
Chapter 8
Sparsity-Based Methods
for Classification

Zebin Wu, Yang Xu and Jianjun Liu

Abstract Sparsity is an important prior for various signals, and sparsity-basedmeth-
ods have been widely used in hyperspectral image classification. This chapter intro-
duces the sparse representation methodology and its related techniques for hyper-
spectral image classification. To start with, we provide a brief review on the mech-
anism, models, and algorithms of sparse representation classification (SRC). We
then introduce several advanced SRCmethods that can improve hyperspectral image
classification accuracy by incorporating spatial–spectral information into SRCmod-
els. As a case study, a hyperspectral image SRC method based on adaptive spatial
context is discussed in detail to demonstrate the performance of SRC methods in
hyperspectral image classification.

8.1 Introduction

In the last few decades, sparsity has become one of the most important concepts
in the field of signal processing. Sparsity concept has been widely employed in a
variety of fields, e.g., source separation, restoration, and compression. Sparse repre-
sentation was originally derived from compressed sensing [1–3], suggesting that if
a signal is sparse or compressive, the original signal can be reconstructed with a few
number of samplings. By introducing sparsity in sampling, compressed sensing has
achieved great success in information theory, image acquisition, image processing,
medical imaging, remote sensing, etc. Compressed sensing has also motivated many
researches on sparse representation. As a matter of fact, signals in real world may
not be sparse in the original space, but they can be sparse in an appropriate basis.
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Hyperspectral imaging sensors record reflected light in hundreds of narrow fre-
quencies covering the visible, near-infrared, and shortwave infrared bands. This abun-
dant spectral information yields more precise measures and makes it possible to gain
insight into the material at each pixel in the image. Supervised classification plays
a central role in hyperspectral image (HSI) analysis, such as land-use or land-cover
mapping, forest inventory, or urban-area monitoring [4]. Many methods have been
proposed for solving the HSI classification problem, such as logistic regression [5],
support vector machines (SVM) [6], artificial neural networks [7], and k-nearest
neighbor (KNN) classifier [8]. These methods can serve the purpose of generating
acceptable classification results. However, the high dimensionality of hyperspectral
data remains a challenge for HSI classification.

To address this problem, sparse representation [9, 10] has been employed for
classifying high-dimensional signals. A sparse representation classification (SRC)
method [10] has been first proposed for face recognition. A test signal is sparsely
represented by an over-complete dictionary composed of labeled training samples. At
the decision level, the label of each test sample is set as the classwhose corresponding
atomsmaximally represent the original test sample. Since then, SRC has beenwidely
used in face recognition [10, 11], speech recognition [12], and image super-resolution
[13]. Chen et al. [14] proposed an SRC framework for solving the HSI classification
problem, in which each sample is a pixel’s spectral responses. Inspired by this work,
many improved SRC methods have been proposed for HSI classification.

In this chapter,we investigate theSRCmethods andpresent several advancedmod-
els of sparse representation for HSI classification. More specifically, we will give a
case study of SRCmethod that improves the classification accuracy by incorporating
the spectral–spatial information of HSI into the SRC framework.

8.2 Sparse Representation-Based HSI Classification

In the theory of sparse representation, given a dictionary, each signal can be linearly
represented by a set of atoms in the dictionary.Designing an over-complete dictionary
and obtaining the sparse representation vector through sparse coding are the twomain
goals of sparse representation.

In HSI classification, SRC assumes that the features belonging to the same
class approximately lie in the same low-dimensional subspace spanned by dic-
tionary atoms from the same class. Suppose we have M distinct classes and
Ni (i = 1, 2, . . . , M) training samples for each class. Each class has a sub-dictionary
Di = [di,1,di,2, . . . ,di,Ni ] ∈ R

B×Ni in which the columns represent training sam-
ples and B is the number of spectral bands. A test pixel x ∈ R

B can be represented
by a sparse linear combination of the training pixels as

x = Dα (8.1)
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whereD = [D1 D2 . . .DM ] ∈ R
B×N with N =∑M

i=1 Ni is the dictionary constructed
by combining all sub-dictionaries {Di }i=1,...,M . α ∈ R

N is an unknown sparse vector
with K nonzero entries. Here, we denote K = ‖α‖0. The sparse coefficient vector α

is obtained by solving the following problem

min
α

‖x − Dα‖2 s.t ‖α‖0 ≤ K0 (8.2)

where K0 is a pre-specified upper bound of K. The class label of x is determined by
theminimal residual between x and its approximation from each class sub-dictionary,
i.e.,

class(x) = arg min
i=1,2,...,M

‖x − Diαi‖2 (8.3)

where αi is the sub-vector corresponding to the i-th class, and Di denotes the sub-
dictionary.

Problem (2) is NP-hard, and can be approximately solved by greedy algorithms,
such as orthogonal match pursuit (OMP) and subspace pursuit (SP).

In OMP algorithm, we select one atom from the dictionary that is most corre-
lated with the residual. The algorithmic flow of the OMP algorithm is described in
Algorithm 8.1.

The procedure of SP algorithm is similar to that of OMP algorithm. The difference
is that SP finds all the K atoms that satisfy (8.2) during one iteration. The complete
procedure of SP algorithm is provided in Algorithm 8.2.
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8.3 Advanced Models of Sparse Representation
for Hyperspectral Image Classification

Many advanced methods based on SRC have been proposed for HSI classification.
In HSI, pixels within a small neighborhood usually consist of similar materials.

Therefore, these pixels tend to have high spatial correlation [14]. The corresponding
sparse coefficient vectors share a common sparsity pattern as follows.

Let {xt }t=1,...,T be T pixels in a fixed window centered at x1. These pixels can be
represented by

X = [x1x2 . . . xT ] = [Dα1 Dα2 . . .DαT ]
= D [α1 α2 . . . αT ]
︸ ︷︷ ︸

S

= DS (8.4)

In the joint sparsity model (JSM), the sparse vectors {αt }t=1,...,T share the same
support �. S is a sparse matrix with |�| nonzero rows, which can be obtained by
solving the following optimization problem,

min
S

‖X − DS‖F s.t ‖S‖row,0 ≤ K0 (8.5)
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where ‖S‖row,0 denotes the number of nonzero rows of S, and ‖·‖F denotes the
Frobenius norm. The problem in (8.5) can be approximately solved by the simulta-
neous version of OMP (SOMP). The label of the central pixel x1 can be determined
minimizing the total residual

class(x1) = arg min
i=1,...,M

‖X − DiSi‖F (8.6)

where Si is the sub-sparse coefficient matrix corresponding to the i-th class.
Note that, the optimization models (8.2) and (8.5) are non-convex, and can be

converted into convex versions by relaxing the norm constraints:

min
α

1

2
‖x − Dα‖22+λ‖α‖1 (8.7)

min
S

1

2
‖X − DS‖2F + λ‖S‖1,2 (8.8)

where ‖α‖1 =
N∑

i=1
|αi | is the �1 norm, ‖S‖1,2 =

N∑

i=1

∥
∥si
∥
∥
2 is the �1,2 norm, and si

represents the i-th row of S.
The JSM model enforces that the pixels in the neighborhood of the test sample

are represented by the same atoms. However, if the neighboring pixels are on the
boundary of several homogeneous regions, they would be classified into different
classes. In this scenario, different sub-dictionaries should be used. Laplacian sparsity
promotes sparse coefficients of neighboring pixels belonging to different clusters to
be different from each other. For this reason, a weight matrixW is introduced, where
wi j represents the similarity between a pair of pixels xi and x j in the neighborhood
of the text sample. As reported in [15], the optimization problem with additional
Laplacian sparsity prior can be described as

min
S

1

2
‖X − DS‖2F+λ1‖S‖1 + λ2

∑

i, j

wi j

∥
∥si − s j

∥
∥2
2 (8.9)

where λ1 and λ2 are regularization parameters. si is the i-th column of matrix S.
Weight matrix W can characterize the similarity among neighboring pixels in the
spectral space. If two pixels are similar, the weight value will be large. As a result,
their corresponding sparse codes will be similar. On the other hand, if two pixels are
less similar, the weight value will be small, allowing a large difference between their
sparse codes. Laplacian sparsity prior is more flexible than the joint sparsity prior. In
fundamental, the joint sparsity prior can be regarded as a special case of Laplacian
sparsity. Laplacian sparsity prior can well characterize more pixels in the image,
since the sparse codes of the neighboring pixels are not limited to have the same
supports. Suppose L = I − H−1/2WH−1/2 is the normalized symmetric Laplacian
matrix and, H is the degree matrix computed from W. We can have the following
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new optimization problem:

min
S

1

2
‖X − DS‖2F + λ1‖S‖1 + λ2tr(SLST ) (8.10)

In JSM model, each pixel is represented by the atoms in the dictionary, and is
classified according to the residual between the sparse codes multiplying the sub-
dictionary. It is a reasonable assumption that each pixel can only be represented
by one sub-dictionary. This condition can be achieved by enforcing the sparse codes
corresponding to one sub-dictionary to be active and other ones to be inactive. Group
Lasso sums up the Euclidean norm of the sparse codes corresponding to all sub-
dictionaries as the sparsity prior. In [15], group Lasso is introduced as the new
regularization in the optimization problem, i.e.,

min
α

1

2
‖x − Dα‖22 + λ

∑

g∈G
ωg

∥
∥αg

∥
∥
2 (8.11)

where g ⊂ {G1,G2, · · ·GM}, ∑
g∈G

∥
∥αg

∥
∥
2 represents the group sparse prior defined

in terms ofM groups, ωg is the weight and is set to the square root of the cardinality
of the corresponding group. Note here that αg represents the coefficients of different
groups. In a similar way, the group sparsity [15] can be employed in the JSM model
as follows:

min
S

1

2
‖X − DS‖2F + λ

∑

g∈G
ωg

∥
∥Sg
∥
∥
F (8.12)

where
∑

g∈G

∥
∥Sg
∥
∥
F refers to the collaborative group Lasso regularization defined in

terms of groups, and Sg is the sub-matrix corresponding to the g-th sub-dictionary.
In models (8.11) and (8.12) only group sparsity is introduced, and the sparsity

of the sparse code corresponding to sub-dictionary is not taken into consideration.
When the sub-dictionary is over-complete, it is important to introduce the sparsity
within each group [15]. The �1-norm regularization can be incorporated into the
objective function of (8.11) as follows:

min
α

1

2
‖x − Dα‖22 + λ1

∑

g∈G
ωg

∥
∥αg

∥
∥
2 + λ1‖α‖1 (8.13)

Similarly, the problem in (8.13) can be extended to JSM as follows:

min
S

1

2
‖X − DS‖2F+λ1

∑

g∈G
ωg

∥
∥Sg
∥
∥
F + λ1

∑

g∈G
ωg

∥
∥Sg
∥
∥
1 (8.14)



8 Sparsity-Based Methods for Classification 239

Another effective method is to introduce the correlation coefficient (CC) [16].
Traditionally, CCvalue is used tomeasure the correlation between different variables.
In HSI classification, we can use CCs to determine whether pixels represent the same
class. In general, CC can be calculated as follows:

ρ = cov(xi , x j )√
var(xi ) ·√var(x j )

=
∑B

z=1 (xi z − uxi )(x j z − ux j )
√∑B

z=1 (xi z − uxi )2 ·
√∑B

z=1 (x j z − ux j )
2

(8.15)

where var(xi ) and var(x j ) are the variance of xi and x j , respectively. xi z refers to
the z-th element in xi .uxi = (1/B)

∑B
z=1 xi z , and ux j = (1/B)

∑B
z=1 x j z represents

the mean values of the corresponding vectors. According to the definition of CC, we
have |ρ| ≤ 1. Stronger correlation indicates that ρ is close to 1.

Following the method in [16], CCs among the training samples and test samples
are first calculated. Given a test sample x and any training sample dij , where dij
represents the j-th atom in the i-th sub-dictionary. The CC between x and dij can be
calculated as follows:

ρi
j = cov(dij , x)
√
var(dij ) · √

var(x)
=

∑B
z=1 [(dij )z − udij ][(x)z − ux]

√∑B
z=1 [(dij )z − udij ]2 ·

√∑B
z=1 [(x)z − ux]2

.

(8.16)

We define a matrix ρi = {ρi
1, ρ

i
2, . . . , ρ

i
Ni

}. This matrix is sorted in descending
order according to CCs among different training samples. Subsequently, the mean
of L largest ρi is calculated as the CC cor i . Assuming that the L largest ρi consists
of {ρi

1, ρ
i
2, . . . , ρ

i
L}, the CC cor i can be calculated as

cor i = 1

L
(ρi

1 + ρi
2 + · · · + ρi

L). (8.17)

Finally, the CC is combined with the JSM at the decision level to exploit the CCs
among training and test samples as well as the representation residuals.

class(x1) = arg min
i=1,...,M

‖X − DiSi‖F + λ(1 − cor i (x1)) (8.18)

where cor i ∈ [0, 1] represents the CCs among pixels, and λ is the regularization
parameter.

One more approach to improve SRC is kernel trick. As an extension of SRC,
kernel SRC (KSRC) uses the kernel trick to project data into a feature space, in
which the projected data are linearly separable.

Suppose the feature mapping function φ : R
B → R

K , (B ≤ K ) maps the
features and also the dictionary to a high-dimensional feature space, x → φ(x),
D = [d1,d2, . . . ,dN ] → φ(D) = [φ(d1), φ(d2), . . . , φ(dN )] . By replacing the
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mapped features and dictionary in (8.7), we have the KSRC model,

min
α

1

2
‖φ(x) − φ(D)α‖2 + λ‖α‖1. (8.19)

Similarly, the class label of x is determined as

class(x) = arg min
i=1,2,...,M

‖φ(x) − φ(Di )αi‖2. (8.20)

It is worth mentioning that all φ mappings used in KSRC occur in the form of
inner products, allowing us to define a kernel function k for any samples xi ∈ R

B .

k(xi , x j ) = 〈φ(xi ) , φ(x j )
〉

(8.21)

In this way, KSRC can be constructed using only the kernel function, without con-
sidering the mapping φ explicitly. Then, the optimization problem can be rewritten
as

min
α

1

2
αTQα − α p + λ‖α‖1 + C (8.22)

where C = 1
2k(xi , x j ) is a constant, Q is a B × B matrix with Qi j = k(di ,d j ), and

p is a B × 1 vector with pi = k(di , x). Analogously, the classification criterion can
be rewritten as

class(x) = arg min
i=1,2,...,M

δTi (α)Qδ(α) − 2δTi (α)p (8.23)

where δi (·) is the characteristic function that selects coefficients within the i-th class
and sets all other coefficients to zero.

Valid kernels are only those satisfying the Mercer’s condition [17, 18]. Some
commonly used kernels in kernel methods include linear kernel, polynomial kernel,
andGaussian radial basis function kernel. Assuming k1 and k2 are two validMercer’s
kernels over X × X with xi ∈ X ⊆ R

B and z > 0, the direct sum k(xi , x j ) =
k1(xi , x j ) + k2(xi , x j ), tensor product k(xi , x j ) = k1(xi , x j ) · k2(xi , x j ), or scaling
k(xi , x j ) = zk1(xi , x j ) are valid Mercer’s kernels [19].

A suitable kernel is a kernel whose structure reflects data relations. To properly
define such a kernel, unlabeled information and geometrical relationships between
labeled and unlabeled samples are very useful. The spatial–spectral kernel sparse
representation is proposed [20], in which the neighboring filtering kernel is presented
and the corresponding optimization algorithm is developed.

A full family of composite kernels (CKs) for the combination of spectral and
spatial contextual information have been presented in SVM [21, 22]. These kernels
are valid and are all suitable forKSRC.Although one can improve the performance of
KSRC byCK, it is worth noting that the kernel should learn all high-order similarities
between neighboring samples directly, and should reflect the data lying in complex
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manifolds. For these purposes, the neighbor filtering (NF) kernel would be a good
choice, which computes the spatial similarity between neighboring samples in the
feature space.

Given xm ∈ �,m = 1, 2, . . . , ω2, with � being the spatial window ω around
pixel. Let φ(xm) be the image of xm under the mapping φ. In order to describe φ(x),
a straightforward way is to use the average of spatially neighboring pixels in the
kernel space. This method is similar to the mean filtering. The estimated vector is
given by

MF(φ(x)) = 1

ω2

ω2
∑

m=1

φ(xm). (8.24)

However, the mean filtering rarely reflects relative contributions (which treats
every neighboring pixel equally). To address this issue, the neighboring filtering is
defined as

NF(φ(x)) = 1
∑

m wm

ω2
∑

m=1

wmφ(xm) (8.25)

wherewm = exp(−γ0||x−xm ||22) and parameter γ0 > 0 acts as a degree of filtering.
Let us consider two different pixels xi and x j . We are interested in defining a

similarity function that estimates the proximity between them in a sufficiently rich
feature space. A straightforward kernel function reflecting the similarity between
them is obtained by evaluating the kernel function between the estimated vectors

kNF(xi , x j ) = 〈NF(φ(xi )) , NF(φ(x j ))
〉

=
〈∑ω2

m=1 w
m
i φ(xmi )

∑
m wm

i

,

∑ω2

n=1 w
n
i φ(xnj )

∑
n w

n
i

〉

=
∑ω2

m=1

∑ω2

n=1 w
m
i w

n
jk(xmi , xnj )

∑
m wm

i

∑
n w

n
i

, (8.26)

which is referred to as neighbor filtering (NF) kernel. Similarly, we can define mean
filtering (MF) kernel as follows:

kMF(xi , x j ) = 〈MF(φ(xi )) , MF(φ(x j ))
〉

=
〈
1

ω2

∑ω2

m=1
φ(xmj ) ,

1

ω2

∑ω2

n=1
φ(xnj )
〉

= 1

ω4

ω2
∑

m=1

ω2
∑

n=1

k(xmi , xnj ), (8.27)
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which computes the spatial similarity between neighboring samples, whereas the
cluster similarity is computed in the mean map kernel.

Since Q is a valid kernel, the objective function of (8.22) is convex, which is
the same as the objective function of (8.19) except for the definition of Q and p.
Therefore, alternating direction method of multipliers (ADMM) [23] can be used to
solve this problem. By introducing a new variable u ∈ R

B , the objective function
can be rewritten as

min
α

1

2
αTQα − αTp + λ‖α‖1

s.t. u = α. (8.28)

ADMM imposes the constraint u = a which can be defined as

⎧
⎨

⎩

(α(t+1),u(t+1)) = argmin
α,u

1
2α

TQα − αTp + λ‖α‖1 + μ

2

∥
∥α − u − d(t)

∥
∥2
2

d(t+1) = d(t) − (α(t+1) − u(t+1))

(8.29)

where t ≥ 0 and μ > 0. The minimizing solution α(t+1) is simply determined as

α(t+1) ← (Q + μI)−1(p + μ(u(t) + d(t))), (8.30)

where I is the identity matrix. The minimizing solution u(t+1) is the soft threshold
[24],

u(t+1) ← soft(α(t+1) − d(t), λ/μ), (8.31)

where soft(·, τ ) denotes the component-wise application of the soft-threshold
function y ← sign(y)max{|y| − τ, 0}.

The optimization algorithm for KSRC is summarized in Algorithm 8.3.
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8.4 A Case Study of Hyperspectral Image Sparse
Representation Classification Based on Adaptive
Spatial Context

8.4.1 Model and Algorithm

In model (8.5), pixels in a fixed window centered at the test pixel are selected to
be simultaneously sparse represented. All pixels in the fixed window have the same
correlation with the center pixel. However, this condition does not always hold,
especially for pixels located on the edge which can be seen as class boundary. It is
obvious that pixels on the same side of the edge will have stronger correlation. Since
different pixels have different spatial context, the definition of local structure for the
adaptive spatial context is essential to HSI classification.

In the field of image recovery, steering kernel (SK) [25] is a popular local method,
which can effectively express the adaptive local structure. This method starts with
making an initial estimate of the image gradients using a gradient estimator, and then
uses the estimate to measure the dominant orientation of the local gradients in the
image [26]. The obtained orientation information is then used to adaptively “steer”
the local kernel, resulting in elongated, elliptical contours spread along the directions
of the local edge structure.

Taking into consideration that HSI generally contains hundreds of sub-images,
a high-dimensional steering kernel (HDSK) [27] is defined where the gradient esti-
mator contains every sub-image’s gradients. The gradients in vertical and horizontal
directions are written as follows:

(∇xvi ,∇xhi ) = (

∥
∥xi − xvi+1

∥
∥
1

B
,

∥
∥xi − xhi+1

∥
∥
1

B
) (8.32)

where xvi+1 and x
h
i+1 represent the neighboring pixels of xi in vertical and horizontal

directions. HDSK for pixel xi is defined as

wi j =
√
det(Ci )

2πh2
exp(− (ei − e j )TCi (ei − e j )

2h2
) (8.33)

where ei and e j represent the coordinates of pixel xi and pixel x j , respectively, h is the
smoothing parameter used for controlling the supporting range of the steering kernel,
and Ci is the symmetric gradient covariance in vertical and horizontal directions in
a M × M window centered at xi . A naïve estimate of this covariance matrix can be
obtained by Ci = JTi Ji , where

Ji =
⎡

⎢
⎣

∇xv1 ∇xh1
...

...

∇xvM×M ∇xhM×M

⎤

⎥
⎦ (8.34)
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Here, x1, · · · , xM×M are the M × M neighboring pixels in the local window
centered at xi . The resulting wi j can be explained as the correlation between pixels
xi and x j . Since a large weight in steering kernel mean two pixels have strong
correlation, HDSK could be an effective way to represent the local structure. For
example, Fig. 8.1 shows the 10-th band image in the University of Pavia HSI and
the calculated HDSKs for different pixels. It can be observed that when pixels are
in a homogeneous region, the shape of HDSK is cycles without any directional
preference. When the pixels are in the intersection or the boundary of different
classes, the shape of HDSKs is oval and exhibits clear directional preference. The
direction of the long axis of the oval indicates that similar pixels may appear in this
direction.

Once having determined the local structure of a test pixel xi using (8.20), we
select P pixels whose weights are larger than the others. These pixels can be stacked
as XP = [xi1 xi2 . . . xi P ] ∈ R

B×P , and wP = [w1 w2 . . .wP ]T is the corresponding

Fig. 8.1 Examples of HDSKs
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weight vector. It is believed that these selected P pixels have more compact inner
patterns than those in a fixed window do. The adaptive spatial contextual information
is introduced by the following problem:

SP = argmin
SP

∥
∥XP − DSP

∥
∥
F

s.t
∥
∥SP
∥
∥
row,0 ≤ K0

(8.35)

Once the coefficient matrix SP is obtained, a new classifier is designed based on
the HDSK. As the weights in the HDSK reflect the influence of neighboring pixels
on the test pixel, the original decision rule (8.6) is replaced by

class(xi ) = arg min
j=1,...,M

∥
∥(XP − D jSP

j )w
P
∥
∥
2

(8.36)

The joint sparse HSI classification method based on adaptive spatial context is
named adaptive spatial context SOMP (ASC-SOMP), of which the general flow is
summarized in Algorithm 8.4.



246 Z. Wu et al.

8.4.2 Experimental Results and Discussion

This section uses two real hyperspectral datasets to verify the effectiveness of ASC-
SOMP algorithm. For each image, the pixel-wise SVM, SVM with composite ker-
nel (SVM-CK) [19], OMP [14], SOMP [14] are compared with ASC-SOMP both
visually and quantitatively. We select Gaussian radial basis function (RBF) for the
pixel-wise SVM and SVM-CK methods, since RBF has proved its capability han-
dling complex nonlinear class distributions. The parameters in SVM-based methods
are obtained by fivefold cross-validation. For methods involved with composite ker-
nels, the spatial kernels were built by using the mean and standard deviation of the
neighboring pixels in a window per spectral channel. Each value of the results is
obtained after performing ten Monte Carlo runs.

The training and test samples are randomly selected from the available ground
truth map. The classification accuracy is evaluated by the overall accuracy (OA)
which is defined as the ratio of the number of accurately classified samples to the
number of test samples, the coefficient of agreement (κ) which is the ratio of the
amount of corrected agreement to the amount of expected agreement, and the average
accuracy (AA). To be specific, OA is calculated by

OA =
C∑

i=1

Ei j/N (8.37)

where N is the total number of samples, and Ei j represents the number of samples
in class i which are miss-classified to class j.

AA is calculated by

AA =
⎛

⎝
C∑

i=1

⎛

⎝Ei j

/ C∑

j=1

Ei j

⎞

⎠

⎞

⎠
/

C (8.38)

The κ statistic is calculated by weighting the measured accuracies. This metric
incorporates the diagonal and off-diagonal entries of the confusion matrix and is
given by

κ =
⎛

⎝N

(
C∑

i=1

Ei i

)

−
C∑

i=1

⎛

⎝
C∑

j=1

Ei j

C∑

j=1

E j i

⎞

⎠

⎞

⎠

/⎛

⎝N 2 −
C∑

i=1

⎛

⎝
C∑
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8.4.2.1 Hyperspectral Dataset of AVIRIS Indian Pines

The Indian Pines image contains 145 × 145 pixels and 200 spectral reflectance
bands, among which 24 water absorption bands have been removed. The ground
truth contains 16 land cover classes and a total of 10366 labeled pixels. We randomly
choose 10% of labeled samples for training, and use the rest 90% for testing. The
false color image and ground truth are shown in Fig. 8.2a, b.

The parameters for ASC-SOMP algorithm are set to P = 120, K0 = 25, h = 25,
and M = 21. The window size of SOMP algorithm is empirically set to 9 × 9. The
classification results, in terms of overall accuracy (OA), average accuracy (AA), κ

Fig. 8.2 Classification results of Indian Pines image, a false color image (R, 57 G, 27 B, 17),
b ground truth, c SVM (OA, 85.24%), d SVM-CK (OA, 93.60%), e OMP (OA, 75.67%), f SOMP
(OA, 95.28%), g ASC-SOMP (96.79%)
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Table 8.1 Classification accuracy (%) For the Indian Pines image on the test set

Class #train
samples

#test
samples

SVM SVM-CK OMP SOMP ASC-SOMP

Alfalfa 6 48 31.25 62.08 65.62 85.42 91.67

Corn-no till 144 1290 82.80 92.71 64.58 94.88 95.74

Corn-min till 84 750 75.01 91.29 61.36 94.93 96.27

Corn 24 210 64.42 79.71 44.80 91.43 95.24

Grass/Pasture 50 447 93.08 95.59 91.09 89.49 93.96

Grass/Trees 75 672 95.46 98.09 94.04 98.51 99.70

Grass/Pasture-mowed 3 23 4.35 49.56 84.78 91.30 56.20

Hay-windrowed 49 440 98.81 98.47 97.97 95.55 100

Oats 2 18 0.00 0.00 43.33 0.00 22.22

Soybeans-no till 97 871 76.76 89.97 70.76 89.44 92.31

Soybeans-min till 247 2221 87.76 96.13 76.22 97.34 98.42

Soybean-clean till 62 552 85.25 89.49 57.91 88.22 92.39

Wheat 22 190 98.53 96.63 97.73 100 99.47

Woods 130 1164 97.62 98.04 94.09 99.14 100

Building-Grass-Trees-Drives 38 342 56.11 89.29 44.26 99.12 100

Stone-steel Towers 10 85 81.17 88.11 90.47 96.47 95.29

OA (%) 85.24 93.60 75.67 95.28 96.79

AA (%) 70.52 92.70 72.22 88.45 89.33

κ 83.11 82.20 73.69 94.60 96.34

statistic, and class individual accuracies, are shown in Table 8.1. The final maps are
illustrated in Fig. 8.2c–g. It can be observed that ASC-SOMP algorithm achieves the
highest OA of 96.79%, which is 1.5% higher than the second-highest OA. Classifi-
cation results using different percentages of labeled samples for training are shown
in Fig. 8.3. In this figure and the following, error bars indicate the standard deviation
by random sampling. From Fig. 8.3, both numerical and statistical differences can
be observed.

Next, we demonstrate the impact of the number of selected neighboring pixels
P upon the performance of ASC-SOMP algorithm. We use 10% of data in each
class as training samples. The number of selected pixels P ranges from P = 80 to
P = 140, and the sparsity level K0 ranges from K0 = 5 to K0 = 45. The plots
of overall accuracy evaluated on the entire test set are shown in Fig. 8.4. When
K0 ≥ 25 and P ≥ 110, a relatively high classification accuracy can be achieved.
Compared with SOMP algorithm, ASC-SOMP leads to the same optimal K0 value,
but the optimal P value is significantly larger. As pixels are selected according to
their spatial correlation to the center pixel, it is reasonable to select more pixels that
can be sparsely represented simultaneously.

To investigate the effect of the introduced adaptive spatial context, we compare
ASC-SOMP with traditional joint sparsity method in detail. It is obvious that SOMP
is not able to identify any samples belonging to oats class. This observation is because
oat pixels cover a very narrow region of size 10 × 2 located in the middle-left of
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Fig. 8.3 The overall accuracy of Indian Pines for different numbers of training samples

Fig. 8.4 Effects of the sparsity level K0 and number of selected pixels P for Indian Pines
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Fig. 8.5 Amplified map in two regions, a and c are results of SOMP, b and d are results of
ASC-SOMP

the image. In SOMP, the optimal 9 × 9 local window centered at each oat pixel
is dominated by pixels belonging to the other two adjacent classes. In contrast,
ASC-SOMP achieves a 22.22% classification accuracy for oat class. By introducing
adaptive spatial context, pixels distributed along the direction of the narrow region
are selected as they have large correlationwith the test pixel. On the other hand, pixels
belonging to the other two classes whose weights are small have less impact upon
our decision rule. Thus, better results can be obtained. However, the classification
accuracy for oat class is still very low, because the total number of oat class is much
less than the selected pixels to be sparsely represented simultaneously, and most of
the selected pixels do not belong to oat class oat.

Taking into consideration that the effect of adaptive spatial context is clearer
in the class boundary, more attention should be paid on the edge. We amplify the
region of SOMP result and the region of ASC-SOMP result to verify the effect
of adaptive spatial context. Figure 8.5 shows that our classification result has less
wrong-classified pixels in the class boundary, demonstrating the advantages of the
adaptive spatial context.

8.4.2.2 Hyperspectral Dataset of ROSIS Pavia University

The second hyperspectral data set was collected by the ROSIS optical sensor over
the urban area of the Pavia University, Italy. The image size in pixels is 610 × 340,
with a very high spatial resolution of 1.3 m per pixel. The number of data channels
in the acquired image is 103 (with the spectral range from 0.43 to 0.86 μm). Nine
classes of interest were considered, including tree, asphalt, bitumen, gravel, metal
sheet, shadow, bricks, meadow, and soil. Figure 8.6a, b shows the three-band false
color image and the ground truth map, respectively. We randomly sampled 60 pixels
for each class as the training samples and use the remainder as test samples. The
optimal parameter settings for the ASC-SOMP method are P = 100 and K0 = 5.
In SOMP, the window size was set to 9 × 9, and the sparsity level was set to K0 =
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Fig. 8.6 Classification results of University of Pavia image, a false color image (R, 57 G, 27 B, 17),
b ground truth, c SVM (OA, 84.26%), d SVM-CK (OA, 91.60%), e OMP (OA, 71.12%), f SOMP
(OA, 83.60%), g ASC-SOMP (85.07%)

15. We set h = 25 and M = 21 as in the previous set of experiments. The final
classification maps are illustrated in Fig. 8.6c–g. The classification results, in term
of overall accuracy (OA), average accuracy (AA), k statistic, and class individual
accuracies, are provided in Table 8.2. The ASC-SOMP method outperforms other
methods except for SVM-CK.SVM-CKachieves the best results since it is a spectral–
spatial nonlinear kernel method. Figure 8.7 illustrates the classification accuracies
by using different number of training samples. This result justifies the robustness of
ASC-SOMPmethod. Figure 8.8 shows the performance in terms of overall accuracy
with different numbers of selected pixels P at sparsity level K0 = 5 and K0 = 10,
respectively. The number of selected pixels P ranges from 50 to 110. Figure 8.8
also shows that the overall accuracy improves as P value increases. This conclusion
isconsistent with the conclusion drawn on the dataset of AVIRIS Indian Pines.
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Table 8.2 Classification accuracy (%) for University of Pavia on the test set

Class #train
samples

#test
samples

SVM SVM-CK OMP SOMP ASC-SOMP

Asphalt 60 6571 77.92 88.98 57.62 47.87 52.01

Bare soil 60 18589 81.67 93.09 71.96 91.59 91.36

Bitumen 60 2039 82.13 87.65 65.85 92.15 93.52

Bricks 60 3004 95.33 97.52 89.83 89.34 95.97

Gravel 60 1285 99.15 99.47 99.75 100 99.24

Meadows 60 4969 87.92 89.66 63.38 87.74 86.76

Metal
sheets

60 1270 93.59 94.55 85.85 95.98 97.92

Shadows 60 3622 83.70 83.03 68.30 84.40 87.00

Trees 60 887 99.96 99.14 94.61 73.95 85.49

OA (%) 84.26 91.60 71.12 83.60 85.07

AA (%) 79.75 88.95 63.17 78.56 80.50

κ 89.04 92.57 77.46 84.78 87.70

Fig. 8.7 The overall accuracy of University of Pavia for different numbers of training samples
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Fig. 8.8 Effect of different numbers of selected pixels P for University of Pavia

8.4.2.3 Discussion

The ASC-SOMPmethod and the nonlocal-weighted version of SOMP (NLW-JSRC)
[28] both were developed for improving the original SOMPmethod. The weights for
the neighboring pixels are calculated in bothmethods.We compared ourmethodwith
NLW-JSRC. All experiments were performed using the same experimental setup as
in thework of NLW-JSRC,where 9% of the labeled data are randomly sampled as the
training samples, and the remainder of the data are used as test samples. Tables 8.3
and 8.4 present the comparisons of results by both methods. We can observe that
the ASC-SOMP method outperforms the NLW-JSRC method, indicating that the
steering kernel can better describe the spatial context than the nonlocal weights can.

h and M are two important parameters that control the supporting range of the
steering kernel and determine the contributions of the selected pixels to the clas-
sification of test pixel. We further evaluate the classification accuracy on the two
images for different h andM values. We use the same training samples as in previous
experiments. h ranges from 1 to 45, and the window sizeM ranges from 13 × 13 to
29×29. Figure 8.9a indicates that the classification accuracy is relatively high when
h is between 10 and 35. If h is too small, the variance of the weights is large, resulting
in the outcome that a few pixels with large weights dominate the classification deci-
sion. If h is too large, on the other hand, the gap between different pixels’ weights
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Table 8.3 Numerical comparison with NLW-JSRC for Indian Pines

Class #train samples #test samples NLW-JSRC ASC-SOMP

1 6 46 95.00 81.25

2 129 1299 92.99 94.25

3 83 747 87.82 95.33

4 24 213 85.45 96.66

5 48 435 93.33 93.76

6 73 657 100 99.25

7 5 23 73.91 95.23

8 48 430 100 100

9 4 16 31.25 50.00

10 97 875 90.51 92.30

11 196 2259 96.90 98.85

12 59 534 96.82 86.12

13 21 184 100 100

14 114 1151 99.91 99.91

15 39 347 96.25 98.82

16 12 81 97.53 100

OA (%) 95.19 96.35

κ 94.50 95.83

Table 8.4 Numerical comparison with NLW-JSRC for University of Pavia

Class #train samples #test samples NLW-JSRC ASC-SOMP

1 579 6034 87.67 96.56

2 932 17717 98.91 99.90

3 189 1910 79.42 98.69

4 276 2788 92.90 96.77

5 269 1076 100 100

6 453 4576 77.69 99.08

7 266 1064 96.43 99.62

8 331 3351 85.68 97.01

9 189 758 98.81 88.39

OA (%) 92.98 98.54

κ 90.46 98.03
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Fig. 8.9 a The classification accuracy for different h. b The classification accuracy for different
window sizeM

is not clear enough, as the adaptive spatial context information is not used as much
as possible. We can also observe from Fig. 8.9b that the classification accuracy is
robust to the window sizeM as long as there are enough pixels to be selected.

8.5 Conclusions

Sparsity-basedmethods play an important role in HSI classification. Taking into con-
sideration that the spectrum of a pixel lies in the low-dimensional subspace spanned
by the training samples of the same class, sparse representation classification (SRC)
is widely employed in HSI classification. Many advanced SRCmodels are presented
to improve the classification accuracy, based on the structural sparsity priors, spec-
tral–spatial information, kernel tricks, etc. This chapter reviews the structural sparsity
priors and explains how the spectral–spatial information of HSI is incorporated into
the SRC method. More specifically, a case study of HSI sparse representation classi-
fication based on adaptive spatial context is presented in detail. Experimental results
demonstrate that, by combining SRC and adaptive spectral–spatial information, the
performances of SRC can be significantly improved. Future work can be directed
toward tensor sparse representation which can take full advantage of the high-order
correlation in HSI and can preserve the spectral–spatial structure of HSI.

References

1. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306
2. Baraniuk RG (2007) Compressive sensing. IEEE Signal Process Mag 24(4):118–121
3. Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles, Exact signal reconstruction

from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509



256 Z. Wu et al.

4. Sun L, Zebin W, L Jianjun, X Liang, Wei Z (2015) Supervised spectral-spatial hyperspectral
image classification with weighted markov random fields. IEEE Trans Geosci Remote Sens
53(3):1490–1503

5. Li J, Bioucas-Dias JM, Plaza A (2010) Semisupervised hyperspectral image segmentation
using multinomial logistic regression with active learning. IEEE Trans Geosci Remote Sens
48(11):4085–4098

6. Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with
support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790

7. Pan B, Shi Z, Xu X (2018) MugNet, deep learning for hyperspectral image classification using
limited samples. ISPRS J Photogramm Remote Sens 145:108–119

8. Ma L, Crawford MM, Tian J (2010) Local manifold learning-based k-nearest-neighbor for
hyperspectral image classification. IEEE Trans Geosci Remote Sens 48(11):4099–4109

9. Aharon M, Elad M, Bruckstein A (2006) K-SVD, an algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311

10. Wright J, Yang AY, Ganesh A et al (2009) Robust face recognition via sparse representation.
IEEE Trans Pattern Anal Mach Intell 31(2):210–227

11. Wagner A, Wright J, Ganesh A et al (2012) Toward a practical face recognition system, robust
alignment and illumination by sparse representation. IEEE Trans Pattern Anal Mach Intell
34(2):372–386

12. Gemmeke JF, Virtanen T, Hurmalainen A (2011) Exemplar-based sparse representations
for noise robust automatic speech recognition. IEEE Trans Audio Speech Lang Process
19(7):2067–2080

13. Yang J, Wright J, Huang TS et al (2010) Image super-resolution via sparse representation.
IEEE Trans Image Process 19(11):2861–2873

14. Chen Y, Nasrabadi NM, Tran TD (2011) Hyperspectral image classification using dictionary-
based sparse representation. IEEE Trans Geosci Remote Sens 49(10):3973–3985

15. Sun X, Qu Q, Nasrabadi NM et al (2014) Structured priors for sparse-representation-based
hyperspectral image classification. IEEE Geosci Remote Sens Lett 11(7):1235–1239

16. Tu B, Zhang X, Kang X et al (2018) Hyperspectral image classification via fusing correlation
coefficient and joint sparse representation. IEEE Geosci Remote Sens Lett 15(3):340–344

17. Liu J, Wu Z, Xiao Z, Yang J (2017) Hyperspectral image classification via kernel fully con-
strained least squares. In: 2017 IEEE international geoscience and remote sensing symposium,
Fort Worth, 23–28 July 2017, pp 2219–2222

18. Aizerman A, Braverman E, Rozoner L (1964) Theoretical foundations of the potential function
method in pattern recognition learning. Autom Remote Control 25:821–837

19. Camps-Valls G, Gomez-Chova L, Muñoz-Mari’ J, Vila-Francés J, Calpe-Maravilla J (2006)
Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett
3(1):93–97

20. Liu J, Wu Z, Wei Z et al (2013) Spatial-spectral kernel sparse representation for hyperspectral
image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 6(6):2462–2471

21. Tuia D, Camps-Valls G (2001) Urban image classification with semisupervised multiscale
cluster kernels. IEEE J Sel Top Appl Earth Obs Remote Sens 4(1):65–74

22. Gomez-Chova L, Camps-Valls G, Bruzzone L, Calpe-Maravilla J (2010) Mean map kernel
methods for semisupervised cloud classification. IEEE Trans Geosci Remote Sens 48(1):207–
220

23. Bioucas-Dias J, Figueiredo M (2010) Alternating direction algorithms for constrained sparse
regression, Application to hyperspectral unmixing. In: Proceedings ofWHISPERS, Reykjavik,
Iceland, June 2010, pp 1–4. IEEE

24. Combettes P et al (2006) Signal recovery by proximal forward-backward splitting. Multiscale
Model Simul 4(4):1168–1200

25. Takeda H, Farsiu S, Milanfar P (2007) Kernel regression for image processing and reconstruc-
tion. IEEE Trans Image Process 16(2):349–366

26. FengX,Milanfar P (2002)Multiscale principal components analysis for image local orientation
estimation. In: 36th Asilomar conference signals, systems and computers, Pacific Grove, CA



8 Sparsity-Based Methods for Classification 257

27. Xu Y, Wu Z, Wei ZH (2014) Joint sparse hyperspectral image classification based on adaptive
spatial context. J Appl Remote Sens 8(1):083552

28. Zhang H et al (2013) A nonlocal weighted joint sparse representation classification method for
hyperspectral imagery. IEEE J Sel Top Appl Earth Obs Remote Sens 7(6):2056–2065

29. Takeda H, Farsiu S, Milanfar P (2007) Kernel regression for image processing and reconstruc-
tion. IEEE Trans Image Process 16:349–366


	8 Sparsity-Based Methods for Classification
	8.1 Introduction
	8.2 Sparse Representation-Based HSI Classification
	8.3 Advanced Models of Sparse Representation for Hyperspectral Image Classification
	8.4 A Case Study of Hyperspectral Image Sparse Representation Classification Based on Adaptive Spatial Context
	8.4.1 Model and Algorithm
	8.4.2 Experimental Results and Discussion

	8.5 Conclusions
	References




