
Chapter 6
Addressing the Inevitable Imprecision:
Multiple Instance Learning
for Hyperspectral Image Analysis

Changzhe Jiao, Xiaoxiao Du and Alina Zare

Abstract In many remote sensing and hyperspectral image analysis applications,
precise ground truth information is unavailable or impossible to obtain. Impreci-
sion in ground truth often results from highly mixed or sub-pixel spectral responses
over classes of interest, a mismatch between the precision of global positioning
system (GPS) units and the spatial resolution of collected imagery, and misalign-
ment between multiple sources of data. Given these sorts of imprecision, training
of traditional supervised machine learning models which rely on the assumption of
accurate and precise ground truth becomes intractable. Multiple instance learning
(MIL) is a methodology that can be used to address these challenging problems.
This chapter investigates the topic of hyperspectral image analysis given imprecisely
labeled data and reviews MIL methods for hyperspectral target detection, classifica-
tion, data fusion, and regression.

6.1 Motivating Examples for Multiple Instance Learning
in Hyperspectral Analysis

In standard supervised machine learning, each training sample is assumed to be cou-
pledwith the desired classification label.However, acquiring accurately labeled train-
ing data can be time consuming, expensive, or at times infeasible. Challenges with
obtaining precise training labels and location information are pervasive throughout
many remote sensing and hyperspectral image analysis tasks. A learning methodol-
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Multiple Instance Learning:

Negative Bags
Label = 0

Positive Bags
Label = +1

Fig. 6.1 In multiple instance learning, data is labeled at the bag level. A bag is labeled as a positive
bag if it contains at least one target instance. The number of target versus nontarget instances in each
positive bag is unknown. A bag is labeled as a negative bag if it contains only nontarget instances.
In this figure, blue points correspond to nontarget instances where red points correspond to target
instances. Source: c© [2019] IEEE. Reprinted, with permission, from [62]

ogy to address imprecisely labeled training data is multiple instance learning (MIL).
In MIL, data is labeled at the bag level where a bag is a multi-set of data points as
illustrated in Fig. 6.1. In standard MIL, bags are labeled as “positive” if they contain
any instances representing a target class whereas bags are labeled as “negative” if
they contain only nontarget instances. Generating labels for a bag of points is often
much less time consuming and aligns with the realistic scenarios encountered in
remote sensing applications as outlined in the following motivating examples.

• Hyperspectral Classification: Training a supervised classifier requires accurately
labeled spectra for the classes of interest. In practice, this is often accomplished
by creating a ground truth map of a hyperspectral scene (scenes which frequently
contain hundreds of thousands of pixels or more). Generation of ground truthmaps
is challenging due to labeling ambiguity that naturally arises due to relatively
coarse resolution and compound diversity of the remotely sensed hyperspectral
scene. For example, an area that is labeled as vegetationmaycontain bothplants and
bare soil, making the training label inherently ambiguous. Furthermore, labeling
each pixel of the hyperspectral scene is tedious and annotator performance is
generally inconsistent from person to person or over time. Due to these challenges,
“ground-rumor” may be a more appropriate term than “ground-truth” for the maps
that are generated. These ambiguities naturally map to the MIL framework by
allowing an annotator to label spatial regions if it contains a class of interest
(corresponding to positive bags) and negative bags for spatial regions known to
exclude those classes. For instance, an annotator can easily mark (e.g., circle on a
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Fig. 6.2 Illustration of inaccurate coordinates from GPS: one target denoted as brown by GPS has
one pixel drift. Source: c© [2018] Elsevier Reprinted, with permission, from [45]

map) positive bag regions that contain vegetation and then mark regions of only
bare soil and building/man-made materials for negative bags when vegetation is
the class of interest.

• Sub-pixel Target Detection: Consider the hyperspectral target detection problem
illustrated in Fig. 6.2. This hyperspectral scenewas collected over theUniversity of
Southern Mississippi-Gulfpark Campus [1] and includes many emplaced targets.
These targets are cloth panels of four colors (Brown, Dark Green, Faux Vineyard
Green, and Pea Green) varying from 0.5m × 0.5m, 1m × 1m, and 3m × 3m in
size. The ground sample distance of this hyperspectral data set is 1m. Thus, the
0.5m × 0.5m targets are, at best, a quarter of a pixel in size; the 1m × 1m targets
are, at best, exactly one pixel in size; and the 3m × 3m targets cover multiple
pixels. However, the targets are rarely aligned with the pixel grid, resulting in the
0.5m × 0.5m and 1m × 1m target responses often straddling multiple pixels and
being sub-pixel. The scene also had heavy tree coverage and resulted in targets
being heavily occluded by the tree canopy. The sub-pixel nature of the targets
and occlusion by the tree canopy causes this to be a challenging target detection
problem and one in which manual labeling of target location by visual inspection
is impractical. Ground truth locations of the targets in this scene were collected by
a GPS unit with 2–5m accuracy. Thus, the ground truth is only accurate up to some
spatial region (as opposed to the pixel level). For example, the region highlighted
in Fig. 6.2 contains one brown target. From this highlighted region, one can clearly
see that the GPS coordinate of this brown target (denoted by the red dot) is shifted
one pixel from the actual brown target location (denoted by the yellow rectangle).
This is a rare example where we can visually see the brown target. Most of the
targets are difficult to distinguish visibly. Developing a classifier or extracting a
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Fig. 6.3 An example of 3D scatterplot of LiDAR data over the University of Southern Mississippi-
Gulfpark campus. The LiDAR points were colored by the RGB imagery provided by HSI sensors
over the scene. Source: c© [2020] IEEE. Reprinted, with permission, from [86]

pure prototype for the target class given incomplete knowledge of the training data
is intractable using standard supervised learning methods. This also directly maps
to the MIL framework since each positive bag can correspond to the spatial region
associated with each ground truth point and its corresponding range of imprecision
and negative bags can correspond to spatial regions that do not overlap with any
ground truth point or its associated halo of uncertainty.

• Multi-sensor Fusion: When fusing information obtained by multiple sensors, each
sensor may provide complementary information that can aid scene understand-
ing and analysis. Figure6.3 shows a three-dimensional scatter plot of the LiDAR
(Light Detection And Ranging) point cloud data over the University of South-
ern Mississippi-Gulfpark Campus collected simultaneously with the hyperspec-
tral imagery (HSI) described above. In this data set, the hyperspectral and LiDAR
data can be leveraged jointly for scene segmentation, ground cover classification,
and target detection. However, there are challenges that arise during fusion. The
HSI and LiDAR data are of drastically different modalities and resolutions. HSI is
collected natively on a pixel grid with a 1m ground sample distance whereas the
raw LiDAR data is a point cloud with a higher resolution of 0.60m cross track and
0.78m along track spot spacing. Commonly, before fusion, data is co-registered
onto a shared pixel grid. However, image co-registration and rasterization may
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introduce inaccuracies [2, 3]. In this example, consider the edges of the build-
ings with gray roofs in Fig. 6.3. Some of the hyperspectral pixels of the buildings
have been inaccurately mapped to LiDAR points corresponding to the neighboring
grass pixels on the ground. Similarly, some hyperspectral points corresponding to
sidewalk and dirt roads have been inaccurately mapped to high elevation values
similar to nearby trees and buildings. Directly using such inaccurate measure-
ments for fusion can cause further inaccuracy or error in classification, detection,
or prediction. Therefore, it is beneficial to develop a fusion algorithm that is able
to handle such inaccurate/imprecise measurements. Imprecise co-registration can
also be mapped to the MIL framework by considering a bag of points from a local
region in one sensor (e.g., LiDAR) to be candidates for fusion in each pixel in the
other sensors (e.g., hyperspectral).

These examples illustrate that remote-sensing data and applications are often
plagued with inherent spatial imprecision in ground truth information. Multiple
instance learning is a framework that can alleviate the issues that arise due to
this imprecision. Therefore, although imprecise ground truth plagues instance-level
labels, bags (i.e., spatial regions) can be labeled readily and analyzed using MIL
approaches.

6.2 Introduction to Multiple Instance Classification

MIL was first proposed by Dietterich et al. [4] for the prediction of drug activity.
The effectiveness of a drug is determined by how tightly the drug molecule binds to
a larger protein molecule. Although a molecule may be determined to be effective,
it can have variants called “conformations” of which only one (or a few) actually
binds to the desired target binding site. In this task, the learning objective is to
infer the correct shape of the molecule that actually has tight binding capacity. In
order to solve this problem, Dietterich et al. introduced the definition of “bags.”
Each molecule was treated as a bag and each possible conformation of the molecule
was treated as an instance in that bag. This directly induces the definition of multiple
instance learning. A positively labeled bag contains at least one positive instance (but,
also, some number of negative instances) and negatively labeled bags are composed
of entirely negative instances. The goal is to uncover the true positive instances in
each positive bag and what characterizes positive instances.

Although initially proposed for this drug activity application, the multiple
instance learning framework is extremely relevant and applicable to a number
of remote-sensing problems arising from imprecision in ground truth informa-
tion. By labeling data and operating at the bag level, ground truth imprecision
inherent in remote sensing problems are addressed and accounted for within
a multiple instance learning framework.
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6.2.1 Multiple Instance Learning Formulation

The multiple instance learning framework can be formally described as follows.
Let X = [x1, . . . , xN ] ∈ R

n×N be training data instances where n is the dimension-
ality of an instance and N is the total number of training instances. The data are
grouped into K bags, B = {B1, . . . ,BK }, with associated binary bag-level labels,
L = {L1, . . . , LK }where Li ∈ {0, 1} for two-class classification.Abag,Bi , is termed
positive with Li=1 if it contains at least one positive instance. The exact number or
identification of positive and negative instances in each positive bag is unknown.
A bag is termed negative with Li=0 when it contains only negative instances. The
instancexi j ∈ Bi denotes the j th instance in bagBi with the (unknown) instance-level
label li j ∈ {0, 1}.

In standard supervised machine learning methods, all instance level labels are
known for the training data. However, in multiple instance learning, only the bag-
level labels are known. Given this formulation, the fundamental goal of an MIL
method is to determine what instance-level characteristics are common across all
positive bags and cannot be found in any instance in any negative bag.

6.2.2 Axis-Parallel Rectangles, Diverse Density, and Other
General MIL Approaches

Many general MIL approaches have been developed in the literature. Axis-parallel
rectangles (APR) [4] algorithms were the first set of MIL algorithms proposed by
Dietterich et al. for drug activity prediction in the 1990s. An axis-parallel rectangle
can be viewed as a region of true positive instances in the feature space. In APR
algorithms, a lower and upper bound encapsulating the positive class is estimated in
each feature dimension. Three APR algorithms, greedy feature selection elimination
count (GFS elim-count), greedy feature selection kernel density estimation (GFS
kde), and iterated discrimination (iterated-discrim) algorithms were investigated and
compared in [4]. As an illustration,GFS elim-countAPR refers to finding anAPR in a
greedy manner starting from a region that exactly covers all of the positive instances.
Figure6.4 shows the “all-positive APR” as a solid line bounding box of the instances,
where the unfilled markers represent positive instances and filled markers represent
negative instances. As shown in the figure, the all-positive APR may contain sev-
eral negative examples. The algorithm proceeds by greedily eliminating all negative
instances within the APR while maintaining as many positive instances as possible.
The dashed box in Fig. 6.4 indicates the final APR identified by the GFS elim-count
algorithm by iteratively excluding the “cheapest” negative instance, determined by
requiring the minimum number of positive instances that need to be removed from
the APR to exclude that negative instance.

Diverse density (DD) [5, 6] was one of the first multiple instance learning algo-
rithms that estimated a positive concept. The positive concept is a representative of
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Fig. 6.4 Illustration of the GFS elim-count procedure for excluding negative instances. The “all-
positive APR” is indicated by a solid box. The unfilled markers represent positive instances and
filled markers represent negative instances. The final APR is indicated by the dashed box [4]

the positive class. This representative is estimated in DD by identifying a represen-
tative feature vector that is close to the intersection of all positive bags and far from
every negative instance. In other words, the target concept represents an area that
preserves both a high density of target points and a low density of nontarget points,
called diverse density. This is accomplished in DD by maximizing the likelihood
function in Eq. (6.1),

argmax
d

K+∏

i=1

Pr(d = s|B+
i )

K++K−∏

i=K++1

Pr(d = s|B−
i ), (6.1)

where s is the assumed true positive concept, d is the concept representative to be
estimated, K+ is the number of positive bags and K− is the number of negative
bags. The first term in Eq. (6.1), which is used for all positive bags, is defined by the
noisy-or model,

Pr(d = s|B+
i ) = Pr(d = s|xi1, xi2, . . . , xi Ni ) = 1 −

Ni∏

j=1

(1 − Pr(d = s|xi j ∈ B+
i )),

(6.2)
where Pr(d = s|xi j ) = exp(−‖xi j − d‖2). The term in (6.2) can be interpreted as
requiring there be at least one instance in positive bag B+

i that is close to the positive
representative d. This can be understood by noticing that (6.2) evaluates to 1 if
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there is at least one instance in the positive bag that is close to the representative
(i.e., exp(−‖xi j − d‖2) → 1 which implies 1 − Pr(d = s|xi j ∈ B+

i ) → 0, resulting
in 1 − ∏Ni

j=1(1 − Pr(d = s|xi j ∈ B+
i )) → 1). In contrast, (6.2) evaluates to 0 if all

points in a positive bag are far from the positive concept.
The second term is defined by

Pr(d = s|B−
i ) =

Ni∏

j=1

(1 − Pr(d = s|xi j ∈ B−
i )). (6.3)

which encourages positive concepts to be far from all negative points. The noisy-or
model, however, is highly non-smooth and there are several local maxima in the solu-
tion space. This is alleviated in practice by performing gradient ascent repeatedlywith
starting points from every positive instance to maximize the proposed log-likelihood
function. Alternatively, an expectation maximization version of diversity density
(EM-DD) [7] was proposed by Zhang et al. in order to improve the computation time
of DD [5, 6]. EM-DD assumes there exists only one instance per bag corresponding
to the bag-level label and treats the knowledge of the key-point instance correspond-
ing to the bag-level label as a hidden latent variable. EM-DD starts with an initial
estimate of the positive concept d and iterates between an expectation step (E-step)
that selects one point per bag as the representative point of that bag and then per-
forms a quasi-newton optimization (M-step) [8] on the single-instance DD problem.
In practice, EM-DD is much more computationally efficient than DD. However, the
computational benefits are traded-off with potential inferior performance accuracy
to DD [9].

Since the development of the APR and DD, many MIL approaches have been
developed and published in the literature. These include prototype-based meth-
ods such as the dictionary-based multiple instance learning (DMIL) algorithm
[10] and its generalization, generalized dictionaries for multiple instance Learn-
ing (GDMIL) [11] which propose to optimize the noisy-or model using dictionary
learning approaches by learning a set of discriminative positive dictionary atoms to
describe the positive class [12–14]. The Max-Margin Multiple-Instance Dictionary
Learning (MMDL) methods [15] adopts the bag of words concept [16] and trains a
set of linear SVMs as a codebook. The novel assumption of MMDL is that the pos-
itive instances could belong to many different categories. For example, the positive
class “computer room” may have image patches containing a desk, a screen, and a
keyboard. The MILIS algorithm [17] alternates between the selection of an instance
per bag as a prototype that represents its bag and training a linear SVM on these
prototypes.

Additional support vector machine-based methods include the MILES (Multiple-
Instance Learning via Embedded Instance Selection) approach [18] which embeds
each training and testing bag into a high-dimensional space and then performs clas-
sification in the mapping space using a one-norm support vector machine (SVM)
[19]. Furthermore, the mi-SVM and MI-SVMmethods model the MIL problem as a
generalizedmixed integer formulation of the support vector machine [20].MissSVM
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algorithm [21] solves the MIL problem using a semi-supervised SVM with the con-
straint that at least one point from each positive bag must be classified as positive.
Hoffman et al. [22] jointly exploit the image-level and bounding box labels and
achieve state-of-the-art results in object detection. Li and Vasconcelos [23] further
investigateMIL problemwith labeling noise in negative bags and use “top instances”
as the representatives of “soft bags”, then proceed with bag-level classification via
latent-SVM [24].

Meng et al. [25] integrate the self-paced learning (SPL) [26] into MIL and pro-
pose SP-MIL for co-saliency detection. The Citation-kNN [27] algorithm adapts the
k nearest neighbor (kNN) method [28] to MIL problems by using the Hausdorff
distance [29] to compute distance between two bags and assigns bag-level labels
based on the nearest neighbor rules. Extensions of Citation-kNN include Bayesian
Citation-kNN [30] and Fuzzy-Citation-kNN [31, 32]. Furthermore, a large number
of MIL neural network methods such as [33] (often called “weak” learning methods)
have also been developed. Among the vast literature ofMIL research, very fewmeth-
ods focus on remote sensing and hyperspectral analysis. These methods are reviewed
in the following sections.

6.3 Multiple Instance Learning Approaches for
Hyperspectral Target Characterization and Sub-pixel
Target Detection

Hyperspectral target detection refers to the task of locating all instances of a target
given a known spectral signaturewithin a hyperspectral scene [34–36].Hyperspectral
target detection is challenging for a number of reasons: (1) Class Imbalance: The
number of training instances from the positive target class is small compared to
that of the negative training data such that training a standard classifier is difficult;
(2) Sub-pixel Targets: Due to the relatively low spatial resolution of hyperspectral
imagery and the diversity of natural scenes, one single pixelmay also contain different
ground materials, resulting in sub-pixel targets of interest; and (3) Imprecise Labels:
As outlined in Sect. 6.1, precise training labels are often difficult to obtain. For these
reasons, signature-based hyperspectral target detection [34] is commonly used as
opposed to a two-class classifier. However, the performance of a signature-based
detector depends on the target signature and obtaining an effective target signature
is challenging. In the past, this was commonly accomplished by measuring target
signatures for materials of interest in the lab or using point-spectrometers in the
field. However, this approach may introduce error due to changing environmental
and atmospheric conditions that impact spectral responses.

In this section, algorithms for multiple instance target characterization (i.e., esti-
mation of target concepts) from training data with label ambiguity are presented.
The aim is to estimate the target concepts from highly mixed training data that are
effective for target detection. Since these algorithms extract target concepts from
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training data assumed to have the same environmental context, influence from back-
ground materials, environmental and atmospheric conditions are addressed during
target concept estimation.

6.3.1 Extended Function of Multiple Instances

The extendedFunction ofMultiple Instances (eFUMI) approach [37, 38] ismotivated
by the linear mixing model in hyperspectral analysis. eFUMI assumes each data
point is a convex combination of target and/or nontarget concepts (i.e., endmembers)
and performs linear unmixing (i.e., decomposing spectra into endmembers and the
proportion of each endmember found in the associated pixel spectra) to estimate
positive and negative concepts. The approach also addresses label ambiguity by
incorporating a latent variable which indicates whether each instance of a positively
labeled bags is a true target.

More formally, the goal of eFUMI is to estimate a target concept, dT , nontarget
concepts, dk, ∀k = 1, . . . M , the number of needed nontarget concepts, M , and the
abundances, a j , which define the convex combination of the concepts for each data
point x j from labeled bags of hyperspectral data. If a bag Bi is positive, there is at
least one data point in Bi containing target,

if Li = 1, ∃x j ∈ Bi s.t. x j = α jTdT +
M∑

k=1

α jkdk + ε j , α jT > 0. (6.4)

However, the exact number of data points in a positive bag with a target contribution
(i.e., α jT > 0) and target proportions are unknown. Furthermore, if Bi is a negative
bag, this indicates that none of the data in this bag contains target,

if Li = 0,∀x j ∈ Bi , x j =
M∑

k=1

α jkdk + ε j . (6.5)

Given this framework, the eFUMI objective function is shown in (6.7). The three
terms in this objective function were motivated by the sparsity promoting iterated
constrained endmember (SPICE) algorithm [39]. The first term computes the squared
error between the input data and its estimate found using the current target and
nontarget signatures and proportions. The parameter u is a constant controlling the
relative importance of various terms. The scaling value w, which aids in the data
imbalance issue by weighting the influence of positive and negative data, is shown
in (6.6),

wl(x j ) =
{

1, if l(x j ) = 0;
αN−
N+ , if l(x j ) = 1.

, (6.6)
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where N+ is the total number of points in positive bags and N− is the total number
of points in negative bags.

The second term of the objective encourages target and nontarget signatures to
provide a tight fit around the data by minimizing the squared difference between
each signature and the global data mean, µ0. The third term is a sparsity promoting
term used to determine M , the number of nontarget signatures needed to describe the
input datawhere γk = �∑N

j=1 a
(t−1)
jk

and� is a constant parameter that controls the degree

sparsity is promoted. Higher values of � generally result in a smaller estimate M
value. The a(t−1)

jk values are the proportion values estimated in the previous iteration
of the algorithm. Thus, as the proportions for a particular endmember decrease, the
weight of its associated sparsity promoting term increases.

F = 1

2
(1 − u)

N∑

j=1

wj

∥∥∥∥(x j − z j a jT dT −
M∑

k=1

a jkdk)

∥∥∥∥
2

2
+ u

2

M∑

k=T,1

∥∥∥∥dk − µ0

∥∥∥∥
2

2
+

M∑

k=1

γk

N∑

j=1

a jk

(6.7)

E[F] =
∑

z j∈{0,1}

⎡

⎣1

2
(1 − u)

N∑

j=1

wj P(z j |x j , θ
(t−1))

∥∥∥∥∥x j − z ja jTdT −
M∑

k=1

a jkdk

∥∥∥∥∥

2

2

⎤

⎦

+u

2

M∑

k=T,1

‖dk − µ0‖22 +
M∑

k=1

γk

N∑

j=1

a jk (6.8)

The difference between (6.7) and the SPICE objective is the inclusion of a set
of hidden, latent variables, z j , j = 1, . . . , N , accounting for the unknown instance-
level labels l(x j ). To address the fact that the z j values are unknown, the expected
values of the log likelihood with respect to z j is taken as shown in (6.8). In (6.8), θ t

is the set of parameters estimated at iteration t and P(z j |x j , θ
(t−1)) is the probability

of individual points containing any proportion of target or not. The value of the
term P(z j |x j , θ

(t−1)) is determined given the parameter set estimated in the previous
iteration and the constraints of the bag-level labels, Li , as shown in (6.9),

P(z j |x j , θ
(t−1)) =

⎧
⎪⎪⎨

⎪⎪⎩

e−βr j , if z j = 0, Li = 1;
1 − e−βr j , if z j = 1, Li = 1;
0, if z j = 1, Li = 0;
1, if z j = 0, Li = 0;

(6.9)

where β is a scaling parameter and r j =
∥∥∥x j − ∑M

k=1 a jkdk
∥∥∥
2

2
is the approximation

residual between x j and its representation using only background endmembers. The
definition of P(z j |x j , θ

(t−1)) in (6.9) indicates that if a point x j is a nontarget point, it
should be fully represented by the background endmembers with very small residual
r j ; thus, P(z j = 0|x j , θ

(t−1)) = e−βr j → 1. Otherwise, if x j is a target point, it may
not be well represented by only the background endmembers, so the residual r j must
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be large and P(z j = 1|x j , θ
(t−1)) = 1 − e−βr j → 1. Note, z j is unknown only for

the positive bags; in the negative bags, z j is fixed to 0. This constitutes the E-step of
the EM algorithm.

The M-step is performed by optimizing (6.8) for each of the desired parame-
ters. The method is summarized in Algorithm 6.1.1 Please refer to [37] for detailed
discussion of the optimization approach and derivation.

Algorithm 6.1 eFUMI EM algorithm

1: Initialize θ0 = {dT ,D,A}, t = 1
2: repeat
3: E-step: Compute P(z j |x j , θ

(t−1)) given θ t−1

4: M-step:
5: Update dT and D by maximizing (6.8) wrt. dT , D
6: Update A by maximizing (6.8) wrt. A s.t. the sum-to-one and non-negative constraints
7: Prune each dk , k = 1, . . . , M if max j (a jk) ≤ τ where τ is a fixed threshold (e.g. τ =

10−6)
8: t ← t + 1
9: until Convergence
10: return dT ,D,A

6.3.2 Multiple Instance Spectral Matched Filter and Multiple
Instance Adaptive Coherence/Cosine Detector

The eFUMI algorithm described above can be viewed as a semi-supervised hyper-
spectral unmixing algorithm, where the endmembers of the target and nontarget
materials are estimated. Since eFUMIminimizes the reconstruction error of the data,
it is a representative algorithm that learns target concepts that are representatives for
(and have similar shape to) the target class. Significant challenges in applying the
eFUMI algorithm in practice are the large number of parameters that need to be set
and the fact that all positive bags are combined in the algorithm, neglecting the MIL
concept that each positive bag contains at least one target instance.

In contrast, the multiple instance spectral matched filter (MI-SMF) and multiple
instance adaptive coherence/cosine detector (MI-ACE) [41] learn discriminative tar-
get concepts that maximize the SMF or ACE detection statistics, which preserves
bag structure and does not require tuning parameter settings. These goals are accom-
plished by optimizing the following objective function,

argmax
s

1

K+
∑

i :Li=1

�(x∗
i , s) − 1

K−
∑

i :Li=0

1

N−
i

∑

xi j∈B−
i

�(xi j , s), (6.10)

1The eFUMI implementation is available at: https://github.com/GatorSense/FUMI [40].

https://github.com/GatorSense/FUMI
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where s is the target signatures,�(x, s) is the detection statistics of data point x given
target signature s, and x∗

i is the selected representative instance from the positive bag
B+
i , K

+ is the number of positive bags and K− is the number of negative bags.

x∗
i = arg max

xi j∈B+
i

�(xi j , s). (6.11)

This general objective can be applied to any target detection statistics. However,

consider the ACE detector, �ACE (x, s) = sT �−1
b (x−µb)√

sT �−1
b s

√
(x−µb)

T �−1
b (x−µb)

, where µb is

the mean of the background and �b is the background covariance. This detection
statistic can be viewed as an inner product in a whitened coordinate space

�ACE (x, s) = sT�−1
b (x − µb)√

sT�−1
b s

√
(x − µb)

T�−1
b (x − µb)

= sTUV− 1
2V− 1

2UT (x − µb)√
sTUV− 1

2 V− 1
2UT s

√
(x − µb)

TUV− 1
2V− 1

2UT (x − µb)

=
(

ŝ∥∥ŝ
∥∥

)T (
x̂∥∥x̂
∥∥

)

= ˆ̂sT ˆ̂x, (6.12)

where x̂ = V− 1
2UT (x − µb), ŝ = V− 1

2UT s, U and V are the eigenvectors and eigen-
values of the background covariance matrix�b, respectively, ˆ̂s = ŝ‖ŝ‖ , and ˆ̂x = x̂‖x̂‖ .
It is clear from Eq. (6.12) that the ACE detector response is the cosine value between
a test data point, x, and a target signature, s, after whitening. Thus, the objective
function (6.10) for MI-ACE can be rewritten as

argmax
ˆ̂s

1

K+
∑

i :Li=1

ˆ̂sT ˆ̂x∗
i − 1

K−
∑

i :Li=0

1

N−
i

∑

xi j∈B−
i

ˆ̂sT ˆ̂xi j , such that ˆ̂sT ˆ̂s = 1. (6.13)

The l2 norm constraint, ˆ̂sT ˆ̂s = 1, is resulted from the normalization term in Eq. (6.12).
The optimum for (6.13) can be derived by solving the Lagrangian optimization
problem for the target signature

ˆ̂s = t
‖t‖ , where t = 1

K+
∑

i :Li=1

ˆ̂x∗
i − 1

K−
∑

i :Li=0

1

N−
i

∑

xi j∈B−
i

ˆ̂xi j . (6.14)



154 C. Jiao et al.

A similar approach can be applied for the spectral matched filter detector,

�SMF (x, s) = sT�−1
b (x − µb)√
sT�−1

b s
, (6.15)

resulting in the following update equation for MI-SMF:

ˆ̂s = t
‖t‖ , where t = 1

K+
∑

i :Li=1

x̂∗
i − 1

K−
∑

i :Li=0

1

N−
i

∑

xi j∈B−
i

x̂i j . (6.16)

Algorithm 6.2MI-SMF/MI-ACE
1: Compute µb and �b as the mean and covariance of all instances in the negative bags

2: Subtract the background mean and whiten all instances, x̂ = V− 1
2 UT (x − µb)

3: If MI-ACE, normalize: ˆ̂x = x̂‖x̂‖
4: Initialize ˆ̂s using the instance in a positive bag resulting in largest objective function value
5: repeat
6: Update the selected instances, x∗

i , for each positive bag, B
+
i using (6.11)

7: Update ˆ̂s using (6.14) for MI-ACE or (6.16) for MI-SMF
8: until Stopping Criterion Reached

9: return s = t
‖t‖ , where t = UV

1
2 ˆ̂s

TheMI-SMF andMI-ACE algorithms alternate between the two steps: (1) select-
ing representative instances fromeachpositive bag and (2) updating the target concept
s. TheMI-SMF andMI-ACEmethods stopwhen there is no change in the selection of
instances from positive bags across subsequent iterations. Similar to [7], since there
exists a finite set of possible selection of positive instances given a finite training
bags, the convergence of MI-SMF and MI-ACE is guaranteed. In the experiments
shown in [41], MI-SMF and MI-ACE generally converged with less than seven iter-
ations. The MI-SMF/MI-ACE algorithm is summarized in Algorithm 6.2.2 Please
refer to [41] for a detailed derivation of the algorithm.

6.3.3 Multiple Instance Hybrid Estimator

Both eFUMI and theMI-ACE/MI-SMFmethods are limited in that they only estimate
a single target concept. However, in many problems, the target class has significant
spectral variability [43]. The Multiple Instance Hybrid Estimator (MI-HE) [44, 45]
was developed to fill this gap and estimate multiple target concepts simultaneously.

2The MI-SMF and MI-ACE implementations are available at: https://github.com/GatorSense/
MIACE [42].

https://github.com/GatorSense/MIACE
https://github.com/GatorSense/MIACE
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The proposed MI-HE algorithm maximizes the responses of the hybrid sub-pixel
detector [46] within the MIL framework. This is accomplished by maximizing the
following objective function:

J = ln
K+∏

i=1

⎛

⎝ 1

Ni

Ni∑

j=1

Pr(li j = 1|Bi )
b
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⎠

1
b K∏

i=K++1

Ni∏

j=1

Pr(li j = 0|Bi )

= −
K+∑

i=1

1

b
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⎛

⎝ 1

Ni

Ni∑

j=1

exp

(
−β

‖xi j − Dai j‖2
‖xi j − D−pi j‖2

)b
⎞

⎠

+ρ

K∑

i=K++1

Ni∑

j=1

‖xi j − D−pi j‖2

+α

2

K∑

i=K++1

Ni∑

j=1

(
(D+a+

i j )
T xi j

)2
, (6.17)

where the first term corresponds to a generalized mean (GM) term [47], which
can approximate the max operation as b approaches +∞. This term can be inter-
preted as determining a representative positive instance in each positive bag by
identifying the instance that maximizes the hybrid sub-pixel detector (HSD) [46]

statistic, exp
(
−β

‖xi j−Dai j‖2
‖xi j−D−pi j‖2

)
. In the HSD, each instance is modeled as a sparse

linear combination of target and/or background concepts D, x ≈ Da, where D =[
D+ D−] ∈ R

d×(T+M), D+ = [d1, . . . ,dT ] is the set of T target concepts and
D− = [

dT+1, . . . ,dT+M
]
is the set of M background concepts, β is a scaling param-

eter, and ai j and pi j are the sparse representation of xi j given the entire concept
set D and background concept set D−, respectively. The second term in the objec-
tive function is viewed as the background data fidelity term, which is based on the
assumption that minimizing the least squares of all negative points provides a good
description of the background. The scaling factor ρ is usually set to be smaller than
one to control the influence of negative bags. The third term is the cross incoherence
term (motivated by theDictionary Learningwith Structured Incoherence [48] and the
Fisher discrimination dictionary learning (FDDL) algorithm [49, 50]) that encour-
ages positive concepts to have distinct spectral signatures from negative points.

The initialization of target concepts in D is conducted by computing the mean
of T random subsets drawn from the union of all positive training bags. The vertex
component analysis (VCA) [53] method was applied to the union of all negative bags
and the M cluster centers (or vertices) were set as the initial background concepts.
The pseudocode of the MI-HE algorithm is presented in Algorithm 6.3.3 Please refer
to [44] for a detailed optimization derivation.

3The MI-HE implementation is available at: https://github.com/GatorSense/MIHE [54].

https://github.com/GatorSense/MIHE
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Algorithm 6.3MI-HE algorithm
Input: MIL training bags B = {B1, . . . ,BK }, MI-HE parameters
1: Initialize D0, i ter = 0
2: repeat
3: for t = 1, . . . , T do
4: Solve ai j , pi j , ∀i ∈ {1, . . . , K }, j ∈ {1, . . . , Ni } using the iterative shrinkage-

thresholding algorithm [51, 52]
5: Update dt using gradient descent
6: dt ← 1

‖dt‖2 dt
7: end for
8: for k = T + 1, . . . , T + M do
9: Solve ai j , pi j , ∀i ∈ {1, . . . , K }, j ∈ {1, . . . , Ni } using the iterative shrinkage-

thresholding algorithm [51, 52]
10: Update dk using gradient descent
11: dk ← 1

‖dk‖2 dk
12: end for
13: i ter ← i ter + 1
14: until Stopping criterion reached
15: return D

6.3.4 Multiple Instance Learning for Multiple Diverse
Hyperspectral Target Characterizations

The multiple instance learning of multiple diverse characterizations for SMF
(MILMD-SMF) and ACE detector (MILMD-ACE) [55] is an extension of MI-ACE
and MI-SMF that learns multiple target signatures for characterization of the vari-
ability in hyperspectral target concepts. Different from theMI-HEmethod explained
above, the MILMD-SMF and MILMD-ACE methods do not model target and back-
ground signatures explicitly. Instead, the MILMD-SMF and MILMD-ACE methods
focus on maximizing the detection statistics of the positive bags and capturing the
characteristics of the training data using a set of diverse target signatures, as shown
below:

S∗ = argmax
S

∏

i

P(S|Bi , Li = 1)
∏

i

P(S|Bi , Li = 0), (6.18)

where S = {
s(1), s(2), . . . s(K)

}
is the K assumed target signatures and P(S|Bi , Li =

1) and P(S|Bi , Li = 0) denote the probabilities given the positive and negative
bags, respectively. The authors consider the following equivalent form of (6.18) for
multiple target characterization can be shown as

S∗ = argmax
S

{C1(S) + C2(S)} , (6.19)

C1(S) = 1

N+
∑

i :Li=1

	(D, X∗
i ,S), (6.20)
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C1(S) = − 1

N−
∑

i :Li=0

ϒ(D, Xi ,S), (6.21)

where	(·) andϒ(·) are defined to capture the detection statistics of the positive and
negative bags, D(·) is detection response of the given ACE or SMF detectors and
X∗

i = {x(1)∗
i , x(2)∗

i , . . . , x(K )∗
i } is the subset of the i th positive bag of selected instances

with maximum detection responses corresponding to one of the target signatures sk

such that
x (k)∗
i = argmax

xn∈Bi ,Li=1
D(xn, s(k)). (6.22)

The term 	(D, X∗
i ,S) is the global detection statistics term for the positive bags

whose ACE form is shown in

	ACE (D, X∗
i ,S) = 1

K

∑

k

ˆ̂s(k)T ˆ̂x(k)∗
i . (6.23)

Similar to [41], ˆ̂s(k) and ˆ̂x(k)
are the transformed kth target signature and correspond

instance after whitening using the background information and normalization. The
global detection term 	ACE (D, X∗

i ,S) provides an average detection statistics over
the positive bags given a set of learned target signatures. Of particular note for this
method, in contrast with MI-HE, is the approach assumes that each positive bag
contains a representative for each variation of the positive concept.

On the other hand, the global detection term ϒACE (D, Xi ,S) for negative
instances should be small and thus suppresses the background as shown in Eq. (6.24).
This definition means if the maximum responses of target signature set S over the
negative instances are minimized, the estimated target concepts can effectively dis-
criminate nontarget training instances

ϒACE (D, Xi ,S) = 1

Ni,Li=0

∑

xn∈Bi ,Li=0

max
k

ˆ̂s(k)T ˆ̂xn. (6.24)

In order to explicitly apply the normalization constraint and encourage diversity in
the estimated multiple target concepts, [55] also includes two terms, a normalization
term by pushing the inner product of the estimated signatures to 1 and a diversity
promoting term by maximizing the difference between estimated target concepts as
shown in (6.25), and (6.26), respectively.

Cdiv(S) = − 2

K (K − 1)

∑

k,l,k �=l

ˆ̂s(k)T ˆ̂s(l), (6.25)

Ccon(S) = − 1

K

∑

k

∣∣∣∣ˆ̂s
(k)T ˆ̂s(k) − 1

∣∣∣∣. (6.26)
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Combining the global detection statistics, the diversity promoting and normaliza-
tion constraint terms, the final cost function is shown as (6.27).

CACE = 1
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∑

i :Li=1

∑

k

1

K
ˆ̂s(k)T ˆ̂x(k)∗

i − 1

N−
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i :Li=0

1
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xn∈Bi ,Li=0

max
k

ˆ̂s(k)T ˆ̂xn

− 2α

K (K − 1)

∑

k,l,k �=l

ˆ̂s(k)T ˆ̂s(l) − λ

K

∑

k

∣∣∣∣ˆ̂s
(k)T ˆ̂s(k) − 1

∣∣∣∣. (6.27)

The objective for SMF can be similarly derived, where the only difference is
the use of training data without normalization. For the optimization of Eq. (6.27),
gradient descent is applied. Since themax(·) and | · | operators are not differentiable
at zero, the noisy-or function is adopted as an approximation for max(·) and a sub-
gradient method is performed to compute the gradient of | · |. Please refer to [55] for
a detailed optimization derivation.

6.3.5 Experimental Results for MIL in Hyperspectral Target
Detection

In this section, several MIL learning methods on both simulated and real hyperspec-
tral detection tasks are evaluated to illustrate the properties of these algorithms and
provide insight into how and when these methods are effective.

For the experiments conducted in this paper, the parameter settings of the compari-
son algorithmswere optimized using a grid search on the first task of each experiment
and then applied to the remaining tasks. For example, for mi-SVM classifier on the
Gulfport Brown target task, the γ value of the RBF kernel was firstly varied from 0.5
to 5 at a step size of 0.5, and then a finer search around the current best value (with the
highest AUC) at a step of 0.1 was performed. For algorithms with stochastic result,
e.g., EM-DD, eFUMI, each parameter setting was run five times and the median
performance was selected. Finally the optimal parameters that achieve the highest
AUC for the brown target were selected and used for the other three target types.

6.3.5.1 Simulated Data

As discussed in Sect. 6.3.1, the eFUMI algorithm combines all positive bags as one
big positive bag and all negative bags as one big negative bag and learns target concept
from the big positive bag that is different from the negative bag. Thus, if the negative
bags contain incomplete knowledge of the background, e.g., some nontarget concept
appears only in the subset of positive bags, eFUMI will perform poorly. However,
the discriminative MIL algorithms, e.g., MI-HE, MI-ACE, and MI-SMF, maintain
bag structure and can distinguish the target.
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Fig. 6.5 Signatures from ASTER library used to generate simulated data

Given this hypothesis, simulated data was generated from four spectra selected
from the ASTER spectral library [56]. Specifically, the Red Slate, Verde Antique,
Phyllite, and Pyroxenite spectra from the rock class with 211 bands and wavelengths
ranging from 0.4 to 2.5µm (as shown in Fig. 6.5 in solid lines) were used as endmem-
bers to generate hyperspectral data. Red Slate was labeled as the target endmember.

Four sets of highly mixed noisy data with varied mean target proportion value
(αt_mean) were generated, a detailed generation process can be found in [37]. Specif-
ically, this synthetic data has 15 positive and 5 negative bags with each bag having
500 points. If it is a positively labeled bag, there are 200 highly mixed target points
containing mean target (Red Slate) proportion from 0.1 to 0.7, respectively, to vary
the level of target presence from weak to high. Gaussian white noise was added so
that signal-to-noise ratio of the data was set to 20dB. To highlight the ability of MI-
HE, MI-ACE and MI-SMF to leverage individual bag-level labels, we use different
subsets of background endmembers to build synthetic data as shown in Table6.1.

Table 6.1 List of constituent endmembers for synthetic data with incomplete background Knowl-
edge

Bag no. Bag label Target endmember Background endmember

1–5 + Red slate Verde Antique, Phyllite,
Pyroxenite

6–10 + Red slate Phyllite, Pyroxenite

11–15 + Red slate Pyroxenite

16–20 − N/A Phyllite, Pyroxenite
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Table6.1 shows that the negatively labeled bags only contain two negative endmem-
bers and there exists one confusing background endmember in the first 5 positive
bags which is Verde Antique. It is expected that the discriminative MIL algorithms,
MI-HE, MI-ACE, and MI-SMF, should be able to perform well in this experiment
configuration.

The aforementioned MI-HE [44, 45], eFUMI [37, 38], MI-SMF and MI-ACE
[41], DMIL [10, 11] and mi-SVM [9] are multiple instance target concept learning
methods. The mi-SVM algorithm performs a comparison of MIL approach that does
not rely on estimating a target signature. Figure6.6a shows the estimated target
signature from data with 0.3 mean target proportion value. It clearly shows that
eFUMI is always confused with another nontarget endmember, Verde Antique, that
exists in some positive bags but is excluded from the background bags. It also shows
the other comparison algorithms can estimate a target concept close to the ground
truth Red Slate spectrum. One thing need to be explained here is since MI-ACE
and MI-SMF are discriminative concept learning methods that try to minimize the
detection response of negative bags, they are not expected to recover the true target
signature.

For simulated detection analysis, estimated target concepts from the training data
were then applied to the test data generated separately following the same generating
procedure. The detection was performed using the HSD [46] or ACE [57] detection
statistic. For MI-HE and eFUMI, both methods were applied since those two algo-
rithms can come out as a set of background concept from training simultaneously;
for MI-SMF, both SMF and ACE were applied since MI-SMF’s objective is max-
imizing the multiple instance spectral matched filter; for the rest multiple instance
target concept learning algorithms, MI-ACE, DMIL, only ACE was applied. For the
testing procedure of mi-SVM, a regular SVM testing process was performed using
LIBSVM [58], and the decision values (signed distances to hyperplane) of test data
determined from trained SVM model were taken as the confidence values. For the
signature-based detectors, the background data mean and covariance were estimated
from the negative instances of the training data.

For quantitative evaluation, Fig. 6.6b shows the receiver operating characteristic
(ROC) curves using estimated target signature, where it can be seen that the eFUMI
is confused with the testing Verde Antique data at very low PFA (probability of false
alarms) rate. Table6.2 shows the area under the curve (AUC) of proposedMI-HE and
comparison algorithms. The results reported are the median results over five runs of
the algorithm on the same data. From Table6.2, it can be seen that for MI-HE and
MI-ACE, the best performance on detectionwas achieved usingACE detector, which
is quite close to the performance of using the ground truth target signature (denoted
as values with stars). The reason thatMI-HE’s detection using HSD detector is a little
worse is that HSD relies on knowing the complete background concept to properly
represent each nontarget testing data, the missing nontarget concept (Verde Antique)
makes the nontarget testing data containing Verde Antiquemaintain a relatively large
reconstruction error, and thus large detection statistic.
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Fig. 6.6 MI-HE and comparisons on synthetic data with incomplete background knowledge,
αt_mean = 0.3. MI-SMF and MI-ACE are not expected to recover the true signature. a Estimated
target signatures for Red Slate and comparison with ground. b ROC curves cross validated on test
data
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Table 6.2 Area under the ROC curves for MI-HE and comparison algorithms on simulated hyper-
spectral datawith incomplete background knowledge. Best results shown in bold, second best results
underlined, and ground truth shown with an asterisk

Algorithm αt_mean

0.1 0.3 0.5 0.7

MI-HE (HSD) 0.743 0.931 0.975 0.995

MI-HE (ACE) 0.763 0.952 0.992 0.999

eFUMI [37] (ACE) 0.675 0.845 0.978 0.998

eFUMI [37] (HSD) 0.671 0.564 0.978 0.998

MI-SMF [41] (SMF) 0.719 0.923 0.972 0.993

MI-SMF [41] (ACE) 0.735 0.952 0.992 0.999

MI-ACE [41] (ACE) 0.764 0.952 0.992 0.999

mi-SVM [9] 0.715 0.815 0.866 0.900

DMIL [10, 11] (ACE) 0.687 0.865 0.971 0.996

Ground Truth (ACE) 0.765* 0.953* 0.992* 0.999*

6.3.5.2 MUUFL Gulfport Hyperspectral Data

The MUUFL Gulfport hyperspectral data set collected over the University of South-
ern Mississippi-Gulfpark Campus was used to evaluate the target detection perfor-
mance across various MIL classification methods. This data set contains 325 × 337
pixels with 72 spectral bands corresponding to wavelengths from 367.7 to 1043.4nm
at a 9.5−9.6nm spectral sampling interval. The ground sample distance of this hyper-
spectral data set is 1m [1]. The first four and last four bands were removed due to
sensor noise. Two sets of this data (Gulfport Campus Flight 1 and Gulfport Campus
Flight 3) were selected as cross-validated training and testing data for these two data
sets have the same altitude and spatial resolution. Throughout the scene, there are 64
man-made targets in which 57 were considered in this experiment which are cloth
panels of four different colors: Brown (15 examples), Dark Green (15 examples),
Faux Vineyard Green (FVGr) (12 examples), and Pea Green (15 examples). The spa-
tial location of the targets are shown as scattered points over an RGB image of the
scene in Fig. 6.7. Some of the targets are in the open ground and some are occluded
by the live oak trees. Moreover, the targets also vary in size, for each target type,
there are targets that are 0.25m2, 1m2, and 9m2 in area, respectively, resulting a
very challenging, highly mixed sub-pixel target detection problem.

MUUFL Gulfport Hyperspectral Data, Individual Target Type Detection
For this part of the experiments, each individual target type was treated as a target
class, respectively. For example, when “Brown” is selected as target class, a 5 × 5
rectangular region corresponding to each of the 15 ground truth locations denoted
by GPS was grouped into a positive bag to account for the drift coming from GPS.
This size was chosen based on the accuracy of the GPS device used to record the
ground truth locations. The remaining area that does not contain a brown target was
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Brown
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Fig. 6.7 MUUFL Gulfport data set RGB image and the 57 target locations

grouped into a big negative bag. This constructs the detection problem for “Brown”
target. Similarly, there are 15, 12, and15 positive labeled bags for Dark Green, Faux
Vineyard Green, and Pea Green, respectively.

The comparison algorithms were evaluated on this data using the Normalized
AreaUnder the receiver operating characteristic curve (NAUC) inwhich the area was
normalized out to a false alarm rate (FAR) of 1 × 10−3 false alarms/m2 [59]. During
detection on the test data, the background mean and covariance were estimated from
the negative instances of the training data. The results reported are the median results
over five runs of the algorithm on the same data.

Figure6.8a shows the estimated target concept by all comparisons for Dark Green
target type training on flight 3. We can see that the eFUMI and MI-HE are able to
recover the target concept quite close to ground truth spectra manually selected from
the scene. Figure6.8b shows the detection ROCs given target spectra estimated on
flight 3 and cross validated on flight 1. Table6.3 shows theNAUCs for all comparison
algorithms cross validated on all four types of target, where it can be seen that MI-
HE generally outperforms the comparisons for most of the target types and achieves
close to the performance of using ground truth target signatures. Since MI-HE is a
discriminative target concept learning framework that aims to distinguish one target
instance from each positively labeled bag, MI-HE had a lower performance for the
pea green target because of the relatively large occlusion of those targets causing
difficulty in distinguishing pea green signature from each of the positive bag.
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Fig. 6.8 MI-HE and comparisons on Gulfport Data Dark Green, training flight 3 testing flight 1.
a Estimated target signatures from flight 3 for Brown and comparison with ground truth. b ROC
curves cross validated on flight 1
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Table 6.3 Area under the ROC curves for MI-HE and comparison algorithms on Gulfport data
with individual target type. Best results shown in bold, second best results underlined, and ground
truth shown with an asterisk

Alg. Train on Flight 1; Test on Flight 3 Train on Flight 3; Test on Flight 1

Brown Dark Gr. Faux
Vine Gr.

Pea Gr. Brown Dark Gr. Faux
Vine Gr.

Pea Gr.

MI-HE
(HSD)

0.499 0.453 0.655 0.267 0.781 0.532 0.655 0.350

MI-HE
(ACE)

0.433 0.379 0.104 0.267 0.710 0.360 0.111 0.266

eFUMI
[37]
(ACE)

0.423 0.377 0.654 0.267 0.754 0.491 0.605 0.393

eFUMI
[37]
(HSD)

0.444 0.436 0.653 0.267 0.727 0.509 0.500 0.333

MI-SMF
[41]
(SMF)

0.419 0.354 0.533 0.266 0.657 0.405 0.650 0.384

MI-SMF
[41]
(ACE)

0.448 0.382 0.579 0.316 0.760 0.501 0.613 0.388

MI-ACE
[41]
(ACE)

0.474 0.390 0.485 0.333 0.760 0.483 0.593 0.380

mi-svm
[9]

0.206 0.195 0.412 0.265 0.333 0.319 0.245 0.274

EM-DD
[7]
(ACE)

0.411 0.381 0.486 0.279 0.760 0.503 0.541 0.416

DMIL
[10, 11]
(ACE)

0.419 0.383 0.191 0.009 0.743 0.310 0.081 0.083

Ground
Truth
(ACE)

0.528* 0.429* 0.656* 0.267* 0.778* 0.521* 0.663* 0.399*

MUUFL Gulfport Hyperspectral Data, All Four Target Types Detection
For training and detection for the four target types together, the positive bags were
generated by grouping each of the 5 × 5 regions denoted by the ground truth that
it contains any of the four types of target. Thus, for each flight there are 57 target
points and 57 positive bags were generated. The remaining area that does not contain
any target was grouped into a big negative bag. Table6.4 summarizes the NAUCs as
a quantitative comparison, which shows that the detection statistic by the proposed
MI-HE using HSD is significantly better than the comparison algorithms.
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Table 6.4 Area under the ROC curves for MI-HE and comparison algorithms on Gulfport data
with all four target types. Best results shown in bold, second best results underlined, and ground
truth shown with an asterisk

Alg. Test Flight 3 Test Flight 1 Alg. Test Flight 3 Test Flight 1

MI-HE (HSD) 0.304 0.449 MI-SMF [41]
(ACE)

0.219 0.327

MI-HE (ACE) 0.257 0.254 MI-SMF [41]
(SMF)

0.198 0.277

eFUMI [37]
(ACE)

0.214 0.325 mi-SVM [9] 0.235 0.269

eFUMI [37]
(HSD)

0.256 0.331 EM-DD [7]
(ACE)

0.211 0.310

MI-ACE [41]
(ACE)

0.226 0.340 DMIL [10,
11] (ACE)

0.198 0.225

Ground Truth
(ACE)

0.330* 0.490*

6.4 Multiple Instance Learning Approaches for Classifier
Fusion and Regression

Although more extensively studied for the case of sub-pixel hyperspectral target
detection, theMultiple InstanceLearning approach can be used in other hyperspectral
applications including fusion with other sensors and regression, in addition to two-
class classification and detection problems discussed in previous sections. In this
section, algorithms formultiple instance classifier fusion and regression are presented
and their applications to hyperspectral and remote sensing data analysis are discussed.

6.4.1 Multiple Instance Choquet Integral Classifier Fusion

The multiple instance Choquet integral (MICI) algorithm4 [61, 62] is a multiple
instance classifier fusion method to integrate different classifier outputs with impre-
cise labels under the MIL framework. In MICI, the Choquet integral [63, 64] was
used under the MIL framework to fuse outputs from multiple classifiers or sensors
for improving the accuracy and accounting for imprecise labels for hyperspectral
classification and target detection.

The Choquet integral (CI) is an effective nonlinear information aggregation
method based on the fuzzymeasure.Assume there existsm sources,C = {c1, c2, . . . ,
cm}, for fusion. These “sources” can be the decision outputs by different classifiers
or data collected by different sensors. The power set of C is denoted as 2C , which

4The MICI implementation is available at: https://github.com/GatorSense/MICI [60].

https://github.com/GatorSense/MICI
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contains all possible (crisp) subsets of C . A monotonic and normalized fuzzy mea-
sure, g, is a real valued function that maps 2C → [0, 1]. It satisfies the following
properties:

1. g(∅) = 0; empty set
2. g(C) = 1; normalization property
3. g(A) ≤ g(B) if A ⊆ B and A, B ⊆ C. monotonicity property.

Let h(ck; xn) denote the output of the kth classifier, ck , on the nth instance, xn .
The discrete Choquet integral of instance xn given C (m sources) is computed using

Cg(xn) =
m∑

k=1

[
h(ck; xn) − h(ck+1; xn)

]
g(Ak), (6.28)

where the sources are sorted so that h(c1; xn) ≥ h(c2; xn) ≥ · · · ≥ h(cm; xn) and
h(cm+1; xn) is defined to be zero. The fuzzy measure element value g(Ak) corre-
sponds to the subset Ak = {c1, c2, . . . , ck}.

In a classifier fusion problem, given training data and fusion sources, h(cm; xn)
∀m, n are known. The desired bag-level labels for sets of Cg(xn) values are also
known (positive label “+1”, negative label “0”). Then, the goal of theMICI algorithm
is to learn all the element values of the unknown fuzzy measure g from the training
data and bag-level (imprecise) labels. The MICI method includes three variations to
formulate the fusion problem under theMIL framework to address label imprecision.
The variations include the noisy-or model, the min-max model, and the generalized-
mean model.

TheMICInoisy-ormodel follows theDiverseDensity formulation (seeSect. 6.2.2)
and uses a noisy-or objective function

JN =
K−∑

a=1

N−
b∑

i=1

ln
(
1 − N

(
Cg(x−

ai )|µ, σ 2))

+
K+∑

b=1

ln

⎛

⎝1 −
N+
b∏

j=1

1 − N
(
Cg(x+

bj )|µ, σ 2
)
⎞

⎠ ,

(6.29)

where K+ denotes the total number of positive bags, K− denotes the total number
of negative bags, N+

b is the total number of instances in positive bag b, and N−
a is the

total number of instances in negative bag a. Each data point/instance is either positive
or negative, as indicated by the following notation: x−

ai is the i th instance in the ath
negative bag and x+

bj is the j th instance in the bth positive bag. TheCg is the Choquet
integral output given measure g computed using (6.28). The µ and σ 2 are the mean
and variance of the Gaussian functionN (·), respectively. In practice, the parameter
µ can be set to 1 or a value close to 1 for two-class classifier fusion problems, in
order to encourage the CI values of positive instances to be 1 and the CI values of
negative instances to be far from 1. The variance of the Gaussian σ 2 controls how
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sharply the CI values are pushed to 0 and 1, and thus controls the weighting of the
two terms in the objective function. By maximizing the objective function (6.29), the
CI values of all the points in the negative bag are encouraged to be zero (first term)
and the CI values of at least one instance in the positive bag are encouraged to be
one (second term), which follows the MIL assumption.

The MICI min-max model applies the min and max operators to the negative
and positive bags, respectively. The min-max model follows the MIL formulation
without the need to manually set parameters such as the Gaussian variance in the
noisy-or model. The objective function of the MICI min-max model is

JM =
K−∑

a=1

max
∀x−

ai∈B−
a

(
Cg(x−

ai ) − 0
)2 +

K+∑

b=1

min
∀x+

bj∈B+
b

(
Cg(x+

bj ) − 1
)2

, (6.30)

where B−
a denotes the ath negative bag, and B+

b denotes the bth positive bag. The
remaining terms follow the same notation as in (6.29). The first term of the objective
function encourages the CI values of all instances in the negative bag to be zero, and
the second term encourages the CI values of at least one instance in the positive bag
to be one. By minimizing the objective function in (6.30), the MIL assumption is
satisfied.

Instead of selecting only one instance from each bag as a “prime instance” that
determines the bag-level label as does the min-max model, the MICI generalized-
mean model allows more instances to contribute toward the classification of bags.
The MICI generalized-mean objective function is written as

JG =
K−∑

a=1

⎡

⎣ 1

N−
a

N−
a∑

i=1

(
Cg(x−

ai ) − 0
)2p1

⎤

⎦

1
p1

+
K+∑

b=1

⎡

⎣ 1

N+
b

N+
b∑

j=1

(
Cg(x+

bj ) − 1
)2p2

⎤

⎦

1
p2

,

(6.31)
where p1 and p2 are the exponential factors controlling the generalized-mean opera-
tion. When p1 → +∞ and p2 → −∞, the generalized-mean terms becomes equiv-
alent to the min and max operators, making the generalized-mean model equivalent
to the min-max model. By adjusting the p value, the generalized-mean term can act
as varying other aggregating operators, such as arithmetic mean (p = 1) or quadratic
mean (p = 2). For another interpretation, when p ≥ 1, the generalized-mean can be
rewritten as the l p norm [65].

The MICI models can be optimized by sampling-based evolutionary algorithms,
where the element values of fuzzy measure g are sampled and selected through a
truncated Gaussian distribution either based on valid interval (howmuch the element
value can change without violating the monotonicity property of the fuzzy measure),
or based on the counts of times a measure element is used in all training instances.
A more detailed optimization process and psuedocode of the MICI models can be
seen in [62, 66]. The MICI models have been used for hyperspectral sub-pixel target
detection [61, 62] andwere effective in fusingmultiple detector inputs (e.g., the ACE
detector) and can yield competitive classification results.



6 Addressing the Inevitable Imprecision: Multiple Instance Learning … 169

6.4.2 Multiple Instance Regression

Multiple instance regression (MIR) handles multiple instance problems where the
prediction values are real-valued, instead of binary class labels. The MIR methods
have been used in remote sensing literature for applications such as aerosol optical
depth retrieval [67, 68] and crop yield prediction [62, 68–70].

Prime-MIR was one of the earliest MIR algorithms, proposed by Ray and Page in
2001 [71]. Prime-MIR is based on the “primary instance” assumption,which assumes
there is only one primary instance per bag that contributes to the real-valued bag-
level label. Prime-MIR assumes a linear regression hypothesis and the goal is to find
a hyperplane Y = Xb such that

b = argmin
b

n∑

i=1

L
(
yi , Xip,b

)
, (6.32)

where Xip is the primary instance in bag i , and L is some error function, such as the
squared error. An expectation–maximization (EM) algorithm was used to iteratively
solve for the ideal hyperplane. First, a random hyperplane was initialized. For each
instance j in each bag i , the error L of the instance Xi j to the hyperplane Y = Xb
was computed. In the E-step, the instance with the lowest error L was selected as the
“primary instance.” In the M-step, a new hyperplane was constructed by performing
a multiple regression over all the primary instances selected in the E-step. The two
steps were repeated until the algorithm converges and the best hyperplane solution
was returned. In [71], Prime-MIR showed the benefits of using multiple instance
regression over ordinary regression, especially when the non-primary instances in
the bag were not correlated with the primary instances.

The MI k-NN approach and its variations [72] extends the Diverse Density, kNN,
and Citation-kNN for real-valuedmultiple instance learning. Theminimal Hausdorff
distance from [27] was used to measure the distance between two bags. Given two
sets of points A = a1, . . . am and B = b1, . . . , bn , the Hausdorff distance is defined
as

H(A, B) = max{h(A, B), h(B, A)}, (6.33)

where h(A, B) = maxa∈A minb∈B ‖a − b‖, ‖a − b‖ is the Euclidean distance
between points a and b. In the MI k-NN algorithm, the prediction made for a bag B
is the average label of the k closest bags, measured in Hausdorff metric. In the MI
citation-kNN algorithm, the prediction made for a bag B is the average label of the
R closest bag neighbors of B measured in Hausdorff metric and C-nearest citers,
where the “citers” include the bags where B is a one of their C-nearest neighbors. It
is generally recommended that C = R + 2 [72]. The third variant, a diverse density
approach for the real-valued setting, maximizes
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K∏

i=1

Pr(r |Bi ) (6.34)

where Pr(t |Bi ) = (1 − |li − Label(Bi |t)|)/Z , K is the total number of bags, t is
the target point, li is the label for the i th bag, and Z is a normalization constant.
The results in [72] showed good prediction performance of all three variants on a
benchmark Musk Molecules data set [4], but the performance of both the nearest
neighbor and diverse density algorithms were sensitive to the number of relevant
features, as expected based on the sensitivity of the Hausdorff distance to outliers.

A real-valued multiple instance on-line model proposed by Goldman and Scott
[73] uses MIR for learning real-valued geometric patterns, motivated by landmark
matching problem in robot navigation and vision applications. This algorithm asso-
ciates a real-valued label with each point and uses the Hausdorff metric to help
classify a bag as positive, if the points in the bag are within some Hausdorff distance
from target concept points. This algorithm differs from the supervised MIR in that
the standard supervised MIR learns from a given set of training bags and bag-level
training labels, while [73] applies an online agnostic model [74–76] where the learn-
ers make predictions as the bag Bt is presented at iteration t . Wang et al. [77] also
used the idea of online MIR, i.e., to use the latest arrived bag with its training label
to update the current predictive model. This work was also extended in [78].

A regularization framework for MIR proposed by Cheung and Kwok [79] defines
a loss function that takes into consideration both training bags and training instances.
The first part of the loss function computes the error (loss) between training bags
label and its predictions and the second part considers the loss between the bag label
prediction and all the instances in the bag. This work still adopted the “primary
instance” assumption but simplified to assume the primary instance was the instance
with the highest prediction output value. This model provided comparable or better
performance on the synthetic MuskMolecules data set [72] as citation-kNN [27] and
Multiple Instance kernel-based SVM [79, 80].

Most MIR methods discussed above only provided theoretical discussions or
results on synthetic regression data sets. More recently, MIR methods have been
applied to real-world hyperspectral and remote sensing data analysis. Wagstaff
et al. in [69, 70] investigated using MIR to predict crop yield from remotely sensed
data collected over California and Kansas. In [69], a novel method for inferring the
“salience” of each instance was proposed with regard to the real-valued bag label.
The salience of each instance, i.e., its “relevance” with respect to all other instances
in the bag to predict the bag label, is the weight associated with each instance. The
salience values were defined to be nonnegative and sum to one for all instances in
each bag. Like Ray and Page [71], Wagstaff et al. followed the “primary-instance”
assumption but their primary instance, or “exemplar” of a bag, is the weighted aver-
age of all the points in the bag instead of one single instance from the bag. Given
training bags and instances, a set of salience values are solved based on a fixed linear
regression model and given the estimated salience, the regressor is updated and the
algorithm reiterates until convergence. This work did not intend to provide predic-



6 Addressing the Inevitable Imprecision: Multiple Instance Learning … 171

tions over new data, but instead focused on understanding the contents (the salience)
of each training instance.

Wagstaff et al. then made use of the salience learned to provide predictions for
new, unlabeled bags by proposing an MI-ClusterRegress algorithm (or sometimes
referred to as the Cluster-MIR algorithm) [70] that mapped instances onto (hidden)
cluster labels. The main assumption of MI-ClusterRegress is that the instances from
a bag are drawn (with noise) from a set of underlying clusters and one of the clusters
is “relevant” to the bag-level labels. After obtaining k clusters for each bag by EM-
based Gaussian mixture models (or any other clustering method), a local regression
model is constructed for each cluster. MI-ClusterRegress then selects the best-fit
model and use it to predict labels for test bags. A support vector regression learner
[81] is used for regression prediction. Results on simulated and predicting crop yield
data sets show that modeling the bag structure when the structure (cluster) is present
is effective for regression prediction, especially when the cluster number k is equal
to or larger than what is actually present in the bags.

In Chap.2, Moreno-Martínez et al. proposed a kernel distribution regression
(KDR) model for MIR by embedding the bag distribution in a high-dimensional
Hilbert space and performing standard least squares regression on the mean embed-
ded data. This kernel method exploits the rich structure in bags by considering all
higher order moments of the bag distributions and performing regression with the
bag distributions directly. This kernel method also allows to combine bags with dif-
ferent number of instances per bag by summarizing the bag feature vectors with a
set of mean map embeddings of instances in the bag. The KRD model was shown to
outperform standard regression models such as the least squares regularized linear
regression model (RLR) and the (nonlinear) kernel ridge regression (KRR) method
for crop yield applications.

Wang et al. [67, 68] proposed a probabilistic and generalized mixture model for
MIR based on the primary-instance assumption (sometimes referred to as the EM-
MIR algorithm). It is assumed that the bag label is a noisy function of the primary
instance, and the conditional probability p(yi |Bi ) for predicting label yi for the i th
bag is dependent entirely on the primary instance. A binary random variable zi j is
defined such that zi j = 1 if the j th instance in the i th bag is the primary instance and
zi j = 0 if otherwise. The mixture model for each bag i is written as

p(yi |Bi ) =
Ni∑

j=1

p(zi j = 1|Bi )p(yi |xi j ) (6.35)

=
Ni∑

j=1

πi j p(yi |xi j ), (6.36)

where πi j is the (pior) probability that the j th instance in the i th bag is the primary
instance, p(yi |xi j ) is the label probability given the primary instance xi j and Ni is
the total number of instances in the i th bag Bi . Therefore, the learning problem is
transformed to learning the mixture weights πi j and p(yi |xi j ) from training data and

http://dx.doi.org/10.1007/978-3-030-38617-7_2
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an EM algorithm is used to optimize the parameters. This work discussed several
methods to set the prior πi j , including using deterministic function, or as a Gaussian
function of prediction deviation, or as a parametric function (in this case a feed-
forward neural network). It was discussed in [68] that several algorithms discussed
above, including Prime-MIR [71] and Pruning-MIR [67], are in fact the special
case of the mixture model. The mixture model MIR shows better performance on
simulated data as well as for predicting aerosol optical depth (AOD) from remote
sensing data and predicting crop yield applications, compared with the Cluster-MIR
[70] and Prime-MIR [71] algorithms described above.

Two baseline methods for MIR have also been described in [68], Aggregate-MIR,
and Instance-MIR. In Aggregate-MIR, a “meta-instance” is obtained for each bag
by averaging all the instances in that bag, and a regression model can be trained
using the bag-level labels and the meta-instances. In Instance-MIR, all instances in
a bag are assumed to have the same label as the bag-level label, and a regression
model can be trained by combining all instances from all bags. Then, in testing, the
label for a test bag is the average of all the instance-level labels in that test bag.
The Aggregate-MIR and Instance-MIR methods belong to the “input summary”
and “output expansion” approaches as described in Chap.2, Sect. 2.3.1. These two
methods are straightforward and easy to implement, and have been used as basic
comparison methods for a variety of MIR applications.

The robust fuzzy clustering for MIR (RFC-MIR) algorithm was proposed by
Trabelsi and Frigui [82] to incorporate data structure in MIR. The RFC-MIR algo-
rithm uses fuzzy clusteringmethods such as the fuzzy c-means (FCM) and possibilis-
tic c-means (PCM) [83] to cluster the instances and fit multiple local linear regres-
sion models to the clusters. Similar to Cluster-MIR, the RFC-MIRmethod combines
all instances from all training bags for clustering. However, Cluster-MIR performs
clustering in an unsupervised manner without considering bag-level labels, while
RFC-MIR uses instance features as well as labels in clustering. Validation results
of RFC-MIR show improved accuracy on crop yield prediction and drug activity
prediction applications [84], and the possibilistic memberships obtained from the
RFC-MIR algorithm can be used to identify the primary and irrelevant instances in
each bag.

In parallel with the multiple instance classifier fusion models described in
Sect. 6.4.1, a Multiple Instance Choquet Integral Regression (MICIR) model5 has
been proposed to accommodate real-valued predictions for remote sensing applica-
tions [62]. The objective function of the MICIR model is written as

min
K∑

i=1

[
min

∀ j,xi j∈Bi

(Cg(xi j ) − oi )
2

]
, (6.37)

where oi is the desired training labels for bag Bi . Note that MICIR is able to fuse
real-valued outputs from regression models as well as from classifiers. When oi is

5The MICIR implementation is available at: https://github.com/GatorSense/MICI [60].

http://dx.doi.org/10.1007/978-3-030-38617-7_2
https://github.com/GatorSense/MICI
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binary, MICIR reduces to the MICI min-max model for two-class classifier fusion.
The MICIR algorithm also follows the primary instance assumption by minimizing
the error between the CI value of one primary instance and the given bag-level
labels, while allowing imprecision in other instances. Similar to MICI classifier
fusion models, an evolutionary algorithm can be used to sample the fuzzy measure
g from the training data.

Overall, Multiple Instance Regression methods have been studied in the literature
for nearly twodecades andmost studies are based on the primary-instance assumption
proposed by Ray and Page in 2001. Linear regression models were used in mostMIR
methods if a regressorwas used and experiments have shown effective results of using
MIR on crop yield prediction and aerosol optical depth retrieval applications given
remote sensing data.

6.4.3 Multiple Instance Multi-resolution and Multi-modal
Fusion

Previous MIL classifier fusion and regression methods, such as the MICI and the
MICIR models, can only be applied if the fusion sources have the same number of
data points and the same resolution acrossmultiple sensors. Asmotivated in Sect. 6.1,
in remote sensing applications, sensor outputs often have different resolutions and
modalities, such as rasterized hyperspectral imagery versus LiDAR point cloud data.
To address multi-resolution and multi-modal fusion under imprecision, the multi-
ple instance multi-resolution fusion (MIMRF) algorithm6 was developed to fuse
multi-resolution and multi-modal sensor outputs while learning from automatically
generated, imprecisely labeled data [66, 86].

In multi-resolution and multi-modal fusion, there can be a set of candidate points
froma local region fromone sensor that corresponds to one point fromanother sensor,
due to sensor measurement inaccuracy and different data resolutions and modalities.
Take hyperspectral imagery and LIDAR point cloud data fusion, for example, for
each pixel Hi in the HSI imagery, there may exist a set of {Li1, Li2, . . . , Lil} points
from the LiDAR point cloud that corresponds to the area covered by the pixel Hi . The
MIMRF algorithm first constructs such correspondences by writing the collection of
the sensor outputs for pixel i as

Si =

⎡

⎢⎢⎢⎣

Hi Li1

Hi Li2
...

...

Hi Lil

⎤

⎥⎥⎥⎦ . (6.38)

6The MIMRF implementation is available at: https://github.com/GatorSense/MIMRF [85].

https://github.com/GatorSense/MIMRF
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This notation can extend to any number of correspondences l by row, and multiple
sensors by column. The MIMRF assumes that, at least one point in all candidate
LiDAR points is accurate, but it is unknown which one. One of the goals of the
MIMRF algorithm is to automatically select the correct points with accurate mea-
surement and correspondence information. To achieve this goal, the CI fusion for
the collection of the sensor outputs of the i th negative data point is written as

Cg(S−
i ) = min

∀x−
k ∈S−

i

Cg(x−
k ), (6.39)

and the CI fusion for the collection of the sensor outputs values of the j th positive
data point is written as

Cg(S+
j ) = max

∀x+
l ∈S+

j

Cg(x+
l ), (6.40)

where S−
i is the collection of sensor outputs for the i th negative data point and S+

j is
the collection of sensor outputs for the j th positive data point;Cg(S−

i ) is the Choquet
integral output for S−

i and Cg(S+
j ) is the Choquet integral output for S

+
j . In this way,

the min and max operators automatically select one data point (which is assumed to
be the data point with correct information) from each negative and positive bag to
be used for fusion, respectively.

Moreover, the MIMRF is designed to handle bag-level imprecise labels. Recall
that the MIL framework assumes a bag is labeled positive if at least one instance in
the bag is positive and a bag is labeled negative if all the instances in the bag are
negative. Thus, the objective function for MIMRF algorithm is proposed as

J =
K−∑

a=1

max
∀S−

ai∈B−
a

(
Cg(S−

ai ) − 0
)2 +

K+∑

b=1

min
∀S+

bj∈B+
b

(
Cg(S+

bj ) − 1
)2

=
K−∑

a=1

max
∀S−

ai∈B−
a

(
min

∀x−
k ∈S−

ai

Cg(x−
k ) − 0

)2

+
K+∑

b=1

min
∀S+

bj∈B+
b

(
max

∀x+
l ∈S+

bj

Cg(x+
l ) − 1

)2

,

(6.41)
where K+ is the total number of positive bags, K− is the total number of negative
bags, S−

ai is the collection of i th instance set in the ath negative bag and similar for
S+
bj . Cg is the Choquet integral given fuzzy measure g, B−

a is the ath negative bag,
and B+

b is the bth positive bag. The term S−
ai is the collection of input sources for the

i th pixel in the ath negative bag and S+
bj is the collection of input sources for the j th

pixel in the bth positive bag.
In (6.41), the min and max operators outside the squared errors (the boxed terms)

are comparable to the MICI min-max model. The max operator encourages the
Choquet integral of all the points in the negative bag to be 0 and the min operator
encourages theChoquet integral of at least one point in the positive bag to be 1 (second
term), which satisfies the MIL assumption. The min and max operators inside the
squared error terms come from (6.39) and (6.40), which selects one correspondence
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for each collection of candidates. By minimizing the objective function in (6.41),
the first term encourages the fusion output of all the points in the negative bag to the
desired negative label 0, and the second term encourages the fusion output of at least
one of the points in the positive bag to the desired positive label+1. This satisfies the
MIL assumption while addressing label imprecision for multi-resolution and multi-
modal data. The MIMRF algorithm has been used to fuse rasterized hyperspectral
imagery and un-rasterized LiDARpoint cloud data over urban scenes and have shown
effective fusion results for land cover classification [66, 86].

Here is a small example to illustrate the performance of the MIMRF algorithm
using the MUUFL Gulfport hyperspectral and LiDAR data set collected over the
University of Southern Mississippi-Gulfpark Campus [1]. An illustration of the ras-
terized hyperspectral imagery and the LiDAR data over the complete scene can be
seen in Figs. 6.2 and 6.3 in Sect. 6.1. The task here is to fuse hyperspectral and LiDAR
data to perform building detection and classification. The simple linear iterative clus-
tering (SLIC) algorithm [87, 88] was used to segment the hyperspectral imagery. The
SLIC algorithm is a widely used, unsupervised superpixel segmentation algorithm
that can produce spatially coherent regions. Each superpixel from the segmentation
is treated as a “bag” in our learning process and all pixels in each superpixel are
all the instances in the bag. The bag-level labels in this data set were generated
from OpenStreetMap (OSM), a third-party, crowd-sourced online map [89]. OSM
provides map information for urban regions around the world. Figure6.9c shows
the map extracted from Open Street Map (OSM) over the study area based on the
ground cover tags available, such as “highway”, “footway”, “building”, etc. Informa-
tion from Google Earth [90], Google Maps [91], and geo-tagged photographs from
a digital camera taken at the scene were also be used as auxiliary data to assist the
labeling process. This way, reliable bag-level labels can be automatically generated
with minimal human intervention. These bag-level labels will then be used in the
MIMRF objective function (6.41) to learn the unknown fuzzy measure g for HSI-
LiDAR fusion. Figure6.9 shows the RGB imagery, the SLIC segmentation, and the
OSM map labels for the MUUFL Gulfport hyperspectral imagery.

Three multi-resolution and multi-modal sensor outputs were used as fusion
sources, one generated from HSI imagery and two from raw LiDAR point cloud
data. The first fusion source is the ACE detection map on buildings based on the
mean spectral signature of randomly sampled building points from the scene. The
ACE detection map for buildings is shown in Fig. 6.10a. As shown, the ACE con-
fidence map highlights most buildings, but also highlights some roads which have
similar spectral signature (similar construction material, such as asphalt). The ACE
detector also failed to detect the top right building due to the darkness of the roof.
Two other fusion sources were generated from LiDAR point cloud data according to
the building height profile, with the rasterized confidence maps shown in Fig. 6.10b
and Fig. 6.10c. Note that in MIMRF fusion, the LiDAR sources will be point clouds
and Figs. 6.10b and c are provided for visualization and comparison purposes only.

As shown in Fig. 6.10, each HSI and LiDAR sensor output contains certain build-
ing information. The goal is to use MIMRF to fuse all three sensor outputs and
perform accurate building classification. We randomly sampled 50% the bags (the
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Fig. 6.9 The RGB image (a), SLIC segmentation (b), and the OSMmap for the MUUFL Gulfport
hyperspectral imagery (c). In the OSM map, the blue lines correspond to road and highway. The
magenta lines correspond to sidewalk/footway.Thegreen linesmarks buildings.Here, the “building”
tag is specific to the buildings with a grey (asphalt) roof. The black lines correspond to “other” tags.
Source: c© [2020] IEEE. Reprinted, with permission, from [86]

Fig. 6.10 The fusion sources generated from HSI and LiDAR data for building detection. a ACE
detection map from HSI data. b, c LiDAR building detection map from two LiDAR flights. The
colorbar can be seen in d. Source: c© [2020] IEEE. Reprinted, with permission, from [86]
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Fig. 6.11 An example of
ROC curve results for
building detection across all
methods
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superpixels) and use these to learn a set of fuzzy measures for theMIMRF algorithm.
We conducted such random sampling three times by using theMATLAB randperm()
function and call these the three random runs. The sampled bags are different at each
random run. In each random run, the MIMRF algorithm is applied to learn a fuzzy
measure from the randomly sampled 50% bags, and fusion results are evaluated on
the remaining 50% data on a pixel level. Note that there will be two sets of results
in each run—learn from the first sampled 50% bags (denoted “Half1”) and perform
fusion on the second half of data (denoted “Half2”), and vice versa. The fusion results
of MIMRF were compared with previously discussed MIL algorithms such as MICI
and mi-SVM and the CI-QP approach. The CI-QP (Choquet integral-quadratic pro-
gramming) approach [64] is a CI fusion method that learns a fuzzy measure for the
Choquet integral by optimizing a least squares error objective using quadratic pro-
gramming. Note that these comparison methods only work with rasterized LiDAR
imagery, while the MIMRF algorithm can directly handle raw LiDAR point cloud
data. The fusion results of MIMRF were also compared with commonly used fusion
methods, such as min, max, and mean operators and a support vector machine, as
well as the ACE and LiDAR sensor sources before fusion.

Figure6.11 shows an example of the receiver operating characteristic (ROC) curve
results for building detection across all comparisonmethods. Table6.5 shows the area
under curve (AUC) results across all methods in all random runs. Table6.6 shows
the root mean square error (RMSE) results across all methods in all random runs.
The AUC evaluates how well the method detects the buildings (the higher AUC the
better) and the RMSE shows how the detection results on both the building and
nonbuilding points differ from the ground truth (the lower the RMSE the better). We
observed from the tables that the MIMRF method was able to achieve high AUC
detection results and low RMSE compared to other methods, and the MIMRF is
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stable across different randomizations. The MICI classifier fusion method also did
well in detection (high AUC), but has higher RMSE compared to MIMRF, possibly
due to MICI’s inability to handle multi-resolution data. The min operator did well
in RMSE due to the fact that it places low confidence everywhere, but was unable
to have high detection results. The ACE detector did well in detection, which shows
that the hyperspectral signature is effective at distinguishing building roof materials.
However, it also places high confidence on other asphalt materials such as road, and
thus yields a high RMSE value.

Figures6.12 and 6.13 shows a qualitative comparison of our fusion perfor-
mance. Figure6.12 shows an example of our randomly sampled bags. All the semi-
transparent bags marked by the red lines in Fig. 6.12a were used to learn a fuzzy
measure in our method, and we evaluate pixel-level fusion results against the “test”
ground truth shown in Fig. 6.12b. Note that the MIMRF is a self-supervised method
that learns a fuzzy measure from bag-level labels and produces pixel-level fusion
results. Although standard training and testing scheme does not apply here, this
experiment is set up using cross validation to show that the MIMRF algorithm is
able to utilize the fuzzy measure learned from one part of the data and apply that
fuzzy measure to perform fusion on new test data, even when the learned bags were
excluded from testing.

Table 6.5 The AUC results of building detection using MUUFL Gulfport HSI and LiDAR data
across three random runs. (The higher the AUC the better.) The best two results with the highest
AUC were bolded and underlined, respectively. “Half1” refers to the results of learning a fuzzy
measure from the first 50% of the bag-level labels from campus 1 data and perform pixel-level
fusion on the second half. “Half2” refers to the results of learning a fuzzy measure from the second
50% of the bag-level labels from campus 1 data and perform pixel-level fusion on the first half. The
ACE, Lidar1, and Lidar2 rows show results from the individual HSI and LiDAR sources before
fusion; the methods below the dotted line show fusion results for all comparison methods. The
standard deviations of MICI and MIMRF methods are computed across three runs (three random
fuzzy measure initializations) and are shown in parentheses. Same notation is applied for the RMSE
table below as well

First Random run Second Random run Third Random run

Half1 Half2 Half1 Half2 Half1 Half2

ACE 0.954 0.961 0.938 0.967 0.963 0.947

Lidar1 0.874 0.914 0.879 0.904 0.920 0.874

Lidar2 0.855 0.813 0.879 0.796 0.830 0.848

SVM 0.670 0.854 0.791 0.918 0.928 0.823

min 0.872 0.863 0.890 0.849 0.870 0.872

max 0.946 0.945 0.953 0.939 0.948 0.945

mean 0.963 0.952 0.969 0.947 0.959 0.960

mi-SVM 0.752 0.886 0.795 0.942 0.930 0.923

CI-QP 0.955 0.959 0.959 0.939 0.962 0.964

MICI 0.972(0.001) 0.963(0.000) 0.976(0.000) 0.960(0.000) 0.968(0.000) 0.971(0.000)

MIMRF 0.978(0.003) 0.963(0.002) 0.972(0.000) 0.971(0.001) 0.973(0.000) 0.971(0.002)
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Table 6.6 The RMSE results of building detection using MUUFL Gulfport HSI and LiDAR data
across three random runs. (The lower the RMSE the better.) The best two results with the highest
AUC were bolded and underlined, respectively. “Half1” refers to the results of learning a fuzzy
measure from the first 50% of the bag-level labels from campus 1 data and perform pixel-level
fusion on the second half. “Half2” refers to the results of learning a fuzzy measure from the second
50% of the bag-level labels from campus 1 data and perform pixel-level fusion on the first half. The
ACE, Lidar1, and Lidar2 rows show results from the individual HSI and LiDAR sources before
fusion; the methods below the dotted line show fusion results for all comparison methods. The
standard deviations of MICI and MIMRF methods are computed across three runs (three random
fuzzy measure initializations) and are shown in parentheses

First Random run Second Random run Third Random run

Half1 Half2 Half1 Half2 Half1 Half2

ACE 0.345 0.339 0.348 0.307 0.334 0.350

Lidar1 0.291 0.255 0.278 0.268 0.266 0.280

Lidar2 0.294 0.270 0.267 0.297 0.269 0.295

SVM 0.348 0.332 0.437 0.250 0.409 0.284

min 0.265 0.235 0.248 0.255 0.240 0.263

max 0.417 0.417 0.419 0.413 0.423 0.420

mean 0.307 0.291 0.296 0.298 0.298 0.302

mi-SVM 0.425 0.459 0.432 0.253 0.406 0.232

CI-QP 0.403 0.377 0.405 0.413 0.388 0.397

MICI 0.356(0.002) 0.348(0.002) 0.374(0.001) 0.336(0.001) 0.356(0.000) 0.350(0.000)

MIMRF 0.238(0.024) 0.192(0.025) 0.244(0.002) 0.208(0.011) 0.255(0.002) 0.177(0.001)

50 100 150 200

50

100

150

200

250

300

(a)

50 100 150 200

50

100

150

200

250

300

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1(b)

Fig. 6.12 a An illustration for the 50% randomly sampled bags from one of our random runs. The
MIMRF algorithm learns a fuzzy measure from the red-labeled, transparent bags. b The ground
truth for the the other 50% data [92]. The yellow and green regions are building and nonbuilding
ground truth locations in the “test” data. The dark blue (labeled “–1”) regions denote the 50% of
the bags that were used in MIMRF learning and therefore not included in the testing process
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Fig. 6.13 The fusion results for building detection in the MUUFL Gulfport data set, learned from
the randomly drawn bags shown in Fig. 6.12a and evaluated on the remaining regions against the
ground truth shown in Fig. 6.12b. Note that the MIMRFmethod learns a set of fuzzy measures from
bag-level data and produced per-pixel fusion results on the fusion regions. The subplots show fusion
results by a SVM; bmin operator; c max operator; d mean operator; e mi-SVM; f CI-QP; gMICI;
hMIMRF. The yellow highlights where the fusion algorithm places high detection confidence and
green indicates low confidence, and the dark blue indicates the regions not used in the evaluation.
This plot uses the same color bar as in Fig. 6.10d. It is desirable that high confidence (yellow color)
was placed on buildings for building detection. As shown, the MIMRF algorithm in h was able
to detect all buildings (yellow color) in the regions that were evaluated and have low confidence
(green color) on nonbuilding areas. The other comparison methods either missed some buildings,
or have many more false positives in non-building regions, such as tree canopy

Figure6.13 shows all fusion results on the test regions across all methods. As
shown, the MIMRF algorithm in Fig. 6.13h was able to detect all buildings (yellow)
in the evaluation regions well while having low confidence (green) on nonbuilding
areas. The other comparison methods either missed some buildings, or have many
more false positives in non-building regions. Other randomizations yielded similar
effects.

To summarize, the above experimental results show that the MIMRF method was
able to successfully perform detection and fusion with high detection accuracy and
low rootmean square error formulti-resolution andmulti-modal data sets. This exper-
iment further demonstrated the effectiveness of the self-supervised learning approach
used by the MIMRF method at learning a fuzzy measure from one part of the data
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(using only bag-level labels) and perform pixel-level fusion on other regions. Guided
by publicly available crowd-sourced data such as the OpenStreetMap, the MIMRF
algorithm is able to automatically generate imprecise bag-level labels instead of the
traditional manual labeling process. Moreover, [86] has shown effective results of
MIMRF fusion on agricultural applications as well, in addition to hyperspectral and
LiDAR analysis. We envision the MIMRF as an effective fusion method to perform
pixel-level classification and produce fusion maps with minimal human intervention
for a variety of multi-resolution and multi-modal fusion applications.

6.5 Summary

This chapter introduced the Multiple Instance Learning framework and reviewed
MIL methods for hyperspectral classification, sub-pixel target detection, classifier
fusion, regression, and multi-resolution multi-modal fusion. Given imprecise (bag-
level) ground truth information in the training data, the MIL methods are effective
in addressing the inevitable imprecision observed in remote-sensing data and appli-
cations.

• Imprecise training labels are omnipresent in hyperspectral image analysis,
due to unreliable ground truth information, sub-pixel targets, and occlusion,
and heterogeneous sensor outputs.MILmethods can handle bag-level labels
instead of requiring pixel-perfect labels in training, which enables easier
annotation and more accurate data analysis.

• Multiple instance target characterization algorithms were presented, includ-
ing eFUMI, MI-ACE/MI-SMF, and MI-HE algorithms. These algorithms
can estimate target concepts from the data given imprecise labels, without
obtaining target signature a priori.

• Multiple instance classifier fusion and regression algorithmswere presented.
In particular, the MICI method is versatile in that it can perform classifier
fusion and regression with minor adjustments in the objective function.

• The MIMRF algorithm extends upon MICI to multi-resolution and multi-
modal sensor fusion on remote sensing data with label uncertainty. To our
knowledge, this is the first algorithm that can handle HSI imagery and
LiDAR point cloud fusion without co-registration or rasterization, consid-
ering imprecise labels.

• Various optimization strategies exist to optimize an MIL problem, such
as expectation maximization, sampling-based evolutionary algorithm, and
gradient descent.

The algorithms discussed in this chapter covers the state-of-the-art MIL
approaches and provides an effective solution to address the imprecision challenges
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in hyperspectral image analysis and remote-sensing applications. There are several
challenges in these current approaches that warrant future work. For example, cur-
rent MI regression methods often rely on the “primary instance” assumption, which
may not hold in all applications; or that MIL assumes no contamination (of positive
points) in negative bags, but in practice this is often not the case. Future study inmore
flexible MIL frameworks (such as using kernel embedding as described in Chap. 2)
can be conducted in relaxing these assumptions.
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