
Chapter 13
Recent Advances in Hyperspectral
Unmixing Using Sparse Techniques
and Deep Learning
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Abstract Spectral unmixing is an important technique for remotely sensed hyper-
spectral image interpretation that expresses each (possibly mixed) pixel vector as
a combination of pure spectral signatures (endmembers) and their fractional abun-
dances. Recently, sparse unmixing and deep learning have emerged as two pow-
erful approaches for spectral unmixing. In this chapter, we focus on two particu-
larly innovative contributions. First, we provide an overview of recent advances in
semi-supervised sparse unmixing algorithms, with particular emphasis on techniques
that include spatial–contextual information for a better scene interpretation. These
algorithms require a spectral library of signatures available a priori to conduct the
unmixing. Then, we describe new developments in the use of deep learning for spec-
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tral unmixing purposes, focusing on a new fully unsupervised deep auto-encoder
network (DAEN) method. Our experiments with simulated and real hyperspectral
datasets demonstrate the competitive advantages of these innovative approaches over
some well-established unmixing methods, revealing that these methods are currently
at the forefront of hyperspectral unmixing.

13.1 Introduction

13.1.1 Spectral Unmixing

Hyperspectral remote sensing sensors collect spectral information from the Earth’s
surface using hundreds of narrow and contiguous wavelength bands [1]. It has been
widely applied in various fields, such as target detection, material mapping, and
material identification [2]. However, due to insufficient spatial resolution and spatial
complexity, pixels in remotely sensed hyperspectral images are likely to be formed by
a mixture of pure spectral constituents (endmembers) rather than a single substance
[3]. The existence of mixed pixels complicates the exploitation of hyperspectral
images [4]. Spectral unmixing, aimed at estimating the fractional abundance of the
pure spectral signatures or endmembers, was proposed to deal with the problem of
spectral mixing and effectively identifies the components of the mixed spectra in
each pixel [5].

Unmixing algorithms rely on specific mixing models, which can be characterized
as either linear or nonlinear [5, 6]. On the one hand, the linear model assumes that
the spectral response of a pixel is given by a linear combination of the endmembers
present in the pixel. On the other hand, the nonlinear mixture model assumes that
the incident radiation interacts with more than one component and is affected by
multiple scattering effects [3, 7]. As a result, nonlinear unmixing generally requires
prior knowledge about object geometry and the physical properties of the observed
objects [8]. The linear mixture model exhibits practical advantages, such as ease of
implementation and flexibility in different applications. In this chapter, we will focus
exclusively on the linear mixture model.

Under the linear mixture model, a group of unmixing approaches has been pro-
posed [9–13]. Depending on whether a spectral library is available or not, we classify
these methods into two categories, i.e., unsupervised and semi-supervised unmixing
algorithms. With the wide availability of spectral libraries, sparse unmixing [8], as a
semi-supervised approach in which mixed pixels are expressed in the form of combi-
nations of a number of pure spectral signatures from a large spectral library, is able to
handle the drawbacks introduced by such virtual endmembers and the unavailability
of pure pixels.
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13.1.2 Sparse Unmixing

The sparse unmixing approach exhibits significant advantages over unsupervised
approaches, as it does not need to extract endmembers from the hyperspectral data
or estimate the number of endmembers. Another advantage of sparse unmixing is
that it provides great potential for accurate estimation of the fractional abundances,
as all endmembers are normally represented in the library. However, these algorithms
fully rely on the availability of a library in advance, and hence their semi-supervised
nature.

The success of sparse unmixing relies on the fact that the unmixing solution is
sparse, as the number of endmembers used to represent a mixed pixel is generally
much smaller than the number of spectral signatures in the library [8]. As a result, new
algorithms have been developed to enforce the sparsity on the solution. The sparse
unmixing algorithm via variable splitting and augmented Lagrangian (SUnSAL) [8]
adopts the �1 regularizer on the abundancematrix, which aims at introducing sparsity
through the spectral domain that a pixel is unlikely to be mixed by a high number
of components. The introduction of SUnSAL brought new insights into the concept
of sparse unmixing. However, the real degree of sparsity is beyond the reach of
the �1 regularizer due to the imbalance between the number of endmembers in the
library and the number of components that generally participate in a mixed pixel.
New algorithms have been developed in order to perform a better characterization
of the degree of sparsity. Some techniques have focused on the introduction of new
orders over the sparse regularizer such as the collaborative SUnSAL (CLSUnSAL)
algorithm [14] and the graph-regularized �1/2-NMF (GLNMF) method [15]. Other
algorithms have introduced weighting factors to penalize the nonzero coefficients
on the sparse solution [16], such as the reweighted sparse unmixing method [17]
and the double reweighted sparse unmixing (DRSU) algorithm [18]. Although these
methods obtained promising results, they consider pixels in a hyperspectral data
as independent entities, and the spatial–contextual information in the hyperspectral
image is generally disregarded. Since hyperspectral images generally follow specif-
ical spatial arrangements by nature, it is important to consider spatial information
for their characterization [19].

Following this observation, several algorithms have focused on incorporating spa-
tial correlation into the final solution. For instance, the sparse unmixing via variable
splitting augmented Lagrangian and total variation (SUnSAL-TV) [20] represents
one of the first attempts to include spatial information in sparse unmixing. It exploits
the spatial information via a first-order pixel neighborhood system. Similar to SUn-
SAL, SUnSAL-TV opened new avenues and brought new insights into the concept
of spatial sparse unmixing, which is able to promote piece-wise transitions in the
estimated abundances. However, its performance strongly relies on the parameter
settings [21]. At the same time, its model complexity results in a heavy computa-
tional cost, further limiting its practical application potential. New developments
aimed at fully exploiting the spatial correlation among image features (and further
imposing sparsity on the abundance matrix) have been mainly developed along two
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directions. High-order neighborhood information over spatial regularizers has been
introduced to reach this goal. For instance, the nonlocal sparse unmixing (NLSU)
algorithm [22] can take advantage of high-order structural information. However, the
neighborhood of the pixel changes randomly, thus limiting the continuity of spectral
information. Another drawback of NLSU is that its model is more complex than that
of SUnSAL-TV, which limits its practical application. Spatially weighted factors
(aimed at characterizing spatial information through the inclusion of a weight on
the sparse regularizer) have also been used to account for the spatial information in
sparse unmixing. For example, the local collaborative sparse unmixing (LCSU) uses
a spatial weight to impose local collaborativity, thus addressing some of the issues
observed in SUnSAL-TV (including oversmoothed boundaries and blurred abun-
dance maps) [23]. With similar complexity as the SUnSAL-TV, the LCSU exhibits
similar unmixing performance as the SUnSAL-TV. This indicates that using spatial
weights (as compared to spatial regularizers) has good potential in terms of improved
unmixing performance and computational complexity. In [24], the spectral–spatial
weighted sparse unmixing (S2WSU) is proposed, which simultaneously exploits the
spectral and spatial information contained in hyperspectral images via weighting fac-
tors, aiming at enhancing the sparsity of the solution. As a framework, the S2WSU
algorithm with its open structure, it is able to accept multiple types of spectral and
spatial weighting factors, thus providing great flexibility for the exploration of dif-
ferent spatial scenarios, such as edge information, nonlocal similarity, homogeneous
neighborhood information, etc.

13.1.3 Deep Learning for Spectral Unmixing

With advances in computer technology, learning-based approaches for unmixing
have achieved a fast development in the past few years. Joint Bayesian unmixing
is a typical example of learning-based approaches, which leads to good abundance
estimates due to the incorporation of a full additivity (i.e., sum-to-one) and nonneg-
ativity constraints [25–27]. Approaches based on artificial neural networks (ANNs)
have also been developed for the learning of abundance fractions, assuming the
prior knowledge of the endmember signatures [28–30]. These approaches exhibit
better performance when compared with handcrafted methods, but they assume that
endmembers are known in advance and, therefore, need to incorporate endmember
extraction algorithms to perform unmixing. More recently, as a common tool for
deep learning, auto-encoders have achieved a fast development in unmixing applica-
tions. Nonnegative sparse auto-encoder (NNSAE) and denoising auto-encoder were
employed to obtain the endmember signatures and abundance fractions simultane-
ously for unmixing, with advanced denoising and intrinsic self-adaptation capabil-
ities [31–33]. However, their strength lies in the aspect of noise reduction and they
exhibit limitations when dealing with outliers. Due to the fact that outliers likely
lead to initialization problems, their presence can bring strong interference to the
unmixing solutions. In [34], a stacked nonnegative sparse auto-encoder (SNSA) is
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proposed to address the issue of outliers. For linear mixing model (LSM)-based
hyperspectral unmixing, the physical meaning of the model implies the sum-to-one
on abundance fractions when every material in a pixel can be identified [3, 33, 35].
However, similar to the NMF-based approaches, SNSA adopts an additivity penalty
on the abundance coefficients. The additivity penalty denotes that a penalty coeffi-
cient is used for controlling approximation of the sum-to-one. As this is not a hard
constraint, the sum-to-one constraint is not necessarily ensured [34].

In [36], the fully unsupervised deep auto-encoder network (DAEN) unmixing
method was recently proposed to address the presence of outliers in hyperspec-
tral data. The DAEN has two main steps. In the first step, the spectral features are
learned by the stacked auto-encoders (SAEs), aiming at generating good initial-
izations for the network. In the second step, it employs a variational auto-encoder
(VAE) to perform unmixing for the estimation of the endmembers and abundances.
VAE combines variational inference to perform unsupervised learning and inherit
auto-encoder architecture which can be trained with gradient descent [37]. Different
from conventional auto-encoders, VAEs include a reparameterization which strictly
ensures the abundance sum-to-one constraint during unmixing. Compared with other
NMF-based algorithms, the DAEN has three main advantages: (1) with the use of
SAEs, it can effectively tackle the problem of outliers and generate a good initial-
ization of the unmixing network; (2) with the adoption of a VAE, it can ensure
the nonnegativity and sum-to-one constraints, resulting in the good performance on
abundance estimation; and (3) the endmember signatures and abundance fractions
are obtained simultaneously. We emphasize the fully unsupervised nature of DAEN
as one of its most powerful features.

13.1.4 Contributions of This Chapter

In this chapter, we focus on two types of techniques that are currently at the forefront
of spectral unmixing. First, we provide an overview of advances in sparse unmix-
ing algorithms, which can improve over traditional sparse unmixing algorithms by
including spatial–contextual information that is crucial for a better scene interpreta-
tion. As these algorithms are semi-supervised and dependent on a library, we then
describe new developments in the use of deep learning to perform spectral unmixing
in fully unsupervised fashion, focusing on the DAENmethod. Our experiments with
simulated and real hyperspectral datasets demonstrate the competitive advantages of
these innovative approaches over some well-established unmixing methods.

The remainder of this paper is organized as follows. The principles of sparse
unmixing theory are presented in Sect. 13.2. The DAEN unmixing method is
described in detail in Sect. 13.3. Section13.4 describes several experiments to evalu-
ate sparse unmixing algorithms. Section13.5 describes several experiments to evalu-
ate the DAEN algorithm. Finally, Sect. 13.6 concludes with some remarks and hints
at plausible future research lines.



382 S. Zhang et al.

13.2 Sparse Unmixing Techniques

13.2.1 Sparse Versus Spectral Unmixing

The linear mixture model assumes that the spectral response of a pixel in any given
spectral band is a linear combination of all of the endmembers present in the pixel
at the respective spectral band. For each pixel, the linear model can be written as
follows:

y = Mα + n

s.t.: α j ≥ 0,
q∑

j=1
α j = 1, (13.1)

where y is a d × 1 column vector (the measured spectrum of the pixel), d denotes the
number of bands.M is ad × qmatrix containingq pure spectral signatures (endmem-
bers), α is a q × 1 vector containing the fractional abundances of the endmembers,
and n is a d × 1 vector collecting the errors affecting the measurements at each
spectral band. The so-called abundance nonnegativity constraint (ANC) (α j ≥ 0 for
( j = 1, 2, . . . , q)) and the abundance sum-to-one constraint (ASC)(

∑q
j=1 α j = 1).

Sparse unmixing reformulates (13.1) assuming the availability of a library of
spectral signatures a priori as follows:

y = Ah + n, (13.2)

where h ∈ R
m×1 is the fractional abundance vector compatible with spectral library

A ∈ R
d×m and m is the number of spectral signatures in A.

Assuming that the dataset contains n pixels organized in the matrixY = [y1, . . . ,
yn] ∈ R

d×n we may write then

Y = AH + N s.t.: H ≥ 0, (13.3)

where N = [n1, . . . ,nn] ∈ R
d×n is the error. H = [h1, . . . ,hn] ∈ R

m×n denotes the
abundance maps corresponding to library A for the observed data Y, and H ≥ 0 is
the so-called abundance nonnegativity constraint (ANC). It should be noted that we
explicitly enforce the ANC constraint without the abundance sum-to-one constraint
(ASC), due to some criticisms about the ASC in the literature [8].

As the number of endmembers involved in a mixed pixel is usually very small
when comparedwith the size of the spectral library, the abundancematrixH is sparse.
With these considerations in mind, the unmixing problem can be formulated as an
�2 − �0 optimization problem,

min
H

1

2
||AH − Y||2F + λ||H||0 s.t.: H ≥ 0, (13.4)
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where ‖ · ‖F is the Frobenius norm and λ is a regularization parameter. Problem
(13.4) is nonconvex and difficult to solve [38, 39]. The SUnSAL alternatively uses
the �2 − �1 norm to replace the �2 − �0 norm and solves the unmixing problem as
follows [40]:

min
H

1

2
||AH − Y||2F + λ||H||1,1 s.t.: H ≥ 0, (13.5)

where ||H||1,1 = ∑n
i=1 ||hi ||1 with hi (i = 1, . . . , n) being the i th column of H.

SUnSAL solves the optimization problem in (13.5) efficiently using the ADMM
[40]. However, as stated before, the real degree of sparsity is generally beyond the
reach of the �1 regularizer.

13.2.2 Collaborative Regularization

Similar to (13.5), in [14], an �2,1 mixed norm (called collaborative regularization)
was proposed, which globally imposes sparsity among the endmembers in collabo-
rative fashion for all pixels. According to the collaborative sparse unmixing model
described in [14], the objective function can be defined as follows:

min
H

1

2
||AH − Y||2F + λ

m∑

k=1

||hk ||2 s.t. h ≥ 0, (13.6)

where hk denotes the k-th line of H (k = 1, 2, . . . ,m) and
∑m

k=1 ||hk ||2 is the so-
called �2,1 mixed norm. Note that themain difference between SUnSAL andCLSUn-
SAL is that the former employs pixel-wise independent regressions, while the latter
enforces joint sparsity among all the pixels.

13.2.3 Total Variation Regularization

In order to take into account the spatial information of the image, a total variation
(TV) regularizer can be integrated with SUnSAL (called SUnSAL-TV) to promote
spatial homogeneity among neighboring pixels [20]:

min
H

1

2
||AH − Y||2F + λ||H||1,1 + λT V T V (H)

s.t.: H ≥ 0, (13.7)

where T V (H) ≡ ∑
{k,i}∈N ||hk − hi ||1, N represents the set of (horizontal and

vertical) pixel neighbors in the image, and hk denotes a series of the neighboring
pixels of hi in abundance matrix H. SUnSAL-TV shows great potential to exploit
the spatial information for sparse unmixing. However, it may lead to oversmoothness
and blurred boundaries.
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13.2.4 Local Collaborative Regularization

In [23], the proposed LCSU assumes that endmembers tend to appear localized in
spatially homogeneous areas instead of distributed over the full image. The proposed
approach can also preserve global collaborativity (e.g., in the case that an endmember
appears in the whole image), since it generalizes to global collaborativity through
local searching:

min
h

1

2
||AH − Y||2F + λ

m∑

k=1

n∑

i=1

||hk
x∈N (i)||2

s.t. h ≥ 0, (13.8)

where hk denotes the kth line of matrix H (k = 1, 2, . . . ,m),
∑m

k=1 ||hk ||2 is the
so-called �2,1 mixed norm, N (i) is the neighborhood of pixel i (i = 1, 2, . . . , n),
and λ is a regularization parameter controlling the degree of sparseness. The main
difference between the proposed approach and SUnSAL-TV is that LCSU imposes
collaborative sparsity among neighboring pixels, while SUnSAL-TV aims at pro-
moting piece-wise smooth transitions in abundance estimations. In other words,
SUnSAL-TV enforces that neighboring pixels share similar fractional abundances
for the same endmember, while LCSU focuses on imposing local collaborativity
among the full set of endmembers, thus addressing problems observed in SUnSAL-
TV such as oversmoothed or blurred abundance maps. The main difference between
problem (13.8) and problem (13.6) is that LCSU introduces spatial information to
promote local collaborativity, while CLSUnSAL focuses on global collaborativity.
In comparison with CLSUnSAL, the proposed LCSU assumes that neighboring pix-
els share the same support. This is more realistic, as a given endmember is likely to
appear localized in a spatially homogeneous region rather than in the whole image.

13.2.5 Double Reweighted Regularization

Inspired by the success of weighted �1 minimization in sparse signal recovery, the
double reweighted sparse unmixing and total variation (DRSU-TV) [41] was pro-
posed to simultaneously exploit the spectral dual sparsity as well as the spatial
smoothness of fractional abundances, as follows:

min
H

1

2
||AH − Y||2F + λ||(Wspe2Wspe1) � H||1,1 + λTVTV(H), s.t.: H ≥ 0,

(13.9)
where the operator � denotes the element-wise multiplication of two variables.
The first regularizer λ||(Wspe2Wspe1) � X||1,1 introduces a prior with spectral spar-
sity, where λ is the regularization parameter, Wspe1 = {wspe1,ki|k = 1, . . . ,m, i =
1, . . . , n} ∈ R

m×n and Wspe2 = diag(wspe2,11, . . . ,wspe2,kk, . . . ,wspe2,mm) ∈ R
m×m ,
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for k = 1, . . . ,m, are the dual weights, with Wspe1 being the original weight intro-
duced in [16] aimed at penalizing the nonzero coefficients on the solution andWspe2

promoting nonzero row vectors. The latter regularizer λTVTV(H) exploits the spa-
tial prior with λTV being the parameter controlling the degree of smoothness. It can
be seen that DRSU-TV incorporates a TV-based regularizer to enforce the spatial
smoothness of abundances compared to DRSU.

In [41], Problem (13.9) is optimized via ADMM under an iterative scheme. The
dual weights Wspe1 and Wspe2 are updated as follows, at iteration t + 1:

w(t+1)
spe1,ki = 1

h(t)
ki + ε

, (13.10)

where ε > 0 is a small positive value and

w(t+1)
spe2,kk = 1

||H(t)(k, :)||2 + ε
, (13.11)

whereH(t)(k, :) is the kth row in the estimated abundance of the t th iteration. Notice
that, as shown in (13.10) and (13.11), it is suggested that large weights be used to
discourage nonzero entries in the recovered signal, while small weights encourage
nonzero entries. DRSU-TV, exploiting the spectral and spatial priors simultaneously
under the sparse unmixing model, exhibits good potential in comparison with the �1-
or TV-based methods. However, as an adaptation of the �1- and TV-based approach,
the limitations of DRSU-TV are associated with the use of a regularizer-based spatial
prior. That is, the computational complexity is similar to that of SUnSAL-TV. Such
high computational complexity constrains the practical applications of DRSU-TV.
Furthermore, the unmixing performance of the method is sensitive to the regulariza-
tion parameter λTV.

13.2.6 Spectral–Spatial Weighted Regularization

In [24], the S2WSUalgorithm is developed,which aims at exploiting the spatial infor-
mation more efficiently for sparse unmixing purposes. As opposed to the approaches
that exploit a regularizer-based spatial prior (which have one additional parameter
for the spatial regularizer and often exhibit high complexity), the S2WSU algorithm
includes the spatial correlation via a weighting factor, resulting in good computa-
tional efficiency and less regularization parameters. LetWspe ∈ R

m×m be the spectral
weighting matrix andWspa ∈ R

m×n be the spatial one. Following [16], the objective
function of the S2WSU is given as follows:

min
H

1

2
||AH − Y||2F + λ||(WspeWspa) � H||1,1, s.t.: H ≥ 0. (13.12)
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For the spectral weighting factor Wspe, relying on the success of [14, 18], it
adopts row collaborativity to enforce joint sparsity among all the pixels. Similar to
theWspe2 in DRSU-TV, theWspe aims at enhancing the sparsity of the endmembers
in the spectral library. In detail, at iteration t + 1, it can be updated as

W(t+1)
spe = diag

[
1

||H(t)(1, :)||2 + ε
, . . . ,

1

||H(t)(m, :)||2 + ε

]

. (13.13)

For the spatial weighting factor Wspa, let w
(t+1)
spa,ki be the element of the kth line

and i th row inWspa at iteration t + 1, it incorporates the neighboring information as
follows:

w(t+1)
spa,ki = 1

fx∈N (i)(h
(t)
kx ) + ε

, (13.14)

where N (i) denotes the neighboring set for element hki , and f (·) is a function
explicitly exploiting the spatial correlations through the neighborhood system. It
uses the neighboring coverage and importance to incorporate the spatial correlation
as follows:

f (hki ) =
∑

x∈N (i) θkxhkx
∑

x∈N (i) θkx
, (13.15)

whereN (i) corresponds to the neighboring coverage and θ represents the neighbor-
hood importance. It considers the 8-connected (3 × 3 window) for algorithm design
and experiments. With respect to the neighboring importance, for any two entries k
and i , we compute it as follows:

θki = 1

im(k, i)
, (13.16)

where function im(·) is the important measurement over the two elements hk and hi .
Let (a, b) and (c, d) be the spatial coordinates of hk and hi . The European distance
is specifically considered, that is, θki = 1/

√
(a − c)2 + (b − d)2.

It should be noted that the optimization problem of S2WSU can be iteratively
solved by an outer–inner looping scheme, where the inner loop updates the unmix-
ing coefficients via ADMM and the outer loop updates the spectral and spatial
weights [24].

13.3 Deep Learning for Hyperspectral Unmixing

As one of the very few unsupervised approaches available, the deep auto-encoder
network (DAEN) unmixing method specifically addresses the presence of outliers
in hyperspectral data [36]. In the following subsections, we describe the different
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processing modules that compose this promising approach for deep hyperspectral
unmixing.

13.3.1 NMF-Based Unmixing

Let Y ≡ [y1, . . . , yn] ∈ R
d×n be matrix representation of a hyperspectral dataset

with n spectral vectors and d spectral bands. Under the linear mixing model, we have
[3, 42]

Y = WH + N (13.17)

s.t.: H ≥ 0, 1TmH = 1Tn ,

whereW ≡ [w1, . . . ,wm] ∈ R
d×m is the mixing matrix containing m endmembers,

wi denotes the i th endmember, H ≥ 0 and 1TmH = 1Tn are the so-called abundance
nonnegativity and sum-to-one constraints, which stem from a physical interpretation
of the abundance vectors, and 1m = [1, 1, . . . , 1]T is a column vector of size m (the
notation [·]T stands for vector or matrix transpose). Finally, N ∈ R

d×n is the error
matrix that may affect the measurement process (e.g., noise). It should be noted that
the symbol naming in this section is not the same as the naming in Sect. 13.2. In
addition, we have a detailed description of each symbol.

For a given observation Y, unmixing aims at obtaining the mixing matrixW and
the abundance matrix H. In this work, we tackle the simultaneous estimation of W
and H by seeking a solution with the following NMF-based optimization:

(W,H) = argmin
W,H

1

2
‖Y − WH‖2F + μ f1(W) + λ f2(H), (13.18)

where ‖ · ‖2F denotes the Frobenius norm, f1(W) and f2(H) are two regularizers
on the mixing matrix W and the abundance fractions H, respectively, with μ and λ

being the regularization parameters.

13.3.2 Deep Auto-Encoder Network

In this section, theDAENunmixingmethod [36] is described (illustrated in Fig. 13.1),
where U and V are the latent variables (LV) of the reparameterization of the VAE,
respectively. As shown in Fig. 13.1, the endmember matrixW corresponds to the last
weight matrix of the decoder in VAE, and the abundance H is estimated from the
hidden layers of VAE, while Ŵ and Ĥ denote the initializations for VAE generated
by SAEs, respectively.
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Fig. 13.1 The flowchart of the proposed DAEN, which includes two parts, i.e., stacked auto-
encoders (SAEs) and a variational auto-encoder (VAE). The stacked auto-encoders (SAEs) generate
the initializations Ŵ and Ĥ for the VAE, while the VAE performs the NMF-based unmixing aiming
at obtaining the endmembers W and abundances H, respectively

13.3.3 Stacked Auto-Encoders for Initialization

Based on the geometry assumption that endmembers are generally located around
the vertices of the data simplex, we use a pure pixel-based method to extract a set
of candidate pixels as the training set for the SAEs. Specifically, we adopt VCA to
obtain a set of k candidates, with k > m. As VCA considers random directions in
the subspace projection [3, 43], we run it for p times, resulting in q candidates, with
q = p · k. These q candidates are then grouped into m training sets {Ci }mi=1 based
on the spectral angle distance (SAD) and clustering, withCi = [c1, . . . , cin ] ∈ R

d×in

and in is the number of samples in Ci . Let cio and c jo be the cluster centers of
Ci and C j , respectively. For any candidate cis in Ci , for is = 1, . . . , in , we have
SAD(cio , cis ) ≤ SAD(c jo , cis ), for any j = 1, . . . ,m and j �= i , where

SAD(cio , cis ) = arc cos
( [cio , cis ]
‖cio‖ · ‖cis‖

)
. (13.19)

In this work, for p and k, we empirically set p = 30 and k = 3 m, respectively.
By enforcing nonnegativity, the training of SAEs minimizes the reconstruction error
as follows:

min
in∑

s=1

‖cs − ŵi‖22, (13.20)

where ŵi is the reconstructed signature of the i th endmember and Ŵ = [ŵ1, . . . , ŵm]
are the reconstructed endmember matrix. Following [44], the reconstructed signature
is denoted as

ŵi = Mi f (MT
i Ci ), (13.21)

where Mi is the matrix of weights between the input and hidden neurons or those
from hidden to output neurons, and f (·) is the activation function [44] given by
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f (gi ) = 1

1 + exp(−ai . ∗ gi − bi )
, (13.22)

where gi = MT
i Ci , ai and bi are parameters aimed at controlling the information

transmission between neurons, and .∗ is the dot product, i.e., element-wise operator.
Notice that the number of input neurons and output neurons is the same as the hidden
neurons,while the number of hidden neurons here is set as the number of bands. Then,
we can use a gradient rule to update ai and bi as follows:

⎧
⎪⎨

⎪⎩

�ai = γ (1 − (2 + 1
τ
) fi + 1

τ
f 2i ),

�bi = γ 1
bi

+ gi�ai ,

(13.23)

where γ and τ are hyper-parameters in the learning process controlling the mean
activity level of the desired output distribution. Following the empirical settings in
[44], we set γ = 0.0001 and τ = 0.2. With the aforementioned definition in hand,
the learning reduces to the following update rule:

�Mi ⇐ η�ŵi f
T
i + |Mi |, (13.24)

where �ŵi is the gradient of candidate i for update, |Mi | enforces the weight matrix
to be nonnegative, and η is an adaptive learning rate. In this work, following [44],
we set η = η̂(‖ fi‖2 + ε)−1 with η̂ = 0.002, where ε = 0.001 is a small parameter
to ensure the positivity of η.

Finally, let ŵt
i , ŵ

t+1
i be the reconstructions from the t-th and (t + 1)-th auto-

encoders, respectively. The SAEs ends when ‖ŵt+1
i − ŵt

i‖22 converges.
After the endmember matrix Ŵ is reconstructed, based on the linear mixing

model (13.17), the abundances Ĥ can be obtained via the fully constrained least
square (FCLS) [42]. In the learning of the VAE, Ŵ and Ĥ are used as initializations
of W and H, respectively.

13.3.4 Variational Auto-Encoders for Unmixing

First, let us recall the NMF-based objective function in (13.18), which contains two
regularizers on the mixing matrix and abundance matrix, respectively. For the first
regularizer f1(W) on the mixing matrix, following [11], we have

f1(W) = MinVol(W), (13.25)

where MinVol(·) is a function aiming at enclosing all the pixels into the simplex
constructed by the endmembers. Specifically, following [11], we set MinVol(W) =
‖det(W)‖, with ‖det(W)‖ being the volume defined by the origin and the columns
of W.
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With respect to regularizer f2(H) on the abundance matrix, in order to ensure the
nonnegativity and sum-to-one constraints, we employ the variational auto-encoder
(VAE) to penalize the solution of H, denoted as

f2(H) = VAE(H), (13.26)

where the neurons of all hidden layers are set as the number of endmembers, while
the number of inputs and outputs corresponds to the number of pixels.

With these definitions in mind, we obtain the following objective function:

(W,H) = argmin
W,H

1

2
‖Y − WH‖2F

+μ MinVol(W) + λVAE(H).
(13.27)

In the following, we present the VAE-based regularizer in detail. Let U and V be
the LV, we define f2(H) as

f2(H(U,V)) =
∥
∥
∥
∥
1

2n
(1m×n + lnV2 − U2 − V2)1n

∥
∥
∥
∥

2

2

, (13.28)

where 1m×n ∈ R
m×n with all elements being 1, and vector 1n = [1, . . . , 1]T ∈ R

n ,
U = {u1, . . . ,un} ∈ R

m×n , V = {v1, . . . , vn} ∈ R
m×n . The derivation of (13.28) is

shown in [36]. Following [37], let u j = [u1, j , . . . , um, j ]T ∈ R
m and

v j = [v1, j , . . . , vm, j ]T ∈ R
m be the reparameters of LV, we define hi, j = Cons

(ui, j , vi, j ), where Cons(·) represents a decay function as follows:

Cons(ui, j , vi, j ) =

⎧
⎪⎨

⎪⎩

ui, j + σvi, j , 0 < (ui, j + σvi, j ) < 1

0, otherwise,

(13.29)

where σ is a parameter that, as indicated in [25], can be obtained via Monte Carlo
(MC) sampling. In order to meet the abundance sum-to-one constraint, we have

hm, j = 1 −
m−1∑

i=1

hi, j . (13.30)

The objective function in (13.27) is a combinational problem,which is nonconvex,
and therefore it is difficult to solve. In [36], it proposes an iterative scheme to optimize
W and H, respectively, both of which are solved by a gradient descent method. The
first-order derivatives of the objective function are computed as follows:
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⎧
⎪⎨

⎪⎩

∇U(W,H) = d(U) − 2λ
n z(1n)

T . ∗ U,

∇V(W,H) = d(V)+2λ
n z(1n)

T . ∗ (lnV./V − V),

(13.31)

where ./ is the dot division, z = 1
2n (1m×n + lnV2 − U2 − V2)1n . d(U) and d(V) are

gradients of reconstructed errors, which are

⎧
⎪⎨

⎪⎩

d(U) = WT (WH − Y)). ∗ Ccons,

d(V) = σWT (WH − Y). ∗ Ccons,

(13.32)

where Ccons is an indicative function, Ccons = 1m×n{0 < (U+σV) < 1}. For more
details, the derivation of (13.31) is given in [36].

Algorithm 1 DAEN for hyperspectral unmixing
Input: dataset Y.
Output: endmembers W, abundances H.
Step 1. /∗ SAE for initialization ∗/
1. Initialization: Mi .
2. Set hyper-parameters following [44].
3. Obtain p × k candidates via VCA[43].
repeat
4. Update {ŵi }mi=1 in (13.21).
5. Update {Mi }mi=1 in (13.24).

until convergence
6. Compute Ĥ via FCLS[42].
Step 2. /∗VAE for unmixing∗/
7. Initialization: U and V.

repeat
8. Update �H in (13.33).
9. Update �W in (13.34).

until convergence

With respect to the updates of H andW, we employ the gradient descent method
for the solutions as follows:

H ⇐ H + �H,

and
W ⇐ W + �W,

where �H and �W are the gradients for H and W, respectively. Specifically,

• For H, we have
�H = −ϕ(∇U(W,H) + σ∇V(W,H)), (13.33)
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where ϕ is the learning rates that can be estimated by the Armijo rule [45].
• For W, we obtain �W via Adadelta [46] as follows:

�W = − RMS[�W]
RMS[∇W(W,H)]∇W(W,H), (13.34)

where RMS[·] is the root-mean-square [46]. The first-order derivatives of the
objective function (13.27) are calculated as follows:

∇W(W,H) = (WH − Y)HT + μd(MinVol(W)). (13.35)

where d(MinVol(W)) is the gradient for the volume function, which can be com-
puted as the one in [47].

Finally, a pseudocode of the proposed DAEN is given in Algorithm 1. As shown
in Algorithm 1, DAEN consists of two main parts, a set of SAEs for initialization
and one VAE for unmixing. Specifically, in Line 1, Mi is randomly initialized. In
Line 2, the hyper-parameters are set following [44], while in Line 3, the candidate
samples used for training are generated via VCA. In Lines 4 and 5, {ŵi } and {Mi }
are iteratively updated until SAE terminates. In Line 6, it computes the abundance
estimation Ĥ via FCLS. InLine 7, theLVvariables,U andV, are randomly initialized.
Finally, in Lines 8 and 9, the endmember matrixW and the abundance matrixH are
iteratively updated, respectively.

13.4 Experiments and Analysis: Sparse Unmixing

In this section, we illustrate the unmixing performance of these sparse unmixing
methods using simulated hyperspectral datasets. For quantitative analysis, the signal-
to-reconstruction error (SRE, measured in dB) is used to evaluate the unmixing
accuracy. For comparative purposes, the results obtained by SUnSAL [8], SUnSAL-
TV [20], LCSU [23], DRSU [18], DRSU-TV [41], and S2WSU [24] algorithms
are reported. Let ĥ be the estimated abundance, and h be the true abundance. The
SRE(dB) can be computed as follows:

SRE(dB) = 10 · log10(E(||h||22)/E(||h − ĥ||22)), (13.36)

where E(·) denotes the expectation function. Furthermore, we use another indicator,
i.e., the probability of success ps , which is an estimate of the probability that the
relative error power be smaller than a certain threshold. It is formally defined as
follows: ps ≡ P(‖̂h − h‖2/‖h‖2 ≤ threshold). In our case, the estimation result
is considered successfully when ‖̂h − h‖2/‖h‖2 ≤ 3.16 (5 dB). This threshold was
demonstrated to be appropriate in [8]. The larger the SRE (dB) or the ps , the more
accurate the unmixing results.
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13.4.1 Simulated Datasets

The spectral library that we use in our synthetic image experiments is a dictionary
of minerals extracted from the United States Geological Survey (USGS) library.1

Such library, denoted by A, contains m = 240 materials (different mineral types),
with spectral signatures with reflectance values consisting of L = 224 spectral bands
and distributed uniformly in the interval 0.4–2.5 µm. Following the work in [20],
simulated data cube is generated with 100 × 100 pixels and nine spectral signa-
tures (Adularia GDS57 Orthoclase, Jarosite GDS99 K Sy 200C, Jarosite GDS101
Na Sy 200, Anorthite HS349.3B, Calcite WS272, Alunite GDS83 Na63, Howlite
GDS155, Corrensite CorWa-1, Fassaite HS118.3B.), which are randomly chosen
from the spectral library A. The fractional abundances are piece-wise smooth, i.e.,
they are smooth with sharp transitions; moreover, they are subject to the ANC and
ASC. These data can reveal the spatial features quite well for the different unmix-
ing algorithms. For illustrative purposes, Fig. 13.2 shows the true abundance maps
of the endmembers. After generating the data cube, it was contaminated with i.i.d.
Gaussian noise, for three levels of the signal-to-noise (SNR) ratio: 30, 40, and 50
dB.

Table13.1 shows the SRE (dB) and ps results achieved by the different tested algo-
rithms under different SNR levels. For all the tested algorithms, the input parameters
have been carefully tuned for optimal performance. From Table13.1, we can see that
themethods of using double weights (DRSU,DRSU-TV, and S2WSU) have obtained
better SRE (dB) results than other algorithms in all cases. Furthermore, the S2WSU
achieved better SRE (dB) results than the competitors in all cases, which indicates
that the inclusion of a spatial factor in the sparse regularizer can further promote the
spatial correlation on the solution and improve the unmixing performance. The ps
obtained by the S2WSU is also much better than those obtained by other algorithms
in the case of low SNR values, which reveals that the inclusion of spatial informa-
tion leads to high robustness. Based on the aforementioned results, we can conclude
that the spatial weighted strategy offers the potential to improve sparse unmixing
performance.

13.4.2 Real Hyperspectral Data

In this section, we resort to the well-known Airborne Visible Infrared Imaging Spec-
trometer (AVIRIS) Cuprite dataset for evaluation of the proposed approach, which is
a common benchmark for validation of spectral unmixing algorithms. The data are
available online in reflectance units.2 The portion used in experiments corresponds
to a 350 × 350-pixel subset of the scene, with 224 spectral bands in the range 0.4–
2.5 µm and nominal spectral resolution of 10 nm. Prior to the analysis, bands 1–2,

1Available online at http://speclab.cr.usgs.gov/spectral.lib06.
2http://aviris.jpl.nasa.gov/html/aviris.freedata.html.

http://speclab.cr.usgs.gov/spectral.lib06
http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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Endmember 1 Endmember 2 Endmember 3

Endmember 4 Endmember 5 Endmember 6

Endmember 7 Endmember 8 Endmember 9

Fig. 13.2 True fractional abundances of the endmembers in the simulated data cube

105–115, 150–170, and 223–224 were removed due to water absorption and low
SNR, leaving a total of 188 spectral bands. The spectral library used in this exper-
iment is the same library A used in our simulated experiments and the noisy bands
are also removed from A. The classification maps of these materials produced by
Tricorder software3 are also displayed. Figure13.3 shows a mineral map produced
in 1995 by USGS, in which the Tricorder 3.3 software product [48] was used to map
different minerals present in the Cuprite mining district. The USGS map serves as
a good indicator for qualitative assessment of the fractional abundance maps pro-
duced by the different unmixing algorithms. Note that the publicly available AVIRIS
Cuprite data were collected in 1997 but the Tricorder map was produced in 1995. In
addition, the true abundances of the real hyperspectral data are unavailable. Thus, we
can onlymake a qualitative analysis of the performances of different sparse unmixing
algorithms by comparing their estimated abundances with the mineral maps.

Figure13.4 conducts a qualitative comparison between the classification maps
produced by the USGS Tricorder algorithm and the fractional abundances estimated

3http://speclab.cr.usgs.gov/PAPER/tetracorder.

http://speclab.cr.usgs.gov/PAPER/tetracorder
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Table 13.1 SRE(dB) and ps scores achieved after applying different unmixing methods to the
simulated data Cube 1 (the optimal parameters for which the reported values were achieved are
indicated in the parentheses)

Algorithm SNR = 30 dB SNR = 40 dB SNR = 50 dB

SRE (dB) ps SRE (dB) ps SRE (dB) ps

SUnSAL 8.4373 0.7946 15.1721 0.9886 23.0894 1

(λ = 2e−2) (λ = 5e−3) (λ = 1e−3)

SUnSAL-
TV

11.4304 0.9470 17.7695 0.9998 26.1655 1

(λ = 1e-2; λTV = 4e-3) (λ = 5e-3; λTV = 1e-3) (λ = 2e-3; λTV = 2e-4)

LCSU 11.4317 0.9463 18.1793 0.9999 26.2194 1

(λ = 3e-2) (λ = 7e-3) (λ = 1e-3)

DRSU 14.9876 0.9745 29.6861 1 41.1967 1

(λ = 3e-3) (λ = 1e-3) (λ = 6e-4)

DRSU-TV 18.8630 0.9994 30.9403 1 41.1967 1

(λ = 2e-3; λTV = 2e-3) (λ = 2e-3; λTV = 4e-4) (λ = 6e-4; λTV = 0)

S2WSU 20.5709 0.9995 31.9461 1 41.4053 1

(λ = 5e-3) (λ = 3e-3) (λ = 6e-4)

by SUnSAL, SUnSAL-TV, LCSU, DRSU, DRSU-TV, and S2WSU algorithms for
three highly representativeminerals in the Cuprite mining district (Alunite, Budding-
tonite, and Chalcedony). In this experiment, the regularization parameters used for
SUnSAL, LCSU, DRSU, and S2WSUwere empirically set to λ = 0.001, λ = 0.001,
λ = 0.0001, and λ = 0.002, respectively, while the parameters for SUnSAL-TV
and DRSU-TV were set to λ = 0.001, λTV = 0.001 and λ = 0.002, λTV = 0.0001,
respectively. As shown in Fig. 13.4, all the algorithms obtained reasonable unmixing
results, with high abundances for the pixels showing the presence of the consid-
ered minerals. This indicates that the sparse unmixing algorithms can lead to good
interpretation of the considered hyperspectral dataset. However, it can be seen that
someof the abundancemaps (e.g., Buddingtonitemineral) estimated bySUnSALand
SUnSAL-TV look noisy and the results obtained by SUnSAL-TV are oversmoothed.
In addition, DRSU yields abundance maps without good spatial consistency of the
minerals of interest (e.g., Chalcedony mineral), and we can also find that the abun-
dances estimated by S2WSU algorithms are generally comparable or higher in the
regions classified as respective minerals in comparison to DRSU. Finally, the spar-
sity obtained by SUnSAL, SUnSAL-TV, LCSU, DRSU, DRSU-TV, and S2WSU are
0.0682, 0.0743, 0.0734, 0.0430, 0.0423, and 0.0420, respectively. These small dif-
ferences lead to the conclusion that the proposed approaches use a smaller number of
elements to explain the data, thus obtaining higher sparsity. Therefore, from a quali-
tatively viewpoint, we can conclude that the S2WSU method exhibits good potential
to improve the results obtained by other algorithms in real analysis scenarios.
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Fig. 13.3 USGS map showing the location of different minerals in the Cuprite mining district in
Nevada

13.5 Experiments and Analysis: Deep Learning

In this section, the DAEN approach is applied to two real hyperspectral images:
Mangrove [49] and Samson [50] datasets for evaluation. In these experiments, the
parameters involved in the considered algorithms follow the settings in the simulated
experiments, i.e., we use μ = 0.1 and λ = 0.1, respectively.
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Fig. 13.4 Fractional abundancemaps estimated by SUnSAL, SUnSAL-TV, LCSU,DRSU,DRSU-
TV, and S2WSU as compared to the classification maps produced by USGS Tricorder software for
the considered 350 × 350-pixel subset of the AVIRIS Cuprite scene
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We compare the DAEN approach presented in this work with other advanced
unmixing algorithms, specifically with the N-FINDR [51], VCA [43], MVC-NMF
[47], Bayesian [25], PCOMMEND [52], and SNSA [34] methods.

Three indicators, i.e., SAD, reconstruction error (RE), and root-mean-square error
(RMSE) are used to measure the accuracy of the unmixing results, which are defined
as follows: ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

SAD(wi , ŵi ) = arccos
(

[wi ,ŵi ]
‖wi‖·‖ŵi‖

)
,

RE({y j }nj=1, {̂y j }nj=1) = 1
n

∑n
j=1

√
‖y j − ŷ j‖22,

RMSE(̂h j , h j ) = 1
n

∑n
i=1

√
‖ h j − ĥ j‖22,

(13.37)

where ŵi and wi denote the extracted endmember and the library spectrum, ŷ j and
y j are the reconstruction and original signature of pixel j , and ĥ j and h j are the
corresponding estimated and actual abundance fractions, respectively.

13.5.1 Mangrove Dataset

The Mangrove data is an EO-1 Hyperion (hyperspectral) image which has been
obtained from the USGS Earth Resources Observation and Science (EROS) Center
through a data acquisition request to the satellite data provider [49], and collected over
the Henry Island of the Sunderban Biosphere Reserve of West Bengal, India. After
applying atmospheric correction, we have converted the radiance data to reflectance
units by using FLAASH model in ENVI software, and the endmembers (pure signa-
tures of mangrove species) have been identified by a ground survey of the study area,
including Avicennia, Bruguiera, Excoecaria, Phoenix. TheMangrove data, as shown
in Fig. 13.5, includes 137 × 187 pixels and 155 bands, with a spatial resolution of
30 m. For detailed information of the Mangrove data, we refer to [49].

Fig. 13.5 The 45 × 45 pixel subscene of the Mangrove data used in our experiment
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Table 13.2 SADs (in radians) and REs along with their standard deviations obtained by different
methods for the Mangrove data from 10 Monte Carlo runs, where the best results are in bold

Mineral N-FINDR VCA MVC-
NMF

Bayesian PCOMMEND SNSA DAEN

Avicennia 0.1495 ±
0%

0.9602 ±
4.65%

0.1973 ±
2.18%

0.1001 ±
3.05%

0.0992 ±
2.81%

0.0995 ±
4.26%

0.0968 ±
2.58%

Bruguiera 0.8235 ±
0%

0.8824 ±
7.79%

0.9825 ±
7.53%

1.5957 ±
4.16%

0.9564 ±
3.95%

0.1103 ±
3.84%

0.1025 ±
4.03%

Excoecaria 0.7361 ±
0%

0.7377 ±
1.50%

0.0904 ±
4.08%

0.0963 ±
2.96%

0.0876 ±
5.73%

0.0880 ±
3.27%

0.0863 ±
1.96%

Phoenix 0.1306 ±
0%

1.3063 ±
0.12%

0.9782 ±
3.93%

0.9624 ±
3.93%

1.7065 ±
8.23%

0.0711 ±
4.41%

0.0706 ±
3.72%

Mean
SAD

0.4599 0.9717 0.5621 0.6886 0.7124 0.0922 0.0890

RE 0.0822 ±
0%

0.0980 ±
0.40%

0.0392 ±
2.36%

0.0129 ±
4.57%

0.0162 ±
5.19%

0.0057 ±
0.25%

0.0050 ±
0.13%

In our experiment, a subscene with 45 × 45 pixels of the Mangrove data has
been used to further evaluate the proposed DAEN. Following [49], the considered
subscene contains four endmembers, i.e., m = 4.

Table13.2 presents the obtained quantitative results from theMangrove data. It can
be seen that the DAEN achieved very promising results for the four considered man-
grove spices. However, the other competitors ended up with errors when detecting or
estimating the endmembers. This is due to the fact that, according to our observation,
the Mangrove scene contains many outliers across the whole image, which brings a
lot of difficulties for general unmixingmethods. This point was verified by our exper-
iment, in which we detected a total of 17 outliers. For illustrative purposes, Fig. 13.6
scatterplots the unmixing results obtained by the considered methods, in which the
detected outliers are also illustrated. From Fig. 13.6, we can observe that the DAEN
produced good unmixing results for this dataset, while all the other methods resulted
in problems.

Finally, for illustrative purposes, the estimated endmember signatures, along with
their ground references, and the corresponding abundance maps obtained by the
DAEN are shown in Fig. 13.7. Effective results can be observed from these figures.

In summary, our experiments with this challengingMangrove dataset demonstrate
the effectiveness of the DAEN for real scenarios with outliers, which is a general
situation in real problems.

13.5.2 Samson Dataset

In this experiment, we use the Samson dataset which includes 156 bands covering
the wavelengths from 0.401 to 0.889 µm, and 95 × 95 pixels, as shown Fig. 13.8,
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Fig. 13.6 Unmixing results
for the subscene of the
Mangrove data, where the
data are projected onto the
first two principal
components (PCs)
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for validation [50]. There are three endmembers including Soil, Tree, and Water in
the ground truth image.

Table13.3 demonstrates the obtained quantitative results for the considered meth-
ods. It can be observed that the proposed DAEN obtained the best mean SAD and
RMSE. For illustrative purposes, the endmember signatures and the estimated abun-
dances are shown in Fig. 13.9. These figures reveal that the endmembers and abun-
dances, estimated from DAEN, have good matches with regard to the corresponding
ones in the ground truth.

13.6 Conclusions and Future Work

Spectral unmixing provides a way to quantitatively analyze sub-pixel components in
remotely sensed hyperspectral images [19]. Sparse unmixing has been widely used
as a semi-supervised approach that requires the presence of a library of spectral sig-
natures. In this context, spectral–spatial sparse unmixing methods, which aim at col-
laboratively exploiting spectral and spatial–contextual information, offer a powerful
unmixing strategy in case a complete spectral library is available a priori. If no spectral
library is available in advance, we suggest the fully unsupervised deep auto-encoder
network (DAEN) unmixing as a powerful approach that can effectively deal with the
presence of outliers in hyperspectral data. Our experimental results reveal that the
two aforementioned techniques are currently at the forefront of spectral unmixing.
Specifically, we empirically found that the S2WSU algorithm consistently achieves
better unmixing performance than other advanced spectral unmixing algorithms in
case a spectral library is available. This implies that the integration of spectral and
spatial–contextual information via the considered spectral–spatial weighted strat-
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Fig. 13.7 The estimated endmember signatures (in red), along with the ground reference (in blue)
and their corresponding abundance maps by the proposed DAEN. a Avicennia, b Bruguiera, c
Excoecaria, d Phoenix
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Fig. 13.8 The Samson image (a) and its corresponding ground truth (b)

Table 13.3 SADs (in radians) and REs along with their standard deviations obtained by different
methods for the Samson data from 10 Monte Carlo runs, where the best results are in bold

Mineral N-
FINDR

VCA MVC-
NMF

Bayesian PCOMMEND SNSA DAEN

Soil 0.0713 ±
0%

0.0627 ±
1.85%

0.0402 ±
3.87%

0.1062 ±
7.25%

0.2849 ± 4.35% 0.0410 ±
5.02%

0.0405 ±
2.76%

Tree 0.0495 ±
0%

0.0501 ±
7.82%

0.0261 ±
3.62%

0.0610 ±
8.34%

0.0505 ± 6.14% 0.0205±
2.89%

0.0196 ±
3.52%

Water 0.0408 ±
0%

0.0273 ±
3.74%

0.0304 ±
5.29%

0.0364 ±
2.48%

0.0716 ± 4.34% 0.0291 ±
2.59%

0.0279 ±
3.83%

Mean
SAD

0.0539 0.0467 0.0322 0.0679 0.1357 0.0302 0.0293

RMSE 0.9572 ±
0%

0.8926 ±
1.35%

0.6430 ±
0.98%

0.7501 ±
1.63%

0.9439 ± 2.35% 0.6143 ±
3.37%

0.6097 ±
3.62%

RE 0.0129 ±
0%

0.0116 ±
0.19%

0.0075 ±
0.86%

0.0103 ±
0.42%

0.0057 ± 1.15% 0.0066 ±
0.25%

0.0062 ±
0.85%

egy has great potential in improving unmixing performance. Our experiments also
indicate that the fully unsupervised DAEN approach can handle problems with sig-
nificant outliers more effectively than other popular spectral unmixing approaches.
This is an important observation, since the presence of outliers is common in real
problems and traditional unmixing algorithms are often misguided by outliers (that
can be also understood as endmembers due to their singularity). Our future work will
focus on exploring the combination of sparse unmixing and deep learning algorithms
to further improve the unmixing performance.
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Fig. 13.9 Results obtained by the proposed DAEN on the Samson dataset. Top: Ground truth abun-
dancemaps onSamson data.Middle: Estimated abundancemaps from the proposedDAEN.Bottom:
Estimated endmember signatures (in red) along with their corresponding reference signatures (in
blue). a Soil, b tree, c water
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