Feasible ORDS. In this first experiment we use the model
described in the previous section. The size of the balanced training data set is
63.686 but the size of the entire ORDS space is 544.131. The number of patients
is 20 per operator, in total 180 patients. The optimal solution to this problem
may be found by searching all possible ORDS and has the value of 42 patients.
The five step procedure described Sect. 3 was executed until a feasible ORDS
solution is found. The procedure is repeated from step 2. as long as an optimal
solution was not found within 200 s or the ORDS in the solution found were
verified as being infeasible using the Monte Carlo simulation. In the case when
the ORDS in the solution are feasible and the optimization was stopped early,
it might be desirable to continue the search. Otherwise, early stopping may
speed up the generation of new infeasible ORDS data. The infeasible ORDS
were given a weight 10 times that of any other ORDS in the training data set.
The result of this run is given in Table 3. The table shows how the number
of infeasible ORDS is reduced as the SVORDS procedure advances. At each
iterations the table also gives the number of infeasible solution ORDS remaining
after re-training. When not zero there is a chance that they will re-appear in
the next iteration. At the 26th iteration a feasible solution is found and so no
new information is added to our classification model. At each SVORDS iteration
the MIP has returned an optimal solution. The table gives the time required for
each complete SVORDS iteration. The geometric distance from origin, ‖ω‖/b
increases slowly and converges. This defines the distance from the origin to the
hyperplane separating all the infeasible ORDS from the feasible ones.

When training multiple classifiers (ωo, bo), one for each operator, a similar
result is observed, indeed after 18 iterations a feasible solution is found with
an objective value of 41. No statistical difference was observed between these
experiments.

Models Using a Subset of Feasible ORDS. In this experiment the initial
training data does not contain the entire set of all feasible ORDS, but rather
a small subset of 2.000 training samples, balanced for each operator. The total
size is 18.000 ORDS validated and labelled using Monte Carlo simulations. When
using a smaller subset of infeasible ORDS the hyperplane separating all infea-
sible ORDS is at a smaller distance from the origin than when using the entire
set of feasible ORDS and an equivalent amount of infeasible ORDS. The num-
ber of iterations needed to find a feasible set of optimal ORDS is now greater.
The geometric distance expands and converges to a distance of 4.359, which is
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Table 3. The iterations of the SVORDS procedure, at iterations 26 a feasible solution
is found with objective value 41, when the number of infeasible ORDS are 0. The
computation time in seconds is for a complete iteration of SVORDS.

IP
iteration

Infeasible
ORDS

Infeasible
ORDS after
re-train

Best
objective

‖ω‖/b Computation
time (sec)

1 3 0 42 4.398 37

2 3 0 42 4.416 50

3 3 0 41 4.411 96

4 5 1 41 4.403 90

5 5 0 42 4.404 154

6 5 1 41 4.407 83

7 3 0 42 4.416 144

8 2 1 41 4.415 102

9 3 1 42 4.412 102

10 2 0 41 4.421 112

11 3 0 41 4.425 111

12 3 0 41 4.434 103

13 1 0 42 4.437 130

14 3 0 41 4.429 117

15 3 1 41 4.412 74

16 4 0 41 4.422 78

17 2 0 42 4.434 69

18 1 0 41 4.434 117

19 1 0 41 4.439 70

20 3 0 41 4.444 88

21 1 0 41 4.433 98

22 1 0 41 4.433 115

23 1 0 41 4.441 72

24 1 0 41 4.445 131

25 2 0 41 4.452 95

26 0 0 41 4.461 116

close but smaller than the previous classifier, at 4.461. Each time an infeasible
ORDS is added to the training this distance expands. This is clearly shown in
Table 4, starting at 3.629 and ending in 4.359. Again when using different clas-
sifiers for each operator there is no clear advantage over using a single classifier
and repeated runs show no statistical difference in the quality of solutions found
(40 being the typical result).
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Table 4. The iterations of the SVORDS procedure, at iterations 73 a feasible solution
is found with objective value 40.

IP

iteration

Infeasible

ORDS

Infeasible

ORDS after

re-train

Objective Best

bound

MIP gap ‖ω ‖/b

1 9 0 54 0 3.629

2 10 0 50 0 3.527

3 10 0 48 50 416.67 3.533

4 10 0 49 0 3.52

5 6 0 45 0 3.508

6 8 0 43 0 3.515

7 8 0 48 0 3.569

8 8 0 44 0 3.567

9 8 0 45 0 3.583

10 6 0 44 0 3.629

11 5 0 42 0 3.639

12 5 0 43 0 3.668

13 8 0 44 0 3.723

14 7 0 43 0 3.743

15 7 0 44 55 2500 3.767

16 7 0 45 0 3.793

17 7 0 44 52 1818.18 3.804

18 6 0 40 49 2250 3.824

19 5 0 41 0 3.866

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

50 2 0 40 0 4.238

51 2 0 41 0 4.252

52 3 0 41 0 4.257

53 1 0 40 0 4.262

54 1 0 40 0 4.269

55 2 0 40 0 4.29

56 4 0 41 0 4.289

57 4 0 41 50 2195.12 4.305

58 3 0 40 0 4.322

59 1 0 41 50 2195.12 4.345

60 5 0 40 0 4.346

61 2 0 40 0 4.33

62 2 0 40 0 4.333

63 2 0 40 0 4.349

64 2 0 40 0 4.345

65 1 0 40 0 4.357

66 2 0 40 0 4.356

67 1 0 40 0 4.358

68 1 0 40 0 4.359

69 4 0 40 0 4.358

70 1 0 40 0 4.361

71 2 0 40 0 4.363

72 2 0 40 0 4.357

73 0 0 40 0 4.359
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Looking closer at all solutions we notice that in all cases the classifiers found
have b > 0 and ωs < 0, this implies that constraint (11) takes the form

∑

s∈So

ω̄szo,r,d,s ≤ 1 ∀ (o, r, d) ∈ O × R × D (13)

where (−ωs/b) = ω̄s ≥ 0 which can be interpreted as a normalized time with a
fixed room capacity of one.

5 Discussion and Conclusion

The experimental results presented are based on one particular realization from
our instance generator, however, similar results were obtained using different
instances from our generator. In order to provide a clearer picture of the nature of
the SVORDS procedure a typical instance was chosen and the result illustrated.
When using a weaker classification model the optimal solution found was of a
poorer quality (median 40) to that of the classifications model using all feasible
ORDS (median 41) in the training data. The known optimal solution to this
problem is 42 and so the technique has clearly eliminated the optimal solution.
Nevertheless, the quality of the solutions found is high. Typically the general
surgery will schedule no more than 38–39 surgeries per week, which is regarded
as a high number.

It was assumed that the stochastic capacity constraints for the ORs could
be replaced with a linear classifier. This is not necessarily the case, as the confi-
dence bounds for the sum of all surgery times planned, for any given room, may
not be linear. Ideally one would need to know the ORDS from which one could
estimate the mean time for the surgeries and their variance. From this the con-
fidence bounds could be accurately determined or estimated using Monte Carlo
simulation. Nevertheless, knowing all ORDS is intractable in general and so the
problem of determining the slack for the capacity constraint remains unknown.
It has been shown that the linear SV classifier is able to classify feasible ORDS
with high accuracy. Nevertheless, the ORDS that are close to the separating
hyperplane are the most interesting ones. The SVORDS procedure was able to
identify most of these quality ORDS and arrange them in such a way as to satisfy
the ward constraints. Thus creating high quality surgery schedules.

The number of infeasible ORDS clearly outnumber the feasible ones. Great
care was taken to balance the number of feasible and infeasible ORDS in the
training data. Once too many infeasible ORDS are used, the classifier may be
tempted to classify all ORDS as infeasible and so the entire search space. This
is not the desired effect we seek, but clearly we need to add more infeasible
ORDS to avoid the infeasible space. SVORDS efficiently selects the most relevant
infeasible ORDS for the training set.

The result of our linear support vector classifier is an estimate of a pseudo
slack or bias, and classification weights for each surgery. This has some nice
practical consequences. For instance, if we assume that a surgery is postponed it
is possible to find another surgery with a similar or larger classification weight.
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Given that care is taken not to cause any ward congestion down-stream a replace-
ment may be found without having to re-optimize. This is important, since a
drastic change in the plan will not be possible once the patients have been alerted
about their upcoming surgery appointment. Finding a replacement for surgery s
is then reduced to looking at candidates s′, not currently planned, with ω̄′

s ≤ ω̄s

and where ω̄′
s takes a maximal value.
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Abstract. We consider a problem of 2-partitioning a finite sequence of
points in Euclidean space into two clusters of the given sizes with some
additional constraints. The solution criterion is the minimum of the sum
(over both clusters) of weighted intracluster sums of squared distances
between the elements of each cluster and its center. The weights of the
intracluster sums are equal to the cardinalities of the desired clusters.
The center of one cluster is given as input, while the center of the other
one is unknown and is determined as a geometric center, i.e. as a point of
space equal to the mean of the cluster elements. The following constraints
hold: the difference between the indices of two subsequent points included
in the first cluster is bounded from above and below by given some
constants. It is shown that the considered problem is the strongly NP-
hard one. An exact algorithm is proposed for the case of integer-valued
input of the problem. This algorithm has a pseudopolynomial running
time if the space dimension is fixed.

Keywords: Euclidean space · Sequence of points · Weighted
2-partition · Quadratic variation · NP-hard problem · Integer
coordinates · Exact algorithm · Fixed space dimension ·
Pseudopolynomial time

1 Introduction

The subject of the study is one quadratic cardinality-weighted problem of par-
titioning a sequence of points in Euclidean space into two subsequences of the
given sizes with some additional constraints. The goal of our study is to ana-
lyze the computational complexity of the problem and to substantiate an efficient
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algorithm for the solution to this problem. Our study is motivated by the impor-
tance of considered problem for some applications, in particular, for data mining
and data clustering, when the data having in the hands is a time series.

The paper is organized as follows. In Sect. 2 we present the problem formula-
tion and its interpretation. Also, here one closely related problem is presented.
In addition, in the same section, we analyze the problem complexity. In Sect. 3
we formulate an auxiliary problem and prove some statements which underlie
quality estimates for the proposed algorithm. The next Sect. 4 contains the algo-
rithm for the solution to the problem considered. The analysis of the algorithm
properties is also in this section. In Sect. 5 some results of numerical experiments
are proposed.

2 Problem Formulation, Related Problem,
and Complexity

Everywhere below R denotes the set of real numbers, ‖ · ‖ denotes the Euclidean
norm, and 〈·, ·〉 denotes the scalar product.

We consider the following

Problem 1. Given a sequence Y = (y1, . . . , yN ) of points in R
d and some positive

integers Tmin, Tmax, and M > 1. Find a subset M = {n1, n2, . . . } ⊂ N =
{1, . . . , N} of indices in Y such that

F (M) = |M|
∑

j∈M
‖yj −y({yn|n ∈ M})‖2+ |N \M|

∑

i∈N\M
‖yi‖2 −→ min , (1)

where y({yn|n ∈ M}) = 1
|M|

∑
i∈M yi is the centroid of {yn|n ∈ M} with the

following constraints

1 ≤ Tmin ≤ nm − nm−1 ≤ Tmax ≤ N, m = 2, . . . , |M| , (2)

and |M| = M .

Problem 1 has the following applied interpretation. We have a sequence Y
of N time-ordered measurement results (i.e., time series or discrete signal) for
d characteristics of some object in two different states (active and passive, for
example). Each measurement has an error and nobody knows the correspondence
between the elements of the input sequence and the states. But it is known that
the time interval between every two consequent active states is bounded from
below and above by some constants Tmin and Tmax. In addition, it is known
that exactly M times the object was in the active state (or the probability of
the active state is M

N ). It requires to find 2-partition of the input sequence and
evaluate the object characteristics (i.e., y({yn|n ∈ M}) in accordance with (1)).

What can we say on this application problem is it is very typical for processing
time-series or discrete signals. One can see this problem, for example, in technical
and medical diagnostics, in distant object monitoring and in geophysics, etc. (see,
for example, [1–5]).
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In Fig. 1 one can see an example of the input 2-dimensional sequence (200
points) for Problem1. Each point of the sequence corresponds to a vertical strip
in the tape. The given values, in this case, are Tmin = 2, Tmax = 20, M = 17.
The points of the same input sequence are presented on a plane in Fig. 2.

Fig. 1. Example of the input sequence for d = 2, N = 200, Tmin = 2, Tmax = 20,
M = 17.

Fig. 2. N = 200, Tmin = 2, Tmax = 20, M = 17 on a plane.

In the mathematical sense, the considered problem is closely related to the
following problem.

Problem 2. (Cardinality-weighted variance-based 2-clustering with given center).
Given an N -element set Y of points in R

d, and positive integer number M . Find
a partition of Y into two non-empty clusters C and Y \ C such that

|C|
∑

y∈C
‖y − y(C)‖2 + |Y \ C|

∑

y∈Y\C
‖y‖2 → min ,
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where y(C) = 1
|C|

∑
y∈C

y is the centroid of C, subject to constrain |C| = M .

The strong NP-hardness of Problem 2 was established in [6]. The strong NP-
hardness of Problem1 follows from this result, as Problem 2 is the special case
of Problem 1 when Tmin = 1 and Tmax = N .

Problem 2 has been studied in algorithmic sense in [7–11].
In [7], an exact pseudo-polynomial algorithm was constructed for the case

of integer components of the input points and fixed dimension d of the space.
The running time of this algorithm is O(N(MD)d), where D is the maximum
absolute value of coordinates of the input points.

In [8], an approximation scheme that allows one to find (1 + ε)-approximate

solution in O
(

dN2
(√

2d
ε + 2

)d
)

time was proposed. It implements an FPTAS

in the case of the fixed space dimension.
Moreover, in [9], the modification of this algorithm with improved time

complexity: O
(√

dN2
(

πe
2

)d/2(√ 2
ε + 2

)d
)
, was proposed. The algorithm imple-

ments an FPTAS in the case of fixed space dimension and remains polynomial
for instances of dimension O(log n). In this case, it implements a PTAS with
O

(
NC (1.05+log(2+

√
2
ε ))

)
time, where C is a positive constant.

In [10], an approximation algorithm that allows one to find a 2-approximate
solution to the problem in O (

dN2
)

time was constructed.
In [11], a randomized algorithm was constructed. It allows one to find (1+ε)-

approximate solution with probability not less than 1 − γ in O(dN) time for an
established parameter value, a given relative error ε and fixed γ. The conditions
are found under which the algorithm is asymptotically exact and runs in O(dN2)
time.

In this paper, we present the first result for strongly NP-hard Problem1.
Namely, we present an exact pseudo-polynomial algorithm for the case of inte-
ger instances and fixed d of space dimension. This algorithm is based on the
approaches and results presented in [7,12,13]. The running time of this algo-
rithm is O(N(M(Tmax − Tmin + 1) + d)(2MD + 1)d), where D is the maximum
absolute value of coordinates of the input points.

3 Foundations of the Algorithm

In this section, we formulate some statements about indices of M and formu-
late one more auxiliary problem which can be solved in polynomial time. All
these statements and auxiliary problem are necessary for substantiation of our
algorithms.

Two following lemmas were proved in [12,13].

Lemma 1. If the elements of M = {n1, . . . , nM} belong to N = {1, . . . , N}
and satisfy the system of constraints (2), then for every fixed M ∈ {2, . . . , N}
we have:
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(1) the parameters of this system are related by inequality

(M − 1)Tmin ≤ N − 1 , (3)

(2) the element nm in {n1, . . . , nm, . . . , nM} belongs to the set

ωm = {n|1 + (m − 1)Tmin ≤ n ≤ N − (M − m)Tmin}, m = 1, . . . ,M , (4)

(3) the feasibility domain of components nm−1 from this set under condition
nm = n is defined by formula

γ−
m−1(n) = {j|max{1 + (m − 2)Tmin, n − Tmax} ≤ j ≤ n − Tmin} , (5)

where n ∈ ωm, m = 2, . . . , M.

Lemma 2. For every M ∈ {2, . . . , N} the system of constraints (2) is feasible
if and only if inequality (3) holds.

Consider the following function:

S(M, b) = M
∑

n∈M
‖yn − b‖2 + (N − M)

∑

n∈N\M
‖yn‖2, b ∈ R

d, M ⊂ N .

It is similar to the objective function of Problem1, since |M| = M and
|N \ M| = N − M . The only difference is the point b instead of the centroid
y({yn|n ∈ M}). This function can be rewritten as follows:

S(M, b) = (N − M)
∑

n∈N
‖yn‖2

−
(
2M

∑

n∈M
〈yn, b〉 − (2M − N)

∑

n∈M
‖yn‖2 − M2‖b‖2

)

= (N − M)
∑

n∈N
‖yn‖2 −

∑

n∈M

(
2M〈yn, b〉 − (2M − N)‖yn‖2 − M‖b‖2

)
.

Note that the first summand is a constant, hence the minimum of S(M, b) is
reached on the subsequence that maximizes the second summand. This expres-
sion motivates us to formulate auxiliary:

Problem 3. Given a sequence Y = (y1, . . . , yN ) of points in R
d, a point

b ∈ R
d, and some positive integers Tmin, Tmax and M . Find a subset M =

{n1, . . . , nM} ⊂ N = {1, . . . , N} of indices in the sequence Y such that

Gb(M) =
∑

n∈M
gb(n) −→ max , (6)

where
gb(n) = 2M〈yn, b〉 − (2M − N)‖yn‖2 − M‖b‖2, n ∈ N , (7)

with additional constraints (2) on the elements of M, if M 
= 1.
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Let us define the set ΨM of subsets of admissible index tuples in the auxiliary
problem:

ΨM =

⎧
⎪⎪⎨

⎪⎪⎩

{(n1)|n1 ∈ N}, if M = 1;
{(n1, . . . , nM )|ni ∈ N , i = 1, . . . ,M ;

1 ≤ Tmin ≤ nm − nm−1 ≤ Tmax ≤ N,
m = 2, . . . ,M}, if 1 < M ≤ N.

(8)

For M = 1 the set ΨM is not empty for any parameters Tmin and Tmax by
definition (8). For other feasible values of M we have ([12,13]):

Lemma 3. If M ≥ 2, then the set ΨM is not empty if and only if an inequality
(3) holds.

Proofs of the following lemma and its corollary in [12,13] do not use (7) and
so they hold for our case too.

Lemma 4. Let ΨM 
= ∅ for some M ≥ 1. Then for this M , the optimal value
Gb

max = max
M

Gb(M) of objective function (6) can be found by formula

Gb
max = max

n∈ωM

Gb
M (n) . (9)

The values Gb
M (n), n ∈ ωM , can be calculated by the following recurrent formu-

lae:

Gb
m(n) =

⎧
⎨

⎩
gb(n), if n ∈ ω1,m = 1 ,

gb(n) + max
j∈γ−

m−1(n)
Gb

m−1(j), if n ∈ ωm,m = 2, . . . ,M , (10)

where sets ωm and γ−
m−1(n) are defined by formulae (4) and (5).

Corollary 1. The elements nb
1, . . . , n

b
M of the optimal set Mb = arg max

M
Gb

(M) can be found by the following recurrent formulae:

nb
M = arg max

n∈ωM

Gb
M (n) , (11)

nb
m−1 = arg max

n∈γ−
m(nb

m)
Gb

m(n), m = M,M − 1, . . . , 2 . (12)

The following algorithm finds an optimal solution for auxiliary Problem3.
The step-by-step description of the algorithm looks like as follows.

Algorithm A1.
Input : a sequence Y, a point b, some positive integer Tmin, Tmax, M .
Step 1. Compute gb(n), n ∈ N , using formula (7).
Step 2. Using recurrent formulae (10), compute Gb

m(n) for each n ∈ wn and
m = 1, . . . ,M .

Step 3. Find the maximal value Gb
max of the objective function Gb using

formula (9) and the optimal set Mb = {nb
1, . . . , n

b
M} by (11) and (12) from

Corollary 1; exit.
Output : the value of Gb

max, the set Mb.
The following theorem has been established in [13].
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Theorem 1. Algorithm A1 finds an optimal solution of Problem 3 in O(N
(M(Tmax − Tmin + 1) + d)) time.

4 Exact Algorithm

In our algorithm, we construct a multidimensional grid in the area defined by the
maximal absolute value of the coordinates of the input set. We choose the node
spacing of the grid such that the geometric center of one of the desired clusters
coincides with one of the nodes. For each node of the constructed grid, we solve
Problem 3 with the help of Algorithm A1 presented in the previous section and
then choose the best solution.

Assume now that all the coordinates of the points of Y are integers. Put

D = max
y∈Y

max
j∈{1,...,d}

|(y)j | , (13)

where (y)j is the j-th coordinate of y. Define the set

D =
{

x ∈ R
d| (x)j =

1
M

(v)j , (v)j ∈ Z, |(v)j | ≤ MD, j = 1, . . . , d
}

(14)

as a multidimensional grid with a uniform rational node spacing equal to 1/M
in each coordinate. Note that |D| = (2MD + 1)d.

The following statement is obvious.

Lemma 5. Assume that the elements of Y have the integer values in the interval
[−D,D]. Then the centroid of every subset C ⊂ Y of the size M lies in D.

Algorithm A.
Input : a sequence Y, some positive integers Tmin, Tmax, M .
Step 1. Find D by (13) and construct the grid D by (14).
Step 2. For each point x ∈ D, find the optimal solution Mx and the maximal

value Gx
max of objective function (6) using algorithm A1.

Step 3. Find the point xA = arg max
x∈D

Gx
max and the corresponding subset

MA = MxA , centroid y({yn|n ∈ MA}) = 1
M

∑
n∈MA

yn, and the value of the

objective function F (MA) by (1). If there are several solutions, choose any;
exit.

Output : the set MA, the point xA.

Theorem 2. Assume that the conditions of Lemma 5 hold. Then Algorithm A
finds an optimal solution of Problem 1 in

O(N(M(Tmax − Tmin + 1) + d)(2MD + 1)d)

time.
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Proof. Let M∗ be an optimal solution of Problem1, y∗ = y({yn|n ∈ M∗}) be
the centroid of this optimal solution, and MA be an output of Algorithm A. Let
us show that F (M∗) = F (MA).

Lemma 5 implies that a centroid y∗ is in D.

F (MA) = S(MA, y({yn|n ∈ MA})) ≤ S(MA, xA)

= (N − M)
∑

n∈N
‖yn‖2 − GxA(MA) ≤ (N − M)

∑

n∈N
‖yn‖2 − Gy∗

(My∗
)

Indeed, one can check by the differentiation that the minimum of S(MA, ·) (for
the fixed MA) is attained in y({yn|n ∈ MA}), so the first inequality holds. The
last inequality holds by the definition of Step 3.

Theorem 1 implies that

Gy∗
(My∗

) ≥ Gy∗
(M∗) .

Hence,

F (MA) ≤ (N − M)
∑

n∈N
‖yn‖2 − Gy∗

(M∗) = S(M∗, y∗) = F (M∗) .

On the other hand, F (M∗) ≤ F (MA) since MA is a feasible solution to
Problem 1. So F (M∗) = F (MA) and the algorithm finds an optimal solution.

Let us estimate the time complexity. At Step 1 we need O(dN) operations
to find the value D and O(d|D|) operations to construct the grid D. Step 2 is
executed for |D| times. In each iteration, we use Algorithm A1 that requires
O(N(M(Tmax − Tmin + 1) + d)) time. At Step 3 we need O(|D|) operations.
Thus, the total time complexity of the algorithm is O(N(M(Tmax − Tmin + 1) +
d)(2MD + 1)d) . 
�
Remark 1. Note that (2MD + 1)d ≤ (3MD)d = 3d(MD)d . This inequality
implies that if the dimension d of the space is fixed, then Algorithm A is pseu-
dopolynomial.

5 Examples of Numerical Simulation

The figures presented below show the robustness of the algorithm for Problem1
of searching for a subsequence.

The first example is the following. In Fig. 3 (upper tape) one can see the input
2-dimensional sequence of integer-valued points (out of 100 points). Each point
of the sequence corresponds to a vertical strip in the tape. The subsequence of
points found by the algorithm for Tmin = 1, Tmax = 5, M = 33 is presented in
the same Fig. 3 on the lower tape.
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Fig. 3. The input of Algorithm A (upper tape) and the found subsequence (lower
tape): N = 100, Tmin = 1, Tmax = 5, M = 33.

The points of the same input sequence are presented on a plane in Fig. 4 at
the left-hand side. At the right-hand side, it is shown a subset (light/dark points)
that corresponds to the subsequence presented in Fig. 3 on the lower tape.

Fig. 4. The input of Algorithm A (left part) and the found subsequence (right part,
light/dark points) shown on a plane: N = 100, Tmin = 1, Tmax = 5, M = 33.

Fig. 5. The input of Algorithm A (upper tape) and the found subsequence (lower
tape): N = 1000, Tmin = 2, Tmax = 20, M = 92.
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The second example has the same structure and looks like as follows in
Figs. 5 and 6.

Here we have the input 2-dimensional sequence of integer-valued points (out
of 1000 points). The subsequence of points was found by the algorithm for Tmin =
2, Tmax = 20, M = 92.

Fig. 6. The input of Algorithm A (left part) and the found subsequence (right part,
light/dark points) shown on a plane: N = 1000, Tmin = 2, Tmax = 20, M = 92.

6 Conclusion

In this paper, we have shown the strong NP-hardness of one cardinality-weighted
quadratic partitioning problem of a sequence of points in Euclidean space into
two clusters when the center of one of the desired clusters is fixed. We also
presented the first algorithmic result for the problem considered. This result
is the exact algorithm for the case of integer components of the input points.
Our algorithm on the one hand based on an adaptive-grid-approach and on
the other hand based on the ideas of the dynamic programming. The running
time of this algorithm is O(N(M(Tmax − Tmin + 1) + d)(2MD + 1)d), where D
is the maximum absolute value of coordinates of the input points. When the
dimension d of the space is fixed, the algorithm is the pseudopolynomial one.
Thus, we have established the conditions under which the problem is solvable in
pseudopolynomial time.

It is clear that the algorithm can be used to solve practical problems hav-
ing integer instances of small dimensions only. It seems important to continue
studying the questions on algorithmic approximability of the problem since the
considered problem is poorly studied in the algorithmic sense.
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Abstract. This paper addresses a new optimization method for a vari-
ant of the category of orienteering problems (OP), which is well-known as
the capacitated team orienteering problem (CTOP). The main objective
of CTOP focuses on the maximization of the total collected profit from
a set of candidate nodes or customers by taking into account the limita-
tions of vehicle capacity and time upper boundary of a constructed route.
To solve CTOP, we present a new optimization algorithm called the
Similarity Hybrid Harmony Search. This methodology includes an inno-
vative “similarity process” technique, which takes advantage the most
profitable nodes/customers during the algorithmic procedure aiming to
extend the diversification in the solution area. The experimental tests
were conducted in the most popular set of instances and the obtained
results are compared with most competitive algorithms in the literature.

Keywords: Capacitated Team Orienteering Problem · Harmony
Search algorithm · Vehicle routing problems with profits

1 Introduction

Throughout years, a big part of the scientific community have developed inno-
vative and robust methods for solving VRP and its variations. However, there
is a growing interest for two specific categories of vehicle routing. Precisely,
we refer to the Capacitated Vehicle Routing Problem (CVRP) and the VRPs
with profits. Both categories contain a series of NP-Hard problems, which are
enough popular not only to scientists, due to the their close relation with real
life applications. In this paper we deal with the Capacitated Team Orienteer-
ing Problem (CTOP) and present our approach the Similarity Hybrid Harmony
Search algorithm (SHHS) for solving it. The CTOP is a recent routing problem
in contrast with the vast majority of VRP, which introduced officially by [1].
Furthermore, the proposed SHHS method based on the classic Harmony Search
(HS) algorithm, which developed by [5].

The Capacitated Team Orienteering problem (CTOP) constitutes an exten-
sion of the Team Orienteering Problem (TOP), which both are included to the
c© Springer Nature Switzerland AG 2020
N. F. Matsatsinis et al. (Eds.): LION 13 2019, LNCS 11968, pp. 146–156, 2020.
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category of Orienteering Problems (OP). Main objective of these type of prob-
lems is the maximum collection of rewards (profits) from a subset customers. The
OP was initially introduced by [2]. The goal was the collection of checkpoints
as much as possible, which were associated with points within the already given
time period. With a few differences, the basic concept of the OP was similar to
the Traveling Salesman Problem (TSP). The OP stands as a single route with an
initial and final point, targeting the maximization of the profits collected from a
number of visited customers in a specific time limit. The TOP is considered to be
the expansion of the OP, while it includes the same objectives and limitations.
The significant difference lies into the number of routes (vehicles), which is more
than single one. Considering TOP a huge variety of optimization algorithms has
been developed in order to provide sufficient solutions.

Combinatorial optimization contains a series of strong NP-Hard problems.
Due to their complexity, finding the optimum solutions is always a difficult task.
To solve CTOP we propose the Similarity Hybrid Harmony Search (SHHS) algo-
rithm. Our new solution method is a variation of the meta-heuristic Harmony
search (HS) algorithm. [4] introduced a new meta-heuristic algorithm, the Har-
mony Search (HS) algorithm. The philosophy of the HS was based on the proce-
dure of music improvisation. In the process of music inspiration, the musicians
play different music tones in order to find the appropriate acoustic frequencies.
While the musicians match the frequencies, a new harmony is composed. The
SHHS iherits the philosophy of HS and contains specific tools, such as memory,
parameter tuning and randomization procedures, which offer further exploration
and intense exploitation in the solution areas. Additionally, we add a new tech-
nique called “similarity process”, which is applied for solution diversification
and enhancement. Our goal through the SHHS algorithm is to provide an alter-
native solution approach for the CTOP and generally for discreet optimization
problems. The experimental results show that our proposed methodology can
withstand the best algorithms in the literature.

The rest details of the paper are organized as follows. Further references of the
existing methods solving the CTOP and its mathematical model are presented in
Sect. 2. Section 3 is devoted to the proposed Similarity Hybrid Harmony Search
(SHHS) algorithm. The analysis of the computational results and the comparison
with other solution approaches are provided in Sect. 4. Our future directions and
plans are concluded in Sect. 5.

2 Capacitated Team Orienteering Problem (CTOP)

2.1 A Literature Review

The Capacitated Team Orienteering Problem is a new variant in comparison with
the rest of OP or CVRP problems. It was introduced as CTOP by the [1] back
to 2009. As a combinatorial optimization problem with NP-Hard complexity, it
has been proposed a rich variety of metaheuristics approaches to reach the best
or close to the best solutions. For this kind of problem we proposed our solution
method, the Similarity Hybrid Harmony Search algorithm (SHHS). We focus on
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the algorithms of [1,7] and [6], which have been tested in the same benchmark
instances proposed by [1].

To solve CTOP, [1] proposed three methodologies. Two are based on the
Tabu Search (TS) optimization method. The first searches in feasible solution
areas and denoted as TSF, while the second explores in non-feasible solution
areas and denoted as TSA. The third one is a classic Variable Neighborhood
Search (VNS) algorithm. All three methods create feasible solutions by adding
new customers in each one of the created vehicle routes. An alternative and effec-
tive approach is the Bi-level Filter and Fan methodology of [7]. They introduced
a bi-level search framework, which is divided into two parts, the master (upper)
and the subordinate (lower). The upper expands the search in the solution areas
in order to maximize the total collected profit, while the latter enhances the
solutions by adding unvisited customers. The algorithm begins with a greedy
parallel insertion-based construction heuristic method for generating the ini-
tial solutions. Referring to the solution methods of the CTOP, [6] designed an
adaptive ejection pool with toggle-rule diversification (ADEPT-RD) approach
achieving excellent performance according to the obtained results. The algo-
rithm is based on the concept of the ejection pool framework including specific
mechanisms for diversification and optimization of the solutions.

2.2 Mathematical Model

CTOP can be modeled as an undirected graph G = (V,A), in which V =
{1, · · · , N} is the set of nodes and A = {(i, j)|i, j ∈ V } represents the set of
arcs. The first node in V (1 ∈ V ) is designated as the depot. The rest of the
nodes are the candidate customers and are included in the set Vwd = {2, · · · , N}
as subset of V (Vwd ⊂ V ). The connected arcs between every pair of i, j cus-
tomers describe the travel cost, which is denoted tij . For each customer i in
Vwd is associated with a profit pi and a demand di. The fleet for servicing the
customers consists of a predefined number of M available vehicles. Each vehicle
m ∈ M has a specific deposit space for adding di without exceeding its maxi-
mum store capacity Qmax. Lastly, a vehicle route m is considered to be feasible,
when its travel time is below or equal with the total time bound Tmax. The aim
of CTOP is the maximization of the total profit, which will be collected from
the visited customers.

Of course there are some limitations, which must be declared in order to be
solved the CTOP properly. To begin with, the depot node is not assigned with
a profit or a demand. The travel cost tij is calculated from Euclidean distance
mathematical type and naturally is symmetric. Additionally, we impose, that
the triangle inequality for every distance is satisfied. Each candidate customer
in Vwd can be served only once and by one vehicle m ∈ M . All vehicles from the
M fleet begin and finish their route at the depot without exceeding the limits of
maximum capacity Qmax and travel time Tmax. For instance, a perfect vehicle
route contains as many as possible candidate customers with high profits, while
the corresponding demand and travel cost are equal or almost equal with their
respectively upper limit values.
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The CTOP can be denoted as an extended version with capacity limitations
of TOP. It can be modeled as an integral programming problem. The constrains
of the decision variables for the problem are the following:

– xijm = 1 if vehicle route m ∈ M includes edges i, j ∈ V ,
xijm = 0 otherwise.

– yim = 1 if node i ∈ V belongs to vehicle route m ∈ M ,
yid = 0 otherwise.

The objective function and the constrains of the CTOP are presented below:

z = max
∑

i∈Vwd

∑

m∈M

piyim (1)

s.t.

∑

m∈M

∑

j∈Vwd

x0jm =
∑

m∈M

∑

i∈Vwd

xi0m = M (2)

∑

m∈M

yim ≤ 1, ∀i ∈ Vwd (3)

∑

j∈V

xijm =
∑

j∈V

xjim = yim, ∀i ∈ Vwd,∀m ∈ M (4)

∑

i∈V

∑

j∈V

tijxijm ≤ Tmax, ∀m ∈ M (5)

∑

i∈Vwd

diyim ≤ Qmax, ∀m ∈ M (6)

∑

(i,j)∈S

xijm ≤ |S| − 1, ∀S ⊆ Vwd, 2 ≤ |S|, ∀m ∈ M (7)

The objective function (1) aims to the maximization of the total collected
profit. Constraint (2) ensures that the vehicle routes of the M vehicles will begin
and end to the depot node. Constraint (3) eliminates the possibility to visit twice
each of the i customers. Constraint (4) secures the connection of the vehicle
route. The time and the capacity limitations of the vehicle routes are secured by
the constraints (5), (6). And the constraint (7) forbids any sub-routes.

3 Proposed Optimization Algorithm

3.1 Stages of the Methodology

In this subsection the Similarity Hybrid Harmony Search algorithm is presented.
The proposed method combines the mechanisms of the classic HS with the new
added technique “similarity process”. The functionality of SHHS algorithm is
detailed analyzed for each of the following stages. This subsection is organized
with the illustration of the algorithmic parameters and the main phases of the
methodology as follows:
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– Stage 1: Parameter definition and initialization
– Stage 2: Initial harmonies and Harmony Memory construction
– Stage 3: The Improvisation stage
– Stage 4: New technique called “similarity process”
– Stage 5: Update Harmony Memory with best harmonies

3.2 Initialization of Parameters

The SHHS includes a series of different parameters, which some of them are
inherited from the classic HS algorithm and others. We take into the account
not only the already existed parameters, but also the new added ones, which
are essential for main algorithmic procedures. Before the algorithm enters in the
main loop to execute the basic functions, the harmony memory list (HML) is
created. It is a important parameter, which is vital for the following operations
of the algorithm. As it called, it is a list, which contains all the routes from
the stored solutions in the HM . As the problem requires, the feasible solutions
consist of M routes. For this reason, the size of the HML will depend on M ,
which obtains different values according to the current example.

3.3 Initial Harmonies and Harmony Memory Construction

The SHHS algorithm starts with the creation of the initial solutions. The con-
struction of a feasible solution depends on the limitations of travel time and
vehicle capacity. Each of the c customers are checked in order to enter in a vehi-
cle of the current solution. The procedure for customer insertion is simple. We
follow the concept to add as many as possible candidate customers to the solu-
tions. To achieve this, we rank the customers according to their amount of profit.
Then, the algorithm inserts them alternately, until all the M routes are created.
When this procedure is complete, the solutions are stored in the harmony mem-
ory HM . This strategy of creating solutions with big amount of customers is
proved that, it is very promising for the core functions of the algorithm.

3.4 Improvisation Stage

The Improvisation phase contains one of the core functions in the main loop of
the Similarity Hybrid Harmony Search algorithm. The proposed methodology
includes a set of parameters, which are existed in the classic Harmony Search
algorithm. In addition, we add an essential parameter the harmony memory list
(HML). During this phase, new solutions are produced with or without the
usage of the HML. Whether or not to be taken into account the usage of the
HML depends on the HMCR and PAR probabilities. Through this function
feasible routes are constructed via three options.
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The Improvisation phase obtain the HML list and uses the HMCR and
PAR probabilities. If the HMCR probability is occurred, the algorithm will
consider the HML to pick a route. It follows the PAR possibility. If the PAR
is accepted, the algorithm performs the 1-1 Exchange local search option to
improve the profit of the m picked route. Otherwise, none operation is applied
to the selected route and the solution is formed. On the other hand, when the
HMCR is not occurred, the HML is not taken into account and the algorithm
produces a route with randomly inserted customers. At the end of the process,
the created solutions are stored in a temporarily memory.

3.5 “Similarity Process”

The “similarity process” is a new technique, which focuses on enhancement of
the solution’s quality by increasing the total collected profit. It is an alternative
matching selection process, which allows the algorithm to pick different routes
in order to create more profitable solutions. This function is divided into two
parts. In first the algorithm selects the suitable routes by using the similarity
parameter (SP ) and the similarity matrix (SM). In the second part, the nearest
insertion (NI) heuristic is used to increase the total amount of the collected
profit.

In this algorithmic phase are applied the two new added parameters, the
similarity parameter (SP ) and the similarity matrix (SM). Before the begin of
the process, the algorithm constructs the SM . The rows and columns of the
SM represent the corresponding routes from the harmony memory list (HML).
Additionally, each row or column contains the numbers of the similar nodes for
all the candidate routes. SP is an integer number, which takes various values
between the minimum and the maximum value of the SM . The selected SP
value indicates the number of similar nodes, which the candidate routes must
contain. The algorithm seeks all the routes with the same SP and picks the most
profitable one. The selected route becomes a part of the solution and the similar
customers are removed. Moreover, it increases the available time travel and load
capacity of the routes. For this reason, NI is applied to each one of the solutions.
The NI inserts customers on the basis of the profit amount and the available
time travel.

4 Analysis of the Experimental Results

In this part of the paper, the results of our SHHS algorithm are presented. We
test the efficiency of our solution method in the benchmark instances proposed
by [1], which have been modified from the original data set of problems for
the CVRP proposed by [3]. CTOP includes ten sets of data instances (p03-p16).
The characteristics of each set of instances are the fleet of the vehicles, maximum
capacity Qmax, total distance time Tmax, location of the depot (x,y), amount of
customers. These features are varied for all of the sets.
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In the following three tables are presented the obtained experimental results
of the Similarity Hybrid Harmony Search (SHHS) algorithm alongside with the
most efficient solutions methods in the literature for the Capacitated Team Ori-
enteering Problem. Tables 1, 2 and 3 are organized in nine columns. In the first
column the name of the current instance (Problem) is defined. Each of the
instances is referred with the characteristics of the set, the amount of vehi-
cles, the Qmax and the Tmax limitations. For example, p03-2-50-50 denotes
an instance from set p03 with M = 2 vehicles and values of Qmax = 50 and
Tmax =50. In the second column the optimal solution value (B*) in the lit-
erature is presented. Through third and ninth columns are shown the results
from the compared optimization methodologies. These are the following as they
appear in Tables 1, 2 and 3:

– Variable neighborhood search (VNS), [1]
– Tabu search with only feasible solutions (TSF), [1]
– Tabu search considering infeasible solutions (TSA), [1]
– Adaptive ejection pool with toggle rule diversification (ADEPT-RD), [6]
– Bi-level Filter-and-Fan fast configuration (BiF&F-f), [7]
– Bi-level Filter-and-Fan slow configuration (BiF&F-s), [7]
– Similarity Hybrid Harmony Search (SHHS)

The Similarity Hybrid Harmony Search algorithm was executed 90 times
as the total number of the instances. Our proposed methodology reaches the
optimal solutions 63 out of 90 achieving 70% in efficiency. Each one of Tables 1,
2 and 3 is divided according to the number of the M available vehicles. In Table
1 our algorithm gains almost all the best known solutions reaching 27 out of 30.
In the three examples (p09/10/13-2-100-100) SHHS looses the optimal value by
the gap of just two points. Table 2 presents the results of the instances with M =
3 of vehicles routes. The proposed method reaches the optimal known values in
20 instances out of 30. It can be observed, that in the examples with Qmax,Tmax

= 50 SHHS obtains all the optimal solutions, while with increased Qmax and
Tmax values it struggles to reach them. In Table 3 are presented the results in the
most tough complexity. The obtained values are not so satisfactorily as in the
previous two tables. Our algorithm finds the optimal solutions in slightly above
the half of the total examples (16/30 instances) with 53,3% efficiency. However,
the experimental results of SHHS are quite close not only to the best values,
but in some cases outperforms the some of the other optimization methods. For
example, in instance p16-4-100-100 our method reaches 555 points and surpasses
the VNS and the two TS approaches. In general, the performance of our proposed
methodology can be consider almost antagonistic and competitive with the rest
of the compared optimization methods.
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Table 1. Regular Set with M = 2 vehicles

Problem B* VNS TSF TSA ADEPT-RD BiF & F-f BiF & F-s SHHS

p03-2-50-50 133 133 133 133 133 133 133 133

p06-2-50-50 121 121 121 121 121 121 121 121

p07-2-50-50 126 126 126 126 126 126 126 126

p08-2-50-50 133 133 133 133 133 133 133 133

p09-2-50-50 137 137 137 137 137 137 137 137

p10-2-50-50 134 134 134 134 134 134 134 134

p13-2-50-50 134 134 134 134 134 134 134 133

p14-2-50-50 124 124 124 124 124 124 124 124

p15-2-50-50 134 134 134 134 134 134 134 134

p16-2-50-50 137 137 137 137 137 137 137 137

p03-2-75-75 208 208 208 208 208 208 208 208

p06-2-75-75 183 183 183 183 183 183 183 183

p07-2-75-75 193 193 193 193 193 193 193 193

p08-2-75-75 208 208 208 208 208 208 208 208

p09-2-75-75 210 210 210 210 210 210 210 210

p10-2-75-75 208 208 208 208 208 208 208 208

p13-2-75-75 193 193 193 193 193 193 193 193

p14-2-75-75 190 190 190 190 190 190 190 190

p15-2-75-75 211 210 211 211 211 211 211 211

p16-2-75-75 212 212 212 212 212 212 212 212

p03-100-100 277 277 277 277 277 277 277 277

p06-2-100-100 252 252 252 251 252 252 252 252

p07-2-100-100 266 266 266 266 266 266 266 266

p08-2-100-100 277 277 277 276 277 277 277 277

p09-2-100-100 279 279 278 279 279 279 279 277

p10-2-100-100 282 282 280 279 282 282 282 280

p13-2-100-100 253 253 253 253 253 253 253 251

p14-2-100-100 271 271 271 271 271 271 271 271

p15-2-100-100 282 282 280 279 282 282 282 282

p16-2-100-100 285 284 285 284 285 284 285 285

Table 2. Regular Set with M = 3 vehicles

Problem B* VNS TSF TSA ADEPT-RD BiF & F-f BiF & F-s SHHS

p03-3-50-50 198 198 198 198 198 198 198 198

p06-3-50-50 177 177 177 177 177 177 177 177

p07-3-50-50 187 187 187 187 187 187 187 187

p08-3-50-50 198 198 198 198 198 198 198 198

p09-3-50-50 201 201 201 201 201 201 201 201

p10-3-50-50 200 200 200 200 200 200 200 200

p13-3-50-50 193 193 193 193 193 193 193 193

(continued)
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Table 2. (continued)

Problem B* VNS TSF TSA ADEPT-RD BiF & F-f BiF & F-s SHHS

p14-3-50-50 184 184 184 184 184 184 184 184

p15-3-50-50 200 200 200 199 200 200 200 200

p16-3-50-50 203 203 203 203 203 203 203 203

p03-3-75-75 307 307 307 307 307 307 307 307

p06-3-75-75 269 269 269 269 269 269 269 269

p07-3-75-75 287 287 287 287 287 287 287 287

p08-3-75-75 307 307 307 307 307 307 307 305

p09-3-75-75 312 310 310 310 312 312 312 311

p10-3-75-75 311 310 310 310 311 311 311 311

p13-3-75-75 265 265 265 265 265 265 265 263

p14-3-75-75 279 279 279 279 279 279 279 279

p15-3-75-75 315 315 315 315 315 315 315 315

p16-3-75-75 317 317 317 317 317 317 317 317

p03-3-100-100 408 407 408 407 408 407 407 408

p06-3-100-100 369 369 369 369 369 369 369 369

p07-3-100-100 397 397 397 391 397 397 397 393

p08-3-100-100 408 407 408 407 408 407 407 407

p09-3-100-100 415 413 414 412 415 413 415 410

p10-3-100-100 418 416 417 412 418 418 418 415

p13-3-100-100 344 344 344 343 344 344 344 339

p14-3-100-100 399 399 399 399 399 399 399 399

p15-3-100-100 418 417 416 416 418 418 418 416

p16-3-100-100 423 420 421 421 423 422 423 421

Table 3. Regular Set with M = 4 vehicles

Problem B* VNS TSF TSA ADEPT-RD BiF & F-f BiF & F-s SHHS

p03-4-50-50 260 260 260 260 260 260 260 260

p06-4-50-50 222 222 222 222 222 222 222 222

p07-4-50-50 240 240 240 240 240 240 240 240

p08-4-50-50 260 260 260 260 260 260 260 260

p09-4-50-50 262 262 262 262 262 262 262 262

p10-4-50-50 265 265 265 265 265 265 265 265

p13-4-50-50 243 243 243 242 243 243 243 239

p14-4-50-50 241 241 241 241 241 241 241 238

p15-4-50-50 266 266 266 266 266 266 266 266

p16-4-50-50 269 269 269 269 269 269 269 269

p03-4-75-75 403 401 403 402 403 403 403 403

p06-4-75-75 349 349 348 348 403 349 349 349

p07-4-75-75 349 349 348 348 403 349 349 349

(continued)
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Table 3. (continued)

Problem B* VNS TSF TSA ADEPT-RD BiF & F-f BiF & F-s SHHS

p08-4-75-75 403 401 403 402 403 403 403 403

p09-4-75-75 408 407 407 407 408 407 408 406

p10-4-75-75 411 410 410 407 411 410 411 409

p13-4-75-75 323 323 323 323 323 323 323 320

p14-4-75-75 366 366 366 366 366 366 366 366

p15-4-75-75 415 414 414 413 415 415 415 415

p16-4-75-75 420 419 420 419 420 420 420 420

p03-4-100-100 532 529 531 529 532 531 532 526

p06-4-100-100 482 481 482 481 482 482 482 482

p07-4-100-100 521 521 521 514 521 518 521 517

p08-4-100-100 532 529 531 529 532 531 532 526

p09-4-100-100 546 545 539 536 546 545 546 536

p10-4-100-100 553 548 549 550 553 553 553 549

p13-4-100-100 419 419 419 416 419 419 419 419

p14-4-100-100 525 525 523 525 525 525 525 522

p15-4-100-100 549 548 549 545 549 548 549 545

p16-4-100-100 558 554 554 553 558 556 558 555

5 Conclusion

The present work for this paper is based on a new optimization method for the
Capacitated Team Orienteering Problem. Our proposed Similarity Hybrid Har-
mony Search (SHHS) algorithm embraces the mechanisms of the Improvisation
stage for expanding the variety of the produced solutions. Adding the “similarity
process” to the whole algorithmic procedure in order to intense the exploration
in the solution areas and to increase the total collected profit. It is a construc-
tion strategy, which exploits the similar nodes of each available solution. Taking
into account that solutions consist of vehicle routes, through this strategy are
combined different routes in order to synthesize new feasible solutions.

The performance of our proposed methodology in CTOP shows, that fur-
ther modifications on the algorithmic procedure can be applied in order to
enhance even more the dynamic and the impact of the algorithm. Furthermore,
an extended evaluation of the already existed and the new added parameters
considering the way of their calculation during the algorithmic procedures should
be examined in order to improve the efficiency of the this method. Further
improvements of the SHHS algorithm will be tested in similar discreet combina-
torial problems. Our future scientific work will be directed to the development
of innovative optimization methodologies for providing feasible solutions and
prototype mechanisms likewise “similarity process”.
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Abstract. This work proposes Adaptive General Variable Neighbor-
hood Search metaheuristic algorithms for the efficient solution of Pol-
lution Location Inventory Routing Problems (PLIRPs). A comparative
computational study, between the proposed methods and their corre-
sponding classic General Variable Neighborhood Search versions, illus-
trates the effectiveness of the intelligent mechanism used for automating
the re-ordering of the local search operators in the improvement step of
each optimization method. Results on 20 PLIRP benchmark instances
show the efficiency of the proposed metaheuristics.

Keywords: Adaptive General Variable Neighborhood Search ·
Intelligent optimization methods · Pollution Location Inventory
Routing Problem · Green logistics

1 Introduction

The Pollution Location Inventory Routing Problem (PLIRP) is an NP-hard
combinatorial optimization problem, which involves both economic and envi-
ronmental decisions [7]. It simultaneously addresses strategic decisions, such as
the location of candidate depots and the allocation of customers to the opened
depots, tactical decisions, as the inventory levels and the replenishment rates
and finally operational decisions, such as routing schedules. The objective of this
problem is the minimization of the total cost, which consists of facilities opening
costs, inventory control costs, general routing costs and fuel consumption costs.

It should be mentioned that, there are several factors affecting the fuel con-
sumption. The main factors are the speed, the acceleration of the vehicle, the
traveled distance and the total weight of the vehicle, consisting of the curb and
freight weight [2].
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In this work, several Adaptive General Variable Neighborhood Search
(AGVNS) heuristic algorithms have been developed for the efficient solution
of recently proposed PLIRP instances [7]. The proposed AGVNS schemes are
compared both with their corresponding GVNS methods as well as with the
only available heuristic algorithm in the literature for this problem variant.
The remainder of this paper is organized as follows: Sect. 2 provides the math-
ematical formulation of the problem. Section 3 describes the developed solu-
tion approaches and their algorithmic details, while Sect. 4 provides extensive
numerical analyses for testing the efficiency of the proposed methods on 20
PILRP instances. Finally, Sect. 5 draws up main concluding remarks and high-
lights direction for future work.

2 Problem Statement

For the readers clarity sake, the mathematical formulation of the problem is
presented in this section. Model notations are summarized in Tables 1, 2 and 3.

Table 1. Model sets.

Indices & Explanation
V is the set of nodes

J is the set of candidate depots
I is the set of customers

H is the set of discrete and finite planning horizon
K is the set of vehicles

R is the set of speed levels

Table 2. Model decision variables.

Notation Explanation

yj 1 if j is opened; 0 otherwise

zij 1 if customer i is assigned to depot j; 0 otherwise

xijkt 1 if node j is visited after i in period t by vehicle k

qikt Product quantity delivered to customer i in period t by vehicle k

witp Quantity delivered to customer i in period p to satisfy its demand in period t

avikt Load weight by travelling from node v to the customer i with vehicle k in period t

zzv1v2ktr 1 if vehicle k travels from node v1 to v2 in period t with speed level r

The following utilization of formulas simplifies the fuel consumption compo-
nents of the objective function: λ = HV DF

ψ , γk = 1
1000V DTEη , α = τ+gCR sin θ+

gCR cos θ and βk = 0.5CADρFSAk.
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Table 3. Model parameters.

Notation Explanation Value

fj Fixed opening cost of depot j Instance-depended

Cj Storage capacity of depot j Instance-depended

hi Unit inventory holding cost of customer i Instance-depended

Qk Loading capacity of vehicle k Instance-depended

dit Period variable demand of customer i Instance-depended

cij Travelling cost of locations pair (i, j) Instance-depended

sr The value of the speed level r Instance-depended

ε Fuel-to-air mass ratio 1

g Gravitational constant (m/s2) 9.81

ρ Air density (kg/m3) 1.2041

CR Coefficient of rolling resistance 0.01

η Efficiency parameter for diesel engines 0.45

fc Unit fuel cost (e/L) 0.7382

fe Unit CO2 emission cost (e/kg) 0.2793

σ CO2 emitted by unit fuel consumption (kg/L) 2.669

HV DF Heating value of a typical diesel fuel (kj/g) 44

ψ Conversion factor (g/s to L/s) 737

θ Road angle 0

τ Acceleration (m/s2) 0

CWk Curb weight (kg) 3500

EFFk Engine friction factor (kj/rev/L) 0.25

ESk Engine speed (rev/s) 39

EDk Engine displacement (L) 2.77

CADk Coefficient of aerodynamics drag 0.6

FSAk Frontal surface area (m2) 9

V DTEk Vehicle drive train efficiency 0.4

min
∑

j∈J

fjyj +
∑

i∈I

hi

∑

t∈H

(

1
2dit +

∑

p∈H,p<t

witp (t − p) +
∑

p∈H,p>t

witp (t − p + |H|)
)

+
∑

i∈V

∑

j∈V

∑

t∈H

∑

k∈K

cijxijkt +
∑

i∈V

∑

j∈V

∑

k∈K

∑

t∈H

{

λ (fc + (feσ))

(
∑

r∈R

(
zzijktrEFFkESkEDkcij

)

sr

+

(

αγk (CWkxijkt + aijkt) cij

)

+

(

βk γk

∑

r∈R

(sr zzijktr)
2

))}

(1)Subject to

∑

r∈R

zzijktr = 0 ∀i, j ∈ V,∀k ∈ K,∀t ∈ H (2)
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∑

i∈V

aijkt −
∑

i∈V

ajikt = qjktPW ∀j ∈ I,∀k ∈ K,∀t ∈ H (3)

∑

j∈V

xijkt −
∑

j∈V

xjikt = 0 ∀i ∈ V,∀k ∈ K, ∀t ∈ H (4)

∑

j∈V

∑

k∈K

xijkt ≤ 1 ∀t ∈ H, ∀i ∈ I (5)

∑

j∈V

∑

k∈K

xjikt ≤ 1 ∀t ∈ H, ∀i ∈ I (6)

∑

i∈I

∑

j∈J

xijkt ≤1 ∀k ∈ K, ∀t ∈ H (7)

xijkt = 0 ∀i, j ∈ J, ∀k ∈ K, ∀t ∈ H, i �= j (8)
∑

i∈I

qikt ≤ Qk ∀k ∈ K, ∀t ∈ H (9)

∑

j∈J

zij = 1 ∀i ∈ I (10)

zij ≤ yj ∀i ∈ I, ∀j ∈ J (11)

∑

i∈I

(
zij

∑

t∈H

dit

)
≤ Cj ∀j ∈ J (12)

∑

u∈I

xujkt +
∑

u∈V \{i}
xiukt ≤ 1 + zij ∀i ∈ I, ∀j ∈ J, ∀k ∈ K, ∀t ∈ H (13)

∑

i∈I

∑

k∈K

∑

t∈H

xjikt ≥ yj ∀j ∈ J (14)

∑

i∈I

xjikt ≤ yj ∀j ∈ J, ∀k ∈ K, ∀t ∈ H (15)

∑

p∈H

witp = dit ∀i ∈ I, ∀t ∈ H (16)

∑

t∈H

witp =
∑

k∈K

qikp ∀i ∈ I, ∀p ∈ H (17)

qikt ≤ M
∑

j∈V

xijkt ∀i ∈ I, ∀t ∈ H, ∀k ∈ K (18)

∑

j∈V

xijkt ≤ Mqikt ∀i ∈ I, ∀t ∈ H, ∀k ∈ K (19)

xijkt ∈ {0, 1} ∀i ∈ I, ∀j ∈ J, ∀t ∈ H, ∀k ∈ K (20)

yj ∈ {0, 1} ∀j ∈ J (21)

zij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (22)
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qikt ≤ min

⎧
⎨

⎩Qk,
∑

p∈H

dip

⎫
⎬

⎭ ∀i ∈ I, ∀j ∈ J ,∀k ∈ K (23)

witp ≤ dip ∀i ∈ I, ∀t, p ∈ H (24)

The objective goal of the problem is the minimization of the total cost which
consists of facilities opening costs, inventory holding costs, general routing costs
and fuel consumption and CO2 emissions costs. The constraints of the model
can be grouped into routing-, inventory- and location-related constraints. For
example, the routing-related set of Constraints 8 prevent vehicles from traveling
between two depots in each time period, while the location-related set of Con-
straints 10 guarantee that a customer will be served by exactly one depot. Also,
an example of inventory-related constraints are the set of Constraints 9 which
they ensure that the delivered amount of product quantities will not exceed the
capacity of the used vehicle in a specific time period.

3 Solution Approach

3.1 Initialization

A three-phase construction heuristic has been developed in order to build quick
initial feasible solutions for the PLIRP. Location and allocation decisions are
determined in the first phase and inventory-routing decisions are made in the
second one. Finally, the speed levels for travelling through the nodes of a network
are selected.

More specifically, the opening of the required depots is based on a ratio-
based selection technique. For each candidate depot, the ratio fixed opening cost

Capacity
is calculated, where the “fixed opening cost” represents the cost for opening
each depot, and the “capacity” is the maximum amount of product units that
the selected depot can offer. The depot with the minimum ratio is selected to be
opened. The number of the opened depots depends on their capacities and the
total demand of customers. The allocation of customers to the opened depots is
made in a serial way. Serial allocation means that for a selected depot, the set of
customers is being ran and the first unallocated customer, whose total demand
does not exceed the remaining capacity of the depot, is assigned to that depot.
The allocation process is completed when all customers have been assigned to
the opened depots.

In order to determine the inventory-routing decisions, a Random Insertion
method [3] is applied for building the vehicles routes and each customer receives
the demanded quantity of product in each time period. The selection of speed
levels is performed randomly.

3.2 Neighborhood Structures

Three neighborhood structures are proposed for the efficient exploration of the
solution space, as follows:
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Inter-route Relocate: In this local search operator two customers (i and
b) from different routes are selected. The Inter-route Relocated removes i from
his route Ri and moves him in the route servicing customer b, Rb in the next
position of b, in each time period. Both customers can be serviced by the same
depot or by different depots over the time horizon. A replenishment shifting may
be performed in order to avoid vehicle capacity violation in route Rb.

Exchange Opened-Closed Depots: In this neighborhood a closed depot
i is being exchanged with an opened one j. The capacity of the depot i must be
at least equal to the capacity of j for having a valid move. Also, a reordering of
the routes allocated on depot j may occur according to the minimum insertion
cost criterion of depot i.

2-2 Replenishment Exchange: Two time periods t1 and t2 are randomly
selected in this operator, and then, the two most distant customers i and b are
found. Both of those customers must be serviced in t1 and t2. The cost changes of
removing i and b from their routes in periods t1 and t2 respectively and shifting
their receiving deliveries from t1 to t2 for customer i and from t2 to t1 for b are
calculated. The move is applied only if no violations over the vehicles capacities
occurred.

3.3 Shaking Scheme

The main scope of a shaking procedure is to help the algorithm escaping from
local optimum solutions [5]. In each shaking iteration, a new random solution
S′ is obtained by a randomly selected neighborhood from a predefined set of
neighborhoods and according to a given solution S. In this work, an intensi-
fied shaking method has been developed with two neighborhood structures, the
Exchange Opened-Closed Depots and the Intra-route Relocate.

The Exchange Opened-Closed Depots operator is applied as described in
Subsect. 3.2. The Intra-route Relocate operator removes a randomly selected
customer from its current position in its route and moves him in a different
position in the same route. The pseudo-code of this diversification method is
summarized in Algorithm 1. The Shake function receives an incumbent solution
S and the number of iterations k (where 1 < k < kmax and kmax = 12), which
indicates the times that, one randomly selected neighborhood operator (of the
two in total) will be applied for generating a new solution S′.

3.4 Adaptive General Variable Neighborhood Search

Variable Neighborhood Descent (VND). The VND is the determinis-
tic variant of the well-known metaheuristic framework Variable Neighborhood
Search (VNS). In a VND method the local search operators are ordered in a
specific sequence and applied successively until no more improvements can be
noticed. According to the neighborhood change step, there are different VND
schemes. Two of the most well-known VND schemes are the cyclic VND (cVND)
and the pipe VND (pVND). In the first one, the search continuous in the next
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Algorithm 1. Shaking Procedure
1: procedure Shake(S, k)

2: l = random integer(1, 2)

3: for i ← 1, k do

4: select case(l)

5: case(1)

6: S′ ← Intra − route Relocate(S)

7: case(2)

8: S′ ← Exchange OpenedClosed Depots(S)

9: end select
10: end for
11: Return S′
12: end procedure

neighborhood in the set independently of the improvement criterion, while in the
pVND the exploration continuous in the same neighborhood while an improve-
ment is occurred [5]. In this work both cVND and pVND are used. Moreover,
it should be mentioned that the parameter lmax in both VND pseudo-codes
denotes the number of the used neighborhood structures. The pseudo-codes of
the proposed VND schemes are given in Algorithms 2 and 3.

Algorithm 2. cyclic VND
1: procedure cVND(S, lmax)

2: l = 1
3: while l ≤ lmax do

4: select case(l)

5: case(1)

6: S′ ← Inter Relocate(S)

7: case(2)

8: S′ ← Exchange OpenedClosed Depots(S)

9: case(3)

10: S′ ← 2 − 2ReplenishmentExchange(S)

11: end select
12: if f(S′) < f(S) then

13: S ← S′
14: l = l + 1

15: else
16: l = l + 1

17: end if
18: end while
19: Return S
20: end procedure

The local search operators are applied with an adaptive search strategy, which
combines the first and best improvement search strategies [8]. More specifically,
if the number of customers in a problem instance is more than 90, the fist
improvement search strategy is applied, otherwise the algorithm explores the
neighborhoods with the best improvement strategy.

General Variable Neighborhood Search (GVNS). The GVNS is a variant
of the VNS, which combines deterministic and stochastic components during
the search. More specifically, it adopts one of the VND schemes as its main
improvement step [5,10]. Based on the two proposed VND methods, two GVNS
schemes are shaped and provided in the following pseudo-codes.
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Algorithm 3. pipe VND
1: procedure pVND(S, lmax)

2: l = 1
3: while l ≤ lmax do

4: select case(l)

5: case(1)

6: S′ ← Inter Relocate(S)

7: case(2)

8: S′ ← Exchange OpenedClosed Depots(S)

9: case(3)

10: S′ ← 2 − 2ReplenishmentExchange(S)

11: end select
12: if f(S′) < f(S) then

13: S ← S′
14: else
15: l = l + 1

16: end if
17: end while
18: Return S
19: end procedure

Algorithm 4. GV NScV ND

1: procedure GV NScV ND(S, kmax, lmax,max time)

2: while time ≤ max time do

3: S∗ = Shake(S, k)

4: S′ = cV ND(S∗, lmax)

5: if f(S′) < f(S) then

6: S ← S′
7: end if
8: end while
9: return S
10: end procedure

Algorithm 5. GV NSpV ND

1: procedure GV NSpV ND(S, kmax, lmax,max time)

2: while time ≤ max time do

3: S∗ = Shake(S, k)

4: S′ = pV ND(S∗, lmax)

5: if f(S′) < f(S) then

6: S ← S′
7: end if
8: end while
9: return S
10: end procedure

Adaptive Mechanism. The order of the neighborhood structures is a crucial
component for the successful performance of a VNS-based algorithm [4,6]. Con-
sequently, it is important to employ an intelligent mechanism for the re-ordering
of the neighborhood structures. According to the literature, some adaptive vari-
ants of the VNS have been proposed for that case. Todosijevic et al. [12] proposed
an Adaptive GVNS in which a re-ordering of the neighborhoods is applied in
each iteration based on their success in previous solution process. Li and Tian
[9] also, proposed an adaptive version of VNS in which a probabilistic selec-
tion mechanism is used for deciding the sequence of the neighborhoods. In this
work, an adaptive neighborhoods re-ordering mechanism is proposed. In each
iteration, the sequence of the neighborhoods is re-formed based on the number
of achieved improvements in the previous iteration. The parameter “Improve-
ments Counter” is an array and its positions keep the improvements achieved
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by each neighborhood structure. The initial order is based on the complexity of
each local search operator. Thus, the initial order is the following:

1. Inter-route Relocate.
2. Exchange Opened-Closed Depots.
3. 2-2 Replenishment Exchange.

The same order is adopted any time all neighborhoods are unable to provide
any improved solution. The adaptive mechanism is summarized in Algorithm 6.

Algorithm 6. Adaptive Order
1: procedure Adaptive Order(N Order, Improvements Counter)

2: if no improvement is found in any neighborhood then

3: Keep the same order

4: end if
5: if an improvement is found then

6: New N Order ← Descending Order(N Order, Improvements Counter)

7: end if
8: N Order ← New N Order
9: return N Order
10: end procedure

The pseudo-codes of the Adaptive GVNS schemes, proposed in this work,
are provided in Algorithms 7 and 8.

Algorithm 7. AGV NScV ND

1: procedure AGV NScV ND(S, kmax, lmax,max time,N Order, Improvements Counter)

2: while time ≤ max time do

3: S∗ = Shake(S, k)

4: N Order ← Adaptive Order(N Order, Improvements Counter)

5: S′ = cV ND(S∗, lmax)

6: if f(S′) < f(S) then

7: S ← S′
8: end if
9: end while
10: return S
11: end procedure

Furthermore, it is examined if the initial order of the neighborhoods affects
the performance of the AGVNS schemes. Consequently, an alternative of the
previous mentioned adaptive mechanism is applied, which it uses random re-
ordering either in the first iteration or each time no improvements achieved
through the VND methods. The random re-ordering is achieved by applying a
shuffle method over the neighborhoods order set.
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Algorithm 8. AGV NSpV ND

1: procedure AGV NSpV ND(S, kmax, lmax,max time,N Order, Improvements Counter)

2: while time ≤ max time do

3: S∗ = Shake(S, k)

4: N Order ← Adaptive Order(N Order, Improvements Counter)

5: Improvements Counter ← 0

6: S′ = pV ND(S∗, lmax)

7: if f(S′) < f(S) then

8: S ← S′
9: end if
10: end while
11: return S
12: end procedure

4 Computational Results

4.1 Computer Environment and Benchmark Instances

The proposed algorithms were implemented in Fortran. They ran using Intel
Fortran compiler 18.0 with optimization option /O3 on a desktop PC running
Windows 7 Professional 64-bit with an Intel Core i7-4771 CPU at 3.5 GHz and
16 GB RAM. The parameter kmax was set at 12 and the maximum execution
time for each VNS-based algorithm is 60 s.

The benchmark instances used for testing the efficiency of the proposed algo-
rithms was initially proposed in [7] and can be found at: http://pse.cheng.
auth.gr/index.php/publications/benchmarks. The form of each instance name
is X − Y − Z, where X is the number of candidate depots, Y the number of
customers and Z the number of time periods.

4.2 Numerical Analysis

In Table 4, the AGVNS1 represents an adaptive GVNS scheme with the
complexity-based initial neighborhoods order, while the AGVNS2 represents the
scheme with the random initial order.

The results illustrate that all the Adaptive GVNS perform better than the
classic GVNS schemes. However, the AGV NS1pV ND is the method which pro-
vides the best solutions in average. The AGV NS2pV ND is ranked as the second
method and the methods AGV NS1CV ND and AGV NS2CV ND hold the third
and the fourth place respectively. The GV NSpV ND takes the fifth place and the
last one is the GV NScV ND.

Karakostas et al. [7], recently proposed a Basic Variable Neighborhood
Search (BVNS) heuristic algorithm for solving the tested PLIRP instances. Their
algorithm used two local search operators, the Inter-route Exchange and the
Exchange Opened-Closed Depots.

Figure 1 illustrates the performance of the AGV NS1pV ND and the BVNS
on the 20 PLIRP instances. It is clear that the AGV NS1pV ND outperforms the
BVNS algorithm, especially on larger PLIRP instances.

http://pse.cheng.auth.gr/index.php/publications/benchmarks
http://pse.cheng.auth.gr/index.php/publications/benchmarks
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Table 4. Computational results of the proposed methods

Instance GV NSCV ND AGV NS1CV ND AGV NS2CV ND GV NSPV ND AGV NS1PV ND AGV NS2PV ND

4-8-3 23069.96 22944.88 22936.8 22937.11 22935.84 22935.53

4-8-5 19829.12 19693.68 19731.48 19489.22 19373.37 19475.87

4-10-3 17415.26 17452 17697.38 17612.43 17604.76 17630.7

4-10-5 23954.56 23932.88 23968.77 23944.69 23937.55 23946.91

4-15-5 22115.26 22090.42 22270.71 22049.63 22068.88 22174.31

5-9-3 18496.52 18488.41 18570.3 18496.69 18431.97 18456.86

5-12-3 24752.46 24747.32 24748.96 24738.99 24735.39 24741.45

5-15-3 17502.49 17469.69 17495.32 17487.35 17481.19 17479.19

5-18-5 19485.86 19358.93 19312.34 19082.68 19048.77 19079.43

5-20-3 17238.63 17082.93 17202.05 17248.24 17159.07 17179.59

6-22-7 20042.48 19998.92 19982.33 20008.2 19998.96 20023.52

6-25-5 22031.12 21877.13 21864.83 21877.2 21738.51 21706.41

7-25-5 29958.96 29798.39 29965.02 29226.52 29183.52 29173.52

7-25-7 22559.16 22239.8 22366.23 22273.87 22253.14 22331.7

8-25-5 19103.74 19029.96 19178.87 18982.77 18925.32 19099.61

8-30-7 20714.09 22706.62 20653.14 20594.12 20454.58 20544.96

8-50-5 23106.05 23054.47 23097.66 22922.63 22365.3 22533.46

8-65-7 26419.61 23980.33 24985.91 27288.72 25496.35 26857.53

9-40-7 21456.76 20908.32 20860.35 21243.43 20996.73 20929.3

9-55-5 23254.2 22563.17 22734.83 23296.72 22754.5 22703.21

Average 21625.57 21470.91 21481.16 21540.06 21347.19 21450.45

Fig. 1. AGV NS1pV ND vs BVNS on 20 PLIRP instances

Table 5 depicts the best values found by all the proposed methods. Most of
them were produced using the AGV NS1pV ND algorithm.

The second column of Table 6 presents the current best known values of the
20 PLIRP instances. In the third column the overall best values achieved by
the proposed methods of this work are provided. As it can be seen, new best
solutions have been reported in 13 out of 20 PLIRP instances.
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Table 5. Best found values of the proposed methods

InstanceGV NSCV ND AGV NS1CV ND AGV NS2CV ND GV NSPV ND AGV NS1PV ND AGV NS2PV ND

4-8-3 23033.9 22935.29 22934.45 22934.45 22934.45 22934.45

4-8-5 19600.14 19622.18 19717.81 19436.24 19368.56 19379.93

4-10-3 17327.69 17411.45 17504.14 17607 17587.21 17607.18

4-10-5 23935.3 23922.35 23942.93 23926.63 23921.99 23931.95

4-15-5 22091.05 22067.85 22219.5 21907.34 22048.38 22118.42

5-9-3 18480.68 18480.68 18515.44 18494.14 18425.61 18439.89

5-12-3 24748.28 24746.24 24746.24 24732.45 24730.78 24735.6

5-15-3 17470.64 17468.54 17470.64 17465.72 17475.51 17465.72

5-18-5 19370.63 19342.65 19300.07 19037.44 19009.86 18960.25

5-20-3 17121.62 17063.64 17178.92 17221.55 17130.9 17129.98

6-22-7 19967.57 19967.57 19967.58 20008.2 19980.53 20008.21

6-25-5 21859.47 21830.73 21787.44 21779.89 21701.27 21623.56

7-25-5 29854.82 29754.79 29936.99 29158.77 29154.19 29119.54

7-25-7 22288.16 22124.58 22229.73 22199.59 22239.25 22297.28

8-25-5 18729.09 18729.09 19021.24 18827.73 18838.97 18775.41

8-30-7 20629.6 20606.69 20553.74 20420.14 20414.56 20515.41

8-50-5 23090.5 22980.6 23066.54 22284.9 22348.25 22306.72

8-65-7 25744.94 24424.65 24424.65 26908.92 25176.64 25176.64

9-40-7 21181.06 20700.37 20773.95 21041.51 20655.25 20846.73

9-55-5 22698.68 22372.37 22437.05 22649.32 22503.26 22358.33

Average 21461.19 21327.62 21386.45 21402.1 21282.27 21286.56

Table 6. BKS vs Best found values of the proposed methods

Instance BKS Overall Best

4-8-3 22647.63 22934.45

4-8-5 18282.71 19368.56

4-10-3 16929.96 17327.69

4-10-5 23895.99 23921.99

4-15-5 22013.99 21907.34

5-9-3 16700.29 18425.61

5-12-3 24152.36 24730.78

5-15-3 15842.7 17465.72

5-18-5 19891.27 18960.25

5-20-3 24605.64 17063.64

6-22-7 28074.69 19967.57

6-25-5 22747.42 21623.56

7-25-5 39914.72 29119.54

7-25-7 23675.7 22124.58

8-25-5 26773.1 18729.09

8-30-7 36582.34 20414.56

8-50-5 33536.73 22284.9

8-65-7 27986.69 24424.65

9-40-7 23176.14 20655.25

9-55-5 23688.55 22358.33



Adaptive GVNS Methods for PLIRPs 169

5 Conclusions

This work presents several Adaptive GVNS-based algorithms for solving PLIRP
instances. Two variants of the adaptive mechanism were developed based on the
initial order of the neighborhoods. The proposed algorithms were compared both
with their corresponding classic GVNS methods and other heuristic methods [7]
for this specific problem. The computational results reveal the superiority of
the Adaptive GVNS, which uses the pipe-VND as its main improvement step
and the complexity-based initial neighborhoods order in the adaptive re-ordering
mechanism. Furthermore, new best values have been reported for 13 out of 20
PILRP instances.

Future work can focus on the determination of lower bounds in order to evalu-
ate the efficiency of the proposed methods. An other future research direction can
examine the use of more sophisticated adaptive mechanisms for the re-ordering
of the neighborhoods structure. Also, the adaptability may be applied both on
the improvement and the shaking step, in order to generate neighborhood pat-
terns that they will produce high quality solutions. Furthermore, this work can
be generalized in order to address other environmental implications, such as the
emission of pollutants during production [11]. Finally, such computational dif-
ficult problems that combine decisions for location, inventory and routing, can
be benefited a lot by using parallel computing techniques [1].

Acknowledgement. The second author has been funded by the University of Mace-
donia Research Committee as part of the “Principal Research 2019” funding scheme
(ID 81307).

References

1. Antoniadis, N., Sifaleras, A.: A hybrid CPU-GPU parallelization scheme of variable
neighborhood search for inventory optimization problems. Electron. Notes Discrete
Math. 58, 47–54 (2017)

2. Cheng, C., Yang, P., Qi, M., Rousseau, L.M.: Modeling a green inventory routing
problem with a heterogeneous fleet. Transp. Res. Part E 97, 97–112 (2017)

3. Glover, F., Gutin, G., Yeo, A., Zverovich, A.: Construction heuristics for the asym-
metric TSP. Eur. J. Oper. Res. 129, 555–568 (2001)

4. Hansen, P., Mladenovic, N.: Variable neighborhood search. In: Burke, E., Kendall,
G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Deci-
sion Support Techniques, chap. 12, pp. 313–337. Springer, New York (2014).
https://doi.org/10.1007/978-1-4614-6940-7

5. Hansen, P., Mladenovic, N., Todosijevic, R., Hanafi, S.: Variable neighborhood
search: basics and variants. EURO J. Comput. Optim. 5, 423–454 (2017)

6. Huber, S., Geiger, M.: Order matters - a variable neighborhood search for the
swap-body vehicle routing problem. Eur. J. Oper. Res. 263, 419–445 (2017)

7. Karakostas, P., Sifaleras, A., Georgiadis, M.C.: Basic VNS algorithms for solving
the pollution location inventory routing problem. In: Sifaleras, A., Salhi, S., Brim-
berg, J. (eds.) ICVNS 2018. LNCS, vol. 11328, pp. 64–76. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-15843-9 6

https://doi.org/10.1007/978-1-4614-6940-7
https://doi.org/10.1007/978-3-030-15843-9_6


170 P. Karakostas et al.

8. Karakostas, P., Sifaleras, A., Georgiadis, C.: A general variable neighborhood
search-based solution approach for the location-inventory-routing problem with
distribution outsourcing. Comput. Chem. Eng. 126, 263–279 (2019)

9. Li, K., Tian, H.: A two-level self-adaptive variable neighborhood search algorithm
for the prize-collecting vehicle routing problem. Appl. Soft Comput. 43, 469–479
(2016)

10. Sifaleras, A., Konstantaras, I.: General variable neighborhood search for the multi-
product dynamic lot sizing problem in closed-loop supply chain. Electron. Notes
Discrete Math. 47, 69–76 (2015)

11. Skouri, K., Sifaleras, A., Konstantaras, I.: Open problems in green supply chain
modeling and optimization with carbon emission targets. In: Pardalos, P.M.,
Migdalas, A. (eds.) Open Problems in Optimization and Data Analysis. SOIA,
vol. 141, pp. 83–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99142-9 6

12. Todosijevic, R., Mladenovic, M., Hanafi, S., Mladenovic, N., Crevits, I.: Adaptive
general variable neighborhood search heuristics for solving the unit commitment
problem. Electr. Power Energy Syst. 78, 873–883 (2016)

https://doi.org/10.1007/978-3-319-99142-9_6
https://doi.org/10.1007/978-3-319-99142-9_6
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Abstract. We propose a Relaxation Adaptive Memory Programming (RAMP)
algorithm for the solution of the Single Source Capacitated Facility Location
Problem (SSCFLP). This problem considers a set of possible locations for opening
facilities and a set of clients whose demand must be satisfied. The objective is to
minimize the cost of assigning the clients to the facilities, ensuring that all clients
are served by only one facility without exceeding the capacity of the facilities. The
RAMP framework efficiently explores the relation between the primal and the dual
sides of combinatorial optimization problems. In our approach, the dual problem,
obtained through a lagrangean relaxation, is solved by subgradient optimization.
Computational experiments of the effectiveness of this approach are presented and
discussed.

Keywords: Single Source Capacitated Facility Location Problems · SSCFLP ·
Relaxation Adaptive Memory Programming · Dual RAMP

1 Introduction

The Single Source Capacitated Facility Location Problem (SSCFLP) considers a set
of possible locations for opening facilities and a set of clients whose demand must be
satisfied. The objective is to minimize the cost of assigning the clients to the facilities,
ensuring that all clients are served by only one facility without exceeding the capacity
of the facilities. The SSCFLP has several practical applications, such as the design of
delivery systems, computer networks, amongmany others. This problem is a special case
of Capacitated Facility Location Problem (CFLP) which belongs to the class of NP-hard
problems [1]. Solving the SSCFLP is, generally, more difficult than the CFLP, since it
considers that all decision variables are binary, whereas the CFLP considers continuous
decision variables for the client’s assignments.

To solve the SSCFLP, we propose a Relaxation Adaptive Memory Programming
(RAMP) algorithm. RAMP, proposed by Rego [2], efficiently exploit primal and dual
relationships of combinatorial optimization problems. To guide the search, principles
of adaptive memory are used, taking advantage of information generated by both pri-
mal and dual side of the problem. RAMP implementations proceed as follows. At each
iteration, a new solution for the relaxed problem is obtained. When a dual solution is
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infeasible in the primal side, a projection method is employed to create a feasible primal
solution, using information gathered from the current dual solution. Then, the primal
solution is subjected to an improvement method. Rego [2] presents different strategies
for the primal and dual components allowing different levels of sophistication. RAMP
algorithms can be implemented incrementally, starting with the simplest version and
successively move to more complex approaches to strengthen the primal-dual relation-
ship that, usually, leads to better results. The simplest versions perform a more thorough
exploration on the dual side and are usually referred to as Dual-RAMP (or just RAMP).
The more sophisticated versions explore both solution spaces intensely and are desig-
nated as Primal-Dual RAMP (PD-RAMP). The RAMP metaheuristic demonstrated to
be very effective for a variety of combinatorial optimization problems, producing state-
of-the-art algorithms for the problems it was applied to, as demonstrated by the work of
Gamboa [3], Rego et al. [4] and Matos and Gamboa [5, 6] and Matos et al. [7, 8].

The rest of the paper is organized as follows. Section 2 describes the SSCFLP.
Section 3 presents some of the most relevant solution methods found in the literature
to solve this problem. In Sect. 4, we present the proposed algorithm divided by its
main components, namely, dual phase, projection method and primal phase. In Sect. 5,
we discuss the computational results. Finally, in Sect. 6, conclusions and future work
directions are presented.

2 Single Source Capacitated Facility Location Problem

The SSCFLP considers a set J of clients and a set I of candidate locations for opening
facilities. Each client j has a demand d j that must be satisfied by a single facility. Each
facility i has a fixed opening cost fi and a maximum capacity si . Satisfying the demand
of client j by a facility located in i has an assignment cost (a.k.a., transportation cost)
of ci j .

Considering the following decision variables:

xi j =
{
1, i f client j is assigned to facility i,
0, otherwise.

yi =
{
1, i f f acili t y i is open,
0, otherwise.

This problem can be formulated as:

SSCFLP = min
∑
i∈I

fi yi +
∑
i∈I

∑
j∈J

ci j xi j (1)

subject to

∑
i∈I

xi j = 1,∀ j ∈ J (2)

∑
j∈J

d j xi j ≤ si yi ,∀i ∈ I (3)
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xi j ∈ {0, 1},∀i ∈ I,∀ j ∈ J (4)

yi ∈ {0, 1},∀i ∈ I (5)

The objective function (1) is to minimize the total cost of opening facilities and
assigning clients to such facilities. The set of constraints (2) guarantee that each client is
served by a single facility and the set of constraints (3) ensures that clients are assigned to
open facilities and that the total demand assigned to a facility cannot exceed its capacity.
Constraints (4) and (5) are integrity constraints.

3 Related Work

Several authors proposed solution methods for solving the SSCFLP, being most of them
based on the lagrangean relaxation of the original problem.

Neebe and Rao [9] modelled the SSCFLP as a Set Partitioning Problem that is solved
by a column-generating Branch-and-Bound procedure.

Barceló and Casanovas [10] proposed a lagrangean heuristic, dualizing constraints
(2), in which the maximum number of open facilities is predefined.

Klincewicz and Luss [11] presented a lagrangean heuristic dualizing the capacity
constraints (3). The relaxed problem,which results in anUncapacitated Facility Location
Problem, is solved by the Dual Ascent algorithm proposed by Erlenkotter [12].

Both Sridharan [13] and Pirkul [14] presented lagrangean heuristics relaxing con-
straints (2). Sridharan [13] used an algorithmbased on the resolution of the Single-Source
Transportation Problem to obtain feasible solutions on the primal side. Pirkul [14] pre-
sented an algorithm to solve a problem equivalent to the SSCFLP, namely theCapacitated
Concentrator Location Problem.

Beasley [15] presented a robust framework to develop lagrangean heuristics for
various location problems, namely p-Median Location Problem, Uncapacitated Facility
Location Problem, CFLP and SSCFLP. The results obtained relaxing constraints (2) and
(3) were better than those obtained by Klincewicz and Luss [11] but worse than the
ones obtained by Pirkul [14]. The work of Beasley [15] is, usually, referred to justify the
choice to relax constraints (2) when implementing lagrangean heuristics for the SSCFLP.

Delmaire et al. [16] proposed four heuristics: Evolutive algorithm, Greedy Random-
ized Adaptive Search Procedure (GRASP), Simulated Annealing and Tabu Search. The
GRASP incorporates three more neighbourhood structures than the other heuristics as
it was less demanding in computational resources. In this work, the best results were
obtained by the proposed Tabu Search and GRASP. Also, Considering:

cmin j = min
{
ci j ,∀i ∈ I

}
(6)

�i j = ci j − cmin j (7)

The authors reformulate the objective function (1) and represent the problem as
follows:

SSCFLP =
∑
j∈J

cmin j + min

⎛
⎝∑

i∈I
fi yi +

∑
i∈I

∑
j∈J

�i j xi j

⎞
⎠ (8)
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subject to (2), (3), (4) and (5)
The relative cost (7) of satisfying the demand of client j in facility i with respect to

its minimum cost is used in several of the heuristics proposed by Delmaire et al. [16] as
a criterion to assign clients.

Delmaire et al. [17] presented a reactive GRASP (RGRASP), a Tabu Search and
two hybrid algorithms that combine elements of GRASP, RGRASP and Tabu Search.
The RGRASP and Tabu Search were more efficient than the heuristics proposed in
the previous work [16], although the RGRASP was more demanding in computational
resources when compared with the GRASP. The two hybrid approaches achieved the
best results.

Rönnqvist et al. [18] presented a heuristic based on Repeated Matching. Holmberg
et al. [19] proposed aBranch-and-Bound that considers a lagrangean relaxation dualizing
constraints (2) to obtain a lower bound, and a heuristic based on Repeated Matching for
the upper bound.

Hindi and Pienkosz [20] presented a lagrangean heuristic relaxing constraints (2).
The upper bounds were obtained through a greedy heuristic based on Maximum Regret
and Restricted Neighbourhood Search. This approach proved to be efficient for large-
sized instances. Another heuristic that proved to be very efficient for large scale instances
was the Very Large Scale Neighbourhood (VLSN) presented by Ahuja et al. [21].

Cortinhal and Captivo [22] proposed a lagrangean heuristic relaxing the set of con-
straints (2). The solution of the relaxed problem, obtained at each iteration of the sub-
gradient optimization, is subjected to a projection method and improved by a Tabu
Search.

Cortinhal andCaptivo [23] presented several approaches based on genetic algorithms
to solve the SSCFLP. In this study, the authors concluded that genetic algorithms are not
an efficient solution method for this problem.

Contreras and Díaz [24] presented a Scatter Search based on its division into five
methods as proposed byLaguna andMartí [25]. In the construction phase of the reference
set, it is employed aGRASPbased on thework ofDelmaire et al. [16]. The Scatter Search
obtained better results, for small- andmedium-sized instances, than the ones presented by
Ahuja et al. [21], but was outperformed by the hybrid approaches proposed by Delmaire
et al. [16].

Various heuristics based on Ant Colony Optimization (ACO) were presented for the
resolution of SSCFLP, as exemplified by the work of Kumweang [26], Chen and Ting
[27] and Lina et al. [28].

Yang et al. [29] presented three versions of an exact method based on Cut-and-Solve
(see Climer and Zhang [30]).

Guastaroba and Speranza [31] extended the Kernel Search heuristic framework and
applied it to the SSCFLP obtaining very good results outperforming most of the best
algorithms presented so far. This heuristic is based on the resolution to optimality of a
sequence of subproblems that are restricted to a subset of the decision variables. This
heuristic relies, as stated by the authors, on the high performance of commercial solvers
for Linear Programming and Mixed Integer Linear Programming problems.
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Ho [32] presented an Iterated Tabu Search (ITS) heuristic that makes use of ran-
domized neighbourhood sampling and perturbation to obtain diversification in the
search.

4 RAMP Algorithm for the SSCFLP

Alternating the search between the dual and the primal side of the problem, the solution
method proposed in this paper relies on subgradient optimization to solve the dual
problem obtained through the lagrangean relaxation of the SSCFLP.

At each iteration, a solution for the relaxedproblem is obtained andprojected, through
a projectionmethod, to the primal solution space. The solution obtained by the projection
method is improved through a Local Search method. If the best lower bound found so
far is improved in the current iteration, the improved primal solution is submitted to a
Tabu Search to explore a wider neighbourhood.

The basic algorithm is described in Fig. 1, where Z and Z represents, respectively,
the best upper and lower bound found.

Fig. 1. RAMP’s algorithm pseudo-code

One of the stopping criteria of this algorithm is the maximum number of iterations
that was set to 2000. The other three stopping criteria are related to the dual phase and
are described in the next section (see Sect. 4.1).

The next sections present a more detailed description of each main components of
this algorithm, namely dual phase, projection method and primal phase.
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4.1 Dual Phase

The dual problem, obtained through the lagrangean relaxation of the original problem, is
solved through subgradient optimization. Dualizing the set of constraints (2) and given
the set of lagrangeanmultipliersλ j , j = 1, . . . , n, we obtain following the dual problem:

Z(λ) =
∑
j∈J

λ j + min
∑
i∈I

⎛
⎝ fi yi +

∑
j∈J

(
ci j − λ j

)
xi j

⎞
⎠ (9)

subject to (3), (4) and (5)
The resolution of the relaxed problem (9) is achieved after solving one knapsack

problem for each facility (see Sridharan [13] and Holmberg et al. [19]). To solve the
knapsack problems resulting from the lagrangean relaxation of SSCFLP, we used the
algorithm proposed by Martello et al. [33]. The code used was made publicly available
at http://www.diku.dk/hjemmesider/ansatte/pisinger/codes.htm.

The dual phase starts with the lagrangean multipliers initialized as

λ j = min
i

ci j ,∀ j ∈ J (10)

and, at the end of each iteration, updated as follows.

λ j = λ j + �δ j ,∀ j ∈ J (11)

The subgradient vector δ, where xi j indicates if client j is assigned to facility i in
the dual solution, is obtained as follows.

δ j = 1 −
∑
i∈I

xi j ,∀ j ∈ J (12)

The step size (�), where ‖δ‖ represents the norm, is calculated as follows.

� = π
(
f
(
Z
) − f (Z(λ))

)
‖δ‖ (13)

The agility parameter (π) is initialized with the value 2 and is halved every 5 con-
secutive iterations without improving the lower bound. The agility is restarted with the
value 2 every 50 iterations.

The dual RAMP algorithm has four stopping criteria, the agility (π) is less than
0.003, the norm (‖δ‖) is equal to 0, the difference between Z and Z is less than 1 and,
as already stated, the maximum number of iterations is reached.

4.2 Projection Method

The projection method, based on the one proposed by Cortinhal and Captivo [22], tries
to generate a feasible primal solution considering the current dual solution. Since the
dual solution is, in most cases, infeasible, we need to ensure that all clients are served by

http://www.diku.dk/hjemmesider/ansatte/pisinger/codes.htm
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only one facility and that the capacity of opened facilities is not exceeded in the solution
projected to the primal solution space.

Considering that, in the dual solution, the set of clients J is divided into

three subsets J1 =
{
j ∈ J : ∑

i∈I
xi j = 1

}
, J2 =

{
j ∈ J : ∑

i∈I
xi j > 1

}
and J3 =

{
j ∈ J : ∑

i∈I
xi j = 0

}
, we try to generate a primal solution through the following steps:

1. The assignments of the subset J1 are not changed from the dual to the primal solution.
2. From the facilities in which each client in J2 is assigned in the dual solution,

the client j is assigned, in the primal solution, to the facility i that present the
lowest �i j .

3. Assign clients from J3 to the opened facilities in step 1 and 2 using as criterion of
choice their lowest �i j .

4. Finally, while there are clients not served in J3 and it is possible to open facilities,
open one facility at a time, ordered by their opening cost, and assign the clients not
yet served, ordered by their relative cost �i j .

Since we ensure that in step 1–4 the facilities capacity is never exceeded, at the end of
this method, if all clients are assigned to a facility, the primal solution is feasible.

4.3 Primal Phase

All distinct feasible primal solutions are subjected to a local search phase that explores
the solution neighbourhood to improve the solution. If the value of the dual solution is
greater than the current best lower bound, the solution improved through the local search
is subjected to a Tabu Search to explore a wider neighbourhood.

The local search phase explores, iteratively, five neighbourhood structures. The
neighbourhood structures explored in the local search phase are: (1) Close Facility that
closes one facility and reassigns the clients to the remaining open facilities, (2) Open
Facility that opens a facility and reassign the clients, (3) Swap Facilities that swaps the
assignments between facilities, considering that at least one is open, (4) Shift Client
that performs the reassignment of one client to another facility, and (5) Swap Clients
that swaps the facility assignments between two clients. To reduce the computational
effort of Swap Clients, for each client assigned to a facility i, we only try exchanges
with clients that have lower �ij in that facility. Noteworthy, that in all neighbourhood
structures, only the best movement, i.e., the movement that most reduce the value of the
objective function, is performed.

The Tabu Search performs the best movement found in Shift Client ∪ Swap Clients
even if this move worsens the solution. Unlike in the local search phase, the Swap Clients
considers all the neighbourhood. The Tabu Search stops after 100 iterations without
improving the solution. Shift Client and Swap Clients use a list of moves considered
tabu, represented in the form of (i, j) where i is the location of the facility and j is
the client. When a facility assigned to a client changes, the prior assignment (i, j) is
considered tabu for a period of time preventing revisiting solutions. The tabu move can,
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however, be performed if it leads to the best-known solution (aspiration criterion). Also,
the tabu state is not permanent, being controlled by a time interval (tabu tenure), e.g.,
the number of iterations that must elapse for the movement to be removed from the
list. In our algorithm, the tabu tenure, as proposed by Cortinhal and Captivo [22], is
given by:

7 + n × number

All_number
(14)

where n is the number of facilities, number is the number of times the assignment has
been made and All_number is the maximum value of number in all assignments made.

5 Computational Results

The proposed algorithm was implemented in C and the tests were run on a computer
with Intel Core i7-4800MQ 2.70 GHz with 8 Gb RAM and operating system Ubuntu
15.10.

We compare the results obtained by our heuristic with the ones obtained by Guas-
taroba and Speranza [31] and by Yang et al. [29] for large-sized instances. For each
instance, RAMP was executed only once.

To demonstrate the effectiveness of their approaches, Guastaroba and Speranza [31]
and Yang et al. [29] used the two benchmark datasets of large-sized instances that we
will refer to as Yang [29] and TBED1 [34]. The main characteristics of these datasets
are presented in Table 1, where the columns show in order of appearance, the dataset
name, the number of subsets, the number of facilities and the number of clients.

Table 1. Main features of the datasets.

Name Subsets Number of
facilities

Number of clients

Yang 4 30 to 80 200 to 400

TBED1 5 300 to 1000 300 to 1500

The results obtained solving Yang and TBED1 datasets are given in Tables 2 and 3,
respectively. The content of the columns, in order of appearance, is the following: the
subset of instances, the algorithm identifier, the average and worst deviation from the
best-known upper bound, and the average computational time (in seconds) needed to
solve the subset.

Table 2 presents the computational results for theYang dataset obtained by theKernel
Search heuristics KS, KS(1) and KS(01) presented by Guastaroba and Speranza [31],
and by the Cut-and-Solve algorithm, denoted as CS3, presented by Yang et al. [29].

Observing Table 2 it can be noticed that the RAMP approach can obtain, with low
computational time, an average deviation from the best-known solution that is under
0.6% for all subsets of the Yang dataset. Also, noteworthy that the worst deviation never
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exceeded 1.12%. With respect to this dataset, although the proposed RAMP approach
provided good quality solutions, obtaining a lower average and worst gap than the ones
obtained by KS(01), it is outperformed by the other Kernel Search versions and by the
Cut-and-Solve in terms of the quality of solutions. Even though comparisons between
CPU time are not possible, since different computerswere used, we estimate that the time
required by the RAMP approach is lower than the ones required by the other approaches.

Table 2. Computational results for Yang dataset.

Subset Algorithm Avg. GAP
(%)

Worst GAP (%) CPU (s)

Y1 KS 0.00 0.00 411.28

KS(1) 0.27 0.74 186.29

KS(01) 1.02 2.02 44.27

CS3 0.00 0.00 220.60

RAMP 0.38 0.71 3.67

Y2 KS 0.00 0.01 1640.42

KS(1) 0.33 1.49 1187.59

KS(01) 0.67 2.96 368.74

CS3 0.00 0.00 16196.90

RAMP 0.56 1.12 5.57

Y3 KS 0.00 0.01 597.06

KS(1) 0.18 0.70 558.08

KS(01) 1.61 3.24 184.53

CS3 0.00 0.00 1334.64

RAMP 0.47 0.82 9.02

Y4 KS 0.00 0.00 1409.11

KS(1) 0.01 0.04 1149.78

KS(01) 0.51 1.46 369.76

CS3 0.00 0.00 7009.52

RAMP 0.45 0.91 21.96

Table 3 presents the computational results for the TBED1 dataset obtained by Guas-
taroba and Speranza [31] with algorithms KS, KS(1) and KS(01), as well as the results
obtained by the same authors using the commercial solver CPLEX with a time limit of
7200 s.
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Table 3. Computational results for TBED1 dataset.

Instances Algorithm Avg. GAP (%) Worst GAP (%) CPU (s)

TB1 KS 0.56 2.22 2206.96

KS(1) 0.59 2.29 2110.35

KS(01) 0.78 2.29 408.21

CPLEX 0.59 2.23 3159.61

RAMP 0.95 2.84 30.14

TB2 KS 0.00 0.00 334.70

KS(1) 0.00 0.00 299.77

KS(01) 0.21 0.74 186.53

CPLEX 0.00 0.00 186.67

RAMP 0.02 0.08 65.82

TB3 KS 0.66 2.04 4190.28

KS(1) 0.71 2.07 4050.81

KS(01) 0.79 2.09 673.56

CPLEX 0.74 2.15 6007.62

RAMP 1.11 2.40 140.05

TB4 KS 0.90 2.29 5244.69

KS(1) 0.91 2.34 5169.96

KS(01) 1.00 2.70 654.17

CPLEX 1.24 3.35 6865.53

RAMP 1.38 2.75 412.41

TB5 KS 1.07 3.11 6533.15

KS(1) 1.02 2.48 6509.26

KS(01) 1.10 2.67 968.12

CPLEX 2.44 6.47 7269.60

RAMP 1.49 2.80 1742.29

The computational results for the TBED1 dataset demonstrate that the RAMP app-
roach has obtained very good results, considering the difficulty and the size of these
instances. RAMP achieved upper bounds very close to solutions obtained by the Ker-
nel search and by CPLEX with low computational time. Only for TB5 subset, a Kernel
search version has presented better results, simultaneously, in all parameters considered:
average and worst deviation and computational time.

Notwithstanding that theKernel Search heuristics presented byGuastaroba and Sper-
anza [31] obtained high-quality results and have outperformed most of the heuristics
proposed in the literature to solve the SSCFLP, the RAMP approach demonstrated that,
with low computational effort, it can achieve good results when dealing with large-scale
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instances. Also, it must be noted that both the Kernel Search and the Cut-and-Solve
approach proposed for solving the SSCFLP rely on commercial solvers.

6 Conclusions

In this paper, we present a new algorithm to solve the Single Source Capacitated Facility
Location Problem (SSCFLP) based on the RAMP framework. The SSCFLP considers
a set of possible locations for opening facilities and a set of clients with a given demand
that must be satisfied by one facility. The problem is to determine the facilities to be
opened to satisfy the demand such that total costs areminimized. The proposed algorithm
follows the RAMP approach in its simplest version. The dual side is based on the
resolution of the lagrangean dual problem through subgradient optimization. At the end
of each subgradient iteration, the dual solution is projected to the primal solution space.
Then, the primal solution is subjected to an improvement method. The solution method
proposed in this paper was compared against state-of-the-art algorithms for solving the
SSCFLP and demonstrated to be capable of providing good quality solutionwith reduced
computational times for large-scale instances. The next step in our research will be to
strengthen the primal-dual relationship, moving to a more complex RAMP version, a
PD-RAMP algorithm, that, we expect, could lead us to achieve better results.
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Abstract. In large cities all around the world, individual and motorized
traffic is still prevalent. This circumstance compromises the quality of
living, and moreover, space inside cities for parking individual vehicles
for movement is scarce and is becoming even scarcer. Thus, the need
for a greener means of transportation and less individual vehicles inside
the cities is demanded and rising. An already accepted and established
solution possibility to these problems are public bike sharing systems
(PBS). Such systems are often freely available to people for commuting
within the city and utilize the available space in the city more efficiently
than individual vehicles. When building or extending a PBS, a certain
optimization goal is to place stations inside a city or a part of it, such that
the number of bike trips per time unit is maximized under certain budget
constraints. In this context, it is also important to consider rebalancing
and maintenance costs as they introduce substantial supplementary costs
in addition to the fixed and variable costs when building or extending a
PBS. In contrast to the literature, this work introduces a novel approach
which is particularly designed to scale well to large real-world instances.
Based on our previous work, we propose a multilevel refinement heuristic
operating on hierarchically clustered input data. This way, the problem is
coarsened until a manageable input size is reached, a solution is derived,
and then step by step extended and refined until a valid solution for
the whole original problem instance is obtained. As an enhancement
to our previous work, we introduce the following extensions. Instead of
considering an arbitrary integral number of slots for stations, we now
use sets of predefined station configurations. Moreover, a local search
is implemented as refinement step in the multilevel refinement heuristic
and we now consider real-world input data for the city of Vienna.
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1 Introduction

Nowadays, public bike-sharing systems (PBS) are an essential ingredient for
building smart and green cities. In many cities around the world, mostly larger
ones, municipalities already implemented PBSs or are thinking about building
one. Of course, such systems incur high costs but the advantages are manifold.
Bikes do not need so much parking space as e.g., individual cars. Cycling is
healthy and it helps to motivate the people to do sports. It is a supplementary
means of transportation to public transport, i.e., can solve the last mile problem
if a sufficient density of the system is considered. For more information on this
topic see also [3].

Most PBSs consist of rental stations which are distributed over a city or an
area of a city. Usually, each rental station is equipped with a self service computer
terminal. Moreover, each station has a particular number of slots where bikes are
“docked” into. This is a mechanism introduced to prevent theft and vandalism of
the bikes. Customers can rent bikes at any station of the system and can return
them at any station they want. Problematic scenarios arise, when a customer
arrives at a station with the intention to rent a bike and there is no bike available,
or the even worse case, when she or he aims to return a bike at a target station
that has no free slots available. In the latter case, the customer has to look for
an alternative station with free slots. These two scenarios can never be fully
eliminated, but it the goal of a PBS to minimize such cases because they annoy
customers. Much work about rebalancing PBSs is available such as [7,8,13]. But
instead of planning rebalancing routes, In this work we concentrate on planning
station locations and station configurations for new or existing PBSs, however,
also considering the rebalancing as an important factor.

When considering the setup of a PBS, the first aspect is where to build
stations of the system such that the usage, i.e., the number of trips during a
“usual” day is maximized, and at the same time, a given available budget is
considered. Operators of a PBS usually have a particular amount of money
available for a given planning horizon. Thus, it is also important to estimate
rebalancing and maintenance costs over the whole planning horizon. Most often
it is not possible to build an arbitrary number of slots per station but a small
amount of possible station configurations is given.

Obviously, there are many factors influencing the decision where to position
the stations inside a given area. First of all, there are the commuters and students
who most often travel in the morning to their job and in the afternoon to their
home. Thus, for instance, large housing complexes, and large train stations play
a major role in a PBS network. Also, the time of the day is significant when
estimating the demand in a particular area. Especially, due to commuters, a
morning and afternoon peak of demands is typically measurable. Other aspects
to consider, when estimating demands of a city, are local recreational areas,
shops, clubs, bars, etc. Of course, demand also varies with the weather, working
day, and special events, but when planning PBS we assume a regular working
day with good weather where the demand can be assumed to be highest.
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In this work we consider real-world instances of the Bike-Sharing Station
Planning Problem (BSSPP) from the city of Vienna. We do not only compute
optimal station locations but also consider the rebalancing effort and compute
suggestions for initial inventory at the bike-sharing stations. We introduce a
refinement step based on local-search techniques and are given possible sta-
tion configurations, and the prices therefore. Results are shown for up to 4000
prospective station candidates and customer cells.

The remainder of this paper is structured as follows. In Sect. 2, related liter-
ature is examined in detail. Then, in Sect. 3, the problem definition is given. The
multilevel refinement approach is explained in Sect. 4 and computational results
are presented in Sect. 5. The paper ends with conclusions in Sect. 6.

2 Related Work

There already exists some work on the BSSPP, however, most of this previous
work only concentrates on small examples or small regions of cities. In contrast,
we aim in this work at solving scenarios with thousands of possible locations for
stations originating from real-world data.

Most of the previous approaches are not entirely coherent and consider differ-
ent constraints and optimization goals which makes direct comparisons impos-
sible. Many approaches utilize mixed integer (non-)linear programming (MIP)
as core technology. However, for larger instances it is usually impossible to solve
such compact models exactly. Nevertheless, MIP technology can also be used
inside (meta)heuristic methods.

One of the first approaches was published by Yang et al. [19] in 2010. In their
problem formulation, origin/destination pairs with given demands, and potential
locations for bike-sharing stations are given. The goal is to find optimal posi-
tions for bike-sharing stations but also to decide, where to build bike lanes. The
objective is to minimize foot paths, fixed costs for rental stations, bike inventory
costs, and a penalty introduced for uncovered demand. The authors solve the
problem by a two-phase approach. The first part is a heuristic determining a set
of rental stations to be opened and the second part is a kind of solution eval-
uation by computing a shortest path for origin/destination pairs. The authors
illustrate their approach on an example with 11 station candidates.

Lin et al. [10] propose a mixed integer non-linear programming model for
the problem formulation from [19]. For solving the mathematical model they
used the LINGO solver. The authors show a solution for an instance consisting
again of 11 station candidates. Moreover, they provided also a sensitivity analysis
with respect to the following parameters: fixed costs for stations, penalty costs
for uncovered demands, construction costs for bike lanes, bike riding speed, and
the availability rate of bikes at stations.

Martinez et al. [12] propose a hybrid approach consisting of a hourly MIP
model which is embedded into a heuristic approach. They aim to maximize the
net revenue of the system and also consider rebalancing costs but the latter are
not explicitly modeled and only estimated beforehand. The authors aim to solve
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a real-world problem in Lisbon where they consider a relatively small part of
the city with 565 potential station locations. Results for four different scenarios
with various parameters are shown.

Lin et al. [11] again use the same problem formulation as given in [10] and
state a mixed-integer non-linear programming model for it. As they aim to com-
pute a minimum inventory to fulfill a certain service level, the model is non-linear
and they conclude that it is not exactly solvable in practice and thus, propose
a heuristic approach for solving the problem. The authors introduce a greedy
algorithm which starts by opening all possible station candidates and building
all possible bicycle lanes between stations. Then, they alternatively close bike
stations and bike lanes that result in a largest cost reduction but are still possible
to close with respect to the minimum service level requirement. This procedure
is iterated until some termination criterion is met. For evaluating a solution,
Dijkstras shortest path algorithm is used to compute paths between all ori-
gin/destination pairs. A small test instance with 11 possible station candidates
is given and different scenarios are evaluated to provide a sensitivity analysis.

Saharidis et al. [15] propose a pure MIP formulation to the BSSPP in a
case study for the city of Athens. They present a time-discretized model in one
hour steps and aim to minimize the total walking time of the users of the PBS,
and the unfulfilled demand of the system. Demands in the city are estimated
by analyzing the usage patterns of the Vélib’ system in Paris. The considered
instance for the case study is small and only considers 50 prospective candidate
stations. The authors have been able to solve the provided instance with CPLEX
and considered two case studies: one which assumes that the new PBS will be
used heavily by the Athenians, and a second one, which assumes that the PBS
is not that popular among the Athenian population.

Hu et al. [6] present a small case study for establishing a PBS along a metro
line. Different to most other work they aim at cost minimization, whereas other
work aims at maximizing net revenue, fulfilled customer demand or minimizing
unfulfilled demand. The MIP model is rather simple, and the only considered
constraints in their MIP model are the minimum number of stations that have
to be built. The authors show results for different scenarios based on a dataset
of ten possible station candidates.

Kloimüllner and Raidl [9] present a novel approach to the BSSPP utilizing
hierarchical clustering and present an algorithm based on the multilevel refine-
ment paradigm. They introduced two linear programming (LP) models where
one is designed to estimate the maximum satisfied demand and the other is used
to estimate rebalancing effort in the prospective system. With these two basic
ingredients they propose a multilevel refinement approach where the initializa-
tion is solved by a full MIP model and the extension phases are solved by reduced
MIP models. However, the authors do not consider station configurations and
have not implemented a refinement procedure. Tests have been performed on
randomly generated instance data. Straub et al. [16] present a semi-automated
planning tool based on the optimization algorithm by Kloimüllner and Raidl and
show the development procedure from the requirement analysis to the frontend
of the semi-automated planning tool.
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There exists also other literature related to this topic. In particular, the prob-
lem belongs the class of facility location problems [14] and more generally to hub
location problems [2,4]. Moreover, a related and currently hot topic is the optimal
placement of stations in car sharing systems [1]. Gavalas et al. [5], for instance,
summarized diverse algorithmic approaches for the design and management of
vehicle-sharing systems (e.g., car sharing and PBS).

We conclude, that with the exception of our previous work [9] all other works
on combinatorial optimization approaches for designing PBS only consider rather
small scenarios. Most previous work accomplish the optimization with compact
mathematical models directly approached by a MIP solver. We think that such
methods are unsuited for tackling large realistic scenarios with 2,000 cells or
more, as such approaches did only solve small problem sizes in the current state-
of-the-art. We extend our multilevel refinement heuristic by using station config-
urations instead of integral slots per station, propose a local search as refinement
heuristic in the multilevel refinement paradigm and provide results for instances
based on real-world data of the city of Vienna.

Fig. 1. Example of a hierarchical clustering and the corresponding graph Gt.

3 Problem Definition

We consider a geographical area which is partitioned into discrete cells. Let S
denote the set of possible candidate cells where stations may be located, and let
V be the set of cells containing some positive demand of prospective customers.
Furthermore, let m = |S| and n = |V |. In the simplest case S = V , in each
station with positive customer demand, a station might be located, but this
does not necessarily be the case.

As it is meaningful to define cells with about 150×150 m, the input size grows
rapidly in larger cities. In particular, it is not meaningful and not practicable
anymore to consider the full origin-destination demand matrix. Instead we use a
hierarchical abstraction as data structure to be able to have a chance for solving
such instances.

This hierarchical clustering is given as a rooted tree where the leaves of the
tree correspond to single cells and all other cells correspond to clusters of cells of
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the geographical area. Let h denote the height of the tree and let C = C0∪. . .∪Ch

be the set of all nodes of the tree. By Cd we denote all nodes at height d = 0, . . . , h
of the tree. Set C0 only contains the root node representing the whole considered
area and Ch is the set of all original cells contained in the geographical area, i.e.,
Ch = V . For convenience, we define super(p) ∈ C to return the parent cluster
of node p ∈ C \ {0}, where 0 is the root node, and sub(p) ⊂ C to return the
children of cluster p ∈ C \ V .

To model varying demand throughout the day, we consider by T = {1, . . . , τ}
a set of time periods. We derive a weighted directed graph for each time period
t ∈ T : Gt = (Ct, At) of the full demand matrix by Algorithm 1. An example of
the graph Gt on the hierarchically clustered input data is shown in Fig. 1. A full
demand matrix is a matrix where each pair u ∈ V, v ∈ V is assigned a prospective
demand value which could also be 0, i.e., dt

u,v = x | x ∈ R
+, t ∈ T, u ∈ V, v ∈ V .

The demand from node v ∈ V to cluster p ∈ C in time period t ∈ T is denoted
by dt

v,p > 0. For convenience, we define V (p) ⊆ V to be subset of all leaf nodes
rooted under subtree p ∈ C \V . Moreover, the set C(p) contains all nodes which
are part of the subtree rooted under p, also including V (p) and p itself. The
derivation of the arc set At of graph Gt,∀t ∈ T can be found in Algorithm 1
having parameters Gin , the full demand matrix input graph and θ, a parameter
which defines the minimum demand for an arc in the newly constructed graph.

Algorithm 1. Derivation of At from original graph Gin = (V in , Ain)
Require: graph of full demand matrix Gin = (V in , Ain) | V in = V t, threshold θ

1: At = Ain

2: for all l ∈ {h − 1, . . . , 0} do
3: for all c ∈ Cl do
4: for all v /∈ V (c) do

5: w+ = 0, w− = 0
6: for all (v, p) ∈ At | p ∈ C(c) ∩ Cl+1 do
7: if dv,p < θ then

8: w− = w− + dt
v,p

9: At = At \ (v, p)
10: else
11: At = At ∪ (v, p)
12: end if
13: end for
14: for all (p, v) ∈ A | p ∈ C(c) ∩ Cl+1 do
15: if dp,v < θ then

16: w+ = w+ + dt
p,v

17: At = At \ (p, v)
18: else
19: At = At ∪ (p, v)
20: end if
21: end for
22: if w− > 0 then
23: At = At ∪ (v, c) with dt

v,c = w−

24: end if
25: if w+ > 0 then
26: At = At ∪ (c, v) with dt

c,v = w+

27: end if
28: end for
29: end for
30: end for
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To keep this demand graph as sparse as possible in order to be able to solve
large instances, we define a set of rules for the demands in the input graph. It is
not allowed that there exists demand from a node v to one of its predecessors p,
i.e., dt

v,p > 0 | v ∈ sub(p) is not possible. Self-loops, however, are a special case,
and are explicitly allowed to model trips of customers within a cell or cluster.
There must not exist arcs with negligible demand, i.e., arcs with dt

v,p < θ where
θ is a predefined threshold, are not allowed. These “low” demands have to be
subsumed to a bigger demand at a higher level of the clustering.

Theorem 1. If there exists already an arc with weight dt
v,p ≥ θ, there cannot

exist an arc (v, q) | p ∈ sub(q) ∨ p ∈ super(q).

This follows from Algorithm 1:

Proof. Given (v, p) ∈ At with dt
v,p ≥ θ we distinguish the following two cases:

Case 1: Let (v, q) ∈ At | p ∈ sub(q). Since p ∈ sub(q) and dt
v,p ≥ θ no arc (v, q)

is generated according to Line 7 of Algorithm 1.
Case 2: Let (v, q) ∈ At | p ∈ super(q). An arc (v, p) ∈ At can only be generated

if dt
v,q < θ according to Line 7. In this case, however, arc (v, q) ∈ At would

be removed according to Line 9 of Algorithm 1. Moreover, if dt
v,q ≥ θ, then

arc (v, p) is not generated according to Line 7. Thus, only one of these arcs,
either (v, p) or (v, q), can exist in the final arc set At. 	
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Fig. 2. By modeling the neighbor stations for each customer cell, a separate network
is created for every arc of graph Gt.

An important condition that needs to be ensured is that incoming and outgo-
ing demands must be consistent. Therefore, for any p ∈ C \ V the following two
conditions must hold:

∑
(v,q)∈At|v∈V (p),q �∈C(p) dt

v,q ≥ ∑
(q,v)∈At|q∈C(p),v �∈V (p) dt

q,v

and
∑

(q,v)∈At|q �∈C(p),v∈V (p) dt
q,v ≥ ∑

(v,q)∈At|v �∈V (p),q∈C(p) dt
v,q. The former con-

dition ensures that the total demand originating at the leaves of the subtree
rooted at p and leading to a destination outside of the tree is never less than the
total incoming demand at all the cells outside the tree originating from some
cluster inside the tree. The latter condition provides a symmetric condition for
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the total incoming demand at all the leaves of the tree. Furthermore, for the
root node p = 0 both inequalities must hold with equality.

An important fact for public bike-sharing systems (PBS) is that demand
of prospective customers may not only be fulfilled by its own cell but also by
neighbor cells within a reasonable walking distance. Thus, we define for each leaf
node v ∈ V a set of station cells S(v) ⊆ S which are in the neighborhood of v and
with which v’s demand can at least be partly fulfilled. To model partly fulfilled
demand, we introduce an attractiveness value av,s ∈ (0, 1], ∀v ∈ V, s ∈ S(v).
This value determines the percentage of demand of customer cell v which can be
maximally fulfilled at a station at location s. Note, that if v = s, then av,v = 1
will hold. The modeling of these neighbor cells is shown in Fig. 2.

For each cell s ∈ S, a set of possible station configurations Ks = {0, . . . , γs}
is specified. The special configuration 0 always corresponds to the case that no
station is built or an existing station is removed. Each other configuration i ∈ Ks

has associated the following values: The number of parking slots is defined by
bpss,i ∈ N, the fixed costs, i.e., the costs for constructing the station including
the purchase of a corresponding number of bikes are denoted by bcfixs,i ≥ 0, and
the variable costs, i.e., total maintenance and operating costs over the whole
planning horizon, including the maintenance of a respective number of bikes are
denoted by bcvars,i ≥ 0. Rebalancing costs are not included in the variable costs
and are introduced later on. In case the cell contains an already existing station,
bcfixs,i corresponds to the costs for upgrading/downgrading or removing (if i = 0)
the station.

Finally, we are given the following global parameters. Parameter breb ≥ 0
represents the average costs for rebalancing a single bike per day over the whole
planning horizon, whereas Btot

max and Bfix
max represent the total maximum costs

(budget) and the maximum fixed costs respectively. Basically, when considering
two different kind of budgets, possible solution candidates may be excluded
which could achieve better solution quality according to the objective function,
but having two different budget types is a requirement from practice.

3.1 Solution Representation

A solution x = (xs)s∈S with xs ∈ Ks assigns each station cell s ∈ S a valid
configuration xs ∈ Ks (which might also be the “no-station” configuration 0).

3.2 Optimization Goal

The goal is to maximize the total number of trips in the system, i.e., the total
demand that can be fulfilled at each day over all time periods, considering a
maximum total budget Btot

max as well as a maximum budget for the overall fixed
costs Bfix

max alone.
Let D(x, t) be the total demand fulfilled by solution x in time period t ∈ T ,

and let Qx(s) be the required rebalancing effort arising at each station s ∈ S |
xs �= 0 in terms of the number of bikes to be moved to some other station. The
calculation of these terms via MIP models was already presented in detail in [9].
The corresponding optimization problem can then be stated as follows.
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max
∑

t∈T

D(x, t) (1)

∑

s∈S

(
b
cfix
s,xs

+ b
cvar
s,xs

+ b
reb · Qx(s)

)
≤ B

tot
max (2)

∑

s∈S

b
cfix
s,xs

≤ B
fix
max (3)

xs ∈ Ks s ∈ S (4)

The objective function (1) maximizes the total satisfiable demand for each
time period t ∈ T . The left side of Inequality (2) calculates the total costs
by summing up the fixed and variable costs resulting from a change in station
configurations and the rebalancing costs. Inequality (3) restricts the maximum
fixed costs of the new system and in (4) domain definitions for the decision
variables are given.

4 Multilevel Refinement Approach

In our opinion, for this type of problem, single construction heuristics based on
greedy principles are not the ultimate choice as solution technique and neither
is a direct application of classical local-search based metaheuristics, like variable
neighborhood search and iterated local search. We think that these strategies
are not able to grasp the connections and interactions between all the clusters
and leaf nodes in large instances. In this context many local decisions are not
the way to go. One has to find a solution method which is able to overlook the
complete and complex problem more as a whole.

An intuitive way of achieving this, is to apply the so called multilevel
refinement approach. Multilevel refinement was originally introduced by Wal-
shaw [17,18]. Initially, it was thought as an additional ingredient to any meta-
heuristic to improve its solutions. However, we are going to use the approach as
the main solution technique. This technique fits to the already given hierarchical

Fig. 3. Example of a coarsening step in the hierarchical clustering of customer cells.
Leaf nodes are merged with their parent nodes to form new leaf nodes in the coarsened
tree.
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clustering of the geographic cells, as we can do the coarsening accordingly, level
by level, until we reach a problem size that can be reasonably well solved. Then,
we compute an initial solution by the initialize procedure and finally, extend and
refine the solution until we obtain a solution to the original input instance. In
the following the coarsen, initialize, extend, and refine functions are explained
in detail.

4.1 Coarsening

In the coarsening, we iteratively merge neighboring clusters into larger clusters
according to the already given hierarchical clustering.

Coarsening of Customer Cells: As illustrated in Fig. 3, in the coarsening
step, customer cells are merged together into their parent cluster, so that the
problem becomes smaller and gets easier solvable.

The outgoing demand of a node p that corresponds to the merging of nodes
V (p) is the demand

∑
(v,q)∈At|v∈V (p),q /∈C(p) dt

v,q and the incoming demand of p

is the total demand of nodes V (p), i.e.,
∑

(q,v)∈At|v∈V (p),q /∈C(p) dt
q,v.

Coarsening of Station Cells: Merging a set of station cells, each representing
possible station configurations with different associated costs, is, however, not as
straight-forward. Considering all possible combinations of station configurations
appears not meaningful, since the resulting number of these combinations would
grow exponentially with the number of merged original station configurations.
Furthermore, in particular on higher abstraction levels, individual station con-
figurations do not play a practically significant role anymore. A simpler approx-
imate model for the number of possible parking slots and corresponding costs
appears thus reasonable for practice.

We apply the following continuous linear model as approximation for the
possibilities at each station cell s ∈ Sl. Let bpss be the maximum number of
bike parking slots at prospective station s. The possible number of bike parking
slots at s can be chosen freely from the (continuous) interval [0, bpss ] where the
upper bound bpss will be chosen as explained in the following. A solution to P l

is a vector containing for each station cell the selected number of bike parking
slots, i.e., x = (xs)s∈Sl with xs ∈ [0, bpss ]. Costs are calculated in dependence of
xs as follows bcfixs (xs) = bcfix,a

s · xs + bcfix,b
s and bcvars (xs) = bcvar,as · xs + bcvar,bs .

For original station cells s ∈ S0 we assume bpss = maxi∈Ks
bpss,i and the model

parameters bcfix,a
s , bcfix,b

s , bcvar,as , and bcfix,b
s are determined as follows:

b
cfix,a
sl+1 =

∑

sl∈sub(sl+1)

b
cfix,a
sl

and b
cfix,b
sl+1 =

1

|sub(sl+1)|
∑

sl∈sub(sl+1)

b
cfix,b
sl

(5)

b
cvar,a
sl+1 =

∑

sl∈sub(sl+1)

b
cvar,a
sl

and b
cvar,b
sl+1 =

1

|sub(sl+1)|
∑

sl∈sub(sl+1)

b
cvar,b
sl

(6)



194 C. Kloimüllner and G. R. Raidl

The aggregation of station nodes with their approximate cost models is then
done as follows. Let sub(sl+1) ⊆ Sl denote the set of all station cells at level l
which are to be aggregated into sl+1 ∈ Sl+1. The maximum number of parking
slots naturally is the sum of the maximum values over all station nodes to be
aggregated bps

sl+1 =
∑

sl∈sub(sl+1) bps
sl .

Attractiveness Values: As we coarsen the problem, we also have to aggregate
the attractiveness values of merged stations for the merged customer cells. Hence,
we take a weighted average value of all attractiveness values of all respective pairs
of customer cells and station cells. In more detail, let pl, ql ∈ Ch−l−1 and vl+1

the node arising from merging all the nodes contained in the subtree rooted at
pl and let sl+1 be the resulting station from merging the stations in the subtree
rooted at ql. Then, we compute the attractiveness values as follows

a
vl+1,sl+1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if v = s
∑

v∈V (p)
∑

s∈V (q)
(
av,s·maxi∈Ks

{b
ps
s,i

}
)

∑
v∈V (p)

∑
s∈V (q) maxi∈Ks

{b
ps
s,i

} if l = 0, v �= s

∑
vl∈V l(pl)

∑
sl∈V l(ql)

(
a
vl,sl

·b̂ps
sl,l

)

∑
vl∈V l(pl)

∑
sl∈V l(ql)

b̂
ps
sl,l

if l > 0, v �= s

(7)

It is impossible to keep the original attractiveness values when coarsening the
problem. Of course, we have to find a method to keep deviation to original
attractiveness values to a minimum. We take the average between all pairs of
customer cells and station cells weighted by the maximum possible parking slots
at the particular stations. At level 0 we have to compute this value and find the
maximum through all configurations Ks for the station s, and for all other levels
we simply take the maximum parking slots as computed by the coarsening of
the stations. If the customer cell v and the station cell s refer to the same cell,
we set the attractiveness value to 1 which implies that every demand within this
cell, i.e., self loops, are always satisfiable.

4.2 Initialization

We have to initialize the solution at some reasonably coarsened level. We solve it
via a MIP model when an appropriate level l, where the problem is well solvable,
is reached. Parts of the model have been already shown, like calculating fulfillable
demands or rebalancing costs in [9] and the optimization goal in Sect. 3.2.

As it is not important and also not meaningful to make decisions about
exact station configurations in all levels l > 0 we use continuous variables xflex

s,l

for computing a completely flexible number of slots per station. The value 0
means no station is going to be built. Note, that variables are also indexed by
the level l ≥ 0 for which we compute the number of slots for the various stations.
However, it is important that all stations which are going to be planned have
a minimum number of slots which we denote as xflex

min. We need this condition
because it is only meaningful to plan a number of slots for a specific station
under a particular minimum slot count. If the minimum slot count of some
station configuration at level l = 0 is greater than the slot count planned at level
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l = 1 the information obtained through the coarsening and extension steps would
be useless since no station can be built in this scenario. Due to this constraint,
we introduce additional variables gs ∈ {0, 1} that decide whether a station is to
be built in cell s ∈ S or not.

The calculation of the demand is done by the linear program D(x, t) defined
in [9] but extended with an additional index for modeling the time periods.
Rebalancing effort is determined by the linear program Qx(s) which is also pro-
posed in [9]. For the initialization it is also enriched by an additional index
regarding the various prospective station candidates. By Ap,q

f,l we denote the
flow network of nodes/clusters (p, q) in level l, see also Fig. 2 for a visualization
of these networks. The set Sl corresponds to a set of possible station candidates
at level l. The MIP model for initialization of the solution at the coarsest level
lmax is finally defined as follows:

max
∑

t∈T

⎛

⎜⎝
∑

(v,p)∈At,lmax |v∈V lmax

∑

(v,s)∈A
v,p
f,lmax

f t,v,p
v,s

⎞

⎟⎠ (8)

s.t. inequalities from D(x, t) hold, see [9]. (9)
inequalities from Qx(s) hold, see [9]. (10)

∑

s∈S

(
bcfix · xflex

s,lmax + bcvar · xflex
s,lmax + breb ·

(
∑

t∈T

(
r+t,s + r−

t,s

)
+ ros

))

≤ Btot
max (11)

∑

s∈S

bcfix · xflex
s,lmax ≤ Bfix

max (12)

xflex
s,lmax ≥ gs · xflex

min ∀s ∈ Slmax (13)

xflex
s,lmax ≤ gs · xflex

min ∀s ∈ Slmax (14)

xflex
s,lmax ≥ 0 ∀s ∈ Slmax (15)

gs binary ∀s ∈ Slmax (16)

f t,v,p
α,β ≥ 0 ∀t ∈ T, (p, q) ∈ Almax , (α, β) ∈ Ap,q

f,lmax (17)

r+t,s, r
−
t,s, yt,s ≥ 0 ∀s ∈ Slmax , t ∈ T (18)

ros ≥ 0 ∀s ∈ Slmax (19)

The objective (8) is to maximize the overall prospective demand. All inequalities
defined in the maximum flow polytope (9) and all inequalities of the rebalancing
polytope (10) must hold. The total budget (11) and the maximum allowed fixed
budget (12) have to be respected. Inequalities (13) and (14) are used to ensure
that a minimum number of stations is going to be built, if a station should
be built in the particular station cell s ∈ S. Domain definitions are given in
(15)–(19). All variables are continuous except the gs | s ∈ S variables which are
binary decision variables.
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At an appropriate level of the coarsening, the proposed MIP model is able to
yield near optimal solutions in a reasonable runtime when solved with a state-
of-the-art MIP solver such as Gurobi. As the underlying mathematical model
is difficult to solve because of numerical issues and precision, it is useful to
give the MIP solver a reasonable optimality gap. The actual optimality gap
could vary from problem to problem and should be set according to practical
observations. This initial solution is then further extended using the extension
algorithm proposed in the next section.

4.3 Extension

The extension is done heuristically as in the lower levels the instance size gets
larger and utilizing a MIP formulation becomes time consuming. We use a simple
heuristic which is fast as after the extension step the solution is refined using
local search.

For each station in the upper level we try to distribute the number of slots
over the corresponding children of this cluster node in the lower level. We make
use of a priority queue which is sorted according to the highest possible demand
which can be fulfilled by each node in the lower level. Thus, we compute the
demand LP D(x, t) from [9] by setting the solution vector x to the highest
possible slot count so that we know how much demand this node would fulfill in
the ideal case. At the end, the new solution for the lower level may be infeasible
due to violations of the budget restrictions. If this is the case, we try to iteratively
remove stations until we again reach a valid solution. For removal, we choose the
station with the lowest satisfied demand. At the end of the algorithm we obtain
a valid solution for the lower level.

4.4 Refinement

As the solution evaluation is done by executing two LP models from [9], namely
D(x, t) to calculate the demand and Qx(s) to estimate the rebalancing costs, it
is expensive. Therefore, refinement is done by local search, but only a limited
amount of time. The following neighborhoods are iterated in the given, static
order until a predefined time limit or local optimum has been reached.

Change station: This neighborhood removes a station, i.e., assigns a station
the 0 configuration and assigns another customer cell which has currently a
0 configuration some other configuration.

Add station: This neighborhood assigns a station, which has currently the 0
configuration, a new one. Here, also to concentrate on promising stations, the
station among the 0 configuration stations is chosen, which has the highest
demand.

Change configuration: This neighborhood changes the configuration of an
arbitrary station candidate.
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We consider only moves that construct valid solutions as it does not make
sense to work with infeasible moves/solutions as repairing infeasible solutions
consumes too much time due to the expensive evaluation function. Fixed and
variable costs are checked before solution evaluation to avoid calling the LP for
infeasible solutions. However, it can happen that newly computed solution is still
infeasible when considering rebalancing costs. If this is the case, the solution is
simply discarded.

5 Computational Results

We derived our test instances1 from real-world data of the city of Vienna.
The whole city was partitioned into cells and a full demand matrix on these
cells is given. Different instance sizes have been generated by picking some
cells from the whole instance. The clustering on these instances was computed
using the Nearest Point Algorithm. Consider cluster pu and cluster pv, where
V (pu) = {u1, . . . , un}, V (pv) = {v1, . . . , vm}. Among the remaining clusters, the
nearest neighbor is chosen as follows: dpu,pv

= minu∈V (pu),v∈V (pv){dist(u, v)}.
The graph Gt = (Ct, At) was derived by utilizing Algorithm 1. Therefore, we set
θ = 0.01. The attractiveness values have also been given as input as a full matrix
of attractiveness values between the different cells. However, to have computa-
tionally tractable instances we consider only subset of neighbors for a single cell.
For instances with 20 and 50 customer cells we consider 10 neighbors for each cell,
for instances with 300, 500 and 750 cells, 7 neighbors, for instances with 1,000 and
2,000 cells, 5 neighbors and for instances with 2,500, 3,000, 3,500, and 4,000 cells
3 neighbors. The neighbors with highest attractiveness values are taken. Config-
urations have been set as follows for all customer cells of the instances: ∀s ∈ S :
Ks = {(0, 0, 0), (10, 17500, 10000), (20, 25000, 20000), (40, 30000, 40000)}. These
tuples represent the number of slots to be built for the particular configuration,
its fixed and variable costs. Rebalancing a single bike for a single day has been
estimated with 3 e which is breb = 365 · 3 = 1095 e for a whole year which is
equal to the planning horizon. As the visualization component (see later) uses
only one time interval, we also use only one time interval for our computational
tests and set its duration to 1440 min. We introduced a flexible number of time
intervals as it is important for practice. In our first experiments, however, we
use only one time interval because of the visualization component. This time
interval uses an average prospective user demand over a whole day. We stop
the coarsening step when we reached a maximum number of 128 customer cells.
We set the time limit for the local search to 15 s. The optimality gap for solving
the initial MIP model at the coarsest level is set to five percent.

All algorithms are implemented in C++ and have been compiled with
gcc 5.5.0. For solving the LPs and MIPs we used Gurobi 7.0. All experiments
were executed as single threads on an Intel Xeon E5540 2.53 GHz Quad Core
processor. We executed a single run per instance which seems meaningful for a
long-term planning problem.
1 https://www.ac.tuwien.ac.at/files/resources/instances/bsspp/lion19.bz2.

https://www.ac.tuwien.ac.at/files/resources/instances/bsspp/lion19.bz2
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Table 1. Results for the multilevel refinement heuristic.

Fig. 4. Solution
visualization.

Result of the proposed method are shown in Table 1. For each instance we
show the number of customer cells/station candidates (#cells), the maximum
total budget (Btot

max), the maximum budget for the fixed costs (Bfix
max), the objec-

tive value of the solution, i.e., number of trips (obj), the number of levels to be
coarsened in the clustering tree such that we reach our goal, the number of nodes
to initialize the solution (#coarsen), the time needed to find the solution (time),
the total (totcost) and the fixed costs (fixcost) of the found solution. As shown
in Table 1, the approach is able to solve instances derived from real-world data
with up to 4,000 customer cells. Interesting is that for the instance with 1,000
customer cells we need less coarsening steps than for the instance with 750 cus-
tomer cells, but this also strongly depends on the clustering and the depth of the
original cluster tree. The second thing which looks interesting is that the fulfilled
demand of the instance with 4,000 cells is less than the fulfilled demand for some
instances with fewer customer cells. This happens because the refinement, i.e.,
local search, has fewer iterations for the instance with 4,000 customer cells and
the addStation neighborhood is often successful. A detailed visualization of the
solution found for the instance with 50 customers cells is given in Fig. 4. The
visualization tool was written by Markus Straub from the Austrian Institute of
Technology2. The darker a cell, the more demand is fulfilled and the bolder a
line, the more demand is going through this connection.

6 Conclusion

Based on previous work we developed practical as well as algorithmic extensions.
We introduced an algorithm which constructs a sparse graph on clustered input
data from the original full demand matrix. This drastically reduces the input
size of the problem instance. We developed a refinement method based on local
search for the multilevel refinement approach which improves the solutions after
each extension step in the algorithm. In this work we consider particular station

2 https://www.ait.ac.at/.

https://www.ait.ac.at/
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configurations instead of an arbitrary number of slots which is much more realis-
tic as only a full configuration can be bought in practice. This introduces higher
complexity in the multilevel refinement approach, which we have successfully
shown to work within the algorithm. Moreover, we derived instances which are
based on real-world data from the city of Vienna. Results seem reasonable and
we were able to solve instances with 4,000 prospective station candidates which
demonstrate scalability of the proposed approach. Using the provided visualiza-
tion the solutions can also be visually verified.

In future work we want to extend our benchmark suite with also other cities
like e.g., Linz in Austria. Furthermore, the whole Vienna instance consists of
7,216 prospective stations cells and it is interesting which instance sizes the
proposed multilevel refinement can solve. Moreover, it is also interesting to study
alternatives and improvements to the extension heuristic and the refinement part
of the algorithm. Last but not least tests on small instances can be performed
where exact solutions are compared to solutions of the multilevel refinement
heuristic.
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Abstract. The Prize-Collecting Traveling Salesman Problem is a class
of generalizations of the classic Traveling Salesman Problem (TSP) where
it is not necessary to visit all the vertices. Given the edge costs and a
certain profit associated with each vertex, the goal is to find a route
which satisfies maximum collected profit and minimum traveling costs
constraints. We show polynomial-time approximation algorithms for two
variants of the problem and establish conditions under which the pre-
sented algorithms are asymptotically optimal on random inputs.

Keywords: Asymptotically optimal algorithm · Random inputs ·
NP-hard problem · Prize-collecting TSP

1 Introduction

The Traveling Salesman problem (TSP) is one of the most well-known and widely
studied NP-hard combinatorial optimization problems. The classic formulation
states as follows: given a complete graph and the costs of edges, the goal is to find
the cheapest simple cycle visiting all the vertices. TSP has numerous applications
in planning, logistics, routing, scheduling, data mining, clustering [9].

Often in applications one cannot or do not want to visit all vertices of the
graph due to different time or budget constrains. For example, the TSP solu-
tions can be used in solving clustering problems [3,12], in this case the vertices
represent the objects and the costs of edges represent the measure of similarity
between the objects. However, since data is often noisy, there might be outliers
that should be discarded from a good solution. One of the natural special cases
of the TSP that captures such features is the prize-collecting TSP, where in addi-
tion for each vertex v a value p(v) ∈ R is given, which represents the prize one
gets for visiting vertex v or the penalty one pays for not visiting v [1,2,4,5,11].
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In the sense of the above clustering example, the vertex prizes might characterize
the probability of an object not to be an outlier.

In [10,11] four most common objectives for the prize-collecting problems
were mentioned: the Goemans-Williamson objective that minimizes the cost of
the tour plus a penalty for not visited vertices, the Net Worth objective that
maximizes the prize of visited vertices minus the cost of used edges, the Quota
objective that minimizes the cost of a tour containing at least Q vertices, and
the Budget objective that maximizes the number of vertices in the tour subject
to the cost of the tour being at most B. All the problems of this kind are trivially
NP-hard.

In this short paper we consider the following cases of the prize-collecting
TSP:

Problem 1 (m-Quota TSP).

Input: A complete n-vertex undirected graph G = (V,E), positive integer m ≤
n, costs of edges c : E → R≥0, vertex prizes p : V → R≥0, and a profit
Q ∈ R≥0.

Find: A simple cycle H with at least m vertices such that
∑

v∈V (H) p(v) ≥ Q

and F1(H) :=
∑

e∈E(H) c(e) → min.

Problem 2 (m-Net Worth prize-collecting TSP, m-NW-TSP).

Input: A complete n-vertex undirected graph G = (V,E), costs of edges
c : E → R≥0, vertex prizes p : V → R≥0, and a positive integer m ≤ n.

Find: A simple cycle H with at least m vertices such that
F2(H) :=

∑
v∈V (H) p(v) − ∑

e∈E(H) c(e) → max .

A number of previous results [6–8] present analysis of a simple greedy heuris-
tic called the Nearest City algorithm for the classic minimum TSP and prove the
conditions under which it gives asymptotically optimal solutions for the TSP on
random inputs. Given an n-vertex complete weighted graph, the Nearest City
algorithm starts with an arbitrary vertex v1 and at each step extends the par-
tial chain C = {v1, . . . , vk} by adding a new vertex vk+1 such that the edge
(vk, vk+1) is the shortest possible. Obviously, the time-complexity of the Nearest
City algorithm is O(n2).

We show how the greedy algorithm can be modified to give asymptotically
optimal solutions for the two versions of prize-collecting TSP stated above.

2 Greedy Approximation Algorithms

In this section we present two greedy algorithms that approximately solve the
m-Quota TSP and the m-NW-TSP. Algorithms 2.1 and 2.2 for the m-Quota
TSP and the m-NW-TSP, respectively, start by sorting the vertices of a given
graph G in non-increasing order according to their prizes: p1 ≥ p2 ≥ . . . ≥ pn.
Then for each possible value of μ : m ≤ μ ≤ n algorithms find a μ-vertex subset
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V ′ ⊆ V of the most profit promising vertices and compute an approximate
solution Hμ to the minimum TSP in the induced subgraph G[V ′] by applying
the greedy Nearest City algorithm from [6–8]. Finally, the best found solution
Hμ, m ≤ μ ≤ n is returned as an answer. Since the time complexity of the
Nearest City algorithm is O(n2), it is clear, that both Algorithms 2.1 and 2.2
run in O(n3) time.

Algorithm 2.1: Algorithm for the m-Quota TSP.
Input: Complete graph G = (V,E), V = {1, . . . , n}, positive integer m ≤ n,
edge costs c : E → R≥0, vertex prizes p1, . . . , pn ∈ R, Q ∈ R.

Output: Cycle H with at least m vertices and at least Q profit.
1 Sort the vertices of G in non-increasing order according to their prizes:

p1 ≥ p2 ≥ . . . ≥ pn ;
2 m′ := arg min{µ | ∑µ

i=1 pi ≥ Q and µ ≥ m} ;
3 F := ∞ ;
4 foreach µ: m′ ≤ µ ≤ n do
5 V ′ := {1, 2, . . . , µ};
6 Using the Nearest City algorithm find an approximate solution Hµ for the

minimum TSP on the induced µ-vertex subgraph G[V ′];
7 F := min{F, ∑

e∈E(Hµ) c(e)} and H := arg minF ;

8 return H.

Algorithm 2.2: Algorithm for the m-NW-TSP.
Input: Complete graph G = (V,E), V = {1, . . . , n}, positive integer m ≤ n,
edge costs c : E → R≥0, vertex prizes p1, . . . , pn ∈ R.

Output: Cycle H with at least m vertices.
1 Sort the vertices of G in non-increasing order according to their prizes:

p1 ≥ p2 ≥ . . . ≥ pn ;
2 F := −∞ ;
3 foreach µ: m ≤ µ ≤ n do
4 V ′ := {1, 2, . . . , µ};
5 Using the Nearest City algorithm find an approximate solution Hµ for the

minimum TSP on the induced µ-vertex subgraph G[V ′];
6 F := max{F, ∑m

i=1 pi − ∑
e∈E(Hµ) c(e)} and H := arg maxF ;

7 return H.

2.1 Analysis of the Algorithms on Random Inputs

In this section for the algorithms presented above we perform probabilistic anal-
ysis, which consists in studying successful runs of the algorithms on “typical”
instances, instead of the worst-case analysis. To this end, we assume the instances
of the considered problems to belong to a certain probability space. Namely, we
consider the cases when the input data, that are the edge costs c(e) ∈ R≥0,
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are identically distributed independent random reals with a uniform UNI(an, bn)
distribution function on segment [an, bn], 0 < an ≤ bn; or with a shifted expo-
nential EXP(αn, an) distribution with parameter αn on interval (an,∞), an > 0,
or a truncated normal NOR(σn, an) distribution with parameter σn on interval
(an,∞), an > 0.

The performance guarantees of an approximation algorithm will be defined
as follows.

Definition 1. Let A be an approximation algorithm for some optimization prob-
lem X on a graph with n vertices. Let FA(I) and OPT (I) be the value of the
approximate solution found by algorithm A and the optimum on input I ∈ X,
correspondingly. Algorithm A is said to have performance guarantees εA(n) and
δA(n) on a set of random inputs of the problem, if

Pr
{∣

∣
∣
∣
FA(I) − OPT (I)

OPT (I)

∣
∣
∣
∣ > εA(n)

}

≤ δA(n),

where εA(n) is the relative error and δA(n) is the failure probability of the
algorithm, which is equal to the proportion of cases when the algorithm doesn’t
hold the relative error εA(n).

Definition 2. Algorithm A is called asymptotically optimal on a class of
instances, if there exist performance guarantees such that εA(n) → 0 and
δA(n) → 0 as n → ∞.

The goal of this section is to present the conditions on the input data under
which Algorithms 2.1 and 2.2 are asymptotically optimal. To this end, we will use
the following theorem that brings together probabilistic results obtained in [6–8]
for the Nearest City algorithm approximately solving the classic minimum TSP.

Theorem 1. [6–8] Let H∗ be an optimal solution for the minimum TSP. In
case of the considered random inputs the Nearest City algorithm in O(n2) time
gives a solution H with the following properties:

Pr

⎛

⎝nan ≤
∑

e∈E(H∗)

c(e) ≤
∑

e∈E(H)

c(e) ≤ (1 + εn)nan

⎞

⎠ ≥ 1 − δn,

with relative error εn = 5 βn/an

n/ lnn and failure probability δn = n−1.

The algorithm is asymptotically optimal (εn → 0 and δn → 0 as n → ∞) for

βn

an
= o

(
n

ln n

)

, where βn =

⎧
⎨

⎩

bn, in the case of UNI(an, bn),
αn, in the case of EXP(αn, an),
σn, in the case of NOR(σn, an).

(1)

We now show that Algorithms 2.1 and 2.2 are asymptotically optimal under
almost the same conditions as in Theorem 1, if the number m of the vertices
that should be visited is a certain proportion of the number n of all the vertices
of the graph.
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Remark 1. Note that, due to Theorem 1, for each feasible μ-vertex cycle Hμ

(m ≤ μ ≤ n) found in the inner loop of Algorithm 2.1 (2.2), with probability at
least 1 − 1/m it holds that

μan ≤
∑

e∈E(Hµ)

c(e) ≤ μan(1 + εμ) , where εμ ≤ εm = 5
βn/an

m/ ln m
.

Theorem 2. Let m = ρ · n, where 0 < ρ ≤ 1 is a constant. Then Algorithm 2.1
gives asymptotically optimal solutions for the m-Quota TSP on random input
data UNI(an, bn), EXP(αn, an) or NOR(σn, an), if (1) holds.

Proof. Let H∗ and Hμ be an optimal solution and a solution returned by Algo-
rithm 2.1, correspondingly, and let μ∗ = |V (H∗)|, μ∗ ≥ m, and μ = |V (Hμ)|,
μ ≥ m′ ≥ m. Note that all the feasible solutions found in the inner loop of
Algorithm 2.1 give at least Q profit, while the number of vertices in any optimal
solution is at least m′, since m′ is the least possible number of vertices that gives
profit Q and is not less than m. Since Hμ is the best solution found in the inner
loop of Algorithm 2.1, it is not worse than some feasible solution Hμ∗ with μ∗

vertices also found in the inner loop of Algorithm 2.1. Thus, from the obvious
lower bound on the cost of an optimal solution and Remark 1, for the objective
function F1(H) it follows that

μ∗an ≤ F1(H∗) ≤ F1(Hμ) ≤ F1(Hμ∗) ≤ anμ∗(1 + εμ∗)

holds with failure probability at most δA1 = 1/m, and, thus, the relative error
of Algorithm 2.1 is

εA1 =
∣
∣
∣
∣
F1(Hμ)
F1(H∗)

− 1
∣
∣
∣
∣ ≤ anμ∗(1 + εμ∗)

μ∗an
− 1 = εμ∗ ≤ εm.

Finally, since m = ρn and (1) holds, relative error εA1 and failure probabil-
ity δA1 of Algorithm 2.1 tend to zero as n → ∞, and, thus, the algorithm is
asymptotically optimal. �	

Similar analysis can be carried out for the case of m-NW-TSP. We will
assume, that the input data has the following property.

Property (*). The profit one gains at the vertices of a solution of m-NW-TSP
is larger than the cost one pays for traveling the edges.
That is, the objective function of an optimal solution is positive. Otherwise, one
can multiply the objective function by −1 and consider a minimization problem
instead of maximization. The analysis of the algorithm in this case would be
similar and the relative error will stay the same. The only bad case left is when
the objective function is close to zero. To deal with the last case we need to
slightly tighten up the conditions of the asymptotic optimality of the algorithm.



206 E. Kh. Gimadi and O. Tsidulko

Theorem 3. Let m = ρ · n, where 0 < ρ ≤ 1 is a constant. Then Algorithm 2.2
gives asymptotically optimal solutions for the m-NW-TSP on random input data
UNI(an, bn), EXP(αn, an) or NOR(σn, an), if

βn/(p − an) = o(n/ ln n) , (2)

where p =
∑n

i=1 pi/n is the mean vertex profit and βn is defined as in (1).

Proof. Let H∗ and Hμ be an optimal solution and a solution returned by Algo-
rithm 2.2, respectively, and let μ∗ be the number of vertices in H∗, μ∗ ≥ m, and
μ be the number of vertices in Hμ, μ ≥ m. Since Hμ is the best solution found in
the inner loop of Algorithm 2.2, Hμ is not worse than some feasible solution Hμ∗

with μ∗ vertices found in the inner loop of Algorithm 2.2. Recall that the vertices
in the graph are sorted in the non-increasing order of their profits, and denote
by Pk the total profit of the first k vertices. Then, for the objective function
F2(H) of m-NW-TSP with failure probability at most δA2 = 1/m we have:

Pμ∗ − μ∗an ≥ F2(H∗) ≥ F2(Hμ) ≥ F2(Hμ∗) ≥ Pμ∗ − μ∗an(1 + εμ∗) . (3)

The first inequality in (3) follows from the fact that Pμ∗ is the largest possible
profit that can be obtained from visiting μ∗ vertices and μ∗an is the least possible
cost for traveling along a μ∗-vertex cycle. The last inequality in (3) follows
from Remark 1 with probability at least 1 − δA2 . Therefore, taking into account
Property (∗) with the inequalities εμ∗ ≤ εm and Pμ∗/μ∗ ≥ Pn/n = p, the relative
error of Algorithm 2.2 is:

εA2 =
∣
∣
∣
∣1 − F2(Hμ)

F2(H∗)

∣
∣
∣
∣ ≤ 1− Pμ∗ − μ∗an(1 + εμ∗)

Pμ∗ − μ∗an
≤ εμ∗

Pμ∗/(μ∗an) − 1
≤ εm

p/an − 1
.

Finally, since m = ρn and (2) holds, both εA2 and δA2 tend to zero as n → ∞,
and, thus, Algorithm 2.2 is asymptotically optimal. �	
Remark 2. It is easy to see that condition m = n · ρ in both Theorems 2 and 3
can be replaced by a weaker one: m is a growing function of n, such that m → ∞
as n → ∞.

3 Conclusion

In this short paper we showed that on certain types of i.i.d. random inputs the
greedy approach [6–8], that allowed us to obtain asymptotically optimal solutions
for the classic minimum TSP, can be adopted to solve TSP-like problems, in
which it is not necessary to visit all n vertices of a given graph.

Namely, we considered two problems m-Quota TSP and m-Net Worth prize-
collecting TSP, where in addition to the given edge costs of a graph a certain
profit is associated with each vertex, and the goal is to find a cycle which has a
large collected profit and small traveling costs. We presented greedy approxima-
tion algorithms for these problems on random inputs.
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In both problems the sought solution cycle is additionally required to contain
at least m vertices, and one of the crucial conditions for the presented algorithms
to be asymptotically optimal is m being a growing function of n (for example, it
is quite natural for m to be some proportion of n). However, in the probabilistic
analysis of the algorithms we mainly made assumptions about the distribution of
the edge costs, and not about the vertex prizes. We expect, that assuming both
the prizes of vertices and the costs of edges to be i.i.d. random reals, it would be
possible to show the asymptotic optimality of the presented algorithms under
weaker conditions on the number m of visited vertices.
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Abstract. Artificial Bee Colony algorithm is a very powerful Swarm
Intelligence Algorithm that has been applied in a number of different
kind of optimization problems since the time that it was published. In
recent years there is a growing number of optimization models that try-
ing to reduce the energy consumption in routing problems. In this paper,
a new variant of Artificial Bee Colony algorithm, the Parallel Multi-Start
Multiobjective Artificial Bee Colony algorithm (PMS-ABC) is proposed
for the solution of a Vehicle Routing Problem variant, the Multiobjec-
tive Energy Reduction Multi-Depot Vehicle Routing Problem (MERMD-
VRP). In the formulation four different scenarios are proposed where
the distances between the customers and the depots are either sym-
metric or asymmetric and the customers have either demand or pickup.
The algorithm is compared with three other multiobjective algorithms,
the Parallel Multi-Start Non-dominated Sorting Differential Evolution
(PMS-NSDE), the Parallel Multi-Start Non-dominated Sorting Particle
Swarm Optimization (PMS-NSPSO) and the Parallel Multi-Start Non-
dominated Sorting Genetic Algorithm II (PMS-NSGA II) in a number
of benchmark instances.

Keywords: Vehicle Routing Problem · Artificial Bee Colony · NSGA
II · NSDE · PSO · VNS

1 Introduction

The Vehicle Routing Problem is one of the most famous optimization prob-
lems and its main goal is the design of the best routes in order the selected (or
calculated) vehicles to serve the set of customers with the best possible way based
on the selected criteria that each different variant of the problem includes. As
the interesting of the researchers and of the decision makers in industries for the
solution of different variants of Vehicle Routing Problem continuously increases,
a number of more realistic and thus more complicated variants/formulations of
c© Springer Nature Switzerland AG 2020
N. F. Matsatsinis et al. (Eds.): LION 13 2019, LNCS 11968, pp. 208–223, 2020.
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the Vehicle Routing Problem has been proposed and a number of more sophis-
ticated algorithms are used for their solutions [26].

The combination of more than one objective functions in the formulation of a
Vehicle Routing Problem variant could produce a more realistic problem. Thus,
in the recent years there is an increasing number of researches that propose
formulations with more than one criteria which are denoted as Multiobjective
Vehicle Routing Problems. In this research the formulation of the problem com-
bines more than one depots, the possibility of pickups and deliveries and the
simultaneously reduction of the fuel consumption in symmetric and, in the more
realistic asymmetric cases. In the first objective function, the total travel time is
minimized, while in the second objective function the Fuel Consumption (FC)
taking into account the traveled distance and the load of the vehicle is, also,
minimized. In symmetric case, except of the load and the traveled distance, we
consider that there are no other route parameters or that there are perfect route
conditions, while on the other hand in asymmetric case, we take into account
parameters of real life, such as weather conditions or uphill and downhill routes.

In recent years a number of evolutionary, swarm intelligence and, in gen-
eral, nature inspired algorithms have been proposed for the solution of a Vehicle
Routing Problem both when one objective or more than one objectives are con-
sidered. In this paper a Multiobjective variant of the Artificial Bee Colony algo-
rithm, suitable for Vehicle Routing Problems, the Parallel Multi-Start Multiob-
jective Artificial Bee Colony Algorithm (PMS-ABC), is proposed for the solution
of the Multiobjective Energy Reduction Multi-Depot Vehicle Routing Problem
(MEMDVRP). Artificial Bee Colony (ABC) [5] is a nature-inspire meta-heuristic
optimization algorithm. It is inspired from the foraging behavior of honey bees.
There are two bees species: employed and unemployed foraging bees, which they
search for food sources close to their hive. In ABC, first we must find the best
parameter vector which minimizes the objective functions. Then, the bees ran-
domly discover a population of initial solution vectors and they move towards
better solutions, while they abandon poor solutions. In the PMS-ABC algorithm
in addition of the main characteristics of the ABC algorithm we use rank and
crowding distance as it will be explained later.

The algorithm is compared with three other evolutionary algorithms, the Par-
allel Multi-Start Non-dominated Sorting Particle Swarm Optimization (PMS-
NSPSO) [21], the Parallel Multi-Start Non-dominated Sorting Differential Evo-
lution (PMS-NSDE) [19] and the Parallel Multi-Start Non-dominated Sorting
Genetic Algorithm II (PMS-NSGA II) [20].

This paper is organized into four sections. In the next section, the Multi-
objective Energy Reduction Multi-Depot Vehicle Routing Problem is described.
In the following section, the proposed algorithm is analyzed in detail, while, in
Sect. 4 the computation results are presented. The last section provides conclud-
ing remarks and future research.
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2 Multiobjective Energy Reduction Multi-Depot Vehicle
Routing Problem

In recent years there is a growing number of papers for solving multi-depot
vehicle routing problems [15] or energy vehicle routing problems [2,14,24]. There
are few papers for the solution of Multi-Depot vehicle routing problem with fuel
consumption. One of the first papers about the minimization of fuel consumption
was presented by Kuo [11]. Afterwards, other papers were published (Suzuki [25],
Li [12], Xiao et al. [27], Niu et al. [16]). In the last years, there are few papers
about Multi-Depot Vehicle Routing Problem with Fuel Consumption (Psychas
et al. [19–21], Kancharla et al. [4], Pardalos et al. [13]).

In this paper, the first objective function for the four Multiobjective
Route-based Fuel Consumption Vehicle Routing Problems is the same
than the one presented in Psychas et al. [20]. This function is used for the mini-
mization of the time needed to travel between two customers or a customer and
the depot and the equation is:

min OF1 =
n∑

i=I1

n∑

j=1

m∑

κ=1

(tκij + sκ
j )xκ

ij (1)

where tκij is the time needed to visit customer j immediately after customer i
using vehicle κ, sκ

j is the service time of customer j using vehicle κ, n is the
number of nodes, m is the number of homogeneous vehicles and the depots
are a subset Π = {I1, I2, ...Iπ} of the set of the n nodes where denoted by
i = j = I1, I2, ...Iπ (π is the number of homogeneous depots). Also, the set of
nodes is the following {I1, I2, ...Iπ, 2, 3, ..., n}.

The second objective function is used for the minimization of the Route
based Fuel Consumption (RFC) in the case that the vehicle performs only
deliveries taking into account real life route parameters (weather conditions or
uphills and downhills or driver’s behavior). The objective function is described
below:

minOF2 =

Iπ∑

h=I1

n∑

j=2

m∑

κ=1

chjx
κ
hj(1 +

yκ
hj

Q
)rhj +

n∑

i=2

n∑

j=I1

m∑

κ=1

cijx
κ
ij(1 +

yκ
i−1,i − Di

Q
)rij (2)

with the maximum capacity of the vehicle denoted by Q, the i customer has
demand equal to Di and DI1 = DI2 = ... = DIπ

= 0, xκ
ij denotes that the vehicle

κ visits customer j immediately after customer i with load yκ
ij and yκ

I1j =
n∑

i=I1

Di

for all vehicles as the vehicle begins with load equal to the summation of the
demands of all customers assigned in its route and cij is the distance from node
i to node j. The parameter rij corresponds to the route parameters from the
node i to the node j and it is always a positive number. Due to the fact that it
may be rij �= rji the product cijrij leads to an asymmetric formulation of the
whole problem. If the values of rij is lower than 1 we consider that the route
from i to j is a downhill or the wind is back-wind or the driver drives with
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smooth shifting. If rij is larger than 1 we consider that the route from i to j is
an uphill or the wind is a head-wind or the driver drives with aggressive shifting.
If the rij = 1∀(i, j) that belongs to the route, then, the problem is a symmetric
problem. For an analytical presentation of how rij is calculated please see [19].

The third objective function is used for the minimization of the Route based
Fuel Consumption (RFC) in the case that the vehicle performs only pick-ups
in its route, as mentioned in Psychas et al. [19] and the function is:

min OF3 =
Iπ∑

h=I1

n∑

j=2

m∑

κ=1

chjx
κ
hjrhj +

n∑

i=2

n∑

j=I1

m∑

κ=1

cijx
κ
ij(1 +

yκ
i−1,i + Di

Q
)rij (3)

with rij is the route parameters as in the OF2 and yκ
I1j = 0 for all vehicles as the

vehicle begins with empty load. In that case the Di is the pick-up amount of the
customer i. The only difference to the previous functions is that we have more
than one depots, where are a subset Π = {I1, I2, ...Iπ} of the set of the n nodes
were denoted by i = j = I1, I2, ...Iπ (π is the number of homogeneous depots).
Also, the set of nodes is the following {I1, I2, ...Iπ, 2, 3, ..., n}. Worth mentioning
that each vehicle returns always to the depot where it starts and it does not visits
another depot during its travel. Furthermore, there are no transition between
the depots (for example from I1 to I3). The constraints of the problems are [19]:

n∑

j=I1

m∑

κ=1

xκ
ij = 1, i = I1, · · · , n (4)

n∑

i=I1

m∑

κ=1

xκ
ij = 1, j = I1, · · · , n (5)

n∑

j=I1

xκ
ij −

n∑

j=I1

xκ
ji = 0, i = I1, · · · , n, κ = 1, · · · ,m (6)

n∑

j=I1,j �=i

yκ
ji −

n∑

j=I1,j �=i

yκ
ij = Di, i = I1, · · · , n, κ = 1, · · · ,m, for deliveries (7)

n∑

j=I1,j �=i

yκ
ij −

n∑

j=I1,j �=i

yκ
ji = Di, i = I1, · · · , n, κ = 1, · · · ,m, for pick − ups (8)

Qxκ
ij ≥ yκ

ij , i, j = I1, · · · , n, κ = 1, · · · ,m (9)
∑

i,j∈S

xijκ ≤ | S | −1, for all S ⊆ {2, · · · , n}, κ = 1, · · · ,m (10)

xκ
ij =

{
1, if (i, j) belongs to the route
0, otherwise (11)

Constraints (4) and (5) represent that each customer must be visited only by
one vehicle; constraints (6) ensure that each vehicle that arrives at a node must
leave from that node also. Constraints (7) and (8) indicate that the reduced (if
it concerns deliveries) or increased (if it concerns pick-ups) load (cargo) of the
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vehicle after it visits a node is equal to the demand of that node. Constraints (9)
are used to limit the maximum load carried by the vehicle and to force yκ

ij to be
equal to zero when xκ

ij = 0, constraints (10) are the tour eliminates constraints
while constraints (11) ensure that only one vehicle will visit each customer. It
should be noted that the problems solved in this paper are symmetric (where
rij = 1∀(i, j) holds) or asymmetric (where rij �= rji∀(i, j) holds).

In Table 1, the objectives functions and the rij parameter are presented for
all the problems studied in this paper.

Table 1. Objective functions and rij for all the problems

Asymmetric delivery
ERVRP

Asymmetric pick-up ERVRP

Objective functions OF1 and OF2 OF1 and OF3

rij rij �= rji,∀(i, j)
that belongs to the route

rij �= rji, ∀(i, j) that belongs to the route

Symmetric delivery
ERVRP

Symmetric pick-up ERVRP

Objective functions OF1 and OF2 OF1 and OF3

rij rij = 1,∀(i, j)
that belongs to the route

rij = 1, ∀(i, j) that belongs to the route

3 Parallel Multi-Start Multiobjective Artificial Bee
Colony Algorithm (PMS-ABC)

Before we begin to present the Artificial Bee Colony algorithm, it is better to
mention a few things about the process of finding bees’ food, as it happens in
reality. The bees leave the hive to search for food. When they find the food, they
usually can not collect it alone and transfer it to the hive. So, they return to the
hive unloading the nectar they carried with them. After that, they try to inform
the rest bees for the source of food they found by making specific movements
that scientists have given the name waggled dance.

Artificial Bee Colony algorithm (PMS-ABC) [5,7] is mainly applied to con-
tinuous optimization problems and is based on the process of the waggled dance
performed by a bee in the food search process. This is the best known algo-
rithm that simulates behavior of real bees and has been applied in many studies
[1,3,5–10,17,23].

In the algorithm there are three subsets of bees: employed, onlookers and
scout bees. The employed bees find the food source (possible solution to the
problem) from a predetermined set of potential food sources and share this
information (bee dance) with the other bees in the hive. The onlookers bees wait
in the hive and based on the information they get from the employed bees, they
look for a better food source in the neighborhood of food, where the employed
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bees have indicated to them. Finally, the scout bees are explorers whose food
source is over and they seek out randomly a new source of food in the solution
space.

In the Parallel Multi-Start Multiobjective Artificial Bee Colony Algorithm
(PMS-ABC), initially, a set of food sources (possible solutions) (X) are randomly
chosen from scout bees and their available nectar is calculated (value of the
objective function). Then, the value of the objective function is calculated and
in each food source is assigned a scout bee. Afterwards, the Pareto Front of the
initial population is created. In every iteration, the non-dominated solutions are
found. Then, we sort the solutions as follows initially the average of the cost
values for each objective function is calculated. Then, the Euclidean distance
between the average and each of the non-dominated solutions of the solutions is
calculated. Finally, the solutions are classified according to their distance from
the average.

Scout bees return to the hive and make the bee dance (waggle dance) inform-
ing bees that have remained in the beehive, the onlooker bees, where are the food
sources. Onlooker bees choose the food source they will visit based on the infor-
mation they receive about the nectar of each source from the bee dance process.
Scout and onlooker bees are placed in the selected sources, matching each bee’s
source of food. The PMS-ABC algorithm uses the following equation to produce
a new food source:

x′
ij = xij + rand2(xij − xkj), (12)

where x′
ij is the candidate food source and k is a different from i food source

selected from the solutions of the Pareto Front and rand2 is a random number
in space (0,1).

As the use of the Eq. (12) for the calculation of the new food sources could
produce some inefficient (due to the transformation of the solutions from con-
tinuous values (suitable for the equations of ABC) to discrete values (path rep-
resentation) and vice versa) and dominated from the personal best of each food
source and from the global best of the whole solutions, it was decided to add
another phase for the calculation of the new positions in the algorithm in order
to take advantage of possible good new and old positions in the whole set of food
sources. Thus, the solutions of the last two iterations (iteration it and it+1) are
combined in a new vector and, then, the members of the new vector are sorted
using the rank and the crowding distance as in the NSGA II algorithm as it was
modified in [18]. The first W food sources of the new vector are the produced
solutions (the new food sources) of the iteration it + 1. The distribution of the
new food sources is performed based on the values of the rank and the crowding
distance. With this procedure we avoid to add to the next iterations inefficient
solutions that will probably be produced using the Eq. (12).

The new W food sources are evaluated by each objective function separately.
A Variable Neighborhood Search (VNS) algorithm is applied to the food sources
with both the vnsmax and the localmax equal to 10 [18]. The personal best solu-
tion of each food source is found by using the following observation. If a solution
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in iteration it + 1 dominates its previous best solution of the iteration it, then,
the previous best solution is replaced by the current solution. On the other hand
if the previous best solution of dominates the current solution, then, the previous
best solution remains the same. Finally, if these two solutions are not dominated
between them, then, the previous best solution is not replaced. It should be
noted that the non-dominated solutions are not deleted from the Pareto front
and, thus, the good solutions will not be disappeared from the population. In
the next iterations in order to insert a food source in the Pareto front archive
there are two possibilities. First, the food source is non-dominated with respect
to the contents of the archive and second it dominates any food source in the
archive. In both cases, all the dominated food sources, that already belong to
the archive, have to be deleted from the archive. At the end of each iteration,
from the non-dominated solutions from all populations the Total Pareto Front is
updated considering the non-dominated solutions of the last initial population.

The results of the proposed algorithm are compared with the results of
the Parallel Multi-Start Non-dominated Sorting Particle Swarm Optimization
(PMS-NSPSO) [21], the Parallel Multi-Start Non-dominated Sorting Differen-
tial Evolution (PMS-NSDE) algorithm [19] and the Parallel Multi-Start Non-
dominated Sorting Genetic Algorithm II (PMS-NSGA II) algorithm [20]. In [21]
a number of different versions based on the velocity equation of the Parallel
Multi-Start Non-dominated Sorting Particle Swarm Optimization were proposed
and tested. The one that performed better than the others was the 3rd version
[21] and this is the one that we use for the comparisons in this paper. For all
the necessary information about the algorithms PMS-NSPSO, PMS-NSDE and
PMS-NSGA II, please see Psychas et al. [19–21].

4 Computational Results

The whole algorithmic approach was implemented in Visual C++ and was tested
on a set of benchmark instances. The data were created according Rapanaki
et al. [22] research. Also, the algorithms were tested for ten instances for the two
objective functions (OF1-OF2 or OF1-OF3) five times [22]. For the comparison
of the three algorithms, we use four different evaluation measures: Mk, L, Δ and
C. It is preferred the L, Mk and C measures to be as larger as possible and the
Δ value to be as smaller as possible, for analytical presentation of the measures
please see [19].
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Table 3. Average results and best runs of all algorithms used in the comparisons.

Algorithms Asymmetric delivery FCVRP Asymmetric pick-up FCVRP

L Mk Δ L Mk Δ

A-B-CD PMS-ABC 25.20(26) 519.39(537.22) 0.68(0.69) 30.20(31) 594.50(615.83) 0.72(0.70)

PMS-NSPSO 46.40(53) 598.41(592.84) 0.70(0.68) 47.00(56) 597.42(609.09) 0.66(0.62)

PMS-NSGA II 56.40(62) 592.33(598.84) 0.61(0.54) 59.80(63) 598.92(608.39) 0.61(0.65)

PMS-NSDE 50.00(59) 598.17(604.03) 0.61(0.53) 46.00(49) 598.81(605.87) 0.61(0.62)

A-C-BD PMS-ABC 26.40(30) 514.57(523.10) 0.80(0.94) 29.60(33) 599.64(609.91) 0.72(0.73)

PMS-NSPSO 47.60(51) 600.33(611.96) 0.68(0.68) 47.80(53) 601.70(595.13) 0.64(0.59)

PMS-NSGA II 61.80(72) 594.92(602.67) 0.61(0.68) 58.80(56) 604.25(613.08) 0.59(0.64)

PMS-NSDE 49.40(56) 594.19(603.86) 0.63(0.64) 44.40(50) 597.25(612.67) 0.63(0.62)

A-D-BE PMS-ABC 21.20(25) 513.52(533.70) 0.79(0.84) 30.40(33) 604.45(614.92) 0.80(0.85)

PMS-NSPSO 48.80(52) 592.57(606.60) 0.64(0.62) 46.00(48) 608.80(620.73) 0.66(0.65)

PMS-NSGA II 54.20(54) 601.74(597.52) 0.61(0.55) 54.60(63) 602.82(610.88) 0.61(0.60)

PMS-NSDE 46.80(51) 591.33(585.05) 0.68(0.58) 46.20(53) 594.36(608.66) 0.64(0.58)

A-E-BD PMS-ABC 24.40(30) 515.43(519.05) 0.71(0.64) 30.80(28) 597.77(603.00) 0.80(0.72)

PMS-NSPSO 48.00(58) 586.44(595.07) 0.65(0.63) 49.00(60) 597.10(610.34) 0.67(0.69)

PMS-NSGA II 57.20(56) 595.30(604.81) 0.58(0.56) 56.40(60) 591.73(615.11) 0.58(0.53)

PMS-NSDE 53.80(58) 589.49(595.89) 0.66(0.66) 45.40(49) 598.88(578.64) 0.64(0.52)

B-C-AD PMS-ABC 19.60(23) 479.34(507.12) 0.87(0.78) 25.60(31) 590.78(585.40) 0.79(0.76)

PMS-NSPSO 42.00(45) 587.45(587.39) 0.66(0.69) 43.20(38) 601.86(616.66) 0.67(0.57)

PMS-NSGA II 51.20(64) 596.11(602.55) 0.61(0.60) 53.60(60) 602.63(609.71) 0.63(0.65)

PMS-NSDE 42.20(47) 593.19(586.51) 0.63(0.56) 44.00(47) 596.09(594.45) 0.69(0.61)

B-D-AC PMS-ABC 21.00(26) 508.53(514.14) 0.72(0.69) 24.40(25) 590.85(602.09) 0.72(0.67)

PMS-NSPSO 42.00(53) 589.78(591.38) 0.62(0.66) 42.20(50) 581.03(589.53) 0.68(0.75)

PMS-NSGA II 54.60(63) 593.43(618.00) 0.61(0.53) 51.40(46) 587.73(606.69) 0.60(0.51)

PMS-NSDE 43.20(48) 591.59(611.63) 0.71(0.72) 44.80(50) 592.20(586.71) 0.66(0.58)

B-E-AD PMS-ABC 23.20(26) 489.52(510.33) 0.76(0.86) 29.40(34) 598.01(599.91) 0.77(0.73)

PMS-NSPSO 42.00(45) 584.42(543.81) 0.59(0.52) 48.00(47) 601.43(611.90) 0.65(0.62)

PMS-NSGA II 50.80(57) 597.52(599.73) 0.56(0.56) 50.20(55) 594.89(600.52) 0.60(0.58)

PMS-NSDE 41.80(47) 596.38(611.30) 0.66(0.61) 41.00(46) 598.64(622.57) 0.66(0.66)

C-D-AE PMS-ABC 25.40(30) 524.53(520.80) 0.82(0.76) 28.60(27) 598.07(614.45) 0.72(0.63)

PMS-NSPSO 45.00(57) 593.92(593.63) 0.67(0.66) 44.00(36) 592.59(602.11) 0.67(0.55)

PMS-NSGA II 53.60(49) 597.24(589.81) 0.58(0.53) 51.80(59) 597.78(610.64) 0.63(0.59)

PMS-NSDE 42.40(42) 594.55(610.84) 0.63(0.60) 44.40(51) 594.87(591.47) 0.70(0.71)

C-E-AB PMS-ABC 25.80(33) 520.43(520.96) 0.81(0.85) 26.00(27) 594.23(597.77) 0.84(0.76)

PMS-NSPSO 45.00(48) 586.58(577.86) 0.66(0.54) 46.80(41) 588.78(601.76) 0.63(0.53)

PMS-NSGA II 55.00(47) 592.95(602.86) 0.61(0.57) 51.00(65) 595.58(608.99) 0.65(0.74)

PMS-NSDE 39.40(47) 592.59(569.13) 0.67(0.63) 47.20(47) 593.76(612.40) 0.63(0.57)

D-E-BC PMS-ABC 23.20(23) 510.71(514.93) 0.70(0.60) 28.00(30) 581.88(577.52) 0.77(0.63)

PMS-NSPSO 42.60(50) 571.71(568.50) 0.67(0.69) 39.60(44) 578.42(573.72) 0.60(0.68)

PMS-NSGA II 43.60(48) 526.74(503.05) 0.62(0.53) 50.80(56) 581.08(602.31) 0.66(0.69)

PMS-NSDE 42.00(44) 582.50(589.22) 0.68(0.64) 43.60(52) 581.38(588.35) 0.60(0.64)

(continued)
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Table 3. (continued)

Algorithms Asymmetric delivery FCVRP Asymmetric pick-up FCVRP

L Mk Δ L Mk Δ

Symmetric delivery FCVRP Symmetric pick-up FCVRP

A-B PMS-ABC 29.00(31) 603.23(610.84) 0.76(0.69) 21.40(25) 600.76(611.89) 0.75(0.69)

PMS-NSPSO 47.80(52) 613.92(610.29) 0.68(0.62) 51.60(54) 607.75(602.86) 0.69(0.62)

PMS-NSGA II 56.40(61) 602.89(603.41) 0.66(0.62) 58.60(79) 596.88(605.27) 0.66(0.60)

PMS-NSDE 44.60(45) 605.73(596.04) 0.67(0.55) 44.60(46) 602.96(622.10) 0.68(0.62)

A-C PMS-ABC 32.20(36) 602.04(602.18) 0.83(0.70) 22.20(25) 599.57(601.56) 0.79(0.76)

PMS-NSPSO 50.20(53) 604.15(615.43) 0.66(0.67) 47.40(53) 604.96(608.06) 0.68(0.72)

PMS-NSGA II 62.60(66) 609.36(611.80) 0.63(0.54) 56.60(63) 606.55(615.56) 0.64(0.61)

PMS-NSDE 51.40(57) 596.73(602.61) 0.65(0.69) 49.20(44) 603.51(607.51) 0.65(0.61)

A-D PMS-ABC 29.20(35) 584.48(610.10) 0.84(0.88) 25.20(26) 583.36(582.98) 0.69(0.59)

PMS-NSPSO 48.40(54) 577.25(575.63) 0.62(0.61) 49.00(58) 586.10(594.99) 0.63(0.64)

PMS-NSGA II 54.40(57) 592.85(587.50) 0.67(0.63) 58.60(66) 580.64(582.86) 0.66(0.60)

PMS-NSDE 46.20(40) 581.70(591.46) 0.66(0.67) 47.00(47) 579.02(577.96) 0.66(0.58)

A-E PMS-ABC 35.00(36) 598.62(596.71) 0.83(0.74) 20.80(27) 596.34(603.89) 0.72(0.72)

PMS-NSPSO 48.00(47) 595.33(602.24) 0.68(0.69) 41.60(46) 592.88(612.23) 0.68(0.81)

PMS-NSGA II 51.20(51) 598.85(608.34) 0.62(0.60) 61.00(74) 598.56(598.90) 0.65(0.59)

PMS-NSDE 44.60(49) 604.13(608.11) 0.68(0.63) 43.80(43) 602.41(605.73) 0.62(0.58)

B-C PMS-ABC 24.00(28) 554.94(590.73) 0.83(0.95) 24.20(26) 595.01(604.70) 0.76(0.69)

PMS-NSPSO 41.00(51) 589.04(587.03) 0.68(0.62) 47.40(49) 595.11(605.91) 0.67(0.64)

PMS-NSGA II 58.80(55) 591.49(602.55) 0.65(0.55) 56.20(61) 597.28(590.74) 0.65(0.61)

PMS-NSDE 49.80(60) 589.78(610.81) 0.66(0.56) 42.00(49) 589.82(613.07) 0.72(0.64)

B-D PMS-ABC 28.40(30) 589.34(598.79) 0.81(0.93) 20.40(24) 583.20(600.10) 0.69(0.69)

PMS-NSPSO 43.40(55) 594.80(598.42) 0.65(0.54) 43.20(49) 591.07(600.78) 0.64(0.54)

PMS-NSGA II 58.60(56) 595.91(609.20) 0.64(0.63) 55.80(54) 592.55(608.67) 0.65(0.66)

PMS-NSDE 43.20(45) 595.65(595.43) 0.69(0.60) 41.20(54) 582.58(600.87) 0.70(0.68)

B-E PMS-ABC 28.40(31) 594.76(614.93) 0.85(0.78) 17.60(19) 602.44(606.64) 0.72(0.67)

PMS-NSPSO 49.40(52) 606.42(590.66) 0.60(0.53) 41.40(40) 604.84(618.80) 0.68(0.63)

PMS-NSGA II 57.60(59) 603.48(607.87) 0.61(0.60) 58.60(63) 603.78(618.11) 0.63(0.55)

PMS-NSDE 47.80(45) 603.11(609.40) 0.67(0.60) 44.40(46) 580.23(573.63) 0.66(0.58)

C-D PMS-ABC 29.00(32) 586.84(585.57) 0.76(0.62) 19.40(22) 583.38(606.27) 0.61(0.57)

PMS-NSPSO 48.80(46) 584.51(602.85) 0.64(0.59) 46.60(56) 586.85(594.19) 0.67(0.73)

PMS-NSGA II 56.60(59) 587.97(604.68) 0.63(0.64) 51.20(57) 586.43(587.41) 0.59(0.60)

PMS-NSDE 42.80(51) 577.40(594.58) 0.65(0.61) 46.80(51) 586.32(573.07) 0.66(0.57)

C-E PMS-ABC 33.20(29) 603.84(616.56) 0.80(0.68) 22.40(23) 600.35(619.16) 0.71(0.65)

PMS-NSPSO 48.00(51) 598.45(604.81) 0.64(0.65) 43.20(33) 599.71(609.57) 0.67(0.59)

PMS-NSGA II 60.40(63) 599.00(592.77) 0.64(0.58) 60.40(61) 607.48(613.53) 0.65(0.60)

PMS-NSDE 49.40(53) 594.95(611.88) 0.73(0.75) 52.20(60) 601.83(615.53) 0.67(0.72)

D-E PMS-ABC 31.80(33) 604.43(599.06) 0.77(0.68) 24.00(26) 608.29(620.04) 0.71(0.58)

PMS-NSPSO 49.20(57) 606.90(620.98) 0.71(0.80) 48.00(55) 609.46(617.27) 0.69(0.70)

PMS-NSGA II 60.20(52) 601.63(610.06) 0.67(0.66) 59.00(53) 606.62(617.50) 0.63(0.57)

PMS-NSDE 49.80(46) 604.82(619.96) 0.66(0.55) 49.00(54) 615.41(622.74) 0.70(0.64)

Generally, based on all Tables (Tables 2, 3, 4, 5, 6 and 7), from the com-
parison of the four algorithms we conclude that considering the L measure the
PMS-NSGA II algorithm performs better than the other three algorithms in
75% of the instances, while the PMS-PSO3 performs better than the other algo-
rithms in 12.5% and PMS-NSDE performs better only in 2.5%. The algorithms
have the same percentage in 10% of the instances. Considering the Mk measure,
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Table 4. Results of the C measure for the four algorithms in ten instances when the
asymmetric delivery problem using objective functions OF1-OF2 is solved

OF1-OF2 Multiobjective asymmetric delivery route based fuel consumption VRP

A-B-CD ABC NSPSO NSDE NSGA II B-D-AC ABC NSPSO NSDE NSGA II

ABC – 0.87 0.69 0.85 ABC – 0.66 0.96 0.83

NSPSO 0 – 0.25 0.82 NSPSO 0.08 – 0.63 0.89

NSDE 0.12 0.55 – 0.90 NSDE 0 0.30 – 0.63

NSGA II 0 0.04 0.08 – NSGA II 0 0.02 0.17 –

A-C-BD ABC NSPSO NSDE NSGA II B-E-AD ABC NSPSO NSDE NSGA II

ABC – 0.63 0.66 0.69 ABC – 0.82 0.38 0.77

NSPSO 0.37 – 0.59 0.78 NSPSO 0.04 – 0.15 0.75

NSDE 0.17 0.39 – 0.83 NSDE 0.23 0.73 – 0.93

NSGA II 0 0.02 0.04 – NSGA II 0 0.07 0 –

A-D-BE ABC NSPSO NSDE NSGA II C-D-AE ABC NSPSO NSDE NSGA II

ABC – 0.83 0.57 0.93 ABC – 0.88 0.76 0.88

NSPSO 0 – 0.16 0.74 NSPSO 0 – 0.38 0.82

NSDE 0.16 0.79 – 0.93 NSDE 0.10 0.65 – 0.82

NSGA II 0 0.15 0.02 – NSGA II 0 0.07 0.07 –

A-E-BD ABC NSPSO NSDE NSGA II C-E-AB ABC NSPSO NSDE NSGA II

ABC – 0.76 0.67 0.88 ABC – 0.73 0.64 0.79

NSPSO 0.03 – 0.21 0.89 NSPSO 0.21 – 0.45 0.79

NSDE 0.10 0.55 – 0.91 NSDE 0.15 0.48 – 0.81

NSGA II 0 0.03 0 – NSGA II 0.09 0.13 0.13 –

B-C-AD ABC NSPSO NSDE NSGA II D-E-BC ABC NSPSO NSDE NSGA II

ABC – 0.82 0.72 0.78 ABC – 0.82 0.68 0.52

NSPSO 0.13 – 0.28 0.86 NSPSO 0.17 – 0.16 0.38

NSDE 0.04 0.38 – 0.94 NSDE 0.30 0.50 – 0.40

NSGA II 0 0.04 0 – NSGA II 0.52 0.56 0.64 –

PMS-NSGA II algorithm performs better than the other algorithms in 32.5% of
the instances, while PMS-NSDE, PMS-NPSO3 and PMS-ABC perform better
than the other algorithms in 25%, 22.5% and 20% of the instances, respectively.
Also, considering the Δ measure, the PMS-NSGA II algorithm performs better
than the other algorithms in 37.5% of the instances, while algorithms PMS-
NPSO3, PMS-NSDE and PMS-ABC perform better than the other algorithms
in 30%, 22.5% and 2.5% of the instances, respectively. The algorithms have the
same percentage in 7.5% of the instances.

Considering the C measure, in Table 4, PMS-ABC algorithm performs bet-
ter than PMS-NSDE and PMS-NPSO3 algorithms because it performs better in
100% of the instances. Also, PMS-ABC algorithm performs better than PMS-
NSGA II algorithm because it performs better in 90% of the instances, while
PMS-NSGA II algorithm performs better than PMS-ABC algorithm in 10%
of the instances. PMS-ABC algorithm performs slightly better than the other
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Table 5. Results of the C measure for the four algorithms in ten instances when the
symmetric delivery problem using objective functions OF1-OF2 is solved

OF1-OF2 Multiobjective symmetric delivery route based fuel consumption VRP

A-B ABC NSPSO NSDE NSGA II B-D ABC NSPSO NSDE NSGA II

ABC – 0.81 0.69 0.95 ABC – 0.65 0.87 0.93

NSPSO 0.06 – 0.33 0.97 NSPSO 0.27 – 0.67 0.96

NSDE 0.13 0.42 – 0.97 NSDE 0.07 0.22 – 0.84

NSGA II 0.03 0.02 0 – NSGA II 0 0 0.07 –

A-C ABC NSPSO NSDE NSGA II B-E ABC NSPSO NSDE NSGA II

ABC – 0.83 0.86 1.00 ABC – 0.90 0.69 0.85

NSPSO 0.11 – 0.54 0.97 NSPSO 0.03 – 0.38 0.78

NSDE 0.08 0.34 – 0.98 NSDE 0.19 0.54 – 0.90

NSGA II 0 0 0 – NSGA II 0.03 0.10 0.07 –

A-D ABC NSPSO NSDE NSGA II C-D ABC NSPSO NSDE NSGA II

ABC – 0.70 0.60 0.84 ABC – 0.87 0.90 1.00

NSPSO 0.20 – 0.35 0.96 NSPSO 0.03 – 0.35 0.81

NSDE 0.17 0.59 – 0.82 NSDE 0.03 0.35 – 0.90

NSGA II 0.14 0 0.10 – NSGA II 0 0.07 0.06 –

A-E ABC NSPSO NSDE NSGA II C-E ABC NSPSO NSDE NSGA II

ABC – 0.96 0.88 0.98 ABC – 0.82 0.62 0.87

NSPSO 0 – 0.39 0.92 NSPSO 0.17 – 0.42 0.81

NSDE 0 0.60 – 0.86 NSDE 0.28 0.53 – 0.86

NSGA II 0 0.06 0.06 – NSGA II 0.14 0.20 0.15 –

B-C ABC NSPSO NSDE NSGA II D-E ABC NSPSO NSDE NSGA II

ABC – 0.82 0.82 0.82 ABC – 0.70 0.50 0.96

NSPSO 0.11 – 0.38 0.78 NSPSO 0.15 – 0.35 0.92

NSDE 0.11 0.63 – 0.91 NSDE 0.33 0.51 – 0.98

NSGA II 0.14 0.12 0.10 – NSGA II 0.03 0.02 0 –

three algorithms as it performs better in 100% of the instances, based on Tables 5
and 6. In Table 7, the PMS-ABC algorithm performs better than PMS-NPSO3
and PMS-NSGA II algorithms as it performs better in 100% of the instances.
Also, PMS-ABC algorithm performs better than PMS-NSGA II algorithm as it
performs better in 80% of the instances, while PMS-NSGA II algorithm performs
better than PMS-ABC algorithm in 20% of the instances. Finally, in Fig. 1 we
conclude that PMS-ABC algorithm dominates the Pareto fronts produced from
the other three algorithms. So, we conclude that C measure is the most impor-
tant measure of all, because only in this measure PMS-ABC algorithm performs
better.

According to the average numbers of the results, the PMS-NSGA II algorithm
produce Pareto front with more solutions, better distribution than the other
algorithms and produce more extend Pareto fronts. Finally, the Pareto fronts
produced from PMS-ABC algorithm dominates the Pareto fronts produced from
the other three algorithms.
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Fig. 1. Pareto fronts of the four algorithms for the instances “A-E” and “C-D-AE”.

Table 6. Results of the C measure for the four algorithms in ten instances, when an
asymmetric pick-up problem using objective functions OF1-OF3 is solved

OF1-OF3 Multiobjective asymmetric pick-up route based fuel consumption VRP

A-B-CD ABC NSPSO NSDE NSGA II B-D-AC ABC NSPSO NSDE NSGA II

ABC – 0.70 0.63 0.75 ABC – 0.92 0.94 1.00

NSPSO 0.13 – 0.41 0.67 NSPSO 0.12 – 0.48 0.96

NSDE 0.26 0.43 – 0.76 NSDE 0.08 0.38 – 0.98

NSGA II 0.16 0.09 0.14 – NSGA II 0 0 0 –

A-C-BD ABC NSPSO NSDE NSGA II B-E-AD ABC NSPSO NSDE NSGA II

ABC – 0.70 0.50 0.88 ABC – 0.70 0.78 0.84

NSPSO 0.09 – 0.40 0.91 NSPSO 0.12 – 0.50 0.75

NSDE 0.27 0.49 – 0.82 NSDE 0.18 0.49 – 0.84

NSGA II 0.03 0.02 0.06 – NSGA II 0.09 0.11 0.11 –

(continued)
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Table 6. (continued)

OF1-OF3 Multiobjective asymmetric pick-up route based fuel consumption VRP

A-D-BE ABC NSPSO NSDE NSGA II C-D-AE ABC NSPSO NSDE NSGA II

ABC – 0.73 0.64 0.89 ABC – 0.83 0.92 0.88

NSPSO 0.09 – 0.25 0.87 NSPSO 0.07 – 0.55 0.90

NSDE 0.36 0.63 – 0.87 NSDE 0.04 0.19 – 0.83

NSGA II 0.15 0.08 0.02 – NSGA II 0.07 0.03 0.02 –

A-E-BD ABC NSPSO NSDE NSGA II C-E-AB ABC NSPSO NSDE NSGA II

ABC – 0.70 0.47 0.77 ABC – 0.61 0.74 0.98

NSPSO 0.21 – 0.22 0.80 NSPSO 0.26 – 0.40 0.85

NSDE 0.29 0.65 – 0.82 NSDE 0.19 0.32 – 0.86

NSGA II 0.11 0.08 0.10 – NSGA II 0 0.10 0.04 –

B-C-AD ABC NSPSO NSDE NSGA II D-E-BC ABC NSPSO NSDE NSGA II

ABC – 0.58 0.87 0.93 ABC – 0.64 0.69 0.82

NSPSO 0.16 – 0.74 0.90 NSPSO 0.30 – 0.50 0.77

NSDE 0.06 0.18 – 0.68 NSDE 0.17 0.36 – 0.73

NSGA II 0.03 0 0.17 – NSGA II 0.13 0.09 0.17 –

Table 7. Results of the C measure for the four algorithms in ten instances when a
symmetric pick-up problem using objective functions OF1-OF3 is solved

OF1-OF3 Multiobjective symmetric pick-up route based fuel consumption VRP

A-B ABC NSPSO NSDE NSGA II B-D ABC NSPSO NSDE NSGA II

ABC – 0.54 0.43 0.95 ABC – 0.71 0.59 0.87

NSPSO 0.32 – 0.48 1.00 NSPSO 0.13 – 0.35 0.94

NSDE 0.28 0.31 – 1.00 NSDE 0.21 0.51 – 0.89

NSGA II 0 0 0 – NSGA II 0.08 0.02 0.02 –

A-C ABC NSPSO NSDE NSGA II B-E ABC NSPSO NSDE NSGA II

ABC – 0.89 0.59 0.95 ABC – 0.95 0.89 0.92

NSPSO 0.12 – 0.30 0.84 NSPSO 0 – 0.50 0.68

NSDE 0.32 0.75 – 0.90 NSDE 0 0.43 – 0.71

NSGA II 0 0.08 0 – NSGA II 0 0.15 0.11 –

A-D ABC NSPSO NSDE NSGA II C-D ABC NSPSO NSDE NSGA II

ABC – 0.78 0.49 0.94 ABC – 0.52 0.73 0.84

NSPSO 0.19 – 0.23 0.86 NSPSO 0.23 – 0.65 0.88

NSDE 0.35 0.62 – 0.94 NSDE 0.05 0.13 – 0.81

NSGA II 0.15 0.07 0.04 – NSGA II 0.14 0.07 0.14 –

A-E ABC NSPSO NSDE NSGA II C-E ABC NSPSO NSDE NSGA II

ABC – 0.54 0.60 0.86 ABC – 0.58 0.58 0.93

NSPSO 0.19 – 0.49 0.85 NSPSO 0.26 – 0.58 0.85

NSDE 0.19 0.30 – 0.85 NSDE 0.43 0.36 – 0.92

NSGA II 0.19 0.09 0.12 – NSGA II 0 0.03 0.03 –

B-C ABC NSPSO NSDE NSGA II D-E ABC NSPSO NSDE NSGA II

ABC – 0.67 0.41 0.98 ABC – 0.67 0.43 0.92

NSPSO 0.27 – 0.31 0.95 NSPSO 0.19 – 0.33 0.89

NSDE 0.42 0.57 – 1.00 NSDE 0.54 0.49 – 0.94

NSGA II 0 0 0 – NSGA II 0.04 0.02 0 –
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5 Conclusions and Future Research

In this paper, we proposed an algorithm (PMS-ABC) for solving four newly for-
mulated multiobjective fuel consumption multi-depot vehicle routing problems
(symmetric and asymmetric pick-up and symmetric and asymmetric delivery
cases). The proposed algorithm was compared with other three algorithms, the
PMS-NPSO3, the PMS-NSDE and PMS-NSGA II. In general, in the four dif-
ferent problems the PMS-MOCSA algorithm performs slightly better than the
other three algorithms in the most measures, as we analyzed in the Computa-
tional Results section. As expected, the behavior of the algorithms was slightly
different when a symmetric and an asymmetric problem was solved. Our future
research will be, mainly, focused on PMS-ABS algorithm in other multiobjective
combinatorial optimization problems.
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Abstract. The Capacitated Vehicle Routing Problem with Time Win-
dows (CVRPTW) is the well-known combinatorial optimization problem
having numerous valuable applications in operations research. Unlike the
classic CVRP (without time windows constraints), approximability of the
CVRPTW (even in the Euclidean plane) in the class of algorithms with
theoretical guarantees is much less studied. To the best of our knowledge,
the family of such algorithms is exhausted by the Quasi-Polynomial Time
Approximation Scheme (QPTAS) proposed by L. Song et al. for the gen-
eral setting of the planar CVRPTW and two our recent approximation
algorithms, which are Efficient Polynomial Time Approximation Schemes
(EPTAS) for any fixed capacity q and number p of time windows and
remain PTAS for slow-growing dependencies q = q(n) and p = p(n). In
this paper, combining the well-known instance decomposition framework
by A. Adamaszek et al. and QPTAS by L. Song et al. we propose a novel
approximation scheme for the planar CVRPTW, whose running time
remains polynomial for the significantly wider range of q and p.

Keywords: Capacitated vehicle routing problem · Time windows ·
Efficient polynomial time approximation scheme

1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) is the famous combinatorial
optimization problem, which was introduced by Dantzig and Ramser in their
seminal paper [7] and has a wide range of relevant applications in practice (see,
e.g. [28]). In the classic setting of the CVRP, we are given by a finite set of
customers and a fleet of vehicles of the same capacity initially located at a depot.
The goal is to construct a family of vehicle routes servicing all the customers
and having the minimum total transportation cost.

The Capacitated Vehicle Routing Problem with Time Windows (CVRPTW)
[19,28] is an extension of the CVRP, where the service of each customer is
associated with a specified time interval, called a time window. There are two
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different types of such intervals. For the former one, called hard, each customer
should be serviced within its assigned time window exclusively, whilst, in the
latter one, soft, vehicles can violate any time window constraints for some penalty
cost. As a mathematical model, CVRP with hard windows (or, just CVRPTW)
is widely employed in low-carbon economy [25], continent-scale distribution of
building materials [22], in dial-ride company planning [10] and other practical
transportation problems (see, e.g. [24]).

In this paper, we are focused on efficient approximation of the CVRPTW
in the class of algorithms with theoretic accuracy and time complexity bounds.
Therefore, in the following short literature overview, we intentionally restrict
ourselves on recent results of this kind, although the significant progress in the
solution of practical instances of the problem by local-search heuristics [12],
genetic [29], memetic [6,20], and ant colony algorithms [21] should be mentioned
as well.

This short paper is structured as follows. In Sect. 2, we give a short overview
of known results. Further, in Sect. 3, we remind the mathematical setting of the
CVRPTW. In Sect. 4, we discuss the approximation scheme proposed. For the
sake of brevity, we skip all the proofs and technical results postponing them to
the forthcoming paper, and concentrate on the main ideas.

2 Related Work

Extending the well-known Traveling Salesman Problem (TSP) [28], the Capac-
itated Vehicle Routing Problem having the capacity q as a part of the input is
strongly NP-hard and remain intractable even in the Euclidean plane [23]. For
q = 2, the metric CVRP is polynomially solvable, since it can be reduced to the
minimum weight perfect matching problem. For any fixed q ≥ 3, the problem
is strongly NP- and APX-hard even for (1, 2)-metric. The proof follows from a
polynomial time cost preserving reduction from the Partition into Isomorphic
Subgraphs [9, Problem GT12].

Approximation results for the Euclidean CVRP date to the seminal paper
by Haimovich and Rinnooy Kan [11], where the first PTAS for the CVRP on
the plane and capacity q = o(log log n) was introduced. Then, in [3] this result
was improved to q = O(log n/ log log n). Also, they noticed that there can be
derived a PTAS for the CVRP problem with q = Ω(n) from Arora’s PTAS for
the two-dimensional Euclidean TSP [2].

The ideas proposed by Arora in his paper [2] were used by Das and Math-
ieu in their Quasi Polynomial Time Approximation Scheme (QPTAS) [8] for
the general case of the planar Euclidean CVRP. Their QPTAS finds a (1 + ε)-
approximate solution of this problem (for any dependence q = q(n)) in time
n(log n)O(1/ε)

. Using this QPTAS as a black-box, Adamaszek, Szumaj, and Lin-
gas [1] showed that (1 + ε)-approximate solution can be found in polynomial
time for q ≤ 2log

δ n, where δ = δ(ε).
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Some part of the aforementioned results found their extension to the case of
Euclidean spaces of an arbitrary finite dimension [13,17,18] and several special
graphs [4,5].

Unlike CVRP, approximability of the Euclidean CVRPTW is much less inves-
tigated. To the best of our knowledge, the family of known approximation algo-
rithms for this problem is exhausted by a quasi-polynomial time approximation
scheme (QPTAS) developed in [26,27] for the general case of the problem and
an approximation schemes proposed in [15,16] for max{p, q} = o(log log n) and
p3q4 = O(log n) respectively, where p is the number of time windows.

In this paper, we propose a novel approximation scheme, having a polynomial
time complexity for the faster-growing dependencies p = p(n) and q = q(n).

3 Problem Statement

We consider the simplest single depot case of the CVRPTW in the Euclidean
plane with disjoint time windows, which we call in the sequel the planar
CVRPTW or just CVRPTW, for the sake of brevity.

The instance of CVRPTW is given by a finite set X = {x1, . . . , xn} of
customer locations (points on the plane), a dedicated location – depot y, a
capacity q, and an linearly ordered set T = {T1, . . . , Tp} of disjoint non-
empty intervals—time windows. We assume that Tj ≺ Tj+1 holds for any
j ∈ {1, . . . , p − 1} = [p − 1], i.e. the inequality t1 < t2 is valid for any moments
t1 ∈ Tj and t2 ∈ Tj+1. Each customer xi has a unit demand, which should be
serviced by a single route during some time window T = T (xi) ∈ T .

Any feasible route R has the form R = y, xi1 , . . . , xil
, y, where l ≤ q (capacity

constraint) and T (xij
) � T (xij+1) for any j ∈ [l − 1] (time windows constraint),

and the transportation cost w(R) = ‖y − xi1‖2 + ‖xi1 − xi2‖2 + . . . + ‖xil
− y‖2.

The goal is to find a minimum cost collection U = {R1, . . . , Rb} of feasible routes
visiting each customer exactly once.

4 Approximation Scheme

The main idea of our approximation scheme is based on the well-known rounding
and instance decomposition framework proposed in [1], quasi-polynomial approx-
imation scheme [27] used as a black-box for finding approximate solutions of the
obtained subinstances and our recent technical results [14–16] for the CVRPTW
in the Euclidean plane.

Suppose, we are given an instance of the planar CVRPTW and ε ∈ (0, 1).
It is required to find an (1 + ε)-approximate solution of the given instance. The
proposed scheme consists of several stages, which are described briefly in the
subsequent subsections.
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4.1 Instance Preprocessing and Accuracy Dependent Rounding

First, we sort the customer locations xi in decreasing order according to their
distances ri = ‖xi−y‖2 from the depot y and exclude customers with ri ≤ r1ε/n,
since all of them can be visited for the cost at most n·2ri ≤ 2r1ε ≤ ε OPT, where
OPT is an optimum of the given instance. Then, we shift the origin to y and
introduce an orthogonal grid in polar coordinates with parameters as follows:

ρi =
r1ε

n

(
1 +

ε

q

)i

, 0 ≤ i ≤
⌈
log1+ ε

q

n

ε

⌉
, ϕj =

2πj

s
, 0 ≤ j ≤ s =

⌈
2πq

ε

⌉
.

Points with polar radii ρi and angles ϕj obtained we call nodes. To any node
ν, we assign p collocated slots ν(T1), . . . , ν(Tp), that are “subnodes” induced by
time windows Ti. So, after such a transformation we move each customer xi to
the nearest slot ν(T (xi)).

Lemma 1. The number of slots is N = Θ
((

q
ε

)2 log n
ε

)
. Moving each customer

to the nearest slot changes the cost of a solution by at most ε OPT.

As it follows from Lemma 1, in the sequel, we can restrict ourselves to special
instances of the planar CVRPTW, where all customers are located at the slots
prescribed above. Following Adamaszek et al. [1] we call such instances rounded.

4.2 Instance Decomposition

It is easy to verify that, after the rounding, the number of non-empty slots is at
most n. To each of these slots, at least one customer is assigned. In the sequel,
we show that the total number of the assigned customers can be reduced further.

First, we extend the concept of non-trivial routes from [1] to the case of time
windows. We call a route R non-trivial if it visits at least two different slots
(maybe assigned to the same node). Otherwise, the route R is called trivial.

Lemma 2. For any rounded CVRPTW, there exists an optimum solution with
at most N · p non-trivial routes.

Due to the capacity constraint, the total number of customers, which can be
serviced by non-trivial routes, does not exceed Npq. Since, for the trivial routes,
an optimal solution can be constructed trivially as well, we can reduce the num-
ber of customers assigned to any slot to at most Npq and consider the rounded
instance with at most

N2p2q = O

(
q5p2

ε4
log2

n

ε

)

customers.
Then, we split the polar grid onto alternating vertical stripes (between fixed

polar radii), say white and gray and decompose the initial instance to smaller
subinstances induced by these stripes. Then, we solve any gray subinstance
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using our modification [15] of the famous Iterative Tour Partition (ITP) [11].
By OPT(w) and ITP(g) denote the optimum value of some white subinstance
and the cost of the ITP-based approximate solution for some gray subinstance.
The following lemma holds.

Lemma 3. For any rounded instance of the CVRPTW and any ε ∈ (0, 1) there
exists a partition to at most O(log(n/ε)/(ε log(n/ε))) white and gray stripes such
that each white subinstance w is defined by at most poly(p, q, 1/ε) customers and

∑
w

OPT(w) +
∑

g

ITP(g) ≤ (1 + ε)OPT.

Lemma 3 implies that the initial rounded CVRPTW instance can be decomposed
to a collection of much smaller subinstances, which can be solved in parallel.

4.3 Main Result

Applying QPTAS proposed by Song et al. [27] to find approximate solutions for
the white subinstances, we obtain our main result

Theorem 1. For any ε ∈ (0, 1) there is δ = O(ε) such that an (1 + ε)-
approximate solution of the CVRPTW in the Euclidean plane can be found in
polynomial time provided

max{p, q} = O(2log
δ n).

5 Conclusion

In this paper, we introduced a new approximation scheme for the Capacitated
Vehicle Routing Problem with Time Windows. Due to smart problem decom-
position [1] and employing the recent QPTAS proposed in [27] we improve our
recent approximation results [15,16] significantly enlarging the range of p and q,
for which the CVRPTW in the Euclidean plane can be approximated by PTAS.

In the forthcoming paper, we extend this result to the case of the Euclidean
CVRPTW with splittable non-uniform demand.
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Abstract. It is generally accepted that cooperation-based strategies in
parallel metaheuristics exhibit better performances in contrast with non-
cooperative approaches. In this paper, we study how the cooperation
between processes affects the performance and solution quality of paral-
lel algorithms. The purpose of this study is to provide researchers with
a practical starting point for designing better cooperation strategies in
parallel metaheuristics. To achieve that, we propose two parallel mod-
els based on the general variable neighborhood search (GVNS) to solve
the capacitated vehicle routing problem (CVRP). Both models scan the
search space by using multiple search processes in parallel. The first
model lacks communication, while on the other hand, the second model
follows a strategy based on information exchange. The received solutions
are utilized to guide the search. We conduct an experimental study using
well-known benchmark instances of the CVRP, in which the usefulness
of communication throughout the search process is assessed. The find-
ings confirm that careful design of the cooperation strategy in parallel
metaheuristics can yield better results.

Keywords: Parallel metaheuristics · Variable neighborhood search ·
Cooperation strategies · Vehicle routing problem · Intelligent
optimization methods

1 Introduction

Dantzig and Ramser [9] introduced the CVRP, which belongs to the class of
routing problems and is a variation of VRP, with additional constraints on the
capacities of the vehicles. CVRP is an NP-hard problem with notable impact
on the fields of transportation, distribution, and logistics. The fact that most
NP-hard problems become intractable for exact methods, mainly when deal-
ing with large instances, has motivated researchers in developing a plethora of
approximation algorithms, heuristics, and metaheuristics that provide an opti-
mal, or close to the optimal, solution. The Variable Neighborhood Search (VNS)
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metaheuristic has been successfully applied for solving many discrete and global
optimization problems [5,13].

The purpose of this paper is to present two parallel VNS methods using
the general VNS variant to tackle the CVRP, and to examine how the level of
cooperation between threads can affect the performance and the quality of the
solutions.

The remainder of this paper is organized as follows: In Sect. 2, we present
related works, in which the impact of communication in parallel algorithms is
analyzed. In Sect. 3, we present two parallel VNS models for the solution of the
CVRP. In Sect. 4, we present the summary of the findings for the models. Finally,
conclusions and prospects are summarized in Sect. 5.

2 Related Work

Recently, parallelization processing methods are increasingly being used in meta-
heuristics, due to the broadly available multicore processors and distributed com-
puting environments. Contributions focused on the communication strategies are
sparse. In [6], Crainic focused on different cooperation-based strategies. In this
study, Crainic found that approaches based on asynchronous exchanges of infor-
mation and the formulation of new knowledge out of exchanged data improve
the global guidance of the search and display extraordinary performances. The
author noticed that, low level communication schemes are particularly attrac-
tive when neighborhoods or populations are large, or the neighbor or individual
evaluation is costly. Those low level schemes were classified in Crainic taxonomy
with the 1st dimension marked as 1-control. Crainic taxonomy is discussed in
Sect. 3.3.

The articles assessed for the literature review relate to cooperative parallel
metaheuristics that, are based on the VNS algorithm and have been applied on
several problems. Table 1 sums the related works. The authors of these works
focus on the effectiveness of the proposed cooperative models rather than the
reasoning for selecting the cooperation strategy.

Table 1. Parallel VNS metaheuristic applied in several problems

Related work Metaheuristic algorithm Problem

Garćıa-López et. al. [10] Parallel VNS P-median

Crainic et al. [7] Parallel VNS P-median

Aydin and Sevkli [2] Parallel VNS Job shop scheduling

Polacek et al. [11] Parallel VNS MDVRPTW

Coelho et al. [4] Parallel VNS SVRPDSP

Polat O. [12] Parallel VNS VRPDP

Antoniadis et. al. [1] Parallel VNS Inventory optimization
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3 Information Exchange Between Parallel Models

It is generally accepted that, adding cooperation to parallel algorithms provides a
critical boost to create solutions of the highest quality. In order to study the effect
of communication between the threads, we created two parallel GVNS models.
The Savings Algorithm of Clarke and Wright [3] was used to construct the initial
solution for the two models. Both models are using an identical neighborhood
structure, consisting of three widely used inter and intra-route operators, i.e.,
2-opt (Intra-route), Swap (Inter-route), and Relocate (Inter-route). In order for
the two models to have the same resources in the search for a solution, a single
thread was used to play the role of the solution warehouse.

3.1 Parallel GVNS - Managed Information Exchange Model

In this model, Clarke and Wright’s algorithm provides the initial solution to all
the threads, except for one, which will assume the role of the solution warehouse.
Communication is asynchronous and dynamically determined by each process.
The threads begin their search in the solution space and if a thread finds a
better solution then, and only then, communication between the current thread
and the solution warehouse is initiated. The thread passes the solution to the
warehouse/manager process. At that point, a check is taking place. If a better
solution exists in the solution warehouse, then it is adopted by the thread, and
the search continues.

The communication schema used in the managed information exchange
model is novel and its purpose is to create a sparse communication graph. The
target is to maintain an equilibrium between exploration and exploitation phases.
As shown in Fig. 1, while three solutions are generated, one gets rejected by the

Fig. 1. Three solutions were passed to the warehouse. sol1 was rejected and the first
thread adopted a better solution (sol3) from the warehouse (blue arrow). (Color figure
online)
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warehouse and the thread that passed that solution adopts a new, better solution
from the warehouse.

The novelty in the cooperative model resides in the fact that, not only no
broadcasting takes place, but also the information exchange between a process
and the solution warehouse happens at irregular intervals. Each process dynam-
ically determines those intervals, and even when they occur, the thread might
not adopt the available solution from the solution warehouse.

Solution adoption by the warehouse, much like communication initiation is
being controlled by each individual process and can be configured to filter-out
solutions based on several criteria. The algorithm of this model is shown in
Algorithm 1.

Algorithm 1. Pseudo code - Managed information exchange model
// fr: Current best solution route

// kmax: Shake k parameter

// timelimit: The time limit stopping criteria

input : fr, kmax, timelimit, initial solution

while true do
t ← CpuTime()
fr′ ← Shake(fr, kmax)
fr′′ ← V ND(fr′, t, timelimit)
// When a new solution has been found communicate with warehouse

if thread solution <thread current best then
thread current best ← thread solution
if thread current best <solution warehouse then

// Give solution to warehouse and continue

solution warehouse ← thread current best
end
else

// Get new solution from solution warehouse and restart.

thread current best, thread solution ← solution warehouse
end

end
if t >timelimit then

break
end
if solution warehouse = optimum then

break
end

end

3.2 Parallel GVNS - A Model with Isolated Processes

This non-cooperative model, as shown in Fig. 2, uses an island-based design
where every thread runs the GVNS wholly isolated. All threads utilize identical
search procedures. Once the primary solution is produced using the Clarke and
Wright algorithm, it is used as a starting point by each thread.
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Fig. 2. The Clarke and Wright algorithm generates a solution that is passed to all
processes. Best solutions are stored in solution warehouse, but never broadcasted.

Each thread works autonomously, and their paths deviate particularly when
the shaking procedure takes place. When the stopping criteria have been met,
then all the threads terminate. The best solution is then picked among the list
of best solutions. The algorithm of this model is shown in Algorithm 2.

Algorithm 2. Pseudo code - GVNS thread, Isolated model
input : fr, kmax, timelimit

while true do
t ← CpuTime()
fr′ ← Shake(fr, kmax)
fr′′ ← V ND(fr′, t, timelimit)
if t >timelimit then

break
end
// if optimum value exists

if best value = optimum then
break

end

end

3.3 Model Classification

Crainic and Hail [8] suggested three dimensions to classify parallel metaheuristic
strategies:

– 1st dimension: Search control cardinality
– 2nd dimension: Search control and communication
– 3rd dimension: Search strategies
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According to this taxonomy, the proposed models can be classified as follows:

– The non cooperative model fits into the pC/RS/SPSS classification.
– The cooperative model fits into pC/C/SPSS classification.

The first dimension of this taxonomy defines how the search process for new
solutions is controlled; pc stands for poly-Control meaning that, there is more
than one process that controls the search operation.

In our case, each single thread has its control for the search operation. The
second dimension defines how the information between processes is exchanged.
RS stands for rigid synchronization, meaning that little or no information
exchange takes place when we use the non-cooperative model. The second dimen-
sion in the cooperative model is classified as “Collegial”, thus we extract and
adopt only the best solutions when information exchange occurs. The third
dimension refers to how new information is created, and the diversity of searches
involved. Both models are classified as “SPSS” that stands for “Same initial
Point, Same search Strategy”. This makes sense since all the threads use Clarke
and Wright as an initial solution and all the threads have an identical neighbor-
hood structure.

4 Computational Experiments

This section presents the results of the computational experiments carried out
to ascertain the performance of the two parallel GVNS models. The practical
relevance of the communication strategy is presented and analyzed.

All the algorithms were implemented in Python 3.7. The experiments were
conducted on an Intel Core i9 7940X CPU (3.50 GHz) and 32 GB RAM at 3333
MHz. Both models have a single termination criterion; the test is repeated until
a certain number of GVNS iterations is met. The two parallel models were tested
with the following iterations: 5, 10, 20, 30, 40, 50, 100, 200, and 300. All tests
were repeated ten times.

The computational tests were carried out on instances from the X set from
the CVRP library [14]. The test set is composed of a subset of the X set contain-
ing 6 instances (X-n110-k13, X-n143-k7, X-n153-k22, X-n256-k16, X-n261-k13
and X-n280-k17). Every instance in the X set was generated by Uchoa with spe-
cific characteristics. From the computational effort associated with the instance
characteristics and the size of the neighborhood to be explored, the instances
can be categorized into the following three groups:

(a) Easy (X-n110-k13),
(b) Medium (X-n143-k7, X-n153-k22)
(c) Hard (X-n261-k13, X-n256-k16, X-n280-k17)

In the results showed in Table 2, we can observe essential differences among
the compared methods. The isolated model appears to be much faster but the
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cooperative model provides solutions with better quality. “SpI” stands for “sec-
onds per 1 GVNS iteration”. The solution manager never broadcasts the best
solution in the cooperative model, in order to minimize the communication over-
head. In spite of this fact, the isolated method is 21.108% faster. This can be
explained to a large extent by the fact that, communication and solution com-
parison deprives the search procedure of some CPU cycles. Even though the
isolated method is much faster and has a more intense diversification phase,
communication between processes appears to yield better results.

Table 2. Comparison of the two GVNS parallel variants

Isolated scheme Managed scheme

Mean error 10.487% 10.078%

Median error 11.460% 11.471%

SpI 4.982 6.315

When we focus on the instances, based on their characteristics and grouped
by the computational effort required by the CPU to complete one GVNS itera-
tion, an interesting pattern emerges. As shown in Table 3, information sharing
outperforms isolation in hard instances. When the search space is small (easier
instances), the non-cooperative method yields better results. Thus, information
sharing seems to outperform the independent search method and constitutes a
valuable strategy for tackling hard instances when setting small iteration count
as a stopping criterion. As shown in Fig. 3, after several GVNS iterations, the
two methods don’t display essential differences.

Table 3. Model performance based on computational effort

Isolated scheme Managed scheme

Mean error - (easy) 4.310% 4.955%

Mean error - (medium) 11.488% 11.423%

Mean error - (hard) 9.131 8.434%

SpI - (easy) 1.234 1.652

SpI - (medium) 5.000 6.153

SpI - (hard) 18.750 20.689

In order to support our findings, we applied a Friedman test to the per-
formance results collected by the two models executed across the same set of
instances and obtained a p-value equal to zero showing that, there is enough
statistical evidence to consider the two algorithms different. We consider a com-
mon significance level α = 0.05 as the threshold for rejecting the null hypothesis.
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Fig. 3. Performance of the two models at 5, 10, 20, 30, 40, 50, 100 and 200 GVNS
iterations

5 Conclusions

In this paper, we proposed two models for the parallelization of the variable
neighborhood search for the efficient solution of CVRP. Our goal was to study
how the communication between processes affects the performance and the solu-
tion quality of parallel algorithms. Well known instances were used in order to
compare and analyze the effect of the cooperation strategies between the two
parallel metaheuristic models.

Cooperation strategy can have a decisive influence on the quality of the
solutions. There is a strong indication that cooperation yields better results
over hard instances, whereas in small solution spaces isolation appears to be the
best strategy. The timing of communication also appears to play a role since no
communication near the end of the search yields better results.

Future studies may include the use of filters to better guide the solution
adoption and smarter memory-based strategies to provide better solutions.

Acknowledgements. The second author has been funded by the University of Mace-
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Abstract. Facility Location embodies a class of problems concerned with locat-
ing a set of facilities to serve a geographically distributed population of cus-
tomers at minimum cost. We address the classical Capacitated Facility Location
Problem (CFLP) in which the assignment of facilities to customers must ensure
enough facility capacity and all the customers must be served. This is a well-
known NP-hard problem in combinatorial optimization that has been extensively
studied in the literature. Due to the difficulty of the problem, significant research
efforts have been devoted to developing advanced heuristic methods aimed at
finding high-quality solutions in reasonable computational times. We propose a
Relaxation AdaptiveMemory Programming (RAMP) approach for the CFLP. Our
method combines lagrangean subgradient search with an improvement method to
explore primal-dual relationships to create advanced memory structures that inte-
grate information from both primal and dual solution spaces. The algorithm was
tested on the standard ORLIB dataset and on other very large-scale instances for
the CFLP. Our approach efficiently found the optimal solution for all ORLIB
instances and very competitive results for the large-scale ones. Comparisons with
current best-performing algorithms for the CFLP show that our RAMP algorithm
exhibits excellent results.

Keywords: RAMP · Facility Location · Adaptive memory programming ·
Lagrangean Relaxation

1 Introduction

The Capacitated Facility Location Problem (CFLP) is a well-known combinatorial opti-
mization problem belonging to the class of the NP-hard problems [1]. The CFLP can be
formulated as follows:

min
∑m

i=1

∑n

j=1
DjCi j xi j +

∑m

i=1
Fi yi (1)

s.t.
∑m

i=1
xi j = 1, j = 1, . . . , n (2)

∑n

j=1
Dj xi j ≤ Si yi , i = 1, . . . ,m (3)
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xi j ≥ 0, j = 1, . . . , n i = 1, . . . ,m (4)

yi ∈ {0, 1}, i = 1, . . . ,m (5)

wherem represents the number of possible locations to open a facility and n the number
of customers to be served. Si indicates the capacity of facility i and Fi the fixed cost for
opening that facility. Dj represents the demand of client j and Ci j the unit shipment
cost between facility i and customer j . The variable xi j denotes the amount (scaled to
be fractional) shipped from facility i to customer j and yi indicates whether facility i is
open or not. The objective is to locate a set of facilities in such a way that the sum of the
costs for opening those facilities and the transportation costs for serving all customers is
minimized. Given a set of open facilities (yi = 1, i ∈ I ), the CFLP has the particularity
of becoming a Transportation Problem (TP) that can be solved in polynomial time. The
TP can be formulated as:

min
∑m

i=1

∑n

j=1
DjCi j xi j (6)

s.t.
∑n

j=1
Dj xi j ≤ Si , i = 1, . . . ,m (7)

(2) and (4)

WhereCi j is the unit shipment cost from facility i to customer j, Dj xi j is the amount
sent from facility i to customer j , Si is the availability of facility i and Dj is the demand
of customer j . The objective is to determine an optimal transportation scheme between
the facilities and customers so that the transportation costs are minimized. Also, if we
eliminate the capacity of each facility (eliminating in Eq. (3) variable Si ) and set Dj = 1
in the same equation and in the objective function, we get the uncapacitated variant of
the problem (UFLP) also widely studied in the literature.

2 Related Work

TheCFLP has been extensively studied over the past 50 years, resulting inmany algorith-
mic approaches based on exact and heuristic methods. For the best of our knowledge, the
first heuristic for the CFLP is due to Jacobsen [2] who extended Kuehn and Hamburger’s
[3] heuristic originally proposed for the uncapacitated variant of the problem (UFLP).
This heuristic has two phases: an ADD method that starts with all facilities closed and
tries to open facilities that produce the highest total cost reduction. This phase ends when
no more facilities contribute to the reduction of the total cost. The second phase consists
of a local search method in which two facilities (one opened and one closed) alternate
their status if this operation reduces the total cost.

Relaxation techniques are frequently used to solve theCFLP.Cornuejols [4] proposed
several algorithms based on mathematic relaxation to solve large CFLP and proposed a
comparison between several types of relaxations. Guignard and Spielberg [5] presented
a Dual Ascent procedure for the CFLP, initially proposed by Bilde and Krarup [6] and
Erlenkotter [7] for solving the UFLP. The main algorithm starts by obtaining a linear
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programming relaxation of the original problem to produce a lower bound. Starting with
a dual solution, the dual ascent method iteratively, tries to improve that solution. The
procedure stops when no more improvements can be achieved and then the dual solution
is projected to the primal solutions space. Finally, the application of a method to solve
the transportation problem is applied to the primal solution.

Avella et al. [8] proposed a Lagrangean Relaxation for the CFLP, that selects a
subset of “promising” variables, defines the core problem, and uses an exact (Branch-
and-Cut) algorithm to solve it. By relaxing the demand constraints and using subgradient
optimization to maximize the dual problem, Avella et al. [8] manage to solve very large
instances. Lorena [9] and Beasley [10] obtained good upper and lower bounds based on
relaxation techniques, obtaining good results for the CFLP.

Sridharan [11] proposed the use of cross decomposition, initially presented by Van
Roy [12], in which the main idea is the exploration of primal and dual subproblems
into a single decomposition procedure to produce tight lower and upper bounds. Born-
stein [13] proposed an ADD/DROP algorithm (that extends the ADD procedure seen
earlier) and uses the DROPmethod to close facilities if this improves the objective func-
tion. Bornstein [14] also proposed the use of reduced tests and dominance criteria to
define priorities to change the status of facilities (open-close or close-open) and also use
simulated annealing for the set of facilities who have not yet defined their status.

Several exact algorithms were also introduced to solve the CFLP. Lai et al. [15] pro-
posed the Benders Decomposition, initially presented by Benders [16] and use Genetic
Algorithms (GA) [17] for the main problem. The algorithm in Lai et al. [15] starts by
dividing the original problem into subproblems easier to solve. The original problem is
relaxed and the constraints and variables that compose the relaxed problem are divided
and solved (using the GA) separately alternating between the divided problem and the
original problem.

Metaheuristics like Tabu Search (TS) [18, 19] and Greedy Randomized Adaptive
Search Procedure (GRASP) [20] have many applications in optimization problems with
high-quality results.

Sun [21], proposed a TS for the CFLP obtaining state-of-the-art results. Sun uses
flexible memory structures to search in solutions space regions that can be promising.
These space regions are kept in long-term memory to be intensively explored. Sun’s
TS uses diversification and intensification strategies, and a local search method based
on changing the status of facilities (open-close or close-open). When a set of opened
facilities is found (feasibility is met), then a Network Flow algorithm is used, based
on Kennington [22], to solve the transportation problem. Silva [23] proposed a hybrid
GRASP with different parameters (simple and reactive GRASP) obtaining good results
in reasonable computational times.

Guastaroba and Speranza [24] proposed a kernel search algorithm to solve the CFLP
that consists in a heuristic framework based on the idea of identifying subsets of variables
and solving a sequence of MILP (mixed integer linear programming) problems, each of
them, restrained to one of the identified subsets of associated variables.More information
about the kernel search method and its applications, please refer to [24, 25].



A Simple Dual-RAMP Algorithm 243

Firefly (with GA) by Rahmani and Mirhassani, the Ant Colony by Venables and
Moscardini [26] and Bee Colony [27, 28] are other recent metaheuristics based on
nature observation that produced good results for the CFLP.

3 RAMP Algorithm for the CFLP

ProposedbyRego [29] in 2005, theRelaxationAdaptiveMemoryProgramming (RAMP)
metaheuristic framework combines fundamental principles of mathematical relaxation
with concepts of adaptive memory programming techniques, covering primal and dual
solutions spaces, with the objective of incorporating information obtained by both sides
of the problem.

The RAMPmethod allows different levels of sophistication, depending on the inten-
sification desired for the primal or dual search. At the first level of sophistication (Dual-
RAMP), this framework explores more intensively the dual side, restricting the primal
side interaction to the projection of dual solutions to the primal solutions space and
to the improvement of these solutions. Higher levels of sophistication (PD-RAMP)
allow a more intensive exploration of the primal side, incorporating the simple level, the
Dual-RAMP, with more complex memory structures.

Several combinatorial optimization problems have already been solved by RAMP
applications, producing excellent results, in some cases with new best-known solutions.
Some examples of RAMP approaches with different levels of sophistication are the
capacitated minimum spanning tree [30], the linear ordering problem [31], or the hub
location problem [32–34], among others.

Wepropose aDual-RAMPalgorithm for theCFLP that uses aLagrangeanRelaxation
[35] on the dual side and a simple improvementmethodbasedon tabu searchon theprimal
side. The local search is based on the classical ADD/DROP neighborhood structure [13].

3.1 The Dual Method

The Dual Method proposed in this algorithm relies on the exploration on the dual side
with subgradient optimization to solve the dual problem obtained by the Lagrangean
Relaxation, based on Daskin [35].

At each iteration of the subgradient optimization, a solution for the relaxed problem
is obtained. This solution is projected to the primal solution space through a Projec-
tion Method and an Improvement Method tries to improve it. Specifically, if we relax
constraints (2), we obtain the following optimization problem:

min
∑m

i=1

∑n

j=1
DjCi j xi j +

∑m

i=1
Fi yi +

∑n

j=1
λ j

(
1 −

∑m

i=1
xi j

)
(8)

Z(λ) =
∑m

i=1
Fi yi +

∑m

i=1

∑n

j=1
(DjCi j − λ j )xi j +

∑n

j=1
λ j (9)

s.t.
∑n

j=1
xi j ≤ yi , i = 1, . . . ,m (10)

∑m

i=1
Si yi ≥

∑n

j=1
Dj (11)



244 T. Matos et al.

(3), (4) and (5)

Constraints (10) and (11) have been added to strengthen the linear relaxation and
to ensure that the total amount of the capacity that is selected is sufficient to serve all
the demand, respectively. The objective is to minimize the lagrangean function (9) with
respect to the primal decision variables (yi and xi j ) and to maximize the same function
over the lagrangean multipliers λ j . Maximizing the function over λ j can be done using
subgradient optimization, starting with λ j = miniCi j ,∀ j ∈ J .

The solution of the relaxed problem is achieved after solving to optimality the m
continuous knapsack problems, one for each facility as we show below (problem given
by Eqs. 12 to 14). To solve the m continuous knapsack problems resulting from the
lagrangean relaxation of the CFLP, we use the greedy algorithm proposed byDaskin [35]
(we will have one such problem for every candidate location and Vi will be the objective
value of locating at candidate facility i . This quantity will always be non-positive and is
given by Eq. 12).

min Vi =
∑n

j=1
(DjCi j − λ j )xi j (12)

s.t.
∑n

j=1
Dj xi j ≤ Si (13)

0 ≤ xi j ≤ 1, ∀ j ∈ n (14)

Wewould like to select facilitieswith the highest negative coefficients in the objective
function (12) and with small demands in order to consume relatively little capacity in
constraint (13). Hence, it is considered the following ratio for each demand node:

ri j =
(
DjCi j − λj

)

Dj
(15)

Variable ri j is the amount of the demand jwhich contributes to the objective function
given above, divided by the demand node j. This amount will be the proportion at which
each demand node j increases the objective function per unit of the capacity. Since
xi j (the assignment variables) can be fractional, we can solve the problem given by
Eqs. (12)–(14) to optimality by using the greedy algorithm proposed by Daskin [35].

Once all the Vi values have been computed, we can find values for the location
variables yi in the lagrangean problem, by solving the following optimization problem:

min
∑m

i=1
(Fi + Vi )yi (16)

∑m

i=1
Si yi ≥

∑n

j=1
Dj (17)

yi ∈ {0, 1} ∀i ∈ m (18)

The objective function (16) states that the contribution of candidate facility i to the
lagrangean objective function will be equal to the fixed cost of locating at candidate
facility i plus the assignment variables if we locate at candidate facility i . If we relax
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the integrality constraint (18) and replace it by the constraint, 0 ≤ yi ≤ 1,∀i ∈ I,
we could solve the problem given by Eqs. (16–18) with the same greedy algorithm we
used for problem above (12–14). This optimization problem is quite simple, therefore
we chose to solve it using the CPLEX solver, obtaining the decision variables of the
optimal location and ensuring we have sufficient opened facilities, as we will see in the
Projection Method. After we get the values for the decision variables xi j we are ready
to compute the remaining subgradient parameters.

The agility parameterπ , is initializedwith the value of 2, and every three consecutive
failures to improve the lower bound, it is divided by 2, in order to decrease the step
size (�). The agility parameter is restarted every 30 iterations. The step size (�) is
computed as � = π(ZUB−Z(λ))

||δ|| , where Z(λ) is an upper bound to the original problem
and Z(λ) is the best lower bound found so far. The j-th component of the subgradient
(δ) is δ j = 1 − ∑m

i=1 xi j . Finally, to determine the set of λ multipliers maximizing the
Lagrangean function Z(λ), the subgradient method requires generating a new sequence
of multipliers (one for each iteration of the Lagrangean Relaxation) that is determined
by λi ter+1

j = λi terj + �δ j .

3.2 Projection Method

Once we obtain the lower bound, Z(λ), then the dual solution is projected to the primal
solutions space by solving the Transportation Problem (TP) of the decision variables
yi = 1 for any i ∈ I , and adding to the TP’s objective function value the fixed costs of
the selected facilities i , thus obtaining the upper bound (ZUB).

If we get an infeasible solution (when solving the optimization problem (16–18)
we choose to set yi = 1 when and only when the coefficient (Fi + Vi ) is not positive.
For more information, please refer to [35]), then a simple procedure makes the solution
feasible by opening sufficient facilities to serve all customers. This is accomplished
by selecting facilities by descending order of setup cost and opening facilities until all
demand is met. For solving the TP, we used the commercial solver CPLEX 12.6 to obtain
the optimal solution for this integer programming problem and retrieve the values of the
assignment variables xi j .

3.3 Primal Method

After the Projection Method obtains a primal feasible solution, the Dual-RAMP algo-
rithm uses it as the initial solution for starting a simple improvement method based on
tabu search that uses the classical ADD/DROP [8] local search neighborhood structures.

The ADD and DROP neighborhood structures are used one at a time and a move
can only be applied if it is not tabu (the type of move, add or drop, and the location
of the facility is stored in the tabu list). The choice for selecting a facility for ADD
and/or DROP is based on choosing a facility by decreasing (DROP case) or increasing
(ADD case) order of the total sum allocation for all customers. This choice will penalize
facilities that contribute to the allocation cost growth and favor facilities that could make
a reduction on this cost. If all moves are tabu then the first item in the tabu list is removed
to allow new moves.
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Solving many TP is very expensive in terms of computational time, so we chose
to apply the first improvement criteria, which means that we apply a ADD or DROP
move whenever it improves the current solution in a given neighborhood. The algorithm
alternates the search between the dual side and the primal side until one of the four
stopping criteria is achieved:

• The agility parameter is less than 0.005;
• The norm reaches the value 0;
• The maximum number of iterations is reached;
• The absolute difference between the upper bound (ZUB) and lower bound (Z(λ)) is

less than 1.

4 Computational Results

The performance of the proposed Dual-RAMP algorithm was evaluated on a standard
set of benchmark instances. The first one is the well-known OR-Library data set (http://
people.brunel.ac.uk/~mastjjb/jeb/orlib/capinfo.html) proposed by Beasley [36]. This set
has 49 instances with known optimal solutions, which have the following sizes (facil-
ities × customers): 16 × 50, 25 × 50 and 50 × 50 for the small instances and 100 ×
1000 for the large ones.

The second set of instances (TBED1) was presented by Avella and Boccia [37]
(http://www.ing.unisannio.it/boccia) and contains 100 instances also with known opti-
mal solutions. In this set, the small instances have the following sizes: 300× 300, 300×
1500, 500 × 500 and 700 × 700.

The large instances have 1000 × 1000 facilities and customers. The last set of
instances (TESTBED A, B and C) contains the larger ones. Avella et al. [8] proposed
TESTBEDA and B (http://wpage.unina.it/sforza/test) and TESTBED Cwas introduced
by Guastaroba and Speranza [24] (http://www-c.eco.unibs.it/~guastaro/InstancesCFLP.
html). This set is composed of 800 × 4400, 1000 × 1000, 1000 × 4000, 1200 × 3000
and 2000 × 2000 instances (445 in total), with different costs structures and different
facility capacities. To scale these capacities the authors used a ratio with the following
values: 1.1, 1.5, 2, 3, 5 and 10. Each of the five subsets shown in Table 1 contains six
groups (of five instances), each with a specific ratio (for example, in TESTBEDA, 5 out
of the 30 instances belonging to the 800 × 4400 subset have a ratio of 1.1, the next 5
have a ratio of 1.5, and so on). For these large instances (TESTBED A, B and C) no
optimal solution is known (or it is not proven yet).

Table 1 summarizes the data sets considered in our computational experiments,where
instances belonging to the same data set are divided into subsets according to their size.

The algorithmwas coded in C programming language and run on an Intel Pentium I7
2.40GHzwith 8GBRAMunderUbuntu operating system (only one processorwas used)
using CPLEX 12.6 to solve the Transportation Problem. To compare our Dual-RAMP
algorithmwith the state-of-the-art approaches for theCFLPwe show, in Tables 2, 3 and 4,
the results reported for these algorithms on the data sets previously described. All tables
below presents the average computational time for each of the different algorithms. As

http://people.brunel.ac.uk/%7emastjjb/jeb/orlib/capinfo.html
http://www.ing.unisannio.it/boccia
http://wpage.unina.it/sforza/test
http://www-c.eco.unibs.it/%7eguastaro/InstancesCFLP.html
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Table 1. A summary of the instances to be considered.

Data set # Instances # Facilities # Customers

OR-Library

1 13 16 50

2 12 25 50

3 12 50 50

4 12 100 1000

TBED1

1 20 300 300

2 20 300 1500

3 20 500 500

4 20 700 700

5 20 1000 1000

TESTBED A/B/C

1 30 (TESTBED B = 25) 800 4400

2 30 1000 1000

3 30 1000 4000

4 30 1200 3000

5 30 2000 2000

all authors use different machines to process their algorithms, it is not possible to make a
direct comparison regarding this parameter. The comparison between algorithms needs
different tables, since some authors do not provide results for all instances.

The second table (Table 2) shows the average results for the OR-Library instances
divided by small and large. Some specific instances belonging to this group are also
presented in Table 2 to be possible to compare with one specific algorithm. The Dual-
RAMP algorithm is compared with Sun’s Tabu Search (TS) algorithm [21], Beasley’s
lagrangean relaxation heuristic (LR) [38], Guastaroba and Speranza’s Kernel Search
(KS) procedure [24], Hybrid Approach (Bee Algorithm with Mixed Integer Program-
ming – HA) proposed by Cabrera et al. [28] and with a Branch-and-Cut-and-Price, next
denoted as AB, proposed by Avella and Boccia [37]. The column GAP is the gap com-

puted as (UB−Z∗)
Z∗ ∗ 100 (Z∗ is the optimal solution) and CPU is the computational time

in seconds needed to achieve the best UB (upper bound).
Regarding the OR-Library instances, our algorithm found optimal solutions for all

49 instances under 113 s. In particular, in large instances, the RAMP achieved all optimal
solutions in less than 216 s, which is very fast considering the size of these problems.
For possible comparison with the Bee algorithm (HA), we included instances capa8000,
capb8000 and capc5000.Despite this algorithm and theKS achieved all optimal solution,
it seems that (this is only an assumption. A direct comparison would be possible if we
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Table 2. Comparison table for the ORLIB instances.

ORLIB KS TS LR HA AB Dual-RAMP

GAP CPU GAP CPU GAP CPU GAP CPU GAP CPU GAP CPU

Small 0.00 0.63 0.00 0.24 0.02 1.49 – – – – 0.00 10.18

Large 0.00 2158.83 0.07 48.63 0.21 75.79 – – 0.00 415.79 0.00 215.64

Average 0.00 1079.73 0.04 24.44 0.12 38.64 – – – – 0.00 112.91

CAPA
8000

0.00 3604.88 – – 0.24 73.65 0.00 367.74 – – 0.00 85.43

CAPB
8000

0.00 1999.73 – – 0.40 131.84 0.00 317.47 0.00 319.26 0.00 99.92

CAPC
5000

0.00 2621.94 – – 0.00 105.74 0.00 129.34 0.00 577.30 0.00 210.85

process all algorithms on the same machines) it takes much more computational time
on average than RAMP.

The next table (Table 3) shows the results for the TBED1 where instances are sepa-
rated into subsets according to their size instances and the proposed algorithm is com-
pared with Kernel Search [24] (KS) and with Avella and Boccia [37] (AB). For two
instances of this type, 1000 × 1000−11 and 1000 × 1000−12, the optimality has not
been proven. We used the best upper bound given by the [37]. The column Gap was
computed as above, and CPU is the computational time in seconds needed to achieve
the best UB.

Table 3. Comparison table for the TBED1 instances.

TBED1 KS AB Dual-RAMP

GAP CPU GAP CPU GAP CPU

300 × 300 0.00 57.82 0.00 327.99 0.02 96.52

300 × 1500 0.00 68.68 0.00 807.07 0.05 674.82

500 × 500 0.00 225.66 0.00 1518.56 0.06 286.10

700 × 700 0.00 795.80 0.00 6569.55 0.06 709.15

1000 × 1000 0.00 1745.87 0.00 46895.14 0.22 627.67

Average 0.00 578.77 0.00 11223.66 0.08 478.85

For TBED1 instances, our approach didn’t achieve all optimal solutions, but it
achieved near optimal solutions in low computational time. Comparing with KS algo-
rithm, for size 300 × 300, 500 × 500, 700 × 700 achieved, in average, quality solutions
less or equal than 0.06% deviation from optimal solutions in less than 710 s. For the
large ones, size 1000 × 1000, RAMP algorithm achieved in average solutions under
0.22% deviation from optimal in very reasonable computation time.
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The next table (Table 4) displays the results for the instances TESTBEDA, B and C.
Since the optimal solution is not known, we compute the “GAP” column as (UB−LB)

LB ∗
100. The “CPU” column continues to show the computational time (in seconds) needed
to achieve the best UB. The lower bound (LB) values were obtained with our lagrangean
relaxation, because we found very good lower bounds. Since the original instances for
the TESTBED C are not available, we used the instances provided by the authors of KS,
that where generated as described in Avella et al. [39]. Since the instances are not the
same, we do not show the results for the AB algorithm on TESTBED C.

Table 4. Comparison table for the TESTBED A, B and C instances.

TESTBED A KS AB Dual-RAMP

GAP CPU GAP CPU GAP CPU

800 × 4400 0.33 1349.87 0.71 209.27 0.31 1610.40

1000 × 1000 0.10 336.64 0.57 75.37 0.23 152.66

1000 × 4000 0.27 1539.77 0.67 304.45 0.46 1714.60

1200 × 3000 0.18 1570.96 0.63 150.43 0.32 1336.42

2000 × 2000 0.07 1382.68 0.51 165.40 0.24 964.11

Average 0.19 1235.99 0.62 180.98 0.31 1155.64

TESTBED B

800 × 4400 0.33 1497.19 1.98 113.22 0.90 4034.01

1000 × 1000 0.34 1409.52 0.60 48.03 0.90 477.24

1000 × 4000 0.34 1519.93 1.21 129.85 1.04 4270.93

1200 × 3000 0.36 1727.18 0.78 108.78 0.74 2956.66

2000 × 2000 0.40 2073.38 0.96 161.25 1.12 2588.78

Average 0.35 1645.44 1.10 112.23 0.92 2865.53

TESTBED C

800 × 4400 1.51 265.86 – – 0.09 6121.58

1000 × 1000 3.57 1358.44 – – 0.91 2069.96

1000 × 4000 2.09 465.63 – – 0.17 7934.40

1200 × 3000 2.94 1001.21 – – 0.28 7481.75

2000 × 2000 4.65 1833.15 – – 1.17 11391.92

Average 2.95 984.86 – – 0.52 6999.92

For these very large instances, the Dual-RAMP algorithm shows its robustness by
being very consistent with the previous results, since it achieved good quality solutions
in reasonable computational times. Dual-RAMP produced very competitive results for
TESTBED A and B and proved to be very effective for TESTBED C despite needing
much higher computational times. Dual-RAMP achieved a 0.52% average Gap, a much
better value than the 2.95% obtained by the KS approach.
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In summary, our Dual-RAMP algorithm proved to be a robust approach for the
solution of the CFLP, by effectively solving the best-known (small, large and very large)
instances available in the literature.

5 Conclusions

This paper describes a Dual-RAMP algorithm for the CFLP that competes with the best-
known algorithms for the solution of this problem. Despite the fact that only the first
level of sophistication of the RAMP method was implemented, the proposed algorithm
managed to produce excellent results for the complete testbed in reasonable computa-
tional times, and even introduced ten new best-known solutions. We conjecture that our
algorithm owes its advantage to the premise that a judicious exploration of primal-dual
relationships provides an effective interplay between intensification and diversification
that is absent in search methods confined to the primal solution space. The consistent
encouraging results obtained by RAMP applications to hard combinatorial optimization
problems certainly invite further studies in the application of the method. In particu-
lar, the impressive results reported by the present study strongly suggest extending our
RAMP approach to the solution of other facility location problems.
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Abstract. In this paper, a tourist trip design problem is simulated by
the Capacitated Team Orienteering Problem (CTOP). The objective of
the CTOP is to form feasible solution, as a set of itineraries, that rep-
resent a sequence visit of nodes, that maximize the total prize collected
from them. Each itinerary is constrained by the vehicle capacity and
the total travelled time. The proposed algorithmic framework, the Dis-
tance Related Differential Algorithm (DRDE), is a combination of the
widely-known Differential Evolution algorithm (DE) and a novel encod-
ing/decoding process, namely the Distance Related (DR). The process
is based on the representation of the solution vector by the Euclidean
Distance of the included nodes and offers a data-oriented approach to
apply the original DE to a discrete optimization problem, such as the
CTOP. The efficiency of the proposed algorithm is demonstrated over
computational experiments.

Keywords: Capacitated Team Orienteering Problem · Differential
Evolution Algorithm · DR solution encoding

1 Introduction

Over the years, the tourism industry promotes products that offer customize
solutions with respect to their customers’ preferences, and their time and budget
limitations. Following this trend, the scientific community has turned to the
modelling and optimization of problems that simulate a tourist trip, bounded
by several constraints. The objective of these problems is to simulate the design
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of an itinerary that respects the customer’s (tourist) requirements. A tourist
trip design problem can be represented by an Orienteering Problem (OP), firstly
introduced in 1987, by Golden et al. [12]. The objective of the OP is to maximize
the total score, collected from nodes that are included in a route, considering the
formulation of a shortest path. In contrast to the original Travelling Salesman
Problem (TSP), the OP takes into account the realistic issue that a common
tourist trip imposes, i.e it is impossible to visit all the POIs in a city due to
budget or time limitations [22]. Thus, a specific set of nodes has to be selected
from all the available nodes, that is sufficient to form a feasible itinerary by
maximizing the collected score. The extension of the OP to a number of vehicles
is the Team Orienteering Problem (TOP), initially introduced as the Multiple
Tour Maximum Collection Problem by Butt and Cavalier in 1994 [5]. Since
then, several heuristics, meta-heuristics and exact algorithms were proposed for
the solution of the TOP, while it has been widely used to model tourist trip
design problems [11,13]. As an OP, in TOP it is not obligatory to visit all the
available nodes, and by including a homogeneous fleet, each vehicle follows a
route starting from an initial node (depot), up to a final node, with respect to
time travel constraints.

In this paper we focus on the Capacitated Team Orienteering Problem
(CTOP) as a variant of the aforementioned TOP, that was introduced by
Archetti et al. [1]. The CTOP differs from TOP as follows: (a) all vehicles should
return to the initial node (depot), and (b) an extra constraint exists that facil-
itates the capacity of the vehicle in each route. Initially, for the solution of the
CTOP, Archetti et al. [1] proposed three algorithmic schemes, a Variable Neigh-
borhood Search (VNS) algorithm and two variants of the Tabu Seach algorithm,
the TabuFeasible (TSF) and the TabuAdmissible (TSA). In their approach, all
the nodes are grouped and arranged into routes, and then, the most profitable
routes are chosen to form a solution, while unfeasible solutions are also con-
sidered to further explore the search space. Moreover local search and hump
mechanisms were employed to escape from local optima, and the computational
results show that the heuristics obtain good results within a reasonable amount
of time. The unsolved benchmark instances in their work, were latter solved
to optimality by Archetti et al. in 2013 [2], utilizing a branch-and-price algo-
rithm. In addition, in 2013, Tarantilis et al. [20] presented a hierarchical bi-level
search framework, namely a Bi-level Filter-and-Fan method, for the solution of
the CTOP. Their algorithm, in the first phase aims to optimal node selection,
in terms of score, by employing a Tabu Search scheme and the Filter-and-Fan
search, while in the second phase the travel time minimization is performed by
a Variable Neighborhood Descent algorithm. The proposed method is tested on
the benchmark instances introduced in [1], and on a new set of lager instances.
The result shown the efficiency and effectiveness of their approach as 18 best
known solutions were obtained.

Also, in 2013, Luo et al. [15] described the ADaptive Ejection Pool with
Toggle-Rule Diversification (ADEPT-RD) for the solution of the CTOP. In their
method, at each iteration, nodes with high priority are inserted into a solution
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based on a scheme that switches between two ejection pool priority rules, and
subsequently, a local search technique is performed to restore the feasibility of the
solution. Compared to [1], the approach of Luo et al. managed to obtain outper-
forming solution in terms of both quality and execution time. In 2016, Ben-Said
et al. [3] presented an Adaptive Iterative Destruction/Construction Heuristic
(AIDCH), that is based on two adaptive mechanisms, the best insertion and
the perturbation, following an adaptive parametrization according to the solu-
tion progress. Their algorithm showed high quality results with a competitive
computational time in the solution of the CTOP benchmark instances proposed
in [1]. The same authors, in 2018 [4], proposed a Variable Space Search (VSS)
heuristic, combining the exploration and exploitation that the Greedy Random-
ized Adaptive Search Procedure (GRASP) and the Evolutionary Local Search
(ELS), respectively offer. Their algorithmic framework operates in two search
spaces, the unfeasible, i.e. the giant tour space, and the feasible, i.e. the route
space. Moreover, to enhance their solutions, in the route search space, a Tabu
Search and a Simulated Annealing are employed. The described method results
in two variant the VSS-Tabu and the VSS-SA, that outperform the computa-
tional results found in the literature , by obtaining 74 and 77 new best solutions
on the large CTOP benchmark instances [20], respectively.

Based on the above brief literature review, there is no publication that stud-
ies the solution of the CTOP utilizing the Differential Evolution (DE) algo-
rithm. The DE is a stochastic, real-parameter optimization algorithm and was
fist proposed by Storn and Price, in 1997, [19]. Based on the literature, the
DE has been employed for the solution of several VRP problems such as: the
Capacitated Vehicle Routing Problem (CVRP) [10,21]; the Multi-Depot Vehicle
Routing Problem (MDVRP) [14]; the Open Vehicle Routing Problem (OVRP)
[6]; and the Vehicle Routing Problem with Simultaneous Pickups and Deliveries
and Time Windows (VRP-SPDTW) [16]. Because of the continuous nature of
DE, researchers develop encoding and decoding methods, in order to be able to
apply it to discrete optimization problems, e.g. the VRP. Thus, in this paper we
present a novel encoding and decoding scheme for the solution of the Capacitated
Team Orienteering Problem, that is incorporated to a DE algorithmic scheme,
enhanced by multiple local search procedures. The encoding/decoding method
will be referred as Distance Related.

The rest of the paper is organized as follows: Sect. 2 provides the defini-
tion and mathematical formulation of the CTOP; Sect. 3 presents the original
DE algorithm; in Sect. 4 the proposed Distance Related method is described
in detail; in Sect. 5 the proposed algorithmic framework “DRDE” is presented;
while Sects. 6 and 7 provide the computational experiments, their analysis and
the drawn conclusions of this study.

2 Capacitated Team Orienteering Problem

The Capacitated Team Orienteering Problem can be defined on a complete
undirected graph G = (V,A) where V = {1, · · · , N} is the set of nodes and
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A = {(i, j)|i, j ∈ V } defines the set of arcs. Every node i, included in set V , is
associated with a prize value pi and a demand value Di. Moreover, for each pair
of nodes (i, j), the corresponding travel time (cost), is denoted by tij . According
to the mathematical formulation of the problem, M number of routes has to
be created, corresponding to a homogeneous fleet of vehicles. Such, each vehi-
cle, with Q maximum carrying capacity, follows an itinerary, starting from, and
returning to the depot, without exceeding Tmax time units. The objective of
the CTOP is the maximization of the total prize, collected from the nodes that
are included in the feasible itineraries. Due to problem restrictions, i.e. vehicle
capacity and total travel duration, it is not possible to formulate a feasible solu-
tion including all nodes of set V . Respecting the above description, the CTOP
is mathematically formulated as follows, based on the three-index vehicle flow
formulation presented by Tarantilis et al. [20]. The decision variables used, are:

– yid = 1 if node i (i = 1, . . . , N) is included in route d (d = 1, . . . , M), yid = 0
otherwise.

– xijd = 1 if the arc i, j (i, j = 1, . . . , N) is included in route d (d = 1, . . . , M),
xijd = 0 otherwise. The symmetry of the problem ensures that tij = tji, thus,
only the variables xijd for i < j are defined.

The mathematical formulation of CTOP is depicted below.

Maximize

N∑

i=2

M∑

d=1

piyid (1)

s.t.
N∑

j=2

M∑

d=1

x1jd =
N∑

i=1

M∑

d=1

xi1d = M (2)

M∑

d=1

yid ≤ 1, ∀i = 2, . . . , N (3)

∑

j∈N

xijd =
∑

j∈N

xjid = yid, ∀i = 2, . . . , N ;∀d = 1, . . . ,M (4)

∑

i∈N

∑

j∈N

tijxijd ≤ Tmax, ∀d = 1, . . . ,M (5)

∑

i∈N

Dixijd ≤ Q, ∀d = 1, . . . , M (6)

∑

i∈S

∑

ij∈S

xijd ≤ |S| − 1, ∀S ⊆ V, |S| ≥ 2;∀d = 1, . . . ,M (7)

xijd, yid ∈ {0, 1}, 1 ≤ i < j ≤ N ; d = 1, . . . ,M (8)

Equation 1 express the objective function i.e. the total profit maximization.
Constraint 2 ensures that M vehicles leave and return to the depot, node 1. Con-
straints 3 impose that each node is allowed to be included only once in a route.
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The continuity of the route is facilitated by constraints 4, that is the same vehi-
cle d should depart from the same node if that node is visited. Constraints 5, 6
ensure the feasibility of each route in the solution in respect of time duration and
vehicle capacity. Constraints 7 prohibit sub-tour formulation, while Constraints
8 impose binary restrictions to the decision variables.

3 Differential Evolution Algorithm

Differential Evolution (DE) was designed for continuous-optimization problems,
as a population-based search method, which includes processes of Evolution-
ary Algorithms (EAs), such as mutation, crossover and selection. One of the
DE advantages is the small number of control parameters, the population size
(NP ), the mutation rate (F ) and the crossover rate (Cr). The main idea is the
perturbation of a population of vectors through a number of generations, that
incorporates vector differences and recombination. Initially, similar to EAs, a
randomly disturbed population of NP individuals is generated. Each one is a
D-dimensional real vector xij , where i ∈ {1, · · · , NP} and j ∈ {1, · · · ,D}. The
first evolutionary process that takes place in every generation is the mutation.
During mutation, three vectors are randomly chosen, a base vector (i1 �= i) and
two others (i �= i1 �= i2 �= i3). The difference of xi2 and xi3 is amplified by the
mutation rate F , which is a real, constant value between 0 and 2. The scaled
difference is added to the base vector, see Eq. 9, in order to form the mutant
vector vij(t), for each target vector of the population, in t generation, i.e. for
each individual.

vij(t + 1) = xi1j(t) + F ∗ (xi2j(t) − xi3j(t)) (9)

Afterwards, the crossover process occurs, which is a recombination of each
target and its corresponding mutant and generates the trial vector. There are two
common kinds of crossover methods, exponential and binomial. The binomial
crossover will be used in this research and it is implemented as follows, for
every target vector in the population. Through Eq. 10, it is determined what
parameters will be inherited to the trial vector from the mutant and what from
the target vector. The crossover is controlled by the Cr parameter and its value
is decided by the user, within the range [0,1]. For each parameter j, a random
number φ and a random index jrand are generated such as φ, jrand ∈ [0, 1]. If
the random number φ is less or equal to Cr, or if the parameter’s index equals
to jrand, the trial vector inherits the corresponding element from the mutant
vector and otherwise from the target vector. The jrand ensures that at least one
parameter will be forwarded to the trial vector from the mutant vector.

uij(t + 1) =
{

vij(t + 1), if φ ≤ Cr or j = jrand
xij(t), otherwise (10)

Both processes, mutation and crossover, increase the diversity of the popula-
tion and thereby they carry out the exploration phase of the search. In order to
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involve an exploitation phase of the search and to retain the size of the popula-
tion, a selection procedure is performed. Thus, subsequent to crossover process,
one of the correlated vectors, target and trial, have to remain in the population
and the other one has to be discarded. Differential evolution uses a greedy tech-
nique as selection and the vector with the highest fitness value will survive over
the other and will be included in the next generation’s population, see Eq. 11.

xij(t + 1) =
{

uij(t + 1), if f(xij(t)) ≤ f(uij(t + 1))
xij(t), otherwise (11)

A number of variations to the basic Differential Evolution algorithm have
been developed over the years. Different DE mutation strategies have a general
notation DE/x/y/z, where x is cited to the way that a target vector is selected,
y is the number of difference vectors considered for perturbation of x and z
refers to the crossover scheme (i.e. exp: exponential; bin: binomial).For a recent
theoretical discussion focused on the DE algorithm, one can referred to [9] and
[18]. The presented research adopts the DE/best/1/bin variation, thus the vector
to be mutated is the best individual vector with the best fitness value, including
one difference vector and the binomial crossover is implemented. Although, the
crossover part of the adopted framework is enriched, as described in Sect. 5.

4 The Proposed Distance Related Solution
Encoding/Decoding Scheme

First, the representation of a feasible CTOP solution need to be reported.
Inspired by several relating studies, i.e meta-heuristic optimization approaches
for the VRP, a sequence representation of nodes in integer values (ordinal num-
ber encoding) is adopted. Thus, a feasible depot-returning vehicle itinerary starts
from node 1, a permutation of integer values follows (showing the sequence
that the nodes should be visited) and finally, the node 1 concludes it, e.g.
[1, 4, 6, 7, 2, 1]. A complete feasible solution consists of M routes in the
same vector such as: Solution Vector [1, 4, 6, 7, 2, 1, 3, 10, 5, 1]. From this
small example, one may observe that the solution consists of two routes; that the
duplication of node one is successive order it omitted; and based on the selective
nature of CTOP, not every node in the set {1...10} is included into the solution.

Second, it is crucial to align the solution representation with the scheme and
requirements of the optimization algorithm. As described above, the DE operates
in the continues search space and based on Eq. 9, in order to form the mutant
vector, element-wise operations have to occur between the vectors chosen among
the population of solutions. Thus, although the node sequence representation,
described above, is convenient for proving feasibility and calculating the objective
function value, it is not the appropriate form to apply the equations of mutation.
Consequently, the integer values of the solution vector should be transformed to
continuous that the DE is able to handle. In the following, we present methods
found in the literature, addressing this issue.
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– Assuming that the mutation equation is directly applied to the ordinal
encoded vectors, the mutant vector occurs, consisting of floating numbers.
Subsequently, the Integer order criterion (IOR) [6] can be utilized. According
to IOR the largest floating number corresponds to the largest node ordinal
number N , the lowest to depot and the rest may be deduced by analogy.
For example the mutant vector [−7.1, 1.3, −5.6, 2.5, −3.7, 0, 3.3, 5.4] is
transformed to [1, 5, 2, 6, 3, 4, 7, 8].

– The same issue occurs during the movement equations of the Particle Swarm
Optimization Algorithm (PSO), and as an example in [23], the integer part of
an element in the vector represents the vehicle. Thus, the same integer part
represents the node in the same route, while the fractional part represents
the sequence of the customer in the vehicle, following the IOR logic.

– Another technique that has been applied to the solution of the flow shop
scheduling problem with PSO [17] is to use transformation functions based
on real number encoding. The proposed equations to encode and decode the
solution vector are the Eqs. 12 and 13, respectively, where f is a large scaling
factor.

zi = −1 + z′
i ∗ f ∗ (lengthvector)/(103 − 1) (12)

z′
i = (1 + zi ∗ (103 − 1)/(f ∗ (lengthvector) (13)

Moreover, after the completion of a decoding process, all of the aforemen-
tioned methods require a feasible control, to check and correct the transformed
vector accordingly. These methods are applied to problem where the complete
set of nodes must be included in a feasible solution, while in CTOP that is not
the case. Thus, the Distance Related (DR) solution encoding/decoding scheme
is proposed. The fundamental element of the process is the Euclidean Distance
of successive nodes in a route. The novelty of the DR is that utilizes float-
ing values that directly represent a sequence of nodes, and that provides a
data-orientated transformation scheme, without requiring auxiliary operators.
A simple example is illustrated in Table 1, where the distance representation of
the vector express the Euclidean Distance e.g. the distance between the depot
and node 12 is 12.04 units. When all the solution vectors in the population
have been expressed accordingly the mutation equation (Eq. 9) is applied and
the corresponding mutant vector emerges. Subsequently, the crossover opera-
tion have to take place, as described in the following section. Nevertheless, the
crossover results in a trial vector that consists of floating numbers. At this stage,
the decoding procedure has to be employed. Based on the Distance Related
scheme, the floating values are transformed to integer values, that align to the

Table 1. DR: encoding and mutation example

Solution vector 1 12 39 17 1 48 6 1

Distance representation Inf 12.04 6.71 9.22 22.02 9.43 15.13 14.14

Mutant vector 0 7.96 7.41 15.79 22.02 11.10 15.63 10.59
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representation of a nodes’ sequence. The following steps are included in the
decoding process:

1. The decoded trial vector is initialized with node 1, xi,1(t + 1): [1].
2. Then, we seek the pr nodes that are not included in xi,:(t + 1), and their

distance from the last node included is in close proximity to the corresponding
value of the trial vector ui,j(t + 1).

3. Among the selected nodes, the node with the maximum prize value is inserted
into the xi,:(t + 1), in the position j, with respect to the constraints of the
CTOP.

4. The process continues for all the values included in the trial vector ui,:(t+1).

As an instance, decoding the mutant vector presented in Table 1, the first
node to be inserted in the first route (after the depot), will be the one with the
maximum prize, among the pr nodes with distance from depot, i.e t1,j , close to
7.96. Based on the data depicted in Table 2, with pr = 6, node 48 should be
inserted in the route subsequent to the depot. In the second step, the process
is repeated with respect to node 48, i.e t48,j , and the distance 7.41 (the next
element in the mutant vector), hence node 19 should be positioned after node
48. The rest of the process may be deduced by analogy, while, in case of an
unfeasible insertion the route should be completed and node 1 should be forced
into the solution, accordingly.

Table 2. Example of the decoding process based on the distance related method

The first decoding step

Nodes to be
considered: 28 13 48 33 7 12

t1,j 8.00 8.06 9.43 10.00 11.45 12.04
Prize: 16 16 32 9 15 23

The second decoding step

Nodes to be
considered:

5 19 13 18 1 49

t48,j 7.81 8.06 6 9.22 9.43 9.89
Prize: 6 31 16 2 0 5

5 Distance Related Differential Evolution Algorithm
(DRDE)

In this section, the proposed algorithmic framework, namely the Distance
Related Differential Evolution Algorithm (DRDE) is described, in detail. The
DRDE follows the scheme of the original DE, while it incorporates the novel
Distance Related procedure, presented in the previous section, along with local
search techniques, oriented to the requirements and to the goal of the CTOP.

Following the DRDE framework, depicted in Algorithm 1, the first step is the
formulation of the initial population, according to the Initial solution heuris-
tic technique (Algorithm 2). The goal of the initial process is to create NP
feasible solutions, that show diversity and, respectively, good solution quality.
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Algorithm 1. Distance Related Differential Evolution Algorithm
Define: size population NP , number of generations L, F & Cr
Initialize target population via Initial solution, see Algorithm 2
repeat

for each xi,:, i = 1 : NP do
Update F & Cr
Compute the objective function value f(xi,:)
Find xbest,:: max f & xrand1,:, xrand2,:

Express chosen solutions by distance representation: disti,:, see Section 3
Apply mutation operator: mutant vector vi,:, see Equation 9
Apply crossover operator:
if rand ≤ 0.5 then

Apply binomial operator: trial vector ui,:, see Equation 10
else

Apply bi − route operator:
Find index of xi,: == 1: separate M routes
for each route d = 1 : M do

if rand ≤ Cr then
ui,routed ← vi,routed

else
ui,routed ← disti,routed

end if
end for

end if
Update pr
Apply decoding process on ui,:, see Section 3
Apply Exchange nodes : 1 − 1 on ui,:

Apply Exchange nodes : 2 − 1 on ui,:

Apply Remove node on ui,:

Apply Reinforcement on ui,:

Calculate objective function f(ui,:)
if f(ui,:) ≥ f(xi,:) then

xi,: ← ui,:

end if
end for

until L generations are reached

These characteristics are achieved by the random selection of the M initial nodes
and, subsequently by selecting elite nodes (in terms of prize) to augment the solu-
tion, since the objective of the CTOP is the maximization of the total collected
prize from the nodes. Continuing with the process, the distance representation of
the solutions is adopted, as described in Sect. 4. Then, the mutation operator is
applied and the mutant vectors vi,: are created. Although, the utilization of the
binomial crossover has been mentioned above, the crossover operator applied is
enriched, denoted by bi−route crossover. Based on a random number generator,
the binomial crossover is used, alternatively to the bi − route. The objective of
the later operator, is to crossover complete routes (as partial solution) between
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the target and the mutant solution vector. Preserving the distance elements of
a complete route, could aid the DRDE to inherit efficient parts of a solution to
the next generations, while the decoding process gains in effectiveness.

Across the proposed algorithmic framework, nodes have to be inserted in the
most efficient position in a route (index of the solution vector), with respect to
the corresponding time travel needed. Therefore, the Savings criterion of Clarke
and Wright [7], is employed. Regardless of whether the most efficient position is
to be determinate among the hole solution (M routes) or along a partial solution
(d route), the process is identical. For each position j to be examined, Eq. 14,
and, hence, the minimum sk,j corresponds to the position that node k should be
inserted.

sk,j = troute(j−1),k + troute(j+1),k − troute(j−1),route(j+1) (14)

Algorithm 2. Initial solution

Randomly select M initial nodes to create the ui,:

ui,: = [1, n1, 1, n2, 1, · · · , 1, nM , 1]
Find all nodes n not included in the solution vector ui,:

S ∪ S + n
Sort S in descent order based on prize
repeat

Find rand node n in S′ ← 0.2 ∗ length(S)
Calculate s of n, considering the hole solution ui,:

Find position k: min sn,:

u′
i,: ← ui,:

Insert n in u′
i,k

Check feasibility of u′
i,:

Update u′
i,: accordingly

Update ui,: ← u′
i,: accordingly

until itermax number of iterations is reached

Furthermore, three local search techniques are sequentially utilized, i.e. the
Exchange nodes : 1 − 1, the Exchange nodes : 2 − 1, the Remove node and the
Reinforcement. The goal of the Exchange nodes : 1 − 1 heuristic technique is
to replace a node in the trial solution vector by an unused one, with greater prize
value. Moreover, it facilitated that the later node is inserted in the most efficient
position in the vector. Expanding this logic, the Exchange nodes : 2 − 1 aids
to the total prize maximization of the solution vector, by replacing two nodes
by an unused one, when the prize of the later node exceeds the total prize of
the replaced ones. The Remove node technique is applied to remove nodes from
the trial solution vector, that have minimum contribution in maximizing the
total prize of the solution i.e. the nodes with the minimum prize. Such, the node
removal corresponds to a reduction in the total travel time, and that creates the
opportunity for other nodes with greater prize to be inserted, subsequently, in
the solution via Reinforcement.
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6 Computational Experiments

6.1 Parametrization and Benchmark Instances

To evaluate the proposed Distance Related Differential Evolution Algorithm
in the solution of the Capacitataed Team Orienteering Problem, the benchmark
instances proposed by Archetti et al. [1] were used. These instances are variations
of the 10 original benchmark instances for the Capacitated VRP, presented by
Christofides et al. [8], while the number of nodes varies between 51 and 200. To
align with the formulation of the CTOP, the prize element has been included, as
such, each node i is associated to a prize value pi, defined as (0.5+h)∗Di, where
h is a random number uniformly generated in the interval [0, 1]. Furthermore, 12
variants for each of the 10 Christofides’ instances have been created, by modifying
the fleet size M , the maximum vehicle capacity Q and the maximum allowed
travel time Tmax, grouped in 10 distinctive sets.

The Differential Evolution algorithm, requires only a few control variables, as
mentioned above: the L, NP , F , and Cr. Additionally, the DRDE requires the
following control variables: the pr in the decoding DR process, as the number
of nodes to be considered (see Sect. 4), and the itermax, as the number of local
search iterations. The values of these parameters are summarized in Table 3,
deduced through experimental algorithm executions over several representative
instances. To enhance the exploration ability of the DRDE, in each generation,
for each solution, the parameters F , Cr and pr, are updated randomly, within
their predetermined range, respectively.

Table 3. Control variables

L NP F Cr pr Itermax

500 1.2 ∗ N rand[0.6 : 0.7] rand[0.8 : 0.9] rand[0.01 : 0.04] ∗ N 50

6.2 Results

Tables 4 and 5 present the results of the conducted computational experiments.
The name of each tested benchmark instance is presented in the first and sixth
column of each table, expressed as: Set indicator − N − Q − Tmax. The second
and seventh column of each table holds the best solution found in the literature,
denoted by Best, considering the studies of [1–4,15,20]. The best obtained objec-
tive function value, among five algorithmic executions of the proposed DRDE,
is presented in columns three and eight, denoted by zbest. Subsequently, the
relative percentage error rpe per instance i, is reported, calculated by Eq. 15.
Finally, columns five and ten, depict the average relative percentage error over
the five algorithmic executions, denoted by arpe.

rpe =
(Besti − zbesti)

Besti
% (15)
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Table 4. Computational results

Instance name DRDE Instance name DRDE

Best zbest rpe(%) arpe(%) Best zbest rpe(%) arpe(%)

03-101-2-100-100 277 277 0.00 0.00 08-101-2-100-100 277 277 0.00 0.00

03-101-2-200-200 536 536 0.00 0.00 08-101-2-200-230 536 536 0.00 0.00

03-101-2-50-50 133 133 0.00 0.00 08-101-2-50-50 133 133 0.00 0.15

03-101-2-75-75 208 208 0.00 0.00 08-101-2-75-75 208 208 0.00 0.10

03-101-2-100-100 277 277 0.00 0.00 08-101-2-100-100 277 277 0.00 0.00

03-101-2-200-200 536 536 0.00 0.00 08-101-2-200-230 536 536 0.00 0.00

03-101-2-50-50 133 133 0.00 0.00 08-101-2-50-50 133 133 0.00 0.15

03-101-2-75-75 208 208 0.00 0.00 08-101-2-75-75 208 208 0.00 0.10

03-101-3-100-100 408 408 0.00 0.00 08-101-3-100-100 408 408 0.00 0.15

03-101-3-200-200 762 760 0.26 0.42 08-101-3-200-230 762 759 0.39 0.55

03-101-3-50-50 198 198 0.00 0.00 08-101-3-50-50 198 198 0.00 0.00

03-101-3-75-75 307 307 0.00 0.00 08-101-3-75-75 307 307 0.00 0.20

03-101-4-100-100 532 530 0.38 0.49 08-101-4-100-100 532 530 0.38 0.45

03-101-4-200-200 950 945 0.53 0.53 08-101-4-200-230 950 948 0.21 0.53

03-101-4-50-50 260 260 0.00 0.00 08-101-4-50-50 260 260 0.00 0.08

03-101-4-75-75 403 403 0.00 0.00 08-101-4-75-75 403 403 0.00 0.15

06-51-2-100-100 252 252 0.00 0.00 09-151-2-100-100 279 279 0.00 0.00

06-51-2-160-200 403 403 0.00 0.00 09-151-2-200-200 548 546 0.36 0.62

06-51-2-50-50 121 121 0.00 0.00 09-151-2-50-50 137 137 0.00 0.29

06-51-2-75-75 183 183 0.00 0.00 09-151-2-75-75 210 210 0.00 0.00

06-51-3-100-100 369 369 0.00 0.00 09-151-3-100-100 415 414 0.24 0.63

06-51-3-160-200 565 565 0.00 0.00 09-151-3-200-200 797 795 0.25 0.60

06-51-3-50-50 177 177 0.00 0.00 09-151-3-50-50 201 201 0.00 0.00

06-51-3-75-75 269 269 0.00 0.00 09-151-3-75-75 312 312 0.00 0.13

06-51-4-100-100 482 482 0.00 0.00 09-151-4-100-100 546 542 0.73 0.84

06-51-4-160-200 683 683 0.00 0.00 09-151-4-200-200 1033 1030 0.29 0.52

06-51-4-50-50 222 222 0.00 0.00 09-151-4-50-50 262 262 0.00 0.00

06-51-4-75-75 349 349 0.00 0.00 09-151-4-75-75 408 407 0.25 0.34

07-76-2-100-100 266 266 0.00 0.00 10-200-2-100-100 282 281 0.35 0.43

07-76-2-140-160 377 377 0.00 0.00 10-200-2-200-200 556 554 0.36 0.43

07-76-2-50-50 126 126 0.00 0.00 10-200-2-50-50 134 134 0.00 0.15

07-76-2-75-75 193 193 0.00 0.10 10-200-2-75-75 208 208 0.00 0.10

07-76-3-100-100 397 397 0.00 0.00 10-200-3-100-100 418 415 0.72 0.86

07-76-3-140-160 548 548 0.00 0.15 10-200-3-200-200 816 813 0.37 0.44

07-76-3-50-50 187 187 0.00 0.00 10-200-3-50-50 200 200 0.00 0.20

07-76-3-75-75 287 287 0.00 0.00 10-200-3-75-75 311 311 0.00 0.13

07-76-4-100-100 521 521 0.00 0.12 10-200-4-100-100 553 550 0.54 0.83

07-76-4-140-160 707 707 0.00 0.14 10-200-4-200-200 1064 1060 0.38 0.47

07-76-4-50-50 240 240 0.00 0.08 10-200-4-50-50 265 265 0.00 0.15

07-76-4-75-75 378 378 0.00 0.11 10-200-4-75-75 411 407 0.97 1.12

Summarizing, the computational results presented in this Section, the DRDE
reached the best known results for 88 instances among the 120 explored. For 24
instances, the reported rpe does not exceed the value of 0.39%, while, in only
8 benchmark instances the algorithm showed deviation from the best known
solution inside the range [0.52%,1.24%]. Examining each benchmark set, for all
the instances in sets 6 and 7, with 51 and 76 nodes, respectively, the maximum
known prize is achieved by the proposed algorithm. With respect to sets 03, 08



A Novel Solution Encoding in the DE for Optimizing TTDP 265

Table 5. Computational results (continued)

Instance name DRDE Instance name DRDE

Best zbest rpe(%) arpe(%) Best zbest rpe(%) arpe(%)

13-121-2-100-100 253 253 0.00 0.00 15-151-2-100-100 282 282 282 0.00

13-121-2-200-720 513 513 0.00 0.00 15-151-2-200-200 550 550 550 0.00

13-121-2-50-50 134 134 0.00 0.00 15-151-2-50-50 134 134 134 0.00

13-121-2-75-75 193 193 0.00 0.00 15-151-2-75-75 211 211 211 0.00

13-121-3-100-100 344 344 0.00 0.00 15-151-3-100-100 417 418 417 0.24

13-121-3-200-720 727 727 0.00 0.06 15-151-3-200-200 800 802 800 0.25

13-121-3-50-50 193 193 0.00 0.31 15-151-3-50-50 200 200 200 0.20

13-121-3-75-75 265 265 0.00 0.30 15-151-3-75-75 315 315 315 0.13

13-121-4-100-100 419 416 0.72 0.81 15-151-4-100-100 548 549 548 0.18

13-121-4-200-720 908 908 0.00 0.04 15-151-4-200-200 1020 1031 1020 1.07

13-121-4-50-50 243 243 0.00 0.25 15-151-4-50-50 266 266 266 0.15

13-121-4-75-75 323 323 0.00 0.06 15-151-4-75-75 415 415 415 0.14

14-101-2-100-100 271 271 0.00 0.00 16-200-2-100-100 285 285 0.00 0.00

14-101-2-200-1040 534 534 0.00 0.00 16-200-2-200-200 558 557 0.18 0.47

14-101-2-50-50 124 124 0.00 0.00 16-200-2-50-50 137 137 0.00 0.00

14-101-2-75-75 190 190 0.00 0.00 16-200-2-75-75 212 212 0.00 0.09

14-101-3-100-100 399 398 0.25 0.35 16-200-3-100-100 423 423 0.00 0.00

14-101-3-200-1040 770 770 0.00 0.00 16-200-3-200-200 822 820 0.24 0.24

14-101-3-50-50 184 184 0.00 0.00 16-200-3-50-50 203 203 0.00 0.10

14-101-3-75-75 279 279 0.00 0.00 16-200-3-75-75 317 317 0.00 0.19

14-101-4-100-100 525 523 0.38 0.46 16-200-4-100-100 558 556 0.36 0.36

14-101-4-200-1040 975 975 0.00 0.00 16-200-4-200-200 1073 1071 0.19 0.19

14-101-4-50-50 241 238 1.24 1.41 16-200-4-50-50 269 269 0.00 0.07

14-101-4-75-75 366 365 0.27 0.27 16-200-4-75-75 420 420 0.00 0.10

and 14, that contain instances with 101 nodes, 9, 9 and 8 best known solution
were found (among the twelve instances in each set), with average rpe per set,
0.10%, 0.08% and 0.18%, respectively. In set 13, only in one instance the zbest
deviates from the best known solution. Considering the sets with 151 nodes,
in set 09 and 15, 6 and 8 best solution were achieved, with average rpe per
set, 0.18% and 0.14%, respectively. Finally, sets 10 and 16 include the largest
instances with 200 nodes, and the DRDE obtained 5 and 8 best solution, with
average rpe per set, 0.31% and 0.08%, respectively.

7 Conclusions

In this paper, two main issues are addressed, and the first one is the solution of
the Capacitated Team Orienteering Problem, a selective Vehicle Routing Prob-
lem variant to simulate the modelling and optimization of tourist trip design
problems. The objective of the CTOP is formatting a set of depot-returning
itineraries, that maximize the total prize collected from the visited nodes, adher-
ing to constraints related to the capacity of the vehicles and to the allowed total
travel time. For the solution of the CTOP, a hybrid Differential Evolution (DE)
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algorithm, is proposed, namely the DRDE. According to the conducted experi-
mental results, the DRDE has obtained the best known solution for the majority
of the benchmark instances tested, while the maximum occurred relative per-
centage error, does not exceed the 1.24%. Duo to space limitations, execution
time, heuristic element contribution and parametrization analysis, are omitted
from this paper, but the corresponding analysis will be included in a future work
that will extend the proposed methodology. The second issue addressed, in this
paper, is the utilization of the DE algorithm for optimizing the CTOP. The main
consideration is that the DE requires a continuous representation of the solu-
tion vectors, i.e. floating numbers, to apply the mutation equation. Hence, the
Distance Related (DR) encoding/decoding method is introduced. The novelty,
of the DR is the utilization of the Euclidean Distance, and as such, in the encod-
ing step the solution vectors are represented by the distance of each consecutive
pair of nodes. Subsequently, in the decoding step, the new continues values of the
trial vector, are associated to pairs of nodes with approximate distance value,
while nodes with greater prize value are prioritized, enhancing the quality of the
new solutions. The main advantage of this encoding/decoding scheme is that it
is data- and problem-oriented, offering flexibility to the solution process. More-
over, the same scheme could be applied for all the Vehicle Routing Problems
and for their solution by meta-heuristic and nature inspired algorithms, such
as by the Particle Swarm Optimization and the Firefly algorithm, that utilize
equation in the continuous solution space. Further exploration of effective com-
binations of the DR and other meta-heuristic algorithms is recommended, and
will be included in a future study.
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Abstract. One of the upcoming categories of Computational Intelligence (CI) is
meta-heuristic schemes, which derive their intelligence from strategies that are
met in nature, namely Nature Inspired Algorithms. These algorithms are used in
various optimization problems because of their ability to copewithmulti-objective
problems and solve difficult constraint optimization problems. In this work, the
performance of Sonar Inspired Optimization (SIO) is tested in a non-smooth, non-
convex multi-objective Energy problem, namely the Economic Emissions Load
Dispatch (EELD) problem. The research hypothesis was that this new nature-
inspired method would provide better solutions because of its mechanisms. The
algorithmmanages to deal with constraints, namely Valve-point Effect and Multi-
fuel Operation, and produces only feasible solutions, which satisfy power demand
and operating limits of the system examined. Also, with a lot less number of agents
manages to be very competitive against other meta-heuristics, such as hybrid
schemes and established nature inspired algorithms. Furthermore, the proposed
scheme outperforms several methods derived from literature.

Keywords: Meta-heuristics · Sonar Inspired Optimization · Nature Inspired
Algorithms · Load Dispatch · Economic Emissions Load Dispatch · Constrained
optimization

1 Introduction

In previous works, Sonar Inspired Optimization (SIO) has proven to be quite challenging
comparing to other meta-heuristics in real world applications. Recently, SIO managed
to provide better or equally good solutions in constrained [1] and high-dimensional [2]
problems, which belong in the wider field of engineering optimization problems. A
question arising from the abovementioned works was if this method could cope with a
challenging problem with multiple objectives.

The aim of this paper is to measure the performance of SIO in a more difficult
constraint optimization problem i.e. a non-smooth, non-convex multi-objective energy
problem, namely the Economic Emissions Load Dispatch (EELD) problem. SIO is at
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first applied in the three single-objective problems (minimization of fuel, emissions
and power losses respectively), which consist the multi-objective problem. Also, three
alterations of the minimization of fuel cost are considered in this paper, where the
basic Economic Dispatch (ED) problem is constrained by valve-point effects, multi-
fuel operation and network power losses. In addition, SIO is implemented to solve the
multi-objective problem of all above mentioned objectives.

A 10-unit test system, which has 2000 MW demand, is examined. SIO managed
to outperform a number of compared competitive methodologies and it has also been
capable of solving the multi-objective problem with the usage of a single objective
function, while other schemes use various multi-objective optimization methods. What
is more, SIO was found to outperform five known optimization methods.

This paper is organized as follows; in Sect. 1 a short introduction of the topic is done.
In Sect. 2, a brief literature review on the application of nature inspired meta-heuristics
in energy problems is presented. In Sect. 3, the algorithmic formulation is discussed. In
Sect. 4, the mathematic formulation of the problems tackled in this work is presented.
In Sect. 5, the experimental results are included and in Sect. 6, future work is discussed.

2 Literature Review

The different Power system optimization problems have been presented in detail in a
recent broad-based survey on articles using hybrid bio-inspired Computational Intelli-
gent (CI) techniques [3]. Categories of these problems are Economic Dispatch (ED),
Optimal Power Flow (OPF), Load Forecasting, etc. In this paper, SIO copes with the
known problem of Economic Dispatch. This problem consists of four constraints; Real
power balance and Real power operating limits, which are strict limitations, and also,
Valve-point effects and Multi-fuel operation. The last two constraints make the problem
really challenging, when they are taken into consideration. The problem’s objectives and
constraints are explained in detail in [4].

In literature, various algorithms have been implemented to solve the Economic Dis-
patch problem. Nature inspired schemes were also developed to solve this problem.
Biogeography-based optimization (BBO) [5], Flower Pollination Algorithm (FPA) [6]
andGreyWolf Optimizer (GWO) [7] are some of these schemes. Established algorithms,
such as Particle Swarm Optimization (PSO) [8–10] and Differential Evolution [11], are
among the most used methods. Recently, a hybrid method consisting of these two algo-
rithms [12] was proposed to deal with ED problem. This method’s results are used to
compare the corresponding results of SIO in this paper.

Other versions of the Economic Dispatch problem can be found in literature; such
as Environmental/economic power dispatch [9, 11] and Combined Economic Emission
Dispatch (CEED) [6]. Furthermore, a lot hybrid nature inspired algorithms have been
presented to solve EELD, many of which are mentioned in [3].

Usually different test systems are used for experimentation, consisting of 6, 10, 15
and 40 generating units. In this work, a 10-unit system is taken into consideration to
measure the performance of SIO.
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3 Energy Problems

The problem of Economic Dispatch (ED) has many alterations. The basic problem (BP)
consists of theminimization of total fuel cost and the emissions, while trying tominimize
also the real power loss and meet the power demand of the system. In literature, these
objectives are solved separately or with various formulations, like weighted summethod
and Pareto-optimal solution.

Table 1. Characteristics of each problem case.

Problem - Cases Objective VPE MFO NL

I I.I Minimization of fuel cost – – –

I.II Minimization of fuel cost ✓ ✓ –

I.III Minimization of fuel cost ✓ ✓ ✓

II Minimization of emissions – – ✓

III Minimization of power losses – – –

IV Multi-objective – – –

In this paper, the ED problem is solved both separately (Problem I, II and III) and
by combining the goals in one single objective function (Problem IV). In Problem I the
objective is the minimization of fuel cost. This Problem is divided in three Cases, as
it is shown in Table 1; in Case I.I no constraints are taken into consideration, while in
Cases I.II and I.III Valve-point effects (VPE) and Multi-fuel operation (MFO) limit the
solution space of the problem. In Case I.III, Network Losses (NL) which are related to
active power losses of the examined system, are also implemented. By considering the
extra constraints such as VPE and MFO, the proposed problem becomes a non-smooth
and non-convex optimization problem.

In Problem II the objective is the minimization of emissions, while in Problem III
the objective is the minimization of power losses.

In Problem IV, all three objectives are taken into consideration. The minimization of
fuel cost, emissions and power losses consist the Economic Emissions Load Dispatch
problem (EELD) [13]. Therefore, the problem can be characterized as non-smooth, non-
convex andmulti-objective.However, in this ProblemCase the constraints ofValve-point
effects and Multi-fuel operation are not taken into consideration.

The examined system in this study is a 10-unit test systemderived from literature [12].
The power demand of the system is 2000 MW in all Problem Cases. All coefficients and
power operating limits of the system examined in this work are presented in Tables A1
and A2 in Appendix.
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3.1 Objective Functions Consisting the Multi-objective Problem

Minimizing the Total Fuel Cost. According to [4], the initial generators cost layout is
presented by quadratic function as a common form for cost function in conventional ED
studies as is shown in (1).

FC
(
PGi

) =
∑NG

i=1

(
ai + bi PGi + ci P

2
Gi

)
(1)

where, ai
(
$/h

)
, bi

(
$/hMW

)
and ci

(
$/hMW 2

)
are the fuel cost coefficients for the

i-th thermal unit. NG is the number of generators in the system. PGi is the active power
generation of the i-th thermal unit and FC

(
PGi

)
is the total fuel cost function for

singe-fuel generation scheme, here measured in $/h.

Minimizing the Emission. Power plants produce different kinds of emissions, such as
SOx, NOx

1 etc., along with the electricity generated. The objective of (2), which is used
in literature [3], is the reduction of these emissions:

EC
(
PGi

) =
∑NG

i=1

(
αi + βi PGi + γi P

2
Gi

+ ξi e
λi PGi

)
(2)

where, γi (ton/h), βi (ton/hMW ), αi
(
ton/hMW 2

)
, ξi (ton/h) and λi (1/MW ) are

emission coefficients for the i-th thermal unit. NG is the number of generators. PGi is
the active power generated from i-th unit and EC

(
PGi

)
is the summation of all emission

types, measured in ton/h.

Minimizing the Real Power Losses. It is understandable that a generating unit exhibits
loss of power when it’s working. This power loss can be formulated as (3).

PL
(
PGi

) =
∑NG

i=1

∑NG

j=1
PGi Bi j PG j +

∑NG

i=1
Boi PGi + Boo (3)

where, Bi j is the i j-th element of the loss coefficient squarematrix. Boi is the i-th element
of loss coefficient vector. Boo is the loss coefficient constant and finally PL

(
PGi

)
is the

total network losses, measured in MW. NG is the number of generation units and PGi is
the active power generated by i-th unit.

3.2 Constraints of the Problem

Valve-Point Effects. Several control valves are employed in power generation units for
controlling the flow of steam in order to adjust the output power. There is a sudden
increase in power losses whenever one of the valves gets opened leading to addition of
several ripples in the cost function which is called Valve-Point Effect (VPE). Figure 1
presents the comparison between the cost function with and without VPE [10].

According to [14], a cost function is obtained based on the ripple curve for more
accurate modeling. This curve contains higher order nonlinearity and discontinuity due

1 SOx stands for Sulphur Oxides and NOx for Nitrogen Oxides.
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to the valve point effect and should be refined by a sine function. The quadratic cost
function defined in Eq. (1) above is altered because of the valve-point effect as follows:

CVPE
(
PGi

) =
∑NG

i=1

(
ai P

2
Gi

+ bi PGi + ci P
2
Gi

)
+

∣∣∣di sin
(
ei

(
Pmin
Gi

− PGi

))∣∣∣ (4)

where, ai , bi , ci , di and ei are the fuel cost coefficients for i-th thermal unit, considering
Valve-point Effect (VPE). NG is number of generators. PGi is the active power generated
of i-th generator and CV PE

(
PGi

)
is the total fuel cost considering Valve-point Effect

(VPE), here measured in $/h.
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Fig. 1. Cost curve with and without valve-point effects

Multi-fuel Operation. Various types of fuels are used usually in power plants different
kinds of units. The cost objective function turns into a piecewise polynomial function
by considering the different fuels, as illustrated in Fig. 2.

Therefore based on Fig. 2, (4) cannot represent the generation cost anymore and cost
function must be rewritten as a multidisciplinary function as follows [12]:

CVPE_MFO
(
PGi

) =
∑NG

i=1

(
ai , k P

2
Gi

+ bi , k PGi + ci , k P
2
Gi

)
+

∣
∣
∣di , k sin

(
ei , k

(
Pmin
Gi

− PGi

))∣
∣
∣

(5)

subject to Pmin
Gi , k

≤ PGi ≤ Pmax
Gi , k

, for fuel option k = 1, 2, . . . , NF .
In Eq. (5), ai , k , bi , k , ci , k , di , k and ei , k are the cost function coefficients of the i-th

generation unit, when fuel type k is used. PGi is the active power produced by the i-th
generation unit, while Pmin

Gi , k
and Pmax

Gi , k
are its corresponding minimum and maximum

limits, when operating with fuel type k. NG and NF are the number of generators and
available fuels, respectively. Finally, CV PE_MFO

(
PGi

)
represents the total fuel cost

considering Valve-point effects (VPE) and Multi-fuel operation (MFO), here measured
in $/h.
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Fig. 2. Cost function curve corresponding multi-fuel operation

Power Balance Constraint. The power balance constraint [4] is based on the principle
of equilibrium between total system generation and total system loads (PD) and losses
(PL).

∑NG

i=1
PGi = PD + PL (6)

where, PD is the system’s total power demand (MW), PL is the total real power
transmission losses of the network (MW) and NG is the number of generators.

Generation Constraint. The net output power of each generation unit is limited by its
lower and upper bounds i.e. Power Operating Limits [4].

Pmin
Gi

≤ PGi ≤ Pmax
Gi

(7)

where, PGi is the active power generated by i-th generation unit, while Pmin
Gi

and Pmax
Gi

are unit’s minimum and maximum operating limits, respectively.

4 Sonar Inspired Optimization

Sonar Inspired Optimization (SIO) is a meta-heuristic Nature Inspired Algorithm, which
has been presented in [15]. Various applications of the algorithm have been done, includ-
ing engineering design problems [1], resource leveling [2] etc., attesting that SIO is a
good optimization tool in constrained optimization problems. Given that fact, in this
work, SIO is applied on energy problems, in which there are various constrains that
make these problems non-smooth and non-convex.

In the algorithmic formulation, we consider each agent Xi = {PG1 , PG2 , PG3 , . . . ,
PGn } as a solution containing the active Power generation PGi for each unit i , where
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i ∈ 1, 2, . . . , N and N being the maximum number of agents, while n is the maximum
number of generating units.

At start, the position of the agents is initialized somewhere in the solution space; the
easiest way to do that is with random way via the normal distribution function, as it is
shown in (8). In this paper, the problem’s variables are limited by the Power Operating
Limits discussed in the previous section, so the function used is:

PGi = Pmin
Gi

+
(
Pmax
Gi

− Pmin
Gi

)
· rand (8)

where rand is a random number between (0, 1), Pmin
Gi

and Pmax
Gi

are the lower and upper
operating limits of each unit i , respectively.

Sonar Inspired Optimization
Initialization of agents’ position
Initialize effective radius and intensity for each agent
While stopping criteria not met

If counter = checkpoint
Relocate the agent
Recalculate intensity and radius

End
Update radius for every agent
Calculate Intensity for every agent
While full_scan = false

Update the rotation angle in every dimension of the problem
Calculate fitness of possible new position
Save the best so far for each agent in the current scan

End
Update best position and fitness
Update intensity and acoustic power output for every agent

End

Fig. 3. Pseudocode of the proposed Sonar Inspired Algorithm (SIO)

Also, the initial values of effective radius and intensity for each agent are calculated.
Then, while the stopping criteria are not met, each agent is updating its position and in
each step (iteration) a sonar-alike scan is taking place in its surrounding solution space.
This mechanism is the main novelty of this scheme, because each agent checks more
possible positions in each step, in opposition with other meta-heuristics where only one
check per iteration is done. The scanning space is limited by the effective radius and the
number of possible positions that will be investigated is based on agent’s current fitness.
All agents are sorted based on their fitness and according to the sub-group into which
they belong the maximum rotation angle is altered. In this work, six sub-groups have
been used, given the values of maximum rotation angle as follows:

−→
a◦ = [5 10 20 30 40 50]

which is the vector presented in [1] reversed.
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The algorithm is explained in detail in [1]. A representative pseudocode of the
algorithm is shown in Fig. 3.

4.1 Dealing with Constraints

Among other novel concepts, Sonar Inspired Optimization implements a correction
mechanism to relocate solutions which exceed their limits. This mechanism is useful
when facing with the Generation Constraint of each unit, because each solution is trans-
formed in a feasible one. Therefore, the algorithm does not waste computational time or
power into non-feasible solutions. The correction mechanism is described in (9):

PGi = Pmin
Gi

+
(
Pmax
Gi

− Pmin
Gi

)
· cos

(
xdi

)
(9)

in order to fulfil the relation (7).
This mechanism is also applied when an agent has done multiple steps (iterations)

without improving its fitness. The critical number of steps is defined by Eq. (10):

checkpoint = scans · μ (10)

where μ is the equivalent of generations without environmental change of genetic algo-
rithm. In this paper, the value of μ is set to 0.05, leaving each agent enough time (50
steps) to evolve its solution. If a smaller value was used (e.g. 0.01 as in [1]), then each
agent would have only a few (10 in the example) iterations to improve his solution before
relocating. On the other hand, a very big value of μ will led the algorithm to be trapped
in local optima.

Furthermore, a penalty function is implemented to deal with the power balance
constraint. Solutions that violate this limitation take a penalty, namely the Power Balance
Penalty, which is calculated as:

PBP =
∣∣∣
∣PD −

∑NG

i=1
PGi

∣∣∣
∣ (11)

where, PD is the system’s total power demand (MW), PGi is the active power generated
by i-th generation unit and NG is the number of generators.

4.2 Objective Functions

Each agent’s fitness is calculated following the corresponding objective function based
on the problem case (Table 2):
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Table 2. Modified objective functions for each problem.

Objective function Problem Case

f i ti = FC
(
PGi

) + 103 · PBP I I (12)

f i ti = CV PE_MFO
(
PGi

) + 101 · PBP II (13)

f i ti = CV PE_MFO
(
PGi

) + 103 · PBP + PL
(
PGi

)
III (14)

f i ti = EC
(
PGi

) + 104 · PBP + 102 · PL(
PGi

)
II (15)

f i ti = PL
(
PGi

) + PBP III (16)

f i ti = FC
(
PGi

) + EC
(
PGi

) + 105 · PBP + 102 · PL(
PGi

)
IV (17)

The above modified objective functions have been constructed in order to take all
constraints into consideration for each problem. This approach seems similar to the
weighted sum method; however, the multiplied values have been chosen to make all
magnitudes of the same size.

5 Experimental Results

All experiments were conducted using Matlab R2015a on a 4 GB, 3.6 GHz Intel
Core i7 Windows 10 Pro. The parameters used in experiments are shown in Table 3
below, while the corresponding parameters of the comparing schemes are also included.
For every problem, 40 independent runs were done to measure the statistical per-
formance of the algorithm. The results are compared with the corresponding results
obtained by two hybrid nature-inspired schemes, namely Fuzzy Based Hybrid Particle
Swarm Optimization-Differential Evolution and Hybrid Particle Swarm Optimization-
Differential Evolution, and the established Particle Swarm Optimization algorithm,
which achieved the best results in recent work [12] dealing with the same problem.What
is more, a number of standardmethods like adaptive Hopfield Neural Networks with bias
adjustment method, Evolutionary Programming, Hierarchical Structure Method, Non-
dominated Sorting Genetic Algorithm II and Strength Pareto Evolutionary Algorithm 2,
are used as benchmarks in the problem cases that numerical results are available. Works
are underway to hybridize SIO to maximize its performance. The research assumption
of this paper was that SIO will be challenging in this problem without being hybridized.
Also, the drawbacks of SIO, which will be arisen in the experimental process, will be
used as a factor on which method would be the fittest for SIO to perform better in this
problem. The parameters of comparing schemes are given in detail in [12].

Table 3. Parameters used in each scheme.

Parameter SIO FBHPSO-DE HPSO-DE PSO

Population 50 300 300 300

Generations 1000 1000 1000 1000

μ 0,05 – – –
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Maybe, the important detail that can someone observe in Table 3 is that SIO imple-
ments significantly fewer agents. Although generally the more agents there are, the
higher is the probability of finding the optimal solution, in SIO this is not the case. The
main novelty of this algorithm is the multitude of generated points around each agent,
which provide a wider search of the solution space, while the number of agents can
remain the same.

Four different variations of the ED problem are tested in this work. In Sect. 2, these
problems and their constraints were presented. Problem I is divided in three cases; Case
I.I where no constraints are taken into consideration and Cases I.II and I.III where
Valve-point effects (VPE) and Multi-fuel operation (MFO) limit the solution space of
the problem. In Case I.III, Network Losses (NL) are also taken into consideration. By
considering the extra constraints such as VPE andMFO, the proposed problem becomes
a non-smooth and non-convex optimization problem.

In Problem II the objective is the minimization of emissions, while in Problem III
the objective is the minimization of power losses. In Problem IV, all three objectives are
taken into consideration.

Table 4. Power operating limits for the 10-unit system.

Unit 1 2 3 4 5 6 7 8 9 10

Pmin
Gi

10 20 47 20 50 70 60 70 135 150

Pmax
Gi

55 80 120 130 160 240 300 340 470 470

The data used in all problems are based on a 10-unit system. In Table 4, the Power
Operation Limits for each unit of the system are presented. The cost coefficients consid-
ering VPE and considering multi-fuel cost coefficients with VPE, emission coefficients
and loss coefficients of the system are given in the Appendix, according to [16].

In Table 5, the dispatch outcomes of SIO for each problem are presented. In each
occasion, the objective of the corresponding problem is denoted with bold.

The results of SIO are compared with the corresponding results of two hybrid
schemes consisting of PSO and DE (FBHPSO-DE and HPSO-DE), and the results of
PSO. All comparing results are included in [12]. As it can be seen in Table 6, SIO
outperforms the other schemes in two cases of Problem I, where the objective is the
minimization of fuel cost. In both Cases I.II and I.III, where constraints were added, the
performance of the algorithm was equal (Case I.II) or superior (Case I.III) to the other
schemes. For Case I.II, where SIO didn’t manage to overcome the result of FBHPSO,
the provided results were concentrated very close to the best performance achieved, as
it can be seen in Fig. 4 in the upper histogram.

Also, as benchmark, the results of classic methods are used, such as adaptive Hop-
field Neural Networks with bias adjustment method (aHNN) [17], Evolutionary Pro-
gramming (EP) [18], Hierarchical Structure Method (HSM) [19] for Problem Case I.II
and Non-dominated Sorting Genetic Algorithm II (NSGA II) [11] and Strength Pareto
Evolutionary Algorithm 2 (SPEA 2) for Problem II [11].
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Table 5. Dispatch outcomes of the proposed algorithm for all problems.

Control variables Problem I Problem II Problem III Problem IV

Case I.I Case I.II Case I.III

Load of system
(MW)

2000 2700 2700 2000 2000 2000

PG1 54.1063 217.2060 222.8991 54.8694 46.1135 51.5205

PG2 78.2936 212.6991 211.7118 73.4562 61.2648 79.3155

PG3 111.7484 287.0443 273.7992 90.7497 118.6768 87.6005

PG4 76.3568 239.1194 239.6446 100.1967 128.2961 83.0033

PG5 71.8717 270.5148 277.7134 137.7294 159.4203 103.8117

PG6 71.4365 240.9868 242.8708 221.6755 237.5198 141.1924

PG7 294.0659 292.5837 295.6449 255.1432 293.6623 286.3655

PG8 329.2705 237.8868 239.0937 290.3642 318.8012 306.7620

PG9 449.5824 425.0959 422.5314 391.4659 407.1916 440.4434

PG10 463.2645 276.8645 274.1013 384.3498 229.0538 419.9852

Total PG (MW) 2000.00 2700.00 2829.20 2000.00 2000.00 2000.00

Emission (lb/h) – – – 3746.3581 – 3950.12

Power loss (MW) – – 129.1903 75.2671 72.5526 78.2415

Total cost
(
$/h

)
106130.50 624.2600 624.2703 – – 107220.20

Table 6. Comparison of SIO with other schemes in Problems I, II and III.

Algorithms Problem I Problem II Problem
IIICase I.I Case I.II Case I.III

SIO 106130.50 624.2600 624.2703 3746.3581 72.5526

FBHPSO-DE 106170.09 623.8224 700.0118 3920.4819 68.7708

HPSO-DE – 624.1034 – 3921.6618 69.1269

PSO – 627.6902 – 3929.4431 76.8925

aHNN – 626.24 – – –

EP – 626.26 – – –

HSM – 625.18 – – –

NSGA II – – – 4130.20 –

SPEA 2 – – – 4109.10 –

In Problem II, where the objective is the minimization of emissions, SIO provided
a very improved solution compared with the solutions of the other schemes. At last, in
Problem III, the objective was to minimize the power losses of the system. SIO didn’t
manage to overcome all three comparing algorithms.
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Fig. 4. Histograms showing the performance of SIO in Problems I.II and III

In Problem IV, or in other words the multi-objective problem, SIO provided a very
improved solution both in terms of fuel cost and emissions. However, power losses were
slightly worse than the best solution derived by FBHPSO-DE (Table 7).

Table 7. Comparison of SIO with FBHPSO-DE in the multi-objective problem (Problem IV).

Parameter SIO FBHPSO-DE

Total cost
(
$/h

)
107220.20 115193.4416

Emission (lb/h) 3950.12 5225.0893

Power loss (MW) 78.2415 77.7879

It must be denoted that in FBHPSO-DE the Best Compromise Solution [12] is con-
cluded, meaning that the best solution presented is derived by selecting the best value
from the values that arise from running the hybrid scheme with different objectives for
each criterion. On the other hand, SIO managed to find the best solution for all three
objectives using one objective function, as it is shown in (12)–(17).

Important information derived from Fig. 5 is the iteration where the comparing solu-
tion of FBHPSO-DE was surpassed. In Problems I.III and II, the solutions provided by
SIOwere superior to the corresponding of FBHPSO-DE from the start of the algorithmic
process. For the Problem I.I, the algorithm approached the best solution of FBHPSO-DE
in the first 250 iterations and then, overcame it after the 500 iteration.
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Fig. 5. Evolution of the best solution for Problems I.I, I.III and II

6 Future Work

In this work, a recently presented nature inspired meta-heuristic algorithm is applied on
energy problems related to load and emission dispatch. Experimentation has been done
on a 10-unit power system. Sonar Inspired Optimization (SIO) performance is measured
in variations of the Economic Dispatch (ED) problem implementing Valve-point Effect
(VPE) and Multi-fuel Operation (MFO).

SIO overcame a number of known methods and managed to outperform the com-
paring nature-inspired schemes in most of the cases, while using a lot fewer agents. In
Problem Case I.II, the results of the proposed algorithm were statistically equal to these
of the best comparing scheme. In Problem III, SIO didn’t manage to overcome all other
schemes. However, its equally good performance made us think that hybridizing SIO,
the new scheme will overcome the known best solution of other schemes. Results are
collated with corresponding findings of two hybrid algorithms, consisting of PSO and
DE, and the established PSO algorithm. Known optimization methods, namely adap-
tive Hopfield Neural Networks with bias adjustment method, Evolutionary Program-
ming, Hierarchical Structure Method, Non-dominated Sorting Genetic Algorithm II and
Strength Pareto Evolutionary Algorithm 2 were used as benchmarks. What is more,
SIO dealt with the multi-objective problem without the usage of any multi-objective
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optimization technique. The solution provided in the multi-objective problem was better
than the corresponding one of FBHPSO-DE in terms of cost and emissions.

SIO is proven to be very challenging and also provides good solutions without
checking non-feasible solutions, saving valuable computational time and power. In future
research, SIO will be applied on larger systems and in real systems to improve its
mechanisms and to provide a good decision tool for energy dispatch problems.

Appendix

Table A1. System data of units with single-fuel cost coefficients considering VPE and emission
coefficients.

Unit ai bi ci di ei αi βi γi ξi λi

1 1000.403 40.5407 0.12951 33 0.0174 360.0012 −3.9864 0.04702 0.25475 0.01234

2 950.606 39.5804 0.10908 25 0.0178 350.0056 −3.9524 0.04652 0.25475 0.01234

3 900.705 36.5104 0.12511 32 0.0162 330.0056 −3.9023 0.04652 0.25163 0.01215

4 800.705 39.5104 0.12111 30 0.0168 330.0056 −3.9023 0.04652 0.25163 0.01215

5 756.799 38.5390 0.15247 30 0.0148 13.8593 0.3277 0.00420 0.24970 0.01200

6 451.325 46.1592 0.10587 20 0.0163 13.8593 0.3277 0.00420 0.24970 0.01200

7 1243.531 38.3055 0.03546 20 0.0152 40.2669 −0.5455 0.00680 0.24800 0.01290

8 1049.998 40.3965 0.02803 30 0.0128 40.2669 −0.5455 0.00680 0.24990 0.01203

9 1658.569 36.3278 0.02111 60 0.0136 42.8955 −0.5112 0.00460 0.25470 0.01234

10 1356.659 38.2704 0.01799 40 0.0141 42.8955 −0.5112 0.00460 0.25470 0.01234

The loss coefficients matrix values:

Bi j =

⎡

⎢⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎣

0.000049 0.000014 0.000015 0.000015 0.000016 0.000017 0.000017 0.000018 0.000019 0.000020

0.000014 0.000045 0.000016 0.000016 0.000017 0.000015 0.000015 0.000016 0.000018 0.000018

0.000015 0.000016 0.000039 0.000010 0.000012 0.000012 0.000014 0.000014 0.000016 0.000016

0.000015 0.000016 0.000010 0.000040 0.000014 0.000010 0.000011 0.000012 0.000014 0.000015

0.000016 0.000017 0.000012 0.000014 0.000035 0.000011 0.000013 0.000013 0.000015 0.000016

0.000017 0.000015 0.000012 0.000010 0.000011 0.000036 0.000012 0.000012 0.000014 0.000015

0.000017 0.000015 0.000014 0.000011 0.000013 0.000012 0.000038 0.000016 0.000016 0.000018

0.000018 0.000016 0.000014 0.000012 0.000013 0.000012 0.000016 0.000040 0.000015 0.000016

0.000019 0.000018 0.000016 0.000014 0.000015 0.000014 0.000016 0.000015 0.000042 0.000019

0.000020 0.000018 0.000016 0.000015 0.000016 0.000015 0.000018 0.000016 0.000019 0.000044

⎤

⎥⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎦

Boi = 0

Boo = 0
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Table A2. System data of units considering multi-fuel cost coefficients with VPE.

Unit Generation Fuel
type

Cost coefficients

Pmin
Gi

F1 P1 F2 P2 F3 Pmax
Gi

ai bi ci di ei

1 100 196 – 250 1 26.97 −0.3975 0.002176 0.02697 −3.975

1 2 – 2 21.13 −0.3059 0.001861 0.02113 −3.059

2 50 114 157 230 1 118.4 −1.269 0.004194 0.1184 −12.69

2 3 1 2 1.865 −0.03988 0.001138 0.001865 −0.3988

3 13.65 −0.1980 0.001620 0.01365 −1.980

3 200 332 388 500 1 39.79 −0.3116 0.001457 0.03979 −3.116

1 3 2 2 −59.14 0.4864 0.00001176 −0.05914 4.864

3 −2.875 0.03389 0.0008035 −0.002876 0.3389

4 99 138 200 265 1 1.983 −0.03114 0.001049 0.001983 −0.3114

1 2 3 2 52.85 −0.6348 0.002758 0.05285 −6.348

3 266.8 −2.338 0.005935 0.2668 −23.38

5 190 338 407 490 1 13.92 −0.08733 0.001066 0.01392 −0.8733

1 2 3 2 99.76 −0.5206 0.001597 0.09976 −5.206

3 −53.99 0.4462 0.0001498 −0.05399 4.462

6 85 138 200 265 1 52.85 −0.6348 0.002758 0.05285 −6.348

2 1 3 2 1.983 −0.03114 0.001049 0.001983 −0.3114

3 266.8 −2.338 0.005935 0.2668 −23.38

7 200 331 391 500 1 18.93 −0.1325 0.001107 0.01893 −1.325

1 2 3 2 43.77 −0.2267 0.001165 0.04377 −2.267

3 −43.35 0.3559 0.0002454 −0.04335 3.559

8 99 138 200 265 1 1.983 −0.03114 0.001049 0.001983 −0.3114

1 2 3 2 52.85 −0.6348 0.002758 0.05285 −6.348

3 266.8 −2.338 0.005935 0.2668 −23.38

9 130 213 370 440 1 88.53 −0.5675 0.001554 0.08853 −5.675

3 1 3 2 15.30 −0.04514 0.007033 0.01423 −0.1817

3 14.23 −0.01817 0.0006121 0.01423 −0.1817

10 200 362 407 490 1 13.97 −0.09938 0.001102 0.01397 −0.9938

1 3 2 2 −61.13 0.5084 0.00004164 −0.06113 5.084

3 46.71 −0.2024 0.001137 0.04671 −2.024
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Abstract. The optimal product line design is one of the most critical decisions
for a firm to stay competitive, since it is related to the sustainability and profitabil-
ity of a company. It is classified as an NP-hard problem since no algorithm can
certify in polynomial time that the optimum it identifies is the overall optimum
of the problem. The focus of this research is to propose a new hybrid optimiza-
tion method (FAGA) combining Firefly algorithm (FA) and Genetic algorithm
(GA). The proposed hybrid method is applied to the product line design problem
and its performance is compared to those of previous approaches, like genetic
algorithm (GA) and simulated annealing (SA), by using both actual and artificial
consumer-related data preferences for specific products. The comparison results
demonstrate that the proposed hybrid method is superior to both genetic algorithm
and simulated annealing in terms of accuracy, efficiency and convergence speed.

Keywords: Product line design · Hybridization · Firefly algorithm · Genetic
algorithm

1 Introduction

To stay competitive, now that the economic environment is becoming more competi-
tive than ever, firms have to face difficulties, such as market globalization and shorter
product life cycles. As a result, firms must introduce new products or redesign existing
ones to maintain their sustainability and profitability, even though such processes can
be uncertain and expensive. An illuminating example is the commercial failure of the
Edsel model, which cost Ford $350 million [1]. To avoid such risks, managers estimate
the potential success of a new product concept before producing it. These kinds of esti-
mations have consisted of a wide area of research in quantitative marketing for about
40 years, known as the optimal product design problem and is usually formulated in the
context of conjoint analysis [2]. In a product line, several related products are designed.
The problem is classified as an NP-hard combinatorial optimization problem, since no
algorithm can certify in polynomial time that the optimum it identifies is the overall
optimum of the problem [3]. Numerous optimization algorithms have been applied to
the problem in previous attempts of solving it. The most important attempts are dynamic
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programming [4], beam search [5], genetic algorithms [6], Lagrangian relaxation with
branch and bound [7], simulated annealing [8] and particle swarm optimization [9]. In
this paper, we solve the optimal product line design problem with the use of a new
hybrid optimization method (FAGA) combining firefly algorithm (FA) [10] and Genetic
algorithm (GA) [11]. Previous attempts of successful FA and GA hybridizations are
reported in the literature [12–14]. The proposed hybrid method is applied to the product
line design problem and its performance is compared to those of previous approaches,
like genetic algorithm (GA) [11] and simulated annealing (SA) [15], using both actual
and artificial consumer-related data preferences for specific products.

The rest of the paper is organized into 6 sections as follows: Sect. 2 provides a brief
description of the optimal product line design problem, while in Sect. 3 the FA and
GA are described. In Sect. 4, we describe the problem formulation and we explain the
algorithmic structure of the proposed hybrid FAGA method. In Sect. 5 we evaluate the
effectiveness of FAGA through a comparison of its performance with the methods that
Belloni et al. [8] compared, like GA and SA. Finally, Sect. 6 provides an overview of
the main conclusions of the study and future research areas are suggested.

2 The Optimal Product Line Design Problem

The optimal product line design problem refers to the problem where individual firms
want to introduce a new “optimal” product line, to optimize a specific objective (usu-
ally the objective is the maximization of market share or profit). A product is usually
presented as a set of attributes (characteristics), each one having specific levels. A tablet
for example, could consist of the following attributes: screen, camera, processor and
memory, which have, respectively, the levels 8′′ or 10′′, 8 MP, 16 MP or 24 MP, quad
core or octa-core, 16 GB or 32 GB etc.

Customers’ selection varies according to the levels of the attributes that they prefer.
A writer, for instance, most probably prefers a larger screen, whereas an average person
may choose a smaller one as it is more convenient in terms of mobility. In order for
companies to design and sell new products, they should be aware of consumer habits.
This is achieved through market research and surveys. Customer data give important
information to firms, since through them, the attributes of their products are linked with
individual customer preferences. Conjoint analysis [2], is a widely known method used
to achieve this task. Through this method, individual part-worth estimates that associate
the perceived utility value of each customerwith each level of the product’s attributes, are
generated. The utility value of a product usually corresponds to the sumof the part-worths
of the corresponding attribute levels (linear-additive part-worth model). Through them,
choice probabilities are easily calculated, and the expected market share is estimated.
Consequently, optimization algorithms can be applied using the part-worths data to find
a product line that optimizes a criterion set by the firm.

However, in real world problems, products are characterized by numerous attributes
and corresponding levels. Consequently, the existence of many different product lines
makes the managerial task of selecting the appropriate combination of attribute levels
very difficult.

Consider, for example, a company that produces tablets and plans to introduce three
new ones. If each tablet consists of 8 attributes, with the first attribute taking two different
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levels (screen 8′′ or 10′′) and the rest of them taking 4 different levels, the number of
possible tablet profiles is 32,768, whereas for designing a line of three tablets the number
of candidate solutions ismore than 3× 1013. Kohli andKrishnamurti [16] proved that the
share of choices problem (market share maximization) for a single-product design is an
NP-hard problem, which means that it is impossible to completely explore the solution
space in real time. Numerous optimization algorithms have been applied to the problem,
providing good, near-optimal solutions. A review of them can be found in Belloni et al.
[8].

3 Firefly Algorithm and Genetic Algorithm

3.1 Firefly Algorithm

FireflyAlgorithm (FA)was developed in 2008byYang [10], and it is basedon theflashing
patterns and behavior of fireflies. The FA is used to solve both continuous and discrete
optimization problems. Two very important factors in the firefly algorithm are the light
intensity (I) and the attractiveness (β). The light intensity of a firefly is determined by the
landscape of the objective function to be optimized. The attractiveness is proportional
to the brightness and they both decrease as the distance between two fireflies increases.
As the fireflies search for better solutions, their movements are updated based on their
current position, their attractiveness, and a randomization term. For any two fireflies,
the less bright one will move towards the brighter one. If no one is brighter, they move
randomly.

3.2 Genetic Algorithm

Genetic Algorithm (GA) was introduced in the 1960s by Holland and further analyzed
by Goldberg in 1989 [11]. GA is a global search optimization technique that imitates
processes from natural evolution, based on the survival and reproduction of the fittest.
In GA, solutions that are usually coded as binary or integer strings called chromosomes,
evolve over the iterations through genetic operations like crossover and mutation. The
solutions are evaluated using an objective function. Should the new solutions turn out to
be better than the old ones, they will replace the worse ones in the next generation.

4 The Proposed Approach

In this section, the formulation of the product line design problem is described, and the
algorithmic structure of the proposed hybrid approach is explained. All the algorithms
have been programmed with the use of the MATLAB platform. The simulations have
been carried out on a i5 3.3 GHz desktop computer, with 8 GB of RAM and a 64-bit
operating system.
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4.1 Problem Formulation

Following Belloni et al. [8], the first problem that we used is an actual product line
design problem faced by a manufacturer of bags, named Timbuk2. A conjoint study that
focused on price and nine binary product features was conducted by a group of academic
researchers who cooperated with the company. Additional details are reported in Toubia
et al. [17].

In this problem, our goal is to maximize the predicted earnings by introducing a
product line consisting of five bags to the market, compared to three already-known
competitive products.

After a market survey, we know the consumer preferences on the ten characteristics
of each bag, as well as the cost of each feature. The first feature is the price that can take
seven different levels ($70, $75, $80, $85, $90, $95, $100) while the remaining nine are
yes/no values (exists/does not exist). Table 1 represents a solution vector of a random
bag’s characteristics.

Table 1. Example of a solution vector of a random bag’s characteristics.

Attributes 1 2 3 4 5 6 7 8 9 10

Features 3 0 1 0 1 0 0 1 0 1

The possible products that can be designed by the combinations of these features
are 3,584, of which 4.9 × 1015 different product lines consisting of five products can be
created. For each one of these 3,584 products, the profit of selling a backpack is equal
to its sale price, minus the cost of its features and a fixed construction cost of $35. The
marginal cost of each feature for the construction of a backpack as well as their average
part-worths of each feature are presented in Table 2.

Table 2. Incremental marginal cost and average part-worths of each feature.

Feature Average part-worth Incremental marginal cost ($)

$5 Price increase −7.6 −5.00

Large size 17.9 3.50

Red color (not black) −36.0 0.00

School logo 9.0 2.00

Handle 37.7 3.50

Gadget holder 5.2 3.00

Cell phone holder 5.5 3.00

Mesh pocket 9.7 2.00

Velcro flap 18.2 3.50

Reinforcing boot 24.4 4.50

For each one of the 324 consumers, the preferred product from both our own product
line and the competitive one is identified. Then the two corresponding utilities are com-
pared, and the final choice of each consumer is obtained. Even though there are various
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models that simulate how consumers will make their final choice, in this problem, we
assume that the first choice or maximum utility model is in place. As a result, a consumer
will buy the product with the highest utility, ignoring any stochastic parameter that may
occur during the purchase.

Finally, by summing up the earnings from the sales of each bag, we calculate the
earnings of the product line. As a result, the earnings of the product line is the objective
function of the problem.

4.2 Proposed Hybrid Approach (FAGA) for the Product Line Design Problem

In this subsection we describe the proposed hybrid approach (FAGA), based on FA and
GA, by combining some of the advantages of both algorithms. The hybrid approach takes
N individuals (chromosomes or fireflies) that are randomly generated. The N individu-
als are sorted from best to worst according to their light intensity I, which is equal to the
objective function’s value. During the iterations, the light intensity I of two fireflies, is
compared. Should firefly j have a brighter light than firefly i, genetic crossover for the
two fireflies is applied. On the contrary, if firefly i has a brighter light than firefly j, the
genetic mutation is applied in both fireflies. As a result, in both ways, two new solutions
are generated. The twonewsolutions replace the old ones in the iteration process and their
light intensity is equal to the average light intensity of the parents used. As a result, the
proposed hybrid FAGA approach introduces a different way of selecting individuals for
crossover and mutation in genetic algorithm by using the main algorithmic structure of
firefly algorithm. Just like most metaheuristics, FAGA runs until a stopping criterion is
met (e.g.maximumnumber of iterations,maximumnumber of function evaluations etc.).

FAGA pseudo-code. A pseudo-code of the FAGA is presented in the following.
Objective function f(x), x=
Initialize the firefly population 
Evaluate solutions, update light intensity I and sort of fireflies
Do While stopping criteria are not met

keep the old solutions
for i ← 2:N do

j ← 1:i-1 
if Ij> Ii then

Use genetic crossover for the two fireflies
Update light intensity as Ii,j=(Ii+Ij)/2

else
Use genetic mutation in both fireflies

end
end
evaluate new solutions and update light intensity I
merge old and new solutions and sort of fireflies
keep the N best solutions so far

end while
Postprocess results and visualization.
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4.3 FAGA Configuration

FAGA first creates a set of random solutions, which are evaluated by calculating the
earnings of each product line. Each solution will be represented as a table of bags ×
attributes. Then, an iterating process begins until a stopping criterion is met.

During crossover, the genetic information of two parents are combined to generate
new offspring. A crossover point on both parents’ chromosomes is picked randomly.
Values before and after of that point are swapped between the two parent chromosomes.
This results in two offspring, each carrying some genetic information from both parents.
Figure 1 shows an example of crossover.

Parent 1 Parent 2
4 0 0 0 1 0 1 0 1 0 3 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0 2 0 0 1 1 1 1 0 1 0
0 1 1 1 0 0 1 1 1 1 4 0 1 1 1 1 0 0 0 1
6 0 0 1 1 0 0 1 1 1 5 1 0 1 0 0 0 0 0 1
4 0 1 1 0 0 0 0 1 1 2 1 0 0 1 1 0 0 1 1

Offspring 1 Offspring 2
3 0 0 0 0 0 0 0 0 1 4 0 0 0 1 0 1 0 1 0
2 0 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 1 1 0
4 0 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 1
6 0 0 1 1 0 0 1 1 1 5 1 0 1 0 0 0 0 0 1
4 0 1 1 0 0 0 0 1 1 2 1 0 0 1 1 0 0 1 1

Fig. 1. Example of crossover, using 3 × 6 cell as a crossover point.

Mutation is the second way FAGA explores the search space. It can introduce traits
not in the original population and prevents the algorithm from converging too fast.
Mutation alters one or more gene values in a chromosome from its initial state. An
example of mutation is presented below (see: Fig. 2).

Random solution Solution after mutation
0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1
5 1 0 1 0 0 1 0 0 1 5 1 0 1 0 1 1 0 0 1
4 1 0 1 0 0 0 1 0 0 4 1 0 1 0 1 0 1 0 0
1 1 0 1 1 0 0 1 1 1 2 1 0 1 1 0 0 1 1 0
1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1

Fig. 2. Example of mutation.

Parameter Settings. To determine the best parameter settings for the FAGA, several
experiments have been carried out. We found that a population value of n = 50 to 120
is sufficient. Therefore, we used a fixed population of n = 100 for all simulations of
FAGA. The mutation rate used, was set to 0.05, just like Belloni et al. [8] used in genetic
algorithm for the product line design problem.
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5 A Comparison of FAGA with Genetic Algorithm (GA)
and Simulated Annealing (SA)

In this section, the proposedmethod is compared to those of themost successful methods
used by Belloni et al. [8]. Particularly, FAGA’s performance will be compared with
the performance of genetic algorithm (GA) [11] and simulated annealing (SA) [15].
The choice of parameters values for each one of the comparing algorithms, was made
according to Belloni et al. [8]. At first, we use the real conjoint data set. Then, we
test whether the model we have developed is affected by errors in consumer preference
measurements, and whether the model can be generalized by changing the size of the
problem. In our simulations, each algorithm runs until 70,000 function evaluations are
reached, each one performing 50 replications. Each run of FAGA takes less than 7 s.

5.1 Real Conjoint Data Set

Table 3 shows the results of the comparison of FAGA, GA and SA using the real conjoint
data, while Fig. 3 shows the convergence characteristic curves of them.

Table 3. Comparison of methods on the real conjoint data set.

Statistics FAGA GA SA

Best 12226 12226 11781.5

Worst 12032.5 11895.5 10867

Average 12121.38 12083.62 11140.82

Median 12055.5 12055.5 11140

Std. 8.3549E+01 1.1229E+02 1.9132E+02

The comparison results above indicate the superiority of FAGA over the two other
algorithms. Particularly, FAGA’s objective function value has an average value of
12121.38, a standard deviation of 8.3549E+01 and a median value of 12055.5 in the
range of 12032.5 to 12226. On the contrary, GA’s objective function value has an aver-
age value of 12083.62, a standard deviation of 1.1229E+02 and a median value of
12055.5 in the range of 11895.5 to 12226. Finally, SA’s objective function value has an
average value of 11140.82, a standard deviation of 1.9132E+02 and a median value of
11140 in the range of 10867 to 11781.5. Figure 3 shows that the proposed hybrid method
converges faster than GA and SA.

5.2 Robustness Testing

The accuracy of the results does not only depend on the efficiency, effectiveness and
accuracy of the method used to solve the problem, but also on other factors. One of the
most important factors is whether the estimation of consumer preferences, according
to the conjoint analysis, as well as the rating of part worths which corresponds to each
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Fig. 3. Convergence characteristic curves of FAGA, GA and SA.

feature are accurate or not. In addition, there are methods to measure whether these
estimations correspond to actual consumer preferences. To test the robustness of the
methods in the presence of ameasurement error,we repeated our analysis after perturbing
the original part-worth estimates. These perturbations were accomplished by adding a
(simulated) error to the part-worths:

u
′
i, j = ui, j + εi, j (1)

where ui, j is the original part-worth for respondent i on product feature j, εi, j is a
zero-mean, independent normal error term which works differently across customers or
attribute levels, and u

′
i, j is the perturbed part-worth.

Following Belloni et al. [8], we run each algorithm for 100 runs, obtaining 100
sets of perturbed part-worths for each respondent. The perturbation terms are treated as
measurement error. Under this interpretation, the original part-worths thatwe analyzed in
Table 3, is the only one set of “true” part-worths. However, we assume that the researcher
can only observe the part-worths that are subject to measurement error. The results are
reported in Table 4.

From the results obtained above, we note that the proposed hybrid FAGA method is
the less affected by the measurement error of consumer preferences.

5.3 Results Using Simulated Data

In this subsection, we also test the performance of FAGA comparing to the performance
of GA [11] and SA [15], using simulated data. In our simulated problems, a product line
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Table 4. Comparison of methods under measurement error.

Statistics FAGA GA SA

Best 12223.5 11986.5 11275.5

Worst 11834 10903.5 10162

Average 12021.76 11589.51 10782.06

Median 12032.5 11630.5 10806.25

Std. 9.55935E+01 2.24975E+02 2.90559E+02

consisting of 3 or 4 products, each composed of 3, 5, or 7 attributes that can take on 2,
3, 5, or 8 different levels, is designed. We assume that the customers are 50 or 100 for
each case. We select 12 different problem sizes and 10 different problems for each size
are generated, for a total of 120 simulated data sets. According to Belloni et al. [8], this
kind of problem sizes are chosen, because Lagrangian relaxation [18] finds an optimal
solution in a reasonable amount of time.

According to Belloni et al. [8], SA is extremely accurate, since it identifies the
same solutions with the Lagrangian relaxation for all problem sizes, while GA identifies
the 99.9%. However, to make accurate comparisons and to measure the accuracy of
FAGA, we run all the methods again, using the same configuration used in the real
data comparison for all the three algorithms. Each algorithm runs until 70,000 function
evaluations are reached, like before. Then we compare the results to the overall optimum
results. The summary results are shown in Table 5.

Table 5. Comparison of methods using simulated data.

Statistics FAGA GA SA

Average performance 98.95% 98.94% 95.44%

From the comparison results above, we notice that FAGA’s average performance
dominates that ofGAandSA.Obviously, all 3 algorithms needmore function evaluations
to locatemore accurate results.However, FAGAstill converges faster than the other three.

To further comparison of the models, we increase specific dimensions of the above
sets.As a result, larger sizes of problems are created, as shown inTable 6. The comparison
of themethods is presented in Table 7. The results will be compared according to FAGA’s
results, which was the most successful algorithm comparing to GA and SA, according
to Table 5.

As we can see, FAGA is still superior to GA and SA. We now increase the number
of products for all sets by one. This creates a set of problems as presented in Table 8.
The results are presented in Table 9.

For once more, FAGA’s results are better than those of GA and SA.We now increase
the number of attributes for all sets by one. This creates a set of problems as presented
in Table 10. The results are presented in Table 11.



A New Hybrid Firefly – Genetic Algorithm 293

Table 6. Problem sizes with increased dimensions.

Customers Attributes Levels Products

50 3 5 5

100 3 5 5

50 8 3 4

100 8 3 4

50 9 2 4

100 9 2 4

50 3 9 3

100 3 9 3

50 5 5 6

100 5 5 6

50 9 3 3

100 9 3 3

Table 7. Comparison of methods performing on the problems presented in Table 6.

Statistics FAGA GA SA

Average performance 100% 99.73% 93.29%

Table 8. Problem sizes with increased products by one.

Customers Attributes Levels Products

50 3 5 6

100 3 5 6

50 8 3 5

100 8 3 5

50 9 2 5

100 9 2 5

50 3 9 4

100 3 9 4

50 5 5 7

100 5 5 7

50 9 3 4

100 9 3 4
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Table 9. Comparison of methods performing on the problems presented in Table 8.

Statistics FAGA GA SA

Average performance 100% 99.89% 90.64%

Table 10. Problem sizes with increased attributes.

Customers Attributes Levels Products

50 4 5 5

100 4 5 5

50 9 3 4

100 9 3 4

50 10 2 4

100 10 2 4

50 4 9 3

100 4 9 3

50 6 5 6

100 6 5 6

50 10 3 3

100 10 3 3

Table 11. Comparison of methods performing on the problems presented in Table 10.

Statistics FAGA GA SA

Average performance 100% 99.55% 90.99%

Finally, we increase the levels of all products by one. The new created set of problems
is presented in Table 12 and the results are shown in Table 13.
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Table 12. Problem sizes with increased levels.

Customers Attributes Levels Products

50 3 6 5

100 3 6 5

50 8 4 4

100 8 4 4

50 9 3 4

100 9 3 4

50 3 10 3

100 3 10 3

50 5 6 6

100 5 6 6

50 9 4 3

100 9 4 3

Table 13. Comparison of methods performing on the problems presented in Table 12.

Statistics FAGA GA SA

Average performance 100 99.89% 89.81%

FAGA is still superior to GA and SA when increasing the levels of attributes. More-
over, FAGA is becoming more and more superior to GA as the size of the problem is
increased.

6 Conclusions

In this paper, a hybrid optimization algorithm (FAGA) is proposed for solving the product
line design problem. The proposed FAGA approach is based on hybridization of firefly
algorithm (FA) [10] and genetic algorithm (GA) [11] and introduces a different way
of selecting individuals for crossover and mutation in genetic algorithm by using the
main algorithmic structure of firefly algorithm. FAGA’s results are compared to those
of 2 high quality optimization algorithms. The results reveal that the proposed FAGA
method has superior performance to those of both GA and SA. It has a higher probability
of finding a global optimum using less function evaluations and a better ability to deal
with multimodality comparing to GA and SA. The convergence behavior of the FAGA
is also exceptional, since most of the times it reaches the best overall solution in the
early iterations. It provides a robust model and it has the potential to be generalized
in large scale product line design problems of well-known firms with complex product
lines. Moreover, while changing the dimension of the problem we noticed that FAGA
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is superior over GA and SA in terms of accuracy and efficiency. As already mentioned,
FAGA ismore andmore superior toGA aswe increase the size of the problem, regardless
of the growing dimension. Finally, FAGA is an easy hybrid approach to be coded.
Particularly, it needs only two initial parameters (population size and mutation rate).

Future research may include the application of the proposed algorithm to other engi-
neering and industrial optimization problems. Furthermore, we intend to propose new
approaches based on hybridization of swarm intelligence and evolutionary algorithms.
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Abstract. Simulated annealing (SA) is a well-known metaheuristic
commonly used to solve a great variety of NP-hard problems such as the
quadratic assignment problem (QAP). As commonly known, the choice
and size of neighborhoods can have a considerable impact on the perfor-
mance of SA. In this work, we investigate and propose a SA variant that
considers variable neighborhood structures driven by the state of the
search. In the computational experiments, we assess the contribution of
this SA variant in comparison with the state-of-the-art SA for the QAP
applied to printed circuit boards and conclude that our approach is able
to report better solutions by means of short computational times.

1 Introduction

This paper proposes and assesses the incorporation of variable neighborhoods
into SA driven by the state of the search. From a practical standpoint, the basic
idea for this strategy was initially proposed in [7] for a vehicle routing application
in order to obtain better solutions than those provided by a standard SA. At a
methodological level, the contribution of our paper is to evaluate this strategy
in a more general setting with standard problem instances.

In the quest of showing the impact of the algorithmic enhancement regarding
a known method, i.e., SA, we exemplify by means of the quadratic assignment
problem (QAP). The QAP is an NP-hard combinatorial optimization problem
introduced by Koopmans and Beckman [10] that have received a lot of attention
due to its numerous applications. In the QAP, we are given a set of facilities
denoted as F = {1, 2, . . . , n} and a set of locations denoted as L = {1, 2, . . . , n}.
Each pair of facilities, (i, j) ∈ F , requires a certain flow, i.e., fij ≥ 0. The
distance between the locations k, l ∈ L is denoted as dkl ≥ 0. It should be
mentioned that the flows and distances are symmetric (i.e., fij = fji,∀i, j ∈ F
and dkl = dlk,∀k, l ∈ L) and the flow/distance between a given facility/location
and itself is zero (i.e., fii = 0,∀i ∈ F and dkk = 0,∀k ∈ L). Its objective is to
minimize the cost derived from the distance and flows among facilities. Duman
et al. [5] present a practical application of the QAP for sequencing placement
c© Springer Nature Switzerland AG 2020
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and configuration printed circuit boards (PCB) and extensively analyze the use
of SA for addressing the problem. The QAP is formally expressed as follows

minimize

n∑

i=1

n∑

j=1

fijdφ(i)φ(j), (1)

where φ is a solution belonging to the set composed of all the feasible permuta-
tions, denoted as Sn, such that φ : F → L. The cost associated to assign facility i
to location φ(i) and facility j to facility φ(j) is, according to Eq. (1), fijdφ(i)φ(j).
In addition, let us denote as f(φ) the objective function value of solution φ ∈ Sn.
Drezner et al. [4] review the applicability of widespread metaheuristics from the
literature to address the QAP. The interested reader is referred to the detailed
survey provided by Loiola et al. [13].

We use the same problem instances of [6] and the best state-of-the-art SA
[5] to properly compare our proposed approach. From the computational exper-
iments, we conclude that our approach provides a better performance compared
to the SA when using a single neighborhood structure.

The remainder of this paper is structured as follows. First, we review some
related works in Sect. 2. The proposed variable SA algorithm is presented in
Sect. 3. In Sect. 4, we report the results of the computational experiments. The
paper ends with some conclusions and an outlook.

2 Related Works

In general terms, Cheh et al. [2] studied the effect that neighborhood structures
have on SA. On the other hand, Ogbu and Smith [14] showed the benefit of
using larger neighborhoods within SA. Henderson et al. [9] review the impact
that the choice of neighborhoods has on SA and indicate that the efficiency of
SA is highly influenced by the neighborhood selection.

Besides Heilig et al. [7], some authors have investigated ideas to control the
neighborhood structure during the search. Xu and Qu [17] investigate the use
of variable neighborhoods within an evolutionary multi-objective SA (EMOSA)
for solving multicast routing problems. Using multiple neighborhood structures
specifically designed for each objective significantly improves the performance of
the SA. Ying et al. [19] propose an SA algorithm with variable neighborhoods
and define additional parameters to control the random selection of the neigh-
borhood structure. While the performance of the algorithm depends on a good
configuration of the parameters, requiring additional experiments. The proposed
approach was able to find new best-known solutions for the cell formation prob-
lem.

Instead of defining a parameter, Rodriguez-Cristerna and Torres-Jimenez [15]
use only two neighborhood structures and select them with uniform probabilities.
Some authors investigate ideas to adjust the size of neighborhood structures, such
as by means of a non-uniform mutation operator for monotonously decreasing
the neighborhood size [16] or by using a circle-directed mutation as done in [12].
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Other than in previous works, we propose a dynamic neighborhood variation
where the neighborhood structures are changed depending on the success of find-
ing better solutions.

Furthermore, SA is used in some works to extend the acceptance criterion
of the variable neighborhood search (VNS) for accepting also non-improving
solutions under certain conditions (see, e.g., [3,8,11,18]).

3 Variable Neighborhood Simulated Annealing Algorithm

In order to evaluate the contribution of variable neighborhood within SA, the
best state-of-the-art SA proposed for solving the QAP-PCB [5] is used as a base
template. For extending it, we include the novel incorporation of neighborhood
variation in lines 5 to 14, where a parameter k is introduced for regulating the
change of neighborhood structures.

Algorithm 1. SA with variable neighborhood structures (SA-VN)
Require: Tempmin, α, β, rmax

1: S ← generate initial solution at random
2: Temp ← fobj(S)α; k ← 1
3: while (Tempmin < Temp and it ≤ itmax) do
4: for (r = 1 to rmax) do
5: Generate a solution S′ ∈ N k(φ)(S)
6: Calculate ΔS,S′ = fobj(S′) − fobj(S)
7: if (ΔS,S′ ≤ 0) then
8: S ← S′

9: k ← 1
10: Update best solution Sbest if applicable
11: else
12: S ← S′ with probability e−Δ/Temp

13: k + +
14: end if
15: Temp = Temp · β
16: it + +
17: end for
18: end while
19: Return Sbest

We apply the swap neighborhood structure. That is, given a solution, φ ∈ Sn,
the swap neighborhood, N 1(φ) = {φ ◦ (i, j) : 1 ≤ i, j ≤ n, i 	= j}, performs
the transposition (i, j) by swapping the two relevant locations assigned to the
indexes, i and j, respectively. Moreover, we define N 2(φ) and N 3(φ) as the
application of swap consecutively two and three times, respectively.
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4 Computational Results

The computational experiments were executed over the instances proposed by
Duman et al. [6] which were generated considering the QAP-PCB. In each case,
30 executions of our SA-VN were carried out for each problem instance. The
algorithms were executed on a computer equipped with an Intel i7-7700HQ and
16 GB of RAM. In order to properly evaluate the contribution of our approach,
we have used the SA and its best parameters as provided in [5] with a maximum
number of |n|3.5 solutions.

Table 1. Comparison among SA-VN algorithms for the QAP-PCB instances. Best
values in bold.

SA-VN (k = 3) SA-VN (k = 2)

Instance (size) Min Avg. Max. t (ms) Min Avg. Max. t (ms)

B1 (58) 1066 1084.33 1132 3281.47 1066 1088.33 1126 3302.47

B2 (54) 754 771.067 798 2865.37 756 775.4 796 2852.4

B3 (52) 730 749.667 784 2666.57 732 749.867 776 2653.37

B4 (50) 1450 1456 1482 1651.27 1450 1466.13 1502 1643.07

B5 (48) 752 765.133 802 1534.33 754 767.067 814 1525.43

B6 (49) 1388 1400.33 1436 1601.3 1392 1397.07 1438 1597.5

B7 (47) 1350 1362.6 1394 1474.2 1348 1360.6 1374 1503.83

B8 (40) 714 725.067 740 491.533 718 726.333 738 497.667

1025.5 1039.28 1071 1945.75 1027 1041.35 1070.5 1946.97

Table 2. Comparison among SA algorithms using one neighborhood structure for the
QAP-PCB instances. Best values in bold.

SA 1 SA 2 SA 3

Instance (size) Min Avg. Max. t (ms) Min Avg. Max. t (ms) Min Avg. Max. t (ms)

B1(58) 1070 1087.73 1130 3319 1066 1084.13 1126 3323.57 1068 1092 1130 3345.23

B2 (54) 758 778.4 814 2850.1 756 775.533 814 2894.47 760 774.60 796 2938.67

B3 (52) 730 753.4 780 2667.2 734 757.733 784 2701.37 730 752.67 804 2744.90

B4 (50) 1450 1458.4 1488 1628.9 1450 1462.47 1484 1664.33 1450 1463.73 1514 1696.17

B5 (48) 752 764.533 804 1512.07 754 766.533 802 1533.57 754 764.20 808 1556.43

B6 (49) 1390 1399.93 1438 1589.63 1388 1397.53 1444 1589.5 1390 1399.20 1438 1638.93

B7 (47) 1350 1362.07 1386 1454.9 1348 1360 1378 1472.3 1348 1364.40 1398 1512.27

B8 (40) 718 724.867 736 487.1 716 724.667 734 492.133 716 725.20 736 505.87

1027.25 1041.17 1072 1938.61 1026.5 1041.08 1070.75 1958.9 1027 1042 1078 1992.31

Table 1 shows the comparison between SA with variable neighborhoods con-
sidering two, i.e., SA-VN (k = 2) and three neighborhoods, i.e., SA-VN (k = 3).
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Moreover, the best SA proposed by [5] considering individually all the used neigh-
borhoods is compared in Table 2. For each problem instance, the performances
of the algorithms in terms of average objective value (Avg.), best objective value
(Min.), the worst objective value (Max.), and the computational time (t (ms))
of all the executions in milliseconds are reported.

From the results, it can be seen that all algorithms require similar computa-
tional times. The strategy of including variable neighborhoods permits to obtain
more best-known solutions. Although there is not a relevant difference in terms
of the worst values, the average performance is enhanced when more neigh-
borhoods are considered in SA-VN. Moreover, there is a relevant performance
benefit when the number of neighborhoods increases.

5 Conclusions

In this work, a novel simulated annealing with variable neighborhoods changing
along the search is proposed for solving the quadratic assignment problem. This
new SA approach includes alternating neighborhoods when there is no improve-
ment or the probability of acceptance does not permit a worsening movement.
It is noticeable from the numerical experiments that the proposed algorithm
exhibits a better performance within similar time frames as the standard SA.
The promising results encourage to further explore this research direction. The
results also go in line with those shown in [7] where the inclusion of variable
neighborhoods leads to an overall improvement of the SA search framework.

As future work, we aim at extending and analyzing the performance of SA-
VN on other QAP instances such as those from the QAPLIB [1] as well as other
optimization problems. Moreover, we aim to add a look ahead component like
known from the pilot method.
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Abstract. In many Natural Language Processing problems the com-
bination of machine learning and optimization techniques is essential.
One of these problems is estimating the effort required to improve,
under direct human supervision, a text that has been translated using
a machine translation method. Recent developments in this area have
shown that Gaussian Processes can be accurate for post-editing effort
prediction. However, the Gaussian Process kernel has to be chosen in
advance, and this choice influences the quality of the prediction. In this
paper, we propose a Genetic Programming algorithm to evolve kernels
for Gaussian Processes. We show that the combination of evolutionary
optimization and Gaussian Processes removes the need for a-priori speci-
fication of the kernel choice, and achieves predictions that, in many cases,
outperform those obtained with fixed kernels.

Keywords: Evolutionary search · Gaussian Processes · Genetic
Programming · Kernel selection · Quality Estimation

1 Introduction

Gaussian Processes (GP) [31] have been extensively applied for function approx-
imation. A GP is a model that lies on strong Bayesian inference foundations and
can be updated when new evidence is available. In comparison to other regres-
sion methods, a GP provides not only a prediction of a given function but also
estimates the uncertainty of the predictions. A GP requires a kernel function
to be defined and adjusts its hyperparameters to the data. Usually, the kernel
function is specified a-priori, and the search for the hyperparameters is posed as
an optimization process. This optimization is an essential component of a GP
model since it highly influences the quality of the approximation.

Within Natural Language Processing (NLP) literature, GPs have been
applied for text classification [28], modeling periodic distributions of words over
time [30], emotion or sentiment classification [1] and Quality Estimation (QE)
[7,35]. In these works, the choice of the GP kernel is made a-priori. For instance,
for QE regression the most common kernel is the Squared Exponential (SE) or
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Radial Basis Function (RBF) kernel [7,35]. For modeling text periodicities, the
periodic (PER) and the Periodic Spikes (PS) kernels have been proposed as a
sensible way to capture the periodicities of the function [30]. In addition to SE,
two Matern kernels, Matern 32 (M32) and Matern 52 (M52), were evaluated in
[1] for emotion analysis. There is a repertoire of kernel functions available in the
literature [11,15,31], and selecting the best kernel for each problem requires an
expert knowledge of the domain.

In this paper we propose to simultaneously optimize the kernel function itself,
along with its hyperparameters. For this purpose, we propose the use of Genetic
Programming (GenProg) [20]. In this work, kernels are encoded as a set of genes
and optimized though an evolutionary process. As opposed to other proposals
in the GP literature, we learn the initial kernels from scratch, without seeding
human-designed kernels, allowing us to derive kernels that are not constrained
by the prior knowledge while at the same time being optimized for the desired
objective.

We focus on a practical NLP regression problem that is related to automatic
translation of texts. In this domain, post-editing work is frequently required, and
an estimation of the cost of the editing process (in terms of time, effort, and edit-
ing distance) is essential. In [37], Specia investigated the question of translation
QE from different perspectives. In particular, a number of metrics describing
translation quality were proposed and Support Vector Machine (SVM) regres-
sion models [40] were used to predict them from a set of pre-defined features.

Instead of manually defining the features, our approach relies on sentence
embeddings, vector representations of the source and the automatically trans-
lated texts to predict the post-editing effort that leads to the final text. This
allows a fully automated approach, where there is no need to extract the features
from the sentences, nor learn the kernel function. We investigate several meth-
ods to construct the sentence embeddings along with the evolution of the GP
kernels, measuring the joint effect that these questions have in QE performance.

The remainder of the paper is organized as follows: The next section
introduces the main concepts related to GP regression. Section 3 presents the
addressed problem in the context of QA. The GenProg approach to evolve ker-
nel functions is presented in Sect. 4 and a review on related work is provided. We
describe the experimental framework used to validate our algorithm, along with
the numerical results in Sect. 5. The conclusions of the paper and discussion of
future work are presented in Sect. 6.

2 Gaussian Process Regression

A GP is a stochastic process, defined by a collection of random variables, any finite
number of which have a joint Gaussian distribution [31]. A GP can be interpreted
as a distribution over functions, and each sample of a GP as a function.

GPs can be completely defined by a mean function m(x) and a covariance
function, which depends on a kernel k(x,x′). Given that, a GP can be expressed
as follows:

f(x) ∼ GP (m(x), k(x,x′)) (1)
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where we assume that x ∈ R
d. We also consider an a-priori equal-to-zero mean

function (m(x) = 0) to focus on the kernel search problem.
A GP can be used for regression by obtaining its posterior distribution given

some (training) data. The joint distribution between the training outputs f =
(f1, f2, ..., fn) (where fi ∈ R, i ∈ {1, ..., n} and n ∈ N) and the test outputs
f∗ = (fn+1, fn+2, ..., fn+n∗) is given by:

[
f
f∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(2)

where N(μ,Σ) is a multivariate Gaussian distribution, X = (x1,x2, ...,xn) (xi ∈
R

d, i ∈ {1, ..., n} and n ∈ N) corresponds to the training inputs and X∗ =
(xn+1, ...,xn+n∗) to the test inputs. K(X,X∗) denotes the n × n∗ matrix of the
covariances evaluated for all the (X,X∗) pairs.

The predictive Gaussian distribution can be found by obtaining the condi-
tional distribution given the training data and the test inputs:

f∗|X∗,X, f ∼ N (M̂(X∗), K̂(X∗,X∗))

M̂(X∗) = K(X∗,X)K(X,X)−1f

K̂(X∗,X∗) = K(X∗,X∗) − K(X∗,X)K(X,X)−1K(X,X∗)

(3)

2.1 Kernel Functions

GP models use a kernel to define the covariance between any two function values
[11]:

cov (f(x), f(x′)) = k(x,x′) (4)

The kernel functions used in GPs are positive-definite kernels. According to
Mercer’s Theorem [24], any PSD kernel can be represented as an inner product
in some Hilbert Space.

The best known kernels in GP literature are translation invariant, often
referred to as stationary kernels. Among them, we focus on isotropic kernels,
where the covariance function depends on the norm:

k(x,x′) = k̂(r) where r =
1
θl

‖x − x′‖ (5)

where θl is the length scale hyperparameter and k̂ a function that guarantees
that the kernel is PSD.

Table 1 shows four well-known kernels that have been previously applied to
NLP applications [1,3,30,37]. The SE kernel, described as kSE in the table, is
known to capture the smoothness property of the objective functions. Matern
class kernels, are denoted as k̂M32 and k̂M52 in the table, while the Periodic
kernel is shown as k̂PER.
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Table 1. Well-known kernel functions. θ0 and θp are the kernel hyperparameters called
amplitude and period respectively.

Kernel function expressions

Squared Exp. k̂SE(r) = θ2
0 exp

(− 1
2
r2

)

Matern 32 k̂M32(r) = θ2
0

(
1 +

√
3r

)
exp

(−√
3r

)

Matern 52 k̂M52(r) = θ2
0

(
1 +

√
5r + 5

3
r2

)
exp

(−√
5r

)

Periodic k̂PER(r) = θ2
0 exp

(
− 2 sin2(πr)

θ2
p

)

2.2 Hyperparameter Optimization

The choice of the kernel function and its hyperparameters has a critical influence
on the behavior of the model, and it is crucial to achieve good results in NLP
applications of GPs [1]. This selection has been usually made by choosing one
kernel a-priori, and then adjusting the hyperparameters of the kernel function
so to optimize a given metric for the data. The most common approach is to
find the hyperparameter set that maximizes the log marginal likelihood (LML):

log p (f |X,θ,K) = −1
2
fTK(X,X)−1f − 1

2
log |K(X,X)| − n

2
log 2π (6)

where θ is the set of hyperparameters of the kernel and n is the length of X.

3 Quality Estimation and Feature Extraction

Following [37], we use three different metrics for QE. We assume the existence of
an original text in the source language which is divided into sentences. For each
sentence, an automatic translation to the target language is available. These
translations are the subject of post-editing work. The metrics considered are,
post-editing effort, Human Translation Edit Rate (HTER) and post-edit time.

In [37], translators were asked to post-edit each sentence and score the post-
editing effort according to the following options:

1. Requires complete retranslation.
2. Requires some retranslation, but post-editing is still quicker than retransla-

tion.
3. Very little post-editing needed.
4. Fit for purpose.

Another metric used to evaluate the translation quality is the edit distance
between the automatic translation and its post-edited version. This is com-
puted using the Human Translation Edit Rate (HTER) [36]. HTER is defined as
HTER = e

pew
, where e is the number of edits, which can be standard insertion,

deletion and substitution of single words, and shifting of word sequences. pew is
the number of words in the sentence.
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Finally, the post-edit time was computed in [37] using the average number of
seconds required by two translators to post-edit each word in the sentence. It is
the number of seconds to post-edit the sentence, normalized by the number of
words in that sentence.

For more details on the ways these metrics were defined, [37] can be consulted.

3.1 Sentence Embeddings

There are a number of approaches to extract relevant information for QE [5]. In
this domain, feature engineering to obtain informative features can be very labor-
intensive [38]. In [37], 80 shallow and machine-translation independent features
were extracted from the source sentences, their corresponding translations, and
monolingual and parallel corpora. A selected set of these features, comprising
only 17 features, is used in [38]. Syntactic information represented in tree frag-
ments that contain complete grammar rules are used as feature representation
in [2].

Here, we focus on sentence embeddings [25], a common text representation
for NLP tasks, although less investigated for QE. We use word embedding dic-
tionaries for the source and target languages (before post-edition). For each
sentence, in each language, we compute the embedding representation of all the
words. Words missing in the dictionary are assigned a zero-vector representa-
tion. In each corpus, for each sentence, a function that combines the embedding
representations of all the words in a single vector (e.g., mean of the word vec-
tors) is computed to generate the sentence embedding. Finally, for each pair of
original and translated sentences, their sentence embeddings are concatenated
to produce the vector representation that is used for QE.

We examine two questions related to the embedding representation. The
embedding dimension and the way sentence embeddings are computed. In addi-
tion to the commonly applied mean function, which computes the mean of all
word embeddings in a sentence, we use another two other functions: the maxi-
mum (max ) of all word embeddings (maximum value of each embedding com-
ponent across all word embeddings), and the standard deviation (std) of word
embeddings. We hypothesize that variations in the words as captured by the
maximum and standard deviation may provide a clue as to the difficulty of the
translation.

4 Kernel Function Search

In this work, we automatically search for new kernel functions in order to better
predict the translation effort. Specifically, our goal is to find the optimal k̂(r) as
in Eq. (5).

To guide this search, we propose using Genetic Programming (GenProg) [20].
In GenProg, computer programs are encoded as solutions using an evolvable rep-
resentation. At each iteration, solutions are recombined and selected according
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to the program performance, until an optimal solution is found or a stop cri-
terion is satisfied. In our case, the GP kernel function is the program that is
encoded into an expression tree and its performance is evaluated in the context
of the translation quality evaluation task.

We define a strongly-typed grammar [26] that specifies the possible combi-
nations these kernels can be composed of, by breaking down the mathematical
expressions present in the well-known kernels of Table 1 into basic operations
(multiplication, square root, ...).

To randomly generate kernel expression trees that conform the initial pop-
ulation, we propose a grow method based on the work done in [20]. The initial
expression tress are created by a recursive process where, at each step, a random
terminal or operator is added.

GenProg also needs perturbation or variation methods to be defined in order
to modify previous solutions to obtain new ones. A crossover operator, which
combines two kernel functions to generate a new one that keeps some of the
features of its parents, and a mutation operator, which introduces slight modi-
fications to the original kernel to obtain a new individual are used. We propose
a crossover operator that randomly selects a subtree from each kernel and com-
bines them with the sum or the product operator. Furthermore, the mutation
operator replaces, shrinks or inserts an elementary mathematical expression at
a random position in the tree in a type-safe manner.

As in [12], we use the Bayesian Information Criterion (BIC) [33] as a quality
metric for each kernel. This is the fitness function of our GenProg algorithm. As
can be seen in Eq. (7), this metric is similar to the LML, but a regularization
term that penalizes the complexity of the kernels is added:

BIC(ki) = −2 log p (f |X, ki,θi,best) + q log n (7)

where q is the number of hyperparameters of the kernel and n is the number
of data points in X. θi,best is the best hyperparameter set for the kernel ki
according to a given metric.

In contrast to other GenProg applications, the solutions in our approach do
not encode all the necessary information to be evaluated. The optimal values
of the hyperparameters, according to the LML, have to be determined. Thus,
the performance of the solutions depends on the results of the hyperparameter
optimization. Both search procedures, the selection of the best hyperparameters
for each kernel and the selection of the best kernel given these hyperparameters,
are illustrated in Fig. 1.

In this paper, the hyperparameters are optimized by means of Powell ’s local
search algorithm [29]. As this algorithm is not bounded, the search space has to
be constrained by penalizing non-feasible hyperparameter sets. Besides, as the
function to optimize might be multi-modal, a multi-start approach was used,
performing a random restart every time the stopping criteria of Powell ’s algo-
rithm are met, and getting the best overall result. During this hyperparameter
search, a maximum number of 150 evaluations of the LML were allowed.
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Fig. 1. Two nested search procedures: the selection of the best hyperparameters for
each kernel is made according to LML and the selection of the best kernel according
to the BIC.

Note that, as a result of the inclusion of the randomized restarts, the hyper-
parameters found for a certain kernel in two independent evaluations may not
be the same. In fact, this implies that the fitness function optimized by the GP
algorithm is stochastic.

4.1 Related Work

GPs are particularly suited to model uncertainty in the predictions and allow
accurate prediction under noisy conditions. As such, there are diverse scenarios
in which GP can be applied to NLP tasks [6]. In [35], they are used for feature
selection for QE. Another property of GP, the possibility of extending them to
model correlated tasks using multi-task kernels, is used in [7] to jointly learn a
series of annotator and metadata specific models.

The most frequently used kernel for NLP tasks is the SE kernel. However,
other kernels have shown a better performance than SE in specific tasks. In
[30], frequencies of tweets are modeled using GP kernels specifically suited to
capture periodicities. In the same paper, the PER and the PS kernels are shown
to outperform non-periodic kernels and capture different periodic patterns. In
[1], three different kernels are compared: the SE and two Matern kernels. The
Matern kernels are reported to produce better results than SE. In addition to
numerical kernels, structural-kernels (e.g., tree-kernels) have been also combined
with GP. In [2], they are applied to emotion analysis and quality estimation.

A common characteristic of GP applications to NLP is that the choice of the
GP kernel has to be made a-priori and does not depend on the quality of the
function approximation. The focus is placed on hyperparameter optimization.
However, research on evolutionary algorithms has shown that it is also possible
to explore the space of kernel functions beyond the hyperparameter optimization.
In the GP literature this has been done by combining known kernels [12,21,23].
Kernels have also been evolved for Support Vector Machines (SVMs) [9,10,14,18,
19,39] and Relevance Vector Machines (RVMs) [4]. Some of the SVM approaches
are also based on combining the well-known kernels [10,39], although in some
other works the kernels are learned from simple mathematical expressions [9,14,
18,19].
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In contrast to other works in the GP field, our approach is to evolve kernels
from scratch. This method does not rely on previously proposed kernels, and
thus, new kernels may naturally arise.

Word embeddings [25] are extensively applied to NLP tasks [22]. The usual
approach when combining embeddings from words in a sentence is to compute
the average. This is the procedure used in [1], where 100-dimensional Glove
embeddings [27] are the representation of choice for mapping texts to emotion
scores using GP regression. Word-embeddings have been also used together with
GenProg in [32], but with the goal of solving the analogy task problem. This is a
completely different problem and the solution presented in [32] does not consider
the optimization of GPs or kernels.

5 Experiments

The objectives of the experimentation are twofold. On the one hand, we would
like to know if the evolution of GP kernels can improve the results of well-known
stationary kernels in translation post-editing effort estimation though sentence
embeddings. On the other hand, we would also like to investigate the best solu-
tion to aggregate the word vectors to conform these sentence embeddings.

5.1 Datasets and Embeddings

Our experiments consist of learning a GP regressor based on some combination
of source and target embeddings, and use this combined representation to predict
a particular metric. To carry out these experiment, we use the datasets originally
proposed in [37]:

1. en-es news-test2010: First 1000 English news sentences and their translations
into Spanish using Moses software. 800 sentences were used for training and
200 for testing.

2. fr-en news-test2009: 2525 French news sentences and their Moses translations
into English. 800 sentences were used for training and the remaining ones for
testing.

Punctuations were removed from the sentences, the text was tokenized, and
also case ignored. For the “HTER” metric, an equal cost was used for all edits
[37].

For each source language, we created two embedding representations with
different vector dimensions. For the first dataset, we use English Glove embed-
dings [27] of dimensions 50 and 300. To represent sentences in the target lan-
guage, we used Spanish embeddings of size 100 computed from the Spanish
CoNLL17 corpus and available from the NLPL word embeddings repository1.
For the second dataset, we used French embeddings of sizes 300 and 52. The

1 http://vectors.nlpl.eu/repository/.

http://vectors.nlpl.eu/repository/
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300-dimensional embeddings2 were trained on Common Crawl and Wikipedia
using fastText [16]. The 52-dimensional embeddings3 were trained on tweets [8].
The 100-dimensional embeddings for the target language were those provided by
Glove.

5.2 Experimental Set-Up

Learning a GP regressor implies optimizing the hyperparameters of the kernel.
Since the local optimizer used for that optimization is a stochastic process, we run
30 executions of the fitting process using the training data. For traditional Gaus-
sian kernels, this amounts to learning 30 different hyperparameter configurations
of the same kernel (e.g., of SE). For the evolved kernels, this means obtaining 30
different kernels. Each regressor is then used to predict the corresponding metric
on test data. Finally, for each kernel, the quality of the prediction is measured
by computing the root mean squared error (RMSE) between the known true
metric values and the predictions. In order to compare the different variants of
the algorithms, we analyze the distribution of the RMSE and the mean RMSE
values.

5.3 Results

In our first experiment, we compare the classical kernel models to the evolved
kernels introduced in this paper. We also evaluate the effect of using embeddings
of different dimensions to represent the source language text. Figure 2 shows the
results. In the figure, orig vw len refers to the dimensions of the embeddings of
the source data.

The first remarkable fact in Fig. 2 is that GenProg kernels show a similar
variance comparing to the classical kernels. This can be a sign of convergence
at least in performance. On the other hand, it can be seen that the dimension
of the source embeddings has a higher effect in the quality of the predictions
than the type of kernel used. This is particularly evident for the fr-en news-
test2009 dataset for which all distribution shapes are clearly asymmetric, with
embeddings of size 52 producing lower errors. It is important to take into con-
sideration that, for this dataset, embeddings are different not only in terms of
dimension but they also have been actually produced using different corpora and
methods. This is not the case for en-es news-test2010 dataset that uses 50- and
300-dimensional Glove embeddings. This fact may explain why differences for
this dataset, particularly for the “time” and “HTER” metrics, are so small.

In terms of the class of kernels used, differences are only visible for the fr-
en news-test2009 and the “score” metric, for which the use of evolved kernels
produces better predictions with a higher probability. The improvement over
the Matern 52 and SE kernels is particularly clear. The results of the second
experiment are summarized in Table 2.

2 https://fasttext.cc/docs/en/crawl-vectors.html.
3 https://www.spinningbytes.com/resources/wordembeddings/.

https://fasttext.cc/docs/en/crawl-vectors.html
https://www.spinningbytes.com/resources/wordembeddings/
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(a) score in en-es (b) time in en-es (c) HTER in en-es

(d) score in fr-en (e) time in fr-en (f) HTER in fr-en

Fig. 2. Comparison of the kernel models. For all kernels, the mean sentence embedding
has been used.

Table 2. Comparison between the GP models (mean RMSE from 30 executions). The
best results are shown in bold.

Matern 32 Matern 52 SE GenProg

en-es 50 300 50 300 50 300 50 300

score 0.5686 0.5655 0.5731 0.5705 0.5742 0.5678 0.5679 0.5609

time 106.3459 105.5226 106.1876 105.3945 106.4699 105.4241 106.6932 105.4191

HTER 0.1851 0.1827 0.1857 0.1830 0.1872 0.1837 0.1846 0.1835

fr-en 52 300 52 300 52 300 52 300

score 0.6703 0.6755 0.6741 0.6786 0.6758 0.6834 0.6638 0.6748

time 21.7082 22.1893 21.8140 22.2194 21.9587 22.8207 21.4360 22.0969

HTER 0.1686 0.1708 0.1691 0.1710 0.1687 0.1714 0.1684 0.1706

We conducted a statistical test to assess the existence of significant differences
among the kernels. For each dataset and metric, we applied Friedman’s test [13]
and we found significant differences in most comparisons (p-values can be seen
in the figures). Then, for each configuration, we applied a post-hoc test based
on Friedman’s test, and adjusted its results with Shaffer’s correction [34].

The results of the statistical tests are shown in Fig. 3. The results confirm a
coherent pattern where GenProg is the best performing kernel for most of the
configurations. Particularly, in fr-en news-test2009 dataset, it achieves signifi-
cantly better results that the classical kernels for the “time” metric. However,
according to this test, it can also be appreciated that for the rest of the configura-
tions the differences between GenProg and M32 are not significant. In evaluating
these results it is important to take into account that the kernels produced by
GenProg have been generated completely from scratch, with no prior knowledge
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of the existing kernels. The algorithm is able evolve a well performing kernel
starting from elementary mathematical components.
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Fig. 3. Critical difference diagrams. The kernels are ordered following the results in
their ranking. The metrics with no significant differences among them are matched
with a straight line. On the top, the results for the en-es news-test2010 dataset with
50-dimensional word-vectors can be found. On the bottom of the figure, the results for
fr-en news-test2009 with 52-dimensional word-vectors are shown. For all kernels, the
mean sentence embedding has been used.

Another important question is whether the different ways to compute sen-
tence embeddings influences the quality of the prediction. In the next experi-
ment, we investigate this issue. Figure 4 shows the violin plots [17] for RMSE as
computed in the test set with the max, mean, and std functions of the word-
vectors used. In these experiments, the 300-dimensional embeddings have been
used. Each violin plot represents a histogram smoothened using a kernel density
with Normal kernel. RMSE values for each of the 30 executions are shown as
black vars.

The analysis of Fig. 4 reveals that there are not major differences in sen-
tence embeddings for the “HTER” metric. However, for the “score” metric, max
embeddings produce smaller errors in the predictions than the other two sentence
embedding functions for the two datasets. This effect is more pronounced for the
time metric in the fr-en news-test2009 dataset, for which the max embeddings
produce better predictions.
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(a) score in en-es (b) time in en-es (c) HTER in en-es

(d) score in fr-en (e) time in fr-en (f) HTER in fr-en

Fig. 4. Comparison of the three sentence embeddings: max, mean, and std on the two
datasets, and three effort estimation metrics. For all kernels, 300-dimensional embed-
dings have been used.

6 Conclusions

Quality estimation of automatic translation has grown in interest in recent years.
There are many factors that influence the quality of the final estimation. In
particular, the type of text representation used and the class of regressor models
are very relevant questions. In this paper, using different QE metrics, we have
investigated how the joint determination of these factors influences the final
QE. We have focused on GP models, evaluating evolutionary generated kernels,
which can be more flexible than classical kernels.

Our results show that GenProg is the best performing kernel for most of
the configurations, although in most cases no significant differences were found.
For one particular metric, the “score” metric, evolved kernels produce better
results than simpler classical models on average in both datasets. Moreover, in
fr-en news-test2009 dataset, significant differences with the classical kernels were
found for the “time” metric. If the effort needed to train the model is not an
issue, the GenProg approach is the recommended option. Alternatively, classical
kernels, particularly the M32 kernel, are a good choice if a faster prediction is
needed.

In terms of the sentence embeddings used, max embedding showed a slight
advantage over extensively used mean embeddings. However, this effect seems to
depend on the particular metric approximated since for the “HTER” metric we
did not observe any difference between the sentence embeddings used. This may
indicate that word embeddings in general are not a good feature representation
for “HTER”. The choice of the dimensionality of word embeddings produced a
more marked effect in the quality of the predictions.
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As future work we consider the further evaluation of the GP kernels
using other features and more sophisticated approaches to compute sentence
embeddings.
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Abstract. Deciding upon which algorithm would be the most efficient
for a given set of linear programming problems is a significant step in lin-
ear programming solvers. CPLEX Optimizer supports primal and dual
variants of the simplex algorithm and the interior point method. In
this paper, we examine a prediction model using artificial neural net-
works for the performance of CPLEX’s interior point method on a set of
benchmark linear programming problems (netlib, kennington, Mészáros,
Mittelmann). Our study consists of the measurement of the execution
time needed for the solution of 295 linear programming problems. Spe-
cific characteristics of the linear programming problems are examined,
such as the number of constraints and variables, the nonzero elements of
the constraint matrix and the right-hand side, and the rank of the con-
straint matrix of the linear programming problems. The purpose of our
study is to identify a model, which could be used for prediction of the
algorithm’s efficiency on linear programming problems of similar struc-
ture. This model can be used prior to the execution of the interior point
method in order to estimate its execution time. Experimental results
show a good fit of our model both on the training and test set, with the
coefficient of determination value at 78% and 72%, respectively.

Keywords: Linear programming · Interior point method · CPLEX
Optimizer · Artificial neural network

1 Introduction

Various algorithms exist for the solution of linear programming problems. When
it comes to the selection of the most appropriate algorithm to use for a set of
problems, the question still remains: how to select the most efficient method,
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in terms of the execution time? CPLEX Optimizer [5] includes several high-
performance linear programming algorithms, supporting, among other methods,
primal and dual variants of the simplex algorithm, as well as the interior point
method. In this study, we are exploring a first approach towards creating a pre-
diction model for the efficiency of the interior point method. Contrary to the
simplex algorithm, the interior point method reaches a best solution by travers-
ing the interior of the feasible region and not by walking along the edges of its
surface to identify extreme points with gradually greater objective values [6].
Interior point methods are superior to the simplex algorithm for certain classes
of linear programming problems. Extensive computational studies shows that
interior point methods outperform the simplex algorithm for large scale lin-
ear programming problems [1]. The simplex algorithm tends to perform poorly
on large-scale degenerate linear programming problems [10]. Mehrotra [8] pre-
sented a practical algorithm for solving linear programming problems in 1992.
This algorithm remains the basis of most current linear programming solvers.
A thorough description of the interior point method would exceed the scope of
this short paper, therefore, more information about its steps and functionality
can be found in [3,10,12].

2 Empirical Results

2.1 Data

For the purpose of our computational study, 295 benchmark linear programming
problems were used from the netlib (25), kennington (13), Mészáros (217), and
Mittelmann (40) libraries. The problems were solved with CPLEX’s 12.6.1 [5]
interior point method and the respective execution time, needed for their solu-
tion, was recorded for each problem. The linear programming problem charac-
teristics which were examined in this study and set as input in our model are
the following:

– m: the number of constraints
– n: the number of variables
– nnzA: the number of nonzero elements of the constraint matrix
– nnzb: the number of nonzero elements of the right-hand side vector
– rankA: the rank of the constraint matrix.

The execution time was set as the output of our model. Apart from the above
characteristics, we examined also the number of variables in the problems after
adding slack variables, the density of the problem, the data length (bit length),
required in order to represent integer data, as well as the norm of the constraint
matrix. However, these characteristics did not contribute to the creation of our
models. For this set of problems, the lower and upper values in number of con-
straints, variables, nonzero elements of the constraint matrix and right-hand side
vector, are given respectively in Table 1 below. Each minimum and maximum
value may be related to different LPs, since these values are provided as reference
in this paper and they are not necessarily linked to the same LP.
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Table 1. Lower and Upper values in examined LP characteristics

Minimum Maximum

Constraints 25 986,069

Variables 882 15,000,000

Nonzero elements of constraint matrix 3108 30,000,000

Nonzero elements of right-hand side vector 0 512,209

2.2 Neural Network Model

The neural network model presented in this study has been generated using
the scikit-learn toolkit [9]. While testing several statistical environments, we
found scikit-learn to be the most suitable for the purpose of our analysis, since
it supports numerous methods of supervised and unsupervised learning, model
selection and evaluation and transformation of data. The algorithm used for the
generation of our model is the Multi-layer Perceptron (MLP). MLP is a super-
vised learning algorithm that can learn a function f(Δ) : Rx → Ro by training on
a dataset, where x is the number of dimensions for input and o is the number of
dimensions for output. Given a set of input features and an output target, MLP
can learn a nonlinear function approximator for either classification or regres-
sion. We also experimented with other supervised learning methods available in
scikit-learn toolkit, such as linear regression, lasso regression, ridge regression
and decision trees, but we obtained the best results using the MLP method.

The greatest challenge during our analysis was related to the number of
hidden layers, which had to be set while testing our models, along with the acti-
vation function we had to choose. It was noted that the more hidden layers we
have in our models, the worse results we eventually get. The activation function
is very significant since it converts an input signal of the last hidden layer to
an output signal for the next layer. Commonly used activation functions are
the hyperbolic tan function (tanh), the logistic sigmoid function (logistic) and
the rectified linear unit function (relu). Such activation functions were tested
while repeated and extensive testing was also performed on the number of hid-
den layers. One more aspect that was taken into consideration through extensive
testing, was the scale of our data. The input parameters of a model may have
different scales, which makes it difficult for the examined problems to be mod-
eled. Scaling and normalizing the original data was a significant step we took
while generating our models. Evaluating the metrics of each model, we formed
our model using the parameters shown in Table 2 below. Apart from the acti-
vation function and the number of hidden layers, the solver selected for weight
optimization is LBFGS, an optimizer in the family of quasi-Newton methods.
LBFGS uses a weighted linear summation to transform the input values of pre-
vious layers to output values for the next layer. Tolerance value refers to the
tolerance for the optimization. For example, if, upon a certain number of itera-
tions, we fail to decrease the training loss or to increase the validation score by
at least a value equal to tolerance, convergence is considered to be reached and
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training stops. The alpha value refers to the L2 penalty (regularization term)
parameter, while the maximum number of iterations indicates that the solver
will iterate until convergence (determined by tolerance value) or this number of
iterations.

Table 2. Model parameters for the MLP method

Algorithm MLPRegressor

Hidden layer sizes 20

Activation function relu

Solver lbfgs

Alpha value 1e−5

Maximum iterations 1,000

Tolerance 0.0001

The ratio between the training and test set was chosen to be 70 to 30. To
evaluate the performance of our model, certain metrics were taken into consider-
ation. The R-squared (R2, coefficient of determination) provides an estimate of
the strength of the relationship between a regression model and the dependent
variable (output), since it defines how well a statistical model fits the examined
data (i.e., the bigger its value is, the better fitting the model has). The Root
Mean Square Error (RMSE) is the standard deviation of the residuals (prediction
errors) and measures their spread around the line of best fit. RMSE is considered
as a measure of accuracy, usually used for comparison of different models gener-
ated for a particular dataset. This metric has non-negative values and a value of
0, although impossible to achieve in practice, would indicate a perfect fit to the
data. In general, a lower RMSE value is always better than a higher one. It is
important to note that this metric is not used between different datasets, as it
is scale-dependent [4], thus comparisons of different types of data would not be
valid since the measure depends on the scale of the examined dataset numbers.
We also include the mean absolute error that measures the average magnitude
of the errors in a set of predictions, without considering their direction, and the
median absolute error that is insensitive to outliers [2,7,11]. Table 3 presents
the results of the neural network. For the training set, the model achieved an
RMSE value of 123.32 and an R2 value of 0.78, while for the test set the model
achieved an RMSE value of 296.73 and an R2 value of 0.72. Taking into account
the variability in the features of the 295 linear programming models and the
metrics’ values, it is shown that our model can explain the data reasonably well.
As an example, an R2 value of 1 would indicate a perfect fit of the data, so the
current R2 value proves goodness of fit of our model. Further below, a graphical
representation of the comparison between the metrics measured for some of the
models we tested is presented in Figs. 1 and 2 (different number of hidden lay-
ers and different activation functions, respectively). The term units as shown in
Fig. 1 below, refer to the actual layers of the model.
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Table 3. MLP model for the interior point method execution time

Training set Test set

Root Mean squared error 123.32 296.73

Absolute Mean error 54.31 97.54

Absolute Median error 7.12 9.49

R2 0.78 0.72
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Fig. 1. Tuning the number of hidden layers
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Fig. 2. Tuning the activation function
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3 Conclusions

An important step in solving linear programming problems is the selection of
the most efficient algorithm. Most linear programming solvers have a heuristic
procedure to select the most suitable algorithm based on the characteristic of
the input linear programming problem. In this paper, we experiment with the
use of a neural network for predicting the execution time of CPLEX’s interior
point method. Experimental results show that the model can achieve an R2

value of 78% for the training set and 72% for the test set. Taking into account
the variability in the features of the benchmark linear programming models we
examined and the metrics used for the comparison of the generated models,
the current model proves to have a good fit on the data and thus, can be used
for further prediction of the algorithm’s efficiency. In future work, we plan to
build prediction models for the primal and dual simplex algorithm and exper-
iment with various supervised learning methods. These models will be formed
after a further investigation on the above mentioned model parameters (different
number of hidden layers, number of neurons, activation functions, scaling and
normalization techniques). Building accurate models for the prediction of the
execution of the primal simplex algorithm, the dual simplex algorithm, and the
interior point method will lead a linear programming solver to select the most
efficient algorithm for a given linear programming problem. That would lead to
great savings in solving linear programming problems.
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Abstract. The cycle double cover conjecture is a famous longstanding
unsolved conjecture in graph theory. It is related and can be reduced to
the compatible circuit decomposition problem. Recently Fleischner et al.
(2018) provided a sufficient condition for a compatible circuit decomposi-
tion, which is called SUD-K5-minor freeness. In a previous work we devel-
oped an abstract mathematical model for finding SUD-K5-minors and
based on the model a mixed integer linear program (MIP). In this work
we propose a respective boolean satisfiability (SAT) model and compare
it with the MIP model in computational tests. Non-trivial symmetry
breaking constraints are proposed, which improve the solving times of
both models considerably. Compared to the MIP model the SAT app-
roach performs significantly better. We use the faster algorithm to fur-
ther test graphs of graph theoretic interest and were able to get new
insights. Among other results we found snarks with 30 and 32 vertices
that do not contain a perfect pseudo-matching, that is a spanning sub-
graph consisting of K2 and K1,3 components, whose contraction leads to
a SUD-K5-minor free graph.

Keywords: Transition minor · Cycle double cover · Compatible
circuit decomposition · SAT

1 Introduction

The famous cycle double cover (CDC) conjecture states that every bridgeless
graph has a cycle double cover, which is a collection of cycles such that every edge
of the graph is part of exactly two cycles. It was originally posed by Szekeres [13]
and Seymour [11] over 40 years ago and is still unsolved. As Jaeger shows in
[5], the CDC conjecture can be reduced to the consideration of a special class
of graphs called snarks by considering a minimum counter example. There are
multiple similar definitions of snarks, we will use the one from Jaeger [5]: A snark
is a simple cyclically 4-edge-connected cubic graph with chromatic index four. A
cyclically 4-edge-connected graph is a graph that has no 4-edge cut after whose
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removal at least two components contain a cycle. Although snarks are simple,
we consider in general undirected multigraphs without loops.

A problem related to the CDC conjecture is the compatible circuit decompo-
sition (CCD) problem. It is formulated on a transitioned graph (G, T ), which is
a graph G together with a set of transitions T . A transition consists of a vertex
and two incident edges. We write T (v) for the set of all transitions at vertex v. A
transition system has to satisfy that the transitions in T (v) are edge-disjoint. A
compatible circuit decomposition of a transitioned graph is a collection of circuits
such that each edge of the graph is part of exactly one circuit and each circuit
does not contain any pair of edges of a transition. The CCD problem asks if
a given transitioned graph contains a compatible circuit decomposition. To see
the connection between the CDC conjecture and the CCD problem we consider
a cubic graph C, for example a snark. A perfect pseudo-matching (PPM) of C
is a subgraph spanning C whose connected components are either two vertices
connected by an edge, i.e. the K2, or one vertex together with its three incident
edges and its three neighbors, i.e. the K1,3 which we also call claw. Given a PPM
of C we can define now a transitioned graph (G, T ) by contracting all edges of
the PPM. We define a transition in T for each pair of adjacent edges in G that
remain after the contraction, see Fig. 1 for an illustration.

⇒ ⇒

Fig. 1. Example contraction of parts of a PPM. The edges of the PPM getting con-
tracted are drawn dashed. The transitions in the resulting graph are represented by a
vee (∨) between the two edges of the transition.

Note that the contracted graph may contain loops, but we can ignore them
since they are not relevant in the context of circuit decompositions. If we contract
a PPM of a snark there are no loops since a snark is simple and has no triangles.
As described in [8] if the constructed transitioned graph (G, T ) contains a CCD
one can construct a CDC in the original graph C. Already in 1980 Fleischner [3]
proved that every transitioned graph (G, T ) where G is 2-connected and planar
contains a CCD. This result was then improved in 2000 by Fan and Zhang [2]
who showed that if G is 2-connected and K5-minor free it must contain a CCD.
Those two sufficient conditions for the existence of a CCD are only based on the
structure of G and do not consider the transition system T . Recently Fleischner
et al. [4] generalized the minor term to transitioned graphs and proved that if
(G, T ) is 2-connected and SUD-K5-minor free it must contain a CCD. For the
definition of a SUD-K5-minor we refer to [4] or [8].

Because of the complex nature of the definition of a SUD-K5-minor it is non-
trivial to check if a graph contains a SUD-K5-minor. In a previous work [8] we
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generalized the problem of SUD-K5-minor containment by allowing to replace
the K5 by any 4-regular graph H. Formally, given a transitioned graph (G, T )
and a 4-regular completely transitioned graph (H,S) the decision problem
Existence of Sup-Transition-Minors (ESTM) asks if (G, T ) has a sup-(H,S)-
transition minor. A graph is completely transitioned if every edge is part of two
transitions. A transitioned graph (G, T ) has a sup-(H,S)-transition minor if it
has a H-minor where every vertex w of H corresponds to a subgraph Cw of G
that has a cut vertex vw. The cut vertex must split Cw in at least two compo-
nents such that there is a transition at vw whose edges are part of one of those
components C1

w and all other edges incident to vw are part of other components.
Furthermore, the transition at vw must correspond to a transition of H at w
such that the two edges of the transition in H are connected to the component
C1

w. For a formal definition of a sup-(H,S)-transition minor we refer to [8].
The mathematical model developed in [8] for deciding the ESTM allowed to

derive a mixed integer linear program (MIP) model, which could be solved for
small graphs, yielding interesting graph theoretic results. In this work we present
a more powerful boolean satisfiability (SAT) formulation for the mathematical
model developed in [8], which allows addressing significantly larger graphs. To
improve the solving times of the MIP as well as the SAT model we propose a
non-trivial symmetry breaking based on graph automorphisms of the two input
graphs (G, T ) and (H,S). The idea of breaking symmetries using automorphism
groups has been studied in a general context, see e.g. [1], and in problem-specific
contexts, see e.g. [7]. We extend the definition of automorphisms to transitioned
graphs and propose problem specific symmetry breaking constraints based on a
vertex mapping between the two input graphs (G, T ) and (H,S).

Using the new SAT model, which outperforms the MIP model significantly,
together with the symmetry breaking constraints we were able to check for all
snarks with up to 32 vertices if they contain a PPM whose contraction is SUD-
K5-minor free. Within those tests we were able to find snarks that do not contain
such a PPM. This result answers the previously open question that the notion
of SUD-K5-minor freeness in the context of contractions of PPMs in snarks is
not enough to prove the CDC conjecture.

In the following section we present a SAT model for finding a sup-(H,S)-
transition minor. Then we discuss symmetry breaking constraints, which can be
used in the MIP and in the SAT model, in Sect. 3. Section 4 gives computational
results for the new SAT model in comparison to the MIP model. Also we show
the impact of the symmetry breaking. Finally, we will conclude and propose
some future work in Sect. 5.

1.1 Terminology and Notation

As already mentioned, when referring to a graph we mean here an undirected
multigraph without loops, unless otherwise stated. We denote a graph by G =
(V,E, r) with a vertex set V , an edge set E and a function r that maps an edge
e ∈ E to the set of its two end vertices {v1, v2}. If r(e) = {v1, v2} we also write
e = v1v2. Note that e = v1v2 and e′ = v1v2 does not imply e = e′ since we can
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have parallel edges. For a vertex v ∈ V we write E(v) = {e ∈ E | v ∈ r(e)} for
the set of all incident edges and N(v) = {v′ ∈ V | ∃e ∈ E : e = vv′} for the set
of all neighbors.

We represent a transition in a transitioned graph by a pair T = (v, {e1, e2})
where the first element is a vertex and the second element a set of two edges
which are incident to the vertex. Furthermore, we use projections π1(T ) = v and
π2(T ) = {e1, e2} to denote the vertex and the edge set of a transition.

For a partial function α : A � B and a subset X ⊆ A we write α[X] =
{b ∈ B : ∃a ∈ X : b = α(a)} for the image of X under α. Furthermore, if Y ⊆
B we write α−1[Y ] = {a ∈ A : α(a) ∈ Y } for the preimage of Y under α. We
also abbreviate the notation in case of only one element by α[a] = α[{a}] and
α−1[b] = α−1[{b}] for a ∈ A and b ∈ B.

2 The SAT Model

In this section we present a SAT model for checking if a given transitioned graph
(G, T ) contains a sup-(H,S)-transition minor for a given completely transitioned
4-regular graph (H,S). For the formal definition of a sup-(H,S)-transition minor
see [8].

In the following we first repeat the mathematical model developed in [8]
on which the SAT model will be based. The model will use simple trees
Ci

w with vertices in G for which we will use the following notation: Ei
w :={

e ∈ E(G) | r(e) ∈ E(Ci
w)

}
. The model is defined as finding

1. a partial surjective function ϕ : V (G) � V (H),
2. a partial injective and surjective function κ : E(G) � E(H),
3. a partial injective function θ : E(G) � V (H),
4. ∀w ∈ V (H) a pair (Tw, Sw) of transitions with Tw ∈ T and Sw ∈ S(w), and
5. ∀w ∈ V (H) two simple trees C1

w and C2
w with V (Ci

w) ⊆ V (G) for i = 1, 2,

such that

E(Ci
w) ⊆ rG[E(G)] ∀w ∈ V (H), ∀i ∈ {1, 2} (1)

κ(e) = f ⇒ ϕ[rG(e)] = rH(f) ∀e ∈ E(G), ∀f ∈ E(H) (2)
V (C1

w) ∪ V (C2
w) = ϕ−1[w] ∀w ∈ V (H) (3)

{π1(Tw)} = V (C1
w) ∩ V (C2

w) ∀w ∈ V (H) (4)

π2(Tw) ⊆ κ−1[π2(Sw)] ∪ θ−1[w] ∪ E1
w ∀w ∈ V (H) (5)

(
κ−1[π2(Sw)] ∩ E(π1(Tw))

)
∪ θ−1[w] ⊆ π2(Tw) ∀w ∈ V (H) (6)

e ∈ dom(κ) ∧ κ(e) ∈ π2(Sw) ⇒ rG(e) ∩ V (C1
w) 	= ∅ ∀w ∈ V (H), ∀e ∈ E(G) (7)

e ∈ dom(κ) ∧ κ(e) ∈ E(w) \ π2(Sw)

⇒ rG(e) ∩ V (C2
w) 	= ∅

∀w ∈ V (H), ∀e ∈ E(G) (8)

v ∈ V (C1
w) \ {π1(Tw)} ∧ degC1

w
(v) = 1∧

v /∈
⋃

rG[θ−1[w]] ⇒ E(v) ∩ κ−1[π2(Sw)] 	= ∅
∀w ∈ V (H), ∀v ∈ V (G) (9)
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EC1
w
(π1(Tw)) ⊆ rG[π2(Tw)] ∀w ∈ V (H) (10)

θ(e) = w ⇒ rG(e) ⊆ V (C1
w) ∀e ∈ E(G), ∀w ∈ V (H) (11)

θ(e) = w ⇒ rG(e) /∈ E(C1
w) ∀e ∈ E(G), ∀w ∈ V (H) (12)

holds.
In [8] we proved that the feasibility of this model is equivalent to the existence

of a sup-(H,S)-transition minor in (G, T ). Most constraints of this model can
more or less directly be translated into SAT clauses. One critical aspect is how
to model the tree Ci

w for w ∈ V (H) and i ∈ {1, 2}. Constraints (3) and (4)
ensure that the subgraph Cw formed by C1

w and C2
w together is a tree and all

trees Cw are disjoint for w ∈ V (H). Combining all trees Cw for w ∈ V (H) we
obtain a forest and for each of the trees Cw we define a unique root π1(Tw) by
(4). When modeling the forest in a directed fashion, we then only have to take
care to avoid any cycles. There are different techniques in literature to model
acyclicity in SAT models. Some of those techniques are summarized in [6]. We
will use the approach based on a transitive closure for ensuring acyclicity in our
model. Our SAT model uses the following variables:

– xw
v for v ∈ V (G), w ∈ V (H) represents ϕ(v) = w,

– yf
e for e ∈ E(G), f ∈ E(H) represents κ(e) = f ,

– zwe for e ∈ E(G), w ∈ V (H) represents θ(e) = w,
– aw

T for w ∈ V (H), T ∈ T represents T = Tw,
– bwS for w ∈ V (H), S ∈ S(w) represents S = Sw,
– oi,wv for v ∈ V (G), w ∈ V (H), i ∈ {1, 2} represents v ∈ V (Ci

w),
– pi,wa for a ∈ A(G), w ∈ V (H), i ∈ {1, 2} represents a ∈ E(Ci

w),
– tv1,v2 for v1, v2 ∈ V (G) is the transitive closure relation of all pi,wa variables.

The trees Ci
w are modeled as a directed rooted out-trees and the variables pi,wa

decide which directed arcs are part of the tree. Set A(G) is the set of all directed
arcs of edges in G when eliminating parallel edges. So for every pair of adjacent
vertices in G there are two arcs in opposite direction in A(G). We write Ain(v)
for the ingoing arcs at v and Aout(v) for the outgoing arcs at v. In the following
we list all constraints of our SAT model. For simplicity, we will present the
constraints in the form of propositional logic formulas. To transform them into
clauses we use De Morgan’s law and the distributive property. One alternative
would be to use Tseitin transformations [14], although for the constraints we will
present the number of resulting clauses using the naive transformation is still
small and therefore this is not needed. In the following we will use for a given
v ∈ V (G), w ∈ V (H), and i ∈ {1, 2}

oneIn(v, i, w) :=
( ∨

a∈Ain(v)

pi,wa

)
∧

∧

a1,a2∈Ain(v)
a1 �=a2

(
¬pi,wa1

∨ ¬pi,wa2

)
.

The basic structures as defined in the mathematical model are expressed by

¬(xw1
v ∧ xw2

v ) ∀v ∈ V (G),∀w1, w2 ∈ V (H), w1 �= w2 (13)
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∨

v∈V (G)

xw
v ∀w ∈ V (H) (14)

¬(yf1
e ∧ yf2

e ) ∀e ∈ E(G),∀f1, f2 ∈ E(H), f1 �= f2 (15)

¬(yf
e1 ∧ yf

e2) ∀e1, e2 ∈ E(G), e1 �= e2,∀f ∈ E(H) (16)
∨

e∈E(G)

yf
e ∀f ∈ E(H) (17)

¬(zw1
e ∧ zw2

e ) ∀e ∈ E(G),∀w1, w2 ∈ V (H), w1 �= w2 (18)
¬(zwe1 ∧ zwe2) ∀e1, e2 ∈ E(G), e1 �= e2,∀w ∈ V (H) (19)
¬(aw

T1
∧ aw

T2
) ∀w ∈ V (H),∀T1, T2 ∈ T , T1 �= T2 (20)

∨

T∈T
aw
T ∀w ∈ V (H) (21)

¬(aw1
T ∧ aw2

T ) ∀w1, w2 ∈ V (H), w1 �= w2,∀T ∈ T (22)
¬(bwS1

∧ bwS2
) ∀w ∈ V (H),∀S1, S2 ∈ S(w), S1 �= S2 (23)

∨

S∈S(w)

bwS ∀w ∈ V (H) (24)

oi,wv →
∨

T∈T (v)

aw
T ∨ oneIn(v, i, w) ∀v ∈ V (G), w ∈ V (H), i ∈ {1, 2} (25)

∨

T∈T (v)

aw
T → oi,wv ∧

∧

a∈Ain(v)

¬pi,wa ∀v ∈ V (G), w ∈ V (H), i ∈ {1, 2} (26)

¬oi,wv →
∧

a∈Ain(v)∪Aout(v)

¬pi,wa ∀v ∈ V (G), w ∈ V (H), i ∈ {1, 2} (27)

¬(tv1,v2 ∧ tv2,v1) ∀a = (v1, v2) ∈ A(G) (28)
tv1,v2 ∧ tv2,v3 → tv1,v3 ∀a = (v1, v2) ∈ A(G), v3 ∈ V (G) (29)

∨

w∈V (H),i∈{1,2}
pi,wa → tv1,v2 ∀a = (v1, v2) ∈ A(G). (30)

Constraints (13), (15), (18), (20), and (23) ensure that ϕ, κ, θ, w 
→ Tw,
and w 
→ Sw are partial functions with the special restriction that Sw ∈ S(w).
Furthermore, constraints (14) and (17) enforce that ϕ and κ are surjective. On
the other hand, constraints (16), (19), and (22) ensure that κ, θ, and w 
→ Tw

are injective. Note that the mathematical model does not state directly that
w 
→ Tw should be injective, but it does indirectly by constraints (3) and (4).
Additionally, constraints (21) and (24) guarantee that there exists a Tw and a
Sw for each w ∈ V (H).
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Constraints (25)–(27) characterize three types of vertices in G. The root
vertices of the trees Ci

w, which are defined by the vertices of the transitions
Tw by (4), do not have any ingoing arcs in Ci

w. Other vertices in Ci
w that are

not roots have exactly one ingoing arc in Ci
w and vertices that are not in Ci

w

have no ingoing or outgoing arc in Ci
w. Last but not least, constraints (28)–

(30) ensure that the trees Ci
w have no cycles by using the transitive closure

variables tv1,v2 similarly as it is described in [6]. Instead of having just one
variable, which represents if a directed edge is part of the forest, we use in our
case the disjunction

∨
w∈V (H),i∈{1,2,} pi,wa for an arc a. With this we ensured all

structural properties formulated in the mathematical model. What is left is to
model constraints (1)–(12) which is achieved by

yf
e → (xw1

v1
∧ xw2

v2
) ∨ (xw1

v2
∧ xw2

v1
)

∀e = v1, v2 ∈ E(G),

∀f = w1w2 ∈ E(H)
(31)

o1,w
v ∨ o2,w

v ↔ xw
v ∀v ∈ V (G), ∀w ∈ V (H) (32)

∨

T∈T (v)

aw
T ↔ o1,w

v ∧ o2,w
v ∀v ∈ V (G), ∀w ∈ V (H) (33)

∨

T∈T
e∈π2(T )

aw
T →

∨

S∈S(w)

(
bw
S ∧

∨

f∈π2(S)

yf
e

)

∨zw
e ∨ p1,w

(v1,v2)
∨ p1,w

(v2,v1)

∀e = v1v2 ∈ E(G),

∀w ∈ V (H)
(34)

aw
T ∧ bw

S → ¬
∨

f∈π2(S)

yf
e

∀w ∈ V (H), ∀S ∈ S(w),

∀T ∈ T , ∀e ∈ E(π1(T )) \ π2(T )
(35)

aw
T → ¬zw

e

∀w ∈ V (H),

∀T ∈ T , ∀e ∈ E(π1(T )) \ π2(T )
(36)

bw
S ∧

∨

f∈π2(S)

yf
e → o1,w

v1
∨ o1,w

v2
∀w ∈ V (H), ∀S ∈ S(w),

∀e = v1v2 ∈ E(G)
(37)

(
bw
S ∧

∨

f∈E(w)\π2(S)

yf
e

)
→ o2,w

v1
∨ o2,w

v2
∀w ∈ V (H), ∀S ∈ S(w),

∀e = v1v2 ∈ E(G)
(38)

bw
S ∧ o1,w

v ∧
∧

v′∈N(v)

¬p1,w
(v,v′) ∧

∧

e∈E(v)

¬zw
e

→
( ∨

e∈E(v),f∈π2(S)

yf
e ∨ o2,w

v

)
∀w ∈ V (H), ∀S ∈ S(w),

∀v ∈ V (G)
(39)

aw
T → ¬p1,w

(π1(T ),v)
∧ ¬p1,w

(v,π1(T ))

∀w ∈ V (H), ∀T ∈ T ,

∀v ∈ N(π1(T )) \
⋃

rG[π2(T )]
(40)

zw
e → (o1,w

v1
∧ o1,w

v2
) ∀w ∈ V (H), ∀e = v1v2 ∈ E(G) (41)

zw
e → (¬p1,w

(v1,v2)
∧ ¬p1,w

(v2,v1)
) ∀w ∈ V (H), ∀e = v1v2 ∈ E(G). (42)

Constraints (1) are already satisfied implicitly and constraints (2)–(5) are real-
ized by constraints (31)–(34) respectively. Furthermore, constraints (6) are guar-
anteed by (35) and (36). All the other constraints (7)–(12) are modeled via (37)–
(42) respectively.
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By using our SAT model we can develop an algorithm that checks for a given
snark if it contains a PPM whose contraction leads to a planar, a K5-minor free,
a SUD-K5-minor free, or a CCD-containing graph. The algorithm enumerates
all PPMs iteratively by ordering the vertices of the snark and always trying to
add all possible edges or claws to the pseudo-matching that contain the smallest
not yet visited vertex of the snark. Then it checks for each generated PPM if
its contraction leads to a planar graph. If it does not find such a matching it
checks for K5-minor free contractions, if this also is not the case it checks for
SUD-K5-minor free contractions and otherwise it checks for CCD-containing
contractions. Using this algorithm one can specify for each snark the type of the
strongest matching found for this snark.

3 Symmetry Breaking

The input graphs G and H, especially H, often have symmetries leading to
symmetric solutions in our model. To avoid those we analyze the structure of
the symmetries in G and H and incorporate symmetry breaking constraints into
our model.

To formalize the concept of symmetries in transitioned graphs we extend
the definition of homomorphisms on graphs to transitioned graphs. We are only
interested in vertex symmetries and therefore a homomorphism between two
multigraphs is for us a vertex mapping which preserves the vertex adjacency
relation with the correct number of edges, e.g. if there are k edges between
two vertices then there must be exactly k edges between the images of those
vertices. If we would want to also eliminate edge symmetries this would lead
to more complex symmetry breaking constraints and would only help in cases
where there are a lot of parallel edges.

We can extend the definition of homomorphisms to transitioned graphs by
enforcing that it also preserves transitions. That means that the homomorphism
f : V (G) 
→ V (H) between (G, T ) and (H,S), which is a vertex mapping,
induces a mapping between the edges g : E(G) 
→ E(H) according to the end
vertex relation of f , i.e

f [r(e)] = r(g(e)) ∀e ∈ E(G)

and transitions are preserved, i.e.

(f(v), {g(e1), g(e2)}) ∈ S ∀T = (v, {e1, e2}) ∈ T .

By using our extended definition of homomorphisms we can define isomor-
phisms as bijective functions which are a homomorphism in both directions.
Furthermore, we can define automorphisms as isomorphisms of a graph to itself
and can consider the automorphism group of a transitioned graph (G, T ).

Given input graphs (G, T ) and (H,S) we can use automorphisms to trans-
form feasible solutions into other feasible solutions. More formally for any feasible
solution and any pair of automorphisms f ∈ Aut(G, T ) and g ∈ Aut(H,S) of
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which at least one is not the identity we can construct another feasible solution
by replacing all vertices in G according to f and all vertices in H according to
g. Since f and g preserve all edges and all transitions this is sufficient to get a
new feasible solution.

Next we propose an approach how to eliminate some of those symmetries.
Let S be a feasible solution with vertex mapping ϕ : V (G) � V (H). We assume
that V (G) and V (H) are totally ordered sets. We can define for any pair of auto-
morphisms f ∈ Aut(G, T ) and g ∈ Aut(H,S) a sequence αf,g := (xf,g

w )w∈V (H)

by
αf,g
w := min f [ϕ−1[g(w)]]

which is well-defined since ϕ is surjective. The sequence αf,g contains the smallest
vertex of each preimage of ϕ after applying the automorphisms f and g to
the solution. The idea is to enforce that α := αidV (G),idV (H) is lexicographically
minimal compared to all αf,g for all pairs of automorphisms f ∈ Aut(G, T ) and
g ∈ Aut(H,S), i.e.

α ≤lex αf,g ∀f ∈ Aut(G, T ),∀g ∈ Aut(H,S). (43)

Note that there may be multiple different feasible solutions with the same
sequence α and therefore this only eliminates some symmetries. Such differ-
ent solutions with the same α may differ in the mapped edges or transitions,
or differ in vertices in G that are not mapped by ϕ or are not the smallest
vertices of the preimages of ϕ. But if H is simple this restriction eliminates
all symmetries occurring only in H, i.e. if we only apply an automorphism in
Aut(H,S) \

{
idV (H)

}
to a feasible solution satisfying (43) the resulting solution

will not satisfy (43). To formalize (43) in such a way that it can be modeled in a
MIP or a SAT formulation we have to expand the definition of a lexicographical
ordering. Condition (43) is equivalent to

∀w ∈ V (H),∀f ∈ Aut(G, T ),∀g ∈ Aut(H,S) :

αw ≤ αf,g
w ∨ ∃w′ < w : αw′ < αf,g

w′

⇔(∀v < αw : f(v) /∈ ϕ−1[g(w)]) ∨ (∃w′ < w : ∀v ≤ αw : f(v) /∈ ϕ−1[g(w′)]).

This constraint is still complicated and results in a lot of constraints in SAT
or MIP models. To avoid bloating the models we consider only the variant for
the smallest vertex w0 := min(V (H)) of H. Then the condition can be simplified
using orbits.

Definition 1. Let f be an automorphism on a transitioned graph (G, T ). The
set

orb(v) := {v′ ∈ V | ∃f ∈ Aut(G, T ) : f(v) = v′}

is called the orbit of v ∈ V . Orbits are the equivalence classes of the equivalence
relation corresponding to Aut(G, T ) in which two vertices are equivalent if there
exists an automorphism mapping one vertex to the other.
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Using the definition of orbits we can simplify our condition for the special case
w0

f(v) /∈ ϕ−1[g(w0)] ∀v < αw0 ,∀f ∈ Aut(G, T ),∀g ∈ Aut(H,S)

⇔v′ /∈ ϕ−1[w′] ∀v < αw0 ,∀v′ ∈ orb(v),∀w′ ∈ orb(w0)
⇔ϕ(v′) = w′ → αw0 ≤ v ∀v ∈ V (G),∀v′ ∈ orb(v),∀w′ ∈ orb(w0)
⇔ϕ(v′) = w′ → ∃v′′ ≤ v : ϕ(v′′) = w0 ∀v′ ∈ V (G),∀v ∈ orb(v′),∀w′ ∈ orb(w0)
⇔ϕ(v) = w → ∃v′ ≤ min orb(v) : ϕ(v′) = w0 ∀v ∈ V (G),∀w ∈ orb(w0). (44)

Another specialization of (43) is if we only consider automorphisms on H, i.e.
fix f = idV (G). In this case we simply have αg

w := α
idV (G),g
w = min ϕ−1[g(w)] =

αg(w), i.e. the α values are simple permutations of each other based on g. There-
fore the symmetry breaking condition holds if and only if

(αw)w∈V (H) ≤lex (αg(w))w∈V (H) ∀g ∈ Aut(H,S). (45)

Note that (αw)w∈V (H) ≤lex (αg(w))w∈V (H) if and only if for the first vertex
w for which αw �= αg(w), αw < αg(w) holds. Since all values in αw are different
we know that αw = αg(w) if and only if w = g(w). Therefore, if w is the first
value where they are different this implies that g fixes all w′ < w, i.e. g(w′) = w′

for all w′ < w.

Definition 2. Let S ⊆ V (G), then the stabilizer of Aut(H,S) with respect to S
is defined by AutS(H,S) := {g ∈ Aut(H,S) | ∀s ∈ S : g(s) = s}, which is a sub-
group ofAut(H,S). We can again define stabilizer orbits according to the automor-
phisms in the stabilizer, i.e. orbS(v) := {v′ ∈ V | ∃f ∈ AutS(G, T ) : f(v) = v′}.

With this definition we can reformulate (45) in the following way:

αw < αg(w) ∀w ∈ V (H),∀g ∈ Aut{w′∈V (H):w′<w}(H,S) : g(w) �= w

⇔αw < αw′′ ∀w ∈ V (H),∀w′′ ∈ orb{w′∈V (H):w′<w}(w) \ {w} .

The condition αw < αw′′ can be expressed such that the statement is equivalent
to

ϕ(v) = w′′ → ∃v′ < v : ϕ(v′) = w
∀v ∈ V (G),∀w ∈ V (H),

∀w′′ ∈ orb{w′∈V (H):w′<w}(w) \ {w} .
(46)

To model constraints (44) and (46) we use the inequalities

xw
v ≤

∑

v′≤min orb(v)

xw0
v′ ∀v ∈ V (G),∀w ∈ orb(w0) (47)

xw′′
v ≤

∑

v′<v

xw
v′

∀v ∈ V (G),∀w ∈ V (H),
∀w′′ ∈ orb{w′∈V (H):w′<w}(w) \ {w}

(48)
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for the MIP model and the constraints

xw
v →

∨

v′≤min orb(v)

xw0
v′ ∀v ∈ V (G),∀w ∈ orb(w0) (49)

xw′′
v →

∨

v′<v

xw
v′

∀v ∈ V (G),∀w ∈ V (H),
∀w′′ ∈ orb{w′∈V (H):w′<w}(w) \ {w}

(50)

for the SAT model.

(G, T )
⇒

Aux(G, T )

Fig. 2. Construction example of the auxiliary graph for a part of a transitioned graph
(G, T ). The newly added artificial vertices have color 2, which is drawn white and the
original vertices have color 1, which is drawn black.

3.1 Finding All Automorphisms and Stabilizers

To add constraints (47)–(48) or (49)–(50) to our model we need to compute the
automorphism group Aut(G, T ), its orbits, the automorphism group Aut(H,S),
its orbits, and the orbits orb{w′∈V (H):w′<w}(w) of the stabilizers for each w ∈
V (H).

The problem of computing a set of generators of the automorphism group
of a simple graph is well studied. It is closely related to the famous graph iso-
morphism problem. Since no polynomial time algorithm is known for the graph
isomorphism problem, which can be reduced to computing generators of the
automorphism group of the graph, all proposed algorithms in literature require
exponential time in general. Nevertheless, if we restrict the problem to graphs
with bounded degree, like it is the case for the input graph H, which is always 4-
regular, there are polynomial time algorithms, see [9]. On the other hand, there
are efficient algorithms in practice, which can handle graphs with unbounded
degree. See for example McKay and Piperno [10] where they solved the problem
for graphs with several thousand vertices in reasonable time.

The algorithm of McKay and Piperno and also other algorithms in the lit-
erature working similarly get as an input a simple undirected graph G = (V,E)
with a vertex coloring c : V → {1, . . . m} and compute a generator of Autc(G),
which is the subgroup of Autc(G) which preserves the colors given by c, i.e.

Autc(G) := {f ∈ Aut(G) | c(f(v)) = c(v) ∀v ∈ V (G)} .

Since we need to compute automorphism groups of transitioned multigraphs,
we need to transform our graphs in such a way that we can apply McKay’s
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algorithm to it. Let (G, T ) be a transitioned graph. We construct an auxiliary
graph Aux(G, T ) by inserting in each edge e = v1v2 of G two vertices wv1

e and
wv2

e . This gives us immediately a simple graph. Furthermore, for each transition
t = (v, e1, e2) ∈ T we add an edge between the vertices wv

e1 and wv
e2 . We also

define a coloring c on the auxiliary graph by coloring all original vertices with
the color 1 and all artificially added vertices with the color 2. See Fig. 2 for an
example on how to construct the auxiliary graph for a part of a given transitioned
graph (G, T ).

Theorem 1.

Aut(G, T ) =
{
f |V (G)

}
[f ∈ Autc(Aux(G, T ))]

Proof. By adding the two artificial vertices with a second color between each
edge we can associate with each automorphism in the auxiliary graph a vertex
mapping and an edge mapping in the original graph. The edge mapping is defined
by mapping an edge e1 to an edge e2 if the two artificial vertices on e1 get mapped
to the two artificial vertices on e2 in the auxiliary graph. Furthermore, since
there are edges between two added vertices wv

e1 and wv
e2 if and only if there is a

transaction (v, {e1, e2}) in the original graph we also get that the mappings are
transition-preserving. On the other hand, given a vertex mapping and an edge
mapping as in the definition of an automorphism in a transitioned graph, we
can use those to formulate an edge-preserving vertex mapping on the auxiliary
graph.

Theorem 1 shows us that we can use the auxiliary graph Aux(G, T ) to get
the automorphism group of a transitioned graph (G, T ) by using an algorithm to
compute Autc(Aux(G, T )). What remains is how to compute the orbits and the
orbits of the stabilizers which can be done with the Schreier-Sims algorithm [12].
To get the orbits of the stabilizers we may have to reorder our vertices (which in
effect changes the needed stabilizers) according to the result of the Schreier-Sims
algorithm. This is no problem for our model, since the order of the vertices is
only relevant for the symmetry breaking and can therefore be adjusted.

4 Computational Results

To test our SAT model and compare it with the MIP model proposed in [8]
we implemented both in C++ using Glucose 4.1 to solve the SAT model and
Gurobi 8.1 to solve the MIP model. We also tested the impact of the symme-
try breaking constraints for both models. To get the automorphism groups as
described in Sect. 3.1 we used nauty 2.6 [10] and to get a strong generating set we
used the implementation of the Schreier-Sims algorithm contained in the nauty
program. All tests were performed on a single core of an Intel Xeon E5-2640 v4
processor with 2.40 GHz and 8 GB RAM.

We consider the instance sets S1, S2, and G1 from [8] together with a new
instance set G2 of larger random graphs to also test the limits of the SAT
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Table 1. Computation results for instance set S1.

|V (C)| |I| |Ifeas| |Iinf| MIP MIPsym SAT SATsym

tfeas[s] tinf[s] |Itl| tfeas[s] tinf[s] |Itl| tfeas[s] tinf[s] tfeas[s] tinf[s]

10 4 4 0 < 1 – 0 < 1 – 0 < 1 – < 1 –

18 8 8 0 3 – 0 4 – 0 < 1 – < 1 –

20 24 24 0 2 – 0 2 – 0 < 1 – < 1 –

22 124 121 3 4 2035 0 5 727 0 < 1 11 < 1 1

24 620 604 16 8 3600 15 6 2955 2 < 1 26 < 1 2

26 5188 5124 64 12 3600 64 9 3600 58 < 1 78 < 1 4

28 4000 3970 30 19 3600 30 14 3600 30 < 1 166 < 1 7

Table 2. Computation results for instance set S2.

|V (C)| |I| |Ifeas| |Iinf| MIP MIPsym SAT SATsym

tfeas[s] tinf[s] |Itl| tfeas[s] tinf[s] |Itl| tfeas[s] tinf[s] tfeas[s] tinf[s]

18 98 15 83 2 194 0 1 9 0 0.04 0.12 0.04 0.04

20 1116 416 700 3 468 6 2 24 0 0.05 0.28 0.05 0.06

22 10694 4873 5821 4 1173 892 3 74 0 0.06 0.78 0.06 0.08

model. Set S1 consists of four random perfect matching contractions of all snarks
with up to 26 vertices plus 1000 snarks with 28 vertices using the UD-K5 as
transitioned graph (H,S). The set S2 consists of all PPM contractions of all
snarks with up to 22 vertices. Furthermore, set G1 consists for each combination
of n ∈ {9, . . . , 15} and m ∈ {5, . . . , 7} of ten instances, where each of those
consists of a random 4-regular completely-transitioned graph G with n vertices
and a random 4-regular completely-transitioned graph H with m vertices. The
additional new instance set G2 is constructed the same way as G1 but with
n ∈ {16, . . . , 30} and m ∈ {6, . . . , 10}.

We compare the running times of four algorithms for the given instances,
the original MIP model, the MIP model with the symmetry breaking con-
straints (47)–(48), which will be called MIPsym, the SAT model, and the SAT
model with the symmetry breaking constraints (49)–(50), which will be called
SATsym.

Table 1 lists the computational results for instance set S1 for all four algo-
rithms. The instances are grouped by the number of vertices |V (C)| of the snark
C used for the generation, one column per group. Column |I| contains the num-
bers of instances, |Ifeas| the numbers of feasible instances, and |Iinf| the numbers
of infeasible instances. The time columns tfeas[s] and tinf[s] list median running
times of all feasible instances respectively the infeasible instances in seconds
rounded to integer. Furthermore, for the MIP models columns Itl contain the
numbers of instances that could not be solved within the CPU-time limit of
3600 s. The best running times of the groups of feasible instances and infeasible
instances are marked bold.

As we can see the SAT model outperforms the MIP model considerably and
the symmetry breaking constraints improve the running times for the infeasible
instances, especially for the SAT model but also for the MIP model.
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To further compare the four models we applied a Wilcoxon signed-rank test
for each pair of them using a p-value of 5%. The algorithm MIPsym is significantly
faster than MIP for the instance groups with |V (C)| ≥ 24, for the infeasible but
also for the feasible instances. The two SAT models are significantly faster than
both MIP models for all instance groups except for |V (C)| = 18 and the infeasible
instances of |V (C)| = 22 since those are too few to get a significant result. In fact
the SAT models are faster on almost all instances except a few feasible instances.
For the SAT model the variant without the symmetry breaking constraints is
significantly faster on all feasible instance groups with |V (C)| ≥ 22 although
the difference in the values is only within hundredth of seconds. On the other
hand for the infeasible instance groups with |V (C)| ≥ 24 the model with the
symmetry breaking constraints is significantly faster.

Table 2 shows the computational results for instance set S2. The columns
are the same as in Table 1. The results are similar as for instance set S1, but
this time MIPsym can solve all instances within the time limit. Applying the
Wilcoxon signed-rank test we get that MIPsym is significantly faster than MIP
except for the infeasible instance group with |V (C)| = 18. Both SAT models
are significantly faster than the MIP models for all instance groups. This time
SAT is not significantly faster than SATsym on the feasible instance groups,
SATsym is even significantly faster than SAT for the feasible instance group
with |V (C)| = 22. For the infeasible instances SATsym is significantly faster.

Table 3. Computation results for instance set G1.

|V (G)| |V (H)| |I| |Ifeas| |Iinf| MIP MIPsym SAT SATsym

t[s] |Itl| t[s] |Itl| t[s] t[s]

09 5 30 15 15 106 0 91 0 < 1 < 1

09 6 30 4 26 440 1 409 0 1 < 1

09 7 30 0 30 2059 11 2735 14 < 1 < 1

10 5 30 19 11 90 1 87 1 < 1 < 1

10 6 30 4 26 1939 12 1862 10 1 1

10 7 30 0 30 3600 16 3600 16 2 1

11 5 30 25 5 42 1 19 0 < 1 < 1

11 6 30 9 21 2777 14 3600 16 3 2

11 7 30 1 29 3600 22 3600 20 3 3

12 5 30 28 2 50 1 17 0 < 1 < 1

12 6 30 21 9 2204 13 2124 11 3 2

12 7 30 1 29 3600 30 3600 30 8 7

13 5 30 28 2 23 2 26 2 < 1 < 1

13 6 30 20 10 3600 17 2055 13 4 4

13 7 30 7 23 3600 30 3600 27 14 13

14 5 30 30 0 24 0 30 0 < 1 < 1

14 6 30 28 2 562 7 823 8 2 2

14 7 30 8 22 3600 29 3600 27 27 28

15 5 30 30 0 30 0 24 0 < 1 < 1

15 6 30 29 1 670 2 1475 11 3 2

15 7 30 18 12 3600 26 3600 27 27 30
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Table 3 shows the computation results for the instance set G1. We group the
instances by the number of vertices of the input graphs G and H. We do not
distinguish between feasible and infeasible instance groups in this table, since the
running time characteristics are similar for both types of instances. Columns t[s]
show the median running time for all instances of the instance group. Again both
SAT models could solve all instances within one hour and outperform the MIP
models. This time the differences between the models with symmetry breaking
constraints and without are smaller, since the probability that a random graph
has symmetries is small. Now the SAT models are on all instances faster than the
MIP models. Between the MIP models there are only few instance groups where
there is a significant difference in the running times in favor of both models.
The situation between the two SAT models is similar although there are slightly
more instance groups where SATsym is significantly faster.

Fig. 3. Median running times of SATsym for instance set G2.

All instances in all three instance sets S1, S2, and G1 could be solved within
the time limit of one hour by both SAT models. To also analyze the limits of our
SAT models we also tested instance set G2. Figure 3 shows the median running
times of the SATsym model for different sizes of |G| and |H|. As we can see the
running time heavily depends on the size of H and not so strongly on the size
of G. For |H| = 10 and |G| ≥ 20 we run into the time limit of one hour in most
of the instances. Similarly, as for instance set G1 also in G2 the running times
for SATsym and SAT are similar.

Using SATsym we also implemented the framework described at the end of
Sect. 2. We use Boost’s implementation of the Boyer-Myrvold planarity test to
check for planar graphs. Furthermore, we use a simple SAT model for check-
ing if a graph contains a K5-minor and another SAT model for checking if it
has a CCD. Since the bottleneck of this framework are the solving times for
checking SUD-K5-minor freeness, the running time improvements by the SAT
model were crucial to check for all snarks with up to 32 vertices if they con-
tain a planar contraction, a K5-minor free contraction, a SUD-K5-minor free
contraction, or a CCD-containing contraction of a PPM. From the 1 918 812
tested snarks we found 25 248 snarks that do not contain a planar contraction
of a PPM, 19 130 snarks that do not contain a K5-minor free contraction of a
PPM, and 1 095 snarks that do not contain a SUD-K5-minor free contraction of
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a PPM. The found snarks can be downloaded from https://www.ac.tuwien.ac.
at/klocker-snark-collections/.

Up until now it was not known if there exist snarks that do not have a PPM
whose contraction leads to planar/K5-minor free/SUD-K5-minor free graphs.
With our implementation we could find many examples of snarks that have those
properties. Nevertheless, all tested snarks always had a PPM whose contraction
leads to a graph which has a CCD. Therefore, it remains an open question if
there exists a snark that does not have a PPM whose contraction leads to a
CCD-containing graph.

5 Conclusion and Future Work

In this work we proposed a SAT model for checking if a given transitioned graph
(G, T ) has a Sup-(H,S)-transition minor. The model is based on the mathe-
matical model developed in a previous work [8]. To improve the performance of
the SAT model, but also of the MIP model we developed symmetry breaking
constraints that are based on the automorphism groups of both input graphs
restricted by the additional structure given through the transition systems. In
our computational study we could verify that the SAT model outperforms the
MIP model significantly and the symmetry breaking constraints could improve
the running times especially for proving infeasibility. Using the SAT model in
a framework we were able to find many snarks that do not have PPM whose
contraction leads to SUD-K5-minor free graphs.

In future work it may be interesting to consider a CP model for our problem
to be able to use non-binary variables in the model for representing the mappings
between the two input graphs. Furthermore, the framework for finding snarks
that do not contain a SUD-K5-minor free contraction of a PPM may be improved
by adding symmetry breaking during the enumeration of the PPMs.
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Abstract. In the problem of barrier monitoring using mobile sensors
with circular coverage areas, it is required to move the sensors onto some
line (barrier) so that each barrier point belongs to the coverage area of
at least one sensor. One of the criteria for the effectiveness of coverage
is the minimum of the total length of the paths traveled by sensors. If
we give up the requirement to move the sensors onto the barrier, then
the problem (which is NP-hard) will not be easier. But at the same
time, the value of the objective function can be reduced significantly. In
this paper, we propose a new pseudo-polynomial algorithm which in the
case of equal disks builds an optimal solution in the L1 metric and a√
2-approximate solution in the Euclidean metric. This algorithm is an

efficient implementation of the dynamic programming method in which
at the stage of preliminary calculations for each sensor it is possible to
find a finite number of analytical functions equal to the minimal length
of the path traveled by the sensor depending on the positions of the circle
and the barrier. The conducted numerical experiment showed that if we
remove the requirement to move the sensors onto the barrier, then the
value of the objective function may decrease several times.

Keywords: Barrier monitoring · Mobile sensors · Covering

1 Introduction

Mobile sensor networks (MSNs) consists of mobile devices that collect informa-
tion within a limited zone (sensor’s coverage area). Covering a plane area is one
of the main goals of MSNs. The problem of building a cover using mobile sen-
sors is to move the sensors so that each point of the area is within the coverage
zone of at least one sensor. Many articles are devoted both to the problems of
covering plane areas [12,14,16,22], and also to cover the barrier, presented, as
a rule, in the form of a straight line segment [2,6,9,15,18]. In this paper, the
problem of monitoring (covering) a barrier in the form of a straight line segment
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by mobile sensors with circular coverage areas is considered, therefore in the text
we identify the sensor and the circle corresponding to its coverage area. Problems
of efficient barrier coverage occur in many applications, including monitoring of
extended objects (roads, pipelines, borders, etc.) using mobile devices, such as
unmanned aerial vehicles (UAV) equipped with video cameras. The effectiveness
is characterized by different criteria, the most popular of which are discussed in
the next subsection.

1.1 Background

In the literature devoted to covering the barriers with mobile sensors, the barrier
is usually a straight line segment and the following three criteria are considered:
(MinSum) minimizing the total length of the sensor movement paths, (MinMax)
minimizing the maximum length of the sensor movement path, and (MinNum)
minimizing the number of sensors involved in barrier covering. These problems
are considered in a one-dimensional formulation (1D) when initially the sensors
are on the line containing the segment, and in a two-dimensional (2D) case when
the sensors are initially arbitrarily distributed on a plane.

MinSum. Many mobile sensors, such as UAVs, have a limited supply of energy,
which can be replenished only in certain places. Therefore, the most efficient
scenario for UAV is to save energy or minimize the overall length of the paths
traveled by the devices. It is this criterion that will interest us in this paper.
In the 1D problem, the total movement length of all sensors involved in the
covering, initially located on the line containing the barrier, is minimized [3]. It
is known that the 1D problem is NP-hard in the general case, however, for the
case of identical circles, a polynomial algorithm is proposed for constructing an
optimal solution with O(n2)–time complexity, where n is the number of sensors
[8]. This result is improved in [1] where an algorithm for constructing an optimal
coverage with O(n log n)–time complexity is proposed. In [20] a weighted 1D
problem is considered, in which each sensor has weight and it is required to
minimize the total length of the paths traveled by the sensors involved in the
covering multiplied by the weights of the sensors. The author proved that such
a problem is NP-hard even in the case when all sensors are located on one side
of the barrier being covered but have different radii. For this case, an FPTAS is
proposed with time complexity O(n3/ε2), where ε is a ratio. For the case when
the sensors are initially located on both sides of the segment, an O(n5/ε3)–time
complexity FPTAS has also proposed.

In the 2D formulation, the MinSum problem is naturally also NP-hard in
the case of different circles. In the case of equal disks, a complexity status of
the problem is unknown. The paper [7] considers a 2D problem of covering
a line segment with equal disks, the initial positions of which are arbitrary.
The authors proposed an O(n4)–time complexity algorithm for constructing an
optimal solution in the L1 metric, which is a

√
2-approximate solution in the

Euclidean metric. This result is improved in [10], where the complexity is reduced
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to O(n2). The paper [11] considers the same problem, where all circles touch each
other in the cover. In this case an FPTAS was proposed, whose complexity is
at most O(n3/ε2). The problem of uniformly covering a circle with equal disks
(with equal distances between the centers of neighboring disks) was considered
in [4] and an O(n4/ε)–time FPTAS was proposed to build an ε–approximate
solution to the problem.

MinMax and MinNum. Knowing the maximum length of the UAV path
allows determining how much fuel vehicle needs. The shorter the path, the less
fuel is required. In this connection, problem MinMax arises. The MinMax prob-
lem is to move the sensors in such a way that the maximum path length of the
sensors involved in the covering would be minimal. It is known that in the case
of identical circles, the 1D MinMax problem is solved optimally with O(n2)–time
complexity [8]. This result improved in [5], in which the complexity of construct-
ing a solution is reduced to O(n log n). The paper [21] discusses a weighted
version of the 1D problem, in which each sensor has a weight and it is neces-
sary to minimize the maximum path length traveled by sensor multiplied by
its weight. In the case of equal circles, a O(n2 log n log(log n))–time algorithm
is proposed. The 2D MinMax problem is considered in [9], which shows that
the problem is NP-hard in the case of different circles. In the case of identical
circles in [17] a O(n3 log n)–time algorithm is proposed that builds a solution
to the problem. A similar problem was considered in [4], where it is necessary
to cover a boundary of a simple polygon, and a O(mn3.5 log n)–time algorithm
proposed that builds an optimal solution, where m is the number of vertices of
the polygon. The problem of covering the curve was considered in [13].

Another natural criterion is a minimization of the number of sensors in the
cover (MinNum problem). In [19] it is proved that the MinNum problem in the
case of various circles is NP-hard, but is polynomially solvable with O(n2)–time
complexity in the case of identical circles.

All the above results refer to the case when the sensors are moved onto the
barrier. Such a requirement simplifies the problem, but the value of the objective
function can be substantially larger than in the case when there is no need to
move the sensors onto the barrier.

1.2 Our Contribution

In this paper, the problem MinSum of covering a barrier in the form of a straight
line segment when it is not necessary to move the sensors onto the barrier is
considered for the first time. Naturally, it can be assumed that the barrier in
the Cartesian coordinate system is horizontal (located on the x-axis between the
points (0, 0) and (L, 0)). Then the sensors can be renumbered from left to right
according to their abscissas, thus specifying their order. In the order preserving
covering (OPC), if one sensor was to the left of another, this order will remain
in the cover after the sensors are moved. For this case, an efficient dynamic
programming algorithm is proposed, which builds an OPC [7,10]. It is known
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that in the case of equal circles whose centers move onto the barrier, there is
an OPC that is optimal in the L1 metric and it is a

√
2-approximate solution

in the Euclidean metric. We have proved that this is also the case when the
centers of circles are not required to be moved onto the barrier. This means that
the dynamic programming algorithm proposed by us builds a solution no worse
than a covering in which all sensors move onto the segment, and it is of interest
to estimate the reduction of the objective function. To do this, we conducted
a numerical experiment, which shows that if we abandon the requirement to
move the sensors onto the segment, then the value of the objective function can
decrease several times!

To effectively implement the dynamic programming algorithm, for each sen-
sor (circle) k, we used preliminary calculations of the function dk(x, l) equals
to the minimum length of the path for moving the circle k in the L1 metric to
cover the segment [x, l]. As a result, a constant number of variants of the rel-
ative position of the sensor k and the segment [x, l] and a constant number of
analytically defined functions dk(x, l) were found. Moreover, it was proved that
the functions dk(x, l) are either linear or convex in x, which made it possible to
reduce the complexity of the algorithm.

The rest of the paper is organized as follows. Section 2 presents the math-
ematical formulation of the problem. Section 3 is devoted to the description of
the new dynamic programming algorithm and the justification of its complexity.
Section 4 presents the results of a numerical experiment on comparing solutions
built with the requirement of moving sensors onto a barrier and without this
requirement. The final section presents the concluding considerations.

2 Problem Formulation

Let barrier is a straight line segment of length L > 0 on the x-axis between
the points (0, 0) and (L, 0), and a set of circles (disks) S corresponding to the
sensor’s coverage zones (|S| = n) are given. Denote by pi = (xi, yi) the initial
and by p̂i = (x̂i, ŷi) the final positions of the sensor i ∈ S correspondingly. Each
sensor defines a circle with the center of the sensor location and radius ri, which
is sensor’s coverage area. Moreover, without loss of generality, we assume that
all sensors are located not lower than the x-axis, i.e. yi ≥ 0, i ∈ S.

Definition 1. The function p̂ : S → R2 is called a cover if each point of the
segment is within the coverage area of at least one sensor when the final positions
of the sensors are p̂i = (x̂i, ŷi), i ∈ S.

In general, not all sensors need to be involved in the coverage. Let B ⊆ S
be a subset of sensors that, after moving, cover the barrier. Denote by d(pi, p̂i)
the Euclidean distance between the points pi and p̂i. The problem of barrier
coverage by mobile sensors is to find the function p̂∗, which is the solution to
the problem

cost(p̂∗) = min
p̂

n∑

i=1

d(pi, p̂i). (1)



346 A. Erzin et al.

Note that we do not require to move the sensors onto the barrier. As men-
tioned above, the problem (1) is NP-hard when using different circles. If the
circles are equal, then the complexity status of the problem (1) is not known.
However, for this case, polynomial algorithms for constructing a

√
2–approximate

solution are known [7,10].

3 Algorithm

Let’s renumber the circles from left to right according to the abscissas of their
centers xi, i ∈ S.

3.1 Properties of the Feasible Solutions

Definition 2. The function p̂ is called an order preserving cover (OPC) if x̂i <
x̂j if and only if i < j for all i, j ∈ B.

It is known that in the case of putting the centers of equal disks on a segment,
there is an optimal OPC in the L1 metric [7]. It turns out this is true without
the requirement to move the centers of circles onto the barrier.

Lemma 1. If all circles are equal, then there is an optimal OPC in the L1

metric.

Fig. 1. Illustration to the proof of Lemma 1.

Proof. Suppose that all optimal covers do not preserve order and p̂ is one of
them. Consider a couple of such sensors i, j ∈ S that xi < xj and x̂i > x̂j .
The sum of the displacement lengths of these two sensors in the L1 metric is
w1 = |yi−ŷi|+|xi−x̂i|+|yj−ŷj |+|xj−x̂j |. Consider another cover p̂′ in which the
circles i and j preserve the order, namely p̂′

i = p̂j and p̂′
j = p̂i. In this case, the

sum of the sensor movements is w2 = |yi − ŷj |+ |xi − x̂j |+ |yj − ŷi|+ |xj − x̂i|.
Remind that we assumed that yi ≥ 0, i ∈ S, therefore yi − ŷi ≥ 0 for all
i ∈ S and modules can be opened. Let’s consider all possible cases of mutual
initial and final arrangement of circles. Two main cases are possible (Fig. 1),
and the remaining cases are reduced to these two. We have that w1 − w2 =
|xi − x̂i|+ |xj − x̂j |− |xi − x̂j |− |xj − x̂i| ≥ 0, then w1 ≥ w2. Changing the order
of the circles for other pairs of circles that do not preserve the order, we obtain
the optimal OPC in the L1 metric. The lemma is proved.
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Lemma 1 makes it possible to search for the optimal OPC in the L1 metric,
which can be built using the next dynamic programming algorithm.

3.2 Dynamic Programming Algorithm

The algorithm consists of one forward and one reverse recursion.

Forward Recursion. We write the recurrence relations of dynamic program-
ming to build the OPC for different radii (which is optimal in the metric L1 only
if all disks are equal). Let Sk(l) be the minimum of the sum of the lengths of
the paths of the first k = 1, . . . , n circles covering the segment [0, l], 0 ≤ l ≤ L.
Then for disk 1, the following expression holds

S1(l) =
{

d1(0, l), 2r1 ≥ l;
+∞, 2r1 < l.

The value of d1(0, l) is determined analytically in the L1 metric depending on
the initial position of the circle 1 and the segment [0, l] to be covered.

Fig. 2. Functions dk(x, l) depending on the positions of the segment [x, l] and the
sensor k.

For an arbitrary circle k = 1, . . . , n, the formula for calculating the minimum
path length dk(x, l) in the L1 metric to cover the segment [x, l] is determined
based on the table presented in Fig. 2. The arrows indicate the direction of
movement of the circle to cover the segment (left, left-down, down, right-down
or right). In this case, the direction to the right-down or left-down does not mean
movement at a 45◦ angle. This means that the sensor moves both vertically and
horizontally.

The functions Fij(x, l) depending on the position of the circle k and the
segment [x, l] are defined as follows:

– F11(x, l) = x − xk + yk (the center of the circle k moves to the point (x +
rk/

√
2, rk/

√
2));

– F12(x, l) = yk −√
r2k − (l − xk)2 (the center of the circle k moves to the point

(xk,
√

r2k − (l − xk)2));
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Fig. 3. (a) If l−x ≥ √
2rk, then the disk k can move in six different ways depending on

its initial location. (b) If l−x ≤ √
2rk, then there are 4 options for moving the circle k.

The line formed by the points (x, 0) and p̃x = (x+ rk/
√
2, rk/

√
2) and the line formed

by the points (l, 0) and p̃l = (l− rk/
√
2, rk/

√
2) intersect the x-axis at an angle of 45◦.

– F13(x, l) = xk − l + yk (the center of the circle k moves to the point (l −
rk/

√
2, rk/

√
2));

– F14(x, l) = l − xk − √
r2k − y2

k (the center of the circle k moves to the point
(l − √

r2k − y2
k, yk));

– F15(x, l) = xk − xk + yk − yk (the center of the circle k moves to the point
(xk, yk));

– F22(x, l) = yk−√
r2k − (x − xk)2 (the center of the circle k moves to the point

(xk,
√

r2k − (x − xk)2));
– F24(x, l) = xk − x − √

r2k − y2
k (the center of the circle k moves to the point

(x +
√

r2k − y2
k, yk));

– F25(x, l) = xk − xk + yk − yk (the center of the circle k moves to the point
(xk, yk)),

where pk = (xk, yk) is the intersection point of two auxiliary circles of radius rk
with centers at the points (x, 0) and (l, 0) (Fig. 3). Obviously, xk = (l + x)/2,
yk =

√
r2k − (l − x)2/4, yk ≥ 0.

The region Ok(x, l) where it is necessary to move the center of the circle k
to cover the segment [x, l] is the intersection of two auxiliary circles of radius
rk with centers at the points (x, 0) and (l, 0) correspondingly (see Figs. 3 and
4). To find dk(x, l), it suffices to find a point belonging to the domain Ok(x, l),
which is closest to the center pk of the circle k. Obviously, such a point is on
the boundary of the domain Ok(x, l) and this is the point of tangency of the
domain Ok(x, l) with a circle centered at the point pk and radius dk(x, l) in the
L1 metric. The circle in the L1 metric is a square whose sides are inclined at an
angle of 45◦ (see Fig. 4, in which the circles are shown with red dotted lines).
Depending on the relative position of the circle k and the segment [x, l], the
point p̂k where it is necessary to move the center of the circle k, and hence the
function dk(x, l), is expressed differently. But the number of different situations
is limited by a constant and they are all presented in the table in Fig. 2, and
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in Fig. 3. Additionally, Fig. 4 shows several cases for illustration. For example,
if l − x ≤ √

2rk, yk ≥ rk/
√
2 and xk ≤ x + rk/

√
2, then the circle k moves

right-down to the point (x + rk/
√
2, rk/

√
2)) (Fig. 4c).

Fig. 4. The examples of moving a circle k. The red color shows a circle in the L1 metric
centered at pk; the black circle is the initial position of the circle k; the arrows show
the movement of the center of the circle to the endpoint p̂k. (Color figure online)

If the segment [0, l] is covered by k first circles, then the following recurrence
relations hold:

Sk(l) =

⎧
⎪⎪⎨

⎪⎪⎩

min
{

Sk−1(l), min
x∈[0,l]

{dk(x, l) + Sk−1(x)}
}

, 0 < l ≤ min
{
2

k∑
i=1

ri, L

}
;

+∞, 2
k∑

i=1

ri < l.

The recurrence relations take place precisely in the OPC, because the circle k
can cover the segment [x, l], and the circles 1, . . . , k − 1 in the cover can be only
to the left and cover the segment [0, x].

At the last step n of a forward recursion, the optimal final position of the
last circle n is determined. As a result of the reverse recursion, the whole barrier
cover will be restored.
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Reverse Recursion. If the circle n participates in the coverage, then the left
boundary x of the segment [x,L] covered by it, is known. Then the segment [0, x]
is covered by the first n − 1 circles. During the forward recursion, when finding
Sn−1(l), formulas were found for calculating this quantity for all values of the
argument, and therefore, for l = x too. Knowing the right border of the segment
which is covered by the first n−1 circle, we also know the segment covered by the
circle n−1. If the circle n does not participate in the coverage, then we consider
the case when circle n − 1 cover the segment [0, L], and we know the segment
which is covered by disk n − 1. If it participates in the coverage, then, similarly
to the arguments above, we obtain the left boundary of the already covered
segment [x, l] and [0, x] must be covered by circles 1, . . . , n − 2. Continuing this
process, we will find the optimal coverage in O(n) steps.

3.3 Complexity of the Algorithm

Lemma 2. The functions Fij(x, l), i = 1, 2, j = 1, 2, 3, 4, 5, are either linear or
convex in the variable x.

Proof. The functions F11, F13, F14, F24 are linear. Let’s show that F12, F15, F22,
F25 are convex functions. To do this, we calculate the second derivatives. For
example,

F ′′
15 =

1 + (l − x)2

4
(
r2k − (l−x)2

4

)3/2
.

The numerator of this expression is greater than zero. Then it is enough to show
that the denominator is not zero. If

(
r2k − (l − x)2/4

)3/2 = 0, then l−x = ±2rk.
It is possible that l − x = 2rk, but in this case yk in the function F15 vanishes,
and this function becomes linear. Then F ′′

15 > 0, except when l−x = 2rk, and the
convexity of the function follows. For the functions F12, F22, F25, the convexity
can be shown similarly. The lemma is proved.

Lemma 3. For integers x, l and L the proposed algorithm builds an optimal
OPC in L1 metric with the pseudo-polynomial time complexity O(nL logL).

Proof. The forward recursion of the algorithm is more time consuming. It con-
sists of n steps, each of which calculates the value of Sk(l) for any integer
l ∈ [0, L]. It remains to show that the value of S̃k(l) = min

x∈[0,l]
{dk(x, l)+Sk−1(x)}

is calculated with O(logL)–time complexity. By Lemma 2, we see that the func-
tions Fij(x, l), i = 1, . . . , 3, j = 0, . . . , 9, are either linear or convex in the
variable x. Therefore, Sk(l) and S̃k(l) are convex as sums of convex functions.
Consequently, to find the minimum value of S̃k(l), it suffices to use, for example,
the dichotomy method, whose complexity is O(logL). The lemma is proved.
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4 Simulation

This section presents the results of a numerical experiment comparing the
solutions constructed by the algorithm when the sensors are moved onto the
barrier [10] and the solution constructed by the algorithm proposed in this
paper. For this, both algorithms were implemented. The input data for instances
were generated in a pseudo-random manner. Experiments were carried out for
L = 100, 1000, 10000, Y = 5, 20, 100, 300 and n = 10, 20, 30, 50, 75, 100, 250, 500.
It was assumed that the values ri ∈ [1, R], i = 1, . . . , n and L take integer val-
ues, and yi ∈ [0, Y ], R = Y/2 for L = 100 and R = L/10 + 4L/n mod L for
L = 1000, 10000, xi ∈ [−L, 2L]. For each n and Y , 75 instances were generated.

Table 1. The table cells indicate how many times the value of the objective function
decreases on average unless the sensors are required to be moved onto a segment. Dashes
mean that in these cases, the objective function was zero in all generated examples,
and hence the gain is not upper limited.

n L = 100 L = 1000 L = 10000

10 2,96 1,43 1,98
20 3,95 1,67 2,17
30 5,59 1,86 1,71
50 7,04 2,79 4,72
75 11,87 4,30 8,27
100 16,67 5,30 11,10
250 18,81 11,02 –
500 22,45 43,44 –

The results of the experiment show both the effectiveness of the proposed
algorithm and the solution improvement opportunities in case of rejecting the
requirement of moving the centers of the circles onto the barrier. Some results
of the simulation are presented in Table 1 and Fig. 5. As can be seen from the
the corresponding columns, the gain can be more than 40 times compared to the
case when the sensors move onto the barrier. The greatest gain was when the
ratio is Y/R ≈ 2.
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a) b)

c) d)

Fig. 5. L = 100, n = 30. (a) dependence of the value of the objective function on
Y for the algorithm with the requirement to move the circles onto the segment; (b)
dependence of the value of the objective function on Y for the proposed algorithm; (c)
the values of the objective functions on Y ; (d) the values of the objective functions
depending on n.

5 Conclusion

Customarily, in the barrier coverage problems with mobile sensors, it is required
to move the sensors onto the barrier so that each barrier point belongs to the cov-
erage area (as usually, disk) of at least one sensor. We consider the effectiveness
of coverage as a minimum of the total length of the paths traveled by the sensors
(MinSum problem). If one gives up the requirement to move the sensors onto the
barrier, then the problem (which is NP-hard in general) will not be easier. But at
the same time, the value of the objective function can be significantly reduced.
In this paper, we first propose a pseudo-polynomial algorithm for solving such
a problem, which in the case of identical circles builds the optimal solution in
the L1 metric which is a

√
2-approximate solution in the Euclidean metric. This

algorithm is an efficient implementation of the dynamic programming method in
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which at the stage of preliminary calculations it is possible to find the analytical
forms of the functions for a finite number of variants of the relative position of
the circles and the barrier. The conducted numerical experiment shows that if
the requirement to move the sensors onto the barrier is removed, the value of
the objective function can decrease several times.

As far as we know, this is the first algorithm that efficiently builds a barrier
covering by mobile sensors with circular coverage zones without the requirement
of moving the sensors onto the segment.

Acknowledgements. The authors express their sincere gratitude to Sergey Astrakov
for the constructive suggestions that simplified the calculations.
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Abstract. We consider a Min-Power Bounded-Hops Symmetric Con-
nectivity problem that consists in the construction of communication
spanning tree on a given graph, where the total energy consumption
spent for the data transmission is minimized and the maximum number
of edges in a path in the tree between any pair nodes is bounded by
some predefined constant. We focus on the planar Euclidian case of this
problem where the power cost necessary for the communication between
two network elements is proportional to the squared distance between
them. Since this is an NP-hard problem, we propose different heuris-
tics based on the following metaheuristics: genetic local search, variable
neighborhood search, and ant colony optimization. We perform a pos-
teriori comparative analysis of the proposed algorithms and present the
obtained results in this paper.

Keywords: Energy efficiency · Approximation algorithms ·
Symmetric connectivity · Bounded hops · Genetic local search ·
Variable neighborhood search · Ant colony optimization

1 Introduction

Due to the prevalence of wireless sensor networks (WSNs) in human life, the
different optimization problems aimed to increase their efficiency remain actual.
Since usually WSN consists of elements with the non-renewable power supply
with restricted capacity, one of the most important issues related to the design
of WSN is prolongation its lifetime by minimizing energy consumption of its
elements per time unit. A significant amount of the sensor’s energy is spent
on the communication with other network elements. Therefore, modern sensors
often can adjust their transmission ranges by changing the transmitter’s power.
Herewith, usually, the energy consumption of a network’s element is assumed to
be proportional to ds, where s ≥ 2 and d is the transmission range [1].
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The problem of determining the optimal power assignment in WSN is well-
studied. The most general Range Assignment Problem, where the goal is to
find a strongly connected subgraph in a given directed graph, has been con-
sidered in [2,3]. Its subproblem, Min-Power Symmetric Connectivity Problem
(MPSCP), was first studied in [4]. The authors proved that the Minimum Span-
ning Tree (MST) is a 2-approximate solution to this problem. Also, they pro-
posed a polynomial-time approximation scheme with a performance ratio of
1 + ln 2 + ε ≈ 1.69 and a 15/8-approximation polynomial algorithm. In [5] a
greedy heuristic, later called Incremental Power: Prim (IPP), was proposed.
The IPP is similar to the Prim’s algorithm for MST constructing. A Kruskal-
like heuristic, later called Incremental Power: Kruskal, was studied in [6]. Both
of these so-called incremental power heuristics have been proposed for the Min-
imum Power Asymmetric Broadcast Problem, but they are suitable for MPSCP
too. It is proved in [7] that they both have an approximation ratio 2, and it was
shown in the same paper that in practice these algorithms yield significantly
more accurate solution than MST. Also, in a series of papers different heuris-
tic algorithms have been proposed for MPSCP and the experimental studies
have been done: local search procedures [7–9], methods based on iterative local
search [10], hybrid genetic algorithm that uses a variable neighborhood descent
as mutation [11], variable neighborhood search [12], and variable neighborhood
decomposition search [13].

Another important property of WSN’s efficiency is a message transmission
delay, i.e. the minimum time necessary for transmitting a message from one
sensor to another via the intermediate transit nodes. As a rule, the delay is
proportional to the number of hops (edges) between two nodes in a shortest
path that connects them in a network. In the general case, when the network is
represented as a directed arc-weighted graph, and the goal is to find a strongly
connected subgraph with minimum total power consumptions and bounded path
length, the problem is called a Min-Power Bounded-Hops Strong Connectivity
Problem. In [14] the approximation algorithms with guaranteed estimates have
been proposed for the Euclidean case of this problem. The bi-criteria approxima-
tion algorithm for the general case (not necessarily Euclidean) has been proposed
in [15]. The authors of [16] propose an improved constant factor approximation
for the planar Euclidian case of the problem.

In this paper, we consider the symmetric case of Min-Power Bounded-Hops
Strong Connectivity Problem, when the network is represented as an undirected
edge-weighted graph. Such a problem is known as Min-Power Bounded-Hops
Symmetric Connectivity Problem (MPBHSCP) [15]. We also assume that the
sensors are positioned on Euclidian plane. The sensor’s energy consumption for
the data transmission in this case is assumed to be proportional to d2, where
d is the sensor’s transmission range. This problem is still NP-hard in planar
Euclidian case [17], and, therefore, the approximation heuristic algorithms that
allow obtaining the near-optimal solution in a short time, are required for it.

A set of polynomial algorithms that construct the approximate solutions to
MPBHSCP were proposed in [18]. In this paper, we suggest three metaheuristic
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approaches that aimed to improve the solutions obtained by the known con-
structive heuristics. Namely, we use a variable neighborhood search, a genetic
local search, and an ant colony optimization that make use of different variants
of local search procedure. This research was inspired by the papers where the
different metaheuristics are successfully applied for the approximate solution of
Bounded-Diameter Minimum Spanning Tree (BDMST) (e.g., see [19]), and for
MPSCP (e.g., see [12]). We conducted an extensive numerical experiment to
estimate the quality of our algorithms. For this purpose, we compared our algo-
rithms with the best of the known constructive heuristics and, for the instances
of small size, with CPLEX that was launched on the corresponding mixed integer
linear programming (MILP) models. We present the results of the experiment in
this paper. Note that, to the best of our knowledge, the metaheuristics of such
kind were never applied to the MPBHSCP before.

The rest of the paper is organized as follows. In Sect. 2 the problem is for-
mulated, in Sect. 3 descriptions of the proposed algorithms are given, Sect. 4
contains results and analysis of the experimental study, and Sect. 5 concludes
the paper.

2 Problem Formulation

Mathematically, MPBHSCP can be formulated as follows. Given a connected
edge-weighted undirected graph G = (V,E) and an integer value D ≥ 2, find
such spanning tree T ∗ in G, which is the solution to the following problem:

W (T ) =
∑

i∈V

max
j∈Vi(T )

cij → min
T

, (1)

distT (u, v) ≤ D ∀u, v ∈ V, (2)

where Vi(T ) is the set of vertices adjacent to the vertex i in the tree T , cij ≥ 0
is the weight of the edge (i, j) ∈ E, and distT (u, v) is the number of edges in a
path between the vertices u ∈ V and v ∈ V in T .

Obviously, in general case, MPBHSCP may even not have any feasible solu-
tion. In this paper, we consider a planar Euclidian case, where an edge weight
equals the squared distance between the corresponding points and G is a com-
plete graph. Therefore, a solution always exists.

Although any feasible solution of (1)–(2) is an undirected spanning tree with
bounded diameter, we always can choose a center of this tree, i.e., a vertex (or
two vertices if D is odd), such that a path from it to any other vertex in a tree
contains not more than �D/2	 edges. Therefore, it is convenient to consider a
solution as a directed spanning tree rooted in one of its centers. Further, we
assume that the centers and the root are predefined for each considered feasible
spanning tree, and, therefore, we will handle with the following notations that
are suitable for directed trees: v0—a root of a tree T = (V,ET ); PT (v)—a parent
vertex of v ∈ V \ {v0} in T ; LT (v)—a level (i.e., the number of edges in a path
from v to the center) of v ∈ V in T .
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3 Heuristic Algorithms

In this section, we describe the heuristic algorithms for the approximation solu-
tion of MPBHSCP. Our methods are based on the following metaheuristics:
variable neighborhood search (VNS), genetic local search (GLS), and ant colony
optimization (ACO). All of our methods start with some initial feasible solution –
a spanning tree with bounded diameter (or with a set of feasible solutions, as
in GLS). We assume that at least one such solution was already constructed by
some heuristic and the goal of our algorithms is to improve it preserving the
feasibility in the best possible way.

Besides the obvious differences that are specific for the particular metaheuris-
tics, our algorithms have common parts. Namely, they use the same variants of
local search and random movement procedures. Therefore, we first describe these
procedures.

3.1 Local Search

We suggest three types of neighborhood structure that are used in the local
search procedures. The first neighborhood movement is called LevelChange. It
consists in changing a parent node for a vertex in a such way that the level of a
vertex changes and the diameter is feasible (at most D). The second procedure,
SameLevelParentChange, consists in changing a parent for a vertex preserving
its level. And the last one is CenterChange, which consists in changing of a center
vertex of a tree. Note that none of these three variants of local movement can
be replaced by a sequence of others.

The first two local movements, LevelChange and SameLevelParentChange
are quite simple. In both cases one edge e = (v, PT (v)) is removed from T ,
and then some vertex v1, that is not a descendant of v in T , is chosen as a
new parent of v. Herewith, some special conditions should be met: in the case
of LevelChange, LT (v1) should not be equal to LT (v) − 1 and the diameter
restriction should not be violated; in the case of SameLevelParentChange, the
equality LT (v1) = LT (v) − 1 should hold.

In the CenterChange movement one center c ∈ V is chosen (it may be either
a root or another center in a case of odd diameter), and then, some other non-
center vertex v ∈ V is chosen as a new center. In order to make v a new center
instead of c the following steps are performed: (a) the children of c change their
parent from c to v; (b) v is detached from its parent vp = PT (v); (c) if c is a
root then v becomes a root, otherwise it becomes a second center, and the root
v0 becomes a parent of v; (d) if c 
= vp, then c becomes a child of vp, otherwise,
it becomes a child of v.

Our algorithms use these three variants of neighborhood movement as parts
of one local search method based on variable neighborhood descent metaheuris-
tic (VND) proposed in [20]. The idea of VND is to perform local search within
more than one neighborhood structure. The pseudo-code of VND is given in
Algorithm 1. In result, VND returns a local optimum for all considered neigh-
borhood structures.



Metaheuristics for MPBHSCP 359

3.2 Random Movement

Besides the local search procedures, some of our metaheuristics (to be precise,
GLS and VNS) involve an operator of randomized modification of a tree. For
such random movement we suggest a procedure RandomBranchReattaching. In
this procedure, some edge (v, PT (v)) is chosen at random and removed from T .
Then, v is connected with a non-descendant vertex u, which is chosen at random
as well, if this operation keeps the feasibility of a tree. This process is repeated
k times, where k is an external integer parameter provided by an upper-level
metaheuristic.

3.3 Variable Neighborhood Search

Variable neighborhood search (VNS) is a metaheuristic developed by Hansen
and Mladenovic [20], and it consists of two phases: randomized phase, or so-
called shaking, when the current solution is changed in random or in half-random
way, and deterministic phase, where VND is applied to the shaken solution. In
our implementation, RandomBranchReattaching is used for the shaking phase,
and the neighborhood movements LevelChange, SameLevelParentChange, and
CenterChange are used in the local search phase. The pseudo-code is presented
in Algorithm 2. The great advantage of this metaheuristic, comparing to others,
is that it requires tuning of the only parameter kmax. The algorithm starts with
some feasible solution. As the first approximation for MPBHSCP, we use the
best of the trees obtained by the heuristic algorithms that are proposed in [18]:
MPCBTC, MPRTC, MPCBLSoC, MPCBRC,MPQBH, and MPIR.

Algorithm 1. Variable neighborhood descent
1: Select an initial solution T ;
2: k ← 0;
3: Set the set of the local searches (LSl)l=1,2,3 ← {LevelChange, SameLevelPar-

entChange, CenterChange};
4: improved ← true;
5: while improved do
6: improved ← false, l ← 1;
7: while l ≤ 3 do
8: T ′ ← LSl(T );
9: if T ′ is better than T then

10: T ← T ′, l ← 1, improved ← true;
11: else
12: l ← l + 1;
13: end if
14: end while
15: end while
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Algorithm 2. Variable neighborhood search
1: Select an initial solution T ;
2: k ← 0;
3: while the stopping criteria is not met do
4: while k ≤ kmax do
5: Perform shaking: T ′ ← RandomBranchReattaching(T, k);
6: Apply the local search procedures to the shaken solution: T ′′ ← V ND(T ′);
7: if T ′′ is better than T then
8: T ← T ′′; k ← 1;
9: else

10: k ← k + 1;
11: end if
12: end while
13: end while

3.4 Genetic Local Search

Another approach suitable for the problem (1)–(2) is genetic local search algo-
rithm. This metaheuristic deals with population—a set of feasible solutions.
Before the algorithm starts, its first population should be generated. For the
first population, we used all spanning trees constructed by 6 algorithms from
[18]. Note that, since MPRTC is randomized, it may construct a set of different
feasible solutions instead of only one solution, that yield other 5 deterministic
heuristics. This allows us to generate the first population with the size that is
larger than 6 and less than some predefined value. Each iteration of the algo-
rithm consists of applying the following operators to the current population: (a)
calculation of fitness, that expresses the quality of the solution; (b) selection,
that chooses a subset of solutions from the population according to their fitness;
(d) crossover, that creates a new solution (an offspring) from the selected pair
of solutions; (e) mutation, that randomly modifies the offspring; (f) local search,
that improves the offspring; (g) join, that selects the population of the next
generation from the current population and the set of the offsprings. A brief
description of the main steps of this algorithm is presented in Algorithm3.

In our implementation of genetic local search, we take the value of 1/W (T )
as a fitness of T . This corresponds to the rule that fitness has to be a positive
value which is higher when the value of the objective function is closer to opti-
mum. Within the selection procedure, a set of prospective parents of the next
offspring is filled with solutions from the current population in the following way.
Sequentially, two trees are taken from the current population in proportion to
their fitness probability: the first tree of each pair is chosen randomly from the
entire population, and the second tree is chosen from the remaining part of the
population. Each pair should contain different trees, but the same tree may be
included in many pairs.

For the crossover operator, a solution is represented as an array of integer
values, that correspond to the vertex levels in a tree. In other words, we assume
that the vertices are numbered, and for each number i = 1, ..., n, the value of i-th
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Algorithm 3. Genetic local search
1: Generation of the first population;
2: Fitness calculation of the population;
3: while stop condition is not met do
4: Selection;
5: Crossover;
6: Mutation;
7: Local search by VND;
8: Fitness calculation of the offspring;
9: Join;

10: T ← the best tree among the current population;
11: end while

element in array is assigned to the level of i-th vertex in a tree. Given two integer
arrays (let’s call them the parent arrays), a new (child) array is generated in the
following way. First of all, an offspring has to have a center. For that reason, one
parent array is taken at random with probability of 0.5 and then the child array
derives the elements assigned to 0 from this parent array. Each parent array has
one or two such elements, depending on parity of D, and the child array should
have the same number of elements assigned to 0. The values of all other elements
in the child array derive the values at the same places from the parents, and each
time the parent is chosen with probability of 0.5. Note that if the element that
assigned to 0 is chosen to be derived by a child, then the corresponding element
of a child is assigned to 1. This is done because the corresponding vertex cannot
be a center of the offspring, since its center is already established.

The decoding of a tree from the integer array is performed in the following
way. Let A be the array of integers that should be decoded to a tree T . At
first, a such vertex v0, that A(v0) = 0, is assigned to the root of a tree, and,
if another vertex v1 with the same property exists, then it is assigned to the
second center of a tree and v0 is assigned to the parent of v1. After that, for
each other i-th element of an array its predecessor in T j is chosen in such way,
that A(j) < A(i) and the edge that connects i-th and j-th vertices, brings the
minimum contribution to the value of the objective function.

The mutation procedure takes as an argument (an integer parameter) k—
the maximum difference (number of different arcs in the initial tree and in the
modified one). This parameter is taken randomly from the interval [1, n/3], with
probability proportional to its inverse value (i.e., smaller modifications are more
possible). To perform a random movement for the mutation, we used the proce-
dure RandomBranchReattaching. The mutation procedure is applied with prob-
ability PM (a parameter of the algorithm) to each offspring.

Additionally, our algorithm applies local search to improve the offsprings
after the crossover operator. To do this, we used VND algorithm that performs
local search within three neighborhood structures defined above: LevelChange,
SameLevelParentChange, and CenterChange. This solution improvement proce-
dure is applied with a predefined probability, as well as a randomized mutation.
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At the join procedure a subset of solutions from the current population and
the current offspring, which have the largest fitness values, are chosen to fill the
population of the next generation.

Our version of GLS for MPBHSCP requires the following parameters:

– PopSize—the size of population;
– OffspSize—the size of offspring;
– PM—the probability of mutation;
– PLS—the probability of local search.

3.5 Ant Colony Optimization

As the third heuristic algorithm for the approximate solution of MPBHSCP, we
propose an algorithm based on the ant colony optimization metaheuristic (ACO).
A path of an ant corresponds to the solution to the problem. The path usually
consists of the elements, each of which is chosen randomly with probability
depending on pheromone value that stores information about the frequency of
usage of a particular part of a path in the best-found solution. We designed
our algorithm in a similar manner as it was done by Gruber et al. in [19]. To
represent a feasible solution of MPBHSCP as a path we used the same vertex-
level encoding that was used in the crossover operator of GLS, i.e., an array of
n integers not greater than �D/2	 corresponding to the vertex levels. As the
pheromone values we used the matrix (τil) of size n × �D/2	, that is initially
filled with equal non-negative real numbers 1/(n ·W (T0)), where T0 is the initial
solution. Our variant of the ACO algorithm consists of three phases: (a) paths
construction, (b) solutions improvement, and (c) pheromone matrix updating.
The main steps of the algorithm are briefly described in Algorithm4.

Algorithm 4. Ant colony optimization
1: Generation of pheromone matrix;
2: while stop condition is not met do
3: Construction of ant paths according to the pheromone matrix;
4: Improvement of the solutions that are derived from the paths;
5: Update of the pheromone matrix;
6: end while

In the paths construction phase, at first, the center of a corresponding tree
should be defined. For that reason, we assign one or two (depending on parity
of D) elements of ant path to 0. The vertices (or indices of ant path) that are
assigned to the centers (with level 0) are chosen randomly with the probability
Pi,0 = τi,0/

∑n
j=1 τj,0. After that, for each vertex i = 1, ..., n, that has not

been assigned to the center, its level is assigned randomly with the probability
Pi,l = τi,l/

∑�D/2�
l′=1 τj,l′ , where l = 1, ..., �D/2	.

After this construction, the paths are transformed into the spanning trees by
the same decoding procedure that is used in the GLS. Each spanning tree is then
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improved by the VND procedure, that makes use of three neighborhood search
types: LevelChange, SameLevelParentChange, and CenterChange. After that,
the best solution found so far Tbest is used for the updating of the pheromone
matrix in the following way. For each i = 1, ..., n, and l = 0, ..., �D/2	, τi,l =
τi,l + ρ/W (Tbest) if l = LTbest

(i), and τi,l = τi,l(1 − ρ), otherwise. ACO requires
two parameters: ColSize—the number of ants in colony, and ρ—the pheromone
decay coefficient.

4 Simulation

We have implemented all the described algorithms in C++ programming lan-
guage and launched them on the Intel Core i5-4460 3.2 GHz processor with 8 GB
RAM. In order to make our experiment results reproducible, we used as test
instances the data sets that are given in Beasley’s OR-Library for Euclidian
Steiner Problem (http://people.brunel.ac.uk/∼mastjjb/jeb/orlib). These test
cases present the random uniformly distributed points in the unit square. We
tested 3 variants of dimension: n = 100, 250, and 500. We also took different
values of D for each dimension. Since all of our algorithms are partially proba-
bilistic, we launched each algorithm 10 times on each instance, and calculated
the average value of objective, the best value of objective, and the standard
deviation. As a stop criteria the following condition was used: the best found
solution is not changed during three iterations in a row.

We have performed the preliminary testing of each algorithm to determine
such combination of its parameters that would provide in most cases the best
result without consuming much time for the calculations. For VNS, kmax was
chosen from the set {20, 30, 40}, and 30 appeared to be the best variant. For
GLS, the pair (PopSize,OffspSize) = (75, 40) appeared to be the best among
the variants {(25, 15), (50, 20), (75, 40), (100, 50)}, and the pair (PM,PLS) =
(0.5, 0.5) appeared to be the best among the variants {(0.25, 025), (0.25, 05),
(0.25, 075), (0.5, 05), (0.75, 0.25), (0.75, 075)}. As for ACO, we found out that
ρ = 0.2 is the best choice among {0.005, 0.01, 0.05, 0.1, 0.2} and ColSize = 50 is
the best choice among {25, 50, 100}. We also tried to exclude one or more variants
of local search in the VND subroutine of our algorithms, but, on average, this
always deteriorated the results. Therefore, we decided to keep all the proposed
variants of local search in each of our algorithms.

We have tested our algorithms on two groups of instances: small and large.
The first group contains the instances when n is 20, 30, or 50, and D is 4, 5,
and 6. For these instances, we used CPLEX with MILP models proposed in [18].
The results are presented in Table 1. In this table, in the first two columns, cor-
respondingly, diameter of a tree D and problem size n are presented, the third
column contains the numbers of instances in the OR-Library. In the fourth col-
umn, the objective function value on the best result of constructive heuristic,
TCH , is presented. Note that TCH was passed to each metaheuristic algorithm
as the initial solution. The fifth column contains the objective function value on
the result obtained by CPLEX, and it is marked when the solution is proved to

http://people.brunel.ac.uk/~mastjjb/jeb/orlib
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be optimal. The next three columns contain the best objective function values
on solutions obtained by our algorithms (Wbest), the following three columns
contain and the average objective function values on solutions obtained by our
algorithms (Wav), and the last four columns contain the average running time
values of different algorithms measured in seconds. We bounded the calculation
time for CPLEX by 1 h. The best objective function values among the launched
algorithms are marked bold. It is seen that ACO and VNS often construct opti-
mal or near-optimal solution, while GLS, on average, performs slightly worse
than the best of other two metaheuristics. In four cases, when CPLEX was not
able to find optimal solution within one hour, ACO constructed better solution
than CPLEX. And all our algorithms outperform CPLEX on the instance 1
when D = 4 and n = 50.

Table 1. Comparison of the experiment’s results obtained by different heuristics on
small size instances.

D n nr W (TCH) W (CPLEX) Wbest Wav Time (in sec.)

ACO GLS VNS ACO GLS VNS CPLEX ACO GLS VNS

4 20 1 1.33 1.28 (opt) 1.28 1.29 1.28 1.28 1.31 1.28 8.55 0.14 0.14 0.14

2 1.32 1.24 (opt) 1.24 1.25 1.24 1.25 1.29 1.24 6.83 0.16 0.13 0.16

30 1 1.92 1.51 (opt) 1.51 1.54 1.55 1.54 1.66 1.59 175.00 0.49 0.24 0.18

2 2.11 1.58 (opt) 1.58 1.64 1.73 1.60 1.69 1.73 79.47 0.46 0.26 0.21

50 1 3.10 2.85 2.38 2.45 2.43 2.52 2.85 2.43 3602.64 1.08 0.52 0.43

2 3.27 2.28 2.25 2.44 2.84 2.46 2.59 2.84 3600.38 1.13 0.61 0.28

5 20 1 1.35 1.08 (opt) 1.09 1.09 1.29 1.09 1.14 1.29 39.94 0.19 0.13 0.11

2 1.32 1.04 (opt) 1.24 1.06 1.24 1.24 1.14 1.24 17.25 0.17 0.13 0.10

30 1 1.88 1.15 1.16 1.27 1.24 1.19 1.35 1.25 3606.57 0.48 0.25 0.17

2 1.64 1.28 (opt) 1.30 1.33 1.42 1.31 1.40 1.48 2344.61 0.47 0.25 0.22

50 1 2.67 2.16 2.20 2.20 2.44 2.27 2.34 2.44 3620.42 1.52 0.60 0.44

2 2.57 2.35 1.82 1.98 1.94 2.00 2.15 1.97 3612.53 1.23 0.55 0.73

6 20 1 1.15 0.97 (opt) 0.97 0.97 1.03 0.99 1.03 1.03 12.41 0.25 0.14 0.12

2 1.12 0.97 (opt) 0.97 0.97 1.03 0.98 1.06 1.03 15.14 0.23 0.13 0.09

30 1 1.40 1.00 (opt) 1.00 1.03 1.00 1.01 1.10 1.00 222.75 0.62 0.28 0.32

2 1.28 1.02 (opt) 1.02 1.08 1.02 1.03 1.12 1.02 127.82 0.64 0.29 0.19

50 1 1.89 1.53 1.57 1.63 1.61 1.64 1.85 1.61 3614.82 1.70 0.53 0.37

2 2.03 1.49 1.41 1.65 1.55 1.55 1.94 1.56 3611.65 1.97 0.54 0.40

The experiment results for the instances of larger size are presented in Table 2.
The first three columns contain test instance properties: the tree diameter bound,
D, the size of a problem, n, and the instance case number in the OR Library, nr.
In the fourth column, the objective values on the best of constructive heuristics
results are presented. In the other columns, the results of ACO, GLS, and VNS
are presented: the objective values on the best found solutions, Wbest, the average
values of objective, Wav, the standard deviation of the set of objective values on
the found solutions, Wsd, and the average running times. The best values among
all algorithms are marked bold.
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Table 2. Comparison of the experiment’s results obtained by different heuristics on
large size instances.

D n nr W (TCH) Wbest Wav Wsd Time (in sec.)

ACO GLS VNS ACO GLS VNS ACO GLS VNS ACO GLS VNS

7 50 1 1.89 1.56 1.47 1.61 1.63 1.69 1.61 0.07 0.18 0 1.87 0.69 0.36

2 1.77 1.31 1.42 1.34 1.39 1.55 1.42 0.06 0.12 0.04 2.22 0.69 0.75

3 1.71 1.24 1.30 1.36 1.33 1.44 1.40 0.05 0.12 0.02 1.57 0.67 1.10

100 1 2.07 1.60 1.74 1.66 1.96 1.80 1.70 0.14 0.05 0.04 5.93 3.26 1.93

2 2.00 1.48 1.55 1.70 1.73 1.82 1.70 0.12 0.13 0.01 8.16 3.03 1.88

3 2.35 2.35 1.99 1.90 2.35 2.03 1.92 0 0.04 0.04 2.60 3.15 3.04

250 1 3.13 3.13 2.76 2.60 3.13 2.92 2.62 0 0.09 0.02 28.82 33.07 21.16

2 3.30 3.30 2.80 2.88 3.30 2.98 2.89 0 0.17 0.01 28.73 32.36 12.50

3 3.11 3.11 2.53 2.43 3.11 2.76 2.49 0 0.15 0.05 28.57 32.64 30.41

10 50 1 1.68 1.14 1.23 1.22 1.29 1.25 1.24 0.07 0.03 0.03 1.78 0.76 1.05

2 1.18 1.01 1.13 1.06 1.16 1.18 1.07 0.05 0.02 0.00 0.99 0.63 0.73

3 1.00 1.00 1.00 0.88 1.00 1.00 0.88 0 0 0 0.74 0.61 0.41

100 1 1.73 1.18 1.34 1.15 1.36 1.38 1.23 0.07 0.07 0.05 9.73 3.53 8.66

2 1.55 1.13 1.25 1.07 1.26 1.52 1.09 0.08 0.09 0.01 11.35 3.33 5.41

3 1.88 1.08 1.29 1.21 1.33 1.49 1.27 0.14 0.23 0.04 12.53 4.12 5.45

250 1 2.11 2.11 1.94 1.75 2.11 2.08 1.84 0 0.06 0.04 46.08 38.13 47.03

2 2.30 1.99 1.84 1.70 2.22 2.14 1.71 0.11 0.17 0.03 54.10 39.93 47.24

3 2.24 1.97 1.79 1.74 2.14 1.97 1.80 0.10 0.14 0.04 72.40 38.87 39.59

500 1 2.57 2.57 2.13 2.09 2.57 2.47 2.11 0 0.18 0.03 277.90 255.59 144.00

15 50 1 1.07 1.01 0.98 0.92 1.06 1.06 0.93 0.02 0.03 0.01 0.89 0.69 1.25

2 0.99 0.99 0.99 0.88 0.99 0.99 0.89 0 0 0.01 0.81 0.67 1.13

3 0.89 0.84 0.89 0.79 0.88 0.89 0.81 0.01 0 0.02 0.92 0.66 1.51

100 1 1.17 1.04 1.07 0.97 1.08 1.16 0.97 0.02 0.03 0 9.81 3.65 3.51

2 1.14 1.02 0.97 0.93 1.06 0.99 0.94 0.04 0.05 0.01 8.44 4.35 3.47

3 1.39 0.91 1.08 0.99 1.06 1.33 1.01 0.09 0.12 0.01 15.93 3.71 2.88

250 1 2.05 1.33 1.34 1.26 1.46 1.46 1.33 0.07 0.07 0.07 140.88 52.83 93.75

2 2.08 1.28 1.31 1.41 1.39 1.64 1.41 0.07 0.29 0.00 165.90 45.20 65.31

3 1.71 1.28 1.23 1.07 1.38 1.62 1.09 0.06 0.16 0.02 128.30 41.15 22.74

500 1 2.13 1.64 1.77 1.66 1.87 1.89 1.68 0.08 0.09 0.03 884.69 355.67 271.71

20 100 1 0.98 0.94 0.98 0.83 0.98 0.98 0.84 0.01 0 0.01 3.98 3.11 4.06

250 1 1.17 1.17 1.17 0.98 1.17 1.17 1.01 0 0 0.02 53.33 39.26 20.77

500 1 2.06 1.35 1.26 1.11 1.53 1.86 1.14 0.07 0.32 0.02 843.71 314.09 268.58

25 100 1 0.88 0.88 0.84 0.80 0.88 0.88 0.82 0 0.01 0.02 4.70 3.77 2.93

250 1 0.99 0.99 0.97 0.91 0.99 0.98 0.91 0 0.00 0.00 58.07 45.87 20.07

500 1 1.77 1.17 1.13 1.01 1.32 1.63 1.03 0.05 0.23 0.01 957.09 336.30 220.94

It is seen in the table that in more than in a half of all cases VNS works
faster than other algorithms. But note that often, especially in small size cases,
the difference in running time is not so significant. Besides, in the overwhelming
majority of the cases, VNS constructs the best solution among all algorithms.
Therefore, in general, the superiority of VNS is obvious. In some cases, especially
when D is not too large, ACO yields the better solution than VNS and GLS.
But often, even when the best solution found by ACO outperforms the best
solution found by VNS, the average objective value of ACO remains inferior in
quality than that of VNS: for example, see the cases (D = 7, n = 100, nr = 1, 2)
and (D = 10, n = 100, nr = 3). Although GLS never appeared to be the best
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among all algorithms, it is worth to say that it often significantly improves TCH

and builds solutions that are very close to those constructed by ACO and VNS,
in terms of the objective function. Moreover, in some cases GLS outperforms
one of the other algorithms: for example, see the values of Wbest in the cases
(D = 10, n = 250, nr = 2, 3), (D = 15, n = 250, nr = 2), and (D = 20, n = 500,
nr = 3), and see the values of Wav in the cases (D = 7, n = 100, nr = 3),
(D = 7, n = 250, nr = 2, 3), and (D = 10, n = 250, nr = 2, 3).

In some cases, both algorithms ACO and GLS failed to improve the initial
solution TCH . This fact can be explained in the following way. These heuris-
tics don’t apply local search procedure directly to the initial solution, but

Fig. 1. Best algorithms results on the same instance. D = 20, n = 500
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they improve the derivative results of the initial solutions: mutated offspring
or decoded ant path. Most probably, when solution space is rather large, there
exists a risk that these two algorithms will explore only the solutions that are
worse than initial solution, which may not lead to its improvement. It would be
helpful to look into these cases deeper and to analyse the behaviour of the algo-
rithms on them. Anyway, we believe that both algorithms ACO and GLS have
a potential to be improved. It is also worth to say that in some cases the initial
solution was significantly improved. For example, see the case (D = 20, n = 500,
nr = 1), where the initial solution was improved almost twice. In particular, this
gives us the following negative result regarding the constructive heuristics from
[18]: none of them provides an approximation with a guaranteed factor less than
2.06/1.11≈1.856.

As an illustration, we also present in Fig. 1 the best solutions that were
obtained by different algorithms on the same instance when D = 20, n = 500.
We chose this case, because of the big gap between the constructive heuristics
and the metaheuristics results, that was discussed in the previous paragraph.
For the convenience, the edges that remote from a center by an equal number
of edges (or hops) are colored in the same color. This helps to easily verify that
each tree is feasible, since the hops bound is never violated. Since the diameter
bound is even in this case, there is the only center in all trees. In this case MPIR
constructed the best solution among all constructive heuristics from [18]. The
difference between the tree constructed by MPIR, and the new metaheuristic
algorithms, is seen. In the solution obtained by the constructive heuristic MPIR,
a part of a tree that lies far away from the center has a star-like structure, which
is not desirable, because in this case a lot of rather long edges are connected
with “star centers” (i.e., the vertices with high degree). Note that the trees
constructed by VNS, GLS, and ACO, have no such star-like parts: the longer
edges at the backbone of a tree allow to get rid of the need for the vertices with
high degree.

5 Conclusion

In this paper, we considered the NP-hard Min-Power Bounded-Hops Symmetric
Connectivity Problem. For its approximation solution, we proposed three differ-
ent heuristic algorithms that are based on such known metaheuristics as variable
neighborhood search, ant colony optimization, and genetic local search. To the
best of our knowledge, this is the first application of such kind of heuristics to
this problem. We implemented all the proposed algorithms and conducted the
numerical experiment on different test instances that were generated on the data
sets taken from the Beasley’s OR-Library. The simulation showed that, in gen-
eral, our methods allow to significantly improve the solution built by the best
known polynomial constructive heuristics. Our algorithms appeared to be very
efficient compared with optimal solution as well, as it follows from the experi-
ments on small size instances when the problem was solved by CPLEX. In most
cases, VNS based heuristic appeared to be more efficient than other methods
both in terms of objective function and running time.
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Abstract. Many practical applications such as multidimensional inte-
gration and quasi–Monte Carlo simulations rely on a uniform sampling
of high–dimensional spaces. Halton sequences are d–dimensional quasir-
andom sequences that fill the d–dimensional hyperspace uniformly and
can be generated with low computational costs. Generalized (scrambled)
Halton sequences improve the properties of plain Halton sequences in
higher dimensions by digit scrambling. Discrete nature–inspired opti-
mization methods have been used to search for scrambling permutations
of d–dimensional generalized Halton sequences that minimized the dis-
crepancy of the generated point sets in the past. In this work, a contin-
uous nature–inspired optimization method, the differential evolution, is
used to optimize generalized Halton sequences.

1 Introduction

Halton sequences form a family of d–dimensional quasirandom sequences [5,7,9].
The Halton sequence (HS) consists of a set of d–dimensional points within the
d–dimensional hypercube, J d = [0, 1)d, that fills the space in a uniform way [9].
The uniformity is expressed in terms of discrepancy, a measure that evaluates
how the distribution of the points in the sequence deviates from an ideal uniform
distribution of points in J d [2,9]. The discrepancy also shows how evenly the
sequence covers the space within the hypercube [3]. HSs are easy to implement
and therefore popular for practical applications [2,9]. However, it is known that
they suffer from high correlation between points in higher dimensions [2–4,6,18],
which is in most cases an undesired property.

The optimization of generalized HSs constitutes a challenging combinatorial
optimization problem that has been recently addressed by intelligent nature–
inspired optimization methods, in particular, genetic algorithms [3,4,6]. The
discrete nature of genetic algorithms corresponds with the discrete nature of
combinatorial optimization. However, continuous optimization methods such as
differential evolution and particle swarm optimization have demonstrated good
ability to solve combinatorial optimization problems as well [11]. In this work, a
method for the optimization of generalized HSs, based on an efficient continuous
evolutionary optimization method, the differential evolution (DE), is proposed
and evaluated.
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The rest of this paper is organized in the following way. Halton sequences,
generalized HSs, and the concept of discrepancy are formally described in Sect. 2.
The optimization of generalized HSs is discussed in Sect. 3. The differential evo-
lution is outlined in Sect. 4 and the proposed DE for the optimization of gen-
eralized HSs is detailed in Sect. 5. An experimental evaluation of the proposed
approach is provided in Sect. 6. Finally, major conclusions are drawn and future
work is outlined in Sect. 7.

2 Halton Sequences

The Halton sequence is a d–dimensional generalization of the one–dimensional
van der Corupt sequence. The van der Corupt sequence in base b is for any
integer, n ≥ 0, defined by the radical inverse function [2,6,18]

φb(n) =
a0

b
+

a1

b2
+ . . . +

ak

bk+1
=

k∑

i=0

aib
−i−1, (1)

where ai is the i–th digit of the b–adic expansion of n in base b,

n = a0 + a1b + . . . + akbk =
k∑

i=0

aib
i. (2)

The HS is a d–dimensional sequence in J d, X = 〈x1,x2, . . . ,xn〉, with points
defined by

xn = (φb1(n), φb2(n), . . . , φbd(n)), (3)

and pairwise co–prime bases, bi > 1, i ∈ {1, . . . , d}. The simple definition and the
ease of construction make HSs easier to implement than other low–discrepancy
sequences [2,18]. On the other hand, they suffer from strong correlations between
points in higher dimensions [6]. This problem is illustrated in Fig. 1, which shows
2D projections of the first 20 points of a 6D Halton sequence with bases corre-
sponding to the first 6 primes (the most common choice of bases [18]). It can be
seen that the 2D projections of higher dimensions (e.g., D4–D5, D4–D6, D5–D6)
show highly correlated values.

There are several methods that can be used to disrupt the correlations
between points in the Halton sequence [2]. Generalized (scrambled) Halton
sequence is a variant of the sequence in which the digits of the points are in
each dimension scrambled so that its good space filling properties are preserved
and the correlations are minimized [18]. Generalized HS is defined using the
scrambled radical inverse function

φπb
(n) =

πb(a0)
b

+
πb(a1)

b2
+ . . . +

πb(ak)
bk+1

, (4)
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Fig. 1. 2D projections of the first 20 points of the 6D Halton sequence with the vector
of bases b = 〈2, 3, 5, 7, 11, 13〉.

where πb is a permutation of the digits (0, 1, . . . , b − 1) that preserves the first
digit fixed, i.e., πb(0) = 0 [3,4,6,18]. The generalized Halton sequence in J d,
X̂ = 〈x̂1, x̂2, . . . , x̂n〉, then consists of points defined by

x̂n = (φπb1
(n), φπb2

(n), . . . , φπbd
(n)). (5)

The vector of permutations, π = 〈πb1 , πb2 , . . . , πbd〉, uniquely identifies the
sequence and is called the generating vector of X̂ [6]. The use of different gener-
ating vectors leads to different sequences with different properties and the search
for generating vectors that result in high–quality low–discrepancy sequences has
been identified as a challenging combinatorial optimization problem [4].

2.1 Discrepancy

The discrepancy is a general concept that can be used to measure the uniformity
of quasirandom sequences in J d [2,9]. It reflects how much the distribution of a
set of d–dimensional points, X , deviates from the uniform distribution in J d [4].
The discrepancy can be evaluated using a number of measures such as the star
discrepancy, extreme discrepancy, L2–star discrepancy, L2–extreme discrepancy,
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and their modifications [3,4,6,18]. The L2–star discrepancy of a sequence of n
d–dimensional points, X , is defined as [18]

[T ∗
n(X )]2 =

1
n2

n∑

k=1

n∑

m=1

d∏

i=1

(1 − max(xk[i],xm[i]))

−21−d

n

n∑

k=1

d∏

i=1

(1 − xk[i]2) + 3−d. (6)

T ∗
n(X ) is with computational complexity O(dn2) rather expensive to evaluate

and Eq. (6) is ill–conditioned [18]. Nevertheless, it represents a natural optimiza-
tion criterion that can be used to compare the properties of different generalized
Halton sequences [6,18].

3 Optimization of Generalized Halton Sequences

The search for permutations that minimize the discrepancy of generalized Hal-
ton sequences has been addressed by a number of works recently [2–4,6,9,18].
Besides deterministic and constructive approaches [9,18], intelligent nature–
inspired optimization methods have shown good ability to look for permutations
that maximize modified L2 [3,4] and L2–star [6] discrepancies. Genetic algo-
rithms (GAs) were used to search for generating vectors of generalized HSs with
a low discrepancy in [3,4,6].

GAs form a family of nature–inspired search and optimization methods based
on the idea of computational emulation of genetic evolution [8]. They evolve a
population of encoded candidate problem solutions (chromosomes) by an iter-
ative application of genetic operators. GAs use (most often) discrete encoding
that can intuitively represent solutions of combinatorial optimization problems
such as permutations and combinations. On the other hand, the basic genetic
operators (e.g., one–point crossover, uniform mutation) assume that the values
of genes (alleles) in the chromosomes are independent on each other. This is not
the case of permutation problems and special genetic operators must be defined
in order to avoid the creation of infeasible solutions [10].

De Rainville et al. [3,4] and Doerr and De Rainville [6] designed several GAs
for the search for generating vectors of generalized HSs. They used a fixed–
length vector of integer values to represent the generating vector. In [3,4], the
chromosomes were translated to permutations using an integer–based version of
the random key encoding [1]. In a more recent work, focusing on the generation
of low–discrepancy point sets, the generating vectors were represented directly by
permutation indices [6]. In all cases, the fixed 0s were removed from the genotype
and special genetic operators that prevented the generation of infeasible solutions
were proposed. The GAs looked either for all permutations simultaneously [3]
or evolved one permutation (corresponding with one dimension of the sequence)
at a time [4,6]. An example of all three encoding schemes is shown in Fig. 2.

In this work, a continuous nature–inspired optimization algorithm, the dif-
ferential evolution, is used to search for the generating vector of a generalized
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Fig. 2. Example of the encoding of the generating vector π = 〈π3, π5, π7〉.

Halton sequence with a low L2–star discrepancy. The DE is a successful evo-
lutionary algorithm for continuous optimization driven by the idea of scaled
vector differentials. This is in stringent contrast to the GAs that were designed
to work primarily in discrete search spaces. As well as GAs, the DE represents
a population–based stochastic search and optimization strategy. In comparison
with the GAs, the differential evolution uses the real encoding of candidate
solutions and different operations to evolve the population. It results in different
search strategies and different directions found by the DE during the exploration
of the search space associated with a particular problem. That makes it an inter-
esting alternative to the GAs when solving various combinatorial optimization
problems [11].

4 Differential Evolution

The DE is a population–based stochastic evolutionary optimization metaheuris-
tic [14]. It is a population-based optimizer that evolves a population of real
encoded vectors representing potential solutions to a given problem. The DE
was introduced by Storn and Price in 1995 and it quickly became a popular
alternative to the more traditional types of evolutionary algorithms. It evolves
a population of candidate solutions by iterative modification of candidate solu-
tions by the application of the differential mutation and crossover [14]. In each
iteration, so–called trial vectors are created from the current population by the
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differential mutation and further modified by various types of crossover opera-
tor. In the end, the trial vectors compete with existing candidate solutions for
survival in the population.

The DE starts with an initial population of M real-valued vectors. The vec-
tors are initialized with real values either randomly or so, that they are evenly
spread over the problem space. The latter initialization leads to better results
of the optimization [14]. During the optimization, the DE generates new vec-
tors that are scaled perturbations of existing population vectors. The algorithm
perturbs selected base vectors with the scaled difference of two (or more) other
population vectors in order to produce the trial vectors. The trial vectors com-
pete with members of the current population with the same index called the
target vectors. If a trial vector represents a better solution than the correspond-
ing target vector, it takes its place in the population [14].

The two most significant parameters of the DE are scaling factor and muta-
tion probability [14]. The scaling factor F ∈ [0,∞] controls the rate at which the
population evolves and the crossover probability C ∈ [0, 1] determines the ratio
of elements that are transferred to the trial vector from its opponent. The size
of the population and the choice of operators are other important parameters of
the optimization process.

The basic operations of the original DE can be summarized using the follow-
ing formulae [14]: the random initialization of the ith vector with N parameters
is defined by

xi[j] = rand(bLj , bUj ), j ∈ {1, . . . , N}, (7)

where bLj is the lower bound of j-th parameter, bUj is the upper bound of j-th
parameter, and rand(a, b) is a function generating a random number from the
range [a, b]. A simple form of the standard differential mutation is given by

vi = vr1 + F (vr2 − vr3), (8)

where F is the scaling factor and vr1 , vr2 , and vr3 are three random vectors from
the population. The vector vr1 is the base vector, vr2 and vr3 are the difference
vectors, and vi is the trial vector. It is required that i �= r1 �= r2 �= r3. The
standard differential mutation is illustrated in Fig. 3.

The uniform (binomial) crossover that combines the target vector, xi, with
the trial vector, vi, is given by

vi[j] =

{
vi[j] if (rand(0, 1) < C) or j = jrand

xi[j], otherwise
(9)

for each j ∈ {1, . . . , N}. The random index jrand in Eq. (9) is randomly selected
as jrand = rand(1, N). The uniform crossover replaces the parameters in vi by
the parameters from the target vector xi with probability 1 − C. The outline of
the DE according to [8,14] is summarized in Algorithm 1.
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Fig. 3. Geometric interpretation of differential mutation.

1 Initialize the population P consisting of M vectors using eq. (7);
2 Evaluate the fitness function for all vectors in the population;
3 while Termination criteria not satisfied do
4 Let G = current generation;
5 for i ∈ {1, . . . , M} do
6 Differential mutation. Create trial vector vi according to eq. (8);

7 Validate the range of coordinates of vi. Optionally adjust coordinates of
vi so, that it is valid solution to given problem;

8 Perform uniform crossover. Select randomly one parameter jrand in vi

and modify the trial vector using eq. (9);

9 Evaluate the trial vector. Compute the fitness of vi;
10 if trial vector vi represents a better solution than target vector xi then
11 add vi to PG+1

12 else
13 add xi to PG+1

14 end

15 end

16 end

Algorithm 1. An outline of the DE algorithm [8].

5 DE for Halton Sequence Optimization

In this work, a DE for the optimization of generalized Halton sequences is pro-
posed. The DE looks for a generating vector, π, that minimizes the discrepancy
of the sequence and evolves the permutations associated with all dimensions
of the sequence simultaneously. It is defined by the encoding of the generating
vector and the fitness function expressing the discrepancy of the sequence.
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The proposed DE uses an encoding that represents permutations by vectors
of continuous numbers. This approach is widespread and has been used to model
permutations for the DE [12,13,15], real–valued GAs (as the random key encod-
ing) [16], and particle swarm optimization (as the smallest position value) [17].
In the random key encoding, the coordinates of the vector, xi, are sorted from
smallest to largest and their position changes are associated with permutation
indices. This principle is illustrated in Eq. (10).

xi =
(
0.2 0.3 0.1 0.5 0.4

) −→
(

0.2 0.3 0.1 0.5 0.4
1 2 3 4 5

)
sort by−−−−→
value(

0.1 0.2 0.3 0.4 0.5
3 1 2 5 4

)
−→ (

3 1 2 5 4
)

= πi

(10)

In the representation of the generating vector, π, the random key encoding is
applied to each permutation, πbi ∈ π, independently. This approach is essentially
a continuous version of the generating vector representation from [3]. An example
encoding of a particular generating vector, π = 〈(0 4 1 3 2 5), (0 2 3 5 4 1 6)〉,
is shown in Eq. (11).

π6︷ ︸︸ ︷
0.2 0.4 0.3 0.1 0.9

π7︷ ︸︸ ︷
0.5 0.1 0.2 0.4 0.3 0.6 → π6 = (0 4 1 3 2 5)

π7 = (0 2 3 5 4 1 6)
(11)

The fitness function, used in the proposed DE to evaluate the discrepancy of the
generated sequence, is the L2–star discrepancy defined by Eq. (6).

The encoding and the fitness function can be used with an arbitrary variant
of the DE (in fact with an arbitrary optimization algorithm for d–dimensional
continuous spaces). In this work, the traditional /DE/rand/1 differential evolu-
tion [8] was used to assess the ability of the DE to optimize generalized HSs.

6 Experimental Evaluation

A series of computational experiments was conducted in order to assess the
ability of the proposed DE to optimize generalized HSs in terms of the L2–star
discrepancy. The DE was used to optimize the discrepancy of three different
generalized HSs, in particular

– the 2–dimensional generalized HS, X̂1, with the vector of bases, b1 = 〈6, 7〉,
– the 3–dimensional generalized HS, X̂2, with the vector of bases, b2 = 〈3, 5, 7〉,
– the 5–dimensional generalized HS, X̂3, with the vector of bases,

b3 = 〈4, 5, 7, 9, 11〉, and
– the 6–dimensional generalized HS, X̂4, with the vector of bases,

b4 = 〈2, 3, 5, 7, 11, 13〉.
From the optimization point of view, they constitute 11, 12, 31, and 35–
dimensional optimization problems, respectively. The sequences were selected
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so that the behaviour of the algorithm in both low and high–dimensional vari-
ants of this optimization problem could be observed. In all experiments, the
DE was executed with the following parameters, selected on the basis of best
practices, previous experience, and extensive trial–and–error runs: the DE was
/DE/rand/1 with population size M = 100, scaling factor F = 0.9, crossover
probability C = 0.9, and the maximum number of generations Gmax = 1, 000.
The algorithm used the random key–based encoding of the generating vectors,
illustrated in Eq. (11), and the L2–star discrepancy of the first 1,000 points of
the sequence as the fitness function. Due to the stochastic nature of the DE, all
optimization runs were repeated 50 times independently.

The results of the optimization are summarized in Table 1. For each test case,
it shows the discrepancy of the best, average, and worst sequence found by the
DE. The table also shows the standard deviation, σ, of the discrepancies and
the discrepancy of the corresponding plain HSs (i.e., sequences without digit
scrambling). It can be immediately seen that the DE was able to find generating
vectors that improved the discrepancy of the sequences. The discrepancies of the
best found X̂1, X̂2, X̂3, and X̂4 were 2.62 times, 1.38 times, 1.35 times, and 1.09
times lower than the discrepancies of the corresponding plain HSs. The table
also shows that the evolution of the generating vectors for X̂1 always ended with
the same result with the discrepancy 0.0009891. The fact that the DE converged
in this case in all independent runs to the same solution is quite remarkable for
a stochastic optimization method and suggests that it facilitates a robust search
strategy. A further analysis of the search space (i.e. the evaluation of all possible
86,400 generating vectors of X̂1) confirmed that the generating vector found by
the DE, πDE

X̂1
= 〈(0 5 2 4 1 3), (0 3 5 1 2 4 6)〉, is the global optimum. That clearly

documents that the proposed DE was always able to solve this 11–dimensional
version of the problem to optimality within 1,000 DE generations.

Table 1. Optimization results.

Test
sequence

L2–star discrepancy

Optimized generalized HS No scrambling

Best Mean σ Worst

X̂1 0.0009891 0.0009891 0 0.0009891 0.00258861

X̂2 0.0015005 0.0015010 0.12e-5 0.0015038 0.00207106

X̂3 0.0015915 0.0016275 1.67e-5 0.0016621 0.00215402

X̂4 0.0014899 0.0015041 0.85e-5 0.0015241 0.00162466

The optimization of X̂2, X̂3, and X̂4 resulted after 1,000 DE generations in
different generating vectors that led to sequences with different discrepancies.
The optimization of all four test sequences is illustrated in Fig. 4. The figure
shows the discrepancy of the best (minimum), average, and worst (maximum)
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best solution discovered by the independent optimization runs in each DE gen-
eration. It also displays the 95% confidence interval around the average best
solution found by the proposed algorithm. The figure clearly illustrates that the
proposed DE in all cases systematically minimized the discrepancy of the test
sequences. It also shows that the DE needed only around 100 generations to find
the globally best generating vector for the test sequence X̂1 and that it did not
improve significantly after the 100th generation in the case of the test sequence
X̂2. Finally, the figure suggests that the evolution of the generating vectors for
the test sequences X̂3 and X̂4 might still continue and further improve the dis-
crepancy of the sequence. Nevertheless, the 2D projections of the first 20 points
of X̂2 configured by the best generating vector found by the DE after 1,000 gen-

(a) X̂1 (b) X̂2

(c) X̂3 (d) X̂4

Fig. 4. The evolution of generating vectors for generalized Halton sequences. The
graphs show the average, minimum, and maximum discrepancy of the best sequence
found by all independent runs in each DE generation. They also show the 95% confi-
dence interval around the mean best generating vector found in each DE generation.
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Fig. 5. 2D projections of the first 20 points of the 6D generalized Halton sequence,
X̂4, configured by the generating vector found by the DE (below main diagonal in
blue) compared with the 2D projections of the first 20 points of the same unscrambled
sequence (above main diagonal in red). (Color figure online)

erations, shown in Fig. 5, clearly illustrate that the correlations between points
in higher dimensions (e.g., D4–D5, D4–D6, D5–D6) were significantly reduced.

7 Conclusions

In this work, a novel evolutionary method for the optimization of generalized
Halton sequences was designed. The proposed approach takes advantage of the
differential evolution, a successful and widely used nature–inspired search and
optimization algorithm. The goal of the optimization was the minimization of
the L2–star discrepancy of multidimensional quasirandom sequences. The opti-
mization problem was formulated as a search for a series of scrambling permu-
tations that minimize the discrepancy of the multidimensional sequence. It was
addressed by the differential evolution algorithm that used a variant of the ran-
dom key encoding to represent the permutations. The algorithm was designed to
optimize all permutations associated with all dimensions of the sequence simul-
taneously.
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The proposed approach was evaluated in a series of computer experiments.
The algorithm showed the ability to improve the discrepancy of 2, 3, 5, and 6–
dimensional generalized Halton sequences. A search space analysis revealed that
the proposed algorithm has in the case of the 2–dimensional sequence found in
all independent optimization runs the best possible combination of the scram-
bling permutations, i.e. the global optimum. The proposed algorithm was able to
improve the discrepancy of the point sets generated by higher–dimensional gen-
eralized Halton sequences as well. However, the global optimum was not found in
the case of the 3, 5, and 6–dimensional Halton sequences. This can be attributed
to a number of reasons including too short optimization time (i.e., not enough
processed DE generations), imperfect fitness function (there are known problems
associated with the standard L2–star discrepancy measure [4]), and premature
convergence of the standard /DE/rand/1 algorithm (e.g., loss of diversity in the
population). Nevertheless, the initial success of the differential evolution has
demonstrated a good ability of continuous optimization methods to address the
combinatorial optimization problem associated with the optimization of gener-
alized Halton sequences.

Future research in this area will follow several directions. Alternative contin-
uous optimization algorithms including other DE variants, and, e.g., the PSO
algorithm will be applied to Halton sequence optimization. Different discrepancy
measures (e.g., the modified discrepancy [4]) will be evaluated as optimization
criteria. Second, the ability of the differential evolution to optimize other types of
low–discrepancy sequences such as the Sobol, Faure, and Niederreiter sequence
will be investigated. Last but not least, different encodings of scrambling per-
mutations will be evaluated in the context of sequence optimization.
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Abstract. The optimization of massively multi-modal functions is a
challenging task, particularly for problems where the search space can
lead the optimization process to local optima. While evolutionary algo-
rithms have been extensively investigated for these optimization prob-
lems, Bayesian Optimization algorithms have not been explored to the
same extent. In this paper, we study the behavior of Bayesian Optimiza-
tion as part of a hybrid approach for solving several massively multi-
modal functions. We use well-known benchmarks and metrics to eval-
uate how different variants of Bayesian Optimization deal with multi-
modality.

Keywords: Bayesian Optimization · Multi-modal Optimization ·
Gaussian processes

1 Introduction

Massively multi-modal functions are characterized by having many optimal solu-
tions, where some of them are local and some others are global. There may be
numerous or no local optima, and only one global optimum or many global
optima. Global optimization of this kind of functions is a difficult task since
the optimization algorithm may get trapped in local optima, and due to their
complexity, a high number of evaluations is expected. In addition, apart from
finding the global optimum, a good covering of all the best solutions is required
in many real-world problems [24].

This kind of functions have been extensively studied in Evolutionary Algo-
rithms (EAs) [15]. Traditional methods to obtain a good optima covering in
EAs include niching strategies [4,15,19]. In standard Genetic Algorithms (GAs),
where the crossover operator produces an exploitation oriented behavior, niching
methods try to reduce this effect by allowing further exploration.

On the other hand, model-based optimization algorithms take advantage of
identifying the landscape of the problem to improve the search. They use all
the information gathered from sampling the objective function by means of a
Surrogate Model (SM). This type of algorithms have been successfully applied
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to low-budget optimization tasks [8,26]. One of the most successful model-based
optimization methods is Bayesian Optimization (BO) [1,11]. BO is a sequential
optimization algorithm, where the sampling strategy is based on a probability
distribution over all the possible objective functions. This probability distribu-
tion acts as a SM , and it is updated every time a solution is evaluated using the
actual objective function.

Some of the work done in BO is closely related to the niching strategies
proposed for EAs. There are some variants of BO algorithms that use sampling
strategies that propose a batch of solutions to perform several evaluations at the
same time [3]. Among them, the Bayesian Optimization via Local Penalization
algorithm proposed in [5] avoids the concentration of samples, similar to sharing
[4] and clearing [12] niching strategies investigated in EA literature. On the
other hand, the clustering BO approaches [6,23], where the data is divided into
clusters to reduce the complexity of the models, could benefit the discovery of
new optima, resembling the clustering [25] techniques proposed for EA. Beyond
the mentioned EC and BO approaches, methods that divide the search space
have also been proposed in other fields [7,9].

In this paper, we face massively multi-modal problems bridging the work
done in EA and BO literatures. We present preliminary results in this direction,
proposing three algorithms that take BO beyond low-budget optimization: (1)
Sequential BO with modeling of local optima. (2) Adaptive BO with clustering.
(3) BO with batch sampling strategies. Furthermore, we evaluate their behav-
ior using the benchmark presented in [10], and compare our results with those
achieved by state-of-the-art algorithms in Evolutionary Computation (EC).

Our research aims to address a number of general questions that are sig-
nificant for massively multi-modal problems. Among these questions are: Is it
possible to get a good covering of multiple optima using a low-budget of func-
tion evaluations? Are model-based approaches, specifically BO, an efficient way
to obtain a good coverage? Can we take advantage of the work done in EC to
design more efficient BO techniques to improve the coverage?

The remainder of the paper is structured as follows: In Sect. 2, a brief intro-
duction to BO and batch methods is presented. A reduced number of works
significantly related to our approach are revised in Sect. 3. In Sect. 4, the differ-
ent BO variants proposed in this paper are introduced. Section 5 presents the
experimental benchmark and the numerical results of the experiments. Finally,
Sect. 6 presents the conclusions of the paper.

2 Brief Introduction to Bayesian Optimization

BO [11] is a state-of-the-art global optimization technique suitable for low-budget
optimization problems. In BO, the samples of the objective function are sequen-
tially taken based on a sampling strategy. This next sample will be selected by
optimizing an acquisition function (u(·)) that provides a measure of the utility of
each solution. A probability distribution over all the possible objective functions
is used to determine this acquisition function, acting as a SM . As the analytic
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form of the objective function is generally unknown, BO treats the objective
function like a random function, and places a prior belief about the space of
possible objective functions. Every time the objective function is evaluated, this
prior belief is updated with the likelihood of having those observations, gener-
ating a posterior distribution over functions.

Algorithm 1 illustrates the whole process of the BO algorithm [1].

Algorithm 1. BO algorithm
1: procedure bayesian-optimization

2: y1 = f(x1) � Sample and evaluate a random point
3: D1:1 = {(x1, y1)} � Initialize the dataset
4: SM ← D1:1 � Initialize the SM
5: t = 2
6: repeat
7: xt = arg maxx∈Rd u(x|SM) � Select the next point to evaluate
8: yt = f(xt) � Evaluate the objective function
9: D1:t = D1:t−1 ∪ {(xt, yt)} � Update the dataset

10: SM ← D1:t � Update the SM
11: t = t + 1
12: until the stopping criterion is met
13: end procedure

The optimization process begins by sampling a point randomly, and eval-
uating it using the objective function. Typically, the SM is initialized at this
point. Then, until the stopping criterion is met, the next point to evaluate is
selected and evaluated, augmenting the dataset and updating the SM . At each
step, except the first one, the point that maximizes the acquisition function is
selected to be sampled.

2.1 Gaussian Processes

SMs are a key element in Algorithm 1, as the acquisition function will rely on
them to select the next point. One of the most popular choices in BO is to use
a GP as SM . A GP is a stochastic process, defined by a collection of random
variables, any finite number of which has a multivariate Gaussian distribution
[17]. What makes GPs interesting for BO is that the posterior distribution of a
GP given some observations of the objective function is also a GP.

GPs can be completely defined by a mean function (m(x)) and a covari-
ance function, which depends on a kernel (k(x,x′)). Given that, the GP can be
expressed as follows:

f(x) ∼ GP (m(x), k(x,x′)) (1)

Usually, a non-informative mean function is used, such as m(x) = 0. However,
in more sophisticated approaches, this function will depend on the data.
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The kernel establishes the covariance between the objective function values of
two different points. Although many kernels have been proposed in the literature,
we use the Matern32 kernel, due to the performance shown in previous studies
[18]. This kernel is expressed as follows:

kM32(x,x′) = θ20

(
1 +

√
3
√

r2x,x′

)
exp

(
−

√
3
√

r2x,x′

)
+ θn

where r2(x,x′) =
nd∑
d=1

(
xd − x′

d

θd

)2 (2)

where θd, θ0 and θn are the length-scale, amplitude and noise parameters respec-
tively. While the length-scale parameter expresses the relevance of each dimen-
sion d, the amplitude parameter scales all dimensions. The noise parameter
allows the GP to adapt the random function when the observations of the objec-
tive function are noisy.

2.2 Acquisition Function

Once we have a way to approximate the value of the objective function through
the SM, the acquisition function is placed to select the next point. It assigns a
measure of utility for each point in the search space given the SM . This measure
of utility balances the exploration versus exploitation trade-off.

In this paper we use GP-UCB [22] as acquisition function. This upper-
confidence based algorithm is a combined strategy that balances the reduction
of the uncertainty over the objective function with maximizing the expected
reward:

GP-UCB(x) = μ(x) +
√

βt σ(x) (3)

where βt is a constant specified depending on the context.
In the previous equation μ(x) and σ(x) represent the expected value for the

objective function at point x and its variance. At step t + 1, these values are
given by the following equations:

μ(x) = m(x) + k(X1:t,x)k(X1:t,X1:t)−1f(X1:t)

σ2(x) = k(x,x) − k(X1:t,x)k(X1:t,X1:t)−1k(x,X1:t)
(4)

where k(X1:t,x) and k(x,X1:t) are vectors with the value of the kernel function
between x and all the previously evaluated solutions. k(X1:t,X1:t) is the matrix
of the kernel values between all the pairs of the previously evaluated solutions.

3 Related Work

Our research is closely related to previous work in a number of areas. In EAs,
research on multi-modal problems have been addressed mainly using niching
methods [19,21]. However, most of these methods do not explicitly construct
a model to guide the search. Among model based methods, some of the BO
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strategies can resemble the work done in EAs. Although they were not specifically
designed to solve multi-modal problems, these BO methods can benefit from
using a model.

In batch BO sampling strategies, instead of proposing one solution at each
iteration, B solutions are simultaneously evaluated. Among these approaches, the
Batch Bayesian Optimization via Local Penalization approach [5] tries to avoid
the surrounding area of the already selected points applying a penalization to
the utility of these selected solutions. This property can prevent the algorithm
from getting stuck on local optima.

The clustering BO approaches [6,23] try to the reduce the complexity of
the model by dividing the data in several clusters and using several models to
create the acquisition function. Our intuition is that BO could take advantage
of dividing the data into niches to encourage exploration.

Sharing [4] is one of the first attempts in niching methods. It consists in
modifying the fitness value of each individual. When several individuals are
occupying a niche, their fitness value is shared. Two individuals belong to the
same niche when they are closer than a niche radius. The computational cost and
the difficulty to set a good niche radius are the main downsides of this method.
Besides, in clearing techniques [12], the neighboring solutions of the k best ones
are “cleared”, i.e., their fitness value is set to zero. Although it is closely related
to sharing, it reduces the computational cost by only measuring the distances
between the best solutions and the rest. On the contrary, it requires one extra
parameter to adjust.

Other niching techniques use a clustering algorithm to divide the population
into niches [25]. The fitness of each individual depends on the number of solutions
in the niche and the distance to their centroids. This approach also reduces the
distance computations required in sharing and encourages the individuals to
leave the niche and explore new regions.

In research conducted on multi-modal functions in EAs, some of the state of
art results are reported for Niching Evolutionary Algorithm2 (NEA2) [14] and
Niching migratory multi-swarm optimizer (NMMSO) [2]. NEA2 is a combination
of clustering and local optimization techniques. Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) is used to find the local optima while Nearest-
better Clustering allows a good covering of the optima. On the other hand,
NMMSO uses concurrent swarms. Each swarm exploits its local mode and the
algorithm splits or mergers swarms depending on characteristics of the optimiza-
tion problem. While NEA2 incorporates a covariance matrix model as part of
CMA-ES, these two algorithms do not learn a SM in order to predict the fitness
value of a solution as BO does.

4 Dealing with Multi-modal Problems with BO
Optimization

In the multi-modal optimization problems we address in this work, the number
of evaluations that might be needed to cover the different optima is much higher
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than in low-budget optimization problems. Being BO an optimization technique
well suited for low-budget optimization problems, devising efficient ways to learn
a GP model with a large dataset is not straightforward. The reason is that the
covariance matrix grows according to the number of evaluations. The inverse or
the Cholesky decomposition of this matrix is required to compute the posterior
distribution, and this computational cost may be prohibitive for massively multi-
modal problems if the usual approach were used to learn the model.

In BO literature, some variants that attempt to reduce the computational
cost of computing a model when the number of points is high have been pro-
posed. These variants use various mechanisms, such as, “forgetting” older or
less informative points, to handle a large number of points. Works that propose
sparse GP approaches include the Subset of Data (SoD) approximations [16] and
the Subset of Regressors (SoR) [20]. These methods have their own drawbacks,
e.g., SoR is a very sophisticated and complex approach, that make them not
directly applicable to the type of multi-modal problems we address.

Fig. 1. BO approaches. The objective function is represented with a contour plot. Each
figure describes the behavior of the proposed algorithms in a certain step. The yellow
and red surface and contour plot refer to the acquisition function. The current step is
represented with a triangle and a circle, where the circle represents the solution selected
by the model, and the triangle represents the result of the local search starting from
the selected solution. Previous steps are faded. Note that in batch ls several solutions
are selected and they are not faded. Finally, in the last figure, the centroids of the
clusters are represented with big purple starts. (Color figure online)

Our proposal consists of combining BO with local search techniques. This
way we can take full profit of the budget of available evaluations and guarantee
that those solutions modeled by the covariance matrix are of better quality. In
spite of including the local search, still a large dataset is needed to model the
landscape of the objective function. Thus, we propose the following three algo-
rithms that are able to deal with these datasets: The first algorithm is inspired
in the SoD approach. The second algorithm avoids the unmanageable growth
of the covariance matrix by splitting the current set of solutions into different
clusters. Finally, the third method we propose is similar to the first but it is con-
ceived for situations where the parallel evaluation of several points is desired.
Their behavior is illustrated in Fig. 1.
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4.1 Sequential BO with Modeling of Local Optima

In this approach, the “forgetting” SoD approach is combined with a local search
algorithm (see Algorithm 2). Two major changes have been applied compared to
Algorithm 1. First of all, a local search algorithm is used to exploit each solution
proposed by the BO. Then, the SM is updated with the point suggested by
the BO and the best solution achieved by the local search, provided that the
local search is able to improve the solution proposed by the BO. The second
major change is that the size of the dataset has been limited. When the dataset
outsizes the maximum number of points (N), the oldest point is discarded, i.e.
the most recently proposed points are those used for modeling. This approach
might be the simplest solution when dealing with sparse GP models, but also is
the computationally cheapest.

Algorithm 2. Sequential BO with modeling of local optima
1: procedure bo-ls(N)
2: y1 = f(x1)
3: D1:1 = {(x1, y1)}
4: SM ← D1:1

5: t = 2
6: repeat
7: xbo = arg maxx∈Rd u(x|SM)
8: ybo = f(xbo)
9: (xls, yls) = ls(f,xbo) � Run the local search

10: D1:t+1 = D1:t−1 ∪ {(xbo, ybo)} ∪ {(xls, yls)}
11: SM ← Dt−N−1:t+1 � “Forget” old data
12: t = t + 2
13: until the stopping criterion is met
14: end procedure

4.2 Adaptive BO with Clustering

Our second approach is based on the previous one, but it aims to take more
advantage of the knowledge acquired during the optimization process. Inspired
in clustering niching techniques and the work done in [6] and [23], this approach
divides the dataset into several subsets using clustering techniques. This way,
to obtain the conditional distribution of the GP given some solution, only the
closest solutions will be taken into account, reducing the size of the covariance
matrix. It can be seen as a single SM that is composed by several GPs, each
one with an exclusive subset of the dataset.

This algorithm differs from Algorithm 2 in the way the SM is updated and
evaluated. Initially, only one subset of the dataset is used, and the posterior of
the GP is calculated in the original manner. Every time a data point is sampled,
it is added to the closest cluster. As can be seen in Algorithm 3, this updating
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process consists on updating the centroid and the GPs. When the maximum size
of a cluster is reached, the dataset is split into two subsets using a clustering
technique, and their centroids are calculated. Two new GPs are generated and
updated, one for each subset, and the old cluster is removed. Note that this
sparse GP technique can be incrementally applied in the BO process, as only
one GP is updated at each step.

Algorithm 3. Update ClusterSM

1: procedure update-clusters(xt, yt, {c}, {D}, {SM})
2: cclosest, Dclosest, SMclosest = closest(x1, {c})
3: Dclosest = Dclosest ∪ {(xt, yt)}
4: if size(Dclosest) < N then
5: cclosest = centroid(Dclosest)
6: SMclosest ← Dclosest

7: else
8: {Dk}K

k=1 = split dataset(Dclosest, K)
9: for k = 1 to K do

10: ck = centroid(Dk)
11: SMk ← Dk

12: end for
13: {c} = {c} + {ck}K

k=1 − {cclosest}
14: {D} = {D} + {Dk}K

k=1 − {Dclosest}
15: {SM} = {SM} + {SMk}K

k=1 − {SMclosest}
16: end if
17: end procedure

To evaluate the posterior distribution of this system given a certain solution,
the distance to each centroid must be calculated. The SM associated to the
closest data-subset is used to predict the outcome of the fitness.

4.3 BO with Batch Sampling Strategies

In order to expand the scope of the analysis of BO techniques for multi-modal
problems, we also propose a modified version of Batch BO via Local Penalization
[5]. This technique iteratively selects a batch of solutions by optimizing an acqui-
sition function that penalizes the previous selections in the batch. Similar to the
work that has been done in EAs to avoid the exploitation oriented nature of
the selection operator, this penalization step might be suitable for multi-modal
optimization problems, when parallel evaluations can be implemented.

The algorithm works as follows: First, a solution is selected according to a
traditional acquisition function (we use UCB in this paper as suggested by the
results of the original work). Then, according to Algorithm 4, a batch of solutions
is obtained iteratively, selecting a solution and penalizing the acquisition function
according to this selection.
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Algorithm 4. Batch Selection via Local Penalization
1: procedure Select-Batch-LP(t, K, SM)
2: ũt,0(x) = u(x|SM)
3: M̂ = mini{yi}
4: L̂ = maxx∈Rd ||μΔ(x)|| � Approximate L.
5: for k = 0 to K do
6: xt,k = arg maxx∈Rd ũt,k(x)

7: ũt,k(x) = ũt,0(x)
∏k

j=1 ϕ(x,xt,j , L̂, M̂)
8: end for
9: end procedure

To adapt the acquisition function, a penalization ball is applied for each
solution already selected for the batch, as can be seen in Eq. 5.

ϕ(x,xj , L̂, M̂) =
1
2
erfc(−z) where z =

1√
2σ2(xj)

(L̂||xj−x||+M̂ −μ(xj)) (5)

where erfc is the complementary Gauss error function and L is the Lipschitz
constant of the objective function (assuming that it is Lipschitz continuous). As
suggested in [5], it can be approximated through the GP.

Finally, as in the first approach, it uses the SoD approach. In addition, we
add the local search step to guarantee exploitation, where all the solutions in
the batch are used as a starting point for the local search.

5 Experiments

The goal of this experimentation is to validate the BO approaches introduced
in the previous section in the context of multi-modal optimization problems.
We expect that BO will be able to model multi-modal landscapes and that
will help to achieve a good covering of the optima. Moreover, the low-budget
orientation of those algorithms may also help to achieve these goal with a limited
number of function evaluations. The proposed clustering technique is supposed
to have a better ability to model the landscape than the sequential one, and
the batch approach may provide more diversity in the solutions due to the local
penalization procedure. Although our main goal is investigate the benefits and
limitations of the BO approaches, we will compare them to some of the best
performing EAs since this is an area where highly multi-modal problems have
been extensively investigated.

5.1 A Framework for Solving Low-Budget Multi-modal
Optimization Problems

To test our proposals, we will use the benchmark proposed in CEC Niching Meth-
ods for Multi-modal Optimization competition [10], where 20 multi-modal opti-
mization problems were introduced, along with 3 performance metrics. Table 1
describes the benchmark.
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Table 1. Set of multi-modal functions as originally introduced in [10].

Id Dim # GO Name Characteristics

F1 1 2 Five-Uneven-Peak Trap Simple, deceptive

F2 1 5 Equal Maxima Simple

F3 1 1 Uneven Maxima Simple

F4 2 4 Himmelblau Simple, non-scalable,
non-symmetric

F5 2 2 Six-Hump Camel Back Simple, non-scalable,
non-symmetric

F6 2, 3 18,81 Shubert Scalable, # optima increase
with d, unevenly dist. grouped
optima

F7 2, 3 36,216 Vincent Scalable, # optima increase
with d, unevenly dist. optima

F8 2 12 Modified Rastrigin Scalable, # optima
independent from d, symmetric

F9 2 6 Composition Function 1 Scalable, separable,
non-symmetric

F10 2 8 Composition Function 2 Scalable, separable,
non-symmetric

F11 2, 3, 5, 10 6 Composition Function 3 Scalable, non-separable,
non-symmetr

F12 2, 3, 5, 10 8 Composition Function 4 Scalable, non-separable,
non-symmetr

To measure the performance of the optimization algorithms three perfor-
mance metrics were introduced: Peak Ratio, Success Ratio, and Convergence
speed.

– Peak Ratio (Pratio) measures how many optima has been found over multiple
runs in average: Pratio =

∑nr
i=1 ngi

ng∗nr
where i is the run index and ngi is the

number of global optima found at the end of process in each run. ng refers to
the number of known global optima, and nr to the number of runs.

– Success Ratio (Sratio) denotes the percentage of runs where all known global
optima were found, out of all runs: Sratio = nsr

nr
where nsr is the number of

successful runs.
– Convergence speed (Cspeed) measures the number of function evaluations

required to locate all known global optima, over multiple runs: Cspeed =
∑nr

i=1 ei
nr

where ei is the number of evaluations used in each run to find all
global optima. If all global optima is not found, the maximum function eval-
uations allowed is used.

To consider that a global optimum is found, the fitness value of the solution
should be close to the best possible value, given an accuracy level. Five accuracy
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levels were considered to measure the performance metrics, as indicated in the
benchmark: ε ∈ {10−1, 10−2, 10−3, 10−4, 10−5}. Apart from that, the distance
between the solution and the optimum should be lower than a threshold that
depends on the optimization problem.

5.2 Experimental Setup

We have conducted the experiments with the BO approaches introduced in
Sect. 4 for all the functions in the benchmark and measured the performance
metrics. Considering the stochastic nature of the algorithms, we conducted sev-
eral runs of each algorithm configuration for each optimization problem. We
were only able to perform 10 runs with our BO algorithms, while the EAs shown
in the benchmark are averaged across 50 runs. All the results presented in this
section have been measured with ε = 10−3 as accuracy level.

For all the BO approaches we have used the following configuration. First
of all, regarding GPs, the mean function was set to m(x) = θµ, where θµ is
the mean of all fitness values obtained so far. On the other hand, for the ker-
nel function, the Matern32 was employed, and for its parameter selection, the
likelihood function was optimized every step with a grid search. Moreover, to
limit the size of the covariance matrix, N was set to 500. UCB was used as
the acquisition function adjusting the β constant as suggested in [22]. Finally,
to maximize this acquisition function, a stochastic version of DIRECT [7] was
applied. Being DIRECT a deterministic algorithm, repeated solutions may be
selected to sample. In consequence, we decided to add a random shift to the
starting point, in order to produce stochastic solutions.

On the other hand, for the batch approach B was set to 10, and in the
clustering BO algorithm, k-means was used to create the clusters with K = 2.

We used a bounded version of the Powell’s conjugate direction method [13]
to guide the local search. This algorithm does not need derivatives, which makes
it suitable for our optimization problem. When an out-of-bounds solution is
required by this algorithm, the worst possible value is returned.

In addition to the three variants of BO investigated, a random multi-start
optimization algorithm has been added as a reference. It also uses Powell’s
method as the local search algorithm, starting from a random solution at each
iteration.

5.3 Comparison Between the Different BO Variants

Figure 2 shows the evolution of the peak ratio over function evaluations. In the
figure, for illustration proposes, some functions with different number of dimen-
sions are shown. In the lower axis, the number of evaluations are shown in
percentage, while the Pratio is illustrated in the vertical axis.

As can be seen in Fig. 2a, there are some functions in the benchmark were all
the optima are found in the first 10% of the evaluations for all BO approaches.
In Fig. 2b, for example, it takes a little bit longer to achieve the best possible
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Fig. 2. Evolution of the peak ratio over function evaluations (%) for the proposed
algorithms and the random multi-start algorithm in five optimization problems.

result, but the algorithms are able to solve this problem with a low-budget. On
the contrary, in Fig. 2c, all the approaches find always the same optima but are
not able to find more difficult ones in the second part of the optimization.

Figure 2d and e correspond to F12 function, with 3 and 10 dimensions respec-
tively. Here, it can be seen that the performance of all methods decreases in the
higher dimensional problems. In this problem, bo ls performs better than the
other BO approaches. Regarding the Cspeed, cluster bo takes more evaluations
to find all global optima in F6 2D.

5.4 Comparison to State-of-the-Art EAs for Multi-modal Problems

Here we compare BO approaches to NEA2 [14] and NMMSO [2] algorithms.
Both algorithms won the CEC Niching Methods for Multi-modal Optimization
competition [10] in 2013 and 2015 respectively.

Table 2 shows the peak-ratio of both algorithms, taken from the CEC 2015
competition, along with the peak-ratios computed from the results of all the
algorithms we evaluate in our experimentation. The first five functions were
omitted as all approaches were able to obtain the best possible score.

The sequential and the batch BO methods show competitive results in low
dimensional functions compared to NEA2 and NMMSO. Our methods improve
the results of NEA2 and NMMSO for F6 2D, F6 3D, F9 2D and F10 2D functions.
However, for these functions, the random multi-start algorithm achieves similarly
good performance. Although the results of the sequential approach are similar
to the random multi-start algorithm overall, the batch BO method is able to
beat the random algorithm in 5 functions while the opposite occurs only once.
The comparison among the BO approaches is favorable to the batch approach,
beating the other proposed approaches in F12 5D function, and obtaining the
best result in F6 3D overall. The cluster BO approach is able to get good results
in F7 2D and F10 11D, but most of the comparisons are favorable to the other
approaches. In functions with more dimensions, NEA2 clearly outperforms the
rest of the algorithms.
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Table 2. Peak Ratio for the EAs, the random multi-start algorithm and the proposed
algorithms for the functions presented in the benchmark. Best result for each function
is written in bold. As all the algorithms get the best possible results in the first five
functions their results are not shown. ε = 10−3 was used as accuracy level. cluster bo
was not able to finish the experimentation on time for the F6 3D and F7 3D problems.

NEA2 NMMSO random ls bo ls batch ls cluster bo

F6 2D 0.958 0.992 1.000 1.000 1.000 1.000

F7 2D 0.918 1.000 0.889 0.864 0.892 0.917

F6 3D 0.240 0.922 0.985 0.973 0.989 –

F7 3D 0.584 0.978 0.571 0.782 0.722 –

F8 2D 1.000 1.000 1.000 1.000 1.000 1.000

F9 2D 0.967 0.990 1.000 1.000 1.000 1.000

F10 2D 0.843 0.995 1.000 1.000 1.000 1.000

F11 2D 0.960 0.983 0.684 0.767 0.684 0.684

F11 3D 0.810 0.723 0.667 0.667 0.667 0.667

F12 3D 0.720 0.642 0.662 0.713 0.662 0.569

F11 5D 0.673 0.660 0.667 0.667 0.667 0.667

F12 5D 0.695 0.470 0.412 0.375 0.425 0.338

F11 10D 0.667 0.650 0.367 0.333 0.400 0.433

F12 10D 0.667 0.457 0.050 0.138 0.037 0.138

F12 20D 0.360 0.172 0.000 0.000 0.000 0.000

5.5 Discussion

Among our BO approaches, bo ls and batch ls seem to be the most competi-
tive proposals. They show good results for the lowest dimension (2D) problems,
beating in some functions the state-of-the-art algorithms. However, for higher
dimensions, particularly in F11 and F12, their performance decreases. Having
only one hyperparameter for all dimensions instead of many, may cause this
dimensionality problem. It would be interesting to study in depth the character-
istics of such parameters.

It is somehow surprising the good behavior of the baseline random multi-start
approach, being able to identify all the optima in four problems, and outper-
forming the best algorithms. Being such low dimension, one could think that
the function is easy to solve, but this is not the case (looking at NEA2 and
NMMSO).

6 Conclusions

In this paper we have investigated the suitability of BO methods for mas-
sively multi-modal optimization problems traditionally addressed with EAs.
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We have proposed three new approaches to deal with these problems. These
approaches incorporate ideas and insights of the previous work done in the EC
filed. Although BO is usually used in low-budget optimization problems, we were
able to achieve competitive results in optimization problems with low dimensions
by modeling the search space.
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