Advances in Computer Vision and Pattern Recognition

A \'J R
C P

Hyperspectral
Image
Analysis

Advances in Machine Learning and
Signal Processing

@ Springer

Advances in Computer Vision and Pattern
Recognition

Founding Editor
Sameer Singh, Rail Vision, Castle Donington, UK

Series Editor
Sing Bing Kang, Zillow, Inc., Seattle, WA, USA

Advisory Editors

Horst Bischof, Graz University of Technology, Graz, Austria
Richard Bowden, University of Surrey, Guildford, Surrey, UK
Sven Dickinson, University of Toronto, Toronto, ON, Canada

Jiaya Jia, The Chinese University of Hong Kong, Shatin, New Territories,
Hong Kong

Kyoung Mu Lee, Seoul National University, Seoul, Korea (Republic of)
Yoichi Sato, University of Tokyo, Tokyo, Japan

Bernt Schiele, Max Planck Institute for Informatics, Saarbriicken,
Saarland, Germany

Stan Sclaroff, Boston University, Boston, MA, USA

More information about this series at http://www.springer.com/series/4205

http://www.springer.com/series/4205

Saurabh Prasad - Jocelyn Chanussot
Editors

Hyperspectral Image
Analysis

Advances in Machine Learning and Signal
Processing

@ Springer

Editors

Saurabh Prasad Jocelyn Chanussot

Department of Electrical CNRS, Grenoble INP, GIPSA-lab
and Computer Engineering Université Grenoble Alpes
University of Houston Grenoble, France

Houston, TX, USA

ISSN 2191-6586 ISSN 2191-6594 (electronic)
Advances in Computer Vision and Pattern Recognition
ISBN 978-3-030-38616-0 ISBN 978-3-030-38617-7 (eBook)

https://doi.org/10.1007/978-3-030-38617-7

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-38617-7

Contents

1 Imtroduction
Saurabh Prasad and Jocelyn Chanussot

2 Machine Learning Methods for Spatial and Temporal
Parameter Estimation
Alvaro Moreno-Martinez, Maria Piles, Jordi Mufioz-Mari,
Manuel Campos-Taberner, Jose E. Adsuara, Anna Mateo,
Adrian Perez-Suay, Francisco Javier Garcia-Haro
and Gustau Camps-Valls

3 Deep Learning for Hyperspectral Image Analysis,
Part I: Theory and Algorithms
Sebastian Berisha, Farideh Foroozandeh Shahraki, David Mayerich
and Saurabh Prasad

4 Deep Learning for Hyperspectral Image Analysis,
Part II: Applications to Remote Sensing and Biomedicine
Farideh Foroozandeh Shahraki, Leila Saadatifard, Sebastian Berisha,
Mahsa Lotfollahi, David Mayerich and Saurabh Prasad

5 Advances in Deep Learning for Hyperspectral Image
Analysis—Addressing Challenges Arising in Practical
Imaging Scenarios.
Xiong Zhou and Saurabh Prasad

6 Addressing the Inevitable Imprecision: Multiple Instance
Learning for Hyperspectral Image Analysis
Changzhe Jiao, Xiaoxiao Du and Alina Zare

7 Supervised, Semi-supervised, and Unsupervised Learning
for Hyperspectral Regression
Felix M. Riese and Sina Keller

vi

10

11

12

13

14

15

Contents

Sparsity-Based Methods for Classification 233
Zebin Wu, Yang Xu and Jianjun Liu

Multiple Kernel Learning for Hyperspectral
Image Classification 259
Tianzhu Liu and Yanfeng Gu

Low Dimensional Manifold Model in Hyperspectral Image
Reconstruction L. 295
Wei Zhu, Zuogiang Shi and Stanley Osher

Deep Sparse Band Selection for Hyperspectral
Face Recognition. 319
Fariborz Taherkhani, Jeremy Dawson and Nasser M. Nasrabadi

Detection of Large-Scale and Anomalous Changes 351
Amanda Ziemann and Stefania Matteoli

Recent Advances in Hyperspectral Unmixing Using Sparse

Techniques and Deep Learning 377
Shaoquan Zhang, Yuanchao Su, Xiang Xu, Jun Li, Chengzhi Deng

and Antonio Plaza

Hyperspectral-Multispectral Image Fusion Enhancement
Based on Deep Learning. 407
Jingxiang Yang, Yong-Qiang Zhao and Jonathan Cheung-Wai Chan

Automatic Target Detection for Sparse Hyperspectral Images 435
Ahmad W. Bitar, Jean-Philippe Ovarlez, Loong-Fah Cheong
and Ali Chehab

Chapter 1 ®)
Introduction Check for

Saurabh Prasad and Jocelyn Chanussot

Hyperspectral imaging entails acquiring a large number of images over hundreds
(to thousands) of narrowband contiguous channels, spanning the visible and infrared
regimes of the electromagnetic spectrum. The underlying premise of such imaging is
that it captures the underlying processes (e.g., chemical characteristics, biophysical
properties, etc.) at the pixel level. Recent advances in optical sensing technology
(miniaturization and low-cost architectures for spectral imaging) and sensing plat-
forms from which such imagers can be deployed (e.g., handheld devices, unmanned
aerial vehicles) have the potential to enable ubiquitous multispectral and hyperspec-
tral imaging on demand to support a variety of applications, such as biomedicine
and sensing of our environment. In many applications, it is possible to leverage data
acquired by other modalities (e.g., Synthetic Aperture Radar, SAR, and Light Detec-
tion and Ranging (LiDAR)) in conjunction with hyperspectral imagery to paint a
complete picture—for example, hyperspectral imagery and LiDAR data when used
together provide information about the underlying chemistry (e.g., as provided by
hyperspectral data) and the underlying topography (as provided by LiDAR data) and
can facilitate robust land-cover classification. Although this increase in the quality
and quantity of diverse multi-channel optical data can potentially facilitate improved
understanding of fundamental scientific questions, there is a strong need for robust
image analysis methods that can address the challenges posed by these imaging
paradigms. While machine learning approaches for image analysis have evolved

S. Prasad (<)

Department of Electrical and Computer Engineering, University of Houston,
Houston, TX 77578, USA

e-mail: saurabh.prasad @ieee.org

J. Chanussot

University of Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab,
38000 Grenoble, France

e-mail: jocelyn.chanussot@grenoble-inp.fr

© Springer Nature Switzerland AG 2020 1
S. Prasad and J. Chanussot (eds.), Hyperspectral Image Analysis,

Advances in Computer Vision and Pattern Recognition,
https://doi.org/10.1007/978-3-030-38617-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38617-7_1&domain=pdf
mailto:saurabh.prasad@ieee.org
mailto:jocelyn.chanussot@grenoble-inp.fr
https://doi.org/10.1007/978-3-030-38617-7_1

2 S. Prasad and J. Chanussot

to exploit the rich information provided by hyperspectral imagery and other high-
dimensional imagery data, key challenges remain for effective utilization in an oper-
ational environment, including the following:

— Representation and effective feature extraction from such high-dimensional
datasets,

— Design of effective learning strategies that are robust to a limited quantity of
training samples (in situ data), missing or noisy labels, and spatial-temporal non-
stationary environments,

— Design and optimization of analysis algorithms that can effectively handle nonlin-
ear, complex decision boundaries separating classes (objects of interest on ground)
in the feature space,

— The need to address variability in light source — sensor — object geometry and
variation in orientation and scale of objects in ubiquitous sensing environments
from a multitude of sensors and sensing platforms, and

— Effective utilization of the rich and vast quantity of unlabeled data available in
geospatial imagery in conjunction with limited ground truth for robust analysis.

This book focuses on advances in machine learning and signal processing for
hyperspectral image analysis and presents recent algorithmic developments toward
robust image analysis that address challenges posed by the unique nature of such
imagery. We note that although a majority of the chapters in this book focus on
hyperspectral imagery, these ideas extend to data obtained from other modalities,
such as microwave remote sensing, multiplexed immunofluorescence imaging, etc.
Chapters in this book are grouped in the challenges they address based on the fol-
lowing broad thematic areas.

Challenges in Supervised, Semi-Supervised, and Unsupervised Learning: The high-
dimensional nature of hyperspectral imagery implies that many learning algorithms
that seek to leverage the underlying spatial-spectral information are associated with a
large number of degrees of freedom, necessitating a rich (in both quality and quantity)
representative ground reference data. Leveraging the limited quantity and varying
quality of labeled data associated with remote sensing and biomedicine applications
is a critical requirement of successful learning algorithms, and a vast number of
recent developments address this aspect of learning, under the umbrella of super-
vised, semi-supervised, and unsupervised learning. Further, the end goal of learning
may not always be discrete classification. Numerous applications with hyperspectral
imagery entail mapping spectral observations to prediction (e.g., posed as a regres-
sion problem) of continuous-valued quantities (such as biophysical parameters)—
although there exist commonalities between learning algorithms that are carrying
out discrete classification and regression, care must be taken to understand the needs
and constraints of each application.

In Chap.2, Moreno-Martinez et al. survey recent developments in machine
learning for estimating spatial and temporal parameters from multi-channel earth-
observation images (both microwave imaging and passive optical imaging). Chap-
ters3 and 4 are a two-part series introducing the foundations of deep learning as

http://dx.doi.org/10.1007/978-3-030-38617-7_2
http://dx.doi.org/10.1007/978-3-030-38617-7_3
http://dx.doi.org/10.1007/978-3-030-38617-7_4

1 Introduction 3

applied to hyperspectral image analysis. In Chap. 3 (Part), Berisha et al. review the
foundations of convolutional and recurrent neural networks as they can be applied
for spatial-spectral analysis of hyperspectral imagery. In Chap.4 (Part II), Shahraki
et al. present practical architectures and design strategies to successfully deploy such
networks for hyperspectral image analysis tasks. Results with hyperspectral imagery
in the areas of remote sensing and biomedicine are presented, along with a detailed
discussion of the “successful” network configurations relative to the data character-
istics. In Chap. 5, Zhou and Prasad review recent developments in deep learning that
address the label scarcity problem—including semi-supervised, transfer, and active
learning. In Chap. 6, Jiao et al. present multiple instance learning as a mechanism
to address imprecise ground reference data that is commonly encountered in hyper-
spectral remote sensing. In Chap. 7, Rise et al. survey supervised, semi-supervised,
and unsupervised learning for hyperspectral regression tasks. In Chap. 8, Wu et al.
survey sparse-representation-based methods for hyperspectral image classification.
In Chap. 9, Gu et al. review multiple kernel learning for hyperspectral image classi-
fication.

Subspace Learning and Feature Selection: Given the high dimensionality of spec-
tral features and the inherent inter-channel correlations due to the dense, contiguous
spectral sampling, algorithms that learn effective subspaces (e.g., subspaces where
much of the discriminative information is retained) and that learn the most relevant
spectral channels are often a crucial pre-processing to image analysis. In Chap. 10,
Zhu et al. present a low-dimensional manifold model for hyperspectral image recon-
struction. In Chap. 11, Taherkhani et al. present a deep sparse band selection for
hyperspectral face recognition.

Change and Anomaly Detection: In many applications, the ability to reliably detect
changes between sets of hyperspectral imagery is highly desirable. In Chap. 12,
Ziemann and Matteoli present recent developments toward robust detection of large-
scale and anomalous changes.

Spectral Unmixing: The spatial resolution of hyperspectral imagery acquired from
airborne or spaceborne sensors often is not fine enough relative to the size of objects of
interest in the scene, resulting in mixed pixels. Over recent years, numerous advances
have been made in the area of spectral unmixing—the process of estimating the
relative abundance of the endmembers (e.g., objects in these mixed pixels) in each
mixed pixel. In Chap. 13, Zhang et al. review recent advances in spectral unmixing
using sparse techniques and deep learning.

Image Superresolution: In many remote sensing applications, a common imag-
ing scenario entails simultaneous acquisition of very high spatial resolution color/
multispectral/monochromatic(pan) images and lower spatial resolution hyperspec-
tral images. One can leverage this by extracting spatial information available in the
higher resolution imagery, which can then be fused in the lower resolution hyper-
spectral imagery. In Chap. 14, Yang et al. present a deep-learning-based approach to
fuse high spatial resolution multispectral imagery with hyperspectral imagery.

http://dx.doi.org/10.1007/978-3-030-38617-7_3
http://dx.doi.org/10.1007/978-3-030-38617-7_4
http://dx.doi.org/10.1007/978-3-030-38617-7_5
http://dx.doi.org/10.1007/978-3-030-38617-7_6
http://dx.doi.org/10.1007/978-3-030-38617-7_7
http://dx.doi.org/10.1007/978-3-030-38617-7_8
http://dx.doi.org/10.1007/978-3-030-38617-7_9
http://dx.doi.org/10.1007/978-3-030-38617-7_10
http://dx.doi.org/10.1007/978-3-030-38617-7_11
http://dx.doi.org/10.1007/978-3-030-38617-7_12
http://dx.doi.org/10.1007/978-3-030-38617-7_13
http://dx.doi.org/10.1007/978-3-030-38617-7_14

4 S. Prasad and J. Chanussot

Target Detection: An important application of hyperspectral imagery has been iden-
tification of targets of interest in a scene. In Chap. 15, Bitar et al. present an automatic
target detection approach for sparse hyperspectral images.

http://dx.doi.org/10.1007/978-3-030-38617-7_15

Chapter 2
Machine Learning Methods for Spatial s
and Temporal Parameter Estimation

Alvaro Moreno-Martinez, Maria Piles, Jordi Mufioz-Mari,
Manuel Campos-Taberner, Jose E. Adsuara, Anna Mateo,
Adrian Perez-Suay, Francisco Javier Garcia-Haro and Gustau Camps-Valls

Abstract Monitoring vegetation with satellite remote sensing is of paramount
relevance to understand the status and health of our planet. Accurate and constant
monitoring of the biosphere has large societal, economical, and environmental impli-
cations, given the increasing demand of biofuels and food by the world population.
The current democratization of machine learning, big data, and high processing capa-
bilities allow us to take such endeavor in a decisive manner. This chapter proposes
three novel machine learning approaches to exploit spatial, temporal, multi-sensor,
and large-scale data characteristics. We show (1) the application of multi-output
Gaussian processes for gap-filling time series of soil moisture retrievals from three
spaceborne sensors; (2) a new kernel distribution regression model that exploits
multiple observations and higher order relations to estimate county-level crop yield
from time series of vegetation optical depth; and finally (3) we show the combination
of radiative transfer models with random forests to estimate leaf area index, frac-
tion of absorbed photosynthetically active radiation, fraction vegetation cover, and
canopy water content at global scale from long-term time series of multispectral data
exploiting the Google Earth Engine cloud processing capabilities. The approaches
demonstrate that machine learning algorithms can ingest and process multi-sensor
data and provide accurate estimates of key parameters for vegetation monitoring.

A. Moreno-Martinez, M. Piles, J. Mufioz-Mari, M. Campos-Taberner, J. E. Adsuara, G. Camps-
Valls—Authors contributed equally.

A. Moreno-Martinez (X)) - M. Piles - J. Mufioz-Mari - J. E. Adsuara - A. Mateo - A. Perez-Suay -
G. Camps-Valls

Image Processing Laboratory (IPL), Universitat de Valéncia, Valencia, Spain

e-mail: alvaro.moreno@uv.es

G. Camps-Valls
e-mail: gustau.camps@uv.es

M. Campos-Taberner - F. Javier Garcia-Haro

Department of Earth Physics and Thermodynamics, Universitat de Valencia,
Valencia, Spain

e-mail: manuel.campos@uv.es

© Springer Nature Switzerland AG 2020 5
S. Prasad and J. Chanussot (eds.), Hyperspectral Image Analysis,

Advances in Computer Vision and Pattern Recognition,
https://doi.org/10.1007/978-3-030-38617-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38617-7_2&domain=pdf
mailto:alvaro.moreno@uv.es
mailto:gustau.camps@uv.es
mailto:manuel.campos@uv.es
https://doi.org/10.1007/978-3-030-38617-7_2

6 A. Moreno-Martinez et al.

2.1 Introduction

2.1.1 Remote Sensing as a Diagnostic Tool

The Earth is a complex, dynamic, and networked system, and this system is under
pressure and in continuous change. Population is increasingly demanding more food
and biofuels, at a faster pace, worldwide. Consequently, monitoring the planet in a
spatially explicit and timely resolved manner is an urgent need to address important
societal, environmental, and economical questions. This is exactly the main goal
of Earth Observation (EO) from space, and current satellite sensors operating in
different bands of the electromagnetic spectrum help in this challenge as accurate
diagnostic tools.

The analysis of the acquired sensor data can be done either at local or global
scales by looking at biogeochemical cycles, atmospheric situations, and vegetation
dynamics [1-5]. All these complex interactions are studied through the definition
of bio-geophysical parameters, either representing different properties for land (e.g.,
surface temperature, soil moisture, crop yield, defoliation, biomass, leaf area cov-
erage), water (e.g., yellow substance, ocean color, suspended matter, or chlorophyll
concentration), or the atmosphere (e.g., temperature, moisture, or trace gases). Every
single application considers the specific knowledge about the physical, chemical, and
biological processes involved, such as energy balance, evapotranspiration, or photo-
synthesis.

However, remotely sensed observations only sample the energy reflected or emit-
ted by the surface and thus, an intermediate modeling step is necessary to transform
the measurements into estimations of the biophysical parameters [6]. From a pure
statistics standpoint, this is considered to be as an inverse modeling problem, because
we have access to observations generated by the system and we are interested in the
unknown parameters that generated those. A series of international study projec-
tions, such as the International Geosphere-Biosphere Programme (IGBP), the World
Climate Research Programme (WCRP), and the National Aeronautics and Space
Administration (NASA) Earth Observing System (EOS), established remote sensing
model inversion as one of the most important problems to be solved with EO imagery
in the near future.

2.1.2 Data and Model Challenges

Current EO, however, faces two very important challenges that we hereby define as
the data problem and the model problem:

e The data problem: The data involved in EO applications is big, diverse, and
unstructured. We often deal with remote sensing data acquired by many satel-
lite sensors working with different and ever-increasing spatial, temporal, and ver-

2 Machine Learning Methods for Spatial and Temporal Parameter Estimation 7

tical resolutions. Not to mention that data may also come from high-resolution
simulations and re-analysis. At the same time, data is heterogeneous and cov-
ers space and time with uneven resolutions, different footprints, signal and noise
levels, and feature characteristics. EO applications on land monitoring have
mainly considered optical sensors, like the NASA A-Train (http://atrain.nasa.
gov/) satellite constellations including MODIS and Landsat, and recently the
European Space Agency (ESA) Sentinels 2-3 sensors. More recently, sensors
operating in the microwave range of the spectrum were introduced. Unlike opti-
cally based technologies, microwaves are not affected by atmospheric conditions,
and a total coverage of the Earth’s surface is obtained every 2-3 days. Microwave
radiometry is optimal for sensing the water content in soils and vegetation, but
the passive measurement is presently limited in spatial resolution by the size of
the instrument antenna aperture to ~25 km (e.g., ESA’s SMOS, NASA’s SMAP).
Active microwave remote sensing can overcome this limitation but often it is
accompanied by constraints on spatial coverage and temporal data refresh rate
and require complex scattering models for inversion of geophysical parameters
(e.g., ESA’s Sentinel 1). Optical sensing technology, in turn, is at a maturity level
today that allows providing very fine spatial resolution on a weekly basis (e.g.,
ESA’s Sentinel 2). Undoubtedly, the combination of satellite-based microwave and
optical sensory data offers an unprecedented opportunity to obtain a unique view
of the Earth system processes.

e The model problem: Dealing with such data characteristics and big data influx
requires (semi)automatic processing techniques that should be accurate, robust,
reliable, and fast. Over the last few decades, a wide diversity of bio-geophysical
retrieval methods have been developed, but only a few of them made it into opera-
tional processing chains. Lately, machine learning has attained outstanding results
in the estimation of climate variables and related bio-geophysical parameters at
local and global scales [1]: leaf area index (LAI) [7] and Gross Primary Production
(GPP) [8-11] are currently derived with neural networks, kernel methods, and ran-
dom forests, while multiple regression is used for retrieving biomass [12], support
vector methods were also proposed to derive vegetation parameters [13, 14], and
kernel methods and Gaussian processes (GPs) [15] have been paid wide attention
in the last years in deriving vegetation properties [16]. However, it is important
to observe here that, very often, these methods are applied blindly, without being
adapted to the data specificities. On the one hand, data exhibits clear spatial and
temporal structures that could be useful to design new kernel functions in GPs [17]
or rely on convolutional networks [18]. On the other hand, data from different sen-
sors should be synergistically combined in the model, but this is often done via
ad hoc data re-sampling or statistics summarization, as a convenient way to data
preparation for the algorithm. These practices are far from being optimal, and a lot
is yet to be done in the algorithm development arena to improve algorithms that
respect data characteristics, learn structures from data, fuse heterogeneous multi-
sensor and multi-resolution data naturally, and scale well to big data volumes.

http://atrain.nasa.gov/
http://atrain.nasa.gov/
http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Overview4
https://www.esa.int/Our_Activities/Observing_the_Earth/SMOS
https://smap.jpl.nasa.gov/
https://sentinel.esa.int/web/sentinel/missions/sentinel-1
http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Overview4

8 A. Moreno-Martinez et al.

Fig. 2.1 Normalized 100 . .
worldwide interest (i.e., ——Remote sensing
popularity) of terms “remote — Machine learning
sensing”, “machine 80[| — Artificial Intelligence
learning”, “artificial —Big data

intelligence”, and “big data” 60
in the last decade, as

measured in Google trends® 40

20

2008 2010 2012 2014 2016 2018

Tackling the two sides of the EO challenge is nowadays possible. The current popu-
larization of machine learning, big data, and high processing capabilities allows us
to take such an endeavor in a decisive manner, cf. Fig.2.1.

Nowadays, both data and algorithms are mostly freely available, while large-scale
data processing platforms, clusters, and infrastructures are accessible to everyone:

e Machine learning code is now ready to (re)use in different forms: from excel-
lent packages and frameworks like scikit-learn or TensorFlow, to open accessible
repositories and developer’s platforms like GitHub.

e Earth observation data is also currently accessible through the main space agencies
hubs: for example, ESA provides Sentinels data through the ESA open access hub,
and NASA grants access via its NASA open data portal.

This unprecedented situation has sowed the seed for the development of applications
and the creation of EO-centered companies. Google allows not only accessing but
also processing data through the Google Earth Engine, which will be subject of study
in this chapter (cf. Sect. 2.4), Descartes Labs offers an EO data processing facility
in the cloud, and an increasing number of SMEs has grown around and created what
is called the “EO exploitation ecosystem”. Altogether, they have allowed tackling
problems that were unthinkable just a decade ago.

Earth observation through remote sensing offers great opportunities to mon-
itor our planet by the estimation of key parameters of the land, ocean, and
atmosphere. The combined action of machine learning, big data, and high-
performance computing platforms, like the Google Earth Engine (GEE), is
currently paving the way toward this goal.

https://scikit-learn.org
https://www.tensorflow.org/
https://github.com/
https://scihub.copernicus.eu/
https://data.nasa.gov/
https://earthengine.google.com/
https://www.descarteslabs.com/

2 Machine Learning Methods for Spatial and Temporal Parameter Estimation 9

2.1.3 Goals and Outline

In this chapter, we will focus on modern machine learning methods for deriving land
parameters (e.g., about the vegetation status and crop production) from remote sens-
ing data: we will introduce three recent ML developments that can deal with multi-
sensor and multi-resolution data, that exploit nonlinear feature relations and higher
order moments of data (observational) distributions, and that can be implemented
in the Google cloud platform to derive global maps of parameters of interest. We
will mainly focus on new kernel methods, Gaussian processes, and random forests,
which fulfill the needs of the field: mathematical tractability and big data scalability,
respectively.
We will treat three main problems with different particular data characteristics:

e Non-uniform temporal sampling and sensor fusion: First, we will focus on prob-
lems of interpolating remote sensing parameters when several variables are avail-
able and heavy non-uniform sampling is present. This is a common problem when
trying to fuse information from different sensors or in optical remote sensing due
to the presence of clouds. Microwave remote sensing is not affected by clouds, but
measurements can also be limited in some regions due to combined effects of Radio
Frequency Interferences (RFIs), presence of snow, dense vegetation canopies, and
high topography [19]; since these effects are sensor- and frequency-dependent, the
optimal blend of available microwave-based soil moisture products holds great
promise, particularly for observational climate data records [20]. In Sect. 2.2,
we will show the exploitation of multi-output Gaussian processes to fill in the
temporal gaps in satellite-based estimates of soil moisture from SMOS (L-band
passive), AMSR2 (C-band passive), and ASCAT (C-band active) [21, 22]. The
method will allow to treat non-uniform sampling and “transfer information across
sensors” when samples are missing.

e Non-uniform spatial sampling: In remote sensing and geospatial applications, we
often encounter problems where one aims to spatialize a variable of interest from
a sparse set of measurements, while having access to a finer grid of observations.
This is the case of non-uniform spatial sampling. This mismatch in quantity and
location is typically resolved by summarizing (e.g., averaging) the observations
and co-locating them with the measure. This procedure is ad hoc and suboptimal.
In Sect. 2.3, we introduce a new kernel distribution regression model that exploits
multiple observations to estimate county-level yield of major crops (wheat, corn,
and soybean) from SMAP-based vegetation optical depth (VOD) time series [23].
The method exploits all the available observations and their feature relations.

e Uniform spatial-temporal data spatialization: Finally, we deal in Sect. 2.4 with
the exploitation of big data in the cloud by spatializing vegetation parameters of
interest when long time series of data are available. We will show the combination
of radiative transfer models (RTMs) with random forests to estimate various veg-
etation parameters, namely, LAI, Fraction of Absorbed Photosynthetically Active
Radiation (FAPAR), Fraction Vegetation Cover (FVC), and Canopy water content
(CWQ), globally from long-term time series of MODIS data exploiting the GEE.

10 A. Moreno-Martinez et al.

The platform will allow us to generate products of almost any variable of interest
modeled in an RTM [24, 25].

We conclude in Sect. 2.5 with some remarks and an outline of future work. The
approaches demonstrate that machine learning algorithms can ingest and process
multi-sensor data and provide accurate estimates of key parameters for vegetation
monitoring.

2.2 Gap Filling and Multi-sensor Fusion

Measurements of soil moisture (SM) are needed for a better global understanding
of the land surface-climate feedbacks at both local and global scales. Satellite sen-
sors operating in the low-frequency microwave spectrum (from 1 to 10 GHz) have
proven to be suitable for soil moisture retrievals. These sensors now cover nearly 4
decades, thus allowing for global multi-mission climate data records. The ESA Cli-
mate Change Initiative (CCI) soil moisture product combines various single-sensor
active and passive microwave soil moisture products into three harmonized products:
an only-active, an only-passive, and a combined active—passive microwave product
[26]. In its current version, the presence of data gaps in time and space has been
acknowledged as a major shortcoming which makes it difficult for users to integrate
the data in their applications [20]. From a scientific perspective, the presence of
“intermittent” data gaps in satellite-based soil moisture estimates impacts the analy-
sis of spatiotemporal dynamics and trends, which may be limited to certain regions
[27]. Also, the presence of missing data in time series prevents a robust computation
of temporal autocorrelation and e-folding times, as a measure of soil moisture per-
sistence [22]. In this regard, recent studies on the use of Gaussian process regression
techniques to mitigate the effect of missing information in Earth observation data
are very promising (e.g., [17, 21]).

The presence of gaps in EO data limits their applicability in a number of appli-
cations. In contrast with the standard temporal interpolation techniques, the
LMC multi-output GP-based gap-filling regression allows taking into account
information from other collocated sensors measuring the exact same variable.
The method learns the relationships among the different sensors and builds
a cross-domain kernel function able to transfer information across the time
series and do predictions and associated confidence intervals on regions where
no data are available.

In this section, a subset of 6 years of SMOS L-band passive, ASCAT C-band
active, and AMSR2 C-band passive soil moisture measurements, starting in June
2010, have been used. SMOS and ASCAT estimates are available for the whole
period, whereas AMSR2 estimates start on May 18, 2012 (its launch date). Each

2 Machine Learning Methods for Spatial and Temporal Parameter Estimation 11

product presents different observational gaps due to the presence of RFI at their
operating frequency or a too high uncertainty in their inversion algorithm (e.g., due
to the presence of snow masking observations, dense vegetation, or high topogra-
phy). The problem we face here is that we need a gap-filling methodology able to
handle several outputs together and force a “sharp” reconstruction of the time series
so that fast dry-down and wetting-up dynamics are preserved (avoid smoothing). We
show how we can efficiently deal with our problem by employing a multi-output
Gaussian Process model based on the Linear Model of Corregionalization (LMC)
[28]. This model implicitly exploits the relationships among the three microwave
sensors and predicts an output for each of them. The reconstructed time series
are provided with an estimate of its uncertainty and are shown to preserve the
statistics from comparison to in situ data over a selection of catchments from the
International Soil Moisture Network.

2.2.1 Proposed Approach

The presence of temporal data gaps in satellite-based estimates of soil moisture limits
their applicability in a number of applications that need continuous estimates. Stan-
dard techniques for gap-filling temporal series such as linear or cubic interpolation,
or auto-regressive functions fail to reconstruct sharp transitions or long data gaps
and do not take into account information from other collocated sensors measuring
exactly the same biophysical variable. Given that we have three different soil mois-
ture products presenting no data in different time and space locations, we employ
here an LMC multi-output GP regression (LMC-GP) to maximize the spatiotempo-
ral coverage of the datasets. We illustrate the procedure at three in situ soil moisture
networks where the SMOS satellite presents good, average, and poor temporal cov-
erage, see Fig.2.2. We will show how LMC-GP exploits the relationships among
SMOS, ASCAT, and AMSR2 soil moisture time series to do inferences on regions
where no data (gaps) are available, and provides a reconstructed prediction with and
associated uncertainty for each dataset. Statistical scores from comparison with in
situ data at the selected sites of the original and reconstructed time series will be
shown.

2.2.2 LMC-GP

First, we will start introducing the formulation of standard GP models. Then, we will
extend it to the LMC-GP model.

https://ismn.geo.tuwien.ac.at

12 A. Moreno-Martinez et al.

A- HOBE: 31 stations

o~

__C- DHRA: 1 station _

B- REMEDHUS: 17 stations “*%°"

A In-situ Stations

-\'~' “A b F [Tree or shrub cover
! t _-}’ [cropland, imgated or post-fliooding
A AG
: A

[Cropland, rainfed
[Herbaceous cover

[Mosaic cropland (>50%) ! natural vegetation {<50%)
[Mosaic natural vegetation (>50%) / cropland {<50%)
I Tree cover, needieleaved, evergreen

P % A A : A A I Mosaic tree & shrub (>50%) / herbaceous (<50%)
- = I shrubland
A 4 [Grassland
. b= [urban areas
Ll I Water bodies

Fig. 2.2 Location and land use map of the three International Soil Moisture Network (ISMN)
validation sites used in the study: a HOBE in Denmark (31 stations), b REMEDHUS in Spain (17
stations), and C DAHRA in Senegal (1 station)

2.2.2.1 Gaussian Processes

GPs [15] are state-of-the-art statistical methods for regression and function approx-
imation, and have been used with great success in biophysical variable retrieval by
following statistical and hybrid approaches [29]. We start assuming that we are given
a set of n pairs of measurements, {X;, y;}7_,, where x; is the feature/measurement
space and y; is the biophysical parameter from field data or other sources, perturbed
by an additive independent noise e;. We consider the following model:

yi=fx)+e. e~NO), 2.1)

where f(x) is an unknown latent function, x € R?, and o represents the noise
variance. Definingy = [y1, ..., y,]T and f = [f(x}), ..., f(X,)]7, the conditional
distribution of y given f becomes p(y|f) = N(f, anzIn), where I, is the n x n
identity matrix. It is assumed that f follows a n-dimensional Gaussian distribu-
tion f ~ N(0, K). The covariance matrix K of this distribution is determined by a
squared exponential (SE) kernel function with entries K;; = k(x;, X;) = exp(—||x; —
X; 1>/(20%)), encoding the similarity between input points. In order to make a new
prediction y, given an input X, we obtain the joint distribution over the training and

test points,
T
HER G2
Vi k, ¢

where C, = K + o*nzln, k, = [k(X4, X1), ..., kX4, X,)]|Tisann x 1 vectorand c, =
k(Xy, Xy) + o,,z. Using the standard Bayesian framework, we obtain the distribution

2 Machine Learning Methods for Spatial and Temporal Parameter Estimation 13

over y, conditioned on the training data, which is anormal distribution with predictive
mean and variance given by

pop(x.) = kI (K + 021,) 7y,

0&p(%,) = ¢y — KT(K + 01,) " 'k,. @2
One of the most interesting things about GPs is that they yield not only predictions
Uapx for test data, but also the uncertainty of the mean prediction, ogp,. Model hyper-
parameters = (o, 0,,) determine, respectively, the width of the SE kernel function
and the noise on the observations, and they are usually obtained by maximizing the
log-marginal likelihood.

2.2.2.2 Linear Model of Corregionalization for GPs

LMC-GPs [28] extend standard GPs so it is possible to both handle several outputs
at the same time (i.e., it is a multi-output model) and to deal with missing data in
the considered outputs. This model is well known in the field of geostatistics as
co-kriging [30].

In the LMC-GP model, we have a vector function, f : X — RP, where D is
the number of outputs. Given a reproducing kernel, defined as a positive definite
symmetric function K : X x X — R"*", where n is the number of samples of each
output, we can express f(x) as

f(x) =Y Kx;, x)c;, (2.3)
i=1

for some coefficients ¢; € R". The coefficients ¢; can be obtained by solving the
linear system, obtaining
¢ = (KX, X) + anD)7ly, (2.4)

where €,y are nD vectors obtained by concatenating the coefficients and outputs,
respectively, and K(X, X) is an nD x nD matrix with entries (K(X;, X;))4,4 for
i,j=1,...,nandd,d =1, ..., D. The blocks of this matrix are (K(X;, X;)); ;
n x n matrices. Predictions are given by

f(x,) = K, &, (2.5)

with K, € RP*"P composed of blocks (K(X,, X;))4,'- When the training kernel
matrix K'(X, X) is block diagonal, that is, (K(X;, X;)); ; = O foralli # j, theneach
output is considered to be independent of the others, and we thus have individual GP
models. The non-diagonal matrices establish the relationships between the outputs.

In the LMC-GP model, each output is expressed as a linear combination of inde-
pendent latent functions,

14 A. Moreno-Martinez et al.
Q
fa®) =" aq qug(x), (2.6)
g=1

where a,4 , are scalar coefficients, and u,(x) are latent functions with zero mean
and covariance k, (x, x). It can be shown [28] that the full covariance matrix of this
model can be expressed as

0
KX.X) = > B, @ k,(X. X), 2.7)

g=1

where ® is the Kronecker product. Here, each B, € R DxDjgq positive definite matrix
known as a co-regionalization matrix, and it encodes the relationships between the
outputs.

2.2.3 Data and Setup

The temporal period of study is 6 years, starting in June 2010. Three global satellite
soil moisture products have been extracted for the study period: SMOS BEC L3
(1.4 GHz, L3 SM v3.0), Metop A/B ASCAT (5.3 GHz, Eumetsat H-SAF), and
GCOM W1 AMSR2 L3 (6.9 GHz, LPRM vO05 retrieval algorithm, NASA). ASCAT
and AMSR2 products have been resampled from their 0.25° grid to the SMOS EASE2
25-km grid using bilinear interpolation. These products have been widely validated
under different biomes and climate conditions by comparison with ground-based
observations (e.g., [26, 31, 32]) and outputs of land surface models (e.g., [33-35]).

‘We show the robustness of the multi-sensor gap-filling approach at three in situ soil
moisture networks: REMEDHUS in Spain (17 stations [36]), HOBE in Denmark (31
stations [37]), and DAHRA in Senegal (1 station [38]). In terms of temporal coverage,
they are representative of best-case (REMEDHUS), average-case (HOBE), and wort-
case (DAHRA) scenarios, with SMOS providing a coverage during the study period
of 96, 65, and 45%, respectively. The locations and land use maps of the in situ
networks used for this study are presented in Fig.2.2.

2.2.4 Results

Let us start with an illustrative example of method’s performance. Figure2.3 shows
with a real example how the LMC-GP transfers information across SMOS, ASCAT,
and AMSR?2 satellite time series for the predictions when no data is available and
provides associated confidence intervals.

http://bec.icm.csic.es/
http://hsaf.meteoam.it/soil-moisture.php
https://disc.gsfc.nasa.gov/datasets/LPRM_AMSR2_A_SOILM3_V001

2 Machine Learning Methods for Spatial and Temporal Parameter Estimation 15

+ SMOS
|\—Prediction
e e~
_01 1 1 | | 1 J
Julld Augl4 Sepld Octl4 Nov14 Decl4d
+ ASCAT
031 | (= Prediction
0.2 \k
0.14 E w
of | '
0.1 1 1 o 2 a1 131 |
Julld Augl4d Sepld Octl4 Novl4 Decl4
| [+ AMSR2
0.3 | |— Prediction
0.2 |
i RJ\AV M‘[\W\A\NJ\A‘
-0.1 i 1 L L | 1 J
Julld Augld Sepld Octl4d Novld Decld

Fig. 2.3 Time series of original (orange dots) and reconstructed (blue lines) SMOS, ASCAT, and
AMSR?2 time series using the LMC-GP gap-filling technique. The uncertainty on the predictions
is shown in shaded gray. The orange square points out a specific rainfall event that was captured
only by SMOS and is accounted for in the reconstruction of ASCAT and AMSR?2 time series. The
green square exemplifies how the method reconstructs long data gaps in AMSR2 based on no-rain
information from the other two sensors, assigning a higher uncertainty when no original data is
available

A more thorough experimental analysis follows. Results of the application of the
proposed LMC-GP over REMEDHUS, HOBE, and DAHRA networks are shown
in Fig.2.4, together with the original satellite time series and the in situ data as
a benchmark. It can be seen that the reconstructed soil moisture time series follow
closely the original time series, capturing the wetting-up and drying-down events and
filling the missing information (e.g., see in HOBE the dry-down in February 2014
which was captured only by AMSR2 during consecutive days and is reproduced
by the three reconstructed time series). In DAHRA, the limited temporal coverage
of AMSR?2 in the dry seasons is completed in the reconstructed time series using
information from the other two sensors. It is worth to remark that for AMSR?2 the
reconstructed time series back-propagate to dates where the satellite was not yet
launched (shown here for illustration purposes), yet they look very consistent with
the real satellite data. Also importantly, we fixed the kernel lengthscale parameter
in LMC-GP model to force a sharp reconstruction, to prevent the predictions being
smoothed with respect to the original time series.

16

Fig. 2.4 Time series of in
situ (black lines) and
satellite-based soil moisture
estimates from SMOS,
ASCAT, and AMSR2
(orange dots denote the
original time series and blue
lines the predicted using the
LMC-GP gap-filling
technique) over a
REMEDHUS, b HOBE, and
¢ DAHRA networks

A. Moreno-Martinez et al.

(a) REMEDHUS
0.6 T T T 1 :'m situ] |
04k 8
N PO N Tt O L WP o PV WO
ok . 1 ; : . - 1
Jan1l Jan12 Jani3 Jania fan1% Janla
06
04k
02
0 : L L s L
Janll Jan12 Janl3 lanl4 lan15 [anl6

i i . . L L
Janll Jan12 Jan13 Janla Jan1s [

02
9 s s L L L L
Jan1l Jan12 Jan13 Jarid Jan1s Jan16
(b) HOBE
osf T T T — s
04k 1
0.2 pagh™ -“WWM&M 4
oF 1
Jan1l Jan12 lan13 lanl4 Jan15 Janls

Jan1l Jan12 Jan13 lanld lan15 lanl6

0.2 1
o N - AMSAZ — Prediction)
Jan1l Jan12 Janl3 lani4 Jan1s [anl&

(¢) DAHRA

2 Machine Learning Methods for Spatial and Temporal Parameter Estimation 17

A statistical analysis of the original and reconstructed satellite time series has been
undertaken following the recommended performance metrics in [39]. Table 2.1 shows
that Pearson’s correlation coefficient R, bias (as estimated by the mean error, ME) and
root-mean-squared error (RMSE) with respect to in situ data in the three networks
are not affected to a high degree by the reconstruction, and they remain within
reasonable bounds. For SMOS, the reconstructed time series preserve the statistical
scores of original time series in REMEDHUS and DAHRA and improve the R in
HOBE from 0.62 to 0.68 (note the other sensors in HOBE have higher correlations of
0.66 and 0.73). The increase in coverage is notable, with an improvement of 37% for
HOBE and of 54% for DAHRA. SMOS has the largest coverage over REMEDHUS,
and the improvement of coverage is therefore limited (of 8%). For ASCAT, the
statistical scores are preserved in the reconstructed time series, and the increase
in coverage is also remarkable: 23% for REMEHDUS, 31% for HOBE, and 36%
for DAHRA. For AMSR2, the validation is limited to four annual cycles (from its
launch date in May 18, 2012, onward). Over REMEDHUS, AMSR?2 presents a wet
bias with respect to the in situ data that is reduced in the reconstructed time series;
its correlation is reduced from 0.86 to 0.81, probably due to the lower correlations
of the other two sensors, and the increase in coverage is of 27%. Similar results
are obtained for reconstructed AMSR2 over HOBE, but with a lower number of
collocated observations due to the lack of in situ data in early January 2014. Over
DAHRA, correlation is improved from 0.73 to 0.79, with a 66% improvement of
coverage. These results provide confidence in the proposed technique and show
how it exploits the complementary spatiotemporal coverage of the three microwave
Sensors.

2.3 Distribution Regression for Multiscale Estimation

Non-uniform spatial sampling is a common problem in geostatistics and spatializa-
tion problems. When the variable of interest is available at the same resolution that
the remote sensing observations, standard algorithms such as random forests, Gaus-
sian processes, or neural networks are available to establish the relationship between
the two. Nevertheless, we often deal with situations where the target variable is
only available at the group level, collectively associated to a number of remotely
sensed observations. This kind of problem is known in statistics and machine learn-
ing as multiple instance learning (MIL) or distribution regression (DR). Chapter 6
introduces the MIL framework and methodology, and reviews different approaches
to address the particular issue of imprecision in hyperspectral images analysis. We
here present a nonlinear method based on kernels for distribution regression that
solves the previous problems without making any assumption on the statistics of
the grouped data. The presented formulation considers distribution embeddings in
reproducing kernel Hilbert spaces and performs standard least squares regression
with the empirical means therein. A flexible version to deal with multisource data
of different dimensionality and sample sizes is also introduced. The potential of the

http://dx.doi.org/10.1007/978-3-030-38617-7_6

A. Moreno-Martinez et al.

JaI
el 6L°0 1000, 6100 €IS 790 €000, €ST°0 8Tyl 18°0 S000| #8070 TISINY
LY €L0 7000 9200 98Y 99°0 2000, 6610 LYOT 98°0 S000| 8IT0 ISV

JaI
re8l 0L°0 7000, 900 381 0L°0 €000 T1L00 T61¢ 8L°0 ¥000| 1000—| IVOSV
ILTT 0L°0 7000, 1L0°0 918 €L0 €000 9800 €L91 6L°0 ¥00'0| 2000 IVOSVY
Ye81 8L°0 1000 +100— 381 89°0 2000 8%00— T61¢ 18°0 €000 €£0°0— | 991 SOINS
I8 6L°0 1000| €v10°0— L 790 T000| TH00— 00T 18°0 €000| TE00— SOINS
ske(A | ISIN¥an JN ske(q d| dSIN¥an HN ske(| ISINEAn HN

VIHVA HIOH SNHAANAA

18

sonsnels ay) ndwod 03 J[qe[rese
€JEp MIIS UI PUe SI[[AJES PAJedo[[od Jo Ioquinu oy} syjodar sAep,, 9[qeles 'syIomiou VIHVA PUe ‘H9OH ‘SNHATNTY WOoIJ SJUSWaINseaur mis ur jsurese
SOLIOS DU} A[[QJES PAJONIISUOIAI PUE [BUITLIO OY} JOF () UOHR[OLIOD UOSIEd] PUE (ot) (HSINUAN) HSINY PIserqun “(_tw ur) (HIA) J0L9 VBN [QL

2 Machine Learning Methods for Spatial and Temporal Parameter Estimation 19

presented approach is illustrated by using SMAP VOD time series for the estimation
of crop production in the US Corn Belt.

2.3.1 Kernel Distribution Regression

In distribution regression problems, we are given several sets of observations each
of them with a single output target variable to be estimated. The training dataset
D is formed by a collection of B bags (or sets) D = {(X;, ¢ R"»*? y, e R)|b =
1,..., B}. A training set from a particular bag b is formed by n, examples, here
denoted as X, =[xy, ..., X,,]T € R">*¢ where x; € R?*!. Let us denote all the
available data collectively grouped in matrix X € R"*¢, wheren = Zle np,andy =
[y1, ..., yglT € REX! In this setting, the direct application of regression algorithms
is not possible because not just a single input point x; but a set of points X, is available
for each target output, and latter for prediction we may have test points or sets from
each bag, x; € R?*! or X} € R"™>*?, which we denote with a star superscript. The
problem boils down to finding a function f that learns the mapping from x to y
exploiting the many-to-one dataset. To solve the problem, two main approaches
are typically followed: (1) output expansion, that is, replicating the label y, for
all points in bag b; or (2) input summary most notably with the empirical average
X, = % Zi X;, or a set of centroids ¢;, b =1, ..., B. What makes DR distinctive
is that it instead exploits the rich structure in O by performing regression with
the group distributions directly. Statistically, this consists of considering all higher
order statistical relationships between the groups, not just the first- or second-order
moments. The method we are going to introduce here works by embedding the bag
distribution in a Hilbert space and performing linear regression therein. We essentially
need the definition of a mean embedding, its induced kernel function, and how the
regression is done with it.

Distribution regression problems rely very often on using non-uniformly spa-
tial sampled datasets, where the variables of interest are associated with sets
of observations instead of single observations. While some approaches sum-
marize the sets of observations using some kind of aggregation, such as the
mean of the standard deviation, kernel distribution regression uses all higher
moments by computing mean map embeddings in high-dimensional Hilbert
spaces, and hence improved ability for function approximation.

20 A. Moreno-Martinez et al.
2.3.1.1 Mean Map Embeddings

We frame the problem in the theory of mean map embeddings of distributions [40—
42]. The kernel mean map from the set of all probability distributions By into H is
defined as

By — H,]P’—)/k(-,x)d]?(x)eﬂ.
X

Assuming that k(-, x) is bounded for any x € X, it can be shown that for any P,
letting pup = p(P), the Ep[f]1 = (up,), for all f € H. Here p represents the
expectation function on H. Every probability measure has a unique embedding and
the p fully determines the corresponding probability measure [41]. Here, we show
how to estimate the mean map embeddings from empirical samples. For one particular
bag, X, drawn i.i.d. from a particular P, the empirical mean estimator of p, can be
computed as

~ . 1 &
Ly = s, = f kB ~ o > kC.x)). (2.8)
i=1

This is an empirical mean map estimator whose dot product can be computed via

kernels:
ny

PN 1 & :
(B, fp,) = —— > Y k(x.x2), 2.9)

npny

i=1 j=1

which is the base of a useful kernel algorithm for hypothesis testing named maximum
mean discrepancy (MMD) [41, 42] and estimates the distance between two sample
means in a reproducing kernel Hilbert space H where data are embedded

MMD(Py, Py) = | pp, — ip, lI7-

This can be computed using kernel functions in Eq. (2.9). Figure2.5 shows how
MMD and mean map embeddings can detect differences between distributions in
higher order moments.

2.3.1.2 Distribution Regression with Kernels

The distribution regression task is carried out by standard least squares regression
using the mean embedded data in Hilbert spaces. The solution leads to the kernel
ridge regression (KRR) algorithm [43] working with mean map embeddings. We
need to minimize a loss function composed of two terms: the least square errors of
the approximation of the mean embedding, and a regularization term that acts over
the class of functions to be learned in Hilbert space f € H:

2 Machine Learning Methods for Spatial and Temporal Parameter Estimation 21

(a) (b) (d)

0.2 . 0.2 - . 0.2

Fig. 2.5 The two-sample problem consists of detecting whether two distributions Py and IPy are
different or not. When they have different means (a), a simple ¢-test can differentiate them. When
they have the same first moments (mean in b, mean and variance in ¢) but different higher order
moments, mapping the data to higher dimensional spaces allows to distinguish them (d). Kernel
mean embeddings are able to do so without having to map the data explicitly

1)
* = i - P i +)\. (2 N
f arg?gg{n ,-E:l lyi = £ (el IIfIIH}

where A > 0is the regularization term. The ridge regression has an analytical solution
for a test set given a set of training examples:

fu, = k(K +naD7ly, (2.10)

where p, is the mean embedding of the testset X, k = [k(u(, &), - .., k(g,, p,)17 €
R™! K = [k(u;, rple R™" andy = [yy, ..., y,]|T represents all outputs. Now,
for a set of B bags each one containing n;, samples, and exploiting (2.9), one can
readily compute the kernel entries of K as follows:

1

npnp

1T Ky

(Klpy = plmy = -1, s
where the matrix K, € R"*" Therefore, we have an analytic solution of the
problem in (2.10):

o 1
Yp = m—bnl;l;lebbflnb,a, (211)

where K,y € R™>*™" which is computed given a valid Mercer kernel function k.
Kernel methods also allow to combine multisource (also known as multimodal)
information in each bag, as was previously done with standard paired settings in
either remote sensing or signal processing applications [42, 44, 45]. This is the
case when bags have different numbers of both features and sizes, e.g., we aim
to combine different spatial, spectral, or temporal resolutions. Notationally, now we
have access to different matrices X”f IS R”i xf, f =1,..., F.The multimodal kernel
distribution method summarizes each dataset into a mean and then exploits the direct
sum of Hilbert spaces in the mean embedding space. Therefore, we define F Hilbert
spaces Hy, f =1,..., F, and the direct sum of all of them, H = eale'Hf. We

22 A. Moreno-Martinez et al.

(a) S, S S S (b) (C)S S S, S

X S r—) 1 e ==
b, { (S e 1 | }—
b, {I I I I I}I Y, | [M) A II_} }

Fig. 2.6 Distribution regression approaches presented in this chapter. The DR problem is illustrated
in a for B = 3 bags different numbers of samples per bag (n; = 3, no =4, n3 = 3), three corre-
sponding target labels, y,, b = 1, 2, 3, and columns represent different features (sources, sensors)
Si,i =1,2,3,4. The standard approach b summarizes the distributions [P, with the mean vectors
wp and then applies standard regression methods. Alternatively, this can be done in Hilbert spaces
too with the advantage of considering all moments of the distributions. In ¢, we show the case of
multisource distribution regression (MDR) in which some features are missing for particular bags
and samples, which is often the case when different sensors are combined

summarize the bag feature vectors with a set of mean map embeddings of samples
in bag b, which we denoted as ui . The collection of all mean embeddings in H is

definedas u;, = [}, ..., p}1 € H, and then we define the mean map embedding as
M =[] |pp]T € REXH The multimodal kernel matrix is computed as follows:
K T F U 1
(Klow = myty = 25—y —— 1, Kowr L, (2.12)
nj ny,

Fig.2.6 graphically illustrates the DR approaches used in this chapter. The algo-
rithm reduces to the application of a standard kernel ridge regression with the kernel
function Eq. (2.11) for the standard case or Eq. (2.12) for the multisource case. We
provide source code of our methods in http://isp.uv.es/code/dr.html.

2.3.2 Data and Setup

We show results for crop yield estimation, which is a particular problem of distribu-
tion regression in the context of remote sensing. We show results for our KDR (kernel
distribution regression) and several baseline standard approaches like least squares
regularized linear regression model (RLR) and its nonlinear (kernel) counterpart, the
kernel ridge regression (KRR) method, both working on the empirical means of each
bag as input feature vectors. We use as evaluation criteria the standard mean error
(ME) to account for bias, the root-mean-square-error (RMSE) to assess accuracy,
and the coefficient of determination or explained variance (R?) to account for the
goodness-of-fit.

Specifically, for the crop yield estimation, satellite-based retrievals of vegetation
optical depth (VOD) from SMAP [46] is related to crop production data from the

http://isp.uv.es/code/dr.html

2 Machine Learning Methods for Spatial and Temporal Parameter Estimation 23

Legend

[JStudy Area
["ICropland - .:- --?,H
T,

Fig.2.7 Areaof study. It includes both the eight states and the cropland mask following the MODIS
IGBP land cover classification

2015 US agricultural survey (total yield and yield per crop type), and then the pro-
posed methods are evaluated. VOD is a measure of the attenuation of soil microwave
emissions when they pass through the vegetation canopy, being sensitive not only to
the amount of living biomass, but also to the amount of water stress experienced by
the vegetation [47]. SMAP VOD has been shown to carry information about crop
growth and yield in a variety of agro-ecosystems [48, 49].

We focus on eight states within the so-called Corn Belt of the Midwestern United
States: Illinois, Indiana, Iowa, Minnesota, Nebraska, North Dakota, Ohio, and South
Dakota (Fig.2.7). Also, the United States Department of Agriculture, in particular, the
National Agricultural Statistics Service (USDA-NASS), publish reports and survey
of agricultural information every year at the country, state and county levels. There
is a total of 385 counties with yield and satellite data for prediction of total yield. We
also predict per crop type. In particular, the three main crops in the region, i.e., corn,
soybean, and wheat, are predicted. All the 363,361, and 204 counties reporting corn,
soybean, and wheat yields, independent of their relative importance at the county
level, are included in the corresponding crop-specific experiments.

24 A. Moreno-Martinez et al.

2.3.3 Results

The methodology for evaluating the algorithms is as follows. A 66% of the counties
(bags) are used to train/validate and the remaining 33% are used for testing. With
the first ones, we perform a fivefold cross-validation also at a bag level, i.e., we split
the data into five subsets, one reserved for validation and the rest used for training
the regression model. After this, we only apply the best model found to the test data.
Finally, all this process is repeated ten times, and the average over all test results is
computed. Only test errors are reported.

Table 2.2 shows the crop yield predictions for all the approaches. Notably, these
results outperform those obtained in previous literature for corn—soy croplands ([48]
and references therein), even with the simplest models like RLR and KRR. Results
of the best regression model between VOD and official corn yields at county level are
illustrated in Fig.2.8. Except in few counties, corn predictions are reasonably good,
with relative errors below 3%. The proposed DR approaches will be particularly use-
ful for regional crop forecasting in areas covering different agro-climatic conditions
and fragmented agricultural landscapes (e.g., Europe), where scale effects need to
be properly addressed for adequate analysis and predictions [50].

Table 2.2 Results for prediction of total yield and crop yield prediction using VOD (Kg m~2)

Total crop yield ME x 1000 RMSE x 100 R?

RLR 1.19 + 7.36 9.67 + 0.74 0.80 £ 0.02
KRR 222 +10.77 934 +0.73 0.81 £ 0.02
KDR 2.27 £10.95 9.35 £ 0.71 0.81 £ 0.02
Corn yield ME x 1000 RMSE x 100 R?

RLR —1.20 +£5.89 7.54 4+ 0.50 0.85 4+ 0.02
KRR 1.68 + 8.52 6.54 £0.72 0.88 £ 0.02
KDR 1.59 £ 7.88 6.47 £0.74 0.89 £ 0.02
Soybean yield ME x 1000 RMSE x 100 R2

RLR -1.99 +1.85 245 +0.13 0.85 £ 0.03
KRR -0.70 +2.92 247 +£0.21 0.85 £ 0.04
KDR -0.64 +2.43 240 £0.21 0.86 £ 0.03
Wheat yield MEx 1000 RMSE x 100 R2

RLR 272 +6.65 5.46 +0.48 0.64 £ 0.08
KRR 2.42 4+ 8.47 5.07 £0.38 0.69 % 0.05
KDR 2.91 4731 5.10 4+ 0.40 0.69 £ 0.05

2 Machine Learning Methods for Spatial and Temporal Parameter Estimation 25

(b)

086 099 102 105 108 111 086 099 102 105 108 11

Vil (ki) Wik ki) Plolative arror (%)

Fig. 2.8 a Map of official corn yield for year 2015 from USDA-NASS survey given in (Kg/m?). b
KDR predicted corn yield and ¢ KDR relative error prediction per county (%)

2.4 Global Parameter Estimation in the Cloud

From an operational point of view, the implementation of biophysical parameter
retrieval chains on ongoing basis demands high storage capability and efficient com-
putational power, mainly when dealing with long time series of remote sensing data
at global scales. There exist a wide variety of free available remote sensing data
which could be potentially ingested in these processing chains. Among them, one
can find remote sensing data disseminated by NASA (e.g., MODIS), the United States
Geological Survey (USGS) (e.g., Landsat), and ESA (e.g., data from the Sentinel
constellation). To deal with this huge amount of data, Google developed the Google
Earth Engine [51], a cloud computing platform specifically designed for geospatial
analysis at the petabyte scale. Due to its unique features, GEE is the state of the art
in remote sensing big data processing. The GEE data catalog is composed by widely
used geospatial datasets. The catalog is continuously updated and data are ingested
from different government-supported archives such as the Land Process Distributed
Active Archive Center (LP DAAC), the USGS, and the ESA Copernicus Open Access
Hub. The GEE data repository embrace a wide variety of remote sensing datasets
including meteorological records, atmospheric estimates, vegetation, and land prop-
erties and also surface reflectance data. Data processing is performed in parallel
on Google’s computational infrastructure, dramatically improving processing effi-
ciency and speed. These features, among others, make GEE an extremely valuable
tool for multitemporal and global studies which include vegetation, temperature,
carbon exchange, and hydrological processes [24, 52, 53].

Here, we present an example of biophysical parameter estimation in the GEE cloud
computing platform. The developed processing chain includes the joint estimation
of LAI, FAPAR, FVC, and CWC parameters at global scale from long-term time
series (15 years) of MODIS data exploiting the GEE cloud processing capabilities.
The retrieval approach is based on a hybrid method, which combines the physically
based PROSAIL radiative transfer model with random forests (RFs) regression. The
implementation on GEE platform allowed us to use global and climate data records
(CDR) of both MODIS surface reflectance and LAI/FAPAR datasets which provided

26 A. Moreno-Martinez et al.

Radiative transfer model: GOOgle Earth Engine
PROSAIL 3

Fig. 2.9 Schema of the developed biophysical retrieval chain in the cloud

us with global biophysical variable maps at unprecedented timeliness. Figure2.9
shows an schema summarizing the developed retrieval chain.

Cloud-based geospatial computing platforms such as Google Earth Engine
offer opportunities to create a broad range of applications with precision and
accuracy over unprecedented large areas with medium and high spatial reso-
lutions. In this section, we illustrate the advantages of using algorithms imple-
mented in a cloud computing infrastructure dealing with a common problem
in remote sensing science, the retrieval of land biophysical parameters.

2.4.1 Data and Setup

As shown in Fig.2.9, to model the spectral response of the vegetation we chose the
PROSAIL radiative transfer model. This model results from the PROSPECT leaf
optical reflectance model [54] coupled with the SAIL canopy model [55]. PRO-
SAIL has been widely used in many remote sensing studies [56] and successfully
applied for local and global parameter estimation [24, 57-59]. PROSAIL assumes
the canopy as a turbid medium and simulates vegetation reflectance along the optical
spectrum (from 400 to 2500 nm) depending on the leaf biochemistry, structure of
the canopy, as well as the background soil reflectance and the sun—satellite geome-
try. At leaf level, the parametrization was based on the distributions derived from a
massive global leaf trait measurements (TRY) [60] in order to account for a realistic
representation of global leaf trait variability to optimize PROSAIL at global scale,
whereas distributions of the canopy variables were similar to those adopted in other
global studies [59]. The TRY database embrace 6.9 million trait records for 148,000
plant taxa at unprecedented spatial and climatological coverage [60]. Although the
database is recent, due to the TRY unique properties, these data have been widely
used and hundreds of top publications (TRY database) have been presented cover-
ing topics ranging from ecology and plant geography to vegetation modeling and

https://www.try-db.org/

2 Machine Learning Methods for Spatial and Temporal Parameter Estimation 27

Table 2.3 General information about leaf traits measurements used in this work

Trait No. samples No. of species
Cab 19,222 941
Cam 69,783 11,908
Cy, 32,020 4802

Table 2.4 Spectral specifications of the MODIS MCD43A4 product

MODIS band Wavelength (nm)
Band 1 (red) 620-670

Band 2 (NIR) 841-876

Band 3 (blue) 459-479

Band 4 (green) 545-565

Band 5 (SWIR-1) 1230-1250
Band 6 (SWIR-2) 1628-1652

Band 7 (MWIR) 2105-2155

remote sensing [25, 61]. In this section, instead of using the usual lookup tables
available in the literature, we use the TRY to parametrize PROSAIL. Our objective
is to exploit the TRY database to infer more realistic distributions and correlations
among some key leaf traits such as leaf chlorophyll (C,;), leaf dry matter (Cy,,), and
water (C,,) contents. Table 2.3 shows some basic information about the considered
traits extracted from the TRY.

The reflectance simulations obtained with PROSAIL were set up to mimic the
MCD43A4 product bands which are available in GEE. The MCD43 A4 MODIS prod-
uct is generated combining data from Terra and Aqua spacecrafts, being disseminated
as a level-3 gridded dataset. This product provides a bidirectional reflectance dis-
tribution function (BRDF) from a nadir view in the seven land MODIS bands (see
Table 2.4 for more details), thus offering global surface reflectance data at 500 m
spatial resolution with 8-day temporal frequency.

PROSAIL’s forward mode provides a reflectance spectrum given a set of input
parameters (leaf chemical components/traits, structural parameters of the vegetation
canopy, etc.). After running PROSAIL in forward mode, its inversion was undertaken
using RFs. This inversion allows, in turn, to retrieve the selected biophysical param-
eters (LAIL FAPAR, FVC, and CWC). RFs have been applied both for classification
and regression in multitude of remote sensing studies [62] including forest ecology
[63, 64], land cover classification [65], and feature selection [66]. We chose RFs
to invert the PROSAIL model mainly because they can cope with high-dimensional
problems due to their optimal pruning strategy and efficiency. RF is an ensemble
method that builds up a stack of decision trees. This approach has been proven to be
very beneficial to alleviate over-fitting problems in single decision tree models. On
the ensemble, every tree is trained with different subsets of features and examples

28 A. Moreno-Martinez et al.

(selected randomly) yielding an individual prediction. The combined prediction (usu-
ally the mean value) of the considered trees composing the RFs is the final prediction
of the model [67]. The computed simulations obtained with PROSAIL were split into
two groups: (1) a training dataset to optimize the models, and (2) an independent test
set which was only used to assess the models (RFs). After our models were trained
and validated, we predicted the chosen biophysical variables using real MODIS
spectral information (land bands, see Table 2.4). In addition, RFs, once trained, are
easily parallelized to cope with large-scale problems routinely encountered in global
remote sensing applications. This is specifically the case of the problem described
here, where we exploit large datasets and run predictions covering many years within
the Google Earth Engine platform. A toy example of the code is available at https://
code.earthengine.google.com/e3a2d589395e4118d97bae3e85d09106.

2.4.2 Results

The PROSAIL simulations were uploaded to GEE and randomly split into train (2/3
of the simulations) and test (the remaining 1/3 of the samples never used in the RFs
training) datasets. The RFs theoretical performance evaluated in the GEE platform
(assessed over the test dataset) revealed high correlations (R? = 0.84, 0.89, 0.88,
and 0.80 for LAI FAPAR, FVC, and CWC, respectively), low errors (RMSE = 0.91
m?/m?, 0.08, 0.06, and 0.27 kg/m? for LAI, FAPAR, FVC, and CWC, respectively),
and practically no biases in all cases. Subsequently, the RFs retrieval model was exe-
cuted over the computing cloud to obtain 15 years of global biophysical parameters
from the MCD43 A4 product available on GEE. Figure2.10 shows the global mean
values of LAI, FAPAR, FVC, and CWC derived from 2010 to 2015. The computation
of the mean biophysical maps implied processing 230 (46 yearly images x 5 years)
FAPAR images at 500 m spatial resolution (~440 million cells), and compute their
annual mean, which took around 6 h.

Validation of the estimates was achieved by means of intercomparison over a
network of sites named BELMANIP-2.1 (Benchmark Land Multisite Analysis and
Intercomparison of Products) especially selected for representing the global vari-
ability of Earth vegetation. Over this network, we compared the LAI and FAPAR
estimates against the official LAI/FAPAR MODIS product (MCD15A3H) on GEE.
We selected the MODIS pixels for every BELMANIP-2.1 location, and then we
computed the mean value of the MODIS valid pixels within a 1 km surrounding area.
In addition, since the MCD15A3H and MCD43 A4 differ in temporal frequency, only
the coincident dates between them were selected for comparison. For validation, we
selected only high-quality MODIS pixels which resulted in ~60000 valid pixels from
2002-2017 accounting for vegetation biomes: evergreen broadleaf forests (EBF),
broadleaf deciduous forest (BDF), needle leaf forest (NLF), cultivated (C), shrub-
lands (SH), herbaceous (H), and bare areas (BA). For FAPAR, very good agreement
(R? ranging from 0.89 to 0.92) and low errors (RMSE ranging from 0.06 to 0.08) were
found between retrievals and the MODIS FAPAR product over bare areas, shrub-

https://code.earthengine.google.com/e3a2d589395e4118d97bae3e85d09106
https://code.earthengine.google.com/e3a2d589395e4118d97bae3e85d09106

2 Machine Learning Methods for Spatial and Temporal Parameter Estimation 29

0 02 04 06 og 1 o 02 04 06 08 1 12
Ve CWC (kgim®)

Fig. 2.10 LAI, FAPAR, FVC, CWC global maps corresponding to the mean values estimated by
the proposed retrieval chain for the period 2010-2015

lands, herbaceous, cultivated, and broadleaf deciduous forest biomes. For needle-leaf
and evergreen broadleaf forests, lower correlations (R> = 0.57 and 0.41) and higher
errors (RMSE = 0.18 and 0.09) were obtained. It is worth mentioning that over bare
areas, the MODIS FAPAR presents an unrealistic minimum value (~0.05) through
the entire period. In the case of LAI, goodness-of-fit ranging from 0.70 to 0.86 and
low errors (RMSE ranging from 0.23 to 0.57 m?/m?) were found between estimates
in all biomes except for evergreen broadleaf forest, where R? = 0.42 and RMSE =
1.13 m?/m? are reported.

Figure2.11 shows the LAI and FAPAR difference maps calculated using the mean
outcomes (2010-2015) of our processing chain and the mean reference MODIS
LAI/FAPAR product for the same period. The mean difference LAI map shows that
the discrepancies among both products range within the 0.5 m?/m? range, indicating
that both products are consistent. However, our high LAI values present a significant
underestimation over heavily vegetated areas (dense canopies) that reaches values
up to 1.4 m?*/m?. When comparing both FAPAR products, a constant negative bias
of ~0.05 m?/m? our estimates is observed. These differences could be related with a
documented systematic overestimation of operational MODIS FAPAR [68], meaning
that our approach is partly correcting some of the flaws of the official MODIS product.

State-of-the-art cloud computing platforms like GEE provides routinely time
series of global land surface variables related with vegetation status and an unprece-
dented computational power. Despite the variety of regression and classification
methods implemented in GEE, the user could be limited by the number of state-of-

30 A. Moreno-Martinez et al.

- |
s g bk - 1
30°S r_-::f v E::é ')i
< : |

60°S L = . . . | . . 4

120°W 60°W [120°E 180°W 60°E 120°E 180°W
15 -1 05 0 05 1 15 43 02 01 0 01 0.2 03
Dl LA (m?im®) Diff FAPAR (m®im®)

Fig. 2.11 LAI and FAPAR global maps corresponding to the difference of mean values between
derived estimates by the proposed retrieval chain and the GEE MODIS reference product for the
period 2010-2015

the-art algorithms which are currently implemented. However, GEE is being updated
at a fast pace due to an increasing number of users developing new approaches and
methods that may be potentially implemented in GEE for a wide range of geoscience
applications. Here, we have illustrated an application that takes advantage of GEE
capabilities to retrieve standard biophysical variables at a global scale. The validation
of our estimates revealed, in general, good spatial consistency. However, differences
in mean LAI values over dense forests are still noticeable and could be attributed
mostly to differences in retrieval approaches. Other possible source for discrepancies
shown could be associated to (i) product definition, such as those related with consid-
ering or not vegetation clumping [69], (ii) embedded algorithm assumptions (RTM,
optical properties, canopy architecture), and (iii) satellite input data and processing.
In relation with the FAPAR, as mentioned above, an overall negative bias is found for
all biomes, which is not an issue since different studies have pointed out a systematic
overestimation of MODIS retrievals in both C5 and C6 at low FAPAR values. Finally,
it is worth mentioning that neither the FVC nor the CWC products are available on
GEE. Moreover, there is no global and reliable CWC product with which compare
the CWC estimates derived by the proposed retrieval chain. Regarding FVC, there
are only a few global products that differ in retrieval approaches and spatiotemporal
features.

2.5 Conclusions

This chapter focused on the problem of parameter estimation from remotely sensed
optical sensor data. We identified two main challenges related to the data and the
used models. To satisfy the urgent needs of fast and accurate data processing and
product generation, we relied on three main building blocks: advanced machine learn-
ing, big and heterogeneous EO data, and large-scale processing platforms. In this
scenario, machine learning has to be redesigned to accommodate data characteris-

2 Machine Learning Methods for Spatial and Temporal Parameter Estimation 31

tics (spatiotemporal and multi-sensor structures, higher order, and nonlinear feature
relations), to be accurate and flexible, and to scale well to millions of observations.

To deal with these challenges, we introduced three machine learning approaches
to exploit different spatial, multi-sensor, temporal, and large-scale data characteris-
tics. In particular, we exploited multi-output Gaussian processes for gap-filling time
series, kernel distribution regression models that exploits multiple observations and
avoid working with arbitrary summarizing statistics, and random forests trained on
RTM simulations and implemented in the GEE computation cloud. The approaches
allow us to estimate key land parameters from optical and microwave EO data syn-
ergistically: SM, LAI, FAPAR, FVC, CWC, and crop yield.

Synergistic benefits of machine learning, big data, and scalable cloud computing
are here to stay, and we envision many exciting developments in the near future. EO
data allows to monitor continuously in space and time the Earth and can be used to
“spatialize” almost any arbitrary quantity measured on the ground or simulated with
appropriate transfer codes. Plant, vegetation, and land parameters will readily benefit
from ML-based approaches in the cloud to make reliable and accurate products
accessible to everyone.

References

1. Camps-Valls G, Tuia D, Gémez-Chova L, Jiménez S, Malo J (eds) (2011) Remote Sens Image
Process. Morgan & Claypool Publishers, LaPorte, CO, USA

2. Liang S (2004) Quantitative Remote Sensing of Land Surfaces. Wiley, New York

3. Liang S (2008) Advances in land remote sensing: system, modeling. inversion and applications.
Springer, Germany

4. Lillesand TM, Kiefer RW, Chipman J (2008) Remote sensing and image interpretation. Wiley,
New York

5. Rodgers CD (2000) Inverse methods for atmospheric sounding: theory and practice. World
Scientific Publishing Co., Ltd

6. Baret F, Buis S (2008) Estimating canopy characteristics from remote sensing observations:
review of methods and associated problems. In: Advances in land remote sensing: system,
modeling, inversion and applications. Springer, Germany

7. BaretF, Weiss M, Lacaze R, Camacho F, Makhmara H, Pacholcyzk P, Smets B (2013) GEOV1:
LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over
existing products. partl: principles of development and production. Remote Sens Environ
137(0):299-309

8. Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rodenbeck C, Arain MA,
Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert
S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI,
Papale D (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation
with climate. Science 329(5993):834-838

9. Jung M, Reichstein M, Margolis HA, Cescatti A, Richardson AD, Arain MA, Arneth A,
Bernhofer C, Bonal D, Chen J, Gianelle D, Gobron N, Kiely G, Kutsch, W, Lasslop G, Law
BE, Lindroth A, Merbold L, Montagnani L, Moors EJ, Papale D, Sottocornola M, Vaccari F,
Williams C (2011) Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat,
and sensible heat derived from eddy covariance, satellite, and meteorological observations. J
Geophys Res: Biogeosci 116(G3)

32

10.

11.

12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

A. Moreno-Martinez et al.

Jung M, Reichstein M, Schwalm CR, Huntingford C, Sitch S, Ahlstrom A, Arneth A, Camps-
Valls G, Ciais P, Friedlingstein P, Gans F, Ichii K, Jain AK, Kato E, Papale D, Poulter B,
Raduly B, Rodenbeck C, Tramontana G, Viovy N, Wang YP, Weber U, Zaehle S, Zeng N
(2017) Compensatory water effects link yearly global land C O, sink changes to temperature.
Nature 541(7638):516-520

Tramontana G, Jung M, Camps-Valls G, Ichii K, Raduly B, Reichstein M, Schwalm CR, Arain
MA, Cescatti A, Kiely G, Merbold L, Serrano-Ortiz P, Sickert S, Wolf S, Papale D (2016)
Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression
algorithms. Biogeosci Discuss 2016:1-33. https://doi.org/10.5194/bg-2015-661

Sarker LR, Nichol JE (2011) Improved forest biomass estimates using ALOS AVNIR-2 texture
indices. Remote Sens Env 115(4):968-977

Durbha SS, King RL, Younan NH (2007) Support vector machines regression for retrieval of
leaf area index from multiangle imaging spectroradiometer. Rem Sens Env 107(1-2):348-361
Yang F, White MA, Michaelis AR, Ichii K, Hashimoto H, Votava P, Zhu AX, Nemani RR
(2006) Prediction of continental-scale evapotranspiration by combining MODIS and ameriflux
data through support vector machine. IEEE Trans Geosci Remote Sens 44(11):3452-3461
Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. The MIT Press,
Cambridge, MA

VerrelstJ, Muiioz J, Alonso L, Delegido J, Rivera JP, Moreno J, Camps-Valls G (2012) Machine
learning regression algorithms for biophysical parameter retrieval: opportunities for Sentinel-2
and -3. Remote Sens Environ 118:127-139

Camps-Valls G, Verrelst J, Mufloz-Mari J, Laparra V, Mateo-Jimenez F, Gémez-Dans J (2016)
A survey on gaussian processes for earth-observation data analysis: a comprehensive investi-
gation. IEEE Geosci Remote Sens Mag 4(2):58-78

. Reichstein M, Camps-Valls G, Stevens B, Denzler J, Carvalhais N, Jung M (2019) Prabhat:

deep learning and process understanding for data-driven Earth system science. Nature

Ulaby FT, Long D, Blackwell W, Elachi C, Fung A, Ruf C, Sarabandi K, van Zyl J, Zebker H
(2014) Microwave radar and radiometric remote sensing. University of Michigan Press
Dorigo W, Wagner W, Albergel C, Albrecht F, Balsamo G, Brocca L, Chung D, Ertl M, Forkel
M, Gruber A, Haas E, Hamer PD, Hirschi M, Ikonen J, de Jeu R, Kidd R, Lahoz W, Liu YY,
Miralles D, Mistelbauer T, Nicolai-Shaw N, Parinussa R, Pratola C, Reimer C, van der Schalie
R, Seneviratne SI, Smolander T, Lecomte P (2017) ESA CCI soil moisture for improved earth
system understanding: state-of-the art and future directions. Remote Sens Environ 203:185—
215. Earth Observation of Essential Climate Variables

Mateo-Sanchis A, Muiioz-Mari J, Campos-Taberner M, Garcia-Haro J, Camps-Valls G (2018)
Gap filling of biophysical parameter time series with multi-output gaussian processes. In:
IGARSS 2018—2018 IEEE international geoscience and remote sensing symposium, pp 4039—
4042

Piles M, van der Schalie R, Gruber A, Muiioz-Mar{ J, Camps-Valls G, Mateo-Sanchis A,
Dorigo W, de Jeu R (2018) Global estimation of soil moisture persistence with L and C-
band microwave sensors. In: IGARSS 2018—2018 IEEE international geoscience and remote
sensing symposium, pp 8259-8262

Adsuara JE, Pérez-Suay A, Muiloz-Mari J, Mateo-Sanchis A, Piles M, Camps-Valls G (2019)
Nonlinear distribution regression for remote sensing applications. IEEE Trans Geosci Remote
Sens (2019) (Submitted)

Campos-Taberner M, Moreno-Martinez A, Garcia-Haro FJ, Camps-Valls G, Robinson NP,
Kattge J, Running SW (2018) Global estimation of biophysical variables from google earth
engine platform. Remote Sens 10:1167

Moreno A, Camps G, Kattge J, Robinson N, Reichstein M, van Bodegom P, Kramer K, Cor-
nelissen J, Reich P, Bahn M et al (2018) A methodology to derive global maps of leaf traits
using remote sensing and climate data. Remote Sens Environ 218:69-88

Dorigo WA, Gruber A, Jeu RAMD, Wagner W, Stacke T, Loew A, Albergel C, Brocca L,
Chung D, Parinussa RM, Kidd R (2015) Evaluation of the ESA CCI soil moisture product
using ground-based observations. Remote Sens Environ 162:380-395

https://doi.org/10.5194/bg-2015-661

2 Machine Learning Methods for Spatial and Temporal Parameter Estimation 33

217.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.
48.

Piles M, Ballabrera-Poy J, Mufioz-Sabater J (2019) Dominant features of global surface soil
moisture variability observed by the SMOS satellite. Remote Sens 11(1):95

Alvarez MA, Rosasco L, Lawrence ND (2011) Kernels for vector-valued functions: a review.
arXiv:1106.6251 [cs, math, stat]. ArXiv: 1106.6251

Verrelst J, Alonso L, Camps-Valls G, Delegido J, Moreno J (2012) Retrieval of vegetation
biophysical parameters using gaussian process techniques. IEEE Trans Geosci Remote Sens
50(5/P2):1832-1843

Journel A, Huijbregts C (1978) Mining geostatistics. Academic Press

Albergel C, de Rosnay P, Gruhier C, Muiioz-Sabater J, Hasenauer S, Isaksen L, Kerr Y, Wagner
W (2012) Evaluation of remotely sensed and modelled soil moisture products using global
ground-based in situ observations. Remote Sens Environ 118:215-226

Gonzalez-Zamora A, Sanchez N, Martinez-Fernandez J, Gumuzzio A, Piles M, Olmedo E
Long-term SMOS soil moisture products: a comprehensive evaluation across scales and meth-
ods in the duero basin (spain)

Al-Yaari A, Wigneron JP, Ducharne A, Kerr YH, Wagner W, Lannoy GD, Reichle R, Bitar
AA, Dorigo W, Richaume P, Mialon A (2014) Global-scale comparison of passive (SMOS)
and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture sim-
ulations (MERRA-land). Remote Sens Environ 152:614-626

Albergel C, Dorigo W, Balsamo G, noz Sabater JM, de Rosnay P, Isaksen L, Brocca L, de Jeu
R, Wagner W (2013) Monitoring multi-decadal satellite earth observation of soil moisture
products through land surface reanalyses. Remote Sens Environ 138:77-89

Polcher J, Piles M, Gelati E, Barella-Ortiz A, Tello M (2016) Comparing surface-soil moisture
from the SMOS mission and the ORCHIDEE land-surface model over the iberian peninsula.
Remote Sens Environ 174:69-81

Sanchez N, Martinez-Fernandez J, Scaini A, Perez-Gutierrez C (2012) Validation of the SMOS
L2 soil moisture data in the REMEDHUS network (Spain). IEEE Trans Geosci Remote Sens
50(5):1602-1611

Bircher S, Skou N, Jensen KH, Walker JP, Rasmussen L (2012) A soil moisture and temperature
network for SMOS validation in western denmark. Hydrol Earth Syst Sci 16(5):1445-1463
Torbern T, Rasmus F, Idrissa G, Olander RM, Silvia H, Cheikh M, Monica G, Stéphanie H,
Inge S, Bo HR, Marc-Etienne R, Niklas O, Jgrgen LO, Andrea E, Mathias M, Jonas A (2014)
Ecosystem properties of semiarid savanna grassland in west africa and its relationship with
environmental variability. Global Change Biol 21(1):250-264

Entekhabi D, Reichle RH, Koster RD, Crow WT (2010) Performance metrics for soil moisture
retrievals and applications requirements. J Hydrometeorol 11:832-840

Harchaoui Z, Bach F, Cappe O, Moulines E (2013) Kernel-based methods for hypothesis
testing: a unified view. IEEE Signal Proc Mag 30(4):87-97

Muandet K, Fukumizu K, Sriperumbudur B, Scholkopf B (2016) Kernel mean embedding of
distributions: a review and beyond. now foundations and trends

Rojo-Alvarez JL, Martinez-Ramén M, Mufioz-Mari J, Camps-Valls G (2017) Digital signal
processing with Kernel methods. Wiley, UK

Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge Univer-
sity Press, Cambridge, MA, USA

Camps-Valls G, Bruzzone L (2009) Kernel methods for remote sensing data analysis. Wiley
Camps-Valls G, Gémez-Chova L, Mufioz-Mari J, Vila-Francés J, Calpe-Maravilla J (2006)
Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett
3(1):93-97

Konings AG, Piles M, Das N, Entekhabi D (2017) L-band vegetation optical depth and effective
scattering albedo estimation from SMAP. Remote Sens Environ 198:460-470

Jackson RD, Huete AR (1991) Interpreting vegetation indices. Prev Vet Med 11(3—4):185-200
Chaparro D, Piles M, Vall-llossera M, Camps A, Konings AG, Entekhabi D (2018) L-band
vegetation optical depth seasonal metrics for crop yield assessment. Remote Sens Environ
212:249-259

http://arxiv.org/abs/1106.6251
http://arxiv.org/abs/1106.6251

34

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

A. Moreno-Martinez et al.

Piles M, Camps-Valls G, Chaparro D, Entekhabi D, Konings AG, Jagdhuber T (2017) Remote
sensing of vegetation dynamics in agro-ecosystems using smap vegetation optical depth and
optical vegetation indices. In: IGARSS17, pp 43464349

Loépez-Lozano R, Duveiller G, Seguini L, Meroni M, Garcia-Condado S, Hooker J, Leo O,
Baruth B (2015) Towards regional grain yield forecasting with 1km-resolution EO biophysical
products: strengths and limitations at pan-european level. Agric For Meteorol 206:12-32
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google earth
engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18-27
He M, Kimball JS, Maneta MP, Maxwell BD, Moreno A, Begueria S, Wu X (2018) Regional
crop gross primary productivity and yield estimation using fused landsat-MODIS data. Remote
Sens 10:372

Robinson NP, Allred B, Jones MO, Moreno A, Kimball JS, Naugle D, Erickson TA, Richardson
AD (2017) A dynamic landsat derived normalized difference vegetation index (NDVI) product
for the conterminous united states. Remote Sens 9:823

Jacquemoud S, Baret F (1990) PROSPECT: a model of leaf optical properties spectra. Remote
Sens Environ 43:75-91

Verhoef W (1984) Light scattering by leaf layers with application to canopy reflectance mod-
eling: the SAIL model. Remote Sens Environ 16:125-141

Berger K, Atzberger C, Danner M, D’Urso G, Mauser W, Vuolo F, Hank T (2018) Evaluation
of the PROSAIL model capabilities for future hyperspectral model environments: a review
study. Remote Sens 10:85

Campos-Taberner M, Garcia-Haro FJ, Camps-Valls G, Grau-Muedra G, Nutini F, Busetto L,
Katsantonis D, Stavrakoudis D, Minakou C, Gatti L, Barbieri M, Holecz F, Stroppiana D,
Boschetti M (2017) Exploitation of SAR and optical sentinel data to detect rice crop and
estimate seasonal dynamics of leaf area index. Remote Sens 9:248

Campos-Taberner M, Garcia-Haro FJ, Camps-Valls G, Grau-Muedra G, Nutini F, Crema A,
Boschetti M (2016) Multitemporal and multiresolution leaf area index retrieval for operational
local rice crop monitoring. Remote Sens Environ 187:102-118

Garcia-Haro FJ, Campos-Taberner M, noz Mari JM, Laparra V, Camacho F, Sanchez-Zapero J,
Camps-Valls G (2018) Derivation of global vegetation biophysical parameters from EUMET-
SAT polar system. ISPRS J Photogramm Remote Sens 139:57-75

Kattge J, Diaz S, Lavorel S, Prentice I, Leadley P, Bonisch G et al (2011) TRY-a global database
of plant traits. Glob Change Biol 17:2905-2935

Madani N, Kimball J, Ballantyne A, Affleck D, van Bodegom P, Reich P, Kattge J, Sala A et al
(2018) Future global productivity will be affected by plant trait response to climate. Sci Rep
8(2870)

Belgiu M, Lucian D (2016) Random forest in remote sensing: a review of applications and
future directions. ISPRS J Photogramm Remote Sens 114:24-31

De’ath G, Fabricius K (2000) Classification and regression trees: a powerful yet simple tech-
nique for ecological data analysis. Ecology 81:3178-3192

Evans J, Cushman S (2009) Gradient modeling of conifer species using random forests. Landsc
Ecol 24:673-683

Cutler D, Edwards J, Thomas C, Beard K, Cutler A, Hess K, Gibson J, Lawler J (2007) Random
forests for classification in ecology. Ecology 88:2783-2792

Chen YW, Lin CJ (2006) Combining SVMs with various feature selection strategies. In: Guyon
I, Nikravesh M, Gunn S, Zadeh LA (eds) Feature extraction. Studies in fuzziness and soft
computing, vol 207. Springer, Berling, Heidelberg

2 Machine Learning Methods for Spatial and Temporal Parameter Estimation 35

67. Breiman L, Friedman J (1985) Estimating optimal transformations for multiple regression and
correlation. J] Am Stat Assoc 391:1580-1598

68. Yan K, Park T, Yan G, Liu Z, Yang B, Chen C, Nemani R, Knyazikhin Y, Myneni R (2016)
Evaluation of MODIS LAI/FPAR product collection 6. part 2: validation and intercomparison.
Remote Sens 8(460)

69. Campos-Taberner M, j Garcia-Haro F, Busetto L, Ranghetti L, Martinez B, Gilabert MA,
Camps-Valls G, Camacho F, Boschetti M (2018) A critical comparison of remote sensing leaf
area index estimates over rice-cultivated areas: from Sentinel-2 and Landsat-7/8 to MODIS,
GEOV1 and EUMETSAT polar system. Remote Sens 10:763

Chapter 3 ®)
Deep Learning for Hyperspectral Image e i
Analysis, Part I: Theory and Algorithms

Sebastian Berisha, Farideh Foroozandeh Shahraki, David Mayerich
and Saurabh Prasad

Abstract Deep neural networks have emerged as a set of robust machine learning
tools for computer vision. The suitability of convolutional and recurrent neural net-
works, along with their variants, is well documented for color image analysis. How-
ever, remote sensing and biomedical imaging often rely on hyperspectral images
containing more than three channels for pixel-level characterization. Deep learning
can facilitate image analysis in multi-channel images; however, network architec-
ture and design choices must be tailored to the unique characteristics of this data. In
this two-part series, we review convolution and recurrent neural networks as applied
to hyperspectral imagery. Part I focuses on the algorithms and techniques, while
Part IT focuses on application-specific design choices and real-world remote sensing
and biomedical test cases. These chapters also survey recent advances and future
directions for deep learning with hyperspectral images.

3.1 Introduction

Hyperspectral imaging (HSI) combines spectroscopic instrumentation with imaging
systems to provide spatially resolved spectroscopic data. HSI instrumentation can
acquire hundreds or thousands of spectra in a X x Y x Z data cube, where X and
Y are spatial dimensions and Z describes spectral content (Fig. 3.1). Information
encoded along the spectral dimension depends on modality, with the most common
approaches being ultraviolet [1], visible [2], near-infrared [3], and vibrational [4]

S. Berisha - F. F. Shahraki - D. Mayerich - S. Prasad (&)
University of Houston, Houston, TX, USA
e-mail: saurabh.prasad @ieee.org

S. Berisha
e-mail: sberisha@central.uh.edu

F. F. Shahraki
e-mail: fforoozandehshahraki @uh.edu

D. Mayerich
e-mail: mayerich@uh.edu

© Springer Nature Switzerland AG 2020 37
S. Prasad and J. Chanussot (eds.), Hyperspectral Image Analysis,

Advances in Computer Vision and Pattern Recognition,
https://doi.org/10.1007/978-3-030-38617-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38617-7_3&domain=pdf
mailto:saurabh.prasad@ieee.org
mailto:sberisha@central.uh.edu
mailto:fforoozandehshahraki@uh.edu
mailto:mayerich@uh.edu
https://doi.org/10.1007/978-3-030-38617-7_3

38 S. Berisha et al.

spatial
dimensions™—_

spectral signature of a pixel

Fig. 3.1 Structure of an HSI data cube. The measured data in HSI can be visualized as a data cube.
Each slice of the data cube contains an image of the scene at a particular wavelength. Each pixel is
associated with a vector of spectral responses otherwise known as a spectral signature

spectroscopy. Non-optical methods include mass [5] and nuclear magnetic resonance
(NMR) spectroscopy [6]. The encoded spectral signature provides insight into the
material composition at each [x, y]” spatial location, where x € X and y € Y. This
spectral signature provides a fingerprint for material identification and quantifiable
properties such as density, absorbance, and emission. HSI approaches have seen
broad use in remote sensing [3], biomedicine [4], astronomy [7], agriculture and
food quality [8, 9], and pharmaceuticals [10].

Interpreting spectra requires some form of analysis that can, at its most basic,
include searches within a dictionary of known materials. Classification, regres-
sion, and object detection are becoming more common practices. Popular methods
include unsupervised clustering using K-means [11-13] or hierarchical cluster analy-
sis (HCA) [14, 15]. Supervised techniques are becoming more common for complex
spectra composed of many molecular components. These include Bayesian classi-
fication [16, 17], random forests [18, 19], kernel classifiers such as support vector
machines (SVMs) [20, 21], and linear discriminant analysis [22, 23]. SVMs are a
particularly popular choice due to their simplicity, accuracy, and ability to classify
high-dimensional data.

The emergence of deep learning has lead to more advanced feature extraction
by combining both spatial and spectral information. Before we discuss the techni-
cal details of some popular deep learning architectures, we briefly summarize the
history of deep learning in the context of computer vision, remote sensing, and
biomedicine. We then describe the basic building blocks used to apply deep learn-
ing to HSI. Section 3.2 presents feed-forward neural network models. Popular deep

3 Deep Learning for Hyperspectral Image ... 39

neural network architectures are introduced in Sect. 3.3. Section 3.4 introduces con-
volutional neural networks (CNNs) and describes common CNN flavors used in
HSI. In Sect.3.5, we discuss some of the existing open-source software tools for
deep learning. Section 3.6 concludes this chapter.

Mathematical notation—Throughout this chapter, we denote matrices and vec-

tors as boldface uppercase and boldface lowercase letters (i.e., Ax = b) and scalars

are denoted using a normal typeface (i.e., ax = b). All vectors are assumed to

be column vectors, and the transpose operator is denoted by a superscript ':
_ T

X =[x, %2, X3, ..., x5] .

3.1.1 History of Deep Learning in Computer Vision

Artificial neural networks (ANNSs) were inspired by human brain architecture. A
1943 paper by the neuroscientist McCulloch and logician Pitts [24] studied the
brain’s ability to produce complex patterns using basic connected elements, called
neurons. The authors presented a highly simplified model of a neuron, now known
as a McCulloch—Pitts (MCP) neuron. A network of MCP neurons is the ancestor
of the ANN. The neuropsychologist Donald Hebb introduced the Hebbian Learn-
ing Rule [25] in 1949, which postulates how biological neurons learn. According to
Hebb, the synaptic connection between two neurons will strengthen if the linked cells
are activated simultaneously. This work has immortalized Hebb a the father of mod-
ern ANNs. Based on Hebb’s findings, Frank Rosenblatt modified the MCP neuron
to create the first perceptron in 1958 [26]. Rosenblatt’s perceptron was able to learn
by modifying input weights and was instrumental to the later development of more
complex networks. In 1974, Paul Werbos introduced the process of training neural
networks through back-propagation of errors [27], which provided a deterministic
approach for optimized learning.

In 1980, Kunihiko Fukushima introduced the neocognitron [28], which later
inspired convolutional neural networks (CNNs). Fukushima’s neocognitron is an
ANN that consists of a feature extraction layer, S-layer, and a C-layer, which
represent structured connections that organize extracted features. In 1985, Ackley
etal. [29] invented the Boltzmann machine, which is a stochastic version of the Hop-
field network, consisting of hidden and visible nodes. Boltzmann machines were the
first networks capable of learning internal representations to solve difficult combina-
torial problems. Smolensky invented the restricted Boltzmann machine (RBM) [30],
originally known as the Harmonium, in 1986. The RBM is a version of the
Boltzmann machine that eliminates connections between visible or hidden units to
simplify training and implementation. Jordan introduced the modern definition of a
recurrent neural network [31] (RNN) in 1985, referred to as a Jordan neural network,
which contains one or more cycles (or loops).

That same year Rumelhart et al. [32] introduced autoencoders as a form of unsu-
pervised learning. LeCun, inspired by the neocognitron, introduced LeNet [33] in

40 S. Berisha et al.

1990, which is thought of as the first CNN model and demonstrated the practical
potential for deep neural networks. Hochreiter and Schmidhuber [34] introduced
long short-term memory (LSTM) in 1997, which allowed RNNs to learn long-term
dependencies. Specifically, LSTMs were designed to solve the problem of vanishing
gradients. The current deep learning era started to flourish with the introduction of
deep belief networks by Hinton et al. [35] in 2006, which consisted of multi-layered
RBMs combined with a layer-wise pretraining algorithm. This pretraining strategy
inspired the introduction of deep Boltzmann machines in 2009 [36]. The era of
CNNs began with the AlexNet model [37], which demonstrated the effectiveness of
CNNss on the challenging ImageNet dataset. AlexNet also spurred the development
of numerous deep learning models to achieving even better performances.

3.1.2 History of Deep Learning for HSI Tasks

Various remote sensing applications are carried out by deep learning, including land
use classification, target detection, change detection, and semantic segmentation.
HSI classification is one of the most active research areas in remote sensing. Deep
learning algorithms have demonstrated strong performance in these tasks because
deep learning architectures with high-level features are highly robust to nonlinearities
in HSI data.

The first deep learning architectures used for remote sensing HSI classification
were multi-layer neural networks. In particular, feed-forward neural networks were
proposed data by Subramanian et al. [38] in 1998 and Jimenez et al. [39] in 1999.
Neural network models were used in 2009 for HSI spectral mixture analysis [40].
In 2010, Ratle et al. [41] proposed a semisupervised method for HSI classification
based on neural networks. Licciardi et al. [42], in 2011, applied neural networks for
the task of unmixing.

The first modern deep learning approaches were introduced by Lin et al. [43]
in 2013 and extended by Chen et al. [44] in 2014. In both cases, the authors used
autoencoders and stacked autoencoders (SAE) [45, 46] to extract deep features from
hyperspectral data. In 2015, Tao et al. [47] used stacked sparse autoencoders for
spectral-spatial feature learning. In the same year, a 1D CNN architecture was pro-
posed for pixel-level classification of HSI data [48]. 2D CNNs were then exploited
for the task of HSI classification by Makantasis et al. [49] and Yue et al. [50]. Con-
textual deep learning was also proposed [51] in 2015, which uses the SAE family to
extract spectral—spatial features.

Another class of deep neural networks, deep belief networks (DBNs), was used for
HSI classification [52] to extract spectral-spatial features. In 2016, Chen et al. [53]
proposed a 3D CNN-based feature extraction framework combined with regulariza-
tion to mitigate overfitting. DBNs were later used also by Zhou et al. [54] for feature
extraction.

Li et al. [55] proposed a pixel-pair method to deal with a limited number of train-
ing samples, which is a common challenge in HSI. The authors used a deep CNN

3 Deep Learning for Hyperspectral Image ... 41

to learn pixel-pair features. The center and surrounding pixels are used to construct
pixel pairs, which are then classified by the CNN. In 2018, Shu et al. [56] proposed
another framework which the spectral cuboid is first preprocessed by PCA whiten-
ing, and then all the spectral patches are stacked to form a spectral quilt which is
input to the two shallow CNNs for classification. Recurrent neural networks (RNNs)
have also been recently used for HSI remote sensing data classification [57-59].
In [60], the authors demonstrate a framework that can use graph-based convolu-
tional neural networks (GCNs) to effectively represent data residing on smooth
manifolds, such as reflectance spectra of hyperspectral image pixels. In GCNs, a
convolution operator is defined based on the graph Fourier transform to perform
convolution/aggregation operations on feature vectors of its neighbors on the graph.
In [61], the authors proposed a class of convolutional neural networks where con-
volutional filters are expressed as linear combinations from a predefined discrete
directional filters inspired by the theory of shearlets and only the coefficients of the
linear combination are learned during training.

In the context of biomedical applications, Goodacre et al. [62], in 1998, utilized
pyrolysis mass spectrometry (PyMS), FTIR, and dispersive Raman microscopy data
in combination with an artificial neural network (ANN) to discriminate clinically sig-
nificant intact bacterial species. Modern deep learning methods have only appeared
in biomedical HSI applications. In 2017, Halicek et al. [63] proposed a CNN clas-
sifier for detecting head and neck cancer from HSI data. Berisha et al. [64] utilized
CNNs for cell identification in breast tissue biopsies. It was shown that CNNs outper-
form traditional spectral-based classifiers for FTIR image classification. Lotfollahi
et al. [65] used deep learning to map infrared spectra to chemical stains to duplicate
traditional histological images from label-free HSI data.

3.1.3 Challenges

Hyperspectral images contain more per-pixel data than traditional color imagery. This
results in larger input vectors, producing networks with significantly more trainable
parameters. A larger parameter space makes optimization much more memory inten-
sive and increases the need for training examples to mitigate overfitting. Dimension
reduction (DF) is a popular approach for reducing feature vector size (DR) [66-69].
DR methods reduce redundancy across spectral bands by mapping the input spectra
to a lower dimensional subspace. Principal component analysis (PCA) is a common
unsupervised DR method [44, 52, 53, 70, 71] and identifies input components by
optimizing spectral variance. Most of the referenced research in this chapter leverages
a combination of PCA, hierarchical feature learning, and linear regression.

42 S. Berisha et al.

3.2 Feed-Forward Neural Networks

Feed-forward neural networks form the basis for modern artificial neural networks
[24, 72-74]. A feed-forward network approximates an activation function f*(-) by
optimizing based on a set of training samples. For example, a feed-forward network
can capture the function y = f*(x), which maps an input x to an output value (or
vector). Specifically, the feed-forward network defines a mapping y = f (x; ®) where
® is a vector of learned parameters that provide the best approximation to f*(x).

Feed-forward networks are so named because information flows in one direction
through the network, from x to the output y, forming a directed acyclic graph. In its
general form, a feed-forward network consists of an input layer, one or more hidden
layers, and an output layer. Each node in a layer is an artificial neuron, where input
is modified by a weight and summed across all other inputs. The resulting value is
passed through a transfer function to one or more neurons in the next layer.

The feed-forward multi-layer perceptron (MLPs) [72, 74] is the most popular
architecture for HSI applications and is commonly used as the final step in new
deep neural networks. Applications leveraging MLPs include distinguishing between
normal and injured fruit [75], classification of land and clouds in remote sensing [76],
assessment of meat quality [77], microbial characterization [62], and identification
of bacteria using Fourier transform infrared (FTIR) spectroscopy [78]. The input
layer generally consists of a vector representing a spectrum, often after some data
pre-processing, such as noise removal or dimension reduction.

3.2.1 Perceptron

A perceptron [26] or artificial neuron (Fig. 3.2) is the most basic processing unit of
feed-forward neural networks. A perceptron can be modeled as a single-layer neural
network with an input vector x € R”, a bias b, a vector of trainable weights w € R”,
and an output unit y. Given the input x, the output y is computed by an activation
function f (-) as follows:

y; ©) =f <Zx,-wi - b) =fw'x+b), 3.1)
i=1

where ® = {w, b} represents the trainable parameter set. A perceptron in this form
is a binary linear classifier. A logistic sigmoid function is commonly used for binary
classification tasks.

The single output perceptron model can have multiple outputs (shown in Fig. 3.3)
given an input x € R” by using an activation function f (-):

3 Deep Learning for Hyperspectral Image ... 43

Fig. 3.2 A schematic view
of a single output perceptron.
Each input value x; is
multiplied by a weight factor
w;. The weighted sum added
to the bias is then passed
through an activation
function to obtain the

output y

Fig. 3.3 A schematic view
of a multiple output
feed-forward neural network.
Each input value x; is
multiplied by a weight factor
Wi;, where W;; denotes a
connection weight between
the input node x; and the
output node y;. The weighted
sum is added to the bias and
then passed through an
activation function to obtain
the output y;

Input

Activation
! Weighted function Output
sum
'

S

Input

Weighted Activation
@M”"‘ function ~ Output
X > {

1

v @) =f (S xWy+b) =fonjx+b). (3.2)
i=1

where the parameter set here is @ = {W € R, b € R™} and w; denotes the jth

column of W.

44 S. Berisha et al.

A common activation function is used for multi-class applications softmax, which
takes an input vector and produces an output vector of the same size containing scalar
values between 0 and 1 that sum to 1. The output can therefore be interpreted as
probability distribution.

3.2.2 Multi-layer Neural Networks

A single-layer perceptron network still represents a linear classifier, despite using
nonlinear transfer functions. This limitation can be overcome by multi-layer neu-
ral networks (Fig. 3.4), which introduce one or more “hidden” layers between the
input and output layers. Multi-layer neural networks are composed of several simple
artificial neurons such that the output of one acts as the input of another. A multi-
layer neural network can be represented by a composition function. For a two-layer
network, the composition function can be written as

h n
i 0) =f@ (S WP af O AN W wx + b7)+ (3.3)
k=1 i=1

where / is the number of units in the hidden layer and the set of unknown param-
eters is @ = (W ¢ RP*" W@ e R/, In general, for L — 1 hidden layers the
composition function, omitting the bias terms, can be written as

Fig. 3.4 Illustration of a Input layer Hidden layer Output layer
feed-forward neural network

composed of an input layer, a
hidden layer, and an output
layer. In this illustration, the
multi-layer neural network
has one input layer and one
output unit. In most models,
the number of hidden layers
and output units is more than
one

3 Deep Learning for Hyperspectral Image ... 45

Vi ©) =f O[S Wit Y wi et (o f! (Z W x,~>>
k I i

3.4)

Note that linear activation functions would result in a composite linear system.
Nonlinear activation functions are generally chosen, with the same function used for
each layer.

3.2.2.1 Activation Functions

The output of the perceptron, before applying an activation function, is an unbounded
value summation. The activation function determines the (usually bounded) output
interval. While both linear and nonlinear activation functions are used, nonlinear
functions are the most practical for neural network applications. Several activation
functions have been selected based on distinct advantages and disadvantages. In this
section, we will discuss the most common activation functions for hyperspectral
imaging tasks.

Binary step function—A simple threshold function can be used for binary acti-
vation of the neuron. The binary step function and its derivative are defined as

1, ifx>0,
fo=1" " =" @ =0, Vx (3.5)
0, otherwise,
The constant gradient makes this function difficult to optimize during back-
propagation. Furthermore, the binary step function cannot be used for multi-class
output tasks.

Linear function—A linear function is defined as
f) =ax, f'(x)=a, (3.6)

which can be applied to multiple neurons and thus used for multi-class applications.
A linear transfer function reduces the network to a linear system, simplifying training.
However, the result will always produce a linear transformation and therefore is not
suitable for nonlinear classification or regression tasks.

Sigmoid—The sigmoid function

sigmoid(x) = ﬁ, sigmoid’ (x) = f(x) * (1 — f (x)) 3.7

is smooth, continuously differentiable, and nonlinear. It ranges from O to 1 with an S
shape. The gradient is higher between x values of —3 and 3 but flattens out for higher
magnitude values. This implies that small changes in the input of range [—3, 3]

46 S. Berisha et al.

introduce large changes in output. This property is desirable for classification by
providing a differential alternative to the binary step function. The dependence of
the gradient on x allows back-propagation of errors so that weights can be updated
during training. One disadvantage of the sigmoid function is that it is not symmetric
around the origin and maps all input to positive values. This is undesirable since all
inputs to downstream layers in multi-layer networks will have the same sign.

Hyperbolic tangent—The asymmetry of the sigmoid function is addressed with
tanh, which is a scaled version of the sigmoid:

tanh(x) = 2 - sigmoid(2x) — 1, tanh’'(x) =1 — tanh?(x). (3.8)

The hyperbolic tangent (t anh) has the same properties as the sigmoid function and is
symmetric over the origin with ranges from —1 to 1. The tanh function has a steeper
gradient than a sigmoid; however, the tanh are still very low for high-magnitude
inputs resulting in a vanishing gradient.

Rectified linear unit (ReLLU)—The ReL.U activation function is widely used
due to its computational simplicity and ability to facilitate fast training. The ReLU
function and its gradient are given by

F@ = max(0,x), f'(x) = : b ifx= 0. (3.9)

0, otherwise.

ReLU enforces nonnegativity on the input, and thus only a few artificial neurons are
activated during training, making the neural network sparse and more computation-
ally efficient. However, since the gradient is zero for negative input, the corresponding
weights are not updated during back-propagation. The neural network will therefore
have dead neurons that are never activated after some training iteration.

Leaky ReLU—Leaky ReLLU [79] addresses the issue of 0 gradients for negative
inputs by mapping the negative input to a small linear component:

Fo) = x, ifx>0, £ = 1, ifx>0, (3.10)

ax, otherwise, a, otherwise,

thereby alleviating the issue of zero gradients leading to dead artificial neurons.

Parametric ReLU—The parametric ReLU [80] is identical to Eq. 3.10 with the
exception that the a parameter is learned during training. This function is used when
leaky ReLU fails to overcome the problem of dead neurons.

Softmax—The softmax function is extremely useful for classification functions.
Unlike the sigmoid, which can only handle two-class problems, the softmax function
handles multi-class classification by mapping the input to a range between 0 and 1
and dividing by the total sum, outputting a probability vector representing posteriors
for each class:

3 Deep Learning for Hyperspectral Image ... 47

tanh relu leaky relu

Fig.3.5 Illustration of various types of activation functions (in —) and their corresponding gradients
(in ——). There is a lack of precise rules/heuristics on how to choose an activation function. However,
each activation function has certain properties that can help when deciding to make better choices
for quicker convergence of a neural network

%
ZiC:I et

where for classification problems C is the number of classes. The softmax function
is usually used in the output layer of the classifier.

Several common activation functions are shown in Fig. 3.5. Many other variations
have been explored to improve accuracy and provide faster convergence rates. We do
not discuss them here, but the interested reader should explore the exponential linear
unit (elu) [81], scaled exponential linear unit (SELU) [82], thresholded ReLU [83],
concatenated ReLLU [84], and rectified linear 6 [85].

softmax(x;) = , j=1,...,C, (3.11D

3.2.3 Learning and Gradient Computation

The goal of training is to identify weights and biases that minimize some cost function
based on a set of provided training data. The choice of cost function depends on the
task at hand. Classification tasks commonly minimize classification error of the
predicted labels using cross entropy (Egs. 3.15 and 3.16). In regression problems,
MSE (Eq. 3.12) is commonly used to minimize the difference between the ground
truth and predicted value. In any case, the training goal is optimization of a cost

48 S. Berisha et al.

function of many variables. A common technique used to solve such problems is the
gradient descent algorithm.

Weights and the biases adjusted iteratively by applying some flavor of gradient
descent, commonly known as back-propagation [86]. Partial derivatives of the cost
function are calculated at each iteration with respect to weights and biases, and the
parameters are correspondingly updated. Back-propagation provides insights into
the overall behavior of the network and is crucial to learning in neural networks.

3.2.3.1 Loss Functions

Selection of a loss function is a crucial aspect of designing a neural network. The
loss function, otherwise known as a cost or error function, measures the deviation
of the neural network output y from expected values y. The loss function provides
a nonnegative scalar value that decreases as prediction quality increases. Here, we
discuss some of the most popular loss functions in deep learning applications.

Mean Squared Error (MSE), otherwise known as quadratic error, is a common
performance measure in linear regression problems. This cost function is defined as
a sum of squared differences across all N training samples:

1 i 2
— O _ 50
.Z—N;(y 597, (3.12)
where (y(i) - f)(i)) is the residual. Minimizing the MSE amounts to minimizing the
sum of the squared residuals, which is intuitive and easy to optimize. However,
MSE applies more weight to larger differences, which may be undesirable in many
applications.

Mean Absolute Error (MAE) measures the average absolute difference between
predicted labels and observations:

N
& = zlv > =39 (3.13)
i=1

MAE residuals are given equal weight, making it more robust to outliers. Unfortu-
nately, the MAE gradient is significantly more difficult to compute.

Mean Squared Logarithmic Error (MSLE) is a variation of MSE defined as
the mean of the squared residuals of log-transformed true and predicted labels:

1
N 4

1

(logy® + 1) — log G + 1)) , (3.14)
1

N
g:

3 Deep Learning for Hyperspectral Image ... 49

where 1 is added as a regularization term to avoid log(0). MSLE can be used when
it is not desirable to penalize large errors but penalizes underestimates more than
overestimates. Given these properties, it has been used in regression problems for
predicting future house pricing.

Binary Cross Entropy is a common loss function in classification tasks that
measures the performance of a classification model whose output is a probability
between 0 and 1. In binary classification, where the number of classes is 2, the
binary cross entropy is defined as

1 . i
— 22 102G + (1 =y log1 = 57)]. (3.15)

i=1

The value of cross entropy loss increases as the predicted probability diverges from
the actual label. Thus, cross entropy is a measurement of the divergence between
two probability distributions.

Categorical Cross Entropy provides a multi-class variant computed by calcu-
lating a separate cross entropy loss for each class:

1 N C) .
_N Z Z y“log(3"), (3.16)

i=1 c=1

where C is the number of classes, y; . is 1 if class label ¢ is the correct classification
for the ith sample and 0 otherwise, and $° is the predicted probability that the ith
sample is of class c.

Kullback Leibler (KL) Divergence, otherwise known as relative entropy, mea-
sures the difference—or divergence—between two probability distributions:

Z = Dki (y(i) | W(D)

Z| -
.MZ

1

(@)
s ()
1 ® (3.17)

1 N

(" 10g0™) = 5 > (7 10gG)) .
1 i=1

Il
Z| -
.MZ

I
2| -
.MZ

entropy crossentropy

where Zk; denotes the KL divergence from 3 to y. The KL divergence is not
commutative and thus it cannot be used as a distance metric.

We have provided a variety of Refs. [87-89] that the interested reader should be
encouraged to explore for more exhaustive work on loss functions in neural networks.

50 S. Berisha et al.
3.2.3.2 Back-Propagation

Multi-layer networks are commonly trained by minimizing a loss function through
back-propagation. Back-propagation is a powerful but simple method for training
models which have a large number of trainable parameters.

The basic approach to learn an untrained network is to present a training pattern
to the input layer, pass the signal through the network, and determine the predicted
output at the output layer. The predicted outputs are compared to the actual output
values, and any difference corresponds to an error which is a function of the network
weights/parameters. When the back-propagation is based on gradient descent (c.f.
Fig. 3.6), the weights (which are often initialized with random values) are changed in
a direction that reduces the error. In multi-layer networks, back-propagating errors
through the network allow computations of gradients of the loss function with respect
to network weights to be computed in an efficient way. Given a training dataset, the
standard gradient descent estimates the expectation value of the gradient of the loss
function with respect to the network parameters by evaluating the loss and gradient
over all available training samples. Stochastic gradient descent (SGD) eliminates
the computation of an expectation of the gradient and utilizes a few samples that
are randomly drawn from the training pool, thereby resulting in reduced variability
during learning, and hence a more stable convergence.

Learning Rate—This is a hyperparameter in back-propagation which indicates
the relative size of the change in weights, when they are being updated using gra-
dient descent. Using too large or too small, a learning rate can cause the model to
diverge or converge too slowly, respectively. Also, note that the loss function may
not be convex with respect to the network weights, and we can end up in a “local
minimum” especially when the learning rate is small. The learning rate hence must
be appropriately chosen for a given learning task carefully.

Fig. 3.6 Forward- Layer 1 Layer 2 Layer 3 Layer 4
propagation and) @) 3))
back-propagation flows in a g’ —» a4 —>»da > a

four-layer network; Red

arrows indicate the
forward-propagation and
activation value computation,
and green arrows show
back-propagation and error
computation

5(2) 5(3) 5(4)

3 Deep Learning for Hyperspectral Image ... 51

Vanishing gradient problem—During back-propagation, as the gradients prop-
agate backward from the later layers in a chain, and as they approach the earlier
layers, there is a possibility that the gradients eventually shrink exponentially until
they vanish. This is called “vanishing gradient problem” and causes the nodes of
earlier layer to learn very slowly as compared to the nodes in the later layers in the
network. The earlier layers in the deep network are responsible for learning low-level
features and can be thought of as building blocks of the deep networks. Thus, it is
important that the early layers in the deep network be trained properly to lead to more
accurate higher level features in later layers. This problem is particularly relevant
when dealing with deep networks. Recent works with residual networks (ResNet)
seek to address this problem [90, 91].

Exploding gradient problem—On the flip side, it may so happen that when
the gradients reach the earlier layers, they get larger and larger to a point where
they “explode”—a point at which the network would become unstable. This can
also be avoided by carefully determining the network architecture and associate
hyperparameters. It can also be kept in check by either clipping the gradient (not
allowing the magnitude of the gradient to exceed a pre-determined threshold) or
scaling it (rescaling the gradient such that it maintains a fixed norm).

3.3 Deep Neural Networks

Multi-layer feed-forward neural networks can approximate any multivariate con-
tinuous function with arbitrary accuracy [92-95]. It is also possible to approximate
complex functions using deep architectures. In fact, it has been shown that deep mod-
els are required to learn highly varying functions representing high-level abstractions
in applications vision, language, and other artificial intelligence tasks [96]. Shallow
architectures can potentially require exponentially more hidden units with respect to
the size of training data. Thus, the insufficient depth of a model can be detrimental
for learning [96]. Deep architectures offer the possibility of having fewer hidden
units per layer, which in turn can reduce the total number of model parameters. Most
importantly, deep computational models learn representations of data automatically
in a hierarchical manner with multiple levels of abstraction, from low-level/fine to
high-level/abstract [97]. In this section, we introduce the basics of some deep neural
network architectures that have been commonly investigated for HSI analysis tasks.

3.3.1 Autoencoders

An autoencoder (AE) [46, 86, 98—100] is an unsupervised artificial neural network
that applies back-propagation to approximate the identity function, thereby learning
an approximation X of the original input x. A general AE architecture (Fig. 3.7) con-

52 S. Berisha et al.

y
()
/)
1
:/
4 ") Reconstructed
WX} /:::\ OUtpUt

N data

)9,
SO N
y \, J

Fig.3.7 Schematic diagram of an AE. The inputx and the outputy are of the same size. The network
learns a representation of the input in the hidden layer. The network then tries to reconstruct the
original input from the vector of hidden unit activations. If the number of hidden units is less than
the size of the original input, then the network learns a compressed representation of the input. Even
if the number of hidden units is larger than the input size, it is still possible to extract interesting
features by imposing constraints on the network (such as sparsity on the hidden units)

sists of the input (x) layer, one or more hidden (k) layers, and an output (y) layer.
The units between layers are connected via weighted connections. Figure 3.7 shows
a sample AE architecture with only one hidden layer. This network consists of two
parts: (1) an encoder that transforms the input into lower dimensional representation,
and (2) a decoder that reconstructs the original vector. The architecture of the hidden
layers applies constraints on the network that encourage learning useful features.
In traditional applications, AEs have been used for dimensionality reduction, fea-
ture extraction, transfer learning [46], as well as numerous computer vision, image
processing, and natural language processing tasks [101]. In HSI, autoencoders have
been used for both classification [43, 102] and unmixing [103].

During the training of an AE, the input data are encoded using the weights between
the input and the hidden layer, a bias, and an activation function:

hi =f(Wix; +bp), (3.18)

where x; is the ith input vector, W, is the matrix of weights between the input and
hidden layer, b, is the bias vector of the hidden layer, f is a nonlinear activation
function, and A; is the feature vector extracted from the input vector x;. In the case
of an AE with one hidden layer, the input data are reconstructed in the output layer
using the extracted features in the hidden layer:

Yi=f(Wsh;i+b,), (3.19)

where y, is the ith reconstructed vector, W, denotes the matrix of weights between the
hidden and output layers, and b, is the bias vector of the output layer. The training
of an AE then becomes an optimization problem, which aims to find the optimal
weights and biases that minimize the reconstruction error:

3 Deep Learning for Hyperspectral Image ... 53

N
1
O = argmin —E ||x,~—y,-||2 , (3.20)
w.b (N i=1 ’

where @ denotes the optimum parameters that minimize the reconstruction error of
N input vectors.

3.3.2 Stacked Autoencoders

A stacked autoencoder (SAE) [99, 104]is an ANN consisting of multiple autoencoder
layers. The features extracted after each encoding and decoding phase are then sent
to a softmax classifier. SAEs have been extensively applied to hyperspectral imaging
in remote sensing [105] for dimension reduction and feature extraction.

SAE training is of unsupervised pretraining and supervised fine-tuning. During
pretraining each AE is trained individually as described in the previous section. This
is an unsupervised procedure since in this step the input labels are not used. After the
training of each AE, the weights between the input and hidden layers are stored to
be further used as initial values for the fine-tuning phase. In this step, multiple AEs
are connected together in such a way that the hidden layer of AE in layer £ becomes
the input of the AE in layer £ 4 1. In other words, the extracted features are passed
to the next AE as input. This further implies that the output layer with its weights
and biases is discarded. The fine-tuning step is supervised by attaching a classifier
to the network. The whole network is trained using the input labels, and the weights
obtained during the fine-tuning step are used as initial values in the optimization
process. Figure 3.8 shows a diagram of a sample SAE.

3.3.3 Recurrent Neural Networks

Previously described models consider hyperspectral data as a collection of indepen-
dent spectra, where each pixel is a point in an orderless three-dimensional feature
space. These vector-based approaches lead to a loss of information in the spatial
domain, since the spatial relationship between pixels is not considered. This has
motivated the development and use of methods that leverage the spatial component
of HSI data.

A recurrent neural network (RNN) [106] extends conventional feed-forward net-
works by introducing loops. RNNs process sequential inputs by utilizing recurrent
hidden states, or memory cells, whose activations depend on previous steps. The
retained states can represent information from arbitrarily long context windows,
allowing the network to exhibit dynamic temporal behavior. This can lead to learn-
ing the dynamics of sequential input vectors over time.

54 S. Berisha et al.

layer 1 layer 2 layer n Classification
layer

Fig. 3.8 Schematic diagram of a general SAE architecture for classification. The SAE network
consists of multiple layers of AEs. The first layer is an AE, which is trained on raw inputs to learn
primary features. The learned primary features are then fed to another AE layer that learns the
secondary features. At the last AE layer, the extracted features are then given as input to a softmax
classifier, which maps the features to class labels

By viewing the variability of a spectrum in the same way as a temporal signal,
RNNs can characterize spectral correlation and band-to-band variability for a variety
of applications, including multi-class classification [57-59].

To define an RNN, let {x;,x;,...,xr} be a sequence of data, where x; is the
vector data at the ith time step. An RNN updates the recurrent hidden state, k;, by

0, ift =0,
h, = = (3.21)
f (h,_1,x;), otherwise,

where f (+) is a nonlinear activation function. In the standard RNN model, the update
rule for the hidden state is implemented as

hi =f(Wx; +Uh,_, +b), (3.22)

where W is the weight matrix for the input at the current step and U is the weight
matrix for hidden units at the previous step, and b is the bias. The output can be a
sequence of vectors {y;, y,, ..., yr} computed as

0; = Vhl +c,

(3.23)
y; = softmax(o;) ,

where V is a weight matrix shared across all steps, c is the bias, and softmax is an
activation function computed as

3 Deep Learning for Hyperspectral Image ... 55

Vi1 Vi Y1
V] U U U
e0ee — > — —> h' 1 ——>eee
w w TW
Xt-1 Xt Xt+1

Fig. 3.9 The basic structure of a recurrent layer of an RNN. The recurrent layer takes as input one
vector at the rth time step, x;, and the previous hidden state &;_;, and it returns a new hidden state
h;, which is computed by applying a nonlinear function to the linear operation of matrix-vector
multiplication of x; and h;_; with their respective weight matrices. The output is then computed
by applying the softmax function to the result of multiplication of k; with a weight matrix

1
softmax(0;) = = [e7 D) %@ ... goiM]

7 = 2": %0 ,
j=1

(3.24)

where o0;j is the jth component of o;.
RNNSs can model a probability distribution over the next element of the sequence
data given its present state k,. The sequence probability is

p(X1, X2, ..., x7) =px1)---pXrlxy, ..., x7_1). (3.25)

Each conditional probability distribution is modeled as

prlxr, ... xr—1) =f(h). (3.26)

Recurrent networks are typically trained using the back-propagation through time
(BPTT) [107] algorithm—an approach that adapts the back-propagation idea to a
sequential model. BPTT works by unfolding the recurrent network in time—it creates
replicas of the network such that each temporal sample gets a copy of the network
wherein all network copies have shared parameters. This then becomes a traditional
network where back-propagation can be applied. Figure 3.9 shows an RNN with one
recurrent layer, while a sample RNN architecture based on this basic building block
that can be used for HSI data classification is shown in Fig. 3.10.

3.3.4 Long Short-Term Memory

RNNSs have been successful in many machine learning and computer vision tasks;
however, they introduce several training challenges. In particular, long-term

56 S. Berisha et al.

Softmaxl ‘ | | | ‘

Fully J Connected

—
—
—
—
—

Fig. 3.10 An example of an RNN architecture for HSI classification (fig. adapted from [108]).
Each layer has the architecture described in Fig. 3.9. The network when trained models the spectral
envelope that contains potentially discriminative information about the classes of interest

sequences pose training difficulty due to vanishing or exploding gradients [109].
More sophisticated recurrent units have been developed to overcome this issue,
including a recurrent hidden unit called long short-term memory (LSTM). LSTM is
capable of learning long-term dependencies [34], replacing a recurrent hidden node
with a memory cell containing a self-connected recurrent edge with fixed weight that
ensures gradients can pass across several time steps without vanishing or exploding.
LSTM networks have been applied for hyperspectral image classification using only
pixel spectra vectors [57, 110].

An LSTM recurrent layer creates a memory cell ¢, at step ¢ consisting of an input

gate, output gate, forget gate, and a new memory cell. LSTM activation is computed
by

3 Deep Learning for Hyperspectral Image ... 57
h; = o; © tanh(c;) , (3.27)

where o, is the output gate that determines the exposed memory content, © is an
element-wise multiplication, and tanh(-) is the hyperbolic tangent function. The
output gate is updated by

0,=0 (W%, +Uh,_, +b,), (3.28)

where o (-) is a logistic sigmoid function, W and U® represent weight matrices
of the output gate, and b, is a bias. The memory cell ¢, is updated by adding new
content ¢, and discarding part of the present memory content:

¢ =5L0¢+f, 0c1, (3.29)

where i, modulates the extent to which new information is added, and f, determines
the degree to which the current contents are forgotten. The memory cell ¢; contents
are updated using

¢ = tanh (W%, + Uh,_ +b) , (3.30)

where W© and U© are weight matrices and b, is a bias term. The input and the
forget gates are computed as

iy =0 (W% + U, +b)

(3.31)
fi=o (W(f)xr + U(f)h[_] + bf))

where W, UD W U are gate weight matrices and b;, by are respective gate

terms. Figure 3.11 shows a graphical illustration of an LSTM memory cell.

3.4 Convolutional Neural Networks

Convolutional neural networks (CNNs) are specialized feed-forward neural networks
for processing data sampled on a uniform grid, such as an image. In the case of
HSI, this can include 1D spectral sampling, 2D spatial sampling, or 3D sampling
of the entire image tensor. Each CNN layer generates a higher level abstraction
of the input data, generally called a “feature map”, that preserves essential and
unique information. CNNss are able to achieve superior performance by employing a
deep hierarchy of layers and have recently become a popular deep learning method
achieving significant success in hyperspectral pixel classification [48, 50, 70], scene
understanding [111], target detection [112, 113], and anomaly detection [114].

58 S. Berisha et al.

Fig. 3.11 TIllustration of an h,

LSTM memory cell. i, f, and

o are the input, forget, and °
/

X;
output gates, respectively. ¢ 4—@(
denotes the new memory cell h;
content output gate

h, -

Low- Mid- High-
Conv , oyl .. »CONV . joyel .. ,CONV_, joyg _, FC
Layer Feaures Layer Feaures Layer Feaures . LAYEN i

D" _; = 2 x i i — | ._|
2 T - i

Convolution Nonlinearity Pooling Fully Iit;r;r:ected Nonlinearity

Fig.3.12 Anarchitecture of a convolutional neural network(CNN). Each convolution layer consists
of convolution, nonlinearity, and pooling operations, which generates higher level feature of the
input. The first few layers generate low-level features, middle layers generate mid-level features,
and the last few layers generate high-level features which are fed into fully connected layer

3.4.1 Building Blocks of CNNs

CNNgs are trainable multi-layer architectures composed of multiple feature extraction
stages. Each stage consists of three layers: (1) a convolutional, (2) nonlinearity, and
(3) pooling. A typical CNN is composed of some feature extraction stages followed
by one or more fully connected layers and final classifier layer as shown in Fig. 3.12.
Each part of a typical CNN is described in the following sections.

3.4.1.1 Convolutions

A CNN layer performs several convolutions in parallel to produce a set of linear
activations. Convolutional layers are responsible for extracting local features at dif-

3 Deep Learning for Hyperspectral Image ... 59

8 32 21 |33

| i |
Suladdl 1 |7 | %2 33 ‘15i18
4 | 9 plaes 17 | 23 10 13

17 10 9 6 Max pooling Average pooling

2x2 pooling, stride 2

Fig. 3.13 Various types of pooling operations. The max pooling function computes the maximum
in the neighborhood of the window patches of size 2 x 2 with stride of 2. The average pooling takes
average of the input elements in the window patch of size 2 x 2 with stride of 2

ferent positions using trainable kernels Wl(l]) that act as connection weights between
feature map i of layer / — 1 and feature map j of layer /. The units at convolution
layer / compute activations X]l based on spatially contiguous units in the feature map

Xﬁ‘l of layer / — 1 by convolving the kernels Wf’ It

M([—l)
XD =f Y x"Vawh 4] (3.32)

i=1

where M ¢~V denotes the number of feature maps in the layer of / — 1, * is con-

. @
volution operator, b;"" is a bias parameter, and f (-) represents a nonlinear activation
function. '

34.1.2 Pooling

A pooling function reduces the dimensionality of a feature map and is applied to
each data channel (or band) to reduce sensitivity to rotation, translation, and scaling
(Fig.3.13). Pooling functions also aggregate responses within and across feature
maps. The pooling function combines a set of values within a receptive field (that
defines a spatially local neighborhood, as set by the filter size) into fewer values and
can be configured based on the size of the receptive field (e.g., 2 x 2) and selected
pooling operation (e.g., max or average). The max pooling function applies a window
function to the input patch and computes the maximum within the neighborhood to
preserve texture information. The average pooling function calculates the mean of
the input elements within a patch to preserve background information. Pooling is
typically performed on non-overlapping blocks, however, some methods; however,
this is not required [115]. In general, non-overlapping pooling is used for dimension
reduction of the resulting feature map.

60 S. Berisha et al.
3.4.1.3 Fully Connected Layers

Fully connected ANN layers are typically used in the final stages of a CNN for
classification or regression based on feature maps obtained through the convolutional
filters. The output vector is then passed to a softmax function to obtain classification
scores.

3.4.2 CNN Flavors for HSI

Hyperspectral image can be visually described as a three-dimensional data cube with
spectral sampling along the z-axis. CNN can then be categorized into three groups:
(a) 1D CNNs extracting spectral features, (b) 2D CNNs extracting spatial features,
and (c) 3D CNNs extracting combined spectral-spatial features.

3.4.21 1D CNNs

A 1D CNN is responsible for pixel-level extraction of spectral features. As itis shown
in Fig. 3.14, a hyperspectral vector is sent to the input layer and propagates through
successive convolutional and pooling layers for feature extraction. Each convolu-
tional layer has multiple convolutional filters, with sizes set using a hyperparameter.
The output feature map of each convolutional layer is a 1D vector. 1D CNNs have
been applied for multi-class pixel-level classification of HSI data [48]. We note that
although such 1-D CNNs can be applied to pixel-level spectral reflectance data, they
are not expected to be nearly as powerful in extracting abstract deep features as CNN's
that operate on spatial information. This is because the one of the key drivers in the
successful application of CNNs to imagery data stems from the multi-layer spa-
tial convolutions that result in abstract deep spatial features representing the object
morphology. Along a single dimension (a spectral reflectance profile of a pixel, for
example), there are no such features of interest to learn (e.g., features representing
edges or texture). At best, such 1-D CNNs can then better condition (e.g., through
the series of filtering layers) the spectral reflectance data to make it more robust to
variations before it is classified.

3.4.2.2 2D CNNs

Initial work on 2D CNNs (Fig. 3.15) made use of 2D CNN networks for classification
of HSI data by taking a neighborhood window of size w x w around each labeled pixel
and treat the whole window as a training sample [50, 70] to extract spatial features.
Applying 2D CNN naively to HSI produces a feature map for each band. Since HSI
data is often composed of several bands, this produces a large number of parameters
that increase overfitting and computational requirements. Subspace learning methods

3 Deep Learning for Hyperspectral Image ... 61

[i C: 1D Convolution Input Filter

X Output
P: Pooling Spectra Kernel Featuremap
F: Fully Connected Layer
1D CNN Architecture 1D CNN Filtering Operation

Fig. 3.14 An architecture of 1D convolutional neural network for hyperspectral images; A typical
1D CNN consist of 1D convolutional layers, pooling layers, and fully connected layers. In 1D
CNNeg, filter kernel is 1D which convolve the hyperspectral cube in spectral dimension

V

5 =
R

S: Sub-space Learning Multi-channel Output
C: 2D Convolution Input Featuremap
P: Pooling
F: Fully Connected Layer

2D CNN Architecture 2D CNN filtering Operation

Fig. 3.15 An architecture of 2D convolutional neural network for hyperspectral images; A typical
2D CNN consist of 2D convolutional layers, pooling layers, and fully connected layers. In 2D
CNN:g, filter kernel is 2D which convolve the hyperspectral cube in spatial dimension

are employed to reduce the spectral dimensionality prior to 2D feature extraction.
Unsupervised methods such as principal component analysis (PCA) [49, 50, 70]
have been exploited to reduce spectral dimensionality a practicable scale before 2D
CNN training. However, the separate extraction of spectral and spatial features does
not completely utilize spectral—spatial correlations within the data.

3.4.2.3 3D CNNs

After 1D CNN and 2D CNN which extract spectral features and local spatial features
of each pixel, respectively, 3D CNN (Fig. 3.16) was introduced to learn the local
signal changes in both the spatial and the spectral dimensions of the HSI data, and
exploit important discrimination information. 3D CNN model takes advantage of the
structural characteristics of the 3D HSI data and can exploit the joint spectral-spatial
correlations information because the 3D convolution operation convolves the input
data in both the spatial dimension and the spectral dimension simultaneously, while
the 2D convolution operation convolves the input data in the spatial dimension. For
the 2D convolution operation, regardless of whether it is applied to 2D data or 3D
data, its output is 2D, while for 3D convolution operation, its output is also a cube.

62 S. Berisha et al.

| 0 £
' Filter Kernel @
—
P ; F S -Z]
P, 42N
Output
C: 3D Convolution Featuremap

P: Pooling Multi-channel
F: Fully Connected Layer, Input
3D CNN Architecture 3D CNN filtering Operation

Fig. 3.16 An architecture of 3D convolutional neural network for hyperspectral images; A typical
3D CNN consist of 3D convolutional layers, pooling layers, and fully connected layers. In 3D CNNjs,
filter kernel is 3D which convolve the hyperspectral cube in both spatial and spectral dimensions

3D CNN network has been investigated to learn rich spectral-spatial information for
hyperspectral data classification [116].

3.4.2.4 CNNs with RNNs (CRNNs)

A hybrid of convolutional and recurrent neural networks so-called CRNN (Convolu-
tional recurrent neural network) [117, 118] is composed of several 1D convolutional
and pooling layers followed by a few recurrent layers, as it is shown in Fig. 3.17.
CRNN has the advantages of both convolutional and recurrent networks. First, the
1D convolutional layers are exploit to extract middle-level locally invariant features
from the spectral sequence of the input. Second, the recurrent layers are used to
obtain contextual information from the feature sequence obtained by the previous
1D CNN. Contextual information captures the dependencies between different bands
in the hyperspectral sequence, which is useful for classification task. For the recur-
rent layers, the regular recurrent function or LSTM, which can capture very long
dependencies, can be used. For cases with long length hyperspectral sequence which
have long-term dependency, LSTM can be applied. At the end of this model, as in
RNN, the last hidden state of the last recurrent layer will be fully connected to the
classification layer. For training, as in CNN and RNN, the loss function is chosen as
cross entropy, and mini-batch gradient descent is used to find the best parameters of
the network. The gradients in the CNN part are calculated by the back-propagation
algorithm, and gradients in the RNN part are calculated by the back-propagation
through time (BPTT) algorithm [107]. CRNN have been used to learn discriminative
features for hyperspectral data classification [108].

We note that an interesting variation of this idea would be a hybrid model where
the first part of the network extracts spatial features from the data through per-
channel (spatial) convolutional layers, and the latter part of the network models
the evolution of the spectral envelope through a recurrent network. Although we
study pixel-level use of recurrent networks to hyperspectral data (modeling spectral
reflectance/absorbance evolution) in these chapters, modeling both spatial and spec-

3 Deep Learning for Hyperspectral Image ... 63

N (P I

L8

& —

C: 1D Convolution O
K P: Pooling / Q?: Fully Connected Layer j
1D CNN Architecture Recurrent Layers

Fig.3.17 An architecture of convolutional recurrent neural network for hyperspectral images; First
part: 1D CNN is exploit to extract middle-level locally invariant features from the spectral sequence
of the input. Second part: The recurrent layers are used to obtain contextual information from the
feature sequence obtained by the previous 1D CNN

tral information will enhance this idea significantly by jointly leveraging spatial and
spectral information.

3.5 Software Tools for Deep Learning

The ubiquitous applications of deep learning in a wide variety of domains have
resulted in the development of many deep learning software frameworks. Most of the
existing frameworks are open source, and this fact has facilitated the implementation
and sharing of models among the research community. Here, we describe some of the
existing open-source deep learning frameworks categorized on languages supported,
CNN and RNN modeling capability, ease of use in terms of architecture, and support
for multiple GPUs. Note that this list is not meant to be exhaustive and only the most
popular frameworks at the time of writing of this chapter are discussed.

TensorFlow [119] is a Python library which uses data flow graphs for numeri-
cal computation. TensorFlow provides utilities for efficient data pipelining and has
built-in modules for the inspection, visualization, and serialization of models. It pro-
vides support for CNNs, RNNs, restricted Boltzmann machines, deep autoencoders,
long short-term memory models, has multiple GPU support, and is considered to be
the best documented open-source framework currently available. TensorFlow also
provides visualization tools such as TensorBoard to facilitate understanding and
debugging of TensorFlow implementations. However, TensorFlow implementations
involve more low-level coding.

Theano [120] is a Python library for defining and managing mathematical expres-
sions, which enables developers to perform numerical operations involving multi-
dimensional arrays for large computationally intensive calculations. Theano provides
support for CNNs and RNNs, and has multiple GPU support.

64 S. Berisha et al.

Caffe [121] is a C++ library with a Python interface that provides GPU support.
Facebook has recently introduced the successor of Caffe, named Caffe2, which is
designed for mobile and large-scale deployments in production environments. Caffe2
makes it easier to build demo apps by offering many pretrained models. It was built
to be fast, scalable, and lightweight.

Keras [122] is a Python library that serves as a higher level interface to Tensor-
flow, Theano, Microsoft Cognitive Toolkit, and PlaidML. It has a large user base.
Prototyping using Keras is simple and fast. It supports training on multiple GPUs,
and it can be used for both CNN and RNN model implementations. Keras is exten-
sible, i.e., it provides the option of adding user-defined functions such as layers, loss
functions, or regularizers.

MXNet [123] supports various programming languages including R, Python,
Julia, C++, JavaScript, and Scala. It also has advanced GPU support compared to the
other frameworks. MXNet is characterized as relatively fast in terms of training and
testing computational time for deep learning algorithms. MXNet supports CNN and
RNN modeling and is also the framework of choice for the Amazon Web Services.

3.6 Conclusion

In this chapter, we reviewed the foundations of deep learning architectures that can
benefit hyperspectral image analysis tasks, including variants of recurrent and con-
volutional neural networks. We note that many advanced variations of these flavors
are emerging in the community, and hence the purpose of this chapter was to describe
how basic elements of deep learning architectures can be deployed for multi-channel
optical data—these are often the stepping stones to more advanced variants. Within
the context of hyperspectral images, accounting for spectral and spatial information
simultaneously and effectively is a key factor that differentiates the way in which
such networks should be applied for this task, compared to how they are applied
for color imagery. Sensor- and data-specific constraints must be kept in mind when
designing the deep learning “recipes” around these networks. In Chap.4, we will
apply these networks to real-world hyperspectral data representing remote sensing
and biomedical image analysis tasks. With the use of representative data in these
applications, we show deep learning configurations that learn the underlying spa-
tial and spectral properties effectively and discuss the nuances and challenges when
applying such models to hyperspectral images.

References

1. Ozaki Y, Kawata S (2015) Far-and deep-ultraviolet spectroscopy. Springer
2. Gao L, Smith RT (2015) J Biophotonics 8(6):441

http://dx.doi.org/10.1007/978-3-030-38617-7_4

3 Deep Learning for Hyperspectral Image ... 65

AN

11.

12.
13.
14.
15.
16.

17.

18.

20.
21.

22.
23.

24.
25.
26.
217.
28.
29.
30.

31.
32.

33.
34.
35.
36.
37.

38.

. Van der Meer FD, Van der Werff HM, Van Ruitenbeek FJ, Hecker CA, Bakker WH, Noomen

MEF, Van Der Meijde M, Carranza EJM, De Smeth JB, Woldai T (2012) Int J Appl Earth Obs
Geoinformation 14(1):112

. Pahlow S, Weber K, Popp J, Bayden RW, Kochan K, Riither A, Perez-Guaita D, Heraud P,

Stone N, Dudgeon A et al (2018) Appl Spectrosc 72(101):52

. van Hove ERA, Smith DF, Heeren RM (2010) J Chromatogr A 1217(25):3946
. Le DB (1991) Magn Reson Q 7(1):1
. Hearnshaw JB (1990) The analysis of starlight: one hundred and fifty years of astronomical

spectroscopy. CUP Archive

. Huang H, Yu H, Xu H, Ying Y (2008) J Food Eng 87(3):303
. Yang D, Ying Y (2011) Appl Spectrosc Rev 46(7):539
. Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N (2007) J Pharm Biomed

Anal 44(3):683

Theiler JP, Gisler G (1997) In: Algorithms, devices, and systems for optical information
processing, vol 3159. International Society for Optics and Photonics, pp 108119

Lavenier D (2000) In: Los Alamos National Laboratory LAUR. Citeseer

Ly E, Piot O, Wolthuis R, Durlach A, Bernard P, Manfait M (2008) Analyst 133(2):197

Lee S, Crawford MM (2005) IEEE Trans Image Process 14(3):312

Yu P (2005) J Agric Food Chem 53(18):7115

Bhargava R, Fernandez DC, Hewitt SM, Levin IW (2006) Biochim Biophys Acta (BBA)-
Biomembr 1758(7):830

Villa A, Benediktsson JA, Chanussot J, Jutten C (2011) IEEE Trans Geosci Remote Sens
49(12):4865

GroBerueschkamp F, Kallenbach-Thieltges A, Behrens T, Briining T, Altmayer M, Stamatis
G, Theegarten D, Gerwert K (2015) Analyst 140(7):2114

. Mayerich DM, Walsh M, Kadjacsy-Balla A, Mittal S, Bhargava R (2014) In: Proceedings of

SPIE—the international society for optical engineering, vol 9041, p 904107

Melgani F, Bruzzone L (2004) IEEE Trans Geosci Remote Sens 42(8):1778

Mercier G, Lennon M (2003) In: Proceedings of the 2003 IEEE international on geoscience
and remote sensing symposium, 2003. IGARSS’03, vol 1. IEEE, pp 288-290

Bandos TV, Bruzzone L, Camps-Valls G (2009) IEEE Trans Geosci Remote Sens 47(3):862
Fu Z, Robles-Kelly A (2007) In: 2007 IEEE conference on computer vision and pattern
recognition. IEEE, pp 1-7

McCulloch WS, Pitts W (1943) Bull Math Biophys 5(4):115

Hebb DO (1949) The organization of behaviour. Wiley, New York

Rosenblatt F (1958) Psychol Rev 65(6):386

Werbos P (1974) PhD dissertation, Harvard University

Fukushima K (1980) Biol Cybern 36(4):193

Ackley DH, Hinton GE, Sejnowski TJ (1985) Cogn Sci 9(1):147

Smolensky P (1986) Information processing in dynamical systems: foundations of harmony
theory. Tech. rep., Colorado Univ. at Boulder Dept. of Computer Science

Jordan MI (1997) In: Advances in psychology, vol 121. Elsevier, pp 471-495

Rumelhart DE, Hinton GE, Williams RJ (1985) Learning internal representations by error
propagation. Tech. rep., California Univ. San Diego La Jolla Inst. for Cognitive Science
LeCun Y, Boser BE, Denker JS, Henderson D, Howard RE, Hubbard WE, Jackel LD (1990)
In: Advances in neural information processing systems, pp 396-404

Hochreiter S, Schmidhuber J (1997) Neural Comput 9(8):1735

Hinton GE, Osindero S, Teh YW (2006) Neural Comput 18(7):1527

Salakhutdinov R, Hinton G (2009) In: Artificial intelligence and statistics, pp 448—455
Krizhevsky A, Sutskever I, Hinton GE (2012) In: Advances in neural information processing
systems, pp 1097-1105

Subramanian S, Gat N, Sheffield M, Barhen J, Toomarian N (1997) In: Algorithms for mul-
tispectral and hyperspectral imagery I1I, vol 3071. International Society for Optics and Pho-
tonics, pp 128-138

66

39.
40.
41.
42.
43.

44.

45.
46.

47.
48.
49.

50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.

61.

62.

63.

64.

65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
T1.
78.
79.
80.

81.

S. Berisha et al.

Jimenez LO, Morales-Morell A, Creus A (1999) IEEE Trans Geosci Remote Sens 37(3):1360
Plaza J, Plaza A, Perez R, Martinez P (2009) Pattern Recognit 42(11):3032

Ratle F, Camps-Valls G, Weston J (2010) IEEE Trans Geosci Remote Sens 48(5):2271
Licciardi GA, Del Frate F (2011) IEEE Trans Geosci Remote Sens 49(11):4163

Lin Z, Chen Y, Zhao X, Wang G (2013) In: 2013 9th international conference on information,
communications & signal processing. IEEE, pp 1-5

Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) IEEE J Sel Top Appl Earth Obs Remote Sens
7(6):2094

Deng L, Yu D et al (2014) Found Trends® Signal Process 7(3—4):197

Goodfellow I, Bengio Y, Courville A, Bengio Y (2016) Deep learning, vol 1. MIT Press,
Cambridge

Tao C, Pan H, Li Y, Zou Z (2015) IEEE Geosci Remote Sens Lett 12(12):2438

Hu W, Huang Y, Wei L, Zhang F, Li H (2015) J Sens 2015

Makantasis K, Karantzalos K, Doulamis A, Doulamis N (2015) In: 2015 IEEE international
geoscience and remote sensing symposium (IGARSS). IEEE, pp 4959-4962

Yue J, Zhao W, Mao S, Liu H (2015) Remote Sens Lett 6(6):468

Ma X, Geng J, Wang H (2015) EURASIP J Image Video Process 2015(1):20

Chen Y, Zhao X, Jia X (2015) IEEE J Sel Top Appl Earth Obs Remote Sens 8(6):2381
Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) IEEE Trans Geosci Remote Sens 54(10):6232
Zhou X, Li S, Tang F, Qin K, Hu S, Liu S (2017) IEEE Trans Geosci Remote Sens 14(1):97
Li W, Wu G, Zhang F, Du Q (2017) IEEE Trans Geosci Remote Sens 55(2):844

Shu L, Mclsaac K, Osinski GR (2018) IEEE Trans Geosci Remote Sens (99):1

Mou L, Ghamisi P, Zhu XX, Trans IEEE (2017) Geosci Remote Sens 55(7):3639

Liu B, Yu X, Yu A, Zhang P, Wan G (2018) Remote Sens Lett 9(12):1118

Guo Y, Han S, Cao H, Zhang Y, Wang Q (2018) Procedia Comput Sci 129:219

Shahraki FF, Prasad S (2018) In: 2018 IEEE global conference on signal and information
processing (GlobalSIP). IEEE, pp 968-972

Labate D, Safari K, Karantzas N, Prasad S, Foroozandeh Shahraki F (2019) In: SPIE optical
engineering + applications, San Diego, California, United States

Goodacre R, Burton R, Kaderbhai N, Woodward AM, Kell DB, Rooney PJ et al (1998)
Microbiology 144(5):1157

Halicek M, Lu G, Little JV, Wang X, Patel M, Griffith CC, El-Deiry MW, Chen AY, Fei B
(2017) J Biomed Opt 22(6):060503

Berisha S, Lotfollahi M, Jahanipour J, Gurcan I, Walsh M, Bhargava R, Van Nguyen H,
Mayerich D (2019) Analyst

Lotfollahi M, Berisha S, Daeinejad D, Mayerich D (2019) Appl Spectrosc 0003702818819857
Lee C, Landgrebe DA (1993) IEEE Trans Geosci Remote Sens 31(4):792

Chang CI, Du Q, Sun TL, Althouse ML (1999) IEEE Trans Geosci Remote Sens 37(6):2631
Jimenez LO, Landgrebe DA (1999) IEEE Trans Geosci Remote Sens 37(6):2653

Bruce LM, Koger CH, Li J (2002) IEEE Trans Geosci Remote Sens 40(10):2331

Zhao W, Du S (2016) IEEE Trans Geosci Remote Sens 54(8):4544

Pan B, Shi Z, Xu X (2017) IEEE J Sel Top Appl Earth Obs Remote Sens 10(5):1975
Haykin S (1994) New York

Bishop CM et al (1995) Neural networks for pattern recognition. Oxford University Press
Svozil D, Kvasnicka V, Pospichal J (1997) Chemom Intell Lab Syst 39(1):43

ElMasry G, Wang N, Vigneault C (2009) Postharvest Biol Technol 52(1):1

Atkinson PM, Tatnall A (1997) Int J Remote Sens 18(4):699

Qiao J, Ngadi MO, Wang N, Gariépy C, Prasher SO (2007) J Food Eng 83(1):10
Udelhoven T, Naumann D, Schmitt J (2000) Appl Spectrosc 54(10):1471

Maas AL, Hannun AY, Ng AY (2013) In: Proceedings of the ICML, vol 30, p 3

He K, Zhang X, Ren S, Sun J (2015) In: Proceedings of the IEEE international conference on
computer vision, pp 1026—-1034

Clevert DA, Unterthiner T, Hochreiter S. arXiv preprint arXiv:1511.07289 (2015)

http://arxiv.org/abs/1511.07289

3 Deep Learning for Hyperspectral Image ... 67

82.

83.
84.

85.
86.
87.
88.
89.
90.

91.

92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.

104.
105.

106.
107.
108.
109.

110.
111.

112.

113.

114.

115.

116.
117.

118.

Klambauer G, Unterthiner T, Mayr A, Hochreiter S (2017) In: Advances in neural information
processing systems, pp 971-980

Konda K, Memisevic R, Krueger D (2014) arXiv preprint arXiv:1402.3337

Shang W, Sohn K, Almeida D, Lee H (2016) In: International conference on machine learning,
pp 2217-2225

Krizhevsky A, Hinton G (2010) Unpublished manuscript. 40(7)

Rumelhart DE, Hinton GE, Williams RJ (1986) Nature 323(6088):533

Rosasco L, Vito ED, Caponnetto A, Piana M, Verri A (2004) Neural Comput 16(5):1063
Janocha K, Czarnecki WM (2017) arXiv preprint arXiv:1702.05659

LeCun Y, Chopra S, Hadsell R, Ranzato M, Huang F (2006) Predicting structured data. 1(0)
Zhong Z, Li J, Ma L, Jiang H, Zhao H (2017) In: 2017 IEEE international geoscience and
remote sensing symposium (IGARSS). IEEE, pp 1824-1827

Paoletti ME, Haut JM, Fernandez-Beltran R, Plaza J, Plaza AJ, Pla F (2018) IEEE Trans
Geosci Remote Sens 57(2):740

Cybenko G (1989) Math Control Signals Syst 2(4):303

Hornik K (1991) Neural Netw 4(2):251

Hecht-Nielsen R (1992) In: Neural networks for perception. Elsevier, 1pp 65-93

Csdji BC (2001) Faculty of Sciences, Etvs Lornd University, Hungary, vol 24, p 48

Bengio Y et al (2009) Found Trends® Mach Learn 2(1):1

LeCun Y, Bengio Y, Hinton G (2015) Nature 521(7553):436

Baldi P, Hornik K (1989) Neural Netw 2(1):53

Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) In: Advances in neural information
processing systems, pp 153-160

Poultney C, Chopra S, Cun YL et al (2007) In: Advances in neural information processing
systems, pp 1137-1144

Khan A, Baharudin B, Lee LH, Khan K (2010) J Adv Inf Technol 1(1):4

Ma X, Wang H, Geng J (2016) IEEE J Sel Top Appl Earth Obs Remote Sens 9(9):4073

Guo R, Wang W, Qi H (2015) In: 2015 7th workshop on hyperspectral image and signal
processing: evolution in remote sensing (WHISPERS). IEEE, pp 1-4

Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA (2010) J Mach Learn Res 11:3371
ZabalzaJ, RenJ, Zheng J, Zhao H, Qing C, Yang Z, Du P, Marshall S (2016) Neurocomputing
185:1

Lipton ZC, Berkowitz J, Elkan C (2015) arXiv preprint arXiv:1506.00019

Werbos PJ (1990) Proc IEEE 78(10):1550

Wu H, Prasad S (2017) Remote Sens 9(3):298

Hochreiter S, Bengio Y, Frasconi P, Schmidhuber J et al (2001) Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies

Zhou F, Hang R, Liu Q, Yuan X (2018) Neurocomputing

Zhang F, Du B, Zhang L (2016) IEEE Trans Geosci Remote Sens 54(3):1793. https://doi.org/
10.1109/TGRS.2015.2488681

Vakalopoulou M, Karantzalos K, Komodakis N, Paragios N (2015) In: 2015 IEEE international
geoscience and remote sensing symposium (IGARSS), pp 1873-1876. https://doi.org/10.
1109/IGARSS.2015.7326158

Zhang L, Shi Z, Wu J (2015) IEEE J Sel Top Appl Earth Obs Remote Sens 8(10):4895. https://
doi.org/10.1109/JSTARS.2015.2467377

Li W, Wu G, Du Q (2017) IEEE Geosci Remote Sens Lett 14(5):597. https://doi.org/10.1109/
LGRS.2017.2657818

Li C, Yang SX, Yang Y, Gao H, Zhao J, Qu X, Wang Y, Yao D, Gao J (2018) Sensors 18:10.
https://doi.org/10.3390/s18103587. http://www.mdpi.com/1424-8220/18/10/3587

Li Y, Zhang H, Shen Q (2017) Remote Sens 9(1):67

Zuo Z, Shuai B, Wang G, Liu X, Wang X, Wang B, Chen Y (2015) In: Proceedings of the
IEEE conference on computer vision and pattern recognition workshops, pp 18-26

Xiao Y, Cho K (2016) arXiv preprint arXiv:1602.00367

http://arxiv.org/abs/1402.3337
http://arxiv.org/abs/1702.05659
http://arxiv.org/abs/1506.00019
https://doi.org/10.1109/TGRS.2015.2488681
https://doi.org/10.1109/TGRS.2015.2488681
https://doi.org/10.1109/IGARSS.2015.7326158
https://doi.org/10.1109/IGARSS.2015.7326158
https://doi.org/10.1109/JSTARS.2015.2467377
https://doi.org/10.1109/JSTARS.2015.2467377
https://doi.org/10.1109/LGRS.2017.2657818
https://doi.org/10.1109/LGRS.2017.2657818
https://doi.org/10.3390/s18103587
http://www.mdpi.com/1424-8220/18/10/3587
http://arxiv.org/abs/1602.00367

68

119.

120.

121.

122.
123.

S. Berisha et al.

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J,
Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser
L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M,
Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F,
Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale
machine learning on heterogeneous systems. https://www.tensorflow.org/. Software available
from tensorflow.org

Al-Rfou R, Alain G, Almahairi A, Angermueller C, Bahdanau D, Ballas N, Bastien F, Bayer
J, Belikov A, Belopolsky A, Bengio Y, Bergeron A, Bergstra J, Bisson V, Bleecher Snyder J,
Bouchard N, Boulanger-Lewandowski N, Bouthillier X, de Brébisson A, Breuleux O, Carrier
PL, Cho K, Chorowski J, Christiano P, Cooijmans T, C6té MA, Coté M, Courville A, Dauphin
YN, Delalleau O, Demouth J, Desjardins G, Dieleman S, Dinh L, Ducoffe M, Dumoulin V,
Ebrahimi Kahou S, Erhan D, Fan Z, Firat O, Germain M, Glorot X, Goodfellow I, Graham
M, Gulcehre C, Hamel P, Harlouchet I, Heng JP, Hidasi B, Honari S, Jain A, Jean S, Jia
K, Korobov M, Kulkarni V, Lamb A, Lamblin P, Larsen E, Laurent C, Lee S, Lefrancois
S, Lemieux S, Léonard N, Lin Z, Livezey JA, Lorenz C, Lowin J, Ma Q, Manzagol PA,
Mastropietro O, McGibbon RT, Memisevic R, van Merriénboer B, Michalski V, Mirza M,
Orlandi A, Pal C, Pascanu R, Pezeshki M, Raffel C, Renshaw D, Rocklin M, Romero A, Roth
M, Sadowski P, Salvatier J, Savard F, Schliiter J, Schulman J, Schwartz G, Serban IV, Serdyuk
D, Shabanian S, Simon E, Spieckermann S, Subramanyam SR, Sygnowski J, Tanguay J, van
Tulder G, Turian J, Urban S, Vincent P, Visin F, de Vries H, Warde-Farley D, Webb DJ,
Willson M, Xu K, Xue L, Yao L, Zhang S, Zhang Y (2016) arXiv e-prints abs/1605.02688.
http://arxiv.org/abs/1605.02688

Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T
(2014) In: Proceedings of the 22Nd ACM international conference on multimedia, MM ’14.
ACM, New York, NY, USA, 2014, pp 675-678. https://doi.org/10.1145/2647868.2654889.
http://doi.acm.org/10.1145/2647868.2654889

Chollet F et al (2015) Keras. https://keras.io

Chen T, Li M, Li Y, Lin M, Wang N, Wang M, Xiao T, Xu B, Zhang C, Zhang Z. CoRR
abs/1512.01274 (2015). http://arxiv.org/abs/1512.01274

https://www.tensorflow.org/
http://arxiv.org/abs/abs/1605.02688
http://arxiv.org/abs/1605.02688
https://doi.org/10.1145/2647868.2654889
http://doi.acm.org/10.1145/2647868.2654889
https://keras.io
http://arxiv.org/abs/1512.01274

Chapter 4 ®)
Deep Learning for Hyperspectral Image e i
Analysis, Part II: Applications to Remote
Sensing and Biomedicine

Farideh Foroozandeh Shahraki, Leila Saadatifard, Sebastian Berisha,
Mahsa Lotfollahi, David Mayerich and Saurabh Prasad

Abstract Deep neural networks are emerging as a popular choice for hyperspec-
tral image analysis—compared with other machine learning approaches, they are
more effective for a variety of applications in hyperspectral imaging. Part I (Chap. 3)
introduces the fundamentals of deep learning algorithms and techniques deployed
with hyperspectral images. In this chapter (Part II), we focus on application-specific
nuances and design choices with respect to deploying such networks for robust anal-
ysis of hyperspectral images. We provide quantitative and qualitative results with
a variety of deep learning architectures, and compare their performance to base-
line state-of-the-art methods for both remote sensing and biomedical image analysis
tasks. In addition to surveying recent developments in these areas, our goal in these
two chapters is to provide guidance on how to utilize such algorithms for multichan-
nel optical imagery. With that goal, we also provide code and example datasets used
in this chapter.

F. F. Shahraki - L. Saadatifard - S. Berisha - M. Lotfollahi - D. Mayerich - S. Prasad (<)
University of Houston, Houston, TX, USA
e-mail: saurabh.prasad @ieee.org

F. F. Shahraki
e-mail: fforoozandehshahraki@uh.edu

L. Saadatifard
e-mail: Isaadatifard @central.uh.edu

S. Berisha
e-mail: sberisha@central.uh.edu

M. Lotfollahi
e-mail: mlotfollahisohi@uh.edu

D. Mayerich
e-mail: mayerich@uh.edu

© Springer Nature Switzerland AG 2020 69
S. Prasad and J. Chanussot (eds.), Hyperspectral Image Analysis,

Advances in Computer Vision and Pattern Recognition,
https://doi.org/10.1007/978-3-030-38617-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38617-7_4&domain=pdf
http://dx.doi.org/10.1007/978-3-030-38617-7_3
mailto:saurabh.prasad@ieee.org
mailto:fforoozandehshahraki@uh.edu
mailto:lsaadatifard@central.uh.edu
mailto:sberisha@central.uh.edu
mailto:mlotfollahisohi@uh.edu
mailto:mayerich@uh.edu
https://doi.org/10.1007/978-3-030-38617-7_4

70 F. F. Shahraki et al.

4.1 Introduction

In part I, we reviewed Hyperspectral Imaging (HSI) and the emergence of deep learn-
ing models increasingly used in remote sensing and biomedical HSI applications. We
also reviewed the foundations for deep learning as applied to multichannel optical
data, including autoencoders, recurrent neural networks (RNNs), convolutional neu-
ral networks (CNNSs), and convolutional recurrent neural networks (CRNNSs). This
chapter focuses on practical applications of deep learning in both remote sensing
and biomedical HSI. We will cover data collection and preprocessing, parameter
tuning, and practical considerations for selecting appropriate deep learning architec-
tures. This chapter aims to guide future research in deep learning models for remote
sensing and biomedical hyperspectral image analysis.

Significant improvement in HSI sensors (miniaturization, lower costs, etc.) have
increased their effectiveness in a variety of applications including food quality and
safety assessment [1], crime scene analysis [2], archaeology and art conservation [3],
medical applications such as medical diagnosis [4] and image guided surgery [5],
remote sensing applications such as water resource management [6, 7], space surveil-
lance [8], material identification, land cover/use classification [9-11], target detec-
tion [12, 13], and change detection [6, 14, 15].

Before the emergence of deep learning, computer vision relied heavily on hand-
crafted features to capture image texture, morphology, spatial, and spectral properties.
These features were then paired with a standard classifier, such as a support vec-
tor machine (SVM), random forest (RF), decision tree (DT), clustering, AdaBoost,
logistic regression or other traditional approaches. These algorithms, which can pro-
vide multivariate, nonlinear, nonparametric regression or classification have been
extensively studied for remote sensing and biomedical HSI data analysis [6, 16-23].
However, such machine learning approaches that depend on complex hand-crafted
features need a high level of domain knowledge to be extracted properly, and for com-
plicated and irregular domains, extracting such robust features if often a challenging
task. Deep learning methods on the other hand have been shown to be very effective
for such tasks—one reason for this is such models often automatically extract high-
level abstract yet discriminative features from the data. They automatically learn
and construct a unique set of hierarchical high-level features optimized for a given
task. For example, the use of local connectivity patterns between neurons of adjacent
layers and weight sharing schemes make CNNs very effective. Deep learning algo-
rithms have now emerged as a popular choice in HSI data analysis and compared
to conventional machine learning methods that are based on hand-crafted features
extracted from hypercubes, they have been shown to be very effective.

Deep learning is now being deployed for a variety of remotely sensed image
analysis tasks. In [24], the authors introduced deep learning based unsupervised
feature extraction for hyperspectral data classification using autoencoders. They show
that autoencoder extracted features increase accuracy of SVM and logistic regression
backend classifiers and obtain better accuracy than conventional feature extraction
such as PCA. 1D CNNs have been used to leverage spectral features in remote
sensing data [25]. In this method, due to a limited number of training samples,

4 Deep Learning for Hyperspectral Image Analysis ... 71

a network with only one convolutional layer and one fully connected layer was
used. 2D CNNs were applied to the first 10 to 30 principal components (applied
on the per-pixel spectral reflectance features) of the hypercube to learn spectral and
spatial properties of the HSI data for classification [26]. Recent studies have extracted
spatial-spectral features using 3D CNNss, such as [27] to analyze HSI data, where
the authors proposed a dense convolutional network that uses dilated convolutions
[28] instead of scaling operations to learn features at different scales. Recurrent
neural networks (RNNs) which are designed to handle sequential data have also been
investigated as a tool for pixel-level analysis of spectral reflectance features [29-31].
Hyperspectral data are treated as spectral sequences, and an RNN is used to model
the dependencies between different spectral bands. Sometimes, RNNs and CNNS
are used together to make a robust pixel-level classification [31]. First, convolutional
layers can extract middle-level, locally invariant features from the input sequence,
and the following recurrent layers extract spectral-context. There is an alternate
convolutional processing for data that resides on manifolds and graphs, and the
resulting convolutional neural networks are referred to as graph-based convolutional
neural networks (GCNSs). In [9], the authors demonstrate a framework that can use
GCNe s to effectively represent data residing on smooth manifolds, such as reflectance
spectra of hyperspectral image pixels. In GCNs, a convolution operator is defined
based on the graph Fourier transform to perform convolution/aggregation operations
on feature vectors of its neighbors on the graph. A key element to successfully deploy
graph-based networks is construction of an effective affinity matrix. In this work,
the authors proposed a semi-supervised affinity matrix construction that was able to
leverage a few labeled samples along with a large quantity of unlabeled pixels.

For biomedical applications, many traditional artificial neural network (ANN)
architectures have been used for classification and regression problems. However,
they exhibit poor performance on independent testing data [32] due to overfitting
from a large number of available parameters in a hyperspectral image. CNNs have
become an effective deep learning technique for image analysis tasks [33, 34]. They
are the current methods of choice for image classification [35, 36] because they are
effective in exploiting spatial features by enforcing local patterns within the HSI
image. Also, CNNs can extract correlations across the entire spectrum for a given
pixel [37, 38].

Chapter outline—To successfully deploy deep learning architectures for hyperspec-
tral image classification tasks, various domain-specific nuances must be
considered—in this chapter, we seek to provide a comprehensive discussion of prac-
tical applications of deep learning to hyperspectral imaging. Sections4.2 and 4.3
introduce the nature of remote sensing and biomedical HSI data and describe com-
mon data preprocessing strategies. Section4.4 summarizes practical considerations
relative to preparing data and deploying deep learning models such as CNNs, RNNs,
and CRNN for HSI analysis. It also reviews other related works in the remote sensing
and biomedical communities, where such models have been successfully deployed
for HSI analysis. In Sect.4.5, the general architecture and network parameters for
deep learning models are discussed in the context of remote sensing and biomedical
HSI classification tasks. Section 4.6 provides concluding remarks for the chapter.

72 F. F. Shahraki et al.

4.2 Applications of Hyperspectral Imaging

4.2.1 Remote Sensing Case Study: Urban Land Cover
Classification

Hyperspectral imagery is a popular imaging modality for remote sensing applica-
tions, such as for environmental and ecological monitoring, urban land cover clas-
sification and scene understanding, and defense applications. Over the years, sev-
eral annotated datasets have been released within the remote sensing community to
benchmark image analysis algorithms. Table4.1 summarizes the properties of these
datasets, and underscores a key problem one may encounter when applying deep
learning approaches to HSI data—a limited number of annotated samples compared
to that in optical imagery datasets, in addition to other issues such as variations in
spectral content due to atmospheric conditions, sun-sensor-object geometry, varia-
tions in topography, etc. In this chapter, as a use-case, we will use an urban land
cover classification task involving aerial hyperspectral imagery—the University of
Houston 2013 dataset.

University of Houston 2013 dataset (UH 2013)—The 2013 University of Hous-
ton hyperspectral image was acquired over the University of Houston campus and
the neighboring urban area—it was released as part of the 2013 IEEE GRSS Data
Fusion Contest, and is now a well-known dataset in the community (details about
this dataset are available here: http://hyperspectral.ee.uh.edu). The image contains 15
urban land-cover classes and has 144 spectral channels (bands) representing reflected
at-sensor radiance over the 380-1050nm wavelength range. It has a spatial dimen-
sion of 1905 x 349 pixels with a spatial resolution of 2.5 m. The data were acquired
over the University of Houston campus and the surrounding urban area on June 23,
2012 from an aerial sensor (at an average height of 5500 ft above ground), and rep-
resents a land-cover classification task. Figure4.1 shows the true color image of the
UH dataset with the ground truth of the 15 urban land cover classes, and Fig.4.2
represents the corresponding mean spectral reflectance signature of each class. As

Table 4.1 The main available HSI datasets used in remote sensing research community

Dataset #Classes | #Pixels #Labeled | #Bands | Spectral Spatial
samples range (wm) | resolution (m)

UH 2013 (Aerial) [39] 15 664845 15029 144 0.36 —1.05 |25

UH 2018 (Aerial) [40] 20 5014744 | 547807 48 036—-1.05 |1

Indian Pines (Aerial) [41]| 16 21025 10249 | 224 04-25 20

Salinas (Aerial) [42] 16 111104 | 54129 | 227 04-25 3.7

Pavia (Aerial) [43] 9 991040 | 50232 103 0.43-0.85 |13

Kennedy SC (Aerial) [44]| 13 314368 5211 176 04-25 18

Botswana (Satellite) [45] | 14 377856 3248 145 04-25 30

http://hyperspectral.ee.uh.edu

4 Deep Learning for Hyperspectral Image Analysis ... 73

Gesas- Gewis- ;. 2 . 2 Parking Parking Tensis Running
Grasshealthy) 50| ihetic Tree Sl Water | Residentis] | Comemercial | Road Highway | Railway Lat1 Lot Dt Toack

Fig. 4.1 The color image of the University of Houston (UH) 2013 dataset with the ground truth
for 15 classes in different colors

14000 ——— Grass—healthy
Grass-stressed
12000 = Grass-synthetic
— Tree
@ 10000 =0l
c Water
o = Residential
g 8000 Commercial
T 6000 —
w e Railway
© Parking Lot1
A 4000 Parking Lot2
= Tennis Court
2000 ~— Running Track

0
400 500 600 700 8OO 900 1000
Wavelength (nm)

Fig. 4.2 Mean spectral signatures of 15 classes from the University of Houston (UH) 2013 dataset

can be seen from these spectral reflectance signatures, classes that represent different
material properties often exhibit a distinct spectral reflectance response. Deep learn-
ing approaches that leverage spectral information in addition to spatial information
would hence result in superior classification performance.

4.2.2 Biomedical Application: Tissue Histology

The current standard for cancer diagnosis is histopathology [46]. A diagnostic deci-
sion is made after several standardized steps which include (1) biopsy collection, (2)
preprocessing, including fixation, embedding, and sectioning, (3) chemical staining,
and finally (4) expert histological examination under a microscope. Common stains
include hematoxylin and eosin (H&E), Masson’s trichrome, and immunohistochem-
ical stains that label specific proteins such as cytokeratin (Fig.4.3). Pathologists

74 F. F. Shahraki et al.

(c) Cytokeratin

Fig. 4.3 Chemically stained images of patient breast biopsy cores from the BRC961 tissue array
(US Biomax, Inc.). Tissue cores are shown stained with H & E (a), Masson’s trichrome (b) and
using immunohistochemistry to identify cytokeratin expression (c) [47]

leverage morphological details highlighted by these labels to make diagnostic and
prognostic decisions. Since these datasets are relatively new to the community, we
will describe them further and will also provide the typical data processing steps that
are undertaken before analysis.

Histological labels are destructive and non-quantitative, and manual examination
is time consuming, expensive, and prone to error. These challenges limit accuracy and
scalability, making histological testing expensive and prolonging diagnosis. While
computer vision in histopathology is an active area of research [48-50], chemical
labeling is non-quantitative and inconsistent, placing a fundamental limit on cross-
clinical accuracy.

Mid-infrared (IR) spectroscopic imaging is a quantitative alternative to
histopathology, with the ability to extract molecular and morphological information
without chemical stains [51]. The measured spectra represent molecular fingerprints
tied to distinct biomolecules, such as proteins, lipids, DNA, collagen, glycogen, and
carbohydrates. Images of individual bands, given in units of wavenumber (cm~")
provide the spatial distribution of these molecules (Fig.4.4).

Machine learning is frequently applied to spectroscopy and spectroscopic imaging
to differentiate distinct tissue types [52—-69], while recent methods attempt to map
molecular spectra to conventional stains [70, 71] to produce images that can be
interpreted by pathologists without additional training.

4 Deep Learning for Hyperspectral Image Analysis ... 75

1.2
—adipocytes
1 —blood
~——collagen
—epithelium
2 08 myofibroblasts
= ‘ —— Necrosis
£ 06
o
=1
2 04
20
0.2 |

1000 1500 2000 2500 3000 3500 4000
Wavenumber (em 1)

(b) cellular-level biopsy insets (c) class spectra

Fig. 4.4 a Mid-infrared images at band at 1650cm ™" of four breast biopsy cores from different
patients with b high-resolution insets. The false color indicates the magnitude of the absorbance
spectrum in arbitrary units. ¢ Mean spectral signatures of 6 cancer-relevant cell types for a SD data
and b HD data

4.2.2.1 Data Description

Tissue samples in this study were collected using Fourier-transform infrared (FTIR)
spectroscopic imaging. Tissue samples are formalin fixed, paraffin embedded, and
cut into 5 um sections following normal histological guidelines. Tissue sections were
then placed on IR-transparent barium fluoride (BaF2) substrates for imaging. This
differs from traditional glass slides used in standard histopathology. Adjacent sections
were identically cut and placed on standard glass slides for traditional histological
staining. These adjacent sections facilitate annotation of the infrared images by expert
histologists. Chemical stains used in this study include hematoxylin and eosin (H&E),
Masson’s trichrome, and a variety of immunohistochemical stains for cancer-relevant
proteins such as cytokeratin and vimentin.

Two datasets were used in this study. The first dataset is the BRC961 high-
definition breast cancer tissue microarray (TMA) purchased from Biomax US [72].
Images and annotations were provided by the Chemical Imaging and Structures Lab-
oratory [47] and data are available online [73]. The second dataset consists of mouse
kidney (MUSKIDNEY) collected and annotated by the authors using identical imag-
ing methods [71].

4.2.2.2 Data Preprocessing

Both datasets were processed using standardized algorithms [74] for baseline cor-
rection and normalization to the Amide I (1650cm™!) band. The following pre-
processing steps were applied using the open-source Slproc software package [75]:

e Baseline correction: Scattering effects during FTIR imaging distort the acquired
spectra [74]. Common techniques to resolve spectral distortions include

76 F. F. Shahraki et al.

(1) baseline correction, (2) numerical differentiation to calculate first- or second-
order derivatives, and (3) physically based modeling [76]. We use piecewise-linear
“rubber band” baseline correction, which is among the simplest and most popular
methods [77].

e Normalization: Infrared absorbance spectra scale linearly with concentration and
path length. Therefore, molecular signatures must be based on the shape of the
spectrum and independent of scale. Spectra are, therefore, normalized to minimize
the effect of linear scaling between pixels. Common methods include vector nor-
malization, where the spectrum is divided by the square root of its inner product,
and band normalization, where the spectrum is divided by a common band. Nor-
malization to a global protein bad, such as Amide I (~ 1650cm™") or Amide II
(~ 1550 cm™"), is common [74, 78] when classifying baseline-corrected spectra.
Vector normalization is more common when classifying spectral derivatives.

e Dimensionality reduction: Dimensionality reduction is applied to reduce the total
number of parameters optimized during training, mitigating limitations in memory,
processing time, and available training data. Common techniques include principal
component analysis (PCA), linear discriminant analysis (LDA), manifold learning
and their variants [79]. We use PCA for dimensionality reduction, which relies on
the underlying assumption that important features exhibit high variance in the
training data.

4.3 Practical Considerations and Related Work

4.3.1 Practical Considerations

Hyperspectral data are often large images (both due to their spatial dimensions and
the number of spectral channels per pixel). For supervised learning, it is essential to
acquire labeled training data (pixels or frames) to learn the classification model, and
labeled test data (pixels or frames) to validate the classification models before they
are deployed. When constructing such libraries of labeled samples, attention must be
paid to the correlation within and between training and testing samples, the size of
the labeled data pool and the mechanism through which labeled frames are extracted
from large images.

e Creation of training and testing datasets—Ideal training and test sets are com-
pletely disjoint to ensure that there is no bias in reported accuracy. In many remote
sensing tasks, a common approaches extract patches from a single large image—if
training and test patches overlap, results may not be representative. Consequently,
one may get an incomplete picture of the classifier’s ability to generalize to new
data. This may be unavoidable for some applications, but efforts should be made
to minimize overlap between frames. In many works in the remote sensing com-
munity, it is customary to draw training and test samples (e.g., frames) randomly
from the imagery/scene—in this setup, care must be taken to minimize or eliminate

4 Deep Learning for Hyperspectral Image Analysis ... 77

overlap between training and test frames that result. Remote sensing HSI data are
also affected by clouds and other factors, such as sun-sensor-object geometry, vari-
ations in illumination, atmospheric conditions, and viewpoints. When constructing
labeled libraries, efforts should be made to ensure this variability is represented in
the training pool.

e Extracting window patches/frames from HSI data for image-based classifi-
cation—When selecting spatial patch size, it is critical to account for the image
resolution with respect to object sizes. If the spatial resolution is coarse, individual
frames may contain multiple classes. If a large part of the resulting frame con-
tains class information other than the class of the center pixel, it may not result
in features that represent that class, but instead represent the background. When
utilizing frames with 3D filters (such as in 3D CNNs), care should be chosen when
setting the frame size—too large a frame size relative to the size of objects will
result in the spectral direction of the spatial-spectral filters learn from heavily
mixed spectra in the frame. Once a frame size is fixed, one way to further mitigate
this issue is to apply a threshold on the window patch based on occupation (i.e.,
based on the dominant class in that frame). For example, at a threshold of 50%,
we require that at least 50% of pixels in the frame are from the class belonging to
the central pixel, otherwise, we do not include that frame in the dataset. The size
of window patches is related to the resolution of the HSI image, and the size of
convolutional filter should be chosen based on the size of the window patches.

e Size of labeled samples—Sample size plays a key role in deep learning appli-
cations. Deep learning networks such as CNNs often require a large number of
labeled samples to ensure effective learning (and convergence) of the network
parameters. Remote sensing data processing has been challenging because ground
truth is often limited, often difficult and expensive to acquire. However, there exists
abundant unlabeled data that can be leveraged as part of the training. Addressing
this problem is an area of active research exploration within the areas of data
augmentation [80], semi-supervised data analysis [81], and domain adaption [82].
These are discussed in Chap. 5.

e Disjoint correlations across bands in absorbance spectra—Chemical com-
pounds are composed of molecular bonds represented at widely varying absorbance
bands. Correlations between peaks in the spectral signature are, therefore, min-
imally dependent on distance in the spectrum. As a result, convolutional filters
trained in the spectral dimension are of limited use in infrared spectroscopy. How-
ever, dimensionality reduction can be useful for capturing these correlations.

4.3.2 Related Developments in the Community

The low spatial resolution provided by commercial FTIR imaging systems has gen-
erally limited the application of deep learning approaches, which often rely on spatial
filters for learning. Consequently, most IR classification approaches have leveraged
spectral-level algorithms such as Naive Bayes classification [53] and Random Forests

http://dx.doi.org/10.1007/978-3-030-38617-7_5

78 F. F. Shahraki et al.

[63, 67]. However 1D CNNs have been tested for spectral classification [83], and
more recently 2D CNNs have demonstrated significant performance improvements
for data collected using new high-definition imaging systems [69].

Deep learning has been more routinely applied in the remote sensing community
using a variety of newer architectures:

e CNNs: Various CNN models have been designed for remote sensing HSI data clas-
sification and regression. In [84, 85], the authors investigate classification from
pixel-level fusion [86] of HSI and Light Detection and Ranging (LiDAR) data
using CNNs. They extracted material information from HSI data and information
about the topography of objects in the scene from LiDAR data, and improved
the accuracy of the CNN model by 10% compared to classification using only
HSI data. In [87], the authors fuse both HSIT and LiDAR data features at the level
of image patches by introducing a two-stream densely connected convolutional
neural network (DenseNet) architecture, which connects all preceding layers to a
subsequent layer in a feed-forward manner. The first CNN stream exploits spatial
and spectral features of HSI data using a 3D CNN model, and the second stream is
responsible for extracting spatial information from LiDAR data using a 2D CNN.
Following this, a fully connected network with two layers is employed to fuse
high-level output feature maps of the two streams and achieve the complemen-
tary feature which is used for scene classification. In [88], the authors proposed a
two-branch network to fuse Lidar and HSI information for classification. In this
research work, the first branch which is responsible for extracting features from
HSI data is a dual-tunnel CNN comprised of (1) 2D CNN tunnel which is responsi-
ble for extracting spatial features of HSI, and a (2) 1D CNN tunnel which extracts
spectral features from the HSI pixels. The second branch is a CNN architecture
which uses the LiDAR data to extract spatial features. The output featuremaps
of each branch are combined to generate fused features which are then fed into
a fully connected layer for classification. In [89], the authors propose a cascade
network inspired by ‘densenet’ which is designed to combine features from dif-
ferent layers with a shortcut path. Furthermore, an asynchronous training strategy
and a fine-tuning technique are adapted in the training phase. A deformable CNN
approach—deformable HSI classification networks (DHCNet) is proposed in [90].
In regular CNNs, the sampling locations of the convolutions are fixed grids. DHC-
Net introduces a deformable convolutional sampling location inspired by [91] to
adaptively adjust the convolution kernel and pooling operators of CNNs based on
object properties in the data. Compared to regular 2D CNNs, DHCNet improved
the overall accuracy of UH 2013 and Pavia datasets by approximately 1%. In[92], a
convolutional neural network is proposed where convolutional filters are expressed
as linear combinations from a predefined library of sparse “basis” filters that are
inspired by shearlets [93]. The motivation behind this design strategy is to impose
a geometric sparsity constraint on the convolutional filters, enabling efficient and
effective feature learning.

e RNNs: RNNs process HSI data at a pixel level to exploit the intrinsic sequen-
tial properties encoded in spectral reflectance signatures of hyperspectral pixels,

4 Deep Learning for Hyperspectral Image Analysis ... 79

including spectral correlation and band to band variability [29]. In [29], the authors
classify HSI datasets by introducing a novel RNN with a specially designed activa-
tion function and a modified gated recurrent unit (GRU) [94]. The newly introduced
activation function in this paper is called “parametric rectified tanh (PRetanh)”
which generalizes the rectified unit for the deep RNN and for this activation func-
tion higher learning rates (without the risk of divergence) were observed. GRU
is similar to a long short-term memory (LSTM) with forget gates but has fewer
parameters than LSTM, as it lacks an output gate [94]. Their methods exhib-
ited a 10% improvement in classification accuracy compared to regular RNN and
LSTM-based networks which use regular activation functions. A cascade RNN
using GRUs was proposed in [30] to learn features of HSI images. In their model,
they divide each pixel into different spectral sections, then consider each section
as a sequence and feed it into an RNN layer for feature learning. Then, the learned
features from all the sections are concatenated and the entire sequence is fed
into another RNN layer for complementary feature learning. At the end of the
network, the output of the second stage RNN is connected to a softmax layer
for classification. The initial RNN layers aim to remove redundant information
between adjacent spectral bands, and the subsequent RNN layer is applied to learn
complementary information from nonadjacent spectral bands.

e CRNNs: In [31], the authors take advantage of both convolutional and recurrent
networks together to classify remote sensing HSI data. This method is composed
of a few convolutional layers followed by a few recurrent layers. The convolutional
layers extract middle-level, locally invariant features from the input sequence, and
pooling layers make the sequence shorter by downsampling. Depending on the
data properties, e.g., number of spectral channels, RNNs can be replaced by other
variants such as LSTM or GRU which result in “CLSTM” and “CGRU” models,
respectively. In [30], the authors designed a Cascade RNN for HSI classification,
they also proposed a CRNN-based model based on 2D CNN and RNN named
“spectral-spatial cascaded RNN” model. They first split the small cube of the
HSI data across the spectral domains, and then feed spatial properties of each
band into several convolutional layers to learn spatial features which result in a
feature sequence. Then, this sequence is divided into some subsequences, which
are subsequently fed into the first-layer RNNSs, respectively, to reduce redundancy
of subsequences. Then, the outputs from the first-layer RNNs are combined to
generate the sequence fed into the second-layer RNN to learn complementary
information. Because it is deep and difficult to train, they used a transfer learning
method to train convolutional layers separately and after fixing the weights of CNN
part, they train the two-layer RNNs. At the end, the whole network is fine-tuned
based on the learned parameters.

80 F. F. Shahraki et al.

4.4 Experimental Setup

In this section, we present the deep learning architectures used for HSI classification
in this chapter. Our objective of the following discussion is to present configurations
that lead to discriminative models for HSI classification. The design choices we make
for both the remote sensing and tissue histology datasets are empirically determined
and will need to be adjusted when such models are applied to a different dataset,
if the data properties change, but our goal here is to demonstrate the application of
these models to two different use-cases for HSI analysis.

Notations used to describe deep learning models:

e “conv (receptive field size)—(number of filters)” denotes convolutional layers.
e “recu (feature dimension)” denotes recurrent layers.
e “max (pool size)” denotes pooling operation.

4.4.1 CNNs

CNNs for HSI Analysis in Remote Sensing—In this chapter, we study 1D, 2D,
and 3D CNNs for multi-class hyperspectral image classification. In our experimen-
tal setup, 1D CNN has four convolutional layers (with pooling layers), 2D CNN has
three convolutional layers (with pooling layers), and 3D CNN contains two convo-
lutional layers (with pooling layers)—these parameters were experimentally deter-
mined. Table4.2 represents the summary of network configurations of 1D, 2D, and
3D CNN:ss, respectively. We employ principal component analysis (PCA) applied on
the spectral reflectance features to reduce the spectral dimensionality as a preprocess-
ing for 2D CNNss. For pixel-based classification (1D CNNs) and 3D CNN models, the
entire spectral reflectance signature is needed and hence PCA is not deployed with
these. We implemented all CNN models using the Keras framework [95]. Experi-
ments are carried out on a workstation with an NVIDIA(R) GeForce TitanX GPU and
3.0 GHz Intel(R) Core-i7-5960X CPU. For all CNN architectures, a Xavier uniform
weight initializer [96] is used. For mini-batch gradient-based learning, the batch size
is 128 for all the models, and the learning rate is set to 10~* for 1D CNN and 2D
CNNss, and for 3D CNNe, it is set to 107>, Based on the spatial resolution of the UH
2013 dataset, a window patch size of 5 x 5 is used for 2D and 3D CNN.

CNNs for HSI Analysis in Tissue Histology—Three different structures of the
CNN network (1D, 2D, and 3D CNN) are used to classify the hyperspectral biomed-
ical dataset. We used the first 372 bands of the dataset to feed to 1D and 3D
CNN models. In 2D implementation, we first applied PCA to extract spectral
information to 16 bands and then fed them to the 2D CNN model. All CNNs
are implemented using stochastic gradient descent (SGD) on Keras. We ran these
experiments on a workstation equipped with NVIDIA Tesla P100 GPU and Intel
Xeon E5-2680v4 CPU. The input sample size rises significantly in 3D structure

4 Deep Learning for Hyperspectral Image Analysis ... 81

Table 4.2 Summary of network configurations for 1D, 2D, and 3D CNN architectures used for
classification of the UH 2013 dataset. The output of all the networks are fed into a fully connected
layer followed by a softmax function. conv(x)-X: convolutional layer; x: receptive field size; X:
number of filters; max(p): maxpooling layer; p:pool size

CNN 1D CNN 2D CNN 3D

conv(3) — 32 conv(3 x 3) — 32 conv(3 x 3 x 3) —32
max(2) conv(3 x 3) — 32 conv(3 x 3 x 3) — 64
conv(3) — 32 max(2,2) max(2,2,2)

max(2) conv(3 x 3) — 64

conv(3) — 64 max(2,2)

max(2)

conv(3) — 64

max(2)

Table4.3 1,2, and 3D CNN structures that are implemented to classify the hyperspectral biomedi-
cal dataset. The output of all networks are flattened to feed to a fully connected layer and then another
fully connected layer followed by a softmax layer predicts the classification results. conv(x)-X: con-
volutional layer; x: receptive field size; X: number of filters; max(p): maxpooling layer; p:pool size

CNN 1D CNN 2D CNN 3D

conv(13) — 16 conv(3 x 3) — 32 conv(3x3x7)—16
max(2) max(2,2) conv(3x3 x7)—32
conv(l1l) — 32 conv(3 x 3) — 64 max(1,1,2)

max(2) max(1,1) conv(3 x 3 x5) — 64
conv(9) — 64 conv(3 x 3) — 64 max(2,2,2)

max(2) max(2,2) conv(3 x 3 x 5) — 64
conv(7) — 128 max(2,2,2)

max(2)

conv(5) — 256

max(2)

conv(3) — 512

max(2)

(AD:(1 x1x372) —2D : (33 x 33 x 16) —3D : (33 x 33 x 372)) and together
with the 3D network structure causes memory limitation. The batch size for 1D and
2D models set to 512 while the 3D batch size is 8. Table4.3 defines CNN networks
for implementing 1D, 2D and 3D CNNs.

82 F. F. Shahraki et al.

4.4.2 RNNs

RNN:s for HST Analysis in Remote Sensing—Table 4.4 depicts the RNN architec-
ture studied here for the UH 2013 dataset. The model is implemented in Keras and
Xavier uniform weight initializer is used. The batch size is 128, and the learning rate
is 1074, Experiments are carried out on a workstation with an NVIDIA(R) GeForce
TitanX GPU and 3.0 GHz Intel(R) Core-i7-5960X CPU.

RNN:s for HSI Analysis in Tissue Histology We implemented a 1D recurrent neural
network to study the sequential correlations in hyperspectral pixels of the biomedical
dataset. The RNN is implemented using stochastic gradient descent (SGD) on Keras.
We ran this experiment on a workstation equipped with NVIDIA Tesla P100 GPU and
Intel Xeon E5-2680v4 CPU. The input sample size is (1 x 1 x 372) and the batch
size is 512. Table 4.5 illustrates the architecture of the RNN network implemented
for classification.

RNNs often have a smaller number of parameters than CNNs, but they are
designed for very different types of analysis tasks. Where they can be successfully
applied, in the case of limited number of samples, they will be less prone to conver-
gence issues during training compared to CNNs [30]. Modern recurrent networks,
such LSTM and GRU are designed to capture very long-term dependencies embedded
in sequence data. In long-term sequences, the training procedure may face difficulty
since the gradients tend to either vanish or explode [97]. By using gates in GRU and
LSTM, the errors which are backpropagated through the sequence and layers can
be preserved, enabling the recurrent network to learn the sequential information in
spectral data without the risk of vanishing gradient.

Table 4.4 Summary of network configuration for RNN architecture used for UH 2013 dataset
classification. The output of the network is followed by a softmax function. recu-D:recurrent layer;
D:feature dimension

RNN
recu-128 recu-256 recu-512

Table 4.5 The RNN network architecture for the tissue histology application. The output of the
network is followed by a fully connected layer with the softmax activation function. recu-D:recurrent
layer; D:feature dimension

RNN
recu-1024 recu-1024 recu-1024

4 Deep Learning for Hyperspectral Image Analysis ... 83

4.4.3 CRNNs

CRNNs for HSI Analysis in Remote Sensing—Convolutional and recurrent lay-
ers can be combined in a “Convolutional Recurrent Neural Network (CRNN)” [31].
The motivation behind deploying 1D CNN filtering layers prior to RNN layers is
for the CNN layers to better condition the spectral reflectance signature, alleviating
spectral variability and noise before the backend RNN learns the sequence infor-
mation. Table 4.6 represents the summary of network configurations of CRNN used
for the classification of the UH 2013 dataset. The model is implemented in Keras.
Experiments are carried out on a workstation with an NVIDIA(R) GeForce TitanX
GPU, and 3.0 GHz Intel(R) Core-i17-5960X CPU. The weights are initialized Xaviar
unifrom, the batch size is 128, and the learning rate is 1074,

CRNNs for HSI Analysis in Tissue Histology—We implemented a 1D CRNN
model (1D CNN followed by recurrent layers) to study the spectral dependencies in
the tissue histology dataset. CRNN is implemented using stochastic gradient descent
(SGD) on Keras. We ran this experiment on a workstation equipped with NVIDIA
Tesla P100 GPU and Intel Xeon E5-2680v4 CPU. The input sample size is (1 x 1 x
372) and the batch size is 512. Table 4.7 illustrates the CRNN architecture used for
this task.

Denoising and subsampling the HSI sequence via a 1D CNN before feeding it into
recurrent can potentially accelerate the backpropagation through the recurrent layer
and reduce the problem of vanishing gradients in gradient-based learning methods.
Although not studied in this chapter, one can also combine 2D CNNs with RNNs
where the 2D CNNs apply spatial filters on the images per channel, following which
an RNN layer learns the underlying spectral information. In [30], the authors pro-

Table 4.6 Summary of network configurations for CRNN architecture used for UH 2013 dataset
classification. The output of the network is followed by a softmax function. conv(x)-X: convolutional
layer; max(p): maxpooling layer; recu-D: recurrent layer; x: receptive field; X: number of filters;
D: feature dimension; p:pool size

CRNN

conv(6)-32

‘ max(2) ‘ conv(6)-32 ‘ max(2) ‘ recu-256 ‘ recu-512

Table 4.7 The CRNN architecture used for the tissue histology task. The output layer is a fully
connected layer with the softmax activation function. Right arrows indicate the flow of the network.
conv(x)-X: convolutional layer; max(p): maxpooling layer; recu-D: recurrent layer; x: receptive
field; X: number of filters; D: feature dimension; p: pool size

CRNN

conv(13)-16 | max(2) — conv(11)-32 | max(2) — conv(9)-64 — | max(2) —
— —

conv(7)-128 | max(2) — conv(5)-256 | max(2) — recu-256 — recu-512
— —

84 F. F. Shahraki et al.

posed a spectral-spatial cascaded RNN model that significantly reduced the noise
and outliers, and retained more boundary details of objects compared to a 2D CNN.
Since a 2D CNN does not exploit spectral information, its performance is not as it
could be were spectral information leveraged as well—the spectral-spatial cascaded
RNN addressed this by combining spatial CNNs with spectral RNNs.

4.5 Quantitative and Qualitative Results

4.5.1 Remote Sensing Results

Data Setup—Several existing works that deal with hyperspectral image classifica-
tion validate classification performance by randomly drawing training and testing
samples from the available pool of labeled samples. We contend that this may not
provide rigorous insights on the discriminative potential of a machine learning model,
because often with hyperspectral imagery, when training and test pixels are drawn at
random, one has highly correlated frames in both the training and testing pools (e.g.,
frames that are very close to each other in space). This can lead to an unintentional
bias in the classification performance that is reported which does not highlight the
underlying generalization ability of the machine. To depict the sensitivity of models
to the manner in which training and testing data are created, in this chapter, we sys-
tematically present remote sensing results with two variants of the UH 2013 dataset.
In one variant, training and test data are drawn at random from the available pool of
labeled samples, as is commonly done in the community, and in another variant, we
prepare a disjoint dataset. Although this dataset is also drawn at random, we impose
constraints ensuring that the training and testing frames do not impart a bias in the
analysis.

Random Dataset—For image-level data analysis, randomly selecting samples from
asingle scene (e.g., aremotely sensed hyperspectral image) can result in high overlap
and correlations between the extracted window patches. In this work, the samples
are selected from the labeled pixels shown in Fig.4.5b, and Table 4.8 represents the
number of labeled samples extracted from the whole hyperspectral image per class.
For preparing this “random dataset”, first all the labeled pixels and their neighbor-
hood pixels are extracted as window patches with a specific size (5 x 5 in this book
chapter). Following this, patches are randomly split into training and test sets.

Disjoint Dataset—To prepare our “disjoint dataset”, we seek to collect samples from
different labeled regions of the hyperspectral image to minimize or in the best sce-
nario avoid overlaps between test and train patches. We also consider window patch
occupation of each sample by defining a threshold value depicting the percentage
of a certain class that is occupied in the patch. If a large part of the window patch
contains class information other than the class of central pixel (the pixel to be classi-
fied), it may not carry valuable information from a training and testing perspective,

4 Deep Learning for Hyperspectral Image Analysis ... 85

(a) labeled pixels selected for disjoint datasets with test data (blue) and train data (red)

(b) all labeled pixels

Fig. 4.5 Labeled pixels extracted from UH 2013 dataset

especially for 3D filters like 3D CNN which analyze spatial and spectral information
simultaneously. In this work, the window patch size for the UH datasetis setto 5 x 5
and the threshold is 50% which means 50% of the window patch pixels should have
the same class label as that of the center pixel (and hence the label of the patch). After
applying this constraint on window patch occupation and considering the minimum
overlap between train and test samples, the pixels which are selected for the disjoint
dataset are shown in Fig.4.5a. To prepare our disjoint dataset, we seek to eliminate
the overlap, but in some classes where we have a very small number of labeled
samples, particularly classes that are sparse and only exist in one or a few regions
in the scene (e.g., the grass-synthetic class), there may be a small overlap between
window patches at the margins. All the pixels which are used for disjoint dataset are
shown in Fig.4.5a. Compared to the size of the original labeled samples, the sample
size for the disjoint dataset decreases significantly because of the constraints that
are imposed. Table4.8 shows the number of samples per each class in the disjoint
dataset.

We compare the performance of the deep learning models discussed above and
compare it to that of several alternate machine learning techniques that have been
commonly deployed for such tasks.

Experiment 1—Choosing the minimum training sample size which is required to
train a model properly is difficult because it depends on various aspects of the exper-
iment such as the complexity of the classification task, complexity of the learning
algorithm, number of classes, number of input features, number of model parame-
ters, use of batch normalization, pretrained weights in transfer learning, and so on.
Often, a reasonable strategy is hence to determine this via empirical studies. In this
experiment, we study the effect of training size on the classification performance. To
show how training size can affect the accuracy, we run the experiments on disjoint
dataset for training size ranging from 1 sample per class (an extreme case) to 100

86 F. F. Shahraki et al.

Table 4.8 Disjoint and random datasets extracted from UH 2013 dataset. (left) Disjoint—5 x 5
window patch size—50% occupation. (right) Random—all labeled pixels for each class

Size
Class Train Test Class Size
1-Grass-healthy 417 609 1-Grass-healthy 1251
2-Grass-stressed 171 575 2-Grass-stressed 1254
3-Grass-synthetic 176 489 3-Grass-synthetic 697
4-Tree 155 311 4-Tree 1244
5-Soil 565 298 5-Soil 1242
6-Water 111 90 6-Water 325
7-Residential 209 266 7-Residential 1268
8-Commercial 239 379 8-Commercial 1244
9-Road 234 292 9-Road 1252
10-Highway 355 517 10-Highway 1227
11-Railway 393 472 11-Railway 1235
12-Parking 317 548 12-Parking 1233
13-Parking 113 142 13-Parking 469
14-Tennis 164 222 14-Tennis 428
15-Running 154 411 15-Running 660
overall 3773 5621 overall 15029

samples per class, and fixed number of 80 samples per class for testing and compare
the performance. We have 15 classes, hence the total number of training samples
varies from 15 to 1500 samples, and the test dataset contains 1200 samples. For the
random dataset, due to availability of more samples, the number of training samples
are varied from 1 to 200 per class.

As can be seen in Fig.4.6a, in general, increasing the sample size increases the
performance of all methods, and most methods converge at or over 100 training
samples per class. Among the CNNs, 2D CNN performs the best. Further, note the
significant drop in performance of all methods when we switch from the random to
disjoint dataset, highlighting bias embedded in the classification performance that
is reported with the randomly sampled dataset without any constraints to minimize
overlap. The randomly sampled results, although high, do not represent the true
generalization ability of the learned models.

Experiment 2—Next, we study the effect of the depth of the network (number of
convolutional and/or recurrent layers) on the classification accuracy. There is no
deterministic way to ascertain the network depth/complexity—this must be deter-
mined empirically for the datasets at hand. The depth of the network will be a function
of the available quality and quantity of the labeled training data, and the complexity
of the underlying deep features that need to be extracted to result in a discriminative
feature space.

4 Deep Learning for Hyperspectral Image Analysis ... 87

0.9
0.8
s> 07
®
5 06 ——1D-CNN - 59,823
Q
] ——2D-CNN - 70,543
< 05
——3D-CNN - 9,429,135
0.4 ——CRNN - 481,807
03 ——RNN - 516,623
“ 1 10 20 30 40 50 60 70 80 90 100
Number of samples
(a) disjoint data sets
1.1
1
z 09
g 08 ——1D-CNN - 59,823
g o ——2D-CNN - 70,543
< 06 ——3D-CNN - 9,429,135
' ——CRNN - 481,807
0.5
——RNN - 516,623
0.4

1 20 40 60 80 100 120 140 160 180 200
Number of samples

(b) random data sets

Fig. 4.6 Effect of training size on the deep learning networks accuracy for both random and disjoint
datasets extracted from UH 2013

Table4.9(top) and Table4.9(bottom) show the effect of depth of the network on
the classification accuracy for deep learning models for both the disjoint and random
datasets, respectively. To have a fair comparison, we fixed the training and testing
sizes for all the models. The training sizes are 100 samples per class and 200 samples
per class for disjoint and random datasets, respectively. The testing size is also fixed
to 80 samples per class. Based on these tables, we can conclude that increasing
the number of layers does not improve the classification performance all the time.
For example, in the 2D CNN model for disjoint dataset, by increasing the number of
convolutional layers, the classification performance drops. It indicates that due to the
small number of training samples (which is a common occurrence in remote sensing
tasks) and classes that may not be very spatially complex, we do not need a deep
network and the number of learnable parameters in the model (which is determined by
the number of layers and the number of units per layer) should be decreased to prevent
overfitting. Table4.10 represents the number of trainable parameters for models as a
function of depth. We notice a correlation between the number of parameters to the
performance of the network. For example in Table4.9(top), 2D CNN model with 1
convolutional layer works the best for disjoint dataset because it has the least number

88 F. F. Shahraki et al.

Table 4.9 Effect of the depth (number of convolutional layers) of the deep learning networks on
classification accuracy % (std) for both disjoint and random datasets extracted from UH 2013.(top)
Disjoint datasets—100 samples per class for train and 80 samples per class for validation. (bottom)
Random datasets—200 samples per class for train and 80 samples per class for validation

Layer
Method 1-conv 2-conv 3-conv 4-conv
1D CNN 70.34(1) 71.39(1) 69.55(1) 65.23(0.5)
2D CNN 78.86(0.8) 78.22(0.4) 77.61(0.4) 74.97(0.3)
3D CNN 72.11(0.7) 73.86(1) 72.77(0.2) 72.25(0.5)
1-recu 2-recu 3-recu
RNN 51.96(4) 66(2) 67.36(1)
1-conv 1-recu 2-conv l-recu 1-conv 2-recu 2-conv 2-recu
CRNN 65.99(0.2) 67.33(1) 69(2) 69(0.3)
Layer
Method 1-conv 2-conv 3-conv 4-conv
1D CNN 91.01(0.2) 92.76(0.6) 91.74(0.9) 90.53(1.5)
2D CNN 98.33(0.3) 99.41(0.4) 99(0.3) 97.75(0.7)
3D CNN 91.8(0.1) 94.91(0.5) 95.19(0.1) 95(0.5)
1-recu 2-recu 3-recu
RNN 69.49(5) 85.61(3) 91.80(0.6)
1-conv 1-recu 2-conv l-recu 1-conv 2-recu 2-conv 2-recu
CRNN 83.42(1.2) 87.58(0.5) 91.96(0.4) 92.66(0.4)

of trainable parameters among all the network depths. Thus, 100 training samples per
class which are not strongly correlated to the test data can show the best performance
in a model with the smallest number of parameters. Also, we can see in Table4.10
and Table 4.9(bottom) that the model with depth of 2 convolutional layers has more
number of parameters than that with 1 convolutional layer, but the accuracy improves
in depth 2 for the random dataset. This indicates that the more number of training
samples which are highly correlated a deeper network may appear to work better.
We note that in the extreme case, accuracies from a randomly drawn training and
test dataset would be similar to training accuracies due to the high overlap between
the training and test patches, and hence caution must be exercised when drawing
conclusions from such a dataset— although it may seem based on the results with
the random dataset that a deeper network is preferred, we can see that does not hold
true when the training and test data are more carefully crafted to minimize biases.

Figure4.7 represents the validation and training loss for 2D CNN models as a
function of different network depths for the disjoint dataset. We can see that by
increasing the depth of the network, the validation loss is increasing which shows the
models tend to overfit, and the fluctuation in the deeper network with 4 convolutional
layer shows the model is not suitable for this amount and complexity of training
samples.

4 Deep Learning for Hyperspectral Image Analysis ...

89

Table 4.10 Number of trainable parameters in the deep learning models with various depths

Layer
Method 1-conv 2-conv 3-conv 4-conv
1D CNN 148,687 78,127 84,335 59,823
2D CNN 38,511 47,823 70,543 59,375
3D CNN 7,374,799 9,429,135 5,402,959 2,589,199
1-recu 2-recu 3-recu
RNN 18,575 119,055 516,623
1-conv 1-recu 2-conv 1-recu 1-conv 2-recu 2-conv 2-recu
CRNN 78,063 84,239 475,631 481,807

— train
— validation EL

2
3 15
10
o0s
0.0
o 25 50 75 100 125 150 175 200
Epoch
(a) Loss of 1-convolutional layer model
— tramn
33 —— validation 30 1
0
2.5
2.5
2.0
w 2.0]
§ 815

o 25 50

75 100 125

150 175

—— train
— validation

o 25 50 75

100 125 150 175 200

Epoch
(b) Loss of 2-convolutional layer model

0 25 50 7S

100 125 150 175

Epoch
(c) Loss of 3-convolutional layer model

Epoch
(d) Loss of 4-convolutional layer model

Fig. 4.7 Loss and accuracy for the training and validation sets during the training of 2D-CNN with
different depths (number of convolutional layers) on the disjoint dataset

90 F. F. Shahraki et al.

Experiment 3—Since the dataset is highly unbalanced (as our several datasets in
remote sensing applications), to compare the classification performance of deep
learning architectures for each class of the dataset, we run our experiments with
the same number of training samples for each class. The results are shown in
Table4.11(top) and Table 4.1 1(bottom) for disjoint and random datasets, respectively.
As can be seen Table4.11(top), spatial properties of the commercial class helps in
classification and improves the accuracy significantly. From Table4.11(bottom), in
some classes such as residential, railway, and parking lot 2, spatial proprieties provide
discriminative information, hence favoring 2D and 3D CNNs. Compared to 1D CNN
and 2D CNN which exploit spectral and spatial information of HSI data respectively,
applying 3D CNN results in improved accuracy for grass-synthetic and commercial.
This shows that exploiting both spatial and spectral information simultaneously can
be helpful for classes that have distinct spectral and spatial properties. For most of
the classes, CRNN achieved the better performance compared to 1D CNN which
indicates that by combining convolutional and recurrent layers, CRNN model is able
to extract more discriminative feature representations by exploiting dependencies
between different spectral bands. From the CRNN performance, it can also be seen
that the recurrent layers can extract the spectral dependencies more effectively from
the middle-level features provided by convolutional layers.

Experiment 4—Window patch size for patch-based classification For patch
(frame) -based classification methods like 2D and 3D CNNs, the size of window
patches extracted from the hyperspectral image depends on the spatial resolution of
the image and the size of the classes being analyzed. For high-resolution images, one
can extract large patches to extract spatial contextual information as long as there are
enough pixels of the class of interest (the center pixel, if patches are extracted around
a center pixel) in each patch. In this experiment, we show the effect of varying win-
dow patch size on the classification performance for the 2D CNN model. Number of
training samples for random and disjoint datasets are 200 samples per class and 100
samples per class, respectively. The number of test samples is 80 samples per class.
As can be seen in Fig. 4.8, increasing only the window patch size while keeping the
rest of configuration unchanged results in an improvement of classification accuracy
for the random dataset, and 9 x 9 window patches result in the best classification
result for this model. This can be misleading, because as the patch size is increased,
there is, in fact, more overlap between test and train samples, particularly when the
data are randomly drawn from the scene, which results in a biased estimate. As is
observed from Fig.4.8, for the disjoint dataset, there is a significant drop in per-
formance compared to the random dataset. This underscores the need for a careful
selection of training and test data when determining hyperparameters such as patch
size.

Experiment 5—classification map—The classification maps when using the dif-
ferent classification approaches discussed in this chapter are shown in Fig.4.9 and
Fig.4.10 for disjoint and random datasets respectively. The models used to generate
these maps were trained using 200 samples per class and 100 samples per class for
the random and disjoint datasets, respectively. It can be seen in Fig.4.9 that when
disjoint training and test data are used, the models struggle to generalize, particu-

4 Deep Learning for Hyperspectral Image Analysis ... 91

Table 4.11 Per class classification accuracy % on deep learning models for disjoint and random
dataset extracted from UH 2013 dataset. (top) Disjoint dataset—100 sample per class for train and
80 samples per class for test. (bottom) Random dataset—200 sample per class for train and 80
samples per class for test

Class Method

IDCNN |2DCNN |[3DCNN |CRNN RNN
1-Grass-healthy 81.42 70.25 73.75 74.28 75.71
2-Grass-stressed 74.28 80 73.75 81.42 75.71
3-Grass-synthetic 100 99.25 97.5 100 100
4-Tree 57.14 90.5 90 88.57 90
5-Soil 82.85 99.5 73.75 87.14 58.57
6-Water 94.28 90.75 87.5 98.57 87.14
7-Residential 45.71 70.25 62.5 38.57 44.28
8-Commercial 2.85 59.75 58.75 4.28 10
9-Road 61.42 32 57.5 52.87 50
10-Highway 44.28 52.75 61.25 50 51.42
11-Railway 57.14 70.5 51.25 72.85 64.28
12-Parking Lot 1 1.42 50.1 15 18.57 21.42
13-Parking Lot 2 71.42 90 93.75 77.14 72.85
14-Tennis court 98.57 100 98.75 100 100
15-Running track 94.28 90.75 98.75 95.71 90
Average accuracy of all classes 64.47 76.42 7291 69.33 66.1
Class Method

IDCNN |2DCNN |[3DCNN |CRNN RNN
1-Grass-healthy 91.42 100 100 98.57 97.14
2-Grass-stressed 98.57 100 98.75 97.14 92.85
3-Grass-synthetic 100 99.5 100 98.57 100
4-Tree 95.71 99.75 98.75 97.14 100
5-Soil 95.71 100 100 98.57 97.14
6-Water 97.14 100 93.75 95.71 94.28
7-Residential 78.57 98.75 95 90 78.57
8-Commercial 92.85 90.5 92.5 95.71 92.85
9-Road 85.71 96.75 96.25 88.57 84.28
10-Highway 77.14 99.75 86.25 90 92.85
11-Railway 77.14 100 90 87.14 87.14
12-Parking Lot 1 84.28 99.5 87.5 88.57 97.14
13-Parking Lot 2 55.71 100 92.5 70 77.14
14-Tennis court 100 100 100 98.57 98.57
15-Running track 95.71 100 100 98.57 97.14
Average accuracy of all classes 88.37 98.96 95.41 92.85 92.47

92

Fig. 4.8 Effect of the size of
window patches extracted
from UH 2013 hyperspectral
image on classification
accuracy for both disjoint
and random datasets

90 -
85 -

Accuracy

80
75

70 -
5x5

7x7 9x9 11x11 13x13

Window patch size

F. F. Shahraki et al.

B Random dataset

M Disjoint dataset

Table 4.12 Experimental classification results for various traditional machine learning models on

random dataset extracted from UH 2013 dataset

Method
Class SVM Decision Random forest Naive bayes | KNN
tree

1-Grass-healthy | 94.28 94.28 95.71 84.28 100
2-Grass-stressed | 88.57 91.42 95.71 74.28 98.57
3-Grass-synthetic | 95.71 94.28 97.14 95.71 98.57
4-Tree 91.42 88.57 90 84.28 91.42
5-Soil 91.42 95.71 97.14 84.28 97.14
6-Water 81.42 85.71 90 80 88.57
7-Residual 50 70 75.71 32.85 68.57
8-Commercial 67.14 74.28 88.57 30 82.85
9-Road 35.71 58.57 70 78.57 67.14
10-Highway 47.14 75.71 88.57 1 87.14
11-Railway 37.14 60 78.57 40 77.14
12-Parking Lot 1 | 47.14 74.28 77.14 20 77.14
13-Parking Lot2 | 57.14 57.14 41.42 4.28 40
14-Tennis court 97.14 98.57 97.14 92.85 100
15-Running track |98.57 97.14 94.28 91.42 95.71
Average 71.99 81.04 85.14 59.52 84.66

larly because there are no representative training samples in the shadow region (c.f.
Fig. 4.9). Black rectangles in these maps highlight the classification performance in
specific areas for different models where we want to highlight specific trends with
respect to improved classification with CNN/CRNN and their variants.

Experiment 6—Baselines Table4.12 represents experimental results for random
dataset computed based on some traditional machine learning methods. As it is
clear, compared to traditional machine learning methods listed in the Table4.12,
deep learning approaches show better performance.

4 Deep Learning for Hyperspectral Image Analysis ... 93

(g) Labeled pixels - colormap

Fig.4.9 Classification maps of UH 2013 hyperspectral image computed from deep learning models
trained by disjoint dataset extracted from UH 2013; All the models are trained using 100 samples
per class

94 F. F. Shahraki et al.

(g) Labeled pixels - colormap

Fig. 4.10 Classification maps of UH 2013 hyperspectral image computed from deep learning
models trained by random dataset extracted from UH 2013; All the models are trained using 200
samples per class

4 Deep Learning for Hyperspectral Image Analysis ... 95

100%
90%
80%
70%
60%

50%

mean test accuracy

40%

30%

———CNN1D ———CNN2D RNN ———CRNN CNN3D

20%

1 4 16 64 256 1024 4096 16384 65536
training sample per class

Fig. 4.11 The effect of the number of training samples on the test accuracy is indicated. The mean
accuracy of three trained networks for each experiment is reported

4.5.2 Biomedical Results

4.5.2.1 Tissue-Type Classification

Most methods of FTIR classification leverage only individual pixels (spectra). Many
traditional unsupervised and supervised approaches have been applied to FTIR
data, including as k-means clustering [98], hierarchical cluster analysis (HCA) [99],
Bayesian classifiers [55, 66, 100], random forest classifiers [63, 66, 67], support vec-
tor machines (SVMs) [66] and linear discriminant analysis [101], and ANNs [32, 66,
102]. Deep learning has not been fully explored due to the lack of spatial detail intro-
duced by most FTIR imaging instruments, however recent advances in instrument
resolution allows the application of CNNs [69, 71].

Experiment 1—The effect of the number of training samples on accuracy is stud-
ied in this experiment. CNN, RNN, and CRNN models are trained to identify five
different cell types (adipocytes, collagen, epithelium, myofibroblasts, necrosis) from
the BRC961 dataset. The training set consists of 100000 samples per class and the
disjoint test set includes 30000 samples per class. We trained 1D and 2D CNNs,
RNN, and CRNN on the range of 2-100000 samples per class, while the memory
limited 3D CNN training to the range of 2—4096 samples per class. Test accuracy
significantly increases with growing training size in 2D and 3D CNNs (Fig.4.11).
We ran each experiment three times to compute the average accuracy and standard
deviation (Fig.4.12).

Experiment 2—The effect of network depth is studied in this experiment. We
increased the number of layers to extract deep features and investigate their per-
formance for classifying BRC961. The number of trainable parameters increases for
deeper models and affects convergence time and memory (Table4.13). High num-
bers of trainable parameters in the 2D CNN, 3D CNN, and RNN makes them prone

96 F. F. Shahraki et al.

3D CNN

100% 90%

T
80%
70%

60% —~/\\ —A/

40%

50%

20% 30%
2 8 32 128 512 2048 8192 32768 2 8 32 128 512 2048

Fig.4.12 The test accuracy variance from average for three runs of 2D and 3D convolutional neural
networks is shown

Table 4.13 Classification networks were built with different number of layers for comparing their
performance on predicting different cell types. The number of trainable parameters indicated in this
table represents the depth and complexity of the network

Method Layer

1-conv 2-conv 3-conv 4-conv 6-conv
1D CNN 387k 460k 970k
2D CNN 3.7M 59M 52M
3D CNN 154M 14M 15.9M

1-recu 2-recu 3-recu
RNN 1M 3M 52M

3-conv & 1-recu 5-conv & 2-recu
CRNN 108k 775k

k: kilo, M: million

to overfitting, so we introduced dropout to mitigate this issue. The average accuracy
on test data is computed for all trained classification networks (Table 4.14). Deeper
models improve the network performance, except in the case of the RNN, which
confirms limited correlation between spectra in BRC961.

2D and 3D CNNs demonstrate more accurate classification results on this dataset.
The high number of trainable parameters allows the 2D implementation to be well
trained and generalizes to the test dataset. We randomly selected 10% of the test
dataset as the valid set. The accuracy and cost on the train set and valid set during the
training procedure are used to visualize the effect of deeper networks on extracting
feature for 2D CNN (Fig.4.13).

Experiment 3—The classification performance of each network for different classes
is studied in this experiment. The same number of training samples for each class is
used to train different architectures. Three models per network are trained to compute
the average accuracy for each class (Table4.15).

Experiment 4—The hyperspectral biomedical dataset is classified using traditional
models to compare with the machine learning results (Table4.16).

4 Deep Learning for Hyperspectral Image Analysis ... 97

Table 4.14 Classification networks with different numbers of layers are trained to study the effec-
tiveness of the network depth on the test accuracy. The average accuracy and standard deviation are
reported. x-conv/recu: x number of convolutional/recurrent layers

Method Layer

1-conv 2-conv 3-conv 4-conv 6-conv
1D CNN 5725 £0.7 65.09 £3.9 67.13 £ 1.1
2D CNN 84.19 £33 8473 £ 1 89.17+£2
3D CNN 7459+ 1.4 80.51 £ 3.7 82.27+£0.6

1-recu 2-recu 3-recu
RNN 71.75 £ 0.8 68.94 £ 0.7 65.66 £ 0.6

3-conv & 1-recu 5-conv & 2-recu
CRNN 6129+ 1.4 63.57 £ 1.5

Table 4.15 The average and standard deviation for per class accuracy for classification networks
on the hyperspectral biomedical dataset are presented. The same number of training samples for all
classes are used to train machine learning models and test their performances

Class Method
1D CNN 2D CNN 3D CNN CRNN RNN

Adipocytes 42.6 89.9 85.2 7.88 15.5
Collagen 96.6 97.7 96.4 95.5 98.7
Epithelium 88.5 89 85.6 90 91.2
Myofibroblasts 64 90.9 74.5 64.2 62.4
Necrosis 44 84.1 72.8 78.8 94.1
Average accuracy 67.1 90.3 82.9 66.4 72.4

Table 4.16 The traditional classification methods are used to classify hyperspectral biomedical
dataset. Per class accuracy and average accuracy are reported for different methods

Class Method

SVM Decision tree | Random Naive Bayes | kNN

forest

Adipocytes 12.64 8.93 27 5.55 20.13
Collagen 94.07 89.99 96.56 97.88 96.98
Epithelium 84.44 80.36 89.62 87.81 84.62
Myofibroblasts 96.14 69.4 60.1 55.84 60.78
Necrosis 82.99 66.47 38.8 26.02 49.39
Average accuracy 74.05 63.03 62.41 54.62 62.38

98 F. F. Shahraki et al.
100 25
095
090 20
- 0.85 4
E 0.60 || || || | v\r—”‘." l 3 i
2 A f| fN W W 8
&t | A M U .
a7o /
oss{ | o i
0.60 \] validaton
6 1 20 32 4 % e w0 80 R T T S e .
ch
e 2D CNN (1-convolutional layer) Epoch
100 — rain
—— validation
14
095
12
E-. - i i ==
3 L
A — N
< o8s n ."A‘a"\l' './V/‘\‘.""\/\/"_’W\JW o
i] (J. '|'."'I 08
080 ||I|,'
| — fain
! —— validation 0.6
a 10 0 llil l.CI 50 0‘0 o 10 20 30 40 50 60
Epoch
2D CNN (2-convolutional layer)
104 3.0
25
091
| [| -
E 0.8 4 "
= h s
g 3
071 10
s
061 : :::;aunn o
o 20 P 0 @ 100 10) 0 4 e 80 10 10
Epoch Epoch

2D CNN (3-convolutional layer)

Fig. 4.13 Deeper models of the 2D CNN have more trainable parameters and it helps the network
to minimize loss and increase the accuracy on valid and test dataset

4 Deep Learning for Hyperspectral Image Analysis ... 99

CRNN 2D CNN

.adipocytes .collagen .epithelium Dmyofibroblasts Dnecrosis

Fig. 4.14 Different classes of the biomedical dataset are identified from the hyperspectral data by
neural networks

Experiment 5—The classification maps for biomedical dataset are generated by
trained models. The required memory limited us to compute the classification map
for 3D CNN model. 5 classes are distinguished in 4 cores of the hyperspectral data
using neural network (Fig.4.14).

4.5.2.2 Digital Staining

In this section, we demonstrate a different direction for applying CNNs to map
infrared spectra to traditional histological stains. The proposed CNN framework is
described in Table4.17. The input (IR spectra image) and target values (brightfield
image) are first aligned to allow mapping between spectra and color value in the
stained image. This requires the use of the same tissue sample for both IR spec-
troscopy and staining. The pixel-level alignments were performed manually using
the GIMP open-source editing software [103] to apply affine transformations to sub-

100 F. F. Shahraki et al.

Table 4.17 Summary of CNN configurations for digital staining. conv(x)-X: convolutional layer;
max(p): maxpooling layer; FC(n): fully connected layer; x: receptive field; X: number of filters;
p:pool size; n: number of nodes. The three neurons at the output layer provide the color channels
for the output color image

CNN
conv(3x3)—32— |conv(3 x3)—32—> |max(2 x2)— conv(3 x 3) — 32 —>
conv(3 x 3) —32 - |max(2 x 2) - FC(128) — FC(@3)

regions. Random samples from aligned subregions are used for training to avoid
overfitting.

Weights were initialized with random values from a normal distribution with a 0
mean and standard deviation of 0.02. Training is carried out using batch optimization
with a batch size of 128 and Adam optimizer with a learning rate of 0.01 to minimize
the mean squared error (MSE) performance metric. L, regularization is also applied
to reduce generalization error. We used softplus as a nonlinear activation function for
each layer except the output layer which passes through a linear function to return
the incoming tensor without changes.

The network was trained and tested on independent images from the same imaging
system (Fig.4.15). We used 16000 data points and extract a cropping window around
them with the tensor size of 9 x 9 x 60 pixels. Training and testing were performed
using a Tesla k40M GPU. Training the network requires 33 s in average for 7 epochs
and digital staining of a 512 x 512 x 60 pixels hyperspectral image takes 20s.

The proposed CNN reproduced high-resolution digital stains (Fig. 4.15¢) and pro-
vide a great cellular-level detail when compared to the ground truth (Fig.4.15d).

We compared our CNN with previously published pixel-level ANN (1 hidden
layer with 7 nodes) [70]. The results (Fig.4.15b) illustrate that applying the ANN to
the same high-resolution data doesn’t provide high-resolution results. Once the ANN
framework maps only a single spectrum to corresponding digital color and the most
chemical information of biological samples lies in the diffraction-limited region of
spectrum (900-1500cm 1), the low resolution of this region limits the resolution of
output image. We overcome this problem by leveraging the spatial features available
at higher wavenumbers using CNN. CNN integrates non-diffraction-limited features
from high-frequency region and chemical information from fingerprint region to
produce more accurate staining patterns.

To evaluate the potential capability of the proposed CNN on different staining
and spectroscopic imaging systems, some other experiments have been done. The
proposed CNN was trained and tested on FTIR data from pig kidney to replicate
DAPI staining (Fig.4.16) and on prostate tissue imaged by Spero-QT (range 900—
1800cm™!, pixel size 1.4 um and FPA 480 x 480) to resemble immunohistochemi-
cally staining (IHC) using Cytokeratin as a primary antibody (Fig.4.17).

Experiment 1: Quantitative comparison—The results of digital staining are pre-
sented quantitatively. Figures4.15, 4.16 and 4.17 illustrate that the generated images
simply resemble the ground truth images visually. The synthesized images cannot
be fully overlapped with the ground truths because first, the tissue sections undergo

4 Deep Learning for Hyperspectral Image Analysis ... 101

FTIR,1650 cm™1
(a) (b) (©) (d)

Fig. 4.15 Molecular imaging reproduced by chemical imaging from FTIR on high magnification
mode. a A single band of FTIR images. b Computed H&E from the CNN framework. ¢ The
physically stained H&E images as the ground truth

. = »TOS
% s
FTIR,1650 cm™! Computed DAPI, CNN Ground truth (DAPI)
a (©

Fig. 4.16 Digital DAPI staining of pig kidney. a A single band of FTIR image. b Computed DAPI
from CNN framework. ¢ The physically- stained DAPI image under fluorescence microscope

staining process for generating the ground truth which causes local deformations on
the tissues and also manual staining procedure can produce color variations which
make the quantitative evaluations quite challenging.

We quantify the visibility of the digital H&E staining images generated by pro-
posed CNN, ANN, and the ground truths using structural similarity (SSIM) index
(Table 4.18). The SSIM index measures the similarity in case of luminance, contrast,
and structure [104, 105].

102 F. F. Shahraki et al.

FTIR,1650 cm™! Computed IHC, CNN Ground truth (IHC)
(@ (b) (c)
Fig. 4.17 IHC imaging reproduced by chemical imaging from SPERO. a A single band of SPERO

images. b Computed Cytokeratin staining from the CNN framework. ¢ The images of Cytokeratin-
stained tissues

Table 4.18 SSIM index for the ANN and CNN digital staining outputs shown in Fig.4.15

SSMI High mag. ANN High mag. CNN
Test image (i) 0.61 0.72
Test image (ii) 0.61 0.70

4.5.3 Source Code and Data

All the datasets and codes in both biomedical and remote sensing hyperspectral area
provided for this book chapter can be found in detail as a Github project [106].

4.6 Design Choices and Hyperparameters

A critical part of designing deep learning models is the optimization over the hyperpa-
rameter space. The choice of hyperparameters significantly affects accuracy, speed of
convergence, underfitting, and overfitting. Hyperparameters for deep learning models
are often chosen by hand after iterative experimentations or are selected by a search
algorithm. The choice of hyperparameters influences the structure of the model and
heavily depends on the application and available data. Here, we discuss some of the
most important hyperparameters that need to be fine-tuned when designing a deep

4 Deep Learning for Hyperspectral Image Analysis ... 103

learning architecture, and we provide a summary of design choices we have made
for the remote sensing and tissue histology applications in the chapter.

4.6.1 Convolutional Layer Hyperparameters

Convolutional layers apply a filter kernel with a small receptive field [107-109]
to extract spatial features. Required hyperparameters for optimization include filter
size, padding, and stride.

The filter size is equivalent to the spatial region considered to contain a viable
image feature. The size of the output of a convolutional layer can change compared to
the original input image depending on the choice of boundary conditions or padding.
Common choices for padding in deep learning models include valid and zero padding.
In valid padding, the input is not padded and thus this results in a smaller output
image size compared to the size of the input image. In zero padding, the input image
is padded with zeros such that the input and output image will have the same size
after convolution. The default choice for padding in most of deep learning software
packages is valid padding. In general, there are many options for boundary conditions
in the convolution operation and the choice usually depends on the application [110,
111].

The stride hyperparameter controls the shifting step size for the convolution filters.
A shifting step size of one unit is generally the default. A stride of one means that
the filter shifts by one each time as it convolves around the input volume. A higher
stride number results in higher shifting of the receptive field and also in the shrinking
of the output volume. The increase in the stride number can be used to reduce the
overlapping of the receptive fields and also to decrease the output dimensions. This
can be very useful in 3D CNN architectures to reduce the size of the third dimension
throughout the convolutional layers.

4.6.2 Pooling Layer Hyperparameters

The normalized output of each convolution layer is passed through a pooling layer
to summarize local features [112]. By using a stride size greater than 1, the pooling
layer sub-samples the feature maps to merge semantically similar features to provide
invariant representation [113, 114]. This further improves the computational time
and mitigates overfitting by reducing the number of unknown parameters.

The pooling layer operates independently on every depth slice of the input and
resizes it spatially. The depth dimension remains unchanged. If the feature map
volume size is m x n X d, the pooling layer with filter dimension or pooling size of
g and stride s produces an output with a volume size of m’ x n’ x d, where

104 F. F. Shahraki et al.

1
m’:;(m—q)—i—l

, 1
n =;(n—q)+l

Common pooling operations are max and average pooling. In max and average
pooling, a local window of pixels is replaced by the maximum pixel in the window
or an average of the pixels in that window, respectively. In most software packages
the default hyperparameters for pooling are a pooling size or filters of size 2 x 2 and
a stride of 2, which halves the size of the input in both width and height.

4.6.3 Training Hyperparameters

The training of deep learning models is essentially a large-scale complex optimization
problem. Neural networks and their flavors are complicated functions that consist of
millions of unknown parameters, which are optimized and learned during training.
Common hyperparameters of any optimization method include the choice of a loss
function, the learning rate at step t, the mini-batch size, and the number of iterations.
Here, we describe some of these hyperparameters that have to be chosen when
training neural networks.

Optimizers—Optimization algorithms for training neural networks aim to find the
best network parameters, which minimize a loss or a cost function by computing
its gradient [115]. There are many choices available for optimizers and all of them
are essentially flavors of gradient descent. Popular optimizers that have been used in
many deep learning models include stochastic gradient descent (SGD), Adam [116],
Adagrad [117], and Adadelta [118].

SGD—Traditional gradient descent calculates the gradient of the entire dataset to
update the parameters. However, in the case of large data sizes, it can be very slow
and memory inefficient. SGD updates the network parameters using a single or a
few (mini-batch) training samples. SGD training with the proper mini-batch size is
faster and more memory efficient. In addition, the batches are periodically shuffled
to avoid gradient bias.

Adam—The Adam optimizer computes the adaptive individual learning rates for
each parameter using the estimations of first and second moments of the gradient.

Adagrad—The Adagrad optimizer also provides an adaptive learning rate for each
feature. Adagrad introduces a decay factor based on the inverse square root of the
cached value at each time step, which is well-suited for dealing with sparse data
while not desirable on highly non-convex loss functions [119].

Adadelta—The Adadelta optimizer improves Adagrad by restricting the sum of
gradients within a certain window. In addition, it reduces the aggressive decrease in

4 Deep Learning for Hyperspectral Image Analysis ... 105

the learning rate, which is a characteristic of Adagrad. Adadelta adapts the learning
rate over time, removing the need for manual tuning.

Learning rate—The learning rate determines the size of the step toward to gradient
direction. Very small learning rates lead to slow convergence of the network while
a very large choice can lead to network divergence. In most of the optimizers, an
initial learning rate needs to be chosen.

The initial learning rate is typically set in the range [107%, 1]. The default values
are different depending on the software package used. However, for most optimizers,
a good start value to try is 0.01 or 0.001. Nevertheless, the learning rate has to be tuned
as it is critical to the convergence of the optimization method. In most optimizers,
the learning rate is updated (most often decreased) throughout the iterations.

Loss functions—Loss functions are mathematical functions which evaluate the net-
work performance with the current set of parameters by measuring the difference
between network predictions and target values through a training set. An optimiza-
tion method seeks to minimize the loss function by taking its derivative with respect
to the unknown parameters. There exist a variety of loss functions (see Chap.3).
However, the most popular loss function used for classification tasks is categorical
cross entropy while mean squared error is very commonly used for regression tasks.

Batch size—Using a mini-batch training strategy helps to reduce loss fluctuation,
which occurs if a single sample is used during each training iteration. The choice
of the batch size is mostly computational and it depends on the available system
memory. Hence, systems with higher memory can potentially benefit from larger
batch sizes. Parallelism can also be exploited for more efficient computation of the
updates in the case of large batch sizes. Even though in general the choice of the batch
size should not affect generalization capabilities of the network, a popular batch size
for training is 128.

Training iterations—The number of training iterations or training epochs is gen-
erally chosen as a form of early stopping in order to avoid the semi-convergence
behavior of iterative methods. The training is usually stopped when the performance
of the network stops increasing on the validation set. One way to check the per-
formance of the network on the validation set is by monitoring the validation loss
throughout the iterations. Early stopping is a powerful way to prevent overfitting.

Data shuffling—It is very important to shuffle the training data. The purpose of
data shuffling is to avoid feeding the network with mini-batches of highly correlated
examples. The gradient of a mini-batch with highly correlated samples can lead to
the estimation of the biased gradient. Shuffling of the data helps to get a more accu-
rate estimation of the gradient and hence better updates of unknown parameters. In
addition, it has been observed that the convergence speed of the network is improved
when the data is shuffled.

http://dx.doi.org/10.1007/978-3-030-38617-7_3

106 F. F. Shahraki et al.

4.6.4 General Model Hyperparameters

The architecture of deep learning models involves additional hyperparameters that
need to be chosen for each layer, such as the number of hidden units per layer, the
activation function, and the initialization of the weights and biases. The choice of
each of these parameters can strongly affect model performance.

Weight initialization—The initialization of the weights is very important in the
training of deep learning models. Proper initialization of the weights can help mit-
igate the local minimum trap problem. Popular initialization schemes that are pro-
vided in most deep learning software packages include initialization with a normal
distribution, uniform distribution, truncated normal distribution, random orthogonal
matrix, identity matrix, LeCun uniform or normal initializer, Xavier normal or uni-
form initializer, zeros initializer, ones initializer, constant initializer, and He normal
or uniform initializer. Each one of these initializers have additional arguments that
need to be chosen or default values provided by the software packages can be used.
In general, biases are initialized to 0.

Activation functions—Activation functions apply a nonlinear transformation on
the input and add more complexity to the network to improve the capability of the
network for solving complex problems. Commonly used activation functions include
the sigmoid, tanh, ReLU, leaky ReLLU, and softplus. The sigmoid function limits the
output to be between 0 and 1. However, it is not zero-centered and vanishes very
low or very high gradient values. Tanh is very similar to sigmoid but is symmetric
over the origin with range [—1, 1]. It still exhibits the problem of vanishing the
gradient. ReLU has shown remarkable performance on deep networks [120]. ReLU
is computationally efficient and has faster convergence. However, ReLLU “kills” the
neurons with negative values and thus the network can result in having units that are
not activated anymore after some training iterations. Leaky ReL.U assigns small linear
values to the negative part to avoid zero gradients and enables updating parameters
for negative input values. Softplus is the smooth version of ReL.U with more stable
estimations from both positive and negative inputs [121]. A more detailed discussion
of activation functions is given in Chap. 1, Sect.4.2.2.1.

Number of hidden units—The number of hidden units is acommon hyperparameter
that has to be chosen for each layer. This hyperparameter varies with the model and
it mostly depends on the application, size of available training data, and system
memory limitations. There are some general heuristics on choosing the number of
hidden layers, such as usually the first hidden layer should be larger than the input
layer. Some deep learning architectures tend to use increasing sizes for the number
of hidden units in each layer and some use decreasing sizes (a 3D CNN could, for
example, decrease the number of hidden units for data dimensionality reduction).

4 Deep Learning for Hyperspectral Image Analysis ... 107

4.6.5 Regularization Hyperparameters

One of the major causes that delayed the application of deep learning algorithms is
the problem of overfitting or the inability of the network to generalize well to unseen
data. Over the years many regularization techniques have been developed to mitigate
the problem of overfitting. Here, we discuss some common regularization methods,
which can dramatically improve the performance of a deep learning model.

Dropout—Dropout is one of the most frequently used regularization techniques
in deep learning. Throughout each training iteration, dropout randomly removes
nodes from the network together with their incoming and outgoing connections.
The probability threshold for choosing which nodes to keep drop is the dropout
hyperparameter. A threshold of 0.5 is very common. Dropout increases the sparsity
of the network and also makes the model have a different set of nodes throughout
each training iteration. Dropout can also be applied to the input layer but it is usually
mostly applied to the hidden layers.

Batch normalization—During training, as the weights are updated, the distribu-
tion of the inputs to the hidden layers change or shift around. The changes in the
distribution of hidden unit values (known as internal covariate shift) make training
challenging. This problem can be addressed by normalizing layer inputs using batch
normalization [122]. Batch normalization reduces the covariate shift by normaliz-
ing the mean and variance of features across the examples in each mini-batch. It
is similar to standard normalization applied to the input data. Batch normalization
improves the stability of the network, reduces generalization error, avoids exploding
or vanishing gradients, allows higher learning rates, and enables accelerated training.

Regularization of the weights—Another technique to reduce overfitting is to apply
regularization on the network weights. The most popular types of weight regular-
ization are £1 and £2 regularization. £2 regularization, otherwise known as weight
decay, is used to penalized large weight values while £1 acts as a form of feature
selection. £2 regularization forces the weights to decay toward zero but not exactly
zero while £1 regularization can reduce the weights to become completely zero and
thus result in a sparser network. The combination of £1 and £2 can be used for reg-
ularization as well. In both £1 and ¢2 regularization, a parameter has to be chosen.
The regularization parameter determines the tradeoff between the original fit term of
the loss function and the amount of regularization to be imposed. A regularization
parameter close to zero yields the original loss function while a very large regu-
larization parameter pushes more weights close to zero and can potentially lead to
underfitting [123, 124].

Local response normalization—A layer that has been used in many deep learning
architectures is local response normalization (LRN). This layer was introduced in
order to provide an inhibition scheme aimed to be similar to the concept of later inhi-
bition in neurobiology, which represents the capacity of an excited neuron to subdue
its neighbors. The goal is to detect high-frequency features with a large response,
which helps to create more contrast in a local area and subsequently increase the

108 F. F. Shahraki et al.

Table 4.19 Summary of parameter and hyperparameter values used to train various deep learning
models for UH 2013 dataset classification task

Parameters 1D CNN RNN CRNN 2D CNN 3D CNN
Optimizer adam adam adam adam adam
Learning rate le-4 le-4 le-4 le-4 le-5
Loss function Cross Cross Cross Cross Cross
entropy entropy entropy entropy entropy
Weight initializer Xavier Xavier Xavier Xavier Xavier
uniform uniform uniform uniform uniform
Activation function | ReLU tanh ReLU-tanh | ReLU ReLU
Batch size 128 128 128 128 128
Number of epochs | 512 128 256 200 128
Drop out 20% - - 50% -
Batch normalization | Yes No No Yes Yes

sensory perception. LRN normalizes the unbounded activations that can result after
the application of some activation functions, such as ReLLU [33]. The normaliza-
tion around a local neighborhood of an excited artificial neuron makes it even more
sensitive as compared to its neighbors. LRN also dampens the responses that are
uniformly large in a local neighborhood. In general, it boosts artificial neurons with
relatively larger activations. The normalization response, bi’ y» of an artificial neuron
activity at location (x, y) after applying kernel i and activation function g(-), denoted
as a.. , is computed as [33]

min(N—1,i+n/2) B

bi,y = a)"(’y/ k+ao Z (a){’y)2 ,

Jj=max(0,i—n/2)

where n is the number of adjacent feature maps around that kernel i. k, n, «, and
B are constant hyperparameters. They are usually chosentobe k = 1,n =5, 0 =1
and 8 = 0.5.

Data augmentation—A very simple way to attempt to make the model generalize
better is to increase the size of the training data. This is especially useful in the case
of image data. Common transformations that are applied for increasing the size of the
training data include rotation, flipping, scaling, and shifting. Most of the existing deep
learning software packages provide built-in implementations for data augmentation.

Remote Sensing dataset—We summarize the hyperparameters and parameters
selected for remote sensing experiments of UH 2013 dataset in Table 4.19.

Biomedical dataset—Deep learning networks are trained and tested using different
combinations of hyperparameters. The list of hyperparameters is summarized in
Table 4.20.

4 Deep Learning for Hyperspectral Image Analysis ... 109

Table 4.20 Different neural networks require different set of hyperparameters to be trained well.
This table summarized best combinations that are used in this work

Parameters 1D CNN RNN CRNN 2D CNN 3D CNN
Optimizer adam adam adam adadelta adam
Learning rate le-5 le-4 le-4 0.1 le-5
Decay rate rho/epsilon | 5e-3 0.1 0.5 0.95/1e-7 5e-3
Loss function Cross Cross Cross Cross Cross
entropy entropy entropy entropy entropy
Weight initializer Xavier Xavier Xavier Normal Normal
Activation function ReLU tanh ReLU SoftPlus ReLU
Drop out - 35% 50% 50% 25%

4.7 Concluding Remarks

In this chapter, we applied foundational deep neural networks to two real-world
hyperspectral image analysis tasks, representing remote sensing and tissue histology
applications. We compare the performance of 1D, 2D, and 3D Convolutional Neural
Networks, Recurrent Neural Networks and their variants for these applications, and
discuss practical considerations and design choices for effective classification. For
anyone looking to apply these to other datasets (e.g,. derived from different sensors),
the hyperparameter choice may differ, but the approach presented in this chapter
to study the performance of deep learning for multichannel optical imagery can be
applied to other applications, sensors, and modalities. We note that our objective
here was to review and study the fundamentals (building blocks) of deep learning
models—in recent years, many advanced variants of these approaches are emerging,
but they are all often building upon these building blocks. To conclude, we would
like to highlight the following observations. The code and a sampling of data used
in this chapter is available online.

e One must carefully approach the process of acquiring training and testing libraries
for training and validating algorithms, to get an unbiased estimate with regards
to generalization capacity and discriminative nature of features. This is particu-
larly important with hyperspectral images, where training data are often manually
labeled individually for every classification task. In particular, caution must be
exercised to ensure the training and test frames do not overlap (when drawing
these patches from a large scene over a wide geographical stretch, for example),
and that the training and testing frames are representative of the sources of spectral
variability commonly encountered in the application.

e Although recurrent networks have promise in modeling the spectral information,
when comparing 1D (per-pixel spectral classification), recurrent networks per-
formed better with the remote sensing tasks (where spectral reflectance properties
encoded in the spectral envelope are being modeled) than with the tissue histol-

110

F. F. Shahraki et al.

ogy task (where the spectral features of interests are localized absorption patterns
instead of the shape of the spectral absorbance envelope).

e A crucial part of successfully deploying these networks for hyperspectral clas-
sification is the choice of the hyperparameters associated with the models—this
choice will depend on the data characteristics and must be determined empirically
for different applications/sensors/sensing platforms.

References

10.

11.

12.

13.

14.

15.

16.

. Gowen A, O’Donnell C, Cullen P, Downey G, Frias J (2007) Hyperspectral imaging an

emerging process analytical tool for food quality and safety control. Trends Food Sci Technol
18(12):590-598

Schuler RL, Kish PE, Plese CA (2012) Preliminary observations on the ability of hyperspectral
imaging to provide detection and visualization of bloodstain patterns on black fabrics. J
Forensic Sci 57(6):1562—-1569

Fischer C, Kakoulli I (2006) Multispectral and hyperspectral imaging technologies in conser-
vation: current research and potential applications. Stud Conserv 51(sup1):3-16

Zhang Y, Chen Y, Yu Y, Xue X, Tuchin VV, Zhu D (2013) Visible and near-infrared spec-
troscopy for distinguishing malignant tumor tissue from benign tumor and normal breast
tissues in vitro. J Biomed Opt 18(7):077003

. Salzer R, Steiner G, Mantsch H, Mansfield J, Lewis E (2000) Infrared and raman imaging of

biological and biomimetic samples. Fresenius’ J Anal Chem 366(6-7):712-726

Liu K, Li X, Shi X, Wang S (2008) Monitoring mangrove forest changes using remote sensing
and gis data with decision-tree learning. Wetlands 28(2):336

Everitt J, Yang C, Sriharan S, Judd F (2008) Using high resolution satellite imagery to map
black mangrove on the texas gulf coast. J Coast Res 1582-1586

Yuen PW, Richardson M (2010) An introduction to hyperspectral imaging and its application
for security, surveillance and target acquisition. Imaging Sci J 58(5):241-253

Shahraki FF, Prasad S (2018) Graph convolutional neural networks for hyperspectral data
classification. In: 2018 IEEE global conference on signal and information processing (Glob-
alSIP), pp 968-972

Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with
support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778-1790

Wu H, Prasad S (2016) Dirichlet process based active learning and discovery of unknown
classes for hyperspectral image classification. IEEE Trans Geosci Remote Sens 54(8):4882—
4895

Dong Y, Du B, Zhang L (2015) Target detection based on random forest metric learning. IEEE
J Sel Top Appl Earth Obs Remote Sens 8:1830-1838 April

Zhang L, Zhang L, Tao D, Huang X, Du B (2014) Hyperspectral remote sensing image
subpixel target detection based on supervised metric learning. IEEE Trans Geosci Remote
Sens 52:4955-4965 Aug

Zhou X, Armitage AR, Prasad S (2016) Mapping mangrove communities in coastal wetlands
using airborne hyperspectral data. In: 2016 8th workshop on hyperspectral image and signal
processing: evolution in remote sensing (WHISPERS). IEEE, pp 1-5

Cui M, Prasad S (2016) Spectral-angle-based discriminant analysis of hyperspectral data for
robustness to varying illumination. IEEE J Sel Top Appl Earth Obs Remote Sens 9(9):4203—
4214

XiaJ, Bombrun L, Berthoumieu Y, Germain C, Du P (2017) Spectral-spatial rotation forest for
hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 10(10):4605—
4613

4 Deep Learning for Hyperspectral Image Analysis ... 111

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Tarabalka Y, Fauvel M, Chanussot J, Benediktsson JA (2010) Svm- and mrf-based method for
accurate classification of hyperspectral images. IEEE Geosci Remote Sens Lett 7:736-740
Oct

Fauvel M, Benediktsson JA, Chanussot J, Sveinsson JR (2008) Spectral and spatial classifica-
tion of hyperspectral data using svms and morphological profiles. IEEE Trans Geosci Remote
Sens 46:3804-3814 Nov

Joelsson SR, Benediktsson JA, Sveinsson JR (2005) Random forest classifiers for hyperspec-
tral data. In: Proceedings, 2005 IEEE international geoscience and remote sensing symposium
2005, IGARSS °05, vol 1, p 4

Zhang Y, Cao G, Li X, Wang B (2018) Cascaded random forest for hyperspectral image
classification. IEEE J Sel Top Appl Earth Obs Remote Sens 11:1082—-1094 April
Samaniego L, Bardossy A, Schulz K (2008) Supervised classification of remotely sensed
imagery using a modified k-nn technique. IEEE Trans Geosci Remote Sens 46(7):2112-2125
Chan JC-W, Paelinckx D (2008) Evaluation of random forest and adaboost tree-based ensem-
ble classification and spectral band selection for ecotope mapping using airborne hyperspectral
imagery. Remote Sens Environ 112(6):2999-3011

Li J, Bioucas-Dias JM, Plaza A (2010) Semisupervised hyperspectral image segmentation
using multinomial logistic regression with active learning. IEEE Trans Geosci Remote Sens
48(11):4085-4098

Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) Deep learning-based classification of hyper-
spectral data. IEEE J Sel Top Appl Earth Obs Remote Sens 7(6):2094-2107

Hu W, Huang Y, Wei L, Zhang F, Li H (2015) Deep convolutional neural networks for
hyperspectral image classification. J Sens 2015

Makantasis K, Karantzalos K, Doulamis A, Doulamis N (2015) Deep supervised learning for
hyperspectral data classification through convolutional neural networks. In: Geoscience and
remote sensing symposium (IGARSS), 2015 IEEE International. IEEE, pp 4959-4962

Fang B, Li Y, Zhang H, Chan JC-W (2019) Hyperspectral images classification based on dense
convolutional networks with spectral-wise attention mechanism. Remote Sens 11(2):159

Yu F, Koltun V (2015) Multi-scale context aggregation by dilated convolutions.
arXiv:1511.07122

Mou L, Ghamisi P, Zhu XX (2017) Deep recurrent neural networks for hyperspectral image
classification. IEEE Trans Geosci Remote Sens 55(7):3639-3655

Hang R, Liu Q, Hong D, Ghamisi P (2019) Cascaded recurrent neural networks for hyper-
spectral image classification. IEEE Trans Geosci Remote Sens

Wu H, Prasad S (2017) Convolutional recurrent neural networks forhyperspectral data clas-
sification. Remote Sens 9(3):298

Marini F, Bucci R, Magri A, Magri A (2008) Artificial neural networks in chemometrics:
history, examples and perspectives. Microchem J 88(2):178-185

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional
neural networks. In: Advances in neural information processing systems, pp 1097-1105
Sermanet P, Chintala S, LeCun Y (2012) Convolutional neural networks applied to house
numbers digit classification. In: 2012 21st International conference on Pattern recognition
(ICPR). IEEE, pp 3288-3291

LeCun Y, Bengio Y et al (1995) Convolutional networks for images, speech, and time series.
Handb Brain Theory Neural Netw 3361(10):1995

LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document
recognition. Proc IEEE 86(11):2278-2324

Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of
hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote
Sens 54(10):6232-6251

Li Y, Zhang H, Shen Q (2017) Spectral-spatial classification of hyperspectral imagery with
3D convolutional neural network. Remote Sens 9(1):67

2013 ieee grss data fusion contest - fusion of hyperspectral and lidar data (2013). http://
hyperspectral.ee.uh.edu/?page_id=459

http://arxiv.org/abs/1511.07122
http://hyperspectral.ee.uh.edu/?page_id=459
http://hyperspectral.ee.uh.edu/?page_id=459

112

40

41.

42.

43.

44,

45.

46.

47.
48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

F. F. Shahraki et al.

. 2018 ieee grss data fusion challenge - fusion of multispectral lidar and hyperspectral data
(2018). http://hyperspectral.ee.uh.edu/?page_id=1075

Indian pines dataset. http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_
Sensing_Scenes#Indian_Pines

Salinas dataset. http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_
Sensing_Scenes#Salinas

Pavia dataset. http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_
Sensing_Scenes#Pavia_Centre_and_University

Kennedy dataset. http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_
Sensing_Scenes#Kennedy_Space_Center_.28KSC.29

Botswana dataset. http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_
Sensing_Scenes#Botswana

Mittal S, Yeh K, Leslie LS, Kenkel S, Kajdacsy-Balla A, Bhargava R (2018) Simultaneous
cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-
digital molecular histopathology. Proc Natl Acad Sci 115(25):E5651-E5660

Chemical imaging and structures laboratory. https://chemimage.illinois.edu/

Beck AH, Sangoi AR, Leung S, Marinelli RJ, Nielsen TO, Van De Vijver MJ, West RB,
Van De Rijn M, Koller D (2011) Systematic analysis of breast cancer morphology uncovers
stromal features associated with survival. Sci Transl Med 3(108):108ral13-108ral13
Ciresan DC, Giusti A, Gambardella LM, Schmidhuber J (2013) Mitosis detection in breast
cancer histology images with deep neural networks. In: International conference on medical
image computing and computer-assisted intervention. Springer, Berlin, pp 411418

Aratijo T, Aresta G, Castro E, Rouco J, Aguiar P, Eloy C, Polénia A, Campilho A (2017)
Classification of breast cancer histology images using convolutional neural networks. PloS
one 12(6):e0177544

Pahlow S, Weber K, Popp J, Bayden RW, Kochan K, Riither A, Perez-Guaita D, Heraud P,
Stone N, Dudgeon A et al (2018) Application of vibrational spectroscopy and imaging to
point-of-care medicine: a review. Appl Spectrosc 72(101):52-84

Gazi E, Dwyer J, Gardner P, Ghanbari-Siahkali A, Wade A, Miyan J, Lockyer NP, Vick-
erman JC, Clarke NW, Shanks JH et al (2003) Applications of fourier transform infrared
microspectroscopy in studies of benign prostate and prostate cancer. A pilot study. J Pathol
201(1):99-108

Fernandez DC, Bhargava R, Hewitt SM, Levin IW (2005) Infrared spectroscopic imaging for
histopathologic recognition. Nat Biotechnol 23(4):469-474

Gazi E, Baker M, Dwyer J, Lockyer NP, Gardner P, Shanks JH, Reeve RS, Hart CA, Clarke
NW, Brown MD (2006) A correlation of ftir spectra derived from prostate cancer biopsies
with gleason grade and tumour stage. Eur Urol 50(4):750-761

Bhargava R, Fernandez DC, Hewitt SM, Levin IW (2006) High throughput assessment of cells
and tissues: bayesian classification of spectral metrics from infrared vibrational spectroscopic
imaging data. Biochimica et Biophysica Acta (BBA)-Biomembranes 1758(7):830-845
Srinivasan G, Bhargava R (2007) Fourier transform-infrared spectroscopic imaging: the
emerging evolution from a microscopy tool to a cancer imaging modality. Spectroscopy
(Santa Monica) 22(7):30-43

Bird B, Bedrossian K, Laver N, Miljkovi¢ M, Romeo MJ, Diem M (2009) Detection of
breast micro-metastases in axillary lymph nodes by infrared micro-spectral imaging. Analyst
134(6):1067-1076

Baker MJ, Gazi E, Brown MD, Shanks JH, Clarke NW, Gardner P (2009) Investigating ftir
based histopathology for the diagnosis of prostate cancer. J Biophotonics 2(1-2):104-113
Sablinskas V, Urboniené V, Ceponkus J, Laurinavicius A, Dasevicius D, Jankevicius F, Hen-
drixson V, Koch E, Steiner G (2011) Infrared spectroscopic imaging of renal tumor tissue. J
Biomed Opt 16(9):096006

Walsh MJ, Holton SE, Kajdacsy-Balla A, Bhargava R (2012) Attenuated total reflectance
fourier-transform infrared spectroscopic imaging for breast histopathology. Vib Spectrosc
60:23-28

http://hyperspectral.ee.uh.edu/?page_id=1075
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Indian_Pines
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Indian_Pines
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Salinas
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Salinas
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Kennedy_Space_Center_.28KSC.29
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Kennedy_Space_Center_.28KSC.29
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Botswana
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Botswana
https://chemimage.illinois.edu/

4 Deep Learning for Hyperspectral Image Analysis ... 113

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.
73.
74.

75.

76.

71.

78.

79.

80.

Bergner N, Romeike BF, Reichart R, Kalff R, Krafft C, Popp J (2013) Tumor margin iden-
tification and prediction of the primary tumor from brain metastases using ftir imaging and
support vector machines. Analyst 138(14):3983-3990

Kallenbach-Thieltges A, GroBeriischkamp F, Mosig A, Diem M, Tannapfel A, Gerwert K
(2013) Immunohistochemistry, histopathology and infrared spectral histopathology of colon
cancer tissue sections. J Biophotonics 6(1):88—100

Mayerich DM, Walsh M, Kadjacsy-Balla A, Mittal S, Bhargava R (2014) Breast histopathol-
ogy using random decision forests-based classification of infrared spectroscopic imaging data.
In: Proceedings of SPIE - The international society for optical engineering, vol 9041, p 904107
Nallala J, Diebold M-D, Gobinet C, Bouché O, Sockalingum GD, Piot O, Manfait M (2014)
Infrared spectral histopathology for cancer diagnosis: a novel approach for automated pattern
recognition of colon adenocarcinoma. Analyst 139(16):4005-4015

Ahmadzai AA, Patel 11, Veronesi G, Martin-Hirsch PL, Llabjani V, Cotte M, Stringfellow
HF, Martin FL (2014) Determination using synchrotron radiation-based fourier transform
infrared microspectroscopy of putative stem cells in human adenocarcinoma of the intestine:
corresponding benign tissue as a template. Appl Spectrosc 68(8):812-822

Mu X, Kon M, Ergin A, Remiszewski S, Akalin A, Thompson CM, Diem M (2015) Statistical
analysis of a lung cancer spectral histopathology (SHP) data set. Analyst 140(7):2449-2464
GroBerueschkamp F, Kallenbach-Thieltges A, Behrens T, Briining T, Altmayer M, Stamatis
G, Theegarten D, Gerwert K (2015) Marker-free automated histopathological annotation of
lung tumour subtypes by FTIR imaging. Analyst 140(7):2114-2120

Kuepper C, Groflerueschkamp F, Kallenbach-Thieltges A, Mosig A, Tannapfel A, Gerwert K
(2016) Label-free classification of colon cancer grading using infrared spectral histopathology.
Faraday Discuss 187:105-118

Berisha S, Lotfollahi M, Jahanipour J, Gurcan I, Walsh M, Bhargava R, Van Nguyen H,
Mayerich D (2019) Deep learning for FTIR histology: leveraging spatial and spectral features
with convolutional neural networks. Analyst 144(5):1642-1653

Mayerich D, Walsh MJ, Kadjacsy-Balla A, Ray PS, Hewitt SM, Bhargava R (2015) Stain-less
staining for computed histopathology. Technology 3(01):27-31

Lotfollahi M, Berisha S, Daeinejad D, Mayerich D (2019) Digital staining of high-
definition fourier transform infrared (FT-IR) images using deep learning. Appl Spectrosc,
0003702818819857

US Biomax. https://www.biomax.us/tissue-arrays/Breast/BRC961. Accessed 30 Aug 2019
Scalable tissue imaging and modeling laboratory. https://stim.ee.uh.edu/

Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, Fielden PR, Fogarty
SW, Fullwood NJ, Heys KA et al (2014) Using fourier transform IR spectroscopy to analyze
biological materials. Nat Protoc 9(8):1771-1791

Berisha S, Chang S, Saki S, Daeinejad D, He Z, Mankar R, Mayerich D (2017) Siproc: an
open-source biomedical data processing platform for large hyperspectral images. Analyst
142(8):1350-1357

Bassan P, Sachdeva A, Kohler A, Hughes C, Henderson A, Boyle J, Shanks JH, Brown M,
Clarke NW, Gardner P (2012) FTIR microscopy of biological cells and tissue: data analysis
using resonant Mie scattering (RMieS) EMSC algorithm. Analyst 137(6):1370-1377
Derrick MR, Stulik D, Landry JM (2000) Infrared spectroscopy in conservation science. Getty
Publications

Trevisan J, Angelov PP, Carmichael PL, Scott AD, Martin FL (2012) Extracting biological
information with computational analysis of fourier-transform infrared (FTIR) biospectroscopy
datasets: current practices to future perspectives. Analyst 137(14):3202-3215

LungaD, Prasad S, Crawford MM, Ersoy O (2013) Manifold-learning-based feature extraction
for classification of hyperspectral data: a review of advances in manifold learning. IEEE Signal
Process Mag 31(1):55-66

Yu X, Wu X, Luo C, Ren P (2017) Deep learning in remote sensing scene classification: a data
augmentation enhanced convolutional neural network framework. GIScience Remote Sens
54(5):741-758

https://www.biomax.us/tissue-arrays/Breast/BRC961
https://stim.ee.uh.edu/

114

81

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

9s.
96.

97.

98.

99.

100.

F. F. Shahraki et al.

Wu H, Prasad S (2018) Semi-supervised deep learning using pseudo labels for hyperspectral
image classification. IEEE Trans Image Process 27:1259-1270 March

Zhou X, Prasad S (2017) Domain adaptation for robust classification of disparate hyperspectral
images. IEEE Trans Comput Imaging 3:822-836 Dec

Acquarelli J, van Laarhoven T, Gerretzen J, Tran TN, Buydens LM, Marchiori E (2017)
Convolutional neural networks for vibrational spectroscopic data analysis. Anal Chim Acta
954:22-31

Morchhale S, Pauca VP, Plemmons RJ, Torgersen TC (2016) Classification of pixel-level fused
hyperspectral and lidar data using deep convolutional neural networks. In: 2016 8th workshop
on hyperspectral image and signal processing: evolution in remote sensing (WHISPERS), pp
1-5

Li H, Ghamisi P, Soergel U, Zhu X (2018) Hyperspectral and lidar fusion using deep three-
stream convolutional neural networks. Remote Sens 10(10):1649

Pohl C, Van Genderen JL (1998) Review article multisensor image fusion in remote sensing:
concepts, methods and applications. Int J Remote Sens 19(5):823-854

Wan Z, Yang R, You Y, Cao Z, Fang X (2018) Scene classification of multisource remote
sensing data with two-stream densely connected convolutional neural network. In: Image and
signal processing for remote sensing XXIV. International society for optics and photonics,
vol. 10789, p 107890S

XuX, Li W,Ran Q, Du Q, Gao L, Zhang B (2018) Multisource remote sensing data classifica-
tion based on convolutional neural network. IEEE Trans Geosci Remote Sens 56(2):937-949
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional
networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 47004708

Zhu J, Fang L, Ghamisi P (2018) Deformable convolutional neural networks for hyperspectral
image classification. IEEE Geosci Remote Sens Lett 15(8):1254-1258

Dai J, Qi H, Xiong Y, Li Y, Zhang G, Hu H, Wei Y (20147) Deformable convolutional
networks. In: Proceedings of the IEEE international conference on computer vision, pp 764—
773

Labate D, Safari K, Karantzas N, Prasad S, Foroozandeh Shahraki F (2019) Structured recep-
tive field networks and applications to hyperspectral image classification. In: SPIE Optical
Engineering + Applications. San Diego, California, United States

Labate D, Lim WQ, Kutyniok G, Weiss G (2005) Sparse multidimensional representation
using shearlets. In: Wavelets XI, vol 5914. International Society for Optics and Photonics,
p 59140U

Cho K, Van Merriénboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y
(2014) Learning phrase representations using RNN encoder-decoder for statistical machine
translation. arXiv:1406.1078

Chollet F, et al (2015) Keras. https://keras.io

Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural
networks. In: Proceedings of the thirteenth international conference on artificial intelligence
and statistics, pp 249-256

Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv:1412.3555

Ly E, Piot O, Wolthuis R, Durlach A, Bernard P, Manfait M (2008) Combination of FTIR
spectral imaging and chemometrics for tumour detection from paraffin-embedded biopsies.
Analyst 133(2):197-205

Yu P (2005) Applications of hierarchical cluster analysis (CLA) and principal component
analysis (PCA) in feed structure and feed molecular chemistry research, using synchrotron-
based fourier transform infrared (ftir) microspectroscopy. J Agric Food Chem 53(18):7115-
7127

Tiwari S, Bhargava R (2015) Extracting knowledge from chemical imaging data using com-
putational algorithms for digital cancer diagnosis. Yale J Biol Med 88(2):131-143

http://arxiv.org/abs/1406.1078
https://keras.io
http://arxiv.org/abs/1412.3555

4 Deep Learning for Hyperspectral Image Analysis ... 115

101.

102.

103.

104.

105.

106.
107.

108.

109.

110.

111.

112.
113.
114.

115.
116.
117.

118.
119.

120.

121.

122.

123.
124.

Yang H, Irudayaraj J, Paradkar MM (2005) Discriminant analysis of edible oils and fats by
FTIR, FT-NIR and FT-raman spectroscopy. Food Chem 93(1):25-32

Fabian H, Thi NAN, Eiden M, Lasch P, Schmitt J, Naumann D (2006) Diagnosing benign
and malignant lesions in breast tissue sections by using IR-microspectroscopy. Biochimica et
Biophysica Acta (BBA)-Biomembranes 1758(7):874-882

Solomon RW (2009) Free and open source software for the manipulation of digital images.
Am J Roentgenol 192(6):W330-W334

Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error
visibility to structural similarity. IEEE Trans Image Process 13(4):600-612

Bhargava R (2007) Towards a practical Fourier transform infrared chemical imaging protocol
for cancer histopathology. Anal Bioanal Chem 389:1155-1169 Sept

Github link of the book chapter. https://github.com/PrasadLab/DLOverviewHSI

Dong C, Loy CC, He K, Tang X (2016) Image super-resolution using deep convolutional
networks. IEEE Trans Pattern Anal Mach Intell 38(2):295-307

Mobiny A, Moulik S, Van Nguyen H (2017) Lung cancer screening using adaptive memory-
augmented recurrent networks. arXiv:1710.05719

Mobiny A, Lu H, Nguyen HV, Roysam B, Varadarajan N (2019) Automated classification of
apoptosis in phase contrast microscopy using capsule network. IEEE Trans Med Imaging
Berisha S, Nagy JG (2014) Iterative methods for image restoration. In: Academic press library
in signal processing, vol 4. Elsevier, pp 193-247

Mobiny A, Van Nguyen H (2018) Fast capsnet for lung cancer screening. In: International
conference on medical image computing and computer-assisted intervention. Springer, Berlin,
pp 741-749

Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR (2012) Improving
neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436-444 May

Scherer D, Miiller A, Behnke S (2010) Evaluation of pooling operations in convolutional
architectures for object recognition. In: International conference on artificial neural networks.
Springer, Berlin, pp 92-101

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press

Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980
Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and
stochastic optimization. J Mach Learn Res 12, 2121-2159

Zeiler MD (2012) Adadelta: an adaptive learning rate method. arXiv:1212.5701

Lipton ZC, Berkowitz J, Elkan C (2015) A critical review of recurrent neural networks for
sequence learning. arXiv:1506.00019

Jin X, Xu C, Feng J, Wei Y, Xiong J, Yan S (2016) Deep learning with s-shaped rectified
linear activation units. In: Thirtieth AAAI conference on artificial intelligence

Zheng H, Yang Z, Liu W, Liang J, Li Y (2015) Improving deep neural networks using softplus
units. In: 2015 International joint conference on neural networks (IICNN). IEEE, pp 14
Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reduc-
ing internal covariate shift. arXiv:1502.03167

LiuJ, Ye J (2010) Efficient L1/Lq norm regularization. arXiv:1009.4766

Xu Z, Zhang H, Wang Y, Chang X, Liang Y (2010) L 1/2 regularization. Sci China Inf Sci
53(6):1159-1169

https://github.com/PrasadLab/DLOverviewHSI
http://arxiv.org/abs/1710.05719
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1009.4766

Chapter 5 ®)
Advances in Deep Learning s
for Hyperspectral Image

Analysis—Addressing Challenges

Arising in Practical Imaging Scenarios

Xiong Zhou and Saurabh Prasad

Abstract Deep neural networks have proven to be very effective for computer vision
tasks, such as image classification, object detection, and semantic segmentation—
these are primarily applied to color imagery and video. In recent years, there has been
an emergence of deep learning algorithms being applied to hyperspectral and mul-
tispectral imagery for remote sensing and biomedicine tasks. These multi-channel
images come with their own unique set of challenges that must be addressed for effec-
tive image analysis. Challenges include limited ground truth (annotation is expen-
sive and extensive labeling is often not feasible), and high dimensional nature of
the data (each pixel is represented by hundreds of spectral bands), despite being
presented by a large amount of unlabeled data and the potential to leverage multiple
sensors/sources that observe the same scene. In this chapter, we will review recent
advances in the community that leverage deep learning for robust hyperspectral image
analysis despite these unique challenges—specifically, we will review unsupervised,
semi-supervised, and active learning approaches to image analysis, as well as trans-
fer learning approaches for multi-source (e.g., multi-sensor or multi-temporal) image
analysis.

5.1 Deep Learning—Challenges presented
by Hyperspectral Imagery

Since AlexNet [1] won the ImageNet challenge in 2012, deep learning approaches
have gradually replaced traditional methods becoming a predominant tool in a variety
of computer vision applications. Researchers have reported remarkable results with

X. Zhou
Amazon Web Service, Seattle, AI, USA
e-mail: xiongzho@amazon.com

S. Prasad (<)

Hyperspectral Image Analysis Group, Department of Electrical

and Computer Engineering, University of Houston, Houston, TX, USA
e-mail: saurabh.prasad @ieee.org

© Springer Nature Switzerland AG 2020 117
S. Prasad and J. Chanussot (eds.), Hyperspectral Image Analysis,

Advances in Computer Vision and Pattern Recognition,
https://doi.org/10.1007/978-3-030-38617-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38617-7_5&domain=pdf
mailto:xiongzho@amazon.com
mailto:saurabh.prasad@ieee.org
https://doi.org/10.1007/978-3-030-38617-7_5

118 X. Zhou and S. Prasad

deep neural networks in visual analysis tasks such as image classification, object
detection, and semantic segmentation. A major differentiating factor that separates
deep learning from conventional neural network based learning is the amount of
parameters in a model. With hundreds of thousands even millions or billions of
parameters, deep neural networks use techniques such as error backpropagation [2],
weight decay [3], pretraining [4], dropout [5], and batch normalization [6] to pre-
vent the model from overfitting or simply memorizing the data. Combined with
the increased computing power and specially designed hardware such as Graphics
Processing Units (GPU), deep neural networks are able to learn from and process
unprecedented large-scale data to generate abstract yet discriminative features and
classify them.

Although there is a significant potential to leverage from deep learning advances
for hyperspectral image analysis, such data come with unique challenges which must
be addressed in the context of deep neural networks for effective analysis. It is well
understood that deep neural networks are notoriously data hungry insofar as training
the models is concerned. This is attributed to the manner in which neural networks are
trained. A typical training of a network comprises two steps: (1) pass data through the
network and compute a task-dependent loss and (2) minimize the loss by adjusting
the network weights by backpropagating the error [2]. During such a process, a
model could easily end up overfitting [7], particularly if we do not provide sufficient
training data. Data annotation has always been a major obstacle in machine learning
research—and this requirement is amplified with deep neural networks. Acquiring
extensive libraries such as ImageNet [8] for various applications may be very costly
and time-consuming. This problem becomes even more acute when working with
hyperspectral imagery for applications to remote sensing and biomedicine. Not only
does one need specific domain expertise to label the imagery, annotation itself is
challenging due to the resolution, scale, and interpretability of the imagery even
by domain experts. For example, it can be argued that it is much more difficult
to tell the different types of soil tillage apart by looking at a hyperspectral image
than discerning everyday objects in color imagery. Further, the “gold-standard” in
annotating remotely sensed imagery would be through field campaigns where domain
experts verify the objects at exact geolocations corresponding to the pixels in the
image. This can be very time-consuming and for many applications unfeasible. It
is hence common in hyperspectral image analysis tasks to have a very small set of
labeled ground truth data to train models from.

In addition to the label scarcity, the large inter-class variance of hyperspectral
data also increases the complexity of the underlying classification task. Given the
same material or object, the spectral reflectance (or absorbance) profiles from two
hyperspectral sensors could be dramatically different because of the differences in
wavelength range and spectral resolution. Even when the same sensor is used to
collect images, one can get significant spectral variability due to the variation of
view angle, atmospheric conditions, sensor altitude, geometric distortions, etc. [9].
Another reason for high spectral variability is mixed pixels arising from imaging
platforms that result in low spatial resolution—as a result, the spectra of one pixel
corresponds to more than one object on the ground [10].

5 Advances in Deep Learning for Hyperspectral Image Analysis ... 119

For robust machine learning and image analysis, there are two essential
components—deploying an appropriate machine learning model and leveraging a
library of training data that is representative of the underlying inter-class and intra-
class variability. For image analysis, specifically for classification tasks, deep learning
models are variations of Convolution Neural Networks (CNNs) [11], which conduct
a series of 2D convolutions between input images and (spatial) filters in a hierar-
chical fashion. It has been shown that such hierarchical representations are very
efficient in recognizing objects in natural images [12]. When working with hyper-
spectral images, however, CNN-based features [13] such as color blobs, edges,
shapes, etc. may not be the only features of interest for the underlying analysis.
There is important information encoded in the spectral profile which can be very
helpful for analysis. Unfortunately, in traditional applications of CNNs to hyper-
spectral imagery, modeling of spectral content in conjunction with spatial content
is ignored. Although one can argue that spectral information could still be picked
up when 2D convolutions are applied channel by channel or features from different
channels are stacked together, such approaches would not constitute optimal mod-
eling of spectral reflectance/absorbance characteristics. It is well understood that
when the spectral correlations are explicitly exploited, spectral-spatial features are
more discriminative—from traditional-wavelet-based feature extraction [14, 15] to
modern CNNs [16-19]. In Chaps. 3 and 4, we have reviewed variations of convo-
lutional and recurrent neural networks that model the spatial and spectral properties
of hyperspectral data. In this chapter, we review recent works that specific address
issues arising from deploying deep learning neural networks in challenging scenar-
i0s. In particular, our emphasis is on challenges presented by (1) limited labeled
data, wherein one must leverage the vast amount of available unlabeled data in
conjunction with limited data for robust learning and (2) multi-source optical data,
wherein it is important to transfer models learned from one source (e.g., a specific
sensor/platform/viewpoint/timepoint), and transfer the learned model to a different
source (a different sensor/platform/viewpoint/timepoint), with the assumption that
one source is rich in the quality and/or quantity of labeled training data while the
other source is not.

5.2 Robust Learning with Limited Labeled Data

To address the labeled data scarcity, one strategy is to recruit resources (time and
money, for example) with the goal of expanding the training library by annotating
more data. However, for many applications, human annotation is neither scalable nor
sustainable. An alternate (and more practical) strategy to address this problem is to
design algorithms that do not require a large library of training data, but can instead
learn from the extensive unlabeled data in conjunction with the limited amount of
labeled data. Within this broad theme, we will review unsupervised feature learning,
semi-supervised and active learning strategies. We will present results of several
methods discussed in this chapter with three hyperspectral datasets—two of these

http://dx.doi.org/10.1007/978-3-030-38617-7_3
http://dx.doi.org/10.1007/978-3-030-38617-7_4

120 X. Zhou and S. Prasad

are benchmark hyperspectral datasets, University of Pavia [20] and University of
Houston [21], and represent urban land cover classification tasks. The University of
Pavia dataset is a hyperspectral scene representing 9 urban land cover classes, with
103 spectral channels spanning the visible through near-infrared region. The 2013
University of Houston dataset is a hyperspectral scene acquired over the University
of Houston campus and is representing 15 urban land cover classes. It has 144
spectral channels in the visible through near-infrared region. The third dataset is a
challenging multi-source (multi-sensor/multi-viewpoint) hyperspectral dataset [22]
that is particularly relevant in a transfer learning context—details of this dataset are
presented later in Sect. 5.3.1.

5.2.1 Unsupervised Feature Learning

In contrast to the labeled data, unlabeled data are often easy and cheap to acquire
for many applications, including remotely sensed hyperspectral imagery. Unsuper-
vised learning techniques do not rely on labels and that makes this class of methods
very appealing. Compared to supervised learning where labeled data are used as
a “teacher” for guidance, models trained with unsupervised learning tend to learn
relationships between data samples and estimate the data properties class-specific
labelings of samples. In the sense that most deep networks can be comprised of two
components—a feature extraction frontend and an analysis backend (e.g., under-
taking tasks such as classification, regression, etc.), an approach can be completely
unsupervised relative to the training labels (e.g., a neural network tasked with fus-
ing sensors for super-resolution), or completely supervised (e.g., a neural network
wherein both the features and the backend classifiers are learned with the end goal of
maximizing inter-class discrimination). There are also scenarios wherein the feature
extraction part of the network is unsupervised (where the labeled data are not used to
train model parameters), but the backend (e.g., classification) component of the net-
work is supervised. In this chapter, whenever the feature extraction component of a
network is unsupervised (whether the backend model is supervised or unsupervised),
we refer to this class of methods as carrying out “unsupervised feature learning”.

The benefit of unsupervised feature learning is that we can learn useful features
(in an unsupervised fashion) from a large amount of unlabeled data (e.g., spatial
features representing the natural characteristics of a scene) despite not having suf-
ficient labeled data to learn object-specific features, with the assumption that the
features learned in an unsupervised manner can still positively impact a downstream
supervised learning task.

In traditional feature learning (e.g., dimensionality reduction, subspace learning,
or spatial feature extraction), the processing operators are often based on assumptions
or prior knowledge about data characteristics. Optimization of feature learning to a
task at hand is hence non-trivial. Deep learning-based methods address this problem
in a data-adaptive manner, where the feature learning is undertaken in the context of
the overall analysis task in the same network.

5 Advances in Deep Learning for Hyperspectral Image Analysis ... 121

Deep learning-based strategies, such as autoencoders [23] and their variants,
restricted Boltzmann machines (RBM) [24, 25], and deep belief networks (DBN) [26]
have exhibited a potential to effectively characterize hyperspectral data. For classifi-
cation tasks, the most common way to use unsupervised feature learning is to extract
(learn) features from the raw data that can then be used to train classifiers down-
stream. Section 3.1 in Chap. 3 describes such a use of autoencoders for extracting
features for tasks such as classification.

In Chen et al. [27], the effectiveness of autoencoder-derived features was demon-
strated for hyperspectral image analysis. Although they attempted to incorporate
spatial information by feeding the autoencoder with image patches, a significant
amount of information is potentially lost due to the flattening process. To capture
the multi-scale nature of objects in remotely sensed images, image patches with dif-
ferent sizes were used as inputs for a stacked sparse autoencoder in [28]. To extract
similar multi-scale spatial-spectral information, Zhao et al. [29] applied a scale
transformation by upsampling the input images before sending them to the stacked
sparse autoencoder. Instead of manipulating the spatial size of inputs, Ma et al.
[30] proposed to enforce the local constraint as a regularization term in the energy
function of the autoencoder. By using a stacked denoising autoencoder, Xing et al.
[31] sought to improve the feature stability and robustness with partially corrupted
inputs. Although these approaches have been effective, they still require input sig-
nals (frames/patches) to be reshaped as one-dimensional vectors, which inevitably
results in a loss of spatial information. To better leverage the spatial correlations
between adjacent pixels, several works have been proposed to use the convolutional
autoencoder to extract features from hyperspectral data [32-34].

Stacking layers have been shown to be an effective way to increase the repre-
sentation power of an autoencoder model. The same principle applies to deep belief
networks [35], where each layer is represented by a restricted Boltzmann machine.
With the ability to extract a hierarchical representation from the training data, promis-
ing results have been shown for DBN/RBM for hyperspectral image analysis [36—42].
In recent works, some alternate strategies to unsupervised feature learning for hyper-
spectral image analysis have also emerged. In [43], a convolutional neural network
was trained in a greedy layer-wise unsupervised fashion. A special learning crite-
ria called Enforcing Population and Lifetime Sparsity (EPLS) [44] was utilized to
ensure that the generated features are unique, sparse, and robust at the same time.
In [45], the hourglass network [46], which shares a similar network architecture as an
autoencoder, was trained for super-resolution using unlabeled samples in conjunc-
tion with noise. The reconstructed image was downsampled and compared with the
real low-resolution image. The offset between these two was used as the loss function
that was minimized to train the entire network. A minimized loss (offset) indicates
the reconstruction from the network would be a good super-resolved estimate of the
original image.

http://dx.doi.org/10.1007/978-3-030-38617-7_3

122 X. Zhou and S. Prasad

5.2.2 Semi-supervised learning

Although the feature learning strategy allows us to extract informative features from
unlabeled data, the classification part of the network still requires labeled training
samples. Methods that rely completely on unsupervised learning may not provide dis-
criminative features from unlabeled data entirely for challenging classification tasks.
Semi-supervised deep learning is an alternate approach where unlabeled data are
used in conjunction with a small amount of labeled data to train deep networks (both
the feature extraction and classification components). It falls between supervised
learning and unsupervised learning and leverages benefits of both approaches. In the
context of classification, semi-supervised learning often provides better performance
compared to unsupervised feature learning, but without the annotation/labeling cost
needed for fully supervised learning [47].

Semi-supervised learning has been shown to be beneficial for hyperspectral image
classification in various scenarios [48—53]. Recent research [50] has shown that the
classification performance of a Multilayer Perceptron (MLP) can be improved by
adding an unsupervised loss. In addition to the categorical cross-entropy loss, a
symmetric decoder branch was added to the MLP and multiple reconstruction losses,
measured by the mean squared error of the encoder and decoder, were enforced to
help the network generate effective features. The reconstruction loss, in fact, served
as a regularizer to prevent the model from overfitting. A similar strategy has been
used with convolutional neural networks in [48].

A variant of semi-supervised deep learning, proposed by Wu and Prasad in [52],
entails learning a deep network that extracts features that are discriminative from the
perspective of the intrinsic clustering structure of data (i.e., these deep features can
discriminate between cluster labels—also referred to as pseudo-labels in this work)—
in short, the cluster labels generated from clustering of unlabeled data can be used
to boost the classification performance. To this end, a constrained Dirichlet Process
Mixture Model (DPMM) was used, and a variational inference scheme was proposed
to learn the underlying clustering from data. The clustering labels of the data were
used as pseudo-labels for training a convolutional recurrent neural network, where
a CNN was followed by a few recurrent layers (akin to a pretraining with pseudo-
labels). Figure 5.1 depicts the architecture of network. The network configuration is
specified in Table 5.1, where convolutional layers are denoted as “conv <filter size>-
<number of filters> and recurrent layers are denoted as “recur-<feature dimension>.”

After pretraining with unlabeled data and associated pseudo-labels, the network
was fine-tuned with labeled data. This entails adding a few more layers to the previ-
ously trained network and learning only these layers from the labeled data. Compared
to traditional semi-supervised methods, the pseudo-label-based network, PL-SSDL,
achieved higher accuracy on the wetland data (a detailed description of this dataset
is provided in Sect. 3) as shown in Table 5.2. The effect of varying depth of the
pretrained network on the classification performance is shown in Fig. 5.2. Accuracy
increases as the model goes deeper, i.e., more layers. In addition to the environ-
mental monitoring application represented by the wetland dataset, the efficacy of

http://dx.doi.org/10.1007/978-3-030-38617-7_3

5 Advances in Deep Learning for Hyperspectral Image Analysis ... 123

Fig. 5.1 Architecture of the
convolutional recurrent
neural network. Cluster
labels are used for
pretraining the network.
(Source adapted from [52])

Recurrent
layers

Convolutional
layers

Softmax (mn

1:[:]
Fully Connected Layers I:]:[Ejj

i

_tt

Feature

Convolittional
feature maps

t Convolution

:

t Max Pooling

J o e e o s e f e o i | o e o o e e] e o e e}
4 N
Convolution

QN 1 (7 1 2 0 3 L I £ L T
3

= = Cluster2
:‘\...:': l”-- \\
N » J \

Cluster1 *_X./

\“-""Cluster 3

124 X. Zhou and S. Prasad

Table 5.1 Network configuration summary for the Aerial view wetland hyperspectral dataset.
Every convolutional layer is followed by a max pooling layer, which is omitted for the sake of
simplicity. (Source adapted from [52])

input-103 — conv3-32 — conv3-32 — conv3-64 — conv3-64
— recur-256 — recur-512 — fc-64 — fc-64 — softmax-9

Table 5.2 Overall classification accuracies of different methods on the aerial view wetland dataset.
(Source adapted from [52])

Methods Label TSVM SS-LapSVM | Ladder PL-SSDL
propagation Networks
Accuracy 89.28 £1.04 [92.24+0.81 |95.17£0.85 |93.17+1.49 |97.33£0.48

PL-SSDL was also verified for urban land cover classification tasks using the Uni-
versity of Pavia [20] and the University of Houston [21] datasets, having 9 and 15
land cover classes, and representing spectra 103 and 144 spectral channels spanning
the visible through near-infrared regions, respectively. As we can see from Fig. 5.3,
features extracted with pseudo-label (middle column) are separated better than the
raw hyperspectral data (left column), which implies pretraining with unlabeled data
makes the features more discriminative. Compared to a network that is trained solely
using labeled data, the semi-supervised method requires much less labeled samples
due to the pretrained model. With only a few labeled samples per class, features
are further improved by fine-tuning (right column) the network. Similar to this idea,
Kang [53] later trained a CNN with pseudo-labels to extract spatial deep features
through pretraining.

5.2.3 Active learning

Leveraging unlabeled data is the underlying principle of unsupervised and semi-
supervised learning. Active learning, on the other hand, aims to improve the efficiency
of acquiring labeling data as much as possible. Figure 5.4 shows a typical active
learning flow, which contains four components: a labeled training set, a machine
learning model, an unlabeled pool of data, and an oracle (a human annotator/domain
expert). The labeled set is initially used for training the model. Based on the model’s
prediction, queries are then selected from the unlabeled pool and sent to the oracle
for labeling. The loop is iterated until a pre-determined convergence criterion is
met. The criteria used for selecting samples to query determines the efficiency of
model training—efficiency here refers to the machine learning model reaching its
full discriminative potential using as few queried labeled samples as possible. If
every queried sample provides significant information to the model when labeled
and incorporated into training, the annotation requirement will be small. A large part

5 Advances in Deep Learning for Hyperspectral Image Analysis ... 125

100 . . . ; ; ; .
= /_—/r"’a 1
=
T oot J
=
[&]
o
=
§ 85+ 4
c
o
1‘.-2 B8O 1
-
(7]
8 75f 1
o
701 R
—#— Wetland
65 1 1 1 1 L L 1
1 2 3 4 5 6 7 8 9

Depth of Pre-trained Model

Fig.5.2 Classification accuracy as a function of the depth of the pretrained model. (Source adapted
from [52])

% & &
e e
d:‘-l L o % %u’?

2% 2
Eiy. 2=,
7 e | gt g ®

i i & """i!-? g ‘*3:-‘ _
¢ ,.!‘1 ik gy # é!wg - ¥
‘ - (13 L 2 & TS,
NS R Gy
o "t‘:‘-.-\‘., ’ﬁ- 't* ".

L

Fig. 5.3 t-SNE visualization of features at different training stages on the University of Pavia [20]
(top row) and University of Houston [21] (bottom row) datasets. Left column represents raw image
features, middle column represents features after unlabeled data pretraining, and right column
represents feature after labeled data fine-tuning. (Source adapted from [52])

126 X. Zhou and S. Prasad

Fig. 5.4 Tllustration of an

; ; Inference
active learning system “

Train a model Machine

learning model

Labeled set

Augment training set

Unlabeled set

Annotator

Select queries

of active learning research is focused on designing suitable metrics to quantify the
information contained in an unlabeled sample that can be used for querying samples
from the data pool. A common thread in these works is the notion that choosing
samples that confuse the machine the most would result in a better (efficient) active
learning performance.

Active learning with deep neural networks has obtained increasing attention within
the remote sensing community in recent years [54—58]. Liu et al. [55] used features
produced by a DBN to estimate the representativeness and uncertainty of samples.
Both [56] and [57] explored using an active learning strategy to facilitate transferring
knowledge from one dataset to another. In [56], a stacked sparse autoencoder was
initially trained in the source domain and then fine-tuned in the target domain. To
overcome the labeled data bottleneck, an uncertainty-based metric was used to select
the most informative samples from the source domain for active learning. Similarly,
Linetal. [57] trained two separate autoencoders from the source and target domains.
Representative samples were selected based on the density in the neighborhood of
the samples in the feature space. This allowed autoencoders to be effectively trained
using limited data. In order to transfer the supervision from source to target domain,
features in both domains were aligned by maximizing their correlation in a latent
space.

Unlike autoencoders and DBN, Convolution Neural Networks (CNNs) provide
an effective framework to exploit the spatial correlation between pixels in a hyper-
spectral image. However, when it comes to training with small data, CNNs tends
to overfit due to the large number of trainable network parameters. To solve this
problem, Haut [58] present an active learning algorithm that uses a special network
called Bayesian CNN [59]. Gal and Ghahramani [59] have shown that dropout in
neural network can be considered as an approximation to the Gaussian process, which
offers nice properties such as uncertainty estimation and robustness to overfitting. By
performing dropout after each convolution layer, the training of Bayesian CNN can
be cast as approximate Bernoulli variational inference. During evaluation, outputs
of a Bayesian CNN are averaged over several passes, which allows us to estimate
the model prediction uncertainty and the model suffers less from overfitting. Multi-
ple uncertainty-based query criteria were then deployed to select samples for active
learning.

5 Advances in Deep Learning for Hyperspectral Image Analysis ... 127

5.3 Knowledge Transfer Between Sources

Another common image analysis scenario entails learning with multiple sources, in
particular, where one source is label “rich” (in the quantity and/or quality of labeled
data) and the other source is label “starved”. Sources in this scenario could imply
different sensors, different sensing platforms (e.g., ground-based imagers, drones, or
satellites), different time points, and different imaging viewpoints. In this situation,
when it is desired to undertake analysis in the label-starved domain (often referred to
as the target domain), a common strategy is to transfer knowledge from the label-rich
domain (often referred to as the source domain).

5.3.1 Transfer Learning and Domain Adaptation

Effective training has always been a challenge with deep learning models. Besides
requiring large amounts of data, the training itself is time-consuming and often comes
with convergence and generalization problems. One major breakthrough of effective
training of deep networks is the pretraining technique introduced by Hinton et al.
[4], where a DBN was pretrained with unlabeled labeled data in a greedy layer-wise
fashion, followed by a supervised fine-tuning. In particular, the DBN was trained one
layer at a time by reconstructing outputs from the previous layer for the unsupervised
pretraining. At the last training stage, all parameters were fine-tuned together by opti-
mizing a supervised training criterion. In Erhan et al. in [60], the authors suggested
that unsupervised pretraining works as a form of regularization. It not only provides
a good initialization but also helps the generalization performance of the network.
Similar to unsupervised pretraining, networks pretrained with supervision have also
achieved huge success. In fact, using pretrained models as a starting point for new
training has become a common practice for many analysis tasks [61, 62].

The main idea behind transfer learning is that knowledge gained from related
tasks or a related data source can be transferred to a new task by fine-tuning on the
new data. This is particularly useful when there is a data shortage in the new domain.
In the computer vision community, a common approach to transfer learning is to
initialize the network with weights that are pretrained for image classification on the
ImageNet dataset [8]. The rationale for this is that ImageNet contains millions of
natural images that are manually annotated and models trained with it tend to provide
a “baseline performance” with generic and basic features commonly seen in natural
images. Researchers have shown that features from lower layers of deep networks are
color blobs, edges, shapes [13]. These basic features are usually readily transferable
across datasets (e.g., data from different sources) [63].

In [64], Penatti et al. discussed the feature generalization in the remote sensing
domain. Empirical results suggested that transferred features are not always better
than hand-crafted features, especially when dealing with unique scenes in remote
sensing images. Windrim et al. [65] unveiled valuable insights on transfer learning in

128 X. Zhou and S. Prasad

the context of hyperspectral image classification. In order to test the effect of filter size
and wavelength interval, multiple hyperspectral datasets were acquired with different
sensors. The performance of transfer learning was examined through a comparison
with training the network from scratch, i.e., randomly initializing network weights.
Extensive experiments were carried out to investigate the impact of data size, network
architecture, and so on. The authors also discussed the training convergence time and
feature transferability under various conditions.

Despite the open questions which require more investigations, extensive stud-
ies have empirically shown the effectiveness of transfer learning on hyperspectral
image analysis [39, 51, 66—76]. Marmanis et al. [66] introduced the pretrained model
idea [1] for hyperspectral image classification. A pretrained AlexNet [1] was used as
a fixed feature extractor and a two-layer CNN was attached for the final classification.
Yang et al. [68] proposed a two-branch CNN for extracting spectral-spatial features.
To solve the data scarcity problem, weights of lower layers were pretrained from
another dataset and the entire network was then fine-tuned on the source dataset.
Similar strategies have also been followed in [69, 74, 77].

Along with pretraining and fine-tuning, domain adaptation is another mechanism
to transfer knowledge from one domain to another. Domain adaptation algorithms
aim at learning a model from source data that can perform well on the target data. It
can be considered as a sub-category of transfer learning, where the input distribution
p(X) changes while the label distribution p(Y'|X) remains the same across the two
domains. Unlike the pretraining and fine-tuning method, which can be used when both
distributions change, domain adaptation usually assumes the class-specific properties
of the features within the two domains are correlated. This allows us to enforce
stronger connections while transferring knowledge.

Othman et al. [70] proposed a domain adaptation network that can handle cross-
scene classification when there is no labeled data in the target domain. Specifically,
the network used three loss components for training: a classification loss (cross-
entropy) in the source domain, a domain matching loss based on Maximum Mean
Discrepancy (MMD) [78], and a graph regularization loss that aims to retain the
geometrical structure of the unlabeled data in the target domain. The cross-entropy
loss ensures that features produced by the network are discriminative. Having dis-
criminative features in the original domain has also been found to be beneficial
for the domain matching process [22]. In order to undertake domain adaptation,
features from the two domains were aligned by minimizing the distribution differ-
ence. Zhou and Prasad [76] proposed to align domains (more specifically, features
in these domains) based on Domain Adaptation Transformation Learning (DATL)
[22]—DATL aligns class-specific features in the two domains by projecting the two
domains onto a common latent subspace such that the ratio of within-class distance
to between-class distance is minimized in that latent space.

Next, we briefly review how a projection such as DATL can be used to align
deep networks for domain adaptation and present some results with multi-source
hyperspectral data. Consider the distance between a source sample x; and a target
sample x’; in the latent space,

5 Advances in Deep Learning for Hyperspectral Image Analysis ... 129
K K 2
d(xj, x)) = 1 () = fieDI?, (5.1)

where f; and f; are feature extractors, e.g., CNNs that transform samples from both
domains to a common feature space. To make the feature space robust to small
perturbations in original source and target domains, the stochastic neighborhood
embedding is used to measure classification performance [79]. In particular, the
probability p;; of the target sample x;. being the neighbor of the source sample x; is
given as
exp(— Il f;(x}) — f,)IP)
P S o e 5) — [T

(5.2)

where D is the source domain. Given a target sample with its label (x;., y; = c), the
source domain £ can be splitinto a same-class set D} = {x{|yx = c} and adifferent-
class set Z); = {x}|yx # c}. In the classification setting, one wants to maximize the
probability of making the correct prediction for x;.

| Taen oIAGD = AGDIP)
PI= S em eI GD — 6D

(5.3)

Maximizing the probability p; is equivalent to minimizing the ratio of intra-class
distances to inter-class distances in the latent space. This ensures that classes from
the target domain and the source domain are aligned in the latent space. Note that
the labeled data from the target domain (albeit limited) can be further used to make
the feature more discriminative. The final objective function of DATL can then be
written as

5 e XD 1A = HGDIP)
_ glxen: 5.4
ETPS e, PG = FGD) o
S remn D=L i) = FiGDIP)

2 e, eXP(=I1fi(xp) — VAEHIDN

+(1=5)

The first term can be domain alignment term and the second term can be seen as a
class separation term. 3 is the trade-off parameter that is data dependent. The greater
the difference between source and target data, the larger value of 8 should be used
to put more emphasis on domain alignment.

Depending on the feature extractors, Eq. 5.3 can be either solved using conjugate
gradient-based optimization [22] or treated as a loss and solved using stochastic
gradient descent [80]. DATL has been shown to be effective for addressing large
domain shifts such as between street view and satellite hyperspectral images [22]
acquired with different sensors and imaged with different viewpoints.

Figure 5.5 shows the architecture of Feature Alignment Neural Network (FANN)
that leverages DATL. Two Convolutional Recurrent Neural Networks (CRNN) were

130 X. Zhou and S. Prasad

3 CRNN (Ds) CI\\ layers RNN layers Softmax E
; 1
Snurtc data ayer :
I :
I
i
1
I
1
1
Softmax
1
FA layers | layer
| i
1
I
1
; |-' g 1
'} 1
] | ! Feature
------ * concatenation
e e ot e i -
I
1
1
I
- 1]
1
|
I '
Target data :
Softmax 1
' CRNN (D) C'\IN layers RNN lavers layer :

Fig. 5.5 The architecture of feature alignment neural network. (Source adapted from [76])

trained separately for the source and target domains. Features from corresponding
layers were connected through an adaptation module, which is composed of a DATL
term and a trade-off parameter that balances the domain alignment and the class
separation. Specifically, the trade-off parameter § is automatically estimated by a
proxy A-distance (PAD) [81].

B=PAD/2 =1 —2¢, (5.5)

where PAD is defined as PAD = 2(1 — 2¢) and € € [0, 2] is the generalization error
of alinear SVM trained to discriminate between two domains. Aligned features were
then concatenated and fed to a final softmax layer for classification (Table 5.3).
The performance of FANN was evaluated on a challenging domain adaptation
dataset introduced in [22]. See Fig. 5.6 for the true color images for the source and
target domains. The dataset consists of hyperspectral images of ecologically sensitive
wetland vegetation that were collected by different sensors from two viewpoints—
“Aerial” and “Street view” (and using sensors with different spectral characteristics)
in Galveston, TX. Specifically, the aerial data were acquired using the ProSpecTIR
VS sensor aboard an aircraft and has 360 spectral bands ranging from 400 nm to
2450 mm with a 5 nm spectral resolution. The aerial view data were radiometrically
calibrated and corrected. The resulting reflectance data has a spatial coverage of
3462 x 5037 pixels at a 1 m spatial resolution. On the other hand, the Street view
data were acquired through the Headwall Nano-Hyperspec sensor on a different date

5 Advances in Deep Learning for Hyperspectral Image Analysis ... 131

Table 5.3 Network configuration summary for the Aerial and Street view wetland hyperspectral
dataset (A-S view wetland). (Source adapted from [76])

FANN (A-S view wetland)

CRNN (Street) — DATL < CRNN (Aerial)

(conv4-128 + maxpooling) — DATL < (conv5-512 + maxpooling)
(conv4-128 + maxpooling) — DATL <« (conv5-512 + maxpooling)
(conv4-128 + maxpooling) — DATL < (conv5-512 + maxpooling)
(conv4-128 + maxpooling) — DATL < (conv5-512 + maxpooling)
(conv4-128 + maxpooling) — DATL < (conv5-512 + maxpooling)
recur-64 — DATL < recur-128

Fully connected-12

Upland gravs St Auigiting grass Upland tree Phragmites suvtrails Sabal mexicans

istichis
spicata

Fig. 5.6 Aerial and Street view wetland hyperspectral dataset. Left: Aerial view of the wetland
data (target domain). Right: Street view of wetland data (source domain). (Source adapted from

[76D

and represents images acquired by operating the sensor on a tripod and imaging the
vegetation in the field during ground-reference campaigns. Unlike the Aerial view
data, the street view data represent at-sensor radiance data with 274 bands spanning
400 nm and 1000 nm at 3 nm spectral resolution. As can be seen from Fig. 5.7,
spectral signatures for the same class are very different between the source and
target domains. With very limited labeled data in the aerial view, FANN achieved
significant classification improvement compared to traditional domain adaptation
methods (see Table 5.4).

As can be seen from Fig. 5.8, raw hyperspectral features from source and target
domains are not aligned with each other. Due to the limited labeled data in Aerial
view data, the mixture of classes happens in a certain level. The cluster structures are
improved slightly by CRNN, see Fig. 5.8c, d for comparison. On the contrary, the
source data, i.e., Street view data, have well-separated cluster structure. However, the
classes are not aligned between the two domains; therefore, labels from the source
domain cannot be used to directly train a classifier for the target domain. After
passing all samples through the FANN, the two domains are aligned class by class
in the latent space, as shown in Fig. 5.8e.

132

X. Zhou and S. Prasad

(a) 8500 —— (b) 2500 ———
—C2 — 2
3000 [03 —_—c3
—_—d 2000 g Q
2500 c5 c5 |
° c6 c6 ,“%\
o —Cc7 ® 1500 =7 L
E 2000 [__ o é —c8 \
o —c9 = —C9
..i_’ 1500 c10 -('Q c10
i @ 1000
o cl1 cit R
1000 I—c12 —ci2 N J\\
500 ’N
500
o . . . 4 o
] 500 1000 1500 2000 2500 400 500 600 700 800 900 1000
Wavelength [nm] Wavelength [nm]
cl c2 c3 cd c5 cb
Upland grass | St.Augustine Sesbania Upland tree | Phragmites Sabal
grass austrails mexicana
c7 c8 c9 cl0 cll cl2
Spartina Juncus Batis Distichlis Baccharis Avicennia
alterniflora | roemerianus maritima spicata halimifolia germinans

Fig. 5.7 Mean spectral signature of the Aerial view (target domain) wetland data (a) and the Street
view (source domain) wetland data (b). Different wetland vegetation species (classes) are indicated
by colors. (Source adapted from [76])

Table 5.4 Overall classification accuracies of different domain adaptation methods on the Aerial
and Street view wetland dataset. (Source adapted from [76])

Methods SSTCA KEMA D-CORAL FANN
Accuracy 85.3+5.6 87.3+1.7 925+1.9 95.8 1.1
I(a) (b)
» P
w7 |CRNN| o -
- | -
: ..‘._?_d . » e (E!)
- P g .
L and "y, bt
] : %
' FANN| * &F ry
(© (d) a P, E
o .‘.
q ’ b e -y
CRNN ;

" ‘,5‘ $ W S
Fig. 5.8 t-SNE feature visualization of the Aerial and Street view wetland hyperspectral data at
different stages of FANN. a Raw spectral features of Street view data in source domain. b CRNN
features of Street view data in source domain. ¢ Raw spectral features of Aerial view data in source
domain. d CRNN features of Aerial view data in source domain. e FANN features for both domains
in the latent space. (Source adapted from [76])

5 Advances in Deep Learning for Hyperspectral Image Analysis ... 133

Table 5.5 Overall accuracy of the features of alignment layers and concatenated features for the
Aerial and Street view wetland dataset. (Source adapted from [76])

Layer FA-1 FA-2 FA-3 FA-4 FA-5 FA-6 FANN
OA 88.1 86.2 83.9 75.7 72.0 86.4 95.8

To better understand the feature adaptation process, features from all layers were
investigated individually and compared to the concatenated features. Performance
of each alignment layer is shown in Table 5.5. Consistent with observations in [63],
accuracies drop from the first layer to the fifth layer as features become more and
more specialized toward the training data. Therefore, the larger domain gap makes
domain adaptation challenging. Although the last layer (FA-6) was able to mitigate
this problem, this is because the recurrent layer has the ability to capture contextual
information along the spectral direction of the hyperspectral data. Features from
the last layer are the most discriminative ones, which allow the aligning module
(DATL) to put more weight on the domain alignment (c.f. 8 in Eqs. 5.4 and 5.5). The
concatenated features obtained the highest accuracy compared to individual layers.
As mentioned in [76], an improvement of this idea would be to learn a combination
weights for different layers instead of a simple concatenation.

5.3.2 Transferring Knowledge—Beyond Classification

In addition to image classification/semantic segmentation tasks, the notion of trans-
ferring knowledge between sources and datasets has also been used for many other
tasks, such as object detection [67], image super-resolution [71], and image caption-
ing [72].

Compared to image-level labels, training an object detection model requires
object-level labels and corresponding annotations (e.g., through bounding boxes).
This increases the labeling requirement/costs for efficient model training. Effective
feature representation is hence crucial to the success of these methods. As an exam-
ple, in order to detect aircraft from remote sensing images, Zhang et al. [67] proposed
to use the UC Merced land use dataset [82] as a background class to pretrain Faster
RCNN [83]. By doing this, the model gained an understanding of remote sensing
scenes which facilitated robust object detection. The underlying assumption in such
an approach is that even though the foreground objects may not be the same, the back-
ground information remains largely unchanged across the sources (e.g., datasets) and
can, hence, be transferred to a new domain.

Another important application of remote sensed images is pansharpening, where
a panchromatic image (which has a coarse/broad spectral resolution, but very high
spatial resolution) is used to improve the spatial resolution of multi/hyperspectral
image. However, a high-resolution panchromatic image is not always available for
the same area that is covered by the hyperspectral images. To solve this problem,

134 X. Zhou and S. Prasad

Yuan et al. [71] pretrained a super-resolution network with natural images and
applied the model to the target hyperspectral image band by band. The underlying
assumption in this work is that the spatial features in both the high- and low-resolution
images are the same in both domains irrespective of the spectral content.

Traditional visual tasks like classification, object detection, and segmentation
interpret an image at either pixel or object level. Image captioning takes this notion a
step further and aims to summarize a scene in a language that can be interpreted easily.
Although many image captioning methods have been proposed for natural images,
this topic has not been rigorously developed in the remote sensing domain. Shi et al.
[72] proposed satellite image captioning by using a pretrained Fully Convolutional
Network (FCN) [84]. The base network was pretrained for image classification on
ImageNet. To understand the images, three losses were defined at the object, environ-
ment, and landscape scale, respectively. Predicted labels at different levels were then
sent to a language generation model for captioning. In this work, the task in target
domain is very different from the one in the source domain. Despite that, pretrained
model still provides features that are generic enough to help understanding the target
domain images.

5.4 Data Augmentation

Flipping and rotating images usually do not affect the class labels of objects within the
image. A machine learning model can benefit if the training library is augmented with
samples with these simple manipulations. By changing the input training images in
a way that does not affect the class, it allows algorithms to train from more examples
of the object, and the models hence generalize better to test data. Data generation
and augmentation share the same philosophy—to generate synthetic or transformed
data that is representative of real-world data and can be used to boost the training.
Data augmentation such as flipping, rotation, cropping, and color jittering have
been shown to be very helpful for training deep neural networks [1, 85, 86]. These
operations, in fact, have become common practice when training models for natu-
ral image analysis tasks. Despite the differences between hyperspectral and natural
images, standard augmentation methods like rotation, translation, and flipping have
been proven to be useful in boosting the classification accuracy of hyperspectral
image analysis tasks [87] and [88]. To simulate the variance in the at-sensor radiance
and mixed pixels during the imaging process, Chen et al. [16] created virtual samples
by multiplying random factors to existing samples and linearly combining samples
with random weights, respectively. Li et al. [89] showed the performance can be fur-
ther improved by integrating spatial similarity through pixel block pairs, in which a
3 x 3 window around the labeled pixel was used as a block and different blocks were
paired together based on their labels to augment the training set. A similar spatial
constraint was also used by Feng et al. [90], where unlabeled pixels were assigned
labels for training if their k-nearest neighbors (in both spatial and spectral domains)
belong to the same class. Haut et al. [91] used a random occlusion idea to augment

5 Advances in Deep Learning for Hyperspectral Image Analysis ... 135

data in the spatial domain. It randomly erases regions from the hyperspectral images
during the training. As a consequence, the variance in the spatial domain increased
and led to a model that generalized better.

Some flavors of data fusion algorithms can be thought of as playing the role of
data augmentation, wherein supplemental data sources are helping the training of
the models. For instance, a building roof and a paved road both can be made from
similar materials—in such a case, it may be difficult for a model to tell differential
these classes from the reflectance spectra alone. However, this distinction can be
easily made by comparing their topographic information (e.g., using LiDAR data).
A straightforward approach to fuse hyperspectral and LiDAR data would be training
separate networks—one for each source/sensor and combining their features either
through concatenation [92, 93] or some other schemes such as a composite ker-
nel [94]. Zhao et al. [95] presented data fusion of multispectral and panchromatic
images. Instead of applying CNN to the entire image, features were extracted for
superpixels that were generated from the multispectral image. Particularly, a fixed
size window around each superpixel was split into multiple regions and the image
patch in each region was feed into a CNN for extracting local features. These local
features were sent to an autoencoder for fusion and a softmax layer was added at
the end for prediction. Due to its relatively high spatial resolution, the panchromatic
image can produce spatial segments at a finer scale than the multispectral image.
This was leveraged to refine the predictions by further segmenting each superpixel
based on panchromatic image.

Aside from augmenting the input data, generating synthetic data that resembles
real-life data is another approach to increase training samples. Generative adversarial
network (GAN) [96] introduced a trainable approach to generate new synthetic
samples. GAN consists of two sub-networks, a generator and a discriminator. During
the training, two components play a game with each other. The generator is trying
to fool the discriminator by producing samples that are as realistic as possible, and
the discriminator is trying to discern whether a sample is synthetically generated
or belongs to the training data. After the training process converges, the generator
will be able to produce samples that look similar to the training data. Since it does
not require any labeled data, there has been an increasing interest in using GAN
for data augmentation in many applications. This has been applied to hyperspectral
image analysis in recent years [49, 73, 97, 98]. Both [49] and [98] used GAN
for hyperspectral image classification, where a softmax layer was attached to the
discriminator. Fake data were treated as an additional class in the training set. Since a
large amount of unlabeled was used for training the GAN, the discriminator became
good at classifying all samples. A transfer learning idea was proposed for super-
resolution in [73], where a GAN is pretrained on a relatively large dataset and
fine-tuned on the UC Merced land use dataset [82].

136 X. Zhou and S. Prasad

5.5 Future Directions

In this chapter, we reviewed recent advances in deep learning for hyperspectral image
analysis. Although a lot of progress has been made in recent years, there is still a lot
of open problems and related research opportunities. In addition to making advances
in algorithms and network architectures (e.g., networks for multi-scale, multi-sensor
data analysis, data fusion, image super-resolution, etc.), there is a need for addressing
fundamental issues that arise from insufficient data and the fundamental nature of
the data being acquired. Toward this end, the following directions are suggested:

e Hyperspectral ImageNet: We have witnessed the immense success brought about in
part by the ImageNet dataset for traditional image analysis. The benefit of building
a similar dataset for hyperspectral image is compelling. If such libraries can be
created for various image analysis tasks (e.g., urban land cover classification,
ecosystem monitoring, material characterization, etc.), they will enable learning
truly deep networks that learn highly discriminative spatial-spectral features.

e Interdisciplinary collaboration: Developing an effective model for analyzing
hyperspectral data requires a deep understanding of both the properties of the data
itself and machine learning techniques. With this in mind, networks that reflect the
optical characteristics of the sensing modalities (e.g., inter-channel correlations)
and variability caused in acquisition (e.g., varying atmospheric conditions) should
add more information for the underlying analysis tasks compared to “black-box”
networks.

References

1. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional
neural networks. In: Advances in neural information processing systems. pp 1097-1105

2. Rumelhart DE, Hinton GE, Williams RJ et al (1988) Learning representations by back-
propagating errors. Cogn Model 5(3):1

3. Krogh A, Hertz JA (1992) A simple weight decay can improve generalization. In: Advances
in neural information processing systems, pp 950-957

4. Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief nets. Neural
Comput 18(7):1527-1554

5. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple
way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929-1958

6. loffe S, Szegedy C, Batch normalization: accelerating deep network training by reducing inter-
nal covariate shift. arXiv:1502.03167

7. CaruanaR, Lawrence S, Giles CL (2001) Overfitting in neural nets: backpropagation, conjugate
gradient, and early stopping. In: Advances in neural information processing systems, pp 402—
408

8. DengJ, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical
image database. In: IEEE conference on computer vision and pattern recognition. IEEE, pp
248-255

9. Camps-Valls G, Tuia D, Bruzzone L, Benediktsson JA (2014) Advances in hyperspectral image
classification: earth monitoring with statistical learning methods. IEEE Signal Process Mag
31(1):45-54

http://arxiv.org/abs/1502.03167

5 Advances in Deep Learning for Hyperspectral Image Analysis ... 137

10.

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

Bioucas-Dias JM, Plaza A, Dobigeon N, Parente M, Du Q, Gader P, Chanussot J (2012) Hyper-
spectral unmixing overview: geometrical, statistical, and sparse regression-based approaches.
IEEE J Select Topi Appl Earth Observ Remote Sens 5(2):354-379

LeCun Y, Kavukcuoglu K, Farabet C (2010) Convolutional networks and applications in vision.
In: Proceedings of 2010 IEEE international symposium on circuits and systems. IEEE, pp 253—
256

Boureau Y-L, Bach F, LeCun Y, Ponce J (2010) Learning mid-level features for recognition.
In: IEEE computer society conference on computer vision and pattern recognition. Citeseer,
pp 2559-2566

Yosinski J, Clune J, Fuchs T, Lipson H (2015) Understanding neural networks through deep
visualization. In: In ICML workshop on deep learning. Citeseer

Shen L, Jia S (2011) Three-dimensional gabor wavelets for pixel-based hyperspectral imagery
classification. IEEE Trans Geosci Remote Sens 49(12):5039-5046

Zhou X, Prasad S, Crawford MM (2016) Wavelet-domain multiview active learning for spatial-
spectral hyperspectral image classification. IEEE J Select Top Appl Earth Observ Remote Sens
9(9):4047-4059

. Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification

of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote
Sens 54(10):6232-6251

Li Y, Zhang H, Shen Q (2017) Spectral-spatial classification of hyperspectral imagery with 3D
convolutional neural network. Remote Sens 9(1):67

Paoletti M, Haut J, Plaza J, Plaza A (2018) A new deep convolutional neural network for fast
hyperspectral image classification. ISPRS J Photogrammetry Remote Sens 145:120-147
Zhong Z, Li J, Luo Z, Chapman M (2018) Spectral-spatial residual network for hyperspec-
tral image classification: A 3-d deep learning framework. IEEE Trans Geosci Remote Sens
56(2):847-858

Pavia university hyperspectral data. http://www.ehu.eus/ccwintco/index.php?
title=Hyperspectral_Remote_Sensing_Scenes

University of Houston hyperspectral data. http://hyperspectral.ee.uh.edu/?page_id=459

Zhou X, Prasad S (2017) Domain adaptation for robust classification of disparate hyperspectral
images. IEEE Trans Comput Imaging 3(4):822-836

Rumelhart DE, Hinton GE, Williams RJ (1985) Learning internal representations by error
propagation. Tech. rep., California Univ San Diego La Jolla Inst for Cognitive Science
Smolensky P (1986) Information processing in dynamical systems: foundations of harmony
theory. Tech. rep, Colorado Univ at Boulder Dept of Computer Science

Hinton GE (2002) Training products of experts by minimizing contrastive divergence. Neural
Comput 14(8):1771-1800

Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural net-
works. Science 313(5786):504-507

Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) Deep learning-based classification of hyper-
spectral data. IEEE J Select Top Appl Earth Observ Remote Sens 7(6):2094-2107

Tao C, Pan H, Li Y, Zou Z (2015) Unsupervised spectral-spatial feature learning with stacked
sparse autoencoder for hyperspectral imagery classification. IEEE Geosci Remote Sens Lett
12(12):2438-2442

Zhao C, Wan X, Zhao G, Cui B, Liu W, Qi B (2017) Spectral-spatial classification of hyper-
spectral imagery based on stacked sparse autoencoder and random forest. Eur J] Remote Sens
50(1):47-63

Ma X, Wang H, Geng J (2016) Spectral-spatial classification of hyperspectral image based on
deep auto-encoder. IEEE J Select Top Appl Earth Observ Remote Sens 9(9):4073—4085

Xing C, Ma L, Yang X (2016) Stacked denoise autoencoder based feature extraction and
classification for hyperspectral images. J Sens

Kemker R, Kanan C (2017) Self-taught feature learning for hyperspectral image classification.
IEEE Trans Geosci Remote Sens 55(5):2693-2705

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://hyperspectral.ee.uh.edu/?page_id=459

138 X. Zhou and S. Prasad

33. JiJ, Mei S, Hou J, Li X, Du Q (2017) Learning sensor-specific features for hyperspectral
images via 3-dimensional convolutional autoencoder. In IEEE international geoscience and
remote sensing symposium (IGARSS). IEEE, pp 1820-1823

34. Han X, Zhong Y, Zhang L (2017) Spatial-spectral unsupervised convolutional sparse auto-
encoder classifier for hyperspectral imagery. Photogram Eng Remote Sens 83(3):195-206

35. Le Roux N, Bengio Y (2008) Representational power of restricted boltzmann machines and
deep belief networks. Neural Comput 20(6):1631-1649

36. Li T, Zhang J, Zhang Y (2014) Classification of hyperspectral image based on deep belief
networks. In: IEEE international conference on image processing (ICIP). IEEE, pp 5132-5136

37. Midhun M, Nair SR, Prabhakar V, Kumar SS (2014) Deep model for classification of hyper-
spectral image using restricted boltzmann machine. In: Proceedings of the 2014 international
conference on interdisciplinary advances in applied computing. ACM, p. 35

38. Chen Y, Zhao X, Jia X (2015) Spectral-spatial classification of hyperspectral data based on
deep belief network. IEEE J Select Top Appl Earth Observ Remote Sens 8(6):2381-2392

39. Tao Y, Xu M, Zhang F, Du B, Zhang L (2017) Unsupervised-restricted deconvolutional neu-
ral network for very high resolution remote-sensing image classification. IEEE Trans Geosci
Remote Sens 55(12):6805-6823

40. Zhou X, LiS, Tang F, Qin K, Hu S, Liu S (2017) Deep learning with grouped features for spatial
spectral classification of hyperspectral images. IEEE Geosci Remote Sens Lett 14(1):97-101

41. LiC, Wang Y, Zhang X, Gao H, Yang Y, Wang J (2019) Deep belief network for spectral-spatial
classification of hyperspectral remote sensor data. Sensors 19(1):204

42. Tan K, Wu F, Du Q, Du P, Chen Y (2019) A parallel gaussian-bernoulli restricted boltzmann
machine for mining area classification with hyperspectral imagery. IEEE J Select Top Appl
Earth Observ Remote Sens 12(2):627-636

43. Romero A, Gatta C, Camps-Valls G (2016) Unsupervised deep feature extraction for remote
sensing image classification. IEEE Trans Geosci Remote Sens 54(3):1349-1362

44. Romero A, Radeva P, Gatta C (2015) Meta-parameter free unsupervised sparse feature learning.
IEEE Trans Pattern Anal Mach Intell 37(8):1716-1722

45. Haut JM, Fernandez-Beltran R, Paoletti ME, Plaza J, Plaza A, Pla F (2018) A new deep
generative network for unsupervised remote sensing single-image super-resolution. IEEE Trans
Geosci Remote Sens 99: 1-19

46. Newell A, Yang K, Deng J (2016) Stacked hourglass networks for human pose estimation. In:
European conference on computer vision. Springer, pp 483—499

47. Chapelle O, Scholkopf B, Zien A (2009) Semi-supervised learning (chapelle, O. etal., eds.;
2006)[book reviews]. IEEE Trans Neural Netw 20(3):542-542

48. Liu B, Yu X, Zhang P, Tan X, Yu A, Xue Z (2017) A semi-supervised convolutional neural
network for hyperspectral image classification. Remote Sens Lett 8(9):839-848

49. He Z, Liu H, Wang Y, Hu J (2017) Generative adversarial networks-based semi-supervised
learning for hyperspectral image classification. Remote Sens 9(10):1042

50. Kemker R, Luu R, Kanan C (2018) Low-shot learning for the semantic segmentation of remote
sensing imagery. IEEE Trans Geosci Remote Sens 99:1-10

51. Niu C, Zhang J, Wang Q, Liang J (2018) Weakly supervised semantic segmentation for joint
key local structure localization and classification of aurora image. IEEE Trans Geosci Remote
Sens 99:1-14

52. Wu H, Prasad S (2018) Semi-supervised deep learning using pseudo labels for hyperspectral
image classification. IEEE Trans Image Process 27(3):1259-1270

53. Kang X, Zhuo B, Duan P (2019) Semi-supervised deep learning for hyperspectral image clas-
sification. Remote Sens Lett 10(4):353-362

54. Sun Y, Li J, Wang W, Plaza A, Chen Z, Active learning based autoencoder for hyperspec-
tral imagery classification. In: IEEE international geoscience and remote sensing symposium
(IGARSS). IEEE, pp. 469472

55. LiuP,Zhang H, Eom KB (2017) Active deep learning for classification of hyperspectral images.
IEEE J Select Top Appl Earth Observ Remote Sens 10(2):712-724

5 Advances in Deep Learning for Hyperspectral Image Analysis ... 139

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

Deng C, Xue Y, Liu X, Li C, Tao D, Active transfer learning network: A unified deep joint
spectral-spatial feature learning model for hyperspectral image classification. IEEE Trans
Geosci Remote Sens

Lin J, Zhao L, Li S, Ward R, Wang ZJ (2018) Active-learning-incorporated deep transfer
learning for hyperspectral image classification. IEEE J Select Top Appl Earth Observ Remote
Sens 11(11):4048-4062

Haut JM, Paoletti ME, Plaza J, Li J, Plaza A (2018) Active learning with convolutional neural
networks for hyperspectral image classification using a new Bayesian approach. IEEE Trans
Geosci Remote Sens 99:1-22

Gal Y, Ghahramani Z, Bayesian convolutional neural networks with bernoulli approximate
variational inference. arXiv:1506.02158

Erhan D, Bengio Y, Courville A, Manzagol P-A, Vincent P, Bengio S (2010) Why does unsu-
pervised pre-training help deep learning? J Mach Learn Res 11:625-660

Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y, Overfeat: integrated recogni-
tion, localization and detection using convolutional networks. arXiv:1312.6229

Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) Decaf: a deep
convolutional activation feature for generic visual recognition. In: International conference on
machine learning, 2014, pp 647-655

Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural
networks? In: Advances in neural information processing systems, pp 3320-3328

Penatti OA, Nogueira K, Dos JA (2015) Santos, do deep features generalize from everyday
objects to remote sensing and aerial scenes domains? In: Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, pp 44-51

Windrim L, Melkumyan A, Murphy RJ, Chlingaryan A, Ramakrishnan R (2018) Pretraining
for hyperspectral convolutional neural network classification. IEEE Trans Geosci Remote Sens
56(5):2798-2810

Marmanis D, Datcu M, Esch T, Stilla U (2016) Deep learning earth observation classification
using imagenet pretrained networks. IEEE Geosci Remote Sens Lett 13(1):105-109

Zhang F, Du B, Zhang L, Xu M (2016) Weakly supervised learning based on coupled convolu-
tional neural networks for aircraft detection. IEEE Trans Geosci Remote Sens 54(9):5553-5563
Yang J, Zhao Y-Q, Chan JC-W (2017) Learning and transferring deep joint spectral-spatial
features for hyperspectral classification. IEEE Trans Geosci Remote Sens 55(8):4729-4742
Mei S, Ji J, Hou J, Li X, Du Q (2017) Learning sensor-specific spatial-spectral features of
hyperspectral images via convolutional neural networks. IEEE Trans Geosci Remote Sens
55(8):4520-4533

Othman E, Bazi Y, Melgani F, Alhichri H, Alajlan N, Zuair M (2017) Domain adaptation
network for cross-scene classification. IEEE Trans Geosci Remote Sens 55(8):4441-4456
Yuan Y, Zheng X, Lu X (2017) Hyperspectral image superresolution by transfer learning. IEEE
J Select Top Appl Earth Observ Remote Sens 10(5):1963-1974

Shi Z, Zou Z (2017) Can a machine generate humanlike language descriptions for a remote
sensing image? IEEE Trans Geosci Remote Sens 55(6):3623-3634

Ma W, Pan Z, Guo J, Lei B (2018) Super-resolution of remote sensing images based on trans-
ferred generative adversarial network. In: IGARSS 2018-2018 IEEE international geoscience
and remote sensing symposium. IEEE, pp 1148-1151

Liu X, Chi M, Zhang Y, Qin Y (2018) Classifying high resolution remote sensing images
by fine-tuned vgg deep networks. In: IGARSS 2018-2018 IEEE international geoscience and
remote sensing symposium. IEEE, pp 7137-7140

Sumbul G, Cinbis RG, Aksoy S (2018) Fine-grained object recognition and zero-shot learning
in remote sensing imagery. IEEE Trans Geosci Remote Sens 56(2):770-779

Zhou X, Prasad S (2018) Deep feature alignment neural networks for domain adaptation of
hyperspectral data. IEEE Trans Geosci Remote Sens 99:1-10

Xie M, Jean N, Burke M, Lobell D, Ermon S (2016) Transfer learning from deep features for
remote sensing and poverty mapping. In: Thirtieth AAAI conference on artificial intelligence

http://arxiv.org/abs/1506.02158
http://arxiv.org/abs/1312.6229

140 X. Zhou and S. Prasad

78. Fortet R, Mourier E (1953) Convergence de la r?eparation empirique vers la réparation
théorique. In: Ann Scient Ecole Norm Sup 70:266-285

79. Hinton GE, Roweis ST (2003) Stochastic neighbor embedding. In: Advances in neural infor-
mation processing systems, pp 857-864

80. Xu X, Zhou X, Venkatesan R, Swaminathan G, Majumder O (2019) d-sne: Domain adaptation
using stochastic neighborhood embedding. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp 2497-2506

81. Ben-David S, Blitzer J, Crammer K, Pereira F (2007) Analysis of representations for domain
adaptation. In: Advances in neural information processing systems, pp 137-144

82. Yang Y, Newsam S (2010) Bag-of-visual-words and spatial extensions for land-use classi-
fication. In: Proceedings of the 18th SIGSPATIAL international conference on advances in
geographic information systems. ACM, pp 270-279

83. Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: towards real-time object detection with
region proposal networks. In: Advances in neural information processing systems, pp 91-99

84. Long]J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation.
In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431—
3440

85. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC (2016) Ssd: Single shot
multibox detector. In: European conference on computer vision. Springer, pp 21-37

86. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: semantic image
segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE
Trans Pattern Anal Mach Intell 40(4):834—-848

87. Lee H, Kwon H (2017) Going deeper with contextual cnn for hyperspectral image classification.
IEEE Trans Image Process 26(10):4843-4855

88. Yu X, Wu X, Luo C, Ren P (2017) Deep learning in remote sensing scene classification: a
data augmentation enhanced convolutional neural network framework. GISci Remote Sens
54(5):741-758

89. Li W, Chen C, Zhang M, Li H, Du Q (2019) Data augmentation for hyperspectral image
classification with deep cnn. IEEE Geosci Remote Sens Lett 16(4):593-597

90. Feng J, Chen J, Liu L, Cao X, Zhang X, Jiao L, Yu T, Cnn-based multilayer spatial-spectral
feature fusion and sample augmentation with local and nonlocal constraints for hyperspectral
image classification. IEEE J Select Top Appl Earth Observ Remote Sens

91. Haut JM, Paoletti ME, Plaza J, Plaza A, Li J, Hyperspectral image classification using random
occlusion data augmentation. IEEE Geosci Remote Sens Lett

92. XuX,LiW,RanQ, DuQ,GaoL,Zhang B (2017) Multisource remote sensing data classification
based on convolutional neural network. IEEE Trans Geosci Remote Sens 56(2):937-949

93. Li H, Ghamisi P, Soergel U, Zhu X (2018) Hyperspectral and lidar fusion using deep three-
stream convolutional neural networks. Remote Sens 10(10):1649

94. Feng Q, Zhu D, Yang J, Li B (2019) Multisource hyperspectral and lidar data fusion for urban
land-use mapping based on a modified two-branch convolutional neural network. ISPRS Int J
Geo-Inform 8(1):28

95. Zhao W, Jiao L, Ma W, Zhao J, Zhao J, Liu H, Cao X, Yang S (2017) Superpixel-based multiple
local cnn for panchromatic and multispectral image classification. IEEE Trans Geosci Remote
Sens 55(7):4141-4156

96. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio
Y (2014) Generative adversarial nets. In: Advances in neural information processing systems,
pp 2672-2680

97. Zhan Y, Hu D, Wang Y, Yu X (2018) Semisupervised hyperspectral image classification based
on generative adversarial networks. IEEE Geosci Remote Sens Lett 15(2):212-216

98. Zhu L, Chen Y, Ghamisi P, Benediktsson JA (2018) Generative adversarial networks for hyper-
spectral image classification. IEEE Trans Geosci Remote Sens 56(9):5046-5063

Chapter 6 ®)
Addressing the Inevitable Imprecision: I
Multiple Instance Learning

for Hyperspectral Image Analysis

Changzhe Jiao, Xiaoxiao Du and Alina Zare

Abstract In many remote sensing and hyperspectral image analysis applications,
precise ground truth information is unavailable or impossible to obtain. Impreci-
sion in ground truth often results from highly mixed or sub-pixel spectral responses
over classes of interest, a mismatch between the precision of global positioning
system (GPS) units and the spatial resolution of collected imagery, and misalign-
ment between multiple sources of data. Given these sorts of imprecision, training
of traditional supervised machine learning models which rely on the assumption of
accurate and precise ground truth becomes intractable. Multiple instance learning
(MIL) is a methodology that can be used to address these challenging problems.
This chapter investigates the topic of hyperspectral image analysis given imprecisely
labeled data and reviews MIL methods for hyperspectral target detection, classifica-
tion, data fusion, and regression.

6.1 Motivating Examples for Multiple Instance Learning
in Hyperspectral Analysis

In standard supervised machine learning, each training sample is assumed to be cou-
pled with the desired classification label. However, acquiring accurately labeled train-
ing data can be time consuming, expensive, or at times infeasible. Challenges with
obtaining precise training labels and location information are pervasive throughout
many remote sensing and hyperspectral image analysis tasks. A learning methodol-

C. Jiao
Xidian University, Xi’an, China
e-mail: cjilao@xidian.edu.cn

X. Du
University of Michigan, Ann Arbor, USA
e-mail: xiaodu@umich.edu

A. Zare (<)
University of Florida, Gainesville, USA
e-mail: azare @ufl.edu

© Springer Nature Switzerland AG 2020 141
S. Prasad and J. Chanussot (eds.), Hyperspectral Image Analysis,

Advances in Computer Vision and Pattern Recognition,
https://doi.org/10.1007/978-3-030-38617-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38617-7_6&domain=pdf
mailto:cjiao@xidian.edu.cn
mailto:xiaodu@umich.edu
mailto:azare@ufl.edu
https://doi.org/10.1007/978-3-030-38617-7_6

142 C. Jiao et al.

Multiple Instance Learning:

Negative Bags
Label =0

Positive Bags
Label = +1

Fig. 6.1 In multiple instance learning, data is labeled at the bag level. A bag is labeled as a positive
bag if it contains at least one target instance. The number of target versus nontarget instances in each
positive bag is unknown. A bag is labeled as a negative bag if it contains only nontarget instances.
In this figure, blue points correspond to nontarget instances where red points correspond to target
instances. Source: © [2019] IEEE. Reprinted, with permission, from [62]

ogy to address imprecisely labeled training data is multiple instance learning (MIL).
In MIL, data is labeled at the bag level where a bag is a multi-set of data points as
illustrated in Fig. 6.1. In standard MIL, bags are labeled as “positive” if they contain
any instances representing a target class whereas bags are labeled as “negative” if
they contain only nontarget instances. Generating labels for a bag of points is often
much less time consuming and aligns with the realistic scenarios encountered in
remote sensing applications as outlined in the following motivating examples.

e Hyperspectral Classification: Training a supervised classifier requires accurately
labeled spectra for the classes of interest. In practice, this is often accomplished
by creating a ground truth map of a hyperspectral scene (scenes which frequently
contain hundreds of thousands of pixels or more). Generation of ground truth maps
is challenging due to labeling ambiguity that naturally arises due to relatively
coarse resolution and compound diversity of the remotely sensed hyperspectral
scene. For example, an area that is labeled as vegetation may contain both plants and
bare soil, making the training label inherently ambiguous. Furthermore, labeling
each pixel of the hyperspectral scene is tedious and annotator performance is
generally inconsistent from person to person or over time. Due to these challenges,
“ground-rumor”’ may be a more appropriate term than “ground-truth” for the maps
that are generated. These ambiguities naturally map to the MIL framework by
allowing an annotator to label spatial regions if it contains a class of interest
(corresponding to positive bags) and negative bags for spatial regions known to
exclude those classes. For instance, an annotator can easily mark (e.g., circle on a

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 143

Brown

Dark Green
FVG

Pea Green [

Fig. 6.2 Tllustration of inaccurate coordinates from GPS: one target denoted as brown by GPS has
one pixel drift. Source: © [2018] Elsevier Reprinted, with permission, from [45]

map) positive bag regions that contain vegetation and then mark regions of only
bare soil and building/man-made materials for negative bags when vegetation is
the class of interest.

o Sub-pixel Target Detection: Consider the hyperspectral target detection problem
illustrated in Fig. 6.2. This hyperspectral scene was collected over the University of
Southern Mississippi-Gulfpark Campus [1] and includes many emplaced targets.
These targets are cloth panels of four colors (Brown, Dark Green, Faux Vineyard
Green, and Pea Green) varying from 0.5m x 0.5m, Im x 1m, and 3m x 3m in
size. The ground sample distance of this hyperspectral data set is Im. Thus, the
0.5m x 0.5m targets are, at best, a quarter of a pixel in size; the I m x 1 m targets
are, at best, exactly one pixel in size; and the 3m x 3m targets cover multiple
pixels. However, the targets are rarely aligned with the pixel grid, resulting in the
0.5m x 0.5m and 1 m x 1 m target responses often straddling multiple pixels and
being sub-pixel. The scene also had heavy tree coverage and resulted in targets
being heavily occluded by the tree canopy. The sub-pixel nature of the targets
and occlusion by the tree canopy causes this to be a challenging target detection
problem and one in which manual labeling of target location by visual inspection
is impractical. Ground truth locations of the targets in this scene were collected by
a GPS unit with 2—5 m accuracy. Thus, the ground truth is only accurate up to some
spatial region (as opposed to the pixel level). For example, the region highlighted
in Fig. 6.2 contains one brown target. From this highlighted region, one can clearly
see that the GPS coordinate of this brown target (denoted by the red dot) is shifted
one pixel from the actual brown target location (denoted by the yellow rectangle).
This is a rare example where we can visually see the brown target. Most of the
targets are difficult to distinguish visibly. Developing a classifier or extracting a

144 C. Jiao et al.

LIDAR return

w
e
&
8

3.35985

3.3508

335075 |
33T
335065
Northing 5 3506

2485

335086 | 29485
2.0455

Easting

Fig. 6.3 An example of 3D scatterplot of LIDAR data over the University of Southern Mississippi-
Gulfpark campus. The LiDAR points were colored by the RGB imagery provided by HSI sensors
over the scene. Source: (© [2020] IEEE. Reprinted, with permission, from [86]

pure prototype for the target class given incomplete knowledge of the training data
is intractable using standard supervised learning methods. This also directly maps
to the MIL framework since each positive bag can correspond to the spatial region
associated with each ground truth point and its corresponding range of imprecision
and negative bags can correspond to spatial regions that do not overlap with any
ground truth point or its associated halo of uncertainty.

o Multi-sensor Fusion: When fusing information obtained by multiple sensors, each
sensor may provide complementary information that can aid scene understand-
ing and analysis. Figure 6.3 shows a three-dimensional scatter plot of the LiDAR
(Light Detection And Ranging) point cloud data over the University of South-
ern Mississippi-Gulfpark Campus collected simultaneously with the hyperspec-
tral imagery (HSI) described above. In this data set, the hyperspectral and LiDAR
data can be leveraged jointly for scene segmentation, ground cover classification,
and target detection. However, there are challenges that arise during fusion. The
HSI and LiDAR data are of drastically different modalities and resolutions. HSI is
collected natively on a pixel grid with a 1 m ground sample distance whereas the
raw LiDAR data is a point cloud with a higher resolution of 0.60 m cross track and
0.78 m along track spot spacing. Commonly, before fusion, data is co-registered
onto a shared pixel grid. However, image co-registration and rasterization may

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 145

introduce inaccuracies [2, 3]. In this example, consider the edges of the build-
ings with gray roofs in Fig. 6.3. Some of the hyperspectral pixels of the buildings
have been inaccurately mapped to LiDAR points corresponding to the neighboring
grass pixels on the ground. Similarly, some hyperspectral points corresponding to
sidewalk and dirt roads have been inaccurately mapped to high elevation values
similar to nearby trees and buildings. Directly using such inaccurate measure-
ments for fusion can cause further inaccuracy or error in classification, detection,
or prediction. Therefore, it is beneficial to develop a fusion algorithm that is able
to handle such inaccurate/imprecise measurements. Imprecise co-registration can
also be mapped to the MIL framework by considering a bag of points from a local
region in one sensor (e.g., LIDAR) to be candidates for fusion in each pixel in the
other sensors (e.g., hyperspectral).

These examples illustrate that remote-sensing data and applications are often
plagued with inherent spatial imprecision in ground truth information. Multiple
instance learning is a framework that can alleviate the issues that arise due to
this imprecision. Therefore, although imprecise ground truth plagues instance-level
labels, bags (i.e., spatial regions) can be labeled readily and analyzed using MIL
approaches.

6.2 Introduction to Multiple Instance Classification

MIL was first proposed by Dietterich et al. [4] for the prediction of drug activity.
The effectiveness of a drug is determined by how tightly the drug molecule binds to
a larger protein molecule. Although a molecule may be determined to be effective,
it can have variants called “conformations” of which only one (or a few) actually
binds to the desired target binding site. In this task, the learning objective is to
infer the correct shape of the molecule that actually has tight binding capacity. In
order to solve this problem, Dietterich et al. introduced the definition of “bags.”
Each molecule was treated as a bag and each possible conformation of the molecule
was treated as an instance in that bag. This directly induces the definition of multiple
instance learning. A positively labeled bag contains at least one positive instance (but,
also, some number of negative instances) and negatively labeled bags are composed
of entirely negative instances. The goal is to uncover the true positive instances in
each positive bag and what characterizes positive instances.

Although initially proposed for this drug activity application, the multiple
instance learning framework is extremely relevant and applicable to a number
of remote-sensing problems arising from imprecision in ground truth informa-
tion. By labeling data and operating at the bag level, ground truth imprecision
inherent in remote sensing problems are addressed and accounted for within
a multiple instance learning framework.

146 C. Jiao et al.

6.2.1 Multiple Instance Learning Formulation

The multiple instance learning framework can be formally described as follows.
Let X =[xy, ..., xy] € RV be training data instances where 7 is the dimension-
ality of an instance and N is the total number of training instances. The data are
grouped into K bags, B = {By, ..., Bg}, with associated binary bag-level labels,
L={Ly,...,Lg}whereL; € {0, 1} for two-class classification. A bag, B;, is termed
positive with L;=1 if it contains at least one positive instance. The exact number or
identification of positive and negative instances in each positive bag is unknown.
A bag is termed negative with L;=0 when it contains only negative instances. The
instancex;; € B; denotes the jthinstance in bag B; with the (unknown) instance-level
label l,‘j € {O, 1}

In standard supervised machine learning methods, all instance level labels are
known for the training data. However, in multiple instance learning, only the bag-
level labels are known. Given this formulation, the fundamental goal of an MIL
method is to determine what instance-level characteristics are common across all
positive bags and cannot be found in any instance in any negative bag.

6.2.2 Axis-Parallel Rectangles, Diverse Density, and Other
General MIL Approaches

Many general MIL approaches have been developed in the literature. Axis-parallel
rectangles (APR) [4] algorithms were the first set of MIL algorithms proposed by
Dietterich et al. for drug activity prediction in the 1990s. An axis-parallel rectangle
can be viewed as a region of true positive instances in the feature space. In APR
algorithms, a lower and upper bound encapsulating the positive class is estimated in
each feature dimension. Three APR algorithms, greedy feature selection elimination
count (GFS elim-count), greedy feature selection kernel density estimation (GFS
kde), and iterated discrimination (iterated-discrim) algorithms were investigated and
compared in [4]. As anillustration, GFS elim-count APR refers to finding an APRina
greedy manner starting from a region that exactly covers all of the positive instances.
Figure 6.4 shows the “all-positive APR” as a solid line bounding box of the instances,
where the unfilled markers represent positive instances and filled markers represent
negative instances. As shown in the figure, the all-positive APR may contain sev-
eral negative examples. The algorithm proceeds by greedily eliminating all negative
instances within the APR while maintaining as many positive instances as possible.
The dashed box in Fig. 6.4 indicates the final APR identified by the GFS elim-count
algorithm by iteratively excluding the “cheapest” negative instance, determined by
requiring the minimum number of positive instances that need to be removed from
the APR to exclude that negative instance.

Diverse density (DD) [5, 6] was one of the first multiple instance learning algo-
rithms that estimated a positive concept. The positive concept is a representative of

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 147

X, ;71 77777 O -
N | |
0 O @ ®
NN O e
2 00
o P
L Q!
A A A 1
P e m—— i
2 2 ‘ Q
o P
o A <3
o T
e
Xy

Fig. 6.4 Illustration of the GFS elim-count procedure for excluding negative instances. The “all-
positive APR” is indicated by a solid box. The unfilled markers represent positive instances and
filled markers represent negative instances. The final APR is indicated by the dashed box [4]

the positive class. This representative is estimated in DD by identifying a represen-
tative feature vector that is close to the intersection of all positive bags and far from
every negative instance. In other words, the target concept represents an area that
preserves both a high density of target points and a low density of nontarget points,
called diverse density. This is accomplished in DD by maximizing the likelihood
function in Eq. (6.1),

K+t Kt+K~
—s|B" —s|B-
arg m;lx EPr(d =s|B) ‘_II;IH Pr(d =s|B;), (6.1)

where s is the assumed true positive concept, d is the concept representative to be
estimated, K™ is the number of positive bags and K~ is the number of negative
bags. The first term in Eq. (6.1), which is used for all positive bags, is defined by the
noisy-or model,

N;
Pr(d = s|B]) = Pr(d = s|x;1, Xi2, ..., X;;) = 1 — H(l —Pr(d =s|x;; € B)),
j=1
(6.2)
where Pr(d = s|x;;) = exp(—|x;; — d||?). The term in (6.2) can be interpreted as
requiring there be at least one instance in positive bag B;" that is close to the positive
representative d. This can be understood by noticing that (6.2) evaluates to 1 if

148 C. Jiao et al.

there is at least one instance in the positive bag that is close to the representative
(ie,exp(—|xij — d||?>) — 1 which implies 1 — Pr(d = s|x;; € Bf) — 0, resulting
inl—]_[j.\'izl(l —Pr(d =s|x;; € BZ.J’)) — 1). In contrast, (6.2) evaluates to O if all
points in a positive bag are far from the positive concept.

The second term is defined by

N;
Pr(d =s|B;) = [[(1 = Prd =s|x; € B))). (6.3)

Jj=1

which encourages positive concepts to be far from all negative points. The noisy-or
model, however, is highly non-smooth and there are several local maxima in the solu-
tion space. This is alleviated in practice by performing gradient ascent repeatedly with
starting points from every positive instance to maximize the proposed log-likelihood
function. Alternatively, an expectation maximization version of diversity density
(EM-DD) [7] was proposed by Zhang et al. in order to improve the computation time
of DD [5, 6]. EM-DD assumes there exists only one instance per bag corresponding
to the bag-level label and treats the knowledge of the key-point instance correspond-
ing to the bag-level label as a hidden latent variable. EM-DD starts with an initial
estimate of the positive concept d and iterates between an expectation step (E-step)
that selects one point per bag as the representative point of that bag and then per-
forms a quasi-newton optimization (M-step) [8] on the single-instance DD problem.
In practice, EM-DD is much more computationally efficient than DD. However, the
computational benefits are traded-off with potential inferior performance accuracy
to DD [9].

Since the development of the APR and DD, many MIL approaches have been
developed and published in the literature. These include prototype-based meth-
ods such as the dictionary-based multiple instance learning (DMIL) algorithm
[10] and its generalization, generalized dictionaries for multiple instance Learn-
ing (GDMIL) [11] which propose to optimize the noisy-or model using dictionary
learning approaches by learning a set of discriminative positive dictionary atoms to
describe the positive class [12—14]. The Max-Margin Multiple-Instance Dictionary
Learning (MMDL) methods [15] adopts the bag of words concept [16] and trains a
set of linear SVMs as a codebook. The novel assumption of MMDL is that the pos-
itive instances could belong to many different categories. For example, the positive
class “computer room” may have image patches containing a desk, a screen, and a
keyboard. The MILIS algorithm [17] alternates between the selection of an instance
per bag as a prototype that represents its bag and training a linear SVM on these
prototypes.

Additional support vector machine-based methods include the MILES (Multiple-
Instance Learning via Embedded Instance Selection) approach [18] which embeds
each training and testing bag into a high-dimensional space and then performs clas-
sification in the mapping space using a one-norm support vector machine (SVM)
[19]. Furthermore, the mi-SVM and MI-SVM methods model the MIL problem as a
generalized mixed integer formulation of the support vector machine [20]. MissSVM

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 149

algorithm [21] solves the MIL problem using a semi-supervised SVM with the con-
straint that at least one point from each positive bag must be classified as positive.
Hoffman et al. [22] jointly exploit the image-level and bounding box labels and
achieve state-of-the-art results in object detection. Li and Vasconcelos [23] further
investigate MIL problem with labeling noise in negative bags and use “top instances”
as the representatives of “soft bags”, then proceed with bag-level classification via
latent-SVM [24].

Meng et al. [25] integrate the self-paced learning (SPL) [26] into MIL and pro-
pose SP-MIL for co-saliency detection. The Citation-kNN [27] algorithm adapts the
k nearest neighbor (kNN) method [28] to MIL problems by using the Hausdorff
distance [29] to compute distance between two bags and assigns bag-level labels
based on the nearest neighbor rules. Extensions of Citation-kNN include Bayesian
Citation-kNN [30] and Fuzzy-Citation-kNN [31, 32]. Furthermore, a large number
of MIL neural network methods such as [33] (often called “weak” learning methods)
have also been developed. Among the vast literature of MIL research, very few meth-
ods focus on remote sensing and hyperspectral analysis. These methods are reviewed
in the following sections.

6.3 Multiple Instance Learning Approaches for
Hyperspectral Target Characterization and Sub-pixel
Target Detection

Hyperspectral target detection refers to the task of locating all instances of a target
given a known spectral signature within a hyperspectral scene [34-36]. Hyperspectral
target detection is challenging for a number of reasons: (1) Class Imbalance: The
number of training instances from the positive target class is small compared to
that of the negative training data such that training a standard classifier is difficult;
(2) Sub-pixel Targets: Due to the relatively low spatial resolution of hyperspectral
imagery and the diversity of natural scenes, one single pixel may also contain different
ground materials, resulting in sub-pixel targets of interest; and (3) Imprecise Labels:
As outlined in Sect. 6.1, precise training labels are often difficult to obtain. For these
reasons, signature-based hyperspectral target detection [34] is commonly used as
opposed to a two-class classifier. However, the performance of a signature-based
detector depends on the target signature and obtaining an effective target signature
is challenging. In the past, this was commonly accomplished by measuring target
signatures for materials of interest in the lab or using point-spectrometers in the
field. However, this approach may introduce error due to changing environmental
and atmospheric conditions that impact spectral responses.

In this section, algorithms for multiple instance target characterization (i.e., esti-
mation of target concepts) from training data with label ambiguity are presented.
The aim is to estimate the target concepts from highly mixed training data that are
effective for target detection. Since these algorithms extract target concepts from

150 C. Jiao et al.

training data assumed to have the same environmental context, influence from back-
ground materials, environmental and atmospheric conditions are addressed during
target concept estimation.

6.3.1 Extended Function of Multiple Instances

The extended Function of Multiple Instances (eFUMI) approach [37, 38] is motivated
by the linear mixing model in hyperspectral analysis. eFUMI assumes each data
point is a convex combination of target and/or nontarget concepts (i.e., endmembers)
and performs linear unmixing (i.e., decomposing spectra into endmembers and the
proportion of each endmember found in the associated pixel spectra) to estimate
positive and negative concepts. The approach also addresses label ambiguity by
incorporating a latent variable which indicates whether each instance of a positively
labeled bags is a true target.

More formally, the goal of eFUMI is to estimate a target concept, dr, nontarget
concepts, d;, Yk =1, ... M, the number of needed nontarget concepts, M, and the
abundances, a;, which define the convex combination of the concepts for each data
point x; from labeled bags of hyperspectral data. If a bag B; is positive, there is at
least one data point in B; containing target,

M
lfL, =1, HXj € B; s.t. X; = OledT + Zajkdk +€j,Ole > 0. (64)
k=1

However, the exact number of data points in a positive bag with a target contribution
(i.e., oj7 > 0) and target proportions are unknown. Furthermore, if B; is a negative
bag, this indicates that none of the data in this bag contains target,

M
if L; =0,V%; € B, x; = Y _apdi + ;. (6.5)
k=1

Given this framework, the eFUMI objective function is shown in (6.7). The three
terms in this objective function were motivated by the sparsity promoting iterated
constrained endmember (SPICE) algorithm [39]. The first term computes the squared
error between the input data and its estimate found using the current target and
nontarget signatures and proportions. The parameter u is a constant controlling the
relative importance of various terms. The scaling value w, which aids in the data
imbalance issue by weighting the influence of positive and negative data, is shown
in (6.6),

W) = { Vo) = (6.6)

L iflx) =17

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 151

where N7 is the total number of points in positive bags and N~ is the total number
of points in negative bags.

The second term of the objective encourages target and nontarget signatures to
provide a tight fit around the data by minimizing the squared difference between
each signature and the global data mean, . The third term is a sparsity promoting
term used to determine M, the number of nontarget signatures needed to describe the
input data where y;, = W and I is a constant parameter that controls the degree
sparsity is prornoted. Hi:c,;lllelrA values of I generally result in a smaller estimate M
value. The a “=D values are the proportion values estimated in the previous iteration
of the algorlthm. Thus, as the proportions for a particular endmember decrease, the
weight of its associated sparsity promoting term increases.

di — o

1 N
=5U0=w) w
j=1

M
(xj —zjajrdr — Zajkdk)
k=1

2, M > M N
5y 3 on Y
2 k=T,1 2 k=1 =1

6.7)

M

Xj —zjadeT — E Cljkdk
k=1

1 N
EF)= 3 |5 =0} wiP@lx;. 00"

z;€{0,1} j=1 2

+ ank uo||2+ZykZajk (6.8)

le = j=1

The difference between (6.7) and the SPICE objective is the inclusion of a set
of hidden, latent variables, z;, j = 1, ..., N, accounting for the unknown instance-
level labels /(x;). To address the fact that the z; values are unknown, the expected
values of the log likelihood with respect to z; is taken as shown in (6.8). In (6.8), 0’
is the set of parameters estimated at iteration ¢ and P (z;|x;, 0=V} is the probability
of individual points containing any proportion of target or not. The value of the
term P(z;|x;, 0 =D} is determined given the parameter set estimated in the previous
iteration and the constraints of the bag-level labels, L;, as shown in (6.9),

e pr; iij:O,LiZI;
_ l—ePriifz;=1,L; =1,
Ix. AUD — P Jj , Lij ;
P(Z]|X], 0) 07 1ij — 17 L,‘ — O, (69)
1, iijZO,L,'ZO,
. . M 2, . .
where f is a scaling parameter and r; = HX i = 2 e Ajkdy H is the approximation

residual between x; and its representation using only background endmembers. The
definition of P (z; |x s 0"~ ')) in (6.9) indicates that if a point X ; is a nontarget point, it
should be fully represented by the background endmembers with very small residual
rj; thus, P(z; = 0]x;, 0(’_1)) = ¢ P — 1. Otherwise, if x; is a target point, it may
not be well represented by only the background endmembers, so the residual »; must

152 C. Jiao et al.

be large and P(z; = 1|x;,0""V) =1 — ¢~#7 — 1. Note, z, is unknown only for
the positive bags; in the negative bags, z; is fixed to 0. This constitutes the E-step of
the EM algorithm.

The M-step is performed by optimizing (6.8) for each of the desired parame-
ters. The method is summarized in Algorithm 6.1." Please refer to [37] for detailed
discussion of the optimization approach and derivation.

Algorithm 6.1 eFUMI EM algorithm
1: Initialize 6° = {d7, D, A}, 1 = 1

2: repeat

3: E-step: Compute P(z;|x;, 07~ D) given 6!

4: M-step:

5: Update d7 and D by maximizing (6.8) wrt. d7, D

6: Update A by maximizing (6.8) wrt. A s.t. the sum-to-one and non-negative constraints

7. Prurée eachdy,k=1,..., M if max;(ajx) < v where 7 is a fixed threshold (e.g. T =
107°)

8: t<«—t+1

9: until Convergence
10: return dr, D, A

6.3.2 Multiple Instance Spectral Matched Filter and Multiple
Instance Adaptive Coherence/Cosine Detector

The eFUMI algorithm described above can be viewed as a semi-supervised hyper-
spectral unmixing algorithm, where the endmembers of the target and nontarget
materials are estimated. Since eFUMI minimizes the reconstruction error of the data,
it is a representative algorithm that learns target concepts that are representatives for
(and have similar shape to) the target class. Significant challenges in applying the
eFUMI algorithm in practice are the large number of parameters that need to be set
and the fact that all positive bags are combined in the algorithm, neglecting the MIL
concept that each positive bag contains at least one target instance.

In contrast, the multiple instance spectral matched filter (MI-SMF) and multiple
instance adaptive coherence/cosine detector (MI-ACE) [41] learn discriminative tar-
get concepts that maximize the SMF or ACE detection statistics, which preserves
bag structure and does not require tuning parameter settings. These goals are accom-
plished by optimizing the following objective function,

1) 1 1
arg max —— Z AKX, s) — FZ N Z A(xj, S), (6.10)

i:L;i=1 i:L;=0 "1 x;;€B;

I'The eFUMI implementation is available at: https://github.com/GatorSense/FUMI [40].

https://github.com/GatorSense/FUMI

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 153

where s is the target signatures, A (X, s) is the detection statistics of data point x given
target signature s, and X} is the selected representative instance from the positive bag
B;", K is the number of positive bags and K ~ is the number of negative bags.

x' = arg max A(x;j, S). (6.11)
x;;€B;"

i

This general objective can be applied to any target detection statistics. However,

: 'y, x—ny)
consider the ACE detector, Ascg(X,S) = S % b
A E(.) \/ST):;]s\/(X_'Lb)TE;ZI(x_ILb) . .
the mean of the background and X, is the background covariance. This detection

statistic can be viewed as an inner product in a whitened coordinate space

, where p,, is

'3, (x—)
SR w) TR -)
sTUV V2 UT (x —)

\/sTUV*%V_%UTs\/(x —wy)TUV 2V UT (x —)

Aace(X,8) =

3, (6.12)

where X = V’%UT (x—mp),8 = V’%UTS, U and V are the eigenvectors and eigen-
values of the background covariance matrix X, respectively, § = ﬁ and X =
Itis clear from Eq. (6.12) that the ACE detector response is the cosine value between
a test data point, x, and a target signature, s, after whitening. Thus, the objective

function (6.10) for MI-ACE can be rewritten as

1 AT A 1 1 AT A AT A
arg max —— Z §T§(;‘— e v Z §Tf(,~j, such that§7§ = 1. (6.13)

s i:Li=1 i:Li=0 "' x,eB”

The /, norm constraint, §7'§ = 1, is resulted from the normalization term in Eq. (6.12).
The optimum for (6.13) can be derived by solving the Lagrangian optimization
problem for the target signature

A t 1 A 1 1 A
S =—, wheret = — X; — — — X; . 6.14
It where K+ Z Xi K- Z N~ Z Xij ()

i:Li=1 iLi=0 "I X €B

154 C. Jiao et al.

A similar approach can be applied for the spectral matched filter detector,

sTE N (x —
Aswr(x,s) = S 20 K2 W) (6.15)
VSTE s
resulting in the following update equation for MI-SMF:
A t 1 R 1 1 N
S=—, wheret = — X' - — — Z Xij. (6.16)
It Kt . K= =N
i:Li=1 i:L;=0 "1 Xi;€B;

Algorithm 6.2 MI-SMF/MI-ACE

1: Compute pp and X, as the mean and covariance of all instances in the negative bags

: Subtract the background mean and whiten all instances, X = V*%UT X —np)

: If MI-ACE, normalize: X = II§II

- Initialize § using the instance in a positive bag resulting in largest objective function value
: repeat

Update the selected instances, x7, for each positive bag, B;" using (6.11)

Update H using (6.14) for MI-ACE or (6.16) for MI-SMF

: until Stopping Criterion Reached

© XU A W

1A
: return s = ﬁ, where t = UV2s

The MI-SMF and MI-ACE algorithms alternate between the two steps: (1) select-
ing representative instances from each positive bag and (2) updating the target concept
s. The MI-SMF and MI-ACE methods stop when there is no change in the selection of
instances from positive bags across subsequent iterations. Similar to [7], since there
exists a finite set of possible selection of positive instances given a finite training
bags, the convergence of MI-SMF and MI-ACE is guaranteed. In the experiments
shown in [41], MI-SMF and MI-ACE generally converged with less than seven iter-
ations. The MI-SMF/MI-ACE algorithm is summarized in Algorithm 6.2.> Please
refer to [41] for a detailed derivation of the algorithm.

6.3.3 Multiple Instance Hybrid Estimator

Both eFUMI and the MI-ACE/MI-SMF methods are limited in that they only estimate
a single target concept. However, in many problems, the target class has significant
spectral variability [43]. The Multiple Instance Hybrid Estimator (MI-HE) [44, 45]
was developed to fill this gap and estimate multiple target concepts simultaneously.

2The MI-SMF and MI-ACE implementations are available at: https:/github.com/GatorSense/
MIACE [42].

https://github.com/GatorSense/MIACE
https://github.com/GatorSense/MIACE

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 155

The proposed MI-HE algorithm maximizes the responses of the hybrid sub-pixel
detector [46] within the MIL framework. This is accomplished by maximizing the
following objective function:

=

K* 1 N; K N;
J=m]] FZPr(l,-j =1B)" | [J]Prt;=om)
i=1 bj=1 i=K++1 j=1
K+t N, b
1 s i — Dayj |2
ST ES e e
—'b N; Ixi; — D=pijll

1

KN

o2

+p Y Y lxij —Dpyl
i=Kt+1 j=1
KN

+% > Z((DWZ-?)TXu)Z, 6.17)

i=K++1 j=1

where the first term corresponds to a generalized mean (GM) term [47], which
can approximate the max operation as b approaches +oco. This term can be inter-
preted as determining a representative positive instance in each positive bag by
identifying the instance that maximizes the hybrid sub-pixel detector (HSD) [46]
x;; —Da;
!&u] D~ p]HH2
linear combination of target and/or background concepts D, x =~ Da, where D =
[D* D~] € R>*T+M DT =[d,,...,dr] is the set of T target concepts and
D™ = [dr+1, R dT+M] is the set of M background concepts, 8 is a scaling param-
eter, and a;; and p;; are the sparse representation of x;; given the entire concept
set D and background concept set D™, respectively. The second term in the objec-
tive function is viewed as the background data fidelity term, which is based on the
assumption that minimizing the least squares of all negative points provides a good
description of the background. The scaling factor p is usually set to be smaller than
one to control the influence of negative bags. The third term is the cross incoherence
term (motivated by the Dictionary Learning with Structured Incoherence [48] and the
Fisher discrimination dictionary learning (FDDL) algorithm [49, 50]) that encour-
ages positive concepts to have distinct spectral signatures from negative points.

The initialization of target concepts in D is conducted by computing the mean
of T random subsets drawn from the union of all positive training bags. The vertex
component analysis (VCA) [53] method was applied to the union of all negative bags
and the M cluster centers (or vertices) were set as the initial background concepts.
The pseudocode of the MI-HE algorithm is presented in Algorithm 6.3.° Please refer
to [44] for a detailed optimization derivation.

statistic, exp(B i) In the HSD, each instance is modeled as a sparse

3The MI-HE implementation is available at: https://github.com/GatorSense/MIHE [54].

https://github.com/GatorSense/MIHE

156 C. Jiao et al.

Algorithm 6.3 MI-HE algorithm

Input: MIL training bags B = {By, ..., Bk}, MI-HE parameters

1: Initialize D°, irer = 0

2: repeat

3 forr=1,..., T do

4: Solve a;j, pij, Vi € {1,..., K}, jell,..., N;} using the iterative shrinkage-

thresholding algorithm [51, 52]

5 Update d; using gradient descent

6: d < @pd

7: end for

8 fork=T+1,..., T + M do

9 Solve a;;, pij, Vi € {1,..., K}, je{l,..., N;} using the iterative shrinkage-
thresholding algorithm [51, 52]

10: Update d using gradient descent

11: dy <~ mdk

12: end for

13: iter < iter +1

14: until Stopping criterion reached

15: return D

6.3.4 Multiple Instance Learning for Multiple Diverse
Hyperspectral Target Characterizations

The multiple instance learning of multiple diverse characterizations for SMF
(MILMD-SMF) and ACE detector (MILMD-ACE) [55] is an extension of MI-ACE
and MI-SMF that learns multiple target signatures for characterization of the vari-
ability in hyperspectral target concepts. Different from the MI-HE method explained
above, the MILMD-SMF and MILMD-ACE methods do not model target and back-
ground signatures explicitly. Instead, the MILMD-SMF and MILMD-ACE methods
focus on maximizing the detection statistics of the positive bags and capturing the
characteristics of the training data using a set of diverse target signatures, as shown

below:
§* = argmax [[P(S|B;. L =) [[P(SIBi. Li = 0), (6.18)
S i i

where S = {sV,s®, ... s®}is the K assumed target signatures and P(S|B;, L; =
1) and P(S|B;, L; = 0) denote the probabilities given the positive and negative
bags, respectively. The authors consider the following equivalent form of (6.18) for
multiple target characterization can be shown as

S* = argmax {C{(S) + C2(S)}, (6.19)
s

1
CiS) =+ > QD. Xx;.8). (6.20)

i:Li=1

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 157

Ci(S) = —% > T, X..8), (6.21)
iiLi=0

where Q2 (-) and Y (-) are defined to capture the detection statistics of the positive and
negative bags, D(-) is detection response of the given ACE or SMF detectors and
X* = (x*, xP* . x%*} is the subset of the ith positive bag of selected instances
with maximum detection responses corresponding to one of the target signatures s*
such that

xP* = argmax D(x,,s®). (6.22)
X,lGB,',L,‘:l

The term Q (D, X}, S) is the global detection statistics term for the positive bags
whose ACE form is shown in

1 AT A (k)
Qucp(D. X[==Y 8 X " (6.23)
k

Similar to [41], §(k) and §(k) are the transformed kth target signature and correspond
instance after whitening using the background information and normalization. The
global detection term Q4cg (D, X}, S) provides an average detection statistics over
the positive bags given a set of learned target signatures. Of particular note for this
method, in contrast with MI-HE, is the approach assumes that each positive bag
contains a representative for each variation of the positive concept.

On the other hand, the global detection term Yacg(D, X;,S) for negative
instances should be small and thus suppresses the background as shown in Eq. (6.24).
This definition means if the maximum responses of target signature set S over the
negative instances are minimized, the estimated target concepts can effectively dis-
criminate nontarget training instances

Yace(D, Xi,S) = max § = X,. (6.24)

In order to explicitly apply the normalization constraint and encourage diversity in
the estimated multiple target concepts, [55] also includes two terms, a normalization
term by pushing the inner product of the estimated signatures to 1 and a diversity
promoting term by maximizing the difference between estimated target concepts as
shown in (6.25), and (6.26), respectively.

. 2 AT (D
@) =-——T"- > 5 5§, (6.25)
Kk -1 k.l ksl

(6.26)

AT A(k)
s s —1].

Ccon(s) — _% Z
k

158 C. Jiao et al.

Combining the global detection statistics, the diversity promoting and normaliza-
tion constraint terms, the final cost function is shown as (6.27).

1 2T A% 1 AT o
Cucr = e XLy o 7,
iLi=1 k iLi= Ni, Li=0 y B, 1,=0
ek
X

2 A(k)TA(l)
KK —1) .8 B
Kkl

The objective for SMF can be similarly derived, where the only difference is
the use of training data without normalization. For the optimization of Eq. (6.27),
gradient descent is applied. Since the max(-) and | - | operators are not differentiable
at zero, the noisy-or function is adopted as an approximation for max(-) and a sub-
gradient method is performed to compute the gradient of | - |. Please refer to [55] for
a detailed optimization derivation.

3973 (k) (6.27)

6.3.5 Experimental Results for MIL in Hyperspectral Target
Detection

In this section, several MIL learning methods on both simulated and real hyperspec-
tral detection tasks are evaluated to illustrate the properties of these algorithms and
provide insight into how and when these methods are effective.

For the experiments conducted in this paper, the parameter settings of the compari-
son algorithms were optimized using a grid search on the first task of each experiment
and then applied to the remaining tasks. For example, for mi-SVM classifier on the
Gulfport Brown target task, the y value of the RBF kernel was firstly varied from 0.5
to 5 ata step size of 0.5, and then a finer search around the current best value (with the
highest AUC) at a step of 0.1 was performed. For algorithms with stochastic result,
e.g., EM-DD, eFUMI, each parameter setting was run five times and the median
performance was selected. Finally the optimal parameters that achieve the highest
AUC for the brown target were selected and used for the other three target types.

6.3.5.1 Simulated Data

As discussed in Sect. 6.3.1, the eFUMI algorithm combines all positive bags as one
big positive bag and all negative bags as one big negative bag and learns target concept
from the big positive bag that is different from the negative bag. Thus, if the negative
bags contain incomplete knowledge of the background, e.g., some nontarget concept
appears only in the subset of positive bags, eFUMI will perform poorly. However,
the discriminative MIL algorithms, e.g., MI-HE, MI-ACE, and MI-SMF, maintain
bag structure and can distinguish the target.

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 159

0.2 T T
018 L Red Slate. |
Verde Antique
0.16 Phyllite 1
Pyroxenite

Reflectance
o

0.08
0.06
0.04

W\

0.02 b

04 06 08 1 12 14 16 18 2 22 24
Wavelength (xm)

Fig. 6.5 Signatures from ASTER library used to generate simulated data

Given this hypothesis, simulated data was generated from four spectra selected
from the ASTER spectral library [56]. Specifically, the Red Slate, Verde Antique,
Phyllite, and Pyroxenite spectra from the rock class with 211 bands and wavelengths
ranging from 0.4 to 2.5 pm (as shown in Fig. 6.5 in solid lines) were used as endmem-
bers to generate hyperspectral data. Red Slate was labeled as the target endmember.

Four sets of highly mixed noisy data with varied mean target proportion value
(0ts_mean) Were generated, a detailed generation process can be found in [37]. Specif-
ically, this synthetic data has 15 positive and 5 negative bags with each bag having
500 points. If it is a positively labeled bag, there are 200 highly mixed target points
containing mean target (Red Slate) proportion from 0.1 to 0.7, respectively, to vary
the level of target presence from weak to high. Gaussian white noise was added so
that signal-to-noise ratio of the data was set to 20dB. To highlight the ability of MI-
HE, MI-ACE and MI-SMF to leverage individual bag-level labels, we use different
subsets of background endmembers to build synthetic data as shown in Table6.1.

Table 6.1 List of constituent endmembers for synthetic data with incomplete background Knowl-
edge

Bag no. Bag label Target endmember | Background endmember

1-5 + Red slate Verde Antique, Phyllite,
Pyroxenite

6-10 + Red slate Phyllite, Pyroxenite

11-15 + Red slate Pyroxenite

16-20 - N/A Phyllite, Pyroxenite

160 C. Jiao et al.

Table 6.1 shows that the negatively labeled bags only contain two negative endmem-
bers and there exists one confusing background endmember in the first 5 positive
bags which is Verde Antique. It is expected that the discriminative MIL algorithms,
MI-HE, MI-ACE, and MI-SMF, should be able to perform well in this experiment
configuration.

The aforementioned MI-HE [44, 45], eFUMI [37, 38], MI-SMF and MI-ACE
[41], DMIL [10, 11] and mi-SVM [9] are multiple instance target concept learning
methods. The mi-SVM algorithm performs a comparison of MIL approach that does
not rely on estimating a target signature. Figure 6.6a shows the estimated target
signature from data with 0.3 mean target proportion value. It clearly shows that
e¢FUMI is always confused with another nontarget endmember, Verde Antique, that
exists in some positive bags but is excluded from the background bags. It also shows
the other comparison algorithms can estimate a target concept close to the ground
truth Red Slate spectrum. One thing need to be explained here is since MI-ACE
and MI-SMF are discriminative concept learning methods that try to minimize the
detection response of negative bags, they are not expected to recover the true target
signature.

For simulated detection analysis, estimated target concepts from the training data
were then applied to the test data generated separately following the same generating
procedure. The detection was performed using the HSD [46] or ACE [57] detection
statistic. For MI-HE and eFUMI, both methods were applied since those two algo-
rithms can come out as a set of background concept from training simultaneously;
for MI-SMF, both SMF and ACE were applied since MI-SMF’s objective is max-
imizing the multiple instance spectral matched filter; for the rest multiple instance
target concept learning algorithms, MI-ACE, DMIL, only ACE was applied. For the
testing procedure of mi-SVM, a regular SVM testing process was performed using
LIBSVM [58], and the decision values (signed distances to hyperplane) of test data
determined from trained SVM model were taken as the confidence values. For the
signature-based detectors, the background data mean and covariance were estimated
from the negative instances of the training data.

For quantitative evaluation, Fig. 6.6b shows the receiver operating characteristic
(ROC) curves using estimated target signature, where it can be seen that the eFUMI
is confused with the testing Verde Antique data at very low PFA (probability of false
alarms) rate. Table 6.2 shows the area under the curve (AUC) of proposed MI-HE and
comparison algorithms. The results reported are the median results over five runs of
the algorithm on the same data. From Table 6.2, it can be seen that for MI-HE and
MI-ACE, the best performance on detection was achieved using ACE detector, which
is quite close to the performance of using the ground truth target signature (denoted
as values with stars). The reason that MI-HE’s detection using HSD detector is a little
worse is that HSD relies on knowing the complete background concept to properly
represent each nontarget testing data, the missing nontarget concept (Verde Antique)
makes the nontarget testing data containing Verde Antique maintain a relatively large
reconstruction error, and thus large detection statistic.

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 161
(a)
@
o
c
8
o
2
o)
12
\,w
-0.05
0.1}
015 . . . |
0.5 1 1.5 2 25
Wavelength (zm)
®
0.9
I‘l
0.8 I:,’
:,'" ——eFUMI (ACE)
L R - - -eFUMI (HSD)
ek’ / ——MI-SMF (ACE)
e - - -MI-SMF (SMF)
0 g5l / ——MI-ACE (ACE)
H ——mi-SVM
04} EM-DD (ACE)
’ DMIL (ACE)
03} —MI-HE (ACE)
- - -MI-HE (HSD)
0.2
0.1 ju
0 |
0 0.2 0.4 0.6 0.8 1

FAR

Fig. 6.6 MI-HE and comparisons on synthetic data with incomplete background knowledge,
o; mean = 0.3. MI-SMF and MI-ACE are not expected to recover the true signature. a Estimated
target signatures for Red Slate and comparison with ground. b ROC curves cross validated on test
data

162 C. Jiao et al.

Table 6.2 Area under the ROC curves for MI-HE and comparison algorithms on simulated hyper-
spectral data with incomplete background knowledge. Best results shown in bold, second best results
underlined, and ground truth shown with an asterisk

Algorithm ¢ mean
0.1 0.3 0.5 0.7

MI-HE (HSD) 0.743 0.931 0.975 0.995
MI-HE (ACE) 0.763 0.952 0.992 0.999
eFUMI [37] (ACE) 0.675 0.845 0.978 0.998
eFUMI [37] (HSD) 0.671 0.564 0.978 0.998
MI-SMF [41] (SMF) 0.719 0.923 0.972 0.993
MI-SMF [41] (ACE) 0.735 0.952 0.992 0.999
MI-ACE [41] (ACE) 0.764 0.952 0.992 0.999
mi-SVM [9] 0.715 0.815 0.866 0.900
DMIL [10, 11] (ACE) |0.687 0.865 0.971 0.996
Ground Truth (ACE) 0.765* 0.953* 0.992%* 0.999*

6.3.5.2 MUUFL Gulfport Hyperspectral Data

The MUUFL Gulfport hyperspectral data set collected over the University of South-
ern Mississippi-Gulfpark Campus was used to evaluate the target detection perfor-
mance across various MIL classification methods. This data set contains 325 x 337
pixels with 72 spectral bands corresponding to wavelengths from 367.7 to 1043.4nm
ata9.5—9.6 nm spectral sampling interval. The ground sample distance of this hyper-
spectral data set is 1 m [1]. The first four and last four bands were removed due to
sensor noise. Two sets of this data (Gulfport Campus Flight 1 and Gulfport Campus
Flight 3) were selected as cross-validated training and testing data for these two data
sets have the same altitude and spatial resolution. Throughout the scene, there are 64
man-made targets in which 57 were considered in this experiment which are cloth
panels of four different colors: Brown (15 examples), Dark Green (15 examples),
Faux Vineyard Green (FVGr) (12 examples), and Pea Green (15 examples). The spa-
tial location of the targets are shown as scattered points over an RGB image of the
scene in Fig. 6.7. Some of the targets are in the open ground and some are occluded
by the live oak trees. Moreover, the targets also vary in size, for each target type,
there are targets that are 0.25 m?2, 1 m2, and 9 m? in area, respectively, resulting a
very challenging, highly mixed sub-pixel target detection problem.

MUUFL Gulfport Hyperspectral Data, Individual Target Type Detection

For this part of the experiments, each individual target type was treated as a target
class, respectively. For example, when “Brown” is selected as target class, a 5 x 5
rectangular region corresponding to each of the 15 ground truth locations denoted
by GPS was grouped into a positive bag to account for the drift coming from GPS.
This size was chosen based on the accuracy of the GPS device used to record the
ground truth locations. The remaining area that does not contain a brown target was

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 163

® Brown
Dark Green
= FVG
Pea Green

Fig. 6.7 MUUFL Gulfport data set RGB image and the 57 target locations

grouped into a big negative bag. This constructs the detection problem for “Brown”
target. Similarly, there are 15, 12, and15 positive labeled bags for Dark Green, Faux
Vineyard Green, and Pea Green, respectively.

The comparison algorithms were evaluated on this data using the Normalized
Area Under the receiver operating characteristic curve (NAUC) in which the area was
normalized out to a false alarm rate (FAR) of 1 x 1073 false alarms/m? [59]. During
detection on the test data, the background mean and covariance were estimated from
the negative instances of the training data. The results reported are the median results
over five runs of the algorithm on the same data.

Figure 6.8a shows the estimated target concept by all comparisons for Dark Green
target type training on flight 3. We can see that the eFUMI and MI-HE are able to
recover the target concept quite close to ground truth spectra manually selected from
the scene. Figure 6.8b shows the detection ROCs given target spectra estimated on
flight 3 and cross validated on flight 1. Table 6.3 shows the NAUC:s for all comparison
algorithms cross validated on all four types of target, where it can be seen that MI-
HE generally outperforms the comparisons for most of the target types and achieves
close to the performance of using ground truth target signatures. Since MI-HE is a
discriminative target concept learning framework that aims to distinguish one target
instance from each positively labeled bag, MI-HE had a lower performance for the
pea green target because of the relatively large occlusion of those targets causing
difficulty in distinguishing pea green signature from each of the positive bag.

164 C. Jiao et al.

@ 5
==Truth
04r ——eFUMI
—MI-SMF
03F —MI-ACE
EM-DD
0.2

Reflectance
o

-0.1Ff
0.2f
03 ‘ ‘ ‘ ‘ ‘ ‘ .
04 05 06 07 08 0.9 1 1.1
Wavelength (xm)
b
b) ; ; ; ; ; ; , | ,
eFUMI (ACE)
09l - - ~eFUMI (HSD) |1
—— MI-SMF (ACE)
- - ~MI-SMF (SMF)
081 —— MI-ACE (ACE) | |
——mi-SVM
07t EM-DD (ACE) |1
DMIL (ACE)
—— MI-HE (ACE)
061 - - =MI-HE (HSD)

PD
(15 targets, 1 Det = 0.066667)

0 ! ! ! ! ! ! ! ! !

0 0.1 0.2 0.3 0.4 05 06 0.7 08 0.9 1

3
FAR (FA / m?) x10
(109525 m?, 1 FA = 9.13034¢-06)

Fig. 6.8 MI-HE and comparisons on Gulfport Data Dark Green, training flight 3 testing flight 1.
a Estimated target signatures from flight 3 for Brown and comparison with ground truth. b ROC
curves cross validated on flight 1

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 165

Table 6.3 Area under the ROC curves for MI-HE and comparison algorithms on Gulfport data
with individual target type. Best results shown in bold, second best results underlined, and ground
truth shown with an asterisk

Alg. Train on Flight 1; Test on Flight 3 Train on Flight 3; Test on Flight 1
Brown |Dark Gr. | Faux Pea Gr. |Brown |Dark Gr. | Faux Pea Gr.
Vine Gr. Vine Gr.

MI-HE | 0.499 0.453 0.655 0.267 0.781 0.532 0.655 0.350
(HSD)
MI-HE |0.433 0.379 0.104 0.267 0.710 0.360 0.111 0.266
(ACE)
eFUMI |0.423 0.377 0.654 0.267 0.754 0.491 0.605 0.393
[37]

(ACE)
¢eFUMI |0.444 0.436 0.653 0.267 0.727 0.509 0.500 0.333
[37]

(HSD)
MI-SMF | 0.419 0.354 0.533 0.266 0.657 0.405 0.650 0.384
[41]

(SMF)
MI-SMF | 0.448 0.382 0.579 0.316 0.760 0.501 0.613 0.388
[41]

(ACE)
MI-ACE | 0.474 0.390 0.485 0.333 0.760 0.483 0.593 0.380
[41]

(ACE)
mi-svm | 0.206 0.195 0.412 0.265 0.333 0.319 0.245 0.274
[9]
EM-DD | 0411 0.381 0.486 0.279 0.760 0.503 0.541 0.416
[7]

(ACE)
DMIL 0.419 0.383 0.191 0.009 0.743 0.310 0.081 0.083
[10, 11]
(ACE)
Ground |0.528* |0.429* |0.656* |0.267* |0.778* |0.521* |0.663* |0.399*
Truth
(ACE)

MUUFL Gulfport Hyperspectral Data, All Four Target Types Detection

For training and detection for the four target types together, the positive bags were
generated by grouping each of the 5 x 5 regions denoted by the ground truth that
it contains any of the four types of target. Thus, for each flight there are 57 target
points and 57 positive bags were generated. The remaining area that does not contain
any target was grouped into a big negative bag. Table 6.4 summarizes the NAUCs as
a quantitative comparison, which shows that the detection statistic by the proposed
MI-HE using HSD is significantly better than the comparison algorithms.

166 C. Jiao et al.

Table 6.4 Area under the ROC curves for MI-HE and comparison algorithms on Gulfport data
with all four target types. Best results shown in bold, second best results underlined, and ground
truth shown with an asterisk

Alg. Test Flight 3 | Test Flight 1 | Alg. Test Flight 3 | Test Flight 1

MI-HE (HSD) | 0.304 0.449 MI-SMF [41] |0.219 0.327
(ACE)

MI-HE (ACE) | 0.257 0.254 MI-SMF [41] |0.198 0.277
(SMF)

e¢FUMI [37] |0.214 0.325 mi-SVM [9] |0.235 0.269

(ACE)

eFUMI [37] |0.256 0.331 EM-DD [7] 0.211 0.310

(HSD) (ACE)

MI-ACE [41] |0.226 0.340 DMIL [10, 0.198 0.225

(ACE) 11] (ACE)

Ground Truth | 0.330* 0.490*

(ACE)

6.4 Multiple Instance Learning Approaches for Classifier
Fusion and Regression

Although more extensively studied for the case of sub-pixel hyperspectral target
detection, the Multiple Instance Learning approach can be used in other hyperspectral
applications including fusion with other sensors and regression, in addition to two-
class classification and detection problems discussed in previous sections. In this
section, algorithms for multiple instance classifier fusion and regression are presented
and their applications to hyperspectral and remote sensing data analysis are discussed.

6.4.1 Multiple Instance Choquet Integral Classifier Fusion

The multiple instance Choquet integral (MICI) algorithm* [61, 62] is a multiple
instance classifier fusion method to integrate different classifier outputs with impre-
cise labels under the MIL framework. In MICI, the Choquet integral [63, 64] was
used under the MIL framework to fuse outputs from multiple classifiers or sensors
for improving the accuracy and accounting for imprecise labels for hyperspectral
classification and target detection.

The Choquet integral (CI) is an effective nonlinear information aggregation
method based on the fuzzy measure. Assume there exists m sources, C = {cy, ¢z, ...,
cm}, for fusion. These “sources” can be the decision outputs by different classifiers
or data collected by different sensors. The power set of C is denoted as 2¢, which

4The MICI implementation is available at: https://github.com/GatorSense/MICI [60].

https://github.com/GatorSense/MICI

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 167

contains all possible (crisp) subsets of C. A monotonic and normalized fuzzy mea-
sure, g, is a real valued function that maps 2¢ — [0, 1]. It satisfies the following
properties:

1. g(¥) = 0; empty set
2. g(C) = 1; normalization property
3. g(A) <g(B)if A C Band A, B C C. monotonicity property.

Let h(ck; X,,) denote the output of the kth classifier, ¢, on the nth instance, X,,.
The discrete Choquet integral of instance x,, given C (m sources) is computed using

Ca(%) = Y [h(cks Xa) — hlexsr X)) 2(Aw), (6.28)
k=1

where the sources are sorted so that h(cy; x,) > h(cp; X,) > --+ > h(cp; X,) and
h(cm+1; X,) is defined to be zero. The fuzzy measure element value g(Ay) corre-
sponds to the subset Ay = {c1, ¢, ..., Ck}.

In a classifier fusion problem, given training data and fusion sources, i (c;;; X;)
Vm, n are known. The desired bag-level labels for sets of Cg(x,) values are also
known (positive label “+1”, negative label ““0”"). Then, the goal of the MICI algorithm
is to learn all the element values of the unknown fuzzy measure g from the training
data and bag-level (imprecise) labels. The MICI method includes three variations to
formulate the fusion problem under the MIL framework to address label imprecision.
The variations include the noisy-or model, the min-max model, and the generalized-
mean model.

The MICI noisy-or model follows the Diverse Density formulation (see Sect. 6.2.2)
and uses a noisy-or objective function

K- N,

Iv= 0 (1= (Cox)li. 7))

a=1 i=1

. (6.29)
K+ N,

3w (1 =TTt - (Copin o) |
b=1 i=1

where K denotes the total number of positive bags, K~ denotes the total number
of negative bags, N, is the total number of instances in positive bag b, and N, is the
total number of instances in negative bag a. Each data point/instance is either positive
or negative, as indicated by the following notation: x; is the ith instance in the ath
negative bag and x;rj is the jth instance in the bth positive bag. The Cy is the Choquet
integral output given measure g computed using (6.28). The | and o2 are the mean
and variance of the Gaussian function .4 (-), respectively. In practice, the parameter
W can be set to 1 or a value close to 1 for two-class classifier fusion problems, in
order to encourage the CI values of positive instances to be 1 and the CI values of
negative instances to be far from 1. The variance of the Gaussian o> controls how

168 C. Jiao et al.

sharply the CI values are pushed to 0 and 1, and thus controls the weighting of the
two terms in the objective function. By maximizing the objective function (6.29), the
CI values of all the points in the negative bag are encouraged to be zero (first term)
and the CI values of at least one instance in the positive bag are encouraged to be
one (second term), which follows the MIL assumption.

The MICI min-max model applies the min and max operators to the negative
and positive bags, respectively. The min-max model follows the MIL formulation
without the need to manually set parameters such as the Gaussian variance in the
noisy-or model. The objective function of the MICI min-max model is

K~ K+

Ju="y max (Cy(xz)—0) + Y min (Cylx)— 1)2, (6.30)

— ImeeB’ b lebjeB

where B, denotes the ath negative bag, and B, denotes the bth positive bag. The
remaining terms follow the same notation as in (6.29). The first term of the objective
function encourages the CI values of all instances in the negative bag to be zero, and
the second term encourages the CI values of at least one instance in the positive bag
to be one. By minimizing the objective function in (6.30), the MIL assumption is
satisfied.

Instead of selecting only one instance from each bag as a “prime instance” that
determines the bag-level label as does the min-max model, the MICI generalized-
mean model allows more instances to contribute toward the classification of bags.
The MICI generalized-mean objective function is written as

K- 1 Ny 1111 K+ Ny 2 i
o= Y| 5 D@ -0 | +3| 5 ZI(C wp=1) |

a= i= j=
6.31)

where p; and p, are the exponential factors controlling the generalized-mean opera-
tion. When p; — 400 and p, — —o0, the generalized-mean terms becomes equiv-
alent to the min and max operators, making the generalized-mean model equivalent
to the min-max model. By adjusting the p value, the generalized-mean term can act
as varying other aggregating operators, such as arithmetic mean (p = 1) or quadratic
mean (p = 2). For another interpretation, when p > 1, the generalized-mean can be
rewritten as the /,, norm [65].

The MICI models can be optimized by sampling-based evolutionary algorithms,
where the element values of fuzzy measure g are sampled and selected through a
truncated Gaussian distribution either based on valid interval (how much the element
value can change without violating the monotonicity property of the fuzzy measure),
or based on the counts of times a measure element is used in all training instances.
A more detailed optimization process and psuedocode of the MICI models can be
seen in [62, 66]. The MICI models have been used for hyperspectral sub-pixel target
detection [61, 62] and were effective in fusing multiple detector inputs (e.g., the ACE
detector) and can yield competitive classification results.

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 169

6.4.2 Multiple Instance Regression

Multiple instance regression (MIR) handles multiple instance problems where the
prediction values are real-valued, instead of binary class labels. The MIR methods
have been used in remote sensing literature for applications such as aerosol optical
depth retrieval [67, 68] and crop yield prediction [62, 68-70].

Prime-MIR was one of the earliest MIR algorithms, proposed by Ray and Page in
2001 [71]. Prime-MIR is based on the “primary instance” assumption, which assumes
there is only one primary instance per bag that contributes to the real-valued bag-
level label. Prime-MIR assumes a linear regression hypothesis and the goal is to find
a hyperplane Y = Xb such that

b = arg min D L (v Xip.b). (6.32)

i=1

where X, is the primary instance in bag i, and L is some error function, such as the
squared error. An expectation—maximization (EM) algorithm was used to iteratively
solve for the ideal hyperplane. First, a random hyperplane was initialized. For each
instance j in each bag i, the error L of the instance X;; to the hyperplane Y = Xb
was computed. In the E-step, the instance with the lowest error L was selected as the
“primary instance.” In the M-step, a new hyperplane was constructed by performing
a multiple regression over all the primary instances selected in the E-step. The two
steps were repeated until the algorithm converges and the best hyperplane solution
was returned. In [71], Prime-MIR showed the benefits of using multiple instance
regression over ordinary regression, especially when the non-primary instances in
the bag were not correlated with the primary instances.

The MI k-NN approach and its variations [72] extends the Diverse Density, kNN,
and Citation-kNN for real-valued multiple instance learning. The minimal Hausdorff
distance from [27] was used to measure the distance between two bags. Given two
sets of points A = ay, ...a, and B = by, ..., b,, the Hausdorff distance is defined
as

H(A, B) = max{h(A, B), h(B, A)}, (6.33)

where h(A, B) = max,cs mingep |la — b||, |la — b|| is the Euclidean distance
between points a and b. In the MI k-NN algorithm, the prediction made for a bag B
is the average label of the k closest bags, measured in Hausdorff metric. In the MI
citation-kNN algorithm, the prediction made for a bag B is the average label of the
R closest bag neighbors of B measured in Hausdorff metric and C-nearest citers,
where the “citers” include the bags where B is a one of their C-nearest neighbors. It
is generally recommended that C = R + 2 [72]. The third variant, a diverse density
approach for the real-valued setting, maximizes

170 C. Jiao et al.
K
[]Pre1B) (6.34)
i=1

where Pr(t|B;) = (1 — |l; — Label(B;|t)|)/Z, K is the total number of bags, ¢ is
the target point, /; is the label for the ith bag, and Z is a normalization constant.
The results in [72] showed good prediction performance of all three variants on a
benchmark Musk Molecules data set [4], but the performance of both the nearest
neighbor and diverse density algorithms were sensitive to the number of relevant
features, as expected based on the sensitivity of the Hausdorff distance to outliers.

A real-valued multiple instance on-line model proposed by Goldman and Scott
[73] uses MIR for learning real-valued geometric patterns, motivated by landmark
matching problem in robot navigation and vision applications. This algorithm asso-
ciates a real-valued label with each point and uses the Hausdorff metric to help
classify a bag as positive, if the points in the bag are within some Hausdorff distance
from target concept points. This algorithm differs from the supervised MIR in that
the standard supervised MIR learns from a given set of training bags and bag-level
training labels, while [73] applies an online agnostic model [74—76] where the learn-
ers make predictions as the bag B, is presented at iteration 7. Wang et al. [77] also
used the idea of online MIR, i.e., to use the latest arrived bag with its training label
to update the current predictive model. This work was also extended in [78].

A regularization framework for MIR proposed by Cheung and Kwok [79] defines
aloss function that takes into consideration both training bags and training instances.
The first part of the loss function computes the error (loss) between training bags
label and its predictions and the second part considers the loss between the bag label
prediction and all the instances in the bag. This work still adopted the “primary
instance” assumption but simplified to assume the primary instance was the instance
with the highest prediction output value. This model provided comparable or better
performance on the synthetic Musk Molecules data set [72] as citation-kNN [27] and
Multiple Instance kernel-based SVM [79, 80].

Most MIR methods discussed above only provided theoretical discussions or
results on synthetic regression data sets. More recently, MIR methods have been
applied to real-world hyperspectral and remote sensing data analysis. Wagstaff
et al. in [69, 70] investigated using MIR to predict crop yield from remotely sensed
data collected over California and Kansas. In [69], a novel method for inferring the
“salience” of each instance was proposed with regard to the real-valued bag label.
The salience of each instance, i.e., its “relevance” with respect to all other instances
in the bag to predict the bag label, is the weight associated with each instance. The
salience values were defined to be nonnegative and sum to one for all instances in
each bag. Like Ray and Page [71], Wagstaff et al. followed the “primary-instance”
assumption but their primary instance, or “exemplar” of a bag, is the weighted aver-
age of all the points in the bag instead of one single instance from the bag. Given
training bags and instances, a set of salience values are solved based on a fixed linear
regression model and given the estimated salience, the regressor is updated and the
algorithm reiterates until convergence. This work did not intend to provide predic-

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 171

tions over new data, but instead focused on understanding the contents (the salience)
of each training instance.

Wagstaff et al. then made use of the salience learned to provide predictions for
new, unlabeled bags by proposing an MI-ClusterRegress algorithm (or sometimes
referred to as the Cluster-MIR algorithm) [70] that mapped instances onto (hidden)
cluster labels. The main assumption of MI-ClusterRegress is that the instances from
a bag are drawn (with noise) from a set of underlying clusters and one of the clusters
is “relevant” to the bag-level labels. After obtaining k clusters for each bag by EM-
based Gaussian mixture models (or any other clustering method), a local regression
model is constructed for each cluster. MI-ClusterRegress then selects the best-fit
model and use it to predict labels for test bags. A support vector regression learner
[81] is used for regression prediction. Results on simulated and predicting crop yield
data sets show that modeling the bag structure when the structure (cluster) is present
is effective for regression prediction, especially when the cluster number k is equal
to or larger than what is actually present in the bags.

In Chap.2, Moreno-Martinez et al. proposed a kernel distribution regression
(KDR) model for MIR by embedding the bag distribution in a high-dimensional
Hilbert space and performing standard least squares regression on the mean embed-
ded data. This kernel method exploits the rich structure in bags by considering all
higher order moments of the bag distributions and performing regression with the
bag distributions directly. This kernel method also allows to combine bags with dif-
ferent number of instances per bag by summarizing the bag feature vectors with a
set of mean map embeddings of instances in the bag. The KRD model was shown to
outperform standard regression models such as the least squares regularized linear
regression model (RLR) and the (nonlinear) kernel ridge regression (KRR) method
for crop yield applications.

Wang et al. [67, 68] proposed a probabilistic and generalized mixture model for
MIR based on the primary-instance assumption (sometimes referred to as the EM-
MIR algorithm). It is assumed that the bag label is a noisy function of the primary
instance, and the conditional probability p(y;|B;) for predicting label y; for the ith
bag is dependent entirely on the primary instance. A binary random variable z;; is
defined such that z;; = 1if the jth instance in the ith bag is the primary instance and
z;j = 0 if otherwise. The mixture model for each bag i is written as

Ni
pGilB) =Y pzi; = 1B) p(yilxi)) (6.35)
j=1
Ni
= i p(yilXij), (6.36)
j=1

where 7;; is the (pior) probability that the jth instance in the ith bag is the primary
instance, p(y;|x;;) is the label probability given the primary instance x;; and N; is
the total number of instances in the ith bag B,. Therefore, the learning problem is
transformed to learning the mixture weights ;; and p(y;|x;;) from training data and

http://dx.doi.org/10.1007/978-3-030-38617-7_2

172 C. Jiao et al.

an EM algorithm is used to optimize the parameters. This work discussed several
methods to set the prior 7;;, including using deterministic function, or as a Gaussian
function of prediction deviation, or as a parametric function (in this case a feed-
forward neural network). It was discussed in [68] that several algorithms discussed
above, including Prime-MIR [71] and Pruning-MIR [67], are in fact the special
case of the mixture model. The mixture model MIR shows better performance on
simulated data as well as for predicting aerosol optical depth (AOD) from remote
sensing data and predicting crop yield applications, compared with the Cluster-MIR
[70] and Prime-MIR [71] algorithms described above.

Two baseline methods for MIR have also been described in [68], Aggregate-MIR,
and Instance-MIR. In Aggregate-MIR, a “meta-instance” is obtained for each bag
by averaging all the instances in that bag, and a regression model can be trained
using the bag-level labels and the meta-instances. In Instance-MIR, all instances in
a bag are assumed to have the same label as the bag-level label, and a regression
model can be trained by combining all instances from all bags. Then, in testing, the
label for a test bag is the average of all the instance-level labels in that test bag.
The Aggregate-MIR and Instance-MIR methods belong to the “input summary”
and “output expansion” approaches as described in Chap.2, Sect.2.3.1. These two
methods are straightforward and easy to implement, and have been used as basic
comparison methods for a variety of MIR applications.

The robust fuzzy clustering for MIR (RFC-MIR) algorithm was proposed by
Trabelsi and Frigui [82] to incorporate data structure in MIR. The RFC-MIR algo-
rithm uses fuzzy clustering methods such as the fuzzy c-means (FCM) and possibilis-
tic c-means (PCM) [83] to cluster the instances and fit multiple local linear regres-
sion models to the clusters. Similar to Cluster-MIR, the RFC-MIR method combines
all instances from all training bags for clustering. However, Cluster-MIR performs
clustering in an unsupervised manner without considering bag-level labels, while
RFC-MIR uses instance features as well as labels in clustering. Validation results
of RFC-MIR show improved accuracy on crop yield prediction and drug activity
prediction applications [84], and the possibilistic memberships obtained from the
RFC-MIR algorithm can be used to identify the primary and irrelevant instances in
each bag.

In parallel with the multiple instance classifier fusion models described in
Sect.6.4.1, a Multiple Instance Choquet Integral Regression (MICIR) model® has
been proposed to accommodate real-valued predictions for remote sensing applica-
tions [62]. The objective function of the MICIR model is written as

K
min) [V min_ (Cy(X;j) — Oi)Z}, (6.37)
i=1

J.xij€B;

where o; is the desired training labels for bag B;. Note that MICIR is able to fuse
real-valued outputs from regression models as well as from classifiers. When o; is

>The MICIR implementation is available at: https://github.com/GatorSense/MICI [60].

http://dx.doi.org/10.1007/978-3-030-38617-7_2
https://github.com/GatorSense/MICI

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 173

binary, MICIR reduces to the MICI min-max model for two-class classifier fusion.
The MICIR algorithm also follows the primary instance assumption by minimizing
the error between the CI value of one primary instance and the given bag-level
labels, while allowing imprecision in other instances. Similar to MICI classifier
fusion models, an evolutionary algorithm can be used to sample the fuzzy measure
g from the training data.

Overall, Multiple Instance Regression methods have been studied in the literature
for nearly two decades and most studies are based on the primary-instance assumption
proposed by Ray and Page in 2001. Linear regression models were used in most MIR
methods if aregressor was used and experiments have shown effective results of using
MIR on crop yield prediction and aerosol optical depth retrieval applications given
remote sensing data.

6.4.3 Multiple Instance Multi-resolution and Multi-modal
Fusion

Previous MIL classifier fusion and regression methods, such as the MICI and the
MICIR models, can only be applied if the fusion sources have the same number of
data points and the same resolution across multiple sensors. As motivated in Sect. 6.1,
in remote sensing applications, sensor outputs often have different resolutions and
modalities, such as rasterized hyperspectral imagery versus LiDAR point cloud data.
To address multi-resolution and multi-modal fusion under imprecision, the multi-
ple instance multi-resolution fusion (MIMRF) algorithm® was developed to fuse
multi-resolution and multi-modal sensor outputs while learning from automatically
generated, imprecisely labeled data [66, 86].

In multi-resolution and multi-modal fusion, there can be a set of candidate points
from alocal region from one sensor that corresponds to one point from another sensor,
due to sensor measurement inaccuracy and different data resolutions and modalities.
Take hyperspectral imagery and LIDAR point cloud data fusion, for example, for
each pixel H; in the HSI imagery, there may exist a set of {L;, L;>, ..., L} points
from the LiDAR point cloud that corresponds to the area covered by the pixel H;. The
MIMREF algorithm first constructs such correspondences by writing the collection of
the sensor outputs for pixel i as

H; L

H; L

S, = (6.38)

H; L;

6The MIMRF implementation is available at: https:/github.com/GatorSense/MIMRF [85].

https://github.com/GatorSense/MIMRF

174 C. Jiao et al.

This notation can extend to any number of correspondences [by row, and multiple
sensors by column. The MIMRF assumes that, at least one point in all candidate
LiDAR points is accurate, but it is unknown which one. One of the goals of the
MIMREF algorithm is to automatically select the correct points with accurate mea-
surement and correspondence information. To achieve this goal, the CI fusion for
the collection of the sensor outputs of the ith negative data point is written as

Co(S7) = min Cy(x), (6.39)
Jin.

X €5;

and the CI fusion for the collection of the sensor outputs values of the jth positive
data point is written as

C,(ST) = max C,(x), 6.40

#(5)) = max, Cy(x) (6.40)

where S;” is the collection of sensor outputs for the ith negative data point and Sj is
the collection of sensor outputs for the jth positive data point; Cy(S;") is the Choquet
integral output for S;” and Cq (Sj’) is the Choquet integral output for S}”. In this way,
the min and max operators automatically select one data point (which is assumed to
be the data point with correct information) from each negative and positive bag to
be used for fusion, respectively.

Moreover, the MIMREF is designed to handle bag-level imprecise labels. Recall
that the MIL framework assumes a bag is labeled positive if at least one instance in
the bag is positive and a bag is labeled negative if all the instances in the bag are
negative. Thus, the objective function for MIMRF algorithm is proposed as

K- Kt 5
- 2 .
7= max (CyS;)—0) + Y min (Cy(S5)—1)
- R gt]
el VS, €B, =1 vS,,€B,
K~ 2 Kt 2
= E max min Cy(x,)—0] + E min max Cg(xf)—l ,
o | ¥SaeBa | \¥xceS, P VS, By | \Vx €Sy

(6.41)
where K is the total number of positive bags, K~ is the total number of negative
bags, S_; is the collection of ith instance set in the ath negative bag and similar for

S,fj. C, is the Choquet integral given fuzzy measure g, B is the ath negative bag,

and B is the bth positive bag. The term S, is the collection of input sources for the
ith pixel in the ath negative bag and S;rj is the collection of input sources for the jth
pixel in the bth positive bag.

In (6.41), the min and max operators outside the squared errors (the boxed terms)
are comparable to the MICI min-max model. The max operator encourages the
Choquet integral of all the points in the negative bag to be 0 and the min operator
encourages the Choquetintegral of at least one point in the positive bag to be 1 (second
term), which satisfies the MIL assumption. The min and max operators inside the
squared error terms come from (6.39) and (6.40), which selects one correspondence

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 175

for each collection of candidates. By minimizing the objective function in (6.41),
the first term encourages the fusion output of all the points in the negative bag to the
desired negative label 0, and the second term encourages the fusion output of at least
one of the points in the positive bag to the desired positive label +1. This satisfies the
MIL assumption while addressing label imprecision for multi-resolution and multi-
modal data. The MIMREF algorithm has been used to fuse rasterized hyperspectral
imagery and un-rasterized LiDAR point cloud data over urban scenes and have shown
effective fusion results for land cover classification [66, 86].

Here is a small example to illustrate the performance of the MIMRF algorithm
using the MUUFL Gulfport hyperspectral and LiDAR data set collected over the
University of Southern Mississippi-Gulfpark Campus [1]. An illustration of the ras-
terized hyperspectral imagery and the LiDAR data over the complete scene can be
seen in Figs. 6.2 and 6.3 in Sect. 6.1. The task here is to fuse hyperspectral and LIDAR
data to perform building detection and classification. The simple linear iterative clus-
tering (SLIC) algorithm [87, 88] was used to segment the hyperspectral imagery. The
SLIC algorithm is a widely used, unsupervised superpixel segmentation algorithm
that can produce spatially coherent regions. Each superpixel from the segmentation
is treated as a “bag” in our learning process and all pixels in each superpixel are
all the instances in the bag. The bag-level labels in this data set were generated
from OpenStreetMap (OSM), a third-party, crowd-sourced online map [89]. OSM
provides map information for urban regions around the world. Figure 6.9c shows
the map extracted from Open Street Map (OSM) over the study area based on the
ground cover tags available, such as “highway”, “footway”, “building”, etc. Informa-
tion from Google Earth [90], Google Maps [91], and geo-tagged photographs from
a digital camera taken at the scene were also be used as auxiliary data to assist the
labeling process. This way, reliable bag-level labels can be automatically generated
with minimal human intervention. These bag-level labels will then be used in the
MIMREF objective function (6.41) to learn the unknown fuzzy measure g for HSI-
LiDAR fusion. Figure 6.9 shows the RGB imagery, the SLIC segmentation, and the
OSM map labels for the MUUFL Gulfport hyperspectral imagery.

Three multi-resolution and multi-modal sensor outputs were used as fusion
sources, one generated from HSI imagery and two from raw LiDAR point cloud
data. The first fusion source is the ACE detection map on buildings based on the
mean spectral signature of randomly sampled building points from the scene. The
ACE detection map for buildings is shown in Fig.6.10a. As shown, the ACE con-
fidence map highlights most buildings, but also highlights some roads which have
similar spectral signature (similar construction material, such as asphalt). The ACE
detector also failed to detect the top right building due to the darkness of the roof.
Two other fusion sources were generated from LiDAR point cloud data according to
the building height profile, with the rasterized confidence maps shown in Fig. 6.10b
and Fig. 6.10c. Note that in MIMREF fusion, the LiDAR sources will be point clouds
and Figs. 6.10b and c are provided for visualization and comparison purposes only.

As shown in Fig. 6.10, each HSI and LiDAR sensor output contains certain build-
ing information. The goal is to use MIMREF to fuse all three sensor outputs and
perform accurate building classification. We randomly sampled 50% the bags (the

176 C. Jiao et al.

(c)

30.3535 8

30.353

30.3525

30.352

Latitude (°)

30.3515

30.351

30.3505 | -
89137 -89.136 -89.135 -89.134

Longitude (°)

Fig. 6.9 The RGB image (a), SLIC segmentation (b), and the OSM map for the MUUFL Gulfport
hyperspectral imagery (c). In the OSM map, the blue lines correspond to road and highway. The
magenta lines correspond to sidewalk/footway. The green lines marks buildings. Here, the “building”
tag is specific to the buildings with a grey (asphalt) roof. The black lines correspond to “other” tags.
Source: © [2020] IEEE. Reprinted, with permission, from [86]

(a) (b) _ _ . (c)

(d)

0 0.1 0.2 03 0.4 05 06 0.7 0.8 09 1

Fig. 6.10 The fusion sources generated from HSI and LiDAR data for building detection. a ACE
detection map from HSI data. b, ¢ LiDAR building detection map from two LiDAR flights. The
colorbar can be seen in d. Source: © [2020] IEEE. Reprinted, with permission, from [86]

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 177

Fig. 6.11 An example of 1
ROC curve results for
building detection across all
methods 0.8
Qo .
g = MICI
= —CI-QP
8 mi-SVM
Q 04 —SVM 1
[0))
) = 'min
= — max
0.2 = 'mean
! ACE
= Lidar1
== Lidar2
0 | 1 1 1 1
0 0.2 0.4 0.6 0.8 1

False positive rate

superpixels) and use these to learn a set of fuzzy measures for the MIMRF algorithm.
We conducted such random sampling three times by using the MATLAB randperm()
function and call these the three random runs. The sampled bags are different at each
random run. In each random run, the MIMREF algorithm is applied to learn a fuzzy
measure from the randomly sampled 50% bags, and fusion results are evaluated on
the remaining 50% data on a pixel level. Note that there will be two sets of results
in each run—Ilearn from the first sampled 50% bags (denoted “Half1”’) and perform
fusion on the second half of data (denoted “Half2”’), and vice versa. The fusion results
of MIMRF were compared with previously discussed MIL algorithms such as MICI
and mi-SVM and the CI-QP approach. The CI-QP (Choquet integral-quadratic pro-
gramming) approach [64] is a CI fusion method that learns a fuzzy measure for the
Choquet integral by optimizing a least squares error objective using quadratic pro-
gramming. Note that these comparison methods only work with rasterized LiDAR
imagery, while the MIMRF algorithm can directly handle raw LiDAR point cloud
data. The fusion results of MIMRF were also compared with commonly used fusion
methods, such as min, max, and mean operators and a support vector machine, as
well as the ACE and LiDAR sensor sources before fusion.

Figure 6.11 shows an example of the receiver operating characteristic (ROC) curve
results for building detection across all comparison methods. Table 6.5 shows the area
under curve (AUC) results across all methods in all random runs. Table 6.6 shows
the root mean square error (RMSE) results across all methods in all random runs.
The AUC evaluates how well the method detects the buildings (the higher AUC the
better) and the RMSE shows how the detection results on both the building and
nonbuilding points differ from the ground truth (the lower the RMSE the better). We
observed from the tables that the MIMRF method was able to achieve high AUC
detection results and low RMSE compared to other methods, and the MIMREF is

178 C. Jiao et al.

stable across different randomizations. The MICI classifier fusion method also did
well in detection (high AUC), but has higher RMSE compared to MIMREF, possibly
due to MICI’s inability to handle multi-resolution data. The min operator did well
in RMSE due to the fact that it places low confidence everywhere, but was unable
to have high detection results. The ACE detector did well in detection, which shows
that the hyperspectral signature is effective at distinguishing building roof materials.
However, it also places high confidence on other asphalt materials such as road, and
thus yields a high RMSE value.

Figures6.12 and 6.13 shows a qualitative comparison of our fusion perfor-
mance. Figure 6.12 shows an example of our randomly sampled bags. All the semi-
transparent bags marked by the red lines in Fig.6.12a were used to learn a fuzzy
measure in our method, and we evaluate pixel-level fusion results against the “test”
ground truth shown in Fig. 6.12b. Note that the MIMREF is a self-supervised method
that learns a fuzzy measure from bag-level labels and produces pixel-level fusion
results. Although standard training and testing scheme does not apply here, this
experiment is set up using cross validation to show that the MIMRF algorithm is
able to utilize the fuzzy measure learned from one part of the data and apply that
fuzzy measure to perform fusion on new test data, even when the learned bags were
excluded from testing.

Table 6.5 The AUC results of building detection using MUUFL Gulfport HSI and LiDAR data
across three random runs. (The higher the AUC the better.) The best two results with the highest
AUC were bolded and underlined, respectively. “Half1” refers to the results of learning a fuzzy
measure from the first 50% of the bag-level labels from campus 1 data and perform pixel-level
fusion on the second half. “Half2” refers to the results of learning a fuzzy measure from the second
50% of the bag-level labels from campus 1 data and perform pixel-level fusion on the first half. The
ACE, Lidarl, and Lidar2 rows show results from the individual HSI and LiDAR sources before
fusion; the methods below the dotted line show fusion results for all comparison methods. The
standard deviations of MICI and MIMRF methods are computed across three runs (three random
fuzzy measure initializations) and are shown in parentheses. Same notation is applied for the RMSE
table below as well

First Random run Second Random run Third Random run

Half1l Half2 Halfl Half2 Half1 Half2
ACE 0.954 0.961 0.938 0.967 0.963 0.947
Lidarl 0.874 0914 0.879 0.904 0.920 0.874
Lidar2 0.855 0.813 0.879 0.796 0.830 0.848
'SVM 0670 0854 0791 0918 0928|0823
min 0.872 0.863 0.890 0.849 0.870 0.872
max 0.946 0.945 0.953 0.939 0.948 0.945
mean 0.963 0.952 0.969 0.947 0.959 0.960
mi-SVM 0.752 0.886 0.795 0.942 0.930 0.923
CI-QP 0.955 0.959 0.959 0.939 0.962 0.964
MICI 0.972(0.001) |0.963(0.000) |0.976(0.000) | 0.960(0.000) | 0.968(0.000) | 0.971(0.000)
MIMRF 0.978(0.003) |0.963(0.002) |0.972(0.000) | 0.971(0.001) | 0.973(0.000) | 0.971(0.002)

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 179

Table 6.6 The RMSE results of building detection using MUUFL Gulfport HSI and LiDAR data
across three random runs. (The lower the RMSE the better.) The best two results with the highest
AUC were bolded and underlined, respectively. “Half1” refers to the results of learning a fuzzy
measure from the first 50% of the bag-level labels from campus 1 data and perform pixel-level
fusion on the second half. “Half2” refers to the results of learning a fuzzy measure from the second
50% of the bag-level labels from campus 1 data and perform pixel-level fusion on the first half. The
ACE, Lidarl, and Lidar2 rows show results from the individual HSI and LiDAR sources before
fusion; the methods below the dotted line show fusion results for all comparison methods. The
standard deviations of MICI and MIMRF methods are computed across three runs (three random
fuzzy measure initializations) and are shown in parentheses

First Random run Second Random run Third Random run
Half1 Half2 Half1 Half2 Half1 Half2
ACE 0.345 0.339 0.348 0.307 0.334 0.350
Lidarl 0.291 0.255 0.278 0.268 0.266 0.280
Lidar2 0.294 0.270 0.267 0.297 0.269 0.295
SVM 0.348 0.332 0.437 0.250 0.409 0.284
min 0.265 0.235 0.248 0.255 0.240 0.263
max 0.417 0.417 0.419 0.413 0.423 0.420
mean 0.307 0.291 0.296 0.298 0.298 0.302
mi-SVM 0.425 0.459 0.432 0.253 0.406 0.232
CI-QP 0.403 0.377 0.405 0413 0.388 0.397
MICI 0.356(0.002) | 0.348(0.002) | 0.374(0.001) |0.336(0.001) |0.356(0.000) |0.350(0.000)
MIMRF 0.238(0.024) | 0.192(0.025) | 0.244(0.002) | 0.208(0.011) | 0.255(0.002) |0.177(0.001)
(a) _ (b) 1
0.8
50 50
0.6
100 100 0.4
0.2
150 150
0
200 200 -0.2
0.4
250 250
-0.6
300 ff 300 -0.8

50 100 150 200 50 100 150 200

Fig. 6.12 a An illustration for the 50% randomly sampled bags from one of our random runs. The
MIMREF algorithm learns a fuzzy measure from the red-labeled, transparent bags. b The ground
truth for the the other 50% data [92]. The yellow and green regions are building and nonbuilding
ground truth locations in the “test” data. The dark blue (labeled “~1”’) regions denote the 50% of
the bags that were used in MIMRF learning and therefore not included in the testing process

180 C. Jiao et al.

Fig. 6.13 The fusion results for building detection in the MUUFL Gulfport data set, learned from
the randomly drawn bags shown in Fig.6.12a and evaluated on the remaining regions against the
ground truth shown in Fig. 6.12b. Note that the MIMRF method learns a set of fuzzy measures from
bag-level data and produced per-pixel fusion results on the fusion regions. The subplots show fusion
results by a SVM; b min operator; ¢ max operator; d mean operator; e mi-SVM; f CI-QP; g MICI;
h MIMRE. The yellow highlights where the fusion algorithm places high detection confidence and
green indicates low confidence, and the dark blue indicates the regions not used in the evaluation.
This plot uses the same color bar as in Fig. 6.10d. It is desirable that high confidence (yellow color)
was placed on buildings for building detection. As shown, the MIMRF algorithm in h was able
to detect all buildings (yellow color) in the regions that were evaluated and have low confidence
(green color) on nonbuilding areas. The other comparison methods either missed some buildings,
or have many more false positives in non-building regions, such as tree canopy

Figure 6.13 shows all fusion results on the test regions across all methods. As
shown, the MIMREF algorithm in Fig. 6.13h was able to detect all buildings (yellow)
in the evaluation regions well while having low confidence (green) on nonbuilding
areas. The other comparison methods either missed some buildings, or have many
more false positives in non-building regions. Other randomizations yielded similar
effects.

To summarize, the above experimental results show that the MIMRF method was
able to successfully perform detection and fusion with high detection accuracy and
low root mean square error for multi-resolution and multi-modal data sets. This exper-
iment further demonstrated the effectiveness of the self-supervised learning approach
used by the MIMRF method at learning a fuzzy measure from one part of the data

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 181

(using only bag-level labels) and perform pixel-level fusion on other regions. Guided
by publicly available crowd-sourced data such as the OpenStreetMap, the MIMRF
algorithm is able to automatically generate imprecise bag-level labels instead of the
traditional manual labeling process. Moreover, [86] has shown effective results of
MIMREF fusion on agricultural applications as well, in addition to hyperspectral and
LiDAR analysis. We envision the MIMREF as an effective fusion method to perform
pixel-level classification and produce fusion maps with minimal human intervention
for a variety of multi-resolution and multi-modal fusion applications.

6.5 Summary

This chapter introduced the Multiple Instance Learning framework and reviewed
MIL methods for hyperspectral classification, sub-pixel target detection, classifier
fusion, regression, and multi-resolution multi-modal fusion. Given imprecise (bag-
level) ground truth information in the training data, the MIL methods are effective
in addressing the inevitable imprecision observed in remote-sensing data and appli-
cations.

e Imprecise training labels are omnipresent in hyperspectral image analysis,
due to unreliable ground truth information, sub-pixel targets, and occlusion,
and heterogeneous sensor outputs. MIL methods can handle bag-level labels
instead of requiring pixel-perfect labels in training, which enables easier
annotation and more accurate data analysis.

e Multiple instance target characterization algorithms were presented, includ-
ing eFUMI, MI-ACE/MI-SMF, and MI-HE algorithms. These algorithms
can estimate target concepts from the data given imprecise labels, without
obtaining target signature a priori.

e Multiple instance classifier fusion and regression algorithms were presented.
In particular, the MICI method is versatile in that it can perform classifier
fusion and regression with minor adjustments in the objective function.

e The MIMREF algorithm extends upon MICI to multi-resolution and multi-
modal sensor fusion on remote sensing data with label uncertainty. To our
knowledge, this is the first algorithm that can handle HSI imagery and
LiDAR point cloud fusion without co-registration or rasterization, consid-
ering imprecise labels.

e Various optimization strategies exist to optimize an MIL problem, such
as expectation maximization, sampling-based evolutionary algorithm, and
gradient descent.

The algorithms discussed in this chapter covers the state-of-the-art MIL
approaches and provides an effective solution to address the imprecision challenges

182 C. Jiao et al.

in hyperspectral image analysis and remote-sensing applications. There are several
challenges in these current approaches that warrant future work. For example, cur-
rent MI regression methods often rely on the “primary instance” assumption, which
may not hold in all applications; or that MIL assumes no contamination (of positive
points) in negative bags, but in practice this is often not the case. Future study in more
flexible MIL frameworks (such as using kernel embedding as described in Chap. 2)
can be conducted in relaxing these assumptions.

References

1. Gader P, Zare A, Close R et al (2013) MUUFL gulfport hyperspectral and lidar airborne
data set. Technical report, University of Florida, Gainesville, FL, REP-2013-570. Data and
code. https://github.com/GatorSense/MUUFLGulfport and Zenodo. https://doi.org/10.5281/
zenodo.1186326

2. Brigot G, Colin-Koeniguer E, Plyer A, Janez F (2016) Adaptation and evaluation of an optical
flow method applied to coregistration of forest remote sensing images. IEEE J Sel Topics Appl
Earth Observ 9(7):2923-2939

3. Cao S, Zhu X, Pan Y, and Yu Q (2014) A stable land cover patches method for automatic
registration of multitemporal remote sensing images. IEEE J Sel Topics Appl Earth Observ
7(8):3502-3512

4. Dietterich TG, Lathrop RH, Lozano-Pérez T et al (1997) Solving the multiple instance problem
with axis-parallel rectangles. Artif Intell 89(1-2):31-71

5. Maron O, Lozano-Perez T (1998) A framework for multiple-instance learning. In: Advances
in neural information processing systems (NIPS), pp 570-576

6. Maron O, Ratan AL (1998) Multiple-instance learning for natural scene classification. In:
International conference on machine learning, vol 98, pp 341-349

7. Zhang Q, Goldman SA (2002) EM-DD: an improved multiple-instance learning technique. In:
Advances in neural information processing systems (NIPS), vol 2, pp 1073-1080

8. Press WH, Flannery BP, Teukolsky SA (1992) Numerical recipes in C: the art of scientific
programming. Cambridge University Press, Cambridge

9. Andrews S, Tsochantaridis I, Hofmann T (2002) Support vector machines for multiple-instance
learning. In: Advances in neural information processing systems (NIPS) 561-568

10. Shrivastava A, Pillai JK, Patel VM, Chellappa R (2014) Dictionary-based multiple instance
learning. In: IEEE international conference on image processing (ICIP), pp 160—164

11. Shrivastava A, Patel VM, Pillai JK, Chellappa R (2015) Generalized dictionaries for multiple
instance learning. Int J Comput Vis 114(2-3):288-305

12. Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans
Signal Process 41(12):3397-3415

13. Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311-4322

14. Mairal J, Bach F, Ponce J (2012) Task-driven dictionary learning. IEEE Trans Pattern Anal
Mach Intell 34(4):791-804

15. Wang X, Wang B, Bai X, Liu W, Tu Z (2013) Max-margin multiple-instance dictionary learning.
In: International conference on machine learning, pp 846-854

16. Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993-1022

17. FuZetal (2011) MILIS: multiple instance learning with instance selection. IEEE Trans Pattern
Anal Mach Intell 33(5):958-977

18. Chen Y, Bi J, Wang JZ (2006) MILES: multiple-instance learning via embedded instance
selection. IEEE Trans Pattern Anal Mach Intell 28(12):1931-1947

http://dx.doi.org/10.1007/978-3-030-38617-7_2
https://github.com/GatorSense/MUUFLGulfport
https://doi.org/10.5281/zenodo.1186326
https://doi.org/10.5281/zenodo.1186326

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 183

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Zhu J, Rosset S, Hastie T, Tibshirani R (2004) 1-norm support vector machines. In: Advances
in neural information processing systems (NIPS), vol 16, pp 49-56

Scholkopf B, Smola AJ (2002) Learning with kernels: support vector machines, regularization,
optimization, and beyond. MIT Press

Zhou Z, Xu J (2007) On the relation between multi-instance learning and semi-supervised
learning. In: Proceedings of the 24th international conference on machine learning, pp 1167-
1174

Hoftman J et al (2015) Detector discovery in the wild: joint multiple instance and representation
learning. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 2883—
2891

Li W, Vasconcelos N (2015) Multiple instance learning for soft bags via top instances. In: IEEE
conference on computer vision and pattern recognition (CVPR), pp 4277-4285

Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2010) Object detection with dis-
criminatively trained part-based models. IEEE Trans Pattern Anal Mach Intell 32(9):1627-1645
Zhang D, Meng D, Han J (2017) Co-saliency detection via a self-paced multiple-instance
learning framework. IEEE Trans Pattern Anal Mach Intell 39(5):865-878

Kumar MP, Packer B, Koller D (2010) Self-paced learning for latent variable models. In:
Advances in neural information processing systems (NIPS), pp 1189-1197

Wang J (2000) Solving the multiple-instance problem: alazy learning approach. In: Proceedings
of the 17th international conference on machine learning, pp 1119-1125

Duda RO, Hart PE (1973) Pattern classification and scene analysis. Wiley, New York
Huttenlocher DP et al (1993) Comparing images using the Hausdorff distance. IEEE Trans
Pattern Anal Mach Intell 15(9):850-863

Jiang L, Cai Z, Wang D et al (2014) Bayesian citation-KNN with distance weighting. Int J
Mach Learn Cybern 5(2):193-199

Ghosh D, Bandyopadhyay S (2015) A fuzzy citation-kNN algorithm for multiple instance
learning. In: IEEE international conference on fuzzy systems, pp 1-8

Villar P, Montes R, Sanchez A et al (2016) Fuzzy-Citation-KNN: a fuzzy nearest neighbor
approach for multi-instance classification. In: IEEE international conference on fuzzy systems,
pp 946-952

Wang X, Yan Y, Tang P et al (2018) Revisiting multiple instance neural networks. Pattern
Recognit 74:15-24

Nasrabadi NM (2014) Hyperspectral target detection: an overview of current and future chal-
lenges. IEEE Signal Process Mag 31(1):34-44

Manolakis D, Marden D, Shaw GA (2003) Hyperspectral image processing for automatic target
detection applications. Linc Lab J 14(1):79-116

Manolakis D, Truslow E, Pieper M, Cooley T, Brueggeman M (2014) Detection algorithms in
hyperspectral imaging systems: an overview of practical algorithms. IEEE Signal Process Mag
31(1):24-33

Jiao C, Zare A (2015) Functions of multiple instances for learning target signatures. IEEE
Trans Geosci Remote Sens 53(8):4670-4686

Zare A, Jiao C (2014) Extended functions of multiple instances for target characterization. In:
IEEE workshop hyperspectral image signal process: evolution in remote sensing (WHISPERS),
pp 1-4

Zare A, Gader P (2007) Sparsity promoting iterated constrained endmember detection for
hyperspectral imagery. IEEE Geosci Remote Sens Lett 4(3):446-450

Jiao C, Zare A (2019) GatorSense/FUMI: initial release (Version v1.0). Zenodo. https://doi.
org/10.5281/zenodo.2638304

Zare Jiao C, Glenn T (2018) Discriminative multiple instance hyperspectral target characteri-
zation. IEEE Trans Pattern Anal Mach Intell 65(10):2634-2648

Zare A, Jiao C, Glenn T (2018). GatorSense/MIACE: version 1 (Version v1.0). Zenodo. https://
doi.org/10.5281/zenodo.1467358

Zare A, Ho KC (2014) Endmember variability in hyperspectral analysis: addressing spectral
variability during spectral unmixing. IEEE Signal Process Mag 31(1):95-104

https://doi.org/10.5281/zenodo.2638304
https://doi.org/10.5281/zenodo.2638304
https://doi.org/10.5281/zenodo.1467358
https://doi.org/10.5281/zenodo.1467358

184

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

C. Jiao et al.

Jiao C, Zare A (2017) Multiple instance hybrid estimator for learning target signatures. In:
IEEE international geoscience and remote sensing symposium, pp 1-4

Jiao C et al (2018) Multiple instance hybrid estimator for hyperspectral target characterization
and sub-pixel target detection. ISPRS J Photogramm Remote Sens 146:232-250

Broadwater J, Chellappa R (2007) Hybrid detectors for subpixel targets. IEEE Trans Pattern
Anal Mach Intell 29(11):1891-1903

Babenko B, Dollar P, Tu Z, Belongie S (2008) Simultaneous learning and alignment: multi-
instance and multi-pose learning. In: Workshop on faces in ‘Real-Life’ images: detection,
alignment, and recognition

Ramirez I, Sprechmann P, Sapiro G (2010) Classification and clustering via dictionary learning
with structured incoherence and shared features. In: IEEE conference on computer vision and
pattern recognition, pp 3501-3508

Yang M, Zhang L, Feng X, Zhang D (2014) Sparse representation based fisher discrimination
dictionary learning for image classification. Int J Comput Vis 109(3):209-232

Yang M, Zhang L, Feng X, Zhang D (2011) Fisher discrimination dictionary learning for sparse
representation. In: International conference on computer vision, pp 543-550

Figueiredo MAT, Nowak RD (2003) An EM algorithm for wavelet-based image restoration.
IEEE Trans Image Process 12(8):906-916

Daubechies I, Defrise M, De Mol C (2003) An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint. Commun Pure Appl Math 57(11):1413-1457
Nascimento JMP, Dias JMB (2005) Vertex component analysis: a fast algorithm to unmix
hyperspectral data. IEEE Trans Geosci Remote Sens 43(4):898-910

Jiao C, Zare A (2018) GatorSense/MIHE: initial release (Version 0.1). Zenodo. https://doi.org/
10.5281/zenodo.1320109

Zhong P, Gong Z, Shan J (2019) Multiple instance learning for multiple diverse hyperspectral
target characterizations. IEEE Trans Neural Netw Learn Syst 31(1): 246-258

Baldridge AM, Hook SJ, Grove CI, Rivera G (2009) The ASTER spectral library version 2.0.
Remote Sens Environ 113(4):711-715

Kraut S, Scharf LL (1999) The CFAR adaptive subspace detector is a scale-invariant GLRT.
IEEE Trans Signal Process 47(9):2538-2541

Chang C, Lin C (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst
Technol 2(3):1-27

Glenn T, Zare A, Gader P, Dranishnikov D (2013) Bullwinkle: scoring code for sub-pixel targets
(Version 1.0) [Software]. https://github.com/GatorSense/MUUFLGulfport/

Du X, Zare A (2019) GatorSense/MICI: initial release (Version v1.0). Zenodo. https://doi.org/
10.5281/zenodo.2638378

Du X, Zare A, Keller JM, Anderson DT (2016) Multiple Instance Choquet integral for classifier
fusion. IEEE Congr Evol Comput 1054-1061

Du X, Zare A (2019) Multiple instance Choquet integral classifier fusion and regression for
remote sensing applications. IEEE Trans Geosci Remote Sens 57(5):2741-2753

Choquet G (1954) Theory of capacities. Ann L’Institut Fourier 5:131-295

Keller JM, Liu D, Fogel DB (2016) Fundamentals of computational intelligence: neural net-
works, fuzzy systems and evolutionary computation. IEEE press series on computational intel-
ligence, Wiley

Rolewicz S (2013) Functional analysis and control theory: linear systems. Springer Science &
Business Media, Dordrecht, The Netherlands

Du X (2017) Multiple instance choquet integral for multiresolution sensor fusion. Doctoral
dissertation, University of Missouri, Columbia, MO, USA

Wang Z, Radosavljevic V, Han B et al (2008) Aerosol optical depth prediction from satel-
lite observations by multiple instance regression. In: Proceedings of the SIAM international
conference on data mining, pp 165-176

Wang Z, Lan L, Vucetic S (2012) Mixture model for multiple instance regression and applica-
tions in remote sensing. IEEE Trans Geosci Remote Sens 50(6):2226-2237

https://doi.org/10.5281/zenodo.1320109
https://doi.org/10.5281/zenodo.1320109
https://github.com/GatorSense/MUUFLGulfport/
https://doi.org/10.5281/zenodo.2638378
https://doi.org/10.5281/zenodo.2638378

6 Addressing the Inevitable Imprecision: Multiple Instance Learning ... 185

69.

70.
71.
72.
73.
74.
75.
76.
71.
78.
79.
80.
81.
82.
83.

84.

85.
86.
87.
88.
89.
. Google (2018) Google earth. https://www.google.com/earth/

91.
92.

Wagstaff KL, Lane T (2007) Salience assignment for multiple-instance regression. In: Inter-
national conference on machine learn, workshop on constrained optimization and structured
output spaces

Wagstaff KL, Lane T, Roper A (2008) Multiple-instance regression with structured data. In:
IEEE international conference on data mining workshops, pp 291-300

Ray S, Page D (2001) Multiple instance regression. In: Proceedings of the 18th international
conference on machine learning, vol 1, pp 425-432

Dooly DR, Zhang Q, Goldman SA, Amar RA (2002) Multiple-instance learning of real-valued
data.] Mach Learn Res 3:651-678

Goldman SA, Scott SD (2003) Multiple-instance learning of real-valued geometric patterns.
Ann Math Artif Intell 39(3):259-290

Haussler D (1992) Decision theoretic generalizations of the PAC model for neural net and other
learning applications. Inf Comput 100(1):78-150

Kearns MJ, Schapire RE, Sellie LM (1994) Toward efficient agnostic learning. Mach Learn
17(2-3):115-141

Kivinen J, Warmuth MK (1997) Exponentiated gradient versus gradient descent for linear
predictors. Inf Comput 132(1):1-63

Wang ZG, Zhao ZS, Zhang CS (2013) Online multiple instance regression. Chin Phys B
22(9):098702

Dooly DR, Goldman SA, Kwek SS (2006) Real-valued multiple-instance learning with queries.
J Comput Syst Sci 72(1):1-5

Cheung PM, Kwok JT (2006) A regularization framework for multiple-instance learning. In:
Proceedings of the 23rd international conference on machine learning, pp 193-200

Girtner T, Flach PA, Kowalczyk A, Smola AJ. Multi-instance kernels. In: Proceedings of the
19th international conference on machine learning, vol 2, no 3, pp 179-186

Gunn SR (1998) Support vector machines for classification and regression. ISIS Tech Rep
14(1):5-16

Trabelsi M, Frigui H (2019) Robust fuzzy clustering for multiple instance regression. Pattern
Recognit

Krishnapuram R, Keller JM (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy
Syst 1(2):98-110

Davis J, Santos Costa V, Ray S, Page D (2007) Tightly integrating relational learning and
multiple-instance regression for real-valued drug activity prediction. In: Proceedings on inter-
national conference on machine learning, vol 287

Du X, Zare A (2019) GatorSense/MIMREF: initial release (Version v1.0). Zenodo. https://doi.
org/10.5281/zenodo.2638382

Du X, Zare A (2019) Multiresolution multimodal sensor fusion for remote sensing data with
label uncertainty. IEEE Trans Geosci Remote Sens, In Press

Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Siisstrunk S (2010) Slic superpixels. Ecole
Polytechnique Fédéral de Lausssanne (EPFL). Tech Rep 149300:155-162

Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Siisstrunk S (2012) SLIC superpixels compared
to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274-2282
OSM contributors (2018) Open street map. https://www.openstreetmap.org

Google (2018) Google maps. https://www.google.com/maps/

Du X, Zare A (2017) Technical report: scene label ground truth map for MUUFL gulf-
port data set. University of Florida, Gainesville, FL, Tech Rep 20170417. http://ufdc.ufl.edu/
IR00009711/00001

https://doi.org/10.5281/zenodo.2638382
https://doi.org/10.5281/zenodo.2638382
https://www.openstreetmap.org
https://www.google.com/earth/
https://www.google.com/maps/
http://ufdc.ufl.edu/IR00009711/00001
http://ufdc.ufl.edu/IR00009711/00001

Chapter 7 M)
Supervised, Semi-supervised, st
and Unsupervised Learning

for Hyperspectral Regression

Felix M. Riese and Sina Keller

Abstract In this chapter, we present an entire workflow for hyperspectral regres-
sion based on supervised, semi-supervised, and unsupervised learning. Hyperspectral
regression is defined as the estimation of continuous parameters like chlorophyll «,
soil moisture, or soil texture based on hyperspectral input data. The main challenges
in hyperspectral regression are the high dimensionality and strong correlation of the
input data combined with small ground truth datasets as well as dataset shift. The
presented workflow is divided into three levels. (1) At the data level, the data is
pre-processed, dataset shift is addressed, and the dataset is split reasonably. (2) The
feature level considers unsupervised dimensionality reduction, unsupervised cluster-
ing as well as manual feature engineering and feature selection. These unsupervised
approaches include autoencoder (AE), t-distributed stochastic neighbor embedding
(t-SNE) as well as uniform manifold approximation and projection (UMAP). (3) At
the model level, the most commonly used supervised and semi-supervised machine
learning models are presented. These models include random forests (RF), convo-
lutional neural networks (CNN), and supervised self-organizing maps (SOM). We
address the process of model selection, hyperparameter optimization, and model
evaluation. Finally, we give an overview of upcoming trends in hyperspectral regres-
sion. Additionally, we provide comprehensive code examples and accompanying
materials in the form of a hyperspectral dataset and Python notebooks via GitHub
[98, 100].

F. M. Riese - S. Keller ()
Karlsruhe Institute of Technology, Karlsruhe, Germany
e-mail: sina.keller@kit.edu

F. M. Riese
e-mail: felix.riese @kit.edu

© Springer Nature Switzerland AG 2020 187
S. Prasad and J. Chanussot (eds.), Hyperspectral Image Analysis,

Advances in Computer Vision and Pattern Recognition,
https://doi.org/10.1007/978-3-030-38617-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38617-7_7&domain=pdf
mailto:sina.keller@kit.edu
mailto:felix.riese@kit.edu
https://doi.org/10.1007/978-3-030-38617-7_7

188 F. M. Riese and S. Keller

7.1 Introduction to Hyperspectral Regression

Precise information about the spatial and temporal distribution of continuous physical
parameters is of great importance in many scopes of environmental applications. A
physical parameter, herein, describes the characteristics and conditions of a physical
object, state, or process. One example of such a physical parameter is soil moisture.

When monitoring such continuous physical parameters directly on site, conven-
tional point-wise measurement techniques are most widely used. These techniques
measure continuous values of the respective parameter by analyzing in situ probes.
Such in situ measurements are precise at a specific location but are often inefficient
for covering a large area.

For monitoring physical parameters over large areas, hyperspectral remote sensing
techniques are applied as complementary solutions (see, e.g., [29]). Hyperspectral
sensors mounted on satellites, unmanned aerial vehicles (UAVSs), or handhelds record
this kind of data with different spectral, temporal, and spatial resolutions depending
on the applied platform. In general, the recorded hyperspectral data contains, to a
certain extent, spectral information related to the physical parameter to be considered.
Hyperspectral remote sensing aims to retrieve this spectral information out of the
recorded hyperspectral data. To estimate physical parameters with hyperspectral
data, a model is required to link the hyperspectral data and the information about
the physical parameter. Such a model can be obtained based on a training dataset
containing hyperspectral data and reference data of the respective physical parameter.
The reference data or ground truth is measured in situ. Hyperspectral and in situ
measured data both characterize the physical parameter. However, they differ, for
example, in terms of sampling time and spatial coverage which poses a challenge
when combining such data in one dataset.

As an example, we consider the estimation of soil moisture over a large area
with hyperspectral data (e.g., [62]). Soil moisture is a physical parameter which is
relevant, for example, in hydrological modeling of river catchments. Hyperspectral
data may be available from field campaigns. As a reference, in situ measurement
data of soil moisture at specific points of the same area is needed. The underlying
task, now, is to estimate soil moisture by linking soil moisture reference data to the
hyperspectral data.

By definition, hyperspectral data is high-dimensional. The linkage of such high-
dimensional input data with 1-dimensional (1D) soil moisture data represents a non-
linear regression problem. In this chapter, we focus on data-driven machine learn-
ing (ML) models since they are capable of dealing with these kinds of regression
tasks [62]. We introduce the term hyperspectral regression which refers to ML
regression solely based on hyperspectral data. Note that some studies use the term
parameter estimation as a synonym for hyperspectral regression. However, in the
broad field of ML, the definition of the term parameter estimation varies depending
on the applied context.

There is no single ML model which is equally suited on all regression tasks [108].
Instead, a framework of different approaches is used which can adapt to various

7 Supervised, Semi-supervised, and Unsupervised ... 189

regression tasks. In this chapter, we demonstrate all aspects of a typical hyperspec-
tral regression workflow on a soil moisture dataset [99]. The dataset is introduced
in [99] and can be downloaded from [98]. Note that this is a 1D dataset with single
pixels instead of 2-dimensional (2D) images. It consists of 679 datapoints with one
soil moisture value and 125 hyperspectral bands per datapoint. The presented mod-
els can also be combined with other types of datasets. First regression results [99]
demonstrate very precise estimations and imply a very low Bayes error, which is
the lowest possible estimation error of the given ML task. In summary, the dataset
represents an optimal benchmark dataset for applying ML models in hyperspectral
regression.

Figure7.1 illustrates the structure of this chapter. The structure is based on a
typical hyperspectral regression workflow and is divided into three levels, data level,
feature level, and model level. At first, we give an overview of different learning tech-
niques and definitions of technical terms which we rely on later (see Sect.7.2). Sub-
sequently, we introduce the concept of pre-processing, the challenge of dataset shift,
and dataset splitting in Sect.7.3. Section 7.4 deals with any kind of pre-processing
aspects. Finally, we have a detailed look at the different ML models in Sect.7.5.
Additionally, we provide comprehensive code examples and accompanying materi-
als in the form of data and Python notebooks online on GitHub (— Notebooks 1 to
7 (https://github.com/felixriese/hyperspectral-regression)) [100].

In this chapter, we present the essential steps of a hyperspectral regression work-
flow in detail and in an application-oriented way. Further exemplary applications of
hyperspectral regression are also presented in Chap.2. In summary, the objectives
of this chapter are

to understand the possibilities and challenges in hyperspectral regression,

to gain an overview of a typical hyperspectral regression workflow,

to analyze and pre-process the used dataset,

to understand the challenge of dataset shift,

to understand and to apply different dataset splitting approaches,

to generate new features with unsupervised dimensionality reduction, unsuper-

vised clustering, and manual feature engineering,

to select the most important input features for a hyperspectral regression task,

e to understand the different strengths and weaknesses of the most relevant ML
models for hyperspectral regression,

e to select the most appropriate supervised or semi-supervised ML model for a
given hyperspectral regression task,

e tounderstand the possible applications of active learning models for hyperspectral
regression,

e to optimize and finally to evaluate a selected ML model based on the given
regression task,

e to apply Python packages in the context of hyperspectral regression with our best
practices and implementation examples [100], and

e to gain an overview of the upcoming trends in hyperspectral regression.

https://github.com/felixriese/hyperspectral-regression
http://dx.doi.org/10.1007/978-3-030-38617-7_2

190 F. M. Riese and S. Keller

Dataset & Task

!

Pre-Processing

Section 7.3.1
Data_ Level Dataset Shift
Section 7.3 Section 7.3.2

v

Dataset Splitting

Section 7.3.3
v v v
Dimensionality . Feature Enginee-
;:Z:i‘:)r:;':vel Reduction Sgéltjizt:';nf > ring & Selection
: Section 7.4.1 o Section 7.4.3

Supervised Semi-Supervised
Learning Learning
Section 7.5.1 Section 7.5.2

Model Selection &

Optimization
Section 7.5.3.1

Model Evaluation
Section 7.5.3.2

Final Model

Fig. 7.1 Typical hyperspectral regression workflow on three levels: model level, feature level, and

data level

7 Supervised, Semi-supervised, and Unsupervised ... 191

7.2 Fundamentals of Hyperspectral Regression

In recent years, the hyperspectral remote sensing community mainly focused on
classification tasks. Classification refers to the estimation of discrete classes, for
example, to distinguish between land cover classes like water, vegetation, road, and
building. Both classification and regression are about building predictive models.
The difference is that, in classification, the target space is discrete (e.g., land cover
classes), whereas in regression, the targets are continuous (e.g., soil moisture).

In the context of ML regression, different approaches can be applied depending
on the objective and the availability of reference data. In Fig.7.2, these different
approaches are visualized schematically. We can distinguish four cases. In case (a),
reference data, meaning labels containing the ground truth, is available for all (hyper-
spectral) input datapoints. In this context, supervised learning models are suitable.
A supervised model is able to learn from all available input—output data pairs. In
case (b), we have an incompletely labeled dataset. That is, some of the samples
are missing the correct ground truth labels. In this context, we can rely on semi-
supervised learning models. They learn from the complete input—output pairs as
well as from the datapoints without labels. One extension of semi-supervised learn-
ing is active learning. In this case, case (c), the active learning model is able to
suggest the user, for example, a human, which missing labels would increase the
estimation performance the most. Active learning is of use when collecting refer-
ence data (labels) is expensive and time-consuming. Finally, in the case (d) when no
labels are available, unsupervised learning can be applied. Unsupervised learning
is useful, for example, for dimensionality reduction and clustering.

(a) (b) (© (d)
Supervised Semi-supervised Active Unsupervised
learning learning learning learning
X X Xy X Xy X
Y Y, Y,
Legend: adds requested
Datapoints X labels over time
Labels Y

Fig. 7.2 Depending on the availability of labels for our training data, we can distinguish four types
of learning algorithms: Overview of the availability of labels in four ML approaches: a supervised
learning, b semi-supervised learning, ¢ active learning, and d unsupervised learning

192 F. M. Riese and S. Keller

The mathematical notation conventions used in this chapter are consistent
with [25]: X = (x1,...x,) is a set of n input datapoints x; € X for all
i € [n]:={1,...n}. Every datapoint x; consists of m input features. In hyper-
spectral regression, the input features represent the m hyperspectral bands and it
is X C R™. In supervised learning, case (a), y; € Y with Y = (y1, ..., y,) are the
labels of the datapoints x; and the training set is given as pairs (x;, ¥;). In semi-
supervised and active learning, cases (b) and (c), the dataset X is divided into two
parts. The first part consists of the datapoints X; := (xy, ..., x;) with the corre-
sponding labels ¥; := (y1, ..., y;) and the second part consists of the datapoints
Xy = (X141, - - -, X14,) Without any labels. It is [+ u = n. Again, we have y; € Y
fori =1, ..., [. Forregression, the labels are continuous in the cases (a) to (c) which
means Y C R. Note that also more-dimensional labels can be used in regression. In
the d-dimensional case, itis ¥ C R¢. Within the scope of this chapter, we will stick
to 1D labels, meaning d = 1. We refer to this combination of hyperspectral input
data and desired output data as datapoint. In the unsupervised case (d), the dataset
only consists of input datapoints X without any labels.

In the field of hyperspectral remote sensing and in the analysis of hyperspec-
tral data, there are many applications for ML. Relevant examples of hyperspectral
regression with ML are clustered according to their respective target variables in
Table7.1. A general overview of remote sensing image processing with a focus on
traditional ML models and physical models is given in [23]. Most current studies
address ML classification with hyperspectral data (e.g., overview in [45]), whereas
only few studies focus on hyperspectral regression (e.g., [3, 119]). The ML models
used for the respective regression tasks are described in Sect.7.5.

Depending on the hyperspectral regression task, we need to select an appropri-
ate ML model [108]. At best, the selected ML model is able to learn all relevant
nuances of the training dataset (low bias) and is able to generalize well on unknown
datasets (low variance). Accomplishing low bias and low variance at the same time
is impossible. Thus, a trade-off between bias and variance [41, 43, 81] has to be
addressed while selecting an appropriate model (see Sect. 7.5.3). When an ML model
is characterized by a low bias (high variance), it is able to adapt well to the training
dataset which also includes noise. Such an ML model tends toward overfitting. An
ML model with low variance is more robust against noise and outliers. Such an ML
model is not able to adapt well to the nuances of the training dataset which is called
underfitting.

When focusing on hyperspectral regression, several challenges need to be handled
(e.g., [14]). For instance, hyperspectral data is characterized by high dimensional-
ity and narrow bandwidths. As a result, hyperspectral bands are highly correlated.
The intrinsic, virtual dimensionality of the hyperspectral data, therefore, is much
smaller. Determining the virtual dimensionality is a difficult challenge [24]. Most
approaches suggest dimensionality reduction of the data which often is performed
in an unsupervised fashion (see Sect.7.4.1).

With the high dimensionality of the hyperspectral input data, ML models suffer
from the curse of dimensionality [10]. The increasing number of input dimen-
sions leads to an exponential growth of the feature-space volume. Therefore, more

7 Supervised, Semi-supervised, and Unsupervised ... 193

Table 7.1 Examples for hyperspectral regression with ML

Target variable References
Background estimation [118]

Biomass [3, 27, 84]

CDOM, diatoms, green algae, turbidity [61, 75]

Chlorophyll a concentration [22, 61, 75-77]
Nitrogen content [2, 69, 70, 82, 133]
Soil moisture [3, 62, 82, 97, 99, 113]
Soil organic/inorganic content [19, 70, 82, 92]

Soil texture: sand, silt, clay content [19, 70, 71]

Vegetation pigment content [26]

training data is needed to cover this volume with the same density. Increasing the size
of the training dataset is one possible and often applied solution to handle this chal-
lenge. Since new developments in optical remote sensing have emerged over the last
decades, the technical possibility exists to record large hyperspectral datasets. For
instance, satellites and UAVs are capable of recording hyperspectral data on a large
scale. Additionally, the processing of large datasets is computationally expensive.

Another important challenge is the measurement of reference data over large areas.
Continuous physical parameters (see Table7.1) like soil moisture and soil texture
need to be measured manually. This is time-consuming and expensive. It is, therefore,
important to be able to work with small datasets or with incompletely labeled
datasets (see Sect.7.5.2). In addition, the dataset shift poses a further challenge in
the context of hyperspectral regression. Dataset shift is caused by differences between
the training dataset and new, for the ML model unknown, datasets. Accompanying
issues and possible solutions are pointed out in Sect.7.3.2.

7.3 Hyperspectral Regression at the Data Level

The data level is the first level of the presented hyperspectral regression workflow.
At the data level, pre-processing as the first part focuses on collecting, validating,
and preparing data (see Sect.7.3.1). The second part addresses the challenges of
dataset shift and provides possible approaches to cope with it (see Sect.7.3.2). We
conclude by introducing several approaches of dataset splitting for the evaluation of
ML models in Sect.7.3.3.

194 F. M. Riese and S. Keller

7.3.1 Pre-processing

The first part of the presented hyperspectral regression workflow is pre-processing
[23, 124]. We divide the pre-processing into three steps: reading in data, preparing
data, and validating data. First, we need to read in the data. In Python, datasets can
be conveniently read in using existing and established software packages such as
Pandas [80] or TensorFlow [1].

The second step of pre-processing is the validation of the data. We highly recom-
mend to explore the dataset before further processing (see — Notebook 1.1 (https://
github.com/felixriese/hyperspectral-regression)). The exploration procedure could
include a check of the value range of the input features and the target variable. The
data validation can be achieved by an analysis of the datasets statistics and by a
visualization of the dataset. Thus, we obtain an overview of the used dataset. Addi-
tionally, we recognize possible challenges in the dataset such as outliers, missing
values or labels as well as dataset shift at an early stage. The latter is addressed in
detail in Sect.7.3.2. A useful example to motivate the investigation of the dataset
with statistical methods and visualizations is given in [78].

The last step of pre-processing is the preparation of the data. Depending on the
results of the data validation and the applied ML models (see Sect.7.5), the dataset
might need to be normalized or transformed. The data normalization makes the train-
ing less dependent on the scale of the input data. Typical normalization techniques
scale the numerical data, for example, linearly between 0 and 1, or around 0 with a
standard deviation of 1. Additionally, it might be necessary to transform categorical
data to numerical values since some ML models like artificial neural networks (ANN,
see Sect.7.5.1.5) only work with numerical data. A common way to achieve this is
one hot encoding. Each categorical feature is represented by one entry in a binary
vector.

Exemplary implementations of pre-processing and resulting plots can be found
in — Notebook 1.1 (https://github.com/felixriese/hyperspectral-regression). In the
following, we summarize three best practices:

e Read in data with existing packages like the Python package Pandas [80] or pre-
existing functions in TensorFlow [1] which support many common file formats.

e Visualize the dataset and generate statistics about it. Use perceptually uniform
colormaps, for example, viridis [72]. Understand your data!

e Use data normalization or transformation if the applied ML model requires it.

7.3.2 Dataset Shift

Most ML models rely on the independent and identically distributed (i.i.d.) assump-
tion. The 1.i.d. assumption refers to the independent collection of the training dataset
and new, unknown datasets (see Sect.7.3.3) which are identically distributed.

https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression

7 Supervised, Semi-supervised, and Unsupervised ... 195

In this context, the term training dataset refers to the dataset that is available
during the training of the ML model. For example, in hyperspectral regression of
soil moisture, the hyperspectral data as well as the ground truth labels of soil moisture
should cover all (in reality) possible values. Otherwise, dataset shift occurs and the
estimation performance might suffer [83, 94]. In general, three main types of dataset
shift exist:

e Covariate shift [109, 115] is defined as a change of the input feature distribution
P(X). It is the best studied type of dataset shift in the literature. For example, in
hyperspectral regression of soil moisture, rainfall events between two measurement
days affect the input feature distribution of this two-day dataset.

e Prior probability shift [36, 94] is defined as a change of the target variable distri-
bution P(Y) without a change in X. This change mostly occurs in the application
of generative models. For example, in the hyperspectral regression of soil mois-
ture, the distribution of soil moisture can vary due to the underlying soil structure
while the soil surface remains unchanged.

e Concept shift [127] or concept drift is a change in the relationship between the
input data and the target variable. The concept shift is the most challenging type of
dataset shift to handle. For example, in hyperspectral regression of chlorophyll a
concentration, the relationship between hyperspectral input data and chlorophyll a
concentration as target variable can change due to undetectable hydrochemical
processes.

In the following, we present an example of covariate shift in hyperspectral regres-
sion of soil moisture which is the most relevant type of dataset shift for this appli-
cation. The distributions of hyperspectral and reference data are shifted between
the training dataset and an unknown dataset. The distribution of the exemplary soil
moisture reference data is presented in Fig. 7.3. After training on the training dataset,
the ML model should be able to estimate soil moisture on a new, unknown dataset.
Howeyver, as a result of the covariate shift, the ML model is not able to estimate soil
moisture reasonably on the given, unknown dataset (R? ~ 0, see — Notebook 1.2
(https://github.com/felixriese/hyperspectral-regression) and Sect.7.5.3.2).

Several causes of dataset shift exist. One cause is the sample selection bias.
Sample selection bias can occur in the scope of different data measurements. In
hyperspectral regression, it often occurs as a result of the parallel use of different
hyperspectral sensors and changes of the measuring site. Another cause for dataset
shift is non-stationary environments. Non-stationary environments appear when
the training environment differs from the test environment. This distinction can be
temporal or spatial. Since hyperspectral satellites record data at different locations
and during different seasons, dataset shift commonly occurs.

Various ways exist to deal with the challenges of dataset shift. In most ML studies
for hyperspectral regression, dataset shift is simply ignored. In this case, the applied
model is static with regard to the dataset shift. Such models can be used further as a
baseline model allowing the detection of dataset shift and enabling the evaluation of
approaches aiming at the reduction of the effects of dataset shift.

https://github.com/felixriese/hyperspectral-regression

196 F. M. Riese and S. Keller

hd] Datasets:
< 200 atasets
S | I Training
o Unknown
I 150
© |
©
“5 100
— -
8
g 50‘
=2
0- : : .
24 28 32 36 40

Soil moisture in %

Fig. 7.3 Target variable distribution of the presented soil moisture dataset [99] with exemplary
dataset shift from training subset to prediction subset

A first approach to reduce the effects of dataset shift is to re-fit or update the
ML model to new data. In the case of time series, this means re-fitting or updating
the ML model on more recent data. In the case of 2D areal data, this means re-fitting
on more training areas. Another approach is to re-weight the training dataset based
on temporal (time series) or spatial (2D data) features. For example, training data of
time series can be re-weighted so that newer datapoints are more important in the
training than preceding ones. Further, the ML model can be set up to inherently learn
temporal changes to reduce the bias of seasonality and timing. In the following, we
summarize our best practices on how to deal with dataset shift:

e Visualize your data and use simple baseline models to detect dataset shift.
e If possible, update (otherwise re-fit) your ML model regularly using new data.

7.3.3 Dataset Splitting

To evaluate the generalization abilities of an ML model, the full available dataset
needs to be split into smaller datasets. In general, dataset splitting should meet the
i.i.d. assumption (see Sect.7.3.2). In Fig. 7.4, the two most commonly applied split
types are illustrated. In the first type, the full dataset is split into two subsets: training
and test. In the second type, the three subsets training, validation, and test are
generated. In both split types, the training dataset is used repeatedly to train the ML
model. The test dataset is used only once to evaluate the final ML model. The split
types differ with respect to the way the ML models are optimized (see Sect.7.5.3.1).
In the 3-subset split, the validation dataset is repeatedly used for the evaluation of the
generalization abilities of the ML model in the optimization process. In the 2-subset
split, the training dataset is used for both training and evaluation in the optimization

7 Supervised, Semi-supervised, and Unsupervised ... 197

(@) (b)

Full dataset Full dataset

Split Split
} v
- Test - Validation Test
Training subset subset Training subset subset subset
k-fold cross- _ Hyperparameter Hyperparameter
validation tuning tuning

Model Model Final Model Model Final

N .+ model L . > model
training evaluation . training evaluation .

evaluation evaluation

Fig. 7.4 a Dataset splitting into the two subsets: training and test. For the model optimization, a
k-fold cross-validation is applied. b Dataset splitting into three subsets: training, validation, and
test. The model optimization is performed on the training and validation dataset

process by applying a k-fold cross-validation. Within the k-fold cross-validation,
the training dataset is randomly partitioned into k subsets of similar size. One of
the k subsets is then used for the evaluation of the ML model, while the remaining
k — 1 subsets are used for the training of the ML model. This selection is repeated so
that every subset is used once as validation subset. Note that it is not trivial to apply
k-fold cross-validation on time series due to possible casual relationships.

After deciding on the number of dataset subsets, the splitting approach needs to
be defined. In the following, we present several dataset splitting approaches which
are illustrated in Fig.7.5. They are described in detail in [114] with their respective
strengths and weaknesses. The most commonly applied splitting approach is a ran-
dom split or random sampling (e.g., [39]). The subsets are randomly sampled which
leads to subsets with relatively similar target variable distributions. However, for spa-
tially or temporarily correlated data like 2D hyperspectral image data or time series,
a pixel-wise random split can lead to biased subsets. Since a significant number of
datapoints in one subset have direct spatial or temporal neighbors, the datapoints are
highly correlated in between the subsets. Training on one datapoint and evaluating
the model performance on a neighboring datapoint leads to highly biased results.

Another splitting approach is systematic splitting or systematic sampling. For
this approach, every kth datapoint is used for the test subset, with k defined as

k=2

(7.1)

Nitest

The total number of datapoints is given as n and the number of datapoints for the
test dataset is given as ng. Systematic splitting does not rely on a random number
generator which simplifies the implementation. Overall, systematic splitting is more

198 F. M. Riese and S. Keller

1 (a) Random split (b) Systematic split
S
S ° P ©¢ o o o o
c e o o0
— 81 b © o o o o
8 ®
© e o b ©¢ o o o o
c o0 e o
T 4)) P © o o o o
5 oo
8 ° P ¢ ® & o o Subsets:
> 0 a = o a a o Training
1 (c) Patch split (d) Stratified split e Test
5 leooe Not used
© Joeoe
c beoo
— 8000) OO0 O
g9 eoo0o0)
© (XXX}) O O
= (N X N} ® (0] @)
T 44 o000
o beooooooocooo
o Jooooeooeoooooo (X X}
v Jeooooeoooooo DO o000
>\ 0 -‘.-Q-Q-Q-Q- \/\‘ r r
0 4 8 12 0 4 8 12

X coordinate in a.u. X coordinate in a.u.

Fig. 7.5 The four presented splitting approaches: a random split, b systematic split, ¢ patch split,
and d stratified split

robust against spatially or temporally clustered regression inaccuracies. One of the
shortcomings, though, is the assumption that the data is homogeneously distributed.
If the dataset shows periodical patterns, systematic splitting generally performs badly.

A further approach to split datasets in ML is patch splitting or patch sampling. In
patch splitting, the data is split into patches or blocks. In the case of hyperspectral 2D
images, an image is split into a chessboard-like pattern. Time series data is split into
time blocks. The split into the different subsets is randomly performed, similar to the
random split but patch-wise instead of pixel-wise. This splitting approach reduces
the spatial and temporal bias, while maintaining similar distributions of the different
subsets is more difficult.

The last presented splitting approach is called stratified splitting or stratified
sampling. It combines a pre-partitioning of the data into distinct areas with ran-
dom splitting on each of these areas individually [114]. The assumption of stratified
splitting is that the pre-partitioning generates representative but distinct areas to sep-
arate training and test subset as well as similar distributions (see i.i.d. assumption
in Sect.7.3.2). For example, 2D hyperspectral data can be partitioned according to
geographical areas. In a hyperspectral classification, we can, for example, partition
the data based on land use classes.

7 Supervised, Semi-supervised, and Unsupervised ... 199

Table 7.2 Strengths and weaknesses of different splitting methods

Split Strengths Weaknesses
Random e Similar distributions e Spatial & temporal bias
e Simple
Systematic e Similar distributions e Spatial & temporal bias
o Simple e Homogeneous data only
Patch e Less bias o Different distributions
Stratified e Similar distributions o Partition-able data only
e Smaller dataset — faster e Pre-partitioning needs time
model training

The strengths and weaknesses of the presented dataset splitting approaches are
listed in Table7.2. Implementation examples can be found in — Notebook 1.3
(https://github.com/felixriese/hyperspectral-regression). In the following, we list the
most important best practices for dataset splitting:

e Split your data. Without dataset splitting, meaningful model evaluation (see
Sect.7.5.3.2) is not possible.

e Use existing random number generators like the Python package Numpy
[126] for randomization (see — Notebook 1.3 (https://github.com/felixriese/
hyperspectral-regression)).

e Use splitting ratios of ~ 70/30 in the 2-subset split and ~ 60/20/20 in the 3-
subset split for small datasets between 100 and 1000 datapoints. For larger datasets
with 1 000 000 and more datapoints, we recommend a 3-subset split with a splitting
ratio of 98/1/1.

e Try random splitting for 1D hyperspectral data.

e Use stratified splitting for 2D hyperspectral data instead of random splitting to
avoid spatial bias.

e Try patch splitting for time series data.

7.4 Hyperspectral Regression at the Feature Level

The feature level follows the data level in our presented hyperspectral regres-
sion workflow. It consists of three parts: unsupervised dimensionality reduction
(Sect.7.4.1), unsupervised clustering (Sect. 7.4.2), and feature engineering as well as
feature selection (Sect.7.4.3). The definition of unsupervised learning is explained
in Sect.7.2.

https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression

200 F. M. Riese and S. Keller

7.4.1 Dimensionality Reduction

Since correlations and redundancies between input features can occur, the virtual
dimensionality of a dataset is often smaller than the given dimensionality [24]. The
term dimensionality reduction refers to the reduction of the dimension m of the input
data to a smaller dimension m, < m toward the virtual dimensionality. In addition,
the term compression focuses on the reduction of the dimension m of the data to
the smallest possible myi, < m, < m. In most cases after applying dimensionality
reduction, it is only possible to reconstruct similar data, not the original input data.
The topic of dimensionality reduction and compression in general is reviewed in
detail in [54, 121]. Note that the term feature extraction is often used instead of
dimensionality reduction (see, e.g., [59]).

We discuss in the following the most relevant approaches of dimensionality reduc-
tion in hyperspectral regression (see Table7.3). A commonly applied approach is
the Principal Component Analysis (PCA) [90]. The PCA transforms the input
data orthogonally based on the variance along newly found axes. These new axes
are referred to as principal components. The principal components are sorted by
decreasing variance. That is, the first principal component has the largest variance.
Therefore, the set of the first few principal components contain most of a dataset’s
variance and at best, most of the information contained in the dataset.

A further approach of dimensionality reduction is called Maximum Noise Frac-
tion (MNF) [50]. MNF applies PCA, but rather than maximizing the variance along
the principal components, it maximizes the signal-to-noise ratio. Note that in several
studies the MNF is called minimum noise fraction.

Autoencoder (AE) [55] is an artificial neural network (ANN) approach for dimen-
sionality reduction. An AE consists of an input layer of input dimension m, followed
by several hidden layers with smaller dimension mpjggen < 7 and an output layer of
size m. The dimension reduction of input to hidden layers is called encoding. In the
encoding, the AE finds a lower dimensional representation of the input data. The
dimension increase of the encoded data in the original dimension m is called decod-

Table 7.3 Overview of unsupervised learning approaches for dimensionality reduction

Approach Implementation Reference Exemplary
applications

PCA — 2.1.1 (https://github.com/felixriese/ [90] [61, 137]
hyperspectral-regression)

MNF [50] [67]

AE — 2.1.2 (https://github.com/felixriese/ [55] [117, 128]
hyperspectral-regression)

t-SNE — 2.1.3 (https://github.com/felixriese/ [73] [40, 136]
hyperspectral-regression)

UMAP — 2.1.4 (https://github.com/felixriese/ [79] [111]
hyperspectral-regression)

https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression

7 Supervised, Semi-supervised, and Unsupervised ... 201

ing. The AE is trained in an unsupervised manner with the hyperspectral data for
both input and (desired) output data. Then, the encoding part of the trained AE can be
used for dimensionality reduction on the (hyperspectral) input data. In sum, the full
AE with encoding and decoding can also be used for noise removal (denoising) of
the hyperspectral input data. More details about ANN are presented in Sect.7.5.1.5.
Since an AE consists of many free parameters, large training datasets are necessary
for the training. Note that only the number of hyperspectral input datapoints needs to
be large for the AE. The dataset that includes ground truth labels can be small. Since
the combination of large input data and small ground truth data is characteristic for
multi- and hyperspectral satellite data, AE is well suited in this context. Additional
details of AE and PCA applied in hyperspectral image analysis are discussed in
Chaps. 3 and 13.

Finally, we list two additional dimensionality reduction approaches. The
t-distributed stochastic neighbor embedding (t-SNE) [73] is a non-linear approach
which reduces high-dimensional input data to a dataset with the dimension
m, € {2, 3}. Therefore, this approach is well suited not only for dimensionality reduc-
tion but for the visualization of a dataset as well. A recently presented dimensional-
ity reduction approach is called uniform manifold approximation and projection
(UMAP) [79]. UMAP is comparable with the t-SNE algorithm incorporating several
advantages in terms of speed and performance. Since UMAP is a relatively new
approach, it has to be investigated further in context of hyperspectral regression.

In Table7.4, the strengths and weaknesses of the five presented dimensionality
reduction approaches are listed. Exemplary visualizations of the first two compo-
nents of PCA, AE, t-SNE, and UMAP are shown in Fig.7.6. All four approaches
show different distributions of visible clusters of datapoints with similar soil moisture
values. The implementations for the presented algorithms can be found in — Note-
book 2.1 (https://github.com/felixriese/hyperspectral-regression). In the following,
we list several best practices for dimensionality reduction in hyperspectral regression:

e Normalize the data before applying dimensionality reduction.

e Use PCA a simple and fast baseline for further approaches.

e Apply AE on datasets with sufficient input data like satellite images.
e Try UMAP as a relatively new approach generating promising results.

7.4.2 Clustering

Clustering a dataset means the grouping datapoints with respect to a pre-defined
similarity metric. Datapoints are clustered, mostly in an unsupervised manner, based
on the input features such as hyperspectral bands. When clustering is included in
the hyperspectral regression workflow, the resulting cluster information is added as
a new input feature used to train the ML model. In this section, we discuss the most
commonly applied clustering algorithms in hyperspectral regression (see Table 7.5).

http://dx.doi.org/10.1007/978-3-030-38617-7_3
http://dx.doi.org/10.1007/978-3-030-38617-7_13
https://github.com/felixriese/hyperspectral-regression

202

2. Component in a.u.

F. M. Riese and S. Keller
PCA AE
o
=
© 1.0
£ ®»
— o
o |
I 3
9 | S 0.8 H
: N
S| 6% ' :
~ 0.6 5
£
t-SNE UMAP o
e
® ¢ 0.4 2
0
<«] o
4 ? o) &
2 0.2 5
Yoge n
°
]
0.0
)
¢ a8
o

1. Component in a.u.

1. Component i

na.u.

Fig.7.6 Exemplary visualization of the introduced hyperspectral dataset [99] for the first two com-
ponents of PCA, AE, t-SNE, and UMAP. The color of the datapoints corresponds to the normalized

soil moisture

Table 7.4 Strengths and weaknesses of dimensionality reduction methods

Strengths Weaknesses
PCA e Fast and simple o Difficult to interpret
e Many extensions e Variance # information
e Linearity assumption
MNF e Focus on signal versus noise | @ Noise estimation needed
e No Python implementation
AE e Strong performance e Big (input) data required
o (Deep) architecture o Slow
t-SNE e Non-linear, powerful e Only 2D and 3D output
e Visualization o Slow
UMAP o Fast and powerful e Not (yet) established

7 Supervised, Semi-supervised, and Unsupervised ... 203

Table 7.5 Overview of unsupervised learning approaches for clustering

Approach Implementation Reference Exemplary
applications

k-means — 2.2.1 (https://github.com/felixriese/ [74] [7, 116, 125]
hyperspectral-regression)

DBSCAN — 2.2.2 (https://github.com/felixriese/ [35] [31]
hyperspectral-regression)

SOM — 2.2.3 (https://github.com/felixriese/ [65] [99, 102]
hyperspectral-regression)

In k-means clustering [74], the datapoints are grouped into a fixed number of k
clusters. Each cluster is defined by its cluster center which is found by minimizing
the sum of distances of the datapoints to their respective nearest cluster center. An
example of a distance metric is the Euclidean distance d which is defined for the
vectors a, b € R™ as

d(a,b) = Z(ai — b)2. (7.2)
i=1

Another clustering algorithm is called density-based spatial clustering of appli-
cations with noise (DBSCAN) [35]. In the DBSCAN algorithm, clusters are defined
as areas of higher density in the feature space. Higher density in this context means
that the density of the respective areas in the feature space is higher than the average
density of the dataset. Thus, no pre-definition of the number of clusters as in k-means
is necessary. Another difference to the k-means algorithm is that some datapoints are
not assigned to a cluster. However, based on their localization in low-density areas,
they are considered outliers.

Clustering can also be performed by self-organizing maps (SOM) [65] (see also
Sect.7.5.1.6). A SOM is, in general, an unsupervised learning approach for data
visualization and clustering. It is a type of neural network with one input layer and a
2D grid as output layer. Output and input layers are fully connected. Neurons on the
output layer are linked by a neighborhood relationship. The SOM adapts to a dataset
by adapting the neuron weights through a distance measure (e.g., Euclidean distance,
see Eq. (7.2)). Besides the neuron with the smallest distance value, the neurons in
the neighborhood are adapted as well. Overfitting is reduced by this neighborhood
relationship.

In Table 7.6, the strengths and weaknesses of clustering algorithms in hyperspec-
tral regression are listed. This overview enables the reader to choose a suitable clus-
tering algorithm for the task at hand. All clustering implementations can be found in
— Notebook 2.2 (https://github.com/felixriese/hyperspectral-regression).

https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression

204 F. M. Riese and S. Keller

Table 7.6 Strengths and weaknesses of clustering algorithms

Strengths Weaknesses
k-means e Fast o Pre-defined &
e Every datapoint in one “hard” cluster
DBSCAN e Finds number of clusters e Difficult tuning
e Most datapoints in one “hard” cluster o Slow
e Outlier detector
SOM e Preserved topology on 2D grid e Difficult tuning
e Supervised extension (Sect.7.5.1.6) o Slow

e Datapoints in “soft” clusters

7.4.3 Feature Engineering and Feature Selection

In Sects.7.4.1 and 7.4.2, we apply dimensionality reduction and clustering to gener-
ate new features. In contrast to these data-driven approaches, feature engineering is
based on prior knowledge. The generated features can be categorized as spectral fea-
tures or spatial features. The engineering of spectral features is inspired by physical
processes. Spectral features are commonly characterized by a ratio or the normal-
ized difference of hyperspectral bands. The most popular example in hyperspectral
regression is the normalized difference vegetation index (NDVI) [103] which corre-
sponds to photosynthesis processes. Spatial features are often generated based on
contextual information of neighboring pixels (datapoints). Examples for spatial fea-
tures are objects, edges, and contours. They are generally created by the application
of filters. Note that spatial features can only be generated from hyperspectral images
when their corresponding spatial resolution is adequate.

In contrast to feature engineering, feature selection describes the process of
selecting a subset of all available input features which can be used as input data
for supervised ML models. In context of hyperspectral regression, the term band
selection is often used instead of the term feature selection. The main advantage
of feature selection over feature engineering or dimensionality reduction is that the
features (hyperspectral bands) are physically meaningful. For example, principal
components cannot be interpreted physically (see Sect.7.4.1). Therefore, feature
selection applied on data of one sensor can be transferred to data of another sensor
with slightly different hyperspectral bands.

Three main approaches exist in feature selection: filter methods, wrapper meth-
ods, and embedded methods [15, 64]. Filter methods select features based on quality
measures like the correlations between features and target variable as well as corre-
lations between individual features. The main disadvantage of filter methods is that
they only consider relationships between two variables, either “feature-to-target” or
“feature-to-feature”. Wrapper methods select feature subsets based on the relation-
ship of these feature subsets with the target variable. A third option is provided by
some supervised learning models such as tree-based models which have their own
built-in feature selection included in the estimation process (see feature importance
in Sect.7.5.1.2). These built-in feature selections are called embedded methods.

7 Supervised, Semi-supervised, and Unsupervised ... 205

An overview of feature selection is presented in [51]. A review on several appli-
cations of feature engineering and feature selection in the context of remote sensing
image processing is provided in [23]. An example application of feature selection
is given in Chap. 1 1. Exemplary implementations of feature engineering and feature
selection are shown in — Notebook 2.3 (https://github.com/felixriese/hyperspectral-
regression). The use of feature selection and feature engineering depends on the
dataset as well as on the applied supervised ML model. We recommend in the fol-
lowing several best practices in hyperspectral regression:

e Consider feature engineering or feature selection when working with small
datasets, especially for supervised ML models like ANNs (see Sect.7.5.1.5).

e Do not use feature engineering or selection for supervised ML models like
random forest (see Sect.7.5.1.2). Also, do not use feature selection with deep
ANNSs (Sect.7.5.1.5) in the case of large datasets since they are able to learn new
by themselves.

7.5 Hyperspectral Regression at the Model Level

Regression is defined as the estimation of continuous parameters with input data.
This estimation is based on mapping input data with desired output data with a
specific ML model. In supervised learning, there exists an output for every input in
the training dataset. In Sect.7.5.1, we introduce several supervised learning models.
Semi-supervised learning refers to the case when only a few complete input—output
pairs are available. The rest of the input data is missing a desired target output. In
Sect.7.5.2, several approaches for semi-supervised learning with hyperspectral data
are presented. Finally, we give an overview about model selection strategies, model
optimization, and model evaluation in Sect.7.5.3.

7.5.1 Supervised Learning Models

In practice, solving a regression problem often requires more than just a single ML
model. To evaluate the model performance, appropriate task-specific metrics must
be used to compare and finally select the best ML model for the problem at hand.
Hence, we focus on the most relevant ML models in hyperspectral regression: linear
and partial least squares regression (Sect.7.5.1.1), tree-based models (Sect.7.5.1.2),
support vector machines (Sect.7.5.1.3), k-nearest neighbors (Sect. 7.5.1.4), artificial
neural networks (Sect.7.5.1.5), and self-organizing maps (Sect.7.5.1.6). Table7.7
briefly lists these models with their respective references as well as the references to
relevant applications.

http://dx.doi.org/10.1007/978-3-030-38617-7_11
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression

206 F. M. Riese and S. Keller

Table 7.7 Overview of different supervised learning models

Model Section Implementation Reference | Exemplary
applications

LIN 7.5.1.1 — 3.1 (https://github.com/felixriese/
hyperspectral-regression)

PLS 7.5.1.1 — 3.1 (https://github.com/felixriese/ | [129] [19, 27, 69,
hyperspectral-regression) 70]

RF 7.5.1.2 — 3.2 (https://github.com/felixriese/ |[17] [2, 75, 84]
hyperspectral-regression)

ET 7.5.1.2 — 3.2 (https://github.com/felixriese/ | [44] [101]
hyperspectral-regression)

GTB 7.5.1.2 — 3.2 (https://github.com/felixriese/ | [16, 42] [19, 70]
hyperspectral-regression)

SVM 7.5.1.3 — 3.3 (https://github.com/felixriese/ | [122] [22, 82, 92,
hyperspectral-regression) 113]

k-NN 7.5.1.4 — 3.4 (https://github.com/felixriese/ | [4] [62, 118]
hyperspectral-regression)

ANN 7.5.1.5 — 3.5 (https://github.com/felixriese/ |e.g., [41] [5, 26, 133]
hyperspectral-regression)

CNN 7.5.1.5 — 3.5 (https://github.com/felixriese/ | [66] [71, 134]
hyperspectral-regression)

RNN, 7.5.1.5 — 3.5 (https://github.com/felixriese/ | [107], [56] |[134]

LSTM hyperspectral-regression)

Supervised |7.5.1.6 — 3.6 (https://github.com/felixriese/ | [65, 99, [61, 62]

SOM hyperspectral-regression) 102]

7.5.1.1 Linear and Partial Least Squares Regression

One of the simplest machine learning models for estimating physical parameters is
the linear regression (LIN). One formulation of the underlying mathematical model
is assigning one coefficient §; to every dimension of the input data, in this case per
hyperspectral band. In addition, B is often added as offset term. In combination with
the error term €; which corresponds to the estimation error of each input—output pair
(x;, ¥;), the LIN can be formulated as

yi=PBo- 1+ Bixii+Boxin... +e = x! p+e&
- =y —xB (7.3)
LIN aims to find values for all §; which minimize the error term ¢; for all datapoints

(x;, ¥;). One common minimization technique is least squares. The sum of squared
residuals S is defined as

https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression

7 Supervised, Semi-supervised, and Unsupervised ... 207

S = ief. (7.4)
i=1

Then, the factors B; are modified to minimize S. Note that in the presented formulation
of LIN, there is exactly one analytical solution for a given regression task. The final
model is LIN estimation for the applied dataset.

The explained LIN is rarely applied on hyperspectral data. Two studies have
compared this model to nine other regression models [61, 62]. In conclusion, LIN is
unable to solve non-linear regression problems such as the estimation of soil moisture
or chlorophyll a concentration.

If the dimension of x; is significantly larger than the number of datapoints n, as it is
in the case of hyperspectral data, it is difficult to apply LIN. Another challenge for LIN
is multicollinearity, which means the strong linear relationship between hyperspectral
bands. Partial least squares (PLS) regression [129] as a bilinear factor model can
handle this high dimensionality and the multicollinearity by projecting X and Y into
new spaces. The aim is to find the direction in the X space that corresponds to the
direction of the maximum variance in the ¥ space. PLS has similarities to PCA (see
Table 7.3) but also includes the target variable space Y. The mathematical model is
described in detail, for example, in [130].

In contrast to LIN, PLS is widely used in hyperspectral regression. In a study
of the USDA National Soil Survey Center [19], PLS is applied, for example, to
estimate clay content, soil organic content, and inorganic content based on VNIR
spectroscopy. According to this study, PLS is easy to use, but it is outperformed by
other approaches like tree-based models (see Sect. 7.5.1.2). Additionally, PLS is used
to estimate biomass with HyMap airborne images [27]. In their study, the authors
test different combinations of pre-processing such as band selection as well as the
use of indices like the normalized difference vegetation index (NDVI). They find, the
PLS performance cannot be increased by band selection. This finding is an example
of the robustness of the regression with the PLS model and high-dimensional input
data. Other studies focus on the estimation of canopy nitrogen content in winter
wheat [69] and further soil spectroscopy [70]. The latter introduces the combination
of PLS with tree-based methods (see Sect.7.5.1.2) which turns out to be a successful
concept. The strengths and weaknesses of LIN and PLS regression are summarized
in Table 7.8.

The implementations of the LIN and the PLS regression are given in — Note-
book 3.1 (https://github.com/felixriese/hyperspectral-regression). In the following,
we share best practices when applying LIN and PLS in hyperspectral regression:

e Use LIN as a baseline model to benchmark more sophisticated models.

e For PLS, tune the number of components to keep. This number can be optimized
with a method proposed in Sect.7.5.3.1. Alternatively, it can be chosen based on
visualizing the regression performance with the number of components.

e Normalize the input data before training the PLS model with this data.

https://github.com/felixriese/hyperspectral-regression

208 F. M. Riese and S. Keller

Table 7.8 Strengths and weaknesses of LIN and PLS regression

Strengths Weaknesses

LIN e Simple to understand e Sensitive to outliers
e Many processes in nature e Only linear relationships
linear

PLS e Good for high-dim. and o Often mediocre performance
strongly correlated data
e Easy to tune
e Useful for small datasets

7.5.1.2 Tree-Based Models

Tree-based regression is based on decision trees (DTs). DTs consist of a root node
and leave nodes connected by branches. The basic idea is to split the training dataset
at every branch into subsets based on the input features, for example, hyperspectral
bands. In the best case, this split leads to leaves at the end of the branches containing
similar values of the respective physical parameter to be estimated. The algorithm
of DT regression is defined as follows [18]:

1. Start with the root node.

2. Start with the most significant input feature (hyperspectral band) of the training
data, for example, according to the Gini impurity.

3. Divide the input data with a (binary) cut ¢; on that input feature x;, for example,
according to the Gini impurity.

4. Divide data along the next best feature on cut ¢; for j =2,3,... which are
calculated similarly to step 3.

5. Stop if a condition is met, for example, maximum number of nodes, maximum
depth, or maximum purity.

6. Then, the ground truth labels of the datapoints are averaged for every individual
leaf. Finally, every leaf contains one output value.

In the context of regression, the trained DT is applied for the estimation of the phys-
ical parameter. Every input datapoint is mapped onto a leaf containing the respective
output value. In steps 2 and 4, the DT algorithm finds the most important feature at
each branch in order to divide the dataset into more homogeneous subsets. For this
reason, most software implementations of the DT algorithm return a trained estima-
tor and an importance ranking of each input feature. This ranking is called feature
importance. In the case of regression with hyperspectral data, the importance rank-
ing refers to the hyperspectral bands. The implementation of the feature importance
differs depending on the applied software. For example, the feature importance can
be based on the permutation of the respective values of each input feature. The bigger
the influence of an input feature on the regression performance, the more important
it is.

In Table 7.9, the most important strengths and weaknesses of the DT algorithm
are summarized. To address the issue of overfitting of a single DT, an ensemble of

7 Supervised, Semi-supervised, and Unsupervised ... 209

Table 7.9 Strengths and weaknesses of decision tree (DT) regression

Strengths Weaknesses
DT e Easy to interpret e Weak estimation
e No data preparation performance
e Numerical and categorical | e Not very robust
data e Large trees tend to overfit
e Good on large datasets
e Feature importance

trees can be used. In the following, we focus on two ensembling techniques: bagging
and boosting.

The main idea of bootstrap aggregation, or bagging, is to average over a number of
estimators trained on slightly different training datasets. In case of tree-based regres-
sion, the average is calculated over multiple DTs with different setups or training
datasets. The trees are trained in parallel. Random forest (RF) is one implementation
of bagging with DTs [17]. Its algorithm is defined in the initialization (step 1) and
three repeated steps (steps 2 to 4):

1. Initialization: Set the number of trees B, the number of features is m.

2. Bootstrap: Sample learning batch containing n datapoints with replacement from
a dataset with n datapoints. There should be n; & 2/3n different samples.

3. Feature bagging: At every node, a random subset of mp,, = +/m features is used
for the splitting. This leads to a decreasing correlation between the different trees.

4. Regression: See DT algorithm above.

Every tree only uses between 60 and 70% of the datapoints for the training process.
The remaining 30 to 40% of the datapoints can be used to evaluate the estimation per-
formance of the respective trees. The regression error of these trees on their ignored
datapoints is called out-of-bag error and is a good estimate for the generalization
error of the ML model. This reduces the need for an extra validation dataset.

Extremely randomized trees (ET) are a modification of the RF algorithm [44].
Compared to the RF algorithm, the splitting process for each node is modified.
Randomized thresholds are calculated for each feature of the random subset. Finally,
the best threshold is used for the split in the respective node. This modification leads
to less variance and increases the bias. In Table 7.10, strengths and weaknesses of
DT bagging algorithms are presented.

Boosting is another technique to improve the regression based on DTs [34,
106]. It relies on learning multiple estimators which are incrementally generated and
improved. Gradient tree boosting (GTB) as an example of a boosting algorithm
applies a gradient descent optimization [16, 42]. Shallow trees are fitted iteratively
on the negative gradient of the loss function.

With respect to bias and variance, the two tree ensembling techniques differ.
In bagging, fully grown DTs are used. By decreasing the correlation between the
trees, the variance of the estimator also decreases. The bias remains unchanged.

210 F. M. Riese and S. Keller

Table 7.10 Strengths and weaknesses of DT bagging and DT boosting for regression

Strengths Weaknesses

Bagging e Good performance e Less intuitive than one DT
e Little overfitting & variance | e Time-costly prediction

e Out-of-bag estimate

bullet Highly parallel

e Minor optimization needed

Boosting e Less bias e Less intuitive than one DT
e More overfitting than bag.
o Time-costly training

o Tuning difficult

In boosting, relatively shallow trees are used which implies a high bias and a low
variance. The ensemble of these shallow trees, the boosted model, reduces mostly
the bias. An overview of strengths and weaknesses of tree-based boosting algorithms
is given in Table 7.10.

In hyperspectral regression, tree bagging techniques such as RF or extremely
randomized trees are one of the most frequently used regression models. For example,
RF models are applied to estimate biomass with a smaller dataset of WorldView-2
satellite images [84]. The feature importance was used to create new input features. A
similar approach was pursued for the estimation of sugarcane leaf nitrogen concentra-
tion based on EO-1 Hyperion hyperspectral data [2]. Compared with RF models, ET
perform consistently better several regression tasks such as estimating, for example,
soil moisture and chlorophyll a concentration [61, 62, 75-77, 97]. According to these
studies, the additional randomization seems to improve the regression performance.

It appears that boosting is less common in hyperspectral regression. Gradient tree
boosting, for example, is applied in context of soil characterization with hyperspectral
data in the range of 350 to 2500 nm [19, 70]. To optimize the application of gradient
tree boosting, a combination of gradient boosting with PLS is introduced for high-
dimensional data [70].

As aconclusion of the section on tree-based regression with hyperspectral data, we
provide an overview of best practices. This list contains essential aspects excerpted
from literature and own studies. It makes no claim of completeness, but it will be
updated together with the implementation example in — Notebook 3.2 (https:/
github.com/felixriese/hyperspectral-regression).

Choose tree-based ensemble techniques over single DT estimators.

e Select the number of estimators for bagging techniques as trade-off between time
consumption and estimation performance. A good start is often a value between
100 and 1000.

e Use the out-of-bag estimate in the training of a bagging estimator to speed up the

training.

Tune bagging approaches by optimizing the most important hyperparameters: the

tree size parameters like the maximum tree depth.

https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression

7 Supervised, Semi-supervised, and Unsupervised ... 211

e Use shallow trees for boosting with depth, for example, of 1 or 2.

7.5.1.3 Support Vector Machines

The aim of support vector machines (SVMs) for regression is to find a function
(model) that approximates the given training data with at most a deviation of € from
the given labels [122]. A detailed explanation of SVM regression is given in [112].
The linear function is one example of such a function:

fx)=w-x+bwithweX,beR, (7.5)

with the dot product w - x in X. At the same time, the function is set up as flat as
possible. This means that the norm of w needs to be as small as possible which is
achieved by

P B

minimize §||w|| ,
. Vi—w-xi—b=<e (7.6)
subject to
w-xi+b—y <€

with the datapoints x; and the respective labels y;. Additionally, the SVM can be set
up to adapt to non-linear functions with the kernel trick.

SVM regression is a widely applied tool in hyperspectral regression. For exam-
ple, the ocean chlorophyll concentration has been estimated based on Medium Res-
olution Imaging Spectrometer (MERIS) data [22]. According to this study, SVM
regression provides accurate and robust estimations with little bias compared to
other regression models, especially in the case of small datasets. The combination
of SVM regression with different feature selections through pre-processing is tested
in [92]. Herein, soil organic carbon is estimated based on VIS/NIR spectroscopy with
accurate results. In the estimation of soil moisture based on airborne hyperspectral
input data, the SVM performs well and shows good generalization properties [113].
A result of this study is that appropriate atmospheric corrections are needed for the
SVM model to perform properly. A special type of SVM regression, the least squares
SVM, is applied to estimate soil properties [82].

Overall, SVMs are well suited for high-dimensional regression problems. Their
strengths and weaknesses are summarized in Table7.11. To eliminate existing
disadvantages, several variations of the SVM algorithm can be used. Examples
of implementations are given in — Notebook 3.3 (https://github.com/felixriese/
hyperspectral-regression). In the following, we list best practices for the use of
SVM in hyperspectral regression:

e Use automated hyperparameter optimization with cross-validation as described
in Sect.7.5.3.1.
e Normalize the input data to improve the SVM estimation performance.

https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression

212 F. M. Riese and S. Keller

Table 7.11 Strengths and weaknesses of SVM for regression

Strengths Weaknesses
SVM e Good for high-dimensional | e Extensive tuning needed
data o Difficult to interpret
e Robust, little overfitting o Slow training for large
o Strong theoretical foundation | datasets

Table 7.12 Strengths and weaknesses of k-NN for regression

Strengths Weaknesses
k-NN e No training needed e Slow prediction
o Low bias o Sensitive to outliers
e Easy to understand e No data understanding
o Difficult for high-dim. data

7.5.1.4 K-Nearest Neighbors

Regression with k-nearest neighbors (k-NN) [4] is applied for several decades. The
k-NN algorithm relies on a distance measure, for example, the Euclidean distance d
which is defined in Eq. (7.2). One implementation of k-NN for regression is described
in the following. To estimate the target variable (e.g., soil moisture) from the input
datapoint x; (hyperspectral bands), the following steps are taken with a pre-set k:

1. Calculate the distances (e.g., Euclidean distance, see Eq. (7.2)) between x; and
every datapoint of the training dataset.

2. Order the training datapoints from smallest to largest distance.

3. Calculate average y over k closest datapoints weighted by inverse distance. This
means that closer neighbors contribute more to the average than neighbors further
away.

As aremark, the number of datapoints to be used in the averaging k needs to be tuned
for every dataset, for example, using cross-validation. In Table 7.12, the strengths and
weaknesses of the k-NN regression algorithm are summarized. As with the SVM
regression, further implementations of the k-NN regression algorithm exist which
can resolve weaknesses.

In hyperspectral regression, the application of k-NN is relatively rare for solv-
ing regression tasks. As one example, k-NN has been used for background estima-
tion on a variety of images like eight-band WorldView-2 and the 126-band HyMap
imagery [118]. The k-NN regression performs well without intensive tuning. In addi-
tion, the k-NN has been included in an ML framework of ten models and has been
evaluated in the estimation of soil moisture as well as several water quality parame-
ters [61, 62]. Compared to more common models such as RF (see Sect.7.5.1.2) and
SVM (see Sect.7.5.1.3), the k-NN models have showed a mediocre performance.
In general, k-NN are less suited for high-dimensional data since with increasing
dimensions the difference between the nearest and farthest distance is decreasing.

7 Supervised, Semi-supervised, and Unsupervised ... 213

— Notebook 3.4 (https://github.com/felixriese/hyperspectral-regression) con-
tains the implementation of the k-NN model for regression tasks. In the following,
best practices are listed:

e Set the number of considered neighbors k either automatically with cross-
validation or choose k as an odd number which is not too large or too small.
One rule of thumb is k & ,/n with the number of datapoints n. With increasing k,
the bias increases while the variance decreases.

e Re-weight the datapoints as described in the code example — Notebook 3.4.2
(https://github.com/felixriese/hyperspectral-regression).

e Normalize the input data since k-NN is a distance-based method.

e Consider a de-correlation (dimensionality reduction, see Sect.7.4.1) or use the
Mahalanobis distance metric.

e Apply dimensionality reduction as described in Sect.7.4.1.

7.5.1.5 Artificial Neural Networks

Artificial neural networks (ANNs) based on perceptrons and backpropagation have
been around since the 1960s. With increasing computing power and the increasing
availability of large training datasets, ANNs significantly have grown in popularity
in the 2010s. Subsequently, we give an overview of the different types of ANNs
and their applications in hyperspectral regression. A comprehensive introduction to
ANNS can be found, for example, in [41, 47].

Inspired by biological neural networks, ANNs are networks of artificial neurons.
These neurons consist of input connections from predecessor neurons as well as an
activation function depending on the weighted inputs and a defined threshold. With
the activation function, the neuron output is calculated which is then forwarded to the
subsequent neurons. The connections between the neurons are weighted. Through the
adaptation of these weights, the ANN is adapted to a regression problem, for example,
through backpropagation. The most common ANN architecture for regression tasks
is a fully connected network. It consists of several neurons organized in consecutive
and connected layers.

A deep neural network is a network with several hidden layers. Hidden layers are
located between input and output layers. Deep ANNs are able to learn hierarchical,
meaning that lower level features are learned in the first layers while higher level
features are composed in the following layers. This way, a deep ANN is able to
adapt to more complex tasks. Deep learning with CNNs is described in Chaps. 3,
4,5, 11, and 14. An overview of deep learning applications in image analysis with
hyperspectral data is given in [93]. The application of deep learning in hyperspectral
classification tasks is illustrated in [6].

A typical challenge of applying deep learning is that with increasing number of
layers and neurons, the number of trainable parameters increases. This may lead
to overfitting. To prevent overfitting, regularization techniques such as L2 regular-
ization, dropout, and batch normalization are introduced. L2 regularization adds an

https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
http://dx.doi.org/10.1007/978-3-030-38617-7_3
http://dx.doi.org/10.1007/978-3-030-38617-7_4
http://dx.doi.org/10.1007/978-3-030-38617-7_5
http://dx.doi.org/10.1007/978-3-030-38617-7_11
http://dx.doi.org/10.1007/978-3-030-38617-7_14

214 F. M. Riese and S. Keller

L2 term of the weights to the loss function, dropout deactivates neurons randomly
during the training iterations, and batch normalization normalizes the output of each
layer per batch of datapoints.

There are several types of ANN with different characteristics. Convolutional
neural networks (CNNs) [66] are designed to reduce the number of weights and
therefore the free parameters. The main idea of CNNs is to extract local features which
are translation invariant. CNNs consist of filter layers which are convolved with the
input data. In most cases, the input data for CNNs consists of 2D images. Because the
filters are convolved with the data instead of having one filter per input dimension, this
technique is called weight sharing. Weight sharing significantly reduces the number
of free parameters which need to be trained. These filters are learned in the training
process in contrast to the hand-engineered filters in classical image processing. Many
popular CNN architectures also include pooling layers. Pooling layers reduce the
input data by a factor. A CNN often includes fully connected layers at the end.

In general, ANNs and CNNs can be trained from scratch by initializing all weights
randomly and iteratively adapting the weights to the training dataset. Transfer learn-
ing is an alternative approach [89]. Networks are pre-trained on an existing and sim-
ilar dataset and are then refined on the actual task. For example, a popular dataset
for 2D images is ImageNet [33]. Pre-trained networks such as VGG16 [110] and
ResNet50 [52] are freely available and can be used for own classification or regression
tasks. Transfer learning can save significant amounts of time compared to training
from scratch since less training iterations of the network weights are necessary.

Recurrent neural networks (RNN) [107] are another type of ANN. They learn
from sequences like time series. For long sequences, the gradients can vanish. Long
short-term memory (LSTM) networks [56] solve this issue with the help of gates
(update, forget, output). In recent years, RNN and LSTM have been used mainly in
natural language processing. In the context of hyperspectral remote sensing, time
series such as satellite images of different dates pose possible applications of these
network architectures.

ANNs are widely applied in hyperspectral regression. An early overview of their
use and their opportunities in remote sensing is given by [5]. For example, ANNs
are applied on hyperspectral spectroscopy to estimate rice nitrogen status [133]. As
a finding of this study, the authors emphasize the extensive need of hyperparameter
tuning of the ANN. Furthermore, the results imply that dimensionality reduction (see
Sect.7.4.1) can increase the estimation performance. A comparison of backpropaga-
tion ANN s and further regression models for the estimation of pigment content in rice
leaves and panicles is shown in [26]. With hyperspectral input data, ANNs notice-
ably outperform the compared models. Regarding the estimation of chlorophyll a
and soil moisture, ANNs perform strongly especially with input data normalization
and dimensionality reduction [61, 62].

The primary applications of CNNs on hyperspectral data cover, so far, only
classification tasks (e.g., [101]). An example of hyperspectral regression of soil clay
content with 1D CNNs on a large European dataset is presented in [71]. Instead
of applying a traditional spatial 2D CNN, the introduced CNN convolves along the
spectral axis. Furthermore, this study is a good example that using transfer learning

7 Supervised, Semi-supervised, and Unsupervised ... 215

Table 7.13 Strengths and weaknesses of ANNs and CNNs for regression

Strengths Weaknesses
ANN o Strong for large datasets e Weak theoretical foundation

e Flexible architecture e Random architecture setup

e Solve non-linear problems | @ Black box

e Short prediction time e Long training

e Automatic feature extraction | @ Deep — more data needed

o Transfer learning e Large number of weights
CNN e Outperform other models on | e Only for translation invariant

2D data features

e Weight sharing

provides acceptable results. Up to now (2019), there is no relevant published study
about the application of basic RNNs in hyperspectral regression. However, LSTMs
are used to estimate crop yield in combination with CNNs in [134]. The results of
this study emphasize the potential of LSTMs.

The strengths and weaknesses of ANN and CNNs are summarized in Table7.13.
An exemplary implementation of an ANN and a CNN architecture can be found in
— Notebook 3.5 (https://github.com/felixriese/hyperspectral-regression). In addi-
tion, exemplary implementations for transfer learning with CNNs can be found
in [68]. In the following, we give selected best practices as an excerpt from our
studies and based on literature:

e Use data augmentation for your data to increase the size of the training dataset
and to make the network more robust. In the case of 2D data, flipping and rotating
the 2D images is often implemented in existing software packages.

e Apply the following training strategy:

1. Train the network without regularization on a small dataset until the estimation
error on the training dataset is ~ 0. Start with a simple architecture and extend
it if needed.

2. Implement regularization and train on the training dataset while evaluating the
generalization abilities on the validation dataset. We recommend applying L2
regularization, dropout (e.g., 50%) and batch normalization.

e Use the Adam optimizer [63] in the network for first studies before trying other
algorithms.

e Visualize the training progress, for example, with built-in tools such as Tensor-
Board of Tensorflow [1].

e Visualize the CNNs during and after the training according to [135].

e Use pre-trained networks and implementations like early stopping to reduce the
training time. Early stopping means ending the training of the network before the
defined number of training epochs is reached. Specific metrics are applied which
indicate when the network starts to overfit.

https://github.com/felixriese/hyperspectral-regression

216 F. M. Riese and S. Keller
7.5.1.6 Supervised Self-organizing Maps

The traditional application of self-organizing maps (SOM) is unsupervised data
visualization and clustering (see Sect.7.4.1). A supervised SOM was published as
the SuSi framework in [99, 102]. This framework combines the standardized unsu-
pervised SOM with a supervised layer. As a result, it is able to estimate discrete
(classification) or continuous (regression) parameters.

Supervised SOMs are applied in the context of hyperspectral regression in sev-
eral ways. One example is the estimation of the water quality parameters CDOM,
chlorophyll-a, diatoms, green algae, and turbidity are estimated on a dataset col-
lected from the river Elbe in Germany in [61]. Compared to other tested ML models,
the supervised SOM shows comparable results. The estimation of soil moisture on
bare soil [99, 102] and on a vegetated area [62] is another example application of
supervised SOMs. The results emphasize the marginal differences between the esti-
mation performance on the training and the validation dataset. This implies that the
estimation performance could be evaluated purely on the training dataset as kind of
out-of-bag estimate (see Sect.7.5.1.2).

The code of the SuSi framework is illustrated in [96] with implementation exam-
ples in — Notebook 3.6 (https://github.com/felixriese/hyperspectral-regression). In
Table 7.14, the strengths and weaknesses of the supervised SOM are summarized. In
the following, we conclude helpful best practices for the application of supervised
SOMs:

e Visualize distribution of training datapoints on the SOM grid during the training.
For good estimations, the whole grid is utilized.

e Start with the default hyperparameters in the SuSi package and start tuning the
grid sizes and training iteration numbers.

e Train and evaluate the model based on the full dataset in the case of small datasets.
In most cases, the results do not differ significantly. This aspect improves the
regression performance despite the limited number of datapoints.

7.5.1.7 Comparing Supervised Models
In the following, we give a brief overview of the performance of the presented

supervised ML models. We applied the ML models on the introduced dataset [99]
(see Sect.7.1) with the objective to estimate soil moisture based on hyperspectral

Table 7.14 Strengths and weaknesses of supervised SOMs for regression

Strengths Weaknesses

SOM e Small and large datasets e Limited ability to adapt
e Robust against overfitting o Currently in development
e Data visualization

https://github.com/felixriese/hyperspectral-regression

7 Supervised, Semi-supervised, and Unsupervised ... 217

Table 7.15 Regression results for soil moisture estimation with the presented ML models. The
last column points out the potential of the respective model to be optimized in order to improve the
regression performance. https://github.com/felixriese/hyperspectral-regression

Model Section Implementation | R? in % MAE RMSE Optimization
potential
Linear 7.5.1.1 3.1 80.9 1.19 1.6 -
PLS 7.5.1.1 3.1 83.5 1.16 1.5 Minor
DT 7.5.1.2 32 92.4 0.40 1.0 Minor
RF 7.5.1.2 32 93.5 0.45 0.9 Minor
ET 7.5.1.2 32 96.7 0.33 0.7 Minor
GTB 7.5.1.2 32 93.2 0.49 1.0 Minor
SVM 75.1.3 33 94.9 0.48 0.8 Minor
k-NN 7.5.14 34 93.3 0.43 1.0 Minor
k-NN 7.5.1.4 34 94.5 0.37 0.9 Minor
(weighted)
ANN 7.5.1.5 35 49.5 2.09 2.6 Major
(sklearn)
ANN 7.5.1.5 35 84.5 1.04 1.5 Major
(keras)
CNN 7.5.1.5 35 75.6 1.32 1.8 Major
SOM 7.5.1.6 3.6 93.7 0.51 0.9 Minor

point data. The implementation and a selection of illustrating plots can be found
in — Notebook 3.1 to 3.6 (https://github.com/felixriese/hyperspectral-regression)
as well as further illustrations in — Notebook 3.7 (https://github.com/felixriese/
hyperspectral-regression).

Table7.15 summarizes the regression results. ET, SVM, and k-NN with weight-
ing achieve the best regression results. We dispense with intensive hyperparameter
optimization. In this account, the ML models such as ANN and CNN have further
optimization potential.

7.5.2 Semi-supervised Learning for Regression

In Sect.7.5.1, we have assumed that every datapoint x; in our training dataset comes
with an associated ground truth label y;. In practice, this may not always be the case.
For example, hyperspectral satellite images as input data cover large areas while
soil moisture ground truth might be limited to several point-wise measurements. It
is possible to use only the datapoints x; with existing label y; to apply supervised
learning (see Sect.7.5.1). Semi-supervised learning (SSL) is a solution that also
benefits from datapoints without labels. The mathematical description can be found
in Sect.7.2 as well as in [25]. For semi-supervised learning, a certain smoothness of

https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression

218 F. M. Riese and S. Keller

the data is assumed. That means that if two datapoints x, x, € X are close in the X
space, their corresponding labels y;, y, € Y are close in the Y space as well.

7.5.2.1 Different Types and Applications of Semi-supervised Learning

Up to now (2020), there is a lack of relevant SSL applications with respect to hyper-
spectral regression. In the following, we give an overview of the most important types
of SSL approaches and their applications with hyperspectral input data. A review of
general SSL applications is given in [86].

Generative models rely on the cluster assumption: The datapoints of clusters
and datapoints in similar clusters share similar labels [25]. Reasonable assumptions
about the dataset distributions are crucial for the success of generative models. As a
result, only few ML applications with generative models exist. In [58], the authors
present an example of the application of generative models. The authors present a
classification of agricultural classes with multispectral data of an airborne sensor.

According to an equivalent formulation of cluster assumption, the decision bound-
ary of an estimator should lie in a low-density region of the feature space [25]. To
achieve this aim, maximum margin algorithms such as SVMs (see Sect.7.5.1.3) can
be applied. This type of SSL algorithms is called low-density separation algo-
rithms. One possible implementation is transductive SVMs (TSVM). TSVM max-
imize the margins between unlabeled as well as labeled datapoints [11, 123]. An
example of a TSVM application on Landsat 5 is shown in [20]. Six land cover
classes are estimated based on a missing-label dataset as ill-posed classification task.

In graph-based methods, each datapoint of the dataset is represented as one
node of a graph [28, 60]. The nodes are linked to each other with edges. The edges
between two nodes are labeled with the distance between the respective two nodes.
Graph-based methods rely on the manifold assumption. This means that the high-
dimensional datapoints lie roughly on a low(er)-dimensional manifold [25]. There-
fore, manifold regularization can be applied to the graph both on the labeled and on
the unlabeled subset of the dataset [8]. This includes a term to enforce the smooth-
ness of the dataset. As a remark, these methods imply high computational costs due
to matrix inversion on large datasets despite efficient methods. In [21], the graph-
based method proposed by [138] is applied to the AVIRIS Indian Pines land cover
dataset. Another graph-based method is LapSVM. It is based on Laplacian SVMs
and was introduced in [9]. LapSVM is applied by [46] on urban monitoring and
cloud screening with a variety of data.

Additionally, we point to one further SSL approach which is applied on hyper-
spectral data. In [95], a semi-supervised neural network (SSNN) is introduced.
The SSNN is set up to compensate shortcomings of the existing SSL approaches.
The results show non-monotonic improvement of class accuracies as well as indicate
the added value of ANNs in semi-supervised tasks. In [131], CNNs, and RNNs are
applied in combination with label clustering to deal with the missing labels. The SuSi
framework (see Sect.7.5.1.6) also contains semi-supervised estimators for regression
and classification [101]. In Table 7.16, we give an overview of all presented SSL mod-

7 Supervised, Semi-supervised, and Unsupervised ... 219

els. To solve this issue and other shortcomings, an additional technique is proposed,
called active learning. Active learning is introduced in the following section.

7.5.2.2 Active Learning

With respect to supervised learning, active learning is another approach to address
missing labels in a dataset. This is the reason why we classify active learning as
a type of SSL. The basic concept is to learn from the dataset that includes labeled
and unlabeled datapoints. Iteratively, the active learning model asks (queries) a data
source, for example, the user, for labels from specific unlabeled datapoints that the
active learning model considers as most uncertain or most helpful. Then, the user
adds these labels and the active learning model most likely is able to improve its
performance.

Active learning is an useful technique in the research field of hyperspectral remote
sensing, in which the collection of labels is expensive or time-costly. With respect to
the estimation of soil moisture data from hyperspectral data, this data recording can
benefit significantly from active learning, especially when measuring data in areas
which are difficult to access.

An overview of active learning applications with respect to hyperspectral clas-
sification is presented in [120]. They emphasize the importance of the labeled part
of the training dataset being representative for the full dataset. To solve this depen-
dence, probabilistic elements might help to include. Similar to pure SSL approaches
in Sect.7.5.2.1, there are no relevant applications of active learning in ML regression
yet. Exemplary implementations for active learning can be found in — Notebook 4
(https://github.com/felixriese/hyperspectral-regression).

Table 7.16 Overview of different semi-supervised learning approaches with references and exem-
plary applications

Approach/Category Reference Exemplary applications
Generative [32, 85] [58]

TSVM (Low-density sep.) [11, 123] [20]

Graph-based [138] [21]

LapSVM (Graph-based) [9] [46]

SSNN [95]

SuSi [101]

https://github.com/felixriese/hyperspectral-regression

220 F. M. Riese and S. Keller

7.5.3 Model Selection, Optimization, and Evaluation

In Sects.7.5.1 and 7.5.2, we have introduced a number of supervised and semi-
supervised models and provided references to exemplary applications for hyperspec-
tral regression tasks. In addition, we have reviewed their strengths and weaknesses.
However, we have not yet discussed the selection of a particular ML model for a given
regression problem. This selection is based on criteria which are constrained by the
dataset and the respective application. In the following, we list some important
selection criteria of an ML regression model:

e What type of input data are we using: 1D, 2D, 3D, time series? CNNs are good
for datasets if locality and translation invariance can be assumed. LSTMs are
particular useful at capturing long-term dependencies in time series data.

e What are the spectral, spatial, and temporal dimension of the input data?
RGB, multispectral, or hyperspectral? Some ML models perform better with low-
dimensional data. Therefore, dimensionality reduction (see Sect.7.4.1) might be
a good idea.

e Is the given regression problem linear or non-linear? We recommend applying
the simplest model first. If the regression problem is expected to be linear, a linear
model should be used.

e What is the size of the training dataset? Deep learning techniques require large
amounts of data to be trained from scratch. Transfer learning can be applied to
solve the shortcoming in this particular case (see Sect.7.5.1.5).

e Is low bias or low variance more important for the estimation? Setting up ML
models is often a trade-off between bias and variance (see Sect. 7.2). For exam-
ple, in DT ensemble methods (see Sect.7.5.1.2), bagging applies deeper trees with
lower variance while boosting applies shallow trees with less bias.

e How important is it to apply ML models which are transparent and inter-
pretable? Models such as k-NN and DTs are easy to interpret for humans, while
ANNs and SVMs are considered as black box models.

After choosing the model that meets the selection criteria, it needs to be optimized
and then be evaluated. The hyperparameter optimization is described in Sect.7.5.3.1.
The metrics to evaluate ML models in terms of regression performance can be found
in Sect.7.5.3.2.

7.5.3.1 Hyperparameter Optimization

ML models are defined by two sets of parameters: hyperparameters and model param-
eters. Hyperparameters are set before the training and model parameters are learned
during the training process of the ML model. In the following, we give a brief
overview of different possibilities to optimize hyperparameters. A more detailed
explanation of hyperparameter optimization can be found in [13].

A simple way to tune hyperparameters is manually setting and testing them, for
example, with cross-validation. Since this approach is very time-consuming, a better

7 Supervised, Semi-supervised, and Unsupervised ... 221

way is to automate the tuning process. For example, in the grid search approach,
a pre-set hyperparameter space is automatically evaluated. The grid search oper-
ates well on small hyperparameter spaces, but it is very time-consuming for larger
hyperparameter spaces. A randomized search speeds up the grid search approach
by randomly iterating through the hyperparameter space instead of testing all com-
binations [12].

A more sophisticated type of hyperparameter optimization is the Bayesian opti-
mization. It collects more information about the dataset and the ML model with each
iteration by building hypotheses about sets of hyperparameters before the actual run.
An implementation of the three types of hyperparameter optimization can be found
in — Notebook 5.1 (https://github.com/felixriese/hyperspectral-regression).

7.5.3.2 Model Evaluation Metrics

To evaluate an ML regression model, different metrics are available. One metric alone
does only contain a fraction of the information about the estimation performance.
Therefore, it makes sense to look at more than one evaluation metric to evaluate the
performance of a model. In the following, we give an overview of the most important
regression metrics, also referred to as measures for the goodness of fit.

For all of the n input datapoints x; with their true labels y;, the ML model returns
the estimation y; based on x;. The mean absolute error (MAE) is defined as

1 « .
MAE:;Z|yi—y,~|. (1.7)
i=1

The MAE is one of the easy-to-use evaluation metrics since it sums up the absolute
differences y; — y; of the true label value and the estimated label value.

Many ML applications require the model to have as little outliers as possible.
This can be achieved by including the squared error instead of the absolute error.
The mean squared error (MSE) is defined as

n

1
MSE =~ Y (5 — %)’ (7.8)

n
i=1

Estimation errors below 1 are less important in the MSE implementation than errors
above 1. One drawback of the MSE is the unit of the error being the squared unit of
the target variable to be estimated. The root mean squared error (RMSE) solves
this issue. It is defined as

RMSE = vMSE =

1< \2
;;m—m. (1.9)

https://github.com/felixriese/hyperspectral-regression

222 F. M. Riese and S. Keller

All the presented metrics, MAE, MSE, and RMSE, are easy to understand. MAE
and RMSE return an error measure in the unit of the target variable y. As a remark,
without knowing the distribution and scale of the target variable with its minimum
and maximum, these metrics are difficult to interpret.

The coefficient of determination R? is a relative measure to resolve the unit issue
as stated above. It is defined as

n AND n
Rrog— MSE 20— wmyzlzm.am)
s i =32 > i i = V)2 n =
In this definition, it normally returns a value between 0 and 1; R? = 1 indicates that
the ML model estimation is in perfect agreement with the data. However, negative
values might occur and indicate a bad estimation performance.

Assume we evaluate the performance of an ML model in two regression examples
on n = 40 datapoints. One regression example is based on three input features, for
example, the colors RGB, and the other regression example is based on 13 hyper-
spectral bands. The result of the first example is R? = 80% and R? = 85% for the
second example. The question is now, if the performance of the second model is
better, (a) since this model is better or (b) since the input data of the second model
has more input features. To answer this question, a look on the adjusted coefficient
of determination Rfdj can help. It is defined as

ZRY) . (n—
R2, — _anﬁ;TID, (7.11)

with the number of input features m and n datapoints for the evaluation. With respect
to the presented examples, the first model has a Rgdj = 78.3% and the second Rfdj =
77.5%. The result implies that the first model is the better model according to the
respective metrics.

Figure 7.7 shows three exemplary distributions of an ML model which adapts

to simulated data with one input feature x and the target variable y. The regres-

(a) Low var. (b) Low var. + outlier (c) Higher var.
6
.5 & 1 Data
Sa v 1 -
m » »
c? ¢
- 2
1 - P
[| [
0

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
X in a.u. X in a.u. X in a.u.

Fig. 7.7 Regression example on simulated data (a) with low variance (var.), (b) with low variance
and one outlier, and (c) with higher variance. Both the 1D input data x and target variable y are
given in arbitrary units (a.u.)

7 Supervised, Semi-supervised, and Unsupervised ...

223

Table 7.17 Overview of the model evaluation metrics in hyperspectral regression for the three
example distributions. The lowest performance with regard to the respective metric is emphasized

Example distribution MAEinau. |MSEina.u. RMSE inau. | R?in %
Low variance 0.21 0.06 0.24 97.61
Low variance and one outlier |0.57 1.51 1.23 39.44
Higher variance 0.81 0.97 0.98 61.26

sion results are shown in Table7.17 with different metrics. These results imply
that ML regression models should to be evaluated based on an number of metrics.
— Notebook 5.2 (https://github.com/felixriese/hyperspectral-regression) shows the
code implementations of three exemplary distributions.

In the following, we summarize our best practices:

e Use the validation dataset (see Sect.7.3.3) for the evaluation of the ML model
performance and for choosing your hyperparameters. Use the test dataset only
once: for the final model.

e Calculate evaluation metrics on the training dataset as well. The difference between
training and validation performance is a measure for the degree of overfitting.

e Use the three evaluation metrics MAE, RMSE, and R2. We recommended them
for most hyperspectral regression applications.

e Set fixed random seeds of the applied ML models for reproducible results (e.g.,
see — Notebook 3 (https://github.com/felixriese/hyperspectral-regression)).

e Use a well understood or previously published baseline model to compare a new
ML model with.

e Use the adjusted coefficient of determination Rgdj to compare estimations based
on a different number of input features.

7.6 Summary and Trends in Hyperspectral Regression

In the previous sections, we have presented a detailed overview of a typical hyper-
spectral regression workflow. This workflow consisting of the data level, the fea-
ture level, and the model level is illustrated in Fig. 7.1. We recommend applying this
workflow for any given regression task and dataset.

The data level (Sect.7.3) is divided into an overview of possible pre-processing
steps, the challenge of dataset shift with proposed solutions as well as approaches for
dataset splitting. The feature level (Sect.7.4) consists of three parts which describe
possible approaches to generate or select features. With dimensionality reduction,
clustering, and feature engineering, new features are generated from the existing input
features of a dataset. Feature selection describes approaches to select the best input
features of a dataset according to specific metrics. On the model level (Sect.7.5), an
ML model is selected from several available supervised or semi-supervised models

https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression

224 F. M. Riese and S. Keller

and the selection is motivated. Then, the selected model can then be optimized and
evaluated, resulting in the final model for the given regression task and dataset.

New methods emerge over time from ML research which can be applied in hyper-
spectral regression as well. In the following sections, we give an overview of the open
challenges and new methods that we consider relevant.

7.6.1 Trends at the Data Level: Generative Adversarial
Networks

Generative adversarial networks (GANs) [48] are an upcoming ML model which
was introduced for unsupervised data augmentation. GANs consist of two ANNS:
a generator network and a discriminator network. The generator network learns
to generate new data samples. In combination with the existing (real) training data,
these new (fake) samples constitute the input data for the discriminator network. The
discriminator network learns to differentiate between real and fake input data. During
the training of a GAN, both networks learn to improve their performance regarding
their respective task. Finally, a trained GAN is able to generate new training data
which can be used to augment the existing training dataset (see best practices in
Sect.7.5.1.5).

A detailed overview on GANS is presented in [30]. In hyperspectral regression,
GANSs are not commonly used so far, although there are different applications in clas-
sification. For example, the implementation of GANs and their applications on open
hyperspectral classification datasets is presented in [140]. A more complex approach
combining GANs with semi-supervised learning is presented in [53]. Exemplary
implementations of GANs are given in — Notebook 6 (https://github.com/felixriese/
hyperspectral-regression).

7.6.2 Trends at the Feature Level: Domain Knowledge

In recent years, the application of (manual) feature engineering has decreased in
hyperspectral regression. Deep ANNSs, which are able to learn new low-level and
high-level features automatically (see Sect.7.5.1.5), are the main reason for this
development. Admittedly, incorporating domain knowledge into data-driven ML
models might still improve their performance. Especially, the estimation of physical
parameters in hyperspectral regression can be improved by including domain knowl-
edge if such knowledge is available. An overview of the domain knowledge integra-
tion into ML models is given in [104] including a review and a consistent taxonomy
on previous research. The authors distinguish between four possible approaches to
include prior knowledge into ML models [104]:

https://github.com/felixriese/hyperspectral-regression
https://github.com/felixriese/hyperspectral-regression

7 Supervised, Semi-supervised, and Unsupervised ... 225

Integration of the knowledge into the training data by feature engineering (see
Sect.7.4.3) and simulations (see Sect.7.6.1).

Integration of the knowledge into the hypothesis space, for example, by choosing
an appropriate ML model such as CNNs for 2D hyperspectral data in the case of
locality and translation invariance (see Sect.7.5.1.5).

Integration of the knowledge into the training algorithm, for example, by modi-
fying the loss function.

Integration of the knowledge into the final hypothesis, for example, by including
physical constraints on the output variable.

7.6.3 Trends at the Model Level: Architectures
and Automated ML

Innovations with respect to ANN architectures are continuously presented and
applied in ML research. For example, hierarchical neural networks such as attention
networks [132] are a promising architecture alternative to LSTMs (see Sect.7.5.1.5)
when analyzing sequential data. Further developments involve capsule networks
[105], which use vectors rather than scalars to represent input features. Capsule net-
works might improve the estimation performance of networks, for example, in the
hyperspectral image classification [139].

A further trend in ML is the automation of the ML workflow, often referred to as
automated machine learning (AutoML). AutoML can include the automation of
steps like pre-processing (Sect. 7.3.1), dimensionality reduction (Sect. 7.4.1), feature
engineering and feature selection (Sect.7.4.3), ML model selection, and optimiza-
tion (Sect.7.5.3). An overview of AutoML is given in [57]. While AutoML simpli-
fies and speeds up the application of ML for the user, we emphasize that AutoML
is not a universal solution for all hyperspectral regression problems. Two relevant
implementations of AutoML are auto-sklearn [37, 38] and TPOT [87, 88]. Both
implementations are based on the widely used scikit-learn [91]. Another example of
AutoML is MorphNet [49]. MorphNet is focused on shrinking and expanding ANN
structures to adapt the ANN for maximum performance with respect to constraints
on computing resources.

Acknowledgements We thank Timothy D. Gebhard, Mareike Hoyer, and Raoul Gabriel for their
detailed feedback on this chapter.

References

1. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving
G, Isard M, et al. (2016) Tensorflow: a system for large-scale machine learning. In: 12th

226

10.

11.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

F. M. Riese and S. Keller

USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). USENIX
Association, Savannah, GA, pp 265-283

Abdel-Rahman EM, Ahmed FB, Ismail R (2013) Random forest regression and spectral
band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion
hyperspectral data. Int] Remote Sens 34(2):712-728

Ali I, Greifeneder F, Stamenkovic J, Neumann M, Notarnicola C (2015) Review of machine
learning approaches for biomass and soil moisture retrievals from remote sensing data. Remote
Sens 7(12):16398-16421

Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression.
Am Stat 46(3):175-185

. Atkinson PM, Tatnall ARL (1997) Introduction neural networks in remote sensing. Int J

Remote Sens 18:699-709

Audebert N, Saux BL, Lefevre S (2019) Deep learning for classification of hyperspectral data:
a comparative review. In: IEEE geoscience and remote sensing magazine. pp 159-173
Baldeck CA, Asner GP (2013) Estimating vegetation beta diversity from airborne imaging
spectroscopy and unsupervised clustering. Remote Sens 5:2057-2071

Belkin M, Niyogi P (2004) Semi-supervised learning on riemannian manifolds. Mach Learn
56(1-3):209-239

Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for
learning from labeled and unlabeled examples.] Mach Learn Res 7:2399-2434

Bellman R, Collection KMR (1961) Adaptive control processes: a guided tour, Princeton
legacy library, vol 2045. Princeton University Press, Princeton

Bennett KP, Demiriz A (1999) Semi-supervised support vector machines. In: Proceedings of
the 1998 conference on advances in neural information processing systems II. MIT Press,
Cambridge, MA, pp 368-374

. Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization.] Mach Learn

Res 13:281-305

Bergstra JS, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-parameter optimiza-
tion. In: Advances in neural information processing systems. pp 2546-2554

Bioucas-Dias JM, Plaza A, Camps-Valls G, Scheunders P, Nasrabadi N, Chanussot J (2013)
Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci Remote Sens
Mag 1(2):6-36

Blum AL, Langley P (1997) Selection of relevant features and examples in machine learning.
Artif Intell 97(1):245-271

Breiman L (1997) Arcing the edge. Technical Report 486, Statistics Department, University
of California, Berkeley

Breiman L (2001) Random forests. Mach Learn 45(1):5-32

Breiman L, Friedman J, Olshen RA, Stone CJ (1984) Classification and regression trees.
Routledge, Abingdon

Brown DJ, Shepherd KD, Walsh MG, Mays MD, Reinsch TG (2006) Global soil characteri-
zation with VNIR diffuse reflectance spectroscopy. Geoderma 132(3—4):273-290

Bruzzone L, Chi M, Marconcini M (2006) A novel transductive svm for semisupervised
classification of remote-sensing images. IEEE Trans Geosci Remote Sens 44(11):3363-3373
Camps-Valls G, Bandos Marsheva TV, Zhou D (2007) Semi-supervised graph-based hyper-
spectral image classification. IEEE Trans Geosci Remote Sens 45(10):3044-3054
Camps-Valls G, Bruzzone L, Rojo-Alvarez JL, Melgani F (2006) Robust support vector regres-
sion for biophysical variable estimation from remotely sensed images. IEEE Geosci Remote
Sens Lett 3:339-343

Camps-Valls G, Tuia D, Gémez-Chova L, Jiménez S, Malo J (2011) Remote sensing image
processing. Synth Lect Image Video Multimed Process 5(1):1-192

Chang C (2018) A review of virtual dimensionality for hyperspectral imagery. IEEE J Sel
Top Appl Earth Obs Remote Sens 11(4):1285-1305

Chapelle O, Scholkopf B, Zien A (2006) Semi-supervised learning. adaptive computation and
machine learning. MIT Press, Cambridge, MA

7 Supervised, Semi-supervised, and Unsupervised ... 227

26

217.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44.
45.

46.

47.

. Chen L, Huang JF, Wang FM, Tang YL (2007) Comparison between back propagation neural
network and regression models for the estimation of pigment content in rice leaves and panicles
using hyperspectral data. Int J Remote Sens 28(16):3457-3478

Cho MA, Skidmore A, Corsi F, van Wieren SE, Sobhan I (2007) Estimation of green grass/herb
biomass from airborne hyperspectral imagery using spectral indices and partial least squares
regression. Int J Appl Earth Obs Geoinformation 9(4):414-424

Chung FR, Graham FC (1997) Spectral graph theory. Am Math Soc 92:212

Colini L, Spinetti C, Amici S, Buongiorno M, Caltabiano T, Doumaz F, Favalli M, Giammanco
S, Isola I, La Spina A, et al. (2014) Hyperspectral spaceborne, airborne and ground measure-
ments campaign on Mt. Etna: multi data acquisitions in the frame of Prisma Mission (ASI-AGI
Project n. 1/016/11/0). Quaderni di Geofisica 119:1-51

Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA (2018) Gener-
ative adversarial networks: an overview. IEEE Signal Process Mag 35(1):53-65

Datta A, Ghosh S, Ghosh A (2012) Clustering based band selection for hyperspectral
images. In: 2012 international conference on communications, devices and intelligent systems
(CODIS). pp 101-104

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via
the EM algorithm. J R Stat Soc 39(1):1-38

Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical
image database. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE,
Piscataway, pp 248-255

Drucker H, Cortes C (1996) Boosting decision trees. In: Advances in neural information
processing systems, pp. 479485

Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters
a density-based algorithm for discovering clusters in large spatial databases with noise. In:
Proceedings of the second international conference on knowledge discovery and data mining,
pp- 226-231. AAAI Press, Palo Alto, CA

Fawcett T, Flach PA (2005) A response to webb and ting’s on the application of ROC analysis
to predict classification performance under varying class distributions. Mach Learn 58(1):33—
38

Feurer M, Klein A, Eggensperger K, Springenberg J, Blum M, Hutter F (2015) Efficient
and robust automated machine learning. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M,
Garnett R (eds) Advances in neural information processing systems, vol 28. Curran Associates,
Inc., Red Hook, NY, pp 2962-2970

Feurer M, Klein A, Eggensperger K, Springenberg JT, Blum M, Hutter F (2019) Auto-sklearn:
efficient and robust automated machine learning. In: Hutter F, Kotthoff L, Vanschoren J (eds)
Automated machine learning: methods, systems, challenges. Springer, Cham, pp 113-134
Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in
conservation presence/absence models. Environ Conserv 24(1):38-49

Fonville JM, Carter CL, Pizarro L, Steven RT, Palmer AD, Griffiths RL, Lalor PF, Lindon JC,
Nicholson JK, Holmes E, Bunch J (2013) Hyperspectral visualization of mass spectrometry
imaging data. Anal Chem 85(3):1415-1423

Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning, vol 1. Springer,
New York

Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38(4):367-378
Geman S, Bienenstock E, Doursat R (1992) Neural networks and the bias/variance dilemma.
Neural Comput 4(1):1-58

Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Mach Learn 63(1):3-42
Gewali UB, Monteiro ST, Saber E (2018) Machine learning based hyperspectral image anal-
ysis: a survey. arXiv:1802.08701

Gomez-Chova L, Camps-Valls G, Munoz-Mari J, Calpe J (2008) Semisupervised image classi-
fication with laplacian support vector machines. IEEE Geosci Remote Sens Lett 5(3):336-340
Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

http://arxiv.org/abs/1802.08701

228

48

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.
64.
65.
66.

67.

68.

69.

70.

F. M. Riese and S. Keller

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A,
Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing
systems, pp 2672-2680

Gordon A, Eban E, Nachum O, Chen B, Wu H, Yang TJ, Choi E (2018) MorphNet: fast &
simple resource-constrained structure learning of deep networks. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp 1586—1595

Green AA, Berman M, Switzer P, Craig MD (1988) A transformation for ordering multispec-
tral data in terms of image quality with implications for noise removal. IEEE Trans Geosci
Remote Sens 26(1):65-74

Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn
Res 3:1157-1182

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016
IEEE conference on computer vision and pattern recognition (CVPR), pp 770-778

He Z, Liu H, Wang Y, Hu J (2017) Generative adversarial networks-based semi-supervised
learning for hyperspectral image classification. Remote Sens 9(10):1042

Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural net-
works. Science 313(5786):504-507

Hinton GE, Zemel RS (1994) Autoencoders, minimum description length and helmholtz free
energy. In: Cowan JD, Tesauro G, Alspector J (eds) Advances in neural information processing
systems vol 6. Morgan-Kaufmann, Burlington, pp 3-10

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735-
1780

Hutter F, Kotthoff L, Vanschoren J (2019) Automated machine learning: methods, systems.
Springer International Publishing, Challenges, Berlin

Jackson Q, Landgrebe DA (2001) An adaptive classifier design for high-dimensional data
analysis with a limited training data set. IEEE Trans Geosci Remote Sens 39(12):2664-2679
Jia X, Kuo BC, Crawford MM (2013) Feature mining for hyperspectral image classification.
Proc IEEE 101:676-697

Jordan MI (1998) Learning in graphical models, vol 89. Springer Science & Business Media,
Berlin

Keller S, Maier PM, Riese FM, Norra S, Holbach A, Borsig N, Wilhelms A, Moldaenke C,
Zaake A, Hinz S (2018) Hyperspectral data and machine learning for estimating CDOM,
chlorophyll a, diatoms, green algae, and turbidity. Int J Environ Res Public Health 15(9):1881
Keller S, Riese FM, Stotzer J, Maier PM, Hinz S (2018) Developing a machine learning frame-
work for estimating soil moisture with VNIR hyperspectral data. ISPRS Ann Photogramm
Remote Sens Spat Inf Sci IV-1:101-108

Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: 3rd International
conference on learning representations, ICLR. San Diego, CA

Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1-2):273-324
Kohonen T (1990) The self-organizing map. Proc IEEE 78(9):1464—1480

LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989)
Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541-551
Lee JB, Woodyatt AS, Berman M (1990) Enhancement of high spectral resolution remote-
sensing data by a noise-adjusted principal components transform. IEEE Trans Geosci Remote
Sens 28(3):295-304

Leitloff J, Riese FM (2018) Examples for CNN training and classification on Sentinel-2 data.
https://doi.org/10.5281/zenodo0.3268451

Li F, Mistele B, Hu Y, Chen X, Schmidhalter U (2014) Reflectance estimation of canopy
nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial
least squares regression. Eur J Agron 52:198-209

LiuL, Ji M, Buchroithner M (2017) Combining partial least squares and the gradient-boosting
method for soil property retrieval using visible near-infrared shortwave infrared spectra.
Remote Sens 9:1299

https://doi.org/10.5281/zenodo.3268451

7 Supervised, Semi-supervised, and Unsupervised ... 229

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

Liu L, Ji M, Buchroithner M (2018) Transfer learning for soil spectroscopy based on convo-
lutional neural networks and its application in soil clay content mapping using hyperspectral
imagery. Sensors 18(9):3169

Liu Y, Heer J (2018) Somewhere over the rainbow: an empirical assessment of quantitative
colormaps. In: Proceedings of the 2018 CHI conference on human factors in computing
systems. ACM, New York, p 598

van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579—
2605

MacQueen J (1967) Some methods for classification and analysis of multivariate observations.
In: Proceedings of the fifth berkeley symposium on mathematical statistics and probability,
volume 1: statistics. University of California Press, Berkeley, pp 281-297

Maier PM, Keller S (2018) Machine learning regression on hyperspectral data to estimate mul-
tiple water parameters. In: 2018 9th workshop on hyperspectral image and signal processing:
evolution in remote sensing (WHISPERS). Amsterdam, pp 1-5

Maier PM, Keller S (2019) Application of different simulated spectral data and machine
learning to estimate the chlorophyll a concentration of several inland waters. In: 2019 10th
Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing
(WHISPERS). IEEE, Amsterdam, Netherlands, pp 1-5. https://doi.org/10.1109/WHISPERS.
2019.8921073

Maier PM, Keller S (2019) Estimating chlorophyll a concentrations of several inland waters
with hyperspectral data and machine learning models. ISPRS Ann Photogramm Remote Sens
Spat Inf Sci IV-2/W5:609-614

Matejka J, Fitzmaurice G (2017) Same stats, different graphs: generating datasets with varied
appearance and identical statistics through simulated annealing. In: Proceedings of the 2017
CHI conference on human factors in computing systems. ACM, New York, NY, pp 1290-1294
Mclnnes L, Healy J, Saul N, Grossberger L (2018) UMAP: uniform manifold approximation
and projection. J Open Source Softw 3(29):861

McKinney W (2010) Data structures for statistical computing in python. In: van der Walt S,
Millman, J (eds) Proceedings of the 9th Python in science conference, pp 51-56

Merentitis A, Debes C, Heremans R (2014) Ensemble learning in hyperspectral image classi-
fication: toward selecting a favorable bias-variance tradeoff. IEEE J Sel Top Appl Earth Obs
Remote Sens 7(4):1089-1102

Morellos A, Pantazi XE, Moshou D, Alexandridis T, Whetton R, Tziotzios G, Wiebensohn J,
Bill R, Mouazen AM (2016) Machine learning based prediction of soil total nitrogen, organic
carbon and moisture content by using VIS-NIR spectroscopy. Biosyst Eng 152:104-116
Moreno-Torres JG, Raeder T, Alaiz-Rodriguez R, Chawla NV, Herrera F (2012) A unifying
view on dataset shift in classification. Pattern Recognit 45(1):521-530

Mutanga O, Adam E, Cho MA (2012) High density biomass estimation for wetland vegetation
using WorldView-2 imagery and random forest regression algorithm. Int J Appl Earth Obs
Geoinformation 18:399-406

Nigam K, McCallum AK, Thrun S, Mitchell T (2000) Text classification from labeled and
unlabeled documents using EM. Mach Learn 39(2-3):103-134

Oliver A, Odena A, Raffel CA, Cubuk ED, Goodfellow 1J (2018) Realistic evaluation of deep
semi-supervised learning algorithms. In: Bengio S, Wallach H, Larochelle H, Grauman K,
Cesa-Bianchi N, Garnett R (eds) Advances in neural information processing systems, vol 31.
Curran Associates, Inc., Red Hook, NY, pp 3235-3246

Olson RS, Bartley N, Urbanowicz RJ, Moore JH (2016) Evaluation of a tree-based pipeline
optimization tool for automating data science. In: Proceedings of the genetic and evolutionary
computation conference 2016. ACM, New York, NY, pp 485-492

Olson RS, Moore JH (2019) TPOT: a tree-based pipeline optimization tool for automating
machine learning. In: Hutter F, Kotthoff L, Vanschoren J (eds) Automated machine learning:
methods, systems, challenges. Springer, Cham, pp 151-160

Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans Knowl Data Eng
22(10):1345-1359

https://doi.org/10.1109/WHISPERS.2019.8921073
https://doi.org/10.1109/WHISPERS.2019.8921073

230

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

F. M. Riese and S. Keller

Pearson K (1901) On lines and planes of closest fit to systems of points in space. Lond Edinb
Dublin Philos Mag J Sci 2(11):559-572

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Pretten-
hofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M,
Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825—
2830

Peng X, Shi T, Song A, Chen Y, Gao W (2014) Estimating soil organic carbon using VIS/NIR
spectroscopy with SVMR and SPA methods. Remote Sens 6:2699-2717

Petersson H, Gustafsson D, Bergstrom D (2016) Hyperspectral image analysis using deep
learning - a review. In: 2016 sixth international conference on image processing theory, tools
and applications (IPTA), pp 1-6

Quionero-Candela J, Sugiyama M, Schwaighofer A, Lawrence ND (2009) Dataset shift in
machine learning. The MIT Press, Cambridge

Ratle F, Camps-Valls G, Weston J (2010) Semisupervised neural networks for efficient hyper-
spectral image classification. IEEE Trans Geosci Remote Sens 48(5):2271-2282

Riese FM (2019) SUSI: supervised self-organizing maps in Python. https://doi.org/10.5281/
zenodo.2609130

Riese FM, Keller S (2018) Fusion of hyperspectral and ground penetrating radar data to
estimate soil moisture. In: 2018 9th workshop on hyperspectral image and signal processing:
evolution in remote sensing (WHISPERS). Amsterdam, pp 1-5

Riese FM, Keller S (2018) Hyperspectral benchmark dataset on soil moisture. https://doi.org/
10.5281/zenodo.1227836

Riese FM, Keller S (2018) Introducing a framework of self-organizing maps for regression of
soil moisture with hyperspectral data. In: IGARSS 2018 - 2018 IEEE international geoscience
and remote sensing symposium. Valencia, Spain, pp 6151-6154

Riese FM, Keller S (2019) Hyperspectral regression: code examples. https://doi.org/10.5281/
zenodo.3450676

Riese FM, Keller S, Hinz S (2020) Supervised and semi-supervised self-organizing maps for
regression and classification focusing on hyperspectral data. Remote Sens 12(1):7. https://
doi.org/10.3390/rs12010007

Riese FM, Keller S (2019) Susi: supervised self-organizing maps for regression and classifi-
cation in python. arXiv:1903.11114

Rouse Jr JW, Haas R, Schell J, Deering D (1974) Monitoring vegetation systems in the great
plains with ERTS. In: Third earth resources technology satellite-1 symposium. Greenbelt, pp
309-317

von Rueden L, Mayer S, Garcke J, Bauckhage C, Schuecker J (2019) Informed machine
learning-towards a taxonomy of explicit integration of knowledge into machine learning.
arXiv:1903.12394

Sabour S, Frosst N, Hinton GE (2017) Dynamic routing between capsules. In: Advances in
neural information processing systems, pp 38563866

Schapire RE (1999) A brief introduction to boosting

Servan-Schreiber D, Cleeremans A, McClelland JL (1989) Learning sequential structure
in simple recurrent networks. In: Advances in neural information processing systems,
pp 643-652

Shalev-Shwartz S, Ben-David S (2014) Understanding machine learning: from theory to
algorithms. Cambridge University Press, Cambridge

Shimodaira H (2000) Improving predictive inference under covariate shift by weighting the
log-likelihood function. J Stat Plan Inference 90(2):227-244

Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale
image recognition. In: 3rd international conference on learning representations, ICLR.
San Diego, CA

Smets T, Verbeeck N, Claesen M, Asperger A, Griffioen G, Tousseyn T, Waelput W, Waelkens
E, De Moor B (2019) Evaluation of distance metrics and spatial autocorrelation in uniform
manifold approximation and projection applied to mass spectrometry imaging data. Anal
Chem 91(9):5706-5714

https://doi.org/10.5281/zenodo.2609130
https://doi.org/10.5281/zenodo.2609130
https://doi.org/10.5281/zenodo.1227836
https://doi.org/10.5281/zenodo.1227836
https://doi.org/10.5281/zenodo.3450676
https://doi.org/10.5281/zenodo.3450676
https://doi.org/10.3390/rs12010007
https://doi.org/10.3390/rs12010007
http://arxiv.org/abs/1903.11114
http://arxiv.org/abs/1903.12394

7 Supervised, Semi-supervised, and Unsupervised ... 231

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.
124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

Smola AJ, Scholkopf B (2004) A tutorial on support vector regression. Stat Comput
14(3):199-222

Stamenkovic J, Tuia D, de Morsier F, Borgeaud M, Thiran J (2013) Estimation of soil moisture
from airborne hyperspectral imagery with support vector regression. In: 2013 5th workshop
on hyperspectral image and signal processing: evolution in remote sensing (WHISPERS). pp
14

Stehman SV (1999) Basic probability sampling designs for thematic map accuracy assessment.
Int J Remote Sens 20(12):2423-2441

Storkey A (2009) When training and test sets are different: characterizing learning transfer.
In: Dataset shift in machine learning, pp. 3-28

Su H, Yang H, Du Q, Sheng Y (2011) Semisupervised band clustering for dimensionality
reduction of hyperspectral imagery. IEEE Geosci Remote Sens Lett 8(6):1135-1139

Tao C, Pan H, Li Y, Zou Z (2015) Unsupervised spectral-spatial feature learning with stacked
sparse autoencoder for hyperspectral imagery classification. IEEE Geosci Remote Sens Lett
12(12):2438-2442

Theiler J, Wohlberg B (2013) Regression framework for background estimation in remote
sensing imagery. In: 2013 5th workshop on hyperspectral image and signal processing: evo-
lution in remote sensing (WHISPERS). IEEE, pp 14

Treitz PM, Howarth PJ (1999) Hyperspectral remote sensing for estimating biophysical param-
eters of forest ecosystems. Prog Phys Geogr: Earth Environ 23(3):359-390

Tuia D, Volpi M, Copa L, Kanevski M, Munoz-Mari J (2011) A survey of active learning
algorithms for supervised remote sensing image classification. IEEE J Sel Top Signal Process
5(3):606-617

Van Der Maaten L, Postma E, Van den Herik J (2009) Dimensionality reduction: a compara-
tive.] Mach Learn Res 10(66-71):13

Vapnik VN (1995) The nature of statistical learning theory. Springer, New York Inc., New
York, NY

Vapnik VN (1998) Statistical learning theory. Wiley, Hoboken

Vidal M, Amigo JM (2012) Pre-processing of hyperspectral images. Essential steps before
image analysis. Chemom Intell Lab Syst 117:138-148

Villa A, Chanussot J, Benediktsson JA, Jutten C, Dambreville R (2013) Unsupervised methods
for the classification of hyperspectral images with low spatial resolution. Pattern Recognit
46(6):1556-1568

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E,
Peterson P, Weckesser W, Bright J, et al (2020) SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nat Methods 1-12

Widmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts.
Mach Learn 23(1):69-101

Windrim L, Ramakrishnan R, Melkumyan A, Murphy RJ, Chlingaryan A (2019) Unsupervised
feature-learning for hyperspectral data with autoencoders. Remote Sens 11(7):864

Wold H (1966) Estimation of principal components and related models by iterative least
squares. In: Multivariate analysis. Academic, New York, pp 391-420

Wold S, Sjostrom M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics.
Chemom Intell Lab Syst 58(2):109-130

Wu H, Prasad S (2018) Semi-supervised deep learning using pseudo labels for hyperspectral
image classification. IEEE Trans Image Process 27(3):1259-1270

Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Zemel R, Bengio Y (2015)
Show, attend and tell: neural image caption generation with visual attention. In: International
conference on machine learning, pp 2048-2057

Yi QX, Huang JF, Wang FM, Wang XZ, Liu ZY (2007) Monitoring rice nitrogen status using
hyperspectral reflectance and artificial neural network. Environ Sci Technol 41(19):6770-
6775

YoulJ, Li X, Low M, Lobell D, Ermon S (2017) Deep gaussian process for crop yield prediction
based on remote sensing data. In: Thirty-First AAAI conference on artificial intelligence, pp
45594566

232

135.

136.

137.

138.

139.

140.

F. M. Riese and S. Keller

Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: Fleet
D, Pajdla T, Schiele B, Tuytelaars T (eds) Computer vision - ECCV 2014. Springer Interna-
tional Publishing, Cham, pp 818-833

Zhang J, Chen L, Zhuo L, Liang X, Li J (2018) An efficient hyperspectral image retrieval
method: deep spectral-spatial feature extraction with DCGAN and dimensionality reduction
using t-SNE-based NM hashing. Remote Sens 10(2):271

Zhong Y, Zhang L, Huang B, Li P (2006) An unsupervised artificial immune classifier for
multi/hyperspectral remote sensing imagery. IEEE Trans Geosci Remote Sens 44:420-431
Zhou D, Bousquet O, Lal TN, Weston J, Scholkopf B (2004) Learning with local and global
consistency. In: Advances in neural information processing systems, pp 321-328

Zhu K, Chen Y, Ghamisi P, Jia X, Benediktsson JA (2019) Deep convolutional capsule network
for hyperspectral image spectral and spectral-spatial classification. Remote Sens 11(3):223
Zhu L, Chen Y, Ghamisi P, Benediktsson JA (2018) Generative adversarial networks for
hyperspectral image classification. IEEE Trans Geosci Remote Sens 56(9):5046-5063

Chapter 8 ®)
Sparsity-Based Methods o
for Classification

Zebin Wu, Yang Xu and Jianjun Liu

Abstract Sparsity is an important prior for various signals, and sparsity-based meth-
ods have been widely used in hyperspectral image classification. This chapter intro-
duces the sparse representation methodology and its related techniques for hyper-
spectral image classification. To start with, we provide a brief review on the mech-
anism, models, and algorithms of sparse representation classification (SRC). We
then introduce several advanced SRC methods that can improve hyperspectral image
classification accuracy by incorporating spatial-spectral information into SRC mod-
els. As a case study, a hyperspectral image SRC method based on adaptive spatial
context is discussed in detail to demonstrate the performance of SRC methods in
hyperspectral image classification.

8.1 Introduction

In the last few decades, sparsity has become one of the most important concepts
in the field of signal processing. Sparsity concept has been widely employed in a
variety of fields, e.g., source separation, restoration, and compression. Sparse repre-
sentation was originally derived from compressed sensing [1-3], suggesting that if
a signal is sparse or compressive, the original signal can be reconstructed with a few
number of samplings. By introducing sparsity in sampling, compressed sensing has
achieved great success in information theory, image acquisition, image processing,
medical imaging, remote sensing, etc. Compressed sensing has also motivated many
researches on sparse representation. As a matter of fact, signals in real world may
not be sparse in the original space, but they can be sparse in an appropriate basis.

Z. Wu (X)) - Y. Xu
Nanjing University of Science and Technology, Nanjing, China
e-mail: wuzb@njust.edu.cn

J. Liu
Jiangnan University, Wuxi, China

© Springer Nature Switzerland AG 2020 233
S. Prasad and J. Chanussot (eds.), Hyperspectral Image Analysis,

Advances in Computer Vision and Pattern Recognition,
https://doi.org/10.1007/978-3-030-38617-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38617-7_8&domain=pdf
mailto:wuzb@njust.edu.cn
https://doi.org/10.1007/978-3-030-38617-7_8

234 Z. Wu et al.

Hyperspectral imaging sensors record reflected light in hundreds of narrow fre-
quencies covering the visible, near-infrared, and shortwave infrared bands. This abun-
dant spectral information yields more precise measures and makes it possible to gain
insight into the material at each pixel in the image. Supervised classification plays
a central role in hyperspectral image (HSI) analysis, such as land-use or land-cover
mapping, forest inventory, or urban-area monitoring [4]. Many methods have been
proposed for solving the HSI classification problem, such as logistic regression [5],
support vector machines (SVM) [6], artificial neural networks [7], and k-nearest
neighbor (KNN) classifier [8]. These methods can serve the purpose of generating
acceptable classification results. However, the high dimensionality of hyperspectral
data remains a challenge for HSI classification.

To address this problem, sparse representation [9, 10] has been employed for
classifying high-dimensional signals. A sparse representation classification (SRC)
method [10] has been first proposed for face recognition. A test signal is sparsely
represented by an over-complete dictionary composed of labeled training samples. At
the decision level, the label of each test sample is set as the class whose corresponding
atoms maximally represent the original test sample. Since then, SRC has been widely
used in face recognition [10, 11], speech recognition [12], and image super-resolution
[13]. Chen et al. [14] proposed an SRC framework for solving the HSI classification
problem, in which each sample is a pixel’s spectral responses. Inspired by this work,
many improved SRC methods have been proposed for HSI classification.

In this chapter, we investigate the SRC methods and present several advanced mod-
els of sparse representation for HSI classification. More specifically, we will give a
case study of SRC method that improves the classification accuracy by incorporating
the spectral—spatial information of HSI into the SRC framework.

8.2 Sparse Representation-Based HSI Classification

In the theory of sparse representation, given a dictionary, each signal can be linearly
represented by a set of atoms in the dictionary. Designing an over-complete dictionary
and obtaining the sparse representation vector through sparse coding are the two main
goals of sparse representation.

In HSI classification, SRC assumes that the features belonging to the same
class approximately lie in the same low-dimensional subspace spanned by dic-
tionary atoms from the same class. Suppose we have M distinct classes and
N;(i=1,2,..., M) training samples for each class. Each class has a sub-dictionary
D; = [d;,d;2,...,d;] € RE*N in which the columns represent training sam-
ples and B is the number of spectral bands. A test pixel x € R? can be represented
by a sparse linear combination of the training pixels as

x=Du« 8.1

8 Sparsity-Based Methods for Classification 235

whereD = [D; D, ...Dy] € RE*N with N = Zf‘il N; is the dictionary constructed
by combining all sub-dictionaries {D;};—;.._y. o € RY is an unknown sparse vector
with K nonzero entries. Here, we denote K = |o||,. The sparse coefficient vector o
is obtained by solving the following problem

mejrlllX —Dally stllely =< Ko (8.2)

where K| is a pre-specified upper bound of K. The class label of x is determined by
the minimal residual between x and its approximation from each class sub-dictionary,
i.e.,

class(x) = arg __lnéin M||X — D;o;ll, (8.3)

where «; is the sub-vector corresponding to the i-th class, and D; denotes the sub-
dictionary.

Problem (2) is NP-hard, and can be approximately solved by greedy algorithms,
such as orthogonal match pursuit (OMP) and subspace pursuit (SP).

In OMP algorithm, we select one atom from the dictionary that is most corre-
lated with the residual. The algorithmic flow of the OMP algorithm is described in
Algorithm 8.1.

Algorithm 1 Orthogonal Matching Pursuit
Input: Dictionary D=[d, d, ...d,], test samples X, normalize the dictionary
D and x.
Initialize: Set the residual r, =x, set the index set A, =, set iteration count
k=1;
While termination criterion not not satisfied do

ual most;
2) Update the index set A, =A, U4, ;
3) Compute P, =(D,T\‘ D,)’lDi‘xe R*, where D A, is the sub-dictionary
composed of the atoms from the index set;
4) Compute the residual r, =x-D, P,;
5) k=k+1;
Output: the index set A=A, , the sparse vector &, where the non-zero ele-

ments are (Dik D,)" Dik X, and the support is the determined by the index set.

The procedure of SP algorithm is similar to that of OMP algorithm. The difference
is that SP finds all the K atoms that satisfy (8.2) during one iteration. The complete
procedure of SP algorithm is provided in Algorithm 8.2.

236 Z. Wu et al.

Algorithm 2 Subspace Pursuit
Input: Dictionary D=[d, d, ...d,], test samples X, sparsity K , normalize the
dictionary D and Xx.
Initialize: Set the index set a,, where the element of a, are determined by the K

largest elements in x" D, set the residual r, = x-D,, (DZODAU) Diox , set itera-

tion count k=1;

While stopping criterion not satisfied do
1) Find the indices of K atoms according to the K largest elements in
r/ d, ,denoted as /

2) Update the index set A, = A, U/ ;
3) Compute P, = (Dik D,)71Dikxe R
4) Finthe K largest elements in P, , and update the index set A, ;
5) Compute the residual 1, =x—-D, (DL D,)" Dik X;
6) k=k+1;
Output: the index set A=A,,,, the sparse vector a, where the non-zero ele-

ments are (DiA D,)! DiA X, and the support is the determined by the index set.

8.3 Advanced Models of Sparse Representation
for Hyperspectral Image Classification

Many advanced methods based on SRC have been proposed for HSI classification.

In HSI, pixels within a small neighborhood usually consist of similar materials.
Therefore, these pixels tend to have high spatial correlation [14]. The corresponding
sparse coefficient vectors share a common sparsity pattern as follows.

Let {x,};=1,...r be T pixels in a fixed window centered at x;. These pixels can be
represented by

X = [X1X2...XT] = [DO(]DOlz...DOCT]
=Dlojoy...a7] =DS (8.4)
— e ———
S

In the joint sparsity model (JSM), the sparse vectors {o};—;,. 7 share the same
support 2. S is a sparse matrix with |€2| nonzero rows, which can be obtained by
solving the following optimization problem,

min[|X —DS|lr st [ISllow.0 = Ko (8.5)

8 Sparsity-Based Methods for Classification 237

where |[|Sl;ow.0 denotes the number of nonzero rows of S, and ||| denotes the
Frobenius norm. The problem in (8.5) can be approximately solved by the simulta-
neous version of OMP (SOMP). The label of the central pixel x; can be determined
minimizing the total residual

class(x;) = arg A_rlnianlX —D;SillF (8.6)

.....

where S; is the sub-sparse coefficient matrix corresponding to the i-th class.
Note that, the optimization models (8.2) and (8.5) are non-convex, and can be
converted into convex versions by relaxing the norm constraints:

1
mO}HQIIX—DotH%H»IIOCIh (8.7)

o1
min 2| X = DS|Z + A1ISll1. (8.8)

N N

where [loe]l; = Y || is the ¢4 norm, [|S]l;, = Y |s' ||2 is the £;, norm, and s’
i=1 i=1

represents the i-th row of S.

The JSM model enforces that the pixels in the neighborhood of the test sample
are represented by the same atoms. However, if the neighboring pixels are on the
boundary of several homogeneous regions, they would be classified into different
classes. In this scenario, different sub-dictionaries should be used. Laplacian sparsity
promotes sparse coefficients of neighboring pixels belonging to different clusters to
be different from each other. For this reason, a weight matrix W is introduced, where
w;; represents the similarity between a pair of pixels X; and x; in the neighborhood
of the text sample. As reported in [15], the optimization problem with additional
Laplacian sparsity prior can be described as

!
min = |X — DSIG+11 ISl 422 Y wills: =3 (8.9)

iJj

where Ay and X, are regularization parameters. s; is the i-th column of matrix S.
Weight matrix W can characterize the similarity among neighboring pixels in the
spectral space. If two pixels are similar, the weight value will be large. As a result,
their corresponding sparse codes will be similar. On the other hand, if two pixels are
less similar, the weight value will be small, allowing a large difference between their
sparse codes. Laplacian sparsity prior is more flexible than the joint sparsity prior. In
fundamental, the joint sparsity prior can be regarded as a special case of Laplacian
sparsity. Laplacian sparsity prior can well characterize more pixels in the image,
since the sparse codes of the neighboring pixels are not limited to have the same
supports. Suppose L = I — H'/?WH~!/? is the normalized symmetric Laplacian
matrix and, H is the degree matrix computed from W. We can have the following

238 Z. Wu et al.

new optimization problem:
1
msin§||X —DS||% + A1[IS]l + ratr (SLST) (8.10)

In JSM model, each pixel is represented by the atoms in the dictionary, and is
classified according to the residual between the sparse codes multiplying the sub-
dictionary. It is a reasonable assumption that each pixel can only be represented
by one sub-dictionary. This condition can be achieved by enforcing the sparse codes
corresponding to one sub-dictionary to be active and other ones to be inactive. Group
Lasso sums up the Euclidean norm of the sparse codes corresponding to all sub-
dictionaries as the sparsity prior. In [15], group Lasso is introduced as the new
regularization in the optimization problem, i.e.,

1
m;nEHX—DocH%~|—)\gEZGa)g||ocg||2 (8.11)

where ¢ C {G1, G2, --Gpyl, Y. ||ocg ||2 represents the group sparse prior defined
geG

in terms of M groups, w, is the weight and is set to the square root of the cardinality
of the corresponding group. Note here that o, represents the coefficients of different
groups. In a similar way, the group sparsity [15] can be employed in the JSM model
as follows:

1
mSm§||X—DS||§+AZng||Sg||F (8.12)
ge

where Y ”Sg || refers to the collaborative group Lasso regularization defined in
geG

terms of groups, and S, is the sub-matrix corresponding to the g-th sub-dictionary.

In models (8.11) and (8.12) only group sparsity is introduced, and the sparsity
of the sparse code corresponding to sub-dictionary is not taken into consideration.
When the sub-dictionary is over-complete, it is important to introduce the sparsity
within each group [15]. The £;-norm regularization can be incorporated into the
objective function of (8.11) as follows:

1 2
min 1x = Detll3 + A1 Y o org |, + A el (8.13)
geG
Similarly, the problem in (8.13) can be extended to JSM as follows:

1
min X — DS|[7+3; D 0 [Sell . 21 Y g [Se] (8.14)
geG geG

8 Sparsity-Based Methods for Classification 239

Another effective method is to introduce the correlation coefficient (CC) [16].
Traditionally, CC value is used to measure the correlation between different variables.
In HSI classification, we can use CCs to determine whether pixels represent the same
class. In general, CC can be calculated as follows:

B
cov(x;, X;) B Doy (Kip — ux) (X — uy,)

VRGNS S e

(8.15)

where var(x;) and var(x;) are the variance of x; and x;, respectively. x;, refers to
the z-th element in x;.uy, = (1/B) Zle Xz, and uy, = (1/B) Zle X, represents
the mean values of the corresponding vectors. According to the definition of CC, we
have |p| < 1. Stronger correlation indicates that p is close to 1.

Following the method in [16], CCs among the training samples and test samples
are first calculated. Given a test sample x and any training sample dj., where dj.
represents the j-th atom in the i-th sub-dictionary. The CC between x and d;. can be
calculated as follows:

cov(d’ X) ZZ 1 [(dl)e — g (%) — ux]
" @) - e \/Z 1), —ug P Y 100, — P
(8.16)
We define a matrix p* = {p{, p5, ..., pj,}. This matrix is sorted in descending

order according to CCs among different training samples. Subsequently, the mean
of L largest p' is calculated as the CC cor’. Assuming that the L largest p’ consists
of {p{, pé, el ,02}, the CC cor' can be calculated as

. 1 . . ;
cor' = 2 (pi +py+ -+ p1)- (8.17)

Finally, the CC is combined with the JSM at the decision level to exploit the CCs
among training and test samples as well as the representation residuals.

class(xy) = arg mm ||X D;S; || + A(1 — cor (Xl)) (8.18)

.....

where cor’ € [0, 1] represents the CCs among pixels, and A is the regularization
parameter.

One more approach to improve SRC is kernel trick. As an extension of SRC,
kernel SRC (KSRC) uses the kernel trick to project data into a feature space, in
which the projected data are linearly separable.

Suppose the feature mapping function ¢ : R® — RX (B < K) maps the
features and also the dictionary to a high-dimensional feature space, x — ¢(x),
D = [d;,d;,...,dy] = ¢(D) = [¢(d)), ¢(d2),...,¢(dy)]. By replacing the

240 Z. Wu et al.

mapped features and dictionary in (8.7), we have the KSRC model,

1
HEHEIW(X)—¢(D)06||2+)»||06||1- (8.19)
Similarly, the class label of x is determined as

class(x) = arg_min [l$(x) — ¢ Di)exill,. (8.20)

It is worth mentioning that all ¢ mappings used in KSRC occur in the form of
inner products, allowing us to define a kernel function k for any samples x; € RZ.

k(xi, X)) = (p(x;), p(x;)) (8.21)

In this way, KSRC can be constructed using only the kernel function, without con-
sidering the mapping ¢ explicitly. Then, the optimization problem can be rewritten
as

1
minEozTro—ocp+x||oz||1 +C (8.22)
o

where C = %k(xi, X;) is a constant, Q is a B x B matrix with Q;; = k(d;, d;), and
pisa B x 1 vector with p; = k(d;, x). Analogously, the classification criterion can
be rewritten as

class(x) = arg _min 8] (0)Q8(a) — 28] ()p (8.23)

.....

where §; (+) is the characteristic function that selects coefficients within the i-th class
and sets all other coefficients to zero.

Valid kernels are only those satisfying the Mercer’s condition [17, 18]. Some
commonly used kernels in kernel methods include linear kernel, polynomial kernel,
and Gaussian radial basis function kernel. Assuming k; and k; are two valid Mercer’s
kernels over X x X withx; € X € R® and z > 0, the direct sum k(x;, X;) =
ki (x;, x;) + k2 (x;, X;), tensor product k(x;, X;) = k;(x;, X;) - ka(x;, X;), or scaling
k(x;, x;) = zK;(x;, X;) are valid Mercer’s kernels [19].

A suitable kernel is a kernel whose structure reflects data relations. To properly
define such a kernel, unlabeled information and geometrical relationships between
labeled and unlabeled samples are very useful. The spatial-spectral kernel sparse
representation is proposed [20], in which the neighboring filtering kernel is presented
and the corresponding optimization algorithm is developed.

A full family of composite kernels (CKs) for the combination of spectral and
spatial contextual information have been presented in SVM [21, 22]. These kernels
are valid and are all suitable for KSRC. Although one can improve the performance of
KSRC by CK, it is worth noting that the kernel should learn all high-order similarities
between neighboring samples directly, and should reflect the data lying in complex

8 Sparsity-Based Methods for Classification 241

manifolds. For these purposes, the neighbor filtering (NF) kernel would be a good
choice, which computes the spatial similarity between neighboring samples in the
feature space.

Given x" € Q,m = 1,2,...,w?*, with Q being the spatial window @ around
pixel. Let ¢ (x) be the image of X under the mapping ¢. In order to describe ¢ (x),
a straightforward way is to use the average of spatially neighboring pixels in the
kernel space. This method is similar to the mean filtering. The estimated vector is
given by

| &
ME@(x) = — 3 ¢(x"). (8.24)

m=1

However, the mean filtering rarely reflects relative contributions (which treats
every neighboring pixel equally). To address this issue, the neighboring filtering is
defined as

NF(¢ (x)) = — Z w"¢(x™) (8.25)

l’ﬂ

where w” = exp(—pp||x — x| |§) and parameter y, > 0 acts as a degree of filtering.
Let us consider two different pixels x; and x;. We are interested in defining a
similarity function that estimates the proximity between them in a sufficiently rich
feature space. A straightforward kernel function reflecting the similarity between
them is obtained by evaluating the kernel function between the estimated vectors

kne (%, ;) = (NF($ (%)), NE(@(x;)))
T wrey S Wi (<))
S\ Xawr T Ew
S WIWIK (K, X1

_ ST , (8.26)

which is referred to as neighbor filtering (NF) kernel. Similarly, we can define mean
filtering (MF) kernel as follows:

ke (X, X;) = (MF(¢(x))) , MF($(x;)))

1 o’ 1 »’
=\ =2 06D =D ¢(x7>>

= % ZZ ", x5 (8.27)

242 Z. Wu et al.

which computes the spatial similarity between neighboring samples, whereas the
cluster similarity is computed in the mean map kernel.

Since Q is a valid kernel, the objective function of (8.22) is convex, which is
the same as the objective function of (8.19) except for the definition of Q and p.
Therefore, alternating direction method of multipliers (ADMM) [23] can be used to
solve this problem. By introducing a new variable u € R2, the objective function
can be rewritten as

1
min EoeTQoz —a'p+ Allall,
o

s.t. u=o. (8.28)

ADMM imposes the constraint u = a which can be defined as

. 2
(@D, u*D) = argmin o’ Qo — o’ p + Allefl; + & o —u —d? ||2
o,u

de+) = q® — (a(t-H) _ u(l+l))
(8.29)
where ¢ > 0 and y > 0. The minimizing solution o+ is simply determined as

o™ — (Q+uD 7 (p + pn@? +dM)), (8.30)

where I is the identity matrix. The minimizing solution u*" is the soft threshold
[24],

u™D — soft(a —d D, a/p), (8.31)
where soft(-,) denotes the component-wise application of the soft-threshold
function y <« sign(y)max{|y| — 7, 0}.

The optimization algorithm for KSRC is summarized in Algorithm 8.3.

Algorithm 3 Spatial-Spectral Kernel Sparse Representation Classification

Input: A training dictionary De R*”" | and a test sample xe R”
1) Select the Mercer kernel k ;. (or others) and its parameters.

2) Compute the matrix Q , and the vector p .

3) Set t=0, choose (>0, s u® 4@,

4) repeat.

5) Compute s“™, u“"" and d"*" using (29)

6) t<t+1

7) until some stopping criterion is satisfied.

8) compute the M residuals 7(x) =&, (s)QJ,(s)—28, (s)p,i=1,2,..., M.
Output: The estimated label of X according to (23)

8 Sparsity-Based Methods for Classification 243

8.4 A Case Study of Hyperspectral Image Sparse
Representation Classification Based on Adaptive
Spatial Context

8.4.1 Model and Algorithm

In model (8.5), pixels in a fixed window centered at the test pixel are selected to
be simultaneously sparse represented. All pixels in the fixed window have the same
correlation with the center pixel. However, this condition does not always hold,
especially for pixels located on the edge which can be seen as class boundary. It is
obvious that pixels on the same side of the edge will have stronger correlation. Since
different pixels have different spatial context, the definition of local structure for the
adaptive spatial context is essential to HSI classification.

In the field of image recovery, steering kernel (SK) [25] is a popular local method,
which can effectively express the adaptive local structure. This method starts with
making an initial estimate of the image gradients using a gradient estimator, and then
uses the estimate to measure the dominant orientation of the local gradients in the
image [26]. The obtained orientation information is then used to adaptively “steer”
the local kernel, resulting in elongated, elliptical contours spread along the directions
of the local edge structure.

Taking into consideration that HSI generally contains hundreds of sub-images,
a high-dimensional steering kernel (HDSK) [27] is defined where the gradient esti-
mator contains every sub-image’s gradients. The gradients in vertical and horizontal
directions are written as follows:

- L wh
I = xtally xe —xt

h
(Vx!, Vx;') = (B , B

) (8.32)

where x; | and th ', represent the neighboring pixels of x; in vertical and horizontal
directions. HDSK for pixel x; is defined as

/det(C;) exp((e; —e;)TCi(e; —e;)
wip = Y oo
I T P 202

) (8.33)

where e; and e; represent the coordinates of pixel x; and pixel x;, respectively, & is the
smoothing parameter used for controlling the supporting range of the steering kernel,
and C; is the symmetric gradient covariance in vertical and horizontal directions in
a M x M window centered at x;. A naive estimate of this covariance matrix can be
obtained by C; = J!J;, where

\%.4 in’
Ji = : : (8.34)

v h
VXsm VX¥ysm

244 Z. Wu et al.

Here, xi, -+, Xy <y are the M x M neighboring pixels in the local window
centered at x;. The resulting w;; can be explained as the correlation between pixels
x; and Xx;. Since a large weight in steering kernel mean two pixels have strong
correlation, HDSK could be an effective way to represent the local structure. For
example, Fig. 8.1 shows the 10-th band image in the University of Pavia HSI and
the calculated HDSKSs for different pixels. It can be observed that when pixels are
in a homogeneous region, the shape of HDSK is cycles without any directional
preference. When the pixels are in the intersection or the boundary of different
classes, the shape of HDSKSs is oval and exhibits clear directional preference. The
direction of the long axis of the oval indicates that similar pixels may appear in this
direction.

Once having determined the local structure of a test pixel x; using (8.20), we
select P pixels whose weights are larger than the others. These pixels can be stacked
as XP = [x;1X;2...X;p] € REXP and wP = [w;wy ... wp]T is the corresponding

Fig. 8.1 Examples of HDSKs

8 Sparsity-Based Methods for Classification 245

weight vector. It is believed that these selected P pixels have more compact inner
patterns than those in a fixed window do. The adaptive spatial contextual information
is introduced by the following problem:

S = argnSl}’nHXP —DS”
s.t|[SP < Kp

row,0 —

I (8.35)

Algorithm 4 ASC-SOMP Algorithm

Input: Dictionary D=[d, d, ...d,], test samples {x,},_,, ,,window size M ,

and the number of selected pixels P

1))

covariance

Pre-calculate: First compute gradients as in (34), then compute the gradient

C,.{i=12,..,L}

While i <L do

Compute steering kernel of x, according to (33)

Sort the pixels in the window as their weights from large to small, select the
first P pixels and stack them as and record their weights

Initialization, residual R, = X, index set A, =, iteration counter k =1

2)
3)
4)
a)
b)
©)
d)
e)
5)
end while

While stopping criterion has not been met do

Find the index of the atom that best approximates all residuals,
A, =arg max ||Rd, ||

=1,..,N

Update the index set A, =A, V{4 }
Compute M, = (Dik D,)_IDZA X" e R¥" | D, e R consists of the k
atoms in D indexed in A,

Determine the residual
k< k+1

Output: the sparse representation , its nonzero rows indexed by A which
are the K rows of the matrix (DD,)" D} X" where A=A, ,

Determine the label of X; according to (36)

Once the coefficient matrix S is obtained, a new classifier is designed based on
the HDSK. As the weights in the HDSK reflect the influence of neighboring pixels
on the test pixel, the original decision rule (8.6) is replaced by

class(x;) = arg min [(X" —D;S7)w"|, (8.36)
j:

.....

The joint sparse HSI classification method based on adaptive spatial context is
named adaptive spatial context SOMP (ASC-SOMP), of which the general flow is
summarized in Algorithm 8.4.

246 Z. Wu et al.

8.4.2 Experimental Results and Discussion

This section uses two real hyperspectral datasets to verify the effectiveness of ASC-
SOMP algorithm. For each image, the pixel-wise SVM, SVM with composite ker-
nel (SVM-CK) [19], OMP [14], SOMP [14] are compared with ASC-SOMP both
visually and quantitatively. We select Gaussian radial basis function (RBF) for the
pixel-wise SVM and SVM-CK methods, since RBF has proved its capability han-
dling complex nonlinear class distributions. The parameters in SVM-based methods
are obtained by fivefold cross-validation. For methods involved with composite ker-
nels, the spatial kernels were built by using the mean and standard deviation of the
neighboring pixels in a window per spectral channel. Each value of the results is
obtained after performing ten Monte Carlo runs.

The training and test samples are randomly selected from the available ground
truth map. The classification accuracy is evaluated by the overall accuracy (OA)
which is defined as the ratio of the number of accurately classified samples to the
number of test samples, the coefficient of agreement (k) which is the ratio of the
amount of corrected agreement to the amount of expected agreement, and the average
accuracy (AA). To be specific, OA is calculated by

C
OA = ZEij/N (8.37)
i=1

where N is the total number of samples, and E;; represents the number of samples
in class i which are miss-classified to class j.
AA is calculated by

C C
Ad=)" E,,/ZE,-,- /c (8.38)
i=1 j=1

The « statistic is calculated by weighting the measured accuracies. This metric
incorporates the diagonal and off-diagonal entries of the confusion matrix and is
given by

K= N(iX:E,-,)—XC: XC:EUXC:Eﬁ /NZ_XC: XC:EUZC:Eﬁ

8 Sparsity-Based Methods for Classification 247
8.4.2.1 Hyperspectral Dataset of AVIRIS Indian Pines

The Indian Pines image contains 145 x 145 pixels and 200 spectral reflectance
bands, among which 24 water absorption bands have been removed. The ground
truth contains 16 land cover classes and a total of 10366 labeled pixels. We randomly
choose 10% of labeled samples for training, and use the rest 90% for testing. The
false color image and ground truth are shown in Fig. 8.2a, b.

The parameters for ASC-SOMP algorithm are setto P = 120, Ko = 25, h = 25,
and M = 21. The window size of SOMP algorithm is empirically set to 9 x 9. The
classification results, in terms of overall accuracy (OA), average accuracy (AA),

- Com-notill Soybeans-notill
- Corm-min Soybeans-min

- Com - Soybean-clean

U GrassiPasture - Wheat
Grass/Trees - Woods
Grass/Pasture-mowed I. Building-Grass-Tree
Hay-windrawed - Stone-steel Towers

Fig. 8.2 Classification results of Indian Pines image, a false color image (R, 57 G, 27 B, 17),
b ground truth, ¢ SVM (OA, 85.24%), d SVM-CK (OA, 93.60%), e OMP (OA, 75.67%), f SOMP
(OA, 95.28%), g ASC-SOMP (96.79%)

248 Z. Wu et al.

Table 8.1 Classification accuracy (%) For the Indian Pines image on the test set

Class #train #test SVM | SVM-CK | OMP | SOMP | ASC-SOMP
samples | samples

Alfalfa 6 48 31.25 | 62.08 65.62 | 85.42 91.67
Corn-no till 144 1290 82.80 | 92.71 64.58 | 94.88 95.74
Corn-min till 84 750 75.01 | 91.29 61.36 | 94.93 96.27
Corn 24 210 64.42 | 79.71 44.80 | 91.43 95.24
Grass/Pasture 50 447 93.08 | 95.59 91.09 | 89.49 93.96
Grass/Trees 75 672 95.46 | 98.09 94.04 | 98.51 99.70
Grass/Pasture-mowed 3 23 4.35 49.56 84.78 | 91.30 56.20
Hay-windrowed 49 440 98.81 | 98.47 97.97 | 95.55 100
Oats 2 18 0.00 0.00 43.33 | 0.00 2222
Soybeans-no till 97 871 76.76 | 89.97 70.76 | 89.44 92.31
Soybeans-min till 247 2221 87.76 | 96.13 76.22 | 97.34 98.42
Soybean-clean till 62 552 85.25 | 89.49 57.91 | 88.22 92.39
Wheat 22 190 98.53 | 96.63 97.73 | 100 99.47
Woods 130 1164 97.62 | 98.04 94.09 | 99.14 100
Building-Grass-Trees-Drives | 38 342 56.11 | 89.29 44.26 | 99.12 100
Stone-steel Towers 10 85 81.17 | 88.11 90.47 | 96.47 95.29
OA (%) 85.24 | 93.60 75.67 | 95.28 96.79
AA (%) 70.52 | 92.70 7222 | 88.45 89.33
K 83.11 | 82.20 73.69 | 94.60 96.34

statistic, and class individual accuracies, are shown in Table 8.1. The final maps are
illustrated in Fig. 8.2c—g. It can be observed that ASC-SOMP algorithm achieves the
highest OA of 96.79%, which is 1.5% higher than the second-highest OA. Classifi-
cation results using different percentages of labeled samples for training are shown
in Fig. 8.3. In this figure and the following, error bars indicate the standard deviation
by random sampling. From Fig. 8.3, both numerical and statistical differences can
be observed.

Next, we demonstrate the impact of the number of selected neighboring pixels
P upon the performance of ASC-SOMP algorithm. We use 10% of data in each
class as training samples. The number of selected pixels P ranges from P = 80 to
P = 140, and the sparsity level K, ranges from Ky = 5 to Ky = 45. The plots
of overall accuracy evaluated on the entire test set are shown in Fig. 8.4. When
Ko = 25 and P > 110, a relatively high classification accuracy can be achieved.
Compared with SOMP algorithm, ASC-SOMP leads to the same optimal K value,
but the optimal P value is significantly larger. As pixels are selected according to
their spatial correlation to the center pixel, it is reasonable to select more pixels that
can be sparsely represented simultaneously.

To investigate the effect of the introduced adaptive spatial context, we compare
ASC-SOMP with traditional joint sparsity method in detail. It is obvious that SOMP
is not able to identify any samples belonging to oats class. This observation is because
oat pixels cover a very narrow region of size 10 x 2 located in the middle-left of

8 Sparsity-Based Methods for Classification 249

! ; ! ! ! ; _' 1 ! ! 3

. - -— - s - o) T - k...
T T e e O S o S e s
o . — ey b T— — — i

D75k eereersei W S VU G o e pa—— T s .

Overall accuracy

o P— bl sl Tormt -2 U (OO N S S—

1] PP '

—&— SVM
—&— SVWM-CK
omP
—+— SOMP

: : : : i : : —— ASC-SOMP
055 i i 1 I i i i 1
] 1 2 3 4 5 B 7 8 9 10 "

| |- W - — S S (N S—

Percent of labeled samples for training

Fig. 8.3 The overall accuracy of Indian Pines for different numbers of training samples

98 T T T

Overall Accuracy

—+— K0=5

84| —6— K0=15
—&— K0=25
821 #— K0=35
—+— K0=45

30 Il 1] 1 L
80 90 100 110 120 130 140

Number of Selected Pixels P

Fig. 8.4 Effects of the sparsity level Ko and number of selected pixels P for Indian Pines

250 Z. Wu et al.

Fig. 8.5 Amplified map in two regions, a and ¢ are results of SOMP, b and d are results of
ASC-SOMP

the image. In SOMP, the optimal 9 x 9 local window centered at each oat pixel
is dominated by pixels belonging to the other two adjacent classes. In contrast,
ASC-SOMP achieves a 22.22% classification accuracy for oat class. By introducing
adaptive spatial context, pixels distributed along the direction of the narrow region
are selected as they have large correlation with the test pixel. On the other hand, pixels
belonging to the other two classes whose weights are small have less impact upon
our decision rule. Thus, better results can be obtained. However, the classification
accuracy for oat class is still very low, because the total number of oat class is much
less than the selected pixels to be sparsely represented simultaneously, and most of
the selected pixels do not belong to oat class oat.

Taking into consideration that the effect of adaptive spatial context is clearer
in the class boundary, more attention should be paid on the edge. We amplify the
region of SOMP result and the region of ASC-SOMP result to verify the effect
of adaptive spatial context. Figure 8.5 shows that our classification result has less
wrong-classified pixels in the class boundary, demonstrating the advantages of the
adaptive spatial context.

8.4.2.2 Hyperspectral Dataset of ROSIS Pavia University

The second hyperspectral data set was collected by the ROSIS optical sensor over
the urban area of the Pavia University, Italy. The image size in pixels is 610 x 340,
with a very high spatial resolution of 1.3 m per pixel. The number of data channels
in the acquired image is 103 (with the spectral range from 0.43 to 0.86 xm). Nine
classes of interest were considered, including tree, asphalt, bitumen, gravel, metal
sheet, shadow, bricks, meadow, and soil. Figure 8.6a, b shows the three-band false
color image and the ground truth map, respectively. We randomly sampled 60 pixels
for each class as the training samples and use the remainder as test samples. The
optimal parameter settings for the ASC-SOMP method are P = 100 and K, = 5.
In SOMP, the window size was set to 9 x 9, and the sparsity level was set to Ky =

8 Sparsity-Based Methods for Classification 251

(a)

Asphalt
Meadows

Gravel

B oo

Bare soil

- Eitumen
[-

Shadows

Fig. 8.6 Classification results of University of Pavia image, a false color image (R, 57 G, 27 B, 17),
b ground truth, ¢ SVM (OA, 84.26%), d SVM-CK (OA, 91.60%), e OMP (OA, 71.12%), f SOMP
(OA, 83.60%), g ASC-SOMP (85.07%)

15. We set h = 25 and M = 21 as in the previous set of experiments. The final
classification maps are illustrated in Fig. 8.6c—g. The classification results, in term
of overall accuracy (OA), average accuracy (AA), k statistic, and class individual
accuracies, are provided in Table 8.2. The ASC-SOMP method outperforms other
methods except for SVM-CK. SVM-CK achieves the best results since it is a spectral—
spatial nonlinear kernel method. Figure 8.7 illustrates the classification accuracies
by using different number of training samples. This result justifies the robustness of
ASC-SOMP method. Figure 8.8 shows the performance in terms of overall accuracy
with different numbers of selected pixels P at sparsity level Ko = 5 and Ky = 10,
respectively. The number of selected pixels P ranges from 50 to 110. Figure 8.8
also shows that the overall accuracy improves as P value increases. This conclusion
isconsistent with the conclusion drawn on the dataset of AVIRIS Indian Pines.

252 Z. Wu et al.

Table 8.2 Classification accuracy (%) for University of Pavia on the test set

Class #train #test SVM | SVM-CK | OMP | SOMP | ASC-SOMP
samples | samples
Asphalt 60 6571 7792 | 88.98 57.62 | 47.87 52.01
Bare soil 60 18589 81.67 | 93.09 71.96 | 91.59 91.36
Bitumen 60 2039 82.13 | 87.65 65.85 | 92.15 93.52
Bricks 60 3004 95.33 | 97.52 89.83 | 89.34 95.97
Gravel 60 1285 99.15 | 99.47 99.75 | 100 99.24
Meadows | 60 4969 87.92 | 89.66 63.38 | 87.74 86.76
Metal 60 1270 93.59 | 94.55 85.85 | 9598 97.92
sheets
Shadows 60 3622 83.70 | 83.03 68.30 | 84.40 87.00
Trees 60 887 99.96 | 99.14 94.61 | 73.95 85.49
OA (%) 84.26 | 91.60 71.12 | 83.60 85.07
AA (%) 79.75 | 88.95 63.17 | 78.56 80.50
K 89.04 | 92.57 7746 | 84.78 87.70
1 T T T T T T
>
o
B
=]
)
o
©
s
o
>
o
[l?s_ ISP : A A o :.. :.. o S o
0T i s crtoiinlasniianninaiinis B s —5— SV
: : ! : —E— SVM-CK
——OMP
: : : ; —+—SOMP
i i i i —é— ASC-SOMP
085)) 7 % % % o

Training samples for each class

Fig. 8.7 The overall accuracy of University of Pavia for different numbers of training samples

8 Sparsity-Based Methods for Classification 253

86 T T T T T

Overal Accuracy

B —e—Ki=5]
—6— KD=10
BU 1 L 1 1 1
50 60 70 80 a0 100 110

Mumber of Selected Pixels P

Fig. 8.8 Effect of different numbers of selected pixels P for University of Pavia

8.4.2.3 Discussion

The ASC-SOMP method and the nonlocal-weighted version of SOMP (NLW-JSRC)
[28] both were developed for improving the original SOMP method. The weights for
the neighboring pixels are calculated in both methods. We compared our method with
NLW-JSRC. All experiments were performed using the same experimental setup as
in the work of NLW-JSRC, where 9% of the labeled data are randomly sampled as the
training samples, and the remainder of the data are used as test samples. Tables 8.3
and 8.4 present the comparisons of results by both methods. We can observe that
the ASC-SOMP method outperforms the NLW-JSRC method, indicating that the
steering kernel can better describe the spatial context than the nonlocal weights can.

h and M are two important parameters that control the supporting range of the
steering kernel and determine the contributions of the selected pixels to the clas-
sification of test pixel. We further evaluate the classification accuracy on the two
images for different 4 and M values. We use the same training samples as in previous
experiments. & ranges from 1 to 45, and the window size M ranges from 13 x 13 to
29 x 29. Figure 8.9a indicates that the classification accuracy is relatively high when
his between 10 and 35. If /2 is too small, the variance of the weights is large, resulting
in the outcome that a few pixels with large weights dominate the classification deci-
sion. If 4 is too large, on the other hand, the gap be