
Chapter 2
Machine Learning Methods for Spatial
and Temporal Parameter Estimation

Álvaro Moreno-Martínez, María Piles, Jordi Muñoz-Marí,
Manuel Campos-Taberner, Jose E. Adsuara, Anna Mateo,
Adrián Perez-Suay, Francisco Javier García-Haro and Gustau Camps-Valls

Abstract Monitoring vegetation with satellite remote sensing is of paramount
relevance to understand the status and health of our planet. Accurate and constant
monitoring of the biosphere has large societal, economical, and environmental impli-
cations, given the increasing demand of biofuels and food by the world population.
The current democratization ofmachine learning, big data, and high processing capa-
bilities allow us to take such endeavor in a decisive manner. This chapter proposes
three novel machine learning approaches to exploit spatial, temporal, multi-sensor,
and large-scale data characteristics. We show (1) the application of multi-output
Gaussian processes for gap-filling time series of soil moisture retrievals from three
spaceborne sensors; (2) a new kernel distribution regression model that exploits
multiple observations and higher order relations to estimate county-level crop yield
from time series of vegetation optical depth; and finally (3) we show the combination
of radiative transfer models with random forests to estimate leaf area index, frac-
tion of absorbed photosynthetically active radiation, fraction vegetation cover, and
canopy water content at global scale from long-term time series of multispectral data
exploiting the Google Earth Engine cloud processing capabilities. The approaches
demonstrate that machine learning algorithms can ingest and process multi-sensor
data and provide accurate estimates of key parameters for vegetation monitoring.

Á. Moreno-Martínez, M. Piles, J. Muñoz-Marí, M. Campos-Taberner, J. E. Adsuara, G. Camps-
Valls—Authors contributed equally.

Á. Moreno-Martínez (B) · M. Piles · J. Muñoz-Marí · J. E. Adsuara · A. Mateo · A. Perez-Suay ·
G. Camps-Valls
Image Processing Laboratory (IPL), Universitat de València, Valencia, Spain
e-mail: alvaro.moreno@uv.es

G. Camps-Valls
e-mail: gustau.camps@uv.es

M. Campos-Taberner · F. Javier García-Haro
Department of Earth Physics and Thermodynamics, Universitat de València,
Valencia, Spain
e-mail: manuel.campos@uv.es

© Springer Nature Switzerland AG 2020
S. Prasad and J. Chanussot (eds.), Hyperspectral Image Analysis,
Advances in Computer Vision and Pattern Recognition,
https://doi.org/10.1007/978-3-030-38617-7_2

5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38617-7_2&domain=pdf
mailto:alvaro.moreno@uv.es
mailto:gustau.camps@uv.es
mailto:manuel.campos@uv.es
https://doi.org/10.1007/978-3-030-38617-7_2


6 Á. Moreno-Martínez et al.

2.1 Introduction

2.1.1 Remote Sensing as a Diagnostic Tool

The Earth is a complex, dynamic, and networked system, and this system is under
pressure and in continuous change. Population is increasingly demanding more food
and biofuels, at a faster pace, worldwide. Consequently, monitoring the planet in a
spatially explicit and timely resolved manner is an urgent need to address important
societal, environmental, and economical questions. This is exactly the main goal
of Earth Observation (EO) from space, and current satellite sensors operating in
different bands of the electromagnetic spectrum help in this challenge as accurate
diagnostic tools.

The analysis of the acquired sensor data can be done either at local or global
scales by looking at biogeochemical cycles, atmospheric situations, and vegetation
dynamics [1–5]. All these complex interactions are studied through the definition
of bio-geophysical parameters, either representing different properties for land (e.g.,
surface temperature, soil moisture, crop yield, defoliation, biomass, leaf area cov-
erage), water (e.g., yellow substance, ocean color, suspended matter, or chlorophyll
concentration), or the atmosphere (e.g., temperature, moisture, or trace gases). Every
single application considers the specific knowledge about the physical, chemical, and
biological processes involved, such as energy balance, evapotranspiration, or photo-
synthesis.

However, remotely sensed observations only sample the energy reflected or emit-
ted by the surface and thus, an intermediate modeling step is necessary to transform
the measurements into estimations of the biophysical parameters [6]. From a pure
statistics standpoint, this is considered to be as an inverse modeling problem, because
we have access to observations generated by the system and we are interested in the
unknown parameters that generated those. A series of international study projec-
tions, such as the International Geosphere-Biosphere Programme (IGBP), the World
Climate Research Programme (WCRP), and the National Aeronautics and Space
Administration (NASA) Earth Observing System (EOS), established remote sensing
model inversion as one of themost important problems to be solved with EO imagery
in the near future.

2.1.2 Data and Model Challenges

Current EO, however, faces two very important challenges that we hereby define as
the data problem and the model problem:

• The data problem: The data involved in EO applications is big, diverse, and
unstructured. We often deal with remote sensing data acquired by many satel-
lite sensors working with different and ever-increasing spatial, temporal, and ver-
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tical resolutions. Not to mention that data may also come from high-resolution
simulations and re-analysis. At the same time, data is heterogeneous and cov-
ers space and time with uneven resolutions, different footprints, signal and noise
levels, and feature characteristics. EO applications on land monitoring have
mainly considered optical sensors, like the NASA A-Train (http://atrain.nasa.
gov/) satellite constellations including MODIS and Landsat, and recently the
European Space Agency (ESA) Sentinels 2–3 sensors. More recently, sensors
operating in the microwave range of the spectrum were introduced. Unlike opti-
cally based technologies, microwaves are not affected by atmospheric conditions,
and a total coverage of the Earth’s surface is obtained every 2–3 days. Microwave
radiometry is optimal for sensing the water content in soils and vegetation, but
the passive measurement is presently limited in spatial resolution by the size of
the instrument antenna aperture to ∼25 km (e.g., ESA’s SMOS, NASA’s SMAP).
Active microwave remote sensing can overcome this limitation but often it is
accompanied by constraints on spatial coverage and temporal data refresh rate
and require complex scattering models for inversion of geophysical parameters
(e.g., ESA’s Sentinel 1). Optical sensing technology, in turn, is at a maturity level
today that allows providing very fine spatial resolution on a weekly basis (e.g.,
ESA’s Sentinel 2). Undoubtedly, the combination of satellite-basedmicrowave and
optical sensory data offers an unprecedented opportunity to obtain a unique view
of the Earth system processes.

• The model problem: Dealing with such data characteristics and big data influx
requires (semi)automatic processing techniques that should be accurate, robust,
reliable, and fast. Over the last few decades, a wide diversity of bio-geophysical
retrieval methods have been developed, but only a few of them made it into opera-
tional processing chains. Lately, machine learning has attained outstanding results
in the estimation of climate variables and related bio-geophysical parameters at
local and global scales [1]: leaf area index (LAI) [7] and Gross Primary Production
(GPP) [8–11] are currently derived with neural networks, kernel methods, and ran-
dom forests, while multiple regression is used for retrieving biomass [12], support
vector methods were also proposed to derive vegetation parameters [13, 14], and
kernel methods and Gaussian processes (GPs) [15] have been paid wide attention
in the last years in deriving vegetation properties [16]. However, it is important
to observe here that, very often, these methods are applied blindly, without being
adapted to the data specificities. On the one hand, data exhibits clear spatial and
temporal structures that could be useful to design new kernel functions in GPs [17]
or rely on convolutional networks [18]. On the other hand, data from different sen-
sors should be synergistically combined in the model, but this is often done via
ad hoc data re-sampling or statistics summarization, as a convenient way to data
preparation for the algorithm. These practices are far from being optimal, and a lot
is yet to be done in the algorithm development arena to improve algorithms that
respect data characteristics, learn structures from data, fuse heterogeneous multi-
sensor and multi-resolution data naturally, and scale well to big data volumes.

http://atrain.nasa.gov/
http://atrain.nasa.gov/
http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Overview4
https://www.esa.int/Our_Activities/Observing_the_Earth/SMOS
https://smap.jpl.nasa.gov/
https://sentinel.esa.int/web/sentinel/missions/sentinel-1
http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Overview4


8 Á. Moreno-Martínez et al.

Fig. 2.1 Normalized
worldwide interest (i.e.,
popularity) of terms “remote
sensing”, “machine
learning”, “artificial
intelligence”, and “big data”
in the last decade, as
measured in Google trends©
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Tackling the two sides of the EO challenge is nowadays possible. The current popu-
larization of machine learning, big data, and high processing capabilities allows us
to take such an endeavor in a decisive manner, cf. Fig. 2.1.

Nowadays, both data and algorithms are mostly freely available, while large-scale
data processing platforms, clusters, and infrastructures are accessible to everyone:

• Machine learning code is now ready to (re)use in different forms: from excel-
lent packages and frameworks like scikit-learn or TensorFlow, to open accessible
repositories and developer’s platforms like GitHub.

• Earth observation data is also currently accessible through themain space agencies
hubs: for example, ESA provides Sentinels data through the ESA open access hub,
and NASA grants access via its NASA open data portal.

This unprecedented situation has sowed the seed for the development of applications
and the creation of EO-centered companies. Google allows not only accessing but
also processing data through the Google Earth Engine, which will be subject of study
in this chapter (cf. Sect. 2.4), Descartes Labs offers an EO data processing facility
in the cloud, and an increasing number of SMEs has grown around and created what
is called the “EO exploitation ecosystem”. Altogether, they have allowed tackling
problems that were unthinkable just a decade ago.

Earth observation through remote sensing offers great opportunities to mon-
itor our planet by the estimation of key parameters of the land, ocean, and
atmosphere. The combined action of machine learning, big data, and high-
performance computing platforms, like the Google Earth Engine (GEE), is
currently paving the way toward this goal.

https://scikit-learn.org
https://www.tensorflow.org/
https://github.com/
https://scihub.copernicus.eu/
https://data.nasa.gov/
https://earthengine.google.com/
https://www.descarteslabs.com/
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2.1.3 Goals and Outline

In this chapter, we will focus on modern machine learning methods for deriving land
parameters (e.g., about the vegetation status and crop production) from remote sens-
ing data: we will introduce three recent ML developments that can deal with multi-
sensor and multi-resolution data, that exploit nonlinear feature relations and higher
order moments of data (observational) distributions, and that can be implemented
in the Google cloud platform to derive global maps of parameters of interest. We
will mainly focus on new kernel methods, Gaussian processes, and random forests,
which fulfill the needs of the field: mathematical tractability and big data scalability,
respectively.

We will treat three main problems with different particular data characteristics:

• Non-uniform temporal sampling and sensor fusion: First, we will focus on prob-
lems of interpolating remote sensing parameters when several variables are avail-
able and heavy non-uniform sampling is present. This is a common problem when
trying to fuse information from different sensors or in optical remote sensing due
to the presence of clouds. Microwave remote sensing is not affected by clouds, but
measurements can also be limited in some regions due to combined effects ofRadio
Frequency Interferences (RFIs), presence of snow, dense vegetation canopies, and
high topography [19]; since these effects are sensor- and frequency-dependent, the
optimal blend of available microwave-based soil moisture products holds great
promise, particularly for observational climate data records [20]. In Sect. 2.2,
we will show the exploitation of multi-output Gaussian processes to fill in the
temporal gaps in satellite-based estimates of soil moisture from SMOS (L-band
passive), AMSR2 (C-band passive), and ASCAT (C-band active) [21, 22]. The
method will allow to treat non-uniform sampling and “transfer information across
sensors” when samples are missing.

• Non-uniform spatial sampling: In remote sensing and geospatial applications, we
often encounter problems where one aims to spatialize a variable of interest from
a sparse set of measurements, while having access to a finer grid of observations.
This is the case of non-uniform spatial sampling. This mismatch in quantity and
location is typically resolved by summarizing (e.g., averaging) the observations
and co-locating them with the measure. This procedure is ad hoc and suboptimal.
In Sect. 2.3, we introduce a new kernel distribution regression model that exploits
multiple observations to estimate county-level yield of major crops (wheat, corn,
and soybean) from SMAP-based vegetation optical depth (VOD) time series [23].
The method exploits all the available observations and their feature relations.

• Uniform spatial–temporal data spatialization: Finally, we deal in Sect. 2.4 with
the exploitation of big data in the cloud by spatializing vegetation parameters of
interest when long time series of data are available. We will show the combination
of radiative transfer models (RTMs) with random forests to estimate various veg-
etation parameters, namely, LAI, Fraction of Absorbed Photosynthetically Active
Radiation (FAPAR), Fraction Vegetation Cover (FVC), and Canopy water content
(CWC), globally from long-term time series of MODIS data exploiting the GEE.
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The platform will allow us to generate products of almost any variable of interest
modeled in an RTM [24, 25].

We conclude in Sect. 2.5 with some remarks and an outline of future work. The
approaches demonstrate that machine learning algorithms can ingest and process
multi-sensor data and provide accurate estimates of key parameters for vegetation
monitoring.

2.2 Gap Filling and Multi-sensor Fusion

Measurements of soil moisture (SM) are needed for a better global understanding
of the land surface-climate feedbacks at both local and global scales. Satellite sen-
sors operating in the low-frequency microwave spectrum (from 1 to 10 GHz) have
proven to be suitable for soil moisture retrievals. These sensors now cover nearly 4
decades, thus allowing for global multi-mission climate data records. The ESA Cli-
mate Change Initiative (CCI) soil moisture product combines various single-sensor
active and passive microwave soil moisture products into three harmonized products:
an only-active, an only-passive, and a combined active–passive microwave product
[26]. In its current version, the presence of data gaps in time and space has been
acknowledged as a major shortcoming which makes it difficult for users to integrate
the data in their applications [20]. From a scientific perspective, the presence of
“intermittent” data gaps in satellite-based soil moisture estimates impacts the analy-
sis of spatiotemporal dynamics and trends, which may be limited to certain regions
[27]. Also, the presence of missing data in time series prevents a robust computation
of temporal autocorrelation and e-folding times, as a measure of soil moisture per-
sistence [22]. In this regard, recent studies on the use of Gaussian process regression
techniques to mitigate the effect of missing information in Earth observation data
are very promising (e.g., [17, 21]).

The presence of gaps in EO data limits their applicability in a number of appli-
cations. In contrast with the standard temporal interpolation techniques, the
LMCmulti-output GP-based gap-filling regression allows taking into account
information from other collocated sensors measuring the exact same variable.
The method learns the relationships among the different sensors and builds
a cross-domain kernel function able to transfer information across the time
series and do predictions and associated confidence intervals on regions where
no data are available.

In this section, a subset of 6 years of SMOS L-band passive, ASCAT C-band
active, and AMSR2 C-band passive soil moisture measurements, starting in June
2010, have been used. SMOS and ASCAT estimates are available for the whole
period, whereas AMSR2 estimates start on May 18, 2012 (its launch date). Each
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product presents different observational gaps due to the presence of RFI at their
operating frequency or a too high uncertainty in their inversion algorithm (e.g., due
to the presence of snow masking observations, dense vegetation, or high topogra-
phy). The problem we face here is that we need a gap-filling methodology able to
handle several outputs together and force a “sharp” reconstruction of the time series
so that fast dry-down and wetting-up dynamics are preserved (avoid smoothing). We
show how we can efficiently deal with our problem by employing a multi-output
Gaussian Process model based on the Linear Model of Corregionalization (LMC)
[28]. This model implicitly exploits the relationships among the three microwave
sensors and predicts an output for each of them. The reconstructed time series
are provided with an estimate of its uncertainty and are shown to preserve the
statistics from comparison to in situ data over a selection of catchments from the
International Soil Moisture Network.

2.2.1 Proposed Approach

The presence of temporal data gaps in satellite-based estimates of soil moisture limits
their applicability in a number of applications that need continuous estimates. Stan-
dard techniques for gap-filling temporal series such as linear or cubic interpolation,
or auto-regressive functions fail to reconstruct sharp transitions or long data gaps
and do not take into account information from other collocated sensors measuring
exactly the same biophysical variable. Given that we have three different soil mois-
ture products presenting no data in different time and space locations, we employ
here an LMC multi-output GP regression (LMC-GP) to maximize the spatiotempo-
ral coverage of the datasets. We illustrate the procedure at three in situ soil moisture
networks where the SMOS satellite presents good, average, and poor temporal cov-
erage, see Fig. 2.2. We will show how LMC-GP exploits the relationships among
SMOS, ASCAT, and AMSR2 soil moisture time series to do inferences on regions
where no data (gaps) are available, and provides a reconstructed prediction with and
associated uncertainty for each dataset. Statistical scores from comparison with in
situ data at the selected sites of the original and reconstructed time series will be
shown.

2.2.2 LMC-GP

First, we will start introducing the formulation of standard GPmodels. Then, we will
extend it to the LMC-GP model.

https://ismn.geo.tuwien.ac.at
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Fig. 2.2 Location and land use map of the three International Soil Moisture Network (ISMN)
validation sites used in the study: a HOBE in Denmark (31 stations), b REMEDHUS in Spain (17
stations), and C DAHRA in Senegal (1 station)

2.2.2.1 Gaussian Processes

GPs [15] are state-of-the-art statistical methods for regression and function approx-
imation, and have been used with great success in biophysical variable retrieval by
following statistical and hybrid approaches [29]. We start assuming that we are given
a set of n pairs of measurements, {xi , yi }ni=1, where xi is the feature/measurement
space and yi is the biophysical parameter from field data or other sources, perturbed
by an additive independent noise ei . We consider the following model:

yi = f (xi ) + ei , ei ∼ N(0, σ 2
n ), (2.1)

where f (x) is an unknown latent function, x ∈ R
d , and σ 2

n represents the noise
variance. Defining y = [y1, . . . , yn]ᵀ and f = [ f (x1), . . . , f (xn)]ᵀ, the conditional
distribution of y given f becomes p(y|f) = N(f, σ 2

n In), where In is the n × n
identity matrix. It is assumed that f follows a n-dimensional Gaussian distribu-
tion f ∼ N(0,K). The covariance matrix K of this distribution is determined by a
squared exponential (SE) kernel functionwith entriesKi j = k(xi , x j ) = exp(−‖xi −
x j‖2/(2σ 2)), encoding the similarity between input points. In order to make a new
prediction y∗ given an input x∗, we obtain the joint distribution over the training and
test points, [

y
y∗

]
∼ N

(
0,

[
Cn kᵀ∗
k∗ c∗

])
,

where Cn = K + σ 2
n In , k∗ = [k(x∗, x1), . . . , k(x∗, xn)]ᵀ is an n × 1 vector and c∗ =

k(x∗, x∗) + σ 2
n . Using the standard Bayesian framework, we obtain the distribution
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over y∗ conditioned on the training data,which is a normal distributionwith predictive
mean and variance given by

μGP(x∗) = kᵀ
∗ (K + σ 2

n In)
−1y,

σ 2
GP(x∗) = c∗ − kᵀ

∗ (K + σ 2
n In)

−1k∗.
(2.2)

One of the most interesting things about GPs is that they yield not only predictions
μGP∗ for test data, but also the uncertainty of themean prediction, σGP∗. Model hyper-
parameters θ = (σ, σn) determine, respectively, the width of the SE kernel function
and the noise on the observations, and they are usually obtained by maximizing the
log-marginal likelihood.

2.2.2.2 Linear Model of Corregionalization for GPs

LMC-GPs [28] extend standard GPs so it is possible to both handle several outputs
at the same time (i.e., it is a multi-output model) and to deal with missing data in
the considered outputs. This model is well known in the field of geostatistics as
co-kriging [30].

In the LMC-GP model, we have a vector function, f : X → R
D , where D is

the number of outputs. Given a reproducing kernel, defined as a positive definite
symmetric function K : X × X → R

n×n , where n is the number of samples of each
output, we can express f(x) as

f(x) =
n∑

i=1

K(xi , x)ci , (2.3)

for some coefficients ci ∈ R
n . The coefficients ci can be obtained by solving the

linear system, obtaining
c̄ = (K(X,X) + λnI)−1ȳ, (2.4)

where c̄, ȳ are nD vectors obtained by concatenating the coefficients and outputs,
respectively, and K(X,X) is an nD × nD matrix with entries (K(xi , x j ))d,d ′ for
i, j = 1, . . . , n and d, d ′ = 1, . . . , D. The blocks of this matrix are (K(Xi ,X j ))i, j
n × n matrices. Predictions are given by

f(x∗) = K�
x∗ c̄, (2.5)

with K x∗ ∈ R
D×nD composed of blocks (K(x∗, x j ))d,d ′ . When the training kernel

matrixK(X,X) is block diagonal, that is, (K(Xi ,X j ))i, j = 0 for all i 	= j , then each
output is considered to be independent of the others, and we thus have individual GP
models. The non-diagonal matrices establish the relationships between the outputs.

In the LMC-GP model, each output is expressed as a linear combination of inde-
pendent latent functions,
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fd(x) =
Q∑

q=1

ad,quq(x), (2.6)

where ad,q are scalar coefficients, and uq(x) are latent functions with zero mean
and covariance kq(x, x′). It can be shown [28] that the full covariance matrix of this
model can be expressed as

K(X,X) =
Q∑

q=1

Bq ⊗ kq(X,X), (2.7)

where⊗ is theKronecker product.Here, eachBq ∈ RD×D is a positive definitematrix
known as a co-regionalization matrix, and it encodes the relationships between the
outputs.

2.2.3 Data and Setup

The temporal period of study is 6 years, starting in June 2010. Three global satellite
soil moisture products have been extracted for the study period: SMOS BEC L3
(1.4 GHz, L3 SM v3.0), Metop A/B ASCAT (5.3 GHz, Eumetsat H-SAF), and
GCOMW1 AMSR2 L3 (6.9 GHz, LPRM v05 retrieval algorithm, NASA). ASCAT
andAMSR2products have been resampled from their 0.25◦ grid to the SMOSEASE2
25-km grid using bilinear interpolation. These products have been widely validated
under different biomes and climate conditions by comparison with ground-based
observations (e.g., [26, 31, 32]) and outputs of land surface models (e.g., [33–35]).

We show the robustness of themulti-sensor gap-filling approach at three in situ soil
moisture networks: REMEDHUS in Spain (17 stations [36]), HOBE in Denmark (31
stations [37]), andDAHRA in Senegal (1 station [38]). In terms of temporal coverage,
they are representative of best-case (REMEDHUS), average-case (HOBE), andwort-
case (DAHRA) scenarios, with SMOS providing a coverage during the study period
of 96, 65, and 45%, respectively. The locations and land use maps of the in situ
networks used for this study are presented in Fig. 2.2.

2.2.4 Results

Let us start with an illustrative example of method’s performance. Figure2.3 shows
with a real example how the LMC-GP transfers information across SMOS, ASCAT,
and AMSR2 satellite time series for the predictions when no data is available and
provides associated confidence intervals.

http://bec.icm.csic.es/
http://hsaf.meteoam.it/soil-moisture.php
https://disc.gsfc.nasa.gov/datasets/LPRM_AMSR2_A_SOILM3_V001
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Fig. 2.3 Time series of original (orange dots) and reconstructed (blue lines) SMOS, ASCAT, and
AMSR2 time series using the LMC-GP gap-filling technique. The uncertainty on the predictions
is shown in shaded gray. The orange square points out a specific rainfall event that was captured
only by SMOS and is accounted for in the reconstruction of ASCAT and AMSR2 time series. The
green square exemplifies how the method reconstructs long data gaps in AMSR2 based on no-rain
information from the other two sensors, assigning a higher uncertainty when no original data is
available

A more thorough experimental analysis follows. Results of the application of the
proposed LMC-GP over REMEDHUS, HOBE, and DAHRA networks are shown
in Fig. 2.4, together with the original satellite time series and the in situ data as
a benchmark. It can be seen that the reconstructed soil moisture time series follow
closely the original time series, capturing the wetting-up and drying-down events and
filling the missing information (e.g., see in HOBE the dry-down in February 2014
which was captured only by AMSR2 during consecutive days and is reproduced
by the three reconstructed time series). In DAHRA, the limited temporal coverage
of AMSR2 in the dry seasons is completed in the reconstructed time series using
information from the other two sensors. It is worth to remark that for AMSR2 the
reconstructed time series back-propagate to dates where the satellite was not yet
launched (shown here for illustration purposes), yet they look very consistent with
the real satellite data. Also importantly, we fixed the kernel lengthscale parameter
in LMC-GP model to force a sharp reconstruction, to prevent the predictions being
smoothed with respect to the original time series.
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Fig. 2.4 Time series of in
situ (black lines) and
satellite-based soil moisture
estimates from SMOS,
ASCAT, and AMSR2
(orange dots denote the
original time series and blue
lines the predicted using the
LMC-GP gap-filling
technique) over a
REMEDHUS, b HOBE, and
c DAHRA networks

(a) REMEDHUS

(b) HOBE

(c) DAHRA
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A statistical analysis of the original and reconstructed satellite time series has been
undertaken following the recommended performancemetrics in [39]. Table2.1 shows
that Pearson’s correlation coefficient R, bias (as estimated by themean error,ME) and
root-mean-squared error (RMSE) with respect to in situ data in the three networks
are not affected to a high degree by the reconstruction, and they remain within
reasonable bounds. For SMOS, the reconstructed time series preserve the statistical
scores of original time series in REMEDHUS and DAHRA and improve the R in
HOBE from 0.62 to 0.68 (note the other sensors in HOBE have higher correlations of
0.66 and 0.73). The increase in coverage is notable, with an improvement of 37% for
HOBE and of 54% for DAHRA. SMOS has the largest coverage over REMEDHUS,
and the improvement of coverage is therefore limited (of 8%). For ASCAT, the
statistical scores are preserved in the reconstructed time series, and the increase
in coverage is also remarkable: 23% for REMEHDUS, 31% for HOBE, and 36%
for DAHRA. For AMSR2, the validation is limited to four annual cycles (from its
launch date in May 18, 2012, onward). Over REMEDHUS, AMSR2 presents a wet
bias with respect to the in situ data that is reduced in the reconstructed time series;
its correlation is reduced from 0.86 to 0.81, probably due to the lower correlations
of the other two sensors, and the increase in coverage is of 27%. Similar results
are obtained for reconstructed AMSR2 over HOBE, but with a lower number of
collocated observations due to the lack of in situ data in early January 2014. Over
DAHRA, correlation is improved from 0.73 to 0.79, with a 66% improvement of
coverage. These results provide confidence in the proposed technique and show
how it exploits the complementary spatiotemporal coverage of the three microwave
sensors.

2.3 Distribution Regression for Multiscale Estimation

Non-uniform spatial sampling is a common problem in geostatistics and spatializa-
tion problems. When the variable of interest is available at the same resolution that
the remote sensing observations, standard algorithms such as random forests, Gaus-
sian processes, or neural networks are available to establish the relationship between
the two. Nevertheless, we often deal with situations where the target variable is
only available at the group level, collectively associated to a number of remotely
sensed observations. This kind of problem is known in statistics and machine learn-
ing as multiple instance learning (MIL) or distribution regression (DR). Chapter 6
introduces the MIL framework and methodology, and reviews different approaches
to address the particular issue of imprecision in hyperspectral images analysis. We
here present a nonlinear method based on kernels for distribution regression that
solves the previous problems without making any assumption on the statistics of
the grouped data. The presented formulation considers distribution embeddings in
reproducing kernel Hilbert spaces and performs standard least squares regression
with the empirical means therein. A flexible version to deal with multisource data
of different dimensionality and sample sizes is also introduced. The potential of the

http://dx.doi.org/10.1007/978-3-030-38617-7_6
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presented approach is illustrated by using SMAP VOD time series for the estimation
of crop production in the US Corn Belt.

2.3.1 Kernel Distribution Regression

In distribution regression problems, we are given several sets of observations each
of them with a single output target variable to be estimated. The training dataset
D is formed by a collection of B bags (or sets) D = {(Xb ∈ R

nb×d , yb ∈ R)|b =
1, . . . , B}. A training set from a particular bag b is formed by nb examples, here
denoted as Xb = [x1, . . . , xnb ]ᵀ ∈ R

nb×d , where xi ∈ R
d×1. Let us denote all the

available data collectively grouped inmatrixX ∈ R
n×d ,wheren = ∑B

b=1 nb, andy =
[y1, . . . , yB]ᵀ ∈ R

B×1. In this setting, the direct application of regression algorithms
is not possible because not just a single input point xb but a set of pointsXb is available
for each target output, and latter for prediction we may have test points or sets from
each bag, x∗

b ∈ R
d×1 or X∗

b ∈ R
mb×d , which we denote with a star superscript. The

problem boils down to finding a function f that learns the mapping from x to y
exploiting the many-to-one dataset. To solve the problem, two main approaches
are typically followed: (1) output expansion, that is, replicating the label yb for
all points in bag b; or (2) input summary most notably with the empirical average
x̄b = 1

nb

∑
i xi , or a set of centroids cb, b = 1, . . . , B. What makes DR distinctive

is that it instead exploits the rich structure in D by performing regression with
the group distributions directly. Statistically, this consists of considering all higher
order statistical relationships between the groups, not just the first- or second-order
moments. The method we are going to introduce here works by embedding the bag
distribution in aHilbert space andperforming linear regression therein.Weessentially
need the definition of a mean embedding, its induced kernel function, and how the
regression is done with it.

Distribution regression problems rely very often on using non-uniformly spa-
tial sampled datasets, where the variables of interest are associated with sets
of observations instead of single observations. While some approaches sum-
marize the sets of observations using some kind of aggregation, such as the
mean of the standard deviation, kernel distribution regression uses all higher
moments by computing mean map embeddings in high-dimensional Hilbert
spaces, and hence improved ability for function approximation.
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2.3.1.1 Mean Map Embeddings

We frame the problem in the theory of mean map embeddings of distributions [40–
42]. The kernel mean map from the set of all probability distributions BX into H is
defined as

μ : BX → H, P →
∫
X
k(·, x)dP(x) ∈ H .

Assuming that k(·, x) is bounded for any x ∈ X, it can be shown that for any P,
letting μP = μ(P), the EP [ f ] = 〈μP, f 〉H , for all f ∈ H . Here μ represents the
expectation function onH . Every probability measure has a unique embedding and
the μ fully determines the corresponding probability measure [41]. Here, we show
how to estimate themeanmapembeddings fromempirical samples. For oneparticular
bag, Xb, drawn i.i.d. from a particular Pb, the empirical mean estimator of μb can be
computed as

μ̂b = μPb
=

∫
k(·, x)P̂(dx) ≈ 1

nb

nb∑
i=1

k(·, xi ). (2.8)

This is an empirical mean map estimator whose dot product can be computed via
kernels:

〈μ̂Pb
, μ̂Pb′ 〉H = 1

nbnb′

nb∑
i=1

nb′∑
j=1

k(xbi , x
b′
j ), (2.9)

which is the base of a useful kernel algorithm for hypothesis testing namedmaximum
mean discrepancy (MMD) [41, 42] and estimates the distance between two sample
means in a reproducing kernel Hilbert space H where data are embedded

MMD(Pb,Pb′) := ‖μPb
− μPb′ ‖2H .

This can be computed using kernel functions in Eq. (2.9). Figure2.5 shows how
MMD and mean map embeddings can detect differences between distributions in
higher order moments.

2.3.1.2 Distribution Regression with Kernels

The distribution regression task is carried out by standard least squares regression
using the mean embedded data in Hilbert spaces. The solution leads to the kernel
ridge regression (KRR) algorithm [43] working with mean map embeddings. We
need to minimize a loss function composed of two terms: the least square errors of
the approximation of the mean embedding, and a regularization term that acts over
the class of functions to be learned in Hilbert space f ∈ H :
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Fig. 2.5 The two-sample problem consists of detecting whether two distributions Px and Py are
different or not. When they have different means (a), a simple t-test can differentiate them. When
they have the same first moments (mean in b, mean and variance in c) but different higher order
moments, mapping the data to higher dimensional spaces allows to distinguish them (d). Kernel
mean embeddings are able to do so without having to map the data explicitly

f ∗ = arg min
f ∈H

{
1

n

n∑
i=1

‖yi − f (μi )‖2 + λ‖ f ‖2H
}
,

whereλ > 0 is the regularization term. The ridge regression has an analytical solution
for a test set given a set of training examples:

f̂μt
= k(K + nλI)−1y, (2.10)

whereμt is themeanembeddingof the test setXt ,k = [k(μ1,μt ), . . . , k(μn,μt )]ᵀ ∈
R

n×1, K = [k(μi ,μ j )] ∈ R
n×n and y = [y1, . . . , yn]ᵀ represents all outputs. Now,

for a set of B bags each one containing nb samples, and exploiting (2.9), one can
readily compute the kernel entries of K as follows:

[K]b,b′ = μ
ᵀ
bμb′ = 1

nbnb′
1ᵀ
nbKbb′1nb′ ,

where the matrix Kbb′ ∈ R
nb×nb′ . Therefore, we have an analytic solution of the

problem in (2.10):

ŷ∗
b = 1

mbn
1ᵀ
mb
Kbb′1nb′ α, (2.11)

where Kbb′ ∈ R
mb×nb′ which is computed given a valid Mercer kernel function k.

Kernel methods also allow to combine multisource (also known as multimodal)
information in each bag, as was previously done with standard paired settings in
either remote sensing or signal processing applications [42, 44, 45]. This is the
case when bags have different numbers of both features and sizes, e.g., we aim
to combine different spatial, spectral, or temporal resolutions. Notationally, now we
have access to differentmatricesXb

f ∈ R
n f
b × f , f = 1, . . . , F . Themultimodal kernel

distribution method summarizes each dataset into a mean and then exploits the direct
sum of Hilbert spaces in the mean embedding space. Therefore, we define F Hilbert
spaces H f , f = 1, . . . , F , and the direct sum of all of them, H = ⊕F

f =1H f . We
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(a) (b) (c)

Fig. 2.6 Distribution regression approaches presented in this chapter. TheDR problem is illustrated
in a for B = 3 bags different numbers of samples per bag (n1 = 3, n2 = 4, n3 = 3), three corre-
sponding target labels, yb, b = 1, 2, 3, and columns represent different features (sources, sensors)
Si , i = 1, 2, 3, 4. The standard approach b summarizes the distributions Pb with the mean vectors
μb and then applies standard regression methods. Alternatively, this can be done in Hilbert spaces
too with the advantage of considering all moments of the distributions. In c, we show the case of
multisource distribution regression (MDR) in which some features are missing for particular bags
and samples, which is often the case when different sensors are combined

summarize the bag feature vectors with a set of mean map embeddings of samples
in bag b, which we denoted as μ

f
b . The collection of all mean embeddings in H is

defined asμb = [μ1
b, . . . ,μ

F
b ] ∈ H, and then we define the meanmap embedding as

M = [μ1| · · · |μB]ᵀ ∈ R
B×H . Themultimodal kernel matrix is computed as follows:

[K̃]b,b′ = μ
ᵀ
bμb′ = ∑F

f =1

1

n f
b n

f
b′
1 f ᵀ
nb Kbb′1n f

b′
, (2.12)

Fig. 2.6 graphically illustrates the DR approaches used in this chapter. The algo-
rithm reduces to the application of a standard kernel ridge regression with the kernel
function Eq. (2.11) for the standard case or Eq. (2.12) for the multisource case. We
provide source code of our methods in http://isp.uv.es/code/dr.html.

2.3.2 Data and Setup

We show results for crop yield estimation, which is a particular problem of distribu-
tion regression in the context of remote sensing.We show results for our KDR (kernel
distribution regression) and several baseline standard approaches like least squares
regularized linear regression model (RLR) and its nonlinear (kernel) counterpart, the
kernel ridge regression (KRR) method, both working on the empirical means of each
bag as input feature vectors. We use as evaluation criteria the standard mean error
(ME) to account for bias, the root-mean-square-error (RMSE) to assess accuracy,
and the coefficient of determination or explained variance (R2) to account for the
goodness-of-fit.

Specifically, for the crop yield estimation, satellite-based retrievals of vegetation
optical depth (VOD) from SMAP [46] is related to crop production data from the

http://isp.uv.es/code/dr.html
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Fig. 2.7 Area of study. It includes both the eight states and the croplandmask following theMODIS
IGBP land cover classification

2015 US agricultural survey (total yield and yield per crop type), and then the pro-
posed methods are evaluated. VOD is a measure of the attenuation of soil microwave
emissions when they pass through the vegetation canopy, being sensitive not only to
the amount of living biomass, but also to the amount of water stress experienced by
the vegetation [47]. SMAP VOD has been shown to carry information about crop
growth and yield in a variety of agro-ecosystems [48, 49].

We focus on eight states within the so-called Corn Belt of the Midwestern United
States: Illinois, Indiana, Iowa, Minnesota, Nebraska, North Dakota, Ohio, and South
Dakota (Fig. 2.7).Also, theUnitedStatesDepartment ofAgriculture, in particular, the
National Agricultural Statistics Service (USDA-NASS), publish reports and survey
of agricultural information every year at the country, state and county levels. There
is a total of 385 counties with yield and satellite data for prediction of total yield. We
also predict per crop type. In particular, the three main crops in the region, i.e., corn,
soybean, and wheat, are predicted. All the 363, 361, and 204 counties reporting corn,
soybean, and wheat yields, independent of their relative importance at the county
level, are included in the corresponding crop-specific experiments.
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2.3.3 Results

The methodology for evaluating the algorithms is as follows. A 66% of the counties
(bags) are used to train/validate and the remaining 33% are used for testing. With
the first ones, we perform a fivefold cross-validation also at a bag level, i.e., we split
the data into five subsets, one reserved for validation and the rest used for training
the regression model. After this, we only apply the best model found to the test data.
Finally, all this process is repeated ten times, and the average over all test results is
computed. Only test errors are reported.

Table2.2 shows the crop yield predictions for all the approaches. Notably, these
results outperform those obtained in previous literature for corn–soy croplands ([48]
and references therein), even with the simplest models like RLR and KRR. Results
of the best regressionmodel between VOD and official corn yields at county level are
illustrated in Fig. 2.8. Except in few counties, corn predictions are reasonably good,
with relative errors below 3%. The proposed DR approaches will be particularly use-
ful for regional crop forecasting in areas covering different agro-climatic conditions
and fragmented agricultural landscapes (e.g., Europe), where scale effects need to
be properly addressed for adequate analysis and predictions [50].

Table 2.2 Results for prediction of total yield and crop yield prediction using VOD (Kg m−2)

Total crop yield ME×1000 RMSE ×100 R2

RLR 1.19 ± 7.36 9.67 ± 0.74 0.80 ± 0.02

KRR 2.22 ± 10.77 9.34 ± 0.73 0.81 ± 0.02

KDR 2.27 ± 10.95 9.35 ± 0.71 0.81 ± 0.02

Corn yield ME×1000 RMSE ×100 R2

RLR −1.20 ± 5.89 7.54 ± 0.50 0.85 ± 0.02

KRR 1.68 ± 8.52 6.54 ± 0.72 0.88 ± 0.02

KDR 1.59 ± 7.88 6.47 ± 0.74 0.89 ± 0.02

Soybean yield ME×1000 RMSE ×100 R2

RLR -1.99 ± 1.85 2.45 ± 0.13 0.85 ± 0.03

KRR -0.70 ± 2.92 2.47 ± 0.21 0.85 ± 0.04

KDR -0.64 ± 2.43 2.40 ± 0.21 0.86 ± 0.03

Wheat yield ME×1000 RMSE ×100 R2

RLR 2.72 ± 6.65 5.46 ± 0.48 0.64 ± 0.08

KRR 2.42 ± 8.47 5.07 ± 0.38 0.69 ± 0.05

KDR 2.91 ± 7.31 5.10 ± 0.40 0.69 ± 0.05
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Fig. 2.8 aMap of official corn yield for year 2015 from USDA-NASS survey given in (Kg/m2). b
KDR predicted corn yield and c KDR relative error prediction per county (%)

2.4 Global Parameter Estimation in the Cloud

From an operational point of view, the implementation of biophysical parameter
retrieval chains on ongoing basis demands high storage capability and efficient com-
putational power, mainly when dealing with long time series of remote sensing data
at global scales. There exist a wide variety of free available remote sensing data
which could be potentially ingested in these processing chains. Among them, one
canfind remote sensing data disseminated byNASA (e.g.,MODIS), theUnited States
Geological Survey (USGS) (e.g., Landsat), and ESA (e.g., data from the Sentinel
constellation). To deal with this huge amount of data, Google developed the Google
Earth Engine [51], a cloud computing platform specifically designed for geospatial
analysis at the petabyte scale. Due to its unique features, GEE is the state of the art
in remote sensing big data processing. The GEE data catalog is composed by widely
used geospatial datasets. The catalog is continuously updated and data are ingested
from different government-supported archives such as the Land Process Distributed
ActiveArchiveCenter (LPDAAC), theUSGS, and theESACopernicusOpenAccess
Hub. The GEE data repository embrace a wide variety of remote sensing datasets
including meteorological records, atmospheric estimates, vegetation, and land prop-
erties and also surface reflectance data. Data processing is performed in parallel
on Google’s computational infrastructure, dramatically improving processing effi-
ciency and speed. These features, among others, make GEE an extremely valuable
tool for multitemporal and global studies which include vegetation, temperature,
carbon exchange, and hydrological processes [24, 52, 53].

Here,wepresent an example of biophysical parameter estimation in theGEEcloud
computing platform. The developed processing chain includes the joint estimation
of LAI, FAPAR, FVC, and CWC parameters at global scale from long-term time
series (15 years) of MODIS data exploiting the GEE cloud processing capabilities.
The retrieval approach is based on a hybrid method, which combines the physically
based PROSAIL radiative transfer model with random forests (RFs) regression. The
implementation on GEE platform allowed us to use global and climate data records
(CDR) of bothMODIS surface reflectance and LAI/FAPAR datasets which provided
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Fig. 2.9 Schema of the developed biophysical retrieval chain in the cloud

us with global biophysical variable maps at unprecedented timeliness. Figure2.9
shows an schema summarizing the developed retrieval chain.

Cloud-based geospatial computing platforms such as Google Earth Engine
offer opportunities to create a broad range of applications with precision and
accuracy over unprecedented large areas with medium and high spatial reso-
lutions. In this section, we illustrate the advantages of using algorithms imple-
mented in a cloud computing infrastructure dealing with a common problem
in remote sensing science, the retrieval of land biophysical parameters.

2.4.1 Data and Setup

As shown in Fig. 2.9, to model the spectral response of the vegetation we chose the
PROSAIL radiative transfer model. This model results from the PROSPECT leaf
optical reflectance model [54] coupled with the SAIL canopy model [55]. PRO-
SAIL has been widely used in many remote sensing studies [56] and successfully
applied for local and global parameter estimation [24, 57–59]. PROSAIL assumes
the canopy as a turbid medium and simulates vegetation reflectance along the optical
spectrum (from 400 to 2500 nm) depending on the leaf biochemistry, structure of
the canopy, as well as the background soil reflectance and the sun–satellite geome-
try. At leaf level, the parametrization was based on the distributions derived from a
massive global leaf trait measurements (TRY) [60] in order to account for a realistic
representation of global leaf trait variability to optimize PROSAIL at global scale,
whereas distributions of the canopy variables were similar to those adopted in other
global studies [59]. The TRY database embrace 6.9 million trait records for 148,000
plant taxa at unprecedented spatial and climatological coverage [60]. Although the
database is recent, due to the TRY unique properties, these data have been widely
used and hundreds of top publications (TRY database) have been presented cover-
ing topics ranging from ecology and plant geography to vegetation modeling and

https://www.try-db.org/
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Table 2.3 General information about leaf traits measurements used in this work

Trait No. samples No. of species

Cab 19,222 941

Cdm 69,783 11,908

Cw 32,020 4802

Table 2.4 Spectral specifications of the MODIS MCD43A4 product

MODIS band Wavelength (nm)

Band 1 (red) 620–670

Band 2 (NIR) 841–876

Band 3 (blue) 459–479

Band 4 (green) 545–565

Band 5 (SWIR-1) 1230–1250

Band 6 (SWIR-2) 1628–1652

Band 7 (MWIR) 2105–2155

remote sensing [25, 61]. In this section, instead of using the usual lookup tables
available in the literature, we use the TRY to parametrize PROSAIL. Our objective
is to exploit the TRY database to infer more realistic distributions and correlations
among some key leaf traits such as leaf chlorophyll (Cab), leaf dry matter (Cdm), and
water (Cw) contents. Table2.3 shows some basic information about the considered
traits extracted from the TRY.

The reflectance simulations obtained with PROSAIL were set up to mimic the
MCD43A4product bandswhich are available inGEE. TheMCD43A4MODIS prod-
uct is generated combining data fromTerra andAqua spacecrafts, being disseminated
as a level-3 gridded dataset. This product provides a bidirectional reflectance dis-
tribution function (BRDF) from a nadir view in the seven land MODIS bands (see
Table 2.4 for more details), thus offering global surface reflectance data at 500m
spatial resolution with 8-day temporal frequency.

PROSAIL’s forward mode provides a reflectance spectrum given a set of input
parameters (leaf chemical components/traits, structural parameters of the vegetation
canopy, etc.). After running PROSAIL in forwardmode, its inversionwas undertaken
using RFs. This inversion allows, in turn, to retrieve the selected biophysical param-
eters (LAI, FAPAR, FVC, and CWC). RFs have been applied both for classification
and regression in multitude of remote sensing studies [62] including forest ecology
[63, 64], land cover classification [65], and feature selection [66]. We chose RFs
to invert the PROSAIL model mainly because they can cope with high-dimensional
problems due to their optimal pruning strategy and efficiency. RF is an ensemble
method that builds up a stack of decision trees. This approach has been proven to be
very beneficial to alleviate over-fitting problems in single decision tree models. On
the ensemble, every tree is trained with different subsets of features and examples
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(selected randomly) yielding an individual prediction. The combined prediction (usu-
ally the mean value) of the considered trees composing the RFs is the final prediction
of themodel [67]. The computed simulations obtained with PROSAILwere split into
two groups: (1) a training dataset to optimize the models, and (2) an independent test
set which was only used to assess the models (RFs). After our models were trained
and validated, we predicted the chosen biophysical variables using real MODIS
spectral information (land bands, see Table2.4). In addition, RFs, once trained, are
easily parallelized to cope with large-scale problems routinely encountered in global
remote sensing applications. This is specifically the case of the problem described
here, where we exploit large datasets and run predictions covering many years within
the Google Earth Engine platform. A toy example of the code is available at https://
code.earthengine.google.com/e3a2d589395e4118d97bae3e85d09106.

2.4.2 Results

The PROSAIL simulations were uploaded to GEE and randomly split into train (2/3
of the simulations) and test (the remaining 1/3 of the samples never used in the RFs
training) datasets. The RFs theoretical performance evaluated in the GEE platform
(assessed over the test dataset) revealed high correlations (R2 = 0.84, 0.89, 0.88,
and 0.80 for LAI, FAPAR, FVC, and CWC, respectively), low errors (RMSE = 0.91
m2/m2, 0.08, 0.06, and 0.27 kg/m2 for LAI, FAPAR, FVC, and CWC, respectively),
and practically no biases in all cases. Subsequently, the RFs retrieval model was exe-
cuted over the computing cloud to obtain 15 years of global biophysical parameters
from the MCD43A4 product available on GEE. Figure2.10 shows the global mean
values of LAI, FAPAR, FVC, and CWCderived from 2010 to 2015. The computation
of the mean biophysical maps implied processing 230 (46 yearly images × 5 years)
FAPAR images at 500m spatial resolution (∼440 million cells), and compute their
annual mean, which took around 6 h.

Validation of the estimates was achieved by means of intercomparison over a
network of sites named BELMANIP-2.1 (Benchmark Land Multisite Analysis and
Intercomparison of Products) especially selected for representing the global vari-
ability of Earth vegetation. Over this network, we compared the LAI and FAPAR
estimates against the official LAI/FAPAR MODIS product (MCD15A3H) on GEE.
We selected the MODIS pixels for every BELMANIP-2.1 location, and then we
computed the mean value of theMODIS valid pixels within a 1km surrounding area.
In addition, since theMCD15A3H andMCD43A4 differ in temporal frequency, only
the coincident dates between them were selected for comparison. For validation, we
selected only high-qualityMODIS pixels which resulted in∼60000 valid pixels from
2002–2017 accounting for vegetation biomes: evergreen broadleaf forests (EBF),
broadleaf deciduous forest (BDF), needle leaf forest (NLF), cultivated (C), shrub-
lands (SH), herbaceous (H), and bare areas (BA). For FAPAR, very good agreement
(R2 ranging from0.89 to 0.92) and low errors (RMSE ranging from0.06 to 0.08)were
found between retrievals and the MODIS FAPAR product over bare areas, shrub-

https://code.earthengine.google.com/e3a2d589395e4118d97bae3e85d09106
https://code.earthengine.google.com/e3a2d589395e4118d97bae3e85d09106
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Fig. 2.10 LAI, FAPAR, FVC, CWC global maps corresponding to the mean values estimated by
the proposed retrieval chain for the period 2010–2015

lands, herbaceous, cultivated, and broadleaf deciduous forest biomes. For needle-leaf
and evergreen broadleaf forests, lower correlations (R2 = 0.57 and 0.41) and higher
errors (RMSE = 0.18 and 0.09) were obtained. It is worth mentioning that over bare
areas, the MODIS FAPAR presents an unrealistic minimum value (∼0.05) through
the entire period. In the case of LAI, goodness-of-fit ranging from 0.70 to 0.86 and
low errors (RMSE ranging from 0.23 to 0.57 m2/m2) were found between estimates
in all biomes except for evergreen broadleaf forest, where R2 = 0.42 and RMSE =
1.13 m2/m2 are reported.

Figure2.11 shows the LAI and FAPAR differencemaps calculated using themean
outcomes (2010–2015) of our processing chain and the mean reference MODIS
LAI/FAPAR product for the same period. The mean difference LAI map shows that
the discrepancies amongboth products rangewithin the±0.5m2/m2 range, indicating
that both products are consistent. However, our high LAI values present a significant
underestimation over heavily vegetated areas (dense canopies) that reaches values
up to 1.4 m2/m2. When comparing both FAPAR products, a constant negative bias
of ≈0.05 m2/m2 our estimates is observed. These differences could be related with a
documented systematic overestimation of operationalMODISFAPAR [68],meaning
that our approach is partly correcting someof theflaws of the officialMODISproduct.

State-of-the-art cloud computing platforms like GEE provides routinely time
series of global land surface variables related with vegetation status and an unprece-
dented computational power. Despite the variety of regression and classification
methods implemented in GEE, the user could be limited by the number of state-of-
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Fig. 2.11 LAI and FAPAR global maps corresponding to the difference of mean values between
derived estimates by the proposed retrieval chain and the GEE MODIS reference product for the
period 2010–2015

the-art algorithms which are currently implemented. However, GEE is being updated
at a fast pace due to an increasing number of users developing new approaches and
methods that may be potentially implemented in GEE for a wide range of geoscience
applications. Here, we have illustrated an application that takes advantage of GEE
capabilities to retrieve standard biophysical variables at a global scale. The validation
of our estimates revealed, in general, good spatial consistency. However, differences
in mean LAI values over dense forests are still noticeable and could be attributed
mostly to differences in retrieval approaches. Other possible source for discrepancies
shown could be associated to (i) product definition, such as those related with consid-
ering or not vegetation clumping [69], (ii) embedded algorithm assumptions (RTM,
optical properties, canopy architecture), and (iii) satellite input data and processing.
In relation with the FAPAR, as mentioned above, an overall negative bias is found for
all biomes, which is not an issue since different studies have pointed out a systematic
overestimation ofMODIS retrievals in both C5 and C6 at low FAPAR values. Finally,
it is worth mentioning that neither the FVC nor the CWC products are available on
GEE. Moreover, there is no global and reliable CWC product with which compare
the CWC estimates derived by the proposed retrieval chain. Regarding FVC, there
are only a few global products that differ in retrieval approaches and spatiotemporal
features.

2.5 Conclusions

This chapter focused on the problem of parameter estimation from remotely sensed
optical sensor data. We identified two main challenges related to the data and the
used models. To satisfy the urgent needs of fast and accurate data processing and
product generation,we relied on threemain building blocks: advancedmachine learn-
ing, big and heterogeneous EO data, and large-scale processing platforms. In this
scenario, machine learning has to be redesigned to accommodate data characteris-
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tics (spatiotemporal and multi-sensor structures, higher order, and nonlinear feature
relations), to be accurate and flexible, and to scale well to millions of observations.

To deal with these challenges, we introduced three machine learning approaches
to exploit different spatial, multi-sensor, temporal, and large-scale data characteris-
tics. In particular, we exploited multi-output Gaussian processes for gap-filling time
series, kernel distribution regression models that exploits multiple observations and
avoid working with arbitrary summarizing statistics, and random forests trained on
RTM simulations and implemented in the GEE computation cloud. The approaches
allow us to estimate key land parameters from optical and microwave EO data syn-
ergistically: SM, LAI, FAPAR, FVC, CWC, and crop yield.

Synergistic benefits of machine learning, big data, and scalable cloud computing
are here to stay, and we envision many exciting developments in the near future. EO
data allows to monitor continuously in space and time the Earth and can be used to
“spatialize” almost any arbitrary quantity measured on the ground or simulated with
appropriate transfer codes. Plant, vegetation, and land parameters will readily benefit
from ML-based approaches in the cloud to make reliable and accurate products
accessible to everyone.
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