
Chapter 9
Multiple Kernel Learning
for Hyperspectral Image Classification

Tianzhu Liu and Yanfeng Gu

Abstract With the rapid development of spectral imaging techniques, classification
of hyperspectral images (HSIs) has attracted great attention in various applications
such as land survey and resource monitoring in the field of remote sensing. A key
challenge in HSI classification is how to explore effective approaches to fully use the
spatial–spectral information provided by the data cube. Multiple Kernel Learning
(MKL) has been successfully applied to HSI classification due to its capacity to
handle heterogeneous fusion of both spectral and spatial features. This approach can
generate an adaptive kernel as an optimally weighted sum of a few fixed kernels
to model a nonlinear data structure. In this way, the difficulty of kernel selection
and the limitation of a fixed kernel can be alleviated. Various MKL algorithms have
been developed in recent years, such as the general MKL, the subspace MKL, the
nonlinear MKL, the sparse MKL, and the ensemble MKL. The goal of this chapter
is to provide a systematic review of MKL methods, which have been applied to
HSI classification. We also analyze and evaluate different MKL algorithms and their
respective characteristics in different cases of HSI classification cases. Finally, we
discuss the future direction and trends of research in this area.

Keywords Remote sensing · Hyperspectral images · Multiple kernel learning
(MKL) · Heterogeneous features · Classification

9.1 Introduction

A wide range of pixel-level processing techniques for the classification of HSIs has
been developed; the illustration of HSI supervised classification is shown in Fig. 9.1.
Kernel methods have been successfully applied to HSI classification [1] while pro-
viding an elegant way to deal with nonlinear problems [2]. The main idea of kernel
methods is to map the input data from the original space to a convenient feature space
by a nonlinearmapping function. Inner products in the feature space can be computed
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Fig. 9.1 Illustration of HSI supervised classification

by a kernel function without knowing the nonlinear mapping function explicitly.
Then, the nonlinear problems in the input space can be processed by building linear
algorithms in the feature space [3]. The kernel support vector machine (SVM) is the
most popular approach applied to HSI classification among various kernel methods
[3–7]. SVM is based on the margin maximization principle, which does not require
an estimation of the statistical distributions of classes. To address the limitation of
the curse of dimensionality for HSI classification, some improved methods based
on SVM have been proposed, such as multiple classifiers system based on Adaptive
Boosting (AdaBoost) [8], rotation-based SVM ensemble [9], particle swarm opti-
mization (PSO) SVM [10], subspace-based SVM [11]. To enhance the ability of
similarity measurements using the kernel trick, a region-kernel-based support vector
machine (RKSVM) was proposed [12]. Considering the tensor data structure of HSI,
multiclass support tensor machine (STM) was specifically developed for HSI classi-
fication [13]. However, the standard SVM classifier can only use the labeled samples
to provide predicted classes for new samples. In order to consider the data structure
during the classification process, some clustering algorithms have been used [14],
such as the hierarchical semisupervised SVM [15] and spatial–spectral Laplacian
support vector machine (SS-LapSVM) [16].

There are some other families of kernel methods for HSI classification, such as
Gaussian processes (GPs) and kernel-based representation. GPs provide a Bayesian
nonparametric approach of the considered classification problem [17–19]. GPs
assume that the probability of belonging to a class label for an input sample is
monotonically related to the value of some latent function at that sample. In GP,
the covariance kernel represents the prior assumption, which characterizes correla-
tion between samples in the training data. Kernel-based representation was derived
from representation-based learning (RL) to solve nonlinear problems in HSI, which
assumes that a test pixel can be linearly represented by training samples in the
feature space. RL has already been applied to HSI classification [20–39], which
includes sparse representation-based classification (SRC) [40, 41] collaborative
representation-based classification (CRC) [42], and their extensions [22, 32, 33, 38].
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For example, to exploit spatial contexts of HSI, Chen et al. [20] proposed a joint
sparse representation classification (JSRC) method under the assumption of a joint
sparsity model (JSM) [43]. These RL methods can be kernelized as kernel SRC
(KSRC) [22], kernelized JSRC (KJSRC) [44], kernel nonlocal joint CRC [32], and
kernel CRC (KCRC) [36, 37] etc.

Furthermore, Multiple Kernel Learning (MKL) methods have been proposed for
HSI classification, as there is a very limited selection of a single kernel, which is
able to fit complex data structures. MKL methods aim at constructing a composite
kernel by combining a set of predefined base kernels [45]. A framework of composite
kernel machines was presented to enhance classification of HSIs [46], which opens
a wide field of subsequent developments for integrating spatial and spectral infor-
mation [47, 48], such as the spatial–spectral composite kernel of superpixel [49, 50],
the extreme learning machine with spatial–spectral composite kernel [51], spatial–
spectral composite kernels discriminant analysis [52], and the locality preserving
composite kernel [53]. In addition, MKL methods generally focus on determining
key kernels to be preserved and their significance in optimal kernel combination.
Some typical MKL methods have been gradually proposed for HSI classification,
such as subspace MKL methods [54–57], SimpleMKL [58], class-specific sparse
MKL (CS-SMKL) [59], and nonlinear MKL [60, 61].

In the following, we will present a survey of the existing work related to MKL
with special emphasis on remote sensing image classification. First, general MKL
framework will be discussed. Then, several MKL methods are introduced which
have been divided into six categories: subspace MKL methods and nonlinear MKL
method for spatial–spectral joint classification of HSI, sparse MKL methods for
feature interpretation in HSI classification, MK-Boosting for ensemble learning,
heterogeneous feature fusion with MKL and MKL with superpixel. Next, several
examples with MKL for HSI classification are demonstrated, followed by the drawn
conclusions. For easy reference, Table 9.1 lists the notations of all the symbols used
in this chapter.

9.2 Learning from Multiple Kernels

Given a labeled training data set with N samplesX = {xi |i = 1, 2, . . . , N }, xi∈ R
D ,

Y = {yi |i = 1, 2, . . . , N }, where xi is a pixel vector withD-dimension, yi is the class
label, andD is the number of hyperspectral bands. The classes in the original feature
space are often linearly inseparable as shown in Fig. 9.2. Then the kernel method
maps these classes to a higher dimensional feature space via nonlinear mapping
function �. The mapped higher dimensional feature space is denoted as Q, i.e.:

� : RD → Q,X → �(X) (9.1)
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Table 9.1 Summary of the notations

Relational data

Symbol Meaning Symbol Meaning

N Number of training samples yi ∈ {−1,+1} The ith sample label

D Number of HSI bands Q Feature space

X Training data matrix with
samples as rows

� Nonlinear mapping function

xi ∈ R
d The ith sample

Kernel methods

K Kernel matrix/kernel function Km The mth base kernel matrix

km The vector stacking all columns
of mth base kernel matrix

M Number of candidate base
kernels for combination in
MKL

ηm The weight of the mth base
kernel

η The vector of base kernels
weights

Q Kernel matrix vectorization D Projection matrix

I Identify matrix St Within-class scatter matrix

Sb Between-class scatter matrix ν Constraint term

μ Nonnegative constant ρ A parameter controlling sparsity

S Kinds of SEs λ Scales of attribute filters (AFs)

T Number of boosting tails γ Measures the misclassification
performance of the weak
classifiers

Wt Samples probability distribution
in tth boosting rail

Original feature space Higher-dimensional feature space

Kernel Mapping 
Function

Fig. 9.2 Illustration of nonlinear kernel mapping

9.2.1 General MKL

MKLprovides amore flexible framework so as tomore effectivelymine information,
comparedwith using a single kernel. InMKL, a flexible combined kernel is generated
by a linear or nonlinear combination of a series of base kernels and is used to replace
the single kernel in a learning model to achieve better ability to learn. Each base
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kernel may exploit the full set of features or a subset of features [58]. Figure 9.3
provides an illustration of the comparison of multiple kernel trick and single kernel
case. The dual problem of general linear combined MKL is expressed as follows:

min
η

max
α

⎧
⎨

⎩

N∑

i=1

αi − 1

2

N∑

i, j=1

αiα j yi y j

M∑

m=1

ηmKm(xi , x j )

⎫
⎬

⎭

s.t. ηm ≥ 0, and
M∑

m=1

ηm = 1 (9.2)

where M is the number of candidate base kernels for combination, ηm is the weight
of the mth base kernel.

All the weighting coefficients are nonnegative and sum to one in order to ensure
that the combinedkernel fulfills the positive semi-definite (PSD) condition and retains
normalization as base kernels. The MKL problem is designed to optimize both the
combining weights ηm and the solutions to the original learning problem, i.e., the
solutions of αi and α j for SVM in (9.2).

Learning frommultiple kernels can provide better similaritymeasuring ability, for
example,multiscale kernels, which are RBF kernels withmultiple scale parameters σ

(i.e., bandwidth) [54]. Figure 9.4 shows the multiscale kernel matrices. According to
the visual display of kernel matrices in Fig. 9.4, the kernelized similarity measuring
appears with multiscale characteristics. The kernel with a small scale is sensitive to
variation of similarities, butmay result in a highly diagonal kernelmatrix,which loses

Ideal Kernel σ=0.1 σ=0.5 σ=1 σ=1.5 σ=2

0.2
0.4
0.6
0.8
1

Fig. 9.4 Multiscale kernel matrices
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generalization capability. On the contrary, with large scale, the kernel becomes insen-
sitive to small variations of similarities. Therefore, by learning multiscale kernels,
an optimal kernel with the best discriminative ability can be achieved.

For various applications in real world, there are plenty of heterogeneous data
or features [62]. In terms of remote sensing, the features could be spectra, spatial
distribution, digital elevation model (DEM) or height, and temporal information,
which need to be learned with not only a single kernel but multiple kernels where
each base kernel corresponds to one type of features.

9.2.2 Strategies for MKL

The strategies for determining the kernel combination can be basically divided into
three major categories [45, 63].

(a) Criterion-based approaches. They use a criterion function to obtain the kernel
or the kernel weights. For example, kernel alignment selects the most similar
kernel to the ideal kernel. Representative MKL (RMKL) obtains the kernel
weights by performing principal component analysis (PCA) on the base kernels
[54]. Sparse MKL acquires the kernel by robust sparse PCA [64]. Nonnegative
matrix factorization (NMF) and kernel NMF (KNMF)MKL [55] find the kernel
weights by NMF and KNMF. Rule-based multiple kernel learning (RBMKL)
generates the kernel via summation or multiplication of the base kernels. The
spatial–spectral composite kernel assigns fixed values as the kernel weights
[46, 49, 51–53].

(b) Optimization approaches. They obtain the base kernel weights and the deci-
sion function of classification simultaneously by solving the optimization prob-
lem. For instance, class-specific MKL (CS-SMKL) [59], SimpleMKL [58],
and discriminative MKL (DMKL) [57] are determined using the optimization
approach.

(c) Ensemble approaches. They use the idea of ensemble learning. The new base
kernel is added iteratively until theminimumof cost function or the optimal clas-
sification performance, for example, MK-Boosting [65], which adopts boosting
to determine base kernel and corresponding weights. Besides, in the ensemble
MKL-Active Learning (AL) approach [66], an ensemble of probabilistic mul-
tiple kernel classifiers is embedded into a maximum disagreement-based AL
system, which adaptively optimizes the kernel for each source during the AL
process.
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9.2.3 Basic Training for MKL

In terms of training manners for MKL, the existing algorithms can be partitioned
into two categories:

(a) One-stage methods: solve both classifier parameters and base kernel weights
by simultaneously optimizing a target function based on the risk function of
classifier. The algorithms of one-stage MKL can be further split into the two
sub-categories of direct andwrapper methods according to the order of solution
of classifier parameters and base kernel weights. The direct methods simulta-
neously solve the base kernel weights and the parameters [45]. The wrapper
methods solve the two kinds of parameters separately and alternately at a given
iteration. First, they optimize the base kernel weights by fixing the classifier
parameters, and then optimize the classifier parameters by fixing the base kernel
weights [58, 59, 66].

(b) Two-stage methods: solve the base kernel weights independently from the
classifier [54, 55, 57]. Usually, they solve the base kernel weights first, and then
take the base kernel weights as the known conditions to solve the parameters of
the classifier.

The computational time of one-stage and two-stageMKL depends on two factors,
which are the number of considered kernels and the number of available training
samples. The one-stage algorithms are usually faster than the two-stage algorithms
whenboth the number and size of the base kernels are small. The two-stage algorithms
are generally faster than the one-stage algorithms when the number of base kernels
is high or the number of training samples used for kernel construction is large.

9.3 MKL Algorithms

9.3.1 Subspace MKL

Recently, some effective MKL algorithms have been proposed for HSI classifi-
cation, called subspace MKL, which use subspace method to obtain the weights
of base kernels in the linear combination. These algorithms include RMKL [54],
NMF-MKL, KNMF-MKL [55], and DMKL [57]. Given M base kernel matrices
{Km,m = 1, 2, . . . , M,Km ∈ R

N×N }, which are composed of a 3-D data cube of
size N × N × M . In order to facilitate the subsequent operations, the 3-D data cube
of the kernel matrices is converted into a 2-D matrix with the help of a vectoriza-
tion operator, where all kernel matrices are separately converted into column vectors
km = vec(Km). After the vectorization, a new form of the base kernels is denoted as
Q = [k1,k2, . . . ,kM ]T∈ R

M×N 2
. Subspace MKL algorithms build a loss function

as follows:
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Fig. 9.5 Illustration of subspaceMKLmethods. The square and circle, respectively, denote training
samples from two classes. The combination weights of subspace MKLmethods can be obtained by
base kernels projection with a few projection directions


(K,η) = ‖Q − DK‖2F (9.3)

where D ∈ R
M×l is the projection matrix whose columns

{
ηr

}l
r=1 are the bases

of l-dimensional linear subspace, K∈ R
l×N 2

is the projected matrix onto the linear
subspace spanned by D, and ‖•‖F is Frobenius norm of matrix. Adopting different
optimization criteria to solve D and K forms different subspace MKL methods.

The visual illustration of subspace MKL methods is shown in Fig. 9.5. Table 9.2
summarizes the three subspace MKL methods with different ways to solve the com-
bination weights. RMKL is to determine optimal kernel combination weights by
projecting onto the max-variance direction. In NMF-MKL and KNMF-MKL, NMF
and KNMF are used to solve the problem of weights and the optimal combined
kernel due to the nonnegativity of both matrix and combination weights. Moreover,
the core idea of DMKL is to learn an optimally combined kernel from predefined
base kernels by maximizing separability in reproduction kernel Hilbert space, which
leads to the minimum within-class scatter and maximum between-class scatter.

9.3.2 Nonlinear MKL

NonlinearMKL (NMKL) ismotivated by the justifiable assumption that the nonlinear
combination of different linear kernels can improve classification performance [45].
In [61], a nonlinear MKL (NMKL) is introduced to learn an optimally combined
kernel from the predefined base kernels for HSI classification. The NMKL method
can fully exploit the mutual discriminability of the inter-base-kernels corresponding
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Table 9.2 Summary of subspace MKL methods

Methods Solving strategy Characteristics or
significance

RMKL [54] argmax
D

∥
∥D�QD

∥
∥
F =

argmax
D

∥
∥DTQ

∥
∥
F s.t. DTD = Il

Singular value
decomposition

NMF/KNMF-MKL [55]
kt+1
i j = kti j

(QD)i j(
KDTD

)

i j
ηt+1
i j = ηti j

(
DTK

)

i j(
DKTK

)

i j

NMF is used for
optimization

kt+1
i j = kti j

(

K
∧

D
)

i j(
KDTD

)

i j
ηt+1
i j = ηti j

(
DTK

)

i j(
DKTK

)

i j

Kernel NMF is used
for optimization,
where

K
∧

= �(Q)T�(Q)

DMKL [57] D∗ =
argmax

D

{
trace

((
DT (St+νI)D

)−1
DT SbD

)} Maximizing
separability by
Fisher criterion
(FC)

D∗ = argmax
D

{
DT (Sb − μSt )D

} Maximizing
separability by
maximum margin
criterion (MMC)

to spatial–spectral features. Then the corresponding improvement in classification
performance can be expected.
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Fig. 9.6 Illustration of the kernel construction in NMKL
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The framework of NMKL is shown in Fig. 9.6. First, M spatial–spectral feature
sets are extracted from the HSI data cube. Each feature set is associated with one
base kernel, which is defined asKm

(
xi , x j

) = ηm
〈
xi , x j

〉
,m= 1, 2,…,M. Therefore,

η = [η1, η2, . . . , ηM ] is the vector of kernel weights associated with the base kernels
as shown in Fig. 9.6. Then, nonlinear combined kernel is computed from original
kernels.M2 new kernel matrices are given by the Hadamard product of any two base
kernels, and the final kernel matrix is the weighted sum of these new kernel matrices.
The final kernel matrix is shown as follows:

Kη(xi , x j ) =
M∑

m=1

M∑

h=1

ηmηhKm(xi , x j ) � Kh(xi , x j ) (9.4)

Applying Kη(xi , x j ) to SVM, the related problem of learning the kernel Kη can
be concomitantly formulated as the following min-max optimization problem:

min
η∈�

max
α∈RN

N∑

i=1

αi − 1

2

N∑

i=1

N∑

j=1

αiα j yi y jKη(xi , x j ) (9.5)

where � = {
η|η ≥ 0 ∧ ∥

∥η − η0

∥
∥
2 ≤ 


}
is a positive, bounded, and convex set.

A positive η ensures that the combined kernel function is positive semi-definite
(PSD), and the regularization of the boundary controls the norm of η. The definition
includes an offset parameter η0 for the weight η. Natural choices for η0 are η0 = 0
or η0

/∥
∥η0

∥
∥ = 1.

A projection-based gradient-descent algorithm can be used to solve this min-max
optimization problem. At each iteration, α is obtained by solving a kernel ridge
regression (KRR) problem with the current kernel matrix and η is updated with the
gradients calculated using α while considering the bound constraints on η due to �.

9.3.3 Sparsity-Constrained MKL

(a) Sparse MKL

There is redundancy among the multiple base kernels, especially the kernels with
similar scales (shown in Fig. 9.7). In [64], a sparse MKL framework was proposed
to achieve a good classification performance by using a linear combination of only
a few kernels from multiple base kernels. In sparse MKL, learning with multiple
base kernels from hyperspectral data is carried out by two stages. The first stage is
to learn an optimally sparse combined kernel from all base kernels, and the second
stage is to perform the standard SVM optimization with the optimal kernel. In the
first step, a sparsity constraint is introduced to control the number of nonzero weights
and improve the interpretability of base kernels in classification. The learning model
in the first step can be written as the following optimization problem:
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Fig. 9.7 Illustration of sparse multiple kernel learning

max
η

ηT�η − ρCard(η) s.t. ηTη = 1 (9.6)

where Card(η) is the cardinality of η and corresponds to the number of nonzero
weights, and ρ is a parameter to control sparsity.

Maximization in (9.6) can be interpreted as a robustmaximumeigenvalue problem
and solved with a first-order algorithm given as

maxTr(�Z) − ρ1T|Z|1 s.t. Tr(Z) = 1, Z ≥ 0 (9.7)

(b) Class-Specific MKL

A class-specific sparse multiple kernel learning (CS-SMKL) framework has been
proposed for spatial–spectral classification of HSIs, which can effectively utilize the
multiple features with multiple scales [59]. CS-SMKL classifies the HSIs by simul-
taneously learning class-specific significant features and selecting class-specific
weights.

The framework of CS-SMKL is illustrated in Fig. 9.8. First, feature extraction
is performed on the original data set, and M feature sets are obtained. Then, M
base kernels associated withM feature sets were constructed. At the kernel learning
stage, a class-specific way via the one-vs-one learning strategy is used to select the
class-specific weights for different feature sets and remove the redundancy of those
features when classifying any two categories. As shown in Fig. 9.8, when classifying
one class-pair (take, e.g., class 2 and class 5), first we find their position coordinates
according to the label of training samples, then the associate class-specific kernel κm ,
m = 1, 2, …, M, is extracted from the base kernels via the corresponding location.
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Fig. 9.8 Illustration of the class-specific kernel learning (taking class 2 and 5 as examples)

After that, the optimal kernel is obtained by the linear combination of these class-
specific kernels. The weights of the linear combination are constrained by the criteria∑M

m=1 ηm = 1, ηm ≥ 0. The criteria can enforce the sparsity at the group/feature
level and automatically learn a compact feature set for classification purposes. The
combined kernel was embedded into SVM to complete the final classification.

In CS-SMKL approach, an efficient optimization method has been adopted by
using the equivalence between MKL and group lasso [67]. The MKL optimization
problem is equivalent to the optimization problem:

min
η∈�

min
{ fm∈Hm }Mm=1

[
1

2

M∑

m=1

ηm‖ fm‖2Hm
+ max

α∈[0,C]N

N∑

i=1

αi

(

1 −
M∑

m=1

yiηm fm(xi )

)]

(9.8)

The main differences among the three sparse MKL methods are summarized in
Table 9.3.
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Table 9.3 Summary of sparse MKL methods

Classifier Solving strategy Characteristics or
significance

Sparse MKL [64] max
η

ηT�η − ρCard(η), s.t. ηT η = I Robust sparse PCA
is used for
optimization

CS-SMKL [59]
min
η∈�

max
α∈[0,C]N

[

1Tα − 1
2

M∑

m=1
ηm(α ◦ y)Tκm(α ◦ y)

] Learn class-specific
significant features
and select
class-specific
weights for each
class-pair
simultaneously

SimpleMKL [58]
min
η∈�

max
α∈[0,C]N

[

1Tα − 1
2

M∑

m=1
ηm(α ◦ y)TKm(α ◦ y)

] Solve both classifier
parameters and base
kernel weights
simultaneously

9.3.4 Ensemble MKL

Ensemble learning strategy can be applied to the MKL framework to select more
effective training samples. As being a main way to ensemble learning, Boosting was
proposed [68] and improved in [69]. The idea is based on the way to iteratively
select training samples, which sequentially pays more attention to these easily mis-
classified samples to train base classifiers. The idea of using boosting techniques to
learn kernel-based classifiers was introduced in [70]. Recently Boosting has been
integrated to the MKL with extended morphological profiles (EMP) features in [65]
for HSI classification.

Let T be the number of boosting tails. The base classifiers are constructed by SVM
classifiers with the input of the complete set of multiple features. Themethod screens
samples by probability distribution Wt ⊂ W, t = 1, 2, . . . T , which indicates the
importanceof the training samples for designing a classifier. The incorrectly classified
samples have much higher probability to be chosen as screened samples in the next
iteration. In this way, MK-Boosting provides a strategy to select more effective
training samples for HSI classification. SVM classifier is used as a weak classifier in
this case. In each iteration, the base classifier ft is obtained fromM weak classifiers:

ft = argmin
f mt , j={1,...,M}

γ m
t = argmin

f mt , j={1,...,M}
γ ( f mt ) (9.9)

where γ measures the misclassification performance of the weak classifiers.
In each iteration, the weights of the distribution are adjusted by increasing the val-

ues of incorrectly classified samples and decreasing the values of correctly classified
samples in order to make the classifier focus on the “hard” samples in the training
set, as shown in Fig. 9.9.
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(a)

(b)

Fig. 9.9 Illustration of the sample screening process during boosting trails by taking
two classes as a simple example. a Training samples set: the triangle and square, respectively,
denote training samples from two classes and samples marked in red mean “hard” samples, which
are easily misclassified. b Sequent screened samples: the screened samples (sample ratio = 0.2)
marked in purple color during boosting trails, and the screened samples focus on “hard samples”
as shown in a

Taking the morphological profile as an example, the architecture of this method is
shown in Fig. 9.10. The features respectively are the input to SVM, and then the best
classifier with the best performance will be selected as a base classifier, and the last T
base classifiers are combined as the final classifier. Furthermore, the coefficients are
determined by the classification accuracy of the base classifiers during the boosting
trails.

9.3.5 Heterogeneous Feature Fusion with MKL

This subsection introduces a heterogeneous feature fusion framework with MKL,
as shown in Fig. 9.11. It can be found that there are two levels of MKL in col-
umn and row, respectively. First, different kernel functions are used to measure
the similarity of samples on each feature subset. This is the “column” MKL,
K(m)

Col(x
(m)
i , x(m)

j ) = ∑S
s=1 h

(m)
s K(m)

s (x(m)
i , x(m)

j ). In this way, the discriminative ability
of each feature subset is exploited at different kernels and is integrated to generate
an optimally combined kernel for each feature subset. Then, the multiple combined
kernels resulted by MKL on each feature subset are integrated using a linear com-
bination. This is the “row” MKL KRow(xi , x j ) = ∑M

m=1 dmK
(m)
Col(x

(m)
i , x(m)

j ). As a
result, the information contained in different feature subsets is mined and integrated
into the final classification kernel. In this framework, the weights of the base kernels
can be determined by anyMKL algorithm, such as RMKL, NMF-MKL, and DMKL.
It is worth noting that sparse MKL can be carried out on both each feature subset
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level and between feature subsets level for base kernels and features interpretation,
respectively.

9.3.6 MKL with Superpixel

MKLprovides a very effectivemeans of learning, and can conveniently be embedded
in a variety of characteristics. Therefore, it is critical to apply MKL to effective
features. Recently, a superpixel approach has been applied to HSI classification as
an effective spatial feature extractionmeans. Each superpixel is a local region, whose
size and shape can be adaptively adjusted according to local structures. And the pixels
in the same superpixel are assumed to havevery similar spectral characteristics,which
mean that superpixel can provide more accurate spatial information. Utilizing the
feature explored by superpixel, the salt and pepper phenomenon appearing in the
classification result will be reduced. In consequence, superpixel MKL will lead to a
better classification performance.

(a) MKL with Multi-morphological Superpixel (MMSP)

This MMSP model for HSI classification consists of four steps [71]. The flowchart
of the proposed framework is shown in Fig. 9.12. The first step is MMSP generation
using SLIC method performed on the principle components (PCs) extracted from
original spectral feature and each morphological filtered image after obtaining the
multi-morphological features. Note that multi-morphological features are multi-SE
EMPs or multi-AF extendedmulti-attribute profiles (EMAPs). The second step is the
merging of MMSPs from the same class according to a uniformity constraint. The
third step is the spatial feature extraction inner- and inter- the MMSPs by applying
a mean filter on the MMSPs and merged MMSPs. The last step is HSI classification
usingMKLmethodswhere base kernels are calculated, respectively, from the original
spectral feature, spatial features inner- and inter- MMSPs.

HSI

Multi-morphological 
features

MMSPs

Merged MMSPs

Spatial features 
inner MMSP

Spatial features 
inter MMSP

MKL

SVM

Classification 
result

SLIC

Consistency 
constrain

Mean filtering 
within each MMSP

Mean filtering within 
each merged MMSP

Stage 1:
MMSP Generation

Stage 2:
Merger of MMSP 

Stage 3:
Spatial feature extraction 

Stage 4:
Classification 

Multi-morphological 
operators processing

Fig. 9.12 Flowchart of the proposed MMSP model
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Fig. 9.13 Detailed procedure of tensor representation of MASP and integrated feature extraction
by CP decomposition

(b) MKL with Multi-attribute Super-Tensor (MAST)

Basedon themulti-attributeMASP, a super-tensormodelwhich treats each superpixel
as a tensor, exploits the third-order nature of HSI. The first step is the super-tensor
representation of MASPs. Then, MAST feature is extracted by applying CP decom-
position. Finally, HSI classification is achieved byMKLmethods where base kernels
are calculated, respectively, from the original spectral feature, EMAP features, and
MAST features. The illustration of the main procedure of the proposed STM model
is shown in Fig. 9.13.

9.4 MKL for HSI Classification

9.4.1 Hyperspectral Data Sets

Five data sets are used in this chapter. Three of them are HSIs, which were used to
validate classification performance. The 4th and 5th data sets consist of two parts, i.e.,
MSI and LiDAR, which are used to perform multisource classification. The first two
HSIs are from cropland scenes acquired by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor. The AVIRIS sensor acquires 224 bands of 10 nm
width with center wavelengths from 400 to 2500 nm. The third HSI was acquired
with the Reflective Optics System Imaging Spectrometer (ROSIS-03) optical sensor
over an urban area [72]. The flight over the city of Pavia, Italy, was operated by the
Deutschen Zentrum für Luft- und Raumfahrt (DLR, German Aerospace Agency)
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within the context of the HySens project, managed and sponsored by the European
Union. The ROSIS-03 sensor provides 115 bands with a spectral coverage ranging
from 430 to 860 nm. The spatial resolution is 1.3 m per pixel.

(a) Indian Pine Data set: This HSI was acquired over the agricultural Indian Pine
test site in Northwestern Indiana. It has a spatial size of 145 × 145 pixels with
a spatial resolution of 20 m per pixel. Twenty water absorption bands were
removed, and a 200-band image was used for the experiments. The data set
contains 10,366 labeled pixels and 16 ground reference classes, most of which
are different types of crops. A false color image and the reference map are
presented in Fig. 9.14a.

(b) Salinas data set: This hyperspectral image was acquired in Southern California
[73]. It has a spatial size of 512× 217 pixelswith a spatial resolution of 3.7mper
pixel. Twenty water absorption bands were removed, and a 200-band image was
used for the experiments. The ground reference map was composed of 54,129
pixels and 16 land-cover classes. Figure 9.14b shows a false color image and
information of the labeled classes.

(c) Pavia University Area: This HSI with 610 × 340 pixels was collected near
the Engineering School, University of Pavia, Pavia, Italy. Twelve channels were
removed due to noise [46]. The remaining 103 spectral channels were pro-
cessed. There are 43,923 labeled samples in total, and nine classes of interest.
Figure 9.14c presents false color images of this data set.

(d) Bayview Park: The data set is from 2012 IEEE GRSS Data Fusion Contest and
is one of subregions of a whole scene around downtown area of San Francisco,
USA. This data set contains multispectral images with eight bands acquired by
WorldView2 on October 9, 2011 and corresponding LiDAR data acquired in
June 2010. It has a spatial size of 300 × 200 pixels with a spatial resolution of
1.8 m per pixel. There are 19,537 labeled pixels and 7 classes. The false color
image and ground reference map are shown in Fig. 9.14d.

(e) Recology: The source of this data set is the same as Bayview Park, which is
another subregion of whole scene. It has 200 × 250 pixels with 11,811 labeled
pixels and 11 classes. Figure 9.14e shows the false color image and ground
reference map.

More details about these data sets are listed in Table 9.4.

9.4.2 Experimental Settings and Evaluation

To evaluate the performance of the various MKL methods for the classification
task, MKL methods and typical comparison methods are shown in Table 9.5. The
single kernel method represents the best performance by standard SVM, which can
be used as a standard to evaluate whether a MKL method is effective or not. The
number of training samples per class was varied (n = {1%, 2%, 3%} or n = {10, 20,
30}). The overall accuracy (OA [%]) and computation time were measured. Average
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Fig. 9.14 (continued)

results for a number of ten realizations are shown. To guarantee the generality, all
the experiments were conducted on typical HSI data sets.

In the first experiment of spectral classification, all spectral bands are stacked into
a feature vector as input features. The feature vector was input into a Gaussian kernel
with different scales. For all of the classifiers, the range of the scale ofGaussian kernel
was set to [0.05, 2], and uniform sampling that selects scales from the interval with
a fixed step size of 0.05 was used to select 40 scales within the given range.

In the second experiment of spatial and spectral classification, all the data sets
were processed first by PCA and then by mathematical morphology (MM). The
eigenvalues were arranged in descending order. The first p PCs that account for 99%
of the total variation in terms of eigenvalues were reserved. Hence, the construction
of the morphological profile (MP) was based on the PCs, and a stacked vector was
built with the MP on each PC. Here, three kinds of SEs were used to obtain the MP
features, including diamond, square, and disk SEs. For each kind of SE, a step size
of an increment of 1 was used, and ten closings and ten openings were computed for
each PC. Each structure of MPs with ten closings and ten openings and the original
spectral features were, respectively, stacked as the input vector of each base kernel
for MKL algorithms. The base kernels were 4 Gaussian kernels, i.e., the values {0.1,
1, 1.5, 2}, which corresponds to three kinds of structures ofMPs and original spectral
features, respectively, namely 20 base kernels for MKLmethods, except for NMKL,
which is with 3 Gaussian kernels, i.e., the values {1, 1.5, 2} for NMKL-Gaussian,
and 4 linear base kernels function for NMKL-Linear.

Heterogeneous features were used in the third experiment, including spectral fea-
tures, elevation features, normalized digital surface model (nDSM) from LiDAR
data, and spatial features of MPs. MPs features are extracted from original multi-
spectral bands and nDSM uses the diamond structure element with the sizes [3, 5,
7, 9, 11, 13, 15, 17, 19, 21]. Heterogeneous features are stacked as a single vector of
features to be the input of fusion methods.

Superpixel-based spatial–spectral featureswere used in the fourth experiment. The
Multiple SEs and multiple AFs were carried out on the extracted p PCs, respectively.
Three kinds of SEs including line, square, and diskwith three scales [3, 6, 9] are used.
Four kinds of AFs are adopted, including (1) area of the region (related to the size
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Table 9.4 Information of all the data sets

Data set No. Categories Samples No. Categories Samples

Indian
Pine

C1 Alfalfa 54 C9 Oats 20

C2 Corn-no till 1434 C10 Soybean-no till 968

C3 Corn-min till 834 C11 Soybean-min till 2468

C4 Corn 234 C12 Soybean-clean 614

C5 Grass-pasture 497 C13 Wheat 212

C6 Grass-trees 747 C14 Woods 1294

C7 Grass/pasture-mowed 26 C15 Bldg-Grass-Trees-Drives 380

C8 Hay-windrowed 489 C16 Stone-steel towers 95

Total 10,366

Salinas C1 Broccoli-green-weeds_1 2009 C9 Soil-vinyary-develop 6203

C2 Broccoli-green-weeds_2 3726 C10 Corn-senesced-green-weeds 3278

C3 Fallow 1976 C11 Lettuce-romaine-4wk 1068

C4 Fallow-rough-plow 1394 C12 Lettuce-romaine-5wk 1927

C5 Fallow-smooth 2678 C13 Lettuce-romaine-6wk 916

C6 Stubble 3959 C14 Lettuce-romaine-7wk 1070

C7 Celery 3579 C15 Vineyard-untrained 7268

C8 Grapes-untrained 11,271 C16 Vineyard-vertical-trellis 1807

Total 54,129

Pavia
University

C1 Asphalt 6852 C6 Bare soil 5104

C2 Meadows 18,686 C7 Bitumen 1356

C3 Gravel 2207 C8 Self-blocking bricks 3878

C4 Trees 3436 C9 Shadows 1026

C5 Painted metal sheets 1378

Total 43,923

Bayview
Park

C1 Building 1 2282 C5 Trees 7684

C2 Building 2 719 C6 Soil 4283

C3 Building 3 995 C7 Seawater 2008

C4 Road 1566

Total 19,537

Recology C1 Building 1 1080 C7 Building 7 167

C2 Building 2 1136 C8 Trees 3321

C3 Building 3 1849 C9 Parking Lot 1783

C4 Building 4 431 C10 Soil 561

C5 Building 5 549 C11 Grass 149

C6 Building 6 785

Total 11,811
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Table 9.5 Experimental methods and setting

Category Methods Setting

Single kernel Standard SVM A single kernel whose scale
parameter was optimized by kernel
alignment (KA) [75], denoted as
Spe-SK (spectral features as the
input) or MPs + Spe-SK (MPs and
spectral features as the input)

General MKL Mean MKL [45] (ruled-based
method)

CKL [46] μ = 0.4 is used to weigh the
spectral kernel and spatial kernel. In
experiment for spatial–spectral
classification, and the weights of
spectral, spatial, and elevation
kernels were set to 0.5, 0.1, and 0.4,
separately for heterogeneous
features classification

Subspace MKL RMKL [54], NMF MKL, KNMF
MKL [55], DMKL [57]

Nonlinear MKL NMKL-Linear [61] The base kernels are linear kernels

NMKL-Gaussian The base kernels are Gaussian
kernels

Sparse methods SimpleMKL [58],
CS-SMKL [59],
Sparse MKL [64]

SRC [76], CRC [73] All the original spectral features are
used, and the regularization
parameter is set as the optimal
parameter

Ensemble MKL MK-Boosting [65] The sampling ratio was 0.2 and the
boosting trails T was 200

MFL Multiple feature learning (MFL)
[77]

All the MP features are used for this
method

of the regions), (2) diagonal of the box bounding the regions, (3) moment of inertia
(as an index for measuring the elongation of the regions), (4) standard deviation (as
an index for showing the homogeneity of the regions), and the setting is the same as
which is presented in [59].

The summary of the experimental setup is listed in Table 9.6.
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Table 9.6 Summary of the experimental setup for Sect. 9.4

Experiment# Kernel type Features Base kernel
construction

# kernels

1 Gaussian Spectral features Single scale of
kernel in each
Gaussian kernel
with the same
input features

40

2 Gaussian and
linear

Multiple
structures of MPs
and spectral
features

Multiple scales
of kernel in each
Gaussian kernel
or linear kernel
with the same
input features

4 for
NMKL-Linear
15 for
NMKL-Gaussian
20 for others

3 Gaussian Heterogonous
features

A single scale of
kernel in each
Gaussian kernel
with the same
input features

40
(40 × D for
HF-MKL)

9.4.3 Spectral Classification

The numerical classification results of different MKLmethods for different data sets
are given in Table 9.7. The performance of MKL methods is mainly determined by
the ways of constructing base kernel and the solutions of weights for base kernels.
The resulting base kernelmatrices from the differentways of constructing base kernel
contain all the information that will be used for the subsequent classification task.
The weights of base kernels learned by different MKL methods represent how to
combine this information with the objective of strengthening information extraction
and curbing useless information for classification.

Observing the results on the three data sets, some conclusions can be drawn as
follows. (1) There is a situation that the classification performance of some MKL
methods is not as good in terms of classification accuracies as for that of the single
kernel method. This reveals that MKL methods need good learning algorithms to
ensure the performance. (2) In the three benchmark HSI data sets, the best classifi-
cation performance in terms of accuracies is derived from the MKL methods. This
proves that using multiple kernels instead of a single one can improve performances
for HSI classification and the key is to choose the suitable learning algorithm. (3)
In most cases, the subspace MKL methods are superior to the comparative MKL
methods and single kernel method in terms of OA.
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9.4.4 Spatial–Spectral Classification

The classification results of all these compared methods on three data sets are shown
in Table 9.8. And the overall time of training and test process of Pavia University
data set with 1% training samples is shown in Fig. 9.15. Several conclusions can
be derived. First, as the number of training samples increases, accuracy increases.
Second, the MK-Boosting method has the best classification accuracy with the cost
of computation time. It is also important to note that there is not a large difference
between the methods in terms of classification accuracy. It can be explained that
MPs can mine well, information for classification by the way of MKL and, then, the
difference among MKL algorithms mainly concentrate on complexity and sparsity
of the solution. The conclusion is consistent with [45]. SimpleMKL shows the worst
classification performance in terms of accuracies under multiple-scale constructions
in the first experiment, but is comparable to the other methods in terms of classi-
fication accuracy in this experiment. The example of SimpleMKL illustrates that a
MKL method is difficult to guarantee the best classification performance in terms
of accuracies in all cases. Feature extraction and classification are both important
steps for classification. If the information extraction via features is successful for
classification, the classifier design can be easy in terms of complexity and sparsity,
and vice versa. The subspace MKL algorithms as two-stage methods have a lower
complexity than one-step methods such as SimpleMKL, CS-SMKL.

It can be noted that the NMKL with the linear kernels demonstrates a little lower
accuracy than subspace MKL algorithms with the Gaussian kernel. NMKL with the
Gaussian kernels obtains comparable classification accuracy compared with NMKL
with linear kernels in the Pavia University data set and the Salinas data set, but with
a lower accuracy in the Indian data set. In general, using a linear combination of
Gaussian kernels is more promising than a nonlinear combination of linear kernels.
However, the nonlinear combinations of Gaussian kernels need to be researched
further. Feature combination and the scale of theGaussian kernels have a big influence
on the accuracy of NMKL with a Gaussian kernel. And the NMKL method also
demonstrates a different performance trend for different data sets. In this experiment,
some tries were attempted and the results show relatively better results compared to
other approaches in some situations. More work of theoretical analysis needs to be
done in this area.

It can be found that among all the sparse methods, CS-SMKL demonstrated com-
parable classification accuracies for the Indian Pines and Salinas data sets. And for
Pavia data set, as the number of training samples grows, the classification perfor-
mance of CS-SMKL increased significantly and reached a comparable accuracy, too.
In order to visualize the contribution of each feature type and these corresponding
base kernels in these MKL methods, we plot the kernel weights of the base kernels
for RMKL, DMKL, SimpleMKL, Sparse MKL, and CS-SMKL in Fig. 9.16. For
simplicity, here only three one against one classifiers of Pavia University data set
(Painted metal sheets vs. Bare soil, Painted metal sheets vs. Bitumen, Painted metal
sheets vs. Self-blocking bricks) are listed. RMKL, DMKL, SimpleMKL and Sparse
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Fig. 9.15 The overall time of training and testing process in all the methods

MKL used the same kernel weights as shown in Fig. 9.16a–d for all the class-pairs.
From Fig. 9.16e, it is easy to find that CS-SMKL selected different sparse base kernel
sets for different class-pairs, and the spectral features are important for these three
class-pair. For the CS-SMKL, it only selected very few base kernels for classification
purposes, while the kernel weight for the spectral features is very high. However,
these corresponding kernel weights in RMKL, DMKL are much lower, and Sparse
MKL did not select any kernel related to the spectral features; SimpleMKL selects
the first three kernels related to the spectral features, but obviously, the corresponding
kernel weights are lower than that related to the EMP feature obtained by the square
SE. This is an example showing that CS-SMKL provides more flexibility in selecting
kernels (features) for improving classification.

9.4.5 Classification with Heterogeneous Features

This subsection shows the performance of the fusion framework of heterogeneous
features with MKL (denoted as HF-MKL) under realistic ill-posed situations, and
the results compared with other MKL methods. In fusion framework of HF-MKL,
RMKL was adopted to determine the weights of the base kernels on both levels of
MKL in column and row. Joint classification with the spectral features, elevation
features, and spatial features was carried out, and the results of classification for two
data sets are shown in Table 9.9. SK represents a natural and simple strategy to fuse
heterogeneous features, and it can be used as a standard to evaluate the effectiveness
of different fusion strategies for heterogeneous features. With this standard, CKL is
poor. The performance of CKL is affected by the weights of spectral, spatial, and
elevation kernels. All the MKL methods outperform the stacked-vector approach
strategy. This reveals that features from different sources obviously have different
meanings and statistical significance. Therefore, they may play different roles in
classification. Consequently, the stacked-vector approach is not a good choice for the
joint classification. However, MKL is an effective fusion strategy for heterogeneous
features, and the further HF-MKL framework is a good choice.
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Fig. 9.16 Weights η determined for each base kernel and the corresponding feature type. a–d A
fixed set of kernel weights selected by RMKL. e The kernel weights selected for three different
class-pairs by CS-SMKL
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Table 9.9 OA (%) of different MKL methods on two data sets

Data sets Bayview Park Recology

Classifiers Number of training samples Number of training samples

10 20 30 10 20 30

SK 92.16 96.02 95.77 84.76 91.40 92.84

SimpleMKL 92.62 96.37 96.16 85.30 91.52 92.95

Mean MKL 93.53 96.73 96.56 85.49 91.47 93.21

CKL 91.89 94.77 95.49 82.23 89.88 92.20

RMKL 93.59 96.78 96.71 85.96 91.95 93.68

NMF-MKL 93.48 96.76 96.68 85.99 92.06 93.82

KNMF-MKL 93.02 96.51 96.26 85.87 92.21 94.16

DMKL 93.21 96.59 96.42 85.82 92.13 93.93

HF-MKL 94.50 96.93 97.07 89.06 93.81 95.49

9.4.6 Superpixel-Based Classification

The OA with the standard deviation for two data sets were shown in Table 9.10. The
best results were given in bold. It is clear that the classification accuracy of EMP-SP-
SVM is higher than EMP-SVM and the proposed framework can achieve the highest
classification accuracy for both data sets, which demonstrate the effectiveness of
the MMSP model. For Pavia University data set, the best results were obtained
fromMPSP-DMKL method, the maximum increment is 5.22% when the number of
training samples was 50 per class. As the number of training samples increased, the

Table 9.10 OA (%) of two data sets

Data sets Pavia University Salinas

Classifier Number of training samples Number of training samples

50 100 150 50 100 150

Spe-SVM 76.38 79.90 81.42 89.43 91.04 91.82

SCMK [49] 93.21 96.60 97.57 94.58 96.22 97.09

EMP-SVM 90.95 93.65 94.77 91.07 92.84 93.77

MPSP-SVM 91.64 95.46 96.70 94.01 95.95 97.00

EMAP-SVM 91.72 95.32 96.66 94.49 96.59 97.46

MPSP-RMKL 96.81 98.77 99.12 94.52 96.24 97.12

MPSP-DMKL 95.91 98.22 98.65 92.44 94.19 95.08

MPSP-CKL 95.41 98.02 98.49 93.58 95.54 96.39

MASP-RMKL 97.94 98.91 99.18 96.64 98.11 98.72

MASP-DMKL 98.43 99.24 99.42 97.08 98.30 98.74

MASP-CKL 98.26 99.04 99.26 96.46 97.99 98.67
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Table 9.11 OAS (%) of two data sets

Data sets Indian Pines Pavia University

Classifier Number of training
samples

Number of training
samples

1% 2% 3% 1% 2% 3%

Spe-SVM 65.36 73.18 78.00 89.19 91.18 92.30

SCMK [49] 71.92 80.80 86.87 95.16 96.97 98.08

EMAP-SVM 77.69 85.69 89.08 97.90 98.74 99.07

MPCA-SVM 68.34 74.17 78.40 87.12 89.81 91.24

3D-Gabor-SVM 58.08 67.26 74.77 88.17 92.80 94.72

3D-Gabor-DMKL 66.67 76.26 82.57 92.89 95.96 97.28

MAST-DMKL Missing 80.21 87.20 91.02 97.91 98.79 99.15

0 vector 80.79 87.17 91.12 98.08 98.85 99.18

Mean vector 80.48 87.66 91.59 98.07 98.80 99.15

Original pixels 81.03 87.97 91.46 98.41 98.95 99.25

increment decreased to 1.95%. The relative low proposed method was MPSP-CKL
whose incrementwas between 0.92 and 2.21%.Note that in [74], for PaviaUniversity
data set, the OA of SCMK was 99.22% with 200 training samples per class. While
in our proposed methods, the OA of MASP-DMKL can achieve 99.24% with only
100 training samples per class. For Salinas data set, not all the proposed methods
achieved satisfactory classification results. Only these EMAP-based frameworks can
outperform the other approaches. The reason might be that the geometry structure in
agriculture scene is simple and mostly polygon, disk SE cannot detect the size and
shape of the object exactly, but introducewrong edges because of erosion and dilation
operations, leading to imprecise spatial information. The method which showed the
best classification performance is MASP-DMKL with an increment between 1.65
and 2.50%.

TheOAs for all the data sets are presented in Table 9.11. It is clear that on both data
sets, the proposed MAST-DMKL framework on four different tensor construction
means outperforms the othermethods, exhibiting the availability of theMASTmodel.
In addition, the MAST-DMKL method where MASTs are filled up with original
pixels can accomplish the highest classification accuracy for the other three data sets.
For Indian Pines data set, when the number of training sample is 1%per class,MAST-
DMKL where MAST is filled up with original pixels achieves the best classification
effect with an increment of 3.34% (compared with EMAP-SVM). When the number
is 2%, MAST-DMKL in which MAST is filled up with original pixels achieves
the second-highest OA with an increment of 2.28% (compared with EMAP-SVM).
When the number is 3%, the highest OA is obtained by MAST-DMKL of mean
vectors with an increment of 2.51%. For Pavia University data set, the four kinds of
MAST frameworks achieve similar classification results.With the increasing number
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of training samples, the increment of theOAbecomes smaller, i.e., from0.51 to 0.18%
(compared with EMAP-SVM).

9.5 Conclusion

In general, the MKL methods can improve the classification performance in most
cases compared with single kernel method. For classification of spectral informa-
tion of HSI, Subspace MKL methods using a trained, weighted combination on the
average outperform the untrained, unweighted sum, namely, RBMKL (MeanMKL),
and have significant superiority of accuracy and computational efficiency compared
with the SimpleMKL method. Ensemble MKL method (MK-Boosting) has higher
classification performance in terms of classification accuracy but an additional cost
of computation time. It is also important to note that there is not a large difference
in classification accuracy among different MKL methods. If we can extract effective
spatial–spectral features for HSI classification, the choice ofMKL algorithmsmainly
concentrates on complexity and sparsity of the solution. In general, using the linear
combination of kernels with Gaussian kernels is effective compared to a nonlinear
combination of linear kernels. However, more research needs to be carried out to
fully develop the nonlinear combinations of Gaussian kernels. This is still an open
problem, which is affected by many factors such as the manner in which features are
combined, as well as the scale of Gaussian kernels.

Currently, with the improvement of the quality of HSI, we can extract more and
more accurate features for classification task. These features could be multiscale,
multi-attribute, multi-dimension and multi-components. Since MKL provides a very
effective means of learning, it is natural considering to utilize these features byMKL
framework. Expanding the feature spaces with a number of information diversi-
ties, these multiple features provide excellent ability to improve the classification
performance. However, there exists a high redundancy of information among these
multiple features, and each kind of them has different contribution to classification
task. As a solution, sparseMKLmethods are developed. The sparseMKL framework
allows to embed a variety of characteristics in the classifier, it removes the redun-
dancy of multiple features effectively to learn a compact set of features and selects
the weights of corresponding base kernels, leading to a remarkable discriminability.
The experimental results on three different hyperspectral data sets, corresponding to
different contexts (urban, agricultural) and different spectral and spatial resolutions,
demonstrate that the sparse methods offer good performance.

Heterogeneous features from different sources have different meanings, dimen-
sion units, and statistical significance. Therefore, theymayplay different roles in clas-
sification and should be treated differently. MKL performs heterogeneous features
fusion in implicit high-dimensional feature representation. Utilizing different hetero-
geneous features to construct different base kernels can distinguish those different
roles and fuse the complementary information contained in heterogeneous features.
Consequently, MKL is a more reasonable choice than stacked-vector approach, and
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our experimental results also demonstrated this point. Furthermore, the two-stage
MKL framework is a good choice in terms of OA.
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