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Abstract. The paper considers the classical problem of optimal saving
rate (golden rule) for an endogenous production function built on the
basis of a micro-description of the dynamics of production capacity. The
production capacities are distributed according to the moments of cre-
ation (vintage capacity model) and are limited by the age of their possible
use. The main hypothesis of the model is that the number of workplaces
on a production unit is fixed, and the capacity decreases with a constant
pace. The resulting production function reflects explicitly the mecha-
nisms for control of the production system. The average labor intensity
is a short-term control, while the share of new capacities and their age
limit are long-term controls. The golden rule for the Solow model is for-
mulated in terms of capacity and labor intensity. The new endogenous
production function gives new effects. The optimal level of accumulation
rate does not depend on the choice of output elasticity by a production
factor. The age limit of production capacity is a new production factor
of the endogenous production function. It affects the value of effective
labor per unit of capacity stock.

Keywords: Vintage capacity model · Endogenous production
function · Russian economy model · Golden rule · Saving rate · Solow
model

1 Introduction

The golden rule of capital accumulation is well known in mathematical economics
and it is included in standard courses on economic growth [1,2]. The solution
to this problem has been considered in many works, see, for example, [3–5].
The golden rule of capital accumulation establishes a condition under which the
capital-labor ratio (capital stock per worker) maximizes average consumption
(consumption per worker) in a steady state of economic growth. In a simple
model without scientific and technological progress, the golden rule boils down
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to the fact that the marginal productivity of capital is equal to the sum of the
population growth rate and the rate of capital degradation.

A clear mathematical formulation of the problem of optimal economic growth
for the simplest dynamic economic model, taking into account restrictions on
control, is presented, for example, in [6]. In addition, it is possible to solve the
control synthesis problem, i.e. find an explicit expression of the dependence of
the optimal control on the state of the system (phase coordinate) [6]. The latter
allows to formulate a universal golden rule [6] for choosing the optimal level of
consumption depending on the current level of capital-labor ratio, valid for all
time points and for all not too large initial levels of capital-labor ratio. On the
contrary, here the golden rule is not considered for the entire optimal trajectory
of movement, but only for those areas where the optimal control does not take
boundary values and for characteristic growth pathes. However, this problem is
considered here not only for the standard Cobb-Douglas production function,
but in the main for a new endogenous production function. This allows us to get
new effects that have an economic applied character.

In the extreme case, if the savings are zero, all the income is consumed, which
cancels the investment as well as the replacement of the capital which wears out.
In the long run, when capital is fully consumed, income is reduced to almost zero.
The same is true for consumption: an excessive preference for short-term con-
sumption is to the detriment of future generations. If the savings are equal the
full income, all these revenues could go to investment but consumption is zero
and there is no incentive to invest. Growth is zero, too. Excessive foresight does
not benefit future generations either. Between these two extremes, there is (at
least) a level of savings that maximizes average growth, allowing the growth of
regular and identical consumption for all generations (intergenerational solidar-
ity). According to [4], the only way to reach this optimum is to set the real
interest rate at a value equal to population growth. Indeed, if we can adjust the
marginal productivity rate of capital to the population growth rate, we can also
adjust the savings rate to the share of profit in the national income.

Formally writing, the nation wants to maximize intertemporal utility
∫ ∞

0

e−δtu(ct)dt,

where u(ct) is the instant utility of consumption and δ is the subjective rate of
time discount. If K is capital, L is labor and Y is output of production, then
k = K/L is the ratio of capital to labor, f(k) = Y/L is the homogeneous of
degree one production function. The evolution of consumption depends on the
differential equation

k̇ = f(k) − nk − c,

where c = C/L is the per capita consumption, n = L̇/L is the growth rate of
the population, and the point above a variable is the derivative over time. The
current value of the Hamiltonian has the form

H = u(ct) + χ (f(k) − nk − c) ,
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where χ is the constant auxiliary variable. After substituting this variable under
first-order conditions, we find

(u′′(c)/u′(c)) ċ = δ + n − f ′(k).

Really, ∂H/∂ct = ∂u/∂ct − χ = 0, χ̇ = χδ − ∂H/∂k = χ(δ − f ′(k) + n), so
χ = u′(c), and χ̇ = u′′(c)ċ. For stationary equilibrium we have ċ = 0 and then

f ′(k∗) = δ + n.

With this modified golden rule, the ratio of capital to labor will be smaller
because of the impatience of the society represented by the discount rate of
time.

Further, in the work, we will not take into account the discount rate, but
instead of this we will take into account technological progress, and also move
on from considering capital to considering production capacity.

In [7], on the basis of aggregating the original micro-description of production,
a new class of production functions was obtained. Such a production function,
along with other parameters, contains directly the growth rate of the economy,
which makes the task of finding optimal accumulation more interesting, even in
the absence of scientific and technological progress. The production function [7]
shows the dependence of output on production factors, which are total labor and
total production capacity. Production capacity is the highest possible output. For
the transition from the capital to the production capacity, the capital intensity
is used.

Works [8,9] give numerical representations of the endogenous production
function of type [7], which, along with the growth rate of the economy and the
rate of degradation of capacities, contains the maximum age of production capac-
ity. Thus, the production capacity leaves the production process, not only due
to its degradation but also due to its dismantling when exceeding the maximum
age (due to its obsolescence).

In the description of the golden rule, we move from the variable capital-labor
ratio to the average labor intensity of capacities.

2 Solow Model in Terms of Capacity and Labor Intensity

Here we express the Solow model of economic growth [3] in terms of the Houthak-
ker–Johansen model [7,10,11]: Y (t)—total output (GDP), M(t)—total produc-
tion capacity (maximum possible output), L(t)—the number of workers (it is
proportional to population), ν(t)—the smallest labor intensity (labor input rate
per unit of product, that is the number of workers per one unit of output). The
last one characterizes technical progress. In these variables, we assume that a
production function sets the dependence of output (GDP) Y (t) on the total pro-
duction capacity (in units of output) M(t) and total effective labor, taking into
account its efficiency (in units of output it is the ratio of workers to the small-
est labor intensity), L(t)/ν(t). Technological progress that enters in this way is
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known as Harrod-neutral or labor-augmenting [2]. Note, that in this formulation,
the use of a homogeneous production function of the first degree does not cause
problems with the units of measurement. For example, for the Cobb–Douglas
production function Y = Mα(L/ν)β with α + β = 1, we have the units of the
output [Y ] = [Y ]α[Y ]1−α = [Y ].

For a homogeneous production function Y (t) = F (M(t), L(t)/ν(t)) one of
two variables can be taken out in order to obtain an intensive form of production
function F , function f of one variable. In our case, it is more convenient to take
out the total production capacity, then

Y (t) = M(t)f(x), x =
L(t)

ν(t)M(t)
(1)

and the production function in intensive form has the meaning of the function of
loading the total capacity. If the output does not exceed the maximum possible
output, Y (t) ≤ M(t) (the production capacity overload is not allowed), then
f(x) ≤ 1. For example, for the Cobb–Douglas production function the function
of capacity loading f(x) = x(t)β , where β is output elasticity of labor.

In a closed economy, the output Y (t) is divided into the consumption C(t)
and the capital accumulation of bJ(t):

Y (t) = bJ(t) + C(t). (2)

In (2) b > 0 is the coefficient of incremental capital-output ratio, it shows how
much capital-forming products need to be purchased to create one unit of capac-
ity. The value of J(t) is the volume of newly created capacity.

If we use the usual dynamics of total production capacity, then

Ṁ(t) def=
dM(t)

dt
= J(t) − μM(t), (3)

where μ > 0 is a depreciation rate of capacity.
A rate s of capital accumulation: bJ(t) = sY (t). Then we have J(t) =

sf(x)M(t)/b and from (3) the tempo of the total production capacity is equal

Ṁ(t)
M(t)

=
s

b
f(x) − μ. (4)

From the other side, if

L̇(t)
L(t)

= n,−ν̇(t)/ν(t) = g, (5)

where n is the population growth rate, g is the rate of fall of the lowest labor
intensity (rate of growth for the level of technology), then from (1) and (5) we
have M = L/(xν) and

Ṁ(t)
M(t)

= n + g − ẋ(t)
x(t)

. (6)
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The main interest of the model is the dynamics of average labor intensity of
the total capacity in relative units with respect to the smallest labor intensity
x, the effective labor per unit of capacity stock. In accordance of (4), (6) its
behavior over time is given by the next analogy of the key equation of the Solow
model in terms of x:

ẋ(t)
x(t)

= n + g + μ − sf(x)/b. (7)

Stationarity condition is ẋ(t) = 0, so from here in steady-state

sf(x) = b(n + g + μ). (8)

If we denote Ṁ(t)/M(t) = γ, then from (6) we obtain that the steady state
growth rate is expressed by the relation

γ = n + g. (9)

Fig. 1. The golden rule saving rate sgold = 0.35 for the Cobb–Douglas production func-
tion f(x) = xβ . The vertical axis shows the steady-state of consumption per effective
person c∗ correspond to each saving rate s ∈ (0, 1). The curve c∗∗ is obtained under
the condition f(x) ≤ 1.

Labor productivity in relative units y
def= ν(t)Y (t)/L(t) = f(x)/x. Then the

growth rate of labor productivity in relative units is

ẏ(t)
y(t)

= ẋ(t)
(

f ′(x)
f(x)

− 1
x(t)

)
. (10)

Consumption per effective labor has the form

c
def=

ν(t)C(t)
L(t)

=
f(x) − sf(x)

x
. (11)
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In steady-state (8) we obtain

c(x) =
f(x) − b(n + g + μ)

x
. (12)

In accordance with (8) x = x(s), so that c = c(s), and from (12) we have

c′
s = (xf ′(x) − f(x) + b(n + g + μ))

x′
s

x2
. (13)

So that in terms of x = xgold the Solow model golden rule be

xf ′(x) − f(x) + b(n + g + μ) = 0. (14)

For the Cobb–Douglas production function f(x) = xβ we have from (8) sxβ =
b(n+g+μ), and from (14) (1−β)xβ = b(n+g+μ). So that, s = 1−β = α = εM ,
where εM is the total output elasticity by total capacity M .

Figure 1 presents the relation between steady-state consumption per effective
labor c∗ and saving rate s that is implied by (12). The steady-state x∗(s) is from
the condition (8). For the Cobb–Douglas production function x∗(s) = (b(n+g +
μ)/s)1/β . Here in Fig. 1 we use β = 0.65 and the values of the model parameters
obtained on the base of statistical data 1970–2017 for the Russian economy [8]:
b = 1.1, n = 0.01124, g = 0.038115, μ = 0.03155.

3 An Exogenous Production Function

An exogenous production function for production capacities with limited age was
constructed in [8]. The economic system consists of separate production units.
The production unit is characterized by the technology used and the capacity—
the maximum possible product output per unit of time. The production technol-
ogy is fully determined by the labor intensity—the norm of the cost of human
labor for the production of a unit of product. The production capabilities of such
an economic system are described by the value M(t,H) of the total capacity of
production units whose technology is λ ∈ H ⊂ R1

+.
The production capacity dynamics on micro-level is described by the hypoth-

esis proposed in [7–9]. Production capacity decreases due to aging and the num-
ber of working places on it is fixed since the creation of this capacity up to
reaching age limit A(t).

Hypothesis 1: The number of workplaces in the production unit remains
unchanged for each time moment t from the time moment of its creation τ ≤ t
until the time moment of its liquidation θ = τ +A(θ) ≥ t , where A(t) is the age
limit of the production capacities, and the production capacity m(t, τ) decreases
with a constant rate μ > 0.

If the capacities of new production units are created continuously with a
speed J(t) and all have the same labor input ν(t), which does not increase with
time, then the measure M(t,H) has a continuous density m(t, λ), which varies
according to a first-order partial differential equation [7]:

∂m(t, λ)
∂t

= −2μm(t, λ) − μλ
∂m(t, λ)

∂λ
(15)
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with boundary condition

m(t, ν) =
J(t)

(μν(t) − dν/dt)
. (16)

Fig. 2. Estimation of the distribution of production capacities of the Russian economy
by age (vintage capacity) in 2018, at constant prices 2010. The years of investment are
plotted on the horizontal axis.

Figure 2 shows the vintage production capacity in 2018. Production capacity
measures the maximum output at constant prices of 2010. For the evaluation
the capacity, we used the parameters of the micro-description of the model for
changes in production capacity. It was assumed that the least laboriousness
decreases with the rate g(t) = −ν̇/ν = εσ(t), and the capital intensity coeffi-
cient for new capacities also decreases due to increasing of the share of primary
industries in the issue, ḃ/b = −ζσ(t), where σ = J(t)/M(t). Parameter identifi-
cation was made by comparing the calculated and statistical time series for out-
put and labor according to the data of 1970–2017: b(1970) = 5.598, ζ = 0.430,
ν(1970) = 2.512, ε = 0.3465, A = 25. Parameter estimation methodology is
described in more detail in [8,9].

The expression for the production function is more convenient to derive on the
basis of a micro-description of the dynamics of production capacity in the vari-
ables t, τ . The initial capacity is m(t, t) = J(t). Then m(t, τ) = J(τ)exp(−μ(t −
τ)). This reduction in capacity requires, in order to maintain the number of work-
places, an appropriate increase in labor intensity λ(t, τ) = ν(τ)exp(μ(t − τ)),
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where ν(τ) is the labor intensity on the production unit at moment of its cre-
ation τ . At every time moment t the investors choose the best technology with
the smallest amount of labor ν(t). This lowest labor intensity is decreased with
time due to technological progress with the rate g(t) > 0. The total capacity is

M(t) =
∫ t

t−A(t)

J(τ)e−μ(t−τ)dτ. (17)

Assuming the total effective labor L(t)/ν(t) is used in optimal way starting
from the new production capacity with best technology ν(t) up to production
capacity with age θ(x) ≤ A. Then the production function is determined by the
next system of two equations:

f(x) =
∫ t

t−θ(x)

M(τ)
M(t)

σ(τ)e−μ(t−τ)dτ, (18)

x =
∫ t

t−θ(x)

M(τ)
M(t)

ν(τ)
ν(t)

σ(τ)dτ, (19)

where instead of the differential Eq. (3) for total production capacity M(t) in
this case we have the next differential-difference equation for the total capacity
M(t) in the intensive variables with the fixed age limit A. It has the form [8]:

dM(t)
dt

= (σ(t) − μ) M(t) − σ(t − A)M(t − A)e−μA, (20)

where σ(t) is the ratio of new capacities to total capacity, σ(t) = J(t)/M(t).
If the ratio σ(t) is constant and total production capacity grows with constant

rate

σ(t) =
J(t)
M(t)

= σ,
Ṁ(t)
M(t)

= γ, (21)

we can find an exogenous production function.
Based on Proposition 1 from [8], taking into account our notation (1) for x

and (5) for g, the following theorem can be formulated.

Theorem 1. Let in a closed economy (2) on a balanced growth path with the
rate γ,

M(t) = M0e
γt, Y (t) = Y0e

γt, J(t) = J0e
γt, C(t) = C0e

γt,

the following conditions are met:

(a) it is true the hypothesis 1 about a fixed number of workplaces and a drop in
production capacity at a rate μ up to a certain age limit A;

(b) it is fixed the maximum age of the production capacities, A(t) = A = const;
(c) it is fixed the ratio of incremental capital intensity, b(t) = b = const;
(d) it is reduced the least labor intensiveness due to scientific and technical

progress in accordance with (5), ν̇(t)/ν(t) = −g.



Golden Rule Saving Rate for an Endogenous Production Function 275

Then the following statements are true:

(1) the share of new capacity is fixed: σ(t) = J(t)/M(t) = σ = const;
(2) the dynamics of total production capacity (20) on balanced growth path sets

the relationship between the growth rate of economy (21) γ = ϕ(σ, μ,A) − μ
and an implicit function ϕ of this parameters σ, μ, A by equation

ϕ = σ(1 − e−ϕA); (22)

(3) relation (22) gives the following expression for the production function

f(x) =
σ

ϕ

{
1 −

[
1 − (ϕ − μ − g)

σ
x

]ϕ/(ϕ−μ−g)
}

, (23)

where μ is the depreciation rate of production capacities, and g is the rate
(5) of technological progress;

(4) the ratio of the average labor intensity of the production capacities to the
least labor intensity is constant: x = L(t)/(ν(t)M(t)) = const.

Proof. It follows directly from the relations (18), (19) for the production function
under the conditions (a)–(d) specified in the theorem.

Indeed, on the balanced growth path (BGP) σ = J(t)/M(t) = J0/M0 =
const, so the statement (1) is satisfied.

Then, from σ = const, A = const, and condition of BGP M(t − A)/M(t) =
exp(−γA) the Eq. (20) gives γ = −μ + σ(1 − exp(−(γ + μ)A)). By virtue of the
notation ϕ = γ +μ, we obtain the relation (22), so the statement (2) is satisfied.

Since on BGP M(τ)/M(t) = exp(−γ(t−τ)), so from (18), ϕ = γ+μ, and σ =
const we have f(x) = (1−exp(−ϕθ(x)))σ/ϕ. From (19) considering condition d),
ν(τ)/ν(t) = exp(g(t−τ)), we have x = (1−exp(−(ϕ−μ−g)θ(x)))σ/(ϕ−μ−g).
Excluding from these relations for f and x the value exp(−θ(x)) we have (23).
So, the statement (3) is satisfied.

The statement (4) is satisfied because on BSP we have f(x) = Y (t)/M(t) =
M0/Y0 = const, so x = const.

Now, by elimination the term σ from (22), (23), σ = ϕ/
(
1 − e−ϕA

)
, and

using (9),
ϕ = n + g + μ, (24)

we have the next form of the production function in steady-state

f(x,A) =
1

(1 − e−ϕA)

{
1 −

[
1 − n

ϕ
(1 − e−ϕA)x

]ϕ/n
}

. (25)

Changes in the average labor intensity x and in the age limit of capacities A
change the level of loading f(x,A) of the total capacity.
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4 Golden Rule for the Endogenous Production Function

In the model under consideration the total production capacity dynamics (20)
differs from the usual Eq. (3), so that we should change the Eq. (4) on the next
one:

Ṁ(t)
M(t)

=
1
b
sf(x,A)

(
1 − e−ϕA

) − μ. (26)

In accordance of (26), (6) the effective labor per unit of capacity stock x, the
key equation of our model will be

ẋ(t)
x(t)

= ϕ − 1
b
sf(x,A)

(
1 − e−ϕA

)
. (27)

So, the dynamics of average labor intensity of the total capacity x depends of
the age limit of capacities A.

Instead of (8) in steady-state (ẋ(t) = 0) we have

sf(x,A) =
bϕ

(1 − e−ϕA)
. (28)

For the consumption per effective labor (11) in steady-state (28) instead of
(12) we have

c(x,A) =
1
x

(
f(x,A) − bϕ

(1 − e−ϕA)

)
. (29)

Then

c′
s =

{
f ′

x

x
− f(x,A) − bϕ/

(
1 − e−ϕA

)
x2

}
x′

s. (30)

So, the model under consideration golden rule in terms of x = xgold is

[xf ′
x(x,A) − f(x,A)]

(
1 − e−ϕA

)
+ bϕ = 0, (31)

where due to (24) ϕ = γ + μ = n + g + μ.
For our production function (25) we have

f ′
x =

[
1 − n

ϕ
(1 − e−ϕA)x

]−1+ϕ/n

. (32)

and from (28) and (31)

sgold =
bϕ

1 − [1 − zn/ϕ]ϕ/n
, (33)

where
z

def= (1 − e−ϕA)xgold (34)

is a root of the transcendental equation

1 − z

(1 − zn/ϕ)
= (1 − bϕ)(1 − zn/ϕ)ϕ/n. (35)
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For the endogenous production function (25) from (31)–(33) we have

s∗ = 1 − (1 − bϕ)z∗

bϕ + (1 − bn)z∗ . (36)

Fig. 3. The golden rule saving rate sgold = 0.67 for the exogenous production function
f(x,A). The vertical axis shows the steady-state of consumption per effective person
c∗ correspond to each saving rate s ∈ (0, 1).

From (28), (31) we have the next algorithm for calculating the curve c = c(s)
for the production function in a stable-stage:

z =
ϕ

n

[
1 −

(
1 − bϕ

s

)n/ϕ
]

, (37)

B
def=

(
1 − e−ϕA

)
f(x,A) = 1 −

(
1 − n

ϕ
z

)ϕ/n

, (38)

c =
1
z
(B − bϕ). (39)

The age limit A value explicitly affects the value of xgold due to the formula
(34). The value A is not explicitly included in the expression for the steady-state
consumption per effective labor c∗ due to (37)–(39):

c∗ =
nb(1/s − 1)

1 − (1 − bϕ/s)n/ϕ
. (40)

The dependence of the steady-state consumption per effective person c∗ (40)
on A exists since ϕ = ϕ(σ,A) in accordance with (22).
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Figure 3 presents the relation between steady-state consumption per effective
labor c∗ and saving rate s that is implied by (29). The steady-state x∗(s) is
from the condition (28). Here in Fig. 3 we use the values for parameters of the
current Russian economy (in particular, see above Sect. 3): b = 1.1, n = 0.01124,
g = 0.038115, μ = 0.03155.

5 Conclusions and Implication

The introduction provides a brief reference to the literature on the problem of
the golden rule saving rate.

The second section shows that the Houthakker–Johansen model notation
[10,11] is suitable for describing classical problems, in particular, the problem
of golden rule saving rate. At the same time, the concept of the production
function in the model has a clear economic meaning of capacity utilization, and
the variables have a decent dimension: either dimensionless or have dimension
per unit of time.

The third section presents the endogenous production function, in which the
Houthakker–Johansen model manifests itself well. Here production function is
based on the distribution of production capacity for technology. In the end, the
production function is presented in the stationary mode parameters.

In the fourth section, formulas for calculating the golden growth for this
endogenous production function are obtained. As it turned out, the age limit of
capacities does not affect the steady-state consumption per effective labor, but
it affects the value of the effective labor per unit of the total capacity.

It can be concluded that the presentation of the golden rule for the exogenous
production function can be used in education courses for students of classical
mathematical economics. It gives food for thought about the current state of the
economy.

Phelps in his Nobel lecture [12] gives an overview of works that take into
account the realities of the modern economy. As an example, he points out his
own models that take these realities into account, or at least remove some of
the limitations of the neoclassical approach. In the model of exogenous pro-
duction function presented here, an example of a departure from neoclassical
principles is also given. In particular, the production function built here takes
into account structural changes, and its analytical form is valid under certain
conditions. In the numerical experiments with the model it is possible to use the
micro-description of production sector. This saves the proposed mathematical
description for the stages of the production cycle of the economy, in which there
are sharp changes in the structure of production capacities.
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