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Preface

This volume contains the refereed proceedings of the 10th International Conference on
Optimization and Applications (OPTIMA 2019)1. The goal of the conference is to
bring together researchers and practitioners working in the field of optimization theory,
methods, software, and related areas. Organized annually since 2009, the conference
attracted a significant number of researchers, academics, and specialists in many fields
of optimization, operations research, optimal control, game theory, and their numerous
applications in practical problems of operations research, data analysis, and software
development.

The broad scope of OPTIMA made it an event where researchers involved in
different domains of optimization theory and numerical methods, investigating con-
tinuous and discrete extremal problems, designing heuristics and algorithms with
theoretical bounds, developing optimization software and applying optimization
techniques to highly relevant practical problems, can meet together and discuss their
approaches and results. We strongly believe that this facilitates collaboration between
researchers working in optimization theory, methods, and applications.

The conference was held during September 30 – October 4, 2019, in Petrovac,
Montenegro, at the picturesque Budvanian Riviera on the azure Adriatic coast. By
tradition, the main organizers of the conference were the Montenegrin Academy of
Sciences and Arts, Dorodnicyn Computing Centre FRC CSC RAS, and the University
of Evora. This year, the key topics of OPTIMA were grouped into five tracks:

(1) Mathematical Programming
(2) Combinatorial and Discrete Optimization
(3) Optimal Control
(4) Optimization in the Economy, Finance, and Social Sciences
(5) Applications

In the framework of the conference, a special section was held dedicated to the
anniversary of Academician of the Russian Academy of Sciences, Yuri Evtushenko, a
world-famous scientist in the field of computational mathematics and one of the
founders of the conference.

The Program Committee (PC) and the reviewers of the conference included 113
well-known experts in continuous and discrete optimization, optimal control and game
theory, data analysis, mathematical economy, and related areas from leading institu-
tions of 25 countries including Argentina, Australia, Austria, Azerbaijan, Belgium,
Finland, France, Germany, Greece, India, Israel, Italy, Kazakhstan, Lithuania, Mexico,
Montenegro, Netherlands, Poland, Portugal, Russia, Serbia, Sweden, Taiwan, Ukraine,
UK, and USA. This year we have received 117 submissions mostly from Russia but
also from Azerbaijan, Bosnia and Herzegovina, France, Germany, India, Italy,

1 http://www.agora.guru.ru/display.php?conf=optima-2019.
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Kazakhstan, Montenegro, Poland, Portugal, Sweden, and Ukraine. 81 full papers were
considered for review. Each submission was reviewed by at least three PC members or
invited reviewers, experts in their fields, to supply detailed and helpful comments. The
committee decided to accept 35 papers.

The conference featured four invited lectures, as well as several plenary and keynote
talks. The invited lectures were:

– Prof. Yurii Nesterov (Center for Operations Research and Econometrics, Belgium),
“Relative Smoothness: New Paradigm in Convex Optimization”

– Prof. Samir Adly (University of Limoges, France), “Quasistatic Evolution
Variational Inequalities and Sweeping Process”

– Prof. Nikolai Osmolovskii (Systems Research Institute, Poland), “Necessary
Conditions for an Extended Weak Minimum in Optimal Control Problems with
Volterra-Type Integral Equations on a Variable Time Interval”

– Prof. Janez Povh (University of Ljubljana, Slovenia), “High-Performance
Optimization”

The plenary talks were presented by:

– Prof. Anatoly Antipin (Dorodnicyn Computing Centre FRC CSC RAS, Russia) on
“On methods for solving a terminal control problem with intermediate phase
constraints”

– Prof. Alexey Tret’yakov (Siedlce University, Poland) on “New perspective on some
basic results in optimization”

– Prof. Vladimir Krivonozhko (National University of Science and Technology
MISiS, Russia) on “Three-dimensional visualization for multidimensional analysis
and performance management of convex and non-convex systems”

We would like to thank all the authors for submitting their papers and the members
of the PC for their efforts in providing exhaustive reviews. We would also like to
express special gratitude to all the invited lectures and plenary speakers.

October 2019 Milojica Jaćimović
Michael Khachay
Vlasta Malkova

Mikhail Posypkin

vi Preface



Organization

Program Committee Chairs

Milojica Jaćimović Montenegrin Academy of Sciences and Arts, Montenegro
Yuri G. Evtushenko Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Maksat Kalimoldayev Institute of Information and Computational Technologies,

Kazakhstan

Program Committee

Majid Abbasov St. Petersburg State University, Russia
Samir Adly University of Limoges, France
Kamil Aida-Zade Institute of Control Systems of ANAS, Azerbaijan
Alla Albu Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Alexander P. Afanasiev Institute for Information Transmission Problems, RAS,

Russia
Yedilkhan Amirgaliyev Suleyman Demirel University, Kazakhstan
Anatoly S. Antipin Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Sergey Astrakov Institute of Computational Technologies,

Siberian Branch RAS, Russia
Evripidis Bampis LIP6 UPMC, France
Oleg Burdakov Linköping University, Sweden
Olga Battaïa ISAE-SUPAERO, France
Armen Beklaryan National Research University Higher School

of Economics, Russia
Vladimir Beresnev Sobolev Institute of Mathematics, Russia
René Van Bevern Novosibirsk State University, Russia
Sergiy Butenko Texas A&M University, USA
Vladimir Bushenkov University of Evora, Portugal
Igor A. Bykadorov Sobolev Institute of Mathematics, Russia
Alexey Chernov Moscow Institute of Physics and Technology, Russia
Duc-Cuong Dang INESC TEC, Portugal
Tatjana Davidovic Mathematical Institute of Serbian Academy of Sciences

and Arts, Serbia
Stephan Dempe TU Bergakademie Freiberg, Germany
Alexandre Dolgui IMT Atlantique, LS2N, CNRS, France
Olga Druzhinina FRC CSC RAS, Russia
Anton Eremeev Omsk Branch of Sobolev Institute of Mathematics,

SB RAS, Russia
Adil Erzin Novosibirsk State University, Russia
Francisco Facchinei University of Rome La Sapienza, Italy
Alexander V. Gasnikov Moscow Institute of Physics and Technology, Russia



Manlio Gaudioso Università della Calabria, Italy
Alexander I. Golikov Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Alexander Yu. Gornov Institute System Dynamics and Control Theory, SB RAS,

Russia
Edward Kh. Gimadi Sobolev Institute of Mathematics, SB RAS, Russia
Andrei Gorchakov Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Alexander Grigoriev Maastricht University, The Netherlands
Mikhail Gusev N.N. Krasovskii Institute of Mathematics and Mechanics,

Russia
Viktor Izhutkin MPEI, Russia
Vladimir Jaćimović University of Montenegro, Montenegro
Vyacheslav Kalashnikov ITESM, Mexico
Valeriy Kalyagin Higher School of Economics, Russia
Igor E. Kaporin Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Alexander Kazakov Matrosov Institute for System Dynamics and Control

Theory, SB RAS, Russia
Alexander V. Kelmanov Sobolev Institute of Mathematics, Russia
Mikhail Yu. Khachay Krasovsky Institute of Mathematics and Mechanics, Russia
Oleg V. Khamisov L. A. Melentiev Energy Systems Institute, Russia
Andrey Kibzun Moscow Aviation Institute, Russia
Donghyun Kim Kennesaw State University, USA
Roman Kolpakov Moscow State University, Russia
Igor Konnov Kazan University, Russia
Alexander Kononov Sobolev Institute of Mathematics, Russia
Vera Kovacevic-Vujcic University of Belgrade, Serbia
Yury A. Kochetov Sobolev Institute of Mathematics, Russia
Pavlo A. Krokhmal University of Arizona, USA
Ilya Kurochkin Institute for Information Transmission Problems, RAS,

Russia
Dmitri E. Kvasov University of Calabria, Italy
Alexander A. Lazarev V.A. Trapeznikov Institute of Control Sciences, Russia
Vadim Levit Ariel University, Israel
Bertrand M. T. Lin National Chiao Tung University, Taiwan
Alexander V. Lotov Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Nikolay Lukoyanov N.N. Krasovskii Institute of Mathematics and Mechanics,

Russia
Vittorio Maniezzo University of Bologna, Italy
Olga Masina Bunin Yelets State University, Russia
Vladimir Mazalov Institute of Applied Mathematical Research,

Karelian Research Center, Russia
Nevena Mijajlović University of Montenegro, Montenegro
Nenad Mladenovic Mathematical Institute, Serbian Academy of Sciences

and Arts, Serbia
Angelia Nedich University of Illinois at Urbana Champaign, USA
Yurii Nesterov CORE, Université Catholique de Louvain, Belgium
Yuri Nikulin University of Turku, Finland

viii Organization



Evgeni Nurminski FEFU, Russia
Nicholas N. Olenev CEDIMES-Russie, Dorodnicyn Computing Centre,

FRC CSC RAS, Russia
Panos Pardalos University of Florida, USA
Alexander V. Pesterev V.A. Trapeznikov Institute of Control Sciences, Russia
Alexander Petunin Ural Federal University, Russia
Stefan Pickl Bundeswehr University Munich, Germany
Boris T. Polyak V.A. Trapeznikov Institute of Control Sciences, Russia
Yury S. Popkov Institute for Systems Analysis, FRC CSC RAS, Russia
Leonid Popov IMM UB RAS, Russia
Igor G. Pospelov Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Mikhail A. Posypkin Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Oleg Prokopyev University of Pittsburgh, USA
Artem Pyatkin Novosibirsk State University, Sobolev Institute

of Mathematics, Russia
Ioan Bot Radu University of Vienna, Austria
Soumyendu Raha Indian Institute of Science, India
Andrei Raigorodskii Moscow State University, Russia
Larisa Rybak BSTU named after V. G. Shoukhov, Russia
Leonidas Sakalauskas Institute of Mathematics and Informatics, Lithuania
Eugene Semenkin Siberian State Aerospace University, Russia
Yaroslav D. Sergeyev University of Calabria, Italy
Natalia Shakhlevich University of Leeds, UK
Aleksandr Shananin Moscow Institute of Physics and Technology, Russia
Angelo Sifaleras University of Macedonia, Greece
Alexander A. Shananin Moscow Institute of Physics and Technology, Russia
Mathias Staudigl Maastricht University, The Netherlands
Petro Stetsyuk V.M. Glushkov Institute of Cybernetics, Ukraine
Alexander Strekalovskiy Matrosov Institute for System Dynamics and Control

Theory, SB RAS, Russia
Vitaly Strusevich University of Greenwich, UK
Michel Thera University of Limoges, France
Tatiana Tchemisova University of Aveiro, Portugal
Anna Tatarczak Maria Curie Skłodowska University, Poland
Alexey A. Tretyakov Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Stan Uryasev University of Florida, USA
Vladimir Voloshinov Kharkevich Institute for Information Transmission

Problems, RAS, Russia
Frank Werner Otto-von-Guericke-Universität, Germany
Adrian Will National Technological University, Argentina
Oleg Zaikin Institute for System Dynamics and Control Theory,

SB RAS, Russia
Vitaly G. Zhadan Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Anatoly A. Zhigljavsky Cardiff University, UK
Julius Žilinskas Vilnius University, Lithuania
Yakov Zinder University of Technology, Australia

Organization ix



Tatiana V. Zolotova Financial University under the Government of the Russian
Federation, Russia

Vladimir I. Zubov Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Anna V. Zykina Omsk State Technical University, Russia

Organizing Committee Chairs

Milojica Jaćimović Montenegrin Academy of Sciences and Arts, Montenegro
Yuri G. Evtushenko Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Maksat Kalimoldayev Institute of Information and Computational Technologies,

Kazakhstan
Mikhail Posypkin Dorodnicyn Computing Centre, FRC CSC RAS, Russia

Organizing Committee

Natalia Burova Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Alexander Golikov Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Alexander Gornov Institute of System Dynamics and Control Theory,

SB RAS, Russia
Vesna Dragović Montenegrin Academy of Sciences and Arts, Montenegro
Vladimir Jaćimović University of Montenegro, Montenegro
Mikhail Khachay Krasovsky Institute of Mathematics and Mechanics, Russia
Alexander Kelmanov Sobolev Institute of Mathematics, Russia
Yury Kochetov Sobolev Institute of Mathematics, Russia
Vlasta Malkova Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Nevena Mijajlović University of Montenegro, Montenegro
Oleg Obradovic University of Montenegro, Montenegro
Nicholas Olenev Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Tatiana Tchemisova University of Aveiro, Portugal
Yulia Trusova Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Svetlana Vladimirova Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Victor Zakharov FRC CSC RAS, Russia
Ivetta Zonn Dorodnicyn Computing Centre, FRC CSC RAS, Russia
Vladimir Zubov Dorodnicyn Computing Centre, FRC CSC RAS, Russia

Additional Reviewers

Anton Anikin
Artem Baklanov
Vladimir Berikov
Pavel Borisovsky
Alexander Filatov
Stefania Funari

Konstantin Kobylkin
Stepan Kochemazov
Eloisa Macedo
Yury Morozov
Ekaterina Neznakhina
Yuri Ogorodnikov

x Organization



Anna Panasenko
Alexander Plyasunov
Nikolay Pogodaev
Leonid D. Popov
Anna Romanova
Marina Sandomirskaya
Alexander Sesekin

Maxim Shishlenin
Stepan Sorokin
Maxim Staritsyn
Sergey Stepanov
Alexander Vasin
Elena Yanovskaya
Vyacheslav Zalyubovskiy

Organization xi



Invited Talks



Quasistatic Evolution Variational Inequalities
and Sweeping Process

Samir Adly

Université de Limoges, France
samir.adly@unilim.fr

Abstract. In this talk, we study a new variant of the Moreau’s sweeping process
with velocity constraint. Based on an adapted version of the Moreau’s
catching-up algorithm, we show the well-posedness (in the sense existence and
uniqueness) of this problem in a general framework. We show the equivalence
between this implicit sweeping process and a quasistatic evolution variational
inequality.
It is well-known that the variational formulation of many mechanical prob-

lems with unilateral contact and friction lead to an evolution variational
inequality. As an application, we reformulate the quasistatic antiplane frictional
contact problem for linear elastic materials with short memory as an implicit
sweeping process with velocity constraint.
The link between the implicit sweeping process and the quasistatic evolution

variational inequality is possible thanks to some standard tools from convex
analysis and is new in the literature.

Keyword: Moreau’s sweeping process • Catching-up algorithm • Quasistatic
evolution variational inequality
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Relative Smoothness: New Paradigm
in Convex Optimization

Yurii Nesterov

CORE/INMA, Universite Catholique de Louvain, Belgium
Yurii.Nesterov@uclouvain.be

Abstract. Development and computational abilities of optimization methods
crucially depend on the auxiliary tools provided to them by the method’s
designers. During the first decades of Convex Optimization, the methods were
based either on the proximal setup, allowing Euclidean projections onto the
basic feasible sets, or on the linear minimization framework, which assumes a
possibility to minimize a linear function over the feasible set.
However, recently it was realized that any possibility of simple minimization

of an auxiliary convex function leads to the efficient minimization methods for
some family of more general convex functions, which are compatible with the
first one. This compatibility condition, called relative smoothness, was firstly
exploited for smooth convex functions (Bauschke, Bolt and Teboulle, 2016) and
smooth strongly convex functions (Lu, Freund and Nesterov, 2018).
In this talk we make the final step and show how to extend this framework

onto the class of nonsmooth functions. We also discuss possible consequences
and applications.

Keywords: Convex Optimization • Relative smoothness • Nonsmooth functions

http://orcid.org/0000-0002-0542-8757


Necessary Conditions for an Extended Weak
Minimum in Optimal Control Problems
with Volterra-Type Integral Equations

on a Variable Time Interval

Nikolai Osmolovskii

Systems Research Institute, Polish Academy of Sciences, Poland
osmolovski@uph.edu.pl

Abstract. We discuss an optimal control problem with Volterra-type integral
equations, considered on a non-fixed time interval, subject to endpoint con-
straints of equality and inequality type, mixed state-control constraints of
inequality and equality type, and pure state constraints of inequality type.
The main assumption is the uniform linear-positive independence of the

gradients of active mixed constraints with respect to the control. We formulate
first-order necessary optimality conditions for an extended weak minimum, the
notion of which is a natural generalization of the notion of weak minimum with
account of variations of the time. The conditions obtained generalize the cor-
responding ones for problems with ordinary differential equations.
This is a joint work with Andrei V. Dmitruk.

Keywords: Optimal control • Volterra-type integral equations • Extended weak
minimum • Differential equations

http://orcid.org/0000-0003-3111-3908


High-Performance Optimization

Janez Povh

University of Ljubljana, Slovenia
janez.povh@fs.uni-lj.si

Abstract. High-Performance Computing (HPC) –with its state-of-the-art com-
puting and storage infrastructure and the related knowledge– is an ecosystem
that is essential for scientific research and industrial development. The European
Commission (EC) often points out the opportunities and challenges at the
interface of Big Data, High-Performance Computing and Mathematics. The
recent HiPEAC Vision 2017 clearly states that Mathematics and Algorithms for
extreme scale HPC systems is one out of seven current EU research priorities
related to HPC. Nevertheless, the recent results of the Partnership for Advanced
Computing in Europe (PRACE) reveals that the mathematical research com-
munity, including mathematical optimization, rarely decides to use these tools,
although they usually do research in hard mathematical optimization problems.
In the first part of the talk we will review what exactly the strongest super-

computers within the EU offer the mathematical optimization community: what
is currently the best public HPC infrastructure, how to get access to it, and how
to get the necessary skills.
In the second part of the paper we will present a parallel Branch and Bound

(B&B) based algorithm to solve the optimality small to medium size instances
of non-convex quadratic binary problems with linear constraints. It is is avail-
able as an online solver BiqBin, running on the supercomputer owned by the
University of Ljubljana, Faculty of Mechanical Engineering. This algorithm
encompasses the best non-linear optimization techniques and is carefully
encoded to run efficiently in parallel using state-of-the-art libraries for parallel
linear algebra operations. It’s online availability demonstrates new ways of how
to bring high-performance scientific code closer to scientific users. We will
present few implementation details and numerical results obtained by this code.

Keywords: Optimization • High-Performance Computing • Supercomputers •

Branch and Bound • Parallel algorithm • BiqBin solver
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Abstract. The object of investigation is the routing open shop prob-
lem, in which a fleet of machines have to visit all the nodes of a given
transportation network to perform operations on some jobs located at
those nodes. Each machine has to visit each node, to process each job
and to return back to the common initial location—the depot. Opera-
tions of each job can be processed in an arbitrary sequence, any machine
may perform at most one operation at a time. The goal is to construct
a feasible schedule to minimize the makespan. The routing open shop
problem is known to be NP-hard even in the simplest two-machine case
with the transportation network consisting of just two nodes (including
the depot). We consider a certain generalization of this problem in which
travel times are individual for each of the two machines and the struc-
ture of the transportation network is an arbitrary cactus. We generalize
an instance reduction algorithm known for the problem on a tree with
identical travel times, and use it to describe new polynomially solvable
cases for the problem, as well as an efficient approximation algorithm for
another special case with a tight approximation ratio guarantee.

Keywords: Routing open shop · Unrelated travel times · Instance
reduction · Polynomially solvable subcase · Optima localization

1 Introduction

The routing open shop problem is a natural combination of two classical dis-
crete optimization problems: the metric traveling salesman problem (TSP) and
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the open shop scheduling problem. The TSP hardly needs an introduction. The
open shop problem was introduced in [13] and can be described as follows. There
is a set of n jobs J , each of those has to be processed by each of m machines
from a set M in arbitrary order. Operation of processing of job Jj by machine
Mi takes a solid time interval of given length pji. Such intervals requiring the
same job or the same machine cannot overlap. The goal is to minimize the
makespan Cmax—the completion time of the last operation. Surprisingly, such
a combination of machine scheduling problem and a routing problem indepen-
dently appeared while considering tasks arising both in production (see, e.g.
[2,3]), so in the service industry [11,25], definitely adding value to its practical
significance.

According to the traditional three-field notation for scheduling problems
(see [18] for example) the open shop problem with m machines is denoted by
Om||Cmax. Notation O||Cmax is used in case when the number of machines is a
part of an input and is not bounded by any constant. The problem O2||Cmax is
solvable to the optimum in linear time, while for m ≥ 3 the Om||Cmax problem
is NP-hard [13]. It is still an open question whether the Om||Cmax problem is
strongly NP-hard; a PTAS for any constant m is described in [19]. However, the
O||Cmax problem is strongly NP-hard. Moreover, there is no ρ-approximation
algorithm for that problem with ρ < 5

4 unless P = NP [24]. On the other hand,
a simple 2-approximation greedy algorithm for O||Cmax is presented in [1].

We consider the routing open shop problem with unrelated travel times which
generalizes both the open shop and the TSP in the following way. Jobs repre-
senting some unmovable objects are located at the nodes of a transportation
network described by an edge-weighted graph G = 〈V ;E〉. Machines are mobile
and are initially located at some predefined node v0 ∈ V referred to as the depot.
The weight τ(e) of edge e = [v, u] ∈ E is a vector (τ1(e), . . . , τm(e)) where τi(e)
is a travel time for machine Mi over the edge e in any direction. Machines have
to travel over the network to perform operations of each job from J . Machines
are allowed to visit each node multiple times and to use the shortest paths
between the nodes, therefore we may assume that travel times obey the triangle
inequality.

Any number of machines can travel simultaneously over the same edge in
any direction. The feasibility restrictions from the open shop problem are still in
place, and a machine has to be at node v to perform operations of jobs located
at v. All the machines have to return to the depot after completing all the
operations. The latest return moment Rmax is the makespan for this model and
has to be minimized. We assume that each node with a possible exclusion of the
depot contains at least one job, therefore each machine has to visit each node
of G, and hence the routing open shop problem contains the metric TSP as a
special case and is strongly NP-hard even for a single machine.

Following the traditional notation we denote the m-machine routing open
shop problem with unrelated travel times by ROm|Rtt|Rmax. Notation Rtt
stands for unRelated travel times and is omitted in case when travel times
are identical. Additional notation G = X is used if we want to specify the
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structure of the transportation network. In this case X is substituted with some
well-known classic notation from the graph theory, like Kp for a complete graph
with p nodes, tree, chain, cycle or similar.

The ROm||Rmax problem was introduced in [4,5]. It was proved in [5] that
the RO2|G = K2|Rmax problem—the simplest non-trivial case of the problem
under consideration—is already NP-hard. The RO2|G = K2|Rmax problem is
thoroughly studied in [4], where a 6

5 -approximation algorithm is presented. An
FPTAS for the RO2|G = K2|Rmax problem was described later in [17], however
the algorithm from [4] has one extremal property: its worst-case performance
ratio guarantee is the best possible with respect to the standard lower bound R̄
(see Sect. 2 for details). This means that the algorithm actually builds a schedule
S with Rmax(S) � 6

5 R̄, and there exists an instance for which the optimal
makespan is equal to 6

5 R̄, and thus the approximation ratio cannot be reduced
in terms of R̄. In other words, an optimal makespan for the RO2|G = K2|Rmax

problem belongs to the optima localization interval [R̄, 6
5 R̄] with tight bounds.

Lately it was proved that the same optima localization interval holds for the
RO2|G = K3|Rmax [7] and RO2|G = tree|Rmax problems [6]. The latter result
is based on an instance reduction procedure, similar to the one described in
[9]. This procedure in turn uses job aggregation and terminal edge contraction
operations (see Sect. 2 for details). As for the problem with individual travel
times, recently it was proved that for any instance of the RO2|Rtt,G = K3|Rmax

problem its optimum belongs to the interval [R̄, 5
4 R̄] [8]. It was also shown that

this interval is tight even for the case with G = K2 and proportional travel
times.

While our research focuses on the two-machine version of the problem, the
progress made in the study of the m-machine problem also should be noted. A
series of approximation algorithms for the ROm||Rmax problem was developed,
starting with the m+4

/ 2-approximation [5]. The best known algorithm up to date
has the approximation ration guarantee of O(log m) [16]. A number of papers is
devoted to the study of a special case with unit processing times [12,22,23].

In this paper we study the two-machine routing open shop problem with
unrelated travel times. First, we generalize an instance reduction procedure for
the RO2|Rtt,G = cactus|Rmax problem by the introduction of a new instance
simplification operation, namely terminal cycle contraction (Sect. 3). In Sect. 4
we study an optima localization interval for the special case of the RO2|Rtt,G =
cactus|Rmax problem and prove that for any instance of this problem its optimum
belongs to the same interval [R̄, 5

4 R̄] as for the problem with G = K3. Section 2
contains the formal problem formulation and some preliminary results, while
the last Sect. 5 contains conclusive remarks and open questions for the future
investigation.

2 Problem Formulation and Preliminary Notes

2.1 Formulation and Notation

Let us give a formal description of the RO2|Rtt|Rmax problem.
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The machines M1 and M2 and the set of jobs J = {J1, . . . , Jn} are given.
Each job Jj consists of two operations Oj1 and Oj2 to be processed by the
machines M1 and M2 respectively. The processing of operation Oji takes a solid
time interval of length pji. A transportation network is represented by an edge-
weighted connected graph G = 〈V,E〉. A weight of an edge e = [u, v] ∈ E is a
couple (τ1(e), τ2(e)) with τi(e) being a travel time for the machine Mi over an
edge e. Jobs are distributed among the nodes of V , a set of jobs located at v is
denoted by J (v), each node contains at least one job. The machines are mobile
and are initially located at the given depot denoted by v0 ∈ V . Machines have to
travel over the network, perform their operations and to come back to the depot
as soon as possible. Any number of machines can travel over the same edge in
any direction in the same time. We assume that machines take the shortest path
while traveling from v to u. Respective travel time for machine Mi is denoted
by disti(v, u).

A schedule S can be described as a set of starting times for each operation’s
processing:

S = {s(Oji)|j = 1, . . . , n, i = 1, 2}.

The completion time of operation Oji in some schedule under consideration
is denoted by c(Oji) = s(Oji) + pji, and P (Oji) = [s(Oji), c(Oji)] denotes the
operation’s processing interval. A schedule S is feasible if the following conditions
hold:

1. If two operations O′ and O′′ either belong the same job or to the same
machine, then intervals P (O′) and P (O′′) do not have common internal
points.

2. If some machine Mi processes the operation of job Jj ∈ J (v) before the
operation of job Jk ∈ J (u), then s(Oki) � c(Oji) + disti(v, u).

3. If an operation of job Jj ∈ J (v) is the first one processed by machine Mi,
then s(Oji) � disti(v0, v).

Let Jj ∈ J (v) be the last jobs processed by the machine Mi in some schedule
S. Then the return moment of machine Mi in S is defined as Ri(S) = c(Oji) +
disti(v, v0). The makespan of the schedule S to be minimized is defined as

Rmax(S) = max
i

Ri.

In the case of m = 2 we use simplified notation for the operations: aj and
bj denotes both Oj1 and Oj2, respectively, and their respective processing times
pj1 and pj2.

We use the following notation for any instance I of the RO2|Rtt|Rmax prob-
lem.

– �i =
n∑

j=1

pji—the load of machine Mi; �max = max �i—the maximum machine

load.
– dj =

m∑

i=1

pji—the length of job Jj ; dmax(v) = max
Jj∈J (v)

dj—the maximum job

length at node v.
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– T ∗
i —the weight of the optimal cyclic route over the graph G for machine Mi

(the corresponding TSP optimum).

– Δ(v) =
∑

Jj∈J (v)

dj—the load of node v; Δ =
n∑

j=1

dj—the total load of the

instance.
– R∗

max—the optimal makespan.

In order to indicate a specific instance I, if necessary, we use notation pji(I),
G(I), J (I; v), disti(I; v, u), �i(I), �max(I), dj(I), dmax(I; v), T ∗

i (I), Δ(I; v), and
R∗

max(I).
We use the following standard lower bound from [8].

R∗
max � R̄ = max

{

max
i

(�i + T ∗
i ),max

v∈V
(dmax(v) + dist1(v0, v) + dist2(v0, v))

}

.

(1)
Notation R̄(I) is used for a specific instance I. The reference to I is omitted in
case the context defines the instance clear enough.

We use the following definition, inherited from [15].

Definition 1. A feasible schedule S is called normal, if Rmax(S) = R̄. Instance
I is normal if it admits constructing a normal schedule (and therefore R∗

max(I) =
R̄(I)).

As we do know from [4], not every instance of the RO2||Rmax problem is
normal, even in case of G = K2. For some instance I we define its abnormality
as α(I) = R∗

max(I)

R̄(I)
. The abnormality of a class of instances K is defined as

α(K) = sup
I∈K

α(I).

Definition 2. An interval [R̄, α(K)R̄] is called the tight optima localization
interval for a class of instances K.

We use the following notation of instance classes from [8]: IX
m for the

ROm|G = X|Rmax and IX
Rm for the ROm|Rtt,G = X|Rmax problems. The

superscript “X” is omitted if there is no restriction on the graph structure.
Note that G = K1 means we are talking about the classic open shop prob-

lem with no routing involved. From the previous research we know abnormal-
ities (and hence tight optima localization intervals) for the following classes of
instances: α

(
IK1
2

)
= 1 [13], α

(
IK2
2

)
= 6

5 [4], α
(
IK3
2

)
= 6

5 [7], α (Itree
2 ) = 6

5

[6], α
(
IK2

R2

)
= α

(
IK3

R2

)
= 5

4 [8], α
(
IK1
3

)
= 4

3 [20].
The main goal of this paper is to describe new polynomially solvable sub-

classes with guaranteed normality of the problem under consideration, as well
as the tight optima localization interval for a special case of the RO2|Rtt,G =
cactus|Rmax problem (Sect. 4).
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2.2 Instance Simplification Operations

In order to determine the abnormality of some class of instances K one usually
has to find a critical instance from that class, i.e. an instance with the greatest
abnormality. Applying various reversible simplification operations preserving the
standard lower bound R̄ can be a very efficient way to do so. By a reversible
simplification operation we understand an instance transformation I → I ′ with
the following properties:

1. Instance I ′ is simpler than I (contains a smaller number of jobs/
machines/nodes, or a simpler structure of the transportation network).

2. Transformation is reversible: any feasible schedule of instance I ′ can be treated
as a feasible schedule of instance I with the same makespan.

Definition 3. Instance transformation I → I ′ is referred to as valid if R̄(I ′) =
R̄(I).

Validity of a reversible transformation immediately implies α(I ′) � α(I).
In this subsection we describe known instance simplification operations—job
aggregation and terminal edge contraction—and discuss their properties. A new
simplification operation—terminal cycle contraction—is introduced in Sect. 3.

Job aggregation operation is based on a simple idea of replacing a number
of jobs with a single aggregated or composite job with processing time equal to
the total processing time of the operations combined. It was used in a series of
papers, for instance, in [20] for a three-machine open shop problem. The same
transformation applied to different versions of the routing open shop problem can
be found in [6,7,9] (identical travel times), and in [8] (unrelated travel times).

Definition 4. For I ∈ IR2, let K ⊆ J (I; v) for some node v. Then by job
aggregation of set K we understand the following instance transformation I →
I ′:

G(I ′) = G(I), J (I ′; v) = J (I; v) \ K ∪ {JK}, pKi =
∑

Jj∈K

pji.

Job aggregation is clearly a reversible transformation: any schedule of operation
of a composite job can be treated as a schedule of respective operations of jobs
from set K processed without any idle time in an arbitrary sequence.

Note that �i(I ′) = �i(I) and disti(I ′; v, u) = disti(I; v, u) for each machine
Mi and each two nodes v, u. However, it is possible that dmax(I ′; v) = dK >
dmax(I; v), and there is a possibility that R̄(I ′) > R̄(I) and the job aggregation
is not valid. Using (1) we obtain the following sufficient and necessary condition
of the validity of the job aggregation transformation:

R̄(I ′) = R̄(I) ⇐⇒
∑

Jj∈K

dj � R̄(I) − dist1(v0, v) − dist2(v0, v). (2)

The question is, if the job aggregation of the whole set J (I; v) is valid? The
answer depends on the value of Δ(I; v).
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Definition 5. A node v from G(I) of some problem instance I is overloaded if

Δ(I; v) > R̄(I) − dist1(I; v0, v) − dist2(I; v0, v).

Otherwise the node is referred to as underloaded.

By this definition, the aggregation of J (I; v) is valid if and only if the node v is
underloaded.

Let us describe the terminal edge contraction operation for the problem with
unrelated travel times. Such an operation was described in [6,9] for identical
travel times. The idea is the following: translate a single job from a terminal
node v to an adjacent one u, modifying its processing times to include travel
times between v and u.

Definition 6. Let I ∈ IR2, v �= v0 is a terminal node in G(I) and there is
a single job Jj ∈ J (I; v). Let e = [u, v] be an edge incident to v. Then by
the contraction of edge e we understand the following instance transformation
I → I ′:

J (I ′;u) = J (I;u) ∪ {Jj}, G(I ′) = G(I) \ {v}, pji(I ′) = pji(I) + 2τi(e).

The processing interval P (Oji) in any feasible schedule of the transformed
instance I ′ can be treated as a concatenation of three subintervals, representing a
travel time of machine Mi from u to v, processing of the initial operation Oji and
a travel time back from v to u. Such a transformation is clearly reversible. Note
that �i(I ′) = �i(I)+2τi(e) and T ∗

i (I ′) = T ∗
i (I)−2τi(e), therefore �i(I ′)+T ∗

I (I ′) =
�i(I)+T ∗

I (I). Moreover, dj(I)+dist1(v0, v)+dist2(v0, v) � R̄ due to (1). However,
the transformation might not be valid since dj(I ′) = dj(I)+2τ1(e)+2τ2(e), and
dj(I ′)+dist1(I ′; v0, u)+dist2(I ′; v0, u) = dj(I)+dist1(I; v0, v)+dist2(I; v0, v)+
τ1(e) + τ2(e).

We use the following

Definition 7. Let I ∈ IR2, v �= v0 is a terminal node in G(I) and there is a
single job Jj ∈ J (I; v). Let e = [u, v] be an edge incident to v. Then edge e is
overloaded if

dj + dist1(v0, u) + dist2(v0, u) + 2τ1(e) + 2τ2(e) > R̄(I),

and underloaded otherwise.

It was proved in [7] that any instance I ∈ I2 contains at most one overloaded
element (either node or edge). In Sect. 3 we introduce another overloaded element
and generalize that proof for the case of unrelated travel times as well.

2.3 Superoverloaded Nodes and Unrelated Travel Times

Following [6] we use the following

Definition 8. An instance I is called irreducible, if no valid job aggregation is
possible for I.
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It is easy to observe that any irreducible instance contains exactly one job
at any underloaded node and two or three jobs at an overloaded node (if any).
The proof is based on the following inequality

Δ = �1 + �2 � 2R̄ − T ∗
1 − T ∗

2 , (3)

which follows from (1) for any instance of a two-machine problem. Moreover,
any instance can be transformed into an irreducible one in linear time, see [8]
for details.

Suppose that there exists a way to transform an instance I ∈ I2 with an
overloaded node v by job aggregations into such an irreducible instance I ′ that
|J (I ′; v)| = 3. In this case the node v is referred to as superoverloaded (see
[10] for details). It turned out that the existence of a superoverloaded node is
sufficient for the instance to be normal, if that node is either the depot or is
adjacent to the depot in some optimal tour over G(I) [10]. This idea was used in
[8] for the problem with unrelated travel times on the triangular transportation
network, however the authors could not guarantee normality and were only able
to prove that in this case R∗

max(I) � 7
6 R̄(I). They suggested a question for future

research to investigate whether such a condition implies normality in the case
of unrelated travel time. In this subsection we prove that the answer to that
question is negative.

Lemma 1. There exists an instance I ∈ IK2
R2 with superoverloaded node such

that R∗
max(I) = 7

6 R̄(I).

Proof. Let G(I) consists of two connected nodes v0 and v. Consider four jobs
J0, . . . , J3 with the following processing times:

a0 = b0 = b1 = b2 = b3 = 0, a1 = a2 = a3 = 2.

Let J (v0) = {J0} and J (v) = {J1, J2, J3}, and τ1(v0, v) = 0, τ2(v0, v) = 3. Note
that

R̄(I) = max{6 + 0, 0 + 6, 2 + 3} = 6.

Instance I is irreducible since d1 + d2 = 4 > R̄ − dist1(v0, v) − dist2(v0, v) =
6−3 = 3, therefore the node v is superoverloaded. Consider any feasible schedule
S of instance I. Without loss of generality assume that machine M1 processes
jobs from J (v) in order J1 → J2 → J3. Let’s prove that Rmax(S) � 7.

Assume otherwise, let Rmax(S) < 7. Note that all the operations of machine
M2 are processed within the interval [3, Rmax(S) − 3] ⊆ [3, 4), as soon as
τ2(v0, v) = 3. Therefore, for any t ∈ {s(b1), s(b2), s(b2)} at most one of
the operations a1, a2, a3 is completed in S before t, so there exists such a
t ∈ {s(b1), s(b2), s(b2)} that there are at least two of the operations a1, a2, a3

which are processed after t. Therefore R1(S) � t + 2 + 2 � 7. The lemma is
proved by contradiction. �

We use the following extended version of Theorem 1 from [8].
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Theorem 1. Let I ∈ Ichain
R2 be an irreducible instance, and G(I) is a chain

connecting v0 with a superoverloaded node v (thus v contains exactly three jobs).
Then one can in linear time build a feasible schedule S for I such that Rmax(S) �
7
6 R̄(I).

Proof. Similar to the proof of [8, Theorem 1]. �
Lemma 1 implies that the bound in Theorem1 is tight.

3 Extended Instance Reduction

Let I be an instance of the routing open shop problem and C be a cycle in graph
G(I). We will refer to a node v ∈ C as to a gate if one of the following conditions
hold:

1. v = v0, or
2. the degree of v in G(I) is greater than 2.

It is evident that any cyclic route over G(I) enters and leaves the cycle C through
the gates only. A cycle with a single gate will be referred to as a terminal cycle.
Let us introduce the terminal cycle contraction operation. It is similar to the
terminal edge contraction operation and can be described as follows. Let u be
the only gate of the cycle C. The transformation is to replace all the edges of C
and all its nodes except for u with a new job JC located at u, with the processing
times equal to the total processing times of the respective operations of jobs from
C (with exception of u) plus the cyclic travel time for the respective machine
over C. The processing of this new operation can be treated as traveling along
the cycle while processing operations of its jobs by the way. So this simplification
operation is a reversible one.

Definition 9. Let I ∈ IR2, C be a terminal cycle in G(I) with gate u, and each
of nodes of C (with a possible exception of u) is underloaded. By the contraction
of the cycle C we understand the following transformation of the instance I →
I ′:

J (I ′;u) = J (I;u)∪{JC}, pCi(I
′) =

∑

Jj∈C\{u}
pji(I)+Ti(C), G(I ′) = G(I)\{C \{u}},

there Ti(C) is the travel time over C for machine Mi.

Accordingly, we use the following

Definition 10. Let I ∈ IR2, C be a terminal cycle in G(I) with a gate u, and
each of nodes of C (with a possible exception of u) is underloaded. Cycle C is
referred to as overloaded if

∑

v∈C

Δ(I; v) − Δ(I;u) + T1(C) + T2(C) > R̄ − dist1(v0, u) − dist2(v0, u).

Otherwise the cycle C is underloaded.
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The idea is similar to Definitions 5 and 7: the contraction of a terminal cycle C
is valid if and only if the cycle is underloaded.

Theorem 2. Let I ∈ IR2. Then I contains at most one overloaded element
(node, edge or cycle).

Proof. Suppose we have at least two overloaded elements. Choose any two
of them. Let l1, . . . , lx be chosen overloaded nodes in I, e1, . . . , ey are over-
loaded edges, there ek = [uk, vk] with terminal node vk with single job Jk, and
C1, . . . , Cz are terminal cycles with gates w1, . . . , wz. (There is a possibility that
some of the nodes l1, . . . , lx, u1, . . . , uy, w1, . . . , wz coincide, however all the nodes
l1, . . . , lx are different.) We assumed that x + y + z = 2.

Consider the graph G′ obtained from G(I) by removing all the overloaded
cycles (except for their respective gates) and nodes v1, . . . , vy, and let T ′∗

i be the
weight of an optimal cyclic route over the G′ for machine Mi. As soon as the
only entrance and exit point for the terminal cycles are their gates and we can
only reach vk through the edge ek, we have

T ∗
i = T ′∗

i +
y∑

k=1

2τi(ek) +
z∑

k=1

Ti(Ck). (4)

Now using Definitions 5, 7 and 10 we have

Δ(lk) > R̄ − dist1(v0, lk) − dist2(v0, lk), k = 1, . . . , x,

Δ(vk) = dk > R̄ − dist1(v0, uk) − dist2(v0, uk) − 2τ1(ek) − 2τ2(ek), k = 1, . . . , y,

∑

v∈Ck

Δ(I; v) − Δ(I;wk) > R̄ − dist1(v0, wk) − dist2(v0, wk) − T1(C) − T2(C), k = 1, . . . , z.

Note that total sum of the left-hand side of each inequality above does not
exceed Δ(I). Let’s denote the total sum of the right-hand parts by Q. Under the
assumption x + y + z = 2 we have

x∑

k=1

(dist1(v0, lk) + dist2(v0, lk)) +
y∑

k=1

(dist1(v0, uk) + dist2(v0, uk))

+
z∑

k=1

(dist1(v0, wk) + dist2(v0, wk))

= dist1(v0, α) + dist2(v0, α) + dist1(v0, β) + dist2(v0, β) � T ′∗
1 + T ′∗

2 .

Hence from (4) we have

Q � 2R̄ − (T ′∗
1 + T ′∗

2 ) −
y∑

k=1

2τi(ek) −
z∑

k=1

Ti(Ck) = 2R̄ − T ∗
1 + T ∗

2 .

The theorem is proved by contradiction with (3). �
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Now consider the following procedure of instance simplification. The idea is
first to obtain an irreducible instance, then apply the terminal edge and ter-
minal cycle contractions to all underloaded terminal elements, maintaining the
irreducibility after each step. For the resulting instance there will be no valid
transformation (job aggregation, edge or cycle contraction) left.

Instance Simplification Procedure
INPUT: An instance I ∈ IR2.
OUTPUT: The reduced instance I ′.
Step 1. Transform the instance to the irreducible one using valid job aggre-

gations.
Step 2. WHILE there is an underloaded cycle or edge DO its contraction

and perform valid job aggregations to obtain an irreducible instance.
Step 3. STOP.

Note that this procedure can be implemented in linear time. Indeed, Step
1 is doable in O(n) time, and to enumerate the terminal edges and cycles it is
sufficient to construct a block-cut tree of G(I), which also can be done in linear
time (see [14,21] for instance).

The result of the Procedure applied to an instance with an arbitrary trans-
portation network can be complicated enough. However, when applied to an
instance with G = cactus, the Procedure might simplify the instance consider-
ably. A cactus is a connected graph for which each block is either an edge or a
cycle. Further we will consider only so-called cycleless instances.

Definition 11. An instance I ∈ Icactus
R2 is referred to as cycleless if the Instance

Simplification Procedure transforms I into an instance I ′ with no cycles in G(I ′).

Theorem 2 implies that an application of the Instance Simplification proce-
dure to a cycleless instance I transforms it to an instance I ′ such that G(I ′)
is either K1, or a chain connecting the depot to an overloaded edge, or a chain
connecting the depot to an overloaded node. The first case obviously implies
normality and is solvable in linear time. The same result can be proved for the
second case, the proof is similar to [9, Lemma 4.1]. The third case is considered
in the next section.

4 Optima Localization for the Cycleless Instances
on a Cactus

The main result of this section is the following

Theorem 3. Let I ∈ Icactus
R2 be a cycleless instance. Then one can in linear

time build a feasible schedule S for I such that Rmax(S) ∈ [R̄, 5
4 R̄].

Proof. According to the remark at the end of the previous section, it is sufficient
to prove the Theorem only for the irreducible instances on a chain, connecting
v0 with an overloaded node v. Moreover, if that node contains exactly three jobs,
Theorem 3 follows from the Theorem 1.
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Now consider an irreducible instance I ∈ Ichain
R2 such that G(I) =

(v0, . . . , vk), there J (vt) = {Jt} for each t = 0, . . . , k − 1, and J (vk) = {Jα, Jβ}
with

dα + dβ > R̄ − dist1(v0, vk) − dist2(v0, vk), (5)

due to the fact that vk is overloaded.
Consider two cases.
Case 1. max{dα, dβ} � 3

4 R̄ − dist1(v0, vk) − dist2(v0, vk).
Without loss of generality assume dα � dβ . Construct an early schedule S

according to the partial order of the operations from Fig. 1.

S

aα

b0 b1 . . . bk−1 bβ bα

aβ ak−1 . . . a1 a0

F

dist1
(v0, v

)

dist2
(v, v0

)

dist1(v, v0)

dist2(v0, v)

Fig. 1. Partial order of operations for Case 1.

It is easy to observe that R2(S) � {�2+T ∗
2 , dα+dist1(v0, vk)+dist2(v0, vk)} �

R̄. Assume R1(S) > R̄, then R1(S) =
k−1∑

j=0

dj +dβ +dist1(v0, vk)+dist2(v0, vk) =

Δ − dα + dist1(v0, vk) + dist2(v0, vk) � 2R̄ − T ∗
1 − T ∗

2 − 3
4 R̄ + T ∗

1 + T ∗
2 = 5

4 R̄ due
to the Case 1 assumption and (3).

Case 2. max{dα, dβ} < 3
4 R̄ − dist1(v0, vk) − dist2(v0, vk).

Construct two early schedules, S1 and S2, according to the partial orders of
operations from Figs. 2 and 3, respectively.

S

a0 a1 . . . ak−1 aα aβ

bα bβ bk−1 . . . b1 b0

F

dist2(v0 , v)

dist1(v, v0)

dist1(v0, v)

dist2(v, v0)

Fig. 2. Partial order for the schedule S1.
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S

a0 a1 . . . ak−1 aβ aα

bβ bα bk−1 . . . b1 b0

F

dist2(v0 , v)

dist1(v, v0)

dist1(v0, v)

dist2(v, v0)

Fig. 3. Partial order for the schedule S2.

Note that R2(S1) � R̄, because due to (3) and (5) we have

k−1∑

j=0

dj +dist1(v0, v)+dist1(v0, v) = Δ−dα −dβ +dist1(v0, v)+dist1(v0, v) � R̄.

Assuming Rmax(S1) > R̄ (otherwise the Theorem is proved), we have

Rmax(S1) = bα + max{aα, bβ} + aβ + dist1(v0, v) + dist2(v0, v).

By similar reasoning, assuming Rmax(S2) > R̄ we obtain

Rmax(S2) = bβ + max{bα, aβ} + aα + dist1(v0, v) + dist2(v0, v).

Therefore, using the case assumptions and (1) we have

Rmax(S1) + Rmax(S2) = T ∗
1 + T ∗

2 + dα + dβ

+ max{aα, bβ} + max{bα, aβ} <
3
4
R̄ +

3
4
R̄ + R̄ ≤ 10

4
R̄,

hence min{Rmax(S1), Rmax(S2)} <
5
4
R̄ and the Theorem is proved. �

5 Conclusion

We have generalized the instance reduction procedure, known for identical travel
times on an arbitrary tree (see [6,9]) it two directions. First, our procedure is
applicable to the problem with individual travel time, and second, we introduced
the terminal cycle contraction, allowing to use this procedure on a wider class
of graph structures, namely cacti. For a special class of cycleless instances of
the problem under consideration we have established the tight optima localiza-
tion interval, which coincides with a known interval for a problem on a link.
Note that similar result is known for the problem with identical travel times [6].
Also the terminal cycle contraction operation will simplify the investigation of a
routing open shop problem on a cycle, which is an important part of research on
the optima localization interval for a general case without any graph structure
restriction.



14 I. Chernykh and O. Krivonogova

The instance reduction procedure was used in [9] to establish polynomially
solvable subcases of the RO2|G = tree|Rmax problem with guaranteed normality
of the optimal schedule. One of those sufficient conditions of polynomial solvabil-
ity is quote simple: the depot v0 is overloaded. Using our Instance Simplification
Procedure and Theorem2 we can now formulate a more general result.

Lemma 2. For any instance I ∈ Icactus
R2 such that the depot v0 is overloaded a

normal (and hence optimal) schedule can be built in linear time.

Moreover, this Lemma is also true for wider classes of instances, for which
the depot becomes overloaded during the Instance Simplification Procedure.

A natural direction of further research is to establish tight optima localization
intervals for the general two-machine problem on a cactus, both for unrelated
and identical travel times. More global problems on an arbitrary transportation
network are also of interest. As we have no knowledge of any instance from IR2

for which optimal makespan exceeds 5
4 R̄, we suggest the following

Conjecture 1. For any instance I ∈ IR2 its optimal makespan Rmax(I) belongs
in the interval [R̄, 5

4 R̄].
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Abstract. A metric projection from the real Hilbert space onto a sub-
set of the boundary of a closed convex (not necessary bounded) set is
considered. We show a connection between Lipschitz continuity on some
subset of the Hilbert space of operator of metric projection with the
Lipschitz constant strictly less than 1 and local strong convexity of the
set (in terms of modulus of convexity for intersection of a set and a ball
with a small radius).

Keywords: Hilbert space · Metric projection · Convex sets · Modulus
of convexity

1 Introduction and Main Notations

We denote by H a Hilbert space over R with 〈p, x〉 standing for the scalar
product for vectors p and x from H. Let R = R ∪ {+∞}. Let Br(a) = {x ∈
H | ‖x − a‖ ≤ r}. For a subset A ⊂ H we denote by ∂A and intA the boundary
and the interior of the set A, respectively. The diameter of a set A is defined by
diam A = sup

x,y∈A
‖x − y‖. We denote the convex hull of a set A ⊂ H by co A. The

Minkowski sum of two sets A,B ⊂ H, is the set

A + B = {a + b | a ∈ A, b ∈ B}.

We denote the normal cone to a closed convex subset A ⊂ H at the point
a ∈ ∂A by N(A; a), that is

N(A; a) = {p ∈ H | 〈p, a〉 ≥ sup
x∈A

〈p, x〉}.

Let a subset A ⊂ H be fixed. Then the distance function from the point
x ∈ H to the set A is defined as follows

�A(x) = inf
a∈A

‖x − a‖,

and the metric projection of the point x ∈ H to the subset A ⊂ H is given by
the formula

PA(x) = {a ∈ A | ‖x − a‖ = �A(x)}.
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The Hausdorff distance between two subsets A,B ⊂ H is defined as follows

h(A,B) = inf{r > 0 | A ⊂ B + Br(0), B ⊂ A + Br(0)}.

For the function f : H → R the conjugate function f∗ : H → R is defined by
formula f∗(p) = sup

x∈H
(〈p, x〉 − f(x)).

Definition 1 [20]. Let a subset A ⊂ H be convex and closed. The modulus of
convexity δA : [0,diam A) → [0,+∞) is the function defined by

δA(t) = sup
{

δ ≥ 0 | Bδ

(
x0 + x1

2

)
⊂ A, ∀x0, x1 ∈ A : ‖x0 − x1‖ = t

}
.

For a subset A ⊂ H and a number � > 0 we define the open �-neighborhood
of the set A

UA(�) = {x ∈ H | �A(x) < �}.

For a convex subset A ⊂ H, a subset of its boundary S ⊂ ∂A and a number
� > 0 we define (S, �)-neighborhood of the set A as follows

Φ = Φ(A,S, �) .=

( ⋃
x∈S

(
x + N(A;x)

))
\ UA(�). (1)

Definition 2 [12,18–20]. A nonempty subset A ⊂ H is called a strongly convex
set of radius R > 0 if it can be represented as the intersection of closed balls of
radius R > 0, that is there exists a subset X ⊂ H such that A =

⋂
x∈X

BR(x).

It is well known, that a set PA(x) is a singleton for any closed convex subset
A ⊂ H and for any point x ∈ H. Moreover, for any pair of points x0, x1 ∈ H we
have

‖a0 − a1‖ ≤ 1 · ‖x0 − x1‖, (2)

where {a0} = PA(x0), {a1} = PA(x1).
The Lipschitz constant 1 in Formula (2) is the best possible in general case

and it is attained, for example, on the closed affine subspace.
The aim of the present article is to characterize (in terms of modulus of

convexity for intersection of a set and a ball with small radius) subset S of the
boundary of a closed convex subset A ⊂ H with the following property: for
any � > 0 there exists a number C ∈ (0, 1) such that for any pair of points
x0, x1 ∈ Φ (where Φ is (S, �)-neighborhood of the set A, see Formula (1)) the
following inequality holds true

‖a0 − a1‖ ≤ C · ‖x0 − x1‖, {a0} = PA(x0), {a1} = PA(x1). (3)

If A is closed subset in R
n, Federer in [11] has obtained estimates for the

Lipschitz constant of the metric projection operator. In papers [1,2] Abatzoglou
has considered similar question and received precise estimates for the Lipschitz
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constant of the metric projection operator in case of R
n and a Hilbert space

for subsets with C2-smooth boundary. Balashov and Golubev have proved in [6]
that the property (3) (where S = ∂A) characterizes the class of strongly convex
sets.

Alber and Notik [3,4], Björnest̊al [10], Penot [17] et al are also engaged in
estimates of the modulus of continuity of the metric projection onto convex
closed sets in Banach spaces.

The main results of the paper are Theorems 1, 2.

2 Lipschitz Property for Metric Projection on the Subset
of Boundary

In this section we will prove, that if a subset A ⊂ H is locally strictly convex
set (the boundary contains no nondegenerate line segments) then the metric
projection onto some subset of the boundary of the set A is Lipschitz continuous
and the estimate is slightly better than estimate in (2). Moreover if a subset
A ⊂ H is locally strongly convex (in terms of modulus of convexity) then the
metric projection onto some subset of the boundary of the set A is Lipschitz
continuous with Lipschitz constant strictly less than 1.

We denote by ∠xyz an angle between vectors x − y and z − y.
Let us consider the following problem. There is a segment [a0, a1] ∈ H,

ϕ0, ϕ1 ∈
[
0,

π

2

]
. Cones K0 and K1 are built on the points a0 and a1 as a vertexes

correspondingly, the segment [a0, a1] is the axis of rotation, and for any point
x ∈ K0 the following inequality holds ∠xa0a1 ≥ π − ϕ0, for any point x ∈ K1

the next inequality holds ∠xa1a0 ≥ π − ϕ1, that is the apex angle of the cone
K0 equals 2ϕ0 < π, the apex angle for the cone K1 equals 2ϕ1 < π. We are to
find

min
{

‖x0 − x1‖ | x0 ∈ K0, x1 ∈ K1, ‖x0 − a0‖ = �0, ‖x1 − a1‖ = �1

}
. (4)

Lemma 1. The solution of the problem (4) is

min
x0∈K0,x1∈K1
‖x0−a0‖=�0
‖x1−a1‖=�1

‖x0 − x1‖2 = �20 + �21 + ‖a0 − a1‖2

+ 2‖a0 − a1‖(�0 cos ϕ0 + �1 cos ϕ1)
+ 2�0�1 cos(ϕ0 + ϕ1). (5)

Proof. Fix points x0 ∈ K0, x1 ∈ K1. Let points b0, b1 be orthogonal projections
of the points x0 and x1 on the line, that contains the segment [a0, a1], corre-
spondingly. Let α0 = ∠x0a0b0, α1 = ∠x1a1b1, that is α0 ≤ ϕ0, α1 ≤. Let a point
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x′
1 be orthogonal projection of the point x1 on the plane x0a0a1, γ = ∠x1b1x

′
1.

Obviously γ ≤ π
2 . By Pythagorean theorem for the triangle x0x

′
1x1 we have

‖x0 − x1‖2 = ‖x0 − x′
1‖2 + ‖x′

1 − x1‖2

= ‖b0 − b1‖2 + (‖x0 − b0‖ − ‖x′
1 − b1‖)2 + ‖x1 − x′

1‖2. (6)

It is clear, that ‖b0 − b1‖ = (�0 cos α0 + ‖a0 − a1‖ + �1 cos α1), ‖x0 − b0‖ =
�0 sin α0, ‖x1 − b1‖ = �1 sin α1, ‖x′

1 − b1‖ = �1 sin α1 cos γ, ‖x′
1 − x1‖ =

�1 sin α1 sin γ. So Formula (6) takes on the following form

‖x0 − x1‖2 =�20 cos2 α0 + �21 cos2 α1 + ‖a0 − a1‖2
+ 2‖a0 − a1‖(�0 cos α0 + �1 cos α1) + 2�0�1 cos α0 cos α1

+ �20 sin2 α0 − 2�0�1 sin α0 sin α1 cos γ

+ �21 sin2 α1 cos2 γ + �21 sin2 α1 sin2 γ.

After transformations we get

‖x0 − x1‖2 = �20 + �21 + ‖a0 − a1‖2 + 2‖a0 − a1‖(�0 cos α0 + �1 cos α1)
+ 2�0�1(cos α0 cos α1 − sin α0 sin α1 cos γ).

Since α0 < π
2 , α1 < π

2 , γ ≤ π
2 , then summand −2�0�1 sin α0 sin α1 cos γ <

0 and for fixed values α0, α1 expression −2�0�1 sin α0 sin α1 cos γ attains its
minimum for cos γ = 1, that is γ = 0.

Thus, for fixed angles α0, α1 we have

min
γ∈[0, π

2 ]
α0,α1 arefixed

‖x0 − x1‖2 = �20 + �21 + ‖a0 − a1‖2

+ 2‖a0 − a1‖(�0 cos α0 + �1 cos α1) + 2�0�1 cos(α0 + α1). (7)

Note that the function cos t decreases for t ∈ [0, π]. Also notice, that in (7)
for α0 = ϕ0, α1 = ϕ1 the arguments of all cosines are maximal, that is cosines
attain their minimums.

Finally we have

min
α0∈[0,ϕ0],α1∈[0,ϕ1]

γ∈[0, π
2 ]

‖x0 − x1‖2 = �20 + �21 + ‖a0 − a1‖2

+ 2‖a0 − a1‖(�0 cos ϕ0 + �1 cos ϕ1) + 2�0�1 cos(ϕ0 + ϕ1).

Remark 1. For any number � > 0, such that �0 ≥ �, �1 ≥ � in terms of Prob-
lem (4) and Lemma 1 the following inequality holds

min
α0∈[0,ϕ0],α1∈[0,ϕ1]

γ∈[0, π
2 ]

‖x0 − x1‖2 ≥ 2�2 + ‖a0 − a1‖2

+ 2‖a0 − a1‖�(cos ϕ0 + cos ϕ1) + 2�2 cos(ϕ0 + ϕ1). (8)



20 M. O. Golubev

In the case �0 = �1 = � the inequality (8) obviously becomes identical. Let
us consider the case, when at least one of the inequalities �i ≥ � is strict.

Since ϕi < π
2 , �i ≥ �, where i ∈ {0, 1}, then �0 cos ϕ0+�1 cos ϕ1 ≥ �(cos ϕ0+

cos ϕ1).
That is clear, that the following inequalities hold

�20 + �21 − 2�2

2(�0�1 − �2)
≥ 1 ≥ cos(ϕ0 + ϕ1).

Since �0�1 − �2 > 0, then

�20 + �21 − 2�2 ≥ 2(�0�1 − �2) cos(ϕ0 + ϕ1).

Whence we get

�20 + �21 − 2�0�1 cos(ϕ0 + ϕ1) ≥ 2�2 − 2�2 cos(ϕ0 + ϕ1).

It completes the proof of the inequality (8)

Theorem 1. Let A ⊂ H be a closed convex set, S ⊂ ∂A, numbers C > 0, p ≥ 2,
� > 0 and for any point a ∈ S there exists number ν(a) > 0, such that the subset
B = Bν(a)(a)

⋂
A is uniformly convex with modulus of convexity δB(t) ≥ Ctp.

The set Φ is (S, �)-neighborhood of the set A (see Formula (1)).
Then ∀ε > 0 ∀x0 ∈ Φ ∃δ = δ(ε, x0) > 0 ∀x1 ∈ Φ : [x0, x1] ∈ Φ, ‖x0−x1‖ < δ,

the next estimate holds

‖x0 − x1‖2 ≥ ‖a0 − a1‖2 +
(

8C�

1 − 21−p
− ε

)
‖a0 − a1‖p

+
(

16C2�2

(1 − 21−p)2
− ε

)
‖a0 − a1‖2p−2, (9)

where {a0} = PA(x0), {a1} = PA(x1)

Proof. Let us fix a point x0 ∈ Φ and define a point {a0} = PA(x0). We choose
a point x1 ∈ Φ, such that for a point {a1} = PA(x1) the following conditions
are fulfilled ‖a0 − a1‖ ≤ ν(a0) and a0 �= a1 (for example, if ‖x0 − x1‖ < ν(a0),
then from convexity of the set A it follows that ‖a0 − a1‖ < ν(a0)). If a0 = a1

then Formula (9) is true. Consider the case a0 �= a1. Let us define the set
B

.= Bν(a0)(a0)
⋂

A. Let l0 = ‖a0 − a1‖, δ0 = δB(l0). From the definition of the
function δB(t) it follows that B0

.= Bδ0

(
a0+a1

2

) ⊂ A. Let us choose the point
y1 the following way: y1 ∈ B0

⋂
co {x0, a0, a1}, the segment a0y1 is tangent

to the ball B0 at the point y1. Let us construct the sequence yk like this: for
all k ∈ N, k ≥ 2, yk ∈ co {x0, a0, y1}, yk ∈ Bk−1

.= BδB(lk−1)

(
a0+yk−1

2

)
the

segment a0yk is tangent to the ball Bk−1 at the point yk, where lk = ‖a0 − yk‖.
Using the definition of modulus of convexity of the set B by induction for all
k ∈ N we obtain inclusions yk ∈ B. Therefore yk ∈ A. Let δk = δB(lk) and
αk = ∠yk+1a0yk. It is obvious, that αk ≥ sin αk = 2 δk

lk
≥ 2Clp−1

k , where the last
inequality follows from the inequality δB(t) ≥ Ctp.
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From [8, Corollary 2.3] it follows, that there exists such a number C0 > 0,
that for all t ∈ (0,diam A) the inequality δA(t) ≤ C0t

2 holds. Let us estimate

angle α =
∞∑

k=0

αk.

l1 =

√
l20
4

− δ20 ≥
√

l20
4

− C2
0 l40 =

l0
2

√
1 − 4C2

0 l20, (10)

lk =

√
l2k−1

4
− δ2k−1 ≥ lk−1

2

√
1 − 4C2

0 l2k−1. (11)

Thus, for any points a0, a1 ∈ S such that l0 < min
{

1
2C0

, ν(a0)
}

there exists
such a number σ > 0, that for any k ∈ N the following inequalities hold lk ≥
lk−1

(
1
2 − σ

)
. Hence and from estimates (10) and (11) it follows, that

lk ≥ l0

(
1
2

− σ

)k

.

Therefore

α =
∞∑

k=0

αk ≥
∞∑

k=0

sin αk = 2
∞∑

k=0

δk

lk
≥ 2C

∞∑
k=0

lp−1
k

≥ 2Clp−1
0

∞∑
k=0

(
1
2

− σ

)k(p−1)

=
2Clp−1

0

1 − (
1
2 − σ

)(p−1)
. (12)

Note, that convexity of the set A implies that 〈x0 − a0, a0〉 ≥ 〈x0 − a0, yk〉,
that is 〈a0 −x0, a0 − yk〉 ≤ 0. Hence it follows, that ∠x0a0yk ≥ π

2 , ∀k ∈ N. Since

yk ∈ co {x0, a0, a1} we have ∠x0a0a1 = ∠x0a0yk+∠yka0a1 ≥ π
2 +

k∑
n=0

αn, passing

the limit as n → ∞ we obtain ∠x0a0a1 ≥ π
2 + α. Similarly ∠x1a1a0 ≥ π

2 + α.
Let ϕ0, ϕ1 ∈ [0, π

2 ]. Cones K0 and K1 are built on the points a0 and a1

as a vertexes correspondingly, the segment [a0, a1] is the axis of rotation, and
for any point x ∈ K0 the following inequality holds ∠xa0a1 ≥ π − ϕ0, for any
point x ∈ K1 the next inequality holds ∠xa1a0 ≥ π − ϕ1. Note, that choosing
ϕ0 = ϕ1 = π

2 − α and taking into account inequalities ∠x0a0a1 ≥ π
2 + α and

∠x1a1a0 ≥ π
2 + α, the inclusions x0 ∈ K0, x1 ∈ K1 are true.

Let us recall that ‖x0−a0‖ ≥ �, ‖x1−a1‖ ≥ �. Thus, it results from Remark 1
that the following inequality holds

‖x0 − x1‖2 ≥ 2�2 + ‖a0 − a1‖2 + 4‖a0 − a1‖� sin α − 2�2 cos 2α. (13)
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Notice, that sin α ≥ α− α3

6 , cos 2α ≤ 1−2α2 + 2α4

3 . Then from estimate (12)
and inequality (13) we get

‖x0 − x1‖2 ≥ ‖a0 − a1‖2 +
8�C‖a0 − a1‖p

1 − (
1
2 − σ

)p−1

+
16�2C2‖a0 − a1‖2p−2(

1 − (
1
2 − σ

)p−1
)2 + o(‖a0 − a1‖3p−3).

Since the number l0 is small enough it follows, that for all ε > 0 there exists
such number δ = δ(ε, x0) > 0, that for x1 with ‖x0 − x1‖ < δ and [x0, x1] ∈ Φ
the next inequality holds

‖x0 − x1‖2 ≥ ‖a0 − a1‖2 +
(

8C�

1 − 21−p
− ε

)
‖a0 − a1‖p

+
(

16C2�2

(1 − 21−p)2
− ε

)
‖a0 − a1‖2p−2.

Corollary 1. Let the conditions of Theorem1 be satisfied, p = 2, the set Φ is
(S, �)-neighborhood of the set A. Then for any pair of points x0, x1 ∈ Φ such
that [x0, x1] ⊂ Φ the following inequality holds

‖a0 − a1‖ ≤ 1
1 + 8C�

‖x0 − x1‖, (14)

where {ai} = PA(xi), i ∈ {0, 1}.
Proof. Let us fix a number ε > 0, ε < min{16C�, 64C2�2}. Let A(ε) =
A(ε, C, �) = 16C� − ε, B(ε) = B(ε, C, �) = 64C2�2 − ε. Note that for any
such ε, the inequalities A(ε) > 0, B(ε) > 0 are true.

Consider a pair of points x0, x1 ∈ Φ such that [x0, x1] ⊂ Φ. From the com-
pactness of the segment [x0, x1] it results that from its covering by open balls
int B δ(ε,x)

2
(x), x ∈ [x0, x1] there can be extracted finite subcovering with centers

in the points {yi}n
i=0, where y0 = x0, yn = x1. Let us define points {bi} = PA(yi),

i ∈ {0, n}. It follows from Theorem 1 that for any number i ∈ {0, n − 1} the next
inequality holds true

‖yi − yi+1‖ ≥ ‖bi − bi+1‖
√

(1 + A(ε) + B(ε)).

Hence and from the triangle inequality we obtain the following estimate:

‖x0 − x1‖ =
n−1∑
i=0

‖yi − yi+1‖

≥
n−1∑
i=0

‖bi − bi+1‖
√

(1 + A(ε) + B(ε)) ≥ ‖a0 − a1‖
√

(1 + A(ε) + B(ε)).

Passing the limit as ε → +0 we obtain inequality (14).
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Note, that Theorem 1 and Corollary 1 are a local variant of [6, Theorem 2.2].
If S = ∂A and δS(ε) = Cε2 + o(ε2), ε → +0 it follows from Corollary 1 that

‖a0 − a1‖ ≤ 1
1 + 8C�

‖x0 − x1‖,

where xi ∈ UA(�), {ai} = PA(xi), i ∈ {0, 1}. From [9, Theorem 2.1] it follows,
that the set A is strongly convex with radius R = 1

8C . Thus, the inequality (14)
takes the form:

‖a0 − a1‖ ≤ R

R + �
‖x0 − x1‖,

which is exactly the same as inequality in [6, Corollary 2.1].

3 Local Strong Convexity of the Subset of Boundary
with Lipschitz Property with Constant Less Than 1

In this section we will prove that if metric projection onto some subset of the
boundary of the set A ⊂ H is Lipschitz continuous with Lipschitz constant
strictly less than 1 then the intersection of the ball with small radius and the
subset A is strongly convex.

Lemma 2. Let pi ∈ H, ‖pi‖ = 1, ti ≥ 1, i ∈ {0, 1}.
Then ‖p0 − p1‖ ≤ ‖t0p0 − t1p1‖

Proof. Result of Lemma 2 can be obtained easily.

Theorem 2. Let subset A ⊂ H be closed and convex, S ⊂ ∂A. A number � > 0
is fixed, the set Φ is (S, �)-neighborhood of the set A. Suppose, that there exists
a number C ∈ (0; 1), such that for any points x0, x1 ∈ Φ the following formula
holds true

‖a0 − a1‖ ≤ C‖x0 − x1‖, {ai} = PA(xi), i ∈ {0, 1}. (15)

Let a ∈ S and R = C�
1−C .

Then for any number ε ∈ (0, R) with property Bε(a)
⋂

∂A ⊂ S the subset
A

⋂
Bε(a) is strongly convex set with radius R.

Proof. Several auxiliary lemmas will be formulated and proved within the text
of the proof of Theorem 2.

Let us fix a pair of points x0, x1 ∈ Φ, such that �A(x0) = �A(x1) = �. Let

{ai} = PA(xi), qi =
xi − ai

�
, i ∈ {0, 1}. (16)

Note, that qi ∈ N(A, ai)
⋂

∂B1(0), where i ∈ {0, 1}. Using the condition (15) we
have

‖a0 − a1‖ ≤ C‖x0 − x1‖ = C‖(a0 − a1) + (x0 − a0) − (x1 − a1)‖

≤ C‖a0 − a1‖ + C�

∥∥∥∥x0 − a0

�
− x1 − a1

�

∥∥∥∥ .
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The last inequality takes the form

‖a0 − a1‖ ≤ R‖q0 − q1‖, (17)

where R = C�
1−C .

Let us fix a number γ ∈ (0, �). Consider the set

Aγ = A + Bγ(0). (18)

Let

Sγ = (∂Aγ)
⋂( ⋃

x∈S

(
x + N(A;x)

))
. (19)

We denote {bi} = PAγ
(xi), where i ∈ {0, 1}. Obviously ‖xi − bi‖ ≥ � − γ,

ai + γqi ∈ Sγ and ‖xi − (ai + γqi)‖ = � − γ. Since the metric projection on the
convex set is unique then ai = bi − qiγ, for i ∈ {0, 1}. Thus,

bi = ai + qiγ, i ∈ {0, 1}. (20)

Taking it into account we can rewrite inequality (17)

‖b0 − b1‖ − γ‖q0 − q1‖ ≤ ‖(b0 − q0γ) − (b1 − q1γ)‖
= ‖a0 − a1‖ ≤ R‖q0 − q1‖.

Thus,
‖b0 − b1‖ ≤ (R + γ)‖q0 − q1‖. (21)

We denote
Rγ = R + γ. (22)

Obviously qi ∈ N(Aγ , bi)
⋂

∂B1(0), where i ∈ {0, 1}.
Let us prove that

γ‖q0 − q1‖ ≤ ‖b0 − b1‖. (23)

We will prove it by contradiction. Suppose, that the following inequality holds
true

γ‖q0 − q1‖ > ‖a0 + γq0 − (a1 + γq1)‖.

Squaring the last inequality we obtain

0 > ‖a0 − a1‖2 + 2γ〈a0 − a1, q0 − q1〉. (24)

It follows from the inclusions qi ∈ N(A; ai), i ∈ {0, 1}, that inequalities
〈q0, a0〉 ≥ 〈q0, a1〉 and 〈q1, a1〉 ≥ 〈q1, a0〉 hold true. Summing those inequalities
we get: 〈a0 − a1, q0 − q1〉 ≥ 0. Hence and from the inequality (24) we obtain the
following inequalities

0 > ‖a0 − a1‖2 + 2〈a0 − a1, q0 − q1〉 ≥ 0.

We come to contradiction.



Local Strong Convexity 25

It follows from the inequality (23) that for any point b ∈ Sγ there exists a
unique vector pb ∈ ∂B1(0)

⋂
N(Aγ ; b) ⊂ H.

Fix a point b ∈ Sγ and a number ω ∈ (0, γ), such that

(∂Aγ)
⋂

Bω(b) ⊂ Sγ . (25)

Let pb ∈ (∂B1(0))
⋂

N(Aγ ; b). Without loss of generality, we assume b = 0.
Consider a hyperplane

p⊥
b = {z ∈ H : 〈z, pb〉 = 0}. (26)

A closed ball with center in the point y ∈ p⊥
b and radius r > 0 in the subspace

p⊥
b we will denote by Br(y).

Lemma 3. Let the conditions of Theorem2 and Formula (25) hold true. Ŝγ –
orthogonal projection of the subset Sγ

⋂
Bω(0) onto hyperplane p⊥

b .
Then the function f : Ŝγ → R, which is assigned by the following formula:

graph f = Sγ

⋂
Bω(0), where the positive direction of the ordinate axis coincides

with the vector −pb, is defined correctly. Moreover, if we redefine this function
on the whole space, supposing that f(z) = +∞ for any point z ∈ p⊥

b \ Ŝγ , then
the function f : p⊥

b → R is convex and lower semicontinuous.

Proof of Lemma 3. Let us show, that function f is defined correctly. We will
prove it by contradiction. Suppose that there exist such a pair of points b0, b1 ∈
Sγ

⋂
Bω(0) that b0−b1

‖b0−b1‖ = pb. Let p1 ∈ (∂B1(0))
⋂

N(Aγ ; b1), whereby the

inequalities 〈p1, b0 − b1〉 ≤ 0 and 〈p1, pb〉 ≤ 0 hold true. Hence
√

2 ≤ ‖p1 − pb‖.
From the inequality (23), inclusion b1 ∈ Sγ

⋂
Bω(0) and inclusion ω ∈ (0, γ) it

follows, that √
2 ≤ ‖p1 − pb‖ ≤ ‖b1 − b‖

γ
≤ ω

γ
< 1.

Contradiction shows, that the function f : Ŝγ → R is defined correctly. Let us
redefine the function f on the whole space p⊥

b , supposing that f(z) = +∞ for
all z ∈ p⊥

b \ Ŝγ . Thus the function f : p⊥
b → R is defined.

We denote by S̃γ orthogonal projection of the set Aγ

⋂
Bω(0) on the hyper-

plane p⊥
b . Note, that by the inclusion Sγ

⋂
Bω(0) ⊂ Aγ

⋂
Bω(0) the inclusion

Ŝγ ⊂ S̃γ holds true. Let us show, that Ŝγ = S̃γ . Suppose the contrary: there
exists a point s ∈ ∂S̃γ \ Ŝγ . Let ps ∈ N(S̃γ ; s)

⋂
∂B1(0). Supposition means that

there exists a point a ∈ ∂ (Aγ

⋂
Bω(0)) \ Sγ , which is projected into a point

s, where ps ∈ N(Aγ

⋂
Bω(b); a). From the inclusions (∂Aγ)

⋂
Bω(0) ⊂ Sγ and

a ∈ ∂ (Aγ

⋂
Bω(b)) \ Sγ it follows, that a ∈ ∂Bω(0)

⋂
int Aγ . From here and

inclusion ps ∈ N(Aγ

⋂
Bω(b); a) we obtain a = psω. Hence it follows that tan-

gent hyperplane Hpb
(0) = {x ∈ H | 〈pb, x〉 = 0} at the point b = 0 to the set

Aγ intersects the set Aγ at the point a ∈ int Aγ , which contradicts the convex-
ity of the set Aγ . Thus we prove the equality Ŝγ = S̃γ . This means that for
any point x ∈ (Aγ

⋂
Bω(0)) \ Sγ there exists a point y ∈ Sγ

⋂
Bω(0) such that
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y−x
‖y−x‖ = pb. This in turn means that Aγ

⋂
Bω(0) + lb = Sγ

⋂
Bω(0) + lb, where

lb = {−pbt | t ∈ [0,+∞)}. Note that Sγ

⋂
Bω(0) + lb = epi f . Thus

epi f = Aγ

⋂
Bω(0) + lb, (27)

where lb = {−pbt | t ∈ [0,+∞)}.
The set Aγ

⋂
Bω(0) + lb is convex as a sum of two convex sets. It follows

from [19, Theorem 1.13.2] that it is closed, that is epi f is closed and convex set.
It follows from [19, Theorem 1.5.1] and [19, Definition 1.6.1] that the function f
is convex and lower semicontinuous. Lemma 3 is proved.

Lemma 4. Let the conditions of Lemma 3 hold true. Then the following inclu-
sion holds

Bτ (0) ⊂ Ŝγ , (28)

where τ = ω
γ

√
γ2 − ω2.

Proof of Lemma 4. Suppose the contrary. Then, using the inclusion 0 ∈ Ŝγ , we
obtain that there exists a point y0 ∈ intBτ (0)

⋂
∂Ŝγ . Since y0 ∈ ∂Ŝγ , then there

exists such a point z0 ∈ Sγ

⋂
∂Bω(0), that y0 − z0 = t0pb for some t0 ≥ 0. Let

p0 ∈ ∂B1(0)
⋂

N(Aγ ; z0). It follows from the inequality (23), that ‖p0 − pb‖ ≤
‖z0−b‖

γ = ω
γ . Since p0 ∈ N(Aγ ; z0), then 〈p0, z0〉 ≥ 〈p0, b〉 = 0. Therefore,

〈pb, z0〉 = 〈pb − p0, z0〉 + 〈p0, z0〉 ≥ 〈pb − p0, z0〉

≥ −‖pb − p0‖‖z0‖ ≥ −ω2

γ
.

From the inclusion y0 ∈ p⊥
b follows the equality 〈pb, y0〉 = 0. Thus,

t0 = 〈pb, y0 − z0〉 = −〈pb, z0〉 ≤ ω2

γ
.

Using the equalities y0 − z0 = t0pb and 〈pb, y0〉 = 0, we obtain the equalities
t20 + ‖y0‖2 = ‖z0‖2 = ω2. Thus

ω2 ≤ ω4

γ2
+ ‖y0‖2 <

ω4

γ2
+ τ2,

which contradicts the equality τ = ω
γ

√
γ2 − ω2. So, the inclusion (28) is proved.

Lemma 4 is proved.
Since dom f = Ŝγ ⊃ Bτ (0), then int dom f �= ∅. By Lemma 2 in terms of

function f the inequality (21) takes form ∀z0, z1 ∈ int dom f ↪→

‖z0 − z1‖ ≤ ‖(z0, f(z0)) − (z1, f(z1))‖ ≤ Rγ‖(f ′(z0),−1) − (f ′(z1),−1)‖
≤ Rγ‖f ′(z0) − f ′(z1)‖, ∀z0, z1 ∈ int dom f. (29)
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Due to [19, Theorem 1.16.4] equality zi = f∗′
(pi) is equivalent to equality

pi = f ′(zi), i ∈ {0, 1}. Thus the inequality (29) takes form

‖f∗′
(p0) − f∗′

(p1)‖ ≤ Rγ‖p0 − p1‖, ∀p0, p1 ∈ p⊥
b . (30)

Note, that dom f = Ŝγ is bounded set. It follows from the definition of
conjugate function that dom f∗ = p⊥

b .
From [19, Theorem 1.19.2] it follows that the function f is strongly convex

with the constant 1
Rγ

.
It follows from [7, Theorem 3.1] that for any z ∈ Bτ (0) the inequality

f(z) ≥ 1
2Rγ

‖z‖2 = hγ(z) holds, whence we have the inclusion Bθ(0)
⋂

epi f ⊂
Bθ(0)

⋂
epi hγ , ∀θ ∈ (0, τ).

Lemma 5. Let the conditions of Lemma 3 hold and the function f : p⊥
b → R

be from Lemma3. The number � is from Theorem2, the number γ ∈ (0, �),
and numbers ω and τ are from Lemmas 3 and 4 correspondingly, the number
Rγ is defined by (22). Then for any number θ ∈ (0, τ ] the inclusion holds

Bθ(0)
⋂

epi f ⊂ BRγ(θ)(− pb

‖pb‖Rγ(θ)), where Rγ(θ) =
Rγ+

√
R2

γ+θ2

2 .

Proof of Lemma 5. The orthogonal projection of the set Bθ(0)
⋂

epi hγ on

the subspace p⊥
b is the ball Brθ

(0), where rθ = Rγ

√
2
(√

1 + θ2

R2
γ

− 1
)
. Let

us suppose that there exists such a point z, that ‖z‖ ≤ rθ and 1
2Rγ

‖z‖2 <

Rγ(θ) − √
Rγ(θ)2 − ‖z‖2. Hence we obtain the inequality

√
R2

γ(θ) − ‖z‖2 <

Rγ(θ)− 1
2Rγ

‖z‖2. By the inequality ‖z‖ ≤ rθ and the choice of the number θ the
right side of the last inequality is positive. After squaring and transformations
we have 0 < 1 − Rγ(θ)

Rγ
+ 1

4R2
γ
‖z‖2. In other words

‖z‖ > 2
√

RγRγ(θ) − R2
γ = rθ.

Contradiction. So for any ‖z‖ ≤ rθ we have the inequality 1
2Rγ

‖z‖2 ≥ Rγ(θ) −√
Rγ(θ)2 − ‖z‖2.
This inequality provides the inclusion Bθ(0)

⋂
epi hγ ⊂ BRγ(θ)(− pb

‖pb‖Rγ(θ)).
Hence the following inclusion holds true Bθ(0)

⋂
epi f ⊂ BRγ(θ)(− pb

‖pb‖Rγ(θ)).
Note, that Rγ(θ) > Rγ and Rγ(θ) → Rγ , while θ → 0. Lemma 5 is proved.

Similarly, for any point b ∈ Sγ , for which exists such a number ω ∈ (0, γ),
that (∂Aγ)

⋂
Bω(b) ⊂ Sγ the following inclusion holds true

Bθ(b)
⋂

epi f ⊂ BRγ(θ)(b − pb

‖pb‖Rγ(θ)), (31)

where Rγ(θ) =
Rγ+

√
R2

γ+θ2

2 . It follows from the inclusion (31), the equality (27)
and conditions ω ∈ (0, γ), τ = ω

γ

√
γ2 − ω2 and θ ∈ (0, τ ] that

Bθ(b)
⋂

Aγ ⊂ BRγ(θ)(b − pb

‖pb‖Rγ(θ)), (32)
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where Rγ(θ) =
Rγ+

√
R2

γ+θ2

2 .

Lemma 6. Let the number R be from Theorem2. Let ε̃ and γ are fixed numbers
such that ε̃ ∈ (0, R) and γ ∈ (0, �). Sets Aγ and Sγ is defined by (18) and (19)
correspondingly. Let b ∈ Sγ and the inclusion Bε̃+2γ(b)

⋂
∂Aγ ⊂ Sγ holds.

Then the set Aγ

⋂
Bε̃+γ(b) is strongly convex set with radius Rγ .

Proof of Lemma 6. Consider a set Aε̃(b) = Aγ

⋂
Bε̃+γ(b). For any point x ∈

(∂Bε̃+γ(b))
⋂

Aε̃(b) the unit vector px = b−x
ε̃+γ satisfies inclusion

Aε̃(b) ⊂ Bε̃+γ(b) ⊂ BRγ
(x − Rγpx). (33)

Note that for any point x ∈ Sγ

⋂
Aε̃(b) the inclusion holds true Aγ

⋂
Bγ(x) ⊂

Aγ

⋂
Bε̃+2γ(b). Hence follows the inclusion (∂Aγ)

⋂
Bγ(x) ⊂ Sγ . Thus for any

point x ∈ Sγ

⋂
Aε̃(b) the number ω = γ

2 satisfies inclusion (∂Aγ)
⋂

Bω(x) ⊂ Sγ

(similarly to inclusion in (25)). Taking into account that ω = γ
2 we obtain that

the number τ from Lemma 4 equals τ =
√
3
4 .

The inclusion (32) implies that for any point x ∈ Sγ

⋂
Aε̃(b) and for any

number θ ∈ (0,
√
3
4 ] the following inclusion holds

Bθ(x)
⋂

Aε̃(b) ⊂ Bθ(x)
⋂

Aγ ⊂ BRγ(θ)(x − px

‖px‖Rγ(θ)), (34)

where Rγ(θ) =
Rγ+

√
R2

γ+θ2

2 , px ∈ N(Aγ , x).
Consider a set Ω = Aε̃(b). It follows from the inclusions (33) and (34) that

for any point x ∈ ∂Ω there exist such a neighborhood U of a point x and
a vector v, ‖v‖ = 1 that U

⋂
Ω ⊂ BRγ(θ)(x − Rγ(θ)v). It follows from [21,

Theorem 1.2, Remark after the proof of Theorem 1.2 and Proposition 3.3] that
the set Ω = Aε̃(b) is strongly convex set with radius Rγ(θ) for any θ ∈ (0,

√
3
4 ].

Letting θ to zero we obtain, that the set Aε̃(b) is strongly convex with radius
Rγ . Lemma 6 is proved.

Lemma 7. Let conditions of Theorem2 hold true. Then for any ε̃ ∈ (0, ε) the
subset A

⋂
Bε̃(a) is strongly convex with radius R.

Proof of Lemma 7. Let the point a ∈ S and the number ε > 0 be from Theorem 2,
that is Bε(a)

⋂
∂A ⊂ S. Let pa ∈ N(A; a)

⋂
∂B1(0).

By analogy with sets Aγ and Sγ define the sets An = A + B 1
n
(0) and

Sn = (∂An)
⋂ ( ⋃

x∈S

(
x + N(A;x)

))
, denote bn = a + 1

npa.

Let us show, that for all n ∈ N the following inclusion holds

Bε(bn)
⋂

∂An ⊂ Sn. (35)

Assume the contrary. Then there exists a point yn ∈ ∂An \ Sn such that ‖yn −
bn‖ ≤ ε. By the construction of the set An there exist a point xn ∈ ∂A \ S
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and vector pn(x) ∈ N(A;x)
⋂

∂B1(0) such that yn = xn + 1
npn(x). It follows

from the inclusion Bε(a)
⋂

∂A ⊂ S that ‖xn − a‖ > ε. It follows from the
inclusions pa ∈ N(A; a) and pn(x) ∈ N(A;x) that the inequalities 〈pn(x), xn〉 ≥
〈pn(x), a〉 and 〈pa, a〉 ≥ 〈pa, xn〉 hold true. Summing the last inequalities we
obtain: 〈xn − a, pn(x) − pa〉 ≥ 0. Using the last inequality and the equalities
bn = a + 1

npa and yn = xn + 1
npn(x), we get

‖yn − bn‖2 = ‖(xn − a) +
1
n

(pn(x) − pa)‖2

= ‖xn − a‖2 +
2
n

〈xn − a, pn(x) − pa〉 +
1
n2

‖pn(x) − pa‖2

> ε2 +
1
n2

‖pn(x) − pa‖2 ≥ ε2.

Which contradicts the inequality ‖yn − bn‖ ≤ ε. Thus for all n ∈ N the inclusion
Bε(bn)

⋂
∂An ⊂ Sn holds.

Fix ε̃ ∈ (0, ε). Denote C = A
⋂

Bε̃(a). Define the subsets

Cn = An

⋂
Bε̃+ 1

n
(b).

Let n0 = max
{[

2
ε−ε̃

]
+ 1,

[
1
�

]
+ 1

}
, where [k] – is the largest integer not

greater than k. Then for any n > n0 the inequality 1
n < � and the inclusion

Bε̃+ 2
n
(bn)

⋂
∂An ⊂ Sn hold true, that is conditions of Lemma6 are fulfilled.

Thus the subsets Cn are strongly convex with radii Rn = R + 1
n .

It follows from [5, Theorem 1] that h
(
Cn, A

⋂
Bε̃(a)

) → 0 while n → ∞.
By [19, Lemma 4.3.1] for any ε̃ ∈ (0, ε) the subset C = A

⋂
Bε̃(a) is strongly

convex with radius lim inf
n→∞ Rn = R. Lemma 7 is proved.

Denote D = A
⋂

Bε(a). For any n > [1ε ] + 1 define the subsets

Dn = A
⋂

Bε− 1
n
(a).

It follows from [5, Theorem 1] and [19, Lemma 4.3.1] that subset D = A
⋂

Bε(a)
is strongly convex with radius R. The proof of Theorem 2 is completed.

Remark 2. If in Theorem 2 the number ε > C�
1−C and the inclusion Bε(a)

⋂
∂A ⊂

S holds, then the subset A
⋂

Bε(a) is strongly convex with radius ε. Let us show
that such a case is possible in terms of Theorem 2. Consider the following subset

A = {(x, y) ∈ R
2 | x ∈ [−1, 1], y ≥ −

√
1 − x2}.

Let
S = {(x, y) ∈ R

2 | x ∈ [−1, 1], y = −
√

1 − x2}.

Let � = 1. It is easy to prove that for any pair points x0, x1 ∈ Φ(A,S, 1) (where
a subset Φ(A,S, �) is (S, �)-neighborhood of the set A) the following inequality
holds

‖a0 − a1‖ ≤ 1
2
‖x0 − x1‖, {ai} = PA(xi)
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In this case the number C from Theorem 2 equals 1
2 and C�

1−C = 1. If we choose
the point a = (0,−1), then for all numbers ε ∈ (0,

√
2) inclusion Bε(a)

⋂
∂A ⊂ S

holds. Thus for any number ε ∈ (0, 1) the subset A
⋂

Bε(a) is strongly convex
with radius 1 and for any number ε ∈ (1,

√
2) the subset A

⋂
Bε(a) is strongly

convex with radius ε.

4 Further Plans

– To consider metric projection algorithm for convex function and locally con-
vex sets and to improve results from [13].

– To consider locally strongly convex sets in asymmetric seminormed spaces
(see for example in [16]) and try to extend results of the current paper.

– To analyze is it possible to generalize results of [14] for the case of locally
strongly convex sets.

– to consider differential games with locally strongly convex admissible control
sets and generalize result of [15].
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and Sign-Definiteness of Quadratic Forms

on the Cone
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LBRapoport@gmail.com

Abstract. In this paper we consider the problem of the sign-definiteness
of a quadratic form (QF) in the domain defined by quadratic constraints
under quadratic constraints. Each constraint is determined by an inequal-
ity on a QF. Well known and widely applicable in the control theory app-
roach consists of using so called S–procedure. The semidefinite relaxation
approach investigated in this paper allows us to derive an S–procedure
from duality conditions. However, the S–procedure, which gives neces-
sary and sufficient conditions for sign-definiteness for the relaxed prob-
lem, gives only sufficient conditions for sign-definiteness for the initial
problem if the number of quadratic constraints is two or more. In this
paper the new approach is proposed, allowing establishment of condi-
tional sign definiteness in some cases, when the S–procedure doesn’t
give an answer. The results are illustrated by an example.

Keywords: Quadratic constraints · Conditional sign definiteness ·
S-procedure · Semidefinite relaxation · Quadratic form · Duality
conditions

1 Introduction

Let fi(x) = xT Fix, i = 0, · · · ,m be QF’s in Rn satisfying the following condition

{x ∈ Rn : fi(x) ≥ 0, i = 1, · · · ,m} �= {0}. (1)

Each inequality fi(x) ≥ 0 determines the second order cone in Rn. The condition
(1) means that all these cones intersect not at only origin. There are non-zero
points in their intersection. The question often arising in the control theory can
be formulated as follows: under which conditions on matrices Fi, i = 0, · · · ,m,
inequalities fi(x) ≥ 0, i = 1, · · · ,m, and the condition x �= 0 imply f0(x) < 0.
In other words we are interested to know when the following inclusion holds:

{x ∈ Rn : fi(x) ≥ 0, i = 1, · · · ,m, x �= 0}
⊆ {x ∈ Rn : f0(x) < 0}.

(2)
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This property will be referred to as conditional sign definiteness of the QF f0(x)
on the set (1) which obviously defines a cone in Rn, non-convex in general case.
The commonly used technique called “the S-procedure” consists in checking if
the following condition holds:

∃τi ≥ 0 : F0 +
m∑

i=1

τiFi ≺ 0, (3)

where symbols ≺,� (	,
) stand for definiteness (semidefiniteness) of matrices.
Thus, the S–procedure approach reduces the conditional sign definiteness prob-
lem to solving the Linear Matrix Inequality (LMI) problem (3) with respect to
variables τi or establishing its infeasibility, see [2].

The conditional sign definiteness problem arises when applying the Lyapunov
functions approach to analysis of the asymptotic stability of control systems.
Particularly, application of the Lurie - Postnikov Lyapunov functions to the
analysis of the absolute stability of nonlinear control systems with several sta-
tionary feedback elements subjected to sector constraints leads to the problem of
the conditional sign definiteness of QF under the constraints of the special class.
Each QF presented in the constraint is a product of two linear form describing
margins of the sector. This particular conditional sign definiteness problem was
investigated in [9,10] where necessary and sufficient conditions were proposed.
In [11] these conditions were applied to estimation of the attraction domain of
the nonlinear control systems.

As for the case of the general form of quadratic forms, if m = 1 then (2) and
(3) are equivalent (see [13]). For the case m = 2 the equivalence conditions of
(2) and (3) are considered in [6]. A review of results related on the S–procedure
is given in [5]. In general, for m > 1, the S–procedure gives only sufficient
conditions of (2). This property is referred to as “looseness” of the S–procedure
with multiple constraints. Nevertheless, even taking into account the looseness
of the S–procedure, its application is attractive, since checking the condition (3)
can be reduced to a convex programming problem, for which there are efficient
polynomial algorithms.

Sufficient conditions of absence of conditional sign definiteness are formulated
in [12] in the form of the numerical algorithm.

In this paper we consider the new conditions for conditional sign definiteness
of QF under quadratic constraints for some cases for which the S–procedure does
not give a result. It extends earlier published results [8] presenting new proof of
the “loseness” of the S–procedure with a single constraint and considering the
case of infinite number of constraints.

2 Semidefinite Relaxation and the S–Procedure

Let N = n(n + 1)/2 be dimension of the space of n × n real valued symmetric
matrices.

Given two symmetric n×n matrices A and B, let 〈A,B〉 = tr(AB) = tr(BA)
be the inner product, where tr(·) is the matrix trace. Then fi(x) =

〈
xxT , Fi

〉
.
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Let P = {X : X 
 0} be the convex acute cone of positive semidefinite matrices.
Then the boundary P̄ of P is composed of singular matrices {X ∈ P : rank(X) ≤
n − 1}. The inner part P◦ = P \ P̄ = {X ∈ P : X � 0} is composed of strictly
positive definite matrices. Let P1 = {xxT : x ∈ Rn} = {X ∈ P̄ : rank(X) = 1}
be the part of the boundary, consisting of the rank one matrices. Obviously,
P = conv(P1), where conv(·) is used to denote a convex hull.

Condition (2) can be rewritten as

{X ∈ P1 \ {0} : 〈X,Fi〉 ≥ 0, i = 1, · · · ,m}
⊆ {X ∈ P1 : 〈F0,X〉 < 0} (4)

or, in other words,

K1 = {X ∈ P1 : 〈X,Fi〉 ≥ 0, i =, 0. · · · ,m} = {0}. (5)

Here and everywhere in the text the notation 0 is used for the null matrix. The
condition (1) can be rewritten as

{X ∈ P1 : 〈X,Fi〉 ≥ 0, i =, 1 · · · ,m} �= {0}. (6)

The set P1 ∈ P is a non-convex cone. Its substitution with a wider and convex
cone P is commonly referred to as a “semidefinite relaxation”. Applying the
semidefinite relaxation to (4) we arrive at the checking of the condition

{X ∈ P \ {0} : 〈X,Fi〉 ≥ 0, i = 1, · · · ,m}
⊆ {X ∈ P : 〈F0,X〉 < 0} (7)

or, in other words,

K = {X ∈ P : 〈X,Fi〉 ≥ 0, i = 0, · · · ,m} = {0}. (8)

The condition (6) implies

{X ∈ P : 〈X,Fi〉 ≥ 0, i = 1, · · · ,m} �= {0}. (9)

It follows from the duality theorem (see [1]), that if condition (9) holds, then
condition (8) is equivalent to existence of such real values τ0 > 0, τi ≥ 0, i =
1, · · · ,m, and matrix Y ∈ P◦ , that

m∑

i=0

τiFi + Y = 0,

which is equivalent (after dividing it by τ0 > 0) to the condition (3).
Therefore, the S–procedure gives necessary and sufficient conditions of the

conditional sign definiteness if the set P1 is substituted with P. Under this condi-
tion the S–procedure becomes lossless. The idea of exploring of the semidefinite
relaxation of the low rank (less than n, ideally 1) is considered in [3,4]. The
main difficulty that occurs on the way of using of the incomplete rank relaxation
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is that it leads to non-convex numerical problems and the relaxation losses its
sense.

The problem (2) and the S–procedure result can be easily extended to the
case of infinite number of quadratic constraints. Really, let ft(x) = xT Ftx be
the single - parameter family of quadratic forms, the matrix Ft is supposed to
be continuously dependent on t ∈ [t0, t1] where t1 > t0. Along with (2) consider
the problem of checking under what conditions on matrices Ft (t ∈ [t0, t1])
inequalities ft(x) ≥ 0 (t ∈ [t0, t1]) and x �= 0 imply f0(x) < 0 or, equivalently,

{x ∈ Rn : ft(x) ≥ 0, t ∈ [t0, t1], x �= 0}
⊆ {x ∈ Rn : f0(x) < 0}.

(10)

The natural generalization of the S–procedure is straightforward. It consists
in checking if there exists such a continuous non-negative function τt ≥ 0 of the
variable t that the following condition holds:

F0 +
∫ t1

t0

τtFtdt ≺ 0. (11)

Obviously, the continuous problem setup can be extended to cases of Lebesgue
integrable matrix functions Ft and necessity to consider inequalities ft(x) ≥ 0
that holds for almost all t ∈ [t0, t1] in (10).

3 Criteria of Conditional Sign Definiteness and Absence
of Conditional Sign Definiteness

If m = 1 then S–procedure is known to be lossless. Here we present a new proof
of this fact. We start with formulation of the following lemma.

Lemma 1. For any symmetric matrix F the following condition holds:

conv{X ∈ P1 : 〈X,F 〉 ≥ 0} = {X ∈ P : 〈X,F 〉 ≥ 0} .

Proof. Obviously the following condition holds: conv{X ∈ P1 : 〈X,F 〉 ≥ 0} ⊆
P ∩ {X : 〈X,F 〉 ≥ 0}. Let us prove the inverse inclusion. Let

X0 ∈ P ∩ {X : 〈X,F 〉 ≥ 0} . (12)

Suppose that X0 ∈ P◦ i.e. X0 � 0. We need to show that there are such vectors
xi ∈ Rn and such values λi, i = 1, · · · , n ≥ 0, that

X0 =
n∑

i=1

λixix
T
i ,

n∑

i=1

λi = 1 (13)

and 〈
xix

T
i , F

〉 ≥ 0. (14)
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Let us choose Y �= 0 satisfying conditions

〈Y, F 〉 = 0,
〈Y, I〉 = 0,

(15)

where I is an identity matrix. Since Y ∈ S(n) and the dimension of the space
S(n) is N = n(n+1)/2, then in the case n ≥ 2, there exists a matrix Y , satisfying
(15).

Let X(α) = X0 + αY . Taking into account the first condition in (15) and
(12) we have

〈X(α), F 〉 ≥ 0.

Since 〈Y, I〉 = tr(Y ), then, due to (15), among the diagonal entries of the matrix
Y there are both positive and negative values. Therefore, there are α1,1 > 0 and
α1,2 > 0 such that the following holds:

X1,1 = X(α1,1) ∈ P̄, X1,2 = X(−α1,2) ∈ P̄. (16)

Let us define

λ1 =
α1,2

α1,1 + α1,2
.

Then it is easy to verify that

X0 = λ1X1,1 + (1 − λ1)X1,2,
〈
X1,1, F

〉 ≥ 0,
〈
X1,2, F

〉 ≥ 0, (17)

and by virtue of (16) rank(X1,1) ≤ n − 1 and rank(X1,2) ≤ n − 1, which means
that the matrix X0 � 0 can be presented as a convex hull of two matrices, each
belonging to the set P̄ (the boundary of the cone P) and having rank at least
one less than the matrix X0 has. If the rank of each of these matrices is 1, then
the statement (13) is proved.

Let rank(X1,1) > 1. This matrix has at least one zero eigenvalue. Let q1,1 be
the corresponding eigenvector. Let us denote Q1,1 = q1,1(q1,1)T . Then we have

〈
X1,1, Q1,1

〉
= 0. (18)

Let us choose the n × n matrix Y 1,1 �= 0 satisfying conditions
〈
Y 1,1, F

〉
= 0,〈

Y 1,1, I
〉

= 0,〈
Y 1,1, Q1,1

〉
= 0.

(19)

Proceeding similarly to the previous constructions, we define X1,1(α) = X1,1 +
αY 1,1. By the first condition of (19) and by (17), we have

〈
X1,1(α), F

〉 ≥ 0.
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Since tr(Y 1,1) = 0 (the second condition (19)), among the diagonal entries of
Y 1,1 there are both positive and negative values. Therefore, there are α1,1,1 > 0
and α1,1,2 > 0 such that the following holds:

X1,1,1 = X1,1(α1,1,1), rank(X1,1,1) ≤ n − 2,
X1,1,2 = X1,1(α1,1,2), rank(X1,1,2) ≤ n − 2.

(20)

Having defined

λ1,1 =
α1,1,2

α1,1,1 + α1,1,2

and taking into account (17), we get

X0 = λ1λ1,1X1,1,1 + λ1(1 − λ1,1)X1,1,2) + (1 − λ1)X1,2,

〈
X1,1,1, F

〉 ≥ 0,
〈
X1,1,2, F

〉 ≥ 0,
〈
X1,2, F

〉 ≥ 0.

Continuing induction, we come to the decomposition (13), (14), because at each
step the rank of the two matrices in the expansion X0 decreases by 1. The
number of orthogonality relations in the conditions (15), (19), etc. does not
exceed n while the dimension of the space of matrices Y equal to n(n + 1)/2.
So, a matrix Y at each step can be chosen.

At the beginning of the proof, we have assumed for convenience that X0 � 0.
Now suppose X0 
 0. This means that the matrix X0 can lie in P̄. But this will
only lead to the situation, when probably fewer number of steps are required to
construct the decomposition (13), (14). This completes the proof of the Lemma 1.

Based on Lemma 1 we proceed with proof of the lossless of the S–procedure
for the m = 1 case.

Let the condition (4) holds for m = 1. Then {X ∈ P1 : 〈X,F1〉 ≥ 0} ⊆
{X : 〈F0,X〉 < 0} ∪ {0}. Because the right side of the last inclusion is convex,
then conv{X ∈ P1 : 〈X,F1〉 ≥ 0} ⊆ {X : 〈F0,X〉 < 0} ∪ {0}. It follows
from the Lemms 1 that {X ∈ P : 〈X,F1〉 ≥ 0} ⊆ {X : 〈F0,X〉 < 0} ∪ {0} and
{X ∈ P : 〈X,F1〉 ≥ 0} ⊆ {X ∈ P : 〈F0,X〉 < 0}. Therefore, for m = 1 the
condition (4) implies (7), which proves a the lossless of the S–procedure with a
single constraint.

Let now m > 1. The following lemma holds.

Lemma 2.
conv{X ∈ P1 : 〈X,Fi〉 ≥ 0, i = 1, · · · ,m}

⊆ {X ∈ P : 〈X,Fi〉 ≥ 0 i = 1, · · · ,m} .
(21)

In the general case, if the condition (3) doesn’t hold, then the condition (4)
not necessarily fails. Only relaxed condition (7) fails and the question about
conditional definiteness of QF f0(x) under conditions fi(x) ≥ 0, i = 1, · · · ,m
remains open.

Suppose that the S–procedure didn’t give an answer, i.e. the linear matrix
inequality (3) is infeasible. Then in (8) the convex cone is not trivial: K �= {0}.
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However, one can not exclude that K1 = {0} and (2) holds. Let K doesn’t touch
the boundary of P̄ \ {0}. Then this cone doesn’t contain elements of P1 \ {0}.
Therefore, K ∩ K1 = {0}. Therefore, if K1 ⊆ K, then K1 = {0}. We just proved
the following theorem:

Theorem 1. Let K �= {0} and K ⊂ P◦ ∪ {0}. Then (2) holds.

If n = 2 then P1 = P̄. Therefore, we have the following

Theorem 2. Let n = 2. If K �= {0}, then condition K ⊂ P◦ ∪ {0} is necessary
and sufficient for (2).

If the cone K ⊂ P◦ is acute and can be represented as a convex hull of k rays
Rj spanned on matrices rj ∈ P, j = 1, · · · , k, i.e.

K = conv{R1, · · · , Rk}, where Rj = {X = αrj , α ≥ 0}, (22)

then it suffices to demand rj ∈ P◦ or equivalently rj � 0.
In the more complex case of the problem (10) the cone K ⊂ P◦ can have

more general representation

K = conv{Rt : t ∈ Φ}, Rt = {X = αrt, α ≥ 0} (23)

and the set Φ has probably infinite number of elements as is illustrated in the
example described below.

Example 1. Consider the two-dimensional case (n = 2) and the problem (10).
Let ε > 0 be sufficiently small and matrices single parameter set of matrices Ft

and the matrix F̄0 are defined as follows:

F̄0 =
[

ε −1
−1 ε

]
, Ft =

[
ε2 − t

√
ε2 − t2√

ε2 − t2 ε2 + t

]
, t ∈ [−ε, ε].

Here we intentionally use notation F̄0 instead of F0 not to be confused with Ft

for t = 0. To check if there exists the matrix X∗ � 0 satisfying the condition
X∗ ∈ K consider X∗ = I. We have X∗ � 0,

〈
X∗, F̄0

〉
= 2ε > 0 and 〈X∗, Ft〉 =

〈X∗, F2〉 = 2ε2 > 0 for all t. Therefore, X∗ ∈ K �= {0} and S–procedure doesn’t
give the positive result. In the continuous problem setup we have to try to
construct the (23) representation of this cone. Consider the single parameter
family of matrices

rt =
[

1 + t −√
ε2 − t2

−√
ε2 − t2 1 − t

]

with t taking values from the segment [−ε, ε] and two matrices

r
′
=

[
1 − ε ε

ε 1 + ε

]
, r

′′
=

[
1 + ε ε

ε 1 − ε

]
.
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Let show now that K = conv{Rt : t ∈ [−ε, ε], R
′
, R

′′} with Rt = {X = αrφ, α ≥
0}, R

′
= {X = αr

′
, α ≥ 0}, R

′′
= {X = αr

′′
, α ≥ 0} in the representation (23).

Really, simple calculations show that:

〈rt, Ft〉 = 0, ∀ t ∈ [−ε, ε],
〈rt, Fs〉 ≥ (t − s)2 ≥ 0, ∀ s, t ∈ [−ε, ε],〈
rt, F̄0

〉
= 2ε + 2

√
ε2 − t2 ≥ 0, ∀ t ∈ [−ε, ε],〈

r
′
, F̄0

〉
= 0,

〈
r

′′
, F̄0

〉
= 0,〈

r
′
, F̄−ε

〉
= 0,

〈
r

′′
, F̄ε

〉
= 0,〈

r
′′
, F̄−ε

〉
≥ 0,

〈
r

′
, F̄ε

〉
≥ 0.

(24)

Further, rt � 0,∀t ∈ [−ε, ε] and r
′ � 0, r

′′ � 0. Therefore, Theorem 2 guarantees
(10), while the S–procedure has failed.

Note that the representation (22) is impossible if m+1 < N . In this case the
cone K can contain in its inner part a linear manifold and, obviously, can not
be placed inside of the acute cone P◦. It means that K will have common points
with the boundary P̄. It however doesn’t mean that the cone K intersects with
the part of the boundary P1 and the condition (2) doesn’t hold.

Let describe the numerical algorithm allowing to find points of intersection
K ∩ P1 \ {0} and, therefore, establishing sufficient conditions for the fail of (2).
This algorithm was presented in [12] but we repeat its description with more
details for the sake of completeness of the presentation.

Let an n×n matrix X and a vector x ∈ Rn be related by the matrix inequality
[

X x
xT 1

]

 0. (25)

According the Schur lemma we have

X 
 xxT (26)

and, therefore, tr(X) ≥ ‖x‖2.
Consider the problem

‖x‖2 → max,

s.t. tr(X) = 1,
[

X x
xT 1

]

 0,

〈X,Fi〉 ≥ 0, i =, 0 · · · ,m.

(27)

If the feasible set of (27) is empty, the conditions (3) hold. Otherwise the
following theorem holds.

Theorem 3. Let K �= {0} and X∗, x∗ be a solution of the problem (27). Then
K ∩ P1 �= {0} if and only if ‖x∗‖2 = 1. If this last condition holds, then x∗ ∈
K ∩ P1.
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Proof. Let us prove that the equation

tr(X) = ‖x‖2 (28)

implies
X = xxT . (29)

As the matter of fact, consider two cases:

(a) rank(X) = 1,
(b) rank(X) > 1.

Define e = 1
‖x‖x. In the case (a), X = yyT and (28) can be rewritten as ‖y‖2 =

‖x‖2. Let us multiply the matrix equality (26) on the left by eT and on the right
by e. We obtain (eT y)2 ≥ ‖x‖2. If x �= y, then (eT y)2 < ‖y‖2 and ‖y‖2 > ‖x‖2.
The contradiction proves (29). In the case (b) we have eT Xe ≥ ‖x‖2. Denote by
λmax the maximal eigenvalue of the matrix X. Then λmax ≥ eT Xe ≥ ‖x‖2. But
if rank(X) > 1 then λmax < tr(X) and tr(X) > ‖x‖2, which contradicts to (28).

If ‖x∗‖ = 1, then tr(x∗x∗T ) = tr(X∗) and therefore X∗ = x∗x∗T . Then (27)
implies X∗ ∈ K ∩ P1. The reverse is also true. If there is X∗ ∈ K ∩ P1, then
X∗ = x∗x∗T and tr(x∗x∗T ) takes the maximum possible value 1.

The problem (27) is non-convex. The following algorithm allows to solve it
for a local minimum, depending on the initial approximation x = x(0).

(1) Let k = 0 and choose x(0) �= 0,
(2) For k = 1, 2, · · · solve the following convex optimization problem with respect

to p and X:
x(k−1)T p → max,
s.t. tr(X) = 1,
x(k−1)T p ≥ 0,[

X x(k−1) + p
(x(k−1) + p)T 1

]

 0,

〈X,Fi〉 ≥ 0, i =, 0 · · · ,m.

(30)

Let p(k), X(k) be solution of the problem (30).
(3) Let x(k) = x(k−1) + p(k).
(4) If ‖x(k)‖−‖x(k−1)‖ < δ, where δ > 0 is a small constant, then the algorithm

stops. Otherwise set k := k + 1 and go to the step (2).

Any vector satisfying conditions X(0) ≥ x(0)x(0)T , X(0) ∈ K \ {0} can be
taken as x(0) �= 0. For example, arbitrary matrix from K \ {0} can be chosen.
The eigenvector corresponding to the largest eigenvalue can be chosen as x(0).

The condition ‖x(k)‖2 ≥ ‖x(k−1)‖2 follows from the condition ‖x(k)‖2 =
‖x(k−1)‖2 + 2x(k−1)T p(k) + ‖p(k)‖2 and x(k−1)T p(k) ≥ 0,

Thus, the sequence {‖x(k)‖2} is not decreasing and upper bounded by
‖x(k)‖2 ≤ 1. Therefore, ‖x(k)‖2 → ā ≤ 1. Moreover, the sequence of solutions of
the problem (30) satisfies conditions

tr(X(k)) = 1, X(k) ∈ P, ‖x(k)‖2 ≤ 1.
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Therefore, the sequence {x(k)} belongs to the closed bounded set. There exists
a converging subsequence {x(j)} → x̄, {X(j)} → X̄ and ‖x̄‖2 = ā.

If the algorithm finishes with the matrix X̄ and vector x̄, satisfying conditions
‖x̄‖2 = 1, then X̄ = x̄x̄T ∈ K ∩ P1 and condition (2) doesn’t hold. Otherwise,
if ‖x̄‖2 < 1, then the question about conditional sign definiteness (2) remains
open.

Using randomization for choosing of the initial point x(0) improves efficiency
of the locally convergent algorithm. The paper [7] describes the method of anal-
ysis of nonconvexity, sequential solution of the semidefinite relaxation problem.

Consider the following example. Let n = 4, m = 2 and matrices Fi are defined
as follows

F0 =

⎡

⎢⎢⎣

ε −1 0 0
−1 ε 0 0
0 0 ε −1
0 0 −1 ε

⎤

⎥⎥⎦ , F1 =

⎡

⎢⎢⎣

−1 ε 0 0
ε 1 0 0
0 0 −1 ε
0 0 ε 1

⎤

⎥⎥⎦ , F2 =

⎡

⎢⎢⎣

1 ε 0 0
ε −1 0 0
0 0 1 ε
0 0 ε −1

⎤

⎥⎥⎦ ,

where ε > 0 is a positive constant. For ε = 0.01 the algorithm gives at the 3rd

iteration the vector x̄ = (0.003521, 0.707098, 0.707098, 0.003521)T , satisfying
the condition ‖x̄‖ = 1 and, therefore, (2) doesn’t hold. Note that for ε = 0.01 in
the first example we had the condition (2) satisfied.

4 Conclusion

In this paper, new necessary and sufficient conditions of sign-definiteness of a
quadratic form under quadratic constraints are obtained. This problem arises
in the stability theory and optimization theory. Sufficient conditions lead to
conservative results, which, in turn, gives less strong sufficient stability condi-
tions. Necessary and sufficient conditions of sign definiteness are known only
for small number of particular cases. In this paper, we considered the case,
when the S–procedure did not give a result, but, nevertheless, the conditional
sign-definiteness takes place. New results are obtained for the case of finite and
infinite number of constraints. Two dimensional example with infinite number
of constraints confirms the obtained result.
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Abstract. On the plane, the barrier is a line segment, and the mobile
sensors are initially located at some points (depots). Each sensor can
travel a limited-length path, starting and ending at its depot. That part
of the barrier, along which sensor moved, is covered by this sensor. It is
required to find a min-power subset of sensors covering the entire barrier.
The complexity of this problem is not known. In this paper, we have
found the special cases of polynomial solvability and state some neces-
sary and sufficient conditions for the existence of the solution. An effi-
cient (polynomial) algorithm for checking the existence of the solution is
proposed. Moreover, we have developed some approximation algorithms.
In particular, an efficient implementation of the dynamic programming
algorithm, which in some special cases yields an optimal solution, is pro-
posed.

Keywords: Barrier covering · Mobile sensors · Distance-constrained
line routing

1 Introduction

The problem considered in this paper relates to the barrier coverage with mobile
devices when it is necessary to efficiently monitor extended objects, such as
roads, borders, pipelines, etc. The mobile device is often referred to as a sensor
or sometimes more specifically an Unmanned Aerial Vehicle (UAV). It is assumed
that the moving energy consumption of every sensor is proportional to the length
of the path traveled by it. Since a new problem is being considered, for a better
understanding of its place among the known barrier covering problems, below
we have listed the statements and results for the related problems.

Rational use of energy allows to extend the lifetime of the mobile sensor
network. One of the problems (the abbreviation MinSum is often used to denote
it) arising in this context is the problem of minimizing the total length of paths
traveled by sensors to cover the barrier [1,3,4,9,10,13,15]. In this case, a certain

A. Erzin thanks the Russian Foundation for Basic Research, grant 19-47-540007 (con-
tribution: sections 1, 2, 4, 5), and R. Plonikov thanks the Russian Science Foundation,
grant 18–71–00084 (contribution: section 3), for financial support.

c© Springer Nature Switzerland AG 2020
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line is considered as a barrier, most often a segment of a straight line. The sensor
monitoring area is the sensor coverage area, which, as a rule, has the shape of
a circle, in the center of which is the sensor. A barrier point is considered to
be covered if it belongs to at least one circle of the cover. It is not necessary
to use all sensors to cover the barrier. It is enough to define a subset of sensors
involved in the covering and their final positions. In the MinSum problem on
a plane, the barrier is defined in the form of a line segment, and each sensor
is determined by the initial location and radius of the circle that it covers. It
is required to find a subset of sensors and their final positions such that after
moving the barrier will be covered, and the total length of the paths traveled by
sensors will be minimal. The MinSum problem usually requires moving sensors
(circle centers) onto the barrier [1,3,5,10,13–15]. We know only one paper in
the press in which the MinSum problem is solved without the requirement of
moving the sensors onto the barrier [16]. The MinSum problem is NP-hard in
the case of different circles [13,14]. If the circles are equal, then the complexity
status of the problem is not known. However, in two-dimensional (2D) Euclidian
space an O(n4)–time algorithm, where n is the number of sensors, that builds a√

2–approximate solution, is proposed in [10], the complexity of which is reduced
to O(n2) in [15].

In the MinMax problem, the criterion is a minimization of the maximum
path length traveled by the sensors. The MinMax problem is solved optimally
with O(n2)–time complexity when the sensors are initially on the line containing
the barrier (1D space) [13], and in [8] the complexity is reduced to O(n log n).
The 2D MinMax problem is considered in [14], which shows that the problem is
NP-hard in the case of different circles. In the case of identical circles in [19] an
O(n3 log n)–time algorithm is proposed that builds a solution to the problem.

In the MinNum problem, it is required to minimize the number of sensors
involved in the barrier covering. In [20] it is proved that the 2D MinNum problem
is NP-hard in general, but is polynomially solvable when the circles are equal.

In this paper, we consider a 2D MinNum problem in a slightly different
formulation. As before, a barrier in the form of a line segment and a set of
arbitrarily arranged mobile sensors are defined on a plane. But the sensor covers
only the point at which it is located (coverage disk has zero radius). This means
that in order to cover a certain part of the barrier, the sensor must move along
this part. Moreover, it is required that the sensor, after covering a part of the
barrier, must return to its depot, and the length of the path traveled by the
sensor does not exceed the specified value. Such a situation corresponds, for
example, to monitoring extended objects by UAVs having a limited supply of
energy. For a better understanding of the problem, we can assume that it is
necessary to minimize the number of trackwalkers of the railway section. Also,
each trackwalker starts and ends his journey of the limited length in the depot.
The path length of each trackwalker depends on many reasons. For example, if
the trackwalker’s operating time is limited, then the speed determines the length
of the path.

Over the past few years, UAVs have become more and more popular. The
complexity of routing UAVs has not been fully investigated in the literature. In
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[12] the authors provide a formal definition of the UAV Routing and Trajectory
Optimization Problem. Next, they introduce a taxonomy and review recent con-
tributions in UAV trajectory optimization, UAV routing, and articles addressing
these problems. The paper [2] presents a solution for the problem of minimum
time coverage of ground areas using a group of UAVs equipped with image sen-
sors. In [6] the authors present the Drone Arc Routing Problem (DARP) and
study its relation with well-known Postman Arc Routing Problems. Applications
for DARPs include traffic monitoring by flying over roadways, infrastructure
inspection such as by flying along power transmission lines, pipelines or fences,
and surveillance along with linear features such as coastlines or territorial bor-
ders. In [7] the authors simulate UAV recognition after a possible case of diffuse
damage after a seismic event in the town of Acireale (Sicily, Italy). Given a set of
sites and the range of the UAV, one is able to find a number of vehicles to employ
and the shortest survey path. The problem of finding the shortest survey path is
an operational research problem called the vehicle routing problem which has a
solution that is known to be computationally time-consuming. The authors used
the simulated annealing heuristic. They also examined the distribution of the
cost of the solutions varying the depot on a regular grid in order to find the best
area for executing the survey. Paper [11] introduces a UAV heterogeneous fleet
routing problem, dealing with vehicles limited autonomy by considering multi-
ple charging stations and respecting operational requirements. A green routing
problem is designed for overcoming difficulties that exist as a result of limited
vehicle driving range. The paper [17] proposes two new distance-constrained
capacitated vehicle routing problems (DCVRPs) and study potential benefits
in flexibly assigning start and end depots. The first problem is an extension
of the traditional symmetric DCVRP, with additional service and travel time
constraints, minimization of the number of vehicles and flexible application to
both symmetric and asymmetric problems. The second problem is a relaxation of
DCVRP to enable the flexible assignment of start and end depots. The research
in [18] focused on providing an operational UAV routing system. The authors
present the statistical methodology used to devise a quick running routing heuris-
tic that provides reasonable solutions.

However, we were unable to find results regarding the study of the MinNum
problem under consideration. In particular, we do not know its complexity. In
this paper, we present some properties of the solution, as well as a polynomial
algorithm for checking the existence of coverage, special cases of polynomial
solvability, an effective algorithm for constructing an order-preserving coverage
(OPC), a strict definition of which we will give later. The main property of
the order-preserving cover is that to build an optimal OPC, the dynamic pro-
gramming method can be used. We present an efficient implementation of the
algorithm for constructing an optimal OPC in the L1 metric and also find special
cases when this coverage is the optimal solution to the MinNum problem.

The paper is organized as follows. In the next section, we introduce the
necessary definitions, formulate the problem and define some properties of
the solution. In Sect. 3, we propose a polynomial algorithm for checking the
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existence of a solution to the problem. In Sect. 4, several algorithms are pro-
posed for constructing a feasible solution to the problem. Cases of polynomial
solvability of the problem are found. A O(n2)–time dynamic programming algo-
rithm is proposed that builds an optimal OPC. Conditions that guarantee that
this solution is optimal for MinNum problem are found. In Sect. 5 we conclude
the paper.

2 Statement of the Problem and Preliminary Analysis

On the plane, we introduce a Cartesian coordinate system so that the barrier,
represented by a line segment, is located between the points (0, 0) and (L, 0),
and the mobile sensors are at the points pi = (xi, yi), i ∈ S, |S| = n, which we
call the depots. Without loss of generality, we assume that yi ≥ 0, i ∈ S. Let
Qi > 0 be the maximum path length that the sensor i can travel. It is assumed
that the sensor covers the point where it is located and after monitoring the
sensor should return to its depot.

Definition 1. We say that the sensor i covers the segment [ai, bi] ⊆ [0, L] if
it moves from the depot pi to the barrier at the point (ai, 0), moves along the
barrier to the point (bi, 0) (we assume that ai < bi) and returns to its depot,
following a path whose length is d(pi, (ai, 0))+ bi −ai + d((bi, 0), pi) ≤ Qi, where
d(p1, p2) is the distance between the points p1 and p2.

Definition 2. A cover is a subset of sensors C ⊆ S and a set of segments
[ai, bi], that ∪i∈C [ai, bi] ⊇ [0, L] and d(pi, (ai, 0)) + bi − ai + d((bi, 0), pi) ≤ Qi

for each i ∈ C.

In the problem considered in this paper, it is required to determine the
min-power cover. For this problem, we use the former abbreviation MinNum,
although it is formally differs from the traditional formulation when each sensor
covers a circle and does not need to return to the depot. In our formulation, the
MinNum problem has a lot in common with the metric Vehicle Routing Problem
[7,12,17], in which the service area of each vehicle i is the segment (arc) [ai, bi].
Another similar problem is associated with optimal street cleaning, which is the
arc routing problem [6]. However, in the last problem the length of the path of
each device is not limited.

In the Euclidean metric, obviously, the trajectory of an arbitrary sensor i is
a triangle whose perimeter does not exceed Qi. Moreover, in this case there is
such an optimal coverage in which the segments covered by different sensors do
not intersect internally ((ai, bi) ∩ (aj , bj) = ∅, i �= j), and the perimeter of the
triangle traveled by the sensor i ∈ C is Qi. Then, knowing ai and Qi, we can
determine bi. Conversely, knowing bi and Qi, we can find ai.

In the MinNum problem in the L1 metric, we can imagine that the sensor
moves not along the sides of the triangle (as a matter of fact), as in the Euclidean
metric, but along the sides of the rectangle. In this case, sensor i can cover a
segment [ai, bi] of length li = Qi/2 − yi, where ai ≥ xi − li and bi ≤ xi + li.
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Therefore, in this case, we can set yi = 0 and assume that sensor i covers a
segment of length li containing barrier point xi.

Let’s renumber the sensors from left to right according to their abscissas xi,
i ∈ S. Then i < j only if xi ≤ xj .

Definition 3. In order-preserving cover (OPC) C, bi ≤ bj for all such i, j ∈ C
that i < j.

Fig. 1. Examples of non-existence of an OPC in the Euclidean metric (a) and in the
metric L1 (b).

Obviously, there is not always an optimal OPC. Figure 1 shows the covers
that do not preserve order in the Euclidean metric (Fig. 1a) and in the L1 metric
(Fig. 1b). The OPC in these cases does not exist at all. First of all, we need to
find out whether the problem is solvable.

3 The Existence of Solution

In the 2D Euclidian space the leftmost point of the barrier that the sensor k can
cover is the point

āk = xk −
√

Q2
k/4 − y2k.

The rightmost barrier point that the sensor k can cover is

b̄k = xk +
√

Q2
k/4 − y2k.

The following necessary condition for the existence of a solution is obvious.

Consideration 1. If the segments [āk, b̄k], k = 1, . . . , n, do not cover the barrier
[0, L], then the problem MinNum has no solution.
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Now we propose the algorithm E for checking the existence of coverage in
the L1 metric, which consists of repeating steps. It builds a cover if it exists. If
the algorithm E fails to construct coverage, then the MinNum problem has no
solution in the L1 metric.

Algorithm E. Obviously, to cover the barrier (line segment), it is necessary
that the left barrier endpoint is covered too. We describe the repeating Step E
and illustrate its operation in Fig. 2.

Step E. Find a set of sensors Sl, each of which can cover a non-empty segment
containing the left endpoint of the barrier (Sl = {i ∈ S : −li < xi ≤ li}). In
Fig. 2a blue, red and green sensors can cover the left endpoint of the barrier. If
the set Sl is empty, then the problem has no solution. Otherwise, in the set Sl,
we choose a sensor k such that xk + lk ≤ xi + li for all i ∈ Sl (in Fig. 2a′ this is a
blue sensor). The sensor k covers the segment [0, l̄k], where l̄k = min{lk, lk +xk}.
After that, we exclude the sensor k from the set S and cut the barrier on the
left by l̄k. If the length of the remaining barrier is greater than 0 and S �= ∅,
then repeat Step E. If the length of the remaining barrier is 0, then the cover is
found.

Fig. 2. Illustration of the algorithm E by example. (Color figure online)

In Fig. 2 after covering the left endpoint with a blue sensor, the segment
shown in Fig. 2b remains, the left endpoint of which can cover the yellow, red
and green sensors. In Fig. 2b′ we can see that in order to cover the left endpoint
we need to use a green sensor. Then the barrier is truncated, and the new left
endpoint is covered with yellow, red, and brown sensors (Fig. 2c). According to
Step E (see Fig. 2c′), we cover the left endpoint with a yellow sensor, after which
we get the situation shown in Fig. 2d. Next in the cover will be the red sensor,
and then the brown one. As a result, the cover will be built.
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Lemma 1. The solution of the MinNum problem in the L1 metric exists if and
only if the algorithm E builds a barrier cover.

Proof. If algorithm E builds a cover, then a solution exists, which proves the
necessity.

Let us prove the sufficiency. Let there be a cover C of the segment [0, L], in
which some sensor (let it be number 1) covers the left endpoint of the segment.
Let none of the sensors can be excluded from C, i.e. for each sensor in the cover
C, there is a non-empty segment that is covered only by it. Suppose that among
the sensors in C, the sensor 2 ∈ Sl has the following properties: (a) it can cover
the left endpoint, and (b) with the maximum right shift of the coverage areas of
all the sensors of the set Sl, the right endpoint of the segment, covered by sensor
2, is left than the others (i.e. x2 + l2 ≤ xi + li, i ∈ Sl). Obviously, such a sensor
exists. We will prove that there is a feasible solution in which sensor 2 covers the
left endpoint of the segment. If sensor 2 coincides with sensor 1, then the cover
C is the desired one. Suppose that this is not a case, i.e. sensor 2 differs from
the sensor 1.

Consideration 2. The depot of sensor 2 can be located only to the right of the
left endpoint of the barrier, i.e. x2 > 0.

Proof. If sensor 2 is to the left of the segment, it can cover only the beginning
of the barrier in any cover. Consequently, in the cover C, each sensor 1 and
2 covers the left endpoint of the segment, which means that the sensor, the
right endpoint of the cover segment of which in the cover C to the left, can be
excluded. However, in the cover C there are no sensors that can be excluded.
Contradiction proves the consideration.

Consideration 3. The depot of sensor 1 can be located only to the right of the
left endpoint of the barrier, i.e. x1 > 0.

Proof. Otherwise, in solution C, the coverage area of sensor 1 is shifted as far
as possible to the right. Therefore, based on a property (b) and Consideration 2,
the coverage area of sensor 1 completely contains the coverage area of sensor 2.
Therefore, sensor 2 can be excluded from C. However, in the solution C there
are no sensors that can be excluded. Contradiction proves the consideration.

Consideration 4. In the cover C, the depot of sensor 2 is located inside the
segment covered by sensor 1.

Proof. Since both sensors 1 and 2 can cover the barrier point 0, then x1 ≤
l1 and x2 ≤ l2. Based on Consideration 3, sensor 1 covers the segment [0, l1].
Based on property (b), we have x2 + l2 ≤ x1 + l1. Then 2x2 ≤ x2 + l2 ≤
x1 + l1 ≤ 2l1 and therefore x2 ≤ l1. From Consideration 2 it follows that x2 ≥ 0.
Consequently, x2 ∈ [0, l1], which is the area covered by sensor 1 in the cover C.
The consideration is proved.

Corollary 1. In the cover C, the area covered by sensors 1 and 2 is continuous
and has a length of x2 + l2.
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Consideration 5. In the cover C, we can change the coverage areas of sensors
1 and 2 so that point 0 will be covered by sensor 2, the area covered by sensors
1 and 2 will be continuous and have a length of at least x2 + l2.

Proof. Consider two cases:

(1) x1 > l2. Let sensor 2 covers the segment [0, l2], and sensor 1 cover the
segment [l2, l2 + l1]. The covered segment is continuous and has a length of
l1 + l2 ≥ x2 + l2 (because, according to Consideration 4, x2 ≤ l1).

(2) x1 ≤ l2. Then let sensor 2 covers the segment [0, l2], and sensor 1 cover the
segment [x1, x1 + l1]. The covered segment is continuous and, according to
property (b), has the length of x1 + l1 ≥ x2 + l2.

The consideration is proved.

It follows from Corollary 1 and Consideration 5 that, without violating the
feasibility, the cover C can be changed in such a way that the left endpoint of the
segment will be covered by sensor 2. We denote the resulting cover as C1. From
the cover C1, we exclude sensor 2 and obtain the cover C2 of the segment [l2, L]
with the remaining sensors. The same actions can be performed with cover C2.
Thus, the entire segment [0, L] can be covered by successively selecting a sensor
with properties (a) and (b). Then, cutting the segment to the left by the length
of the interval covered by the selected sensor, and repeat this procedure for the
remaining sensors. The lemma is proved.

Remark 1. If there is a solution to the problem MinNum in the L1 metric, then
there is also a solution in the Euclidean metric.

Proof. In the cover C1 in the L1 metric, each sensor i ∈ S passes a path whose
length is equal to the perimeter of the rectangle of height yi and width li, covering
the barrier segment [ai, bi] of length li = Qi/2 − yi. If the length of the path is
Qi, and sensor moves from its base point pi to the barrier point ai, and from the
barrier point bi to the depot directly, then a path will not exceed Qi. So, if in
C1 an arbitrary sensor i covers the segment [ai, bi], then in the Euclidean metric
it can also cover this segment.

4 Algorithms

At first, we give two simple observations.

Observation 1. If Qi = Q = const for all i ∈ S, and all sensors are initially
located in the same depot, then the problem MinNum is polynomially solvable.

Proof. In this case, any sensor can cover a certain segment [0, l1]. This sensor is
excluded, and any remaining sensor covers a certain segment [l1, l2] and is also
excluded from S. Continuing the process, we will cover the entire barrier, or it
will remain uncovered and not a single sensor will remain. The observation is
proved.
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Observation 2. If all sensors are in the same depot, but the maximum lengths
of their paths are different, then the problem MinNum is polynomially solvable
in the L1 metric. In this case, either the cover does not exist, or only one sensor
participates in the covering, or the barrier is covered by two sensors.

Fig. 3. Illustration to the proof of Observation 2. (Color figure online)

Proof. Indeed, the length of the segment covered by any sensor i is unchanged
in the L1 metric and equals li. We can assume that the depot is located on the
barrier at some point x (Fig. 3). Let, as before, Sl be a set of sensors each of
which can cover the left endpoint of the barrier, and Sr a set of sensors each of
which can cover the right endpoint of the barrier. In Fig. 3a, the set Sl consists
of black, green, yellow, and red sensors, and in Fig. 3b the set Sr consists of black
and red sensors. If there is one sensor in Sl ∩ Sr that covers both the left and
right endpoints of the barrier at the same time, then this one makes the cover.
Otherwise, if there is a pair of different sensors, one of which covers the left
endpoint of the barrier, and the other right endpoint, then these 2 sensors form
a cover. If Sl or Sr is empty, or both of these sets consist of the same sensor,
but this sensor cannot cover the entire barrier, then the cover does not exist. In
Fig. 3, there is a cover of power 2, for example, a black sensor covers the segment
containing the left endpoint of the barrier, and a red sensor covers the segment
containing the right endpoint of the barrier. The observation is proved.

Remark 2. If there is a cover in the L1 metric, then there is a similar cover in the
Euclidean metric. The reverse is not true. Coverage may exist in the Euclidean
metric, but not in the L1 metric.

Algorithm A. It is obvious that the algorithm E after a small modification
can be used to construct an approximate solution in the L1 metric. From the
example shown in Fig. 2, it is clear that at the next step, instead of the yellow
sensor, we can choose a red one (Fig. 2c′). And Fig. 2d shows that the red sensor
can be excluded because the brown sensor covers the rest of the barrier, i.e.
brown sensor dominates red sensor.

Definition 4. In the L1 metric, if xi ≤ 0, xj ≤ 0 and xi + li ≤ xj + lj, then
sensor j dominates sensor i.

Obviously, the dominated sensors may not be used in the covering. Then the
repeating step of the algorithm A, which builds an approximate cover in the L1

metric, can be described as follows.
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Step A. Find the set of sensors Sl that can cover a non-empty segment containing
the left endpoint of the barrier (Sl = {i ∈ S : −li < xi ≤ li}). If the set Sl is
empty, then the problem has no solution. Otherwise, from the set Sl we delete
all dominated sensors and get the set S′

l . Choose a sensor k ∈ S′
l such that

xk + lk ≤ xi + li for all i ∈ S′
l . Using the sensor k, we cover the segment [0, l̄k],

where l̄k = min{lk, lk + xk}. After that, we exclude the sensor k from the set S
and cut the barrier on the left by l̄k. If the length of the remaining barrier is
greater than 0 and S �= ∅, then repeat Step A. If the length of the remaining
barrier is 0, then the cover is built.

Fig. 4. Illustration to the proof of Lemma 2.

Lemma 2. If Qi = Q = const for all i ∈ S, and the ordinates of all depots
coincide (i.e. yi = y, i ∈ S), then if there is a solution to the problem MinNum,
then there is an optimal OPC.

Proof. Assume that there is no optimal OPC. Then in any optimal cover C there
is a pair of sensors i and j such that i < j, and bi ≥ bj . Since the sensors are
renumbered from left to right, then xi ≤ xj . Suppose that in C sensor j covers
the segment [l1, l2], and sensor i covers the segment [l3, l4] and l2 ≤ l4 (Fig. 4a).
We construct from C a cover C ′ in which the sensor i covers the segment [l1, l2],
and the sensor j covers the segment [l3, l4] (Fig. 4b). Sensor i can cover the
segment [l1, l2], because the sensor j covers this segment in the cover C, and the
sensor i to the left of the sensor j. The sensor j can cover the segment [l3, l4]
since the sensor i covers this segment in the cover C and the sensor j to the right
of the sensor i. Consequently, the coverage C ′ remains feasible and its power has
not changed.

Repeating such a rearrangement, we construct an OPC of the same power as
the cover C, which proves the statement of the lemma.

Next, we describe the dynamic programming algorithm DP to build the
optimal OPC. Since the algorithm is applicable for an arbitrary location of the
depots, we will describe it in general case, although the optimality of the con-
structed coverage is guaranteed only in the case when yi = y and Qi = Q for all
i ∈ S.

Algorithm DP. Let the function Sk(l) be equal to the minimum number of
sensors from the set {1, 2, . . . , k}, k ≤ n, which cover the segment [0, l], l ∈ (0, L].
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At the same time, the sensor k covers the segment [ak(l), bk(l)] = [ak(l), l], where
in the Euclidean metric

ak(l) =
x2
k + y2k − (Qk − l − √

(l − xk)2 + y2k)
2

2(Qk − l − √
(l − xk)2 + y2k + xk)

, (1)

when xk − √
4Q2

k − y2k ≤ l ≤ xk +
√

4Q2
k − y2k, and in the L1 metric

ak(l) = l − Qi/2 + yk, (2)

when xk ≤ l ≤ xk + lk.

Forward Recursion. If k = 1, then

S1(l) =
{

1, a1(l) ≤ 0;
+∞, a1(l) > 0.

At the step k > 1, it is necessary to decide whether to use the sensor k to cover
the segment [ak(l), l], or just use a subset of sensors from the set {1, . . . , k − 1}
to cover the segment [0, l]. Therefore, for all l ∈ [0, L] it is necessary to find

Sk(l) = min{Sk−1(l); 1 + Sk−1(ak(l))},
putting Sm(l) = 0 when l ≤ 0, and remember whether the sensor k is used
in the cover: let uk(l) = 1 if the sensor k is used and uk(l) = 0 otherwise.
Moreover, if the inequalities xk ≤ l ≤ xk + lk are not satisfied in the metric L1,
or the inequalities xk − √

4Q2
k − y2k ≤ l ≤ xk +

√
4Q2

k − y2k are not satisfied in
Euclidean metric, then we set Sk(l) = Sk−1(l).

Backward Recursion (Construction of the cover). When calculating Sk(l), the
values of uk(l) were found. Set k = n, l = L and execute the next.

Step BR. If uk(l) = 1, then the sensor k is included in the cover, and it covers
the segment [ak(l), l]. We set k = k − 1 and l = ak(l). If l > 0, then go to Step
BR. Otherwise, stop, coverage is built. If uk(l) = 0, then the sensor k is not
included in the cover. Set k = k − 1 and go to Step BR.

Lemma 3. The time complexity of the algorithm DP is O(n2).

Proof. Obviously, Sk(l), k = 1, . . . , n, are piecewise constant and nondecreasing
functions. Moreover, as l increases, the value of the function Sk(l) changes at
most n times. Between the points at which the value of the function changes
(switching points) the function does not change. So, we only need to know
the switching points and the function value between each pair of neighboring
switching points. When calculating S1(l), we have that for l not exceeding some
l1, which is easily found from formulas (1) or (2), S1(l) = 1, and for l > l1
S1(l) = +∞. Then l1 is a switching point for function S1(l). When calculating
S2(l), we have the first two sensors. The segment [0, l] can be covered either by
one of them or by both. If l ≤ l1, then it is enough to use one sensor 1. If l > l1,
then while l does not exceed some l2 > l1, which is found from formulas (1) or
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(2), the segment [0, l] is covered by one sensor 2 or by both sensors 1 and 2. In
the first case, one sensor 2 covers the segment [0, l] and S2(l) = 1. In the second
case, S2(l) = 2 for l ∈ (l1, l3], where l3 is a such point that a2(l3) = l1. Let k > 2
and the values Sk−1(l) for all l, as well as the switching points, have already been
found. Then either the sensor k covers the entire segment [0, l], i.e. ak(l) ≤ 0, or
it covers the segment [ak(l), l], where ak(l) > 0, and Sk−1(ak(l)) other sensors
from the set {1, . . . , k − 1} participate in the covering of the segment [0, ak(l)].
The function Sk−1(l) was found earlier, and the values of the function change
only at the switching points. Therefore, when calculating Sk(l), it suffices to con-
sider a finite number of options. If the sensor k covers a certain segment [0, lk],
then Sk(l) = 1 for l ≤ lk. If l > lk, then other sensors participate in the coverage
of the segment [0, l], and we need to look between which switching points the
point ak(l) falls. Until the point ak(l) becomes larger than the right boundary of
this interval, Sk−1(ak(l)) and Sk(l) do not change their values. For some value of
l, the point ak(l) will be in the interval between the next switching points. This
is the new switching point for the function Sk(l). Note that switching points can
be found in advance.

In total, functions Sk(l) are computed with time complexity O(n) for all k =
1, . . . , n. Then the time complexity of the forward recursion is O(n2). Backward
recursion has less time complexity. The lemma is proved.

5 Conclusion

We considered the following problem. On the plane, a line segment [0, L] is
specified, as well as the depot point (xi, yi) for every sensors i ∈ S. Each sensor
can travel a limited-length path, starting and ending at its depot. That part of
the barrier, along which sensor moved, is covered by this sensor. It is required to
find a min-power subset of sensors C ⊆ S and to determine the barrier segment
[ai, bi] covered by each sensor i ∈ C that ∪i∈C [ai, bi] ⊇ [0, L]. The complexity of
this problem is not known. In this paper, special cases of polynomial solvability
and necessary and sufficient conditions for the existence of a solution are found. A
polynomial algorithm for checking the existence of a solution is proposed. Finally,
we have developed the approximation algorithms. In particular, we proposed a
O(n2)–time dynamic programming algorithm which in some special cases builds
an optimal solution.
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1 Introduction

The actual problem in the study of multi-species communities dynamics is the
designing problem of multidimensional mathematical models describing various
population processes [1–3]. In [4] we considered deterministic and stochastic
multidimensional models with regard to the competition and mutualism. The
studied models are generalizations of the models considered in [5–9]. The multi-
dimensional deterministic and stochastic models of the populations interaction
without taking into account mutualism are studied in [8]. The designing method
of self-consistent stochastic models developed in [10,11], as well as the reduc-
tion principle of the solutions stability problem of differential inclusion to the
stability problem for other types of equations are used in [7].

One of the important problems in studying the dynamics of the intercon-
nected communities is the stability problem [1–3]. The perspective direction is
the stability analysis of nondeterministic models. The development of methods
for research of the stability of nondeterministic dynamical systems is presented
in [12–14]. In these papers the systematic approach to qualitative research is
described, which allows one to consider the stability properties of the models
described by differential equations of various types from a unified point of view.
This approach is based on the transition from the deterministic description of
the model to the stochastic one and on the principle of reduction of the stability
problem for solutions of the differential inclusion to the problem of the stability
for other types of equations.

As it is known [10], the deterministic description of the model does not
take into account the probabilistic factors that influence the behavior of the
model. The widespread method of stochastics input into the model is the addi-
tive addition of a stochastic term, which describes only the external effect, and
this method is not related to the structure of the model itself. The method for
constructing self-consistent stochastic models is developed in [10]. This method
takes into account the structure of the models and this method is based on the
idea of combinatorial methodology described in [15,16].

Some deterministic mathematical models of population dynamics, taking
into account competition and mutualism, are considered in [4,5,7] and in other
papers. Mathematical models with migration were studied in the papers of vari-
ous authors (see, for example, [17,18]). In [18–22] migration flows in deterministic
population were considered. The research of distributed multidimensional pop-
ulation models taking into account cross-migration was carried out in papers
[23–25]. It is important to note that migration mechanisms can be described by
both linear and non-linear functions, and it lead to different effects [18]. In [19,21,
26] the issues of qualitative behavior and sustainability of population-migration
models were studied. In [7,8] a qualitative research of a three-dimensional
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non-deterministic model with migration was performed. The method of con-
structing of stochastic self-consistent models [10] allowed us to investigate a
three-dimensional model with migration.

In [26] a methodological support was developed for the analysis and syn-
thesis of multidimensional nonlinear dynamic models describing migration flows
taking into account the effects of broadband parametric and additive noise. The
stability of stationary states was studied and the effects obtained for stochas-
tic models were interpreted. The model examples show a comparison of the
migration-population systems properties in deterministic and stochastic cases
and the effects due to stochastic broadband perturbations were revealed.

When modeling population-migration systems are studied, various software
tools are used that present wide possibilities for building computer models
and carrying out computational experiments. However, many software prod-
ucts do not contain libraries for numerical and symbolic calculations and do
not have sufficient computational complexity. In this regard, in the study of the
population-migration systems models, the application of mathematical pack-
ages and general-purpose programming languages [27–29] is relevant. One of the
instrumental software tools for studying population-migration models is a soft-
ware package for the numerical solution of differential equations systems using
modified Runge–Kutta methods. The specified software package was developed
in [11,30,31].

The questions of optimal control in systems of population dynamics were con-
sidered in [32–35] and in other papers. In [32], some optimal control problems for
distributed models of the migration populations dynamics were considered. In
[33], an optimal control problem for a Volterra type distributed system was stud-
ied. In [34], the optimality criterion for auto reproduction systems was formalized
and the optimal control problem was considered for analyzing evolutionally sta-
ble behavior. In [35], optimal control problems for the classical Lotka–Volterra
models were formulated with allowance for phase and mixed constraints.

In this paper, we propose construction of multidimensional models, with
regard to competition and mutualism, and migration flows as well. The pro-
posed models are new and take into account several additional effects in con-
trast to the models studied previously. The qualitative and numerical research
of models are performed. The construction of multidimensional nondeterministic
models of interconnected communities dynamics based on the method of con-
structing stochastic self-consistent models is described. A comparative analysis
of deterministic and stochastic models is carried out. As a tool for the study of
the models, a software package in the Python language using the NumPy and
SciPy libraries is used. The software package allows numerical experiments based
on the implementation of algorithms for generating trajectories of multidimen-
sional Wiener processes and multipoint distributions and algorithms for solving
stochastic differential equations. Some formulations of optimal control problems
in models of population dynamics are proposed.
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2 Constructing of Deterministic Models

The multidimensional population model of dimension n = 2k, which takes into
account competition and mutualism, is given by the system of ordinary differ-
ential equations of the following type:

dxi

dt
= aixi

(
1 − xi

bi

)
−

k∑
j=1,j �=i

pijxixj

1 + dixi+k
, i = 1, . . . , k,

dxi

dt
= aixi

(
1 − xi

ui + ωixi−k

)
, i = k + 1, . . . , n, n = 2k,

(1)

where xi (i = 1, . . . , k) are the densities of populations of species-competitors,
xi (i = k + 1, . . . , n) are the densities of species-mutualists populations, ai, bi,
pij , di, ui, ωi are positive constants. The model (1) in the absence of mutu-
alism is reduced to the multidimensional Lotka–Volterra model of competitive
interaction.

The dynamic population model “competitor–competitor–mutualist” is con-
sidered in the three-dimensional case

dx1

dt
= a1x1

(
1 − x1

b1

)
− p12x1x2

1 + d1x3
,

dx2

dt
= a2x2

(
1 − x2

b2

)
− p21x1x2,

dx3

dt
= a3x3

(
1 − x3

u + ωx1

)
,

(2)

where the following notations are used: xi are densities of populations, respec-
tively, of the first competitor, the second competitor and the mutualist (i =
1, 2, 3), a1, a2, a3, b1, b2, u, ω, p12, p21, d1 are positive constants. Model (2) is the
modification of the model considered in [6], and is characterized by the logistic
type of the competitors populations growth. The model (2) is a classic Lotka–
Volterra model of the competitive interaction in the absence of mutualism.

The dynamic population model “competitor–mutualist–competitor–mutu-
alist” is considered in the four-dimensional case

dx1

dt
= a1x1

(
1 − x1

b1

)
− p12x1x2

1 + d1x3
,

dx2

dt
= a2x2

(
1 − x2

b2

)
− p21x1x2

1 + d2x4
,

dx3

dt
= a3x3

(
1 − x3

u3 + ω3x1

)
,

dx4

dt
= a4x4

(
1 − x4

u4 + ω4x2

)
,

(3)
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where x1, x2 are the densities of populations of the first and the second com-
petitors, respectively, x3, x4 are the densities of populations of mutualists for
x1, x2 at any time t. The model (3) is the particular case of the model (1).

A nonlinear model with migration described by a system of ordinary differ-
ential equations of the form is considered

dx1

dt
= a1x1 − a1x

2
1 − p13x1x3 − p14x1x4 + βx2 − γx1,

dx2

dt
= a2x2 − a2x

2
2 + γx1 − βx2,

dx3

dt
= a3x3 − p31x1x3 − a3x

2
3 − p34x3x4,

dx4

dt
= a4x4 − p41x1x4 − p43x3x4 − a4x

2
4,

(4)

where x1, x3, x4 are the densities of populations of competing species in the
area 1, x2 is the population density in the area 2, p13, p14, p31, p34, p41, p43 > 0
are the coefficient of competition of species in the area 1, β > 0 and γ > 0 are
species migration coefficients between two areas, with area 2 being a refuge. The
first and the second equations describe the dynamics of the same species taking
into account migration processes. The first equation defines the dynamics in the
first area, the second – the dynamics in the second area. The third and fourth
equations describe the dynamics of the second and third species interacting as
competitors with the first species in the first range.

We propose a nonlinear model of the dynamics of interconnected commu-
nities taking into account the relations of competition and mutualism and the
migration of one of the species. The model is given by a system of ordinary
differential equations of the form

dx1

dt
= a1x1 − a1x

2
1

b1
− p12x1x2

1 + d1x3
,

dx2

dt
= a2x2 − a2x

2
2

b2
− p21x1x2 + βx4 − γx2,

dx3

dt
= a3x3 − a3x

2
3

u + ωx1
,

dx4

dt
= a4x4 − a4x

2
4 + γx2 − βx4,

(5)

where x1, x2 are the population densities of competing species (competitor 1
and competitor 2), x3 is the population density of the mutualist interacting
with the first competitor, pij are the species competition coefficients. The first
three equations describe population dynamics in area 1. The fourth equation
defines the dynamics of the second competitor taking into account its migration
to the area 2. Using β > 0 and γ > 0 are the coefficients of migration of species
between two areas, while area 2 is a refuge. In the case p12 = p21 we have
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dx1

dt
= a1x1 − a1x

2
1

b1
− p12x1x2

1 + d1x3
,

dx2

dt
= a2x2 − a2x

2
2

b2
− p12x1x2 + βx4 − γx2,

dx3

dt
= a3x3 − a3x

2
3

u + ωx1
,

dx4

dt
= a4x4 − a4x

2
4 + γx2 − βx4.

(6)

In the case p12 = p21 and migration rates are the same (β = γ = ε), we get
a model of the form

dx1

dt
= x1

(
a1 − a1x1

b1
− p12x2

1 + d1x3

)
,

dx2

dt
= x2

(
a2 − a2x2

b2
− p12x1

)
+ ε(x4 − x2),

dx3

dt
= x3

(
a3 − a3x3

u + ωx1

)
,

dx4

dt
= x4(a4 − a4x4) + ε(x2 − x4).

(7)

Further, for model (6), (7) we perform qualitative and numerical analysis. In
addition, we carry out the transition to the appropriate stochastic models and
conduct a comparative analysis of trajectories.

3 Analysis of Model Examples in the Deterministic Case

For deterministic models “competitor–competitor–mutualist” and “competitor–
mutualist–competitor–mutualist” a numerical experiment was conducted in [4]
in order to conduct a comparative analysis of the dynamics of behavior and
identify the impact of the second mutualist.

We consider the models (2), (3) with initial values are considered
(x1, x2, x3) = (150, 165, 125), (y1, y2, y3, y4) = (150, 165, 125, 125) and with
parameter values a1 = 1.4, a2 = 3.5, a3 = 1.5, a4 = 1.5, b1 = 250, b2 = 120,
p12 = 1.95, p21 = 0.001, d1 = 1.5, d2 = 1.2, u3 = u4 = 200, ω3 = ω4 = 1.2.

For the systems (2) and (3) the stationary states F1 = (182.17, 113.75, 418.60)
and E1 = (197.08, 87.0, 424.49, 328.40) are obtained respectively. The results of
the numerical experiment are shown in Fig. 1. The phase variables for the model
(2) are denoted by xi, the phase variables for the model (3) are denoted by yi.
These designations are accepted for convenience of the comparative analysis of
trajectories on Fig. 1. The numerical experiment showed that the appearance of
the second mutualist in the system does not qualitatively change the behavior
of the system, but leads to a shift stationary state.
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Fig. 1. The comparison of the behavior for the three-dimensional and four-dimensional
models with competition and mutualism

Model (4) at p13 = p31, p14 = p41, p34 = p43, ai = 1, i = 1, 2, 3, 4, let’s call it
a model (4a). Model (4) at p13 = p31, p14 = p41, p34 = p43, ai = 1, i = 1, 2, 3, 4,
and for β = γ = ε we will call the model (4b).

Consider the models (4a) and (4b) with the same set of intraspecific and
interspecific interaction coefficients. Note that in the model (4a) in general
β �= γ, and in the model (4b) β = γ. The trajectories for models (4a) and
(4b) with parameter values p13 = 1.2, p14 = 0.5, p34 = 1.4 and initial values
(x1(0), x2(0), x3(0), x4(0)) = (0.5, 1, 0.8, 1) the time interval [0, 25] is shown in
Fig. 2. For the model with the same set of migration velocity values ε = 0.3. On
the Fig. 2 a record of the form xi(3) indicates the path corresponding to the xi

phase variable for the model (4b) with the same migration rates.

Fig. 2. Trajectories for models (4a) and (4b) with (x1(0), x2(0), x3(0), x4(0)) =
(0.5, 1, 0.8, 1), p13 = 1.2, p14 = 0.5, p34 = 1.4, β = 1.5, γ = 0.2, ε = 0.3.
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Comparative analysis of trajectories showed that in a model with the same
migration rates, the population density of x4 increased insignificantly, and the
density of the population of x1 has decreased, while the population of x3 in both
models is rapidly dying out. In addition, with increasing migration rate for the
model (4b) in the second area, more than favorable conditions than in the model
(4a), so the population density of x2 is significant increases.

Next, we consider the model (6) the competition, mutualism, and different
migration rates. For the numerical experiment, different sets of parameters were
chosen. For one of the parameters sets in the model (6) there are the following
equilibrium states: P1 (0, 0, 0, 0), P2 (130, 0, 0, 0), P3 (0, 0, 100, 0), P4 (130,
0, 256, 0), P5 (129.9, 0.00097, 255.9, 0.813), P6 (0.761, 108.445, 100.091, 4.11).
Here P1 is an unstable node, P2, P3, P4, P6 are saddles, P5 is the stable node.
The Fig. 3 shows the trajectories of model (6) solutions at the specified initial
values and the values of the parameters in the time interval [0, 10].

Fig. 3. Trajectories for model (6) with x1(0) = 0.8, x2(0) = 0.9, x3(0) = 0.6, x4(0) =
0.3, parameters values a1 = 1.4, a2 = 3.5, a3 = 1.5, a4 = 1.6, b1 = 130, b2 = 120,
p12 = 1.95, d1 = 1.5, u = 100, ω = 1.2, β = 0.3, γ = 0.2

We consider the model (7) taking into account competition, mutualism and
the same migration rates. For the numerical experiment of the model (7) were
chosen the same sets of parameters as for model (6) except migration rate. In
this case we consider ε = 0.2.

For one of the parameters sets in the model (7) there are the following equi-
librium states: P1 (0, 0, 0, 0), P2 (130, 0, 0, 0), P3 (0, 0, 100, 0), P4 (130, 0, 256,
0), P5 (129.9, 0.0007, 255.9, 0.875), P6 (0.742, 108.444, 100.089, 4.145). Here P1

is an unstable node, P2, P3, P6 are saddles, P4, P5 is the stable node.
The results obtained for the models (6) and (7) correspond to the situation

when the population of x1 dies out, the population of x2 and x3 grows expo-
nentially, and the population of x4 is at the same level. Comparative analysis
showed the similarity of the trajectories of the models (6) and (7).

The standard packages of symbolic calculations are used in the process of
model calculations. Due to the rather high dimensionality of the models we
are studying, serious difficulties arise in the case of alphabetic parameters.
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In this regard, we conducted a series of computer experiments and considered
different sets of numerical values of the parameters. In the paper we presented
those results that are of the greatest interest. In the future, we plan to carry
out a bifurcation analysis, which will clearly identify the corresponding types of
phase portraits.

4 Stochastic Models

In this paper, stochastization of models is carried out using the method of
constructing self-consistent stochastic models [10]. We proceed to the symbolic
recording of all possible interactions between the elements of the system. For this,
the system state operators and the system state change operator are used. Then
we can get the drift and diffusion coefficients for the Fokker–Planck equation,
which allows to write the equation itself and its equivalent stochastic differential
equation in the Langevin form.

To obtain stochastic models corresponding to models taking into account
competition, mutualism and migration, you can write a generalized scheme of
interaction, which has the following form:

Xi
ai−→ 2Xi, Xi + Xi

bi−→ Xi, i = 1, n,

Xi + Xj
cij−−→ Xj ,Xi

di−→ Xj , i, j = 1, n, i �= j.
(8)

In the scheme (8) n-dimensional system the first line corresponds to the
natural reproduction of species in the absence of other factors, the 2nd line
symbolizes the intraspecific competition, and the 3rd – interspecific competition.
The latter is a description of the process of migration of the species from one
area to another. The coefficient values for each of the models (2), (3), (6), (7)
are given in Table 1. According to the method of constructing self-consistent
stochastic models based on the interaction scheme (8) it is possible to write the
Fokker–Planck equation of the form [31]:

∂tP (x, t) = −
∑

a

[Aa(x)P (x, t)] +
1
2

∑
a,b

∂a∂b[Bab(x)P (x, t)].

However, an increase in the dimension and complexity of the system under
study leads to the complexity of the analytical conclusion of the necessary coef-
ficients of the Fokker–Planck equation. As a solution to this problem, a software
implementation is developed for obtaining the coefficients of the Fokker–Planck
equation from interaction schemes using a symbolic computation system. This
software implementation is a modification of the stochastization method for one-
step processes in the computer algebra system described in [11]. This implemen-
tation is introduced as a module into a software package developed earlier for
the numerical study of deterministic and stochastic models [31].
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Table 1. Coefficients for the interaction scheme (8)

Model (2) Model (3) Model (6) Model (7)

ai ai = ai, i = 1, 3 ai = ai, i = 1, 4 ai = ai, i = 1, 4 ai = ai, i = 1, 4

bi

bi = ai
bi

, i = 1, 2,

b3 = a3
u+ωx1

bi = ai
bi

, i = 1, 2,

b3 = a3
u+ω3x1

b4 = a4
u+ω4x2

bi = ai
bi

, i = 1, 2,

b3 = a3
u+ω3x1

b4 = a4

bi = ai
bi

, i = 1, 2,

b3 = a3
u+ωx1

, b4 = a4

cij

c12 = p12
1+d1x3

,

c21 = p12,

c13 = c31 =

= c23 = c32 = 0

c12 = p12
1+d1x3

,

c21 = p21
1+d2x4

,

cij = 0

i, j = 1, 4, i �= j

c12 = p12
1+d1x3

,

c21 = p31

cij = 0,

i, j = 1, 4, i �= j

c12 = p12
1+d1x3

,

c21 = p31

cij = 0,

i, j = 1, 4, i �= j

di d1 = d2 = d3 = 0 d1 = d2 = d3 = d4 = 0
d2 = β, d4 = a3,

d1 = d3 = 0

d2 = ε, d4 = ε,

d1 = d3 = 0

The following is the algorithm for obtaining the symbolic notation of a
stochastic differential equation (Algorithm 1).

Data: Interaction scheme
Result: The system of differential equations in the form of Langevin
begin

1. Getting system state operators from the interaction scheme.
2. Getting the change of the system state.
3. Getting the transition intensities.
4. Record the coefficients of the Fokker–Planck equation.
5. Record the system of differential equations.

end

To implement the described algorithm, SymPy [27], computer computing
system is used, which is a powerful symbolic computation library for the Python
language. The output data obtained using the SymPy library can be transferred
for numerical calculations using the NumPy [29] library and SciPy [28].

For the scheme of interaction (8) with the use of the developed software
package were obtained the coefficients of the Fokker–Planck equation for the
model (6) are as follows:

A(x) =

⎛
⎜⎜⎜⎜⎜⎝

x1

(
a1 − a1

b1
x1 − p12x2

1+d1x3

)
x2

(
a2 − a2

b2
x2 − p12x1

)
− γx2 + βx4

x3

(
a3 − a3x3

u+ωx1

)
x4(a4 − a4x4) + γx2 − βx4

⎞
⎟⎟⎟⎟⎟⎠

,
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B(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

(
a1 + a1

b1
x1+

+ p12x2
1+d1x3

) 0 0 0

0
x2

(
a2 + a2

b2
x2+

+p12x1)−
−γx2 + βx4

0 −γx2 − βx4

0 0 x3

(
a3 + a3x3

u+ωx1

)
0

0 −γx2 − βx4 0
x4(a4 + a4x4)+

+γx2 + βx4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The obtained coefficients were used in the corresponding module of the soft-
ware package for the numerical solution of a stochastic differential equation.

The numerical experiments were conducted for stochastic models, taking into
account competition and mutualism experiments with the choice of the same
parameters as for the numerical analysis of deterministic models (2) and (3).
Figure 4 shows a comparison of the trajectories are three-dimensional and four-
dimensional stochastic models with competition and mutualism.

Fig. 4. The comparison of the solutions behavior for stochastic models with competi-
tion and mutualism

For the numerical experiment for the stochastic model taking into account
migration, competition and mutualism, the same parameters were chosen, as
for numerical analysis of deterministic models (6). Figure 5 shows a comparison
of the trajectories of deterministic and stochastic models taking into account
different migration rates. Solid lines in Fig. 5 trajectories of average values for
100 realizations in the time interval [0, 10] are shown.

Similar computational experiments were performed for the (7) model and the
corresponding stochastic model at the same migration rates. Comparative anal-
ysis showed the proximity of the trajectories of stochastic models corresponding
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Fig. 5. The comparison of the solution behavior for model (6) and corresponding
stochastic model with x1(0) = 0.8, x2(0) = 0.9, x3(0) = 0.6, x4(0) = 0.3, a1 = 1.4,
a2 = 3.5, a3 = 1.5, a4 = 1.6, b1 = 130, b2 = 120, p12 = 1.95, d1 = 1.5, u = 100,
ω = 1.2, β = 0.3, γ = 0.2

to the models (6) and (7). As follows from the obtained results, the introduc-
tion of the stochastic method of stochastization of one-step processes has led to
slower migration of the second competitor from the first zone to the second. At
the same time, the mutualistic relations of the first competitor and his mutualist
lead to an increase in the number of both species.

5 The Problem of Optimal Control in Models
of the Populations Dynamics

For generalized models of dynamics of interconnected communities, we formu-
late optimal control problems. The dynamics of a generalized controlled multi-
dimensional model with competition and mutualism is described by a system of
differential equations

dxi

dt
= aixi

(
1 − xi

bi

)
−

k∑
j=1,j �=i

pijxixj

1 + dixi+k
− uixi, i = 1, . . . , k,

dxi

dt
= aixi

(
1 − xi

ui + ωixi−k

)
− uixi, i = k + 1, . . . , n, n = 2k,

(9)

where ui(t) are control functions.
The constraints imposed on the control functions in (9) are as follows

0 ≤ ui ≤ ui1, t ∈ [0, T ], i = 1, . . . , n. (10)

In addition,
xi(0) = xi0, xi(T ) = xi1, i = 1, . . . , n. (11)

The following type of restrictions on control functions is also possible

0 ≤
k∑

i=1

ui(t) ≤ M, ui ≥ 0, i = 1, . . . , n, t ∈ [0, T ]. (12)
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Consider the functional to be maximized:

J(u) =
∫ T

0

n∑
i=1

(lixi − ci)ui(t)dt. (13)

The control quality criterion (13) expresses the profit from the use of populations,
where li is the cost of the corresponding population, ci is the cost of technical
means corresponding to i-th population.

The optimal control problems for the model (9) are as follows: (1) to find the
maximum of the functional J(u) under the conditions (10), (11); (2) to find the
maximum of the functional J(u) under the conditions (11), (12).

Let us consider the special case of (9). This case is a generalization of the
model (2). The dynamics of a generalized controlled three-dimensional model
with competition and mutualism is described by a system of differential equations

dx1

dt
= a1x1

(
1 − x1

b1

)
− p12x1x2

1 + d1x3
− u1x1,

dx2

dt
= a2x2

(
1 − x2

b2

)
− p21x1x2

1 + d2x4
− u2x2,

dx3

dt
= a3x3

(
1 − x3

u3 + ω3x1

)
− u3x3.

(14)

The constraints for the model (14) have the form:

x1(0) = x10, x2(0) = x20, x3(0) = x30,

x1(T ) = x11, x2(T ) = x21, x3(T ) = x31, t ∈ [0, T ],
(15)

0 ≤ u1 ≤ u11, 0 ≤ u2 ≤ u21, 0 ≤ u3 ≤ u31, t ∈ [0, T ]. (16)

For (14)–(16) consider the functional to be maximized:

J(u) =
∫ T

0

[(l1x1 − c1)u1(t) + (l2x2 − c2)u2(t) + (l3x3 − c3)u3(t)] dt. (17)

The optimal control problem for the model (14) is as follows: to find the
maximum of the functional (17) under the conditions (15), (16). Similar to this
problem we can formulate the problem under conditions (12) modified for the
model (14).

The existence and uniqueness of the maximum of the functional J(u) are
of theoretical interest. If all the factors of influence are known, it is possible to
solve the problems on the basis of the Pontryagin’s maximum principle.

In the problems of dynamics of interconnected communities, phase variables
are limited in the form xi(t) ≥ 0, i = 1, . . . , n. In addition, restrictions on
the growth of i-th type dxi/dt ≤ ri are often introduced, this leads to mixed
constraints in optimal control problems. In this regard, it is possible to formulate
optimal control problems taking into account phase and mixed constraints.
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Optimal control problem statements are also considered for models (5)–(7)
with migration, competition, and mutualism. Based on the method of construc-
tion of stochastic self-consistent models, we can proceed to the stochastic for-
mulation of optimal control problems. The developed software package, taking
into account the results of Sect. 4, allows to perform stochastization and further
study of models with migration, competition and mutualism.

6 Conclusions

In this paper we propose a new approach to the synthesis and analysis of mul-
tidimensional models of dynamics of interconnected communities taking into
account the relations of competition and mutualism, and also taking into account
migration flows. Computational study of these models allowed us to obtain the
results of numerical experiments for the search of trajectories and assessment
parameters in case of high dimensionality of models, as well as to identify effects
due to the stochasticity. For the considered models, the impact of competition,
mutualism and migration on the behavior of the system is assessed. The presence
of relations of mutualism and migration flows is revealed new qualitative effects
in the dynamics of interacting communities. The dynamics of model trajecto-
ries in the absence of migration flows and mutualism differs significantly from
classical models. Calculations for new models are shown that the presence of rela-
tionships of mutualism in a non-migratory community, taking into account the
migration of another community, plays a supporting role for the non-migratory
community. A number of optimal control problem are proposed for multidimen-
sional models of population dynamics. The software package is developed in
Python using the NumPy and Scipy. This software package demonstrated suffi-
cient efficiency for computer studies of multidimensional nonlinear models with
migration. Numerical experiments carried out by the aid of problem-oriented
software shows the similarity of the types of trajectories to stochastic and deter-
ministic cases. Obtained results can find application in problems of computer
modeling and optimization of environmental, demographic and socio-economic
systems parameters.

References

1. Aleksandrov, A.Y., Platonov, A.V., Starkov, V.N., Stepenko, N.A.: Mathemati-
cal Modeling and Research of the Stability of Biological Communities. Solo, St.
Petersburg (2006)

2. Bazykin, A.D.: Nonlinear Dynamics of Interacting Populations. Institute of Com-
puter Research, Moscow-Izhevsk (2003)

3. Svirezhev, Y.M., Logofet, D.O.: Stability of Biological Communities. Nauka,
Moscow (1978)



70 A. Demidova et al.

4. Demidova, A.V., Druzhinina, O.V., Jacimovic, M., Masina, O.N., Mijajlovic, N.:
Synthesis and analysis of multidimensional mathematical models of population
dynamics. In: Proceedings of the Selected Papers of the 10th International Congress
on Ultra Modern Telecommunications and Control Systems ICUMT, Moscow,
Russia, 5–9 November 2018, IEEE Catalog Number CFP 1863G-USB, pp. 361–
366. IEEE Xplore Digital Library, New York (2018)

5. Freedman, H.I., Rai, B.: Can mutualism alter competitive outcome: a mathematical
analysis. Rocky Mt. 25(1), 217–230 (1995)

6. Rai, B., Freedman, H.I., Addicott, J.F.: Analysis of three species models of mutu-
alism in predator-prey and competitive systems. Math. Biosci. 63, 13–50 (1983)

7. Demidova, A.V., Druzhinina, O., Jacimovic, M., Masina, O.: Construction and
analysis of nondeterministic models of population dynamics. In: Vishnevskiy, V.M.,
Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2016. CCIS, vol. 678, pp. 498–510.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-51917-3 43

8. Demidova, A.V., Druzhinina, O.V., Masina, O.N.: Design and stability analysis
of nondeterministic multidimensional populations dynamics models. In: Proceed-
ings of the Selected Papers of the 7th International Conference “Information and
Telecommunication Technologies and Mathematical Modeling of High-Tech Sys-
tems” (ITTMM 2017), Moscow, Russia, 24 April 2017, vol. 1995, pp. 14–21. CEUR
(2017). http://ceur-ws.org/vol-1995/

9. Freedman, H.I., Rai, B.: Uniform persistence and global stability in models involv-
ing mutualism competitor-competitor-mutualist systems. Indian J. Math. 30, 175–
186 (1988)

10. Gevorkyan, M.N., Demidova, A.V., Egorov, A.D., Kulyabov, D.S., Korolkova,
A.V., Sevastyanov, L.A.: The influence of stochastization on single-step models.
Bull. Peoples’ Friendship Univ. Russ. Ser. “Math. Comput. Sci. Phys.” 1, 71–85
(2014)

11. Eferina, E.G., Korolkova, A.V., Gevorkyan, M.N., Kulyabov, D.S., Sevastyanov,
L.A.: One-step stochastic processes simulation software package. Bull. Peoples’
Friendship Univ. Russ. Ser. “Math. Comput. Sci. Physics” 3, 46–59 (2014)

12. Shestakov, A.A.: Generalized Direct Lyapunov Method for Systems with Dis-
tributed Parameters. URSS, Moscow (2007)

13. Merenkov, Y.N.: Stability-Like Properties of Differential Inclusions, Fuzzy and
Stochastic Differential Equations. RUDN University, Moscow (2000)

14. Druzhinina, O.V., Masina, O.N.: Methods of Stability Research and Controllability
of Fuzzy and Stochastic Dynamic Systems. Dorodnicyn Computing Center of RAS,
Moscow (2009)

15. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier,
Amsterdam (1992)

16. Gardiner, C.W.: Handbook of Stochastic Methods: For Physics, Chemistry and the
Natural Sciences. Springer Series in Synergetics. Springer, Heidelberg (1985)

17. Tkachenko, N., Weissmann, J.D., Petersen, W.P., Lake, G., Zollikofer, C.P.E.,
Callegari, S.: Individual-based modelling of population growth and diffusion in
discrete time. PLoS ONE 2(4), e0176101 (2017). https://doi.org/10.1371/journal.
pone.0176101

18. Tuckwell, H.C.: A study of some diffusion models of population growth. Theor.
Popul. Biol. 5(3), 345–357 (1974). https://doi.org/10.1016/0040-5809(74)90057-4

19. Zhang, X.-A., Chen, L.: The linear and nonlinear diffusion of the competitive
Lotka-Volterra model. Nonlinear Anal. 66, 2767–2776 (2007). https://doi.org/10.
1016/j.na.2006.04.006

https://doi.org/10.1007/978-3-319-51917-3_43
http://ceur-ws.org/vol-1995/
https://doi.org/10.1371/journal.pone.0176101
https://doi.org/10.1371/journal.pone.0176101
https://doi.org/10.1016/0040-5809(74)90057-4
https://doi.org/10.1016/j.na.2006.04.006
https://doi.org/10.1016/j.na.2006.04.006


Problems of Synthesis, Analysis and Optimization of Parameters 71

20. Svirezhev, Y.: Nonlinear Waves, Dissipative Structures and Disasters in Ecology.
Science, Moscow (1987)

21. Lu, Z., Takeuchi, Y.: Global asymptotic behavior in single-species discrete diffusion
systems. J. Math. Biol. 32(1), 67–77 (1993). https://doi.org/10.1007/BF00160375

22. Cui, J., Chen, L.: The effect of diffusion on the time varying logistic popula-
tion growth. Comput. Math. Appl. 36, 1–9 (1998). https://doi.org/10.1016/S0898-
1221(98)00124-2

23. Chen, L., Jungel, A.: Analysis of a multi-dimensional parabolic population model
with strong cross-diffusion. SIAM J. Math. Anal. 36, 301–322 (2004). https://doi.
org/10.1137/S0036141003427798

24. Zamponi, N., Jungel, A.: Analysis of degenerate cross-diffusion population models
with volume filling. Annales de l’Institut Henri Poincare C, Analyse non lineaire
34(1), 1–29 (2017). https://doi.org/10.1016/j.anihpc.2015.08.003

25. Chen, X., Daus, E.S., Jungel, A.: Global existence analysis of cross-diffusion pop-
ulation systems for multiple species. Arch. Ration. Mech. Anal. 227(2), 715–747
(2018). https://doi.org/10.1007/s00205-017-1172-6

26. Sinitsyn, I.N., Druzhinina, O.V., Masina, O.N.: Analytical modeling and stability
analysis of nonlinear broadband migration flows. Nonlinear World 16(3), 3–16
(2018)

27. Lamy, R.: Instant SymPy Starter. Packt Publishing, Birmingham (2013)
28. Oliphant, T.E.: Python for scientific computing. Comput. Sci. Eng. 9(3), 10–20

(2007). https://doi.org/10.1109/MCSE.2007.58
29. Oliphant, T.E.: Guide to NumPy, 2nd edn. CreateSpace Independent Publishing

Platform, Scotts Valley (2015)
30. Gevorkyan, M.N., Velieva, T.R., Korolkova, A.V., Kulyabov, D.S., Sevastyanov,

L.A.: Stochastic Runge–Kutta software package for stochastic differential equa-
tions. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk,
J. (eds.) Dependability Engineering and Complex Systems. AISC, vol. 470, pp.
169–179. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39639-2 15

31. Gevorkyan, M.N., Demidova, A.V., Velieva, T.R., Korolkova, A.V., Kulyabov, D.S.,
Sevastyanov, L.A.: Implementing a method for stochastization of one-step processes
in a computer algebra system. Program. Comput. Softw. 44(2), 86–93 (2018).
https://doi.org/10.1134/S0361768818020044

32. Moskalenko, A.I.: Methods of Nonlinear Maps in Optimal Control (Theory and
Applications to Models of Natural Systems). Nauka, Novosibirsk (1983)

33. Kuzenkov, O.A.: An optimal control for a Volterra distributed system. Autom.
Remote Control 67(7), 1028–1038 (2006)

34. Kuzenkov, O.A., Kuzenkova, G.V.: Optimal control of self-reproduction systems.
J. Comput. Syst. Sci. Int. 51(4), 500–511 (2012)

35. Gusyatnikov, P.P.: Optimal control problem in the predator-prey model. Probl.
Theory Saf. Stab. Syst. 7(2), 9–12 (2005). Dorodnitsyn Computing Center of RAS,
Moscow

https://doi.org/10.1007/BF00160375
https://doi.org/10.1016/S0898-1221(98)00124-2
https://doi.org/10.1016/S0898-1221(98)00124-2
https://doi.org/10.1137/S0036141003427798
https://doi.org/10.1137/S0036141003427798
https://doi.org/10.1016/j.anihpc.2015.08.003
https://doi.org/10.1007/s00205-017-1172-6
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1007/978-3-319-39639-2_15
https://doi.org/10.1134/S0361768818020044
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Solution of the Infimal Convolution

Problem and Subdifferential Calculus

Grigorii E. Ivanov(B) and Maxim O. Golubev

Moscow Institute of Physics and Technology, 9 Institutskiy per.,
Dolgoprudny, Moscow Region 141700, Russian Federation
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Abstract. We consider a parametrized constrained optimization prob-
lem, which can be represented as the Moreau-type infimal convolution
of the norm and some (nonconvex in general) function f . This prob-
lem arises particularly in optimal control and approximation theory. We
assume that the admissible set A is weakly convex and function f is
Lipschitz continuous and weakly convex on the convex hull of A. We
show that the problem is Tykhonov well-posed and the solution of the
problem is unique and Lipschitz continuous in some neighbourhood of A.
Exact estimates for the size of the neighbourhood and for the Lipschitz
constant are obtained. Based on these results we prove lower regularity
of the optimal value (marginal) function of this problem in some neigh-
bourhood of A.

Keywords: Parametrized optimization problem · Infimal convolution ·
Best approximation problem · Marginal function · Tykhonov
well-posedness · Frechet subdifferential · Limiting subdifferential

1 Introduction

Let H be a finite dimensional Euclidean space R
n or an infinite dimensional

Hilbert space. The inner product of a, b ∈ H will be denoted as 〈a, b〉.
Given a subset A ⊂ H and a function f : H → R we consider the following

constrained optimization problem

Pf,A : Minimize f(x) + ‖x − u‖ over x ∈ A

with a parameter u ∈ H. If f = 0, this is a general constrained best approxima-
tion problem

Minimize ‖x − u‖ over x ∈ A.

On the other hand, Pf,A is a special case of the Moreau-type infimal convolution
problem

Minimize α(x) + β(u − x) over x ∈ H
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with β(·) = ‖ · ‖ and α(·) = f(·) + ψA(·), where ψA(x) = 0 if x ∈ A and
ψA(x) = +∞ if x 	∈ A is the indicator function of the set A ⊂ H. The optimal
value (marginal) function for the problem Pf,A at u ∈ H is

Tf,A(u) := inf
x∈A

(f(x) + ‖x − u‖). (1)

If x ∈ A satisfies the equality f(x) + ‖x − u‖ = Tf,A(u), then x =: xmin(u) is
called a solution of Pf,A at u ∈ H.

As shown in [1], if β(·) is a Minkowski functional of a closed bounded convex
set G ⊂ H, then the infimal convolution (α�β)(u) := infx∈H(α(x) + β(u − x)) is
the optimal value for an optimal control problem

Minimize t + α(ζ(t;u)) (2)

over all t ≥ 0 and all solutions ζ(·) = ζ(·;u) of the differential inclusion dζ
dt ∈ −G

with the initial condition ζ(0) = u. Since the norm ‖ · ‖ is the Minkowski func-
tional of the unit ball B = {x ∈ H : ‖x‖ ≤ 1} the optimal value of Pf,A

coincides with the optimal value of (2) with constant dynamics dζ
dt ∈ B and

α(·) = f(·) + ψA(·).

2 Weakly Convex Sets and Functions: Motivating
Examples and Definitions

Example 1. Let H = R
2, A = {(x1, x2) : x2 ≤ |x1|}, f = 0. Then at

any u = (u1, u2) with u2 > |u1| > 0 the problem Pf,A has a unique solu-

tion
(

|u1|+u2
2 sign u1,

|u1|+u2
2

)
. This solution is locally Lipschitz continuous. If

u1 = 0, u2 > 0, then the problem Pf,A at (u1, u2) has two solutions:
(

u2
2 , u2

2

)
and

(−u2
2 , u2

2

)
. In any neighborhood of u = (0, u2) with u2 > 0 the solution of

Pf,A is discontinuous.

The loss of uniqueness and continuity of the solution in Example 1 arises due
to the fact that the set A in this example is neither convex nor smooth. Consider
the class of weakly convex sets which includes both convex and smooth sets.

The distance from a point u ∈ H to a set A ⊂ H is defined as

dist(u,A) = inf
x∈A

‖u − x‖.

Definition 1. A closed set A ⊂ H is called weakly convex with radius R > 0 if
for any x0, x1 ∈ A such that ‖x0 − x1‖ < 2R one has

dist
(

x0 + x1

2
, A

)
≤ R −

√
R2 − ‖x0 − x1‖2

4
.

Note that any closed convex set is weakly convex with any radius R > 0.
The set A = {x ∈ H : ‖x‖ ≥ R} with R > 0 is an example of a non-convex



74 G. E. Ivanov and M. O. Golubev

weakly convex set. According to [4, Theorem 3] if the set A is smooth, namely
A coincides with the closure of its interior and the unit external normal to A
is Lipschitz continuous on the boundary of A with constant C > 0, then A is
weakly convex with radius R = 1

C .
We shall use UR(x) and UR(A) to define R-neighbourhood of x ∈ H and of

A ⊂ H correspondingly:

UR(x) = {u ∈ H : ‖u − x‖ < R}, UR(A) = {u ∈ H : dist(u,A) < R}.

The following proposition follows directly from [6, Theorem 3.1], it provides
a characterization of the class of weakly convex sets in terms of existence of a
unique and continuous solution of the best approximation problem, that is the
problem Pf,A with f = 0.

Proposition 1. A closed set A ⊂ H is weakly convex with radius R > 0 if the
solution xmin(·) of the problem Pf,A with f = 0 is unique and continuous on
UR(A).

Further we shall use the following proposition (see [5, Lemma 1.4.4]).

Proposition 2. Let A ⊂ H be closed and weakly convex with radius R > 0.
Then for any λ ∈ [0, 1] and any x0, x1 ∈ A such that λ(1 − λ)‖x0 − x1‖2 ≤ R2

there exists x̂ ∈ A such that

‖(1 − λ)x0 + λx1 − x̂‖ ≤ R −
√

R2 − λ(1 − λ)‖x0 − x1‖2.
Example 2. Let H = R

2, A = {(x1, 0) : x1 ∈ R}, f(x1, x2) = −L|x1| with
L ∈ (0, 1). Then for any u2 > 0 the problem Pf,A at the point u = (0, u2) has

two solutions xmin(u) =
(
± L√

1−L2 u2, 0
)
. In any neighborhood of u = (0, u2)

with u2 > 0 the solution of Pf,A is discontinuous.

The loss of uniqueness and continuity of the solution in Example 2 arises due
to the fact that the function f in this example is neither convex nor smooth.
Consider the class of weakly convex functions which includes both convex and
smooth functions.

Definition 2. Let A ⊂ H be a convex set. A function f : H → R is called
weakly convex with constant γ ≥ 0 on A if the function ϕ(x) = f(x) + γ

2 ‖x‖2 is
convex on A.

The properties of weakly convex sets and functions can be found in [2–6].
New applications of weakly and strongly convex sets in approximation theory
and differential games are described in [7–9].

Further we shall prove that the solution of the problem Pf,A is Lipschitz
continuous in some neighborhood of A under the following assumptions:

the set A ⊂ H is closed and weakly convex with radius R > 0;
the function f : H → R is weakly convex with constant γ ≥ 0
and Lipschitz continuous with constant L < 1 on conv A,

}
(3)

where conv A is the convex hull of A.
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3 Well-Posedness of the Problem and Continuity
of the Optimal Solution

The problem Pf,A is equivalent to

Minimize h(u, x) over x ∈ H

with
h(u, x) = f(x) + ψA(x) + ‖x − u‖, x ∈ H, u ∈ H. (4)

A sequence (xk) is called minimizing for Pf,A at u ∈ H if limk→∞ h(u, xk) =
Tf,A(u). According to [10] the problem Pf,A is called Tykhonov well-posed or
strongly attained at u ∈ H if it admits a unique solution xmin(u) ∈ H and every
minimizing sequence for Pf,A at u converges to xmin(u). The set of ε-solutions
for Pf,A at u ∈ H and ε ≥ 0 is

Sε(u) := {x ∈ H : h(u, x) ≤ Tf,A(u) + ε}.

Recall that the diameter of a set A ⊂ H is

diam A := sup
x,y∈A

‖x − y‖.

Note that the problem Pf,A is Tykhonov well-posed at u ∈ H if diam Sε(u) → 0
as ε → +0.

Lemma 1. Let A ⊂ H and f : H → R satisfy assumptions (3). Then for any
ε > 0, u ∈ H and x ∈ Sε(u) one has

‖x − u‖ ≤ (1 + L) dist(u,A) + ε

1 − L
.

Proof. Fix any a ∈ A. Since Tf,A(u) ≤ f(a)+‖a−u‖ it follows that f(x)+‖x−
u‖ ≤ f(a) + ‖a − u‖ + ε. Using Lipschitz continuity of f we have

‖x − u‖ ≤ ‖a − u‖ + ε + L‖x − a‖ ≤ (1 + L)‖a − u‖ + ε + L‖x − u‖.

Consequently,

(1 − L)‖x − u‖ ≤ (1 + L) inf
a∈A

‖a − u‖ + ε = (1 + L) dist(u,A) + ε.

Dividing by (1 − L) we obtain the desired inequality.

Theorem 1. Let A ⊂ H and f : H → R satisfy assumptions (3). Let

δ :=
(1 − L)2

γ + 1+L
R

. (5)

Then the problem Pf,A is Tykhonov well-posed at any u ∈ Uδ(A).
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Proof. Fix any u ∈ Uδ(A). As diam Sε(u) is a nondecreasing function of ε, there
exists the limit limε→+0 diam Sε(u) =: σ and

diam Sε(u) ≥ σ ∀ε > 0. (6)

If σ = 0, then Pf,A is Tykhonov well-posed at u. Assume the contrary: σ > 0.
If dist(u,A) = 0, then by Lemma 1 we have ‖x−u‖ ≤ ε

1−L for all x ∈ Sε(u).
This contradicts (6). So, we assume that dist(u,A) > 0.

Denote

d0 := dist(u,A), η :=
(1 − L)2

d0
− γ − 1 + L

R
, μ :=

1
2

min
{

σ2

4R2
,

ηR

1 + L
, 1

}
.

Since d0 < δ = (1−L)2

γ+ 1+L
R

we see that η > 0 and hence μ > 0. Fix some θ ∈ (L, 1)
sufficiently close to L, namely, such that

(1 − θ)2

d0
− γ − 1 + L

R
>

η

2
. (7)

Denote

κ :=
1 + θ

1 − θ
d0, ε := min

{
(θ − L)σ

2
, (1 − L)κ − (1 + L)d0,

R2μη

16

}
.

In view of θ ∈ (L, 1) we get 1+L
1−L < 1+θ

1−θ and hence ε > 0. According to (6) we
have diam Sε(u) ≥ σ > σ

2 . Consequently, there exist x0, x1 ∈ Sε(u) such that
‖x0 − x1‖ > σ

2 . Denote

λ :=
R2μ

‖x0 − x1‖2 , xλ := (1 − λ)x0 + λx1.

Since μ ≤ σ2

8R2 ≤ ‖x0−x1‖2

2R2 and μ ≤ 1
2 we obtain λ ≤ 1

2 and R2 − λ(1 − λ)‖x0 −
x1‖2 ≥ 0. By Proposition 2 one can find x̂λ ∈ A such that

‖xλ − x̂λ‖ ≤ R −
√

R2 − λ(1 − λ)‖x0 − x1‖2.
Denoting

t := (1 − λ)μ,

we obtain
‖xλ − x̂λ‖ ≤ R(1 − √

1 − t). (8)

Taking into account that 0 < t < μ ≤ 1
2 , we deduce

√
1 − t ≥ 1 − t

2
− t2

4
≥ 1 − t

2
− tμ

4
≥ 1 − t

2
− tηR

8(1 + L)

and by (8) we get

‖xλ − x̂λ‖ ≤ Rt

2

(
1 +

ηR

4(1 + L)

)
. (9)
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Since x0 ∈ Sε(u) it follows that h(u, x0) ≤ Tf,A(u) + ε ≤ h(u, x1) + ε and,
similarly, h(u, x1) ≤ h(u, x0) + ε. Therefore

|h(u, x0) − h(u, x1)| ≤ ε ≤ (θ − L)σ
2

≤ (θ − L)‖x0 − x1‖.

and hence by Lipschitz continuity of f
∣∣∣‖x0 − u‖ − ‖x1 − u‖

∣∣∣ ≤ |f(x0) − f(x1)| + (θ − L)‖x0 − x1‖ ≤ θ‖x0 − x1‖.

Denoting y0 = x0 − u, y1 = x1 − u, yλ = (1 − λ)y0 + λy1, we get
∣∣∣‖y0‖ − ‖y1‖

∣∣∣ ≤
θ‖y0 − y1‖ and hence

((1 − λ)‖y0‖ + λ‖y1‖)2 − ‖yλ‖2 = 2λ(1 − λ)
(
‖y0‖ · ‖y1‖ − 〈y0, y1〉

)

= λ(1 − λ)
(
‖y0 − y1‖2 − (‖y0‖ − ‖y1‖)2

)
≥ λ(1 − λ)(1 − θ2)‖y0 − y1‖2.

In view of x0 ∈ Sε(u) Lemma 1 implies that ‖y0‖ = ‖x0 − u‖ ≤ (1+L)d0+ε
1−L .

Since ε ≤ (1 − L)κ − (1 + L)d0 we have ‖x0 − u‖ ≤ κ and, similarly, ‖y1‖ ≤ κ.
Consequently, (1 − λ)‖y0‖ + λ‖y1‖ + ‖yλ‖ ≤ 2 and hence

2
(
(1 − λ)‖y0‖ + λ‖y1‖ − ‖yλ‖

)

≥
(
(1 − λ)‖y0‖ + λ‖y1‖ + ‖yλ‖

)
·
(
(1 − λ)‖y0‖ + λ‖y1‖ − ‖yλ‖

)

= ((1 − λ)‖y0‖ + λ‖y1‖)2 − ‖yλ‖2 ≥ λ(1 − λ)(1 − θ2)‖y0 − y1‖2.
It means that

(1 − λ)‖x0 − u‖ + λ‖x1 − u‖ − ‖xλ − u‖
≥ λ(1 − λ)

2κ
(1 − θ2)‖x0 − x1‖2 =

λ(1 − λ)
2d0

(1 − θ)2‖x0 − x1‖2. (10)

Since f is weakly convex with constant γ on conv A, it follows that

f(xλ) − (1 − λ)f(x0) − λf(x1)

≤ −γ

2
(‖xλ‖2 − (1 − λ)‖x0‖2 − λ‖x1‖2) =

γλ(1 − λ)
2

‖x0 − x1‖2. (11)

By Lipschitz continuity of f on conv A we have

|h(u, xλ) − h(u, x̂λ)| ≤ |f(xλ) − f(x̂λ)| + ‖xλ − x̂λ‖ ≤ (1 + L)‖xλ − x̂λ‖. (12)

Inequalities (9), (10)–(12) imply that

(1 − λ)h(u, x0) + λh(u, x1) − h(u, x̂λ)

≥ λ(1 − λ)‖x0 − x1‖2
2

(
(1 − θ)2

d0
− γ

)
− (1 + L)

Rt

2

(
1 +

ηR

4(1 + L)

)

=
R2t

2

(
(1 − θ)2

d0
− γ − 1 + L

R
− η

4

)
.
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Using (7) we obtain (1 − λ)h(u, x0) + λh(u, x1) − h(u, x̂λ) ≥ R2tη
8 . Since λ ≤ 1

2
we get t = (1 − λ)μ > μ

2 and hence

(1 − λ)h(u, x0) + λh(u, x1) − h(u, x̂λ) >
R2μη

16
≥ ε. (13)

On the other hand, by the definition of ε-solution we have max{h(u, x0),
h(u, x0)} ≤ h(u, x̂λ) + ε. So, (1 − λ)h(u, x0) + λh(u, x1) − h(u, x̂λ) ≤ ε. This
contradicts (13) and completes the proof.

Lemma 2. Let A ⊂ H and f : H → R satisfy assumptions (3). Then for any
u ∈ Uδ(A) there exists a unique solution xmin(u) of Pf,A and this solution is
continuous on Uδ(A), where δ is defined by (5).

Proof. According to Theorem 1 the problem Pf,A is Tykhonov well-posed at any
u ∈ Uδ(A). Consequently, for any u ∈ Uδ(A) the problem Pf,A admits a unique
solution xmin(u). Fix u0 ∈ Uδ(A) and any sequence of uk ∈ Uδ(A) such that
uk → u0. Let us denote xk = xmin(uk) for any k ∈ N ∪ {0}. To complete the
proof it suffices to show that xk → x0. It follows from (4) that

h(u, x) ≤ h(u′, x) + ‖u − u′‖ ∀u, u′, x ∈ H.

Consequently,

h(uk, xk) = min
x∈H

h(uk, x) ≤ min
x∈H

h(u0, x) + ‖uk − u0‖ = h(u0, x0) + ‖uk − u0‖,

h(u0, xk) ≤ h(uk, xk) + ‖uk − u0‖ ≤ h(u0, x0) + 2‖uk − u0‖ → h(u0, x0).

It means that (xk) is a minimizing sequence for Pf,A at u0. Since the problem
Pf,A is Tykhonov well-posed at u0 and x0 is the solution of the problem it follows
that xk → x0. This completes the proof.

Remark 1. If A ⊂ H is closed and weakly convex with radius R > 0 and f = 0,
then assumptions (3) are satisfied for γ = 0 and L = 0. In this case Lemma 2
implies that the solution xmin(u) of Pf,A is unique and continuous on Uδ(A) =
UR(A).

Proposition 1 implies exactness of the estimate (5) of the size of the neigh-
borhood of A in which xmin(·) is single-valued and continuous.

Further we shall prove that under the assumptions of Lemma 2 the solution
xmin(·) is Lipschitz continuous on Uδ(A). Lemma 2 will be essentially used in
the proof of this result.

4 Lipschitz Continuity of the Optimal Solution

Given a metric space T , a vector w ∈ H is called an increment direction of a
function x : T → H at a point t0 ∈ T if there exists a sequence (tk) convergent
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to t0 in the space T such that the increment x(tk)−x(t0) is nonzero for all k ∈ N

and

w = weak lim
k→∞

x(tk) − x(t0)
‖x(tk) − x(t0)‖

is the weak limit of normalized increment x(tk)−x(t0)
‖x(tk)−x(t0)‖ of the function x(·). Recall

that weak convergence w = weak lim
k→∞

wk means that 〈w−wk, y〉 → 0 for any y ∈ H.

In case dim H < ∞ the weak convergence coincides with the norm convergence. We
use V(x, t0) to denote the set of increment directions of x(·) at t0.

Lemma 3. Let A ⊂ H and f : H → R satisfy assumptions (3) and u0 ∈ Uδ(A),
where δ is defined by (5). Let x0 = xmin(u0), where xmin(u) is the solution of
Pf,A at u. Then

|〈x0 − u0, w〉| ≤ L‖x0 − u0‖ ∀w ∈ V(xmin, u0).

Proof. Let w ∈ V(xmin, u0). Then there exists a sequence uk → u0 such that
xk 	= x0 and w = weak lim

k→∞
xk−x0

‖xk−x0‖ for xk = xmin(uk). According to Lemma 2

the function xmin(·) is continuous at u0, consequently xk → x0.
Since h(uk, xk) ≤ h(uk, x0) and h(u0, x0) ≤ h(u0, xk) by Lipschitz continuity

of f(·) on A we get

max{‖uk − xk‖ − ‖uk − x0‖, ‖u0 − x0‖ − ‖u0 − xk‖} ≤ L‖xk − x0‖.

Hence, |〈x0 − u0, xk − x0〉| ≤ L‖xk − x0‖ · ‖x0 − u0‖ + o(‖xk − x0‖). Dividing by
‖xk − x0‖ and passing to the limit as k → ∞, we complete the proof.

Lemma 4. For any z0 ∈ H \ {0} one has

lim
(z,u,v)→(z0,0,0)

u	=0, v 	=0

1
‖u‖ · ‖v‖

(
‖z + u + v‖ − ‖z + u‖ − ‖z + v‖ + ‖z‖

+
〈z0, u〉 · 〈z0, v〉

‖z0‖3 − 〈u, v〉
‖z0‖

)
= 0

(14)
and

lim sup
(z,u,v)→(z0,0,0)

u	=0, v 	=0

∣∣∣‖z + u + v‖ − ‖z + u‖ − ‖z + v‖ + ‖z‖
∣∣∣

‖u‖ · ‖v‖ ≤ 1
‖z0‖ . (15)

Proof. Direct calculations of the first and the second derivatives of the function
f(z) = ‖z‖ for any z ∈ H \ {0} and any u, v ∈ H give

f ′(z) =
z

‖z‖ , f ′′(z)u =
u

‖z‖ − z〈u, z〉
‖z‖3 . (16)
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In view of the relations

f(z + u + v) − f(z + u) − f(z + v) + f(z)

=
∫ 1

0

〈f ′(z + u + tv) − f ′(z + tv), v〉 dt =
∫ 1

0

dτ

∫ 1

0

〈f ′′(z + τu + tv)u, v〉 dt

for any u, v ∈ H \ {0} and z ∈ H such that ‖u‖ + ‖v‖ + ‖z − z0‖ < ‖z0‖ we get

1
‖u‖ · ‖v‖

∣∣∣f(z + u + v) − f(z + u) − f(z + v) + f(z) − 〈f ′′(z0)u, v〉
∣∣∣

≤
∫ 1

0

dτ

∫ 1

0

‖f ′′(z + τu + tv) − f ′′(z0)‖ dt ≤ sup
t∈[0,1]
τ∈[0,1]

‖f ′′(z + τu + tv) − f ′′(z0)‖.

Since f ′′(·) is continuous at z0 	= 0, it follows that

lim
(z,u,v)→(z0,0,0)

u	=0, v 	=0

1
‖u‖ · ‖v‖

(
f(z+u+v)−f(z+u)−f(z+v)+f(z)−〈f ′′(z0)u, v〉

)
= 0.

This and (16) yield (14). The relation (15) follows directly from (14).

Given a metric space T , a function x : T → H is called Lipschitz continuous
at a point u0 with constant L if ‖x(u) − x(u0)‖ ≤ L‖u − u0‖ for all u in some
neighbourhood of u0.

Lemma 5. Let A ⊂ H and f : H → R satisfy assumptions (3) and u0 ∈
Uδ(A)\A, where δ is defined by (5). Then the solution xmin(·) of Pf,A is unique
and Lipschitz continuous at u0 with any constant

Lx >
1

1 − L2 − (
γ + 1+L

R

)
1+L
1−L dist(u0, A)

. (17)

Proof. Let Lx satisfy (17). Assume the contrary: there exists a sequence (uk)
such that uk → u0 and

‖xmin(uk) − xmin(u0)‖ > Lx‖uk − u0‖ ∀k ∈ N. (18)

Denote for all k ∈ N and λ ∈ (0, 1)

xk = xmin(uk), x0 = xmin(u0), xk(λ) = (1 − λ)xk + λx0.

According to Lemma 2 one has xk → x0. So, without loss of generality we can
assume that ‖xk −x0‖ < 2R for all k ∈ N. In view of Proposition 2 for any k ∈ N

and λ ∈ (0, 1) one can find x̂k(λ) ∈ A such that

‖x̂k(λ) − xk(λ)‖ ≤ R −
√

R2 − λ(1 − λ)‖xk − x0‖2. (19)

Since xk is the minimizer of h(uk, ·) and x0 is the minimizer of h(u0, ·) it follows
that

h(uk, xk) ≤ h(uk, x̂k(λ)), h(u0, x0) ≤ h(u0, x̂k(1 − λ)).



Lipschitz Continuity of the Optimal Solution 81

Hence,
h(uk, xk) + h(u0, x0) ≤ h(uk, x̂k(λ)) + h(u0, x̂k(1 − λ)).

Taking into account that xk, x0, x̂k(λ), x̂k(1 − λ) ∈ A, we obtain

f(xk) + ‖xk − uk‖ + f(x0) + ‖x0 − u0‖
≤ f(x̂k(λ)) + ‖x̂k(λ) − uk‖ + f(x̂k(1 − λ)) + ‖x̂k(1 − λ) − u0‖.

Using Lipschitz continuity of f , we get

‖xk − uk‖ + ‖x0 − u0‖ − ‖xk(λ) − uk‖ − ‖xk(1 − λ) − u0‖
≤ f(xk(λ)) + f(xk(1 − λ)) − f(xk) − f(x0)

+ (1 + L)
(
‖x̂k(λ) − xk(λ)‖ + ‖x̂k(1 − λ) − xk(1 − λ)‖

)
. (20)

In view of weak convexity of the function f we see that

λf(xk) + (1 − λ)f(x0) − f(λxk + (1 − λ)x0) ≥ −λ(1 − λ)γ
2

‖xk − x0‖2,

(1 − λ)f(xk) + λf(x0) − f((1 − λ)xk + λx0) ≥ −λ(1 − λ)γ
2

‖xk − x0‖2.
Adding together these inequalities we get

f(xk) + f(x0) − f(xk(λ)) − f(xk(1 − λ)) ≥ −λ(1 − λ)γ‖xk − x0‖2.
This and (19), (20) yield

‖xk − uk‖ + ‖x0 − u0‖ − ‖xk(λ) − uk‖ − ‖xk(1 − λ) − u0‖
≤ λ(1 − λ)γ‖xk − x0‖2

+ 2(1 + L)
(
R −

√
R2 − λ(1 − λ)‖xk − x0‖2

)
. (21)

By (14) we get

lim inf
k→∞

‖xk − uk‖ + ‖x0 − uk‖ − ‖xk(λ) − uk‖ − ‖xk(1 − λ) − uk‖
‖xk − x0‖2

≥ λ(1 − λ) lim inf
k→∞

‖xk − x0‖2 · ‖x0 − u0‖2 − 〈x0 − u0, xk − x0〉2
‖xk − x0‖2 · ‖x0 − u0‖3 . (22)

Lemma 3 and the Banach–Alaoglu theorem imply that

lim sup
k→∞

|〈x0 − u0, xk − x0〉|
‖x0 − u0‖ · ‖xk − x0‖ ≤ L.

This and (22) yield

lim inf
k→∞

‖xk − uk‖ + ‖x0 − uk‖ − ‖xk(λ) − uk‖ − ‖xk(1 − λ) − uk‖
‖xk − x0‖2

≥ λ(1 − λ)
1 − L2

‖x0 − u0‖ . (23)
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By (15) we have

lim inf
k→∞

‖x0 − u0‖ − ‖x0 − uk‖ + ‖xk(1 − λ) − uk‖ − ‖xk(1 − λ) − u0‖
‖xk − x0‖ · ‖uk − u0‖

≥ − λ

‖x0 − u0‖ .

In view of (18) it follows that

lim inf
k→∞

‖x0 − u0‖ − ‖x0 − uk‖ + ‖xk(1 − λ) − uk‖ − ‖xk(1 − λ) − u0‖
‖xk − x0‖2

≥ − λ

Lx ‖x0 − u0‖ .

This and (23) imply that

lim inf
k→∞

‖xk − uk‖ + ‖x0 − u0‖ − ‖xk(λ) − uk‖ − ‖xk(1 − λ) − u0‖
‖xk − x0‖2

≥ λ(1 − λ)
1 − L2

‖x0 − u0‖ − λ

Lx ‖x0 − u0‖ .

Using (21) we obtain

λ(1 − λ)
1 − L2

‖x0 − u0‖ − λ

Lx ‖x0 − u0‖

≤ λ(1 − λ)γ + 2(1 + L) lim inf
k→∞

R − √
R2 − λ(1 − λ)‖xk − x0‖2

‖xk − x0‖2

= λ(1 − λ)
(

γ +
1 + L

R

)
.

Dividing by λ and then passing to the limit as λ → +0, we have
(

1 − L2 − 1
Lx

)
1

‖x0 − u0‖ ≤ γ +
1 + L

R
.

It follows by Lemma 1 that ‖x0 − u0‖ ≤ 1+L
1−L dist(u0, A) and hence

(
1 − L2 − 1

Lx

)
1 − L

(1 + L) dist(u0, A)
≤ γ +

1 + L

R
.

This contradicts (17) and completes the proof.

Let us show that the assumption u0 	∈ A in Lemma 5 can be omitted.

Theorem 2. Let A ⊂ H and f : H → R satisfy assumptions (3), δ > 0 be
defined by (5). Then the solution xmin(·) of Pf,A is unique and Lipschitz contin-
uous at any u0 ∈ Uδ(A) with any constant Lx satisfying (17).
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Proof. If u0 	∈ A, the statement of the Theorem follows from Lemma 5. Let us
assume that u0 ∈ A. Then dist(u0, A) = 0 and by (17)

Lx >
1

1 − L2
.

Choose sufficiently small ε > 0 such that

Lx >
1

1 − L2 − (
γ + 1+L

R

)
1+L
1−L ε

. (24)

Let us fix any u1 ∈ Uε(u0). It suffices to show that

‖xmin(u1) − xmin(u0)‖ ≤ Lx‖u1 − u0‖. (25)

Denote ut := (1 − t)u0 + tu1 for any t ∈ [0, 1] and t̂ = max{t ∈ [0, 1] : ut ∈
A}. Maximum exists because of closedness of A. Since u0, ut̂ ∈ A it follows by
Lemma 1 that xmin(u0) = u0 and xmin(ut̂) = ut̂. So, if t̂ = 1, then (25) holds
true. Suppose that t̂ < 1. Fix any t ∈ (t̂, 1). Let us show that

‖xmin(u1) − xmin(ut)‖ ≤ Lx‖u1 − ut‖. (26)

Denote a0 = ut, b0 = u1. Given ak, bk ∈ [a0, b0], we denote ck = ak+bk

2 . If
‖xmin(ak)−xmin(ck)‖ ≥ ‖xmin(bk)−xmin(ck)‖, we define ak+1 = ak and bk+1 =
ck. Otherwise we define ak+1 = ck and bk+1 = bk. So, we construct a sequence
of nested segments [ak, bk]. For any k ∈ N ∪ {0} we have

‖xmin(ak) − xmin(bk)‖ ≤ ‖xmin(ak) − xmin(ck)‖ + ‖xmin(ck) − xmin(bk)‖
≤ 2‖xmin(ak+1) − xmin(bk+1)‖.

Consequently,

‖xmin(a0) − xmin(b0)‖ ≤ 2k‖xmin(ak) − xmin(bk)‖ ∀k ∈ N. (27)

According to Cantor’s intersection theorem there exists ĉ ∈ ⋂
k∈N

[ak, bk].
Observe that ĉ 	∈ A. Since ĉ ∈ Uε(u0) and by (24) we have

Lx >
1

1 − L2 − (
γ + 1+L

R

)
1+L
1−L dist(ĉ, A)

it follows from Lemma 5 that for sufficiently large k

‖xmin(ĉ ) − xmin(ak)‖ ≤ Lx‖ĉ − ak‖, ‖xmin(ĉ ) − xmin(bk)‖ ≤ Lx‖ĉ − bk‖.

Therefore,

‖xmin(ak) − xmin(bk)‖ ≤ Lx (‖ĉ − ak‖ + ‖ĉ − bk‖) = Lx‖ak − bk‖.

Using (27) we get for sufficiently large k

‖xmin(a0) − xmin(b0)‖ ≤ Lx2k‖ak − bk‖ = Lx‖a0 − b0‖.
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So, (26) is proved. Passing to the limit in (26) as t → t̂ + 0 by continuity of
xmin(·), we obtain ‖xmin(u1) − xmin(ut̂)‖ ≤ Lx‖u1 − ut̂‖. Since xmin(ut̂) = ut̂

and xmin(u0) = u0, we have ‖xmin(ut̂) − xmin(u0)‖ = ‖ut̂ − u0‖ ≤ Lx‖ut̂ − u0‖.
Consequently,

‖xmin(u1) − xmin(u0)‖ ≤ Lx(‖u1 − ut̂‖ + ‖ut̂ + u0‖) = Lx‖u1 − u0‖.

Thus, (25) is proved and the proof of the theorem is completed.

Example 3. Let H = R
2, R > 0, A = {(x1, x2) : x2

1 + x2
2 ≥ R2}, f = 0. Then

assumptions (3) are satisfied for L = 0, γ = 0. According to (5) we have δ = R.
So, Theorem 2 implies that xmin(·) is Lipschitz continuous at any u0 ∈ UR(A)
with any constant Lx > R

R−dist(u0,A) . One can easily see that xmin(u) = Ru
‖u‖

for any u ∈ UR(A). The exact Lipschitz constant for xmin(·) at u0 ∈ UR(A) is
Lexact

x = R
‖u0‖ = R

R−dist(u0,A) . So, the estimate of the Lipschitz constant given by
Theorem 2 is exact.

Remark 2. Suppose in addition to the assumptions of Theorem 2 that the set A
is convex. Then it is weakly convex with any radius R > 0. Passing to the limit
in (5) and (17) as R → +∞, we obtain that in the case of convex A the solution
xmin(·) of Pf,A is unique and Lipschitz continuous at any u0 ∈ Uδ(A) with any
constant

Lx >
1 − L

(1 + L)
(
(1 − L)2 − γ dist(u0, A)

) , δ =
(1 − L)2

γ
.

It has been obtained in [11, Theorem 5.2] that if A is convex and L ≤ 1
2 ,

then xmin(·) is unique and Lipschitz continuous at any u0 ∈ Uδ̃(A) with Lipschitz
constant L̃x = 16 and δ̃ = 1−L

2(1+L)γ . Since for any L ∈ [
0, 1

2

]

δ =
(1 − L)2

γ
>

1 − L

2(1 + L)γ
= δ̃,

1 − L

(1 + L)
(
(1 − L)2 − γ δ̃

) =
2

1 − 2L2
< 16

it follows that Theorem 2 improves the result of [11] even in the case of convex A.

5 Subdifferential Calculus and Lower Regularity
of the Optimal Value Function

Differential properties of the optimal value function are very important in both
theory and numerical methods. Since the optimal value function is nonsmooth in
general its differential properties should be described in terms of subdifferentials.
Various types of subdifferentials such as Fréchet, Clarke, limiting and proximal
subdifferentials possess different properties needed for applications, in particular,
in optimal conditions for optimization and optimal control problems. In regular
case when the limiting and the Fréchet subdifferentials coincide, they possess
the properties of each other. In this case the problem becomes much easier.
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Theorems 1 and 2 imply that the problem Pf,A enjoys good stability prop-
erties in some neighborhood Uδ(A) of the set A. In particular, this problem is
Lipschitz approximatively well-posed (in terms of [12]), complaint and docile (in
terms of [13]) for u ∈ Uδ(A). These stability properties of Pf,A allow one to con-
struct subdifferential calculus of the optimal value function Tf,A(·) using meth-
ods developed in [1,11–18]. To illustrate this we shall prove that the Fréchet sub-
differential and the Mordukhovich limiting subdifferential of the optimal value
function of the problem Pf,A coincide in some neighborhoods of A.

Recall that the Fréchet subdifferential ∂F f(x0) of a function f : H → R at a
point x0 ∈ H is the set of all ξ ∈ H such that for each ε > 0 there exists δ > 0:

〈ξ, x − x0〉 ≤ f(x) − f(x0) + ε‖x − x0‖ ∀x ∈ Uδ(x0).

The Mordukhovich limiting subdifferential ∂Lf(x) of a lower semicontinuous
function f : H → R is the set of all ξ ∈ H such that there exist sequences (xk)
and (ξk):

xk → x0, f(xk) → f(x0), ξk ∈ ∂F f(xk), ξ = weak lim
k→∞

ξk.

According to [18, Corollary 2.25] one has ∂Lf(x) 	= ∅ if f : H → R is locally
Lipschitz continuous around x ∈ H. This property is very important in applica-
tions of the limiting subdifferential.

A function f : H → R is called lower regular at a point x ∈ H whenever
∂Lf(x) = ∂F f(x).

Combining Theorem 2 and [19, Theorem 4.1] we obtain the following result.

Theorem 3. Let A ⊂ H and f : H → R satisfy assumptions (3) and δ be defined
by (5). Then the optimal value function Tf,A(·) (see (1)) is lower regular at any
u0 ∈ Uδ(A).

Theorem 3 implies that in Example 3 the optimal value function Tf,A(·) is
lower regular at any u0 ∈ Uδ(A) = R

2 \ {(0, 0)}. The direct calculations show
that Tf,A(u1, u2) = min{R−

√
u2
1 + u2

2, 0}. Really, it is not regular at (0, 0). This
example shows that the assumptions of Theorem 3 are essential.

It was shown in [19, Theorem 5.1] that if the set A is convex and L ≤ 1
2 ,

then the optimal value function Tf,A(·) is lower regular at any u0 ∈ Uδ̃(A) with
δ̃ = 1−L

2(1+L)γ . Since δ̃ < δ = (1−L)2

γ for any L ∈ [
0, 1

2

]
Theorem 3 improves the

result of [19].

6 Conclusion

Although we consider only Hilbert spaces, this approach can be applied to the
study of the well-posedness and Lipschitzianness of the solution of the Moreau-
type infimal convolution problem in Banach spaces.
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Abstract. This paper is devoted to an unexplored discrete optimization
problem, which can be interpreted as a problem of least mean squares
approximation of some observed discrete-time signal (a numerical time
series) by an unobservable quasiperiodic (almost periodic) pulse signal
generated by a pulse with a given pattern (reference) shape. Quasiperi-
odicity is understood, first, in the sense of admissible fluctuations of the
interval between repetitions of the reference pulse, and second, in the
sense of admissible nonlinear time expansions of its reference shape. Such
problems are common in biomedical applications related to monitoring
and analyzing electrocardiogram (ECG), photoplethysmogram (PPG),
and several other signals. In the optimization model, the number of
generated (admissible or approximating) quasiperiodic pulse sequences
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ble solutions set also grows exponentially. However, despite that expo-
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the repetition period. If Tmax is a part of the input, then the algorithm’s
running time is O(N4), i.e., the algorithm is polynomial. If Tmax is a
fixed parameter (that is typical for applications), then the running-time
of the algorithm is O(N), i.e., the algorithm is linear in time. Numerical
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1 Introduction

This work is devoted to studying an unexplored discrete optimization prob-
lem. The problem arises within an unconventional (alternative) approach to
the applied problem of computer processing and analyzing signals forming a
quasiperiodic pulse train. The applied problem is typical, in particular, for med-
ical diagnostics based on the analysis of quasiperiodic sequences of ECG or PPG
pulses. The main goal of the research is to construct an efficient algorithm with
theoretical guarantees of quality (accuracy and complexity), solving this discrete
optimization problem.

Traditional approaches to the problem of biomedical signal feature extrac-
tion consist in the sequential implementation of several stages: filtering out the
noise, detecting certain sections of the pulse, analyzing the identified sections
of the pulse, etc. Each of these steps is usually implemented via suitable well-
known signal processing techniques. The main principles being employed in those
algorithms are: using thresholds for the signal and its differentials, supervised
machine learning algorithms such as neural networks, hidden Markov models,
Bayesian approach, Fourier and wavelet transforms (e.g., see [1,2], and refer-
ences therein). Heuristic threshold methods are known to suffer from certain
inflexibility for significant variations of the shape of the pulse. While the clas-
sical correlation-spectral methods turn out to be ineffective for processing such
quasiperiodic signals, because of fluctuations of the pulses via nonlinear expan-
sions and contractions in time and because of fluctuations in the repetition period
of the pulses in the pulse train. Those fluctuations ultimately lead to problems
in interpreting the analyzed data [3].

We propose a novel approach to the problem of feature extraction, in which
all the stages of signal processing are combined into one optimization process.
The approach induces the corresponding discrete optimization problem. In the
induced problem, the size of the admissible solutions set grows exponentially
with the duration of the analyzed discrete-time signal, i.e., with the length N
of the input numerical sequence. Nevertheless, we constructively prove that the
problem is effectively solvable in polynomial time. In order to do it, we present a
justification for the exact polynomial algorithm and show that, for fixed param-
eters, the running time of the algorithm is O(N), i.e., the algorithm is linear.

Note that this approach in a simplified form has previously demonstrated
its effectiveness in solving similarly formulated applied problems of optimal pro-
cessing of varying (fluctuating in time) pulse signals distorted by noise [4–11]. In
an even more simplified form, this approach has been and is used at the NASA
Space Research Center. In particular, it made possible to detect hundreds of new
exoplanets from the highly noisy astrophysical data [12,13].

The paper has the following structure. In Sect. 2, we consider the data gen-
eration model (for quasiperiodic sequences) and formulate the applied problem
of data processing and analyzing as an approximation problem. In Sect. 3, the
induced discrete optimization problem is formulated. The main result is the
exact polynomial algorithm presented and justified in Sect. 4. Section 5 provides
several examples of numerical simulation.
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2 Data Generation and Approximation Models

Pulses of certain biomedical signals are widely presented and described in the
literature (e.g., see [3,14–17]) along with annotations of characteristic waves
(sections of the pulse) important for medical diagnostics. Typical pulse shapes
and characteristic waves were identified by experts in medicine over the years of
research. The typical shapes of the pulses and their wave markups are considered
as references (patterns). It is well known that deviations of the shapes of observed
pulses from typical (or reference) shapes allow diagnosing certain diseases.

On Fig. 1, the examples of the reference shapes are shown for: (a) ECG pulse
and (b) PPG pulse. On the figure, characteristic waves are highlighted in color.

Fig. 1. Pulses having the given pattern shapes. (a): ECG-pulse, (b): PPG-pulse

In the sequel, we will assume that the elements of the input sequence are
discrete-time samples of a continuous signal. Let us construct a model of gener-
ation of a quasiperiodic pulse train by some reference pulse.

The reference pulse will be given by the sequence U = (u1, . . . , uq), where
ut ∈ R, t = 1, . . . , q.

Consider the following model of admissible nonlinear time expansions of the
reference pulse, i.e., of the sequence U . Denote by the natural number kt, t =
1, . . . , q, the multiplicity for repetition of the t-th element of U in the expanded
sequence

(u1, . . . , u1
︸ ︷︷ ︸

k1

, u2, . . . , u2
︸ ︷︷ ︸

k2

, . . . , uq, . . . , uq
︸ ︷︷ ︸

kq

). (1)

The sequence (1) can be treated as the reference pulse expanded in time.
Put

hi =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

u1 if i = 1, . . . , k1,
u2 if i = k1 + 1, . . . , k1 + k2,
. . .
uq if i = k1 + . . . + kq−1 + 1, . . . , k1 + . . . + kq,
0 if i < 1 or i > p,

(2)
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where kt, t = 1, . . . , q, is the multiplicity of the element ut in the expanded
sequence, and

p = k1 + . . . + kq (3)

is the length of the expanded sequence.
We will assume that

p ≤ �, (4)

where � is some fixed natural number which determines the upper bound for the
length of an expanded reference sequence of length q. The formulas (1), (3), (4)
define the set of admissible expanded sequences generated by the sequence U .

According to (2), the mapping j(i) : {1, . . . , p} −→ {1, . . . , q} of the form

j(1) = 1, j(p) = q,
0 ≤ j(i + 1) − j(i) ≤ 1, i = 1, . . . , p − 1,

(5)

defines the set of admissible mappings between the serial numbers of elements
in the reference and expanded sequences. Besides, the following relation is valid
for the multiplicity kt of the element ut in the expanded sequence:

kt =
∣

∣

∣

{

i | j(i) = t, i ∈ {1, . . . , p}
}∣

∣

∣, t = 1, . . . , q,

while the image of the set {1, . . . , p} under the mapping j(i) can be represented as

1, . . . , 1
︸ ︷︷ ︸

k1

, 2, . . . , 2
︸ ︷︷ ︸

k2

, . . . , q, . . . , q
︸ ︷︷ ︸

kq

.

Let us now construct the model for admissible fluctuations of the pulse rep-
etition period. The top row of Fig. 2 depicts an example of a quasiperiodic
sequence X = (x1, . . . , xN ) of ECG pulses, generated by the reference pulse
U (Fig. 1a). In this example, each repetition of the reference pulse is conducted
by a random temporal fluctuation from the set of admissible expansions (as can
be seen on the colored characteristic waves). Put N = {1, . . . , N}. Denote by
Ms = {ns

1, n
s
2, . . .} ⊂ N and Me = {ne

1, n
e
2, . . .} ⊂ N the collections of numbers

Fig. 2. ECG pulse trains
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of elements of X corresponding to the starts and ends of the expanded pulses,
respectively. Denote by P = {p1, p2, . . .} the set of durations of the expanded
pulses. We will assume that the size of the collections Ms, Me, and P equals
some unknown natural number M which stands for the number of repetitions
of the reference sequence U in the generated sequence X. Evidently, we have
M ≤ Mmax ≤ N , where Mmax is the maximal possible number of repetitions.
Put M = {1, . . . , M}. The above construction implies that

ne
m−1 < ns

m for m = 2, . . . , M, (6)

ne
m − ns

m + 1 = pm for m ∈ M, (7)

and
q ≤ pm ≤ � for m ∈ M, (8)

where m ∈ M is the serial number of the expanded sequence. Hereinafter we
will assume that

q ≤ ns
m − ns

m−1 ≤ Tmax for m = 2, . . . , M, (9)

and
� = �αTmax�, (10)

where Tmax is some natural number which together with q determines the upper
and lower bounds on the admissible fluctuations of the time interval between
two consecutive repetitions of the pulse, and α ∈ (0, 1] is some real number.
The segment of the sequence X, that contains the m-th expanded sequence with
the elements’ serial numbers from n = ns

m to n = ne
m, can be schematically

represented in the following form (the bottom line contains the serial numbers
of the elements in the sequence X):

. . . , 0,

k
(m)
1

︷ ︸︸ ︷

u1, . . . , u1, . . . u1,

k
(m)
2

︷ ︸︸ ︷

u2, . . . , u2, . . . , u2, . . . ,

k(m)
q

︷ ︸︸ ︷

uq, . . . , uq, 0, . . . , 0, u1 . . . . . .
. . . , ns

m, . . . . . . . . . . . . , . . . . . . . . . . . . . . . , . . . , . . . . . . , ne
m, . . . , ns

m+1 . . .

The above conditions and notations allow us to represent the n-th element
of the sequence X as

xn =
∑

m∈M
h
(m)
n−ns

m+1, n ∈ N , (11)

where ns
m ∈ Ms.

From (2) it is easy to see that the right-hand side of (11) is the sum of
M expanded reference sequences that are shifted in time from the initial serial
number n = 1 and do not overlap in discrete time. Relation (11) describes a
sequence of discrete-time samples of a quasiperiodic sequence of pulses.

The constructed model for quasiperiodic repetition of pulses is suitable for
many biomedical signals, in particular, for ECG and PPG signals. This model
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Fig. 3. PPG pulse train

reflects, first, real-life fluctuations of the pulse repetition period and, second,
nonlinear temporal fluctuations of the ideal (pattern) pulse (e.g., see [3,14–17]).

In the top row of Fig. 3, an example of a quasiperiodic sequence generated by
an ideal PPG-pulse (Fig. 1b) is shown. As can be seen from the above model, the
reference sequence U of length q generates the set X of all admissible quasiperi-
odic sequences of length N .

We will assume that we observe a sequence Y = (y1, . . . , yN ) which is the
element-wise sum of an unobservable sequence X ∈ X and some sequence reflect-
ing possible noise distortions. The examples of sequences Y are depicted in the
bottom rows of Figs. 2 and 3.

Since the sequences Y and X can be considered as vectors in an N -
dimensional space, we can state the approximation problem in the form

‖Y − X‖2 −→ min
X∈X

. (12)

It is easy to see that the upper bound

|X | ≤ (N − q + 1)
Mmax
∑

M=1

q(Tmax−q)M (Tmax − q + 1)2M−1

≤ q(Tmax−q)Mmax(N − q + 1)(Tmax − q + 1)2Mmax−1

is valid for the size of the set X . Evidently, except the trivial case when Tmax = q,
we have

|X | ≥ 2
N−q+1
q+1 �.

It means that if q is fixed (which is common in applications) then we have
an exponentially sized set X of admissible solutions. It is clear that brute-force
searching through this set is hardly possible in reasonable time. Below we propose
an algorithm which finds an optimal solution to the approximation problem (12)
in polynomial time. Moreover, if Tmax is fixed then the running time of the
algorithm is O(N), i.e., the algorithm finds a solution in linear time.
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3 Optimization Problem

Put
J (m) = {j(m)(i), i = 1, . . . , pm}, m ∈ M,

where j(m)(i) satisfies relation (5) for every m ∈ M. Define the collection of
mappings

J = {J (m),m ∈ M}.
Besides, in accordance with (2), put

h
(m)
i =

{

uj(m)(i) if i = 1, . . . , pm,
0 if i < 1 or i > pm,

(13)

where m ∈ M.
Expanding the square of the norm in (12) and taking into account (11), (13),

and constraints (6), (7), (8), (9), and (10), we obtain by simple calculations that

‖Y − X‖2 =
∑

n∈N
y2

n +
∑

m∈M

pm
∑

i=1

{u2
j(m)(i) − 2yns

m+i−1uj(m)(i)}.

Here the first term on the right-hand side is constant and, hence, problem (12)
stated above is equivalent to the following problem.

Problem 1. Given: numerical sequences Y = (y1, . . . , yN ) and U = (u1, . . . , uq),
a natural number Tmax ≤ N , and a real number α ∈ (0, 1]. Find: collections
Ms = {ns

1, n
s
2, . . . ns

m, . . .} ⊂ N = {1, . . . , N} and P = {p1, p2, . . . , pm, . . .} of
natural numbers, a collection J = {J (1), J (2), . . . , J (m), . . .} of mappings, and
the size M of these collections, such that

F (Ms,P,J ) =
∑

m∈M

pm
∑

i=1

fj(m)(i)(n
s
m + i − 1) −→ min,

where
ft(n) = u2

t − 2ynut, t = 1, . . . , q, n ∈ N , (14)

under the constraints

j(m)(1) = 1, j(m)(pm) = q,
0 ≤ j(m)(i + 1) − j(m)(i) ≤ 1,

i = 1, . . . , pm − 1, m = 1, . . . , M,

and
q ≤ pm ≤ �αTmax�, m = 1, . . . ,M,

pm−1 ≤ ns
m − ns

m−1 ≤ Tmax, m = 2, . . . ,M,

pM ≤ N − ns
M + 1.
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4 Algorithm

In order to construct an algorithm solving Problem 1, we need to consider the
following two auxiliary problems.

The first auxiliary problem is

Problem 2. Given: an array {wi,j , i = 1, . . . , p, j = 1, . . . , q} of real numbers.
Find: summing indices j(i) such that

W =
p

∑

i=1

wi,j(i) −→ min,

under the constraints

j(1) = 1, j(p) = q,
0 ≤ j(i + 1) − j(i) ≤ 1, i = 1, . . . , p − 1.

The following lemma provides recurrent formulas to solve Problem 2.

Lemma 1. Let the conditions of Problem 2 hold. Then the optimal value W ∗

of the objective function of this problem is given by the formula

W ∗ = Wp,q (15)

and the values of Wp,q are calculated with the recurrence formulas

Ws,t = min{Ws−1,t,Ws−1,t−1} + ws,t, s = 1, . . . , p, t = 1, . . . , q, (16)

with the following initial and boundary conditions

Ws,t =

⎧

⎨

⎩

0, s = 0, t = 0,
+∞, s = 0, t = 1, . . . , q,
+∞, s = 1, . . . , p, t = 0.

(17)

The optimal values of the summing indices are determined by the rule

j∗(p) = q;

j∗(i − 1) =
{

j∗(i), if Wi−1,j∗(i) ≤ Wi−1,j∗(i)−1,
j∗(i) − 1, if Wi−1,j∗(i) > Wi−1,j∗(i)−1,

i = p, p − 1, . . . , 2.

(18)

The second auxiliary problem is

Problem 3. Given: an array {gp(n), p = q, . . . , �, n = 1, . . . , N − p + 1}
of real numbers and a natural number Tmax ≥ �. Find: a collection
{(n1, p1), . . . , (nM , pM )}, where nm ∈ {1, . . . , N − q − 1}, pm ∈ {q, . . . , �},
m = 1, . . . ,M , and the size M of this collection such that

G((n1, p1), . . . , (nM , pM )) =
M
∑

m=1

gpm
(nm) −→ min,
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under the constraints

pm−1 ≤ nm − nm−1 ≤ Tmax, m = 2, . . . ,M,

pM ≤ N − nM + 1.

The following lemma and corollary provide recurrent formulas to solve
Problem 3.

Lemma 2. Let the conditions of Problem 3 hold. Then the optimal value G∗

of the objective function of that problem is given by the formula

G∗ = min
p∈{q,...,�}

min
n∈{1,...,N−p+1}

Gp(n), (19)

and the values of Gp(n) are calculated with the recurrence formulas

Gp(n) =

⎧

⎪
⎨

⎪
⎩

gp(n), p = q, . . . , �, n = 1, . . . , q,

min
{

0, min
i∈{q,...,min{n−1,�}}

min
j∈γi(n)

Gi(j)
}

+ gp(n),

p = q, . . . , �, n = q + 1, . . . , N − p + 1,

(20)

where

γi(n) =
{

k
∣

∣

∣ max{n−Tmax, 1} ≤ k ≤ n−i
}

, n = i+1, . . . , N, i = q, . . . , �.

(21)

In order to find the components of the optimal tuple in Problem 3, define
the two functions:

π(n) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if n = 1, . . . , q,
0, if min

i∈{q,...,min{n−1,�}}
min

j∈γi(n)
Gi(j) ≥ 0, n = q + 1, . . . , N − q + 1,

arg min
i∈{q,...,min{n−1,�}}

{

min
j∈γi(n)

Gi(j)

}

, if

min
i∈{q,...,min{n−1,�}}

min
j∈γs(n)

Gi(s) < 0, n = q + 1, . . . , N − q + 1,

(22)
and

I(n) =

{−1, if π(n) = 0,
arg min

j∈γπ(n)(n)
Gπ(n)(j), if π(n) > 0, n = 1, . . . , N − q + 1. (23)

Corollary 1. Let the conditions of Lemma 2 hold. Additionally, assume that

π1 = arg min
p∈{q,...,�}

{

min
n∈{1,...,N−p+1}

Gp(n)
}

, (24)

ν1 = arg min
n∈{1,...,N−π1+1}

Gπ1(n), (25)

πm = π(νm−1), νm = I(νm−1), m = 2, . . . , M, (26)
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where M is the minimal value of m, such that π(νm) = 0. Then the tuple

ϕ = {(νM , πM ), . . . , (ν1, π1)}

is the optimal solution to Problem 3.

In this way, we introduce the following algorithm.
Algorithm A.
INPUT: sequences Y = (y1, . . . , yN ) and U = (u1, . . . , uq), a natural number

Tmax, and a real number α.
Forward pass.
Step 1 (solving the family of Problems 2). Put � = �αTmax�.
For each n = 1, . . . , N − q + 1, do:
For each p = q, . . . ,min{�,N − n + 1} do (solving Problem 2):
(1) Put

wi,j = fj(n + i − 1), i = 1, . . . , p, j = 1, . . . , q,

where fj(n + i − 1), j = 1, . . . , q, i = 1, . . . , p, is calculated by (14).
(2) Compute Ws,t for all s = 1, . . . , p and t = 1, . . . , q using formulas (15),

(16), and (17). Find a sequence j(1), . . . , j(p) of indices according to (18).
(3) Put W (n, p) = Wp,q, J(n, p) = {j(i), i = 1, . . . , p}.
Step 2. Put gp(n) = W (n, p) for all p = q, . . . , � and n = 1, . . . , N − p + 1.
Step 3. Compute Gp(n) for all p = q, . . . , � and n = 1, . . . , N − p + 1 using

formulas (20) and (21), and compute G∗ using formula (19). Put FA = G∗.
Backward pass.
Step 4. Compute π(n) and I(n), n = 1, . . . , N − q + 1, using formulas (22)

and (23).
Step 5. Find the components of the auxiliary collections (π1, π2, . . .) and

(ν1, ν2, . . .) and their size M by the formulas (24), (25), and (26).
Step 6. Put MA = M , MA = {νMA

, . . . , ν1}, PA = {πMA
, . . . , π1}, J (m) =

J(νMA−m+1, πMA−m+1), m = 1, . . . ,MA, and JA = {J (1), . . . , J (MA)}.
OUTPUT: the natural number MA, the collections MA, PA, JA, and the

value FA.
The main result of the research is the following theorem.

Theorem 1. Algorithm A finds an exact solution to Problem 1 in time
O(T 3

maxN).

The proof of the theorem is based on the following chain of equalities:

F ∗ (1)
= min

Ms,P,J

M
∑

m=1

pm
∑

i=1

fj(m)(i)(nm + i − 1)

(2)
= min

Ms,P
min

J(1),...,J(M)

M
∑

m=1

pm
∑

i=1

fj(m)(i)(nm + i − 1)
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(3)
= min

Ms,P

M
∑

m=1

{

min
J(m)

pm
∑

i=1

fj(m)(i)(nm + i − 1)
}

(4)
= min

Ms,P

M
∑

m=1

{

min
J

pm
∑

i=1

fj(i)(nm + i − 1)
}

(5)
= min

Ms,P

M
∑

m=1

W (nm, pm)
(6)
= FA.

In this chain, equality (1) is a definition of optimal solution to Problem 1. Equal-
ities (2) and (3) are valid due to the structure of the collection J and because
each element of the inner sum in the left-hand side of (3) depends solely on
J (m) for each m = 1, . . . , M . Equality (4) is just the change of variables. For
each m = 1, . . . ,M , the expression in the brackets in the left-hand side of (5)
is the optimal value of the objective function in Problem 2 with the input data
described in Step 1. Thus, equality (5) is valid by Lemma 1. Equality (6) corre-
sponds to Step 2 of Algorithm A and follows from Lemma 2.

We have proved that exact solutions to Problems 2 and 3 can be found in time
O(pq) and O(T 3

maxN), respectively. Summing up, using the step-by-step represen-
tation of Algorithm A and taking into account that q ≤ p ≤ � ≤ Tmax ≤ N , we
prove the polynomial time complexity of the algorithm.

Remark 1. If Tmax is a part of input data, then the running time of the algorithm
is O(N4), since Tmax ≤ N ; thus, Algorithm A is polynomial-time.

Remark 2. If Tmax is a fixed parameter then the running time of the algorithm
is O(N).

5 Examples of Numerical Experiments

The figures below show examples of processing modeled (i.e., generated) signals.
In the top rows of the figures, a reference sequence (pulse) U (input) and a mod-
eled sequence (pulse train) are depicted. In those pulse trains, the repetitions of
the reference sequence are conducted by random expansions, as well as fluctu-
ations in the frequency of repetitions. The middle rows of the figures show the
sequences Y (input) which are the element-wise sums of the modeled sequences
and sequences of independent identically distributed Gaussian random variables
(white noise). The bottom rows of the figures show the results for the algorithm,
i.e., the recovered sequences X that are found by the algorithm. Those sequences
are uniquely defined by the computed collections (the algorithm output) and the
reference sequence.

Figure 4 shows the result of noise-robust processing of a modeled ECG signal.
The example is computed for q = 200, Tmax = 500, α = 1, N = 3000, the
maximum amplitude pulse value is 120, and the noise level σ = 35.

Fig. 5 shows the result of noise-robust processing of a modeled PPG signal.
The example is computed for q = 120, Tmax = 300, α = 1, N = 1000, the
maximum amplitude pulse value is 120, and the noise level σ = 40.

The numerical simulation examples show that, despite significant noise inter-
ference, the proposed algorithm perfectly finds and marks both the pulses and
the characteristic waves of the pulses.
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Fig. 4. Example of processing an ECG pulse train

Fig. 5. Example 2 of processing a PPG pulse train

6 Conclusion

We have constructed the exact polynomial-time algorithm solving the discrete
optimization problem that models the actual applied problem of noise-robust
computer processing and analyzing quasiperiodic biomedical signals. For the
algorithm, we employ the novel approach. The approach relies heavily on discrete
optimization methods. It does not involve a breakdown of the problem into
separate components (noise filtering, pulse detection, searching characteristic
waves, etc.). On the contrary, within the framework of the proposed approach,
all the problems are solved jointly (simultaneously) in a single process of finding



100 A. Kel’manov et al.

an optimal solution. The examples demonstrate the robustness of the proposed
approach. Thus, we have shown that the practice-induced optimization problem
is exactly solvable in polynomial time and that, within the framework of the novel
approach, some difficult practical problems caused by quasiperiodic fluctuations
of pulsed signals are easily solvable.

In subsequent works, we are going to develop this approach to solve some
applied problems of medical diagnostics.
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Abstract. This paper considers pricing equity-linked notes (ELN) port-
folio and related portfolio optimization. ELNs are the derivative instru-
ments which can be viewed as bonds with floating coupons. The floating
coupon is represented in terms of an embedded option that depends on
the behavior of a certain underlying asset or a basket of them. We pro-
vide the new optimization problem by hyperbolic absolute risk aversion
(HARA) utility function approach. We obtain the solution of this prob-
lem in terms of a dynamic programming equation.

Keywords: Equity-linked note · Risk utility function · Admissible
strategy · Dynamic programming equation · Hamilton-Jacobi-Bellman
equations

1 Introduction

The use of exotic investment instruments became financial institutions’ practice.
The corresponding mathematical models were considered for example, in the
papers [1–6]. This paper is addressed to the issue of pricing equity-linked notes
(ELN) and the optimization of the corresponding portfolio. Notice that when
ELN is traded at an exchange, it is known as ETN. ELN is a financial debt
instrument designed as unsecured bond with fixed and float coupon parts. The
last one depends on the behavior of the underlying asset and represents an
embedded option. ELNs have a wide variety of intrinsic options because they
are actively-traded and well-customized instruments with a long history. First
ELNs appeared in the 1980s in U.S. and spread over the European market in the
period of low interest rates [7]. Today ELN are becoming popular in developing
countries: for instance, in the Russian market due to the same interest rate
recession. The most actively traded ELN is iPath S&P 500 Volatility Index (VIX)
Short-Term Futures ELN (VXX) issued by Barclays. VXX routinely trades $1
billion worth of shares per day or more [8]. ELNs are often developed for high-
net-worth investors who use it for special purposes, so payos can be quite exotic
to reflect different investment goals. Financial classification of ELNs intends to
distinguish them by goals of investing. We briefly provide this one to introduce
ELNs variety.
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Fig. 1. Financial ELNs classification

ELNs are represented by two main classes – principle protected and non-
principle protected notes (see Fig. 1) Capital protected notes return nominal value
and fixed coupon together with floating coupon in case of the positive performance
of underlying. Partially protected note returns slightly less than the nominal value,
as a rule, 95% of it, and also floating coupon under favorable circumstances. Both
types ofELNs carry low risk andhave a simple payout structure.Autocallable notes
are notes with an early redemption option. If the reference underlying asset is at or
above the predetermined barrier on a fixed observation date, the note terminates
and pays out the notional of the note multiplied by the yield of the underlying
asset. Note that payoff may be less than nominal. Reverse convertibles comprise
issuer’s put option: if the price of the underlying asset dips below a predetermined
price, the issuer returns nominal multiplied by the yield of the underlying asset.
Dual directional notes contain two underlying assets. At the time of expiration,
the issuer has the right to choose the yield of “worst” underlying performance and
return nominal multiplied chosen yield. Barrier reverse convertibles have the same
downside exposure as mentioned earlier in case of the underlying asset breaks down
a predefined level.

Rational management of ELNs portfolio has become an actual issue as a
result of accelerated structured market development. This boom spread on the
retail sector and entailed some regulator reaction as PRIIPs (packaged retail
investment and insurance products) document establishment. In 2018 Finan-
cial vehicle corporation (FVC) noticed: “For those investors seeking equity-like
returns at controlled risk it is clear that over this time period structured products
actually outpaced the equity market and clearly outperformed one of the most
well-known funds in the recently popular absolute return fund sector.” Due to
an inappropriate evaluation of the portfolio of auto-callable notes, Natixis made
the loss of $296 million in December 2018. Summarize it becomes obvious that
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precious pricing and careful management of ELNs portfolio are critical issues in
current financial markets environment.

The paper is organized as follows. In Sect. 2 we obtain ELNs pricing model
which comprises ELNs special features such as issuer’s default probability and
the correlation between underlying equity and rate. It also includes the stochastic
behavior of interest rate which makes sense as ELN’s are usually long-term. As
we know these features were not integrated in models in previous works related
to ELNs pricing. In Sect. 3 we provide the new portfolio optimization problem
which is considered in two ways: though HARA utility function and Markowitz
approaches. In Sect. 4 we obtain programming dynamic equation according to
the optimization problem. Section 5 is devoted to conclusions.

2 Pricing Model

As noted earlier ELNs could be represented as a bond with an embedded option.
In most studies, the fair values of these parts are evaluated separately. To deter-
mine the final price, the resulting estimates are summarized.

A standard approach of pricing is described in [1]. The paper considers the
most common type of ELN - with an embedded European call option. A zero-
coupon bond is estimated by discounting the nominal value along the risk-free
Swedish Treasury rate curve. An embedded option is priced using the Black-
Scholes model. This approach includes many drawbacks. For example, it does not
take into account such features as the probability of default of the counterparty,
the stochastic nature of interest rates, the possible correlation between rates
and the underlying asset of the embedded option, the issuer’s commission. In
addition, the Black-Scholes model itself has significant lack, which leads to errors
in determining the value of options. The assumption that stock returns have a
normal distribution is contrary to empirical research: the distribution of returns
is skewed and has heavy tails. Especially strong discrepancies between theoretical
and real prices are observed for options with long-term maturities.

In [2] an approach for modeling the counterparty default risk and taken into
account the stochastic behavior of interest rates is proposed. The authors used
the classical Merton model in which the risk of default is represented as the
American put option acquired by the issuer on its own assets. To describe the
movement of interest rates, the authors use the model of Cox-Ingersoll-Ross.
In [3] the authors used the Vasichek stochastic interest rates model and took
into account the correlation between rates and the underlying asset. Analytical
formula for a fair price of ETN is derived for this model. Scenario analysis is a
non-standard approach for ELNs fair price estimation is represented in [4]. The
approach of modelling stochastic credit spread which is added to the discount
rate is developed in [9].

Further, we provide the pricing model which combines different models
described above to catch up the features inherent ELNs such as a counterparty
risk of default and a potential correlation between the interest rate and under-
lying asset. We start with the process for the underlying asset for which the
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Black-Scholes model can be applied. Thus the underlying asset follows the dif-
fusion process:

dS = μSdt + σSdW1, (1)

where μ is the drift, σ is the volatility of the underlying and dW1 is a random
walk. Let the continuously variable spot interest rate r(t), is described by the
Vasicek model:

dr = (a − br)dt + cdW2, (2)

where a is the speed of the reversion to the mean, b is the long-term level of the
mean, c is the rate volatility and dW2 is a random walk. Assume that the corre-
lation between interest rate and underlying exist and equal ρ =< dW1, dW2 >.
We also assume that embedded option in ELN C is a function of underlying
value, level of spot interest rate and time. If we denote the time at which the
note matures by T , the valuation moment by t and the time to maturity by
τ = T − t, than with [5] we arrive at the PDE:

∂C

∂t
=

1
2
σ2S2 ∂2C

∂S2
+ρσcS

∂2C

∂S∂r
+

1
2
c2

∂2C

∂r2
+(r−D0)S

∂C

∂S
+(a−br)

∂C

∂r
−rC (3)

The solution was given in [10] by Greens function:

C(S, r, τ) =

∞∫

−∞

∞∫

0

G(S, S̃, r, r̃, τ)C0(S̃, r̃)dS̃dr̃, (4)

where D0 is a constant dividend yield and C0(S, r) is conditional deterministic
final ELN’s embedded option payoff at maturity (means that it is certain in con-
ditions that S and r are equal S̃ and r̃ respectively at maturity). The expression
for G can be found in [8]. In this approach counterparty probability of default
is not taken into account. Let us consider the other approach.

Now let us assume that the intensity λt of the Poisson process governing the
default specified by the following mean reverting square-root diffusion process:

dλ = (α − βλ)dt + ν
√

λdW3, (5)

where α and β have the same meaning as in (2) and ν is the volatility multi-
plier. Due to earlier designation, we denote C0(S, r) as the final ELN’s payoff at
maturity and now is not deterministic but stochastic. Let denote the loss given
default rate as R. In the event of default ELN’s holder receives just a part of the
principal (recovery rate multiplied by principal) and nothing more. In the case of
counterparty’s survival, the holder receives the principle plus embedded option
payoff at maturity. The value of ELN P (S, r, t), adjusted by the probability of
default, can be expressed as:

P (S, r, t) = Et[C0(S, r)]e
−

t+τ∫

t

ru+λudu
+ (1 − R)N

t+τ∫

t

λue
−

v∫

t

rv+λvdv
du. (6)
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The first term refers to the event that counterparty would not default until
maturity and the second term - to the case of default. Let us assume that the
stochastic processes for the spot interest rate and intensity of default are inde-
pendent. Then (6) could be rewritten as:

P (S, r, t) = C(S, r, t)e
−

t+τ∫

t

λudu
+ (1 − R)N

t+τ∫

t

λue
−

v∫

t

rv+λvdv
du, (7)

as the value of the embedded option C(S, r, τ) is equal to the discounted expected
value of the final payoff. In [11] it is shown that Eq. (7) can be written as

P (S, r, t) = C(S, r, t)A(t + τ)eB(t+τ)+

+(1 − R)N

t+τ∫

t

eB(u)λZ(u)(G(u) + H(u)λ)du, (8)

where λ is the current intensity (at time t) and

A(t, u) = e
α(β+φ)

σ2 (u−t)

(
1 − κ

1 − κeφ(u−t)

) 2α
σ2

,

B(t, u) =
β − φ

σ2
+

2φ

σ2(1 − κeφ(u−t))
,

Z(t, u) = Et

[
e

−
u∫

t

rvdv
]
,

G(t, u) =
α

φ

(
eφ(u−t) − 1

)
A(u)

(
1 − κ

1 − κeφ(u−t)

)
, (9)

H(t, u) = e
α(β+φσ2)

σ2 (u−t)

(
1 − κ

1 − κeφ(u−t)

) 2α
σ2 +2

,

φ =
√

2σ2 + β2,

κ =
β + φ

β − φ
.

Let us combine two models given above. So our combined model comprise this
system of the processes:

⎧⎪⎨
⎪⎩

dS = μSdt + σSdW1,

dr = (a − br)dt + cdW2,

dλ = (α − βλ)dt + ν
√

λdW3,

(10)

where ρ =< dW1, dW2 > and the processes in the pairs (W1,W3) and (W2,W3)
are independent.

To derive the closed-form solution we can substitute the expression for

C(S, r, τ) given in (4) into (8). Also we could calculate Z(u) = Et

[
e

−
u∫

t

rvdv
]
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using the form of interest rate equation (Vasichek model). Note that Z(u) is a
price of zero-coupon bond for which analytic expression exists under Vasichek
model [12] and equals to:

Z(t, u) = Et

[
e

−
u∫

t

rvdv
]

= P (t, u)e−r(t)R(t,u), (11)

where

P (t, u) =
(1 − e−b(u−t))

b
,

R(t, u) = e

(
a
b − c2

2b2

)
(P (t,u)−u+t)− c2

4b P 2(t,u)

. (12)

Thus substituting these expression to (8) we obtain closed form-solution for
the ELNs fair value:

P (S, r, t) = A(t + τ)eB(t+τ) ·
∞∫

−∞

∞∫

0

G(S, S̃, r, r̃, τ)C0(S̃, r̃)dS̃dr̃+

+ (1 − R)N

t+τ∫

t

eB(u)λP (t, u)e−r(t)R(t,u)(G(u) + H(u)λ)du. (13)

The first term in this formula corresponds to the assessment of the embedded
option fair value, the second term reflects the counterparty’s default risk.

3 ELN Portfolio Optimization Problem

This section is devoted ELNs portfolio optimization problem. We consider the
dynamic portfolio management task, where at each point of time we rebalance
the portfolio weights to maintain optimal portfolio criteria. Optimal portfolio
criteria provided by the utility function approach, where different utility func-
tions respond to special requirements over wealth. The framework of our pricing
models of the ELN’s returns is described by stochastic volatility processes so
due to the problem of HARA utility maximization in a stochastic framework is
often preferred we choose this one to construct the optimization problem. HARA
utility function U(x) class exhibit hyperbolic absolute risk aversion and follows:

U(x) =
1 − γ

γ
(

ax

1 − γ
+ b)γ , (14)

where a > 0 and ax
1−γ + b > 0.
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Our approach is related to methods for solving stochastic optimization prob-
lems in terms of viscous solutions proposed by Fleming and Sheu [12–16] for
other problems. We consider the portfolio of n equity-linked notes with prices
P1(t), P2(t), ..., Pn(t) and risk-less bond B(t)(d ln B(t) = r(t)dt)). We denote
u(t) = (u1(t), u2(t), ..., un(t)) as the optimal time-dependent weight function
such as yield of investor’s wealth P (t) at time t would be:

d ln P (t) = u1(t)d ln P1(t) + u2(t)d ln P2(t) + ... + un(t)d ln Pn(t)

+ (1 −
n∑

i=1

ui(t))r(t)dt. (15)

We assume that initial wealth P (0) > 0. Let us assume that the required
holding period is T . According to the special case of HARA optimization problem
with a = 1 and (b = 0) we want to maximize U

′
(t) = γ−1(1 − γ)γ−1V (T )γ . As

in [10] we also require the strategy u(t) to be admissible which means that
ui(t) is measurable via the filtration associated with portfolio prices dynamics
(Ω,F,Ft≥0) and the second moment of ui(t) is finite. Then the optimization
problem can thus be constructed this way:

max
u(t)∈Π

E[U
′
(P (T ))], (16)

which is equivalent to:
max

u(t)∈Π
E[(P (T ))γ ], (17)

To compare HARA approach with the classical Markowitz optimization prob-
lem we provide possible mean-variance task: we balance weights to minimize the
portfolio variance keeping target expected return. Now we assume static port-
folio management task where portfolio vector of weights w = (w1, w2, ..., wn) is
constant. As we operate in terms of stochastic volatility processes, we should
modify classical Markowitz optimization problem by minimizing the expected
portfolio variance: {

RT w = μ,

wT Σw → min,

where R is a vector of expected returns, μ is required return and Σ is provided by:

Σ = E[Cov(
dP1(T )
P1(T )

,
dP2(T )
P2(T )

, ...,
dPn(T )
Pn(T )

)], (18)

where Σ is the expectation of the covariance matrix.
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4 Transformation the Optimization Problem
to the Dynamic Programming Equation

The general theory of dynamic financial portfolio optimization problem is
based on Hamilton-Jacobi-Bellman (HJB) equation in stochastic settings. Let
us assume that we have stochastic process x(t) determined by the stochastic
differential equation:

dx(t) = μ(x(t), u(t))dt + σ(x(t), u(t))dW (t), (19)

where u(t) is admissible strategy determined above. Let us consider the following
problem: ⎧⎨

⎩
F (x0) = max

u(t)∈U
E[

∞∫
0

e−rtf(x(t), u(t)dt],

x(0) = x0.

(20)

Then according to HJB framework, this task is equivalent to partial derivation
equation:

rF (x) = max
u(t)∈U

h(x, u) + Fxμ(x, u) +
1
2
Fxx(x)σ2(x, u). (21)

The Eq. (21) could be solved numerically. In our case P (t) process is considered
as x(t) and our first challenge is to obtain dP (t) to apply HJB framework the-
ory. We can derive dP (t) based on Ito’s lemma which suggested following. Let
x(t) ∈ Rm is multivariate stochastic process:

dxi = μi(x)dt + σi(x)dWi. (22)

Than for any f(x) ∈ C2:

df(x) = (
n∑

i=1

μi(x)
∂f(x)
∂xi

+
1
2

m∑
i=1

n∑
j=1

σ2
ij

∂2f(x)
∂xixj

)dt +
m∑

i=1

σi
∂f(x)
∂xi

dWi. (23)

Let us apply the approach given above to our case. Based on Ito’s lemma we
obtain that:

dC(S, r, t) =
∂C

∂S
dS +

∂C

∂r
dr

+ (
∂C

∂t
+

1
2
(
∂2C

∂S2
σ2S2 +

∂2C

∂r2
c2 + 2ρσcS

∂2C

∂S∂r
)dt. (24)

For both approaches introduced in Sect. 3 we should obtain the expression
for dPi(T )

Pi(T ) . Based on (7):

P (S, r, t) = C(S, r, t)e
−

t+τ∫

t

λudu
+ (1 − R)N

t+τ∫

t

λue
−

v∫

t

rv+λvdv
du, (25)
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and using Ito’s Lemma we obtain:

dPi(S, λ, r, t) = dCi · e
−

t+τ∫

t

λudu − Cie
−

t+τ∫

t

λudu
τdλ

+ (1 − R)N

t+τ∫

t

e
−

v∫

t

rv+λvdv
dudλ − (1 − R)N

t+τ∫

t

λue
−

v∫

t

rv+λvdv
(u − t)dudλ

− (1 − R)N

t+τ∫

t

λue
−

v∫

t

rv+λvdv
(u − t)dudr + Cie

−
t+τ∫

t

λudu
(λ(t) − λ(t + τ))dt

+
1
2
ν2λdt · (Cie

−
t+τ∫

t

λudu
τ2 − (1 − R)N

t+τ∫

t

λue
−

v∫

t

rv+λvdv
(u − t)2du)

− 1
2
c2(1 − R)N

t+τ∫

t

λue
−

v∫

t

rv+λvdv
(u − t)2dudt (26)

Substituting dCi by (19) we obtain:

dPi(S, λ, r, t) = Q1dt + Q2dS + Q3dr + Q4dλ, (27)

where

Q1 = e
−

t+τ∫

t

λudu 1
2
(
∂2Ci

∂S2
σ2S2 +

∂2Ci

∂r2
c2 + 2ρσcS

∂2Ci

∂S∂r
)

+ Cie
−

t+τ∫

t

λudu
(λ(t) − λ(t + τ))

+
1
2
ν2λ · (Cie

−
t+τ∫

t

λudu
τ2 − (1 − R)N

t+τ∫

t

e
−

v∫

t

rv+λvdv
(u − t)du

+ (1 − R)N

t+τ∫

t

e
−

v∫

t

rv+λvdv
(u − t)du − (1 − R)N

t+τ∫

t

λue
−

v∫

t

rv+λvdv
(u − t)2du)

− 1
2
c2(1 − R)N

t+τ∫

t

λue
−

v∫

t

rv+λvdv
(u − t)2du, (28)
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Q2 =
∂C

∂S
e

−
t+τ∫

t

λudu
,

Q3 = −(1 − R)N

t+τ∫

t

λue
−

v∫

t

rv+λvdv
(u − t)du,

Q4 = −Cie
−

t+τ∫

t

λudu
τdλ + (1 − R)N

t+τ∫

t

e
−

v∫

t

rv+λvdv
dudλ

− (1 − R)N

t+τ∫

t

λue
−

v∫

t

rv+λvdv
(u − t)dudλ. (29)

Substituting dS, dr, dλ by (10) we obtain:

dPi(S, λ, r, t) = Q
′
1dt + Q

′
2dW1 + Q

′
3dW2 + Q

′
4dW3, (30)

where

Q
′
1 = Q1 + μSQ2 + (a − br)Q3 + (α − βλ)Q4,

Q
′
2 = σSQ2,

Q
′
3 = cQ3, (31)

Q
′
4 = ν

√
λQ4.

Thus, using Ito’s lemma again:

d ln Pi =
1
Pi

dPi − 1
2P 2

i

((Q
′
2)

2 + (Q
′
3)

2 + (Q
′
4)

2 + ρQ
′
2Q

′
3)dt

= (
Q

′
1

Pi
− 1

2P 2
i

((Q
′
2)

2 + (Q
′
3)

2 + (Q
′
4)

2 + ρQ
′
2Q

′
3))dt (32)

+
Q

′
2

Pi
dW1 +

Q
′
3

Pi
dW2 +

Q
′
4

Pi
dW3.

Let us denote Ji1 = Q
′
1

Pi
− 1

2P 2
i
((Q

′
2)

2 + (Q
′
3)

2 + (Q
′
4)

2 + ρQ
′
2Q

′
3), Ji2 = Q

′
2

Pi
,

Ji3 = Q
′
3

Pi
, Ji4 = Q

′
4

Pi
. Substituting in (15), we derive:

d lnP (t) =
n∑

i=1

ui(t)(Ji1dt+ Ji2dWi2 + Ji3dWi3 + Ji4dWi4) + (1−
n∑

i=1

ui(t))r(t)dt

= (

n∑

i=1

ui(t)Ji1 + (1−
n∑

i=1

ui(t))r(t))dt+

n∑

i=1

ui(t)(Ji2dWi2 + Ji3dWi3 + Ji4dWi4)

(33)
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Therefore,

E[(P (T ))γ ] = P (0)E[exp γ(

T∫

0

(
n∑

i=1

ui(t)Ji1 + (1 −
n∑

i=1

ui(t))r(t))dt

+

T∫

0

n∑
i=1

ui(t)(Ji2dWi2 + Ji3dWi3 + Ji4dWi4)] (34)

Further we fix γ to be in range 0 < γ < 1. Remind that for each T we should
maximize (17):

W (T, x) = max
u(t)∈Π

E[(P (T ))γ ]

= P (0) max
u(t)∈Π

E[exp (γ

T∫

0

(
n∑

i=1

ui(t)Ji1(t, x) + (1 −
n∑

i=1

ui(t))r(t))dt (35)

+

T∫

0

n∑
i=1

ui(t)(Ji2(t, x)dWi2 + Ji3(t, x)dWi3 + Ji4(t, x)dWi4)],

where x comprise all dependence from S(t), r(t), λ(t). As in [10] we assume
that W (T,x)

T tends to a limit Λ as T → ∞. Then λ is assumed as the effective
long-term expected utility of wealth growth rate. As in [12] we obtain:

W (T, x) ∼ ΛT + W (x), T → ∞ (36)

Then Λ and W (x) satisfy the following dynamic programming equation:

Λ =
1
2
ΔW (x) +

1
2
|∇W (x)|2

+ (
n∑

i=1

ui(t)Ji1(t, x) + (1 −
n∑

i=1

ui(t))r(t))∇W (x)

+ max
u(t)∈Π

[γui(t)(Ji2(t, x)dWi2 + Ji3(t, x)dWi3 + Ji4(t, x)dWi4)∇W (x)

+ γ(
n∑

i=1

ui(t)Ji1

+ (1 −
n∑

i=1

ui(t))r(t))dt +
n∑

i=1

ui(t)(Ji2dWi2 + Ji3dWi3 + Ji4dWi4)]. (37)

The further numerical solution of dynamic programming equations are consid-
ered in [13,15,16].
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5 Conclusion

This paper discusses the ELN portfolio optimization problem based on new ELN
pricing model, which takes into account stochastic interest rates and probability
of default. We suggest the portfolio optimization problem in terms of hyperbolic
absolute risk aversion (HARA) utility function and obtain dynamic program-
ming equation.The proposed approach allows constructing optimal bond portfo-
lios with embedded options and counterparty credit risk.The proposed approach
complements the existing tools for analyzing the yield and risks of financial
instruments based on ELN.

In further research, we plan to take into account the impact of transaction
costs on portfolio returns. This can be important when dynamically managed
portfolios are rebalanced frequently. This can be realized by including the penalty
function of additional costs into the optimization problem. We also plan to imple-
ment a numerical solution to the dynamic programming equations and provide a
comparative analysis of the effectiveness of the proposed method and alternative
algorithms for a wide range of retrospective financial data.
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Abstract. Gradient optimization methods are often used to solve prob-
lems of computer simulation of the crystal structures of materials. In this
case it becomes necessary to calculate the partial derivatives of the total
atoms’ system energy according to different parameters. Frequently the
calculation of these derivatives is an extremely time-consuming and dif-
ficult problem. When describing and modeling the crystal structure of a
material characterized by chemical composition, geometry, and type of
chemical bond, interatomic interaction potentials are used. In this paper
a special multi-step process is constructed to calculate the energy of the
atoms’ system in the case when the interaction of atoms is described by
the Tersoff Potential. On the basis of the constructed multi-step pro-
cess an algorithm for calculation the second derivatives (Hessian) of the
atoms’ system energy with respect to the coordinates of the atoms is
presented. The above-mentioned second derivatives are provided both for
the case when the material under study has a three-dimensional struc-
ture, and for the case when a two-dimensional model of a multilayer
piecewise-homogeneous material is considered.

Keywords: Potentials · Energy · Gradients · Hessian

1 Introduction

When describing and modeling the crystal structure of a material character-
ized by chemical composition, geometry, and type of chemical bond, interatomic
interaction potentials are used. The properties of crystals with a covalent con-
nection (for example, carbon, silicon, germanium, etc.) are often described by
the Tersoff Potential (see [1]). It is an example of a multiparticle potential based
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on the concept of the order of connections: interaction force between two atoms
is not constant, but depends on the local environment.

One of the important stages of modeling the crystal structure of the material
under study is the optimization according to the coordinates of the particles,
which arranges particles in positions corresponding to the minimum of the total
atoms’ system energy. Gradient optimization methods are often used to solve
this problem (see [2–4]). At this stage it becomes necessary to calculate the
partial derivatives and the Hessian of the energy of atoms’ system according to
the coordinates of the atoms. In the case when the energy is determined using
the Tersoff Potential, the calculation of the indicated first and second derivatives
is an extremely time-consuming and difficult problem.

First, as the results of the performed studies showed (see [5]), the use of the
finite difference method does not allow to calculate the derivatives of the energy
with acceptable accuracy. In addition, in the case of using this method it is
necessary to carry out researches related to the choice of the suitable increment
of atoms’ coordinates at each stage of the optimization problem.

Second, the use of standard software packages for calculation of second deriva-
tives can be associated with large restrictions on the dimension of the problem
and this fact must be taken into account when a fragment of the material under
study contains an enormous number of atoms.

In [6], formulas for calculating the gradient of energy of the atoms’ system
in the case when the interaction of atoms is described by the Tersoff Potential
are given. There a comparative analysis of the calculation of above-mentioned
gradient using direct differentiation formulas, using the Fast Automatic Differ-
entiation technique (see [7]) and using the standard software package are given
(see [8,9]).

In this paper a special multi-step process is constructed to calculate the
energy of the atoms’ system. This makes it possible to substantially simplify and
increase the reliability of the calculation of the second derivatives of energy. On
the basis of the constructed multi-step process, an algorithm for calculation of the
exact values of the Hessian of considered cost function is proposed. The above-
mentioned second derivatives are provided both for the case when the material
under study has a three-dimensional structure, and for the case when a two-
dimensional model of a multilayer piecewise-homogeneous material is considered.

2 Algorithm for Computing Hessian of the Cost Function

Let r̄i = (x1i, x2i, x3i) are the coordinates of some lattice atom. The total
interatomic energy of the atoms’ system whose interaction potential is the
Tersoff potential is calculated with the help of formulae E(r̄1, r̄2, . . . , r̄I) =
I∑

i=1

I∑

j=1;j �=i

Vij , where Vij is the interaction potential between atoms marked

i and j (i-atom and j-atom):

Vij = fc(rij) (VR(rij) − bijVA(rij)) ,
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fc(r) =

⎧
⎪⎨

⎪⎩

1, r < R − Rcut,
1
2

(
1 − sin

(
π(r−R)
2Rcut

))
, R − Rcut < r < R + Rcut,

0, r > R + Rcut,

V R
ij = VR(rij) =

De

S − 1
exp

(
−β

√
2S(rij − re)

)
,

V A
ij = VA(rij) =

SDe

S − 1
exp

(

−β

√
2
S

(rij − re)

)

,

bij = (1 + (γζij)
η)

− 1
2η , ζij =

I∑

k=1;k �=i,j

fc(rik)gijkωijk, ωijk = exp(λ3τijk),

τijk = (rij − rik)3, gijk = 1 +
( c

d

)2

− c2

d2 + (h − cos Θijk)2
.

Here I is the number of atoms in the system under consideration; rij is the
distance between i-atom and j-atom:

rij =
√

(x1i − x1j)2 + (x2i − x2j)2 + (x3i − x3j)2;

Θijk is the angle between two vectors, first vector begins at i-atom and finishes
at j-atom, second vector begins at i-atom and finishes at k-atom and

cos Θijk = qijk =
r2ij + r2ik − r2jk

2rijrik
;

R and Rcut are known parameters, identified experimentally from geometric
characteristics of substance. Tersoff Potential depends on ten parameters (m =
10), specific to modeled substance: De, re, β, S, η, γ, λ, c, d, h.

The optimization problem is to find the particles coordinates, that minimiz-
ing the summary potential energy of the considered system of atoms. In order to
solve this problem by second-order methods, appears the need to determine the
second derivatives of the atoms’ system energy with respect to the coordinates
of the atoms.

We represent the calculation of the energy of atoms’ system (the interaction
of atoms is described by the Tersoff Potential) in the form of a multi-step pro-
cess. Let u and z be vectors having coordinates: uT = [u1, u2, ..., u10]

T
, zT =

[z1, z2, ..., z17]
T , where u1 = De, u2 = re, u3 = β, u4 = S, u5 = η, u6 = γ, u7 =

λ, u8 = c, u9 = d, u10 = h;

z1 =
{

zijk
1 =

√
(x1i − x1k)2 + (x2i − x2k)2 + (x3i − x3k)2

}
,

z2 =
{

zijk
2 =

√
(x1j − x1k)2 + (x2j − x2k)2 + (x3j − x3k)2

}

,

z3 =

{

zijk
3 = qijk =

(zij
13)

2 + (zijk
1 )2 − (zijk

2 )2

2zijk
1 zij

13

}

,
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z4 =
{

zijk
4 = fc(z

ijk
1 )

}
,

z5 =

{

zijk
5 = gijk = 1 +

(
u8

u9

)2

− (u8)2

(u9)2 + (u10 − zijk
3 )2

}

,

z6 =
{

zijk
6 = τijk = (zij

13 − zijk
1 )3

}
,

z7 =
{

zijk
7 = ωijk = exp((u7)3z

ijk
6 )

}
,

z8 =
{

zijk
8 = fc(rik)gijkωijk = zijk

4 zijk
5 zijk

7

}
,

z9 =

⎧
⎨

⎩
zij
9 = ζij =

I∑

k=1;k �=i,j

zijk
8

⎫
⎬

⎭
,

z10 =
{

zij
10 = γζij = u6z

ij
9

}
,

z11 =
{

zij
11 = (γζij)η = (z10)u5

}
,

z12 =
{

zij
12 = bij = (1 + zij

11)
− 1

2u5

}
,

z13 =
{

zij
13 =

√
(x1i − x1j)2 + (x2i − x2j)2 + (x3i − x3j)2

}

,

z14 =
{

zij
14 = V R

ij =
u1

u4 − 1
exp

(
−u3

√
2u4(z

ij
13 − u2)

)}

,

z15 =
{

zij
15 = V A

ij =
u1u4

u4 − 1
exp

(

−u3

√
2
u4

(zij
13 − u2)

)}

,

z16 =
{

zij
16 = fc(z

ij
13)

}
≡ F (16, Z16, U16),

z17 =
{

zij
17 = Vij = zij

16(z
ij
14 − zij

12z
ij
15)

}
,

(i = 1, I, j = 1, I, j �= i, k = 1, I, k �= i, j).

Note that each component zl depends on a number of other components (zij
l

or zijk
l ). The atoms’ system energy E with the help of new variables may be

rewritten as follows:

E = E(x11, x21, x31, ..., x1I , x2I , x3I) =
I∑

i=1

I∑

j=1;j �=i

zij
17.

The derivatives with respect to the coordinates of atoms is a vector with the
components:

∇E =
(

∂E

∂x11
,

∂E

∂x21
,

∂E

∂x31
, · · · ,

∂E

∂x1I
,

∂E

∂x2I
,

∂E

∂x3I

)

.

The matrix of second derivatives has components:

∂2E

∂xlm∂xnp
, l, n = 1, 2, 3, m, p = 1, I.
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In order to determine the second derivatives of the atoms’ system energy
with respect to the coordinates of the atoms, there is also a need for smoothing
the function fc(r). It is proposed to replace the function fc(r) as follows:

fc(r) =

⎧
⎨

⎩

0, r ≥ R + Rcut,
1, r ≤ R − Rcut,
C · F (αr + β), R − Rcut < r < R + Rcut,

where

F (z) =
{

f(z), z∗ ≤ z ≤ 0,
2 f∗ − f(2 z∗ − z), 2 z∗ ≤ z ≤ z∗,

f(z) =
{

exp(−1/z2), z �= 0,
0, z = 0,

C =
1

2f∗
, f∗ = exp

(

−3
2

)

, z∗ = −
√

2
3
, α = − z∗

Rcut
, β =

z∗
Rcut

(R + Rcut).

For convenience of further presentation, we write the function fc(r) in the fol-
lowing form:

fc(r) =

⎧
⎪⎪⎨

⎪⎪⎩

0, r ≥ R + Rcut,
1, r ≤ R − Rcut,
C · (f∗)ϕ(r), R ≤ r < R + Rcut,
C · (

2f∗ − (f∗)ψ(r)
)
, R − Rcut < r ≤ R,

where

ϕ(r) =
R2

cut

(r − R − Rcut)2
, ψ(r) =

R2
cut

(r − R + Rcut)2
.

Derivative of function fc(r) with respect to r is calculated by the formulae:

∂fc(r)
∂r

=

⎧
⎪⎪⎨

⎪⎪⎩

0, r ≥ R + Rcut,
0, r ≤ R − Rcut,
C · (f∗)ϕ(r) ln(f∗) · ϕ̃(r), R ≤ r < R + Rcut,

−C · (f∗)ψ(r) ln(f∗) · ψ̃(r), R − Rcut < r ≤ R,

ϕ̃(r) =
−2R2

cut

(r − R − Rcut)3
, ψ̃(r) =

−2R2
cut

(r − R + Rcut)3
.

Let us introduce the following designations: z̃1, z̃2, ..., z̃17 and ˜̃z1, ˜̃z2, ..., ˜̃z17,
where

z̃s =
{

z̃ijk
s : z̃ijk

s =
∂zijk

s

∂xlm

}

, s = 1, 8,

z̃s =
{

z̃ij
s : z̃ij

s =
∂zij

s

∂xlm

}

, s = 9, 17,

˜̃zs =
{

˜̃z
ijk

s : ˜̃z
ijk

s =
∂2zijk

s

∂xlm∂xnp

}

, s = 1, 8,
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˜̃zs =
{

˜̃z
ij

s : ˜̃z
ij

s =
∂zij

s

∂xlm∂xnp

}

, s = 9, 17.

Formulas for calculating first-order derivatives z̃1, z̃2, ..., z̃17 are given in [6].
The derivatives ∂E

∂xlm
, (l = 1, 2, 3, i = 1, I) of the function E with respect

to the coordinates of the atoms will be calculated by formulas:

∂E

∂xlm
=

I∑

i=1

I∑

j=1; j �=i

z̃ij
17, l = 1, 2, 3; m = 1, I.

In order to write the formulas for the second derivatives of the total atoms’
system energy with respect to the coordinates of the atoms, we introduce some
more notations:

z′
s =

{

z
′ijk
s : z

′ijk
s =

∂zijk
s

∂xnp

}

, s = 1, 8,

z′
s =

{

z
′ij
s : z

′ij
s =

∂zij
s

∂xnp

}

, s = 9, 17.

These derivatives are calculated using the same formulas as the derivatives
z̃1, z̃2, ..., z̃17, only here the index l changes to n, and the index m to p.

The formulas obtained in [6] for calculating the first derivatives z̃1, z̃2, ..., z̃17
with respect to the coordinates of the atoms are used as a multi-step process for
obtaining the desired second derivatives. They are calculated by the formulas:

˜̃z
ijk

1 =
∂2zijk

1

∂xlm∂xnp
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(zpjk
1 )2−(xnp−xnk)

2

(zpjk
1 )3

, m = i, n = l, p = m, m �= k,

−(zmjp
1 )2−(xnm−xnp)

2

(zmjp
1 )3

, m = i, n = l, p = k, m �= k,

(zijp
1 )2−(xnp−xni)

2

(zijp
1 )3

, m = k, n = l, p = m, m �= i,

−(zpjm
1 )2−(xnp−xnm)2

(zpjm
1 )3

, m = k, n = l, p = i, m �= i,

(xlk−xlm)(xnp−xnk)
2

(zpjk
1 )3

, m = i, n �= l, p = m, m �= k,

(xlm−xlk)(xnm−xnp)
2

(zmjp
1 )3

, m = i, n �= l, p = k, m �= k,

(xli−xlm)(xnp−xnm)2

(zijp
1 )3

, m = k, n �= l, p = i, m �= i,

(xlm−xli)(xni−xnp)
2

(zpjm
1 )3

, m = k, n �= l, p = m, m �= i,

0, in other cases,
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˜̃z
ijk

2 =
∂2zijk

2

∂xlm∂xnp
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(zipk
2 )2−(xnp−xnk)

2

(zipk
2 )3

, m = j, n = l, p = m, m �= k,

−(zimp
2 )2−(xnm−xnp)

2

(zimp
2 )3

, m = j, n = l, p = k, m �= k,

(zijp
2 )2−(xnp−xnj)

2

(zijp
2 )3

, m = k, n = l, p = m, m �= j,

−(zipm
2 )2−(xnp−xnm)2

(zipm
2 )3

, m = k, n = l, p = j, m �= j,

(xlk−xlm)(xnp−xnk)
2

(zipk
2 )3

, m = j, n �= l, p = m, m �= k,

(xlm−xlk)(xnm−xnp)
2

(zimp
2 )3

, m = j, n �= l, p = k, m �= k,

(xlj−xlm)(xnp−xnm)2

(zipm
2 )3

, m = k, n �= l, p = j, m �= j,

(xlm−xlj)(xnj−xnp)
2

(zijp
2 )3

, m = k, n �= l, p = m, m �= j,

0, in other cases,

˜̃z
ijk

3 =
(
zijk
1 zij

13 ·
(
z

′ijk
1 (zij

13)
2 z̃ij

13 + 2 zijk
1 zij

13 z̃ij
13 z

′ij
13 + (zij

13)
2 zijk

1
˜̃z

ij

13

+ (zijk
1 )2 z̃ijk

1 z
′ij
13 + 2 z

′ijk
1 zij

13 z̃ijk
1 zijk

1 + ˜̃z
ijk

1 (zijk
1 )2 zij

13

− 2
(

zijk
2 z

′ijk
1 z̃ijk

2 zij
13 + zijk

2 zijk
1 z̃ijk

2 z
′ij
13 + z

′ijk
2 zijk

1 z̃ijk
2 zij

13

+ zijk
2 zijk

1
˜̃z

ijk

2 zij
13

)

− 3 (zijk
1 )2 z̃ij

13 z
′ijk
1 − (zijk

1 )3 ˜̃z
ij

13 + z
′ijk
1 (zijk

2 )2 z̃ij
13

+ 2 zijk
1 zijk

2 z
′ijk
2 z̃ij

13 + zijk
1 (zijk

2 )2 ˜̃z
ij

13 + z̃ijk
1 (zijk

2 )2 z
′ij
13

+ 2 z̃ijk
1 zijk

2 z
′ijk
2 zij

13 + ˜̃z
ijk

1 (zijk
2 )2 zij

13 − 3 (zij
13)

2 z
′ij
13 z̃ijk

1

− (zij
13)

3 ˜̃z
ijk

1

)

− 2
(
zijk
1 z

′ij
13 + zij

13 z
′ijk
1

)
×

(
zijk
1 (zij

13)
2 z̃ij

13

+ zij
13 (zijk

1 )2 z̃ijk
1 − 2 zijk

1 zij
13 zijk

2 z̃ijk
2 − (zijk

1 )3 z̃ij
13 + zijk

1 (zijk
2 )2 z̃ij

13

− (zij
13)

3 z̃ijk
1 + zij

13 (zijk
2 )2

))
/

(
2 (zijk

1 )2 (zij
13)

2
)

,
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˜̃z
ijk

4 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, zijk
1 ≥ R+,

0, zijk
1 ≤ R−,

−H · C · (f∗)ϕ(zijk
1 ) ×

[

−H · z
′ijk
1 z̃ijk

1 /
(
zijk
1 − R+

)6

+ ˜̃z
ijk

1

(
zijk
1 − R − Rcut

)
/
(
zijk
1 − R+

)4

− 3 z
′ijk
1 z̃ijk

1 /
(
zijk
1 − R+

)4
]

, R ≤ zijk
1 < R+,

H · C · (f∗)ψ(zijk
1 ) ×

[

−H · z
′ijk
1 z̃ijk

1 /
(
zijk
1 − R−

)6

+ ˜̃z
ijk

1

(
zijk
1 − R + Rcut

)
/
(
zijk
1 − R−

)4

− 3 z
′ijk
1 z̃ijk

1 /
(
zijk
1 − R−

)4
]

, R ≤ zijk
1 < R+,

where H = 2 R2
cut ln(f∗); R− = R − Rcut; R+ = R + Rcut;

˜̃z
ijk

5 =
−2 (u8)2 ·

(

(u10 − zijk
3 ) ˜̃z

ijk

3 − z
′ijk
3 z̃ijk

3

)(
(u9)2 + (u10 − zijk

3 )2
)

(
(u9)2 + (u10 − zijk

3 )2
)3

−
8 (u8)2 ·

(
u10 − zijk

3

)2

z
′ijk
3 z̃ijk

3

(
(u9)2 + (u10 − zijk

3 )2
)3 ,

˜̃z
ijk

6 = 6
(
zij
13 − zijk

1

) (
z

′ij
13 − z

′ijk
1

) (
z̃ij
13 − z̃ijk

1

)
+ 3

(
zij
13 − zijk

1

)2 (
z

′ij
13 − z

′ijk
1

)
,

˜̃z
ijk

7 = (u7)3 exp
(
(u7)3 zijk

6

)(

(u7)3 z
′ijk
6 z̃ijk

6 + ˜̃z
ijk

6

)

,

˜̃z
ijk

8 = ˜̃z
ijk

4 zijk
5 zijk

7 + z̃ijk
4 z

′ijk
5 zijk

7 + z̃ijk
4 zijk

5 z
′ijk
7 + ˜̃z

ijk

5 zijk
4 zijk

7

+ z̃ijk
5 z

′ijk
4 zijk

7 + z̃ijk
7 zijk

5 z
′ijk
4 + ˜̃z

ijk

7 zijk
5 zijk

4 + z̃ijk
5 z

′ijk
7 zijk

4 + z̃ijk
7 zijk

4 z
′ijk
5 ,

˜̃z
ij

9 =
I∑

k=1;k �=i,j

˜̃z
ijk

8 ,

˜̃z
ij

10 = ˜̃z
ij

9 u6,

˜̃z
ij

11 = u5

(
˜̃z

ij

10 · (zij
10)

u5−1 + (u5 − 1) · (zij
10)

u5−2 · z
′ij
10 · z̃ij

10

)
,

˜̃z
ij

12 = − 1
2 u5

(
˜̃z

ij

11

(
1+zij

11

)− 1
2 u5

−1

−
(

1
2 u5

+ 1
) (

1+zij
11

)− 1
2 u5

−2

· z
′ij
11 z̃ij

11

)

,
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˜̃z
ij

13 =
∂2zij

13

∂xlm∂xnp
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(zpj
13)

2−(xnp−xnj)
2

(zpj
13)

3 , m = i, n = l, p = m, j �= p,

−(zmp
13 )2−(xnm−xnp)

2

(zmp
13 )3

, m = i, n = l, p = j, m �= p,

(zip
13)

2−(xnp−xni)
2

(zip
13)

3 , m = j, n = l, p = m, i �= p,

−(zpm
13 )2−(xnp−xnm)2

(zpm
13 )3

, m = j, n = l, p = i, j �= p,

(xlj−xlm)(xnp−xnj)
2

(zpj
13)

3 , m = i, n �= l, p = m, j �= p,

(xlj−xlm)(xnp−xnm)2

(zmp
13 )3

, m = i, n �= l, p = j, m �= p,

(xli−xlm)(xnp−xni)
2

(zip
13)

3 , m = j, n �= l, p = m, i �= p,

(xli−xlm)(xnp−xnm)2

(zpm
13 )3

, m = j, n �= l, p = i, j �= p,

0, in other cases,

˜̃z
ij

14 = −u3

√
2 u4 ·

(
z

′ij
14 · z̃ij

13 + zij
14 · ˜̃zij

13

)
,

˜̃z
ij

15 = −u3

√
2/u4 ·

(
z

′ij
15 · z̃ij

13 + zij
15 · ˜̃zij

13

)
,

˜̃z
ij

16 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, zij
13 ≥ R+,

0, zij
13 ≤ R−,

−H · C · (f∗)ϕ(zij
13) ×

[

−H · z
′ij
13 z̃ij

13/
(
zij
13 − R+

)6

+ ˜̃z
ij

13

(
zij
13 − R+

)
/
(
zij
13 − R+

)4

− 3 z
′ij
13 z̃ij

13/
(
zij
13 − R+

)4
]

, R ≤ zij
13 < R+,

H · C · (f∗)ψ(zij
13) ×

[

−H · z
′ij
13 z̃ij

13/
(
zij
13 − R−

)6

+ ˜̃z
ij

13

(
zij
13 − R−

)
/
(
zij
13 − R−

)4

− 3 z
′ij
13 z̃ij

13/
(
zij
13 − R−

)4
]

, R− < zij
13 ≤ R,

˜̃z
ij

17 = ˜̃z
ij

16 · zij
14 + z̃ij

16 · z
′ij
14 − ˜̃z

ij

16 · zij
12 · zij

15 + z̃ij
14 · z

′ij
16

− z̃ij
16 · z

′ij
12 · zij

15 − z̃ij
16 · zij

12 · z
′ij
15 + ˜̃z

ij

14 · zij
16

− ˜̃z
ij

12 · zij
15 · zij

16 − z̃ij
12 · z

′ij
16 · zij

15 − z̃ij
12 · z

′ij
15 · zij

16

− z̃ij
15 · z

′ij
16 · zij

12 − z̃ij
15 · z

′ij
12 · zij

16 − ˜̃z
ij

15 · zij
12 · zij

16.
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Finally, the components of the Hessian of function E are calculated by the for-
mula:

∂2E

∂xlm∂xnp
=

I∑

i=1

I∑

j=1;j �=i

˜̃z
ij

17. (1)

In the case when a two-dimensional material model is considered, the indices l
and n take only the values 1 and 2.

3 Calculation the Hessian of the Energy
for a Two-Dimensional Material Model
with the Unloaded Condition

The two-dimensional model of a multilayer piecewise-homogeneous material pro-
posed in [2] and [3] is considered. In this model the material is represented as a
periodic piecewise homogeneous multilayer structure in which the types of atoms
in different layers may be different. This model imposes the following constraints
on the structure of the layers:
1. Each layer consists of identical atoms, but different layers may consist of dif-
ferent atoms.
2. The distances between adjacent atoms in the same level are identical, but
they may be different in different layers.
3. There is a group of K parallel layers that are periodically repeated in the
direction of the axis y.
4. The number of atoms in each layer and the total number of layers are poten-
tially unbounded. Figure 1 gives an example of the model in which a group of
three layers is repeated. Each layer consists of atoms of a specific type. In this
model, the position of the atoms is determined by the following parameters:
hk, k = 1, . . . , K is the distance between the layer number k and the preceding
layer;

Fig. 1. Two-dimensional model of substance.
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dk, k = 1, . . . , K is the offset of the first atom in layer k with the positive
abscissa relative to the zero point;
sk, k = 1, . . . , K is the distance between the atoms in layer k.

The set of values of these parameters is called a configuration. It is required
to determine the configuration corresponding to the minimum interaction energy
of the atoms which enter into the simulated material fragment. The optimiza-
tion problem consists in minimizing the energy E(x) of the atoms’ group (the
potential of the interaction of atoms – the Tersoff potential) located on the K
adjacent layers. The parameters of the optimization problem are the variables
x = (h1, d1, s1, . . . , hK , dK , sK). The size of the vector x is 3K.

Let xi is the first coordinate of the i-th atom of a considered structure; yi is
its second coordinate. If the i − th atom is an atom with an ordinal number j
on the k − th layer, then: xi = dk + (j − 1)sk;

yi = 0, if k = 1, yi =
k∑

m=2

hm, if k = 2, 3, . . . , K.

The formulas for calculating the second derivatives obtained in the previ-
ous section will be used here to calculate the second derivatives with respect
to the parameters h1, d1, s1, . . . , hK , dK , sK . The corresponding derivatives are
calculated by the formulas:

∂E

∂hk
=

I∑

i=1

∂E

∂yi

∂yi

∂hk
,

∂E

∂dk
=

I∑

i=1

∂E

∂xi

∂xi

∂dk
,

∂E

∂sk
=

I∑

i=1

∂E

∂xi

∂xi

∂sk
,

∂2E

∂hl∂hk
=

I∑

i=1

(
I∑

p=1

∂2E

∂yi∂yp

∂yp

∂hl

)
∂yi

∂hk
,

∂2E

∂dl∂dk
=

I∑

i=1

(
I∑

p=1

∂2E

∂xi∂xp

∂xp

∂dl

)
∂xi

∂dk
,

∂2E

∂sl∂sk
=

I∑

i=1

(
I∑

p=1

∂2E

∂xi∂xp

∂xp

∂sl

)
∂xi

∂sk
,

∂2E

∂dl∂sk
=

I∑

i=1

(
I∑

p=1

∂2E

∂xi∂xp

∂xp

∂dl

)
∂xi

∂sk
,

∂2E

∂hl∂dk
= 0,

∂2E

∂hl∂sk
= 0.

The second derivatives ∂2E
∂xi∂xp

and ∂2E
∂yi∂yp

, which are used here, are calculated
by the formula (1).

4 Conclusion

The obtained formulas are intended for solving the optimization problem which
arranges particles in positions corresponding to the minimum of the total atoms’
system energy using the methods of the second order. As well known the use
of second-order methods lead to a significant acceleration of the optimization
problem solution.
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On the Complexity of Some Quadratic
Euclidean Partition Problems

into Balanced Clusters
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Abstract. We consider three problems of partitioning a finite set of N
points in the d-dimensional Euclidean space into two clusters balancing
the value of (1) the normalized by a cluster size sum of squared deviations
from the mean, (2) the sum of squared deviations from the mean, and
(3) the size-weighted sum of squared deviations from the mean. We have
proved the NP-completeness of all these problems.

Keywords: Euclidean space · Balanced partition · Quadratic
variance · Normalized by the cluster size · Sized-weighted ·
NP-completeness

1 Introduction

The subject of this study includes some discrete optimization problems. Namely,
we analyze three closely related by sense problems of balanced-by-variance 2-
partitioning a finite set of Euclidean points into clusters. Our aim is finding out
the computational complexity status of these problems.

This research is motivated by the importance of the considered problems both
for mathematical optimization theory and applications and also by the absence
of any published results for them. The problems considered are related to Data
analysis, Data mining and Statistics (see the next section).

The paper is organized as follows. In Sect. 2, the problems statement and
motivation are given. In the same Section, some applications and interpreta-
tions of the considered problems are presented. In Sect. 3, the complexity of the
problems is analyzed. Concluding remarks are given in Sect. 4.

2 Problem Statement and Related Problems

The classical mathematical statistics and a relatively new field of Data mining
[1–4] have similar objectives: both are directed to the analysis of the structure
of experimental data. However, there is an essential difference between these
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two subjects that is caused by the specifics of the mathematical problems solved
by them. This results in different mathematical tools (methods and algorithms)
created and used.

Statistics is oriented exceptionally on the analysis of homogeneous sample
data (i. e. the data having the same distribution) or matching (comparing) sam-
ple data having different homogeneous distributions. Data mining sets as a goal
finding out the structure of the data that, generally, have different distributions,
in case when no information on the correspondence between the data and the
distributions is given [1–4]. In fact, statistical methods as tools are applicable
only for special cases of the various problems in Data mining.

Unfortunately, all well developed techniques of mathematical statistics
turned out to be completely unusable in practice in cases when the correspon-
dence between sample (experimental) data and distributions is absent. In such a
situation, typical for Data mining, it is first necessary to find a proper (adequate)
partition of the data into homogeneous groups (clusters). Only after obtaining
such partition into homogeneous clusters the classical methods of mathematical
statistics become correctly applicable from the mathematical point of view. The
so-called exploratory search for partitions into clusters adequate to the data is
one of the key problems in Data mining. The issues of clustering adequateness
(i. e. the issues of correspondence of these clusterings to the experimental data)
lie out of scope of this paper.

In this paper we focus on the other important problem, namely, on studying
the complexity status of problems induced by the search for optimal partitions
allowing at the next stage of the analysis to understand (determine, explain or
interpret) a structure of experimental data. In other words, we are interested
in computational complexity of the problems that should be solved for finding
constructive (algorithmical) solution to the applied problems of Data mining.

There are many optimization problems of partitioning a finite set of objects
(points) into clusters by various criteria. Most of the practically important Data
mining problems of data clustering are NP-hard (see papers cited below). How-
ever, many of the problems have an open computation complexity status.

In the current paper we consider several such problems that are closely related
to both the classical problems of statistical hypothesis verification and to some
applied problems mentioned below.

Note also that all considered clustering problems are not equivalent to any of
the well-known hard clustering problems such as k-means (or k-MSSC) [5,6],
k-median [7,8], k-center [9,10], k-Variance [11] etc [12–15]. As far as we
know, the considered problems are not also equivalent to other hard quadratic
Euclidean partitioning problems studied in last years. This fact together with
the facts stated above have motivated the investigation.

Throughout the paper we denoted the Euclidean norm by ‖·‖. The considered
problems are stated below as decision problems.

Problem 1 (Balanced 2-partition by the criterion of the normalized by a
cluster size sum of squared deviations from the mean). Given: N -element set
Y of points in the Euclidean space of dimension d and a real number ε > 0.
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Question: Is there a partition of the set Y into non-empty clusters C and Y \ C
such that

∣
∣
∣

1
|C|

∑

y∈C
‖y − y(C)‖2 − 1

|Y \ C|
∑

y∈Y\C
‖y − y(Y \ C)‖2

∣
∣
∣ ≤ ε , (1)

where y(C) = 1
|C|

∑

y∈C y and y(Y \C) = 1
|Y\C|

∑

y∈Y\C y are centroids (geometric
centers) of clusters C and Y \ C respectively?

Problem 2 (Balanced 2-partition by the criterion of the sum of squared devia-
tions from the mean). Given: N -element set Y of points in the Euclidean space
of dimension d and a real number ε > 0. Question: Is there a partition of the
set Y into non-empty clusters C and Y \ C such that

∣
∣
∣

∑

y∈C
‖y − y(C)‖2 −

∑

y∈Y\C
‖y − y(Y \ C)‖2

∣
∣
∣ ≤ ε ? (2)

Problem 3 (Balanced 2-partition by the criterion of the size-weighted sum of
squared deviations from the mean). Given: N -element set Y of points in the
Euclidean space of dimension d and a real number ε > 0. Question: Is there a
partition of the set Y into non-empty clusters C and Y \ C such that

∣
∣
∣|C|

∑

y∈C
‖y − y(C)‖2 − |Y \ C|

∑

y∈Y\C
‖y − y(Y \ C)‖2

∣
∣
∣ ≤ ε ? (3)

In statistics there is a well-known Fisher’s criterion of dispersion comparison
(F -criterion) by sample data of two distributions [16]. If the clusters C and Y \C
are considered as samples of two normal distributions with unknown means then
this criterion allows to compare (check the equality) sample dispersions

1
|C| − 1

∑

y∈C
‖y − y(C)‖2 (4)

and
1

|Y \ C| − 1

∑

y∈Y\C
‖y − y(Y \ C)‖2 (5)

of these distributions by their proportion which is close to 1 in case of equality.
Formulae (4) and (5) are known in statistics as unbiased variance estimates

from sample data. In Problem 1 there are biased estimates which differ from
unbiased ones only by denominators. However, this difference is not essential in
asymptotic sense since both estimates are asymptotically unbiased.

It is easy to see that in Problem 1 it is required to partition the input set
Y into two clusters by the criterion of balanced sample variances. Statistical
interpretation of Problem 1 is whether an unhomogeneous sample Y can be
partitioned into two parts (subsamples) C and Y \ C whose sample variances
differ by at most some given ε > 0?
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Fig. 1. Examples of two-dimensional input sets Y with the same spreads of the clusters:
(a): centroids are far, (b): centroids are close, (c): centroids coincide.

Two-dimensional examples of input points sets are presented in Fig. 1. In
these samples the input sets contain two clusters whose sum spreads and subset
cardinalities are the same while the centroids are either quite far (Fig. 1a), or
close (Fig. 1b), or coincide (Fig. 1c).

Problems 2 and 3 have similar sense as Problem 1, but they have different
clustering criteria. In Problem 2 the sum of squared deviations from the mean
(i. e. centroid) is the criterion. In Problem 3 as a criterion the size-weighted sum
of squared deviations from the mean is taken. It is the same as the sum of the
squared pairwise distances since for every finite set Z ⊂ R

d the following easy
to verify equality is true:

|Z|
∑

z∈Z
‖z − z(Z)‖2 =

1
2

∑

z∈Z

∑

x∈Z
‖z − x‖2, (6)

where z(Z) is the centroid of the set Z.
The statistical interpretations of Problems 2 and 3 as 2-partition of unhomo-

geneous sample Y are similar to the statistical interpretation of Problem 1.
Note that some other interpretations of the formulated 2-clustering prob-

lems can be given, in particular, physical or social ones. If a point of the space
defines a vector (force), directed from the origin to this point, then, for example,
Problem 2 can be interpreted as a search for a balanced by a sum spread 2-partition
of multidirectional forces. If a coordinate of a point is treated as a numerical char-
acteristic of the opinion on some matter of a human from some social stratum then,
for instance, Problem 1 can be treated as a search for 2-partition of this stratum
into groups balanced on average for the range of various opinions. Similar social or
physical interpretations can be given to Problem 3 with the only difference that in
this problem the desired 2-partition must be balanced both by the sum spread of
the elements of the clusters and by the sizes (cardinalities) of the clusters.

Below we, in fact, prove that these easy by sense applied problems induce
intractable mathematical problems. The issues of algorithmic approximability of
the problems as well as the mentioned above clustering relevantness issues are
out of the scopes of this paper.
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3 Complexity Analysis

For finding out the complexity status of the formulated problems consider first
the following problem that unifies Problems 1–3.

Problem Π(g(x)). Given: N -element set Y of points in the Euclidean space of
dimension d and a real number ε > 0. Question: Is there a partition of the set
Y into two non-empty clusters C and Y \ C such that

∣
∣
∣
1
2
g(|C|)

∑

y∈C

∑

z∈C
‖y − z‖2 − 1

2
g(|Y \ C|)

∑

y∈Y\C

∑

z∈Y\C
‖y − z‖2

∣
∣
∣ ≤ ε? (7)

Taking into account (6), suppose that the weight coefficient g(x) at the
sums in the inequality (7) of the united problem is 1/x2 for Problem 1, 1/x for
Problem 2 and 1 for Problem 3, where x is the cardinality of the corresponding
cluster.

We prove the NP-completeness of Problem Π(g(x)) for each function g(x)
from the set { 1

x2 , 1
x , 1} using the following well-known NP-complete variant of

the classical problem Bipartition [17] that can be stated as follows.

Problem BEP (Bipartition with Equal Parts). Given a multiset of 2K non-
negative integers a1, . . . , a2K , whose sum is equal to 2W . Question: is there a
bipartition of this set into two multisubsets of K elements each such that the
sum of the elements in each subset would be W?

The following theorem is true.

Theorem 1. For every function g(x) ∈ { 1
x2 , 1

x , 1} Problem Π(g(x)) is NP-
complete.

Proof. Consider an arbitrary instance of Problem BEP, i. e. the multiset A =
{a1, . . . , a2K}, whose elements sum up to 2W . We may assume that K > 3 and
W ≥ 9 since otherwise the problem can be solved in linear time using brute force
or dynamic programming, respectively.

Put ε = 1/(3K) and choose rational numbers bi, i = 1, . . . , 2K, satisfying
the inequalities √

ai ≤ bi ≤ √
ai + δ, (8)

where
δ =

ε

K(K − 1)Wg(K)
. (9)

Construct an instance of Problem Π(g(x)) by the input of Problem BEP
in the following way. Put N = 2K, d = 4K, Y = {y1, . . . , y2K}, where for
all i = 1, . . . , 2K the point yi contains M > 0 (a rational parameter) in the
component i and bi in the component 2K + i, and all other components of this
point are 0.

The values of the parameter M will be determined later depending on the
function g(x) ∈ { 1

x2 , 1
x , 1}.
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Observe some properties of the elements from the family Y of points in the
obtained instance of Problem Π(g(x)).

Property 1. Assume that a subset I ⊂ {1, . . . , 2K} contains the indices of
points from the cluster C ⊂ Y. Then points from C satisfy the following
inequality:

∑

y∈C

∑

z∈C
‖y − z‖2 = 2|C|(|C| − 1)M2 + 2(|C| − 1)

∑

i∈I

b2i , (10)

that follows from the fact that in the constructed instance for every i �= j, clearly,

‖yi − yj‖2 = 2M2 + b2i + b2j .

Now note that due to (8) the bound

ai ≤ b2i ≤ ai + δ2 + 2δ
√

ai ≤ ai + δ(δ + 2
√

2W ) ≤ ai + Wδ (11)

is true since W > δ + 2
√

2W when W ≥ 9 and δ < 1
2 .

Summing up inequalities (11), we obtain

Property 2. For the sum of the squares of the elements coordinates (8) the
bound

2K∑

i=1

b2i ≤ 2W + 2KWδ = 2W (1 + Kδ) (12)

holds.

Property 3. For every bipartition of the set I = {1, . . . , 2K} of indices into
the subsets I1, I2 of the same cardinality K the inequalities
∣
∣
∣

∑

i∈I1

ai −
∑

i∈I2

ai

∣
∣
∣ − KWδ ≤

∣
∣
∣

∑

i∈I1

b2i −
∑

i∈I2

b2i

∣
∣
∣ ≤

∣
∣
∣

∑

i∈I1

ai −
∑

i∈I2

ai

∣
∣
∣ + KWδ (13)

are true, since
∑

i∈I1

ai ≤
∑

i∈I1

b2i ≤
∑

i∈I1

ai + KWδ

and ∑

i∈I2

ai ≤
∑

i∈I2

b2i ≤
∑

i∈I2

ai + KWδ

according to (11).

Assume now that a subset I1 ⊂ I contains the indices of the points from C,
and a subset I2 = I \ I1 contains the indices of the points from Y \ C and that
|I1| = c. Then in Problem Π(g(x)) inequality (7) for x = c due to (10) takes the
following form:

∣
∣
∣

(

c(c − 1)g(c) − (2K − c)(2K − c − 1)g(2K − c)
)

M2

+ (c − 1)g(c)
∑

i∈I1

b2i − (2K − c − 1)g(2K − c)
∑

i∈I2

b2i

∣
∣
∣ ≤ ε. (14)
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If a bipartition of the multiset A into two required subsets exists in Problem
BEP then for the corresponding subsets of indices the equalities

c = |I1| = |I2| = K (15)

and ∑

i∈I1

ai =
∑

i∈I2

ai (16)

hold. Then substituting (15) into (14) and taking into account (13) and (16),
observe that for satisfying inequality (7) in Problem Π(g(x)) it is sufficient that

(K − 1)g(K)
∣
∣
∣

∑

i∈I1

b2i −
∑

i∈I2

b2i

∣
∣
∣ ≤ K(K − 1)g(K)Wδ ≤ ε,

which is true if equality (9) holds.
So, if the required bipartition exists in Problem BEP then in Problem

Π(g(x)) the desired clustering also exists if the parameter δ is chosen as in (9).
For proving the opposite implication, indicate the value of the parameter M

for each of the three functions g(x) ∈ { 1
x2 , 1

x , 1} in the united Problem Π(g(x)).
Consider three cases.

I. If g(x) = 1 (which corresponds to Problem 3) then (9) implies

δ =
ε

K(K − 1)W
.

Inequality (14) in Problem Π(g(x)) turns into

ε ≥
∣
∣
∣(4Kc − 4K2 + 2K − 2c)M2 + (c − 1)

∑

i∈I1

b2i − (2K − c − 1)
∑

i∈I2

b2i

∣
∣
∣.

Due to (12), estimating the sum module on the right-hand side of this inequality
gives

ε ≥ |2(K − c)(1 − 2K)M2| − (c − 1)
∑

i∈I1

b2i − (2K − c − 1)
∑

i∈I2

b2i

≥ 2|K − c|(2K − 1)M2 − 4KW (Kδ + 1) ≥ |K − c|M2 − 4KW (Kδ + 1),
(17)

since 2(2K − 1) > 1.
Choose the parameter M so that

M2 > ε + 4KW (Kδ + 1).

Then the coefficient at M2 in the right-hand side of (17) must be 0. Indeed, if
K �= c then |K − c| ≥ 1, and it follows from inequality (17) that

ε ≥ M2 − 4KW (Kδ + 1) > ε,

a contradiction. So, |K − c| = 0, and hence, K = c.
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Further, since the elements of the multiset A are integer, if in Problem BEP
∑

i∈I1

ai �=
∑

i∈I2

ai, (18)

then ∣
∣
∣

∑

i∈I1

ai −
∑

i∈I2

ai

∣
∣
∣ ≥ 1. (19)

Therefore, it follows from (14) in view of (13) that

ε ≥ (K − 1)
∣
∣
∣

∑

i∈I1

b2i −
∑

i∈I2

b2i

∣
∣
∣ ≥ (K − 1)(1 − KWδ) = K − 1 − ε,

contradicting with the condition ε = 1
3K . Therefore, in Problem BEP equality

(16) holds.
II. If g(x) = 1/x (which corresponds to Problem 2), then (9) gives

δ =
ε

(K − 1)W
.

Inequality (14) becomes

ε ≥
∣
∣
∣(c − 1 − (2K − c − 1))M2 +

c − 1
c

∑

i∈I1

b2i − 2K − c − 1
2K − c

∑

i∈I2

b2i

∣
∣
∣.

Estimating the sum module on the right-hand side of this inequality using (12)
gives

ε ≥ |2(c − K)|M2 −
2K∑

i=1

b2i ≥ 2|K − c|M2 − 2W (Kδ + 1). (20)

Let the parameter M satisfy the inequality

M2 > ε + 2W (Kδ + 1).

Under this choice of M due to (20) we have K = c, as in the case I.
Similarly to the considered case I, if in Problem BEP there is inequality (18)

then (19) holds. Therefore, (14) together with (13) gives

ε ≥ K − 1
K

∣
∣
∣

∑

i∈I1

b2i −
∑

i∈I2

b2i

∣
∣
∣ ≥ K − 1

K
(1 − KWδ) =

K − 1
K

− ε,

that contradicts the conditions ε = 1
3K and K > 3. Therefore, in Problem BEP

equality (16) holds, as in the case I.
III. Finally, if g(x) = 1/x2 (which corresponds to Problem 1) due to (9) we

have
δ =

Kε

(K − 1)W
.
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Moreover, inequality (14) has form

ε ≥
∣
∣
∣

(c − 1
c

− 2K − c − 1
2K − c

)

M2 +
c − 1
c2

∑

i∈I1

b2i − 2K − c − 1
(2K − c)2

∑

i∈I2

b2i

∣
∣
∣.

Due to (12), estimating the sum module on the right-hand side of this inequality
gives

ε ≥
∣
∣
∣

2(K − c)
c(2K − c)

∣
∣
∣M2 −

2K∑

i=1

b2i ≥ |K − c|
2K2

M2 − 2W (Kδ + 1). (21)

Introduce the parameter M so that

M2 > 2K2(ε + 2W (Kδ + 1)).

Then it follows from (21) that K = c, as in the cases I and II.
Next, as in the cases I and II above, if in Problem BEP inequality (18) holds,

then it implies (19). Therefore from (14) in view of (13) we have

ε ≥ K − 1
K2

∣
∣
∣

∑

i∈I1

b2i −
∑

i∈I2

b2i

∣
∣
∣ ≥ K − 1

K2
(1 − KWδ) =

K − 1
K2

− ε,

i. e. K − 1 ≤ 2K2ε = 2K/3, a contradiction with K > 3. Therefore, in Problem
BEP equality (16) holds, as in the cases I and II.

So, in Problem Π(g(x)) for each function g(x) ∈ { 1
x2 , 1

x , 1} inequality (7)
yields the existence in Problem BEP a partition of the set A into two subsets
of equal cardinality having the same sums of the elements. 	


Theorem 1 and equality (6) immediately imply the following main result of
this paper:

Corollary 1. Problems 1–3 are NP-complete.

Clearly, the considered Problems 1–3 can be generalized into the case when the
number of clusters is more than 2. In this case the question is whether the input
set can be partitioned in such a way that corresponding inequalities (1), (2)
and (3) would hold for all pairs of clusters. It is evident that if the number of
clusters is a part of input data then these generalizations are also NP-complete.
The complexity status of the parametrized case (when the number of clusters is
a fixed parameter, i.e. not a part of input data) remains open for these problems.

4 Conclusion

In this paper, we have proved the NP-completeness of some quadratic Euclidean
2-partition problems of a finite set of points into balanced clusters. In addi-
tion, we have shown the close connection between these problems and some
important application in Data analysis, Data mining and Statistics. Construct-
ing algorithms with guaranteed performance for these problems is a matter of
immediate prospects.



136 A. Kel’manov et al.

Acknowledgments. The research was supported by the Russian Foundation for Basic
Research, projects 19-01-00308 and 18-31-00398, by the Russian Academy of Science
(the Program of basic research), projects 0314-2019-0015 and 0314-2019-0014, and by
the Russian Ministry of Science and Education under the 5–100 Excellence Programme.

References

1. Aggarwal, C.C.: Data Mining: The Textbook. Springer, Switzerland (2015).
https://doi.org/10.1007/978-3-319-14142-8

2. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd
edn. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

3. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn.
Morgan Kaufmann, Burlington (2012)

4. Shirkhorshidi, A.S., Aghabozorgi, S., Wah, T.Y., Herawan, T.: Big data clustering:
a review. LNCS 8583, 707–720 (2014)

5. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-
of-squares clustering. Mach. Learn. 75(2), 245–248 (2009)

6. Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar k-means problem is
NP-hard. Theor. Comput. Sci. 442, 13–21 (2012)

7. Arora, S., Raghavan, P., Rao, S.: Approximation schemes for Euclidean k-medians
and related problems. In: Proceedings of the 30th Annual ACM Symposium on
Theory of Computing, pp. 106–113 (1998)

8. Papadimitriou, C.H.: Worst-case and probabilistic analysis of a geometric location
problem. SIAM J. Comput. 10(3), 542–557 (1981)

9. Masuyama, S., Ibaraki, T., Hasegawa, T.: The computational complexity of the
m-center problems in the plane. IEEE Trans. IECE Jpn 64(2), 57–64 (1981)

10. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem.
Math. Oper. Res. 10(2), 180–184 (1985)

11. Aggarwal, H., Imai, N., Katoh, N., Suri, S.: Finding k points with minimum diam-
eter and related problems. J. Algorithms 12(1), 38–56 (1991)

12. Brucker, P.: On the complexity of clustering problems. Lect. Notes Econ. Math.
Syst. 157, 45–54 (1978)

13. Indyk, P.: A sublinear time approximation scheme for clustering in metric space.
In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 154–159 (1999)

14. Hansen, P., Jaumard, B., Mladenovich, N.: Minimum sum of squares clustering in
a low dimensional space. J. Classification 15, 37–55 (1998)

15. Hansen, P., Jaumard, B.: Cluster analysis and mathematical programming. Math.
Programm. 79, 191–215 (1997)

16. Snedecor, G.W., Cochran, W.G.: Statistical Methods, 8th edn. Iowa State Univer-
sity Press, Iowa (1989)

17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

https://doi.org/10.1007/978-3-319-14142-8
https://doi.org/10.1007/978-0-387-84858-7


An Approximate Solution of a GNSS
Satellite Selection Problem

Using Semidefinite Programming
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Abstract. When processing multiple navigation satellite systems,
including GPS, GLONASS, Galileo, Beidou, QZSS, the overall number
of the pseudorange and carrier phase signals can exceed several tens.
On the other hand, a much smaller number of them is usually suffi-
cient to achieve necessary precision of positioning. Also, some parts of
precise positioning algorithms, like carrier phase ambiguity resolution,
are very sensitive to the problem dimension as they include the integer
search. To reduce computational cost of positioning, the optimal choice
of signals involved in computations should be performed. Optimization
is constrained by a given number of satellite signals to be chosen for
processing. This optimization problem falls into the class of binary opti-
mization problems which are hard for precise solution. In this paper, we
present approaches to an approximate solution of the optimal selection
problem. After the linear relaxation of binary constraints, the relaxed
problem is convex and can be transformed to semidefinite programming
or second-order cone programming problems. The optimal solution of the
relaxed problem can be considered as a lower bound of a combinatorial
optimization problem. After rounding non-integer variables the approxi-
mate solution is obtained. As a result, two-sided bounds of the optimum
are obtained. In practice, the approximate solution is very close to pre-
cise solution for most real world cases. Because the relaxed problem is
convex, it can be solved efficiently.

Keywords: GNSS navigation · Second-order cone programming ·
Semidefinite programming · Satellite selection · GDOP

1 Introduction

Simultaneous processing of multiple Global Navigation Satellite Systems (GNSS)
including multiple frequency bands leads to necessity to process a huge number of
signals. The overall number of the range and carrier phase signals to be used can
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exceed several tens, while a much smaller number of signals provides sufficient
quality of positioning. Computational cost of positioning is limited from below
by the most computationally consuming part of calculations which is either the
matrix inverse, or the Cholesky factorization, or other matrix factorization, all
are cubically dependent on dimensions. Integer search involved into carrier phase
ambiguity resolution is part of high precision positioning. It means that the
computational complexity of high precision positioning increases dramatically
as the number of signal increases. Thus, the problem of choosing the optimal
subset of satellites with a total number not exceeding certain value arises.

A set of satellites that is currently used for positioning often refers to as
the “satellite constellation”. All constellations can be evaluated by metric called
GDOP (Geometric dilution of precision). GDOP reflects the influence of the
geometry of satellites and satellite clocks on positioning accuracy. It depends on
the number of satellites and their distribution in the sky. GDOP is defined by
the formula

GDOP =
√

trace(HTH)−1, (1)

where H is the matrix of directional cosines to the satellites. Let n satellites
be observed and a parameter m is chosen, m < n. The problem is to find a
constellation of no more than m satellites with minimal GDOP. Assume that
all visible satellites are numbered from 1 to n and a variable xs, s = 1, . . . , n
is equal to one if the satellite with the index s is used and is equal to zero
otherwise. The s-th row of matrix H consists of direction cosines to the satellite
s and its time characteristics. If J is the number of GNSS systems that is used
then p = J + 3 is the number of elements in each row of H. At least p satellites
must be chosen for positioning. For one satellite system the selection problem
can be formulated as follows.

Problem 1.
min

x1,...,xn

trace(HTdiag(x1, ..., xn)H)−1 (2)

subject to
xs ∈ {0, 1}, s = 1, 2, . . . , n, (3)

p ≤
n∑

s=1

xs ≤ m. (4)

The solution of the binary optimization problem 1 can be found by exhaustive
search. For single satellite system (for example, for GPS only), GDOP always
decreases with adding a new satellite to the constellation, see [11]. Therefore the
condition (4) can be replaced by

n∑
s=1

xs = m. (5)

In multi-constellation case, where two or more GNSS systems are used, the
matrix H has different dimensions that depend on the number of GNSS-systems.
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Then for two GNSS systems, for example, GPS and GLONASS, the satellite
selection process can be implemented as follows.

1. Obtain the optimal solution of the Problem 1 for GPS and GLONASS satel-
lites with additional conditions that at least one satellite from each systems
is used.

2. Solve the problem 1 for the case of GPS satellites.
3. Solve the problem 1 for the case of GLONASS satellites.
4. Choose the solution from steps 1–3 with minimal GDOP.

In [10], it was proved that the adding the new satellite from GNSS-system that is
used always decreases GDOP. But if this GNSS-system is not used then GDOP
always grows. For this reason in steps 1–3 we solve the problem 1 under condition
(5) that allows to reduce the computational complexity. But if the number of
satellites in single systems is less than m and more than p, we must choose all
satellites from this single system.

Assume that the receiver observes n = 20 satellites from one system (for
example) and m = 10. Then, 184756 constellations must be tried. An effective
closed-form formula for GDOP computation that is introduced in [3] allows to
calculate square of GDOP for one constellation by 152 floating point operations.
As result, we need to carry out more than 28 millions of floating point operations.
For n = 30 it is more than 4 billions operations. It can be not suitable for real-
time applications.

Approximate methods of the satellite selection have been considered in the
recent literature. Some methods, for example, [6,7] are based on the information
about elevation angles and azimuths of satellites. In [9] the linear cost function
based on the directions of satellites was introduced. The method presented in
[4] is based on the hypothesis that optimal subset of satellites with size k tends
to share most elements with an optimal subset with size (k − 1).

All known methods do not provide guaranteed lower and upper bounds of
the optimal value. Some methods can be used only for definite parameter m or
only for particular number J of GNSS systems. In this paper we introduce the
method that use m and J as parameters of the problem. Due to linear relaxation
the proposed method yields the upper bound of the approximate solution error,
which is very small in practical testing.

2 Proposed Method

In proposed method we use a linear relaxation of binary constraints. Then,
the relaxed problem can be transformed to semidefinite programming (SDP) or
second-order cone programming problems (SOCP) and we can use primal-dual
interior-point methods for the relaxed problem. After rounding the solution of
the relaxed problem, we obtain an approximate solution of the satellite selection
problem.
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2.1 Linear Relaxation

First, Problem 1 is relaxed into a linear problem by replacing the binary con-
straint (3) by

xs ∈ [0, 1], s = 1, 2, . . . , n. (6)

Constraints (6) are weaker than (3), but (6) together with (5) (or (4)) defines
the convex set.

Then we reformulate the original problem as one of the standard convex
optimization problems: semidefinite programming (SDP) or second-order cone
programming (SOCP). We denote by ej ∈ Rp the unit column vector with j-th
entry being one and all other zero entries.

2.2 SDP Problem

Let M � 0 means that the real-valued symmetric matrix M is positively semidef-
inite. Let X = diag(x1, ..., xn). Consider the following convex optimization
problem

Problem 2.

min
x1,...,xn,q1,...,qp

p∑
j=1

qj (7)

subject to (6), (5), and
[

HTXH ej
eTi qj

]
� 0 ∀j = 1, ..., p. (8)

with q1, . . . , qp being auxiliary scalar variables.

Proposition 1. Let (x∗
1, . . . , x

∗
n, q∗

1 , . . . , q
∗
p) be the optimal solution of the

problem 2. Then (x∗
1, . . . , x

∗
n) is the optimal solution of the problem (2) subject

to (6) and (5).

Proof. Note, that

trace(HTXH)−1 =
p∑

j=1

eTj (HTXH)
−1

ej (9)

Let auxiliary variables q1, . . . , qp satisfy conditions

qj ≥ eTj (HTXH)
−1

ej , j = 1, ..., p. (10)

Then minimization of (7) is equivalent to minimization of (2). Matrix HTXH is
nonsingular because H is the matrix of directional cosines and x1, ..., xn satisfy
the conditions (6) and (5). Note that the Schur’s Lemma (see [1]) guarantees
that (8) is equivalent to (10).

��
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2.3 SOCP Problem

Consider another convex optimization problem with wj and tjs being auxiliary
vectors and scalars respectively:

Problem 3.

min
xs, wj , tjs, j=1,...,p, s=1,...,n

p∑
j=1

n∑
s=1

tjs (11)

subject to (6), (5), and

HTwj = ej , wj = (wj1, . . . , wjn)T , j = 1, . . . , p, (12)
∥∥∥∥

2wjs

xs − tjs

∥∥∥∥ ≤ xs + tjs, j = 1, . . . , p, s = 1, . . . , n. (13)

Proposition 2. Let (x∗
1, . . . , x

∗
n, w∗

1 , . . . , w
∗
p, t

∗
11, . . . , t

∗
pn) be the optimal solution

of problem 3. Then (x∗
1, . . . , x

∗
n) is the optimal solution of problem (2) subject to

(6) and (5).

Proof. Denote vj = (HTXH)−1ej , vj ∈ Rp, j = 1, . . . , p. Using (9) the problem
(2) with constraints (6) and (5) can be reformulated as follows:

min
xs, vj , j=1,...,p, s=1,...,n

p∑
j=1

vT
j HTXHvj (14)

subject to (6), (5), and

vj = (HTXH)−1ej , j = 1, . . . , p. (15)

Define wj = XHvj , wj ∈ Rn, j = 1, . . . , p. The previous problem can be trans-
formed to

min
xs, wj , j=1,...,p, s=1,...,n

p∑
j=1

wT
j X−1wj (16)

subject to (6), (5),
HTwj = ej , j = 1, . . . , p, (17)

wj = XHvj , j = 1, . . . , p. (18)

The same way as it is done in works [1,5] we assume that if xs = 0 then w2
js/xs

is treated as zero if wjs = 0 and as ∞ otherwise. The conditions (18) can be
omitted. To show this we fix xs = x∗

s, s = 1, . . . , n where x∗
s is part of optimal

solution of problem (16) with conditions (6), (5), (15), and (18). The following
problem

min
wj , j=1,...,p

p∑
j=1

wT
j (X∗)−1wj (19)
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subject to
HTwj = ej , j = 1, . . . , p, (20)

is completely determined by the solution of p problems

min
wj

wT
j (X∗)−1wj (21)

subject to
HTwj = ej , (22)

for each j. the Karush–Kuhn–Tucker (KKT) conditions for the optimal solution
w∗

1 , . . . , w∗
p of the p problems (21) with (22) guarantee that there are vectors

νj ∈ Rp such that

1
2
(X∗)−1w∗

j + Hνj = 0, j = 1, . . . , p. (23)

Having vj = −2νj we conclude that conditions (18) are always satisfied for the
optimal solution of the (14) with (6), (5), and (17). Let introduce new variables
tjs, j = 1, . . . , p, s = 1, . . . , n such that

tjs ≥ w2
js

xs
, j = 1, . . . , p, s = 1, . . . , n. (24)

Then the problem (14) with constrains (6), (5), and (17) can be written as

min
xs, wj , tjs, j=1,...,p, s=1,...,n

p∑
j=1

n∑
s=1

tjs (25)

subject to (6), (5) and (24). Finally, using (6) and (24) we notice that condition
∥∥∥∥

2wj,s

xs − tjs

∥∥∥∥ ≤ xs + tjs, j = 1, . . . , p, s = 1, . . . , n (26)

is equivalent to

4w2
js + (xs − tjs)2 ≤ (xs + tjs)2, j = 1, . . . , p, s = 1, . . . , n (27)

because tjs ≥ 0, xs ≥ 0 due to (6) and (24). Then (24) can be replaced by (26),
and we arrive at the problem 3.

��

2.4 Selection Algorithm

For J GNSS systems the proposed algorithm supposes calculation of GDOP for
suboptimal subsets for each combination of systems. For example, in case of GPS
and GLONASS (J = 2) we need to analyse constellations with only GPS satel-
lites, constellations with only GLONASS satellites and GPS-GLONASS multi-
constellations. In general case 2J − 1 subsets of GNSS systems is needed to
investigate in following order.
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1. Obtain the solution of problems 2 or 3 for each combination of GNSS systems
with the additional condition that at least one satellite from each systems is
selected.

2. Chose m satellites with maximum xs in each case, and calculate GDOP of
the solution.

3. Choose the solution with minimal GDOP.

2.5 Upper Bound of GDOP Error

Define
φ(x) =

√
trace(HTXH)−1, X = diag(x1, ..., xn). (28)

Let x̃ be the value of the satellite selection vector x obtained by solving the
relaxed problems 2 or 3 and x̂ is the value of the satellite selection vector obtained
after rounding. The exact optimal solution is denoted x∗. Then φ(x̂) is GDOP
of the approximate solution and φ(x∗) is GDOP of the accurate solution. Due
to the fact that the value of the objective function for the optimal solution of
the relaxed minimization problem is always either less than or equal to such a
value for the original binary optimization problem, we have

φ(x̃) ≤ φ(x∗). (29)

The approximate method produces the solution with the same or higher GDOP
value than the optimal solution. Then

φ(x∗) ≤ φ(x̂). (30)

Finally we have
φ(x̃) ≤ φ(x∗) ≤ φ(x̂). (31)

Let Δ be the approximate solution error defined as

Δ = φ(x̂) − φ(x∗). (32)

Define also the gap between relaxed and approximate solutions as

Δ̃ = φ(x̂) − φ(x̃). (33)

Then we have
Δ ≤ Δ̃. (34)

3 Experimental Study

Data was processed on PC with the Intel Core i5-3230M CPU 2.60 GHz proces-
sor. The data were collected within 12 h. The number of satellites varied from
12 to 20. SCS algorithm [8] was used to solve SDP problems. ECOS algorithm
[2] was applied for SOCP problems.
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3.1 Results for One Epoch

The results of satellite selection for one epoch are shown in Figs. 1 and 2. The
satellites constellation plots are shown in polar coordinates ρ and θ that both are
measured in degrees. The value θ ∈ [0◦, 360◦] is the satellite location azimuth in
projection to the local horizon. The value ρ is defined as follows: ρ = 90◦ − α,
where α ∈ [0◦, 90◦] is the satellite elevation angle. The coordinates origin cor-
responds to the zenith position of the satellite. The satellites with low elevation
angles (α ≈ 0◦) are located on a circle of the radius close to ρ = 90◦. The
plots show the position of GPS and GLONASS satellites at one epoch (time
instant); 11 GPS satellites and 8 GLONASS satellites were observed. Red cir-
cles and triangles represents selected GPS and GLONASS satellites. Blue circles
and triangles constitute GPS and GLONASS satellites that are not chosen for
positioning.

Fig. 1. The satellites constellation plots for m = 7. (Color figure online)

For m = 7 the best solution and the approximate solution are identical. In
this case only GPS satellites must be chosen. Therefore the calculation for single
GNSS system must be carried out. Moreover, if we use the random choice of
satellites, we can obtain the worse solution with GDOP = 70.334. This constel-
lation provides the unacceptable accuracy of positioning because GDOP > 20.

In case of m = 8 the exact solution and the approximate solution do not
match. However the difference between GDOP of the constellations does not
exceed 0.01. Then the positioning accuracy is the same. Furthermore, GDOP of
the worse solution is more then 20. So random selection of 8 satellites can lead
to unsatisfactory positioning results.
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Fig. 2. The satellites constellation plots for m = 8. (Color figure online)

3.2 Accuracy Evaluation

The following Table 1 summarizes the accuracy results for different m taking
values from 6 to 10. Second column shows the percent of cases where approximate
solution coincided with the precise one. Next two columns show maximum value
of Δ and its root mean square (RMS) value. Then follows two columns with the
maximum and RMS values for Δ̃.

Table 1. Results of accuracy testing.

m % Δmax Δrms
˜Δmax

˜Δrms

6 77.8 0.20 0.0364 0.37 0.0888

7 75.3 0.21 0.0355 0.29 0.0703

8 78.9 0.10 0.0117 0.15 0.0358

9 81.5 0.16 0.0150 0.19 0.0271

10 80.7 0.07 0.0070 0.09 0.0184

Results show very good accuracy performance of the proposed algorithms.
The following three figures Figs. 3, 4 and 5 show plots of the Δ and Δ̃ values for
three cases: m = 6, 8, 10.
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3.3 Calculation Time Evaluation

The required computation time in seconds is presented in the Figs. 6 and 7 for
the cases m = 6 and m = 10 respectively. Both figures allow a comparison
of computation time of SDP and SOCP algorithms with the exhaustive search
time.

Fig. 3. The error and gap plots for m = 6.

Fig. 4. The error and gap plots for m = 8.
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Fig. 5. The error and gap plots for m = 10.

Fig. 6. Computation time comparison for m = 6.



148 L. Rapoport and T. Tormagov

Fig. 7. Computation time comparison for m = 10.

4 Conclusion

It is shown that the problem of optimal selection of the satellites chosen for
positioning can be approximately solved by convex programming methods. The
solution of this problem is required in real-time GNSS navigation. The real
data processing allows one to conclude that the accuracy of the two proposed
methods is pretty high (the Δ value is low). Also, the calculation time of the
two methods (especially SOCP) is quite low which allows to implement it in the
real time calculations. Proposed algorithm allow us reduce the satellite selection
time dramatically. Further work is aimed at conducting experiments to evaluate
the performance of these methods at various receivers.
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Abstract. We study a stylized vertical distribution channel where a
representative manufacturer sells a single kind of good to a represen-
tative retailer. The control of the manufacturer is the price discounts,
while the control of the retailer is pass-through. In the classical set-
ting, the arising problem is quadratic with respect to wholesale price
discount and pass-through. Thus, the optimal sale price is continuous.
It seems elegant mathematically but not adequate economically. There-
fore we assume that the controls are constant or piece-wise constant.
This way, the optimal control problem reduces to the mathematical pro-
gramming problem where the profit of the manufacturer is quadratic
with respect to price discount level(s), while the profit of the retailer
is quadratic with respect to pass-through level(s). We study the con-
cavity property of the profits. This allows getting the optimal behavior
strategies of the manufacturer and the retailer.

Keywords: Retailer · Piece-wise constant pricing · Concavity · Sale
motivation

1 Introduction

To earn a reasonable profit the members of a distribution channel often adopt
rather simple pricing techniques. For example, manufacturers may use cost-plus
pricing, simply defining the price to be added to the desired profit margin to
(variable) production costs; similarly, retailers very often use to determine shelf
prices adding a fixed percentage markup to the wholesale price.

We study dynamic marketing model based on the ideas of [1–3]. The paper
[4] should be recognize as the first unit work in this direction. Among many
works on this subject, let us note [5–11].

In [1] we consider the concept of retailer’s motivation, with the stimulation
of the retailer (wholesale discount) as the manufacturer’s control α(t). We study
the case when the retailer’s pass-through β(t) is constant and maximize the
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manufacturer’s profit with respect to α(t). Instead, in [2] we study the case
when α(t) is constant and maximize the retailer’s profit with respect to β(t).

Note that in [1,2], the arising problem is quadratic with respect to wholesale
price discount or pass-through. Thus, the optimal sale price is continuous. It
seems elegant mathematically but not adequate economically. Indeed, it seems
strange when the discounts (and therefore the prices) change continuously. In
practice, the prices are piece-wise constant.

Therefore now we assume that the controls are constant or piece-wise con-
stant1. This way, the optimal control problem reduces to the mathematical pro-
gramming problem where the profit of the manufacturer is quadratic with respect
to price discount level(s), while the profit of the retailer is quadratic with respect
to pass-through level(s). In [3] we study the case of constant wholesale price dis-
counts and constant pass-through.

The presented paper is devoted to the development of [3]. The first question
is the concavity property of the profits2. This allows getting the optimal behavior
strategies of the manufacturer and the retailer.

We prove the strict concavity of the retailer’s profit with respect to pass-
through levels for any fixed number of (known) switches.

2 Two Marketing Models

2.1 Pricing

As in [1] and [2], let us consider a vertical distribution channel. There are a
manufacturer, retailer and consumer on the market. The firm produces and
sells a single product during the time period [t1, t2]. Let p be the unit price in a
situation where the firm sells the product directly to the consumer, bypassing the
retailer, p > 0. To increase its profits, the firm uses the services of a retailer. To
encourage the retailer to sell the commodity, the firm provides it with wholesale
discount α(t) ∈ [A1, A2] ⊂ [0, 1]. Thus, the wholesale price of the goods is
pw(t) = (1 − α(t))p. In turn, the retailer directs pass-through, i.e., a part β(t) ∈
[B1, B2] ⊂ [0, 1] of the discount α(t) to reduce the market price of the commodity.
Therefore, the retail price of the commodity is equal to (1 − β(t)α(t))p. Then
the difference between retail price and wholesale price is the retailer’s profit per
unit from the sale and equals α(t)(1 − β(t))p. Thus, the pricing process can be
schematically represented as

p −→ pw = (1 − α)p = (1 − βα)p − (1 − β)αp. (1)
1 Note that we consider the case when time switches of discount levels are fixed and

known. It seems realistic. Indeed, the periods of discounts usually are known. For
example, Christmas sales, Winter sales. But, of course, it is possible to consider the
situation with non-fixed switches of discount levels.

2 Note that although the profits are quadratic with respect to price discount and
pass-through level(s), their concavity is especially important. It is quite appropriate
to recall the classic [12]: “Quadratic programming with one negative eigenvalue is
NP-hard”.
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2.2 Profits and Motion

Let x(t) be a state variable represented the accumulated sales during the period
[t1, t] while c0 be a unit production cost.

At the end of the selling period, due to (1), the total profit of the firm is

Πm =

t2∫

t1

(pw(t) − c0) ẋ(t)dt, (2)

while the total profit of the retailer is

Πr = p

t2∫

t1

ẋ(t)α(t)(1 − β(t))dt. (3)

We assume that the motivation of the retailer is determined by the state variable
M(t), and its dynamics is given by the differential equation3

Ṁ(t) = γẋ(t) + ε (α(t) − α) .

The dynamics of the total amount of goods sold, x(t), is determined by the
differential equation4

ẋ(t) = −θx(t) + δM(t) + ηα(t)β(t).

2.3 Maximization of Manufacturer’s Profit Under Constant
Pass-Through

In [1] we studied the case with constant β(t) = β and maximized the manufac-
turer’s profit w.r.t. α(t). Let us denote ηβ = ηβ. This way the problem is5

Manufacturer Problem:

Πm −→ maxα

ẋ(t) = −θx(t) + δM(t) + ηβα(t),
Ṁ(t) = γẋ(t) + ε (α(t) − α) ,
x(t1) = 0, M(t1) = M > 0,
α(t) ∈ [A1, A2] ⊂ [0, 1].

3 As in [2], γ > 0 is the sales productivity in terms of motivation, ε > 0 is the discount
productivity in terms of motivation. Parameter α ∈ [A1, A2] takes into account
the fact that the retailer has some expectations about the wholesale discount: the
motivation is reduced if the retailer is dissatisfied with the wholesale discount, i.e.,
if α(t) < α; on the contrary, the motivation increases if α(t) > α. .

4 θ > 0 is the saturation parameter of the market, δ > is the retailer’s selling skill,
η > 0 is the discount productivity in terms of sales (the market sensitivity to shelf
price discounts).

5 M > 0 is the initial motivation of the retailer.
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2.4 Maximization of Retailer’s Profit Under Constant Wholesale
Discount

In [2] we studied the case with constant α(t) = α and maximized the retailer’s
profit w.r.t. β(t). Let us denote ηα = ηα. This way the problem is

Retailer Problem:
Πr −→ maxβ

ẋ(t) = −θx(t) + δM(t) + ηαβ(t),
Ṁ(t) = γẋ(t) + ε (α − α) ,
x(t1) = 0, M(t1) = M > 0,
β(t) ∈ [B1, B2] ⊂ [0, 1].

3 Maximization of Manufacturer’s and Retailer’s Profits

Let us address on the Manufacturer-Retailer Problem defined by the objective
functionals Πm and Πr:

Manufacturer-Retailer Problem:

Πm −→ maxα

Πr −→ maxβ

ẋ(t) = −θx(t) + δM(t) + ηα(t)β(t),
Ṁ(t) = γẋ(t) + ε (α(t) − α) ,
x(t1) = 0, M(t1) = M > 0,
α(t) ∈ [A1, A2] ⊂ [0, 1],
β(t) ∈ [B1, B2] ⊂ [0, 1].

3.1 The Case: Wholesale Discount and Pass-Through Are Constant

In [3] we study the Manufacturer-Retailer Problem in a simplified framework in
which both controls must take a constant value in the whole time period [t1, t2]
and these values are decided at time t1. In this case the solution of problems
Manufacturer Problem and Retailer Problem becomes straightforward and allows
to obtain some properties of Manufacturer-Retailer Problem.

With constant controls α(t) = α ∈ [A1, A2] and β(t) = β ∈ [B1, B2] the
manufacturer’s profit is (cf. (2))

Πm = ΠM (α, β) = (q − pα)x(t2), (4)

where q = p − c0, while the profit of retailer is (cf. (3))

Πr = ΠR(α, β) = pα(1 − β)x(t2). (5)

The total volume of sales during [t1, t2], x(t2), depends explicitly on α and β:

x(t2) = (Hβ + L)α + K, (6)
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where

a = θ − γδ, (7)

T = a(t1 − t2), (8)

H =
η

a

(
1 − eT

)
, L = − δε

a2

(
1 − eT + T

)
, K =

δ

η
MH − αL. (9)

Under rather natural condition (the concavity of cumulative sales for constant
wholesale price, see details in [1–3]), we assume

a > 0. (10)

Then T < 0,H > 0, L > 0. Note that function (4) is quadratic and strictly
concave with respect to α, while function (5) is quadratic and strictly concave
with respect to β. It allows in [3] to describe and to study the equilibrium (Nash
and Stackelberg)6.

4 The Case: Wholesale Discount and Pass-Through Are
Piece-Wise Constant

Let for some t1 = τ0 < τ1 < . . . < τn < τn+1 = t2

α (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α1, t ∈ (τ0, τ1)
α2, t ∈ (τ1, τ2)
. . .

αn+1, t ∈ (τn, τn+1)

; β (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β1, t ∈ (τ0, τ1)
β2, t ∈ (τ1, τ2)
. . .

βn+1, t ∈ (τn, τn+1)

;

6 In particular, three Nash equilibria can be, namely
(
α0, β0

)
,

(
α+, β+

)
,

(
α−, β−)

,
where

α0 = 0, Hβ0 + L =
pK

q
,

α+ =
q(1 + Γ )

4p
, Hβ+ + L =

(H + L)(1 + Γ )

4
,

α− =
q(1 − Γ )

4p
, Hβ− + L =

(H + L)(1 − Γ )

4
,

Γ =
√

1 − 8pK
q(H+L)

.

Besides, when the manufacturer is leader, Stackelberg equilibrium can be (αm, βm),
where

αm =
q(H + L) − pK

2p(H + L)
=

q
(
7 + Γ 2

)

16p
, Hβm + L =

(H + L)
(
5 + 3Γ 2

)

2 (7 + Γ 2)
.
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i.e., α (t) = αi , β (t) = βi , t ∈ (τi−1, τi) , i ∈ {1, . . . n + 1} . Then, due to
continuity of space variables,

x (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 (t) , t ∈ [τ0, τ1]
x2 (t) , t ∈ [τ1, τ2]
. . .

xn+1 (t) , t ∈ [τn, τn+1]

; M (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M1 (t) , t ∈ [τ0, τ1]
M2 (t) , t ∈ [τ1, τ2]
. . .

Mn+1 (t) , t ∈ [τn, τn+1]

;

i.e.,
x (t) = xi (t) , M (t) = Mi (t) , t ∈ [τi−1, τi] , i ∈ {1, . . . n + 1} ,

where xi (t) and Mi (t) are the solutions of the systems7

ẋi(t) = −θxi(t) + δMi(t) + ηαiβi,

Ṁi(t) = γẋi(t) + ε (αi − α) ,
t ∈ [τi−1, τi] , i ∈ {1, . . . n + 1} ,
xi+1 (τi) = xi (τi) , i ∈ {1, . . . n} ,
Mi+1 (τi) = Mi (τi) , i ∈ {1, . . . n} .

We get (cf. (4) and (5))

Πm = p

n∑
i=1

(αi+1 − αi) xi (τi) + (q − αn+1p) x (t2) , (11)

Πr = p
n+1∑
i=1

(1 − βi) αi (xi (τi) − xi (τi−1)) . (12)

Therefore, we need the expressions for xi (τi) . Let8

K (t) = δM
a · (

1 − ea(t1−t)
)

+ αδε
a2 · (

1 − ea(t1−t) + a (t1 − t)
)
,

Hi (t) = η
a · (

1 − ea(τi−1−t)
)
, t ≥ τi−1 , i ∈ {1, . . . n + 1} ,

Li (t) = − δε
a2 · (

1 − ea(τi−1−t) + a (τi−1 − t)
)
, t ≥ τi−1 , i ∈ {1, . . . n + 1} ,

(cf. (9)). The Proposition below generalizes (6).

Proposition 1. For t ∈ [τi−1, τi] , i ∈ {1, . . . n + 1}
xi (t) = K (t) + (Hi (t) βi + Li (t)) αi

+
i−1∑
j=1

((Hj (t) − Hj+1 (t)) βj + Lj (t) − Lj+1 (t)) αj .

Proof. See Sect. 5.1.

To optimize the profits, we need first to study the concavity of the profits.
In this paper, we proof the strict concavity of function (12).

7 Note that x1 (τ0) = 0 while M1 (τ0) = M .
8 Definition of a see in (7). Due to (10), these formulas are well defined.
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4.1 Main Result: The Strict Concavity of Retailer’s Profit

Proposition 2. The retailer’s profit Πr is strictly concave with respect to pass-
through levels βi, i ∈ {1, . . . n + 1} .

Proof. See Sect. 5.2.

5 Proofs

5.1 Proof of Proposition 1

We use mathematical induction w.r.t. k, number of switches.
1. The base case. Let k = 0. In t ∈ [τ0, τ1] = [t1, t2] , consider the system

of differential equations

ẋ1 (t) = −θx1 (t) + δM1 (t) + ηα1β1,

Ṁ1 (t) = γẋ1 (t) + ε (α1 − α)

under the initial conditions

x1 (t1) = 0, M1 (t1) = M.

The solution is (cf. [3])

x1 (t) = − δε(α1−α)

a2 ·
(
1 + a (t1 − t) − ea(t1−t)

)
+ 1

a
· (

δM + ηα1β1

) (
1 − ea(t1−t)

)
,

M1 (t) = γx1 (t) + ε (α1 − α) (t − t1) + M.

Hence
x1 (t) = K (t) + (H1 (t) β1 + L1 (t)) α1,

where

K (t) = δM
a · (

1 − ea(t1−t)
)

+ αδε
a2 · (

1 − ea(t1−t) + a (t1 − t)
)
,

H1 (t) = η
a · (

1 − ea(t1−t)
)
, t ≥ t1 ,

L1 (t) = − δε
a2 · (

1 − ea(t1−t) + a (t1 − t)
)
, t ≥ t1 .

2. Inductive step. Assume that some unspecified value of k we get for
t ∈ [τk−1, τk] :

xk (t) = K (t) + (Hk (t) βk + Lk (t)) αk

+
k−1∑
j=1

((Hj (t) − Hj+1 (t)) βj + Lj (t) − Lj+1 (t)) αj .

Let us show that for t ∈ [τk, τk+1] :

xk+1 (t) = K (t) + (Hk+1 (t)βk+1 + Lk+1 (t)) αk+1

+
k∑

j=1

((Hj (t) − Hj+1 (t)) βj + Lj (t) − Lj+1 (t)) αj .
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In [τk, τk+1] , consider the system of differential equations

ẋk+1 (t) = −θxk+1 (t) + δMk+1 (t) + ηαk+1βk+1

Ṁk+1 (t) = γẋk+1 (t) + ε (αk+1 − α)

under the initial conditions

xk+1 (τk) = xk (τk) , Mk+1 (τk) = Mk (τk) .

Since
Mk+1 (t) = γ (xk+1 (t) − xk+1 (τk)) + ε (αk+1 − α) (t − τk) + Mk+1 (τk)

= γxk+1 (t) + ε (αk+1 − α) (t − τk) + Mk (τk) − γxk (τk) ,

we get

ẋk+1 (t) + axk+1 (t)

= δε (αk+1 − α) t + δ (−ε (αk+1 − α) τk + Mk (τk) − γxk (τk)) + ηαk+1βk+1.

So

xk+1 (t) = xk (τk) ea(τk−t) + δε
a

· (αk+1 − α)
(
t − τkea(τk−t)

)

+ 1
a

· (
δ
(−ε (αk+1 − α)

(
τk + 1

a

)
+ Mk (τk) − γxk (τk)

)
+ ηαk+1βk+1

) (
1 − ea(τk−t)

)

= xk (τk) ea(τk−t) + (Hk+1 (t) βk+1 + Lk+1 (t)) αk+1 − αLk+1 (t)

+ δ
a

· (Mk (τk) − γxk (τk))
(
1 − ea(τk−t)

)

= K (t) + (Hk+1 (t) βk+1 + Lk+1 (t)) αk+1

+
k∑

j=1

((Hj (t) − Hj+1 (t)) βj + Lj (t) − Lj+1 (t)) αj

+ δ
a

·
(

Mk (τk) − γxk (τk) − M − ε · (αj − α)
k∑

j=1

(τj − τj−1)

)
(
1 − ea(τk−t)

)
.

To finish the proof, we need to show that

Mk (τk) − γxk (τk) = M + ε · (αj − α)
k∑

j=1

(τj − τj−1) .

Indeed,

Mk (t) − γxk (t) = Mk (τk−1) − γxk (τk−1) + ε (αk − α) (t − τk−1) .

Hence
Mk (τk) − γxk (τk) = Mk−2 (τk−2) − γxk−2 (τk−2)

+ε (αk−1 − α) (τk−1 − τk−2) + ε (αk − α) (τk − τk−1) = . . .

= Mk−(k−1) (τ1) − γx1 (τ1) + ε
k∑

j=2

(αj − α) (τj − τj−1)

= M1 (t1) − γx1 (t1) + ε
k∑

j=1

(αj − α) (τj − τj−1) = M + ε
k∑

j=1

(αj − α) .
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5.2 Proof of Proposition 2

Due to (12), we get

∂2Πr

∂βi∂βj
=

⎧⎪⎪⎨
⎪⎪⎩

−2pαi

(
∂xi (τi)

∂βi
− ∂xi (τi−1)

∂βi

)
, i = j

−pαj

(
∂xj (τj)

∂βi
− ∂xj (τj−1)

∂βi

)
, i < j

(13)

Now let us write the elements of matrix (Πr)
′′ explicitly. Let

Ti = a (τi−1 − τi) < 0, i ∈ {1, . . . , n + 1}

(cf. (8)) and

si = 1 − eTi = 1 − ea(τi−1−τi) < 1, i ∈ {1, . . . , n + 1} .

Lemma 1. The elements of matrix (Πr)
′′ are

∂2Πr

∂βi∂βj
=

⎧⎪⎪⎨
⎪⎪⎩

−2pη

a
· si (αi)

2
, i = j

pη

a
· sisj

j−1∏
k=i+1

(1 − sk) αiαj , i < j

Proof. Due to Proposition 1,

−2pαi

(
∂xi(τi)

∂βi
− ∂xi(τi−1)

∂βi

)
= −2p (Hi (τi) − Hi (τi−1)) (αi)

2

= − 2pη
a · (

1 − eTi
)
(αi)

2 = − 2pη
a · si (αi)

2
.

Moreover, for i < j,

−pαj

(
∂xj(τj)

∂βi
− ∂xj(τj−1)

∂βi

)

= −p · (Hi (τj) − Hi+1 (τj) − Hi (τj−1) − Hi+1 (τj−1)) αiαj

= −pη
a · (−ea(τi−1−τj) + ea(τi−1−τj−1) + ea(τi−τj) − ea(τi−τj−1)

)
αiαj

= −pη
a ·

(
−e

∑j
k=i Tk + e

∑j−1
k=i Tk + e

∑j
k=i+1 Tk − e

∑j−1
k=i+1 Tk

)
αiαj

= pη
a · (

eTi+Tj − eTi − eTj + 1
)
e
∑j−1

k=i+1 Tkαiαj

= pη
a · (

1 − eTi
) (

1 − eTj
) j−1∏

k=i+1

eTkαiαj == pη
a · sisj

j−1∏
k=i+1

(1 − sk) αiαj .

Corollary 1. The determinant of matrix (Πr)
′′ is

det (Πr)
′′ =

(pη

a

)n+1

·
n+1∏
i=1

(αi)
2 det A,
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where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2s1 s1s2 s1s3 (1 − s2) · · · s1sn+1

n∏
i=2

(1 − si)

s1s2 −2s2 s2s3
. . .

...

s1s3 (1 − s2) s2s3 −2s3
. . . sn−1sn+1 (1 − sn)

...
. . . . . . . . . snsn+1

s1sn+1

n∏
i=2

(1 − si) . . . sn−1sn+1 (1 − sn) snsn+1 −2sn+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For k ≥ 2, let us define the tridiagonal matrix

Bk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2s1 s1s2 0 · · · 0

s1s2 −2s2 (1− s2) s3
. . .

.

.

.

0 (2− s2) s3
2 ((s2 − 1) s3 − s2) s3

s2

. . . 0

..

.
. . .

. . .
. . . (1− sk−1) sk

0 . . . 0 (2− sk−1) sk
2 ((sk−1 − 1) sk − sk−1) sk

sk−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Moreover, let

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0

0 1
. . .

...

0
(s2 − 1) s3

s2

. . . . . .
...

...
. . . . . . . . . 0

0 . . . 0
(sn − 1) sn+1

sn
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then Bn+1 = C · A · CT , where “T” means matrix transposition.
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Now, let us calculate the corners minors of matrix Bn+1, i.e., the determi-
nants of matrices Bk. Define the symmetric function

Pi,j =
∑

r1 < ... < rj

rl ∈ {1, . . . , i}
l = 1, j

j∏
l=1

srl
, j ∈ {1, . . . i} .

Note that9

Pi,j = Pi−1,j + siPi−1,j−1, j ∈ {2, . . . , i − 1} . (14)

Lemma 2. The corner minors of Bn+1 are

det Bk = (−2)k−2

(
k∏

i=1

si

) ⎛
⎝4 −

k∑
j=2

(−1)j · j − 1
2j−2

· Pk,j

⎞
⎠ .

Proof. Let us use the mathematical induction. Indeed,

det B2 = s1s2 · (4 − s1s2) = (−2)0 s1s2 ·
(

4 − (−1)2 · 1
20

· s1s2

)

= (−2)0
(

2∏
i=1

si

) (
4 −

2∑
j=2

(−1)j · j−1
2j−2 · P2,j

)
.

Let

det Bk−1 = (−2)k−3

(
k−1∏
i=1

si

) (
4 −

k−1∑
j=2

(−1)j · j−1
2j−2 · Pk−1,j

)
,

det Bk = (−2)k−2

(
k∏

i=1

si

) (
4 −

k∑
j=2

(−1)j · j−1
2j−2 · Pk,j

)
.

Then

detBk+1 = 2((sk−1)sk+1−sk)sk+1
sk

· det Bk − ((2 − sk) sk+1)
2 det Bk−1

= − ((sk−1)sk+1−sk)
sk

· (−2)k−1

(
k+1∏
i=1

si

) (
4 −

k∑
j=2

(−1)j · j−1
2j−2 · Pk,j

)

− (2−sk)
2

4 · sk+1
sk

· (−2)k−1

(
k+1∏
i=1

si

) (
4 −

k−1∑
j=2

(−1)j · j−1
2j−2 · Pk−1,j

)
.

9 For instance,

P4,2 = s1s2 + s1s3 + s1s4 + s2s3 + s2s4 + s3s4
= s1s2 + s1s3 + s2s3 + (s1 + s2 + s3) s4 = P3,2 + s4P3,1.
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So, due to (14),
(

(−2)k−1

(
k+1∏
i=1

si

))−1

det Bk+1

= 4 − sksk+1 + ((sk−1)sk+1−sk)
sk

·
k∑

j=2

(−1)j · j−1
2j−2 · Pk,j

+ (2−sk)
2

4 · sk+1
sk

·
k−1∑
j=2

(−1)j · j−1
2j−2 · Pk−1,j

= 4 −
k∑

j=2

(−1)j · j−1
2j−2 · Pk,j − sksk+1

+ (sk−1)sk+1
sk

·
k∑

j=2

(−1)j · j−1
2j−2 · Pk,j + (2−sk)

2

4 · sk+1
sk

·
k−1∑
j=2

(−1)j · j−1
2j−2 · Pk−1,j

= 4 −
k∑

j=2

(−1)j · j−1
2j−2 · Pk+1,j + sk+1 ·

k∑
j=2

(−1)j · j−1
2j−2 · Pk,j−1 − sk · sk+1

+ (sk−1)sk+1
sk

·
k∑

j=2

(−1)j · j−1
2j−2 · Pk,j + (2−sk)

2

4 · sk+1
sk

·
k−1∑
j=2

(−1)j · j−1
2j−2 · Pk−1,j

= 4 −
k∑

j=2

(−1)j · j−1
2j−2 · Pk+1,j .

Due to Lemma 2, to finish the proof of Proposition 2, we need only to show

Lemma 3. The following inequality holds:
k∑

j=2

(−1)j · j − 1
2j−2

· Pk,j < 4.

Proof. Consider the function

fk (s1, . . . , sk) :=
k∑

j=2

(−1)j · j − 1
2j−2

· Pk,j , k ≥ 2.

We get

fk+1 (s1, . . . , sk+1) =
k+1∑
j=2

(−1)j · j−1
2j−2 · Pk+1,j

= fk (s1, . . . , sk) +

(
k+1∑
j=2

(−1)j · j−1
2j−2 · Pk,j−1

)
sk+1

=
k−1∑
j=2

(−1)j · j−1
2j−2 · Pk,j + (−1)k · k−1

2k−2 · Pk,k

+
k+1∑
j=2

(−1)j · j−1
2j−2 · Pk,j−1sk+1 = . . .

=

(
1∑

j=1

(−1)j+1 · j·P1,j
2j−1

)
s2 + . . . +

(
k∑

j=1

(−1)j+1 · j·Pk,j

2j−1

)
sk+1

=
k∑

i=1

(
i∑

j=1

(−1)j+1 · j
2j−1 · Pi,j

)
si+1.
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Since si ∈ (0; 1) ,

max fk (s1, . . . , sk) = lim
k→∞

fk (1, . . . , 1)

=

(
1∑

j=1
(−1)j+1 · j

2j−1 · P1,j

)
+ . . .+

(
k∑

j=1
(−1)j+1 · j

2j−1 · Pk,j

)
+ . . .

= 1
20

+
(

1
20

· 2− 2
21

· 1
)
+

(
1
20

· 3− 2
21

· 3 + 3
22

· 1
)

+
(

1
20

· 4− 2
21

· 6 + 3
22

· 4− 4
24

· 1
)

+

(
5∑

j=1
(−1)j+1 · j

2j−1 · P5,j

)
+ . . .+

(
k∑

j=1
(−1)j+1 · j

2j−1 · Pk,j

)
+ . . .

= 1
20

+ 2
21

+ 3
22

+ 4
23

+ . . .

= 1
20

+ 1
21

+ 1
22

+ 1
23

+ . . .+ 1
21

+ 1
22

+ 1
23

+ 1
24

+ . . .+ 1
22

+ 1
23

+ 1
24

+ 1
25

+ . . .+ . . .

= 1
20

+ 1
21

+ 1
22

+ 1
23

+ . . .+ 1
21

·
(

1
20

+ 1
21

+ 1
22

+ 1
23

+ . . .
)

+ 1
22

·
(

1
20

+ 1
21

+ 1
22

+ 1
23

+ . . .
)
+ . . .+ . . .

=
(

1
20

+ 1
21

+ 1
22

+ 1
23

+ . . .
) (

1
20

+ 1
21

+ 1
22

+ 1
23

+ . . .
)
=

⎛
⎜⎝ 1

1−
1

2

⎞
⎟⎠

2

= 4.

6 Conclusion

In this paper, we study a stylized vertical control distribution channel in the
structure “manufacturer-retailer-consumer”. More precisely, we consider the sit-
uation when the wholesale discount and pass-through are piece-wise constant.
This case seems to be economically adequate. The arising optimization prob-
lems contain quadratic objective functions with respect to wholesale discount
and pass-through level(s). In the case when the wholesale discount is constant,
we prove the strict concavity of the retailer’s profit with respect to pass-through
levels for any fixed number of (known) switches.

As for the topics of further research, we plan to study the concavity of the
manufacturer’s profit (11) with respect to wholesale price discount10. Besides,
we plan to study the equilibrium (as Nash as Stackelberg) in the structure
“manufacturer-retailer-consumer”. Moreover, it seems interesting to study the
interaction of several manufacturers and several retailers. Finally, we can con-
sider this kind of models in monopolistic competition framework: retailing [13],
market distortion [14], investments in R&D [15–17], international trade [18].

Acknowledgments. The work was supported in part by the Russian Foundation for
Basic Research, projects 18-010-00728 and 19-010-00910, by the program of fundamen-
tal scientific researches of the SB RAS, project 0314-2019-0018, and by the Russian
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10 At least, it is easy to get the analogs of (13).
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Abstract. Nonlinear least squares type iterative solver for f(x) = 0 is
considered based on successive solution of orthogonal projections of
the linearized equation on a sequence of appropriately chosen low-
dimensional subspaces. The bases of the latter are constructed using only
the first-order derivatives of the function. The techniques based on the
concept of the limiting stepsize along normalized direction (developed
earlier by the author) is used to guarantee the monotone decrease of the
nonlinear residual norm. The results of numerical testing are presented,
including not only small-sized standard test problems, but also larger and
harder examples, such as algebraic problems associated with canonical
decomposition of dense and sparse 3D tensors as well as finite-difference
discretizations of 2D nonlinear boundary problems for 2nd order partial
differential equations.

Keywords: Nonlinear least squares · Preconditioned subspace
descent · Limiting step along normalized direction · Sparse matrix
methods

1 Introduction

A standard least squares scheme intended to approximate the (presumably exis-
tent) solution of a (possibly overdetermined) nonlinear equation

f(x) = 0, f : Rn → Rm, m ≥ n, (1)

is to introduce the function ϕ : Rn → R of the form

ϕ(x) =
1
2
‖f(x)‖2 ≡ 1

2
fT (x)f(x), (2)

and to find its minimum numerically. Note that even if a zero residual solution
exists, any minimization method for (2) may only find a stationary point x = x∗
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of ϕ corresponding to a possibly nonzero residual f(x). Indeed, since x∗ satisfies
the equation

g(x) ≡ grad ϕ(x) = JT (x)f(x) = 0, (3)

where
J(x) ≡ ∂f

∂x
∈ Rm×n, (4)

the Eq. (3) shows only that the residual f(x∗) lies in the nullspace of JT (x∗).
The latter subspace is always nonempty when m > n and therefore f(x∗) may
be nonzero. Even if m ≤ n, in many applied problems one can came across with
cases when JT (x) has nonempty nullspace. Further we will present a solution
techniques for (1) which hopefully has a potential for the reduction of ‖f(x)‖
and ‖g(x)‖ in a consistent manner whenever it is possible.

2 Preconditioned Subspace Descent

Further on, we will use the notations

f(x) = f, J(x) = J, g(x) = g, (5)

so that g = JT f . Let x be the current approximation to the solution x∗ and
determine the next approximation as

x̂ = x + h, (6)

where h is the direction vector. For a sufficiently smooth f , one can linearize
f(x + h) near x and find an appropriate h to provide for a decrease of ϕ using

2ϕ(x + h) = ‖f(x + h)‖2 = ‖f + Jh‖2 + O(‖h‖2).

Obviously, if fT Jh < 0 and ‖h‖ � 1, then a certain decrease of the objective
value ϕ(x + h) < ϕ(x) can be provided. In order to proceed with a quantitative
analysis, we will use the techniques based on a special scaling of the direction h
first proposed in [8], modified in [9], and presented with appropriate implemen-
tation and numerical testing in [10].

2.1 General Estimate for Residual Norm Reduction

Consider the updates of the form h = αp, that is,

x̂ = x + αp (7)

with the stepsize satisfying 0 < α < 2 and the direction p normalized by the
condition

− fT Jp = ‖Jp‖2. (8)
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Furthermore, we assume that the stepsize α lies within (0, α∗], where α∗ < 2
is the so called limiting stepsize. The latter is defined as the maximum number
(depending on f and p) such that the limiting stepsize condition

‖f(x + αp) − f − αJp‖ ≤ α(2 − α)
‖Jp‖2
2‖f‖ (9)

is satisfied for all 0 < α ≤ α∗. For the convenience, we will also use the notation

ϑ =
−fT Jp

‖f‖‖Jp‖ (10)

for the cosine of the acute angle between m-vectors (−f) and Jp. It appears that
α∗ is responsible for the characterization of nonlinearity in the neighborhood of
x, while ϑ determines the precision of approximate solution p of the “Newton
equation” Jp+f = 0. Note that the latter may not (and often cannot) be solved
exactly in the context of our considerations.

Theorem 1. Let the conditions (8) and (9) hold. Then the estimate

‖f(x + αp)‖
‖f‖ ≤ √

1 − τ +
τ

2
(11)

is valid, where
τ = α(2 − α)ϑ2 (12)

for all 0 < α ≤ α∗ with ϑ determined by (10).

Proof. Indeed, using (9) one has

‖f(x+αp)‖ ≤ ‖f +αJp‖+‖f(x+αp)−f −αJp‖ ≤ ‖f +αJp‖+α(2−α)
‖Jp‖2
2‖f‖ ,

and then, using (8),

‖f(x + αp)‖
‖f‖ ≤

√‖f‖2 − α(2 − α)‖Jp‖2
‖f‖ + α(2 − α)

‖Jp‖2
2‖f‖2 .

The required result immediately follows from the relation ϑ = ‖Jp‖/‖f‖
obtained by combining property (8) with the definition (10).

Remark 1. Note that √
1 − τ + τ/2 <

√

1 − τ2/4 (13)

for all 0 < τ ≤ 1 and therefore the strict decrease of the residual norm is
guaranteed whenever τ > 0. Here, we do not use the more restrictive definition
of α∗ from [10] which gives better theoretical norm reduction estimate

√
1 − αϑ2

but does not support the practical use of α > 1.

Remark 2. The present research is directed towards complicated problems with
large sparse (nearly) singular Jacobians, when the exact solution of Newton equa-
tions is not feasible. Therefore, we will concentrate on theoretical and practical
results related to convergence rates not faster than linear.
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2.2 Practical Method for Choosing the Stepsize

Based on the above theory, one can develop the following Armijo type procedure
[1] for evaluating an appropriate stepsize α providing for a certain decrease of
the residual norm. Let p̃ be a direction vector satisfying

−fT Jp̃/(‖f‖‖Jp̃‖) = ϑ > 0

but, in general, not normalized. First we normalize it using the formula

p = p̃
−fT Jp̃

‖Jp̃‖2 ; (14)

obviously, the normalization does not change the value of ϑ. Next we check the
validity of estimate (11) for a decreasing sequence of trial values of α ∈ (0, 2);
for instance, we have used

αl = 1.81−l, l = 0, 1, . . . , lmax. (15)

However, more usual choices, such as

αl = 2−l, l = 0, 1, . . . , lmax, (16)

may show faster convergence for certain relatively easy problems. The value
lmax = 30 was used, which approximately corresponds to α > 2 ·10−8. In numer-
ical testing, the backtracking criterion (11) was often satisfied at once for l = 0
with the stepsize α = α0.

2.3 Bounding the Limiting Stepsize α∗

The following result is a generalization of similar estimates given in [9,10].

Theorem 2. Let there exist scalar γ = γ(x) > 0 and n × n symmetric positive
definite matrix M = M(x) > JT J such that inequality

‖f(x + h) − f − Jh‖ ≤ 1
2‖f‖hT (M − JT J)h for all ‖h‖ ≤ γ (17)

holds. Then (9) holds for all 0 < α ≤ α̃, where

α̃ = min
(

γ

‖p‖ , 2
pT JT Jp

pT Mp

)

(18)

and therefore, α∗ ≥ α̃.

Proof. Setting h = αp in the right inequality (17) we find α ≤ γ/‖p‖. On the
other hand, in order for (9) be valid, it suffices to require

α2

2‖f‖pT (M − JT J)p =
α(2 − α)

2
‖Jp‖2
‖f‖ ,

which is equivalent to α = 2pT JT Jp/pT Mp. The sufficiency of (18) is proved.
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Remark 3. Using the above result, one can show that the number of backtracking
steps for choosing the stepsize (see Sect. 2.2) is limited above as O(log(1/α̃)).

Remark 4. The claim of Theorem 2 readily follows if one sets

M = JT J + Γ‖f‖I, (19)

in (17), where Γ is the local Lipschitz constant for the Jacobian at x, that is,
‖J(x + h) − J(x)‖ ≤ Γ‖h‖ for all ‖h‖ ≤ γ (cf. [9,10]).

2.4 Reducing the Angle Between f and Jp

The direction p is constructed in the form p = V z, where V ∈ Rn×s and z ∈ Rs.
Here s is a small integer, typically 1 ≤ s ≤ 10, and we restrict our attention to
the choice of the subspace basis as

V = [C−1JT f | p̃−1 | . . . | p̃−t+1], t = min(k, s), (20)

where k is the (earlier omitted, see (6) above) iteration number, so that xk+1 =
xk + pkαk, and p̃−t = xk−t+1 − xk−t. Here C ≈ JT J is an easily invertible
preconditioning matrix, see Sect. 2.6 below. This construction is a particular
case of the one proposed in [9,10]. A similar choice of the subspace basis was
also discussed in [21], see also references therein. Maximizing the value of ϑ, one
obtains, denoting

U = JV (21)

and temporarily assuming that U has full column rank,

max
p=V z

ϑ2 =
1

fT f
max
p=V z

pT JT ffT Jp

pT JT Jp
=

1
fT f

max
z

zT UT ffT Uz

zT UT Uz
.

The obtained Rayleigh quotient is maximized by z = (UT U)−1UT f (up to a
scalar factor) so that

p = V (UT U)−1UT f, (22)

and the optimum value of the cosine satisfies ϑ2 = fT U(UT U)−1UT f/fT f . As
one can see, the direction p defined by (22) is normalized in the sense of (8).
Note that for any s ≥ 1, it holds ϑ2 ≥ (fT JC−1JT f)2‖f‖−2‖JC−1JT f‖−2,
which shows that it makes sense to use certain preconditioning techniques to
have C ≈ JT J , see further Sect. 2.6.

Remark 5. Since there is no guarantee that V has full column rank, some kind of
approximate pseudoinversion must be applied, for instance, UT U can be replaced
by UT U + δIs, where δ � ‖U‖2, or by UT U + δDiag(UT U), where δ � 1. The
resulting direction p̃ = V (UT U + δIs)−1UT f will no longer be normalized, and
therefore must be scaled according to (14).
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2.5 Regularizing Subspace Projection with Account for α∗

The above presented optimization of p = V z with respect to ϑ only may not be
the best choice. As follows from (11) and (12), one must rather maximize the
upper bound for the product αϑ2. Therefore, using the result of Theorem 2, one
finds

αϑ2 ≤ 2
pT JT Jp

pT Mp

(fT Jp)2

‖f‖2‖Jp‖2 =
2

‖f‖2
pT JT ffT Jp

pT Mp
. (23)

The maximum by p of the latter Rayleigh quotient is attained for

p = βM−1JT f, β �= 0, (24)

and equals 2fT JM−1JT f/fT f which, along with C ≈ M , explains our choice
(20) for the first column of V . The remaining columns of V serve for further
adjustment of p in order to compensate the suboptimality of C.

Noting the close relation of (24) and (19) to the Levenberg-Marquardt
method (see, e.g. [3,4] and references cited therein), one can observe that the
straightforward implementation of the resulting method requires the solution of
linear algebraic system with the matrix M at each step. However, the involve-
ment of general sparse linear solvers may be undesirable in certain cases. Instead,
we propose to use the subspace techniques: substituting p = V z into the above
Rayleigh quotient and recalling (21), one has, using (19),

max
p=V z

pT JT ffT Jp/pT Mp = max
z

zT UT ffT Uz/zT (UT U + ξV T V )z,

where ξ = Γ‖f‖, so that z = (UT U + ξV T V )−1UT f . Therefore, the corrected
direction is p̃ = V (UT U +ξV T V )−1UT f , which must further be scaled according
to (14). Here, an approximate pseudoinversion arises by the construction, which
allows for the use of smaller (or even zero) values for the regularization parameter
δ, see Remark 5 above.

Remark 6. Assuming the validity of left inequality (17) for any γ, (e.g., with
f quadratic) and using directions (24) with backtracking (16), one can prove
that τ ≥ αϑ2 ≥ fT JM−1JT f/fT f = ‖g‖2M−1/‖f‖2, where the gradient g was
defined in (3). Using this with Theorem 1 and (13) gives the following estimate:

‖f(xk+1)‖2 ≤ ‖f(xk)‖2 − ‖g(xk)‖4
M−1

k

/(4‖f(xk)‖2), k = 0, 1, . . . ,

which shows the following convergence result for the method:

min
0≤j<k

‖g(xj)‖M−1
j

≤ ‖f(x0)‖(k/4)−1/4.

2.6 The Use of Preconditioning

As the preconditioner
C = C(x) ≈ JT J ∈ Rn×n, (25)
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we consider a symmetric positive definite preconditioning matrix, the forming
of which and solving Cz = v must be as cheap as possible. For instance, the
simplest choice is

C = Diag(JT J). (26)

We prefer to use a more efficient SSOR(ω) preconditioning, where from the
standard splitting JT J = D + L + LT with D = Diag(JT J) diagonal and L
strictly lower triangular, one obtains

C = Cω = (ω−1D + L)(I + ωD−1LT ) ≡ JT J + (ω−1 − 1)D + ωLD−1LT .

Note that the condition M > JT J used in Theorem 2 holds for all M = Cω

with 0 < ω < 1. The choice of relaxation parameter ω ∈ (0, 2) is rather problem-
dependent, see Sect. 3 below. The default choice for hard-to-solve problems is
ω = 1/3; however, the values closer to 2 are more appropriate for the solution
of discretizations of nonlinear partial differential equations. Note also that one
should use different values of ω for M = Cω0 in Theorem 2 (and therefore in
(23)) and C = Cω1 for preconditioning in the definition (20) of V (because with
ω0 = ω1 it follows z = [1 | 0 | . . . | 0]T at each step of the method).

It must be stressed that solving Cωz = v for z does not require factorization
or even evaluation of the product JT J . The only additional feature sufficient
for implementing SSOR(ω) preconditioning is the direct access to the columns
of J(x). Therefore, using the Column Compressed Storage format for the sparse
storage of J(x) one can completely avoid the need in extra workspace for the
use of SSOR(ω) preconditioning.

2.7 Description of Computational Algorithm

The preconditioned subspace descent algorithm can be summarized as follows:
Algorithm 1.
Input: J(x) ∈ Rm×n, f(x) ∈ Rm, x0 ∈ Rn;
Initialization:
if (tuning = ‘easy’) then ω = 1, α = 1.0; β = 2.0 end if;
if (tuning = ‘hard’) then ω = 1/3, α = 1.8; β = 1.8 end if;
ξ = 1, s = 5, δ = 10−8, ε = 10−12,
τmin = 10−8, kmax = 20000, lmax = 30;
f0 = f(x0),
ρ0 = fT

0 f0;
Iterations:
for k = 0, 1, . . . , kmax − 1:

Ak = J(xk)
D = Diag(AT

k Ak); (denote AT
k Ak = D + L + LT )

v1 = ( 1
ω D + LT )−1(I + ωLD−1)−1AT

k fk

tmax = min(k + 1, s)
for t = 1, . . . , tmax:

ut = Akvt (denote Vk = [v1| . . . |vtmax ]; Uk = [u1| . . . |utmax ])
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end for
Sk = UT

k Uk + ξ
√

ρkV T
k Vk

Sk := Sk + δDiag(Sk) + τ‖Ak‖2F I
zk = S−1

k (UT
k fk)

pk = −Vkzk

v2+kmod(s−1) := pk

wk = Akpk

σk = fT
k wk/wT

k wk

pk := σkpk

θk = (fT
k wk)2/(ρkwT

k wk)
α(0) = α
for l = 0, 1, . . . , lmax − 1:

x
(l)
k = xk + α(l)pk

f
(l)
k = f(x(l)

k )
ρ
(l)
k = (f (l)

k )T f
(l)
k

τ = α(l)(2 − α(l))θk

if (τ < τmin) return xk

if ((ρ(l)k /ρk)1/2 >
√

1 − τ + τ/2) then
α(l+1) = α(l)/β

x
(l+1)
k = xk + α(l+1)pk

else
go to NEXT

end if
end for
NEXT: xk+1 = x

(l)
k , fk+1 = f

(l)
k , ρk+1 = ρ

(l)
k ;

if (ρk+1 < ε2ρ0) or (ρk+1 ≥ ρk) return xk+1

end for

3 Test Problems and Numerical Results

Below, the test problem settings and the results obtained for Algorithm 1 are
described. For the test runs, one core of Pentium(R) Dual-Core CPU E6600 3.06
GHz, 3.25 Gbytes RAM desktop PC was used. We will compare the “easy” tun-
ing (αl = 21−l and ω = 1) with the “hard” one (αl = 1.82−l and ω = 1/3) and
consider different values of subspace dimension (s = 1, 2, 3, 5, 9). Unless other-
wise stated, the residual norm reduction was set as ε = 10−14 with the iteration
number limit kmax = 100000. In the case of nonzero residual problems, the iter-
ations typically terminate by the condition τ < τmin = 10−8. Note that the
iteration number always coincides with the number of the Jacobian evaluations.

One common feature observed in the test runs is that the total number
of function evaluations (as required by the proposed backtracking procedure) is
only slightly larger that the iteration number. Even for Chained Rosenbrock test
the ratio (#f evals.)/(#J evals.) is smaller than 3, see Table 4. Another general
conclusion is that the use of SSOR preconditioning and inclusion of several
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previous directions in the subspace basis are often necessary for the success of
the method.

3.1 Rosenbrock Function

Following [14], for n = m = 2 define f(x) as

f1 = 10(x2
1 − x2), f2 = x1 − 1.

The optimum value is fT f = 0 at x∗ = [1, 1]T and the starting point is x̃ =
[−1.2, 1]T . The results for ‘easy’ tuning are given in Table 1. As is seen from the
results presented, the convergence of the method improves sharply with s ≥ 2
compared to s = 1. In this case, the type of preconditioning used is not critical
for the convergence. One can also notice relatively small number of backtracking
steps (Table 3).

3.2 Biggs6 Test Function

Following [14], for n = 6 and m = 13 define f(x) as

fi = x3e
−tix1 − x4e

−tix2 + x6e
−tix5 − e−ti + 5e−10ti − 3e−4ti , 1 ≤ i ≤ 13,

where ti = i/10 and e = exp(1). The optimum value is fT f = 0 at x∗ =
[1, 10, 1, 5, 4, 3]T and the starting point is set as x̃ = [1, 2, 1, 1, 1, 1]T . Other exact
solutions with f = 0 are x∗ = [4, 10, 3, 5, 1, 1]T and x∗ = [10, 4, 5, 3, 1, 1]T . The
convergence to one or another solution was observed depending on the subspace
dimension s. The results are given in Table 2. This small-sized but hard enough
test shows that simultaneous use of a stronger preconditioner and a larger sub-
space dimension s can be essential for the efficiency of the method. Test runs
with Jacobi preconditioning were a complete failure and not shown in Table 2.
Further, it appears that not only the choice of the initial guess, but also the size
of search subspaces may lead to different solutions (if the solution is not unique).

3.3 Broyden Tridiagonal Function

Following [14], for n = m and m = 500 define f(x) as

fi = (3 − 2xi)xi − xi−1 − 2xi+1 + 1, 1 ≤ i ≤ 500,

where x0 = xn+1 = 0. The optimum value is fT f = 0 and the starting point is set
as x̃ = [−1, . . . ,−1]T . This test demonstrates that with SSOR preconditioning
tuning the performance of Algorithm 1 can be considerably better than with
Jacobi one. This test can be qualified as relatively easy due to the actual closeness
of the initial guess x̃ to the solution x∗.
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Table 1. Performance of Algorithm 1 for Rosenbrock function with m = n = 2

Precond. Tuning s #J evals. #f evals. Remark

Jacobi Easy 1 135 146 OK

Jacobi Easy 2 15 22 OK

Jacobi Easy 3 15 22 OK

Jacobi Easy 5 15 22 OK

Jacobi Easy 9 15 22 OK

SSOR Easy 1 709 719 OK

SSOR Easy 2 16 23 OK

SSOR Easy 3 15 22 OK

SSOR Easy 5 15 22 OK

SSOR Easy 9 15 22 OK

Table 2. Performance of Algorithm 1 for Biggs6 test with m = 13 and n = 6

Precond. Tuning s #J evals. #f evals. Remark

SSOR Hard 1 �100000 n/a Failed

SSOR Hard 2 4209 4211 OK

SSOR Hard 3 1880 1882 OK

SSOR Hard 5 414 431 OK

SSOR Hard 9 321 322 OK

SSOR Easy 1 �100000 n/a Failed

SSOR Easy 2 5000 5022 OK

SSOR Easy 3 15994 16012 OK

SSOR Easy 5 273 275 OK

SSOR Easy 9 121 125 OK

Table 3. Performance of Algorithm 1 for Broyden tridiagonal test with m = n = 500

Precond. Tuning s #J evals. #f evals. Remark

Jacobi Easy 1 146 147 OK

Jacobi Easy 2 51 52 OK

Jacobi Easy 3 51 52 OK

Jacobi Easy 5 46 47 OK

Jacobi Easy 9 46 47 OK

SSOR Easy 1 21 22 OK

SSOR Easy 2 16 17 OK

SSOR Easy 3 16 17 OK

SSOR Easy 5 15 16 OK

SSOR Easy 9 16 17 OK



174 I. Kaporin

Table 4. Performance of Algorithm 1 for Chained Rosenbrock test with n = 100

Precond. Tuning s #J evals. #f evals. Remark

Jacobi Easy 1 �100000 n/a Failed

Jacobi Easy 2 1207 1234 OK

Jacobi Easy 3 690 737 OK

Jacobi Easy 5 600 655 OK

Jacobi Easy 9 409 775 OK

SSOR Easy 1 �100000 N/a Failed

SSOR Easy 2 369 707 OK

SSOR Easy 3 437 1098 OK

SSOR Easy 5 350 679 OK

SSOR Easy 9 352 697 OK

Table 5. Performance of Algorithm 1 for 3D tensor test with m = 106, n = 1500, and
the initial guess x̃j = μ(j + 2).

Precond. s ‖x∗‖∞ #J evals. #f evals. Time, s Remark

Jacobi 2 1.69 384 390 123. OK

Jacobi 3 1.40 500 505 177. OK

Jacobi 5 1.70 449 455 232. OK

Jacobi 9 1.13 304 307 216. OK

SSOR 2 1.59 348 354 283. OK

SSOR 3 1.37 366 369 310. OK

SSOR 5 2.09 591 595 549. OK

SSOR 9 2.01 454 456 540. OK

Table 6. Performance of Algorithm 1 with ‘hard’ tuning for FMM(3, 3, 3; 23) tensor
test with m = 729, n = 621, and the initial guess x̃j = μ(j + 29); “failed” means
convergence to a solution with large residual norm.

Precond. s ‖x∗‖∞ #J evals. #f evals. Time, s Remark

SSOR 2 3.94 15438 15439 20.2 Failed

SSOR 3 5.68 35614 35615 49.6 Failed

SSOR 5 3.91 19873 19874 31.2 OK

SSOR 7 2.96 6059 6060 10.6 OK

SSOR 9 2.87 4088 4089 8.6 OK

SSOR 11 2.96 5582 5583 12.0 OK

SSOR 13 3.01 7123 7124 16.7 OK

SSOR 17 3.16 7895 7896 22.8 OK
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Table 7. Performance of Algorithm 1 with “easy” tuning for flow in a porous medium
test with m = n = 10000 and the initial guess x̃j = 0.1.

Precond. s ‖x∗‖∞ #J evals. #f evals. Time, s Remark

Jacobi 1 n/a �100000 n/a n/a Failed

Jacobi 2 0.038 54195 54196 67. OK

Jacobi 3 0.038 53983 53984 81. OK

Jacobi 5 0.038 53943 53944 106. OK

Jacobi 9 0.038 53969 53970 181. OK

SSOR 1 n/a �100000 n/a n/a Failed

SSOR 2 0.038 52506 52507 118. OK

SSOR 3 0.038 44394 44395 110. OK

SSOR 5 0.038 52710 52711 162. OK

SSOR 9 0.038 52804 53805 238. OK

3.4 Chained Rosenbrock Function

This test function was introduced in [20], and we will use its version with m =
2n − 2 and essentially variable coefficients:

f2i−1 = i(xi − x2
i+1), f2i = 1 − xi+1, i = 1, . . . , n − 1.

The optimum value is fT f = 0 at x∗ = [1, . . . , 1]T and the starting point is
x̃ = [−1, . . . ,−1]T . The results are given in Table 4 for m = 198 and n = 100.
As can be seen from the convergence histories (not shown here), the convergence
behavior of the method with s ≥ 2 is rather similar to that of the linear conjugate
gradient methods, though it may take more than m iterations to be observed.
For this test problem, the backtracking steps were applied rather intensively (as
is indicated by essential excess of the number of f evaluations over that of J
evaluations). One can also notice the typical improvements of iteration number
count with the use of a stronger preconditioner and a larger subspace size s.

3.5 Approximate Canonical Decomposition of Dense 3D Tensor

This problem was considered, e.g., in [11,15,17]. In general, the function is set
as

fl1+(l2−1)m1+(l3−1)m1m2 = −tl1,l2,l3 (27)

+
r

∑

l=1

x(l−1)(m1+m2+m3)+l1xlm1+(l−1)(m2+m3)+l2xl(m1+m2)+(l−1)m3+l3 ,

1 ≤ l1 ≤ m1, 1 ≤ l2 ≤ m2, 1 ≤ l3 ≤ m3,

and we have m = m1m2m3 and n = (m1 + m2 + m3)r. The particular case we
consider is (see, e.g., [17])

tl1,l2,l3 =
(

l21 + l22 + l23
)−1/2

, m1 = m2 = m3 = 100, r = 5.



176 I. Kaporin

The latter is rather hard-to-solve nonzero residual problem; in particular, for any
x the Jacobian J(x) has rank deficiency. Hence, there exist no isolated optimum
solutions. Note also that J(x) here is an 1000000×1500 sparse matrix containing
only 15000000 nonzeroes.

It must be stressed that for such tensor decomposition problems, the choice
of the initial guess is probably the most important tuning parameter. In our
tests, we used a quasirandom sequence with elements in {−1, 0, 1} given by the
number-theoretic Moebius function μ(j), to form the initial guess x̃j = μ(q + j),
j = 1, . . . , n, where q is an arbitrary nonnegative number. Recall that the formal
definition of μ is 1 = (

∑∞
k=1 k−t)(

∑∞
k=1 μ(k)k−t). Performance results obtained

with q = 2 are given in Table 5. In all cases, the resulting optimal value was ‖f‖ ≈
0.07388815 while the initial value of ‖f‖ was of the order 103. An important
quality measure for the obtained solution x∗ is its norm ‖x∗‖∞ (the smaller, the
better) is also shown.

For this test, only the “hard” parameter choice was used. For instance, with
“easy” tuning in 6th row of Table 5 one would find numbers 7.87, 1591, 1592,
1248., i.e., the method performs 4 times slower. For the Jacobi preconditioning
the difference is not so big, but the “easy” tuning is still inferior.

One can notice that the fastest test runs were performed with the use of the
simplest Jacobi preconditioning.

3.6 Canonical Decomposition of Matrix Multiplication Tensor

This notoriously hard problem, also known as “Brent Equations” [6], was con-
sidered, e.g., in [11] and [19]. The problem setting is the same as in previous
Subsection, but the components of the 3D tensor are specified by

tl1,l2,l3 = δ(i2 − j1)δ(j2 − k1)δ(k2 − i1), (28)

where

1 ≤ l1 ≤ n3n1 = m1, l1 = i1 + (i2 − 1)n3, 1 ≤ i1 ≤ n3, 1 ≤ i2 ≤ n1,

1 ≤ l2 ≤ n1n2 = m2, l2 = j1 + (j2 − 1)n1, 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2,

1 ≤ l3 ≤ n2n3 = m3, l3 = k1 + (k2 − 1)n2, 1 ≤ k1 ≤ n2, 1 ≤ k2 ≤ n3.

Thus, we have m = (n1n2n3)2 and n = (n3n1 + n1n2 + n2n3)r. The particular
case of n1 = n2 = n3 = 2 and r = 7 corresponds to a noncommutative bilinear
algorithm for evaluation of the product of two 2 × 2 matrices using r = 7 multi-
plications, the first of which was discovered in [18], with the corresponding exact
solution satisfying xj ∈ {−1, 0, 1}. In general, any exact solution to the problem
(27), (28) immediately yields the existence of a fast N ×N matrix multiplication
algorithm with arithmetic complexity O(Nσ), where σ = (3 log r)/ log(n1n2n3).

Depending on n1, n2, n3, for some too small r this problem has no solutions,
while for larger r ≤ n1n2n3 it is solvable, but in all cases there exist no isolated
solutions. Moreover, there are “approximate” solutions for which ‖f(x)‖ → 0
while some components of x tend to zero, and some other ones increase to infinity.
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In Table 6, the performance data obtained for the case n1 = n2 = n3 = 3 and
r = 23 are given (in short, (3, 3, 3; 23)-problem). This corresponds to the result of
[12], where an exact solution with xj ∈ {−1, 0, 1} was presented, see also [7]. Of
course, our approximate solutions have general real numbers as the components
of xk. The initial guess was taken as x̃j = μ(j + 29). One can observe that with
small values of s the convergence is slow. In fact, for s = 2 or s = 3 the iterates
have converged to a nonzero residual solution x with ‖f(x)‖2 = 1. One can also
notice the minimum possible number of function evaluations per one Jacobian
evaluation. Similar or even better results were obtained with Algorithm 1 for
another FMM tensor problems of the type (2, 2, 2; 7), (2, 3, 3; 15), (2, 3, 4; 20),
(2, 3, 5; 25).

3.7 Flow in a Porous Medium 2D Problem

Next we consider the steady state case of differential equation that models the
effects of capillary pressure and gravity on a fluid flow in a homogeneous medium
(see [2] and references cited therein):

− ∂2

∂x2
(u2) − ∂2

∂y2
(u2) − c

∂

∂x
(u3) − f(x, y) = 0, (x, y) ∈ Ω = (0, 1)2;

over the unit square Ω with homogeneous Dirichlet boundary conditions on ∂Ω.
The parameters were set as in [2]: c = 50 and f is a point source of magnitude
50 at the lower-left grid point (x, y) = (h, h), where h = 1/101 is the spatial dis-
cretization step. The standard centered finite difference discretization (designed
to obtain an approximation u(ih, jh) ≈ ui,j) on a uniform square grid with
n = 10000 = 1002 = m2 internal nodes has the following form (with account of
the scaling by h2):

−u2
i,j−1−(

u2
i−1,j − c1u

3
i−1,j

)

+4u2
i,j−

(

u2
i+1,j + c1u

3
i+1,j

)−u2
i,j−1−c2δ(i−1)δ(j−1) = 0,

for 1 ≤ i, j ≤ m, where c1 = ch/2, c2 = ch2, and the discrete boundary con-
ditions u0,j = um+1,j = 0 and ui,0 = ui,m+1 = 0 are used to eliminate these
components from the difference equations. The n-vector of unknowns was formed
in a standard way as xi+(j−1)m = ui,j . The resulting nonlinear problem f(x) = 0
was also included in the recent nonlinear test collection [13] as Problem 3.27.
With the initial guess xk = 0.1, k = 1, . . . , n, the solution precision ε = 10−8,
and under the “easy” tuning, the results are shown in Table 7. The best per-
formance was obtained with s = 2 for the simplest Jacobi preconditioning. One
can also notice the complete absence of backtrackings. On the other hand, the
iteration number count of the order 50000 may seem large; nevertheless, our
calculation time is several times smaller compared to that presented in [2] (345
or 545 s for this problem) corresponding to certain specialized preconditionings.

4 Concluding Remarks

In the present paper, a nonlinear least squares solver is developed which do not
require second-order information, can efficiently use the sparsity of the Jacobian,
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and is formally applicable to all types of least squares problems. The results of
extensive numerical testing (of which only a small part is included here), using
not only small- and medium-sized standard test problems, but also larger and
harder examples, such as finite-difference discretizations of nonlinear boundary
problems for 2nd and 4th order partial differential equations as well as algebraic
problems associated with matrix scaling or canonical decomposition of dense
and sparse 3D tensors, have showed a promising potential of the Preconditioned
Subspace Descent method in solving hard nonlinear problems.
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Abstract. The optimal control problem with phase constraints is con-
sidered. A new indirect approach of synthesized optimal control is pro-
posed as an alternative to direct methods. A comparative study of direct
and indirect approaches is carried out on the problem of optimal con-
trol for a small group of mobile robots in the complex environment with
phase constraints by evolutionary algorithms. With a direct approach to
the numerical solution of the optimal control problem, the control func-
tion is searched in the form of piece-wise functional approximation. The
indirect approach of synthesized optimal control comes from the engi-
neering practice. Instead of reducing the optimal control problem to the
problem of finite-dimensional optimization, we firstly make the object
stable relative to some point in the state space by solving an additional
task of synthesis of stabilizing control and then we find the coordinates
of stabilization points as the desired parameters of optimal control.
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1 Introduction

Today the problem of optimal control in each specific case is numerically solved
by one of two well-known approaches [1]. The first approach, which is often
called direct, is to reduce the optimal control problem to a nonlinear program-
ming problem [2]. This provides the transition from an optimization problem in
an infinite-dimensional space to an optimization problem in a finite-dimensional
space. Another approach, which is often called the indirect one, is to use the Pon-
tryagin maximum principle. As a result of using this principle, the optimization
problem in the infinite-dimensional space is transformed into a boundary-value
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problem, in which it is necessary to find the initial conditions for a system of
differential equations for conjugate variables.

Both of these known approaches face computational problems when there are
phase constraints in the optimal control problem [3]. The usual phase constraints
often lead to the loss of the unimodality property of the objective functional [4].
Then it is necessary to apply global optimization methods [5]. Moreover solving
the optimal control problem based on the Pontryagin maximum principle leads
to the formulation of additional conditions that the control must satisfy, along
with ensuring the maximum of the Hamiltonian, that is not so easy for problems
with complex phase constraints. At the same time the solution of the optimal
control problem by the direct approach without using the maximum principle
does not allow to establish how close the obtained solution is to the optimal one.

In this paper, we propose a new indirect approach of synthesized optimal
control to solve the problem of optimal control. The method consists in solving
at the first stage the problem of stabilization control synthesis ensuring the
stability of the control object relative to some given point in the state space. At
the second stage, the coordinates of stabilization points are searched for using
finite-dimensional optimization methods. The control is performed by switching
stabilization points. The switching of points is performed in a given time interval.
The synthesized optimal control immediately considers the problem as finite-
dimensional.

The method of synthesized optimal control can be considered as an indepen-
dent computational method for solving the problem of optimal control, which
can also be attributed to indirect methods.

The optimal control problem has no practical sense due to the fact that the
optimal control is received from the maximum of the Hamiltonian, but it depends
on the right parts of the model equations, which are never exactly known. In
the synthesized optimal control, the inaccuracy of the right parts is compen-
sated by the stability of the system relative to a point in the state space. Near
a stable point, all solutions converge. Generally speaking, the proposed app-
roach looks like some kind of parametrization, but with an essential peculiarity:
parametrization is performed after solving the synthesis problem (synthesis of
the stabilization system). This additional step is a key idea, it provides achieve-
ment of better results in the tasks with complex environment and noise.

This approach is inspired by practice. The developers of control systems in
most cases initially make the object stable, and then look for optimal control
for it. However, this approach could not be previously presented as a single
computational method, since at the first stage it is necessary to solve the problem
of control synthesis, which is much more complicated than the optimal control
problem and has always been solved for a specific object using methods that
fit specific mathematical models of objects. To solve the problem of control
synthesis [6–8], we apply numerical methods of symbolic regression, which use
the evolutionary algorithms to find the code of the mathematical expression of
the control function as a composition of elementary functions.

The proposed indirect approach to solving the problem of optimal control
through the solution of the problem of control synthesis seems to be rather
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complex. But it proves to be better and more stable than reduction to the prob-
lem of finite-dimensional optimization. This we illustrate in the experimental
part.

2 The Problem of Optimal Control

Consider the problem of optimal control.
A model of the control object is

ẋ = f(x,u), (1)

where x ∈ R
n.

The control is constrained

u ∈ U ⊆ R
m, (2)

where U is a constrained compact set, m ≤ n.
Given the initial conditions

x(0) = x0. (3)

Given the terminal conditions

ϕi(x) = 0, i = 1, r. (4)

Given the quality functional

J = v(x(tf )) +
∫ tf

0

f0(x)dt → min, (5)

where

tf =

⎧⎪⎨
⎪⎩

t, if t < t+ and

√
r∑

i=1

ϕ2
i (x) ≤ ε

t+ otherwise
, (6)

t+ and ε are given positive values.
It is necessary to find control as a function of time

u = g(t), g(t) ∈ U ⊆ R
m ∀t ∈ [0; t+], (7)

so that the solution
x = s(x0, t) (8)

of the system of differential equations

ẋ = f(x,g(t)), (9)

with initial conditions (3) within time interval t ≤ t+ provides fulfillment with
ε precision of terminal conditions (4)

√√√√ r∑
i=1

ϕ2
i (s(x0, t)) ≤ ε, 0 ≤ t ≤ t+, (10)
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and minimize the quality functional

v(s(x0, tf ) +
∫ tf

0

f0(s(x0, t))dt

= min
∀ũ∈U

{
v(x(tf )) +

∫ tf

0

f0(x)dt

}
,

(11)

where ũ is any admissible control ensuring the fulfillment of terminal conditions
(10) for solving the system (1).

3 The Problem of Synthesized Optimal Control

Practical engineers intuitively solve the task of finding the optimal trajectory and
ensuring the steady movement of objects along it in two stages: firstly, they make
the object stable, and then ensure the stable movement of the object through the
optimal trajectory points. The method of synthesized optimal control is close in
its idea to engineering, but is mathematically formalized and based on the use of
modern numerical methods of symbolic regression and evolutionary algorithms.

Initially, we ensure the stabilization of an object with respect to a certain
point in the state space, solving the problem of control system synthesis.

Consider the problem statement of control synthesis.
Given a mathematical model of the control object in the form of a system

of ordinary differential equations (1), and let us also be given the constraints on
control (2).

The area of initial conditions is set

x(0) ∈ X0 ⊆ R
n. (12)

Given the terminal state
x(tf ) = xf ∈ R

n, (13)

where tf is time to reach terminal conditions.
The control quality criterion is determined by

J̃s = tf → min. (14)

It is necessary:

1. to find a control function in the form

ũ = h(x∗ − x), (15)

where x∗ is an arbitrarily given stabilization point in the state space, such
that the system of differential equations

ẋ = f(x,h(x∗ − x)) (16)
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stable with respect to xk for the initial state

||x(0) − x∗|| < δ, (17)

has a solution x(t) = s(x(0), t), that satisfies the constraints on control (2)
h(x∗ − s(x(0), t)) ∈ U and for the finite specified period of time t∗ verge
towards a point x∗ by the amount not exceeding the specified value ε∗

||x∗ − s(x(0), t∗)|| < ε∗; (18)

2. to find stabilization points x1, . . . ,xM , which provide for the solution
s(x(0), t) of the system

ẋ = f(x,h(x∗(t) − x)), (19)

where x∗(t) is a piece-wise constant function defined by the relation

x∗(t) =

⎧⎨
⎩

xk, if (k − 1)Δt ≤ t < kΔt,
k = 1, . . . ,M ;

xf , if ΔtM ≤ t;
(20)

from any initial state of (12) reaching the terminal conditions (13) with the
minimum value of the quality criterion (14) for the class of control, determined
by the control function (15) and the values M and Δt. Here M is a given
number of stabilization points, Δt is a given positive value.

Step 1. To solve the synthesis problem, we use symbolic regression methods
which allow finding in an encoded form the analytic form of the mathematical
expression of the control function (15).

For the numerical solution of the synthesis problem, we replace the continuous
set of initial conditions (12) with the finite set of points of the initial conditions

x(0) ∈ {x0,1, . . . ,x0,K} ⊆ R
n. (21)

Then the time to reach the terminal state depends on the initial condition,
therefore we replace the functional (14) with the sum of functionals for all the
initial conditions from (21)

˜̃Js =
K∑
i=1

tf (x0,i) → min. (22)

To exclude in the numerical search such solutions that do not achieve the
terminal state (13), we include the accuracy of reaching the terminal state into
the functional (22), while adjusting the conditions for reaching the terminal state
by (6)

Js =
K∑
i=1

tf (x0,i) + ||xf − s(x0,i, tf )|| → min, (23)
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where

tf =

{
t, if t < t+ and

√∑n
j=1(x

f
j − xj)2 < ε

t+ − otherwise
, (24)

t+ and ε are given positive values.
Symbolic regression methods appeared on the basis of genetic programming

[9,10]. Their main goal is to search for optimal solutions on a non-numeric space.
Now there are quite a lot of methods of symbolic regression: analytical program-
ming [11], Cartesian genetic programming [12], grammatical evolution [13], parse
matrix evolution [14], network operator [15] and others. To solve the problem of
control synthesis (1), (2), (13), (15), (23), we search for the control function as
a code of analytic record of a mathematical expression on the space of codes of
function compositions. For an effective search, we added a number of parameters
as arguments to the desired mathematical expression, the values of which are
also searched by criterion (23).

Step 2. We find such a sequence of stabilization points in the state space,
that by switching stabilization points at fixed times, we ensure the movement of
the object from the initial state to the terminal state with the optimal value of
the quality criterion. Various numerical methods of optimization can be used, but
from our experience the most effective methods suitable for solving the problem
are evolutionary algorithms.

Further let us consider the application of the proposed method to solve the
problem of optimal control for a group of robots with phase constraints and
compare the results obtained with the results of solving the same problem by
the known methods of finite-dimensional optimization.

4 A Comparative Example

Let us consider the problem of optimal control of a group of N = 2 mobile robots
with phase constraints. The mathematical model of each robot is described by
a system of n = 3 equations [16]:

ẋ1+(j−1)n = 0.5(u1+(j−1)m + u2+(j−1)m) cos(x3+(j−1)n) + Bξ,

ẋ2+(j−1)n = 0.5(u1+(j−1)m + u2+(j−1)m) sin(x3+(j−1)n) + Bξ, (25)

ẋ3+(j−1)n = 0.5(u1+(j−1)m − u2+(j−1)m) + Bξ,

where n is a dimension of the model of one robot, m is a dimension of the control
vector for one robot, m = 2, x = [x1, . . . , x3+(N−1)n]T is a state vector of the
whole group of robots, u = [u1, . . . , u2+(N−1)m]T is a control vector of the group
of robots, j = 1, . . . , N , N is the number of robots in the group. The component
Bξ is responsible for perturbations.

Control of each robot is similarly constrained

u−
i ≤ ui+(j−1)m ≤ u+

i , i = 1,m, j = 1, N. (26)
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Given the initial position of each robot

xi+(j−1)n(0) = x0
i+(j−1)n, i = 1,m, j = 1, N. (27)

Given static phase constraints

β(x, j) = r2 − (x∗
1 − x1+(j−1)n)2 − (x∗

2 − x2+(j−1)n)2 ≤ 0, j = 1, N, (28)

where r is a given positive value, x∗
1, x∗

2 are coordinates of the center of the static
phase constraints.

Given dynamic phase constraints that take into account the possibility of
collision of any pair of robots between themselves

δk(j,i)(x(t)) = r20 − (x1+(j−1)n − x1+(i−1)n)2

− (x2+(j−1)n − x1+(i−1)n)2 ≤ 0, (29)

where i �= j,
k(i, j) = i − j + (j − 1)(N − 0.5j), (30)

j = 1, N − 1, i = j +1, . . . , N , r0 is a given positive value, which determines the
overall size of a single robot.

The maximum number of checks of the dynamic phase constraints is equal
to the number of combinations of 2 of N . From (30) this number is obtained at
j = N − 1 and i = N :

k(N,N − 1) =N − N + 1 + (N − 1 − 1)(N − 0.5(N − 1))

= 1 + (N − 2)(0.5N + 0.5) = 1 + 0.5(N2 − N − 2)

= 0.5(N2 − N) = 0.5N(N − 1).

Terminal states are set for each robot

xi+(j−1)n = xf
i+(j−1)n, i = 1, . . . , n, j = 1, N. (31)

Given the quality criterion of control

J̃ = tf → min, (32)

where tf is a time of control

tf =

⎧⎨
⎩

t, if t < t+ and
max{||Δx(i+j−1)n(t)||2 : j = 1, N} < ε;
t+ − otherwise,

(33)

||Δx(i+j−1)n(t)||2 =

√√√√ n∑
i=1

(xi+(j−1)n(t) − xf
i+(j−1)n)2,
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t+ is the maximum possible control time, ε is a small positive value.
We include the phase constraints into the quality criterion, using the Heavi-

side function

J = tf +
N∑
j=1

∫ tf

0

ϑ(β(x(t), j))dt

+
N−1∑
i=1

N∑
j=i+1

∫ tf

0

ϑ(δk(j,i)(x(t)))dt → min. (34)

where β(x(t)) and δk(x(t)) are determined by (28) and (29), respectively.
The optimal control by the direct and indirect approach is searched without

perturbations at B = 0. We carry out 10 tests. The results of the algorithm were
evaluated by three indicators: the best solution found, the average value of all
runs and the mean square deviation.

In the computational experiment, we used the following parameter values:
n = 3, m = 2, N = 2, x0

1 = 0, x0
2 = 0, x0

3 = 0, x0
4 = 0, x0

5 = 10, x0
6 = 0, xf

1 = 10,
xf
2 = 10, xf

3 = 0, xf
4 = 10, xf

5 = 10, xf
6 = 0, t+ = 2.8, ε = 0.01, u−

1 = −10,
u−
2 = −10, u+

1 = 10, u+
2 = 10.

4.1 The Direct Approach

We reduce the infinite-dimensional optimal control problem (25)–(34) to the
finite-dimensional optimization problem. Define the time interval Δt and divide
the time axis into K intervals

K =
⌊

t+

Δt

⌋
+ 1. (35)

In each interval, we approximate the control by a function depending on a finite
number of parameters. If the approximating function goes beyond the control
constraints, then replace the value of the function with the value of the violated
constraint.

ui+(j−1)m(t) =

⎧⎨
⎩

u+
i , if ũi+(j−1)m(t) ≥ u+

i ,
u−
i , if ũi+(j−1)m(t) ≤ u−

i ,
ũi+(j−1)m (t)− otherwise

(36)

i = 1,m, j = 1, N,

where ũi+(j−1)m (t) is a value of the approximating function.
For approximation of control we use piece-wise linear function. We solved

the nonlinear programming problem by a well-known algorithm particle swarm
optimization (PSO) [17].
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The best found solution is

q̃ = [19.1645 19, 6240 18.3454 19.2507 − 19.9115 2.9243 − 19.8968

−14.7644 − 16.0936 − 1.9976 19.7917 10.8413 19.3851 15.0534

19.9553 19.6951 − 17.7232 − 18.0297 − 19.9845 − 17.1573 − 13.6002

−9.0025 − 13.3237 − 14.4927 − 19.8874 − 18.2106 6.8188 − 19.4085

−14.5783 − 16.3549 − 7.1894 − 6.3636 19.6455 − 14.8710 − 14.1214

−18.8555 − 10.9795 − 17.2831 − 19.6667 − 17.6576 − 18.6860 − 19.9358

18.2508 17.2661 8.0000].T

Figure 1 shows obtained trajectories of two robots on the plane. The best
solution found has the functional value J = 2.4322, the average value of all runs
is 3.088205 and the mean square deviation is 0.744130.

Fig. 1. Optimal trajectories of robots found by direct approach.

4.2 Synthesized Optimal Control

Now we solve the same problem by the method of synthesized optimal control.
Initially, for one robot, we solve the problem of control synthesis (1), (12), (13),
(15), (21), (23).

Step 1. The particular formulation of the control synthesis problem has the
following description.
Given a mathematical model of the control object

ẋ1 = 0.5(u1 + u2) cos(x3),

ẋ2 = 0.5(u1 + u2) sin(x3), (37)

ẋ3 = 0.5(u1 − u2).
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Given the constraints on control

− 10 = u− ≤ ui ≤ u+ = 10, i = 1, 2. (38)

The terminal conditions are specified

xf
i = 0, i = 1, 2, 3. (39)

Given the set of initial conditions

X0 = (x0,1 = [−5 −5 −π/2 ]T ,x0,2 = [−5 −5 π/2 ]T ,

x0,3 = [−5 5 −π/2 ]T ,x0,4 = [−5 5 π/2 ]T ,

x0,5 = [5 −5 −π/2 ]T ,x0,6 = [5 −5 π/2 ]T , (40)

x0,7 = [5 5 −π/2 ]T , x0,8 = [5 5 π/2 ]T ).

The quality functional is given in the form (23), (24), where K = 8, t+ = 2 s.
We need to find the control in the form of (15).

To solve the problem, we use the network operator method [15].
As a result, the following control functions were obtained

ũ1 = A−1 + 3
√

A + sgn(q3(x
f
3 − x3)) exp(−|q3(xf

3 − x3)|)
+ sgn(xf

3 − x3) + μ(B), (41)

ũ2 = ũ1 + sin(ũ1) + arctan(H) + μ(B) + C − C3, (42)

where

A =
1 − exp(−D)
1 + exp(−D)

+
(

B + 3
√

xf
1 − x1

)3

+ C + sin(q3(x
f
3 − x3)),

B = G + sgn(sgn(xf
1 − x1)q2(x

f
2 − x2)) × exp(−|sgn(xf

1 − x1)q2(x
f
2 − x2)|)

+ sin(xf
1 − x1) +

1 − exp(−G)
1 + exp(−G)

+ xf
1 − x1,

C = G + sgn(sgn(xf
1 − x1)q2(x

f
2 − x2))

× exp(−|sgn(xf
1 − x1)q2(x

f
2 − x2)|) + sin(xf

1 − x),

D = H + C − C3 + sgn(q1(x
f
1 − x1)) + arctan(q1) + ϑ(xf

3 − x3),

G = sgn(xf
1 − x1)q2(x

f
2 − x2) + q3(x

f
3 − x3) +

1 − exp(−q1(x
f
1 − x1))

1 + exp(−q1(x
f
1 − x1))

,
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H = arctan(q1(x
f
1 − x1) + sgn(W )

√

|W |+W + V + 2sgn

(

W +
1− exp(−V )

1 + exp(−V )

)

+ 3

√

W +
1− exp(−V )

1 + exp(−V )
) +

3
√

xf
1 − x1 + sgn(xf

1 − x1)

√

|xf
1 − x1|

+
3
√

xf
1 − x1 +

1− exp(−V )

1 + exp(−V )
,

W = sgn(xf
1 − x1) + sgn(q2(x

f
2 − x2))sgn(x

f
1 − x1)× exp(−|q2(xf

2 − x2)(x
f
1 − x1)|) + V,

V = q3(x
f
3 − x3) + sgn(xf

1 − x1)q2(x
f
2 − x2) +

1− exp(xf
1 − x1)

1 + exp(xf
1 − x1)

,

q1 = 11.72820, q2 = 2.02710, q3 = 4.02222.

Step 2. The second step is to find the values of the terminal points as
parameters of the control function:

q = [q1 = xf,1
1 . . . qnN = xf,1

nN . . . (43)

q(K−1)nN+1 = xf,K
1 . . . qKnN = xf,K

nN ]T ,

where K is the number of time intervals, N is the number of robots, n is a
dimension of the mathematical model of a robot.

In this example we set the interval Δt = 0.625, with the maximum allowable
control time t+ = 2.8.

Constraints on the parameters are set from the possible values of the state
vector:

q−
i = −1 ≤ qi ≤ 11 = q+i , i = 1, 2, 4, 5, 7, 8, 10, 11, (44)

q−
i = −1.57 ≤ qi ≤ 1.57 = q+i , i = 3, 6, 9, 12. (45)

To solve the problem, we use the same algorithm of PSO as for the reduced
problem. We launched the algorithm 10 times.

Fig. 2. Optimal trajectories of robots found by indirect approach.
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The best found solution is

q̃ = [7.1145 4.8470 − 0.2587 5.6976 2.1089 − 1.3800 7.9957
4.8950 0.4320 5.6465 4.6863 − 0.8672 7.6366 6.7588

0.3086 − 0.1725 4.6377 0.9390 10.5870 7.0599 1.4640
−0.0119 − 0.7168 − 0.3688].T

Figure 2 shows obtained trajectories. The best solution found has the func-
tional value J = 2.5083, the average value of all runs is 2.529371 and the mean
square deviation is 0.009193.

Then, for the best solutions found by direct and synthesized methods, we
simulate the system, increasing coefficient of noise B, and for different levels of
B we also do 10 tests defining the best result, the average and square deviation.
Table 1 contains values for direct approach, Table 2 contains values for indirect
synthesized approach.

Table 1. Results for the direct approach.

Noise level 1 2 3 5

The best 4.4825 7.1111 8.9041 15.6606

Average 3.8959 1.0450 5.1924 7.6849

Mean-square deviation 0.1280 4.1890 2.1360 10.8489

Table 2. Results for the indirect approach.

Noise level 1 2 3 5

The best 2.7478 3.1479 3.9220 5.6547

Average 2.6587 2.7674 3.0777 3.6596

Mean-square deviation 0.0035 0.0394 0.1525 1.0115

To receive one solution by the direct method, the functional was calculated
404182 times, and with the synthesized approach 104182 times, that is four times
less. The best solution found by the direct method, even it was better than that
of the synthesized approach (2.4322 versus 2.5083) has poor square deviation
(0.744 versus 0.009193). But as seen from the tables, it worsens significantly in
the presence of perturbations, and for B = 5 the solution completely collapses,
while that of synthesized approach preserves the quality, that can be seen in
Figs. 3 and 4.
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Fig. 3. Optimal trajectories of robots found by direct approach at noise level B = 5

Fig. 4. Optimal trajectories of robots found by indirect approach at noise level B = 5

5 Conclusion

A comparative study of the direct and indirect approaches for solving the optimal
control problem is presented on the example of solving an optimal control prob-
lem with phase constraints for a group of two mobile robots. The task was solved
by reduction to the finite-dimensional optimization problem and by the method
of synthesized optimal control. As a result of the computational experiment, it
was shown that both approaches gave good results in the absence of pertur-
bations, but the synthesized approach coped with the problem with a smaller
number of calculations of the objective functional using the same evolutionary
algorithm. And in the presence of some noise the method of synthesized optimal
control allows us to find much better results than the reduction methods.

References

1. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press,
London (1981)



Comparison of Direct and Indirect Approaches for Numerical Solution 193

2. Evtushenko, Y.G.: Optimization and fast automatic differentiation. Computing
Center of RAS, Moscow (2013)

3. Diveev, A.I., Konstantinov, S.V.: Study of the practical convergence of evolutionary
algorithms for the optimal program control of a wheeled robot. J. Comput. Syst.
Sci. Int. 57(4), 561–580 (2018)

4. Diveev, A., Sofronova, E., Dotsenko, A.: Violation of object functional uni-
modality and evolutionary algorithms for optimal control problem solution.
In: IX International Conference on Optimization and Applications (OPTIMA
2018), Petrovac, Montenegro, pp. 128–140 (2018). https://doi.org/10.12783/dtcse/
optim2018/27927

5. Kvasov, D.E., Sergeyev, Y.D.: Lipschitz global optimization methods in control
problems. Autom. Remote Control 74(9), 1435–1448 (2013)

6. Diveev, A.I., Shmalko, E.Yu.: Evolutionary computation for synthesis of control
system for group of robots and optimum choice of trajectories for their movement.
In: Proceedings of the 8th International Conference on Optimization and Applica-
tions, OPTIMA 2017, pp. 158–165 (2017)

7. Diveev A., Shmalko E.: Complete binary variational analytic programming for
synthesis of control at dynamic constraints. In: ITM Web of Conferences, vol. 10
(2017)

8. Diveev, A.I., Shmalko, E.Yu.: Optimal control synthesis for group of robots by
multilayer network operator. In: International Conference on Control, Decision
and Information Technologies, CoDIT 2016, no. 3, pp. 77–82 (2016)

9. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

10. Lee, E.B., Markus, L.: Foundations of Optimal Control Theory. Wiley, New York
(1970)

11. Zelinka, I.: Analytic programming by means of soma algorithm. In: Proceedings of
8th International Conference on Soft Computing, pp. 93–101 (2002)

12. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian
genetic programming. IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)

13. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5, 349–
358 (2001)

14. Luo, C., Zhang, S.L.: Parse-matrix evolution for symbolic regression. Eng. Appl.
AI 25, 1182–93 (2012)

15. Diveev, A.I.: Numerical method for network operator for synthesis of a control
system with uncertain initial values. J. Comp. Syst. Sci. Int. 51(2), 228–243 (2012)

16. Suster, P., Jadlovska, A.: Tracking trajectory of the mobile robot Khepera II using
approaches of artificial intelligence. Acta Electrotechnica et Informatica 11(1), 38–
43 (2011)

17. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks IV, pp. 1942–1948 (1995)

https://doi.org/10.12783/dtcse/optim2018/27927
https://doi.org/10.12783/dtcse/optim2018/27927


On PTAS for the Geometric Maximum
Connected k-Factor Problem

Edward Gimadi1,2 , Ivan Rykov1,2, and Oxana Tsidulko1,2(B)

1 Sobolev Institute of Mathematics, 4 Acad. Koptyug avenue, 630090 Novosibirsk,
Russia

{gimadi,tsidulko}@math.nsc.ru, rykovweb@gmail.com
2 Department of Mechanics and Mathematics, Novosibirsk State University,

1 Pirogova Street, 630090 Novosibirsk, Russia

Abstract. We consider the Connected k-factor problem (k-CFP): given
a complete edge-weighted n-vertex graph, the goal is to find a connected
k-regular spanning subgraph of maximum or minimum total weight. The
problem is called geometric, if the vertices of a graph correspond to a
set of points in a normed space R

d and the weight of an edge is the
distance between its endpoints. The k-CFP is a natural generalization of
the well-known Traveling Salesman Problem, which is equivalent to the
2-CFP. In this paper we complement the known (1−1/k2)-approximation
algorithm for the maximum k-CFP from [Baburin et al., 2007] with an
approximation algorithm for the geometric k-CFP, that guarantees a

relative error ε = O
(
(k/n)1/(d+2)

)
. Together these two algorithms form

an asymptotically optimal algorithm for the geometric k-CFP with an
arbitrary value of k in an arbitrary normed space of fixed dimension d.
Finally, the asymptotically optimal algorithm can be easily transformed
into a PTAS for the considered geometric problem.

Keywords: Asymptotically optimal algorithm · Polynomial time
approximation scheme · Connected k-factor problem · Normed space ·
NP-hard problem

1 Introduction

In this paper we study polynomial-time approximation algorithms with perfor-
mance guarantees for the following NP-hard problem.

Problem 1 (Connected k-factor problem, k-CFP).

Input: A complete undirected n-vertex simple graph G = (V,E), edge weights
w : E → R+ and k ∈ N.

Find: A connected spanning k-regular subgraph Fk (connected k-factor) of max-
imum (or minimum) total weight:

w(Fk) =
∑

e∈Fk

w(e) → max (min).
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If the edge weights w satisfy the triangle inequality, the problem is called
metric. If the vertices of a graph correspond to a set of points in some normed
space (Rd, || · ||) and the weight of an edge e = (u, v) is determined as w(e) =
||u − v||, the problem is called geometric.

The k-CFP is closely related to the network design, where various connec-
tivity requirements are natural in the sense that they ensure the robustness of
a network, while the regular degree requirements are also common, for exam-
ple in constructing highly decentralized networks [11,24]. It is known that the
problem is polynomially solvable if there is no requirement for the subgraph
Fk to be connected [15,23] and NP-hard otherwise [9]. Note that the 2-CFP
is the well-known NP-hard Traveling Salesman Problem (TSP), where, given
a complete edge-weighted graph, it is required to find a Hamiltonian cycle of
maximum or minimum total weight. The connected k-factor problem can be, in
turn, considered as a generalization of the TSP. Since the problem is NP-hard
even in Euclidean space [8], we are interested in approximation algorithms with
performance guarantees.

In 2007 Baburin and Gimadi [5] proposed an approximation algorithm ABG

for the maximum k-CFP with guaranteed relative error εBG ≤ 1/k2 and O(kn3)
running-time. Algorithm starts with computing a maximum weight k-factor
using a polynomial-time algorithm by Gabow [15], and then connects the com-
ponents of the obtained subgraph so that the degrees of the vertices in the
subgraph remain equal to k and the total weight of the edges does not decrease
much. Note that if k is a function of n that tends to infinity as n grows, then the
relative error εBG of this algorithm tends to zero as n grows, and the algorithm
produces the so-called asymptotically optimal solutions.

In this paper we supplement the result from [5], and obtain an asymptot-
ically optimal algorithm for the geometric variant of the maximum k-CFP in
case of arbitrary k and fixed dimension of a normed space (Rd, || · ||). To this
end in Sect. 2.2 we construct a polynomial-time approximation algorithm Ã for
the geometric maximum k-CFP, and prove that it gives asymptotically optimal
solutions in case of small or constant k = o(n). This algorithm is based on the
result [17] for the m-Peripatetic Salesman Problem (m-PSP), which employs
geometrical ideas of Serdukov first appeared in [21] for the maximum Euclidean
TSP. Later Shenmaier [22] showed that Serdukov’s approach can be extended to
the case of an arbitrary normed space (Rd, || · ||).

Then in Sect. 2.3, we show how to combine algorithms ABG and Ã in order to
obtain an asymptotically optimal algorithm Ageom for the geometric maximum
k-CFP for arbitrary k. Finally, from this result a PTAS follows: given an instance
of the geometric k-CFP and an arbitrary fixed ε > 0, one should run algorithm
Ageom if relative error εgeom(n) < ε, and use any exact (brute-force) algorithm
otherwise. The running-time of the brute-force algorithm in the latter case will
be exponential in 1/ε, but polynomial in the length of an input.
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1.1 Related Work

Since the connected k-CFP contains classic TSP, without triangle inequality
the minimum connected k-CFP is NP-hard to approximate within a constant
factor [20]. On the contrary, the maximum k-CFP admits a polynomial-time
(1 − 1/k2)-approximation algorithm [5].

Usually the problem of finding connected spanning networks with certain
degree constraints is studied in the metric case. The minimization variants of
the problem are more investigated. In 2014 Cornelissen et al. [10] presented a
polynomial-time 3-approximation algorithm for the metric minimum k-CFP in
case of odd k, and a polynomial-time 2.5-approximation algorithm for the case
of even k.

Later Fukunaga and Nagamochi [13] and Narayanaswamy and Rahul [19] con-
sidered the minimization version of a more general connected f -factor problem,
where for each vertex v its own degree requirement f(v) is given. Narayanaswamy
and Rahul [19] developed a PTAS for the case of metric weights of edges and
growing function of edges f(v) ≥ n/c for every constant c. Fukunaga and Nag-
amochi [13] added q-edge-connectivity constraints to the f -factor problem in a
multigraph, that is the sought subgraph requires to remain connected whenever
fewer than q edges are deleted from the graph and is allowed to have multiple
edges between vertices. They showed a ρ-approximation algorithm for the metric
q-edge-connected f -factor problem, if f(v) ≥ 2,∀v ∈ V , where ρ = 2.5 for even
q and ρ = 2.5 + 1.5/q for odd q.

In 2018 Cornelissen et al. [11] presented constant factor approximation algo-
rithms for the metric minimum k-CFP in simple graphs with additional require-
ments on the edge-connectivity and vertex-connectivity of the desired k-factors.
They also extended these results to the f -factor statements with non-uniform
degree requirements.

Although the minimization statements are more natural, the long edges of
a network also can be desirable, for example, when the neighboring elements
in a network are required to be geometrically well-separated in order to avoid
interferences [2].

There are fewer results on the maximization problems. Baburin and
Gimadi [5] studied the maximization version of a more general f -CFP with
possibly non-uniform degree requirements and proposed an approximation algo-
rithm for the maximum f -CFP with guaranteed relative error ε = O

(
1/k2

)
and

O(kn3) running-time, where k = minv∈V f(v). Another work by Baburin and
Gimadi [6] provides an approximation algorithm for the maximum k-CFP on
random inputs with O(n2) running-time. They proved that with high probabil-
ity their algorithm is asymptotically optimal in the case of i.i.d. random weights
of edges with uniform distribution and k = o(n).

1.2 Preliminaries

We use standard terminology and notions in graph theory. We generally study
finite, undirected graphs G = (V,E). We denote by V (G) := V the set of vertices
of G and by E(G) := E the set of edges of G. We denote n := |V |.
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Consider an edge-weighted graph G = (V,E) with positive weights w : E →
R+. For a subgraph H of G we denote by w(H) :=

∑
e∈E(H) w(e) the total weight

of H. We will consider graphs in normed spaces (Rd, || · ||) where the vertices
correspond to some points in R

d and the weights of edges are defined according
to the given norm || · ||. We call such instances geometric. Recall that a norm of
a normed vector space is a function || · || : Rd → R with the following properties
for each x, y ∈ R

d and α ∈ R: ||x|| ≥ 0, ||x|| = 0 iff x = 0, ||αx|| = |α| ||x||, and
||x + y|| ≤ ||x|| + ||y||. Note that normed vector spaces are a subset of metric
spaces.

We denote by M∗ a maximum weight matching in G. A maximum weight
matching M∗ in a complete weighted graph with positive weights consists of
�n/2� edges, since otherwise there would exist u, v /∈ V (M∗) and matching
(u, v) ∪ M∗ would have a larger weight. Thus, if n is even, a maximum weight
matching M∗ in such graph is a perfect matching, and, if n is odd, M∗ covers
n − 1 vertices of G.

A k-factor of a graph G = (V,E) is a k-regular subgraph with vertex set V .
Note that a 2-factor of G is a collection of simple vertex-disjoint cycles covering
all vertices of G, that is a cycle cover. We denote by C∗ a maximum weight cycle
cover for G. If G is a multigraph, C∗ might contain cycles of length 2.

We use standard little o notation to describe functions that grows much
slower than some other functions: f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0.

We use the following definitions to describe the quality of approximation
algorithms.

Definition 1 (ρ-approximation algorithm). A ρ-approximation algo-
rithm A for a given maximization problem, 0 < ρ ≤ 1, is an algorithm, such
that for every instance I, the value of the approximate solution A(I) and the
optimum OPT (I), it holds that A(I) ≥ ρOPT (I).

Definition 2 (PTAS). Polynomial time approximation scheme (PTAS) for a
given maximization problem is an algorithm A that obtains for any valid input I
and any arbitrary fixed ε > 0, a solution of objective value A(I) ≥ (1−ε)OPT (I)
in time polynomial in the input size |I|.
Definition 3 (asymptotically optimal algorithm). Let A be an approx-
imation algorithm for an optimization problem on a class of weighted graphs.
Algorithm A is called asymptotically optimal on a class of inputs {In} with n
being the number of vertices of a graph in In, if there exist an estimation for the
relative error εn:

∣∣∣∣
OPT (In) − A(In)

OPT (In)

∣∣∣∣ < εn → 0, as n → ∞.

2 Approximation Algorithms

In this section we show polynomial-time approximation algorithms for the max-
imum geometric k-CFP and prove their performance guarantees.
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This section has the following structure. First, since our algorithms are based
on algorithm APSP from [17] for the maximum geometric m-Peripatetic Sales-
man Problem, in Sect. 2.1 we briefly discuss the ideas of algorithm APSP and
the general ideas behind results of this type. In Sect. 2.2 we describe algorithm Ã
(based on algorithm APSP ) for the maximum geometric k-CFP and prove that it
is asymptotically optimal for small k = o(n). Furthermore, the obtained solution
will be a highly connected subgraph, therefore algorithm Ã can also give asymp-
totically optimal solutions for the problem with additional q-edge-connectivity
requirements, q ≤ 2�k/2�. Finally, in Sect. 2.3 we prove that a combination of
ABG from [5] and Ã gives an asymptotically optimal algorithm and a PTAS for
the problem in any normed space of fixed dimension and arbitrary k.

2.1 Algorithm AP SP for the Geometric Maximum m-PSP

In this section we discuss an asymptotically optimal algorithm APSP from [17]
for the following problem.

Problem 2 (Maximum m-Peripatetic Salesman Problem, m-PSP).

Input: A complete graph G = (V,E), weights w : E → R+ and m ∈ N.
Find: m edge-disjoint Hamiltonian cycles H1, . . . , Hm of maximum total weight

of their edges
m∑

i=1

w(Hi) =
m∑

i=1

∑

e∈Hi

w(e) → max .

Note that the union of m edge-disjoint Hamiltonian cycles, is a spanning 2m-
regular connected subgraph, that is, a connected 2m-factor.

In 1987 Serdukov [21] (also discussed in English in [18, chapter 12.10]) pre-
sented a geometrical approach to obtain asymptotically optimal solutions for
the maximum Euclidean TSP. Baburin and Gimadi in [7] showed how to extend
this approach for the case of maximum Euclidean m-PSP. In 2014 Shenmaier
[22] carried over Serdukov’s approach for the maximum TSP in an arbitrary
normed space (Rd, || · ||) of fixed dimension. Finally, paper [17] gives an asymp-
totically optimal algorithm for the m-PSP in an arbitrary normed space of fixed
dimension.

In case of arbitrary normed spaces, the approach uses definition of the so-
called remote angle.

Definition 4 (remote angle). A remote angle α between two vectors x and y
in a normed space (Rd, || · ||) is

α(x, y) =

{
0, if x = λy for λ ∈ R

min{‖x/‖x‖ − y/‖y‖‖, ‖x/‖x‖ + y/‖y‖‖}, otherwise.

The key ideas of the approach are formulated in the following lemmas. The
first lemma states that, given a graph G in a normed space and a maximum
weight matching M∗ of G, among a large enough number of edges of M∗ there
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exist two almost parallel edges. Due to the second lemma, having two almost
parallel edges of M∗, one can get a pair of edges /∈ M∗ with the same endpoints
and almost the same total weight. Applying these two ideas, algorithm APSP

constructs Hamiltonian cycles around the maximum weight matching M∗.

Lemma 1 ([22]). Among any t vectors in a normed space (Rd, || · ||) there exist
two vectors such that the remote angle between them doesn’t exceed the value

α(d, t) =
2d

�(2t − 1)1/d� .

Lemma 2 ([22]). Let AB and CD be two edges (intervals) in R
d and α be the

remote angle between them. Then

max(‖AC‖ + ‖BD‖, ‖AD‖ + ‖BC‖) ≥ (1 − α/2)(‖AB‖ + ‖CD‖).

The general intuition of how algorithm APSP [17] for the m-PSP works
is as follows. First algorithm APSP finds a maximum weight matching M∗ =
{I1, . . . , Iµ} (μ = |n/2|) in the given complete graph G.

At each iteration i = 1, . . . ,m, algorithm APSP constructs i-th Hamiltonian
cycle Hi such that it has large total weight, is edge-disjoint with all Hj , j < i, and
does not contain edges of M∗. To this end algorithm APSP reorders the edges
of M∗ such that the following two property hold. The first one is that there are
no two successive edges Iij , Iij+1 ∈ M∗ in this ordering such that there exist an
edge e ∈ ⋃

i′<i Hi′ adjacent to both Iij and Iij+1 . This property ensures that Hi

would be edge-disjoint with all the previously constructed Hamiltonian cycles.
The second property is that the remote angle α between most of successive edges
of M∗ is small enough (like in Lemma 1). Then for each two successive edges
Iij , Iij+1 of M∗ the algorithm finds a pair of edges, which patches them into
a maximum weight 4-cycle, and add this pair of edges to the solution Hi (see
Fig. 1). Due to Lemma 2 the weight of this pair of edges will be close to the total
weight of Iij and Iij+1 . Thus, one gets a Hamiltonian cycle Hi of total weight
close to 2w(M∗). See [7,17] for more details.

I1 I2 . . . Iµ1

Iµ

Fig. 1. Vertical lines represent the edges of M∗, dashed lines are the edges of the
Hamiltonian cycle Hi constructed around M∗.
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Note that since each constructed Hamiltonian cycle Hi does not contain edges
of M∗, M∗ can be used as a foundation in constructing further Hamiltonian
cycles.

Proposition 1 ([17]). In O(n3) time algorithm APSP finds an approximate
solution for the geometric maximum m-PSP, such that it does not contain the
edges of M∗. Let w(m-PSP) and w(opt m-PSP) be the weights of the solution
obtained by APSP and an optimal solution, respectively. Then

2mw(M∗)(1 − εPSP ) ≤ w(m-PSP) ≤ w(opt m-PSP) ≤ 2mw(M∗)(1 + 1/n),

where

εPSP = 1/n + 2(d + 1)
(m

n

) 1
d+1

(1)

with d being the dimension of the normed space (Rd, || · ||).

2.2 Asymptotically Optimal Algorithm Ã for the Geometric
Maximum k-CFP in Case of Small k

Now we show how to adjust algorithm APSP for the m-PSP to obtain an approx-
imation algorithm Ã for the maximum geometric k-CFP.

Description of algorithm Ã
Input: Complete undirected graph G = (V,E) in a normed space (Rd, || · ||),
edge weights w : E → R+ consistent with the given norm, and k ∈ N.
Output: Connected k-factor Fk.

Step 1. Let n = |V |, m = �k/2�. Construct a maximum weight matching
M∗ in G. If n is even, M∗ is a perfect matching of G, otherwise there is one
vertex x0 ∈ V that is not covered by M∗. Using algorithm APSP construct an
approximate solution H1, . . . , Hm for the geometric maximum m-PSP in G, such
that the solution does not contain the edges of M∗. Let Fk :=

⋃m
i=1 Hi.

Step 2. If k = 2m + 1 for some m ∈ N ∪ {0}, Fk := Fk ∪ M∗. Note that a
k-factor exists only if nk is even and k < n, thus, if k is odd, n is even and M∗

is a perfect matching.

Return Fk.
It is clear that the algorithm constructs a feasible solution for the problem,

since a union of m edge disjoint Hamiltonian cycles is a connected 2m-factor,
and a union of a connected 2m-factor and an edge-disjoint perfect matching (in
the case of even n) is a connected (2m + 1)-factor. We now show the conditions
under which algorithm Ã is asymptotically optimal.

Theorem 1. If k = o(n), algorithm Ã gives asymptotically optimal solutions for
the maximum k-CFP in any normed space (Rd, || · ||) with fixed d. The running-
time of the algorithm is O(n3).

Let m = �k/2�, Fk be a connected k-factor obtained by algorithm Ã and F ∗
k

be a maximum weight connected k-factor. To prove Theorem 1, we are going to
show the lower and upper bounds on the weight w(Fk) of the obtained solution.
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For m = o(n) using the lower bound from Proposition 1 we have:

2mw(M∗)(1 − εPSP ) ≤ w(m-PSP) = w(F2m) ≤ w(F ∗
2m), (2)

if k = 2m, and

(2m + 1)w(M∗)(1 − εPSP ) ≤ w(M∗) + 2mw(M∗)(1 − εPSP )
≤ w(M∗) + w(m-PSP) = w(F2m+1) ≤ w(F ∗

2m+1), (3)

if k = 2m + 1.
Now our goal is to prove that the weight of the optimal solution w(F ∗

k ) ≤
kw(M∗)(1 + o(1)). To this end, we first use the well-known Petersen’s theorem
on the 2m-factor decomposition.

Proposition 2 ([1, Theorem 2.1.1]). Any 2m-regular (multi-)graph can be
decomposed into a union of m edge-disjoint 2-regular graphs.

According to Proposition 2, for even k = 2m an optimal 2m-factor F ∗
2m

can be decomposed into m edge-disjoint 2-factors C1, . . . , Cm. Let C∗ be the
maximum weight 2-factor in the initial graph, then

w(F ∗
2m) =

m∑

i=1

w(Ci) ≤ mw(C∗) . (4)

Consider the case of odd k = 2m+1. Note that a k-factor exists only if nk is
even and k < n. Thus, the number of vertices n in the graph is even, and there
exist a perfect matching. By adding the maximum weight perfect matching M
to the optimal (2m + 1)-factor one gets a (2m + 2)-factor F̃2m+2, which might
contain double-edges. In turn, this (2m+2)-factor can be decomposed into m+1
edge-disjoint 2-factors C1, . . . , Cm+1, thus, we have:

w(F ∗
2m+1) = w(F̃2m+2) − w(M) =

m+1∑

i=1

w(Ci) − w(M)

≤ (m + 1)w(C∗) − w(M), (5)

where the maximum weight 2-factor C∗ might contain cycles of length two. Using
the following result from [16] one can estimate the weight of a 2-factor C∗ in a
given normed space.

Proposition 3 ([16]). Let G = (V,E) be an edge-weighted complete
(multi)graph in an arbitrary normed space (Rd, || · ||), where the weight of an
edge e = (u, v) is defined as w(e) = ||v − u|| for u, v ∈ V ⊆ R

d. Let C∗ be a
maximum weight 2-factor and M∗ be a maximum weight matching in G. Then:
w(C∗) ≤ 2w(M∗)/(1 − εC), where

εC =
(

(d + 1)d+1

2n

)1/(d+2)

. (6)
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Now we can finish the proof of Theorem 1.

Proof (of Theorem 1). The running-time of Ã is determined by the running-
time of algorithm APSP , which is O(n3). To estimate the relative error of the
algorithm consider the following.
For k = 2m, from the inequalities (2), (4) and Proposition 3 it follows that:

2mw(M∗)(1 − εPSP ) ≤ w(F2m) ≤ w(F ∗
2m) ≤ 2mw(M∗)/(1 − εC) .

For k = 2m + 1, from the inequalities (3), (5) and Proposition 3 it follows that:

(2m + 1)w(M∗)(1 − εPSP ) ≤ w(F2m+1) ≤ w(F ∗
2m+1)

≤ (m + 1)w(C∗) − w(M∗) ≤ (2m + 2)w(M∗)/(1 − εC) − w(M∗)
≤ (2m + 1)w(M∗)/(1 − 2εC).

Therefore, using definitions of εC (6) and εPSP (1) we get an estimation for
the relative error of algorithm Ã:

ε
˜A = 1 − w(Fk)

w(F ∗
k )

≤ 1 − k w(M∗)(1 − εPSP )

k w(M∗)/(1 − 2εC)
≤ εPSP + 2εC

≤ 1/n + 2(d + 1)

(
k

2n

)1/(d+1)

+ 2(d + 1)

(
1

2n

)1/(d+2)

≤ 5(d + 1)

(
k

2n

)1/(d+2)

,

(7)

which tends to 0 as n grows to infinity, if k = o(n) and d is a constant. �
From this result a simple corollary follows. Recall, that a graph is called q-edge
connected, if it remains connected whenever fewer than q edges are removed.
Menger’s theorem [14, Theorem 5.12] states that a graph is q-edge connected,
if for every pair of vertices x and y there exists q edge disjoint paths between
x and y. Since the approximate solution of the k-CFP obtained by algorithm Ã
contains �k/2� edge disjoint Hamiltonian cycles, there are at least 2�k/2� edge
disjoint paths between any two vertices of the approximate solution Fk. Note
that for odd k and q = k this is not always the case.

Corollary 1. Algorithm Ã gives asymptotically optimal solution for the problem
of finding a q-edge connected k-factor in a given complete graph in any normed
space of fixed dimension, if k = o(n) and q ≤ 2�k/2�.

2.3 PTAS and Asymptotically Optimal Algorithm in Case of
Arbitrary k

Finally, in this section we show that by combining algorithm Ã for the case of
small k with algorithm ABG from [5] for the case of large k one can obtain
an asymptotically optimal algorithm and a PTAS for the maximum geometric
k-CFP for arbitrary k.
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Theorem 2. The maximum geometric k-CFP admits a polynomial-time asymp-
totically optimal algorithm in an arbitrary normed space (Rd, ||·||) of fixed dimen-
sion d.

Proof. Algorithm ABG for the general maximum k-CFP from [5] runs in O(kn3)
time and has relative error εBG ≤ 1/k2. According to Theorem 1, algorithm Ã
for the geometric maximum k-CFP runs in O(n3) time and has a relative error
defined by (7).

Thus, applying algorithm ABG if k ≥ (2n)1/(2d+5)

(5d+5)(d+2)/(2d+5) , and algorithm Ã

otherwise, we get an approximation algorithm Ageom for the geometric maximum
k-CFP with running-time O(kn3) and relative error

ε ≤
(

(5d + 5)2d+4

4n2

) 1
2d+5

≤ 5(d + 1)
(2n)2/(2d+5)

=: εgeom −−−−→
n→∞ 0 . (8)

�
Corollary 2. The maximum geometric k-CFP admits a PTAS in an arbitrary
normed space (Rd, || · ||) of fixed dimension d.

Proof. One can obtain a PTAS from the discussed asymptotically optimal algo-
rithm as follows. Given an instance of k-CFP and ε > 0, apply polynomial-time
asymptotically optimal algorithm Ageom if ε ≥ εgeom, where εgeom is defined as
in (8). Otherwise, from ε < εgeom, it follows that

n <
1
2

·
(

5d + 5
ε

)d+5/2

,

and applying any exact (brute-force) algorithm to such instance will take time
exponential in 1/ε. Therefore, the overall time-complexity is polynomial in n
(but not in 1/ε), and we get a PTAS. �

3 Conclusion

In this paper employing the extended geometrical approach by Serdukov we
construct an asymptotically optimal algorithm and a PTAS for the maximum
k-CFP in an arbitrary normed space of fixed dimension. Given a graph in a
normed space of fixed dimension, this approach allows to build a number of
edge-disjoint matchings with weight of each matching being close to the weight
of the maximum weight matching. Therefore the approach is well suited for
solving geometric maximization problems, where a feasible solution is a certain
subgraph that can be decomposed into a union of edge-disjoint matchings.

Moreover, this approach allows to obtain structural results on the weight of
the optimal solutions for such problems. For example, in an arbitrary normed
space of fixed dimension from the result [22] it follows that the weight of an
optimal maximum TSP solution asymptotically equals to 2w(M∗), the weight of
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a maximum weight 2-factor asymptotically equals to 2w(M∗) [16], the weight of a
maximum m-PSP solution is asymptotically 2mw(M∗) for m = o(n) [7,17], and,
now, according to Theorem 1 and Corollary 1 the weights of a maximum weight
k-factor, connected k-factor, and q-edge connected k-factor are asymptotically
equal to kw(M∗), if k = o(n) and q ≤ 2�k/2�.

Note that for the minimization problems even in the Euclidean case and
even when the vertices of an input graph are random points uniformly sampled
from the hypercube [0, 1]d, the weight of a minimum weight Hamiltonian cycle,
2-factor and the doubled weight of a minimum weight perfect matching are not
asymptotically equal to each other [12].

A promising direction for the further research is studying maximization prob-
lems in metric spaces of fixed doubling dimension, which is a more general case
of a metric space than the normed spaces. For the minimum TSP in metric
spaces of bounded doubling dimension Bartal et al. [4] extended an approach by
Arora [3] and presented a PTAS. Since such approximation algorithms are pos-
sible to construct for the minimization problems, it is worth trying to generalize
Serdukov’s approach for the maximization problems for these types of metrics.
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Abstract. The problem of optimal exploitation of an ecological popula-
tion with a binary structure is considered (there is an additional criterion
for population structuring in addition to age or developmental stage). It
is assumed that population state dynamics is described by a nonlinear
generalization of the Leslie model. We prove a criterion for the exis-
tence of so-called quasi-preserving controls that support the sustainable
population dynamics. Moreover, optimal quasi-preserving controls with
a minimum number of nonzero coordinates (i.e., controls that preserve
unchanged the largest number of structural units of a population) are
found explicitly. The proposition about the minimum possible number of
nonzero coordinates for optimal vectors is also proved. This proposition
is a generalization to the case of a binary population structure of well-
known bimodality property of optimal strategies for populations with
one-dimensional structure.

Keywords: Rational ecosystem exploitation · Generalization of the
Leslie model · Optimal quasi-preserving controls · Bimodality of
optimal strategies

1 Introduction

One of the global problems, the relevance of which has been steadily increasing
lately, is the preservation of sustainable exploitation regimes for the world’s
bioresources. The Living Planet 2018 Index [1] prepared by World Wildlife Fund
(WWF) characterizes the severity of the problem, showing that between 1970
and 2014 the planet lost 60% of mammals, birds, reptiles, and fish; at least 300
mammal species have completely disappeared as a result of human impact. The
world’s largest purveyors of bioresources are forestry and fishing. According to
WWF, the share of marine fish stocks harvested at biologically sustainable levels
shows a downward trend: from 90.0% in 1974 to 66.9% in 2015. As for forestry,
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in Russia only in 2016–2017 years more than 1 million hectares of pristine forest
were cut down [1].

The problem of finding the maximum sustainable level of exploitation that
preserves stability of population (the Maximum Sustainable Yield, or MSY–
Problem) has been studied by many authors. The pioneering works here took
into account only the total biomass of the population. Early works, considering
a population structure, used a linear formulation, in that the transition from
the previous population state to the next one was performed by a matrix called
the projection matrix. Difficulties associated with the dynamic aspects of the
problem were overcome, considering only stationary states. As the latter, they
used eigenvectors corresponding to the dominant eigenvalue λ(A) of the pro-
jection matrix A. In this case, with λ(A) > 1, the removal of surplus from
the age classes of the population leaves the population in a stationary state:
xt+1 = Axt − (λ(A) − 1)xt = xt.

The first theoretical results for linear models of sustainable population
exploitation were obtained in [2,3]. In [2] the concept of sustainable exploitation
was formulated for a population with an age structure—the problem of finding
the maximum level of allowable exploitation was formulated, and the solvabil-
ity of this problem is proved. In [3] some concepts and statements adequate for
the exploitation of ecosystems were formalized, and the corresponding assertions
were strictly proved.

The successful attempts to generalize these results to the case of nonlinear
density dependence were stimulated by [4], where the density dependence was
considered only for the first age class. But this dependence was quite general; in
particular, the class of functions under consideration contained concave functions
with a horizontal asymptote. Further development of these studies is described
in [5], where is studied density-dependent size-structured population model.

Naturally, a solution of population optimal exploitation problem essentially
depends on the formulation of an objective function. In this paper, we are more
interested in the properties of a feasible set; issues related to the use of various
objective functions are discussed in detail in the monograph [6].

It should be noted that in the overwhelming majority of studies on optimal
exploitation based on the withdrawal of resources from the system, even if the
initial formulation of the problem uses additive control, as a rule, they sub-
sequently move to proportional withdrawal, i.e., to multiplicative control that
simplifies the finding and analysis of optimal strategies. A typical approach is
described in [6]. Although an iterative process with additive control is considered
initially, then the fractions hi ∈ (0, 1) are determined that will be removed from
structural population units; authors are turned to multiplicative stationary con-
trol in the equilibrium state. Usually, a diagonal matrix is defined with elements
hi on the main diagonal, so that u = HAx, and MSY–problem is considered
with the primary constraint (I − H)Ax = x.

All of the above studies used the well-known Leslie model of the popula-
tion age structure or its generalization (see review in [7]) as a biological basis.
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These studies became the basis for numerous subsequent works, both theoretical
and practical, mostly using similar problem statements and mathematical tools.

Despite all differences in the formulations of population optimal exploitation
problem among various authors, it turned out that there is a common character-
istic property of optimal solutions, consisting in the number of age classes to be
exploited. This property of controls, later called the bimodality property, means
existence an optimal solution having at most two such classes. Apparently, for the
first time these results were obtained in papers [8,9]. Their authors established
the existence of a bimodal optimal control that allows exploitation (withdrawal,
partial or complete) of no more than two age classes, partial withdrawal of one
age class and full—of the other (more older).

The first successful attempt of optimal exploitation problem consideration
for nonlinear models of population dynamics with a general nonlinear depen-
dence on the total biomass of a population, when this dependence is given by
the properties of dynamic system step operator, is associated with the afore-
mentioned paper [4]. For this rather general nonlinear model, the existence
of bimodal optimal control strategies has also been shown. Such “two-age”
strategies for models with nonlinearities were further obtained by many authors
(see e.g. the review in [5]).

All the listed studies were related to a population with a one-dimensional (age
or stage) structure. The paper [10] proposed a nonlinear population model with
a binary structure when there is an additional criterion for population struc-
turing other than age or developmental stage. Judging from available reviews
of generalizations and modifications of the Leslie model (see e.g. [11,12]), this
binary model has not been encountered previously in studies on the exploitation
of ecological populations.

The goal of this paper is to obtain a generalization of the optimal controls
bimodality property for non-linear Leslie model with binary structure and to
find explicitly optimal controls that satisfy this generalized property.

2 Some Definitions, Notation and Preliminary Results

Some common notation is as follows: R
q
+—the non-negative orthant of R

q;
m,n = {i ∈ Z | m ≤ i ≤ n}; M—the closure of a set M ; |M |—the number of
elements of a finite set M ; co(M)—the convex hull of M .

For convenience, we will sometimes use the abbreviated coordinate entry
x = (xi) for a row vector x = (x1, x2, . . . , xq); I+(x) = {i ∈ 1, q | xi > 0},
where x = (xi). Sets of nonzero fixed points and positive fixed points of F are
denoted by NF and N+

F , respectively.
Let us proceed to the formalization of optimal exploitation problem proposed

in [13]. It is assumed that there is an ecological population consisting of q > 1
structural units (subdivisions), the dynamics of which in the absence of exploita-
tion is described by an iterative process with a step operator F ∈ {R

q
+ �→ R

q
+}.

This operator, along with the trivial equilibrium state (F (0) = 0), also has a non-
trivial one (i.e. NF �= ∅). For the map F that is concave on R

q
+, we can formulate
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a simple sufficient condition for the existence of a nonzero fixed point. Indeed, for
such map F , there are positively homogeneous maps Fs(x) = lim

α→+s
α−1F (αx)

(s ∈ {0,∞}). Using their dominant eigenvalues, a sufficient condition for the
existence of a nontrivial equilibrium can be formulated as follows:

λ(F∞) < 1 < λ(F0) (1)

In addition to concavity, the non-burdensome requirement for an absence of
identically zero components of F (x) = (fi(x)), which guarantees the positivity
of positive vectors images: F (int R

q
+) ⊆ int R

q
+, is also assumed to be fulfilled.

The exploited population is modeled by the iterative process

xt+1 = Fu(xt), t = 0, 1, 2, . . . , (2)

where Fu(x) = F (x)−u, xt ≥ 0 means a population state at time t = 0, 1, 2, . . ..
In [13], an optimization problem was posed for system (2), the feasible set of
which formalized the stability condition of population structure. The equivalence
of this problem to the following mathematical programming problem was proved:

max{c(u) | x = F (x) − u, x ≥ 0, u ≥ 0}, (3)

where c(u) is nonnegative and monotone increasing function.
We call the control u ≥ 0 preserving if it preserves all structural subdivisions

of the population (2), i.e. if xt > 0 (∀t = 0, 1, 2, . . .). Denote by Nu and N+
u the

sets of nonzero fixed points and positive fixed points of Fu, respectively. The set
of preserving controls can be represented as follows:

U = {u ∈ R
q
+ | N+

u �= ∅}. (4)

The feasible set of the problem (3) coincides with U = {u ∈ R
q
+ | Nu �= ∅}.

It was shown in [13] that NF for concave map F satisfying condition (1) is
bounded, convex and contains the largest element x̄F . Further, the non-empty
set Nu contains the largest element x̄u; moreover, the map x̄(u) : u → x̄u is
monotone decreasing and concave on U .

We introduce a set

D = {u ∈ R
q
+ | Nu �= ∅, Nv = ∅ (∀v > u)}

that forms a part of the boundary of U . The set D contains all potentially
optimal vectors of the problem (3). We divide this set into two disjoint parts by
criterion of the presence or absence of common points with U :

D′ = {u | N+
u �= ∅, Nv = ∅ (∀v > u)}, (5)

D′′ = {u ∈ R
q
+ | Nu �= ∅, N+

u = ∅}. (6)

As can be seen from (4), (5), although the controls from D′ lie on the boundary of
U , they are preserving: D′ ⊂ U . The latter is not true for D′′; moreover, it follows
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from (6) that D′′ = U\U . But, although the controls from D′′ eliminate some
structural population units, in the next development cycle they are restored and
continue to exist stably (until the next withdrawal). Taking this into account,
controls from D′′ are called quasi-preserving.

In [15] it was proved that for a generalization of the Leslie model [10] D′ �= ∅.
This generalization is as follows: there are m ≥ 1 intrapopulation structural
units (subdivisions), each of which contains individuals of n ages (or stages)
1, 2, . . . , n. If at time t, the subdivisions individuals number (density, biomass),
is x

(t)
i,j (t = 0, 1, 2, . . .) then

x
(t+1)
i,1 = fi(at), x

(t+1)
i,j+1 = αi,jx

(t)
i,j (i ∈ 1,m, j ∈ 1, n − 1). (7)

Here αi,j > 0 and βi,j ≥ 0 are the survival and fertility rates in the relevant
subdivisions, at =

∑m
i=1

∑n
j=1 βi,jx

(t)
i,j—the number of newborns at time t.

We write the population state vector in the form x = (x(1), x(2), . . . , x(m)),
where x(i) = (xi,1, . . . , xi,n) (i ∈ 1,m). The step operator F (x) = (fi,j(x)) for
the model (7) has the following form:

fi,1(x) = fi(a(x)), fi,j+1(x) = αi,jxi,j (i ∈ 1,m, j ∈ 1, n − 1). (8)

In order for F to be concave, the following assumption must be made:

fi(a) are concave on R+ (∀i ∈ 1,m). (9)

Requirement F (0) = 0 leads to conditions fi(0) = 0 (∀i ∈ 1,m); but everywhere
except zero, functions fi(a) are positive.

Denote (by convention
∏s

�=r a� = 1 for r > s)

π(i) = π(i)
n , π

(i)
j = p

(i)
1,j , p

(i)
j,k =

k−1∏

�=j

αi,�, (i ∈ 1,m, j, k ∈ 1, n), (10)

we obtain the system of equations for finding an equilibrium of (7):

xi,j = π
(i)
j fi(a(x)) (i ∈ 1,m, j ∈ 1, n), a(x) =

m∑

i=1

n∑

j=1

βi,jxi,j .

Condition (1) for the model (7) is equivalent [10] to the following condition:

σ′(+∞) < 1 < σ′(+0), (11)

where

σ(a)=
m∑

i=1

σ(i)fi(a), σ(i)=σ(i)
n , σ

(i)
k =

k∑

s=1

βi,s

s−1∏

t=1

αi,t (i ∈ 1,m, k ∈ 0, n). (12)

Condition (11) leads to solvability of equation σ(a) = a. Its unique solution āF

corresponds to the unique positive fixed point x̄F of the map (8): āF = a(x̄F ).
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We also assume that the condition

βi,n > 0 (∀i ∈ 1,m), (13)

guaranteeing the local irreducibility of the map (8) is satisfied (for the corre-
sponding definitions and properties, see [10,14]).

3 Properties of Quasi-preserving Controls for the
Generalization of the Leslie Model

The feasible set U for the model (7) in addition to the restrictions of nonnega-
tivity of x, u is given by equations

xi,1 = fi(a(x)) − ui,1, xi,j+1 = αi,jxi,j − ui,j+1 (i ∈ 1,m, j ∈ 1, n − 1). (14)

We represent the structure of the control u in accordance with the structure of
state vector x in the form u = (u(1), u(2), . . . , u(m)), where u(i) = (ui,1, . . . , ui,n).

We need the following notation (here i ∈ 1,m, j, k ∈ 1, n):

q(u) =
m∑

i=1

n∑

j=1

q
(i)
j ui,j , q

(i)
j = q

(i)
j,n, q

(i)
j,k =

k∑

s=j

βi,s

s−1∏

t=j

αi,t, (15)

p(i)(u) = p(i)n (u), p
(i)
j (u) =

j∑

k=1

p
(i)
k,jui,k, (16)

μ(a) = σ(a) − a, λi(a) = π(i)fi(a), (17)

μ∗ = max
a≥0

μ(a), A∗ = Arg max μ(a), a∗ = min A∗, a∗ = max A∗. (18)

Under assumptions (9), (11), (13), we have 0 < μ∗ < +∞, A∗ �= ∅, 0 < a∗ ≤ a∗.
From (14) we obtain the following explicit dependence of x on u:

xi,j = π
(i)
j fi(a) − p

(i)
j (u), xi,n = λi(a) − p(i)(u) (i ∈ 1,m, j ∈ 1, n − 1), (19)

where a = a(x). We write the vector x with coordinates (19) as x = x(a, u).
For u ∈ U , x̄u = (x̄i,j(u)), we define a set

I0(u) = {i ∈ 1,m | x̄i,n(u) = 0}. (20)

The set D′ have the following parametric representation:

D′ = {u | p(i)(u) < λ∗
i (i ∈ 1,m), q(u) = μ∗, u ≥ 0}. (21)

This set lies entirely on the hyperplane Γ given by equation q(u) = μ∗ [15]:

D′ = Γ ∩ U, D′′ ∩ Γ ⊂ D′, D′ = Γ ∩ D. (22)
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A non-negative u belongs to D′′ if and only if the following restrictions are met:

I0(u) �= ∅, p(i)(u)
{

= λi(a(x̄u)), i ∈ I0(u),
< λi(a(x̄u)), i /∈ I0(u), q(u) = μ(a(x̄u)). (23)

Using the notation (12), we introduce the following quantities:

S̄
(i)
j (a) = σ

(i)
j fi(a) +

∑

k �=i

σ(k)fk(a) (i ∈ 1,m, j ∈ 0, n). (24)

We strive to find optimal vectors having a minimum number of nonzero coor-
dinates. To characterize the situation when there are quasi-preserving optimal
vectors with unique positive coordinate, we need the following equation:

S̄
(i)
j−1(a) = a (a ≥ a∗). (25)

The solution to this equation (if it exists) is denoted by a
(i)
j . To find conditions

for solvability of (25), we introduce the following notation:

I∗
k = {j ∈ 1, n | S̄

(k)
j−1(a

∗) < a∗}, J∗
k = 1, n \ I∗

k (k ∈ 1,m), (26)

I∗ = {k ∈ 1,m | I∗
k �= ∅}, J∗ = {k ∈ 1,m | J∗

k �= ∅}. (27)

Lemma 1. Suppose that conditions (9), (11), (13) are satisfied. Then Eq. (25)
has a solution (that is unique) if and only if j ∈ J∗

i .

Proof. Suppose that the Eq. (25) is solvable. Then it follows from (9), (11) that
its solution a

(i)
j is unique. Because the function S̄

(i)
j−1(a) is concave, we have for

a ≥ a∗: 1 = (a(i)
j )−1S̄

(i)
j−1(a

(i)
j ) ≤ (a∗)−1S̄

(i)
j−1(a

∗), i.e. S̄
(i)
j−1(a

∗) ≥ a∗. But this
means by (26) that j ∈ J∗

i .
Conversely, we now show that Eq. (25) is solvable for i ∈ J∗, j ∈ J∗

i . Indeed,
by (26), (27) we have S̄

(i)
j−1(a

∗) ≥ a∗. Condition (11) due to concavity of σ(a)
implies the existence of a point ā such that σ(ā) < ā. But then, because of
S
(i)
j−1(ā) ≤ σ(ā) a fortiori S

(i)
j−1(ā) < ā. Therefore, there is a fixed point ā ∈ [a∗, ā]

of S
(i)
j−1(a), i.e. the Eq. (25) is solvable. Lemma is proved.

Let us define the control u(i, j) by equalities

|I+(u(i, j))| = 1, I+i (u(i, j)) = {j}, ui,j =

{
μ∗(q(i)j,n)−1, i ∈ I∗, j ∈ I∗

i ,

πi
jfi(a

(i)
j ), i ∈ J∗, j ∈ J∗

i .
(28)

Note that q
(i)
j,n �= 0 by assumption (13). The following proposition clarifies the

distribution of the elements of D with a unique nonzero coordinate over D′, D′′.

Lemma 2. Suppose that conditions (9), (11), (13) are satisfied and J∗ �= ∅.
Then u(i, j) ∈ D; moreover,

u(i, j) ∈
{

D′, i ∈ I∗, j ∈ I∗
i ,

D′′, i ∈ J∗, j ∈ J∗
i .

(29)
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Proof. If i ∈ I∗, j ∈ I∗
i and ui,j = μ∗(q(i)j,n)−1, then it follows from (15) that

q(u(i, j)) = q
(i)
j,nui,j = μ∗. By (21), it remains to show that λ∗

i −p(i)(u) = xi,n > 0.

Since xi,n = p
(i)
j xi,j and p

(i)
j > 0 by (10), it suffices to verify that xi,j > 0.

From (19), using (10), (12), (15), (17), (24), we find: xi,j = π
(i)
j fi(a∗) − ui,j =

(q(i)j,n)−1[q(i)j,nπ
(i)
j fi(a∗)−(σ(a∗)−a∗)] = (q(i)j,n)−1[(

j−1∏

�=1

αi,� ·
n∑

s=j

βi,s

s−1∏

�=j

αi,�)fi(a∗)+

a∗ −
m∑

k=1

σ(k)fk(a∗)] = (q(i)j,n)−1[a∗ + (
n∑

s=j

βi,s

s−1∏

�=1

αi,� −
n∑

s=1
βi,s

s−1∏

�=1

αi,�)fi(a∗) −
∑

k �=i

σ(k)fk(a∗)] = (q(i)j,n)−1[a∗ − (
j−1∑

s=1
βi,s

s−1∏

�=1

αi,�)fi(a∗) − ∑

k �=i

σ(k)fk(a∗)] =

(q(i)j,n)−1[a∗−S̄
(i)
j−1(a

∗)]. This value is positive by definitions (26), (27). According
to (21), this means that u(i, j) ∈ D′.

Now let i ∈ J∗, j ∈ J∗
i . Then by Lemma 1, the Eq. (25) is solvable and has the

unique solution a
(i)
j . If ui,j = π

(i)
j fi(a

(i)
j ), then, by (16), p(i)(u(i, j)) = p

(i)
j,nui,j =

(
n−1∏

k=j

αi,k)π(i)
j fi(a

(i)
j ) =

n−1∏

k=j

αi,k(
j−1∏

k=1

αi,k)fi(a
(i)
j ) = (

n−1∏

k=1

αi,k)fi(a
(i)
j ) = λi(a

(i)
j ).

This means that the first equality in (23) holds. Since xk,n > 0 for k ∈ 1,m \J∗,
from (19) we obtain that the remaining restrictions on p(k)(u(i, j)) in (23), in
the form of strict inequalities, are also satisfied.

Finally, from the equality (25) with a = a
(i)
j we get: μ(a(i)

j ) = σ(a(i)
j )−a

(i)
j =

σ(a(i)
j ) − S̄

(i)
j−1(a

(i)
j ) =

m∑

k=1

σ(k)fk(a(i)
j ) − ∑

k �=i

σ(k)fk(a(i)
j ) − (

j−1∑

k=1

βi,kπ
(i)
k )fi(a

(i)
j ) =

σ(i)fi(a
(i)
j )−(

j−1∑

k=1

βi,kπ
(i)
k )fi(a

(i)
j ) = (

n∑

k=1

βi,kπ
(i)
k )fi(a

(i)
j )−(

j−1∑

k=1

βi,kπ
(i)
k )fi(a

(i)
j ) =

(
n∑

k=j

βi,kπ
(i)
k )fi(a

(i)
j ) = (

n∑

k=j

βi,k

k−1∏

�=1

αi,�)fi(a
(i)
j ) = (

n∑

k=j

βi,k

k−1∏

�=j

αi,�)
j−1∏

�=1

αi,�

fi(a
(i)
j ) = q

(i)
j,nπ

(i)
j fi(a

(i)
j ) = q

(i)
j,nui,j = q(u(i, j)). Thus, the second equality in

(23) also holds, therefore u(i, j) ∈ D′′. Lemma is proved.

We now give some properties of a = ā(u), which we use in the proof of the
following statement. Taking in equalities (19) u = 0, xi,n = 0 for i ∈ I0(u) and
summing them with coefficients βi,j , it is easy to obtain the inequality

S̄
(i)
n−1(a) ≥ a, a = ā(u) (∀u ∈ D′′, i ∈ I0(u)). (30)

Further, since μ∗ = μ(a∗) (see (17), (18)) it follows from (21) that ā(u) = a∗

(∀u ∈ D′). Using the properties of μ(a) [15, Lemma 1], it can be shown that
ā(u) ≥ a∗ (∀u ∈ D′′). Thus, the following property holds:

ā(u) = a∗ (∀u ∈ D′), ā(u)
{

= a∗, u ∈ Γ,
> a∗, u /∈ Γ

(∀u ∈ D′′). (31)
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Further we use parametric representations of some sets. To clarify the limits of
the parameter change in these representations, we introduce the following value:

sup{ā(u) | u ∈ V } = ā(V ) (V ⊆ U).

Note that ā(U) = ā(U) = āF and, by (22), ā(D′) = a∗. The following propo-
sition, which we give without proof, gives the upper change bound of a on D.

Lemma 3. Suppose that conditions (9), (11), (13) are satisfied. If D′′ �= ∅,
then āD = āD′′ = max

i∈J∗
a
(i)
n .

Thus, by Lemma 3, the change in the value of ā(u) on D′′ is bounded by [a∗, ā],
where ā is maximal among the solutions of the equations S̄

(i)
n−1(a) = a.

The set of quasi-preserving controls D′′, in contrast to D′, can be empty. Let
us characterize the conditions under that D′′ is non-empty.

Theorem 1. Suppose that conditions (9), (11), (13) are satisfied. Then D′′ �= ∅

if and only if J∗ �= ∅.

Proof. Necessity. Let D′′ �= ∅, u ∈ D′′, a = ā(u). Then it follows from (23), (31),
that I0(u) �= ∅ and a ≥ a∗ > 0. By (9), the function S̄

(i)
n−1(a) is also concave. Set

α = a−1a∗, β = 1−α, then α ∈ (0, 1]; hence S̄
(i)
n−1(a

∗) = S̄
(i)
n−1(αa) ≥ αS̄

(i)
n−1(a) =

a−1a∗S̄(i)
n−1(a), i.e. (a∗)−1S̄

(i)
n−1(a

∗) ≥ a−1S̄
(i)
n−1(a) (∀i ∈ 1,m). Therefore, by

(30), a fortiori (a∗)−1S̄
(i)
n−1(a

∗) ≥ 1, i.e. S̄
(i)
n−1(a

∗) ≥ a∗ (∀i ∈ I0(u)).
Further, because of monotonicity of S̄

(i)
j−1(a) with respect to subscript, we

obtain: J∗ = {i ∈ 1,m | J∗
i �= ∅} = {i ∈ 1,m | I∗

i �= 1, n} = {i ∈ 1,m |
∃j ∈ 1, n : S̄

(i)
j−1(a

∗) ≥ a∗} = {i ∈ 1,m | S̄
(i)
n−1(a

∗) ≥ a∗}. Due to the inequality

S̄
(i)
n−1(a

∗) ≥ a∗ obtained above, we have i ∈ J∗, i.e. J∗ �= ∅.
Sufficiency follows from Lemma 2. Indeed, if J∗ �= ∅ then D′′ contains the

elements u(i, n) for i ∈ J∗. Theorem is proved.

As we saw above, the structure of D′ is simple enough—D′ is a part of the
hyperplane. In order to study the structure of the second (in the general case
nonlinear) part of D, the structure of D′′, we assume that the condition

∃ i ∈ 1,m : S̄
(i)
n−1(a

∗) ≥ a∗

from Theorem 1 is fulfilled.
Fix a ∈ [0, āF ], where āF = a(x̄F ), and consider the polyhedron

U(a) = {u | p(i)(u) ≤ λi(a) (∀i ∈ 1,m), q(u) = μ(a), u ≥ 0}. (32)

Clearly, U = ∪{U(a) | a ∈ [0, āF ]}. We introduce the sets

VD′ = V (a∗) ∩ D′, VD′′(a) = V (a) ∩ D′′ (a ∈ [a∗, āD′′ ]),
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where V (a) is the set of all vertex of polyhedron U(a). Fix a ∈ [a∗, āD′′ ], i ∈ 1,m,
and denote Li(a) = Mi(a) ∩ R

mn
+ , where

Mi(a) = {u | p(i)(u) = λi(a), p(j)(u) ≤ λj(a) (∀j �= i), q(u) = μ(a) }.

Clearly Mi(a) is an (mn − 2)–dimensional affine manifold (i ∈ 1,m). Denote
D(a) = U(a) ∩ D′′, we obtain the following representation for D′′:

D′′ = ∪{D(a) | a ∈ [a∗, āD′′ ], D(a) =
m∪

i=1
Li(a)}. (33)

Along with the set (20), we also define the sets

I1(u) = {i ∈ 1,m | I+i (u) �= ∅}, I2(u) = {i ∈ 1,m | |I+i (u)| = 2}.

The properties of the elements of VD′′(a) are characterized by the following

Lemma 4. Suppose that conditions (9), (11), (13) are satisfied.

(i) if u ∈ VD′ , then u coincides with one of the vectors u(i, j) (i ∈ I∗, j ∈ I∗
i );

(ii) if u ∈ VD′′(a), then the following properties hold:

I2(u) ⊆ I0(u) ⊆ I1(u), (34)

|I+i (u)| ≤ 2 (∀i ∈ 1,m), (35)

|I2(u)| ≤ 1; I2(u) �= ∅ ⇔ I0(u) = I1(u). (36)

Proof. The control u ∈ V (a) is a solution of a system of linear equations with a
nonsingular matrix Au that is obtained from the matrix

A =

⎡

⎣
q
P
I

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q(1) q(2) . . . q(m−1) q(m)

p(1) O . . . O O

O p(2) . . . O O

. . . . . . . . . . . . . . .
O O . . . p(m−1)

O

O O . . . O p(m)

Imn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

by adding to the first line another mn − 1 lines from the remaining ones. Here
p(i) = (p(i)1,n, p

(i)
2,n, . . . , p

(i)
n,n), q(i) = (q(i)1 , q

(i)
2 , . . . , q

(i)
n ), i ∈ 1,m (see (10), (15)),

Imn is the identity matrix of dimension mn.
Assertion (i) is obvious; we prove now the assertion (ii), first the property

I0(u) ⊆ I1(u) from (34). If i ∈ I0(u), then p(i)(u) = λi(a). Assuming i /∈ I1(u),
we get I+i (u) = ∅, i.e. ui,j = 0 (∀j ∈ 1, n). But then Au contains simultaneously
the i-st row of A and those rows of Imn that have units in the columns with
indices (i − 1)n + j (∀j ∈ 1, n). Expanding determinant |Au| along these unit
rows, we obtain a determinant having a zero row (the part of the i-st row of
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P without vector p(i)); therefore |Au| = 0. But this contradicts the way Au is
chosen. Therefore, i ∈ I1(u), so really I0(u) ⊆ I1(u).

We now prove property I2(u) ⊆ I0(u). Let i ∈ I2(u), so |I+i (u)| = 2. This
means that two rows of Emn with indices (i − 1)n + j1, (i − 1)n + j2 for some
j1, j2 ∈ 1, n are absent in Au. Assuming i /∈ I0(u), we also get the absence of the
i-st row of P in Au. But then columns of Au with indices (i−1)n+j1, (i−1)n+j2
contain nonzero elements only in the first row. Expanding determinant |Au| along
one of them, we obtain a determinant with zero column, and thus |Au| = 0. This
contradiction shows that i ∈ I0(u) and I2(u) ⊆ I0(u).

We now prove (35). Denote I0 = I0(u), |I0| = k, |I+� (u)| = k�, max�∈I0 k� = k̄.
Each element from I0 adds to Au one row of P ; each element from I+� (u) removes
rows from Imn in amounts of k�. Because of

∑
�∈I0

k� ≥ k̄ + (k − 1), we have:
mn = 1+ k +(mn−∑

�∈I0
k�) ≤ 1+ k +mn− k̄ − k +1 = mn+2− k̄, so k̄ ≤ 2.

We now prove the first part of (36). Denote |I2(u)| = k. If Au contains � rows
of P , then � = |I0(u)|, and from I2(u) ⊆ I0(u) we obtain k ≤ �. We break up the
set 1,mn into disjoint parts I1 = 1,m \I0(u), I2 = I0(u)\I2(u), I3 = I2(u). This
partition generates the corresponding partition of rows of Emn belonging to Au.
We denote by k(I) the number of rows of Emn corresponding to I. Thus, the
total number of rows of Emn contained in Au is equal to s = k(I1)+k(I2)+k(I3).
If i ∈ I2 (resp. i ∈ I2), then Au contains all rows of Emn with indices (i−1)n+ j
(∀j ∈ 1, n), except for one (resp. two), therefore k(I2) = (� − k)(n − 1), k(I3) =
k(n−2). Since s+l+1 = mn we get k(I1) = mn−�−1−(�−k)(n−1)−k(n−2) =
(m − �)n + k − 1. On the other hand, k(I1) ≤ (m − �)n since |I1| = m − �. This
implies k ≤ 1, so that I2(u) ≤ 1.

Finally, we prove the second part of (36). Representing I1 in the form I ∪ J ,
where I = I1(u)\I0(u), J = 1,m\I0(u), and given that Au cannot contain
the rows of Emn with indices (i − 1)n + j (j ∈ 1, n) for i ∈ I1(u), we get:
k(I1) = k(I)+k(J) = |I|(n−1)+|J |n = (|I1(u)|−|I0(u)|)n−|I|+(m−|I1(u)|)n =
(m − |I0(u)|)n − |I| = (m − �)n − |I|, so k(I1) = (m − �)n − |I|.

On the other hand, k(I1) = (m−�)n+k−1. Hence, |I| = 1−k, and, therefore,
k = 1 (i.e., I2(u) �= ∅) if and only if I = ∅, i.e. I0(u) = I1(u), as required.

All assertions of Lemma are proved.

Conclusions of Lemma 4 are interpreted as follows. Among the vertices of
the polyhedron U(a∗), the vectors u(i, j) (i ∈ I∗, j ∈ I∗

i ) (and only they) can
be preserving controls. Only one of the blocks u(i) of quasipreserving controls
u = (u(1), u(2), . . . , u(m)) that are the vertices of the polyhedron U(a) can have
the maximum possible number of positive coordinates, equal to two. In this case,
the last coordinates of blocs x(k) of x = (x(1), x(2), . . . , x(m)), corresponding to
not completely zero blocks u(k) of u, are necessarily equal to zero.

Now we can obtain an upper bound for the minimal number of nonzero coor-
dinates for optimal controls in problem (3) with a linear non-negative function
c(u). Since every optimal control ũ ∈ D, we have, by (31), ā(ũ) ≥ a∗.

If ā(ũ) > a∗, then u ∈ D′′, and, it follows from Lemma 4 that |I+(ũ)| ≤ m+1.
Now assume that ā(ũ) = a∗; then ũ ∈ U(a∗) (see (32)). It follows from (22) that
U(a∗) = D′ ∪D(a∗). But U(a∗) = co V (a∗), and V (a∗) = VD′ ∪VD′′(a∗), where,
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by Lemma 4, VD′ = {u(i, j) | I ∈ I∗, j ∈ I∗
i } (this set may be empty). Therefore,

U(a∗) = co (VD′∪VD′′(a∗)). As can be seen from definition (28), |I+(u(i, j))| = 1.
Using, as above, Lemma 4, we obtain that in case ā(ũ) = a∗ also |I+(ũ)| ≤ m+1.

Thus, we get the following assertion.

Corollary 1. Suppose that conditions (9), (11), and (13) are satisfied. Then for
the problem (3) with a linear non-negative function c(u) there exists an optimal
vector, the number of nonzero coordinates of that does not exceed m + 1.

Note that this assertion is a generalization of the above-mentioned bimodality
property. Indeed, for m = 1, when the population structure is linear, our result
indicates the existence of “two-age” optimal strategies.

Now we can get the elements of VD′′(a) in explicit form. For this we need a
generalization of the notation (24) to the case when the subscript and the super-
script are sets. Henceforth, the ordered subsets of 1,m, 0, n appear, to denote
which we use the symbol of the row vector. So, the notation I = (i1, i2, . . . , i�)
indicates the order of the elements of I = {i1, i2, . . . , i�}.

Let I = (i1, i2, . . . , i�) ⊆ 1,m, J = (j1, j2, . . . , j�) ⊆ 0, n, and the second of
these sets allow repetition of elements, in contrast to the first: |I| = �, |J | ∈ 1, �.
We define the value of S̄I

J(a) = S̄i1,...,i�

j1,...,j�
(a) as follows:

S̄I
J(a) =

�∑

k=1

σik
jk

fik
(a) +

∑

i/∈I

σifi(a). (37)

It is easy to see that in the case of I = {i}, J = {j}, the notation (37) turns
into the notation (24). We also use the following notation:

I = (i1, . . . , i�), I ′ = (i1, . . . , i�, i), J = (j1, . . . , j�), J ′ = (j1, . . . , j�, j),

K = (k1, . . . , ks), L = (�1, . . . , �s), L′ = (�′
1, . . . , �

′
s),

where � ∈ 1,m − 1, s ∈ 1,m, ir ∈ 1,m, jr ∈ 0, n (r ∈ 1, �), kr ∈ 1,m, �r, �
′
r ∈ 0, n

(r ∈ 1, s), j, k ∈ 0, n, i �= ir (∀r ∈ 1, �),

Δ̄K
L,L′(a) = Δ̄(k1(�1, �′

1), . . . , ks(�s, �
′
s), a) = (S̄K

L (a), S̄K
L′(a)],

Δ̄i
j,k(I, J, a) = Δ̄i

j,k(i1(j1), . . . , i�(j�), a) = (S̄ i1, ... ,i�, i
j1−1,...,j�−1,j(a), S̄ i1, ... ,i�, i

j1−1,...,j�−1,k(a)],

Δ̄i
j(I, J, a) = Δ̄i

j(i1(j1), . . . , i�(j�), a) = Δ̄i
j−1,j(I, J, a),

Δ̄i(I ′, J ′, a) = Δ̄i(i1(j1), . . . , i�(j�), i(j), a) = Δ̄i
j(I, J, a),

If |K| = |I ′| = |J ′| = m or |I| = |J | = m − 1, then I, J, I ′, J ′,K are omitted.
The previous statements make it possible to find the elements of VD′′(a) in

an explicit form. We present the following assertion without proof.

Theorem 2. Suppose that conditions (9), (11), (13) are satisfied. Assume that
u ∈ U , I0(u) ⊆ I ∪ {i} and I+i (u) ⊆ {j, k}, where I = (i1, i2, . . . , i�) ⊆ 1,m \{i},
j ≤ k (i, j, k ∈ 1,m). Then the following statements hold:
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(i) If I0(u) = I, I+i (u) = {j} then u ∈ VD′′(a) if and only if

n∑

s=j

βi,s > 0, a ∈ Δ̄i
j−1,n(I, J, a). (38)

In this case, the positive coordinates of u are defined as follows:

uir,jr
= π

(ir)
jr

fir
(a) (r ∈ 1, �), ui,j = (q(i)j,n)−1(S̄i1,...i�

j1−1,...,j�−1(a) − a). (39)

(ii) If I0(u) = I1(u) then u ∈ VD′′(a) if and only if

k−1∑

s=j

βi,s > 0, a ∈ Δ̄i
j−1,k−1(I, J, a). (40)

In this case, the positive coordinates of u are defined as follows:

uir,jr
= π

(ir)
jr

fir
(a) (r ∈ 1, �),

ui,j = (q(i)j,k−1)
−1(S̄i1,...i�,i

j1−1,...,j�−1,j−1(a) − a),

ui,k = p
(i)
j,k(q(i)j,k−1)

−1(a − S̄i1,...i�,i
j1−1,...,j�−1,k−1(a)).

⎫
⎪⎪⎬

⎪⎪⎭

(41)

We denote by ui
j(i1(j1), . . . , i�(j�), a) = ui

j(I, J, a), ui
j,k(i1(j1), . . . , i�(j�), a) =

ui
j,k(I, J, a)) the controls with coordinates (39) and (41), respectively.

Example 1. Consider a constraint system of the form (14) for non-negative vec-
tors x = (x1,1, x1,2;x2,1, x2,2), u = (u1,1, u1,2;u2,1, u2,2), with m = n = 2,
αi,1 = 1/2, βi,j = 1 (i, j = 1, 2),

f1(a) =
{

a, 0 ≤ a < 1,
(a + 1)/2, a ≥ 1,

f2(a) =
{

a, 0 ≤ a < 1,
1, a ≥ 1.

Using notation (12), (17), (18) we find: σ
(1)
0 = σ

(2)
0 = 0, σ

(1)
1 = σ

(2)
1 = 1,

σ
(1)
2 = σ

(2)
2 = σ(1) = σ(1) = 3/2, a∗ = 1, μ∗ = 2, f1(a∗) = f2(a∗) = 1,

σ(a) =
{

3a, 0 ≤ a < 1,
(3a + 9)/4, a ≥ 1,

μ(a) =
{

2a, 0 ≤ a < 1,
(9 − a)/4, a ≥ 1.

The functions f1(a), f2(a) are concave, all the coefficients βi,j are positive,
σ′(0) = 3 > 1, σ′(+∞) = 3/4 < 1. All conditions (9), (11), (13) are satisfied.

By (24), S̄
(1)
0 (a) = σ(2)f2(a) = 3/2, S̄

(2)
0 (a) = σ(1)f1(a) = 3/2, so we see from

(26), (27) that I∗ = ∅, J∗ = {1, 2}. This means by Theorem 1 that D′′ �= ∅.
Solving Eq. (25), we find a

(i)
j : a

(1)
1 = 3/2, a

(1)
2 = 4, a

(2)
1 = 3, a

(2)
2 = 7,

therefore (see Lemma 3) āD = āD′′ = a
(2)
2 = 7.

Further, p(1)(u) = 1
2u1,1 + u1,2, p(2)(u) = 1

2u2,1 + u2,2. For u ∈ D′′ we have,
by (31), a ≥ a∗, therefore μ(a) = (9 − a)/4, λ1(a) = (a + 1)/4, λ2(a) = 1/2.
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By (32), D′′ = ∪a∈[2,7]D(a), where D(a) = L1(a) ∪ L2(a), and L1(a), L2(a)
are described by systems of constraints

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1,1 + 2u1,2 = (a + 1)/2,
u2,1 + 2u2,2 ≤ 1,

3u1,1 + 2u1,2 + 3u2,1 + 2u2,2 =
9 − a

2
,

u1,1 ≥ 0, u1,2 ≥ 0, u2,1 ≥ 0, u2,2 ≥ 0,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1,1 + 2u1,2 ≤ (a + 1)/2,
u2,1 + 2u2,2 = 1,

3u1,1 + 2u1,2 + 3u2,1 + 2u2,2 =
9 − a

2
,

u1,1 ≥ 0, u1,2 ≥ 0, u2,1 ≥ 0, u2,2 ≥ 0,

respectively. Next, we find the vectors u(i, j) (see (28)): u(1, 1) = (5/4, 0; 0, 0),
u(1, 2) = (0, 5/4; 0, 0), u(2, 1) = (0, 0; 1, 0), u(2, 2) = (0, 0; 0, 1/2). It follows from
(29) by J∗ = {1, 2} that all u(i, j) ∈ D′′.

To illustrate Theorem 2, we find now the elements of VD′′(a), for example, for
a = 2. First of all, as seen from (38), (40), we must find all the intervals Δ̄i

j(I, J, a),

Δ̄i
j,k(I, J, a) that contain this number: Δ1

0,1(∅, ∅, 2) = (S̄(1)
0 (2), S̄(1)

1 (2)], Δ̄1
2({1},

{2}, 2) = (S̄1,2
1,0(2), S̄1,2

1,1(2)], Δ̄1
1,2({2}, {2}, 2) = (S̄2,1

1,0(2), S̄2,1
1,1(2)(2)]. They all

coincide with (3/2, 5/2], hence they contain the number a = 2.
Using (39), (41), we find the vectors from VD′′(a) corresponding to

these intervals: v1 = u1
1,2(∅, ∅, 2) = (1, 1/4, ; 0, 0), v2 = u2

1({1}, {2}, 2) =
(0, 3/4; 2/3, 0), v3 = u1

1,2({2}, {2}, 2) = (1/2, 1/2; 0, 1/2). We see that in accor-
dance with Corollary 1, the number of positive coordinates of these vectors is
less than or equal to m + 1 = 3.

As can be seen from (22), the set D′ for the model (7) always contains a part
of some hyperplane (its equation is q(u) = μ∗; for our example this equation has
the form 3u1,1+2u1,2+3u2,1+2u2,2 = 4). This example is interesting in that this
property also holds for D′′ (this is due to the affinity of f1(a), f2(a)). Indeed, it
is easy to verify that the vectors found are linearly independent. Adding to them
the vector u(1, 2) = (0, 5/4; 0, 0) corresponding to the value of a = 4, we obtain
four linearly independent vectors of four-dimensional space; therefore, they define
a certain hyperplane. Its equation has the form 4u1,1 +4u1,2 +3u2,1 +2u2,2 = 5.
Thus, the set D′′ contains a part of this hyperplane.

4 Conclusion

In this article, we studied quasi-preserving controls for optimal exploitation prob-
lem of an ecological population described by the generalization of the Leslie
model. This problem arose as a result of the systematic use of a general app-
roach to formalizing the ecological populations exploitation problem [13].

We would like to emphasize once again the two basic features of our article.
Firstly, additive controls are used, unlike many other works. It seems to us more
adequate from the point of view of ecological interpretation, although sometimes
this complicates the study of the received problem. Further, the certain novelty
of our results is also determined by the transition to the population model with
a binary structure. For this model, the properties of the boundary of an feasible
set containing potentially optimal vectors are described in detail.
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In particular, the necessary and sufficient condition for the existence of
quasi-preserving controls is proved, and these controls are found explicitly (see
Theorems 1, 2). Note that the explicitly found controls contain the minimum pos-
sible number of positive coordinates. It is important for populations exploitation
problems, since such controls affect the minimum possible number of structural
units of the population.

Further, the distribution of controls having only one positive coordinate
over the sets of preserving and quasi-preserving controls is also presented (see
Lemma 2). Finally, the generalization of the well-known “bimodality” property
of optimal strategies is proved (see Corollary 1), previously obtained by many
authors for populations with one-dimensional structure.

The significance of these main results lies, in particular, in the fact that
they open the way to the construction of algorithms that take into account the
features of the considered optimal exploitation problem. Due to the parametric
representation (33) of the feasible set and optimal solutions (39), (41), it becomes
possible to reduce this problem to the solution of a series of one-dimensional
optimization problems.

We hope that this paper will show possible new directions in the development
of general theory of renewable resources exploitation.
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Abstract. This paper addresses the nonconvex optimization problem
with the cost function and equality and inequality constraints given by
d.c. functions. The original problem is reduced to a problem without
constraints by means of the exact penalization techniques. Furthermore,
the penalized problem is presented as a d.c. minimization problem. For
the latter problem, we apply the global optimality conditions (GOCs),
which possess the so-called constructive (algorithmic) property. These
new GOCs are generalized for the minimizing sequences, and a theoret-
ical method is developed. Based on this theoretical foundation, a new
global search scheme is designed for the auxiliary (penalized) and origi-
nal problems, the convergence of which is one of the new results of the
work.

Keywords: Nonconvex optimization · D.C. functions · Exact
penalty · Linearized problem · Optimality conditions · Convergence

1 Introduction

A little more than 50 years ago the exact penalty method was invented by Eremin
and Zangwill [7,29] independently and almost simultaneously. Furthermore, this
technology has got widespread and become very popular. It is considered to be
a very effective and powerful tool for solving difficult real-life problems, such as
games, search for equilibria, bilevel problems, hierarchical control, etc.

On the other hand, it is not difficult to see that almost all applied prob-
lems turn out to be explicitly or implicitly nonconvex with many (and this
number is often huge) local pitfalls located rather far from the set of global
solutions Sol(P).

Besides, as well-known, the classical optimization methods prove to be inef-
fective and even inoperative when used for finding just a global solution, and
provide at best only the KKT-vectors [11–13,16,19,27,28]. Moreover, the meth-
ods of the Branch and Bound idea (and cut’s approach) “suffer” the so-called
“curse of dimension”, when an increase in dimension of a problem under scrutiny
always entails the exponential growth of computational efforts.
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Here we develop a different approach based on a solid theoretical foundation,
in particular, on the Global Optimality Conditions (GOCs) [22,23] in nonconvex
optimization problems with d.c. functions [13,19,27].

First, for Problem (P) we introduce the penalty function W (·) and the cor-
responding auxiliary (penalized) Problem (Pσ) without equality and inequality
constraints. How one can attack the similar non-convex problems in another way
readers can find in [15,26].

Furthermore, we perform decomposition of the cost function Fσ(·) of Prob-
lem (Pσ) into a difference of two convex functions. Thus it becomes possible to
obtain the new GOCs and study its properties.

In addition, we perform the transformation of GOCs for minimizing sequences
and develop a new theoretical method for solving Problem (Pσ) and prove its
convergence. On the basis of this theoretical foundation, we develop a new Global
Search Scheme (GSS) along with its algorithmization.

Finally, we present the new convergence theorem for the GSS for the general
d.c. optimization problem (P).

2 Problem Statement

Consider the following problem:

(P) :
f0(x) := g0(x) − h0(x) ↓ min

x
, x ∈ S,

fi(x) := gi(x) − hi(x) ≤ 0, i ∈ I = {1, . . . , m},
fi(x) := gi(x) − hi(x) = 0, i ∈ E = {m + 1, . . . , l};

⎫
⎬

⎭

where the functions gi(·), hi(·), i ∈ {0} ∪ I ∪ E , are convex on IRn, so that
the functions fi(·), i ∈ {0} ∪ I ∪ E , are the d.c. functions [8,11–13,19,27]. Recall
that any continuous function can be approximated by a d.c. function with any
desirable accuracy. Besides, assume that the set S ⊂ IRn is convex and compact.

Next, suppose that the set Sol(P) of global solutions to Problem (P),
Sol(P) := {x ∈ F | f0(x) = V(P)} and the feasible set F of Problem (P),
F := {x ∈ S | fi(x) ≤ 0, i ∈ I, fi(x) = 0, i ∈ E}, are non-empty. Additionally,
in what follows, the optimal value V(P) of Problem (P) is supposed to be finite:

(Hf ) : V(P) := inf(f0,F) := inf
x

{f0(x) | x ∈ F)} > −∞. (1)

3 The Exact Penalty

In this section, we introduce the following penalty function W (·) for Problem (P)

W (x) := max{0, f1(x), . . . , fm(x)} +
∑

j∈E
|fj(x)| , (2)

and, along with Problem (P), consider the penalized problem without the
inequality and equality constraints:

(Pσ) : Fσ(x) ↓ min
x

, x ∈ S, (3)
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where σ ≥ 0 is a penalty parameter, and the merit function

Fσ(x) := f0(x) + σW (x), (4)

is the cost function of the auxiliary problem (Pσ)–(3).
It is well-known that if z ∈ Sol(Pσ), and z is feasible in (P), i.e. z ∈ F , then z

is a global solution to (P): z ∈ Sol(P) [1–6,10,12,15,16]. It is worth mentioning
that, generally, the inverse proposition does not hold.

Hence, the key feature of the exact penalization (EP) theory is the existence
of a threshold value σ∗ ≥ 0 of the penalty parameter σ ≥ 0 for which Sol(Pσ) ⊂
Sol(P) ∀σ ≥ σ∗. The latter means that for σ ≥ σ∗ Problems (P) and (Pσ) are
equivalent: Sol(P) = Sol(Pσ) (see [12, Chapt. VII, Lemma 1.2.1], [4]).

On the other hand, the existence of the threshold exact penalty parameter
σ∗ ≥ 0 implies that instead of solving a sequence of unconstrained problems with
σk → ∞ [1,4,16] we need to solve only a single unconstrained problem.

Hence, the proof of existence of the exact penalty threshold σ∗ ≥ 0 is a
key moment in the investigation of relations between Problems (P) and (Pσ)
[2,4–6,10,14].

Recall that under various constraint qualification (CQ) conditions (MFCQ,
etc. [1,2,4–6,10,14], the error bound properties [1,2,4–6,10,14], the metric sub-
regularity conditions, calmness of constraints systems) can help prove the exis-
tence of the exact penalty threshold σ∗ ≥ 0 for the local solution as well as for
the global one [2,4–6,10,14].

Assume that some regularity conditions, which ensure the existence of such
threshold value σ∗ ≥ 0 of the penalty parameter, are fulfilled.

4 Global Optimality Conditions (GOC)

Before all, we will show that the cost function Fσ(·) of Problem (Pσ) is a d.c.
function, i.e. it can be represented as a difference of convex functions. Indeed,
since [13,19,27].

|fi(x)| = 2max{gi(x), hi(x)} − [gi(x) + hi(x)],

it can be readily seen that

Fσ(x)
�
= f0(x) + σ max{0, fi(x), i ∈ I} + σ

∑

i∈E
|fi(x)| = Gσ(x) − Hσ(x), (5)

where
Hσ(x) := h0(x) + σ

[∑

i∈I

hi(x) +
∑

j∈E
(gj(x) + hj(x))

]
, (6)

Gσ(x) := Fσ(x) + Hσ(x) =

= g0(x) + σ max

{
∑

j∈I

hj(x);
[
gi(x) +

j �=i∑

j∈I

hj(x)
]
, i ∈ I

}

+

+ 2σ
∑

i∈E
max{gi(x);hi(x)}.

(7)
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It is easy to see that Gσ(·) and Hσ(·) are both convex functions [12,17,18], so
that the function Fσ(·) is a d.c. function, as claimed. Besides, it is clear, that for
a feasible (in (P)) point z ∈ S we have

W (z)
�
= max{0, f1(z), . . . , fm(z)} +

∑

i∈E
|fi(z)| = 0,

and, therefore, for ζ := f0(z), we obtain

Fσ(z)=f0(z) + σW (z) = f0(z) = ζ. (8)

The following GOCs were proposed in [22–24].

Theorem 1. Let a feasible point z ∈ F , ζ := f0(z), be a solution to Prob-
lem (P) and σ ≥ σ∗ > 0, where σ∗ is a threshold value of the penalty parameter,
such that Sol(P) = Sol(Pσ) ∀σ ≥ σ∗.

Then for every pair (y, β) ∈ IRn × IR, such that

Hσ(y) = β − ζ, (9)

the following inequality holds

Gσ(x) − β ≥ 〈∇Hσ(y), x − y〉 ∀x ∈ S. (10)

Clearly, Theorem 1 reduces the solution of the nonconvex Problem (Pσ) to a
study of the family of convex (linearized) problems as follows

(PσL(y)) : Φσy(x) := Gσ(x) − 〈∇Hσ(y), x〉 ↓ min
x

, x ∈ S (11)

depending on the pair (y, β) ∈ IRn+1 fulfilling the Eq. (9).
In addition, it is worth noting that the linearization is performed with respect

to the “united” nonconvexity of Problem (P), which is accumulated by the
function Hσ(·) (see (P) and (6)).

Remark 1. Suppose, we found a triple (y, β, u), such that (y, β) ∈ IRn+1,
Hσ(y) = β − ζ, u ∈ S, and for which the principal inequality (10) is violated,
i.e.

0 > Gσ(u) − β − 〈∇Hσ(y), u − y〉.
Whence, using Eq. (9) and convexity of the function Hσ(·), we derive

0 > Gσ(u) − β − Hσ(u) + Hσ(y) = Fσ(u) − ζ,

or
Fσ(z) > Fσ(u), z ∈ F , u ∈ S.

It means that the vector z can not be a solution to (Pσ). Moreover, if, in addition,
u is feasible in (P), z, u ∈ F , W (z) = 0 = W (u), it yields f0(z) = Fσ(z) >
Fσ(u) = f0(u).

Hence, z �∈ Sol(P), and u is a vector better than z ∈ F .
Thus, conditions (9) and (10) of Theorem 1 possess the classical constructive

(algorithmic) property: once the conditions are violated, one can find a feasible
vector that has a better value of the goal function than the point (z ∈ F) in
question.
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Let now turn our attention to the corresponding properties of the minimizing
sequences in Problems (P) and (Pσ).

Consider a point z ∈ S, ζ := Fσ(z) and the following function

ϕσ(z) := inf
x,y,β

{Gσ(x) − β − 〈∇Hσ(y), x − y〉 | x ∈ S,

Hσ(y) = β − ζ, Gσ(y) ≤ β ≤ sup(Gσ(·), S)}.
(12)

In (12), set y=z=x. Then we have β=β0 := Hσ(z)+ ζ =Hσ(z)+Fσ(z)=Gσ(z),
and, by Definition (12), we merely obtain the inequality

0 = Gσ(z) − β0 − 〈∇Hσ(z), z − z〉 ≥ ϕσ(z),

which yields that
ϕσ(z) ≤ 0 ∀z ∈ S. (13)

Hence, on account of (12), the optimality conditions (9) and (10) can be rewrit-
ten as: ϕσ(z) = 0. The language of the function ϕσ(·) turns out to be very
appropriate to the study of properties of minimizing sequences to Problem (P).

Definition 1. (a) A sequence {zk} ⊂ S is said to be minimizing to Problem
(P), if two following conditions hold

(i) lim
k→∞

f0(zk) = V(P) := inf
x

{f0(x) | x ∈ F};

(ii) lim
k→∞

W (zk) = 0 (the feasibility condition).

}

(14)

(b) A sequence {zk} ⊂ S is called minimizing to Problem (Pσ), if

lim
k→∞

Fσ(zk) = V(Pσ) := inf
x

{Fσ(x) | x ∈ S}. (15)

Theorem 2. (i) Suppose, a sequence {zk} ⊂ S is minimizing to Problem (P) :
{zk} ∈ M(P), and σ ≥ σ∗ > 0, where σ∗ is a threshold value of penalty param-
eter, so that V(P) = V(Pσ). Then,

lim
k→∞

ϕσ(zk) = 0. (16)

(ii) If in addition the following assumption holds

(H) : ∃v ∈ S : ∃γ > 0 : Fσ(v) ≥ Fσ(zk) + γ, k = 0, 1, 2, . . . , (17)

then condition (16) becomes sufficient for {zk} to be minimizing to Problem (Pσ)
for any value σ > 0 of the penalty parameter.

Proof. (i) Let {zk} ⊂ M(P). Then thanks to (14) we have {zk} ∈ M(Pσ), since

lim
k→∞

Fσ(zk) = lim
k→∞

[
f0(zk) + σW (zk)

]
= V(Pσ) = V(P) =

= lim
k→∞

f0(zk) + σ lim
k→∞

W (zk). (18)
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Furthermore, due to convexity of Hσ(·), we have that

∀(y, β) : β − Hσ(y) = Fσ(zk) =: ζk, ∀x ∈ S,

the following chain takes place (k = 0, 1, 2, . . .)

Gσ(x) − β − 〈∇Hσ(y), x − y〉 ≥ Gσ(x) − β − Hσ(x) + Hσ(y) =
= Fσ(x) − Fσ(zk) = Fσ(x) − ζk.

Thus, thanks to definition of {zk} ∈ M(P), it yields

0 ≥ ϕσ(zk) ≥ inf
x

(Fσ(·), S) − Fσ(zk) = V(Pσ) − Fσ(zk).

Whence, with help of (18), we derive (16).

4.1 A Theoretical Method

Here we develop a global search theoretical scheme for the Problem

(Pσ) : Fσ(x)
�
= Gσ(x) − Hσ(x) ↓ min

x
, x ∈ S, (19)

based on GOCs (16). Theorem 2 suggests, in particular, to compute the value
ϕσ(zk), in order to verify whether a current iteration zk ∈ S, k ∈ {0, 1, 2, . . .} is
a global solution.

Therefore, the next procedure, consisting of approximate and partial compu-
tation of the value ϕσ(zk) at every iteration, looks completely natural.

Let a vector zk ∈ S be given, and ζk := Fσ(zk). Then the next point zk+1 ∈ S
is constructed to fulfill the conditions as follows

(R1) : Gσ(zk+1) − βk − 〈∇Hσ(yk), zk+1 − yk〉 ≤ Θkϕσ(zk) + νk,
(R2) : βk = Hσ(yk) + ζk, ζk := Fσ(zk).

}

(20)

0 < Θ < Θk ≤ 1,

νk > 0, k = 0, 1, 2, . . . ,
∞∑

k=0

νk < +∞.

⎫
⎬

⎭
(21)

In addition, below, we will also use the following condition for the starting
vector z0 ∈ S

(H0) : ∃v ∈ S, ∃æ > 0 : Fσ(z0) ≤ Fσ(v) − æ −
∞∑

k=0

νk. (22)

It is clear that the condition (22) is neither restrictive nor overburdening
according to the statement of (P).

The cost function f0(x) of the original problem (P) is bounded from below
on the feasible set

F = {x ∈ S | fi(x) ≤ 0, i ∈ I, fj(x) = 0, j ∈ E},
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i.e. the condition (Hf )–(1) hold. If can be readily seen that the cost function
Fσ(·) possesses the same property as f0(·), thanks to the facts that σ ≥ 0 and
W (x) ≥ 0 ∀x ∈ IRn, so that

V(Pσ) ≥ V(P) > −∞.

Theorem 3. (i) The sequence {zk} constructed according to the rules (20) and
(21) satisfies the optimality condition (OC) (16), i.e

(OC) : lim ϕσ(zk) = 0. (16)

(ii) If, in addition, the assumption (H0)–(22) for the starting vector z0 is ful-
filled, then the sequence {zk} produced by the rules (20) and (21) turns out to
be minimizing to Problem (Pσ).
(iii) Any limit point z of sequence {zk} provides infimum of the function Fσ(·)
over S, and, when S is closed, this limit point turns out to be a solution to (Pσ).

Proof. (a) Since ϕσ(z) ≤ 0 ∀z ∈ S (see (13)) and on account of (20) and (21)
and the convexity of the function Hσ(·), we have

νk ≥ Θkϕ(zk) + νk ≥ Gσ(zk+1) − βk − 〈∇Hσ(yk), zk+1 − yk〉 ≥
≥ Gσ(zk+1) − βk − Hσ(zk+1) + Hσ(yk) = Fσ(zk+1) − ζk =

= Fσ(zk+1) − Fσ(zk)
(23)

whence it immediately follows that

Fσ(zk) + νk ≥ Fσ(zk+1). (23´)

It means [28] that the number sequence {Fσ(zk)} is “almost” monotonously
decreasing, and, therefore, there exists a finite limit

lim
k→∞

Fσ ≥ V(Pσ) ≥ V(P) > −∞.

Moreover, with the help of the inequality

νk ≥ Θkϕσ(zk) + νk ≥ Fσ(zk+1) − Fσ(zk),

we immediately obtain the condition (16).
(b) Now let us show that from the condition (H0)–(22) for the starting point we
can merely derive the regularity condition (H)–(17) for the sequence {zk}.

Then, in virtue of Theorem1, the (OCs)–(16) become sufficient for the
sequence {zk} produced by the rules (R1)–20, (R2)–21 to be minimizing to
Problem (Pσ).

Indeed, due to (OC)–(16), (23′) and (H0)–22 we have

Fσ(v)−æ−
∞∑

s=0
νs ≥ Fσ(z0) ≥ Fσ(z1) − ν0 ≥ Fσ(zk)−

k−1∑

s=0
νs ≥ Fσ(zk)−

∞∑

s=0
νs,

whence it follows that

Fσ(v) − æ ≥ Fσ(zk), k = 0, 1, 2, . . .

which coincides with (H)–(17), as was claimed.
(iii) Now, the final assertion of Theorem 3 becomes obvious.
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4.2 A Global Search Scheme

Here we are interested in the same question as in Sect. 4.1, i.e. how to decide
whether a feasible vector (an iterate) zk ∈ S is an approximate global solution
to Problem (Pσ). And if not, how to construct the next iteration zk+1 ∈ S,
improving, in a sense, the previous one zk.

In order to do it, Theorems 2 and 3 propose to study the following auxiliary
problem

(APσ) :
Ψ(x, y, β) := Gσ(x) − β − 〈∇Hσ(y), x − y〉 ↓ min

x,y,β
,

x ∈ S, (y, β) ∈ IRn+1 : β − Hσ(y) = ζk := Fσ(zk),
Gσ ≤ β ≤ sup(Gσ(·), S).

⎫
⎪⎬

⎪⎭
(24)

Further, Theorems 2 and 3 state that Problem (APσ)–(24) (at every iteration
of the global search) can be solved not only approximately, but in addition,
partially (0 < Θ < 1).

However, Problem (APσ)–(24) can be assessed to be, say, of the same diffi-
culty as (Pσ) or (P), because there are supplementary variables and parameters
in (APσ)–(24), and, besides, even a new equation, etc.

Moreover, the problem (24) is also nonconvex. Therefore, we decided to
decompose Problem (24) into several problems which are simpler and more
tractable than Problem (24).

Suppose, we have a current iterate zk ∈ S, ζk := Fσ(zk).
(a) Let there be given a number β, such that

β− := inf(Gσ(·), S) ≤ β ≤ β+ := sup(Gσ(·), S). (25)

Then, for the level surface (ζk := Fσ(zk))

Yk = Y (ζk, β) = {y ∈ IRn : Hσ(y) = β − ζk}
of the convex function Hσ(·), we construct a finite approximation

A(ζk, β) =
{
y1, ..., yN | Hσ

(
yi

)
= β − ζk, Gσ(yi) ≤ β, i = 1, . . . , N

}
.

(b) After that for every yi ∈ A(ζk, β) =: Ak(β) we solve the linearized
problem as follows

(PσLi) : Gσ(x) − 〈∇Hσ(yi), x
〉 ↓ min

x
, x ∈ S. (26)

Let ūi ∈ S be an approximate solution to (PσLi), ūi ∈ Sol(PσLi).
(c) By starting at the point ūi ∈ S, we get a critical (to a Local Search Method

(LSM)) vector ui, such that ui is an approximate solution to the linearized
problem
(PσL(ui)) : Gσ(x) − 〈∇Hσ(ui), x

〉 ↓ min
x

, x ∈ S. (27)

(linearized at the point ui just). Because, as we know, effective LSMs [21,25]
provide critical points (in the above sense), depending on corresponding starting
points.
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(d) Furthermore, we solve the level problem

(Lev Pσ) :
〈∇Hσ(v), ui − v

〉 ↑ max
v

, Hσ(v) = β − ζk. (28)

Let wi be an approximate global solution to Problem (Lev Pσ)–(28).
(e) After this, we compute the number ηk(β)= η(ζk, β) := η0(ζ, β)−β, where

η0(ζ, β) = Gσ(uj) − 〈∇Hσ(wj), uj − wj〉 :=
= min

1≤i≤N
{Gσ(ui) − 〈∇Hσ(wi), ui − wi〉}.

(f) If ηk(β) < 0, then the vector uj ∈ S will be better, than the point zk in
question, since, due to convexity of Hσ(·), we have:

0 > Gσ(uj) − 〈Hσ(wj), uj − wj〉 − β ≥
≥ Gσ(uj) − Hσ(uj) + Hσ(wj) − β = Fσ(uj) − Fσ(zk), (29)

i.e. Fσ(uj) < Fσ(zk).
Hence, in this case we can go to the next iteration, i.e. k := k+1, zk+1 := uj .
(g) When η(ζk, β) ≥ 0, we have to change the value β for β := β + Δβ with

the help of one of the existing one-dimensional search methods, for instance, for
minimizing the function Ψ1(β) := η(ζ, β) on the interval [β−, β+].

Remark 2. Furthermore, if the vector z ∈ S is (an approximate) global solution
to Problem (Pσ), clearly, it is impossible to improve the value Fσ(z) =: ζ.
Notwithstanding, how to understand whether the vector z is really a solu-
tion to Problem (Pσ), provided that the stages (b), (c) and (d) are imple-
mented sufficiently well, i.e. the convex problems (PσLi)–(26), (PσL(ui))–(27)
and (Lev Pσ)–(28) (nonconvex) have been solved globally with a given accuracy.

It will be shown in the next section that from the view-point of convergence
a Global Search Scheme (GSS), which we are going to propose below, to answer
the question above, it is necessary to put some constraints on the stage (a), i.e.
the construction of the approximation A(ζk, β).

Therefore, it is clear that this approximation has to be rather representative
in order to do the conclusion, whether or not the vector z is a global solution to
Problem (Pσ), when η(ζ, β) ≥ 0 ∀β ∈ [β−, β+].

In the case, when the iterate zk in question is rather far from a global solution,
the number (quantity) η(ζk, β) =: ηk(β) has, without doubt, to be negative for
some β ∈ [β−, β+], that allows to construct a point (uj ∈ S) which is better
than z, just as the chain (29) demonstrates.

Remark 3. It is worth noting that, when solving the convex problems (PσLi) –
(26), (PσL(ui))–(27) and (Lev Pσ)–(28) (nonconvex), it is beneficial to use the
standard methods of convex optimization [1,12,16,28], and, of course, the mod-
ern computational software, such as IBM ILOG CPLEX, XPress, Gurobi etc.

In addition, it would be useful and reasonable to apply some methods of
local search, say, at the initial stage of computations to pass from a starting
point to a critical vector, which allows to employ the powerful methods of convex
optimization [1,12,15,16,21,25].
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Now, we are able to describe a first variant of the Global Search Scheme.
Let there be given a starting point x0 ∈ S and number sequences {τk}, {δk},
such that τk, δk > 0, k = 0, 1, 2, . . . , τk ↓ 0, δk ↓ 0 (k → ∞).

Global Search Scheme 1(GSS1)

Step 0. Set k := 0, xk := x0 ∈ S.
Step 1. By starting at xk ∈ S and with the help of an LS method for Problem

(Pσ), produce a τk-critical point zk ∈ S, ζk := Fσ(zk) ≤ Fσ(xk), i.e. satisfying
the following inequality:

Gσ(zk) − 〈∇Hσ(zk), zk〉 − τk ≤ inf
x

{Gσ(x) − 〈∇Hσ(zk), x〉| x ∈ S}. (30)

Step 2. Choose a number β ∈ [β−, β+], in particular, a one-dimensional search
method can start at β− := inf(Gσ(·), S) or β1 := Gσ(zk).

Step 3. Construct an approximation

Ak(β) = {v1, . . . , vNk | Hσ(vi) = β − ζk, i = 1, . . . , Nk, Nk = Nk(β)}.

Step 4. According to the GOCs [22–24], form a collection of indexes Ik defined as

Ik = Ik(β) = {i ∈ {1, . . . , Nk}| Gσ(vi) ≤ β}. (31)

Step 5. For every i ∈ Ik find a global 2δk-solution ui ∈ S to the linearized
convex problem (PσLi)–(26), so that

Gσ(ui) − 〈∇Hσ(vi), ui〉 − 2δk ≤ inf
x

{Gσ(x) − 〈∇Hσ(vi), x〉| x ∈ S}. (32)

Step 6. For every i ∈ Ik, by starting at ui ∈ S, find a 2τk-critical vector ui ∈ S
with the help of a LSM, so that

Gσ(ui) − 〈∇Hσ(ui), ui〉 − 2τk ≤ inf
x

{Gσ(x) − 〈∇Hσ(ui), x〉| x ∈ S}. (33)

Step 7. For every i ∈ Ik find a global 2δk-solution wi: Hσ(wi) = β − ζk, to the
Level Problem (Lev Pσ)–(28), so that

〈∇Hσ(wi), ui − wi〉 + 2δk ≥ sup
v

{〈∇Hσ(v), ui − v〉| Hσ(v) = β − ζk}. (34)

Step 8. Set ηk(β) := η0
k(β) − β, where

η0
k(β) := Gσ(uj) − 〈∇Hσ(wi), uj − wj〉 =
= min

i∈Ik
{Gσ(ui) − 〈∇Hσ(wi), ui − wi〉}. (35)

Step 9. If ηk(β) < 0, then set k := k + 1, xk+1 := uj and loop to Step 1.
Step 10. If ηk(β) ≥ 0, then set β := β + Δβ ∈ [β−, β+] and go to Step 3.
Step 11. If ηk(β) ≥ 0 ∀β ∈ [β−, β+] (i.e. one-dimensional search on β has been

terminated), set k := k + 1, xk+1 := zk and loop to Step 1.
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Remarks
(1) In order the GSS1 described above to be, to a certain extent, substanti-

ated, introduce the following assumptions:
(HL) : ∀δ > 0 ∀β ∈ [β−, β+] ∀z ∈ S ∀v : Hσ(v) = β − ζ, ζ := Fσ(z),

Gσ(v) ≤ β, one can find a vector u ∈ S, satisfying the following inequality

Gσ(u) − 〈∇Hσ(v), u〉 − δ ≤ inf
x

{Gσ(x) − 〈∇Hσ(v), x〉| x ∈ S}. (32´)

(Lev H) : ∀δ > 0 ∀β ∈ [β−, β+] ∀z, u ∈ S one can find a vector w :
Hσ(w) = β − Fσ(z), Gσ(v) ≤ β, satisfying the following inequality

〈∇Hσ(w), u − w〉 + δ ≥ sup
v

{〈∇Hσ(v), u − v〉| Hσ(v) = β − Fσ(z)}. (34´)

(2) It can be readily seen that the sequence {zk}, produced by the GSS1, is
the sequence of τk-critical points, so that for every k = 0, 1, 2, . . . inequality (30)
holds.

(3) On the Steps 1, 5, 6, 7, one can apply the well-known optimization algo-
rithms [1,12,16] and the modern Computational Software (IBM ILOG CPLEX,
XPress, Gurobi etc). The possibility to use these modern tools is, without doubts,
an advantage of the proposed methodology, since it allows us to employ not only
the latest advances in modern programming and computational technology, but
the most prominent achievements of the optimization theory and methods.

(4) Clearly, the GSS1 described above is not yet an algorithm in the common
sense, since, for example, we do not provide real algorithms of local search and
algorithms for solving problems (32), (33) and (34). There are no one-dimensional
methods for finding an appropriate β, either. Hence, the GSS1 can be viewed as
a conceptual scheme of the Global Search.

(5) Obviously, during the real implementation of the GSS one can stop, when
ηk(β) ≥ 0 ∀β ∈ [β−, β+], and τk, δk ≤ χ, where χ is a given accuracy.

Besides, one can find necessary precisions in the next sections.

4.3 Convergence of the GSS1

In the previous section we decomposed the solution of Problem (APσ)–(24) into
several stages, in particular, (a),(b),(c),(d) etc. and a one-dimensional search on
β ∈ [β−, β+]. It is clear that the choice of methods for solving problems (26),
(27), and (28) and for the search of a suitable β ∈ [β−, β+] is rather important
from the view-point of the Global Search (GS).

On the other hand, the choice is merely standard, and there is a number of
recognized experts in the field of Optimization Theory and Methods capable to
perform this choice.

At the same time, the problem (a) of construction of a “good” approximation
Ak(β) on Step 3 of the GSS1 and the choice of the parameter β on Step 2,
evidently look as a new unknown procedure and an unprecedented problem
without parallels in optimization.
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On the other hand, as our computational experience [19–23,25] shows, pro-
ducing a relevant approximation Ak(β) with an appropriate choice of β turns out
to be a crucial moment for escaping a current stationary or critical point under
condition of a qualified implementation of the rest of the GSS1 or its further
developments.

In order to estimate “the quality” of the approximation Ak(β) and the choice
of β ∈ [β−, β+] from the view-point of global search process, introduce the
following definition. Consider an approximation

R(ζ, β) = {v1, . . . , vN | Hσ(vi) = β − ζ, i = 1, . . . , N = N(ζ, β)}.

Let the points ui ∈ S and wi ∈ IRn, Hσ(wi) = β − ζ satisfy (according to
the assumptions (HL), (Lev H) and Steps 6 and 7 of the GSS1) the inequalities
(33) and (34), with β instead of βk (i = 1, . . . , N).

Furthermore, set (ζ := Fσ(z), z ∈ S)

η(ζ, β) := Gσ(uj) − β − 〈∇Hσ(wj), uj − wj〉 :=
= min

i∈Ik
{Gσ(ui) − β − 〈∇Hσ(wi), ui − wi〉}, (36)

where (recall) Ik = {i ∈ {1, . . . , N} | Gσ(vi) ≤ β}.

Definition 2. (i) The approximation R(ζ, β) is said to be an (ε, δ, ν,Θ)-
resolving set for Problem (Pσ) (ε, δ, ν > 0, 0 < Θ < 1), if the inequality

Fσ(z) > V(Pσ) + ε, (37)

(i.e. the vector z is not an ε-solution to (Pσ)) entails the two following inequal-
ities

η(ζ, β) < 0, (38)

η(ζ, β) < Θϕσ(z) + ν. (39)

(ii) R(ζ, β) is said to be a weakly (ε, δ, ν,Θ)-resolving set (or collection), if the
inequalities (38) and (39) are fulfilled non-strictly.

Lemma 1. Suppose a collection R(ζ, β) is (ε, δ, ν,Θ)-resolving and

ν ≥ Θε. (40)

Then, the inequality (38) implies the inequality (39).

It can be readily seen that Lemma 1 provides
(1) first, “the concordance condition” for the numbers ε, ν and Θ : ν ≥ Θε,
where ε is the accuracy of solution of Problem (Pσ), ν stands for precision of
the inequality (39) (recall, besides, the inequality (20)), and Θ is “a share of
solution” of “the auxiliary problem” (APσ)–(24).
(2) In addition, according to Lemma1, during the performance of the GSS1, one
can watch only the number ηk := η(ζk, β) (the inequality (38)), without paying
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attention to the second inequality (39), which will take place, if ηk < 0, under
condition of using a resolving set R(ζ, β) at every iteration of the GSS1.

Therefore, to apply the concept of the GSS1 to solving Problem Pσ, the next
assumption looks rather natural.
(HR) : ∀ε > 0 ∀τ > 0 and for every τ -critical (in Problem (Pσ)) vector
z ∈ S, ζ := Fσ(z), which is not an ε-solution to (Pσ), there exists β ∈ [β−, β+]
such that

∀(δ, ν,Θ) : τ, δ, ν > 0, 0 < Θ < 1, ν ≥ Θε,

one can construct an (ε, δ, ν,Θ)-resolving set R(ζ, β).
In what follows, let us suppose that at every iteration of the GSS1 we con-

struct a (εk, δk, νk, Θk)-resolving set R(ζk, β) := Ak(β) on the step 2 and 3, and
therefore the notion of the resolving set plays a crucial role in the convergence
proof of GSS1.

Furthermore, introduce the following assumption for the starting vector
x0 ∈ S:
(A1) : ∃v ∈ S, ∃γ > 0 : f0(v) ≥ f0(x0) + γ. (41)

In addition, let us suppose that the number sequences {εk}, {τk}, {δk}, {νk}
and {Θk} satisfy the supplementary assumption as follows

(A2) :
εk, τk, δk, νk > 0, 0 < Θ ≤ Θk ≤ 1, k = 0, 1, 2, . . . ,

τk ↓ 0, δk ↓ 0, νk ↓ 0 (k → ∞).

}

(42)

Besides, we suppose that in the original Problem (P) the cost function f0(·) is
bounded from below over the feasible set F , which entails that the goal function
Fσ(·) of the penalized Problem (Pσ) is also bounded from below on S.

Finally, let us suppose that the data of Problem (P) is so smooth that the
function Hσ(·) is differentiable on an open set Ω containing S.

Under all these assumptions we are able to prove the following result.

Theorem 4. Suppose, that the assumptions (HR), (HL)–(32′), (Lev H)–(34′),
(A1)–(41), (A2)–(42) are fulfilled, and, besides, “the concordance condition” is
also satisfied:

νk ≥ Θkεk, k = 0, 1, 2, . . . (43)

Then, the sequence {zk} produced by the Global Search R-scheme is minimizing
to Problem (Pσ): {zk} ∈ M(Pσ).

Moreover, in the case when the set S is closed, any limit point z∗ of the
sequence {zk} turns out to be a global solution to Problem (Pσ).

5 Conclusion

In this paper, we investigated the nonconvex Problem (P) with equality and
inequality constraints given by d.c. functions. The principal objectives of the
paper were the new Global Optimality Conditions (GOCs) for minimizing
sequences and proof of theoretical convergence of the method. However, before
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obtaining the desired results, we managed to use the exact penalty procedure
to perform reduction of the original problem to a d.c. minimization problem
without equality and inequality constraints. Only after that it became possible
to develop the new GOCs which reduce the nonconvex penalized problem to a
family of convex (linearized) problems. It is worth noticing that the linearization
was applied to the function which accumulates all the nonconvexities of the orig-
inal problem. Summarizing, we developed new mathematical tools that help not
only to escape local and stationary pitfalls, but also to reach a global solution
in nonconvex optimization problems with equality and inequality constraints
defined by continuous functions. The numerical effectiveness of the developed
approach were demonstrated in [9,19,20,25].
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1 Non-linear Optimization Problem Formulation

We will consider the nonlinear optimal control problem in following form

J(x, u) =

t2∫

t1

f (t, x(t), u(t)) → extr (1)

subject to
ẋ − ϕ (t, x(t), u(t)) = 0

x(t1) = a, x(t2) = b, u ∈ V,
(2)
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where f : R × R
n × R

r → R, ϕ : R × R
n × R

r → R
n. The function f

and ϕ are assumed to be sufficiently smooth, at least, up to order p + 1,
x ∈ W 1,1 ([t1, t2],Rn), u ∈ L∞ ([t1, t2],Rr), a.e. on [t1, t2], and V ⊂ R

r is a
fix set in R

r. In this case, Eq. (2) and condition u(t) ∈ V are satisfied a.e. on
[t1, t2]. Below, we will consider the case V = R

r.
System (2) can be replaced by the operator equation

G(x, u) = 0,

where G(x, u)(·) = ẋ(·) − ϕ(·, x(·), u(·)), X = {x(·) ∈ W 1,1([t1, t2],Rn), x(t1) =
a, x(t2) = b)}, V = L∞ ([t1, t2],Rr), Y = L1 ([t1, t2],Rn) and G : X × V → Y .

Let L(t, x, ẋ, u) = λ(t)(ẋ − ϕ(t, x, u)) + λ0F (t, x, u), where λ(t) =
(λ1(t), . . . , λn(t))�. Consider Pontryagin’s function H(t, x, u, λ) = λϕ(t, x, u) −
λ0f(t, x, u). Then Pontryagin’s maximum principle can be formulated in the
form of the following theorem.

Theorem 1. Let (x∗, u∗) be an optimal solution of (1) and (2). Then there
must be Lagrange multipliers, λ∗

0 ≥ 0, λ∗(t) : [t1, t2] → R
n that do not vanish

simultaneously and such that for almost all t ∈ [t1, t2], the equation

d

dt
Lẋ (t, x∗(t), ẋ∗(t), u∗(t))

= Lx (t, x∗(t), ẋ(t), u∗(t))
(3)

and maximum principle

max
u∈Y

(λ∗(t)ϕ(t, x∗(t), u(t))) − λ∗
0f(t, x∗(t), u(t))

= λ∗(t)ϕ(t, x∗(t), u∗(t)) − λ∗
0f(t, x∗(t), u∗(t)).

(4)

Furthermore, if
Im G′(x∗, u∗) = Y, (5)

then one can set λ∗
0 = 1.

In the singular (irregular, degenerate) case, when condition (5) is not fulfilled,
the maximum principle (4) (as well as the Euler-Lagrange equation (3)) may be
violated in the case λ∗

0 = 1.

Example 1. Consider the problem

J(x, u) =

π
2∫

− π
2

(10x2
1 + 10x2

2 + u2 + u)dt → min

subject to

G(x, u) =
(

ẋ1 − x2 + x2
1 − 1

2x2
2 + u2 sin t

ẋ2 + x1 + x2
1 − 1

2x2
2 + u2

2 cos t + ux2 + ux1

)
= 0 (6)

x1(−π

2
) = x1(

π

2
) = 0
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where V = R. The pair x∗(t) = 0, u∗(t) = 0 is a local optimum. However,
it is easy to verify that λ∗

0 must be equal to zero. Indeed, if λ∗
0 > 0, then

−u − u2 + λ∗
1(t)u

2 sin t + λ∗
2(t)u

2 cos t ≤ 0 ∀u(t) ∈ Vε = {a ∈ R, ‖a‖ ≤ ε}, which
is not the case for small ε! In this example, it turns out that ImG′(x∗, u∗) 	=
L1([t1,t2], R2), and the regularity condition (5) is not satisfied.

In turn, the mapping G(x, u) is p-regular (p = 2) at the point (x∗, u∗), and
we can formulate the p-order maximum principle, where the coefficient λ∗

0 is no
more equal to zero. See [1] and the main constructions of p-regularity theory you
can find in [4,9,11].

But for proving p-order maximum principle it is necessary to prove theorem
on continuous dependence of boundary value problem solutions with respect to
initial conditions in p-regular case.

Let us denote

F (x, μ) =

⎛
⎝G(x, u)

x(t1) − ν = 0
x(t2) − ρ = 0

⎞
⎠ (7)

where μ = (ν, ρ) – is a parameter and u(t) – some fixed feasible control. Here
F (x, u) : X × M and X = {x ∈ W 1,1 ([t1, t2], Rn) , x(t1) = a = ν∗, x(t2) = b =
ρ∗}. Will be hold the following theorem.

Theorem 2. Let F (x, μ) ∈ Cp+1(X × M), F : X × M → Z, where M is
finite dimensional space, X, Z are Banach spaces. Let the mappings fi(x, μ),
i = 1, . . . , p be defined by (15). Assume that F (x∗, μ∗) = 0 and ∀μ̄ ∈ M, ‖μ̄‖ = 1,
(0, μ̄) ∈ ⋂p

k=1 Kerkf
(k)
k (x∗, μ∗) and F is strongly p-regular with respect to M

along every elements (0, μ̄), μ̄ ∈ M , that is

‖{f ′
1(x

∗, μ∗) + f ′′
2 (x∗, μ∗)[0, μ̄] + . . . + f (p)

p (x∗, μ∗)[0, μ̄]p−1}−1‖ ≤ C. (8)

(Here {·}−1 means right inverse operator).
Then there exists the continuous mapping x = x(μ), μ ∈ Vε(μ∗), where Vε(μ∗)

is the neighborhood of μ∗, x(μ) ∈ C(Vε(μ∗)), ε > 0 sufficiently small, such that
F (x(μ), μ) = 0 and

x(μ) = x∗ + ω(μ), ‖ω(μ)‖ = o(‖μ − μ∗‖), (9)

‖x(μ) − x∗‖ ≤ C

p∑
k=1

‖fk(x∗, μ)‖ 1
k

Zk
, ∀μ ∈ Vε(μ∗). (10)

In the proof of above theorem we apply the Michael selection theorem (see
[8]) which we give in the some modified form:

Theorem 3. Let X, Y - B-spaces, A ∈ L(X,Y ) and ‖A−1‖ ≤ K. Then there
exists continuous mapping M : Y → X such that AM(y) = y and ‖M(y)‖ ≤
c‖y‖, where c > 0 is a constant independent of y.
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The illustration of our problem is the following example of the boundary
value problem

F (x) = x′′ + x + x2 = 0, x(0) = ν, x(2π) = ρ, (11)

where ν and ρ are small parameters from U(ν∗, ρ∗) = U(0, 0), ν∗ = 0, ρ∗ = 0.
We show that for any hν , hρ such that hν 	= hρ, the mapping F is 2-regular

along element H = [0, hν , hρ], i.e. based on the Theorem 2 there exists a con-
tinuous solution of (11) dependent on the parameters μ = (ν, ρ) for hν 	= hρ,
and for hν = hρ the mapping F is 2-regular along element H = [sin t, hν , hρ].
All of this means that based on our theorems, a continuous solution of Eq. (11)
dependent on the parameter μ there exists for all μ sufficiently small.

2 Generalization of p-factor Lyusternik Theorem
and p-order Implicit Function Theorem

The apparatus of p-regularity is an important tool for studying nonlinear prob-
lems. In this section we present some definitions, notations and theorems of
p-regularity theory to be used in what follows (see [4–7,10,11]).

We are interested in the following nonlinear problem

F (x, μ) = 0, (12)

where the mapping F : X × M → Z and X, M and Z are Banach spaces.
Assume that for some point (x∗, μ∗) ∈ X × M , ImF ′(x∗, μ∗) 	= Z. Let

Z = Z1 ⊕ . . . ⊕ Zp, (13)

where Z1 = cl(ImF ′(x∗, μ∗)) and W1 = Z. As W2 we use the closed complement
of Z1 in Z. Let PW2 : Z → W2 be the projector onto W2 along Z1. By Z2

we denote the closure of linear span of the image of the quadratic mapping
PW2F

′′(x∗, μ∗)[·]2. Then, inductively,

Zi = cl(spanImPWi
F (i)(x∗, μ∗)[·]i) ⊆ Wi, i = 2, . . . , p − 1, (14)

where Wi is a closed complement of Z1 ⊕ ... ⊕ Zi−1, i = 2, ..., p with respect to
Z, and PWi

: Z → Wi is a projector onto Wi along Z1 ⊕ . . . ⊕ Zi−1, i = 2, . . . , p
with respect to Z. Finally, Zp = Wp. The order p is the minimal number (if it
exists) for which the decomposition (13) holds.

For what follows we will denote ϕ(0) = ϕ for any mapping ϕ.
Define the following mappings

fi : U ⊂ X × M → Zi, fi(x, μ) = PZi
F (x, μ), i = 1, . . . , p, (15)

where PZi
: Z → Zi is the projection operator onto Zi along Z1 ⊕ . . . ⊕ Zi−1 ⊕

Zi+1 ⊕ . . . ⊕ Zp. Then the mapping F can be represented as

F (x, μ) = f1(x, μ) + . . . + fp(x, μ) (16)
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or
F (x, μ) = (f1(x, μ), . . . , fp(x, μ)). (17)

Denote h = [hx, hμ], hx ∈ X, hμ ∈ M .

Definition 1. The linear operator Ψp(h) : X × M → Z, defined by

Ψp(h) = f ′
1(x

∗, μ∗) + f ′′
2 (x∗, μ∗)[h] + . . . + f (p)

p (x∗, μ∗)[h]p−1 (18)

such that

Ψp(h)[x, μ] = f ′
1(x

∗, μ∗)[x, μ] + f ′′
2 (x∗, μ∗)[h][x, μ] + . . . + f (p)

p (x∗, μ∗)[h]p−1[x, μ]
(19)

is called p-factor operator.

Definition 2. We say that F is completely degenerate at (x∗, μ∗) up to the order
p if F (i)(x∗, μ∗) = 0, i = 1, . . . , p − 1.

Remark 1. In the completely degenerate case the p-factor operator reduces to
F (p)(x∗, μ∗)[h]p−1.

Remark 2. For each mapping fi, we have ([4] p. 145)

f
(k)
i (x∗, μ∗) = 0, k = 0, 1, . . . , i − 1, ∀ i = 1, . . . , p. (20)

Remark 3. For each mapping fi we have in completely degenerate case

f
(i)
i (x∗, μ∗)[h]i−1 = PZi

F (i)(x∗, μ∗)[h]i−1, i = 1, . . . , p. (21)

It mean that fi are i-factor operators corresponding to completely degenerate
mappings fi up to order i. So the general degeneration of F can be reduced
to the study of completely degenerated mappings fi, i = 1, . . . , p and their
compositions.

Definition 3. The p-kernel of the operator Ψp(h) is a set

Hp(x∗, μ∗) = KerpΨp(h)

= {h ∈ X × M : f ′
1(x

∗, μ∗)[h] + f ′′
2 (x∗, μ∗)[h]2 + . . . + f (p)

p (x∗, μ∗)[h]p = 0}.

Note that the following relations holds:

KerpΨp(h) =

{
p⋂

i=1

Kerif
(i)
i (x∗, μ∗)

}
.

The p-kernel of the operator F (p)(x∗, μ∗) in the completely degenerate case
is a set

KerpF (p)(x∗, μ∗) = {h ∈ X × M : F (p)(x∗, μ∗)[h]p = 0}.

Definition 4. A mapping F is called p-regular at (x∗, μ∗) along h (p > 1) if
ImΨp(h) = Z ( i.e., the operator Ψp(h) is surjective).
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Definition 5. A mapping F is called p-regular at (x∗, μ∗) (p > 1) if either it is
p-regular along every h ∈ Hp(x∗, μ∗)\{0} or Hp(x∗, μ∗) = {0}.
Definition 6. Let F : X × M → Z = Z1 ⊕ · · · ⊕ Zp. The mapping F (x, μ) is
called strongly p-regular at the point (x∗, μ∗) if there exist γ > 0 and c > 0 such
that

sup
h∈Hγ

‖{Ψp(h)}−1‖ ≤ c < ∞,

where

Hγ = {h = (hx, hμ) ∈ X × M : ‖f
(k)
k (x∗, μ∗)[h]k‖Zk

≤ γ,

∀k = 1, . . . , p, ‖h‖X×M = 1}.

Define the solution set for the mapping F as the set

S = S(x∗, μ∗) = {x ∈ X × M : F (x, μ) = F (x∗, μ∗) = 0} (22)

and let T(x∗,μ∗)S denote the tangent cone to the set S at the point (x∗, μ∗), i.e.,

T(x∗,μ∗)S = {h ∈ X×M : (x∗, μ∗)+εh+r(ε) ∈ S, ‖r(ε)‖ = o(ε), ε ∈ [0, δ], δ > 0}
(23)

The following theorems describe the tangent cone to the solutions set of
Eq. (12) in the p-regular case.

Theorem 4. Let X, M and Z be the Banach spaces and let the mapping F ∈
Cp(X × M,Z) be p-regular at (x∗, μ∗) ∈ X × M along h. Then h ∈ T(x∗,μ∗)S.

Theorem 5 (Generalized Lyusternik Theorem, [4]). Let X, M and Z be
the Banach spaces and let the mapping F ∈ Cp(X × M,Z) be p-regular at
(x∗, μ∗) ∈ X × M . Then

T(x∗,μ∗)S = Hp(x∗, μ∗). (24)

The following lemma (see [7]) will be used in the proof of Theorem 2.

Lemma 1. Let F : X × M → Z, where X, M , Z are Banach spaces, z =
z1 + . . . + zp, zi ∈ Zi, i = 1, . . . , p, ‖h‖ = 1 and

‖{α1f
′
1(x

∗) + α2f
′
2(x

∗)[h] + . . . + αpf
(p)
p (x∗)[h]p−1}−1‖ = C < ∞.

Then

‖{α1f
′
1(x

∗) + α2f
′
2(x

∗)[th] + . . . + αpf
(p)
p (x∗)[th]p−1}−1(z1 + . . . + zp)‖

≤ C(
1
α1

‖z1‖ +
1

α2t
‖z2‖ + . . . +

1
αptp−1

‖zp‖),

where αi ∈ R\{0}, i = 1, . . . , p, t 	= 0.
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The following lemma will be important in the study of surjectivity of p-factor
operators in our example.

Lemma 2. Suppose that Y = Y1 ⊕ Y2, where Y1, Y2 are closed subspaces in Y ,
A,B ∈ L(X,Y ), ImA = Y1. Let also P2 be the projection onto Y2 along Y1. Then
(A + P2B)X = Y ⇔ (P2B)KerA = Y2.

This lemma is a consequence of the following

Lemma 3. Suppose that Y = Y1 ⊕ Y2, where Y1, Y2 are closed subspaces in
Y , A1, A2 ∈ L(X,Y ), A1X ⊂ Y1, A2X ⊂ Y2. Then (A1 + A2)X = Y iff
A1KerA2 = Y1 and A2KerA1 = Y2.

The proof is obvious. Lemma 2 follows from Lemma 3 if we put A1 = A and
A2 = P2B.

Some generalizations of the implicit function theorem to the p-order implicit
function theorem for nonregular mappings and the p-order implicit function
theorem for the nontrivial kernel, there are in [2].

The multivalued contraction mapping theorem will be used in the proof of
Theorem 2. Its content is available in [3].

3 Some Generalization of Lyusternik Theorem
on Tangent Cone

In this section we prove the Theorem 2 which is some analog and generalization of
Lyusternik theorem on a tangent cone and says about the existence of continuous
solution of the equations F (x, μ) = 0.

Remark 4. The element μ − μ∗ plays the role of μ̄ in the Theorem 2.

Proof (of the Theorem 2). Any element μ ∈ Vε(μ∗) can be represented as μ∗+tμ̄,
where t ∈ [0, δ] for δ > 0 sufficiently small. Then we are looking for a solution of
equation

F (x∗ + x(tμ̄), μ∗ + tμ̄ + μ̃(tμ̄)) = 0,

where μ̃ ∈ Vε(0), μ̄ ∈ M .
Consider the multimapping Φ : C(Vε(0)) × Vε(0) → 2X×M , which is defined

by the formula

Φ(x, μ̃) = (x, μ̃) − {Ψp(h)}−1F (x∗ + x, μ∗ + tμ̄ + μ̃), (25)

where

h = (0, tμ̄) ∈
p⋂

k=1

Kerkf
(k)
k (x∗, μ∗)

and p-factor operator Ψp(h) : X × M → Z has the form

Ψp(h) = f ′
1(x

∗, μ∗) + f ′′
2 (x∗, μ∗)[h] + . . . + f (p)

p (x∗, μ∗)[h]p−1.
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Remark that the inverse multimapping operator is the following

{Ψp(h)}−1(z) = {[ξ, η] ∈ X × M : f ′
1(x

∗, μ∗)[ξ, η] + f ′′
2 (x∗, μ∗)[h][ξ, η] + . . .

+ f (p)
p (x∗, μ∗)[h]p−1[ξ, η] = z},

where z = z1 + . . . + zp or z = (z1, . . . , zp), zi ∈ Zi, i = 1, . . . , p.
The “norm” of above operator is

‖{Ψp(h)}−1‖ = sup
‖z‖=1

inf{‖(x, μ)‖ : Ψp(h)[x, μ] = z}.

We will show that there exists an element (x, μ̃), such that

‖(x, μ̃)‖ = ‖x‖ + ‖μ̃‖ = o(‖tμ̄)‖
and (x, μ̃) ∈ Φ(x, μ̃), i.e. (x, μ̃) is a fixed point of the mapping Φ. Then

(0, 0) ∈ {−{Ψp(0, tμ̄)}−1F (x∗ + x(tμ̄), μ∗ + tμ̄ + μ̃(tμ̄))}.

Consequently we will obtain

F (x∗ + x(tμ̄), μ∗ + tμ̄ + μ̃(tμ̄)) = 0

and ‖(x(tμ̄), μ̃(tμ̄))‖ = o(t).
In the beginning, we will prove that

dist((0, 0), Φ(0, 0)) = ‖Φ(0, 0)‖ ≤ ct2 = O(t2) = o(t).

We have
Φ(0, 0) = −{Ψp(0, tμ̄)}−1F (x∗, μ∗ + tμ̄)

Φ(0, 0) = −{Ψp(0, tμ̄)}−1(f1(x∗, μ∗ + tμ̄)+f2(x∗, μ∗ + tμ̄)+ . . .+fp(x∗, μ∗ + tμ̄))

and

‖Φ(0, 0)‖ = ‖−{Ψp(0, tμ̄)}−1(f1(x
∗, μ∗ + tμ̄)+ f2(x

∗, μ∗ + tμ̄)+ . . .+ fp(x∗, μ∗ + tμ̄))‖.

By Lemma 1 we obtain

‖Φ(0, 0)‖ ≤ ‖c(f1(x∗, μ∗ +tμ̄)‖+
c

t
‖f2(x∗, μ∗ +tμ̄)‖+ . . .+

c

tp−1
‖fp(x∗, μ∗ +tμ̄)‖.

(26)
We apply the Taylor formula to the expressions fi(x∗, μ∗ + tμ̄) for i = 1, . . . p
and we have

‖Φ(0, 0)‖ ≤ c‖f1(x∗, μ∗) + f ′
1(x

∗, μ∗)[t · 0, tμ̄] + OZ(t2)‖
+

c

t
‖f2(x∗, μ∗) + f ′

2(x
∗, μ∗)[t · 0, tμ̄] +

1
2!

f ′′
2 (x∗, μ∗)[t · 0, tμ̄]2 + OZ(t3)‖

+ . . .

+
c

tp−1
‖fp(x∗, μ∗) + f ′

p(x
∗, μ∗)[t · 0, tμ̄] + . . . +

1
p!

f (p)
p (x∗, μ∗)[t · 0, tμ̄]p

+OZ(tp+1)‖.
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Therefore based on the relations (20) we estimate

‖Φ(0, 0)‖ ≤ ct2 +
c

t
t3 + . . . +

c

tp−1
tp+1 = pct2 (27)

and
‖Φ(0, 0)‖ = O(t2) = o(t). (28)

Now we show, that for any (x1, μ1), (x2, μ2) ∈ VO(t2)(0, 0) the following esti-
mation holds

distH(Φ(x1, μ1), Φ(x2, μ2)) ≤ θ‖(x1, μ1) − (x2, μ2)‖, (29)

where 0 < θ < 1.
Note, at the beginning that

Ψp(th)Φ(x1, μ1) = Ψp(th)(x1, μ1) − F ((x∗, μ∗) + th + (x1, μ1)) (30)

and
Ψp(th)Φ(x2, μ2) = Ψp(th)(x2, μ2) − F ((x∗, μ∗) + th + (x2, μ2)). (31)

Let (z1, ξ1) ∈ Φ(x1, μ1), (z2, ξ2) ∈ Φ(x2, μ2). Then we have

distH(Φ(x1, μ1), Φ(x2, μ2))
= inf{‖(z1, ξ1) − (z2, ξ2)‖ : (zi, ξi) ∈ Φ(xi, μi), i = 1, 2}
= inf{‖(z1, ξ1) − (z2, ξ2)‖ : Ψp(th)((z1, ξ1) − (z2, ξ2))
= Ψp(th)((x1, μ1) − (x2, μ2))
−[F ((x∗, μ∗) + th + (x1, μ1)) − F ((x∗, μ∗) + th + (x2, μ2))]}
= inf{‖(z, ξ)‖ : Ψp(th)(z, ξ)
= Ψp(th)((x1, μ1) − (x2, μ2))
− [F ((x∗, μ∗) + th + (x1, μ1)) − F ((x∗, μ∗) + th + (x2, μ2))]}
= inf{‖(z, ξ)‖ : Ψp(th)(z, ξ) = Ψp(th)((x1, μ1) − (x2, μ2))

−
[

p∑
i=1

(fi((x∗, μ∗) + th + (x1, μ1)) − fi((x∗, μ∗) + th + (x2, μ2)))

]
}

= inf{‖{Ψp(th)}−1 [f ′
1(x

∗, μ∗)((x1, μ1) − (x2, μ2))

+
p∑

i=2

f
(i)
i (x∗, μ∗)[th]i−1((x1, μ1) − (x2, μ2))

−
[

p∑
i=1

(fi((x∗, μ∗) + th + (x1, μ1)) − fi((x∗, μ∗) + th + (x2, μ2)))

]]
‖}

= inf{‖{Ψp(th)}−1

[[f ′
1(x

∗, μ∗)((x1, μ1) − (x2, μ2)) − (f1((x∗, μ∗) + th + (x1, μ1))
− f1((x∗, μ∗) + th + (x2, μ2))]

+
p∑

i=2

[
f
(i)
i (x∗, μ∗)[th]i−1((x1, μ1) − x2, μ2)) − (fi((x∗, μ∗) + th + (x1, μ1))

− (fi((x∗, μ∗) + th + (x2, μ2))]] ‖}.
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By Lemma 1, we obtain the following estimation

distH(Φ(x1, μ1), Φ(x2, μ2))
≤ c‖f1((x∗, μ∗) + th + (x1, μ1)) − f1((x∗, μ∗) + th + (x2, μ2))
− f ′

1(x
∗, μ∗)((x1, μ1) − (x2, μ2))‖

+
c

t
‖f2((x∗, μ∗) + th + (x1, μ1)) − f2((x∗, μ∗) + th + (x2, μ2))

− f ′′
2 [th](x∗, μ∗)((x1, μ1) − (x2, μ2))‖

+ · · ·
+

c

tp−1
‖fp((x∗, μ∗) + th + (x1, μ1)) − fp((x∗, μ∗) + th + (x2, μ2))

− f (p)
p [th]p−1(x∗, μ∗)((x1, μ1) − (x2, μ2))‖

= A1 + A2 + · · · + Ap,

where

A1 = c‖f1((x∗, μ∗) + th + (x1, μ1)) − f1((x∗, μ∗) + th + (x2, μ2))
− f ′

1(x
∗, μ∗)((x1, μ1) − (x2, μ2))‖,

A2 =
c

t
‖f2((x∗, μ∗) + th + (x1, μ1)) − f2((x∗, μ∗) + th + (x2, μ2))

− f ′′
2 [th](x∗, μ∗)((x1, μ1) − (x2, μ2))‖,

...
Ap =

c

tp−1
‖fp((x∗, μ∗) + th + (x1, μ1)) − fp((x∗, μ∗) + th + (x2, μ2))

− f (p)
p [th]p−1(x∗, μ∗)((x1, μ1) − (x2, μ2))‖.

To the component A1 we apply the mean value theorem and then the Taylor
formula to the expression f ′

1[(x
∗, μ∗) + th + (x2, μ2) + θ̄((x1, μ1) − (x2, μ2))]. We

have

A1 ≤ c sup
θ̄∈[0,1]

‖f ′
1((x

∗, μ∗) + th + (x2, μ2) + θ̄((x1, μ1) − (x2, μ2))) − f ′
1(x

∗, μ∗)‖

· ‖(x1, μ1) − (x2, μ2)‖
= c sup

θ̄∈[0,1]

‖f ′
1(x

∗, μ∗) + OZ(t) − f ′
1(x

∗, μ∗)‖‖(x1, μ1) − (x2, μ2)‖

= c sup
θ̄∈[0,1]

‖OZ(t)‖‖(x1, μ1) − (x2, μ2)‖ ≤ cc1t‖(x1, μ1) − (x2, μ2)‖

= k1t‖(x1, μ1) − (x2, μ2)‖,

where k1 = cc1. Put now θ1 = k1t, where t ∈ (0, δ), δ is sufficiently small and
then

A1 ≤ θ1‖(x1, μ1) − (x2, μ2)‖.

To the component A2 we apply the mean value theorem and then the Taylor
formula to the expression f ′

2[(x
∗, μ∗) + th + (x2, μ2) + θ̄((x1, μ1) − (x2, μ2))]. We

have now
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A2 ≤ c

t
sup

θ̄∈[0,1]

‖f ′
2[(x

∗, μ∗) + th + (x2, μ2) + θ̄((x1, μ1) − (x2, μ2))] − f ′′
2 (x∗, μ∗)[th]‖

· ‖(x1, μ1) − (x2, μ2)‖
=

c

t
sup

θ̄∈[0,1]

‖f ′
2(x

∗, μ∗) + f ′′
2 (x∗, μ∗)[th + (x2, μ2) + θ̄((x1, μ1) − (x2, μ2))]

+ OZ(t2) − f ′′
2 (x∗)[th]‖‖(x1, μ1) − (x2, μ2)‖

=
c

t
sup

θ̄∈[0,1]

‖f ′
2(x

∗, μ∗) + f ′′
2 (x∗, μ∗)[th]

+ f ′′
2 (x∗, μ∗)[(x2, μ2) + θ̄((x1, μ1) − (x2, μ2))]

+ OZ(t2) − f ′′
2 (x∗, μ∗)[th]‖‖(x1, μ1) − (x2, μ2)‖.

Since f ′
2(x

∗, μ∗) = 0, (see (20)) we obtain

A2 ≤ c

t
sup

θ̄∈[0,1]

‖f ′′
2 (x∗, μ∗)[(x2, μ2) + θ̄((x1, μ1) − (x2, μ2))] + OZ(t2)‖

· ‖(x1, μ1) − (x2, μ2))‖,

therefore

A2 ≤ c

t
sup

θ̄∈[0,1]

(‖f ′′
2 (x∗, μ∗)[(x2, μ2) + θ̄((x1, μ1) − (x2, μ2))]‖ + ‖OZ(t2)‖)

· ‖(x1, μ1) − (x2, μ2))‖,

Finally, using the fact that the rank of expression f ′′
2 (x∗, μ∗)[(x2, μ2) +

θ̄((x1, μ1) − (x2, μ2))] is t2 and the rank of OZ(t2) is t2 and properties of norm
we conclude that

A2 ≤ c

t
(d1t2 + d2t

2)‖(x1, μ1) − (x2, μ2)‖ ≤ 2k2t‖(x1, μ1) − (x2, μ2)‖,

where k2 = max{cd1, cd2}. We can put θ2 = 2k2t and then

A2 ≤ θ2‖(x1, μ1) − (x2, μ2))‖,

where t ∈ (0, δ), δ > 0 is sufficiently small.
Similarly, we will now evaluate the component Ap using also the mean value

theorem and the extension of expression f ′
p[(x

∗, μ∗)+ th+(x2, μ2)+ θ̄((x1, μ1)−
(x2, μ2))] in the Taylor formula.

So let’s note that

Ap ≤ c

tp−1
sup

θ̄∈[0,1]

‖f ′
p[(x

∗, μ∗) + th + (x2, μ2) + θ̄((x1, μ1) − (x2, μ2))]

− 1
(p − 1)!

f (p)
p (x∗, μ∗)[th]p−1‖‖(x1, μ1) − (x2, μ2))‖ (32)



248 Yu. Evtushenko et al.

By Taylor formula we have:

f ′
p[(x

∗, μ∗) + th + (x2, μ2) + θ̄((x1, μ1) − (x2, μ2))]

= f ′
p(x

∗, μ∗) + f ′′
p (x∗, μ∗)[th + (x2, μ2) + θ̄((x1, μ1) − (x2, μ2))] + · · ·

+
1

(p − 1)!
f (p)

p (x∗, μ∗)[th + (x2, μ2) + θ̄((x1, μ1) − (x2, μ2))]p−1 + OZ(tp).

According to (20) the mapping f
(i)
p (x∗, μ∗) = 0, for i = 1, 2, . . . , p − 1. Then

we obtain

Ap ≤ c

tp−1
sup

θ̄∈[0,1]

‖ 1
(p − 1)!

f (p)
p (x∗, μ∗)[th + (x2, μ2) + θ̄((x1, μ1) − (x2, μ2))]p−1

+ OZ(tp) − 1
(p − 1)!

f (p)
p (x∗, μ∗)[th]p−1‖‖(x1, μ1) − (x2, μ2))‖

=
c

tp−1
sup

θ̄∈[0,1]

‖ 1
(p − 1)!

f (p)
p (x∗, μ∗)[th]p−1

+
1

(p − 1)!
f (p)

p (x∗, μ∗)[th]p−2[(x2, μ2) + θ̄((x1, μ1) − (x2, μ2))]

+ OZ(tp) − 1
(p − 1)!

f (p)
p (x∗, μ∗)[th]p−1‖‖(x1, μ1) − (x2, μ2))‖,

i.e.

Ap ≤ c

tp−1
sup

θ̄∈[0,1]

‖ 1
(p − 1)!

f (p)
p (x∗, μ∗)[th]p−2[(x2, μ2) + θ̄((x1, μ1) − (x2, μ2))]

+ OZ(tp)‖‖(x1, μ1) − (x2, μ2))‖.

Then according to property of a norm we obtain

Ap ≤ c

tp−1
sup

θ̄∈[0,1]

(‖ 1
(p − 1)!

f (p)
p (x∗, μ∗)[th]p−2[(x2, μ2) + θ̄((x1, μ1) − (x2, μ2))]‖

+ ‖OZ(tp)‖)‖(x1, μ1) − (x2, μ2)‖.

Since (x1, μ1), (x2, μ2) ∈ VO(t2)(0, 0), then

Ap ≤ c

tp−1
(d̄1tp−2+2 + d̄2t

p)‖(x1, μ1) − (x2, μ2)‖
≤ 2kpt‖(x1, μ1) − (x2, μ2)‖ = θp‖(x1, μ1) − (x2, μ2)‖,

where k2 = max{cd̄1, cd̄2}, t ∈ (0, δ), δ > 0 is sufficiently small and θp = 2kpt.
Substituting θ = θ1 + θ2 + · · · + θp = c̄t, c̄ > 0, we obtain

distH(Φ(x1, μ1), Φ(x2, μ2)) ≤ θ‖(x1, μ1) − (x2, μ2)‖, (33)

and 0 < θ < 1.
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According to the multivalued contraction principle, we will show that

�((0, 0), Φ(0, 0)) = ‖Φ(0, 0)‖ < (1 − θ)ε

where θ = ct, ε = 4pct2, for t sufficiently small.
We can put 0 < θ = ct < 1

2 . This inequality is equivalent to
1 < 2(1 − ct). From this and inequality ‖Φ(0, 0)‖ ≤ pct2 we obtain

‖Φ(0, 0)‖ ≤ pct2 ≤ 2p(1 − ct)ct2 < (1 − ct)4pct2 = (1 − θ)ε,

which was to prove.
Therefore we proved that the mapping Φ is contraction in the set

V ((0, 0), ct2). By multivalued contraction principle for (z0, μ0) = (0, 0), it follows
that there exists element (x, μ̃), such that

‖(x, μ̃)‖ ≤ 2
1 − θ

‖Φ(0, 0)‖ ≤ ct2, (34)

i.e. ‖(x, μ̃)‖ = o(t) and (x, μ̃) ∈ Φ(x, μ̃). Therefore (x, μ̃) is fixed point of the
mapping Φ. Then

(0, 0) ∈ {−{Ψp(0, tμ̄)}−1F (x∗ + x(tμ̄), μ∗ + tμ̄ + μ̃(tμ̄))}.

Consequently we obtain

F (x∗ + x(tμ̄), μ∗ + tμ̄ + μ̃(tμ̄)) = 0 (35)

and ‖(x(tμ̄), μ̃(tμ̄))‖ = o(t).
Summarizing we showed, that for parameter μ∗ + tμ̄ we have solution (x∗ +

x(tμ̄), μ∗ + tμ̄ + μ̃(tμ̄)) of equation F (x, μ) = 0, i.e.

F (x∗ + x(tμ̄), μ∗ + tμ̄ + μ̃(tμ̄)) = 0.

Now without loss of generality, let the set M will be equal R2 and let us take
any μ, which is a sufficiently small element from R

2. For such μ there exists ¯̄μ(μ)
such that

‖ ¯̄μ(μ) − μ‖ = o(μ) (36)

and as we showed earlier,

F (x∗ + x(¯̄μ(μ)), μ∗ + ¯̄μ(μ) + μ̃(¯̄μ(μ))) = 0. (37)

Now is the important moment. We are coming back to μ. From assumptions we
put μ = μ∗ + ¯̄μ(μ) + μ̃(¯̄μ(μ)) and marking x∗ + x(¯̄μ(μ)) by x(μ) we obtain the
equation

F (x(μ), μ) = 0. (38)

The above equation holds, since we took any μ̄ from R
2 and we proved that

(35) holds for any μ̄. Therefore, based on the above, for any μ from R
2 there exists
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¯̄μ(μ) such that the contraction process is beginning in the point (0, μ∗ + ¯̄μ(μ))
and generates solutions (37) and in the end (38).

This ends the first part of the proof (we proved the existence of solutions).
Let U be a sufficiently small neighborhood of (x∗, μ∗). Let us take μ∗ + tμ̄,

where t > 0 is sufficiently small and put

h =
(0, tμ̄)
‖tμ̄‖ = (0, μ̄) ∈

p⋂
k=1

Kerkf
(k)
k (x∗, μ∗),

where ‖μ̄‖ = 1. Then for any k ≤ p

f
(k)
k (x∗, μ∗)[0, μ̄]k = 0, k = 1, . . . , p.

We showed in Eq. (26) that

‖Φ(0, 0)‖ ≤ ‖c(f1(x∗, μ∗ + tμ̄)‖+
c

t
‖f2(x∗, μ∗ + tμ̄)‖+ . . .+

c

tp−1
‖fp(x∗, μ∗ + tμ̄)‖

(39)
or

‖Φ(0, 0)‖ ≤ c

p∑
k=1

∥∥∥∥fk(x∗, μ∗ + tμ̄)
tk−1

∥∥∥∥ . (40)

We have for μ∗ + tμ̄

‖x(μ∗ + tμ̄) − x∗‖ ≤ ‖(x(μ∗ + tμ̄) − x∗, tμ̄)‖ ≤ C‖Φ(0, 0)‖. (41)

Let us note that the following inequality holds:

‖fk(x∗, μ∗ + tμ̄) − fk(x∗, μ∗)‖ ≤ Ck‖fk(x∗, μ∗ + tμ̄) − fk(x∗, μ∗)‖ 1
k ‖(0, tμ̄)‖k−1

(42)
or

‖fk(x∗, μ∗ + tμ̄) − fk(x∗, μ∗)‖k−1 ≤ Ck
k‖(0, tμ̄)‖k(k−1). (43)

This is true because by Taylor expansion and relations (20) we have

‖fk(x∗, μ∗) + f ′
k(x∗, μ∗)[0, tμ̄] + . . .

+
1

(k − 1)!
f
(k)
k (x∗, μ∗)[0, tμ̄]k + O(tk+1) − fk(x∗, μ∗)‖k−1

= ‖ 1
(k − 1)!

f
(k)
k (x∗, μ∗)[0, tμ̄]k + O(tk+1)‖k−1 ≤ Ctk(k−1) = C‖(0, tμ̄)‖k(k−1).

Consequently the relation (42) is satisfied. Therefore we have

‖x(μ∗ + tμ̄) − x∗‖ ≤ C‖Φ(0, 0)‖ ≤ Cc

p∑
k=1

∥∥∥∥fk(x∗, μ∗ + tμ̄)
tk−1

∥∥∥∥

≤ C̄

p∑
k=1

‖fk(x∗, μ∗ + tμ̄) − fk(x∗, μ∗)‖ 1
k

‖tk−1‖ ‖(0, tμ̄)‖k−1.



P-Regularity Theory and Nonlinear Optimization Problems 251

and

‖x(μ∗ + tμ̄) − x∗‖ ≤ C̄

p∑
k=1

‖fk(x∗, μ∗ + tμ̄)‖ 1
k , (44)

since fk(x∗, μ∗) = 0.
Next, from (44) for any sufficiently small μ there exists ¯̄μ(μ), such that

‖x(μ∗ + ¯̄μ(μ)) − x∗‖ ≤ C̄

p∑
k=1

‖fk(x∗, μ∗ + ¯̄μ(μ))‖ 1
k .

From this we have

‖x(μ) − x∗‖ ≤ ¯̄C
p∑

k=1

‖fk(x∗, μ∗ + ¯̄μ(μ)‖ 1
k ≤ ¯̄̄

C

p∑
k=1

‖fk(x∗, μ∗ + ¯̄μ(μ) + μ̃(μ))‖ 1
k

= ¯̄̄
C

p∑
k=1

‖fk(x∗, μ)‖ 1
k ,

where
μ = μ∗ + ¯̄μ(μ) + μ̃(μ)). (45)

We used here the following fact

‖fk(x∗, μ∗ + ¯̄μ(μ)‖ ≤ 2‖fk(x∗, μ∗ + ¯̄μ(μ) + μ̃(μ))‖ = 2‖fk(x∗, μ)‖, (46)

since

‖μ̃(μ))‖ = o(
p∑

k=1

‖fk(x∗, μ∗ + ¯̄μ(μ)‖ 1
k )

where μ is sufficiently small.
Then we substantiated that (10) holds. From this immediately yields that

(9) is true for ω(μ) = x(μ) − x∗ and ‖ω(μ)‖ = o(μ − μ∗).
The last element of the proof, i.e. the continuity of x(μ) follows from the

modified form of Michael selection Theorem 3. Therefore the multimapping Φ :
C(Vε(0)) × Vε(0) → 2X×M , which we defined in (25) by the formula

Φ(x, μ̃) = (x, μ̃) − {Ψp(h)}−1F (x∗ + x, μ∗ + tμ̄ + μ̃),

give us the continuity selector, i.e. we can choose the continuity solutions
(x(tμ̄), μ̃(tμ̄)) of F . From continuity of the function x(tμ̄) follows continuity
of the function x(μ).

This finishes the proof of the theorem.

Remark 5. If we assume that the spaces X ×M and Z are finite dimensional, we
can prove existence of continuous function x(μ) by consideration the following
contraction process

(xk+1, μ̃k+1) = (xk, μ̃k) − {Ψp(h)}−1
R F (x∗ + xk, μ∗ + tμ̄ + μ̃k), (47)
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where {Ψp(h)}−1
R z = (xz, μz) is the right inverse operator and

‖(xz, μz)‖ = min
Ψp(h)(x,μ)=z

‖(x, μ)‖. (48)

Such a process will converge to the continuity mapping x(tμ̄).

Analogously we can prove the following two theorems.

Theorem 6 (Implicit function theorem for nontrivial kernel). Let
F (x, μ) ∈ Cp+1(X ×M), F : X ×M → Z, where M is finite dimensional space,
X, Z are Banach spaces. Assume that F (x∗, μ∗) = 0 and ∀μ̄ ∈ M, ‖μ̄‖ = 1;
(0, μ̄) ∈ ⋂p

k=1 Kerkf
(k)
k (x∗, μ∗) that is

‖{f ′
1(x

∗, μ∗) + f ′′
2 (x∗, μ∗)[0, μ̄] + . . . + f (p)

p (x∗, μ∗)[0, μ̄]p−1}−1
X ‖ ≤ C. (49)

Then there exists the mapping x = x(μ), μ ∈ Vε(μ∗), x(μ) ∈ C(Vε(μ∗)), ε > 0
sufficiently small, such that F (x(μ), μ) = 0 and

x(μ) = x∗ + ω(μ), ‖ω(μ)‖ = o(‖μ − μ∗‖), (50)

‖x(μ) − x∗‖ ≤ C

p∑
k=1

‖fk(x∗, μ)‖ 1
k

Zk
, ∀μ ∈ Vε(μ∗). (51)

Theorem 7. Let F (x, μ) ∈ Cp+1(X × M), F : X × M → Z, where M is finite
dimensional space, X, Z are Banach spaces. Let for hμ 	= 0, hμ ∈ Vε(μ∗) there
exists h̄x ∈ X, ‖h̄x‖ ≤ c < ∞, such that F is p-regular along h̄ = [h̄x, h̄μ],
that is

‖{f ′
1(x

∗, μ∗) + f ′′
2 (x∗, μ∗)[h̄] + . . . + . . . + f (p)

p (x∗, μ∗)[h̄]p−1}−1
X ‖ ≤ C, (52)

h̄ ∈ ⋂p
k=1 Kerkf

(k)
k (x∗, μ∗), h̄μ = hμ

‖hμ‖ .
Then there exists the mapping x = x(μ), μ ∈ Vε(μ∗), x(μ) ∈ C(Vε(μ∗)), ε > 0
sufficiently small, such that F (x(μ), μ) = 0 and

μ = μ∗ + hμ, x(μ) = x∗ + c(μ)h̄x + ω(μ), ‖ω(μ)‖ = o(‖μ‖), ‖c(μ)‖ = ‖μ‖,
(53)

‖x(μ) − x∗‖ ≤ C

p∑
k=1

‖fk(x∗ + hx, μ)‖ 1
k

Zk
. (54)
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In the classical paper [1], the nonparametric estimator of a probability dis-
tribution density fξ̂(x), x ∈ X ⊂ Rd of the form

fξ̂(x) ≈ Zn(x) =
1
n

n∑

j=1

κ(x)
(
ξ̂j

)
, (1.1)

using the sample values
{

ξ̂1, ..., ξ̂n

}
⊂ Rd from this distribution is considered.

Here κ(x)(y) is some finite parametric, having the same shape for all values of
the parameter x kernel function. The approximation (1.1) is called the kernel
estimator of the density fξ̂(x).

For investigation of properties of the approximation (1.1), the following con-
sequence of the large numbers law

Zn(x) =
1
n

n∑

j=1

κ(x)
(
ξ̂j

)
≈ Eκ(x)

(
ξ̂
)

=
∫

κ(x)(y)fξ̂(y) dy (1.2)

for comparatively large n is used.
The evident constructive drawback of the kernel estimators theory (see, for

example [1]) is related to absence of considerations about practical (firstly –
numerical, computer) technique for global approximation of the function fξ̂(x).
This technique can be based on the theory of mesh function approximation (see,
for example, [2]). The corresponding numerical algorithm could look as follows.

Assume that the domain X ⊂ Rd is bounded and the mesh

X(M) = {x1, ...,xM} (1.3)

is constructed in this domain, and also the mesh approximation of the form

fξ̂(x) ≈ L(M)fξ̂(x) =
M∑

i=1

w(i)
[
fξ̂(x1), ..., fξ̂ (xM )

]
χ(i)(x) (1.4)

is considered. Here
Ξ(M) =

{
χ(1)(x), ..., χ(M)(x)

}
, (1.5)

is a set of given basic functions (as a rule, these functions depend on the mesh
(1.3)). The form of functions (1.5) defines the type of the approximation (1.4).
The values

W (M) =
{

w(1)
[
fξ̂(x1), ..., fξ̂ (xM )

]
, ..., w(M)

[
fξ̂(x1), ..., fξ̂ (xM )

]}
(1.6)

are the coefficients which are equal to some combinations of values of the function
fξ̂(x) in nodes of the mesh (1.3); more often

w(i)
[
fξ̂(x1), ..., fξ̂ (xM )

]
= fξ̂(xi); i = 1, ...,M. (1.7)
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For simplicity of further considerations we assume that the domain X is equal
to some cuboid, and the mesh (1.3) is uniform rectangular with the step h:

xi =
(
j
(1)
i h, ..., j

(d)
i h

)
; j

(k)
i are integer numbers; k = 1, ..., d; i = 1, ...,M.

(1.8)

Algorithm 1. Calculate the values f̃
(xi)

ξ̂
(n) = Zn(xi); i = 1, ...,M with respect

to the formulae of the form (1.1) and approximate the function fξ̂(x) with respect
to the formula of the form (1.4):

fξ̂(x) ≈ L(M)f̃ξ̂(x) =
M∑

i=1

w(i)
[
f̃
(x1)

ξ̂
(n), ..., f̃ (xM )

ξ̂
(n)

]
χ(i)(x). (1.9)

The Algorithm 1 is based on the approximate equalities
∫

fξ̂(y)κ(xi)(y) dy ≈ fξ̂(xi); i = 1, ...,M, (1.10)

which are in turn based on the equalities (1.1), (1.2).

2 Optimization Using the Upper Boundary of Error:
Choice of the Kernel Function and the Blur Coefficient

In the paper [1], the following optimization of the approximation (1.1) is pro-
vided. It is proposed to use the kernel function κ(x)(y) in the form

κ(x)(y) =
d∏

s=1

1
h(s)(n)

κ̂(s)

(
x(s) − y(s)

h(s)(n)

)
. (2.1)

Here the positive (generally speaking dependent on n) numbers h(s)(n); s =
1, ..., d define the domain (the blur coefficients) of the kernel function κ(x)(y).
The bounded in total even (κ̂(s)(y) = κ̂(s)(−y)) functions κ̂(s)(y) have the unit
second moment and finite m-th moments:

∫ +∞

−∞
y2κ̂(s)(y) dy = 1,

∫ +∞

−∞
ymκ̂(s)(y) dy < ∞; m > 2. (2.2)

The informative results on optimization of the approximation (1.1) with the
kernel function (2.1) are obtained only for the case

h(1)(n) = ... = h(d)(n) ≡ ĥ(n); κ̂(1)(y) = ... = κ̂(d)(y) ≡ κ̂(y)

(see, in particular, [1]); the case of various {h(s)(n)}, {κ̂(s)(y)}; s = 1, ..., d is
not studied enough.
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In the paper [1], in frames of the asymptotic (for n → ∞) approach, the
global mean square error

(
δ̂(L2)

)2

=

∫
E

[
fξ̂(x) − Zn(x)

]2
dx

Q
; Q =

∫
f2

ξ̂
(x) dx (2.3)

was minimized. The decomposition of the function fξ̂

(
x(1) + ĥ(n)y(1), ..., x(d)+

+ĥ(n)y(d)
)

with respect to all independent variables y =
(
y(1), ..., y(d)

)
in the

point x =
(
x(1), ..., x(d)

)
into the Taylor series was used and the following asymp-

totic approximation

(
δ̂(L2)

)2

∼ n−1ĥ−d(n)Id + (1/4)ĥ4(n)J
Q

; (2.4)

I =
∫ +∞

−∞
κ̂2(y) dy; J =

∫
..

∫ [
d∑

l=1

∂2fξ̂

(
x(1), .., x(d)

)

∂
(
x(l)

)2

]2

dx(1)..dx(d) (2.5)

was obtained.
The minimization of the obtained approximation (2.4) of the value (2.3) and

the choice of the function κ̂(y), which satisfies the condition (2.2) and provides
the minimal value I from (2.5), give the following optimal value of the blur
coefficient and the optimal form of the function κ̂(y):

ĥopt(n) =
(

d × Id

n × J

)1/(d+4)

, κ̂opt(y) =

{
3

4
√
5

− 3y2

20
√
5

for |y| ≤ √
5,

0 for |y| >
√

5.
(2.6)

Concerning the presented in [1] optimization of the approximation (1.1) of the
density fξ̂(x), the following criticisms can be formulated. Firstly, the continuous
approximation is considered, while it is more constructive, as it was mentioned
above, to use the mesh approximation of the function fξ̂(x), presented in the
Algorithm 1. Secondly, the formula (2.6) for ĥopt(n) includes the indefinite con-
stant J from (2.5). The approximation of this constant is equal to the separate
(and rather difficult) problem. Thirdly, the presented optimization of the approx-
imation (1.1) is connected to minimization of the asymptotic approximate upper
boundary of error, nevertheless, more objective is the following criterion.

Criterion 1. The best approximation of the function fξ̂(x) gives the fixed error
level in minimal time (with least computer cost).

The question about how the use of the parameters (2.6) in the Algorithm 1 (in
conjunction with the choice of the step h of the mesh (1.8)), which corresponds
to the Criterion 1, requires the separate detailed study.

The considerations of the Sects. 3 and 4 of this paper give the possibili-
ties of constructive use of the Criterion 1 for optimization of the Algorithm 1.
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These considerations are based on the mapping between the Algorithm 1 and
the randomized projection-mesh functional algorithm (see further the Algorithm
2); for this algorithm the so called theory of conditional optimization, based on
the Criterion 1, is elaborated.

3 The Randomized Projection-Mesh Functional
Algorithm for Solving of the Fredholm Integral
Equation of the Second Kind

In recent years, the theory of randomized functional algorithms is developed
(especially in Novosibirsk scientific school of Monte Carlo methods); see, in par-
ticular, [3–7]. The most informative examples of these algorithms are related to
approximation of the unknown solution ϕ(x), x ∈ Rd of the integral Fredholm
equation of the second kind

ϕ(x) =
∫

k(x′,x)ϕ(x′) dx′ + f(x) or ϕ = Kϕ + f (3.1)

in a bounded domain X ⊂ Rd; here k(x′,x) (the kernel of the integral operator
K) and f(x) (the free term of the equation) are the given functions.

By analogy with considerations of the Sect. 1 of this paper (see, in particular,
the formula (1.4)), for approximation of the function ϕ(x) we use the representa-
tions of classical theory of numerical function approximation (see, for example,
[2]), which have the common form

ϕ(x) ≈ L(M)ϕ(x) =
M∑

i=1

w(i)χ(i)(x)

for some specially selected set of basic functions (1.5) and coefficients

W(M) =
{

w(1), ..., w(M)
}

, (3.2)

which are defined as functionals on the unknown approximated function ϕ(x).
For the randomized functional algorithms, the coefficients (3.2) are calculated

approximately using the Monte Carlo method with the test numbers ni: w(i) ≈
w̃(i)(ni) (in this paper we investigate the case n1 = ... = nM ≡ n), and the
approximation

ϕ(x) ≈ L(M)ϕ̃(x) =
M∑

i=1

w̃(i)(n)χ(i)(x)

is considered.
In the recent papers [8,9] we have proposed the new (to compare with the

works [3–7]) classification of the randomized functional algorithms for approxi-
mation of the solution ϕ(x) of the Eq. (3.1). We have distinguished the mesh, the
projection and the projection-mesh algorithms (the type of a method is defined
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by the choice of the basic functions (1.5) and the coefficients (3.2)). In these
papers, we also have presented the considerations why the mesh and the pro-
jection randomized functional algorithms can be non-effective (or even unre-
alizable) for solution of practically important problems related to solutions of
integral equations of the form (3.1). In particular, for the theoretically attractive
mesh dependent test method, the smoothness of the kernel k(x′,x) of the integral
operator K is needed. But the most part of kernels in applied problems has the
integrable singularities (up to delta-functions) and even can not be calculated
explicitly. The mesh adjoint random walk method is too numerically laborious
because of necessity for simulating of individual set of trajectories of the corre-
sponding applied Markov chains for every node xi of the introduced mesh (1.3) in
the domain X. The projection methods have fairly obvious numerical instability.

The projection-mesh randomized functional algorithms have no such flows.
For these algorithms (as for mesh methods) the coefficients w(i) = w(i)

(
ϕ(M)

)

from (3.2) are equal to some combinations of values

ϕ(M) = {ϕ(x1), ..., ϕ(xM )} (3.3)

in nodes of the mesh (1.3). The “projection” part of algorithms is related to
the special way of approximate calculation of the values (3.3). Choose the finite,
having the same shape for all {x1, ...,xM} functions

K(M) =
{

κ(x1)(y), ..., κ(xM )(y)
}

; (3.4)

essentially these functions are the versions of the kernel function κ(x)(y) from
(1.1) for various values of the parameter x.

The functions (3.4) depend on the mesh (1.3) such that
∫

ϕ(y)κ(xi)(y) dy ≈ ϕ(xi); i = 1, ...,M (3.5)

(these are the analogs of the approximate equalities (1.10)). Then we use the fact
that the approximations (3.5) of the values (3.3) are equal to linear functionals
on the solution ϕ(x) of the Eq. (3.1). For such functionals we can construct the
main estimators (or the Monte Carlo collision estimates – see, for example, the
Chap. 4 of the textbook [5]) based on numerical simulation of the trajectories

ξ
(0)
j , ξ

(1)
j , ..., ξ

(Nj)
j ; j = 1, ..., n (3.6)

of the applied Markov chain

ξ(0), ξ(1), ..., ξ(N), (3.7)

or homogeneous Markov chain terminated with unit probability, with the initial
density π(x) and the transition function p(x′,x) = r(x′,x)×[

1 − p(a)(x′)
]

(here
r(x′,x) is the probability transition density and 0 ≤ p(a)(x′) ≤ 1 defines the
probability of a trajectory break; correspondingly, N is a random number of the
break state).
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Algorithm 2 [8,9]. Simulate n trajectories (3.6) of the applied Markov chain
(3.7) and get the values

ϕ̃(xi)(n) =
1
n

n∑

j=1

Nj∑

m=0

Q
(m)
j κ(xi)

(
ξ
(m)
j

)
; i = 1, ...,M ;

here the weights
{

Q
(m)
j

}
are calculated with respect to the following recurrent

formulae:

Q
(0)
j =

f
(
ξ
(0)
j

)

π
(
ξ
(0)
j

) ; Q
(m)
j = Q

(m−1)
j ×

k
(
ξ
(m−1)
j , ξ

(m)
j

)

p
(
ξ
(m−1)
j , ξ

(m)
j

) ; j = 1, ..., n; m = 1, ..., Nj .

Then approximate the function ϕ(x) with respect to the formula of the
form (1.9):

ϕ(x) ≈ L(M)ϕ̃(x) =
M∑

i=1

w(i)
[
ϕ̃(x1)(n), ..., ϕ̃(xM )(n)

]
χ(i)(x).

Comparison of the Algorithms 1 and 2 gives the following important
conclusion.

Remark 1. The kernel Algorithm 1 for approximation of a probability density
fξ̂(x), based on approaches of the theory of mesh function approximation, is
constructively equal to the randomized projection-mesh functional Algorithm 2
for approximation of the solution ϕ(x) of Fredholm integral equation of the second
kind (3.1).

The difference between Algorithms 1 and 2 is defined by the distinction
of forms of Monte Carlo estimators for approximate calculation of functionals
(1.10) and (3.5) (which is related to the certain difference between functions
ϕ(x) and fξ̂(x)). The difference is also related to the fact that for the problem

of approximation of the density fξ̂(x), the sample
{

ξ̂1, ..., ξ̂n

}
is considered to

be given (and the number n of sample values is fixed and cannot be increased),
but for the function ϕ(x) the number n of the simulated trajectories (3.6) of the
applied Markov chain (3.7) may vary.

In connection with the main conclusion of the Remark 1, we can formulate
the following considerations.

Remark 2. For development of the theory of construction and conditional opti-
mization of the randomized projection-mesh functional Algorithm 2 it is possible
to use the considerations of the theory of kernel estimators of probability densities
from the paper [1] (see also the Section 2 of this paper).
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The Algorithm 2 is studied in detail in the works [4,7] only for special case,
when the “absolutely stable” finite functions of the multi-linear approximation
(or Strang – Fix approximation [10] with the basis producing function β(1)(u),
which is equal to the B-spline of the first order) on a regular mesh (1.8)

χ(i)(x) = β(1)

(
x(1)

h
− j

(1)
i

)
× ... × β(1)

(
x(d)

h
− j

(d)
i

)
; (3.8)

β(1)(u) =

⎧
⎨

⎩

u + 1 for − 1 ≤ u ≤ 0;
−u + 1 for 0 ≤ u ≤ 1;
0 otherwise

(3.9)

are used as basic functions (1.5). Moreover, the kernel function from the formulae
(3.4), (3.5) has the simple form

κ(x)(y) =
{

1
hd for y ∈ Δ(x),
0 otherwise,

(3.10)

where Δ(x) =
{
y =

(
y(1), ..., y(d)

)
: x(s) − h/2 ≤ y(s) ≤ x(s) + h/2; s = 1, ..., d;

x =
(
x(1), ..., x(d)

) }
, thus, for this case we have

ĥopt(n) = h, κ̂opt(y) =
{

1 for |y| ≤ 1/2,
0 for |y| > 1/2.

(3.11)

For this case, the approximations of the coefficients (3.2) have the simplest
form

w(i)
(
ϕ̃(x1)(n), ..., ϕ̃(xM )(n)

)
= ϕ̃(xi)(n). (3.12)

The Algorithm 2 with functions (3.8)–(3.11) and approximation coefficients
(3.12) is called in [4–7] as the multi-dimensional analogue of the polygon of fre-
quencies method.

According to considerations of the Sect. 2 of this paper, it can be interest-
ing to provide the separate investigation of the Algorithm 2 which includes the
considerations of the conditional optimization theory (see [4–7], and the Sect. 4
of this paper) for the case when the kernel function (2.1) with the blur coeffi-
cient and the function κ̂(y) of the form (2.6) are used instead of (3.11) in the
approximate equalities of the form (3.5).

4 Conditional Optimization of the Kernel Algorithm

In connection with the Remark 1, we can formulate the following considerations.

Remark 3. For the kernel Algorithm 1, used for approximation of a probability
density fξ̂(x), we can use considerations of the theory of conditional optimization
of the randomized projection-mesh functional Algorithm 2.
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The common scheme of the conditional optimization looks as follows (see, for
example, [4–7]). The problem of the coordinated choice of the parameters M and
n (the number of nodes of the mesh (1.3) and the sample values from the formula
(1.1)) for the investigated functional algorithm (for example, for the Algorithm 1)
is stated. This choice must guarantee the given level γ > 0 of the error of
approximation of the investigated function (for example, the approximation (1.9)
from the Algorithm 1) together with minimal computer time costs S(M,n).
Thus, this approach quite consistent to the “objective” Criterion 1, which was
formulated in the Sect. 2 of this paper.

Construct an upper boundary UP (B)(M,n) of the algorithm’s error
δ(B)(M,n) for the used normalized functional space B(X), which depends on
the parameters M and n:

δ(B)(M,n) =
∥∥∥fξ̂ − L(M)f̃ξ̂

∥∥∥
B(X)

≤ UP (B)(M,n). (4.1)

This two-parameter function is equated to the value γ. From the equation of the
form

UP (B)(M,n) = γ (4.2)

one parameter (for example, n) is presented in terms of another: n = ψ(M).
The last formula is substituted into the expression for the cost S(M,n) (which
also depends on the parameters M and n). As the result we get the function
S̃(M) of single independent variable M . We investigate this function for mini-
mum using the well-known methods of mathematical or numerical analysis. The
found parameters M

(B)
min(γ) = M

(B)
opt (γ), n(B)

opt = ψ
[
M

(B)
opt (γ)

]
are declared to be

conditionally optimal parameters of the corresponding functional algorithm (for
example, Algorithm 1).

“The conditionality” of this optimization method is related to the fact that
in the left part of the Eq. (4.2) we use not the error δ(B)(M,n) itself but the
upper boundary UP (B)(M,n). By the way, the evaluation of the quality of a
particular numerical algorithm by the upper boundary of error is used in the
overwhelming majority of theoretical considerations of numerical mathematics
(see, for example, [2]), thus, everywhere these considerations are about “the
conditional optimality” of the studied numerical schemes.

When studying the error δ(B)(M,n), it is necessary to choose both the cor-
responding normalized functional space B(X) and the probabilistic sense of the
satisfying of the inequality (3.1) (after all δ(B)(M,n) is a random variable). Fol-
lowing the theory of the classical numerical analysis (see, for example, [2]) we
consider the spaces L2(X) and C(X) as the normalized functional space B(X).

For the well developed (see, for example, [3–7]) L2-approach the convergence
in mean of the error

δ(L2)(M,n) =
∥∥∥fξ̂ − L(M)f̃ξ̂

∥∥∥
L2(X)

=
(∫

X

[
fξ̂(x) − L(M)f̃ξ̂(x)

]2
dx

)1/2
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to zero for M,n → ∞ is considered, and the upper boundaries UP (L2)(M,n)
such that [

Eδ(L2)(M,n)
]2

≤ UP (L2)(M,n)

are constructed.
For the C-approach [4–7] the value

δ(C)(M,n) =
∥∥∥fξ̂ − L(M)f̃ξ̂

∥∥∥
C(X)

= sup
x∈X

∣∣∣fξ̂(x) − L(M)f̃ξ̂(x)
∣∣∣

is bounded above in probability:

P
[
δ(C)(M,n) ≤ UP (C)(M,n)

]
> 1 − ε

for some comparatively small ε > 0.
Note that for the L2-approach, the comparatively “weak” integral norm

‖.‖L2(X) of the space L2(X) and “strong” probabilistic convergence of error
to zero (in mean) are used. In turn, in the C-approach for the “strict’ norm
‖.‖C(X), the comparatively “weak” error convergence to zero (in probability) is
chosen.

Together with approximations L(M)fξ̂(x), L(M)f̃ξ̂(x) of the functionfξ̂ (x),
for which the exact and approximate values in nodes of the mesh (1.3) are used
(see the formulae (1.4), (1.9)), consider the function

L(M)f̄ξ̂(x) =
M∑

i=1

w(i)
[
Eκ(x1)

(
ξ̂
)

, ...,Eκ(xM )
(
ξ̂
)]

χ(i)(x).

For C- and L2-approaches we can divide the error into three components:
the deterministic δ

(B)
det (M), the stochastic δ

(B)
stoch(M,n) and the bias component

δ
(B)
bias(M).

In particular, for C-approach, using the triangle inequality, we get

δ(C)(M, n) ≤ δ
(C)
det (M) + δ

(C)
stoch(M, n) + δ

(C)
bias(M); δ

(C)
det (M) =

∥∥∥fξ̂ − L(M)fξ̂

∥∥∥
C(X)

,

δ
(C)
stoch(M, n) =

∥∥∥L(M)f̄ξ̂ − L(M)fξ̂

∥∥∥
C(X)

, δ
(C)
bias(M) =

∥∥∥L(M)fξ̂ − L(M)f̄ξ̂

∥∥∥
C(X)

.

For L2-approach, using the Cauchy – Bunyakovsky inequality and the Fubini
theorem, we get

[
Eδ(L2)(M,n)

]2
≤ E

(∫

X

[
fξ̂(x) − L(M)f̃ξ̂(x)

]2
dx

)
× E1

=
∫

X

E
[
fξ̂(x) − L(M)f̃ξ̂(x)

]2
dx.
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Then note that

E
[
fξ̂(x) − L(M)f̃ξ̂(x)

]2
= E

( [
fξ̂(x) − L(M)fξ̂(x)

]
+

[
L(M)fξ̂(x) − L(M)f̄ξ̂(x)

]

+
[
L(M)f̄ξ̂(x) − L(M)f̃ξ̂(x)

] )2

=
( [

fξ̂(x) − L(M)fξ̂(x)
]

+
[
L(M)fξ̂(x) − L(M)f̄ξ̂(x)

] )2

+ E
[
L(M)f̄ξ̂(x) − L(M)f̃ξ̂(x)

]2
;

here we take into account that EL(M)f̃ξ̂(x) = L(M)f̄ξ̂(x). Using the evident
inequality (a + b)2 ≤ 2a2 + 2b2, we obtain

[
Eδ(L2)(M,n)

]2
≤ 2

(
δ
(L2)
det (M)

)2

+ δ
(L2)
stoch(M,n) + 2

(
δ
(L2)
bias (M)

)2

;

δ
(L2)
det (M) =

∥∥∥fξ̂ − L(M)fξ̂

∥∥∥
L2(X)

, δ
(L2)
stoch(M,n) =

∫

X

DL(M)f̃ξ̂(x) dx,

δ
(L2)
bias (M) =

∥∥∥L(M)fξ̂ − L(M)f̄ξ̂

∥∥∥
L2(X)

.

By analogy of the reasoning of the works [4,7], it can be shown, that if the
following four conditions

(1) the regular mesh (1.8) with the step h is used;
(2) the numerically stable basis (1.5) is used, which enforces the inequality

δ
(C)
bias(M) =

∥∥∥L(M)fξ̂ − L(M)f̄ξ̂

∥∥∥
C(X)

≤ HLeb max
i=1,...,M

∣∣∣fξ̂(xi) − Eκ(xi)
∣∣∣ (4.3)

for the Lebesgue constant HLeb, which is slightly more than one;
(3) the coefficients (1.6) have the simplest form (1.7);
(4) the blur coefficient and the function κ̂(y) of the form (3.11) are used (that

is, the kernel function (3.10) is chosen)

are fulfilled, then the upper boundaries of the bias components δ
(C)
bias(M) and

δ
(L2)
bias (M) have the second order with respect to the mesh step h ∼ M−1/d; here

the obvious inequality

δ
(L2)
bias (M) ≤ mesX × δ

(C)
bias(M)

can be used.
Thus, the upper boundaries of the deterministic components δ

(C)
det (M) and

δ
(L2)
det (M) must also have the second order with respect to h. Such upper bound-

aries can be provided by the basic functions (3.8), (3.9) and approximation
coefficients (1.7) (here, in particular, HLeb = 1).

Note, that violation of each of the four formulated conditions (in particular,
using the blur coefficient and the function κ̂(y) of the form (2.6) instead of
(3.11)) leads to the significant complication in getting upper boundaries for the
bias components (in particular, for the value δ

(C)
bias(M) from the inequality (4.3)).
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The stability properties of the form (4.3) for the basis (3.8), (3.9) and usage
of the approximation coefficients (1.7) also give the possibility to construct the
upper boundaries for the stochastic components δ

(C)
stoch(M,n) and δ

(L2)
stoch(M,n).

Thus, by analogy of the reasoning of the works [4,7], for C- and L2-
approaches the described methodology of the conditional optimization theory
can be used, and the following formulae for the conditionally optimal parame-
ters can be obtained:

M
(L2)
opt (γ) = H

(L2)
1

(
d + 4

d

)d/4

γ−d/2,

n
(L2)
opt (γ) = H

(L2)
2

(
d + 4

d

)d/4

(d + 4) γ−2−d/2; (4.4)

M
(C)
opt (γ) = H

(C)
1

[
(2ν + 1)d + 4

(2ν + 1)d

]d/2

γ−d/2,

n
(C)
opt (γ) = H

(C)
2

[(2ν + 1)d + 4]2+d/2

[(2ν + 1)d]d/2
(2 lnM

(C)
opt (γ)− ln lnM

(C)
opt (γ) + H

(C)
3 ) γ−2−d/2

for some positive constants H
(L2)
1 ,H

(L2)
2 ,H

(C)
1 ,H

(C)
2 ,H

(C)
3 and ν; the choice or

approximation of these constants is equal to a separate – often complicated –
problem [4].

5 Conclusion

In this paper, the modification of the kernel estimator (1.1) of the probability
density fξ̂(x) is proposed. This modification is based on the theory of numerical
approximation of functions and leads to the constructive Algorithm 1. The criti-
cal analysis of the optimization criterion, based on minimization upper boundary
of relative error for the L2-approach, is conducted. We have shown that the con-
structive kernel Algorithm 1 is equivalent to the randomized projection-mesh
functional Algorithm 2 for approximation of the solution ϕ(x) of the Fredholm
integral equation of the second kind (3.1). In connection with this it is proposed
to use the criterion of conditional optimization of functional algorithms, based
on minimization of the computational cost S(M,n) for the fixed level of error
γ > 0, for the kernel Algorithm 1. We have obtained formulae for the condi-
tionally optimal parameters (for the known C- and L2-approaches – see the
formulae (4.3)) for the simplest version of the Algorithm 1, for which the basic
functions (3.8), (3.9) and the approximation coefficients (1.7) are used (thus, we
have studied the analog of the polygon of frequencies method).
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Abstract. The paper considers the classical problem of optimal saving
rate (golden rule) for an endogenous production function built on the
basis of a micro-description of the dynamics of production capacity. The
production capacities are distributed according to the moments of cre-
ation (vintage capacity model) and are limited by the age of their possible
use. The main hypothesis of the model is that the number of workplaces
on a production unit is fixed, and the capacity decreases with a constant
pace. The resulting production function reflects explicitly the mecha-
nisms for control of the production system. The average labor intensity
is a short-term control, while the share of new capacities and their age
limit are long-term controls. The golden rule for the Solow model is for-
mulated in terms of capacity and labor intensity. The new endogenous
production function gives new effects. The optimal level of accumulation
rate does not depend on the choice of output elasticity by a production
factor. The age limit of production capacity is a new production factor
of the endogenous production function. It affects the value of effective
labor per unit of capacity stock.

Keywords: Vintage capacity model · Endogenous production
function · Russian economy model · Golden rule · Saving rate · Solow
model

1 Introduction

The golden rule of capital accumulation is well known in mathematical economics
and it is included in standard courses on economic growth [1,2]. The solution
to this problem has been considered in many works, see, for example, [3–5].
The golden rule of capital accumulation establishes a condition under which the
capital-labor ratio (capital stock per worker) maximizes average consumption
(consumption per worker) in a steady state of economic growth. In a simple
model without scientific and technological progress, the golden rule boils down
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to the fact that the marginal productivity of capital is equal to the sum of the
population growth rate and the rate of capital degradation.

A clear mathematical formulation of the problem of optimal economic growth
for the simplest dynamic economic model, taking into account restrictions on
control, is presented, for example, in [6]. In addition, it is possible to solve the
control synthesis problem, i.e. find an explicit expression of the dependence of
the optimal control on the state of the system (phase coordinate) [6]. The latter
allows to formulate a universal golden rule [6] for choosing the optimal level of
consumption depending on the current level of capital-labor ratio, valid for all
time points and for all not too large initial levels of capital-labor ratio. On the
contrary, here the golden rule is not considered for the entire optimal trajectory
of movement, but only for those areas where the optimal control does not take
boundary values and for characteristic growth pathes. However, this problem is
considered here not only for the standard Cobb-Douglas production function,
but in the main for a new endogenous production function. This allows us to get
new effects that have an economic applied character.

In the extreme case, if the savings are zero, all the income is consumed, which
cancels the investment as well as the replacement of the capital which wears out.
In the long run, when capital is fully consumed, income is reduced to almost zero.
The same is true for consumption: an excessive preference for short-term con-
sumption is to the detriment of future generations. If the savings are equal the
full income, all these revenues could go to investment but consumption is zero
and there is no incentive to invest. Growth is zero, too. Excessive foresight does
not benefit future generations either. Between these two extremes, there is (at
least) a level of savings that maximizes average growth, allowing the growth of
regular and identical consumption for all generations (intergenerational solidar-
ity). According to [4], the only way to reach this optimum is to set the real
interest rate at a value equal to population growth. Indeed, if we can adjust the
marginal productivity rate of capital to the population growth rate, we can also
adjust the savings rate to the share of profit in the national income.

Formally writing, the nation wants to maximize intertemporal utility
∫ ∞

0

e−δtu(ct)dt,

where u(ct) is the instant utility of consumption and δ is the subjective rate of
time discount. If K is capital, L is labor and Y is output of production, then
k = K/L is the ratio of capital to labor, f(k) = Y/L is the homogeneous of
degree one production function. The evolution of consumption depends on the
differential equation

k̇ = f(k) − nk − c,

where c = C/L is the per capita consumption, n = L̇/L is the growth rate of
the population, and the point above a variable is the derivative over time. The
current value of the Hamiltonian has the form

H = u(ct) + χ (f(k) − nk − c) ,
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where χ is the constant auxiliary variable. After substituting this variable under
first-order conditions, we find

(u′′(c)/u′(c)) ċ = δ + n − f ′(k).

Really, ∂H/∂ct = ∂u/∂ct − χ = 0, χ̇ = χδ − ∂H/∂k = χ(δ − f ′(k) + n), so
χ = u′(c), and χ̇ = u′′(c)ċ. For stationary equilibrium we have ċ = 0 and then

f ′(k∗) = δ + n.

With this modified golden rule, the ratio of capital to labor will be smaller
because of the impatience of the society represented by the discount rate of
time.

Further, in the work, we will not take into account the discount rate, but
instead of this we will take into account technological progress, and also move
on from considering capital to considering production capacity.

In [7], on the basis of aggregating the original micro-description of production,
a new class of production functions was obtained. Such a production function,
along with other parameters, contains directly the growth rate of the economy,
which makes the task of finding optimal accumulation more interesting, even in
the absence of scientific and technological progress. The production function [7]
shows the dependence of output on production factors, which are total labor and
total production capacity. Production capacity is the highest possible output. For
the transition from the capital to the production capacity, the capital intensity
is used.

Works [8,9] give numerical representations of the endogenous production
function of type [7], which, along with the growth rate of the economy and the
rate of degradation of capacities, contains the maximum age of production capac-
ity. Thus, the production capacity leaves the production process, not only due
to its degradation but also due to its dismantling when exceeding the maximum
age (due to its obsolescence).

In the description of the golden rule, we move from the variable capital-labor
ratio to the average labor intensity of capacities.

2 Solow Model in Terms of Capacity and Labor Intensity

Here we express the Solow model of economic growth [3] in terms of the Houthak-
ker–Johansen model [7,10,11]: Y (t)—total output (GDP), M(t)—total produc-
tion capacity (maximum possible output), L(t)—the number of workers (it is
proportional to population), ν(t)—the smallest labor intensity (labor input rate
per unit of product, that is the number of workers per one unit of output). The
last one characterizes technical progress. In these variables, we assume that a
production function sets the dependence of output (GDP) Y (t) on the total pro-
duction capacity (in units of output) M(t) and total effective labor, taking into
account its efficiency (in units of output it is the ratio of workers to the small-
est labor intensity), L(t)/ν(t). Technological progress that enters in this way is
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known as Harrod-neutral or labor-augmenting [2]. Note, that in this formulation,
the use of a homogeneous production function of the first degree does not cause
problems with the units of measurement. For example, for the Cobb–Douglas
production function Y = Mα(L/ν)β with α + β = 1, we have the units of the
output [Y ] = [Y ]α[Y ]1−α = [Y ].

For a homogeneous production function Y (t) = F (M(t), L(t)/ν(t)) one of
two variables can be taken out in order to obtain an intensive form of production
function F , function f of one variable. In our case, it is more convenient to take
out the total production capacity, then

Y (t) = M(t)f(x), x =
L(t)

ν(t)M(t)
(1)

and the production function in intensive form has the meaning of the function of
loading the total capacity. If the output does not exceed the maximum possible
output, Y (t) ≤ M(t) (the production capacity overload is not allowed), then
f(x) ≤ 1. For example, for the Cobb–Douglas production function the function
of capacity loading f(x) = x(t)β , where β is output elasticity of labor.

In a closed economy, the output Y (t) is divided into the consumption C(t)
and the capital accumulation of bJ(t):

Y (t) = bJ(t) + C(t). (2)

In (2) b > 0 is the coefficient of incremental capital-output ratio, it shows how
much capital-forming products need to be purchased to create one unit of capac-
ity. The value of J(t) is the volume of newly created capacity.

If we use the usual dynamics of total production capacity, then

Ṁ(t) def=
dM(t)

dt
= J(t) − μM(t), (3)

where μ > 0 is a depreciation rate of capacity.
A rate s of capital accumulation: bJ(t) = sY (t). Then we have J(t) =

sf(x)M(t)/b and from (3) the tempo of the total production capacity is equal

Ṁ(t)
M(t)

=
s

b
f(x) − μ. (4)

From the other side, if

L̇(t)
L(t)

= n,−ν̇(t)/ν(t) = g, (5)

where n is the population growth rate, g is the rate of fall of the lowest labor
intensity (rate of growth for the level of technology), then from (1) and (5) we
have M = L/(xν) and

Ṁ(t)
M(t)

= n + g − ẋ(t)
x(t)

. (6)
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The main interest of the model is the dynamics of average labor intensity of
the total capacity in relative units with respect to the smallest labor intensity
x, the effective labor per unit of capacity stock. In accordance of (4), (6) its
behavior over time is given by the next analogy of the key equation of the Solow
model in terms of x:

ẋ(t)
x(t)

= n + g + μ − sf(x)/b. (7)

Stationarity condition is ẋ(t) = 0, so from here in steady-state

sf(x) = b(n + g + μ). (8)

If we denote Ṁ(t)/M(t) = γ, then from (6) we obtain that the steady state
growth rate is expressed by the relation

γ = n + g. (9)

Fig. 1. The golden rule saving rate sgold = 0.35 for the Cobb–Douglas production func-
tion f(x) = xβ . The vertical axis shows the steady-state of consumption per effective
person c∗ correspond to each saving rate s ∈ (0, 1). The curve c∗∗ is obtained under
the condition f(x) ≤ 1.

Labor productivity in relative units y
def= ν(t)Y (t)/L(t) = f(x)/x. Then the

growth rate of labor productivity in relative units is

ẏ(t)
y(t)

= ẋ(t)
(

f ′(x)
f(x)

− 1
x(t)

)
. (10)

Consumption per effective labor has the form

c
def=

ν(t)C(t)
L(t)

=
f(x) − sf(x)

x
. (11)
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In steady-state (8) we obtain

c(x) =
f(x) − b(n + g + μ)

x
. (12)

In accordance with (8) x = x(s), so that c = c(s), and from (12) we have

c′
s = (xf ′(x) − f(x) + b(n + g + μ))

x′
s

x2
. (13)

So that in terms of x = xgold the Solow model golden rule be

xf ′(x) − f(x) + b(n + g + μ) = 0. (14)

For the Cobb–Douglas production function f(x) = xβ we have from (8) sxβ =
b(n+g+μ), and from (14) (1−β)xβ = b(n+g+μ). So that, s = 1−β = α = εM ,
where εM is the total output elasticity by total capacity M .

Figure 1 presents the relation between steady-state consumption per effective
labor c∗ and saving rate s that is implied by (12). The steady-state x∗(s) is from
the condition (8). For the Cobb–Douglas production function x∗(s) = (b(n+g +
μ)/s)1/β . Here in Fig. 1 we use β = 0.65 and the values of the model parameters
obtained on the base of statistical data 1970–2017 for the Russian economy [8]:
b = 1.1, n = 0.01124, g = 0.038115, μ = 0.03155.

3 An Exogenous Production Function

An exogenous production function for production capacities with limited age was
constructed in [8]. The economic system consists of separate production units.
The production unit is characterized by the technology used and the capacity—
the maximum possible product output per unit of time. The production technol-
ogy is fully determined by the labor intensity—the norm of the cost of human
labor for the production of a unit of product. The production capabilities of such
an economic system are described by the value M(t,H) of the total capacity of
production units whose technology is λ ∈ H ⊂ R1

+.
The production capacity dynamics on micro-level is described by the hypoth-

esis proposed in [7–9]. Production capacity decreases due to aging and the num-
ber of working places on it is fixed since the creation of this capacity up to
reaching age limit A(t).

Hypothesis 1: The number of workplaces in the production unit remains
unchanged for each time moment t from the time moment of its creation τ ≤ t
until the time moment of its liquidation θ = τ +A(θ) ≥ t , where A(t) is the age
limit of the production capacities, and the production capacity m(t, τ) decreases
with a constant rate μ > 0.

If the capacities of new production units are created continuously with a
speed J(t) and all have the same labor input ν(t), which does not increase with
time, then the measure M(t,H) has a continuous density m(t, λ), which varies
according to a first-order partial differential equation [7]:

∂m(t, λ)
∂t

= −2μm(t, λ) − μλ
∂m(t, λ)

∂λ
(15)
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with boundary condition

m(t, ν) =
J(t)

(μν(t) − dν/dt)
. (16)

Fig. 2. Estimation of the distribution of production capacities of the Russian economy
by age (vintage capacity) in 2018, at constant prices 2010. The years of investment are
plotted on the horizontal axis.

Figure 2 shows the vintage production capacity in 2018. Production capacity
measures the maximum output at constant prices of 2010. For the evaluation
the capacity, we used the parameters of the micro-description of the model for
changes in production capacity. It was assumed that the least laboriousness
decreases with the rate g(t) = −ν̇/ν = εσ(t), and the capital intensity coeffi-
cient for new capacities also decreases due to increasing of the share of primary
industries in the issue, ḃ/b = −ζσ(t), where σ = J(t)/M(t). Parameter identifi-
cation was made by comparing the calculated and statistical time series for out-
put and labor according to the data of 1970–2017: b(1970) = 5.598, ζ = 0.430,
ν(1970) = 2.512, ε = 0.3465, A = 25. Parameter estimation methodology is
described in more detail in [8,9].

The expression for the production function is more convenient to derive on the
basis of a micro-description of the dynamics of production capacity in the vari-
ables t, τ . The initial capacity is m(t, t) = J(t). Then m(t, τ) = J(τ)exp(−μ(t −
τ)). This reduction in capacity requires, in order to maintain the number of work-
places, an appropriate increase in labor intensity λ(t, τ) = ν(τ)exp(μ(t − τ)),
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where ν(τ) is the labor intensity on the production unit at moment of its cre-
ation τ . At every time moment t the investors choose the best technology with
the smallest amount of labor ν(t). This lowest labor intensity is decreased with
time due to technological progress with the rate g(t) > 0. The total capacity is

M(t) =
∫ t

t−A(t)

J(τ)e−μ(t−τ)dτ. (17)

Assuming the total effective labor L(t)/ν(t) is used in optimal way starting
from the new production capacity with best technology ν(t) up to production
capacity with age θ(x) ≤ A. Then the production function is determined by the
next system of two equations:

f(x) =
∫ t

t−θ(x)

M(τ)
M(t)

σ(τ)e−μ(t−τ)dτ, (18)

x =
∫ t

t−θ(x)

M(τ)
M(t)

ν(τ)
ν(t)

σ(τ)dτ, (19)

where instead of the differential Eq. (3) for total production capacity M(t) in
this case we have the next differential-difference equation for the total capacity
M(t) in the intensive variables with the fixed age limit A. It has the form [8]:

dM(t)
dt

= (σ(t) − μ) M(t) − σ(t − A)M(t − A)e−μA, (20)

where σ(t) is the ratio of new capacities to total capacity, σ(t) = J(t)/M(t).
If the ratio σ(t) is constant and total production capacity grows with constant

rate

σ(t) =
J(t)
M(t)

= σ,
Ṁ(t)
M(t)

= γ, (21)

we can find an exogenous production function.
Based on Proposition 1 from [8], taking into account our notation (1) for x

and (5) for g, the following theorem can be formulated.

Theorem 1. Let in a closed economy (2) on a balanced growth path with the
rate γ,

M(t) = M0e
γt, Y (t) = Y0e

γt, J(t) = J0e
γt, C(t) = C0e

γt,

the following conditions are met:

(a) it is true the hypothesis 1 about a fixed number of workplaces and a drop in
production capacity at a rate μ up to a certain age limit A;

(b) it is fixed the maximum age of the production capacities, A(t) = A = const;
(c) it is fixed the ratio of incremental capital intensity, b(t) = b = const;
(d) it is reduced the least labor intensiveness due to scientific and technical

progress in accordance with (5), ν̇(t)/ν(t) = −g.
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Then the following statements are true:

(1) the share of new capacity is fixed: σ(t) = J(t)/M(t) = σ = const;
(2) the dynamics of total production capacity (20) on balanced growth path sets

the relationship between the growth rate of economy (21) γ = ϕ(σ, μ,A) − μ
and an implicit function ϕ of this parameters σ, μ, A by equation

ϕ = σ(1 − e−ϕA); (22)

(3) relation (22) gives the following expression for the production function

f(x) =
σ

ϕ

{
1 −

[
1 − (ϕ − μ − g)

σ
x

]ϕ/(ϕ−μ−g)
}

, (23)

where μ is the depreciation rate of production capacities, and g is the rate
(5) of technological progress;

(4) the ratio of the average labor intensity of the production capacities to the
least labor intensity is constant: x = L(t)/(ν(t)M(t)) = const.

Proof. It follows directly from the relations (18), (19) for the production function
under the conditions (a)–(d) specified in the theorem.

Indeed, on the balanced growth path (BGP) σ = J(t)/M(t) = J0/M0 =
const, so the statement (1) is satisfied.

Then, from σ = const, A = const, and condition of BGP M(t − A)/M(t) =
exp(−γA) the Eq. (20) gives γ = −μ + σ(1 − exp(−(γ + μ)A)). By virtue of the
notation ϕ = γ +μ, we obtain the relation (22), so the statement (2) is satisfied.

Since on BGP M(τ)/M(t) = exp(−γ(t−τ)), so from (18), ϕ = γ+μ, and σ =
const we have f(x) = (1−exp(−ϕθ(x)))σ/ϕ. From (19) considering condition d),
ν(τ)/ν(t) = exp(g(t−τ)), we have x = (1−exp(−(ϕ−μ−g)θ(x)))σ/(ϕ−μ−g).
Excluding from these relations for f and x the value exp(−θ(x)) we have (23).
So, the statement (3) is satisfied.

The statement (4) is satisfied because on BSP we have f(x) = Y (t)/M(t) =
M0/Y0 = const, so x = const.

Now, by elimination the term σ from (22), (23), σ = ϕ/
(
1 − e−ϕA

)
, and

using (9),
ϕ = n + g + μ, (24)

we have the next form of the production function in steady-state

f(x,A) =
1

(1 − e−ϕA)

{
1 −

[
1 − n

ϕ
(1 − e−ϕA)x

]ϕ/n
}

. (25)

Changes in the average labor intensity x and in the age limit of capacities A
change the level of loading f(x,A) of the total capacity.
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4 Golden Rule for the Endogenous Production Function

In the model under consideration the total production capacity dynamics (20)
differs from the usual Eq. (3), so that we should change the Eq. (4) on the next
one:

Ṁ(t)
M(t)

=
1
b
sf(x,A)

(
1 − e−ϕA

) − μ. (26)

In accordance of (26), (6) the effective labor per unit of capacity stock x, the
key equation of our model will be

ẋ(t)
x(t)

= ϕ − 1
b
sf(x,A)

(
1 − e−ϕA

)
. (27)

So, the dynamics of average labor intensity of the total capacity x depends of
the age limit of capacities A.

Instead of (8) in steady-state (ẋ(t) = 0) we have

sf(x,A) =
bϕ

(1 − e−ϕA)
. (28)

For the consumption per effective labor (11) in steady-state (28) instead of
(12) we have

c(x,A) =
1
x

(
f(x,A) − bϕ

(1 − e−ϕA)

)
. (29)

Then

c′
s =

{
f ′

x

x
− f(x,A) − bϕ/

(
1 − e−ϕA

)
x2

}
x′

s. (30)

So, the model under consideration golden rule in terms of x = xgold is

[xf ′
x(x,A) − f(x,A)]

(
1 − e−ϕA

)
+ bϕ = 0, (31)

where due to (24) ϕ = γ + μ = n + g + μ.
For our production function (25) we have

f ′
x =

[
1 − n

ϕ
(1 − e−ϕA)x

]−1+ϕ/n

. (32)

and from (28) and (31)

sgold =
bϕ

1 − [1 − zn/ϕ]ϕ/n
, (33)

where
z

def= (1 − e−ϕA)xgold (34)

is a root of the transcendental equation

1 − z

(1 − zn/ϕ)
= (1 − bϕ)(1 − zn/ϕ)ϕ/n. (35)
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For the endogenous production function (25) from (31)–(33) we have

s∗ = 1 − (1 − bϕ)z∗

bϕ + (1 − bn)z∗ . (36)

Fig. 3. The golden rule saving rate sgold = 0.67 for the exogenous production function
f(x,A). The vertical axis shows the steady-state of consumption per effective person
c∗ correspond to each saving rate s ∈ (0, 1).

From (28), (31) we have the next algorithm for calculating the curve c = c(s)
for the production function in a stable-stage:

z =
ϕ

n

[
1 −

(
1 − bϕ

s

)n/ϕ
]

, (37)

B
def=

(
1 − e−ϕA

)
f(x,A) = 1 −

(
1 − n

ϕ
z

)ϕ/n

, (38)

c =
1
z
(B − bϕ). (39)

The age limit A value explicitly affects the value of xgold due to the formula
(34). The value A is not explicitly included in the expression for the steady-state
consumption per effective labor c∗ due to (37)–(39):

c∗ =
nb(1/s − 1)

1 − (1 − bϕ/s)n/ϕ
. (40)

The dependence of the steady-state consumption per effective person c∗ (40)
on A exists since ϕ = ϕ(σ,A) in accordance with (22).
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Figure 3 presents the relation between steady-state consumption per effective
labor c∗ and saving rate s that is implied by (29). The steady-state x∗(s) is
from the condition (28). Here in Fig. 3 we use the values for parameters of the
current Russian economy (in particular, see above Sect. 3): b = 1.1, n = 0.01124,
g = 0.038115, μ = 0.03155.

5 Conclusions and Implication

The introduction provides a brief reference to the literature on the problem of
the golden rule saving rate.

The second section shows that the Houthakker–Johansen model notation
[10,11] is suitable for describing classical problems, in particular, the problem
of golden rule saving rate. At the same time, the concept of the production
function in the model has a clear economic meaning of capacity utilization, and
the variables have a decent dimension: either dimensionless or have dimension
per unit of time.

The third section presents the endogenous production function, in which the
Houthakker–Johansen model manifests itself well. Here production function is
based on the distribution of production capacity for technology. In the end, the
production function is presented in the stationary mode parameters.

In the fourth section, formulas for calculating the golden growth for this
endogenous production function are obtained. As it turned out, the age limit of
capacities does not affect the steady-state consumption per effective labor, but
it affects the value of the effective labor per unit of the total capacity.

It can be concluded that the presentation of the golden rule for the exogenous
production function can be used in education courses for students of classical
mathematical economics. It gives food for thought about the current state of the
economy.

Phelps in his Nobel lecture [12] gives an overview of works that take into
account the realities of the modern economy. As an example, he points out his
own models that take these realities into account, or at least remove some of
the limitations of the neoclassical approach. In the model of exogenous pro-
duction function presented here, an example of a departure from neoclassical
principles is also given. In particular, the production function built here takes
into account structural changes, and its analytical form is valid under certain
conditions. In the numerical experiments with the model it is possible to use the
micro-description of production sector. This saves the proposed mathematical
description for the stages of the production cycle of the economy, in which there
are sharp changes in the structure of production capacities.
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Abstract. Traffic assignment problem is one of the central problems
in transportation science. Various model assumptions lead to different
setups corresponding to nonlinear optimization problems.

In this work, we focus on the stable dynamic model and its general-
izations. We propose new equivalent representation for stable dynamic
model [Nesterov and de Palma, 2003]. We use smoothing technique to
derive new model, which can be interpreted as a stochastic equilibrium
model.

Keywords: Traffic assignment problem · Equilibrium model ·
Huge-scale convex optimization · Primal-dual method · Coordinate
descent method

1 Introduction

In this work, we consider transportation equilibrium models and algorithmic
schemes to compute equilibrium.

It can be a coincidence, that the most popular equilibrium transportation
model [3] was proposed at the same time as the Frank-Wolfe algorithm [4], the
most popular algorithm for transportation equilibrium computation. The first
version of Frank-Wolfe algorithm was not very practical for the traffic assignment
problem, because it was applied to an optimization problem over a set of all paths
in the network, which is exponential in the number of nodes. A tractable version
of Frank-Wolfe method in transportation science appeared almost 20 years later
[5]. Since then transportation research has motivated the development of new
convex optimization methods, especially challenged for huge-scale problems.

One should note, that since its introduction Backmann’s model has been
almost the only one, which has been implemented as a software tool used in
practice of transportation modeling. Simplicity and tractability of Backmann’s
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model has led to a number of methods proposed for its computation [2,11,12].
Still Frank-Wolfe methods and their simple variants are still quite popular in
engineering practice [9].

One can see that in the macroscopic branch of transportation modeling sci-
ence there is a very strange situation when advances in models and algorithms
do not find their place in practice. We have already mentioned that Beckmann’s
model is simple and easy to compute. The last feature is achieved because in
this model equilibrium can be found as the solution of smooth convex optimiza-
tion problem with linear constraints. That is also the reason why Frank-Wolfe
algorithm works so well for this model.

On the other hand, Beckmann’s model with standard choice of arc delay
function (such as BPR-function) has a few drawbacks. First, the equilibrium
flow can exceed arc capacity. Second, it is not clear how to model traffic jams in
this model.

This is the main motivation to use the stable dynamic model [10]. In this
model one can straightforward estimate traffic jams at the equilibrium point. In
this model, equilibrium flow can not exceed arc capacity. In the original paper, it
was shown that the equilibrium can be computed as a solution of the non-smooth
convex optimization problem with linear constraints. Thus one can assume that
this model must be computational tractable.

The main issue we address in this paper is that there is no compu-
tational method proposed for the Stable Dynamic model.

In our work, we show that an equilibrium in the stable dynamic model can
be computed as a solution of the linear programming problem, or a non-smooth
unconstrained convex optimization problem, or a saddle-point problem. All of
them are equivalent reformulations of the original problem. We also propose new
methods to solve those problems and provide complete complexity analysis of
these methods. Finally, we describe a stochastic version of the stable dynamic
model and propose a method for its computation.

Novelty and Our Contribution. In [10] it is shown that an equilibrium in the
stable dynamic model can be found as a solution of the huge-scale non-smooth
convex optimization problem with linear constraints. This optimization problem
has a specific structure that makes most of the modern computational methods
hardly inapplicable.

In this work, we propose two new representations (as a saddle point problem
and as a linear programming problem) of the equilibrium problem in the stable
dynamic model. Both of them allows to apply modern optimization methods for
huge-scale problems such as fast gradient descent cite, randomized coordinate
descent cite and others.

We also propose the smoothed version of the stable dynamic model, where
the smoothness parameter is in charge of the irrationality of drivers. We prove
that Beckmann’s model can be considered as a special case of a smoothed version
of the stable dynamic model for a number of popular cost functions.
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1.1 Contents

In Sect. 2 we describe the Stable Dynamic model and its representations as a
linear programming problem, a non-smooth unconstrained convex optimization
problem and a saddle-point problem. In Sect. 3 we describe smoothed version of
the Stable Dynamic model. In last section we provide computation experiments
results, where we test Fast Gradient Methods and it’s modifications on test
networks.

1.2 Notation

Γ (V,E) - weighted oriented graph Γ , loops and arc duplication are not allowed,
V - set of nodes,
E = V × V - set of arcs,
n = |V | - number of nodes,
m = |E| - number of arcs, we think that all arcs are enumerated,
S ⊂ V - set of origin nodes,
D ⊂ V - set of destination nodes,
l = |S|
OD = S × D - set of the origin-destination pairs (OD-pairs),
(i, j) ∈ E - arc with the origin node i and the destination node j,
(i, j) ∈ OD - OD-pair with origin node i and destination node j,
fij - flow on the arc (i, j),
f = (f(1), ..., f(m))T ∈ Rm - flow (vector),
f̄ij - capacity of the arc (i, j), constant,
f̄ = (f(1), ..., f(m))T ∈ Rm - vector of capacities, constant vector
τij - cost on the arc (i, j),
τ = (τ(1), ..., τ(m))T ∈ Rm - cost (vector),
τ̄ij - free flow travel time for arc (i, j), constant,
τ̄ = (τ̄(1), ..., τ̄(m))T ∈ Rm - free flow travel time vector, constant vector,
dij - demand for OD-pair (i, j),
{dij} - OD-matrix,
(Γ (V,E, f̄ , τ̄); {dij}) - the instance,
Pij - set of paths for OD-pair (i, j),
P = ∪(i,j)∈ODPij - set of all paths,
δeq

Cq(τ) =
∑

(i,j)∈E τij · δ(i,j),q - cost on path q if cost vector is τ ,
Tij(τ) = minq∈Pij

Cq(τ) - minimal cost for OD-pair (i, j) if the cost vector is τ ,
�Φ(x) - gradient of the function Φ(x),
(u)+ = max{u, 0},
�l = {x ∈ Rl, x ≥ 0,

∑
i xi = 1},

〈x, u〉 - scalar product of the elements x and u,
In this work we work with different primal and dual spaces equipped with cor-
responding norms. The primal space Ξ is endowed with a norm ‖ · ‖1 and the
norm for the dual space Ξ∗ is defined in a standard way:

‖u‖∗ = max
x

{〈x, u〉 : ‖x‖ = 1}.
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For linear operator A : Ξ1 → Ξ∗
2 we define the adjoint operator A∗ : Ξ2 → Ξ∗

1

in the following way:

〈Ax, u〉 = 〈x,A∗u〉, ∀x ∈ Ξ1, u ∈ Ξ2.

The norm of such operator is defined as follows:

‖A‖1,2 = max
x,u

{〈Ax, u〉2 : ‖x‖1 = 1, ‖u‖2 = 1}.

2 Stable Dynamic Model and Its Representations

In this section we provide brief description of the Stable Dynamic model, pro-
posed by [10]. Equilibrium in the Stable Dynamic model can be found as the
solution of a huge-scale non-smooth convex optimization problem with linear
constraint. The structure of this optimization problem is not clear and restricts
the use of many modern computational techniques. We show that this optimiza-
tion problem has several alternative representations. Each of these alternative
representations has good structure and its own good properties and allows to
use computational techniques for huge-scale optimization problems.

2.1 Stable Dynamic Model

Let Γ (V,E) be a weighted oriented graph. Here V is the set of nodes, E is
the set of arcs. The {dij} is the origin-destination matrix (OD-matrix). Pair
(Γ (V,E), {dij}) is called an instance. Each arc e is described by two parameters:
free flow travel time τ̄e and arc capacity f̄e. Denote by Pst the set of all paths
from node s to node t. Let Cq(τ) :=

∑
e∈E τeδeq be the cost of a path q if the

vector of costs on arcs is τ . Here δeq is equal to 1 if e ∈ q and 0 otherwise.
At any equilibrium point (f∗, τ∗) the Wardrop’s equilibrium condition holds

and the following conditions are satisfied:

– If f∗
e < f̄e, then τ∗

e = τ̄e,
– If f∗

e = f̄e, then τ∗
e ≥ τ̄e.

Denote by Tij(τ) = minq∈Pst
Cq(τ) the cost on the shortest path for the OD-

pair (i, j). The standard way to analyze any instance is to compute the equilib-
rium flow [13]. One can solve this problem by reducing equilibrium computing
to the optimization problem of potential function (see, for example, [10]). Then
the equilibrium in the Stable Dynamic model can be computed as a solution of
the following optimization problem:

∑

(i,j)∈OD

dijTij(τ) −
∑

(i,j)∈E

f̄ij(τij − τ̄ij) → max
τ

s.t. τ ≥ τ̄

(1)

The KKT-optimality condition for this problem ensures that in optimum
for each OD-pair only shortest paths are used. This corresponds to the game-
theoretic model, where a great number of infinitesimal vehicles make decisions
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which route to take. Each of them simply chooses the shortest path at any
moment without knowledge of the global utility function itself, which gives the
equilibrium conditions of the whole system. This is standard for similar perfect
competition models e.g. in Economics. On the other hand, it is not natural that
equilibrium can be computed as a solution of a optimization problem. Games
with this property are called potential games. Standard traffic equilibrium prob-
lems, known in game theory as congested games, are essentially potential games.
The stable dynamic model share this property.

2.2 Linear Programming Representation of the Stable Dynamic
Model

The main issue about the problem (1) is that we need to compute function Tij(τ).
The alternative way is to expand the space of variables by including shortest
path cost for every OD-pair (i, j) as independent variable Tij . By definition of
the shortest path the following constraints are held:

Tsj − Tsi ≤ τij , ∀s ∈ S, (i, j) ∈ E,

Tss = 0, ∀s ∈ S.

Then (1) can be rewritten in the following way:
∑

(i,j)∈OD

dijTij −
∑

(i,j)∈E

f̄ij(τij − τ̄ij) → max
τ,T

(2)

s.t. τ ≥ τ̄

Tsj − Tsi ≤ τij , ∀s ∈ S, ∀(i, j) ∈ E,

Tss = 0, ∀s ∈ S.

Equation (2) has m + n · |S| variables. It can also be rewritten in terms of
costs from every node to every sink node and have m + n · |D| variables. So (1)
can be rewritten as linear program with m + n · l variables. Because it is up to
us to decide what representation (from every source to every node or from every
node to every sink) to use, we can always choose representation with the minimal
number of components in variable T . In the future, to be specific, we will always
use “source to every node” representation. However, from the equivalence of
representations we can take |S| = l, because if |S| > l we are free to use every
node to sink representation, which has the same structure, but |D| = l.

2.3 Node Potentials Representation

In the optimization problem (2) we can eliminate τ .
Write (2) in the following form:

∑

(i,j)∈E

f̄ij(τij − τ̄ij) −
∑

(i,j)∈OD

dijTij → min
τ,T

s.t. max{max
s∈S

{Tsj − Tsi}, τ̄ij} ≤ τij , ∀(i, j) ∈ E,

Tii = 0, ∀i ∈ V.

(3)



Computational Methods for the Stable Dynamic Model 285

Note, that f̄ij ≥ 0 and τij − τ̄ij ≥ 0 for all arcs (i, j). Thus the minimum of
f̄ij(τij − τ̄ij) is attained at

τij = max{max
s∈S

{Tsj − Tsi}, τ̄ij}. (4)

Thus optimization problem (3) can be reduced to the form:
∑

(i,j)∈E

f̄ij · max
s∈S

(Tsj − Tsi − τ̄ij)+ −
∑

(i,j)∈OD

dij(Tij − Tii) → min
T (5)

This is the huge-scale optimization problem. The number of variables can be
estimated as |S| × |V | because for each OD-pair we need to compute shortest-
path tree, that include all nodes (or at least all nodes, that are used in shortest
paths). For real-life networks number of variables can reach ∼107 − 108.

Note that maxs∈S(Tsj − Tsi − τ̄ij)+ is convex as the maximum of convex
functions over T and

∑
(i,j) dij(Tij − Tii) is a linear function over T . Thus (5) is

a non-smooth unconstrained convex optimization problem over T . We also must
emphasize, that in contrast to (1), problem (5) has a good, clear structure, which
allows to use modern optimization techniques for huge-scale convex optimization
problems.

One can see, that if T ∗ is a solution of the problem (5), then every element of
the set T̂ = {T ∈ Rsn|Tij = T ∗

ij + ai, ai ∈ R} is also the solution of the problem
(5). Thus, if T ∗ is the solution of the problem (5), then

T̂ij
.= T ∗

ij − T ∗
ii, ∀i, j ∈ V (6)

is the solution of the problem (3).
Thus we loose nothing when we reduce the problem (3) to the (5).

2.4 Saddle-Point Representation

Another important type of representations of optimization problems is a saddle-
point problem. For example, this representation type is required for implement-
ing smoothing technique (see for example, [6]), described in (15). For optimiza-
tion problem (1) this representation can be achieved from (5) directly.

Proposition 1. Optimization problem (5) is equivalent to optimization problem

min
T

Φ(T ) = min
T

max
u∈�m

l+1

⎧
⎨

⎩

∑

(i,j)∈E

f̄ij · {
∑

s∈S

us
ij · (Tsj − Tsi − τ̄ij)} −

∑

(i,j)∈OD

dij(Tij − Tii)

⎫
⎬

⎭

(7)

Proof: We use the following representation of the max:

Φ(x) = max
i

φi(x) = max
u

{
∑

i

ui · φi(x)| ui ≥ 0,
∑

i

ui = 1

}



286 A. Anikin et al.

Thus (5) can be represented as

∑

(i,j)∈E

f̄ij · max
uij

⎧
⎨

⎩

∑

s∈S

us
ij · (Tsj − Tsi − τ̄ij)| uij ∈ �l+1

⎫
⎬

⎭
−

∑

(i,j)∈OD

dij(Tij − Tii) → min
T

(8)
or, equivalently,

min
T

Φ(T ) = min
T

max
u∈�m

l+1

⎧
⎨

⎩

∑

(i,j)∈E

f̄ij · {
∑

s∈S

us
ij · (Tsj − Tsi − τ̄ij)} −

∑

(i,j)∈OD

dij(Tij − Tii)

⎫
⎬

⎭

This ends the proof.

It is clear that objective function in optimization problem (7) has the follow-
ing structure:

Φ(T ) = max
u

{〈u,AT 〉 + φ(T ) + ϕ(u)| u ∈ �m
l+1

}
, (9)

where φ(T ) and ϕ(u) are linear functions and A is a {m · (l + 1)} × {n · (l + 1)}
matrix.

3 Smoothed Version of the Stable Dynamic Model

In Sect. 2.4 we show, that equilibrium in the Stable Dynamic model can be
computed as the solution of the saddle-point problem in the form (9). This
allows to use smoothing technique from [6].

We give short introduction to this approach.
Suppose we have convex optimization problem with the following structure:

Φ(x) = φ(x) + max
u

{〈u,Ax〉 − ϕ(u)| u ∈ Q2} → min
x∈Q1

. (10)

Here Q1 is a bounded closed convex set in a finite-dimensional real vector space
E1, and Q2 is a bounded closed convex set in a finite-dimensional real vector
space E2. Functions φ(x) and ϕ(u) are assumed to be continuous and convex,
and the linear operator A maps E1 to E2. Function φ(x) is Lipschitz continuous
with the constant K.

Denote by prox2(u) prox-function for set Q2. This means that prox2(u) is
continuous and strongly convex on Q2 with some convexity parameter σ2.

Denote by μ a positive smoothness parameter. Now we can denote smoothed
model of objective function.

Φμ(x) = max
u

{〈u,Ax〉 − ϕ(u) − μ · prox2(u)| u ∈ Q2} → min
x∈Q1

. (11)

Denote by uμ(x) the optimal solution of the problem

max
u

{〈u,Ax〉 − ϕ(u) − μ · prox2(u)| u ∈ Q2}
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Function Φμ(x) possesses two important feature:

– Function Φμ(x) is well defined, convex and continuously differentiable at any
x ∈ E1. Its gradient [6]

∇Φμ(x) = A∗uμ(x) (12)

is Lipschitz continuous with constant:

Lμ = K +
1

μ · σ2
‖A‖21,2 (13)

– Function Φ̄(x) = φ(x) + Φμ(x) uniformly approximate function Φ(x):

Φ̄(x) ≤ Φ(x) ≤ Φ̄(x) + μ · D2, ∀x ∈ Q2 (14)

where D2 = max {prox2(u) − minu∈Q2 prox2(u)| u ∈ Q2}.

From the mathematical programming point of view the bounded rationality
assumption often leads to the smoothing of the potential function.

We can model errors into two ways. First, agents estimate the shortest path
cost with a stochastic error. Second, agents estimate costs of arcs with errors.

First approach leads to the following optimization problem, described in [7]:

∑

i∈S, j∈V

μ · dij · ln

⎛

⎝ 1
|Pij |

∑

q∈Pij

exp
(−Cq(τ)

μ

)
⎞

⎠ +
∑

e∈E

f̄e(τe − τ̄e) → min
τ

s.t. τ ≥ τ̄ (15)

The second approach leads to the smoothed version of the Stable Dynamic
model (SVSD-model).

Consider the following function:

Φ̄(T ) =

μ ·
∑

(i,j)∈E

τ̄ij · f̄ij · log
1

l + 1

(
l∑

s=1

exp
(

(Tsj − Tsi − τ̄ij)
τ̄ij · μ

)

+ 1

)

−
∑

(i,j)∈OD

dij(Tij − Tii)

(16)

Theorem 1. The function Φ̄(T ) is a smooth uniform approximation of the func-
tion Φ(T ). For every T the following inequality holds

Φ̄(T ) ≤ Φ(T ) ≤ Φ̄(T ) + μ
∑

(i,j)∈E

τ̄ij · f̄ij · log(l + 1)

Proof: Show that Φ̄(T ) can be derived via smoothing technique with appropriate
choice of prox-function.
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Consider the following prox-function for convex set
�m

l+1 = {u ∈ Rm(l+1)|∑(l+1)
s=1 us

ij = 1,∀(i, j) ∈ E, u ≥ 0}:

prox2(u) =
∑

(i,j)∈E

l+1∑

s=1

τ̄ij f̄ij · (
us

ij · log us
ij + log(l + 1)

)
(17)

For this prox-function

σ2 = min
ij

τ̄ij · f̄ij

D2 =
∑

(i,j)∈E

τ̄ij · f̄ij · log(l + 1) (18)

Thus smoothed version of (7) can be rewritten in the form:

min
T

Φ(T ) =

− μ
∑

(i,j)∈E

l+1∑

s=1

τ̄ij f̄ij log(l + 1)+

min
T

max
u∈�m

l+1

[
∑

(i,j)∈E

f̄ij ·
(

l∑

s=1

us
ij · (Tsj − Tsi − τ̄ij)

)

−
∑

(i,j)∈OD

dij(Tij − Tii) − μ
∑

(i,j)∈E

l+1∑

s=1

τ̄ij f̄ij · us
ij · log us

ij ]

(19)

From KKT optimality condition on u follows:

f̄ij · (Tsj −Tsi − τ̄ij)−μ · τ̄ij · f̄ij · (1+ log u
s
ij) + λij −γ

s
ij = 0, ∀(i, j) ∈ E, ∀1 ≤ s ≤ l (s ∈ S)

(20)
− μ · τ̄ij · f̄ij · (1 + log us

ij) + λij − γs
ij = 0, ∀(i, j) ∈ E, s = l + 1 (21)

l+1∑

s=1

us
ij = 1, ∀(i, j) ∈ E (22)

γs
ij · us

ij = 0, ∀s, ∀(i, j) ∈ E (23)

Here λij and γs
ij are Lagrange multipliers for

∑l+1
s=1 us

ij = 1 and us
ij ≥ 0

constraints respectively. Thus, from (20) and (21) we have:

us
ij = exp

(
f̄ij · (Tsj − Tsi − τ̄ij) + λij − γs

ij

τ̄ij · f̄ij · μ
− 1

)

, ∀(i, j) ∈ E, ∀1 ≤ s ≤ l

(24)

us
ij = exp

(
λij − γs

ij

τ̄ij · f̄ij · μ
− 1

)

, ∀(i, j) ∈ E, s = l + 1

From (24) it is clear that u > 0, thus, from (23), we have γs
ij = 0 for all (i, j) ∈ E

and 1 ≤ s ≤ l + 1.



Computational Methods for the Stable Dynamic Model 289

Hence

us
ij = exp

(
f̄ij · (Tsj − Tsi − τ̄ij) + λij

τ̄ij · f̄ij · μ
− 1

)

, ∀(i, j) ∈ E, ∀1 ≤ s ≤ l (25)

us
ij = exp

(
λij

τ̄ij · f̄ij · μ
− 1

)

, ∀(i, j) ∈ E, s = l + 1

Substituting (25) in (22) we get:

exp
(

λij

τ̄ij · f̄ij · μ
− 1

)

·
(

l∑

s=1

exp
(

f̄ij · (Tsj − Tsi − τ̄ij)
τ̄ij · f̄ij · μ

)

+ 1

)

= 1

Finally

exp
(

λij

τ̄ij · f̄ij · μ
− 1

)

=
1

(∑l
s=1 exp

(
(Tsj−Tsi−τ̄ij)

τ̄ij ·μ
)

+ 1
) (26)

Substituting (26) in (25) we get:

us
ij =

exp
(

(Tsj−Tsi−τ̄ij)
τ̄ij ·μ

)

(∑l
s=1 exp

(
(Tsj−Tsi−τ̄ij)

τ̄ij ·μ
)

+ 1
) , ∀(i, j) ∈ E, ∀1 ≤ s ≤ l (27)

us
ij =

1
(∑l

s=1 exp
(

(Tsj−Tsi−τ̄ij)
τ̄ijμ

)
+ 1

) , ∀(i, j) ∈ E, s = l + 1

From (27) and (19) we get:

min
T

∑

(i,j)∈E

f̄ij · {
l∑

s=1

exp
(

(Tsj−Tsi−τ̄ij)
τ̄ij ·μ

)

(∑l
s=1 exp

(
(Tsj−Tsi−τ̄ij)

τ̄ij ·μ
)

+ 1
) · (Tsj − Tsi − τ̄ij)}

−
∑

(i,j)∈OD

dij(Tij − Tii) − μ ·
∑

(i,j)∈E

τ̄ij · f̄ij · 1
(∑l

s=1 exp
(

(Tsj−Tsi−τ̄ij)
τ̄ij ·μ

)
+ 1

)

·
(

− log

(
l∑

s=1

exp
(

(Tsj − Tsi − τ̄ij)
τ̄ij · μ

)

+ 1

))

− μ
∑

(i,j)∈E

l∑

s=1

τ̄ij · f̄ij

·
exp

(
(Tsj−Tsi−τ̄ij)

τ̄ij ·μ
)

(∑l
s=1 exp

(
(Tsj−Tsi−τ̄ij)

τ̄ij ·μ
)

+ 1
) · log

exp
(

(Tsj−Tsi−τ̄ij)
τ̄ij ·μ

)

(∑l
s=1 exp

(
(Tsj−Tsi−τ̄ij)

τ̄ij ·μ
)

+ 1
)

(28)
which is equivalent to

min
T

⎧
⎨

⎩
Φ̄(T ) = μ ·

∑

(i,j)∈E

τ̄ij · f̄ij · log

(
l∑

s=1

exp
(

(Tsj − Tsi − τ̄ij)
τ̄ij · μ

)

+ 1

)

−
∑

(i,j)∈OD

dij(Tij − Tii)

⎫
⎬

⎭

(29)
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This ends the proof.

In both models parameter μ determines how rational the agents are [1].
Problem (15) and problem (29) are both convex with smooth objective func-

tions. These problems have attractable structure and allow to use optimization
technique for huge-scale convex optimization problems.

3.1 Optimality Conditions for SVSD-Model

Consider first order optimality conditions for (29).

∇Φ̄(T ∗) = 0

This leads to

∑

(ji)∈E

f̄jie
1

τ̄ji·μ (T ∗
si−τ̄ji−T ∗

sj)

1 +
∑

k e
1

τ̄ji·μ (T ∗
ki

−τ̄ji−T ∗
kj

)
−

∑

(ij)∈E

f̄ije
1

τ̄ij ·μ (T ∗
sj−τ̄ij−T ∗

si)

1 +
∑

k e
1

τ̄ij ·μ (T ∗
kj

−τ̄ij−T ∗
ki

)
− dsi = 0, i �= s

(30)

∑

(js)∈E

f̄jse
1

τ̄js·μ (T ∗
ss−τ̄js−T ∗

sj)

1 +
∑

k e
1

τ̄js·μ (T ∗
ks+τ̄js−T ∗

kj)
−

∑

(sj)∈E

f̄sje
1

τ̄sj ·μ (T ∗
sj−τ̄sj−T ∗

ss)

1 +
∑

k e
1

τ̄sj ·μ (T ∗
kj−τ̄sj−T ∗

ks)

+
∑

j:(s,j)∈OD

dsj = 0, i = s (31)

This is a simple flow balance condition, which requires that in equilibrium
for every node i and for every source s the difference between incoming flow in
i, generated by s, and outcoming flow from i, generated from s is equal to the
demand dsi.

Stochastic Equilibrium Flow and Optimal Allocation Problem
From (30) it is clear that variables us

ij , which we used earlier, can be interpreted
as a ratio of arc capacity f̄ij which is used by source s.

fs
ij(T

∗) = f̄ij · e
1

τ̄ij ·μ (T ∗
sj−τ̄ij−T ∗

si)

1 +
∑

v∈S e
1

τ̄ij ·μ (T ∗
vj−τ̄ij−T ∗

vi)
, (32)

Hence one can compute the stochastic equilibrium arc flow corresponding to
the solution of (29) explicitly:

fij(T ∗) =
∑

s∈S

fs
ij(T

∗) = f̄ij ·
∑

s∈S e
1

τ̄ij ·μ (T ∗
sj−τ̄ij−T ∗

si)

1 +
∑

v∈S e
1

τ̄ij ·μ (T ∗
vj−τ̄ij−T ∗

vi)
, (33)

where fij is a flow from i to j, and T ∗ is the solution of (29).
From (32) one can see that equilibrium conditions in SVSD-model require

to distribute arc capacity between source-nodes (and flows, generated by them)
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according to the smoothed version of the logit-choice model [1]. Weighed residual
of node potentials have a role of utility:

Us
ij =

(T ∗
sj − T ∗

si − τ̄ij)
τ̄ij · μ

(34)

The Eq. (32) can be considered as the capacity optimal allocation rule. On
the one hand this is natural, since a problem dual to the Stable Dynamic model
is a simple minimal cost flow problem, which is the problem of centralized flow
management. On the other side this is very surprising, because the Beckmann’s
model and other equilibrium models are usually considered as decentralized
models.

However, this contradiction is false. If we consider Beckmann’s equilibrium
model more closely, we can see that it can be represented as the problem of a
centralized optimal allocation problem.

min
x

{

Φ(x) =
∑

e∈E

∫ fe

0

τ(z)dz

}

f = Θx

x ∈ X =

⎧
⎨

⎩
x ∈ R

|P |
+ |

∑

p∈Pij

xp = dij

⎫
⎬

⎭

(35)

where Θ is path-arc incidence matrix.
Now we can consider a new agent, which has to find the optimal allocation

rule for external demands {dij} on a given network with a specific arcs cost
function

t(fe) =
∫ fe

0

τ(z)dz

Actually, this kind of trick can be used to every congested type game. Despite
its triviality, this allows to work with special type equilibrium models (e.g. poten-
tial games) as if they are optimal allocation problems.

4 Computational Techniques for the Stochastic
Equilibrium Problems

In the original paper [10] where the Stable Dynamic model was proposed the
authors did not consider any computational technique for computing equilib-
rium. This issue limits the implementation of this model to the practical needs.

Important Remark:
Two different goals that can be achieved by computation of the solution of

SVSD-model. First one is that the solution of the SVSD-model is a stochas-
tic equilibrium on the congested network, so it has its own value. If this is the
case, then the parameter μ is fixed and represent how irrational agents are.
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The second goal is to use the solution of the SVSD-model as a stepping stone
while the final aim is to compute the solution of the Stable Dynamic model. In
this case the parameter μ can vary and should be considered as the smoothing
parameter. This is important, because for each computational method there are
two different estimations of the complexity. First corresponds to the complexity
of finding ε-solution of the SVSD-model (with fixed μ) and the second corre-
sponds to the complexity of finding ε-solution of the original Stable Dynamic
model.

5 Numerical Experiments

Numerical experiments are performed on test models from well-known TNTP
collection (https://github.com/bstabler/TransportationNetworks). We use FGM
(accelerated gradient descent [6]), UFGM (universal FGM [8]) and AFGM
(Adaptive FGM) methods. All methods were implemented with using C++ lan-
guage and tested on the same machine.

We test method’s “real” convergence speed for problems with different value
of smoothing parameter μ. Our first tests show that decreasing of μ value leads
to significant slowdown of method’s convergence. This is expected result. With
μ ≤ 10−3 we can’t find any “good” (with some required accuracy) solution in a
reasonable time. So we limit μ ≥ 10−2 which seems to be a compromise between
model’s accuracy and method’s convergence speed.

The results of our tests presented in Tables 1 and 2 show that the search for
high-accuracy (according to the gradient norm value) solutions requires signifi-
cant computational and time costs. The FGM method showed the worst results,
which can be explained by not too accurate estimation of the Lipschitz constant
which is also proportional to μ−1. The more complex UFGM and AFGM method
work much better compared to a simple FGM, but also have some differences -
AFGM works better when μ is “big” and UFGM is undisputed leader for “small”
μ values.

Table 1. Solving time (sec.) for “SiouxFalls” problem

µ Stop criteria FGM UFGM AFGM

10−1 ‖∇f(xk)‖∞ ≤ 10−1 0.70 0.02 0.04

‖∇f(xk)‖∞ ≤ 10−2 3.00 0.05 0.31

‖∇f(xk)‖∞ ≤ 10−3 13.35 0.10 0.51

‖∇f(xk)‖∞ ≤ 10−4 66.19 2.81 0.69

10−2 ‖∇f(xk)‖∞ ≤ 10−1 69.62 0.34 2.10

‖∇f(xk)‖∞ ≤ 10−2 300.70 0.68 3.95

‖∇f(xk)‖∞ ≤ 10−3 1335.30 1.41 9.25

‖∇f(xk)‖∞ ≤ 10−4 12.41 52.70

https://github.com/bstabler/TransportationNetworks
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Table 2. Solving time (sec.) for “Anaheim” problem

µ Stop criteria UFGM AFGM

10−1 ‖∇f(xk)‖∞ ≤ 10−1 1.59 7.07

‖∇f(xk)‖∞ ≤ 10−2 8.45 13.83

‖∇f(xk)‖∞ ≤ 10−3 29.45 38.11

‖∇f(xk)‖∞ ≤ 10−4 562.43 76.82

10−2 ‖∇f(xk)‖∞ ≤ 10−1 146.30 526.83

‖∇f(xk)‖∞ ≤ 10−2 413.29 1251.55

‖∇f(xk)‖∞ ≤ 10−3 1065.72 2460.64

‖∇f(xk)‖∞ ≤ 10−4 3811.10 5710.98

It is essential to remark, that in transportation modeling we usually inter-
ested in “medium” precision. This is true because (1) we usually wish to solve
macroscopic transportation equilibrium model to make long-run investment deci-
sion (i.e. where to build new road) and good decision should be robust to a small
errors and (2) in our model gradients corresponds to flows (i.e. cars) in huge
multi-agent system and small change in precision do not make any difference
from practical point of view (you do not care if it 0.05 car per hour or 0.1 car
per hour). So we are really interested in fast “medium”-precision solutions.

6 Conclusion

In this work we propose a new smoothed version of the Stable Dynamic model
(29). It can be used as a stepping-stone in optimization routine to compute
equilibrium in stable dynamic model or as an independent transportation model
[stochastic version of stable dynamic model].

We checked that equilibrium could be efficiently computed by almost any
first order optimization scheme. Probably next reasonable step is to construct
reliable scheme how to choose μ. Another interesting question is to construct rule
that maps choice of prox-function to a agent’s stochastic decision rule [discrete
choice theory].
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Abstract. The linear second-order cone programming problem is con-
sidered. For its solution the dual multiplicative barrier methods are pro-
posed. The methods are generalizations on the cone programming the
corresponding methods for linear programming. They belong to the class
of dual affine-scaling methods and can be treated as a special way for
solving the optimality conditions for primal and dual problems. The local
convergence of the methods with linear rate is proved.

Keywords: Second-order cone programming · Dual affine-scaling
method · Local convergence

1 Introduction

The linear cone programming programs are optimization problems in which the
linear objective function is minimized on the intersection of a linear manifold
with a convex closed cone. In second-order cone programming (SOCP) this cone
is usually a direct product of some Lorentz cones (see [1,2]). Many other opti-
mization problems, for example, problems of robust and combinatorial optimiza-
tion, can be reformulated as SOCP programs [2,3].

The numerical techniques for solving SOCP programs are obtained as gen-
eralizations of the corresponding methods for linear programming. The most
popular methods from them are the primal-dual methods which are generaliza-
tions of the interior point techniques corresponding to the path-follows methods
[4,5]. In the present paper, the dual methods belonging to the class of dual
affine-scaling techniques for SOCP, are considered. These dual methods can be
treated also as dual analogs of the primal method [6]. Moreover, the proposed
methods have many common properties with the dual methods developed for
linear semi-definite programming [7].
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The paper is organized as follows. In Sect. 2, the statement of SOCP is given.
In Sect. 3, the feasible and general variants of dual methods are constructed. In
Sect. 4, the feasible variant of the method is considered more carefully. Finally,
in Sect. 5, the local convergence of the methods is proved.

Below the symbol Is is used for denoting the identity matrix of the order s.
The symbol 0s indicates a zero s-dimensional vector, the symbol 0sk indicates
a s × k zero matrix. By Diag(x) is denoted the diagonal matrix with a vector x
at its diagonal. Respectively, by DIAG (M1, . . . , Mk) is denoted a block diagonal
matrix with diagonal blocks M1, . . . , Mk.

2 Primal and Dual SOCP Problems

Let K ⊂ IRn denote a closed convex pointed cone with the nonempty interior
K0 = intK. This cone K induces in IRn a partial order, that is x1 �K x2, if
x1 − x2 ∈ K.

The linear cone programming problem is

min 〈c, x〉, Ax = b, x ∈ K, (1)

where A is a m × n matrix, and c = [c1; . . . ; cn] ∈ IRn, b = [b1; . . . ; bm] ∈ IRm.
The semicolons between vectors or components of a vector denote that these
vectors or components are placed one under another. The brackets 〈·, ·〉 denotes
the usual Euclidean scalar product.

Below the special partial case of the problem (1) will be of main interest
for us. Let ci ∈ IRni , 1 ≤ i ≤ r. Let also matrices Ai have dimensions m × ni,
1 ≤ i ≤ r. Consider the cone programming problem

min
∑r

i=1〈ci, xi〉,∑r
i=1 Aixi = b, x1 �Kn1 0n1 , . . . , xr �Knr 0nr

.
(2)

Here Kni is the second-order cone (the Lorentz cone) defined as:

Kni =
{
[x0; x̄] ∈ IR × IRni−1 : x0 ≥ ‖x̄‖

}
, 1 ≤ i ≤ r,

where ‖ · ‖ is the Euclidean norm. The following problem is dual to (2)

max 〈b, u〉,
AT

i u + yi = ci, 1 ≤ i ≤ r; y1 �Kn1 0n1 , . . . , yr �Knr 0nr
,

(3)

in which u ∈ IRm.
Denote n = n1 + · · · + nr. If c = [c1; . . . ; cr], x = [x1; . . . ;xr], y = [y1; . . . ; yr]

and
A = [A1, . . . Ar] , K = Kn1 × · · · × Knr ,

then the problem (2) can be written in the form of (1). The cone K is self-dual,
that is K∗ = K. We assume that both problems (2) and (3) have solutions, and
the rows of the matrix A are linear independent. We assume also that r > 1.
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Let FD = {[u, y] ∈ IRm × K : y = y(u)} be the feasible set in problem (3).
Here and in what follows: y(u) = c−AT u. By FD,u we will denote the projection
of the set FD onto the space IRm, i.e. the set FD,u = {u ∈ IRm : y(u) ∈ K}.

The necessary and sufficient optimality conditions for the pair of problems
(2) and (3) consist of the following equalities (see [2]):

〈x, y〉 = 0, Ax = b, y = c − AT u, (4)

in which x ∈ K, y ∈ K. Taking into account these inclusions, the equality
〈x, y〉 = 0 can be replaced by n other equalities

xi ◦ yi = 0ni
, 1 ≤ i ≤ r,

where the product between vectors xi ∈ R
ni and yi ∈ R

ni is defined by the
following way xi ◦ yi =

[
xT

i yi; x0
i ȳ + y0

i x̄i

]
. By introducing the matrix

Arr (xi) =
[

x0
i x̄T

i

x̄i x0
i In−1

]

,

the product xi ◦ yi can be represented as xi ◦ yi = Arr (xi) yi = Arr (yi)xi.
Compose the block diagonal matrix

G(y) = DIAG [Arr (y1), . . . , Arr (yr)] . (5)

With the help of (5) equalities (4) can be rewritten as

G(y)x = 0n, Ax = b, y = c − AT u. (6)

3 The Iterative Processes

Consider the dual method for solving problems (2) and (3). For constructing the
method we multiply the second equality from (6) by the matrix AT and sum it
with the first equality (6). As a result, we obtain

Φ(y)x = AT b, (7)

where by Φ(y) is denoted the matrix Φ(y) = AT A + G(y). The matrix Φ(y) is
symmetric of the order n. If Φ(y) is nonsingular, then, solving the Eq. (7), we
get

x = x(y) = Φ−1(y)AT b. (8)

Taking y = y(u), we obtain that in this case the matrix Φ(y) depends on u.
Substituting the founded from (8) x(y(u)) into the second equation from (6),

we derive the system of equations with respect to u, namely,
[
Im − AΦ−1(y(u))AT

]
b = 0m. (9)

The system (9) consists of m equations. The number of unknowns is also equal
to m.
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Applying the fixed-point method to solve system (9), we obtain the iterative
process

uk+1 = uk + αk

[
Im − AΦ−1(yk)AT

]
b, yk = y(uk), (10)

where αk > 0 is the step size. The starting point u0 must be taken from the set
FD,u.

Consider the more general iterative process. In this process both variables u
and y are updated at each iteration. What is more, the equality yk = y(uk) may
not hold. For this purpose, we add to the right hand side of Eq. (7) the second
equality from (6), multiplied by the preset parameter τ > 0. As a result, we
obtain instead of (9) the system of equations Φ(y)x = AT b + τ

(
y + AT u − c

)
.

The function x = x(u) from (8) is replaced by x = x(u, y) = Φ−1(y)f(u, y),
where f(u, y) = AT b + τ

(
y + AT u − c

)
.

Substituting x(u, y) in first and second equalities from (6), we obtain the
system of n + m equations

G(y)Φ−1(y)f(u, y) = 0n, b − AΦ−1(y))f(u, y) = 0m. (11)

Applying again the fix point method for solving (11), we derive the iterative
process

uk+1 = uk + αk [b − Axk] , yk+1 = yk − αkG(yk)xk, xk = Φ−1(yk))f(uk, yk).
(12)

The iterative process (12) we will call by the dual multiplicative-barrier
method. This name is explained by introducing the matrix G(y) into the right-
hand side of (12), which does not allow yk to leave the cone K. In contrast to (12)
the iterative process (10) we will call by the feasible dual multiplicative-barrier
method.

Let us give the definition of non-degeneracy of the point [u, y] ∈ FD from [2].

Definition 1. The point [u, y] ∈ FD is called non-degenerate, if TK(y) +
R(AT ) = R

n, where TK(y) is the tangent space to the cone K at the point
y ∈ K and R(AT ) is the image of the matrix AT .

Let [u, y] ∈ FD, and let the vector y ∈ K be partitioned onto three blocks of
components

y = [yF ; yI ; yN ] . (13)

Let, for definiteness, these blocks consist of components ordered in the following
way:

yF = [y1; . . . ; yrF ] , yI = [yrF+1; . . . ; yrF+rI ] , yN = [yrF+rI+1; . . . ; yrF+rB+rN ] .
(14)

This partition of the vector y induces the partition of the set Jr = [1 : r] onto
three index sets Jr

F = Jr
F (y), Jr

I = Jr
I (y) and Jr

N = Jr
N (y), where

Jr
F = [1, . . . , rF ], Jr

I = [rF +1, . . . , rF +rI ], Jr
N = [rF +rI+1, . . . , rF +rI+rN ].

We have rF + rI + rN = r. If i ∈ Jr
F (y), then the component yi �= 0ni

and
yi ∈ ∂Kni , where ∂Kni is the boundary of the cone Kni . If i ∈ Jr

I (y), then
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yi = 0ni
. At last, if i ∈ Jr

N (y), then the following inclusion yi ∈ int Kni takes
place.

In accordance with the partition of the vector y onto three blocks of compo-
nent we make also partitions of the matrix A and the vector c:

A = [AF ,AI ,AN ] , c = [cF ; cI ; cN ] . (15)

For any nonzero component yi ∈ IRni , i ∈ Jr the spectral decomposition
takes place (see [2]):

yi = θi,1di,1 + θi,ni
di,ni

, (16)

where di,1 and di,ni
from IRni compose the Jordan frame of yi. These vectors

have the form

di,1 =
1√
2

[

1;
ȳi

‖ȳi‖

]

, di,ni
=

1√
2

[

1;− ȳi

‖ȳi‖

]

.

The coefficients θi,1 and θi,ni
in (16) are the following:

θi,1 =
1√
2

(
y0

i + ‖ȳi‖
)
, θi,ni

=
1√
2

(
y0

i − ‖ȳi‖
)
.

Both frame vectors di,1, di,ni
are orthogonal each to other and their lengths

equal to one.
If yi ∈ Kni , then θi,1 ≥ 0, θi,ni

≥ 0. In the case where yi �= 0ni
and yi ∈ ∂Kni ,

only the first coefficient is strictly positive, i.e. θi,1 =
√

2y0
i =

√
2‖ȳi‖.

Assume that yi ∈ Kni and yi �= 0ni
. The matrix Arr (yi) is symmetric. Let

Hi be an orthogonal matrix, consisting from eigenvectors of Arr (yi). The vectors
di,1 and di,ni

are contained in the set of eigenvectors of Arr(yi), i.e. it is possible
to represent the matrix Hi in the form Hi = [di,1, hi,2, . . . , hi,ni−1, di,ni

] . The
eigenvectors hi,2, . . . hi,ni−1 may be taken arbitrary from the subspace R

n
0 ={

z = [z0; z̄] ∈ R
n : z0 = 0

}
. It is important, that they have the unit length and

be orthogonal each to others and to the vectors di,1, di,ni
.

The eigenvalues y0
i + ‖ȳi‖ and y0

i − ‖ȳi‖ correspond to the eigenvectors
di,1 and di,ni

, respectively. The eigenvalue y0
i corresponds to all eigenvectors

hi,2, . . . hi,ni−1. Therefore, denoting by Θi the diagonal matrix

Θi = Diag
(√

2θi,1, y
0
i , . . . , y0

i , θi,ni

)
,

we have Arr (yi) = HT
i ΘiHi.

If i ∈ Jr
I (y), then yi = 0ni

. In this case the identity matrix Ini
can be taken

as the orthogonal matrix Hi. It is obvious, that Θi = 0nini
for such Arr (yi).

Let us introduce into consideration the block diagonal matrices:

HF = DIAG [H1, . . . , HrF
] , HI = DIAG [HrF+1, . . . , HrF+rI

] , (17)

HN = DIAG [HrF+rI+1, . . . , Hr] , H = DIAG [HF , HI , HN ] . (18)
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All these matrices are orthogonal. In similar way we deal with matrices Θi,
i ∈ Jr, combining them in matrices

ΘF = DIAG [Θ1, . . . , ΘrF
] , ΘI = DIAG [ΘrF+1, . . . , ΘrF+rI

] , (19)

ΘN = DIAG [ΘrF+rI+1, . . . , Θr] , Θ = DIAG [ΘF , ΘI , ΘN ] . (20)

Matrices (19) and (20) are diagonal. Moreover, their diagonal elements are non-
negative, if y ∈ K. We have G(y) = HΘHT .

Proposition 1. Let the point [u, y] ∈ FD be non-degenerate. Then the matrix
Φ(y) is nonsingular.

Proof. Without loss of generality, we assume that all three index sets Jr
F , Jr

I and
Jr

N are not empty at the point y. Then for matrices H and Θ representations
(18) and (20) hold.

Multiplying the matrix Φ(y) from the left and the right by matrices HT and
H, respectively, we obtain as a result the matrix

ΦH(y) = HT Φ(y)H =
(
AH)T AH + Θ, (21)

where AH = AH. Since H is a nonsingular matrix, Φ(y) is a nonsingular matrix
if and only if the matrix ΦH(y) is also nonsingular.

The symmetric matrix Φ(y) is nonnegative definite. Let us show that in fact
it is positive definite. For this purpose, it is sufficient to verify that the system
of linear equations

ΦH(y)z = 0n (22)

has only the trivial zero solution. Indeed, after multiplying left and right parts
of (22) by zT we obtain

‖AHz‖2 + 〈z,Θz〉 = 0. (23)

Since all diagonal elements of the matrix Θ are nonnegative, the equality (23)
holds if and only if

‖AHz‖ = 0, 〈z,Θ(y)z〉 = 0. (24)

Partition the vector z according to the partition of the vector y onto three
blocks: z = [zF ; zI ; zN ]. Then the right equality (24) is split onto three separate
equalities:

〈zF , ΘF zF 〉 = 0, 〈zI , ΘIzI〉 = 0, 〈zN , ΘNzN 〉 = 0, (25)

and what is more, ΘI is a zero matrix.
Since the matrix ΘN is positive definite, it follows from (25) that zN = 0.

Moreover, since all diagonal elements of the matrices Θi, i ∈ Jr
F = Jr

F (y), with
the exception of the last element are positive, the corresponding elements of zF

are zeros. Only last components zni
i , i ∈ Jr

F , may differ from zero. Let ÃH
F be

the matrix AH
F , from which all columns of the matrices AH

i = AiHi, i ∈ Jr
F , are

removed except for last columns. The matrix ÃH
F has the dimension m × rF .
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Denote
AH

FI =
[
ÃH

F ,AH
I

]
. (26)

According to what has been said the first equality (24) reduces to AH
FIzFI = 0,

where zFI =
[
zn1
1 ; . . . ; z

nrF
rF ; zI

]
. But by the criterion of non-degeneracy in the

dual problem the point [u, y] ∈ FD is non-degenerate if and only if the columns
of the matrix AH

FI are linear independent (see [2]). Therefore, we have zFI = 0
and z = 0n. Hence the matrix ΦH(y) is nonsingular. Since the matrix H is
orthogonal, Φ(y) is a nonsingular matrix. �

We call the problem (3) non-degenerate if all points [u, y] ∈ FD are non-
degenerate. In what follows, we assume that the problem (3) is non-degenerate.
Then the right-hand sides of iterative processes (10) and (12) are defined on the
feasible set FD. Due to continuity, it is defined also on some neighborhood of
FD.

4 The Other Form of the Feasible Method

Define more carefully the right hand side of the iterative process (10). For this
purpose, we need to evaluate the matrix Φ−1(y).

Let [u, y] ∈ FD, and let for the vector y the partition (13) hold. Moreover,
the blocks yF , yI , yN are determined by (14) with the block yI being zero, and
the corresponding partition of the matrix A is given by (15). Passing from the
matrix Φ(y) to matrix ΦH(y) = HT Φ(y)H, we obtain

Φ(y) = HΦH(y)HT , Φ−1(y) = H
(
ΦH(y)

)−1 HT .

The symmetric matrix ΦH(y) has the order n, and in block form it can be
written as

ΦH(y) =

⎡

⎢
⎣

(
AH

F

)T AH
F + ΘF

(
AH

F

)T AH
I

(
AH

F

)T AH
N(

AH
I

)T AH
F

(
AH

I

)T AH
I

(
AH

I

)T AH
N(

AH
N

)T AH
F

(
AH

N

)T AH
I

(
AH

N

)T AH
N + ΘN

⎤

⎥
⎦ .

If the point [u, y] is non-degenerate, then by Proposition 1 the matrix ΦH(y)
along with the matrix Φ(y) is positive definite.

Rearrange rows and columns of the matrix ΦH(y), adding the last column
of matrices AH

i , i ∈ Jr
F (y), to the matrix AH

I . For definiteness, we put these
columns before the matrix AH

I . As a result, we get the matrix AH
FI of the form

(26). The matrix AH
F , from which the last columns of the matrices AH

i , i ∈ Jr
F (y),

are removed, we denote by ÂH
F . Denote also by Θ̂F the diagonal matrix ΘF with

removing last diagonal entries of Θi, i ∈ Jr
F (y). Recall, that all these removing

diagonal elements are zeros. The matrix Θ̂F has the order less than the order of
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the matrix ΘF at rF . Then, taking the corresponding permutation matrix Π,
we obtain that ΦH(y) can be written in the following form

ΦH(y) = Π

⎡

⎢
⎢
⎣

(
ÂH

F

)T

ÂH
F + Θ̂F

(
ÂH

F

)T

AH
FI

(
ÂH

F

)T

AH
N

(
AH

FI

)T ÂH
F

(
AH

FI

)T AH
FI

(
AH

FI

)T AH
N(

AH
N

)T ÂH
F

(
AH

N

)T AH
FI

(
AH

N

)T AH
N + ΘN

⎤

⎥
⎥
⎦ΠT .

Set W22 = ΘN +
(
AH

N

)T AH
N and

W11 =

⎡

⎣

(
ÂH

F

)T

ÂH
F + Θ̂F

(
ÂH

F

)T

AH
FI

(
AH

FI

)T ÂH
F

(
AH

FI

)T AH
FI

⎤

⎦ , W12 =

⎡

⎣

(
ÂH

F

)T

AH
N

(
AH

FI

)T AH
N

⎤

⎦

The matrices W11 and W22, as diagonal blocks of the positive definite matrix,
are positive definite too. With the proceeding notations the matrix ΦH(y) and
its inverse can be written as

ΦH(y) = Π

[
W11 W12

WT
12 W22

]

ΠT ,
(
ΦH(y)

)−1
= Π

[
V11 V12

VT
12 V22

]

ΠT . (27)

Denote Z = W22 − WT
12W−1

11 W12. Using the Frobenius formula, we derive

V11 = W−1
11 +W−1

11 W12Z−1WT
12W−1

11 , V12 = −W−1
11 W12Z−1, V22 = Z−1.

(28)
Thus, in order to obtain the matrix

(
ΦH(y)

)−1, we need to know W−1
11 and Z−1.

Determine firstly the matrix W−1
11 . It follows from the criterion of non-

degeneracy of the point [u, y] ∈ FD (see the proof of the Proposition 1) that
the right lower block W11 is a nonsingular matrix. Set

Y =
(
ÂH

F

)T

ÂH
F + Θ̂F −

(
ÂH

F

)T

AH
FI

[(
AH

FI

)T AH
FI

]−1 (
AH

FI

)T ÂH
F , (29)

and denote besides P = AH
FI

[(
AH

FI

)T AH
FI

]−1 (
AH

FI

)T . The matrix P is an
orthogonal projector onto linear subspace L, generated by columns of the matrix
AH

FI . The matrix P⊥ = Im − P projects onto the orthogonal complement L⊥

of this subspace. By (29) the following representation Y = Θ̂F +
(
ÂH

F

)T

P⊥ÂH
F

holds. Since the diagonal matrix Θ̂F is positive definite, the matrix Y is positive
definite too.

Applying the Frobenius formula, we obtain

W−1
11 =

⎡

⎢
⎣

Y−1 −Y−1
(
ÂH

F

)T

T

−T T ÂH
F Y−1 E + T T ÂH

F Y−1
(
ÂH

F

)T

T

⎤

⎥
⎦ ,
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where the notations E =
[(

AH
FI

)T AH
FI

]−1

and T = AH
FIE are introduced.

The matrix P⊥ is idempotent, i.e. P⊥ = P2
⊥. Thus, by the Sherman–Morrison–

Woodbury formula

Y−1 = Θ̂−1
F − Θ̂−1

F

(
ÂH

F

)T

P⊥

[

Im + P⊥ÂH
F Θ̂−1

F

(
ÂH

F

)T

P⊥

]−1

P⊥ÂH
F Θ̂−1

F .

(30)
The matrix Z can be written in the form

Z = ΘN +
(
AH

N

)T
[

Im − ÂH
FIW−1

11

(
ÂH

FI

)T
]

AH
N , (31)

where ÂH
FI =

[
ÂH

F ,AH
FI

]
. The matrix W11 is positive definite, and Z is the

Schur complement of W11 in positive definite matrix in ΦH(y). Therefore, Z is
a positive definite matrix.

Proposition 2. Let S = ÂH
F Y−1

(
ÂH

F

)T

, Ŝ = P +P⊥SP⊥. Then the following
formula

Z−1 = Θ−1
N − Θ−1

N

(
AH

N

)T
(
I − Ŝ

)1/2

·

·
[

I +
(
I − Ŝ

)1/2

AH
NΘ−1

N

(
AH

N

)T
(
I − Ŝ

)1/2
]−1 (

I − Ŝ
)1/2

AH
NΘ−1

N

(32)

holds.

Proof. Determine ÂH
FIW−1

11

(
ÂH

FI

)T

. We have

W−1
11

(
ÂH

FI

)T

=

⎡

⎢
⎣

Y−1 −Y−1
(
ÂH

F

)T

T

−T T ÂH
F Y−1 E + T T ÂH

F Y−1
(
ÂH

F

)T

T

⎤

⎥
⎦

⎡

⎣

(
ÂH

F

)T

(
AH

FI

)T

⎤

⎦ .

Hence,

W−1
11

(
ÂH

FI

)T

=

⎡

⎣ Y−1
(
ÂH

F

)T [
I − T

(
AH

FI

)T
]

−T T S + T T + T T ST
(
AH

FI

)T

⎤

⎦ =

[
Y−1

(
ÂH

F

)T

P⊥
T T (I − SP⊥)

]

.

(33)
Substituting the corresponding expression (30), we amount to

ÂH
FIW−1

11

(
ÂH

FI

)T

=
[
ÂH

F ,AH
FI

]
[

Y−1
(
ÂH

F

)T

P⊥
T T (I − SP⊥)

]

= SP⊥ + P(I − SP⊥) = Ŝ.

(34)
From here and (31) we derive Z = ΘN +

(
AH

N

)T
(
Im − Ŝ

)
AH

N . Since ΘN is a pos-
itive definite diagonal matrix, we obtain by the Sherman–Morrison–Woodbury
formula the expression (32) for Z−1. �
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Proposition 3. Let U = AH
NZ−1

(
AH

N

)T
. Then

AΦ−1(y)AT = Ŝ + (Im − Ŝ)U(Im − Ŝ). (35)

Proof. First of all observe, that AΦ−1(y)AT = AH (
ΦH(y)

)−1 (AH)T . By (28)
and (33)

ÂH
FIV11 =

[
P⊥ÂH

F Y−1, (Im − P⊥S)T
] [

Im + W12Z−1WT
12W−1

11

]
,

ÂH
FIV12 = −

[
P⊥ÂH

F Y−1, (Im − P⊥S)T
]
W12Z−1.

W12Z−1WT
12 =

(
ÂH

FI

)T

AH
NZ−1

(
AH

N

)T ÂH
FI .

Hence,

ÂH
FIV11

(
ÂH

FI

)T

= P + P⊥SP⊥

+
[
P⊥ÂH

F Y−1, (Im − P⊥S)T
]
W12Z−1WT

12

[
Y−1

(
ÂH

F

)T

P⊥; T T (Im − SP⊥)

]

= P + P⊥SP⊥ +
[
P⊥ÂH

F Y−1, (Im − P⊥S)T
] (

ÂH
FI

)T

U(P + P⊥SP⊥)

= P + P⊥SP⊥ + (P + P⊥SP⊥)U(P + P⊥SP⊥).

From here we obtain

ÂH
FIV11

(
ÂH

FI

)T

= Ŝ + ŜUŜ. (36)

Because of ÂH
FIV12 = −ŜAH

NZ−1 and ÂH
FIV12

(
AH

N

)T = −ŜU , we have also

AH
NVT

12

(
ÂH

FI

)T

= −UŜ, AH
NV22

(
AH

N

)T
= U . (37)

Thus, according to (27), (36) and (37)

AH (
ΦH(y)

)−1 (
AH)T = Ŝ + ŜUŜ − UŜ − ŜU + U

= Ŝ − (Im − Ŝ)UŜ + (Im − Ŝ)U = Ŝ + (Im − Ŝ)U(Im − Ŝ).
(38)

Therefore, the formula (35) takes place. �

Proposition 4. Let Ĉ = P⊥ÂH
F Θ̂−1

F

(
ÂH

F

)T

P⊥. Then S = Im −
(
Im + Ĉ

)−1

.

Proof. Taking into account (30), we obtain

P⊥SP⊥ = P⊥ÂH
F Y−1

(
ÂH

F

)T

P⊥ = Ĉ − Ĉ
(
Im + Ĉ

)−1

Ĉ.

After some transformations we derive from here

P⊥SP⊥ = Ĉ − Ĉ
(

Im −
(
Im + Ĉ

)−1
)

= Ĉ
(
Im + Ĉ

)−1

= Im −
(
Im + Ĉ

)−1

.

(39)
Hence, the assertion of the proposition is valid. �
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Corollary. After inversion of the matrix Im + Ĉ by the Sherman–Morrison–
Woodbury formula we get Im − Ŝ = P⊥ − Q̂, where

Q̂ = P⊥ÂH
F Θ̂

−1/2
F

[

Im + Θ̂
−1/2
F

(
ÂH

F

)T

P⊥ÂH
F Θ̂

−1/2
F

]−1

Θ̂
−1/2
F

(
ÂH

F

)T

P⊥.

(40)
The matrix Im − Ŝ is positive semi-definite.

Denote Ũ =
(
Im − Ŝ

)
U

(
Im − Ŝ

)
and

B = AH
NΘ−1

N

(
AH

N

)T
, B̃ =

(
Im − Ŝ

)1/2

B
(
Im − Ŝ

)1/2

.

By (32) after transformations similar to (39) we obtain

Ũ = Im − Ŝ −
(
Im − Ŝ

)1/2 (
Im + B̃

)−1 (
Im − Ŝ

)1/2

. (41)

Since by (38) AH (
ΦH(y)

)−1 (
AH)T = Ŝ + Ũ , the iteration formula (10)

reduces to the form

uk+1 = uk + αk

(
Im − Ŝ

)1/2 (
Im + B̃

)−1 (
Im − Ŝ

)1/2

b. (42)

Remind, that formula (40) is valid for the matrix Im −Ŝ. The matrices Ŝ and B
depend on the diagonal matrices Θ̂F and ΘN . At non-degenerate feasible points
[uk, yk], where yk = y(uk), both diagonal matrices Θ̂F and ΘN are positive
definite.

5 The Local Convergence

Investigate the question about local convergence of the proposed methods.

Proposition 5. Let z∗ = [u∗, y∗], where y∗ = y(u∗), be the solution of the dual
problem (3). Then z∗ is a stationary point of the iterative process (14). What is
more, x∗ = x(z∗) is a solution of the primal problem (2).

Proof. Let x∗ be a solution of primal problem (2). Then Ax∗ = b and accord-
ing to optimality conditions (6) the equality G(y∗)x∗ = 0n holds. Multiplying
the equality Ax∗ = b by the matrix AT and summing it with the equality
G(y∗)x∗, we obtain Φ(y∗)x∗ = AT b. The matrix Φ(y∗) is nonsingular in the non-
degenerate point z∗. Therefore, x∗ = Φ−1(y∗)AT b. But the point x∗ = x(z∗)
also is determined from the system of equations Φ(y∗)x = AT b. Since the solu-
tion of this system is unique, we conclude that x(z∗) = x∗. It follows from here
that Ax(z∗) = b or AΦ−1(y∗)AT b = b. Moreover, G(y∗)x∗ = 0n. Thus, z∗ is a
stationary point of the iterative process (14). �
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Denote z = [u, y] and consider the mapping ϕ(z) =
[
ϕ(1)(z);ϕ(2)(z)

]
, where

ϕ(1)(z) = A x(z) − b, ϕ(2)(z) = G(y) x(z),

and x(z) = Φ−1(y)
[
AT b + τ

(
y + AT u − c

)]
. In what follows, we need in the

Jacobi matrix of the mapping ϕ(z).

Lemma 1. Let the point z ∈ FD be non-degenerate. Then the Jacobi matrix
of the mapping ϕ(z) has the form

ϕz(z) =
[

τAΦ−1(y)AT AΦ−1(y) [τIn − G (x(z))]
τG(y)Φ−1(y)AT

[
In − G(y)Φ−1(y)

]
G(x(z)) + τG(y)Φ−1(y)

]

. (43)

Theorem 1. Let x∗ and z∗ = [u∗, y∗] be non-degenerate optimal solutions of
primal and dual problems (2) and (3), respectfully. Moreover, let these solutions
be strictly complementary. Then there exists ᾱ > 0 such that for 0 < α < ᾱ the
iterative process (12) with the step size αk = α locally converges to z∗ with a
linear rate.

Proof. To prove the theorem, it is sufficient to show that the spectral radius of
the Jacobi matrix of the mapping F (z) = Im+n − αϕ(z) at the point z∗ is less
than one.

Let η be an eigenvalue of the matrix ϕz(z∗). Assume for definiteness that
for y∗ the partition onto three blocks of components y∗ = [y∗,F ; y∗,I ; y∗,N ] holds.
Then for x∗ the similar partition x∗ = [x∗,F ;x∗,I ;x∗,N ] takes place. Denote by
r̄F , r̄I and r̄N the number of components in blocks for the vector x∗. It follows
from strict complementarity that r̄F = rF , r̄I = rI and r̄N = rN . What is more,
x∗,N is a zero vector. By Proposition 5 x(z∗) = x∗.

According to (43) the eigenvalue η must satisfy to the following characteristic
equation
∣
∣
∣
∣
τAΦ−1(y∗)AT − ηIm AΦ−1(y∗) [τIn − G (x∗)]

τG(y∗)Φ−1(y∗)AT
[
In − G(y∗)Φ−1(y∗)

]
G(x∗) + τG(y∗)Φ−1(y∗) − ηIn

∣
∣
∣
∣ = 0.

(44)
After multiplying the right column in (44) from the right by the matrix AT and
subtracting it from the left column the Eq. (44) is transformed to the following
one

∣∣∣∣
AΦ−1(y∗)G(x∗)AT − ηIm AΦ−1(y∗) [τIn − G (x∗)]

Ω
[
In − G(y∗)Φ−1(y)

]G(x∗) + τG(y∗)Φ−1(y∗) − ηIn

∣∣∣∣ = 0,

(45)
where Ω =

[
G(y∗)Φ−1(y) − In

]
G(x∗)AT + ηAT .

Multiply further the first row in (45) from the left by the matrix AT and sum it
with the second row. Taking into account the equality

[
AT A + G(y∗)

]
Φ−1(y∗) =

In, we obtain the equation
∣
∣
∣
∣
AΦ−1(y∗)G(x∗)AT − ηIm AΦ−1(y∗) [τIn − G (x∗)]

0nm (τ − η) In

∣
∣
∣
∣ = 0. (46)
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It follows from (46) that n eigenvalues η are equal to τ . The other eigenvalues η
may be found from the characteristic equation

|Ψ(z∗) − ηIm| = 0, Ψ(z∗) = AΦ−1(y∗)G(x∗)AT . (47)

Let G(y∗) = HΘ∗HT , where Θ∗ is a diagonal matrix with the vector of
eigenvalues of the matrix G(y∗) at the diagonal. Furthermore, let Λ∗ be a diagonal
matrix with the vector of eigenvalues of the matrix G(x∗), that is G(x∗) =
HΛ∗HT . Since the matrices G(y∗) and G(x∗) commute between themselves, the
orthogonal matrix H is the same. Due to strict complementarity, the right lower
block of Λ∗ is zero.

Transform the matrix Ψ(z∗) to the form

Ψ(z∗) = AHHT Φ−1(y∗)HΛ∗HT AT = AH (
ΦH(y∗)

)−1
Λ∗

(
AH)T

.

From here, taking into account (27), we obtain

Ψ(z∗) = AHΠ

[
V11 V12

VT
12 V22

]

Λ̂∗ΠT
(
AH)T

,

where Λ̂∗ = ΠT Λ∗Π. But, as stated above, AHΠ =
[
ÂH

FI , AH
N

]
. Thus, by (27)

Ψ(z∗) =
[
ÂH

FI , AH
N

] [
V11 V12

VT
12 V22

]

Λ̂∗

[(
ÂH

FI

)T

;
(
AH

N

)T
]

.

Represent the diagonal matrix Λ̂∗ as block diagonal matrix, consisting from
two entries, Λ̂∗ = DIAG

(
Λ̂∗,FI , Λ∗,N

)
. In turn, let Λ̂∗,FI = DIAG

(
Λ̂∗,F , Λ∗,FI

)
.

Since the right lower block Λ̂∗,N is zero, then by (28)

Ψ(z∗) =
[
ÂH

FI , AH
N

]
⎡

⎢
⎣

(
W−1

11 + W−1
11 W12Z−1WT

12W−1
11

)
Λ̂∗,FI

(
ÂH

FI

)T

−Z−1WT
12W−1

11 Λ̂∗,FI

(
ÂH

FI

)T

⎤

⎥
⎦

or Ψ(z∗) = Ψ1(z∗) + Ψ2(z∗), where Ψ1(z∗) = ÂH
FIW−1

11 Λ̂∗,FI

(
ÂH

FI

)T

and

Ψ2(z∗) =
[

ÂH
FIW−1

11

(
ÂH

FI

)T

− Im

]

AH
NZ−1

(
AH

N

)T ÂH
FIW−1

11 Λ̂∗,FI

(
ÂH

FI

)T

.

The matrix Ψ2(z∗) by (34), (39) and with the help of introduced above nota-

tions can be rewritten as Ψ2(z∗) =
[
Ŝ − Im

]
UÂH

FIW−1
11 Λ̂∗,FI

(
ÂH

FI

)T

. Hence,

Ψ(z∗) =
[
Im −

(
Im − Ŝ

)
U

]
ÂH

FIW−1
11 Λ̂∗,FI

(
ÂH

FI

)T

.
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Let η be an eigenvalue of Ψ(x∗, y∗), and let p be the corresponding eigenvec-
tor. Then η and p must satisfy the equation

Ψ(x∗, y∗) p = η p. (48)

We first assume that
(
AH

FI

)T
p �= 0l1 , where l1 =

∑
i∈Jr

I
ni + rF . Then, multi-

plying (48) from the left by
(
AH

FI

)T , we obtain

(
AH

FI

)T ÂH
FIW−1

11 ΛΠ
∗,FI

(
ÂH

FI

)T

p = η
(
AH

FI

)T
p.

Here we take into account that, according to corollary after Proposition 4,
(
AH

FI

)T
(
Im − Ŝ

)
= 0l1 .

Using the formula (33) and the equality
(
AH

FI

)T P⊥ = 0l1 , we obtain
(
AH

FI

)T ÂH
FIW−1

11 =
(
AH

FI

)T
[
P⊥ÂH

F Y−1, (Im − P⊥S)T
]

= [0l1 l2 , Il1 ] ,

where l2 =
∑

i∈Jr
F

ni − rF . Therefore, the Eq. (48) is reduced to the following
one

Λ̂FI

(
AH

FI

)T
p = η

(
AH

FI

)T
p. (49)

It follows from (49) that p must be orthogonal to all but one columns of AH
FI to

be an eigenvector. The eigenvalue η is equal to the corresponding diagonal entry
of Λ̂FI . As already noted, this entry is positive. Thus, we have l1 eigenvectors
which do not belong to the subspace L⊥. The corresponding eigenvalues are real
and positive.

Assume now that
(
AH

FI

)T
p = 0l1 , i.e. p ∈ L⊥. In this case, we get by (33)

and (39)

ÂH
FIW−1

11 Λ̂FI

(
ÂH

FI

)T

p = P⊥ÂH
F Y−1Λ̂F

(
ÂH

F

)T

P⊥p

=
(
I + Ĉ

)−1

P⊥ÂH
F Θ̂−1

F Λ̂F (
(
ÂH

F

)T

P⊥p =
(
I − Ŝ

)
P⊥ÂH

F Θ̂−1
F Λ̂F

(
ÂH

F

)T

P⊥p.

From the other hand, by (41)
[
I −

(
I − Ŝ

)
U

] (
I − Ŝ

)
=

(
I − Ŝ

)
−

(
I − Ŝ

)
U

(
I − Ŝ

)
=

(
I − Ŝ

)

−
(
I − Ŝ

)1/2
[

I −
(
I + B̃

)−1
] (

I − Ŝ
)1/2

=
(
I − Ŝ

)1/2 (
I + B̃

)−1 (
I − Ŝ

)1/2

.

Therefore, the Eq. (48) is reduced to
(
I − Ŝ

)1/2 (
I + B̃

)−1 (
I − Ŝ

)1/2

P⊥ÂH
F Θ̂−1

F Λ̂F

(
ÂH

F

)T

P⊥p = η p. (50)

Denote q = ÂH
F Θ̂−1

F Λ̂F

(
ÂH

F

)T

P⊥p and multiply both sides of (50) by the

qT . Then, taking into account that P⊥p = p, we get
〈(

I − Ŝ
)1/2

q,
(
I + B̃

)−1 (
I − Ŝ

)1/2

q

〉

= η

〈(
ÂH

F

)T

p, Θ̂−1
F Λ̂F

(
ÂH

F

)T

p

〉

.
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Both diagonal matrices Θ̂−1
F and Λ̂F are positive semi-definite. Hence, η ≥ 0.

But the equality η = 0 is impossible. Indeed, in this case Θ̂−1
F Λ̂F

(
ÂH

F

)T

p =
0l2 . However, due to complementarity conditions, the first diagonal entries
of the diagonal matrices Λ̂i, i ∈ Jr

F (y∗), are equal to zero. Denote by ĀH
i ,

i ∈ Jr
F (y∗), the right m × (ni − 1) sub-matrix of the matrix AH

i . Denote also
ĀH

F =
[
ĀH

1 , . . . , ĀH
r

]
. Since p ∈ L⊥, the equality

(
AH

I

)T
p = 0 holds. Therefore,

(
ĀH

FI

)T
p = 0, where ĀH

FI =
[
ĀH

F ,AH
I

]
. Taking into account that p is a nonzero

vector, we conclude that rows of the matrix ĀH
FI are linear dependent. This con-

tradicts to the assumption that the point x∗ is non-degenerate, because of by
the criterion of non-degeneracy in the primal problem (see [2]) the point x∗ is
non-degenerate if and only if rows of the matrix ĀH

FI are linear independent.
Thus, all eigenvalues of the matrix ϕz(z∗) are strictly positive. Let η∗ be the

maximal eigenvalue. Taking 0 < ᾱ < 2/η∗, we get that the spectral radius of the
matrix Fz(z∗) is less than one, if α < ᾱ. Therefore, by the Ostrowski-Hadamard
theorem, the iterative process (12) locally converges to z∗ with a linear rate. �

Corollary. Let the assumptions of Theorem1 hold. Moreover, let u0 ∈ FD,u

and y0 = y(u0) ∈ K0. Then we can specify ᾱ > 0 such that the iterative process
(42) for αk = α < ᾱ also locally converges to u∗ with a linear rate.

Conclusion

The proposed dual methods may be preferable for solving linear SOCP problems,
in which the number of variables is essentially less than the dimension of the
cone. Among the disadvantages of the methods there is the local convergence.
It is possible to extend the convergence domain of the feasible method by using
the steepest descent approach for choosing the step sizes.
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Abstract. In this article, we consider the problem of planning main-
tenance operations at a locomotive maintenance depot. There are three
types of tracks at the depot: buffer tracks, access tracks and service
tracks. A depot consists of up to one buffer track and a number of access
tracks, each of them ending with one service track. Each of these tracks
has a limited capacity measured in locomotive sections. We present a
constraint programming model and a greedy algorithm for solving the
problem of planning maintenance operations. Using lifelike data based
on the operation of several locomotive maintenance depots in Eastern
polygon of Russian Railways, we carry out numerical experiments to
compare the presented approaches.

Keywords: Maintenance · Scheduling · Dynamic programming ·
Constraint programming · Heuristic

1 Introduction

Railway scheduling is an entangled process of managing a large number of
objects, including railway infrastructure, rolling stock, etc. This process requi-
res to take into account a lot of conditions and restrictions. Foreground goals
of the planning are safety and security of the whole system and minimizing
transporting delays. According to Russian Railways safety requirements, every
locomotive should undergo regular maintenance. In particular, there is a kind
of maintenance that is carried out every several days and includes inspection of
chassis, brake system, traction motors, auxiliary equipment, transformers and
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electric systems. The maintenance is carried out at special facilities, namely,
Locomotive Maintenance Depots, or LMDs. Up to 100 locomotives are serviced
at each LMD per day. The limitations on resources such as availability of mainte-
nance crews, space on tracks, available special equipment, etc. result in growing
downtimes. In order to reduce downtimes and thus increase efficiency in utilizing
the locomotive fleet, scheduling process must be implemented.

In this paper we are going to find a solution for the described problem of
scheduling locomotives maintenance. The paper is organized as follows. Section 2
includes a verbal statement of the problem, basic terms and notation, and a
review of the literature on the subject. Section 3 is devoted to a constraint
programming model. Section 4 proposes a heuristic algorithm. The results of
numerical experiments on real data are presented and analyzed in Sect. 5.

2 Problem Statement

We consider a real-world problem of planning operation of locomotive mainte-
nance depots of Russian Railways. There are three types of tracks at LMDs:
buffer tracks, access tracks and service tracks. A typical LMD consists of up to
one buffer track and a number of access tracks, each of them ending with one
service track (see Fig. 1). Each of these tracks has a limited capacity measured
in locomotive sections.

Fig. 1. Typical scheme of an LMD

Let T = [T0, T1] be the planning horizon – the time interval during which
all locomotives arrive to the LMD. We are provided a twenty-four hours plan
of locomotives arriving to the LMD. All the time moments are considered to be
integer. Let L be the set of all locomotives and n = |L| be their number. The
locomotives differ in models, number of sections and service time.
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For each locomotive l ∈ L, let us define the following parameters.

– ul is the number of sections of which l consists, ul ≤ 4.
– rl is the moment of arrival of l to the LMD, rl �= rl−1,∀l ∈ L.
– τl is service time, or maintenance duration of l. Typically, the service time is

from 57 to 120 min. For any locomotive, its service time is the same for any
service track.

– vl is the model number of l. Each service track can only maintain a certain
set of locomotive models.

It is necessary to take into account all the limitations associated with the
technical features of the locomotives and an LMD to build a feasible schedule.

Upon arriving at an LMD, each locomotive can be placed onto a buffer track.
Let b be the buffer capacity, namely the number of locomotive sections that the
buffer can contain at the same time. If an LMD does not include a buffer, the
buffer capacity is considered to be zero. The buffer track operates according to
the LIFO scheme: before a locomotive can leave the buffer, all the locomotives
that came after it should leave first.

Upon leaving the buffer, each locomotive should be placed onto one of the
access tracks, that are accessible from the buffer. If locomotive l was not placed
into the buffer, it should be placed on an access track right at moment rl of its
arrival at the LMD. Let A be a set of all access tracks of the regarded LMD. For
each access track a ∈ A, while let ca denote the maximal number of locomotive
sections that access track a can simultaneously accommodate.

Each of the access tracks ends with a single service track, and each service
track can only be accessed from a single access track. The access and service
tracks operate according to FIFO scheme: before a locomotive can leave, all the
locomotives that came before it should leave first.

Each of the service tracks is divided into several service positions. We consider
the case of 2 service positions on each service track. Each service position has its
own capacity (up to 3 locomotive sections) and can only accept one locomotive
at a time. A four-section locomotive takes both service positions of a service
track. When several locomotives should be serviced on different positions of the
same service track simultaneously, they should arrive at the track simultaneously,
and leave simultaneously, too. Service sessions cannot be interrupted, and there
should be a break between each pair of subsequent sessions on the same service
track – typically, of at least 15 min. For simplicity, we include this time in service
times of locomotives.

Upon leaving an access track, a locomotive is transported to its designated
service position on the corresponding service track. Actually, any locomotive
should be serviced only once and its maintenance can begin only after its arriving
to the LMD.

Let P be the set of all service positions.
Let us define parameters of service position p ∈ P .

– dp is the number of locomotive sections that p can contain at a time, dp ≤ 3.
– a(p) is the service track that p belongs to.
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– i(p) is the index number of the service position on the service track (counting
from the exit of the service track, starting from 1).

– Rp is the moment of time when position p becomes available. Rp > T0 when,
for example, position p was occupied by some locomotive at the beginning of
planning horizon T .

Let APap, a ∈ A, p ∈ P be a Boolean matrix and APap = 1 if it is possible to
transport a locomotive from access track a to service position p, and APap = 0
otherwise.

Let PMpm be a Boolean matrix and PMpm = 1 if inspection position p can
be used to service locomotives with model number m, and PMpm = 0 otherwise.

The goal is to decide for each locomotive:

– whether it should be placed onto the buffer track,
– when it should leave the buffer and head to the access tracks,
– which of the access tracks it should be placed on,
– when it should leave the access track and move onto the service track,
– which of the service positions of that track it should be serviced at.

Depending on the needs of a specific LMD, there might be different objective
functions that one would need to implement. We are considering a number of
different objectives to minimize, namely total idle time, total waiting time, max-
imum waiting time and makespan, and carrying out computational experiments.

A problem of scheduling maintenance of a large fleet of rolling stock in a sin-
gle depot is investigated in [2]. The goal of this work is to schedule maintenance
activities for a large number of trains arriving at the depot taking into considera-
tion resource constraints, such as availability of service platforms, engineers, equip-
ment, etc., while maximizing the throughput. Integer linear programming model
and a heuristic algorithm are presented. However, this problem differs from ours
one. It does not consider any access tracks, and a buffer track there is replaced with
an infinite shunting yard with arbitrary input and output of trains.

If we could ignore the track capacity constraints and limit ourselves to con-
sidering only one service position (and, of course, only a subset of locomotives
that can be serviced at that particular position), we could obtain the optimal
schedule by using Smith’s theorem [8]. However, the track capacity constraints
are far too significant to overlook for our problem.

In [1] fifth chapter deals with the problem of optimal distribution of jobs
on identical parallel machines with the same processing time. Various objective
functions are considered. A polynomial algorithms is presented. This algorithm,
however, does not take into account the possibility of multiple service positions
existence on the same service track (i.e., some of the parallel machines would
not be independent), possibility of access tracks presence (i.e. having a limited
queue size for each of the machines), and various processing times.

One of the tasks of locomotive fleet management is the distribution of loco-
motives by location, taking into account various constraints. One of the criteria
of optimal control of a transport park is matching the number of locomotive
crews and locomotives. In [7], a heuristic algorithm for optimal control of a
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transport park is presented. The algorithm provides a high-quality solution of
assembling and routing of the transport park and outperforms the IBM ILOG
CPLEX [11] in terms of calculation time. However, the article does not consider
maintenance of the trains.

In [3], problem of scheduling maintenance of series of machines is presented.
Each unit of a series of machines (for example, a locomotive fleet) must be
maintained. When maintenance of machines involves outsourcing specialists, it
takes some time for specialists to arrive to the maintenance facility. Usually, the
owner of a fleet has to pay not only for the work of these specialists, but he
also has to cover the expenses of transporting them to a designated maintenance
facility. Thus, one needs to reduce the transporting times by grouping planned
maintenance events together. At the same time, the owner seeks to reduce the
downtimes of the machines, while meeting necessary maintenance frequency.

In [6], the problem of the distribution a locomotive fleet between several
depots for the maintenance is investigated. An algorithm for the organization of
the process of operation and maintenance of locomotive fleet is presented. The
algorithm allows to find the optimal distribution of the volume of maintenance
of locomotives between depots and obtain a graphical solution of the unit cost of
repairs. However, authors consider only the problem of distributing locomotives
between LMDs, leaving the problem of operating each particular LMD aside.

Now it can be seen that in all the papers above there are significant differences
from our problem, and these results cannot be directly applied to solving the
problem considered in our article.

3 Constraint Programming Model

The first stage of the analysis of the problem is an attempt to find an exact
solution using Constraint Programming (CP) approach. The important princi-
ple of constraint programming consists of distinguishing constraint propagation
and decision-making search (see, for example, [10]). Constraint propagation is a
deductive activity which consists in deducing new constraints from existing con-
straints. The large number of constraints in our problem contributes to high effi-
ciency of CP methods. To use this approach, the problem needs to be formulated
as a Constraint Satisfaction Problem. So, formalization of the problem in this
article is made in terms of CP using the Optimization Programming Language
(OPL) [12]. In the computational experiments for CP model the time moments
were multiples of 15 min (arrival moments and service times were rounded off to
the closest upper values).

3.1 Decision Variables, Functions and Other Denotations

To formulate in terms of constraint programming and solve the presented prob-
lem, we use the notion of interval variables. Each variable is a time interval in
the horizon T . All of the intervals we use are optional, meaning that any of the
processes associated with these intervals should be either carried out, according
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to the solution (in that case, the interval is called present), or skipped (in that
case, the interval is called absent). Absent intervals are ignored by most of the
constraints. Functions of interval variables can take an additional argument - a
value to be returned when the interval argument of such function is absent.

We are using IBM Ilog CPLEX Optimizer 12.6.3 in Constraint Programming
mode. The solver algorithm defines which intervals should be present in the solu-
tion, and what are start and end moments of those intervals that are present,
given that all constraints are satisfied and the objective function is minimized
(we provide the constraints and objective functions below).

Interval variables are the following.

– intBl is the interval during which locomotive l stays in the buffer intBl ∈
[rl, T1]. If length of this interval is zero, or the interval is absent, the loco-
motive is treated as if it did not enter the buffer at all.

– intAla is the interval during which locomotive l occupies access track a,
intAla ∈ [rl, T1].

– intPlp is the interval when locomotive l occupies service position p, intPlp ∈[
max(rl, Rp), T1

]
. The length of this interval can’t be less than τl.

Built-in OPL Functions. In order to work with the interval variables and
model the constraints, we need the following built-in functions and constraints
defined in the OPL framework. To make the text more laconic, we renamed
built-in opl functions, see their original names in brackets.

– s(int, dval) (in OPL: startOf(int, dval)) is a built-in function that evaluates
to the start moment of interval int when it is present, and evaluates to dval
otherwise. If dval = 0, then it can be omitted.

– e(int, dval) (in OPL: endOf(int, dval)) is a built-in function that evaluates
to the end moment of interval int when it is present, and evaluates to dval
otherwise. If dval = 0, then it can be omitted.

– p(int) (in OPL: presenceOf(int)) - a built-in function that evaluates to 1
if the interval variable int is present in the solution, and 0 if it is absent. If
dval = 0, then it can be omitted.

– pulse(int, h) is a built-in function that represents usage of a renewable
resource in a process associated with interval int. h is the amount of resource
used. At any time moment s(int) ≤ t < e(int) usage of the resource by inter-
val int is h, and at any other time moment the resource is not used by this
interval. This function can be used in constraints like

∑
i∈I pulse(i, hi) ≤ a,

which means that at any time moment collective usage of some resource by
intervals from set I cannot exceed a.

Built-in OPL Constraint ‘startAtEnd’

– startAtEnd(int1, int2) - built-in constraint that forces interval int1 to start
right when interval int2 ends. If any of the intervals int1, int2 is absent, the
constraint is automatically considered to be satisfied.
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We also need to define a few cumulative functions that will represent the input
of the locomotives in using different resources, such as buffer track, access tracks
and service positions.

Cumulative Functions

– BLoad =
∑

l∈L

pulse(intBl, ul) is equal to the total number of locomotive sec-

tions in the buffer;
– ALoad(a) =

∑

l∈L

pulse(intAla, ul) is equal to the total number of sections of

locomotives on access track s;
– PLoad(p) =

∑

l∈L

pulse(intPlp, 1) is equal to the number of locomotives at

service position p.

3.2 Objective Functions

In terms of the described decision variables, basic constraints and functions and
supplementary functions, the four objective functions mentioned above take the
following forms:

1. maximum waiting time F1(π) = max
l∈L,p∈P

s(intPlp);

2. total waiting time F2(π) =
∑

l∈L,p∈P

s(intPlp);

3. total idle time F3(π) =
∑

l∈L,p∈P

e(intPlp) − τl − rl;

4. makespan F4(π) = max
l∈L,p∈P

e(intPlp).

3.3 Constraints

The constraints of the problem will take the following form. To avoid ambiguity,
here and below the symbol “=⇒” will denote logical implication (“A =⇒ B”
is equivalent to “if A, then B”).

– Each locomotive, if it enters the buffer, does so right at the moment of arrival
at LMD:

∀l ∈ L : s(intBl, rl) = rl.

– The buffer is used according to the LIFO scheme:

∀l1, l2 ∈ L : p(intBl1) ∧ p(intBl2) ∧ (
s(intBl1) ≥ s(intBl2)

)

=⇒ (
e(intBl1) ≤ e(intBl2)

)
.

– Total count of sections of all the locomotives occupying the buffer at any time
should not exceed the capacity of the buffer:

BLoad(b) ≤ b.
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– Each locomotive should be assigned to exactly one access track:

∀l ∈ L :
∑

a∈A

p(intAla) = 1.

– Each locomotive enters its designated access track right when it leaves the
buffer, or when it arrives at the LMD if it did not enter the buffer:

∀l ∈ L, a ∈ A : (p(intAla) ∧ p(intBl)) =⇒ s(intAla) == s(intBl);

∀l ∈ L, a ∈ A : (p(intAla)∧!p(intBl)) =⇒ s(intAla) == rl.

– Total count of sections of all locomotives that are occupying an access track
at any given time should not exceed the capacity of the track:

∀a ∈ A : ALoad(a) ≤ ca.

– The access tracks operate according to FIFO scheme:

∀a ∈ A, l1 ∈ L, l2 ∈ L :
(
e(intBl1) ≤ e(intBl2)

)

=⇒ (
s(intAl1a) ≤ s(intAl2a)

)
.

– Upon leaving an access track, the locomotive should be transported to one of
the service tracks:

∀l ∈ L, a ∈ A, p ∈ P : startAtEnd(intAla, intPlp).

– A locomotive cannot be assigned to a service position that is inaccessible from
the access track which that locomotive was assigned to:

∀l ∈ L, a ∈ A, p ∈ P : p(intAla) ∗ p(intPlp) ≤ APap.

– At any given time, any service position cannot be occupied by more than one
locomotive:

∀p ∈ P : PLoad(p) ≤ 1.

– A locomotive cannot be assigned to a service position that does not accept
this locomotive model:

∀l ∈ L, p ∈ P : p(intPlp) ≤ PMp,vl
.

– Each locomotive consisting of less than 4 sections should be assigned to
exactly one service position:

∀l ∈ L, ul < 4 :
∑

p∈P

p(intPlp) = 1.

– Each locomotive consisting of 4 sections should be assigned to exactly two
service positions:

∀l ∈ L, ul = 4 :
∑

p∈P

p(intPlp) = 2.

These positions should be on the same service track:

∀l ∈ L, p1 ∈ P, p2 ∈ P, a(p1) �= a(p2) : p(intPlp1) ∗ p(intPlp2) = 0.
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– Total capacity of service positions occupied by a locomotive should be suf-
ficient to accommodate the locomotive:

∀l ∈ L :
∑

p∈P

p(intPlp) ∗ dp ≥ ul.

– When two locomotives are assigned to neighboring service positions and their
service intervals begin simultaneously, these intervals should end simulta-
neously, too:

∀l1, l2 ∈ L, p1, p2 ∈ P, a(p1) = a(p2) :
(
p(intPl1p1) ∗ p(intPl2p2) = 1

) ∧ (
s(intPl1p1) = s(intPl2p2)

)

=⇒ (
e(intPl1p1 = e(intPl2p2)

)
.

– The service positions operate according to FIFO scheme: when two loco-
motives are assigned to neighboring service positions and their inspection
starts simultaneously, the locomotive that arrived at the contiguous access
track earlier should be placed closer to the exit from the service track (i.e. it
should be assigned to the service position with a smaller index number):

∀l1, l2 ∈ L, l1 �= l2, p1, p2 ∈ P, a(p1) = a(p2) :
(
s(intAl1a(p1)) < s(intAl2a(p2))

) ∧ (
p(intPl1p1) ∗ p(intPl2p2) = 1

)

∧(
s(intPl1p1) = s(intPl2p2)

)

=⇒ (
i(p1) < i(p2)

)
.

As shown in Sect. 5, applying the exact method to solving the problem on
real data takes a lot of time, which is unacceptable. Therefore, in the next section
we propose a heuristic algorithm for solving the problem.

4 Greedy Algorithm

Let us number all locomotives 1, 2, . . . , l, . . . , n in the order of their arrival to the
LMD. We will build a schedule step by step, where at each step l we will consider
l first locomotives arrived to the LMD. Let us introduce a partial schedule ψ(l),
which is built for l first locomotives arrived to the LMD. Partial schedule ψ(l)
differs from the feasible schedule by the set of locomotives in it, and by the fact
that not all locomotives must be serviced (arrived but not serviced locomotives
should be buffered). At each time t for partial schedule ψ(l), the following sets
of locomotives can be distinguished:

– I(ψ(l), t) is a set of locomotives that arrived earlier or at time t and sent to
an access track immediately;

– D(ψ(l), t) is a set of locomotives that arrived earlier or at time t and sent to
the buffer, and then to an access track;

– B(ψ(l), t) is a set of locomotives that are in the buffer at time t.
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Partial schedule ψ(l) provides the following information:

– a set of appropriate locomotives {1, 2, . . . , l};
– start and end service time of each locomotive from I(ψ(l), t) and D(ψ(l), t);
– service positions (and service tracks) on which each locomotive from sets

I(ψ(l), t) and D(ψ(l), t) is serviced;
– a set of locomotives B(ψ(l), t) that are buffered.

In final schedule B(π,+∞) = ∅, because it is necessary to maintain all
locomotives.

Let us introduce arriving time re of locomotive e ∈ I(ψ(l), t) ∪ D(ψ(l), t)
onto an access track. For locomotives sent to an access track immediately after
arriving e ∈ I(ψ(l), t) the arriving time is equal to the time of its arrival to the
LMD: re = re.

Let us denote a set of all service tracks by Q. For each partial schedule ψ(l)
it is possible to allocate a subset Q1(ψ(l), t) ⊂ Q for which locomotives are
standing on access tracks last and maintained on service tracks alone. We call
the index of the last locomotive serviced on service track q ∈ Q1(ψ(l), t) under
schedule ψ(l) by lq(ψ(l), t).

Let us denote arriving time of locomotive e for maintenance onto a service
track by Se(ψ(l), t), a ∈ I(ψ(l), t) ∪ D(ψ(l), t); a maintenance completion time
(time of exit from the LMD) by Ce(ψ(l), t) in partial schedule ψ(l). We introduce
the concept of partial objective functions for the first l locomotives arrived to
the LMD by time t:

1. maximum waiting time F1(ψ(l), t) = max
i∈I(ψ(l),t)∪D(ψ(l),t)

(Si(ψ(l), t) − ri);

2. total waiting time F2(ψ(l), t) =
∑

i∈I(ψ(l),t)∪D(ψ(l),t)

Si(ψ(l), t);

3. total idle time F3(ψ(l), t) =
∑

i∈I(ψ(l),t)∪D(ψ(l),t)

(Ci(ψ(l), t) − τi − ri);

4. makespan F4(ψ(l), t) = max
i∈I(ψ(l),t)∪D(ψ(l),t)

Ci(ψ(l), t).

Henceforth, if it is obvious what partial schedule ψ(l), what locomotive l
and what time moment t we are talking about, we will omit the arguments. We
associate each access track and a service track it leads to. Thus, when we point
to service track q ∈ Q, we will also imply the access track and the group of
service positions at the same track, taking into account all their characteristics
(capacities of access tracks and service positions, and locomotive models they
can service).

Let us describe procedures that are used in the heuristic algorithm. All the
procedures can be performed either for locomotive e, which just arrived at the
LMD, so the partial schedule will be ψ = ψ(e − 1); or for last locomotive in the
buffer (e ∈ B(t)) at time moment t of calling the procedure.

Choice of service tracks(e, t, ψ)—a procedure for choosing a set of service
tracks Ke for some locomotive e, on access track of which it can be located
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at time t. The output is a set of service tracks Ke (and corresponding access
tracks), on which locomotive e can be serviced, in accordance with schedule ψ.
The selected service tracks must correspond to the capacity of the access tracks
and the type of locomotive e. If these conditions are not met at this step at time
t, then locomotive e is sent to the buffer of a limited capacity (according to the
LIFO scheme), and set Ke is empty.

Partial objective function(e, q, re(q), ψ)—a procedure for calculating the
value of a partial objective function F (q) when setting locomotive e to the access
track leading to service track q ∈ Ke. If the number of the locomotive sections
ue < 4 and q ∈ Q1(ψ, re) in schedule ψ, then the algorithm considers two
options. Either locomotive e is sent to an access track and will be serviced
alone, or locomotive e is sent to an access track and will be serviced along with
locomotive lq on service track q. Then for locomotive e the time of its entering
to service position Se and exit from it Ce are defined as follows.

– If locomotive e is maintained at service track q alone:

Se = max{re, C
lq (ψ)}, (1)

Ce = Se + τe. (2)

– If locomotive e is maintained at service track q along with another
locomotive lq:

Se = max{re, S
lq (ψ)}, (3)

Ce = Se + max{τe, τ lq}. (4)

If locomotive e is a four-section one, and the set of service tracks Ke is not
empty, or the number of sections of locomotive e is less than four and the set of
service tracks Ke ∩ Q1 is empty, then only one option is considered: locomotive
e is sent to the first vacant service track alone. The time of entry and exit from
the service position for locomotive e is determined similarly to a non-four-section
locomotive when it is serviced alone, according to formulas (1), (2).

If set Ke of service tracks is empty, or in time Se the number of serviced
locomotives is greater than the number of repair crews, then locomotive e is
buffered (see Buffering( e, re(q), B) below), if there is a free space. Otherwise,
the algorithm stops working, as it is impossible to build the schedule.

Let f1 be a value of the partial objective function, taking into account that
locomotive l is serviced on service track q alone, and f2 is a value of the partial
objective function if the locomotive is serviced together with locomotive lq. If
f2 exists, then F (q) = min{f1, f2}. Otherwise, F (q) = f1.

Buffering(e, t, B)—a procedure for sending locomotive e to the buffer at time
t, B is the set of all locomotives in the buffer. If locomotive e is buffered, then
it becomes the last locomotive in the buffer. Moreover, sets I and D remain
unchanged and B = B ∪{e}. In case when there is no vacant space on the access
tracks and in the buffer, the locomotive cannot get into LMD, the schedule
cannot be built using this algorithm and the algorithm stops working.
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Buffer check(rl−1, rl, β, ψ)—a procedure for checking the buffer between
time rl−1 of arriving locomotive l − 1 and time rl of locomotive l arriving. The
procedure is performed for locomotive β, which is the last one in the buffer at the
time of its call. The output information is set of service positions Kβ , on which
locomotive β can be maintained and possible time rβ(m) of sending the locomo-
tive β on each applicable access track leading to service position m ∈ Kβ}. Let
some locomotives have completed maintenance during the interval (rl−1, rl]. If
a few locomotives have completed their maintenance on some service position,
then we will consider only that one, which was released first. Let us denote the set
of locomotives which ended their maintenance on each service position first dur-
ing the interval (rl−1, rl], by J , |J | ≤ |M |. Obviously, Cj(ψ) ∈ (rl−1, rl], j ∈ J .
Now call procedure Choice of service tracks(β, rl, ψ) for selecting a set of service
tracks Kβ for the locomotive β at time rl with schedule ψ. The locomotive β can
go to the access track to a service position from set Kβ , as soon as maintenance
on it is completed during interval (rl−1, rl]. For each service track m ∈ Kβ time
moment rβ(m) of sending locomotive β to it will be defined as rβ(m) = Cj(ψ),
where locomotive j ∈ J was maintained on service track m.

In addition, if locomotive a is to be maintained on service track m along with
locomotive lm, then Slm(ψ) = Sa(ψ), Clm(ψ) = Ca(ψ). For all other locomotives
arrived to the LMD by time ra, the schedule remains the same.

The algorithm pseudo-code can found below, which uses the above pro-
cedures. The input information of the algorithm is: planning horizon [T0, T1],
schedule π, built for the previous planned day and, accordingly, the set of loco-
motives I(π, T0),D(π, T0), B(π, T0) at the start of the current planning period.
The sets I(π, T0),D(π, T0) determine time moments Rp ≥ T0 of the beginning of
service positions availability. The locomotives that are buffered at the beginning
of the current scheduling period (at time T0) will be considered at the cur-
rent scheduling period (for the locomotives from I(π, T0),D(π, T0) the schedule
remains constant). The output is schedule π of maintenance of all locomotives.
If locomotive maintenance doesn’t start before time T1 in the schedule obtained
using the algorithm, it will be considered in the next planning horizon [T1, T2].

5 Results and Conclusions

The proposed approaches to solving the problem were tested on data provided by
Russian Railways, which correspond to large enterprises of the Eastern Polygon.
Figure 2 shows the main characteristics of the three test data sets for three LMDs.
Each LMD has its own characteristics that must be considered. For example, in
LMD 3 there is a shortage of repair crews, so not all service positions can work
simultaneously. Four objective functions are considered: maximum waiting time
(F1), total waiting time (F2), total idle time (F3), makespan (F4). Numerical
experiments were carried out on a following personal computer: CPU Intel Core
i7 7700 HQ 2800 MHz, 4 cores; 8 GB DDR4 RAM.

Figure 3 shows values of each objective function for each data set, obtained
using the CP model and the heuristic algorithm. Figure 4 shows the average
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Algorithm 1. Greedy algorithm
1: Input data: T0, T1, I, D, B, π
2: t′ = T0

3: ψ = π
4: for all l = 1 . . . n do
5: if B �= ∅ then
6: for all β ∈ B do
7: (Kβ , [rβ(m)]) ←Buffer check(t′, rl, β, ψ)
8: if Kβ �= ∅ then
9: for all m ∈ Kβ do

10: F (m) ←Partial objective function(β, m, rβ(m), ψ)
11: end for
12: m = argmini∈Kβ F (i)
13: ψ ←Schedule changes(β, m, rβ(m), ψ)
14: else
15: Break this cycle
16: end if
17: end for
18: end if
19: Kβ ←Choice of service tracks(l, rl, ψ)
20: if Kl �= ∅ then
21: for all m ∈ Kl do
22: F (m) ←Partial objective function(l, m, rl, ψ)
23: end for
24: m = argmin

i∈Kl

F (i)

25: ψ ←Schedule changes(l, m, rl, ψ)
26: else if Kl = ∅ & |B| ≤ b then
27: B ←Buffering(l, rl, B(rl))
28: ψ ←Schedule changes(l, buffer, rl, ψ)
29: end if
30: t′ = rl

31: end for
32: if B �= ∅ then
33: for all β ∈ B do
34: (Kβ , [rβ(m)]) ←Buffer check(rn, +∞, β, ψ)
35: for all m ∈ Kβ do
36: F (m) ←Partial objective function(β, m, rβ(m), ψ)
37: end for
38: m = argmin

i∈Kβ

F (i)

39: ψ ←Schedule changes(β, m, rβ(m), ψ)
40: end for
41: end if
42: π = ψ
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Fig. 2. Characteristics of LMDs

deviations of the objective functions values obtained by the heuristic algorithm,
relative to the values obtained by CP. The last table shows that the heuristic
algorithm gives solution for the objective function F4 (makespan) comparable
to the optimizer solution. The value of the objective function obtained using
heuristics is even less than that of the optimizer. This can be explained by the
fact that in the CP model there is a time discretization by 15-min intervals. As
you can see in Fig. 5, which represents a comparison of both methods to the
current methodology of Russian Railways, a heuristic algorithm in most cases
shows an advantage in comparison with the existing Russian Railways method.

Fig. 3. The values of the objective functions

Fig. 4. The average error (CP vs GA)

In further research we plan to refine the proposed algorithms and to make new
algorithms for the problem: dynamic programming and local search algorithms.
A transition to a more complex problem statement is also planned. Knowing the
characteristics of an LMD and the planned hourly arriving of the locomotives,
it is necessary to estimate the maximum number of locomotives that can be
serviced in the LMD. It is necessary to build such an autonomous model, which,
having all possible combinations of locomotive arrivals, will produce a set of all
possible outputs of locomotives from maintenance.
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Fig. 5. Maximum Waiting Time (F1) and Total Waiting Time (F2)
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1 Introduction

Finding an optimal value of the shape parameter is a very important problem in
the Radial Basis Functions (RBF) community. As it has been shown in [5], the
choice of the shape parameter influences both the accuracy and stability in inter-
polation using RBFs. Traditionally, there are several ways to choose the value
of the shape parameter in RBF interpolation: ad hoc choices, pre-fixed constant
values (see, e.g., [6,12]), using local optimization methods (see, e.g., [34]), etc. In
the recent paper [4], it has been proposed to use global optimization algorithms
for finding a good value of the shape parameter. A well-known Leave-One-Out
Cross Validation technique has been used in order to introduce the error func-
tion, which is the objective function for the optimization problem. Well-known
geometric and information univariate global optimization algorithms have been
modified in order to increase their efficiency while solving this type of problems.
Numerical experiments on several single benchmark test problems have shown
the advantages of the proposed techniques.

In this paper, the algorithms proposed in [4] are studied experimentally on
the classes of randomly generated test problems. The widely used in testing
global optimization algorithms GKLS-generator of randomized test functions is
used for this purpose. It can generate classes of 100 test functions with the same
properties and controllable difficulty, allowing one to perform a more efficient
experimental analysis of numerical algorithms. In this paper, the generator is
used for constructing the objective functions for the interpolation problems,
which are then used for constructing the respective optimization problems. It
should be also noted that the use of classes of randomized test problems allows
one not only to perform more reliable and homogeneous numerical experiments,
but to visualize the results in a more clear way with respect to numerical tables,
using, e.g., graphical representations or statistical notations.

The rest of the paper is organized as follows. In Sect. 2, RBF interpolation
and the respective optimization problems are stated briefly. In Sect. 3, numerical
algorithms used in this paper and performed experiments are described briefly.
Section 4 presents the obtained results. Finally, Sect. 5 concludes the paper.

2 Problem Statement

2.1 Statement of the Interpolation Problem

Let us consider the following interpolation problem. Let the set Xn = {x1, ...,
xn}, xi ∈ R

s, i = 1, ..., n, xi �= xj , i, j = 1, ..., n of n interpolation nodes and the
corresponding set Fn = {f(x1), . . . , f(xn)} of values of the function f : Rs → R

be given. Let If : Rs → R be the radial basis function (RBF) interpolant given
as the linear combination of RBFs of the form

If (x) =
n∑

i=1

ciφε(||x − xi||2), x ∈ R
s, (1)
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where ci, i = 1, ..., n, are unknown real coefficients that can be found from the
interpolation conditions If (xi) = f(xi), i = 1, ..., n, || · ||2 denotes the Euclidean
norm, and φ : R≥0 → R is a strictly positive definite RBF depending on a shape
parameter ε > 0. In this paper, the Gaussian (GA) RBF is used:

φε(r) = e−ε2r2
. (2)

The Leave-one-out cross validation technique for the search of the optimal
value of the shape parameter ε can be briefly described as follows. First, for any
fixed ε and each k = 1, ..., n, the point xk and the respective value f(xk) are
excluded from the sets Xn and Fn, respectively. Then, the partial RBF inter-
polant is constructed using only n − 1 remaining nodes and the error of inter-
polation at the point xk is calculated. It has been proved in several works (see,
e.g., [24]) that this error can be also calculated without solving n interpolation
problems of dimension n − 1 as follows:

ek(ε) = f(xk) − I [k]
f (xk) =

ck

A−1
kk

, (3)

where ck is the k−th coefficient of the full RBF interpolant If (x) from (1),
I [k]

f (x) is the partial RBF interpolant calculated using only n − 1 remaining
nodes, and A−1

kk is the inverse diagonal element of the matrix A:

Aij = φε(||xi − xj ||2), i, j = 1, ..., n. (4)

As a consequence, the value of the shape parameter ε can be fixed in order
to minimize the error function Er(ε) that can be defined, e.g., as follows:

Er(ε) = max
k=1,...,n

∣∣∣∣
ck

A−1
kk

∣∣∣∣ . (5)

2.2 Statement of the Optimization Problem

In this paper, the value of the shape parameter ε is fixed by solving the following
optimization problem (see [4] for a detailed discussion): it is required to find the
point ε∗ and the corresponding value Er∗ such that

Er∗ = Er(ε∗) = min Er(ε), ε ∈ [0, εmax], (6)

where εmax is large enough (in our experiments εmax was set equal to 20).
The function Er(ε) can be multiextremal, non-differentiable and hard to

evaluate even at one value of ε, since each its computation requires to reconstruct
the interpolant (1). It is supposed that Er(ε) satisfies the Lipschitz condition
over the interval [0, εmax]:

|Er(ε1) − Er(ε2)| ≤ L|ε1 − ε2|, ε1, ε2 ∈ [0, εmax], (7)
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where L, 0 < L < ∞, is the Lipschitz constant. Since the function Er(ε) can be
ill-conditioned for small ε (see, e.g., [3,5,7]), then the Lipcshitz constant L can
be very large.

There exist a lot of algorithms for solving global optimization problems (see,
e.g., [1,2,14] for parallel optimization, [9,13] for dimensionality reduction schemes,
[10,11,25] for numerical solution of real-life optimization problems, [21] for simpli-
cial optimization methods, [15,35,36] for stochastic optimization methods, [16,17,
22,32] for univariate Lipschitz global optimization, [23] for interval branch-and-
bound methods, etc. Among them, there can be distinguished two groups of algo-
rithms: nature-inspired metaheuristic algorithms (as, for instance, genetic algo-
rithm, firefly algorithm, particle swarm optimization, etc. (see, e.g., [31])) and
deterministic mathematical programming algorithms (as, for instance, geomet-
ric or information algorithms from [20,30,33]). Even though metaheuristic algo-
rithms are used often in practice for solving difficult multidimensional problems,
it has been shown in [18,19,29] that for solving ill-conditioned univariate prob-
lems (6), (7), deterministic algorithms are more efficient. In particular, in [4], it
has been shown on a class of benchmarks and two real-world problems that infor-
mation global optimization algorithms can be successfully used for this purpose. In
this paper, these algorithms are studied experimentally on classes of test problems
generated by the GKLS-generator of test problems (see [8] for its description).

The GKLS-generator of test problems is widely used in practice for testing
global optimization algorithms (see, e.g., [1,21,31]). It generates classes of 100
randomized multidimensional test problems with the controllable difficulty and
a full knowledge about all local and global minimizers (including their positions
and their regions of attraction). In this paper, the GKLS-generator is used to
generate two-dimensional test functions fi(x), x ∈ R

2, for the interpolation
problem (1). Then, the generated test functions are evaluated at a uniform grid
in order to generate n interpolation nodes. Two classes of test functions were
used: the “simple” and “difficult”1 two-dimensional test classes from [26], since
they are used frequently for testing global optimization algorithms. In Fig. 1,
an example of the GKLS-type test function is presented. The behavior of this
function is typical for the functions from both the classes generated by the
GKLS-generator.

3 Algorithms and Organization of Experiments

For each test problem, 128 interpolation nodes are generated on a uniform grid
in the square [−1, 1] × [−1, 1]. Hereinafter, the Information global optimization
algorithm with Optimistic Local Improvement LOOCV-GOOI from [4] is used
for solving (6) as one of the best global optimization algorithms. This algorithm

1 Traditionally, terms “simple” and “difficult” are related to the difficulty of locating
the global minimizer and are used for testing global optimization algorithms and not
interpolation methods. In this paper, these terms are used only to distinguish these
two classes and not to indicate the difficulty of the interpolation problem.
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Fig. 1. An example of the GKLS-type test function.

is a locally-biased version of the information global optimization algorithm with
“Maximum-Additive” local tuning and optimistic local improvement from [4]. In
particular, the main advantage of this method with respect to the original infor-
mation global optimization algorithm from [32] consists of the ill-conditioned
region refinement and restriction of the search interval. Since it is well known that
for small values of the parameter ε, the function Er(ε) becomes ill-conditioned
(see, e.g., [3]), then it could be reasonable to study better the region with the
small values of ε. For this purpose, the algorithm is launched first on the whole
search interval (the Preliminary Search step). Then, the global search is per-
formed on the first subinterval (the Ill-Conditioned Region Refinement step).
Finally, after the preliminary search and the ill-conditioned region refinement,
the search interval is restricted in a neighborhood of the best obtained values of
ε. After that, the search is continued over the restricted interval (the Main Search
step). The standard exhaustive LOOCV method using uniform grids of the val-
ues of ε as well as the local minimization algorithm LOOCV-min implemented as
MATLAB’s procedure fminbnd from [4] are compared with the LOOCV-GOOI
algorithm.

Parameters of the algorithms were set following [4]. In particular, the value
δ = 10−3 was used for the stopping condition in LOOCV-GOOI, the reliabil-
ity parameter r was set to r = 12 for the preliminary search, r = 8 for the
ill-conditioned region refinement, and r = 4 for the main search. The local
optimization algorithm LOOCV-min uses only the parameter tolX, which was
set to 10−15 in our experiments in order to achieve the machine precision, for
the stopping condition. Since, in [4] the LOOCV method using a uniform grid
with 500 nodes has been used, but both the local and global optimization algo-
rithms LOOCV-min and LOOCV-GOOI have not generated more than 100 tri-
als, then it can be reasonable to study the LOOCV method with a larger stepsize.
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Thus, the LOOCV method with the stepsizes h1 = εmax/99 and h2 = εmax/499
(called LOOCV-100 and LOOCV-500, respectively) are compared with the
LOOCV-min and LOOCV-GOOI algorithms (the algorithm LOOCV-500 cor-
responds to the standard LOOCV method in [4]).

The algorithms have been coded and compiled in MATLAB (version R2016b)
on a DELL Inspiron 17 5000 Series machine with 8 GB RAM and Processor Intel
Core i7-8550U under the MS Windows 10 operating system.

Each algorithm has been launched on each test problem from both the classes.
First, the execution times have been calculated for each algorithm on each test
class as follows. The execution time T i

total, i = 1, ..., 100, of each algorithm has
been measured for each test problem of the class. Then, the average execution
time T avg

total over 100 test problems has been calculated:

T avg
total =

1
100

100∑

i=1

T i
total, (8)

as well as its standard deviation StDev(Ttotal):

StDev(Ttotal) =

√√√√ 1
99

100∑

i=1

(T i
total − T avg

total)2, (9)

the smallest and the largest values Tmin
total and Tmax

total :

Tmin
total = min{T i

total, i = 1, ..., 100}, Tmax
total = max{T i

total, i = 1, ..., 100}. (10)

Then, for each test problem, the average execution time per trial T i
trial has

been calculated by division of the total execution time T i
total by the number of

trials N i
it executed by the algorithm for finding the shape parameter: T i

trial =
T i

total/N
i
it. Finally, the average value, the standard deviation, the smallest and

the largest values have been calculated for T i
trial, as well.

Then, the average value, the standard deviation, the smallest and the largest
values have been calculated in the same way for the best found values ε∗ and
Er(ε∗) from (6) and for the number of performed trials (i.e., the executed evalu-
ations of the function Er(ε) ad different values of ε) for each algorithm for each
test class.

Finally, since all test problems of the same GKLS-class differ only in param-
eters fixed randomly (see [8,28]), then the error obtained by each algorithm
on different test problems from the same class can be considered as a random
variable Er∗. So, for each algorithm on each class of test problems, the linear
regression model has been constructed for the best obtained error:

Er = β0 + β1 × X, (11)

where X is the number of the function from the class and Er is the obtained
error using the value ε∗ found by each algorithm for the test problem number
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X. The coefficients β0 and β1 have been estimated using the standard Ordinary
Least Squares estimator:

β1 =
∑100

i=1(Xi − X)(Er∗
i − Er∗)

∑100
i=1(Xi − X)2

, (12)

β0 = Er∗ − β1X, (13)

where Er∗ is the average error from the Tables 3 and 4:

Er∗ =
1

100

100∑

i=1

Er∗
i , and X =

1
100

100∑

i=1

Xi =
1 + 100

2
= 50.5. (14)

4 Results of Numerical Experiments

Results of the experiments are presented in Tables 1, 2, 3 and 4. Tables 1 and 2
show the execution times for all the methods over both the classes of test prob-
lems. For each method, the average value, the standard deviation, the smallest
and the largest values over 100 test problems calculated following (8)–(10) are
shown for the total execution time Ttotal and for the average execution time per
trial Ttrial (i.e., the total execution time divided by the number of trials, which
is equal to 100 and 500 for the methods LOOCV-100 and LOOCV-500). As it
can be seen from Tables 1 and 2, the execution times for the standard LOOCV
method both using 100 and 500 trials is larger, than the execution times of
the local and global optimization methods LOOCV-min and LOOCV-GOOI.
Moreover, the average execution time is quite similar for the LOOCV-min and
LOOCV-GOOI methods.

Table 1. Execution times for “simple” class. For each method, the average, the stan-
dard deviation, the smallest and the largest values over 100 test problems are shown.

Method Average StDev Min Max

LOOCV-100 Ttotal 0.259532 0.0148 0.21462 0.29333

Ttrial 0.0025955 0.000148 0.00215 0.00293

LOOCV-500 Ttotal 1.6185886 0.0624 1.49634 1.77206

Ttrial 0.0032371 0.000124 0.00299 0.00354

LOOCV-min Ttotal 0.0945058 0.0150 0.03967 0.15917

Ttrial 0.0024746 0.000234 0.00205 0.00408

LOOCV-GOOI Ttotal 0.1330198 0.0211 0.07415 0.16174

Ttrial 0.0023819 0.000239 0.00181 0.00301
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Table 2. Execution times for “Difficult” class. For each method, the average, the
standard deviation, the smallest and the largest values over 100 test problems are
shown.

Method Average StDev Min Max

LOOCV-100 Ttotal 0.2766418 0.0165 0.22933 0.33023

Ttrial 0.0027662 0.000165 0.00229 0.0033

LOOCV-500 Ttotal 1.7100525 0.0975 1.51752 2.13641

Ttrial 0.00342 0.000195 0.00304 0.00427

LOOCV-min Ttotal 0.0995276 0.0147 0.04636 0.12692

Ttrial 0.002605 0.000196 0.00222 0.00331

LOOCV-GOOI Ttotal 0.1306838 0.02652 0.07524 0.19115

Ttrial 0.002447 0.000287 0.00174 0.0033

Table 3. Results on the “simple” class. For each method, the average value, the stan-
dard deviation, the smallest and the largest values over 100 functions are shown.

Method Average StDev Min Max

LOOCV-100 ε∗ 3.5111076 1.298 0.20202 4.84848

Er∗ 1.74588915 0.834 0.592631 4.71696

LOOCV-500 ε∗ 3.0989983 1.620 0.04008 4.92986

Er∗ 1.62075683 0.781 0.488258 4.63249

LOOCV-min Nit 38.32 5.412 15 43

ε∗ 3.8770097 0.473 2.79051 4.9319

Er∗ 1.84643575 0.957 0.543417 4.59887

LOOCV-GOOI Nit 55.58 5.113 41 63

ε∗ 3.3596371 1.365 0.165 4.9317

Er∗ 1.66772142 0.825 0.543426 4.59973

Then, Tables 3 and 4 show the results obtained by each optimization algo-
rithm on both the classes of test problems. In each table, the rows ε∗ show the
average best obtained value of the shape parameter ε by each method over all
100 test functions, its standard deviation over 100 test functions, its smallest and
largest values, respectively. The rows Er∗ show the average error using the best
obtained values of the shape parameter ε, its standard deviation, the smallest
and the largest values, respectively, over all 100 test functions. Finally, the rows
Nit show the average number of executed trials (or evaluations of the error at
different values of ε), its standard deviation, the smallest and the largest values
over all 100 test functions for the methods LOOCV-min and LOOCV-GOOI.

As it can be seen from Tables 3 and 4, the best average error was obtained
by the method LOOCV-500 for both the classes of test problems, while the
average error obtained by the method LOOCV-GOOI is better, than the average
error obtained by the methods LOOCV-100 and LOOCV-min. However, the
method LOOCV-500 has executed 500 trials in order to obtain better error,
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Table 4. Results on the “difficult” class. For each method, the average value, the
standard deviation, the smallest and the largest values over 100 functions are shown.

Method Average StDev Min Max

LOOCV-100 ε∗ 3.3010079 1.760 0.20202 8.68687

Er∗ 1.72870075 0.896 0.300373 4.71778

LOOCV-500 ε∗ 2.4761517 1.891 0.08016 5.81162

Er∗ 1.46907157 0.694 0.289021 3.80709

LOOCV-min Nit 38.3 5.363 16 43

ε∗ 3.9942203 0.816 2.78239 8.67908

Er∗ 1.90784202 0.954 0.286915 4.57326

LOOCV-GOOI Nit 53 6.404 38 65

ε∗ 2.8477346 1.850 0.08928 6.61288

Er∗ 1.56127502 0.733 0.286961 4.17587

while the method LOOCV-GOOI has executed less than 65 trials for both the
classes (see the column “Max” and the rows “Nit”). In average, the algorithm
LOOCV-GOOI executed almost 55 trials for both the classes, which is almost 9
times smaller, than the number of trials of the method LOOCV-500. Moreover,
the average and minimum values of ε for LOOCV-min are larger than those
for LOOCV-100, LOOCV-500 and LOOCV-GOOI, while its standard deviation
is smaller, which means that the local optimization algorithm is not able to
study the ill-conditioned region with small values of ε. It stops very frequently
on the locally optimal values of ε, while the smallest obtained value of ε for
LOOCV-GOOI is smaller, than the value for LOOCV-100, which means that
the algorithm LOOCV-GOOI studies the ill-conditioned region even better, than
the “greedy” method LOOCV-100. In Fig. 2, an example of the error functions
(6) is presented for the first test problem from both the “Simple” and “Difficult”
classes.

Finally, Fig. 3 shows the distribution of the best obtained values Er(ε∗) and
the regression lines (11) for each test problem by each algorithm. As it can be
seen from Fig. 3, the lowest regression line corresponds to the method LOOCV-
500 for both the classes, while the regression lines of the methods LOOCV-
100 and LOOCV-min are higher than the regression function of the method
LOOCV-GOOI. It can be also seen from Fig. 3 that the error obtained by the
LOOCV-GOOI method is the best one in several cases (see, e.g., the obtained
errors for the functions number 79 and 100 of the “simple” class). The error
obtained by the global optimization method LOOCV-GOOI is always not worse
than the error obtained by the local optimization method, but it is better in a
lot of cases.
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Fig. 2. The error functions for the first test problem from the “Simple” (top) and “Dif-
ficult” (bottom) classes used in the experiments. The best found values by LOOCV-100,
LOOCV-500, LOOCV-min, and LOOCV-GOOI are indicated as “o”, “x”, “*”, and “+”,
respectively.
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Fig. 3. Interpolation errors for test problems from the “simple” class (top) and from
the “difficult” class (bottom). The regression lines for each algorithm are also indicated
as blue dashed line for the method LOOCV-min, green and black solid lines - for the
methods LOOCV-100 and LOOCV-500, respectively, and red dash-and-dot line for the
method LOOCV-GOOI. (Color figure online)
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5 Conclusion

It has been shown that global optimization methods can be successfully used
for finding a good value of the shape parameter in radial basis functions. The
obtained error in this case is better in average, than the error obtained by the
standard LOOCV method using a uniform grid with a small size of the grid
(using, e.g., 100 evaluations). It has been also shown that even a grid with
500 nodes can be not sufficient for guaranteeing the best value of ε, since in
several cases the global optimization method has found a better value executing
in average always no more than 55 evaluations. Finally, it has been shown that
the traditionally used local optimization algorithm LOOCV-min is not able to
study the ill-conditioned region with small values of the shape parameter, giving
a locally optimal solution, which is worse than the globally optimal one found
by the other methods. It should be also noted that the number of trials executed
by the global optimization method is larger than the number of trials executed
by the local optimization method, but the difference is small (almost 15 trials in
average for both the classes) and not meaningful since it is related to the study
of the ill-conditioned region and, in practice, the number of trials for solving
ill-conditioned optimization problems is always much higher (see, e.g., [27]).

To conclude, the presented global optimization algorithm has shown a
promising performance and can be successfully used in practice for finding good
values of the shape parameter in radial basis functions interpolation.
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Abstract. The following time-optimal control problem is solved numer-
ically: compute the fastest trajectory joining two given (initial and final)
points of a dynamic control system in a time-periodic flow field subject to
state constraints. The considered problem mimics the real-life task of path-
planning of a ship in a flow with tidal variations. The considered problem is
solved using the maximum principle in Gamkrelidze’s form. Under reason-
able assumptions on the flow field, it is proved, that the problem is regular
and the measure Lagrange multiplier, associated with the state constraint,
is continuous. These properties (regularity and continuity) play a critical
role in computing the field of extremals by solving the two-point boundary
value problem given by the maximum principle. Some examples of time-
periodic fluid flows are considered and the corresponding optimal solutions
are found.

Keywords: Trajectory-planning · Optimal control · State
constraints · Indirect method · Maximum principle in Gamkrelidze
form · Two-point boundary value problems · Shooting method

1 Introduction

In this article, we consider a state-constrained time-optimal control problem in
the presence of a time-periodic flow field, the so-called “navigation problem”.
We are interested in computing its set of extremals using an indirect method
based on the necessary optimality conditions in the form of a maximum prin-
ciple [1]. However, indirect methods represent significant challenges for optimal
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M. Jaćimović et al. (Eds.): OPTIMA 2019, CCIS 1145, pp. 340–354, 2020.
https://doi.org/10.1007/978-3-030-38603-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38603-0_25&domain=pdf
http://orcid.org/0000-0002-5179-4344
http://orcid.org/0000-0002-4761-5868
http://orcid.org/0000-0002-9602-2452
https://doi.org/10.1007/978-3-030-38603-0_25


Time-Optimal Control Problem in a Time-Periodic Flow Field 341

control problems with state constraints. Indeed, the difficulty is due to the fact
that the state constraint Lagrange multiplier appearing in the necessary opti-
mality conditions whenever the state constraint becomes active is a mere Borel
measure. Thus, in general, this multiplier is discontinuous, and this leads to
serious difficulties in computing the set of extremals at the times in which the
state trajectory meets the boundary of the state constraint set. Therefore, in
order to overcome this difficulty, we employ a not so commonly used form of the
maximum principle – the so-called Gamkrelidze form – and impose a regularity
condition on the data of the problem that entails the continuity of the measure
Lagrange multiplier. This is crucial to ensure the appropriate behavior of the
proposed numerical procedure to find the corresponding set of extremals.

Moreover, we also present certain conditions that, once satisfied, prevent the
emergence of singular control processes. These may be helpful in guiding the
computational procedures, by enabling to check the absence of singular controls.

To better grasp the proposed indirect method in the framework of regular
problems, we study a navigation problem in R

2. More precisely, we consider
an object moving in a closed state domain, subject to a time-dependent fluid
flow vector field. The dynamics of the proposed model is affine in the control
variable whose values are constrained to the unit square in R

2, and is affected
by the vector flow field action. For this model, we are interested in computing
the minimum time trajectory connecting two given distinct initial and terminal
points. For the problem in question, the regularity condition is satisfied under
mild conditions on the vector flow field. In order to develop the proposed indirect
method, we derive the corresponding necessary optimality conditions in the non-
degenerate Gamkrelidze form, from which the expression of the optimal control is
computed. Moreover, the regularity of the problem entails an explicit expression
for the measure multiplier. The points where the extremal trajectories reach the
boundary of the state constraint can be computed as a result of the continuity
of the measure Lagrange multiplier. The two expressions - of the control and
the measure multiplier - are functions of the state and adjoint variables, and
are replaced in the associated two-point boundary value problem, solved via a
shooting algorithm. From the set of all extremals, only the optimal ones, i.e., with
the minimal time, are selected as solutions to the given time-optimal problem.
We discuss some examples of time-periodic vector flow fields, and we plot the
corresponding set of extremals.

The proposed numerical approach based indirect method was discussed in [2]
for the steady flow field case. Our paper extends the analysis to time-periodic
flow fields. The dependence of the flow on time is crucial for many realistic path
planning problems. For example, tides play an important role in shaping water
velocity fields in rivers, mainly near their mouth [3]. Moreover, in our paper we
discuss, with more details, sufficient conditions for the non-occurrence of singular
controls for a particular choice of control set.

The area of state-constrained optimal control problems has been widely inves-
tigated in the literature, cf. [4–14]. Questions related to the non-degeneracy
of the necessary optimality conditions can be found in [15–22]. Issues on the
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continuity of the measure multiplier are extensively studied in [23–30]. Numerical
methods for computing the set of extremals in the presence of state constraints
can be found in [31–39]. For indirect methods, we refer the reader to [32,34–39],
among many others.

The article is organized as follows: the formulation of the time-optimal navi-
gation problem is described in Sect. 2 and the regularity concept is discussed. In
Sect. 3, the necessary optimality conditions in the Gamkrelidze’s form are given
in a non-degenerate form. Section 4 is devoted to the application of the maximum
principle to the problem in question when the control set is constrained to the
unit square in R

2 and to derive the explicit formulas for the corresponding mea-
sure multiplier and extremal control. Sufficient conditions for the non-occurrence
of singular controls are also discussed. Numerical results and the description of
the algorithm are featured in Sect. 5. Section 6 concerns a conclusion, and the
Appendix contains detailed proofs of the key results.

2 Problem Formulation: Navigation Problem

We consider an object driven by a dynamical system in a two-dimensional time-
space dependent flow field v(t, x), and while subject to affine state constraints.
The ultimate goal is to compute a control process that yields the minimum
transit time between two given starting and final points A and B within the set
of extremals, i.e., the set of control processes satisfying the maximum principle
conditions. The corresponding problem is described as follow:

Minimize T
subject to ẋ = u + v(t, x),

x(0) = A, x(T ) = B,
|x1| ≤ 1,
u ∈ U := {u : ϕ(u) ≤ 0},

(1)

where x = col(x1, x2) ∈ AC([0, T ];R2) (here col(x1, x2) is the collection of x1

and x2, and AC stands for the space of absolutely continuous functions), and u =
col(u1, u2) ∈ L1([0, T ];R2) are, respectively, the state and the control variables.
The point A is the starting point, while B is the terminal point, and v : [0, T ] ×
R

2 → R
2 is a smooth map which defines a fluid flow varying in time and space,

and ϕ : R2 → R
2 is also smooth. Following [1], we assume that the boundary of U

is regular in the sense that the vectors ∇ϕi, i ∈ Iϕ(u), are linearly independent,
where Iϕ(u) is the set of i’s such that ϕi(u) = 0 (i = 1, 2).

The state constraint set is represented by the inequality |x1| ≤ 1. The termi-
nal time T is to be minimized by the optimal control process.

2.1 Regularity Condition

For the problem (1) we consider here, the function Γ (t, x, u) : [0, T ] × R
2 ×

R
2 → R, defined by the scalar product of the gradient of the function
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defining the considered active inequality state constraint and the corresponding
dynamics, as

Γ (t, x, u) := u1 + v1(t, x).

In the sequel of the regularity concept in [29], we state the following definition:

Definition 1. Assume that, for all t ∈ [0, T ], x ∈ R
2 and u ∈ R

2, such that
|x1| = 1, ϕ(u) = 0 and Γ (t, x, u) = 0, the set of vectors ∂Γ

∂u and ∇ϕi, for all
i ∈ Iϕ(u) is linearly independent. Then, we say that problem (1) is regular with
respect to the state constraint.

As it will be explained in the coming sections, the regularity of the problem
is, in the context of our paper, crucial for the appropriate behavior of the numer-
ical proposed approach at points in which the trajectory meets the boundary of
the state constraint set. The regularity condition might seem restrictive. How-
ever, for a large class of engineering problems it is automatically satisfied under
natural assumptions. An example will be featured in Sect. 4 for a specific case
of control set U .

3 Maximum Principle

In this section, we derive non-degenerate necessary optimality conditions in the
Gamkrelidze’s form for problem (1). We start by considering the extended time-
dependent Hamilton-Pontryagin function

H̄(t, x, u, ψ, μ, λ) = 〈ψ, u + v(t, x)〉 − μΓ (t, x, u) − λ,

where ψ ∈ R
2, μ ∈ R and λ ∈ R

+.
In order to satisfy the notation in what follows, we denote by f∗(y, z) the

function f(x, y, z) in which x is replaced by the reference value x∗.

Theorem 1. We assume that problem (1) is regular in the sense of Definition 1.
Then, for an optimal process (x∗, u∗, T ∗), there exist a set of Lagrange multipli-
ers: a number λ ∈ [0, 1], an absolutely continuous adjoint arc ψ = (ψ1, ψ2) ∈
W1,∞([0, T ∗];R2), and a scalar function μ(·), such that:

(a) Adjoint equation

ψ̇(t) = −∂H̄

∂x
(t, x∗(t), u∗(t), ψ(t), μ(t), λ) for a.a. t ∈ [0, T ∗];

(b) Maximum condition

u∗(t) ∈ argmax
ϕ(u)≤0

{
H̄(t, x∗(t), u, ψ(t), μ(t), λ)

}
for a.a. t ∈ [0, T ∗];

(c) Time-transversality condition

h(T ∗) = 0 where h(t) := max
ϕ(u)≤0

{
H̄∗(t, u)

}
;
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(d) μ(t) is constant on the time intervals where |x∗
1(t)| < 1, increasing on {t ∈

[0, T ] : x∗
1(t) = −1}, and decreasing on {t ∈ [0, T ] : x∗

1(t) = 1}. Moreover,
μ(·) is continuous on [0, T ∗];

(e) Non-triviality condition

λ + |ψ1(t) − μ(t)| + |ψ2(t)| > 0, for all t ∈ [0, T ∗].

Remark 1.

(a) The proof of Theorem 1 follows easily from previous results, [19,40], and
[21, Theorem 4.1], and, thus, is placed in the Appendix. It relies on a standard
time-reparametrization technique that converts problem (1) into a fixed and
time-independent one to which the maximum principle was proved in the
above references.

(b) From the regularity property of the problem, the expression of the measure
multiplier can be found in terms of the state and the adjoint variables. The
junction points – the points at which the trajectory meets the state constraint
boundary – can be computed as a result of the continuity of the measure
multiplier μ (condition (d)). From these considerations, explicit formulae for
the measure multiplier can be obtained. This is the core of our computational
scheme proposed in this article for finding the set of extremals.

(c) The non-triviality condition (e), which asserts the non-degeneracy of the
Maximum Principle, implies that

|ψ1(t) − μ(t)| + |ψ2(t)| > 0 for all t ∈ [0, T ∗]. (2)

4 Applications: Control Set Constrained to the Square

In this section, we consider the specific case of a control set represented as the
unit square in R

2, i.e.

U := {u ∈ R
2 : ϕ1(u) := |u1| ≤ 1 and ϕ2(u) := |u2| ≤ 1}. (3)

We study how a simple assumption on the vector flow field can automatically
lead to regularity in the sense of Definition 1. Thereafter, we use the necessary
optimality condition derived in Sect. 3 to obtain explicit expressions of the opti-
mal control and the measure Lagrange multiplier in terms of the state and adjoint
variables. These expressions will be substituted in the associated boundary-value
problem to numerically find the set of extremals (see Sect. 5).

4.1 Sufficient Condition for Regularity

In the problem considered here, the following simple assumption suffices to
ensure regularity as defined above.
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(H) |v1(t, x)| < 1 for all (t, x) ∈ R × R
2.

Indeed, if the starting and/or terminal positions are in the interior of the state
constraint domain, and if the flow is much faster at the boundary of the state
constraint set, |x1| = 1, assumption (H) is crucial to guarantee that the moving
object is able to overcome the flow field effect, and, thus, leave the boundary of
the state constraint, and move across the river along the axis 0x1.

Proposition 1. Assume that (H) is satisfied. Then, the problem (1), with the
specific choice of the control set U , as defined in (3), is regular in the sense of
Definition 1.

Proof. For Γ (t, x, u) = 0, |u1| < 1 L-a.e., and the strict inequality ϕ1(u) < 0
holds at the boundary of the state constraint set. Then, the regularity condition
is satisfied if the vectors ∇ϕ2, and ∂Γ

∂u constitute a linearly independent set.
For our particular problem, ∇ϕ2 = col(0, 1), and ∂Γ

∂u = col(1, 0). Therefore, the
problem (1) with the particular choice in (3) is regular.

Remark 2. Under assumption (H), the necessary conditions of optimality
expressed by Theorem 1, guaranteeing the non-degeneracy of the Lagrange mul-
tipliers, and the continuity of the Borel measure μ, can be applied.

4.2 Explicit Formulas for u∗ and µ

From the maximum condition (b) of Theorem1, for a.a. t ∈ [0, T ∗],

max
|u1|≤1,|u2|≤1

{(ψ1(t) − μ(t)) u1 + ψ2(t)u2} = (ψ1(t) − μ(t)) u∗
1(t) + ψ2(t)u∗

2(t).

This implies that the value of the optimal control process (u∗
1, u

∗
2) varies w.r.t.

the sign of ψ1 − μ and ψ2, as follows:
{

if ψ1 − μ �= 0, then u∗
1 = sgn(ψ1 − μ)

if ψ2 �= 0, then u∗
2 = sgn(ψ2).

(4)

The expressions of u∗ and μ differ for points belonging to the boundary of the
state constraint set or for points in its interior. Next, we discuss these two cases.

When the trajectory stays on the boundary of the state constraint set during
a certain set Δ, then u∗

1(t) = −v1(t, x∗(t)) L-a.e. on Δ, and, by continuity,
everywhere on Δ. Thus, under assumption (H), |u∗

1(t)| < 1. Therefore, from the
maximum condition, we have

μ(t) = ψ1(t) for all t such that |x∗(t)| = 1. (5)

Moreover, as a result of (2), we have ψ2(t) �= 0 for all t such that |x∗
1(t)| = 1

and, thus, u2 = ±1.
Now, let Δ be a time interval during which the trajectory lies in the inte-

rior of the state constraint set, i.e. |x∗
1(t)| < 1 ∀ t ∈ Δ. For any point t ∈ Δ,
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the Lagrange measure multiplier μ is constant. Thus, it follows that, for some t
in a nonzero Lebesgue measure subset of Δ, we have ψ1(t) − μ(t) = 0, and since
μ(t) is constant on Δ, and hence, ψ̇1(t) = 0, on this subset. From the adjoint

equations, we conclude that ψ2(t)
∂v2(x)
∂x1

= 0. From the non-triviality condition,

we have to have ψ2(t) �= 0 L-a.e. on Δ, and, thus,
∂v2(x)
∂x1

= 0 L-a.e. on Δ. In this

case the maximum condition is not informative for the first component of the
control. This is one case of the so-called singular control, i.e., the controls cannot
be defined on a non-zero measure set. Another singular situation corresponds to
the case when ψ2(t) = 0 for some t in a nonzero Lebesgue measure subset of Δ.
Next, we present and prove sufficient conditions that preclude the emergence of
singular control by imposing additional conditions on the flow vector-field v.

Let S0 = {t ∈ [0, T ] : |x1(t)| = 1}, and S− = {t ∈ [0, T ] : |x1(t)| < 1},
Δ ⊂ [0, T ] such that L-meas(Δ) > 0, and

S1 = {t ∈ Δ ⊂ S− : ψ1(t) − μ(t) = 0 and ψ2 �= 0}
S2 = {t ∈ Δ ⊂ S− : ψ1(t) − μ(t) �= 0 and ψ2 = 0}
S3 = {t ∈ Δ ⊂ S0 : ψ1(t) − μ(t) = 0 or ψ2 = 0}

In what follows, we suppress the t-dependence of v as it does not play any role
in the developments.

Proposition 2.

(a) If
∂v2(x(t))

∂x1
�= 0 on S1, then L-meas(S1) = 0.

(b) If
∂v1(x(t))

∂x2
�= 0 on S2, then L-meas(S2) = 0.

(c) On S3 we always have L-meas(S3) = 0.

Proof. Proof of item (a). Clearly, for all t ∈ S1, −ψ̇1(t) = ψ2(t)
∂v2(x(t))

∂x1
,

and, thus −ψ̇1(t) �= 0 for all t ∈ S1. Since S1 ⊂ S−, we readily conclude that
L-meas(S1) = 0.

Proof of item (b). Now, for t ∈ S2, we have −ψ̇2(t) = (ψ1(t) − μ(t))
∂v1(x(t))

∂x2
.

Thus, if ∂v1(x(t))
∂x2

�= 0, then ψ̇2(t) �= 0, and, thus, L-meas(S2) = 0.
Proof of item (c). Consider some t ∈ S3. The system of adjoint equations can be
written as follows

− ψ̇(t) = DT
x v(x(t))ψ(t) − μ(t)∇xv1(x(t)) (6)

Since ψ1(t) − μ(t) = 0 on S0, we have

−ψ̇1(t) =
∂v2(x(t))

∂x1
ψ2(t) and − ψ̇2(t) =

∂v2(x(t))
∂x2

ψ2(t).
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If there exists some t̄ ∈ Δ such that ψ2(t̄) = 0, then ψ2(t̄) = 0 on a nonzero
Lebesgue measure subset of Δ. From the above, also follows that ψ1(t) is constant
on this subset what contradicts ψ1(t) − μ(t) = 0 on S0. From this, and the
nontriviality condition of the multipliers, we have the desired conclusion.

Remark 3. Proposition 2 represents sufficient conditions to avoid singular con-
trols. These conditions allow the maximum condition to stay informative and to
define the optimal controls on a non-zero measure set. Since the conditions are
only sufficient, this means that there might be some cases in which the singular
controls do not occur even if these conditions are not satisfied.

5 Numerical Results

In this section, we present and discuss some numerical results for the above
stated optimal control problem by using an indirect method based on the con-
sidered Maximum Principle. The conditions of this Maximum Principle lead to
the following two-point Boundary Value Problem (BVP):

ẋ = u + v, (7a)

ψ̇ = −ψ
∂v

∂x
+ μ∇v1, (7b)

x(0) = A, (7c)
x(T ) = B. (7d)

The control variables u1(t) and u2(t) are given by (4) and the measure Lagrange
multiplier μ(t) is constant for trajectories not meeting the boundary and is
defined by (5) along the boundary of the state constraint. Boundary conditions
at 0 and T for the adjoint arc ψ(t) are absent.

The BVP problem (7) is solved by a variant of the shooting method (see,
e.g., [41] for a brief overview of the shooting methods). The shooting parameter
is the angle θ parameterizing the initial boundary condition for ψ:

ψ(0) = (cos(θ), sin(θ)). (8)

Starting from the initial conditions (7c) and (8) for a given value of θ, the Cauchy
problem for the system of ordinary differential equations (7a)–(7b) is solved
by the classical 4th order Runge-Kutta method with the constant time step
τ = 10−4. The set of solutions to the BVP (7) constitute the field of extremals.
By integrating the system (7a)–(7b) forward in time, the measure Lagrange
multiplier μ(t) is set to zero for the trajectory in the interior of the domain
(i.e. when |x1| < 1). If it reaches the boundary, |x1| = 1, at, say, t = t∗, then
μ∗ = μ(t∗) is computed by (5). By using the continuity of the measure Lagrange
multiplier [29], we deem, that if |μ∗| < 10−3, the point is a junction point of
an extremal and integration of the system is continued following the domain
boundary. At each time step along the boundary, the trajectories leaving it with
constant values of μ are computed. This is done to find another junction point
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or a segment joining the boundary with the terminal point B. If at a certain
time the terminal boundary condition (7d) is satisfied to the accuracy 10−3,
the corresponding trajectory represents an extremal. To find all extremals, the
parameter θ is varied from 0 to 2π in (8) with a constant step of 10−2, being
the bisection method used if the required accuracy is not achieved. Once all
extremals, i.e., field of extremals, are computed, the one possessing minimal
travelling time among all the extremals is the optimal solution to the original
control problem (1).

The first example considers the steady fluid flow

v(x) = (
1
4
x1, −x2

1), (9)

which is represented by the black arrows in Fig. 1. We clearly notice that, for this
specific field, ∂v1

∂x2
= 0 everywhere, while ∂v2

∂x1
= 0 at points such that x1 = 0. How-

ever, the field of extremal can still be numerically found, supporting Remark 3.
The initial and final positions are A = (0, 0) and B = (−0.5,−6), respectively.
The field of extremals is also shown in Fig. 1. The optimal extremal is the red
one with travelling time 3.43 time units.

In the next example, a perturbation of the flow periodic in time (9) is con-
sidered for the same trajectory endpoints A and B. Here,

v(x, t) =
(

1
4x1

+ sin
(

πt

2

)
, −x2

1

)

and it is assumed that tidal variations affect only the component transversal to
the main flow. Although Proposition 2 is violated at some points, the field of
extremals is computed and it is shown in Fig. 2, displaying four extremals as
in the steady case considered above. In contrast to the problem for the steady
flow (9), only one extremal (shown in blue) does not meet the boundary; two
extremals (black) meet the right boundary and only one (red) has the left bound-
ary segment. The optimal extremal is again the one (shown in red, with travelling
time 3.63 s) involving the left boundary segment, however, the travelling time
along the extremal (black) involving the right boundary, 3.77 s, is not signifi-
cantly larger.

The last example concerns the flow vector field

v(x, t) =
(

x1

4
+

x2

10
, −x2

1 − 1
2

sin2

(
πt

2

))
.

For this field, ∂v1
∂x2

�= 0, while ∂v2
∂x1

= 0 when x1 = 0. The corresponding field
of extremals is shown in Fig. 3. This field contains five “inner” extremals (i.e.
not meeting the state constraint boundary), one meeting the right boundary,
and the optimal one meeting the left boundary and reaching the final point B
in 3.19 time units.
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Fig. 1. Field of extremals for the
steady fluid flow v(x) = ( 1

4
x1, −x2

1).
Extremals not meeting the bound-
ary are shown in blue, meeting the
right and left boundaries are dis-
played in black and red, respectively.
Inscribed numbers stand for travel-
ling times along the corresponding
extremals. (Color figure online)
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Fig. 2. Field of extremals for the time-
periodic fluid flow v(x, t) = ( 1

4
x1 +

sin(πt/2), −x2
1). Extremals not meet-

ing the boundary are shown in blue,
and meeting the right and left bound-
aries are displayed in black and red,
respectively. Inscribed numbers stand
for travelling times along the cor-
responding extremals. (Color figure
online)

6 Conclusion

In this article, we presented an approach based on the maximum principle
amenable to the numerical computation of solutions to a regular class of state-
constrained optimal control navigation problems subject to a flow field effects.
In order to overcome the computational difficulties due to the Borel measure
associated with the state constraints, a not so common version of the maximum
principle - the so-called Gamkrelidze form - was adopted and a regularity con-
dition on the data of the problem was imposed to ensure the continuity of the
Borel measure multiplier. We showed how this property plays a significant role
for trajectories meeting the state constraint boundary. We also proved that this
regularity assumption is not restrictive, and it is naturally satisfied by a wide
class of optimal control problems. The theoretical analysis was supported by
several illustrative examples (for steady and time-periodic flows mimicking real
river currents) for which the corresponding fields of extremals were constructed,
and optimal solutions were found.
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Fig. 3. Field of extremals for the fluid flow v(x, t) =
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1
4
x1 + 1

10
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sin2
(
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2
πt

))
.

Extremals not meeting the boundary are shown in blue, meeting the right and left
boundaries are displayed in black and red, respectively. Inscribed numbers stand for
travelling times along the corresponding extremals. (Color figure online)

Appendix

Proof of Theorem 1. Following Remark 1 (a), by using a standard time-
reparametrization we now formulate an equivalent fixed-time optimal control
problem that happens to be autonomous. This is done by fixing [0, T ∗], and
by considering time as an additional state variable. Indeed, for a minimizer
(x∗, u∗, T ∗) of the original problem (1), we consider the associated extended
fixed, and independent-time optimal control problem. We do not relabel the
state and the control variables.

Minimize x0(T ∗)
subject to ẋ0 = u0, ẋ = (u + v(x0, x))u0, a.e. t ∈ [0, T ∗]

x(0) = A, x(T ∗) = B, x0(0) = 0, x0(T ∗) ∈ R

|x1| ≤ 1, for all t ∈ [0, T ∗]
u0 ∈ [1 − α, 1 + α] a.e. t ∈ [0, T ∗]
u ∈ U := {u : ϕ(u) ≤ 0},

(10)

where x0 is a new state variable which represents the original time variable,
and u0 the associated control taking values on [1 − α, 1 + α], for some given
α ∈ (0, 1). It is straightforward to see that both problems are equivalent. If
(x∗

0(t) = t, u∗
0 = 1, x∗, u∗) is a minimizer for (10) on [0, T ∗], then it follows,

by the performing the inverse of the above time reparametrization that
(x∗, u∗, T ∗) is a minimizer for (1). The converse is easy to show by contra-
diction. If there is some (x̄0, ū0, x̄, ū) feasible for (10) with x̄0(T ∗) = T̄ < T ∗,
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then, again, by the inverse time reparametrization, we conclude that there is a
control process (x̄, ū, T̄ ) feasible for (1), i.e., with x̄(0) = A and x̄(T̄ ) = B as
well as with the satisfaction of all other state constraints. Since T̄ < T ∗ the time
optimality of (x∗, u∗, T ∗) is contradicted.

The corresponding time-independent Hamiltonian is denoted H̄0 and defined
given by:

H̄0 := 〈ψ, [u + v(x0, x)]u0〉 + ψ0u0 − μ(u1 + v1(x0, x))u0.

The application of the maximum principle to (10) yields the existence of a num-
ber λ ∈ [0, 1], (ψ0, ψ) ∈ W1,∞([0, T ∗];R) × W1,∞([0, T ∗];R2), and a scalar func-
tion μ(.), such that

(i) (ψ̇0(t), ψ̇(t)) = −∂H̄0
∂x0

× ∂H̄0
∂x (x∗

0, u
∗
0, x

∗, u∗, ψ0, ψ, μ, λ) for a.e. t ∈
[0, T ∗], and ψ0(T ∗) = −λ;

(ii) (u∗
0(t), u

∗(t)) ∈ argmax
u0∈[1−α,1+α], ϕ(u)≤0

{H̄0(x∗
0(t), u0, x

∗(t), u, ψ0(t), ψ(t),

μ(t), λ)} for a.e. t ∈ [0, T ∗];
(iii) (Conservation law) max

u0∈[1−α,1+α], ϕ(u)≤0
{H̄∗

0 (u0, u)} = 0 ∀t ∈ [0, T ∗];

(iv) μ(t) is constant on the time intervals where |x∗(t)| < 1, increasing on {t ∈
[0, T ] : x∗

1(t) = −1}, and decreasing on {t ∈ [0, T ] : x∗
1(t) = 1}. Moreover,

μ(·) is continuous on [0, T ∗];
(v) λ + |ψ0(t)| + |ψ1(t) − μ(t)| + |ψ2(t)| > 0, ∀t ∈ [0, T ∗].

Remark 4. These necessary optimality conditions are results of [19,40], and
[21, Theorem 4.1]. Moreover, the non-triviality condition (v) is implied by the
regularity of the extended problem (10), in the sense of Definition 1. More details
can be found in [2].

We explicit now these necessary conditions (i)–(v).
Condition (i) is equivalent to the following:

ψ̇(t) =
(

−ψ(t)
∂v

∂x
(x∗

0(t), x
∗(t)) + μ(t)

∂Γ

∂x
(x∗

0(t), x
∗(t), u∗(t))

)
u∗
0(t)

= −ψ(t)
∂v

∂x
(t, x∗(t)) + μ(t)

∂Γ

∂x
(t, x∗(t), u∗(t))

which proves condition (a) of Theorem1, and

ψ̇0(t) =
(

− ψ(t)
∂v

∂x0
(x∗

0(t), x
∗(t)) + μ(t)

∂Γ

∂x0
(x∗

0(t), x
∗(t), u∗(t))

)
u∗
0(t)

= −ψ(t)
∂v

∂x0
(t, x∗(t)) + μ(t)

∂Γ

∂x0
(t, x∗(t), u∗(t)). (11)

Expliciting the maximum condition (ii) implies

max
u0∈[1−α,1+α], u∈U

{u0 (ψ0(t) + (ψ1(t) − μ(t))u1 + ψ2(t)u2)}

= ψ0(t) + (ψ1(t) − μ(t))u∗
1(t) + ψ2(t)u∗

2(t), (12)
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i.e.

ψ0(t)+(ψ1(t)−μ(t))u∗
1(t)+ψ2(t)u∗

2(t) ≥ u0 (ψ0(t) + (ψ1(t) − μ(t))u1 + ψ2(t)u2)

for all u ∈ U and u0 ∈ [1 − α, 1 + α], in particular for u0 = 1. Therefore, for all
u ∈ U

(ψ1(t) − μ(t))u∗
1(t) + ψ2(t)u∗

2(t) ≥ (ψ1(t) − μ(t))u1 + ψ2(t)u2

which confirms that the maximum condition (b) of Theorem1 holds true. Also,
the fact that u∗

0(t) = 1 a.e. entails that (ψ1(t) − μ(t))u∗
1(t) + ψ2(t)u∗

2(t) = 0.
Furthermore, denoting

h0 := max
u0∈[1−α,1+α], ϕ(u)≤0

{H̄∗
0 (u0, u)} = max

u0∈[1−α,1+α], ϕ(u)≤0
{u0(H̄

∗(u) + λ + ψ0)},

and since h0(T ∗) = h0(x∗
0(T

∗)) = 0 as a consequence of (iii), and ψ0(T ∗) = −λ
(owing to (i)), we deduce that h(T ∗) = 0, where h(t) := max

ϕ(u)≤0

{
H̄∗(t, u)

}
,

confirming the time-transversality condition (c) of Theorem1.
The non-triviality condition (e) is a direct consequence of (2). It suffices to

prove it by contradiction. Finally, condition (d) is direct from condition (iv).
Therefore, Theorem 1 is proved.
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Abstract. We consider an algorithm with space dilation. For a certain
choice of the dilation coefficient, this is a method of outer approxima-
tion of semi-ellipsoids by ellipsoids with monotonous decrease in their
volume. It is shown that the Yudin-Nemirovski-Shor ellipsoid method
is a specific case. Two forms of the algorithm are dealt with: the
B-form, where the inverse space transformation matrix B is updated,
and the H-form, where the symmetric matrix H = BB� is updated.
Our test results show that the B-form of the algorithm is computation-
ally more robust to error accumulation than the H-form. The application
of the algorithm for finding a minimizer of a convex function, for solving
convex programming problems, and for determining a saddle point of a
convex-concave function is described. Possible ways of accelerating the
algorithm by deeper ellipsoid approximations are discussed as well.

Keywords: Ellipsoid method · Space transformation · Convex
programming problem · Saddle point problem

1 Introduction

The classical ellipsoid method (EM) was first proposed in 1976 by Yudin and
Nemirovski [1]. They derived this method from the cutting plane scheme and
called it modified centered cutting method (MCCM). Independently, EM was
discovered by Shor in the paper [2] from 1977. There, EM is presented as a
particular case of subgradient methods with space dilation, which were proposed
by Shor at the end of the sixties. The generalized ellipsoid method (GEM) [3] is
an algorithm with dilation of the n-dimensional space, where the space dilation
coefficient satisfies the inequality

α +
1
α

< 2 n
√

α. (1)
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GEM is a method of outer approximation of semi-ellipsoids by ellipsoids whose
volumes decrease monotonously. For α =

√
n+1
n−1 , GEM coincides with the Yudin-

Nemirovski-Shor EM. If α =
√

1 + 1
n2 + 1

n , then GEM yields the approximate
ellipsoid method (AEM) in [4]. In this paper, we provide properties of two algo-
rithmic realizations of GEM. The first algorithm is based on updating a possibly
nonsymmetric matrix B, as in the Shor ellipsoid method, and the second updates
a symmetric matrix H = BB�, as in the Yudin-Nemirovski ellipsoid method.

We present the emshor algorithm (ellipsoid method of Shor) for computing
a solution of the problem of unconstrained minimization of a convex function
[5]. It updates a nonsymmetric matrix B and uses a stopping criterion that, for
a convex function, guarantees to find a point at which the function value does
not deviate more than a specified tolerance from the optimal function value. It
is shown that the emshor algorithm finds sufficiently accurate approximations
to the minimum point of a ravine convex function, and for functions of twenty
variables it takes no longer than a few seconds on a usual PC.

The application of GEM for solving convex programming problems and for
determining a saddle point of a convex-concave function is described. In these
cases, we can use deeper ellipsoid approximations, i.e., minimal volume ellipsoids
based on two cutting hyperplanes [6]. The anti-ravine technique, similar to that
used in Shor’s r-algorithm [7–10], is considered. In this case coefficients of space
dilation in the direction of the difference of the normalized subgradients and
in the direction of the sum of normalized subgradients are determined by the
obtuse angle between subgradients.

The material is presented as follows. In Sect. 2, the H- and B-form of the
GEM and their properties are described. Thereafter, Sect. 3, shows the algorithm
emshor together with an octave-implementation and numerical results for a
ravine non-smooth convex function. The latter is a function with strongly elon-
gated level sets. In Sect. 4, we demonstrate the application of GEM for solving
convex programming problems and for determining a saddle point of a convex-
concave function. Possible ways of accelerating the algorithm by deeper ellipsoid
approximations are discussed as well.

2 The Generalized Ellipsoid Method and Its Properties

Let a mapping g : Rn → R
n be given. We assume that there is x∗ ∈ R

n so that
g(x)�(x − x∗) ≥ 0 for all x ∈ R

n and g(x) �= 0 for all x �= x∗. GEM is now used
to approximately determine x∗.

2.1 The B-Form of the Generalized Ellipsoid Method

The B-form of GEM can be described as follows.
Step 0. Choose x0 ∈ R

n, a non-singular matrix B0 ∈ R
n×n, and r0 so that

∥∥B−1
0 (x0 − x∗)

∥∥ ≤ r0.
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Moreover, choose α according to (1) and set k := 0.

Step 1. Set gk := g(xk). If gk = 0, then set x∗ := xk and STOP.
Step 2. Calculate

xk+1 := xk − hkBkξk, where ξk :=
B�

k gk∥∥B�
k gk

∥∥ , hk :=
1
2

(
1 − 1

α2

)
rk.

Step 3. Update

Bk+1 := Bk +
(

1
α

− 1
)

(Bkξk) ξ�
k and rk+1 :=

1
2

(
α +

1
α

)
rk.

Step 4. Set k := k + 1 and go to Step 1.
Throughout, for any xk, xk+1 generated by the B-form of GEM, let the ellipsoids

Ek := {x | ‖B−1
k (xk − x)‖ ≤ rk}

be defined. Moreover, vol(E) denotes the volume of the ellipsoid E .

Theorem 1 ([3]). Let xk and xk+1 be generated by the B-form of GEM. Then,

x∗ ∈ Ek (2)

is satisfied. Moreover, the ratio of volumes of the ellipsoids Ek+1 and Ek does not
depend on k and is equal to

qn(α) :=
vol(Ek+1)
vol(Ek)

=
1
α

(
1
2

(
α +

1
α

))n

< 1. (3)

At each iteration of the B-form of GEM, the matrix Bk is updated. It is
associated with the substitution of variables x = Bky [7,11]. Obviously, the
update of the B-matrix in Step 3 requires O(n2) operations. Moreover, let us
define the space dilation operator Rα(ξ) : Rn → R

n by

Rα(ξ) := In + (α − 1)ξ ξ�,

where ξ ∈ R
n with ‖ξ‖ = 1 is the direction of dilation and In ∈ R

n×n the
identity matrix. The properties of this operator were studied in detail in [7].
Setting β := 1/α and denoting the inverse dilation operator by R−1

α (ξ), we have

R−1
α (ξ) = Rβ(ξ)

and
Bk+1 = BkRβ(ξk).

The latter shows the meaning of space dilation for the update of the B-matrices.
GEM uses an ellipsoid of smaller volume described around a half-ball of

radius r in R
n (n ≥ 2). Such an ellipsoid has an oblate shape in the direction

that is normal to the hyper-plane defining the half-ball. The parameters of the
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Fig. 1. The parameters of an ellipsoid containing a half-ball in R
n.

ellipsoid are shown in Fig. 1, where a is the length of the minor semi-axis of the
ellipsoid, b is the length of the major semi-axes of the ellipsoid (the number of
such semi-axes is equal to n − 1), h is the distance from the center of the ball to
the center of the ellipsoid in the direction of its minor semi-axis.

The volume of this ellipsoid is ve = v0abn−1 and the volume of the ball is
vb = v0r

n, where v0 denotes the volume of the unit ball in R
n. Therefore, the

volume reduction factor is equal to

ve

vb
=

(a

r

) (
b

r

)n−1

=
(a

b

)(
b

r

)n

=
1
α

(
1
2

(
α +

1
α

))n

= qn(α).

If α = b
a satisfies condition (1), we can guarantee that qn(α) < 1. To transform

the ellipsoid, containing a half-ball, into a new ball, it is sufficient to dilate the
space of variables in the direction of the minor semi-axis with the coefficient
α = b

a . This can be done using the operator of space dilation Rα(ξ), where the
direction ξ coincides with the direction of the minor semi-axis of the ellipsoid.

If X = R
n is the original space of variables, then in the transformed space

of variables Y = Rα(ξ)X, we get a new ball of radius b, which contains the
solution of our problem. Repeating the same procedure, but for the new ball
in the transformed space, we obtain GEM. Here, in Step 2, the direction of
the minor semi-axis of the ellipsoid in the transformed space Yk = B−1

k X is
calculated and the transition to its center is performed. The calculated direction
is used for the next space dilation, which is implemented in Step 3 by determining
the matrix Bk+1. In the next transformed space Yk+1 = B−1

k+1X, we get a ball
of radius rk+1.

2.2 The H-Form of the Generalized Ellipsoid Method

GEM can be written in H-form by means of a positive definite symmetric matrix
Hk, which replaces BkB�

k in the B-form.
Step 0. Choose x0 ∈ R

n, a positive definite symmetric matrix H0 ∈ R
n×n,

and r0 so that

(x0 − x∗)�H−1
0 (x0 − x∗) ≤ r20.
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Moreover, choose α according to (1) and set k := 0.

Step 1. Set gk := g(xk). If gk = 0, then set x∗ := xk and STOP.
Step 2. Calculate

xk+1 := xk − hk
Hkgk√
g�

k Hkgk

, where hk :=
1
2

(
1 − 1

α2

)
rk.

Step 3. Update

Hk+1 := Hk +
(

1
α2

− 1
)

Hkgkg�
k Hk

g�
k Hkgk

and rk+1 :=
1
2

(
α +

1
α

)
rk.

Step 4. Set k := k + 1 and go to Step 1.
The sequences {xk} and {Ek} generated by the H-form are the same as those
generated by the B-form GEM if, in Step 0 of the latter, the same values for
x0, r0, and α are chosen as for the H-form and B0 is chosen so that H0 = B0B

�
0 .

Hence, Theorem 1 is valid for the H-form as well. To see that the H-form indeed
produces the same sequences {xk} and {Ek}, one inductively shows by simple
calculations that

xk+1 = xk − hkBkξk = xk − hk
Hkgk√
g�

k Hkgk

Bk+1B
�
k+1 = Hk +

(
1
α2

− 1
)

Hkgkg�
k Hk

g�
k Hkgk

holds for all iterates with k = 0, 1, 2, . . . for the B-form and defines

Hk+1 := Bk+1B
�
k+1

for these k. Let us finally note that Ek has an equivalent representation by means
of Hk-matrices, namely

Ek = {x | ‖B−1
k (xk − x)‖ ≤ rk} = {x | (xk − x)H−1

k (xk − x) ≤ r2k}.

On the one hand, the implementation of the H-form of GEM requires just a
half of operations than the B-form does. In addition, the RAM memory usage
is also about half of the memory needed for the B-form if the Bk matrices are
nonsymmetric. On the other hand, the H-form is computationally less stable
since the matrices Hk may become unsymmetric and indefinite. Thus, the H-
form requires to monitor these properties of the matrix Hk. Let us demonstrate
this by means of a small example.

For n = 2 and α =
√

n+1
n−1 , we have α =

√
3. Further, setting H0 := I2,

g2k := (1,−1)� and g2k+1 := (2, 1)� for k = 0, 1, 2, . . ., the formula for updating
Hk in Step 3 of the H-form of GEM then yields

H50 =
(

8.6163e−13 9.5855e−14
9.5914e−14 1.6273e−12

)
, H70 =

(
9.9927e−18 −1.8545e−17
4.0653e−17 −3.5467e−17

)
,
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where H50 is nonsymmetric and H70 is neither symmetric nor positive definite.
For the B-form GEM, such problems were not observed. If we look at the

same example, the matrices B50 and B70 computed by the GEM in B-form
would lead to

B50B
�
50 =

∣∣∣∣
8.6162e−13 9.5889e−14
9.5889e−14 1.6273e−12

∣∣∣∣ , B70B
�
70 =

∣∣∣∣
1.4592e−17 1.6239e−18
1.6239e−18 2.7559e−17

∣∣∣∣ ,

i.e., Hk = BkB�
k stay symmetric and positive definite.

2.3 Special Cases of the Generalized Ellipsoid Method

As shown in Theorem 1, the volumes of the ellipsoids containing the solution
x∗ converge geometrically to 0 with a rate of qn(α) < 1. The smallest rate is
used in the classical EM of Yudin-Nemirovski-Shor. This rate corresponds to
the dilation coefficient α∗ = b∗

a∗ =
√

n+1
n−1 (see Fig. 2) and is reached for qn(α∗),

where the function qn attains its minimum at α∗.

Fig. 2. The parameters of minimal volume ellipsoid containing a half-ball in R
n.

For AEM [4], the dilation coefficient α∗∗ = b∗∗
a∗∗ =

√
1 + 1

n2 + 1
n (see Fig. 3)

is used, where α∗∗ minimizes the function Qn, which approximates from above
the function qn according with to

qn(α) =
1
α

(
1
2

(
α +

1
α

))n

=
1
α

(
1 +

1
2

(
α +

1
α

− 2
))n

≤ 1
α

exp
{

n

2

(
α +

1
α

− 2
)}

=: Qn(α).

For n ≥ 2, the rates q∗
n := qn(α∗) and Q∗

n := Qn(α∗∗) can be approximated
from above by q∗

n ≤ 1 − 1
2n and Q∗

n ≤ 1 − 1
2n + 1

2n2 . Therefore, AEM can be
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Fig. 3. The parameters of an approximating ellipsoid containing a half-ball in R
n.

expected to have the same asymptotic volume convergence rate as EM. Indeed,
it turns out that the number of iterations for AEM (almost) coincides with the
one for EM, as it can be seen in the Table 1 for n = 2, 3, . . . , 10. In the table,
q∗
n, Q∗

n, and the ratio Q∗
n/q∗

n are given. Moreover, the last two columns kq and
kQ show the number of iterations for EM and AEM that is sufficient to achieve
a decrease of 10−10n in the ellipsoid volumes, i.e., kq and kQ are the smallest
integers with (q∗

n)kq ≤ 10−10n and (Q∗
n)kQ ≤ 10−10n. It guarantees solution of

the problem of minimization of convex function with a relative accuracy equal
to 10−10.

Table 1. Comparison of EM and AEM for 10−10n decreasing in volume

n q∗
n Q∗

n Q∗
n/q∗

n kq kQ

2 0.7698004 0.7725425 1.0035621 177 179

3 0.8437500 0.8441633 1.0004898 407 408

4 0.8813189 0.8814234 1.0001186 730 730

5 0.9042245 0.9042600 1.0000392 1144 1144

6 0.9196855 0.9197001 1.0000159 1651 1651

7 0.9308347 0.9308416 1.0000074 2249 2250

8 0.9392592 0.9392628 1.0000038 2940 2940

9 0.9458508 0.9458528 1.0000021 3723 3723

10 0.9511498 0.9511510 1.0000012 4598 4598

3 Algorithm Emshor for Minimizing Convex Functions

3.1 Algorithm Emshor

Any GEM can be used to find the (unconstrained) minimizer x∗ of a convex
function f : Rn → R. The minimum value of f is denoted by f∗ := f(x∗). For
simplicity, we assume that x∗ is the only minimizer of f . To apply a GEM to
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the minimization problem just described let us specialize the mapping g used
in Sect. 2 by gf : Rn → R

n with gf (x) being a subgradient of f at x, i.e., gf

satisfies

(x − x∗)�gf (x) ≥ f(x) − f(x∗) = f(x) − f∗ ≥ 0 for all x ∈ R
n. (4)

The emshor algorithm can be derived from the B-form of GEM from Sect. 2 to
g := gf with α :=

√
n+1
n−1 and B0 := In. Moreover, a more appropriate stopping

criterion is used in Step 1 which guarantees that the emshor algorithm stops if
f(xk) ≤ f∗ + ε for some predefined ε > 0. This criterion is derived as follows.
For xk ∈ R

n, Bk ∈ R
n×n, and rk generated by the emshor algorithm, we obtain

f(xk) − f∗ ≤ (xk − x∗)�gf (xk)
= (B−1

k (xk − x∗))�B�
k gf (xk)

≤ ‖B−1
k (xk − x∗)‖‖B�

k gf (xk)‖
≤ rk‖B�

k gf (xk)‖,

(5)

where the first inequality follows from (4) and the last is a consequence of x∗ ∈ Ek

according to Theorem 1. Hence, if rk‖B�
k gf (xk)‖ ≤ ε is satisfied by some iterate

xk, we have f(xk) − f∗ ≤ ε.

Step 0. Choose x0 ∈ R
n and r0 so that ‖x0 − x∗‖ ≤ r0.

Moreover, choose ε > 0, set B0 := In and k := 0.
Step 1. If

∥∥B�
k gf (xk)

∥∥ rk ≤ ε, then set k∗ := k, x∗
ε := xk and STOP.

Step 2. Calculate

xk+1 := xk − hkBkξk, where ξk :=
B�

k gf (xk)∥∥B�
k gf (xk)

∥∥ , hk :=
1

n + 1
rk.

Step 3. Update

Bk+1 := Bk +

(√
n − 1
n + 1

− 1

)
(Bkξk) ξ�

k and rk+1 :=
n√

n2 − 1
rk.

Step 4. Set k := k + 1 and go to Step 1.
The next theorem follows from Theorem 1 for α =

√
n+1
n−1 and by taking into

account the stopping criterion in Step 1 and its explanation above.

Theorem 2. Let xk and xk+1 be generated by the emshor algorithm. Then,

x∗ ∈ Ek

is satisfied and the ratio of the volumes of the ellipsoids Ek+1 and Ek does not
depend on k and is equal to

qn :=
vol(Ek+1)
vol(Ek)

=
n

n + 1

(
n√

n2 − 1

)n−1

< exp
{

− 1
2n

}
< 1.

Moreover, if algorithm emshor stops, then f(x∗
ε) ≤ f∗ + ε holds.
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3.2 Octave Function Emshor

The emshor algorithm is implemented by a program in Octave. It uses an
Octave function of the form function [f, g] = calcfg (x), which calculates the
value f(x) and a subgradient gf (x) at x. This function is provided by the user.
The code of the emshor program and some short comments are given below.

# Input parameters:
# calcfg - name of the function for calculation of f and g
# x0 - starting point, x0(1:n)
# rad - the radius of the ball localizing the minimum point
# epsf, maxitn - parameters for stopping (accuracy, max. iter.)
# intp - printing interval (after each intp iterations)
# Output parameters:
# x - approximation of the minimum point, x(1:n)
# f - value of function f at the point x
# itn - number of iterations performed
# ist - exit code (1 = epsf, 4 = maxitn)
function [x,f,itn,ist] = emshor(calcfg,x0,rad, #row01

epsf,maxitn,intp);
dn=double(length(x0)); beta=sqrt((dn-1.d0)/(dn+1.d0)); #row02
x=x0; radn=rad; B=eye(length(x)); #row03
for (itn = 0:maxitn) #row04

[f, g1] = calcfg(x); g=B’*g1; dg=norm(g); #row05
if(radn*dg < epsf) ist = 1; return; endif #row06
xi=(1.d0/dg)*g; dx = B * xi; #row07
hs=radn/(dn+1.d0); x -= hs * dx; #row08
B += (beta - 1) * B * xi * xi’; #row09
radn=radn/sqrt(1.d0-1.d0/dn)/sqrt(1.d0+1.d0/dn); #row10
if(mod(itn,intp)==0) #row11

printf("itn %4d f %14.6e\n",itn,f); #row12
endif #row13

endfor #row14
ist = 4; #row15
endfunction #row16

The iterative process is executed in a for-loop (rows 04–14), where rows 05–06
implement Step 1, rows 07–08 implement Step 2, and rows 09–10 implement Step
3 of algorithm emshor. After every intp iterations in the for-loop intermediate
results are printed (see rows 11–13). The emshor program is terminated if either
(1) a point x∗

ε with f(x∗
ε) ≤ f∗+ε is found (ist = 1 in row 06) or (2) the maximal

number of iterations maxitn is reached (see rows 04 and 15).
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3.3 Computational Experiments for Ravine Function

We will demonstrate the work of the emshor program on the minimization of
a ravine piecewise linear convex function f : Rn → R with

f(x) =
n∑

i=1

2i−1 |xi − 1| . (6)

Obviously, the unique minimizer of f is x∗ = (1, 1, . . . , 1)� ∈ R
n with optimal

value f∗ = f(x∗) = 0.
The degree of elongation of level sets of the function (6) is determined by the

ratio of the maximum coefficient of |xi − 1| to the minimal coefficient. The latter
is always equal to 1. For n = 20, the maximal coefficient equals 219 ≈ 5.2e + 05.

Table 2 provides results obtained by program emshor for the starting values
x0 := 0 ∈ R

n, r0 ∈ {5, 500, 50000}, and ε ∈ {10−3, 10−6, 10−9}. The calculations
were performed for n ∈ {5, 10, 15, 20} on a Pentium 2.5 GHz computer using
GNU Octave version 3.0.0. The table shows the number of iterations (itn), the
function value f(xitn) at the last iteration, and the computing time (time) in

Table 2. The results for minimization function (6) by program emshor

r0 = 5

ε = 10−3 ε = 10−6 ε = 10−9

n itn f(xitn) time itn f(xitn) time itn f(xitn) time

5 519 6.1e–06 0.18 873 1.1e–07 0.28 1201 1.2e–10 0.40

10 2484 8.7e–05 0.79 3829 7.2e–08 1.26 5246 7.9e–11 1.76

15 6561 6.5e–06 2.10 9667 6.0e–08 3.23 12786 1.5e–11 4.36

20 13101 4.8e–05 4.28 18714 3.5e–09 6.34 23416 2.0e–11 8.11

r0 = 500

ε = 10−3 ε = 10−6 ε = 10−9

n itn f(xitn) time itn f(xitn) time itn f(xitn) time

5 747 1.1e–05 0.25 1080 1.6e–07 0.35 1392 1.7e–10 0.46

10 3429 9.0e–05 1.08 4810 9.3e–08 1.58 6185 6.3e–11 2.06

15 8615 5.6e–05 2.78 11704 6.5e–08 3.90 14805 2.4e–11 5.02

20 16729 1.8e–06 5.49 22404 4.4e–08 7.64 27161 1.4e–11 9.38

r0 = 50000

ε = 10−3 ε = 10−6 ε = 10−9

n itn f(xitn) time itn f(xitn) time itn f(xitn) time

5 951 1.7e–04 0.32 1323 1.9e–08 0.42 1658 1.4e–10 0.55

10 4323 8.4e–05 1.38 5736 6.4e–08 1.88 7093 7.2e–11 2.36

15 10663 6.0e–05 3.45 13772 1.8e–08 4.60 16860 3.6e–11 5.70

20 20417 4.7e–05 6.75 26039 3.5e–08 8.80 30772 1.6e–11 10.54
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seconds. It should be noted that all execution times can be significantly reduced
when one makes use of compiled commands for matrix times vector operations.

From Table 2, it can be seen that the emshor program finds very precise
approximations to the minimizer of the ravine convex function. The number of
iterations grows slightly faster than n2 for the given accuracy ε and the radius
r0 of the initial ball containing the minimizer x∗. This is due to the fact that, to
reduce the deviation of the function value from f∗ by a factor of 10, the ellipsoid
method requires ≈4.6n2 iterations (see Sect. 2.3, Table 1).

The ellipsoid method in the H-form may not approximate the minimum point
of the ravine function with very high accuracy. This is confirmed by numerical
experiments with the modification of the program emshor, in which the oper-
ators with the matrix B in lines 5, 7 and 9 are replaced by the corresponding
operators with the symmetric matrix H = BBT . Calculation results of min-
imizing function (6) with ε = 10−3, the starting values x0 := 0 ∈ R

n, and
r0 ∈ {5, 500} are given in Table 3. The table shows the number of iterations itn,
the function value f(xitn), the iteration number itr with itr ≤ itn, where the
smallest value f(xitr) of the function f is attained during the iteration.

Table 3. Results for minimization function (6) by H-form of algorithm emshor

r0 = 5 r0 = 500

n itn f(xitn) itr f(xitr) itn f(xitn) itr f(xitr)

5 461 0.001310 446 0.00001033 453 0.208985 443 0.00201819

10 1664 0.030775 1467 0.00008307 1767 2.357996 1690 0.00195698

15 6541 0.000065 6528 0.00000029 8615 0.000056 7804 0.00000031

20 5627 5.700439 5356 0.00240983 5434 1142.453 4980 0.20944151

From Table 3 it is easy to see that for all n ∈ {5, 10, 15, 20}, the accuracies
are insufficient in comparison with those from Table 2, i.e., the modified program
stops long before an acceptable accuracy is achieved. This is due to the fact that
the norm of the matrix H converges to zero much faster than the norm of the
matrix B, and due to the accumulation of rounding errors when updating the
symmetric matrix H (see Sect. 2.2).

4 Other Applications of the Generalized Ellipsoid
Method

4.1 Constrained Convex Programming

Let us consider the nonlinear programming problem

minimize
x

f0(x) subject to fi(x) ≤ 0 i = 1, 2, . . . ,m (7)
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where, for i = 0, 1, . . . ,m, the functions fi : Rn → R are convex and gi : Rn →
R

n denotes a mapping so that gi(x) is a subgradient of fi at x. Let us assume
that problem (7) has the unique solution x∗ and that the Slater condition is
satisfied. Moreover, let the mapping g : Rn → R

n be defined by

g(x) = gi(x)(x),

where the mapping x 
→ i(x) satisfies the conditions

i(x) = 0, if f1(x) ≤ 0, . . . , fm(x) ≤ 0,
i(x) ∈ {i | fi(x) > 0}, if max{f1(x), . . . , fm(x)} > 0.

(8)

Then, it can be seen that (x − x∗)�g(x) ≥ 0 holds for all x ∈ R
n. Let us first

consider the case that x satisfies max{f1(x), . . . , fm(x)} ≤ 0. According to (8),
we have g(x) = g0(x). Moreover, by f0(x) ≥ f0(x∗) and the convexity of f , we
have

(x − x∗)�g(x) = (x − x∗)�g0(x) ≥ f0(x) − f0(x∗) ≥ 0.

If, otherwise, max{f1(x), . . . , fm(x)} > 0, then (8) implies fj(x) > 0 for j :=
i(x). By the convexity of fj and by fj(x∗) ≤ 0, we get

(x − x∗)�g(x) = (x − x∗)�gj(x) ≥ fj(x) − fj(x∗) ≥ 0.

Thus, (x − x∗)�g(x) ≥ 0 holds for all x ∈ R
n.

Hence, to approximate x∗ we can apply one of the previous algorithms. In
particular, we may use the same stopping criterion as in the algorithm emshor,
see (5) as well.

4.2 Saddle Point Problems of Convex-Concave Functions

Let f : Rn ×R
m → R be a convex-concave function, i.e., f(·, y) is convex for any

y ∈ R
m and f(x, ·) is concave for any x ∈ R

n. A pair z∗ := (x∗, y∗) ∈ R
n × R

m

is called saddle point of f if

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗) for all (x, y) ∈ R
n × R

m.

Moreover, with z := (x, y), let the set Gx(z) ⊂ R
n contain all partial subgradi-

ents of f(·, y) with y fixed, whereas Gy(z) ⊂ R
m contains all partial super-

gradients of f(x, ·) with x fixed. Based on this we can define the mapping
g : Rn × R

m → R
n × R

m by

g(z) :=
(

gx(z)
−gy(z)

)
with (gx(z), gy(z)) ∈ Gx(z) × Gy(z).

By the above definition of a saddle point and by the convexity of the functions
f(·, y) and −f(x, ·) for arbitrarily but fixed y and y, respectively, it follows that

0 ≤ f(x, y∗) − f(x∗, y)
= f(x, y∗) − f(x, y) + f(x, y) − f(x∗, y)
≤ −gy(z)�(y − y∗) + gx(z)�(x − x∗)
= g(z)�(z − z∗).
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Thus, g(z)�(z − z∗) ≥ 0 holds for all z ∈ R
n ×R

m so that GEM can be used to
approximate the saddle point z∗.

GEM has also a number of other applications, for example for solving non-
smooth problems of small dimensions that occur in decomposition schemes (by
constraints, by variables), for special convex problems with a small number of
variables with a parametrically given family of constraints. The main questions
are to determine a rule for constructing cutting hyperplanes, which localize the
point to find, and to develop an appropriate stopping criterion for the iterative
process in GEM.

4.3 Possible Ways of Accelerating the Ellipsoid Method

As it was shown in Sect. 2.1, GEM make use of the space dilation operator
Rα(ξ) = I + (α−1)ξξ�. It transforms the ellipsoid, containing the half-ball in
R

n, into a new ball after one space dilation (1d-ellipsoid, see Fig. 1). For a 2d-
ellipsoid we receive a new ball after two space dilations. The projection of the
2d-ellipsoid onto the plane is shown in Fig. 4.

Fig. 4. Projections of the set W and the 2d-ellipsoid Ell(x0, a, b, r).

The key feature of this technique is the transformation of the 2d-ellipsoid
Ell(x0, a, b, r) into a ball. The minimum volume ellipsoid Ell(x0, a, b, r) is cen-
tered at x0 and contains the convex set W ⊂ R

n resulting from the intersection
of the ball S(x0, r) := {x ∈ R

n | ‖x − x0‖ ≤ r} with the two half-spaces

P (x0, ξ) := {x ∈ R
n | (x − x0)�ξ ≤ 0}

P (x0, η) := {x ∈ R
n | (x − x0)�η ≤ 0},

where −1 < ξ�η < 0, ‖ξ‖ = 1, ‖η‖ = 1. The 2d-ellipsoid has the following
parameters: the length of the semi-axis in the direction (ξ − η) is equal to a =
r
√

1 + (ξ, η) < r; the length of the semi-axis in the direction (ξ + η) is b =
r
√

1 − (ξ, η) > r; in the other (n − 2) directions orthogonal to ξ and η, the
lengths of the semi-axes are equal to r. The ratio of the 2d-ellipsoid volume and
the ball volume is equal to q := (a/r) ∗ (b/r) =

√
1 − (ξ�η)2 < 1. The ratio

decreases when the angle between ξ and η approaches 180◦.
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Lemma 1 ([12]). Let Bk ∈ R
n×n, r > 0, xk, x∗ ∈ R

n, and g1, g2 ∈ R
n be

given such that ‖B−1
k (xk − x∗)‖ ≤ r, (xk − x∗)�g1 ≥ 0, (xk − x∗)�g2 ≥ 0, and

g�
1 BkB�

k g2 < 0 holds. Then, the updated matrix

Bk+1 := BkRβ1

(
ξ − η

‖ξ − η‖
)

Rβ2

(
ξ + η

‖ξ + η‖
)

with

β1 :=
√

1 + ξ�η, β2 :=
√

1 − ξ�η, ξ :=
B�

k g1
‖B�

k g1‖
, η :=

B�
k g2

‖B�
k g2‖

has the following properties:

(i) ‖B−1
k+1(xk − x∗)‖ ≤ r,

(ii) det(Bk+1) = det Bk

√
1 − (ξ�η)2, and

(iii) g�
1 Bk+1B

�
k+1g2 = 0.

Lemma 1 has the following interpretation. Property (i) means that y∗ := B−1
k+1x

∗

belongs to the ball S(yk, r) in the transformed space Y := B−1
k+1X, where

yk := B−1
k+1xk. Property (ii) shows that the volume of ellipsoid Ell(yk, a, b, r)

decreases in comparison to the volume of the ball S(yk, r) and this decrease
will be the bigger the larger the obtuse angle between ξ and η is. Property (iii)
provides the anti-ravine technique, similar to that used in Shor’s r-algorithm
[7–10]. Subgradients with an obtuse angle in the original space of variables
become orthogonal in the transformed space. This yields less elongated level sets
of ravine functions. In this case, coefficients of space dilation in the direction of
the difference of the normalized subgradients and in the direction of the sum of
normalized subgradients are determined by the angle between subgradients. A
more obtuse angle leads to a larger value of the coefficient of space dilation in
the direction of the difference between the two normalized subgradients.

The 1d-ellipsoid (see Fig. 1) and the 2d-ellipsoid (see Fig. 4) can be used to
develop accelerated variants of ellipsoid methods for solving convex programs
and saddle point problems of convex-concave functions. For such accelerated
methods, we can expect a convergence rate close to that of r-algorithms. This is
confirmed by numerical experiments for subgradient methods with transforma-
tion of space for finding the minimizer of a convex function with a priori knowl-
edge of the minimal function value [13]. In particular, these methods turned out
to be efficient for ravine functions.

5 Conclusion

In this paper we considered the generalized method of ellipsoids and the proper-
ties of two theoretically equivalent versions. The first one is based on updating
a not necessarily symmetric matrix B, as in the ellipsoid method of Shor. In the
second version, a symmetric matrix H = BB� is updated, as in the ellipsoid
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method of Yudin-Nemirovski. Based on the classic ellipsoid method in B-form,
algorithm emshor (ellipsoid method of Shor) and its implementation in Octave
for the problem of unconstrained minimization of a convex functions were devel-
oped. It is demonstrated that the algorithm emshor allows us to find a very
accurate approximation of the minimizer of a ravine convex function in a rea-
sonable amount of time. Therefore, algorithm emshor can be interesting for
solving non-smooth subproblems in implementations of decomposition methods
for block angular linear programming problems with a smaller number of vari-
ables or constraints.

The accelerated variants of ellipsoid methods on the basis of the 1d-ellipsoid
and the 2d-ellipsoid can be used for solving a variety of problems: convex pro-
gramming problems, problems of finding saddle points of convex-concave func-
tions, and special cases of variational inequalities.
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Abstract. The paper investigates the problem of optimal control by
the systems of ODE of block-structure with unseparated boundary con-
ditions between blocks. The considered complex object consists of blocks.
The state of each of them is described by the system of ordinary differ-
ential equations. The blocks are interconnected in an arbitrary order
only by the initial and/or final (boundary) state values. The necessary
optimality conditions for the considered optimal control problem are
obtained.

Note that, the obtained adjoint problem has the same specifics as the
direct problem. For the numerical solution of optimal control problem, it
is proposed to apply first-order optimization methods using the formulas
for the functional gradient that participate in the necessary optimal-
ity conditions. To solve the direct and adjoint initial boundary-value
problems of a block structure and with unseparated nonlocal boundary
conditions with sparse (arbitrary filled) matrix, special schemes of the
sweep method are proposed that take into account the specifics of the
systems of differential equations and boundary conditions that allow the
transfer of boundary conditions for each block separately.

Keywords: Optimal control · Systems of ODE · Block-structure ·
Gradient of the functional · Unseparated boundary conditions

1 Introduction

We investigate the problem of optimal control of an object (process), described
by a system of a large number of independent subsystems of linear non-
autonomous differential equations. The blocks (subsystems) of the common sys-
tem are connected by nonlocal, unseparated boundary conditions [1–6].

It is assumed that most of the elements of the relation matrix are zero,
nonzero elements correspond to the presence of a connection between the initial
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and final states of individual blocks of a complex object. The necessary opti-
mality conditions for the considered problem are obtained, which are used to
construct a numerical method for its solution. A numerical scheme is proposed
for solving direct and adjoint initial boundary value problems of large dimension
and block structure. The method is based on the proposed special scheme of the
sweep method [1–3,5,6], which allows sweeping separately block by block. As a
result, the problem is reduced to an algebraic system of equations with a weakly
and arbitrarily filled Jacobi matrix.

The advantage of the proposed approach in comparison with the direct use
of transfer methods for the whole system [1–3,8] lies in the fact that, in the work
the transfer is carried out only with respect to those variables whose coefficients
are non-zero in the boundary conditions, while the transfer is carried out using
only the subsystem of differential equations in which the transferred variable is
involved.

2 Problem Statement

Let us consider a complex system, consisting of M arcs (blocks) arbitrarily con-
nected by ends, which we represent in the form of oriented graph. Each arc
(edge) is an independent object (block), the state of which is described by the
system of ordinary differential equations.

We denote the set of nodes of the graph by I, and the set of arcs (edges) (k, s)
with the length l(k,s) with the beginning at the node k ∈ I and with the end at
the node s ∈ I denote by J = (k, s) : k, s ∈ I, |I| = N, |J | = m, |I| indicates the
number of elements of the set I.

Let J+
i = {(j, i) : j ∈ I+i }, J−

i = {(i, j) :j ∈ I−
i } are the sets of arcs

respectively entering and leaving the node of i, I+i and I−
i are the sets of nodes,

connected with the i-th node, which are respectively the ends and the beginnings
of the arcs from the set Ji, Ji = J+

i ∪ J−
i , Ii = I+i ∪ I−

i . We denote by
∣
∣J+

i

∣
∣ =

∣
∣I+i

∣
∣ = n+

i ,
∣
∣J−

i

∣
∣ =

∣
∣I−

i

∣
∣ = n−

i , n+
i + n−

i = ni.

So, it’s known that
∑

i∈I

n+
i =

∑

i∈I

n−
i = N,

∑

i∈I

ni = 2m.

In practical applications, as a rule, take place ni << N, i ∈ I, i.e. the number
of nodes adjacent to any other node is much less than the total number of nodes.



Optimal Control by a System ODE of Block Structure 373

Let the state of each arc ((k, s) ∈ J ) is described by a system of χ linear
non-autonomous ordinary differential equations of the following form:

u̇ks (x) = Aks (x)uks (x) + Bks (x) υks (x) , x ∈ [

0, lks
]

, (k, s) ∈ J. (1)

Here uks (x) ∈ Rχ is the state of (k, s)-th arc with the length lks at the
point x ∈ [

0, lks
]

; Aks(x) �= const are the known continuous χ− dimensional
quadratic matrix functions, rang Aks (x) = χ; Bks(x) are the known continu-
ous χ × Zks− dimensional rectangular matrix functions; υks(x), x ∈ [

0, lks
]

is the control vector-function of the (k, s)-th subsystem, υks(·) ∈ �ks⊂ Rzks ,
υ (x) = (υks (x) : (k, s) ∈ J ; lks > 0 and �ks the set of admissible values of
controls υks (x) are given. We assume that the sets �ks have a simple structure,
for example, are parallelepipeds, that is,

�ks = {υ ∈ RZks : υks
j ≤ υj(x) ≤ υks

j , x ∈ [

0, lks
]

, j = 1, ..., Zks}

Note that the system has a block structure, the total number of blocks - sub-
systems (1), is equal to m− the number of arcs. Current states of arcs (blocks)
are connected with adjacent arcs (blocks) only by unseparated boundary condi-
tions in the form:

∑

k∈I−
i

gj
ikuik(0) +

∑

k∈I+
i

qj
kiu

ki(lki) = rj
i , , j = 1, νi, i ∈ I, (2)

where rj
i is the value of j-th characteristics of external influence in the i-th

node. The row-vectors gj
ik = (gj1

ik , ..., gjχ
ik ), k ∈ I−

i , gj
ik = (gj1

ik , ..., gjχ
ik ), k ∈ I+i ,

j = 1, νi, i ∈ I, are given. νi is a number of given condition at the node i ∈ I,
and

N∑

i=1

νi = M.

The total number of differential equations in (1) as well as boundary condi-
tions in (3) is M = mχ.

External influences as a rule, are differ from zero only in the beginning and
end nodes of the system. We denote the set of these nodes by If , Nf = |If |,
and if i ∈ If . We denote the set of internal nodes of the graph by Iint =
I\If , N int = |Iint|.

We will assume that, the coefficients involved in conditions (2) and forming
sparse matrices G = (gj

ik, k ∈ I−
i , j = 1, νi, i ∈ I), Q = (qj

ki, k ∈ I+i , j = 1, νi, i ∈
I, ) such that the rangs of the extended matrices is

rang[G,Q] = M.

Note that the boundary conditions (2) have an important specificity, namely,
that they are unseparated (non-local) boundary conditions, and in practical
applications the matrices G, Q are sparse, while they are filled arbitrarily, which
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is determined by the structure of the object, namely interconnections between
blocks. We will write down the expressions (2) in a more generally form:

Gu(0) + Qu(l) = r. (3)

Here we used the notations:

u(0) = (u1,1(0), . . . , u1,χ(0), . . . , um,1(0), . . . um,χ)T ,

u(l) = (u1,1(l1,1), . . . , u1,χ(l1,χ), . . . , um,χ(lm,χ))T ,

r = (r11, . . . , r
ν1
1 , ..., r1N , ..., rνN

N )T .

We assume ui,j(0) = 0, if the nodes i and j are not adjacent, and respectively,
in matrixes G,Q dimension 2M × M , made of coefficients gjν

ik , qjν
ki , elements,

corresponding non-existent edges are also 0. The components of the vector r ∈
RM corresponding to the conditions relative to the nodes in which there are no
internal or external sources are equal to 0. Let’s assume that the coefficients,
participating in conditions (3) are such that, poorly filled augmented matrix
[G,Q] have the rang equal to M.

We consider the problem of minimization of the functional

I (υ) =
∑

(k,s)∈J

(
∫ lks

0

fks
0

(

uks(x), υks(x)
)

dx + Φks
(

uks(0), uks(lks)
)

)

, (4)

where the state of each of the block uks (x) is described by a system of linear
non-autonomous differential equations of the form (1) with non-local boundary
conditions (2). Here fks

0 (uks(x), υks(x)), Φks
(

uks(0), uks(lks)
)

are given contin-
uously differentiable functions of its’ arguments.

Let’s note that, for example, the problem of optimal control of transient pro-
cesses of fluid, gas flow in pipeline networks of complex structure, also optimal
control of mechanical systems are reduced to the problem under consideration.
Mathematical models of such processes are described by systems of partial dif-
ferential equations, consisting of subsystems of equations of hyperbolic type,
describing the process of fluid flow in each individual section. At the junction
of the sections, the conditions of flow continuity and material balance are sat-
isfied, which are determined by conditions of the form (2). The application of
the method of straight lines in time or spatial variable (analogous to the use of
decomposition) leads the problem of calculating the modes of fluid flow of the
transport network to a problem of the form (1) and (2).

3 Necessary Optimality Conditions in Problem (1)–(4)

We formulate the necessary optimality conditions in the variational form [11] for
the problem (1)–(4) as the following theorem.



Optimal Control by a System ODE of Block Structure 375

Theorem 1. Let the conditions imposed on the functions and parameters
involved in the problem (1)–(4) be satisfied. For optimality of the control υ̂ks (x)
it is necessary that the inequalities

(−(ψks(x))T Bks(x) +
∂fks

0 (uks(x), υks(x))
∂υks

, υks (x) − υ̂ks (x)) ≥ 0, (k, s) ∈ J,

(5)
fulfill for all admissible values of the controls υks (·) ∈ �ks. The function ψks(x)
is a solution of the system of ODE:

ψ̇ks (x) =
∂fks

0

(

uks(x);υks(x)
)

∂uks
− (Aks(x))T ψks (x) , x ∈ [

0, lks
]

, (k, s) ∈ J,

(6)
with unseparated boundary conditions:

∑

k∈I+
i

qj
ikψ

ik
(0) +

∑

k∈I−
i

gj
ikψ

ik
(lik) =

∑

k∈I+
i

gj
ik

∂Φik(uik(0),uik(lik))
∂uik(lki)

+
∑

k∈I+
i

qj
ik

∂Φik
(

uik (0) , uik(lik)
)

∂uik (0)
, j = 1, νi, i ∈ I.

(7)

Proof: Let υ̂ks(x) and ûks (x) , (k, s) ∈ J are optimal solution of the problem
(1)–(5). Let υ = υks(x) admissible control and uks (x, υ) corresponding solution
to the boundary-value problem (1)–(2). Move the right side of the differential
equation (1) to the left and multiply by yet arbitrary continuously differentiable
in their arguments as x ∈ (0, lks) χ -dimensional vector functions ψks (x) ∈
Rχ, (k, s) ∈ J , and to the right we move the parts of constraints (2) to the left
and the results are added with (4), so, we will have:

I(υ) =
∑

(k,s)∈J

∫ lks

0
fks
0 (uks(x);υks(x))dx +

∑

(k,s)∈J

Φks(uks(0),uks(lks))

+
∑

(k,s)∈J

[

(ψks(x))T (u̇k(x) − Aks(x)uks(x) − Bks(x)υks(x))
] (8)

Let denote Δuks(x, υks) = ûks(x, υks) − uks(x, υks), (k, s) ∈ J. It is clear, as fol-
lows from (1)–(2) the function Δuks (x, υ) is a solution of the following boundary-
value problem with nonlocal boundary conditions:

Δu̇ks(x) = Ak(x)Δuks(x) + Bks(x)Δυks(x), x ∈ [0, lks] (9)
∑

k∈I−
i

gj
ikΔuik(0) +

∑

k∈I+
i

qj
kiΔuki(lki) = 0, j = 1, νi, i ∈ I. (10)

We assume that the coefficients involved in conditions (2) are such that the
sparse augmented matrix [G,Q] has a rang equal to 2M . Without pleading for
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generality, for the sake of simplicity of the calculations, we will assume that
rangG = M . Otherwise, from the considered matrix [G,Q], some other sub-
matrix with a rang equal to M would be extracted. Relations (10) in general
according to (3) can be written in the matrix form:

GΔu(0) + QΔu(l) = 0. (11)

Multiplying both sides of (11) by G−1 we get:

Δu(0) = −G−1QΔu(l). (12)

The increment of the functional (4), taking into account the notation adopted
above, corresponding to the increment Δυ(x) = Δυks(x) = υks(x) − υ̂ks(x) can
be written in the following form:

ΔI (υ) = J (υ + Δυ) − J (υ) =
∑

(k,s)∈J

∫ lks

0

(fks
0 (uks(x) + Δuks(x);υks(x) + Δυks(x)) − fks

0 (uks(x);υks(x)))dx

∑

(k,s)∈J

Φks(uks(0) + Δuks(0),uks(lks) + Δuks(lks)) −
∑

(k,s)∈J

Φks(uks(0),uks(lks))

∑

(k,s)∈J

∫ lks

0

[ψks(x)T (u̇ks(x) + Δu̇ks(x)) − Aks(x)(uks(x) + Δuks(x))

−Bks(x)(υks(x) + Δυks(x))]dx

−
∑

(k,s)∈J

∫ lks

0

[
ψks(x)T

(
u̇ks (x) − Aks (x) uks (x) − Bks (x) υks (x)

)]
dx

=
∑

(k,s)∈J

∫ lks

0

[
∂fks

0

(
uks(x);υks(x)

)T

∂uks (x)
Δuks (x) +

∂fks
0

(
uks(x);υks(x)

)T

∂υks (x)
Δυks (x)

]
dx

+
∑

i∈I

⎡

⎢⎣
∑

k∈I−i

∂Φks
(
uks (0) , uks

(
lks

))T

∂uks (0)
Δuks (0) +

∑

k∈I+i

∂Φks(uks(0), uks(lks))T

∂uks(lks)
Δuks

(
lks

)
⎤

⎥⎦ +

∑

(k,s)∈J

∫ lks

0

[
ψks (x)T

(
Δu̇ks (x) − Aks (x) Δuks (x) − Bks (x) Δυks (x)

)]
dx + η,

η =
∑

(k,s)∈J

∫ lks

0

o(‖Δuks(x)‖L
nks
2 [0,lks] + ‖Δυks(x)‖L

nks
2 [0,lks])dx+

+o(‖Δuks(x)‖L
nks
2 [0,lks], ‖Δυks(x)‖L

nks
2 [0,lks]).

(13)
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In the last term of (13) we will integrate by parts according to x:
∑

(k,s)∈J

∫ lks

0

[
ψks(x)T (Δu̇ks(x) − Aks(x)Δuks(x) − Bks(x)Δυks(x))

]
dx

=
∑

(k,s)∈J

ψks(x)TΔuks(x)
∣∣∣
lks

0

−
∑

(k,s)∈J

∫ lks

0

[(
ψ̇ks (x)T − ψks (x)T Aks (x)

)
Δuks (x) − ψks (x)T Bks (x) Δυks (x)

]
,

∑

(k,s)∈J

ψks(x)TΔuks(x)
∣∣∣
lks

0

=
∑

i∈I

⎡

⎢⎣
∑

k∈I−i

ψki(lki)TΔuks(lki) −
∑

k∈I+i

ψik(0)TΔuks(0)

⎤

⎥⎦ .

By grouping the corresponding terms in (13) and using (10), we have:

ΔI(υ) =
∑

(k,s)∈J

∫ lks

0

[
∂fks

0 (uks(x);υks(x))T

∂uks(x)
− ψ̇ks(x)T −

ψks(x)T Aks(x)
]

Δuks(x)dx −
∑

(k,s)∈J

∫ lks

0

ψks(x)T Bks(x)Δυks(x)

+
∑

i∈I

∑

k∈I−
i

[

∂Φik(uik(0), uik(lik))T

∂uik(0)
− ψik(0)T

]

Δuik(0)

+
∑

i∈I

∑

k∈I+
i

[
∂Φki(uki(0), uki(lki))T

∂uki(lki)
+ ψki(lki)T

]

Δuki(lki).

Using the arbitrariness of the functions ψks(x), we require the square bracket in
the first integral to be zero. We obtain the adjoint system (6). Using assumption
(12) from the third and fourth integral, we obtain conditions (7), that must be
satisfied by the values of the conjugate functions ψks(x) for x = 0 and x = lks.
Then we have the following formula for the functional increment:

ΔI (υ) = −
∑

(k,s)∈J

∫ lks

0

(
ψks(x)Bks(x) +

∂fks
0 (uks(x), υks(x))T

∂υks

)
Δυks(x)dx + η.

(14)
Here ψks(x), (k, s) ∈ J is the solution to the adjoint problem (6) and (7).

According to the definition, the gradient of the functional with respect to the
control functions is determined by the expression for the linear part with respect
to the control in the functional increment formula (14) [7,11].

Then, according to the known necessary conditions for the optimality of the
functional in the variational form, conditions (5) should be satisfied, and the
components of the gradient of the functional (4) are determined by the formula

gradυksI (υ) = −(ψks (x))T Bks (x) +
∂fks

0 (uks(x); υks(x))T

∂υks
, (k, s) ∈ J. (15)
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Theorem 1 can be considered proven.
Formula (15) can be used for the numerical solution to the problem (1)–(4)

applying effective first-order optimization methods. For example, one can use
the gradient projection method [7,11]:

[

υks (x)
]μ+1

= P�ks [υks(x)μ − αgradυksI(υμ(x))], (k, s) ∈ J, μ = 1, 2, ..

P�ks [•] is the projection operator of a point on an admissible set �ks, α -step
of one-dimensional minimization.

To calculate the components of the gradient of the functional I (υ) for the
current values of the control υ(x) first we solve the direct boundary-value prob-
lem (1) and (2), then we solve the adjoint boundary-value problem (6) and (7).
The results of the solution are substituted into the formula (15) to calculate the
components of the gradient of the functional.

An approach based on the use of the operation of shifting conditions pro-
posed in [1] is applied to solve systems of differential equations with unseparated
boundary conditions. The shift operation of intermediate conditions generalizes
the well-known operation of transferring boundary conditions [2,3] to the case of
unseparated boundary conditions with the participation of unknown parameters
in them.

We present an approach that is analogous to the method of transferring
conditions, taking into account the specifics of the system (6). We present the
corresponding formulas, algorithms that do not require the simultaneous solution
of all subsystems of the system (6). For simplicity of further statements, we’ll
rewrite (7) as follows:

∑

k∈I+
i

qj
ikψ

ik
(0) +

∑

k∈I−
i

gj
ikψ

ik
(lik) = R

j

i , j = 1, νi, i ∈ I,

R
j

i =
∑

k∈I+
i

gj
ik

∂Φik(uik(0), uik(lik))
∂uik(lki)

+
∑

k∈I+
i

qj
ik

∂Φik
(

uik (0) , uik(lik)
)

∂uik (0)
.

The proposed approach, like all methods of transferring conditions, consists
in replacing the values ψik(0) (or ψik(lks)) in conditions (7) due to transferring
to the right (left) equivalent combinations of the values ψik(lks) (or ψik(0) when
sweeping to the left). As a result, instead of (7), we obtain M = mχ conditions
of the form: ∑

k∈I−
i

G̃j
iψ

ik(lik) = R̃j
i , i ∈ I, j = 1, νi, (16)

when transferring conditions (7) to the right, of the next form
∑

k∈I−
i

G̃j
iψ

ik(0) = R̃j
i , j = 1, νi, i ∈ I, (17)

when transferring conditions (7) to the left. Obtaining conditions of the form
(16) or (17) will be carried out in stages.
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Taking into account the sparseness of the matrices G,Q so as not to deal
with matrix operations, each condition from (7) will be transferred separately.

In many concrete practical problems, a large number of conditions from (7)
instead of a general form can be separated or, moreover, coincide with Cauchy
conditions on the left or right ends. Therefore, the choice of the direction of
the transfer of conditions to the left or right should be made on the basis of
which end of local conditions is greater to that end and transfer the remaining
conditions.

And so, consider an arbitrary j-th condition from (7), j = 1, .., νi, given for
i -th node, i ∈ I. Let transfer the j-th condition of (7) to the right end, i.e. we
obtain the condition equivalent to (7):

∑

k∈I−
i

αj
ik(lik)ψik(lik) +

∑

k∈I+
i

gj
ikψki(lki) = γj

i (lki), (18)

where (αj
ikx) and γj

i (x) are some as yet unknown χ -dimensional row vector and
scalar functions; χ -dimensional vector ψik(lik) unknown values of the solution
of the ik -th subsystem of the system (6) at the right end.

Obtaining conditions of the form (18) we will implement in stages.
Suppose that among the vector coefficients qj

ik = (qj1
ik , ...qjχ

ik ), k ∈ I−
i there are

nonzero ones. Otherwise, it is not necessary to transfer the j-th condition to the
right, since this condition involves only values of ψik(lik). Let the nonzero vector
coefficient be qj

id �= 0χ, d ∈ I−
i , (0χ is χ -dimensional vector, all components of

which are equal to 0).
It should be noted that the order of choice of the non-zero coefficients is not

principal. The order of transferring values of the solutions of the subsystems
from the left end to the right can be carried out in an arbitrary sequence of
choice of as subsystems, as well as conditions.

Definition 1. We’ll say that χ-dimensional row-vector function αj
id(x), and

function γj
i (x) are such that

αj
id(0) = qj

id, γj
i (0) = R

j

i , d ∈ I−
i , (19)

carry out the transfer of the boundary value of the solution to (i, d)-th subsystem
(6) in the j-th condition from (7) for i-th node to the right, if for an arbitrary
solution ψid(x) of (i, d)-th subsystem (6) the next equality holds:

αj
id(x)ψid(x) +

∑

k∈I−
i

qj
kiψ

ki(0)+
∑

k∈I+
i

gj
kiψ

ki(lki) = γj
i (x), x ∈ [0, lid]. (20)

It is clear that condition (20), taking into account (18), at x = 0 coincides with
the j-th condition of (7) for i-th node. We’ll call the functions αj

id(x), γj
i (x) are

the sweep functions. Substituting the values of the functions αj
id(x), γj

i (x) for
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x = lid in (20), we obtain an equality equivalent to the j-th condition for i-th
node from (7):

∑

k∈I−
i \d

qj
kiψ

ik(0) +
∑

k∈I+
i

gj
ikψik(lki) = γj

i (lid). (21)

The sweep functions αj
id(x), γj

i (x) used to transfer the boundary values of
the solutions of the subsystems participating in boundary conditions (7) from
one end to the other are not unique. In particular, their constructive formulation
was proposed in the following theorem.

Theorem: Let gj
id �= 0χ for d ∈ I−

i and χ -dimensional row-vector function
αj

id(x), and scalar function γj
i (x) with x ∈ [0, lid] are the solution to the following

Cauchy problems:

α̇j
id(x) = −αj

id(x)(Aid(x))T , αj
id(0) = qj

id, (22)

γ̇j
i (x) = αj

id (x)
∂f id

0

(

uid (x) ;υid (x)
)

∂uid
, γj

i (0) = 0 .

Then these functions are the sweep coefficients for transferring from left to
right the boundary value of the solution to (i, d) -th subsystem (6) in the j-th
condition for i-th node, for x ∈ [0, lid], d ∈ I−

i .

Proof: Let αj
id(x), γj

i (x) be arbitrary differentiable functions that satisfy (19)
and the condition (20). We differentiate (20) and substitute in (6):

α̇j
id(x)ψid(x) + αj

id(x)ψ̇id(x) = γ̇j
i (x), d ∈ I−

i .

Taking into account here the (i, d)-th subsystem of the equations (6), group-
ing the corresponding terms, we get

[α̇j
id(x) − αj

id(x)(Aid(x))T ]ψid(x)+

+αj
id(x)

∂f id
0

(

uid(x), υid(x)
)

∂uid
= γ̇j

i (x), d ∈ I−
i .

(23)

Taking into account the arbitrariness of the functions αj
id(x), γj

i (x) and the
need to satisfy equality (23) for all solutions ψid(x) of the (i, d)-th subsystem of
equations (6), we require the fulfillment of equality of zero expressions in square
brackets. It follows that αj

id(x), γj
i (x) are the solutions of Cauchy problems

(19)–(20).
The above procedure is repeated for the next value ψik(0), (i, k) ∈ J, for

which the coefficient qj
ik �= 0χ different from zero, until any component of the

vector ψik(0), (i, k) ∈ J will not cease to participate in the j-th condition for
i-th node. After that, it is necessary to go to the (j + 1) -th condition for i-th
node from (7) until these procedures are carried out for all restrictions for all
nodes and a condition of the form (16) is obtained.
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By solving a system of algebraic equations (16) or (17) of the M -th order,
we determine the vectors ψks(lks), (k, s) ∈J .

To determine the desired vector functions ψks (x) , x∈[0, lks] , (k, s) ∈ J the
components ψks

(

lks
)

, (k, s) ∈J of the found vector are used as initial values for
the corresponding Cauchy problems with respect to each individual subsystem
of system (6), solved in the reverse order: from x = lks to x = 0, (k, s) ∈J.

The transfer of conditions can be carried out from right to left. Obtaining
auxiliary Cauchy problems with respect to the sweep coefficients, in this case, is
carried out in a similar way.

4 Conclusion

In this paper, we obtain the necessary conditions for optimality in the problem
of optimal control of a system of differential equations of block structure. An
approach to the numerical solution of a direct and adjoint initial boundary value
problems of large dimension and block structure is described. It is clear that the
direct use of methods for running boundary conditions is not effective, since
taking into account the block structure of conditions at the same time for the
entire system as a whole, as well as for many other classes of problems, can
significantly accelerate their solution. The method is based on the proposed
scheme of the sweep method, which allows one to sweep separately by blocks
with reducing the solution of the problem to an algebraic system of equations
with a sparse Jacobi matrix.
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Abstract. A Generalized Coordinate Method (GCM) for linear permu-
tation-based optimization is presented as a generalization of the Modified
Coordinate Localization Method and Modified Coordinate Method is
presented, and its applications to multiobjective linear optimization on
permutations are outlined. The method is based on properties of linear
function on a transposition graph, a decomposition of the graph, and
extracting from it a multidimensional grid graph, where a directed search
of an optimal solution is performed. Depending on the search parameters,
GCM yields an exact or approximate solution to the original problem.
An illustrative example is given for the method.

Keywords: Permutation-based optimization · Vertex located set ·
Convex extension · Permutation set · Permutohedron · Transposition
graph · Skeleton graph · Configuration graph · Structural graph

1 Introduction

Let us consider the following decision-making problem (DP):

φj (π) → extr, j ∈ J,

ηi (π) ≤ 0, i ∈ I,

π ∈ Π ′,
(1)

where I, J ⊂ N,

Π ′ is a permutation set induced by a multiset set
A = {a1, .., an} with a ground set S(A) = {a′

1, .., a
′
k}.

(2)

First, consider the problem (1) assuming that Π ′ is a combinatorial set
with a given topology. Then (1) is a combinatorial DP, which is: (a) an ordi-
nary single-criterion combinatorial optimization problem (a combinatorial opti-
mization problem, COP), if |J | = 1; (b) a multi-criterion COP (a multi-
objective COP, MCOP), if |J | > 1; (c) an unconstrained COP/MCOP, if I = ∅
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(UCOP/UMCOP); (d) a problem of finding a feasible point of E (a feasibility
problem, FP), if J = ∅. On Π ′, a topology can be defined differently. It assumes
defining of a neighborhood system for any π ∈ Π ′ making it possible usage of
concepts of local optimizer and optimum. It allows using local search techniques
to solve COP started from a feasible π0 ∈ Π ′ as soon as the corresponding FP
has been solved yielding π0. An issue is that solving this FP can be complicated.
Also, there is no guarantee on obtaining in such a way an exact solution of COP
or the one close to it. Adding the constraint (2) to (1) specifies a combinatorial
type of the problem, emphasizing that it is a permutation-based problem (PBP)
[23,24]. Respectively, this typology can be extended to PBP, and such classes as
permutation-based COP (PB-OP), permutation-based MCOP (PB-MOP), etc.
can be singled out.

The PBP-class covers a variety of real-world DPs, where decisions are asso-
ciated with an ordering of a certain set or a multiset. Among them, PB-OP and
PB-MOP are most important [17,23,24,26]. Indeed, it is known that scheduling,
assignment, routing problems, as well as many others, can be modeled as opti-
mization problems on permutations [11,17–19,23–25]. From a theoretical point
of view, PB-OP is also of interest. Here, Π ′ = Πnk(A) is a set of permuta-
tion configurations [28] consisting of all ordered n-samples from A such that
∀π = 〈π1, ..., πn〉 ∈ Π ′ {π1, ..., πn} = A. A neighborhood of π ∈ Π ′ can be
defined, for instance, as permutations differed from π by a single transposition.
Another interesting peculiarity of Πnk(A) is a possibility to consider it as a
finite point configuration (FPC ) [12] in R

n in case if A is numerical. Indeed, if
A ⊂ R

1, then ∀π ∈ Π ′ 〈π1, ..., πn〉 is a numerical tuple, in other words, it is a
vector in Euclidean space – π = (π1, ..., πn) ∈ R

n. After such a mapping into
Euclidean space, it is possible to formulate a COP as a discrete optimization
problem, in particular, consider a linear COP on Π ′ = Πnk(A) (further referred
to as a PB-LOP).

The class PB-LOP is an object of our study with its application to solving a
multiobjective PB-LOP (PB-MLOP). Among exact methods to solve PB-LOP
are Branch and Bound techniques [11,17,24], a combinatorial cutting method
[38], and other cutting methods [11,24,36]. A tightening constraints method is an
example of approximate techniques [31] to solve such problems. Finally, [18,19,24]
offer heuristic methods for a case of specific additional constraints in PB-LOP.
Another group of methods is graph-theoretic approaches. They explore an idea
that Πnk(G), embedded in Euclidean space, is a node-set of a skeleton graph of
its convex hull [5,6,13–16,30]. Thus the search can be restricted to this node-set.
Among such approaches are: (a) horizontalmethods [16] intended to solvePB-LOP
and other linearCOP (LCOP) on sets allowing solving linear programs onΠ ′ effec-
tively; (b) coordinate localization methods for solving FP with a linear equality-
constraint (FP1 ) [5,6,15]; (c) coordinate methods for solving the general PB-LOP
and LCOP on other sets [13,14,30]. Some generalizations of the methods to solve
MCOP and some nonlinear COP are offered in [13–15,30]. The paper [15] presents
a concept of a structural graph of the following PB-LOP, further referred to asPB-
LOP0 : cT x → max, cT x ≤ b, x ∈ E, where E is a permutation set induced by
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a numerical multiset. The graph utilizes a transposition graph [4,10]. Common
features of the graph-theoretic methods are applying a partition of graphs under
consideration into subgraphs and single outing two-dimensional grid graphs [1,15]
from them.

In this paper, the concept of a structural graph is generalized to a struc-
tural graph of the general COP and then is specified for PB-COP; the partition
into subgraphs uses single-outing multidimensional grid graphs from this graph;
a new graph-theoretic approach to solving PB-LOP titled a Generalized Coor-
dinate Method GCM is presented. GCM generalizes the Modified Coordinate
Localization Method (MCLM ) presented in [15] and the Modified Coordinate
Method offered in [14]. In the scope of the paper, we restrict our consideration
to optimization on a set of permutation without repetitions only in order to use
specific properties of this combinatorial set and its image in Euclidean space.
It will be shown that GLM is flexible enough and, depending on input, allows
solving PB-LOP approximately in polynomial time or exactly in exponential
time.

This paper is organized as follows. Section 2 describes the advantages of
embedding combinatorial sets into Euclidean space when COP is solved. Special
attention is paid to geometric graphs emerged as a result of this embedding. A
concept of a structural graph (SG) of the general Euclidean setting of COP is
presented. Section 3 describes the properties of permutation sets embedded into
Euclidean space underlying GCM. In Sect. 4, a concept of a grid graph of PB-
COP is presented, and its properties are studied. Also, a description of GCM is
provided. An illustrative example of GCM is given in Sect. 5. Section 6 outlines
applications of GCM to multiobjective linear permutation-based optimization.
Finally, Sect. 7 presents our conclusions.

2 Embedding into Euclidean Space and Graph-Theoretic
Approaches to Solving COP

PBP and some other COP allow reformulating in terms of Cartesian variables
regardless of whether the induced set of Π ′ is numerical or not. The process
of this reformulation is called an embedding such COP into Euclidean space
[20,27,31], and the resulting settings of the problems as discrete optimization
ones are called their Euclidean settings (Euclidean COP, ECOP) [27,28,31]. Sim-
ilarly, MCOP on finite point configurations (FPCs) in R

n is a class of Euclidean
MCOP (MECOP) [15,16].

A general ECOP is:

f(x) → max; (3)
hi(x) ≤ 0, i ∈ Jm = {1, ...,m}, (4)

x ∈ E′ ⊂ R
n, (5)

1 < |E′| < ∞, (6)
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while MECOP is

fl(x) → max, l ∈ JL, (7)

where L > 1, subject to constraints (4)–(6).
Here,

E = {x ∈ E′ : hi(x) ≤ 0, i ∈ Jm} (8)

is an image of a feasible set Π = {π ∈ Π ′ : ηi(π) ≤ 0, i ∈ I} in Euclidean space.
Thus, there exists a mapping ϕ : Π → R

n such that E = ϕ(Π). If, in addition,
Π = ϕ−1(E), i.e., the mapping is bijective, such sets Π,E are called an e-set
[31] and a C-set [28], respectively. Further, we will assume that ϕ : Π ′ → R

n is
bijective, i.e., E′ = ϕ(Π ′) and Π ′ = ϕ−1(E′), and will map the whole Π ′ into
Euclidean space. Embedding Π ′ into a continuous space, such as Rn, allows uti-
lizing various features of the space in optimization. For instance, Rn is equipped
with a topology, limits, continuity, completeness, a metric, an inner product, and
so on [20,22]. Power analytic tools like derivatives, convexity, and optimization
algorithms are built on their basis. So, while elements in combinatorial sets are
collections of objects without any relations between them and able to be even
different by nature, their images in R

n are FPCs. On the one hand, the embed-
ding preserves the combinatorial structure of preimage of E′. It allows using
in optimization all the listed tools, as well as geometric properties of E′ and
other geometric structures induced by it, such as its convex hull – a combina-
torial polytope P′ = conv E′ associated with E′, its faces such as facets, edges
E′ = edges P′, and vertices V′ = vert P′. Together, V′ and E′ form a graph

G′ = 〈V′,E′〉 , (9)

which a skeleton graph of P′ [15,39].
Suppose, the general COP needs to be solved. Effectiveness of the embed-

ding strategy for solving COP has proven to be powerful in many cases, e.g.,
a linear program over an FPC is equivalent to solving a polyhedral relaxation
of this ECOP, where (5) is replaced by a condition x ∈ P′. It gave rise to
Polyhedral Combinatorics [17,29] studying algebraic topological and topological
metric properties of combinatorial sets embedded in R

n along with the corre-
sponding combinatorial polytopes. The same concerns Euclidean Combinatorial
Optimization [27,31,33] focused on studying e-sets by C-sets and solving compli-
cated real-world problems employing nonlinear programming, discrete or contin-
uous. In this research field, combinatorial structures presented in the problems
are derived and represented as an e-set Π ′, and then they are embedded into
R

n. After that, the corresponding ECOP on Π ′-image is formed followed by
exploring the image’ features and extreme properties of functions involved in
the mathematical model. Then the original COP is solved by optimization on
the image.

Another relaxation of ECOP, we will refer to as a graph-relaxation, is appli-
cable to those problems, where E′ is a vertex-located set (VLS ) [33]:

E′ = vert P′. (10)
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When moving from ECOP on a VLS to its graph-relaxation, the constraint
(5) is replaced by a condition [5,6,21]:

x ∈ G′. (11)

Respectively, a search domain is reduced to {V′,E′} ⊂ P′. Now, moving from
one legal point of E′ to another is performed based on adjacency criteria for
vertices of P′. If E′ is not a VLS, replacing (11) by (5), generally, does not yield
a relaxation of ECOP since E′ �⊆ vert P′. However, the problem (3), (4), (11)
can be used as a base for heuristics yielding a vertex of P′ as an approximate
solution to the original ECOP.

If we aim to solve exactly a COP on E′, which is not a VLS, by exploring
skeleton graphs, any technique of transforming the problem into one on VLSs,
such as presented in [28,34], can be applied first. Thus, without loss of generality,
it can be assumed that the condition (10) holds, and (9) has a form:

G′ = 〈E′,E′〉 , (12)

A graph-theoretic way to solve ECOP/MECOP is not restricted to exploring
a skeleton graph G′ of P′ as a search domain. In accordance to [21], an undirected
configuration graph Gc (CG) can be associated with E′ → Gc = 〈E′,Ec〉, where
Ec is chosen such that Gc is connected. A choice of Ec = E′ corresponds to
selecting Gc = G′, which is the only one graph from a wide family of connected
graphs induced by E′. By construction, such Gc has a path between any its nodes.
Another option is to use a complete graph with E′ as a node-set. The third one
is a spanning tree of G′. The goal of constructing and utilizing Gc instead of G′

is organizing an effective search on E′. In order to do this, a size |Ec| of Gc is
chosen depending on its diameter that we aim to achieve.

In application to combinatorial optimization techniques based on utilizing a
configuration graph Gc, a directed configuration graph G∗ of a particular ECOP,
also called a structural graph of the ECOP is known in literature [15]. Unlike
Gc, the graph G∗ is oriented, and directions of its arcs are chosen toward nonde-
creasing objective function. Another difference is that vertex set of G∗ coincides
with E, not with E′ ⊇ E. Therefore, to be able to get from a source, which
is a local minimizer of f(x) on E, to any other its node along a legal directed
path, it can be insufficient to form a structural graph Gc =

−→G c = (E′,
−→
Ec)1 of

Euclidean UCOP (3), (5), (6) first, then taking its subgraph induced by E. To
overcome this drawback, constructing the configuration graph Gc needs taking
into account the transition from its subgraph G∗ = (E,E∗) induced by E to a
consideration of the directed graph

−→G ∗.

Definition 1. A directed graph G∗ = (V ∗,
−→
E∗) is called a structural graph (SG)

of a ECOP with objective function f , if it satisfies the following conditions:

1 For a graph G = (V,E) and a function f : V → R
1,

−→
G = (V,

−→
E ) is a digraph,

where
−→
E is formed as follows – ∀u, v ∈ V: (a) if f(u) < f(v), then (u, v) ∈ −→

E ; (a) if

f(u) > f(v), then (v, u) ∈ −→
E ; (c) if f(u) = f(v), then (u, v), (v, u) ∈ −→

E .
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(a) V ∗ = E; (b)
−→
E∗ ⊆ −→

Ec; (c) ∀x, y ∈ E, when and edge {x, y} ∈ Ec, then: if
f(x) ≤ f(y), then a directed edge (x, y) ∈ −→

E∗; if f(x) ≥ f(y), then (y, x) ∈ −→
E∗;

(d) there is a directed path from any local minimizer of f on G∗ to its global
maximizer.

Thus, G∗ =
−→G ∗ satisfying (d). Definition 1 is a direct generalization of Defini-

tion 1 presented in [15] from PB-LOP0 to the general ECOP. The new condition
(d) is added to the definition to ensure a possibility of obtaining a global solution
by a directed search on a relevant SG towards non-decreasing f .

Remark 1. For LCOP, the condition (d) becomes “there is a directed path from
global minimizer of f on G∗ to its global maximizer”.

3 Permutation-Based Optimization Problems

Let optimization be conducted on Π ′ satisfying (2), i.e., PB-OP or PB-MOP
needs to be solved. The corresponding ECOP or MECOP are permutation-
based optimization problems as well (further referred to them as PB-EOP and
PB-EMOP, respectively). This means that it can be assumed that FPC E′ in
(6) is the generalized permutation basic C-set (Cb-set) [28] (the multipermutation
Cb-set [22,28]) Enk(G) induced by n-element numerical multiset G = {g1, ..., gn},
g1 ≤ . . . ≤ gn, containing k different elements S(G) = {g′

1, ..., g
′
k}, g′

1 < . . . < g′
k.

The bijective mapping ϕ : Π ′ = Πnk(A) → E′ = Enk(G) can be defined easily
though a bijection mapping ψ : A → G: gi = ψ(ai), i ∈ Jk. Most common special
classes of are Enk(G): (a) En(G) is the permutation Cb-set (without repetitions)
induced by a set G: g1 < . . . < gn; (b) En = En(Jn); (c) Bn(m) = En2(G) is the
Boolean permutation Cb-set, where G = {0n−m, 1m},m ∈ Jn−1 [27,28,34,35,37].

In this paper, we focus on solving PB-LOP on

E′ = En(G). (13)

The permutation set En(G) and its Boolean invariant – the permutation
matrices set – are well studied [2,3,33,37,39]. For instance, for them, it is known
H-representations of convex hulls, main combinatorial characteristics, solutions
of linear optimization and projection problems, etc. However, real problems
require fulfilling many conditions on permutations. In mathematical models, they
are represented by additional constraints, typically spoiled a nice combinatorial
structure of permutation set, therefore, requiring developing specific techniques
for solving the corresponding optimization and feasibility problems. From a the-
oretical point of view, the permutation set, as well as some of its subsets are of
interest. Among such subsets are even, odd, alternating, distance, cyclic, circular,
complete permutations [28,32,37]. It is a separate task to construct additional
constraints to single out any of these subsets, which is considered in a continuous
functional representation research area [7,27,28]. When it is solved, we come to
a constrained PB-EOP again.
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If PB-EOP is solved on the set (13) the following properties of the set are
used in optimization [27,28,31,33–37,39]: (a) E′ = En(G) is a VLS; (b) E′ is
inscribed into a hypersphere; (c) an E′-convex hull Pn(G) = conv En(G) is the
permutohedron; (d) a skeleton graph G′ = Gn(G) is a graph of the permutohe-
dron, whose adjacent vertices are differed by an adjacent transposition of their
coordinates.

An idea of solving a permutation-based FP1 on finding x ∈ En(G) such that
aT x = a0 is presented in [5]. It is based on considering a transposition graph
GT

n (G) [4,10] and its partition by 2-dimensional 2 × 3 grid graphs [1], as well as
on directed search on the graphs. These ideas were exploited in different ways
in [6,14,15,30]. In particular, in the last paper [15], a concept of a structural
graph of a specific PB-LOP as a directed graph formed based on GT

n (G), a way
to extract 2-dimensional (Q−1)×Q grid graphs from GT

n (G), where Q ≥ 3, and
their usage in optimization were presented.

The current paper continues the research [15] on approaches to solving
PB-LOP on En(G) based on exploring structural graphs of COPs.

Consider the general PB-LOP:

f(x) = cT x → max; (14)
hi(x) = aiT x − bi ≤ 0, i ∈ Jm; (15)

x ∈ En(G); (16)
where c = (cj)j∈Jn

, c1 ≥ c2 ≥ ... ≥ cn. (17)

Let 〈x∗, f∗〉 be a solution of the PB-LOP, zmin = cT xmin = min
x∈En(G)

cT x,

zmax = cT xmax = max
x∈En(G)

cT x. We will focus on a version of PB-LOP, where

xmin ∈ E. (18)

To this new problem we will refer to as PB-LOP1.
By (8), PB-LOP1 can be represented in a form: (14), (17), (18),

x ∈ E, (19)

where
E = {x ∈ En(G) : aiT x − bi ≤ 0, i ∈ Jm}. (20)

By (17) and according to properties of a linear function on En(G) [33], for-
mula (18) can be rewritten as follows:

xmin = (g1, ..., gn) ∈ E. (21)

Any PB-LOP is solved to optimality, if

xmax = (gn, ..., g1) ∈ E (22)

yielding x∗ = xmax. Let us assume that (22) does not hold, then a directed search
of x∗ will be performed either on a SG G∗ of PB-LOP or on a SG Gc =

−→Gc of an
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unconstrained PB-LOP (14), (16), (17) (PB-ULOP). It is desirable to search on
G∗ only, that is possible for special cases of PB-LOP such as PB-LOP1 subject to
a constraint ai1 ≥ ai2 ≥ ... ≥ ain, i ∈ Jm (further referred to as PB-LOP2 ). This
peculiarity of PB-COP2 underlies MCLM to its solution [15]. Since we aim to
solve PB-COP1, which is a generalization of PB-COP2, we will examine a graph
Gc instead of G∗. Respectively, E′ = En(G) will be a search domain instead
of E. Moreover, a transposition graph will be used as Gc, hence Gc will be its
directed version – Gc =

−→G T
n (G). GLM will be presented in terms of the CG Gc

and its partition into transposition graphs of lower dimensions. However, within
the subgraphs, a directed search towards non-decreasing objective function will
be held, which is equivalent to exploring the SG Gc. In such a way, a connection
of GLM-results with a directed search on Gc is established.

To a certain Q ≤ n − 3 and each ordered sample

Λ = (λq)q∈JQ
such that {Λ} = {λq}q∈JQ

⊂ Jn, (23)

an auxiliary CG Gc(Λ) is associated, which is a subgraph of Gc induced by

E′(Λ) = {x ∈ E′ : xn−q+1 = gλq
, q ∈ JQ}. (24)

A family Ψ = {Λ : Λ satisfies (23)} induces a partition of Gc into AQ
n sub-

graphs Ω = {Gc(Λ)}Λ∈Ψ of an order NQ = (n − Q)! isomorphic to GT
n−Q(Jn−Q),

where AQ
n is the number of Q-permutations from n. For any Λ ∈ Ψ , Gc(Λ) is a

CG of a PB-LOP (14), (16), (17),

xn−q+1 = gλq
, q ∈ JQ (25)

(further referred to as PB-LOP(Λ)). Which is a configuration graph Gc(Λ) of
the subset E′(Λ) of E′ = En(G) combinatorially isomorphic to En−Q(Jn−Q).
It is clear that the original PB-LOP is reduced to a directed search on these
subgraphs.

Note that PB-LOP is a special case of PB-LOP(Λ), namely, PB-LOP=
=PB-LOP(∅). In addition, for any PB-LOP(Λ), formulas (21) and (22) are gen-
eralized in the following way:

xmin(Λ) = arg min
x∈E′(Λ)

f(x) = (gμ1 , ..., gμn−Q
, gλQ

, ..., gλ2 , gλµ1
) ∈ E;

xmax(Λ) = arg max
x∈E′(Λ)

f(x) = (gμn−Q
, ..., g1, gλQ

, ..., gλ2 , gλ1) ∈ E, (26)

where {μi}i∈Jn−Q
= Jn\Λ, gμ1 < ... < gμn−Q

.

Remark 2. If Q does not depend on n, then Ω is a Gc-partition into a polynomial
number of subgraphs. If a search of x∗ is organized in such a way that, for
examining elements Ω, it is sufficient considering a polynomial number of nodes,
the original PB-LOP1 will be polynomially solvable as well. We will achieve this
by a fixation one more parameter R ≤ n − Q, and examining only those nodes
of Gc, where the first n − Q − R their coordinates are ordered increasingly.
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4 Generalized Coordinate Method (GCM) for PB-LOP1

Let S,R,Q ∈ Z
+
n , Λ be as follows – S + R + Q = n, R ≥ 3, Λ ∈ Ψ , and a

PB-LOP1 needs to be solved. Denote E′(GrR(Λ,G)) = E′ ∩ GrR(Λ,G), I =
JS+1, ..., j ∈ Jn−Q.

Definition 2. For E′ = En(G), Λ ∈ Ω, a graph GrR(Λ,G) of PB-LOP1 is a
(S+1)× ...×(n−Q) grid graph of the dimension R with the following properties:

– it is a subgraph of Gc(Λ);
– its node-set E′(GrR(Λ,G)) = {pi,...,j}(i,...,j)∈I;
– its source is p1,...,1 = xmin(Λ);
– last Q of its nodes’ coordinates satisfy (25);
– towards the last direction DR, n − Q-th coordinate of the nodes decreases

gradually from the value gμn−Q
to gμ1 , while first n − Q − 1 coordinates are

ordered increasingly;
– towards last but one direction DR−1, an n − Q-th coordinate of the nodes

is already fixed, and its n − Q − 1-th coordinate decreases gradually from its
original value gμn−Q−1 to gμ1 , while the rest first n − Q − 2 coordinates are
ordered increasingly, etc;

– towards the first direction D1, an S + 2-th coordinate of the nodes is already
fixed, and their S +1-th coordinate decreases gradually from its original value
gμS+1 to gμ1 , and the rest first S coordinates are ordered increasingly, etc.

The order of GrR(Λ,G) is

N(S,Q) = (S + 1) · ... · (n − Q). (27)

Fig. 1. The grid digraph Gr3(J4)

As a result, a sink pS+1,...,n−Q will have entries {gμi
}i∈Jn−Q

ordered decreas-
ingly on positions S + 1, ..., n − Q, while elements on the first S positions will
be ordered increasingly. It is seen on Figs. 1 and 2, where a projection of a
digraph

−−→
Gr3(J4) formed from Gr3(J4) = Gr(∅, J4) onto R

3 and Gr3((7), J7) are
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Fig. 2. The grid graph Gr3((7), J7)

depicted, respectively. Definition 2 generalizes a definition of a two-dimensional
grid graph Gr2(Λ) given in [15] to higher dimensions. Namely, in our notations,
Gr2(Λ) = Gr2(Λ,G). Let us also generalize a concept a lexicographic order on
the grid’s nodes and Theorem 1 offered in [15], in the following way:

∀ (i, ..., j), (i′, ..., j′) ∈ I pi,...,j � pi′,...,j′ ⇔ f(pi,...,j) ≤ f(pi′,...,j′).

Two types of transpositions of coordinates of x ∈ E′ will be distinguished
from all possible: (a) a positive transposition f.tr+ of x-coordinates, which is a
transposition leading to increasing a linear function f ; (b) a negative transposi-
tion f.tr− of x-coordinates, which is their transposition leading to decreasing the
value. Without loss of generality, it can be assumed that (17) holds, wherefrom
f.tr+ is a transposition of a lower value located to the left with a larger value
located to the right.

Theorem 1. If Λ ∈ Ψ , then for Gr(Λ) it is true:

∀(i1, ..., ij∗ , ..., iR), (i1, ..., ij∗ + 1, ..., iR) ∈ I

y = pi1,...,ij∗+1,...,iR is formed from x = pi1,...,ij∗ ,...,iR by f.tr+.

Proof. By construction, last n−S − j∗ positions of x = (xi)i∈Jn
and y = (yi)i∈Jn

are identical and pairwise different, namely, xi = yi = gji , i ∈ Jn\Jj∗ . Thus, the
rest positions are j∗ + S-permutations from a set G′(Λ) = G(Λ)\{gij}j∈JR\Jj∗ =
{g′

j}j∈Jj∗ : g′
1 < ... < g′

R−j∗ , where G(Λ) = G\{gλq
}q∈JQ

. x has an entry g′
j∗−ij∗+1

at the j∗-th position, while yj∗ = g′
j∗−ij∗ < xj∗ . This means that ∃j ∈ Jk−1 such

that xj = yj∗ , xj−1 < xj < xj+1. If we make xj∗ ↔ yj∗ -transposition of x-
coordinates, we obtain exactly y, since the last its position is g′

j∗−ij∗+1. Forming y
from x is equivalent to replacing xj∗ by yj∗ and ordering of the rest left coordinates.
Since yj−1 = xj−1 < yj = g′

j∗−ij∗+1 << yj+1 = xj+1, the ordering holds. For x,
this xj∗ ↔ yj∗ -transposition is f.tr+, since xj∗ > yj∗ and j < j∗.
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Corollary 1. If Λ ∈ Ψ then for GrR(Λ,G) it is true:

∀(i, ..., k, ..., j), (i, ..., k + 1, ..., j) ∈ I pi,...,k,...,j � pi,...,k+1,...,j .

Corollary 2. In a sink of the grid graph GrR(Λ,G), it is attained a maximum
of f on its nodes.

Theorem 1 and Corollary 1 state that it is reasonable to conduct a directed
search of x∗ examining E′(GrR(Λ,G)) from the source to the sink, thus moving
from a node of GrR(Λ,G) to those its adjacent ones, where the objective function
does not decrease. In other words, it is worth to perform the search on

−−→
GrR(Λ,G).

Finally, Corollary 2 says that for examining GrR(Λ,G), it is sufficient to check
the only sink, if it belongs to E.

Let us establish a connection between xmin(GrR(Λ,G)) = arg min
x∈E′(GrR(Λ,G))

f(x), xmax(GrR(Λ,G)) = arg max
x∈E′(GrR(Λ,G))

f(x) and xmin, xmax. By (18), By

construction and (18),

xmin(GrR(∅, G)) = xmin = (g1, ..., gn) ∈ E;

xmin(GrR(Λ,G)) = xmin(Λ) = (gμ1 , ..., gμn−Q
, gλQ

, ..., gλ2 , gλ1);
xmax(Λ) = (gμn−Q

, ..., gμ1 , gλQ
, ..., gλ2 , gλ1);

xmax(GrR(Λ,G)) = (gμR+1 , ..., gμn−Q
, gμR

, ..., gμ1 , gλQ
, ..., gλ2 , gλ1).

Thus, zmin ≤ zmin(Λ) = zmin(GrR(Λ,G)) ≤ zmax(GrR(Λ,G)) ≤
zmin(Λ) ≤≤ zmin, where z[.]([..]) = f(x[.]([..])).

Algorithm of GCM
Input: PB-LOP1, S,R,Q ∈ Z

+
n : S + R + Q = n, R ≥ 3.

Output: if S = 0 – 〈x∗, z∗〉, otherwise, an approximate solution of PB-LOP1
〈x∗∗, z∗∗〉.

GLM-algorithm outline:

– Step 0. Set x∗∗ = g, z∗∗ = cT g. Find 〈xmax, zmax〉.
– Step 1. If (22) holds, then 〈x∗, z∗〉 = 〈xmax, zmax〉. Finish.
– Step 2. Form the family Ψ .
– Step 3. For each Λ ∈ Ψ , verify:

1. if zmax(Λ) ≤ z∗∗, go to Step 3;
2. if

(a) xmax(Λ) satisfy (26), then xmax(Λ) = arg max
x∈E(Λ)

f(x); if z∗∗ <

zmax(Λ), then 〈x∗∗, z∗∗〉 = 〈xmax(Λ), zmax(Λ)〉.
(b) otherwise, i.e., if

xmax(Λ) /∈ E, (28)

then apply a search on a grid graph GrR(Λ,G) in accordance to
Algorithm 1.
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Step 4. if S = 0, then

〈x∗, z∗〉 = 〈x∗∗, z∗∗〉 . (29)

Algorithm 1
Algorithm 1 intends for examining GrR(Λ,G) in order to improve z∗∗.

– Step A.1. If zmax(GrR(Λ,G)) ≤ z∗∗, then finish.
If xmax(GrR(Λ,G)) ∈ E and z∗∗ < zmax(GrR(Λ,G)), then 〈x∗∗, z∗∗〉 =
= 〈xmax(GrR(Λ,G)), zmax(GrR(Λ,G))〉. Finish.

– Step A.2. Examine E′(GrR(Λ,G)) moving from a source to a sink, improving
z∗∗, and updating x∗∗ as soon as a node in E with grater f -value is found.

Remark 3. For each examined point x ∈ E, a statistics will be given in a form
stat(x) = [f(x),Δ1(x), ...,Δm(x)], where Δi(x) = −hi(x) is a residual of the
i-th constraint (15) at x, i ∈ Jm.

x ∈ E′ is feasible, i.e., it satisfies (19), iff

Δi(x) ≥ 0, i ∈ Jm. (30)

Remark 4. The fact of obtaining an approximate solution 〈x∗∗, z∗∗〉 of PB-COP
is provided by an additional condition (18). If S = 0, (27) becomes N(0, Q) =
(n − Q)! is an order of each of AQ

n grid graphs GrR(Λ,G), Λ ∈ Ψ , which are
pairwise disjoint. Together, their vertex sets form a partition of En(G) as |AQ

n | ·
N = n!

(n−Q)! (n − Q)! = n! = |En(G)|. Thus, (29) holds.

5 GLCM Illustration

Along with E′(GrR(Λ,G)), the following denotation will be used:

E(GrR(Λ,G)) = E ∩ GrR(Λ,G).

Let us consider the following example: solve PB-LOP for n = 7, m = 2,
G = {g1, g2, g3, g4, g5, g6, g7} = {1, 2, 4, 7, 8, 9, 11}, c = (8, 7, 7, 6, 4, 2, 2), a1 =
(5, 7, 4, 5, 2, 2, 4), a2 = (2, 1, 4, 3, 2, 3, 1), b1 = 174, b2 = 96.

xmin = (1, 2, 4, 7, 8, 9, 11), stat(xmin) = [zmin,Δ1(xmin),Δ2(xmin)] =
[164, 26, 1]. The constraint (30) holds, hence, (18) is satisfied, thus, we deal with
PB-LOP1 and GLM is applicable to it.

Let S = 3, R = 3, Q = 1 be chosen.

Step 0. 〈x∗∗, z∗∗〉 =
〈
xmin, zmin

〉
= 〈(1, 2, 4, 7, 8, 9, 11), 164〉.

Step 1. xmax = (11, 9, 8, 7, 4, 2, 1), stat(xmax) = [zmax,Δ1(xmax),Δ2(xmax)]
= [271,−27,−3]. No one of the constraints (18) holds, hence, xmax /∈ E.
Step 2. Ψ = {7, 6, 5, 4, 3, 2, 1}.
Step 3. Explore Ψ sequentially from j = 7 ∈ Ψ to j = 1.
Step 3.1. j = 7, Λ = (j) = (7).
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xmax(Λ) = xmax(7) = (g6, g5, g4, g3, g2, g1, g7) = (9, 8, 7, 4, 2, 1, 11), stat(xmax

(7)) = [233,−25, 12]. zmax(7) = 244 > z∗∗ = 164 and xmax(Λ) /∈ E. Continue.
(28) holds, go to Algorithm 1.
Step A.1. xmax(Gr3(Λ,G)) = xmax(Gr3(7, G)) = (g3, g5, g6, g3, g2, g1, g7) =
= (7, 8, 9, 4, 2, 1, 11), stat(xmax(Gr3(7, G))) = [231,−23, 8]. zmax

3 (Gr3(7, G)) =
231 > 264 = z∗∗, xmax

3 (Gr3(7, G)) /∈ E.
Step A.2. Examine E′(Gr3(7, G)) starting at a source xmin(Gr3(7, G)) =
= (g1, g2, g3, g4, g5, g6, g7) = (1, 2, 4, 7, 8, 9, 11) = xmin ∈ E, stat(xmin

3 (7)) =
stat(xmin) = [164, 26, 1] to the sink xmax(Gr3(7, G)).

By (27), |E′(Gr3(7, G))| = 6 · 5 · 4 = 120 nodes are examined, and results are
presented in Tables 2, 3, 4 and 5, where stat(x) for x ∈ Gr3(7, G) are collected,
and the three-dimensional grid is presented as a decomposition into n − Q +
R − 1 = 4 two-dimensional grid graphs Grl

3(7), l ∈ J4, lying in parallel planes
of Gr3(7, G) (see Fig. 2). In particular, Gr13(7) is a front-face-grid containing
the source xmin(Λ), which statistics are given in Table 2; Gr23(7) is next parallel
(see Table 3) to it, etc. Finally, Gr43(7) is a back-face-grid with the sink xmax(Λ)
(see Table 5).

Examine them consecutively, updating the current record 164.

(a) Gr13(7): from Table 2, in addition to xmin(Gr3(7, G)) = xmin
3 (7, G), whose

statistics is in (1, 1)-cell, there are 10 more feasible shadowed grid-nodes.
Among them, the maximum of f(x) is 203 attained at xmax(E(Gr13(7))) =
(2, 4, 7, 9, 8, 1, 11) associated with the cell (2, 6) of the table with an entry
[203, 1, 3]. Since zmax(E(Gr13(7))) = 203 > 164, update 〈x∗∗, z∗∗〉 =
< xmax(E(Gr13(7))), zmax(E(Gr3((7), 1)) >= 〈(2, 4, 7, 9, 8, 1, 11), 203〉.

(b) Gr23(7): from Table 3, there are 5 feasible shadowed grid-nodes. Maximum
of f(x) at these nodes is 207, which is attained at (2, 4, 9, 8, 7, 1, 11) corre-
sponding the cell (3, 6) with an entry [207, 0, 0]. zmax(E(Gr23(7))) = 207 >>
203 = z∗∗. Update: 〈x∗∗, z∗∗〉 = 〈(2, 4, 9, 8, 7, 1, 11), 207〉.

(c) Gr33(7): from Table 4, exactly half of the nodes are feasible. However,
zmax(E(Gr33(7))) = 202 < z∗∗. A new record was not found.

(d) Gr43(7): from Table 5, it is seen that 12 feasible shadowed grid-nodes are
found. zmax(E(Gr13(7))) = 208 > 207 = z∗∗, thus a record is improved:
〈x∗∗, z∗∗〉 =

〈
xmax(Gr43(7))), zmax(E(Gr43(7)))

〉
= 〈(4, 7, 9, 1, 8, 2, 11), 208〉.

Finish. Go to Step 3.

j = j − 1 = 6. Similarly examine Gr3(6, G), ..., Gr3(1, G). Results on exam-
ining Gr3(j,G), j ∈ J6 are collected in Table 1, namely, values zmax(Λ),
zmax(Gr3(Λ,G)), Λ ∈ Ψ increasing as Λ decreases; a number of feasible points
in E(Gr3(Λ,G)); the consecutively improved bound z∗∗ and a node, where it is
attained.

A result of applying GML is the following: 〈x∗∗, z∗∗〉 = 〈(7, 8, 9, 1, 11, 2,
4), 237〉. Since S > 0, we can only say that the solution to ECOP1 is approxi-
mate. At the same time, an exact solution is 〈x∗, z∗〉 = 〈((9, 8, 7, 2, 11, 4, 1), 243〉,
thus a relative error of the solution x∗∗ is δ∗ = | z∗−z∗∗

z∗∗ | = 2, 5%.
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Remark 5. From Table 1, it is seen that exploring these grid graphs from
Gr3(1, G) to Gr3(7, G) allows reduce the search by applying the Step 3.1-
condition for Λ = (1), because 233 = zmax(1) ≤ z∗∗ = 237.

Remark 6. This example shows that the requirement (18) can be relaxed and
replaced with the following: it is known x0 ∈ E. If this FP has been solved, x0

can be used as x∗∗. In turn, such an FP, in some cases, can be solved easily based
on the meaning of the optimization problem under consideration. In general case,
we recommend solving an auxiliary continuous optimization problem obtained
from PB-LOP by replacing the constraint (16) by a functional representation of
En(G) [27,28] and applying global optimization approaches to its solution. This
way is more preferable, in this case, the infeasibility of the original PB-LOP will
be proven or x0 will be a local minimizer of the auxiliary problem, whose use as
a starting point can reduce a search domain significantly (Fig.3).

Table 1. Results on analysis of E(Gr3((j), G)), j ∈ J7

Λ zmax(Λ) # of feasible points zmax(Gr3(Λ)) x∗∗ z∗∗

7 233 47 208 (4,7,9,1,8,2,11) 208

6 245 24 218 (4,7,11,1,8,2,9) 218

5 250 24 220 (4,7,11,1,9,2,8) 220

4 255 9 223 (4,8,9,2,11,1,7) 223

3 267 1 237 (7,8,9,1,11,2,4) 237

2 271 0 – (7,8,9,1,11,2,4) 237

1 271 0 – (7,8,9,1,11,2,4) 237

Fig. 3. The grid-graph Gr3((7), G)
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6 GLM for Permutation-Based Multiobjective Linear
Optimization

If PB-MLOP fj(x) = cjT x → max, j ∈ JL, L > 1 needs to be solved, and
a prior information on importance of criteria fj(x), j ∈ JL is known and pre-
sented by their relative weights λj ∈ (0, 1),∈ JL, GCM can be used directly,
if priori methods of multiobjective optimization, such as method of scalarizing
the multiobjective problem, the lexicographic method, the method of successive
concessions, etc. [8,9,26]. If the first method is applied, GCM is used after a pre-
liminary convolution into a supercriterion F (x) = λ1f1(x)+λLfL(x). According
to Remark 5, in this case, an initial feasible point x∗∗ ∈ E is required, which can
be found by applying the continuous functional representations of En(G). If the
last two methods are utilized, GCM is applied on each step of the corresponding

Table 2. Gr3 ((7), 1)

Table 3. Gr3 ((7), 2)

Table 4. Gr3 ((7), 3)

Table 5. Gr3 ((7), 4)
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iterative procedure, where a single criterion is maximized. During the process,
the additional constraints (15) are complemented by new ones. Note that the
feasibility problem is solved only on an initial iteration. For the rest iterations,
already found solutions of auxiliary PB-LOPs can be used as x∗∗ and z∗∗.

7 Conclusion

A Generalized Coordinate Method (GCM) for linear constraint optimization
on permutations is offered. It generalizes the Modified Coordinate Method and
Modified Coordinate Localization Method of permutation-based linear optimiza-
tion and can be used directly to solve multiobjective permutation-based problems
after a convolution of criteria or as an auxiliary problems solved on each step of
iterative methods of multiobjective optimization where a single-objective opti-
mization problem is solved on each stage GCM uses properties of linear function
on a transposition graph, a decomposition of the graph into isomorphic trans-
position graphs of lower dimension, as well as single outing grid graphs from
it, which define a search domain in GLM. Depending on the search parameters,
GLM yields an exact or approximate solution to the linear permutation-based
problem. An illustration example of GLM-algorithm is given.
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Abstract. For semicoercive contact elastic problem with friction the
smooth duality scheme is investigated, which allows on each step of suc-
cessive approximation method to define simultaneously the displacement
vector of elastic body points and normal contact stress defining the fric-
tion force on the next step of successive approximation method.

Keywords: Contact problem · Modified Lagrangian functional ·
Saddle point · Uzawa method · Sensitivity functional

1 Introduction

The modern statements of the contact problem in elasticity contain the unilat-
eral nonpenetration condition for normal displacement in contact zone with a
rigid surface and friction condition for tangential displacement. We note also
that friction force according to Coulomb law depends on the desired solution.
With regard to these indicated factors we obtain the quasi-variational Signorini’s
inequality [1–3]. The well-known a successive approximation method for solving
quasi-variational Signorini’s inequality is based on the iterative process in which
on each step one must solve the auxiliary problem with given friction. It is
convenient to use duality schemes for solving an auxiliary problem as duality
schemes allow finding the solution of initial and dual problems simultaneously
and the solution of dual problem defines the friction force on the next step of
successive approximation method. It is known that duality schemes based on
classical Lagrangian functional can be used in coercive problem only. But the
convergence of the duality method in coercive problems takes place if there is a
dependence of step to the dual variable on the constant of strong convexity of
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minimizing functional. To overcome difficulties we investigated duality schemes
based on modified Lagrangian functional. It was shown that modified duality
methods converge to saddle point under suitable regularity of auxiliary problem
solution [4–6]. In this paper we continue the further investigations of modified
duality methods.

2 Semicoercive Contact Problem in Elasticity with
Friction. Quasi-Variational Inequality

We consider a two-dimensional contact problem between an elastic body Ω and
absolutely rigid support (Fig. 1). The boundary Γ of domain Ω is equal to
Γ̄0

⋃
Γ̄K

⋃
Γ̄P , where Γ0, ΓK and ΓP are open pairwise disjoint subsets of Γ

such that mes(Γ0) and mes(ΓK) are positive.

Fig. 1. The contact body

For the displacement vector u = (u1, u2) we define the strain tensor

εij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

, i, j = 1, 2,

and the stress tensor σij(u) = cijpmεpm(u), where i, j, p, m = 1, 2; cijpm =
cjipm = cpmij ; summation is implied over repeated indexes.

We denote n = (n1, n2) is a unit outward normal vector on Γ ; un = u · n;
ut = u − un n; σi(u) = σij(u)nj for i = 1, 2; σ(u) = (σ1(u), σ2(u)); σn(u) =
σij(u)ni nj ; σt(u) = σ(u)−σn(u)n; σij,j(u) = ∂σij(u)/∂xj , i, j = 1, 2; F is the
frictional coefficient with F ≥ 0 on ΓK .

For given functions F = (f1, f2) and T = (T1, T2), consider the boundary
value problem [1,2]

−σij,j(u) = fi in Ω, i = 1, 2;
un = 0, σt(u) = 0 on Γ0;
σij(u)nj = Ti on ΓP , i = 1, 2.
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The following conditions are set on the interface ΓK between the elastic body
and the absolutely rigid support

un ≤ 0, σn(u) ≤ 0, unσn(u) = 0 (unilateral Signorini conditions);
|σt(u)| ≤ F|σn(u)|, σt(u)ut + F|σn(u)||ut| = 0 (friction conditions). (1)

The basic difficulty in the study of this problem is that the frictional force
F|σn(u)| is a function of the desired solution u. Together with the boundary
value problem, we consider the corresponding quasi-variational inequality.

Define the set (see Fig. 1)

K =
{
v ∈ [H1(Ω)]2 : v = vn = 0 on Γ0, vn ≤ 0 on ΓK

}
.

Assume that cijpm ∈ L∞(Ω), i, j, p, m = 1, 2; F ∈ [L2(Ω)]2 and T ∈ [L2(ΓP )]2.
Suppose that the boundary value problem with friction has a solution u ∈
[H2(Ω)]2. Then it can be shown that u satisfies the quasi-variational inequality

a(u, v − u) +
∫

ΓK

F|σn(u)|(|vt| − |ut|)dΓ ≥

≥
∫

Ω

fi(vi − ui)dΩ +
∫

ΓP

Ti(vi − ui)dΓ ∀ v ∈ K,
(2)

where a(u, v) =
∫

Ω

cijpmεpm(u)εij(v) dΩ.

The quasi-variational inequality can be rewrite in the following way [7]

u ∈ arg min
v∈K

⎧
⎨

⎩

1
2
a(v, v) −

∫

Ω

fi vi dΩ −
∫

ΓP

Ti vidΓ +
∫

ΓK

F|σn(u)| |vt|
⎫
⎬

⎭
dΓ.

Let us consider the successive approximation method for solving the quasi-
variational inequality (2). We specify an initial frictional force g0 ∈ H1/2(ΓK)
such that g0 ≥ 0. At the (k + 1)th step, uk+1 is defined as the solution to the
problem with given friction [1]

a(uk+1, v − uk+1) +
∫

ΓK

gk(|vt| − |uk+1
t |)dΓ ≥

≥ ∫
Ω

fi (vi − uk+1
i ) dΩ +

∫

ΓP

Ti (vi − uk+1
i )dΓ ∀ v ∈ K,

(3)

where gk = F|σn(uk)|, k = 1, 2,. . . , and uk is a solution, finding on a previous
step k of successive approximations method.

It is easy to show that variational inequality (3) is equivalent to the varia-
tional problem

⎧
⎪⎨

⎪⎩

J(v) =
1
2
a(v, v) −

∫

Ω

fi vi dΩ −
∫

ΓP

Ti vidΓ +
∫

ΓK

gk|vt|dΓ → min,

v ∈ K.

(4)
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Moreover, the corresponding boundary value problem for (4) has the same
form as the original boundary value problem except that the friction conditions
in (1) are replaced with

|σt(u)| ≤ gk, σt(u)ut + gk|ut| = 0.

The kernel R of the bilinear form a(v, v) is not empty in [H1(Ω)]2 and consists
of the vector function ρ = (ρ1, ρ2), where ρ1 = a1 − b x2, ρ2 = a2 + b x1 and a1,
a2, b are arbitrary fixed scalars.

Define W =
{
v ∈ [H1(Ω)]2 : vn = 0 on Γ0

}
. The subspace R̃ = W ∩ R is a

set of virtual rigid displacements (i.e., displacements of Ω as an absolutely rigid
body with the strict (two-sides) constructions being preserved). According to
Fig. 1 (see [1]), R̃ = W ∩ R is a one-dimensional set and looks in the following
way R̃ = {ρ = (ρ1, ρ2): ρ1 = a, ρ2 = 0}, where a is an arbitrary constant.

Since ΓK is not parallel to Γ0, a unit outward normal vector n on ΓK satisfies
the condition n1 �= 0. According to Fig. 1, n1 > 0 on ΓK . Then

R̃ ∩ K = {ρ = (a, 0), a ≤ 0}. (5)

Taking into account that n1 = const �= 0 on ΓK , we can conclude (see [1]) that
the form ⎛

⎜
⎝

∫

Ω

cijpmεij(v)εpm(v) dΩ +

⎛

⎝
∫

ΓK

vn dΓ

⎞

⎠

2
⎞

⎟
⎠

1/2

(6)

is the norm in W , which is equivalent to norm in [H1(Ω)]2. Assume that
∫

Ω

F1 dΩ +
∫

ΓP

T1 dΓ > 0. (7)

An arbitrary v ∈ W is decomposed into a normal and a tangent component
to ΓK ; i.e., v = (vn, vt). Let

v̄ = (v̄n, 0), where v̄n =
1

mesΓK

∫

ΓK

vn dΓ,

and let ṽ = v − v̄ = (vn − v̄n, vt). It is easy to see that
∫

ΓK

ṽn dΓ =
∫

ΓK

(vn − v̄n) dΓ = 0.

In this case, norm (6) for ṽ becomes

⎛

⎝
∫

Ω

cijpmεij(ṽ)εpm(ṽ)dΩ

⎞

⎠

1/2

= (a(ṽ, ṽ))1/2
. (8)
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We introduce the linear functional

L1(v) =
∫

Ω

fi vi dΩ +
∫

ΓP

Ti vi dΓ

on the set W . Then, for arbitrary v ∈ W , we have

J(v) = 1
2a(ṽ, ṽ) − L1(ṽ) − L1(v̄) +

∫

ΓK

gk|vt|dΓ =

= 1
2a(ṽ, ṽ) − L1(ṽ) − v̄n

(
∫

Ω

F1 dΩ +
∫

ΓP

T1 dΓ

)

+
∫

ΓK

gk|vt|dΓ.
(9)

Let v ∈ K. Since v̄n ≤ 0 condition (7) implies that J(v) → +∞ as ‖v‖W → ∞
and v ∈ K. Thus, we have proved that auxiliary problem (4) is solvable for any
k = 1, 2, . . . .

The existence and uniqueness of solutions in the case of minimizing quadratic
functionals were studied in detail in [8]. The solvability of quasi-variational
inequality (2) was analysed in [1].

Every iteration step in the method of successive approximations involves a
solution to the problem (4) with given friction. Apparently, the convergence of
the method still remains an open question (see [1]). Nevertheless, the method has
been tested in contact elasticity problems with friction. Specifically, in [1], the
minimization of auxiliary nondifferentiable functional in (4) was replaced with
the problem of finding a saddle point of a differentiable classical Lagrangian
functional on the set K × Λ (Λ = {μ ∈ L2(ΓK): |μ| ≤ 1 a.e. on ΓK}), in spite of
the fact that semicoercive problem was considered.

Below, the method used to solve the problem (4) is based on a duality scheme
that allows us simultaneously to drop constraints of the form “vn ≤ 0 on ΓK”
and to smooth the minimizing functionals.

Let us rewrite the problem (4) in equivalent form
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

J̄(v, w) = a(v, v) −
∫

Ω

fivi dΩ −
∫

ΓP

Tivi dΓ +
∫

ΓK

g|v · t − w|dΓ → min,

v ∈ K,
w ∈ L2(ΓK), w = 0 on ΓK ,

(10)

where t = (−n2, n1) on ΓK .

Remark 1. In further consideration we will investigate the problem (10) instead
of problem (4). We can construct an iterative method with smooth auxiliary
functional for solving the problem (4).

3 Sensitivity Functional and Modified Lagrangian
Functional

In this section, we introduce and study the sensitivity functional which plays an
important role in further investigations.
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We introduce the modified Lagrangian functional [4,5]

M(v, w; l1, l2) = J̄(v, w)+
1
2r

∫

ΓK

((
(l1 + rvn)+

)2 − l21

)
dΓ +

∫

ΓK

(
l2w +

r

2
w2
)

dΓ

for (v, w; l1, l2) ∈ (W × L2(ΓK)) × [L2(ΓK)]2, where (l1 + rvn)+ ≡ max{0, l1 +
rvn}.

Let us define the dual functional

M(l1, l2) = inf
(v,w)∈W×L2(ΓK)

M(v, w; l1, l2) ∀(l1, l2) ∈ [L2(ΓK)]2.

Dual functional has the other representation [4,5]

M(l1, l2) = inf
(μ1,μ2)∈[L2(ΓK)]2

{χ(μ1, μ2)+

+
∫

ΓK

(l1μ1 + l2μ2)dΓ + r
2

∫

ΓK

(μ2
1 + μ2

2)dΓ

}

,
(11)

where
χ(μ1, μ2) = inf

vn ≤ μ1 on ΓK

w = μ2 on ΓK

J̄(v, w)

is called the sensitivity functional [9].
Denote Kμ1,μ2 = {(v, w) ∈ W × L2(ΓK) : vn ≤ μ1, w = μ2 on ΓK}

∀(μ1, μ2) ∈ [L2(ΓK)]2. Set Kμ1,μ2 may be empty for some μ1 ∈ L2(Γ ). For
example, if μ1 ∈ [C(ΓK) ∩ L2(ΓK)]\H1/2(ΓK) and μ1 is unbounded below, then
Kμ1,μ2 = ∅ because of H1(Ω) ⊂ H1/2(Γ ) [10,11]. For all points (μ1, μ2) such
that Kμ1,μ2 = ∅ we put χ(μ1, μ2) = +∞. It is easy to show that under condition
(7), χ(μ1, μ2) is a proper convex functional in [L2(ΓK)]2, but its effective domain

dom χ = {(μ1, μ2) ∈ [L2(ΓK)]2 : χ(μ1, μ2) < +∞}
doesn’t coincide with [L2(ΓK)]2. Obviously, dom χ = [L2(ΓK)]2.

Theorem 1. Let (μ̄1, μ̄2) /∈ domχ. Then for any sequence {(μi
1, μ

i
2)} in domχ,

such as lim
i→∞

‖(μi
1, μ

i
2) − (μ1, μ2)‖[L2(ΓK)]2 = 0 the formula lim

i→∞
χ(μi

1, μ
i
2) = +∞

is correct.

Proof. Denote
(vi, wi) = arg min

(v,w)∈K
µi
1,µi

2

J̄(v, w).

We show, that lim
i→∞

‖(vi, wi)‖W×L2(ΓK) = +∞. Suppose on the contrary, there

is a subsequence {ij} and constant C > 0, such that ‖(vij , wij )‖W×L2(ΓK) ≤ C

for any ij . Since [H1(Ω)]2 ⊂ [H1/2(Γ )]2, we have

‖(vij , wij )‖[H1/2(Γ )]2×L2(ΓK) ≤ C1,
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where the constant C1 > 0 does not depend on ij . Moreover, {vij} is compact
sequence in [L2(ΓK)]2. Let (ṽ, w̃) ∈ [H1/2(Γ )]2 ×L2(ΓK) be its weak limit point.
Without loss of generality we can suppose that (vij , wij ) converges to (ṽ, w̃)
weakly. Then {vij} converges to ṽ strictly in [L2(ΓK)]2. Since v

ij
n ≤ μ

ij
1 on ΓK ,

we have ṽn ≤ μ1 on ΓK , that is Kμ1,μ2 �= ∅. We obtain contradiction. Therefore
lim

i→∞
‖(vi, wi)‖W×L2(ΓK) = +∞. It means lim

i→∞
‖vi‖W = +∞. As above (see (9)),

we introduce
v̄i

n =
1

mes ΓK

∫

ΓK

vi
ndΓ.

Since vi
n ≤ μi

1 on ΓK , then

v̄i
n ≤ 1

mes ΓK

∫

ΓK

μi
1dΓ.

We have
∣
∣
∣
∣
∣

∫

ΓK

μi
1dΓ

∣
∣
∣
∣
∣
≤ (mes ΓK)1/2‖μi

1‖L2(ΓK),

−(mes ΓK)1/2‖μi
1‖L2(ΓK) ≤ ∫

ΓK

μi
1dΓ ≤ (mes ΓK)1/2‖μi

1‖L2(ΓK).

Hence
v̄i

n ≤ 1
(mes ΓK)1/2

‖μi
1‖L2(ΓK), i = 1, 2, . . . .

Since lim
i→∞

‖μi
1 − μ1‖L2(ΓK) = 0, it follows

‖μi
1‖L2(ΓK) ≤ ‖μ1‖L2(ΓK) + ε

for any ε > 0 and for sufficiently large i. It means

v̄i
n ≤ 1

(mes ΓK)1/2

(‖μ1‖L2(ΓK) + ε
) ≤ C2, C2 > 0 − const (12)

for sufficiently large i.
As above, we use the representation vi = v̄i + ṽi, where v̄i = (v̄i

n, 0), ṽi =
(vi

n − v̄i
n, vi

t). From lim
i→∞

‖vi‖W = +∞, (9) and (12), it follows

lim
i→∞

J̄(vi, wi) = +∞ or

lim
i→∞

χ(μi
1, μ

i
2) = +∞. (13)

Theorem 2. Let {(μi
1, μ

i
2)} ∈ domχ is a sequence such as lim

i→∞
‖(μi

1, μ
i
2) −

(μ̄1, μ̄2)‖[L2(ΓK)]2 = 0. Then lim
i→∞

χ(μi
1, μ

i
2) ≥ χ(μ̄1, μ̄2).
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Proof. We have {(μi
1, μ

i
2)} ∈ dom χ and lim

i→∞
‖(μi

1, μ
i
2) − (μ̄1, μ̄2)‖[L2(ΓK)]2 = 0.

Let {(μij
1 , μ

ij
2 )} be a subsequence for with

lim
j→∞

χ(μij
1 , μ

ij
2 ) = lim

i→∞
χ(μi

1, μ
i
2)

is correct.
We consider the sequence {(vμ

ij
1 , wμ

ij
2 )}, where

(vμ
ij
1 , wμ

ij
2 ) = arg min

(v,w)∈K
µ
ij
1 ,µ

ij
2

J̄(v, w).

From formulas (9), (12) it follows that {(vμ
ij
1 , wμ

ij
2 )} is a bounded sequence

in [H1(Ω)]2 × L2(ΓK) (otherwise lim
j→∞

χ(μij
1 , μ

ij
2 ) = +∞ and theorem has been

proved). Since [H1(Ω)]2 ⊂ [H1/2(Γ )]2, then {(vμ
ij
1 , wμ

ij
2 )} is a bounded sequence

in [H1/2(Γ )]2 × L2(ΓK). Let (v̄, w̄) be its weak limit point. Without lose of gen-

erality we assume that {(vμ
ij
1 , wμ

ij
2 )} is a weakly convergent sequence, that is

(v̄, w̄) is a weak limit of {(vμ
ij
1 , wμ

ij
2 )} in [H1/2(Γ )]2 × L2(ΓK). Since H1/2(Γ )

is involved to L2(Γ ) compactly and L2(Γ ) ⊂ H1/2(Γ ), then {(vμ
ij
1 , wμ

ij
2 )} con-

verges to (v̄, w̄) in [L2(Γ )]2×L2(ΓK). We have (μij
1 , μ

ij
2 ) → (μ̄1, μ̄2) in [L2(ΓK)]2,

(vμ
ij
1

n , wμ
ij
2 ) → (v̄n, w̄) in [L2(Γ )]2 × L2(ΓK) and v

μ
ij
1

n ≤ μ
ij
1 , wμ

ij
2 = μ

ij
2 on ΓK

(n is a unit outward vector on ΓK). Then v̄n ≤ μ̄1, w̄ = μ̄2 on ΓK . Let

(v̂, ŵ) = arg min
vn = v̄n

w = μ̄2

⎫
⎬

⎭
on ΓK

J̄(v, w).

We have

J̄(vμ
ij
1 , wμ

ij
2 ) − J̄(v̂, ŵ) = a(v̂, vμ

ij
1 − v̂) − ∫

Ω

fk(v
μ
ij
1

k − v̂k)dΩ − ∫

ΓP

Tk(v
μ
ij
1

k − v̂k)dΓ+

+

∫

ΓK

g(|vμ
ij
1 · t − wμ

ij
2 | − |v̂ · t − ŵ|)dΓ +

1

2
a(vμ

ij
1 − v̂, vμ

ij
1 − v̂) =

=<μ, vμ
ij
1 − v̂> −

∫

ΓP

Tk(v
μ
ij
1

k − v̂k)dΓ+

+

∫

ΓK

g(|vμ
ij
1 · t − wμ

ij
2 | − |v̂ · t − ŵ|)dΓ +

1

2
a(vμ

ij
1 − v̂, vμ

ij
1 − v̂),

where
<μ, v>= a(v̂, v) −

∫

Ω

fk vk dΩ

and, moreover, μ ∈ [H−1/2(Γ )]2 [11,12].
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Since {vμ
ij
1 } weakly converges to v̄ in [H1/2(Γ )]2, then lim

j→∞
<μ, vμ

ij
1 −v̂>= 0.

Now, because of {(vμ
ij
1 , wμ

ij
2 )} converges to (v̄, w̄) in [L2(Γ )]2 × L2(Γ ), we have

lim
j→∞

J̄(vμ
ij
1 , wμ

ij
2 ) ≥ J̄(v̂, ŵ)

or
lim

j→∞
χ(μij

1 , μ
ij
2 ) ≥ χ(v̄n, μ̄2) ≥ χ(μ̄1, μ̄2).

From Theorems 1 and 2 it follows that functional χ(μ1, μ2) is lower semi-
continuous in [L2(ΓK)]2. Taking into account that χ(μ1, μ2) is convex functional
we can conclude that χ(μ1, μ2) is weakly lower semicontinuous functional in
[L2(ΓK)]2.

Let us take a sequence {(μk
1 , μk

2)} ⊂ dom χ convergent to (μ̄1, μ̄2) ∈ dom χ
in [L2(ΓK)]2. We select such subsequence {(μki

1 , μki
2 )}, for which

lim
i→∞

χ(μki
1 , μki

2 ) = lim
i→∞

χ(μk
1 , μk

2).

From {(μki
1 , μki

2 )} we will allocate a subsequence convergent to (μ̄1, μ̄2) almost
everywhere. Without loss of generality we assume that sequence {(μki

1 , μki
2 )}

convergent to (μ̄1, μ̄2) almost everywhere.
Let we suppose that

lim
i→∞

χ(μki
1 , μki

2 ) = lim
i→∞

χ(μk
1 , μk

2) ≤ χ(μ̄1, μ̄2) = inf
(v,w)∈Kµ̄1,µ̄2

J̄(v, w).

We consider the sequence {(vμ
ki
1

n , wμ
ki
2 )} (n is a unit outward normal vec-

tor on ΓK). It follows from formulas (9) and (12) that {(vμ
ki
1

n , wμ
ki
2 )} is a

bounded sequence in H1(Ω)×L2(ΓK). Otherwise lim
i→∞

χ(μki
1 , μki

2 ) = +∞. There-

fore {(vμ
ki
1

n , wμ
ki
2 )} is a bounded sequence in H1/2(Γ ) × L2(ΓK). Since the

measure of point of ΓK , where {μki
1 } doesn’t converge to (μ̄1, μ̄2) uniformly,

tends to zero with increasing i and functions v
μ
ki
1

n are uniformly bounded in
H1/2(Γ ) with respect to i, then taking into account Theorem 2 we can set that
lim

i→∞
χ(μki

1 , μki
2 ) = χ(μ̄1, μ̄2). Now from Theorem 1 it follows that χ(μ1, μ2) is

lower semicontinuous functional in L2(ΓK). Since χ(μ1, μ2) is convex functional
then χ(μ1, μ2) is weakly lower semicontinuous in L2(ΓK).

For arbitrary point (l1, l2) ∈ [L2(ΓK)]2, let us denote

F (μ1, μ2) = χ(μ1, μ2) +
∫

ΓK

(
l1μ1 +

r

2
(μ1)2

)
dΓ +

∫

ΓK

(
l2μ2 +

r

2
(μ2)2

)
dΓ,

r > 0—const. From (11), it follows that dual functional M(l1, l2) has the form

M(l1, l2) = inf
(μ1,μ2)∈[L2(ΓK)]2

F (μ1, μ2).
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Functional F (μ1, μ2) is weakly lower semicontinuous on [L2(ΓK)]2.
Let us consider arbitrary v ∈ W such as vn ≤ μ1 on ΓK . Then

v̄n =
1

mes ΓK

∫

ΓK

vndΓ ≤ 1
mes ΓK

∫

ΓK

μ1dΓ ≤ 1
(mes ΓK)1/2

‖μ1‖L2(ΓK).

From here and (9), it follows that F (μ1, μ2) is coercive functional in [L2(ΓK)]2

under arbitrary (l1, l2), moreover, F (μ1, μ2) is strongly convex functional on
dom χ, that is

F ((1 − λ)(μ′
1, μ

′
2) + λ(μ′′

1 , μ′′
2)) ≤

≤ (1 − λ)F (μ′
1, μ

′
2) + λF (μ′′

1 , μ′′
2) − r

2
λ(1 − λ)‖(μ′

1, μ
′
2) − (μ′′

1 , μ′′
2)‖2

[L2(ΓK)]2

∀(μ′
1, μ

′
2), (μ

′′
1 , μ′′

2) ∈ dom χ, 0 ≤ λ ≤ 1.

Therefore we can formulate the following theorem

Theorem 3. For arbitrary l = (l1, l2) ∈ [L2(ΓK)]2 there is a unique element

μ(l) = (μ1(l), μ2(l)) = arg min
(μ1,μ2)∈[L2(ΓK)]2

F(μ1, μ2).

Theorem 4. The dual functional M(l1, l2) is Gateaux differentiable in
[L2(ΓK)]2 and its derivative satisfies the Lipschitz condition with the constant
1/r; i.e., for any l1 = (l11, l

1
2), l2 = (l21, l

2
2) ∈ [L2(ΓK)]2

∥
∥∇M(l11, l

1
2)) − ∇M(l21, l

2
2)
∥
∥

[L2(ΓK)]2
≤ 1

r

∥
∥(l11, l

1
2) − (l21, l

2
2)
∥
∥

[L2(ΓK)]2

and ∇M(l1, l2) = (μ1(l), μ2(l)).

The proof of Theorem 3 is analogous to the proof of Theorem 6 in [16].
Let us consider the problem

{
M(l1, l2) − max,
(l1, l2) ∈ [L2(ΓK)]2. (14)

The problem (14) is called a dual problem for (4). Let (v∗, w∗; l∗1, l
∗
2) be a saddle

point of classical Lagrangian functional L(v, w; l1, l2). We supposed above that
solution u of problem (4) belongs to space [H2(Ω)]2 and, moreover, mes{x ∈ ΓK :
σn(u) < 0} > 0. Then a saddle point of L(v, w; l1, l2) (and modified func-
tional M(v, w; l1, l2) too) has the form (u, 0;−σn(u), l∗2), and the vector-function
(−σn(u), l∗2) is a solution of dual problem (14) [4,5].

4 Uzawa Gradient Method

For solving the dual problem (14) we consider the Uzawa iterative method

(li+1
1 , li+1

2 ) = (li1, l
i
2) + r(μ1(li), μ2(li)), i = 0, 1, . . . , (l01, l

0
2) ∈ [L2(ΓK)]2,
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where
(μ1(li), μ2(li)) = arg min

(μ1,μ2)∈[L2(ΓK)]2
{χ(μ1, μ2)+

+
∫

ΓK

(li1μ1 + li2μ2)dΓ + r
2

∫

ΓK

(μ2
1 + μ2

2)dΓ

}

,
(15)

r > 0 is a constant.
Let us analyse the mapping P (l1, l2) = (l1, l2) + r(μ1(l), μ2(l)) for l =

(l1, l2) ∈ [L2(ΓK)]2.

Theorem 5. Let solution u of problem (4) belongs to space [H2(Ω)]2 and
mes{x ∈ ΓK : σn(u) < 0} > 0. Then the mapping P (l1, l2) satisfies the
conditions
(a) P (−σn(u), l∗2) = (−σn(u), l∗2);
(b) ‖P (−σn(u), l∗2)−P (l1, l2)‖[L2(ΓK)]2 < ‖(−σn(u), l∗2)−(l1, l2)‖[L2(ΓK)]2 for any
(l1, l2) ∈ [L2(ΓK)]2, l1 �= −σn(u).

The proof of Theorem 5 is analogous to the proof of Theorem 4 in [4].

Theorem 6. The limiting equality

lim
i→∞

‖(μ1(li), μ2(li))‖[L2(ΓK)]2 = 0

takes place for algorithm (15).

Proof. From Theorem 4, it follows that for any l = (l1, l2), h = (h1, h2) from the
space [L2(ΓK)]2 the following presentation

M(l + h) − M(l) =

1∫

0

(∇M(l + τh), h)[L2(ΓK)]2dτ =

1∫

0

(μ(l + τh), h)[L2(ΓK)]2dτ,

where μ(l) = (μ1(l), μ2(l)) is correct [14].
From this, by analogy with [15, p. 31], the proof of the theorem follows.

Gradient method (15) can be rewritten in the following way [17]:

Step0. i := 0, (l01, l
0
2) ∈ [L2(ΓK)]2.

Step1. Solve the problem: (vi+1, wi+1) = arg min
(v,w)∈W×L2(ΓK)

{
J̄(v, w)+

+
1
2r

∫

ΓK

((
(li1 + r vn)+

)2 − (li1)
2
)

dΓ +
∫

ΓK

(
li2w +

r

2
w2
)

dΓ

⎫
⎬

⎭
.

Step2. Set (li+1
1 , li+1

2 ) = (li1, l
k
2) + r

(

max
(

vi+1
n ,− li1

r

)

, wi+1

)

. (16)

Step3. i := i + 1, back to Step1.
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The functional χ(μ1, μ2) is a weakly lower semicontinuous functional, then
it can be proved that

lim
i→∞

J̄(vi, wi) = lim
i→∞

χ(μ1(li), μ2(li)) = χ(0, 0) = J̄(u, 0) = J(u).

Thus the sequence {(vi, wi)} converges to (u, 0) with respect to functional. Now
it is easy to show that the sequence {(vi, wi)} is a bounded in W × L2(ΓK).

The following statement takes place.

Theorem 7. Let the conditions of Theorem 5 be satisfied, friction force gk of
problem (4) belongs to set L∞(ΓK) ∩ H1/2(ΓK) and points vi, i = 1, 2,. . . ,
developed on algorithm (16) satisfies the following conditions:

(1) vi ∈ [H2(Ω)]2;
(2) ‖vi‖[H2(Ω)]2 ≤ C;
(3) ‖li2‖H1/2(ΓK) ≤ C, C > 0 — const.

Then sequence {(vi, wi; li1, l
i
2)} converges in (W×L2(ΓK))×[L2(ΓK)]2 to a saddle

point of modified Lagrangian functional for any starting point l0 = (l01, l
0
2) ∈

[H1/2(ΓK)]2 and any fixed parameter r > 0.

The proof of Theorem 7 is analogous to the proof of Theorem 4 in [19].

Remark 2. We solve the problem (10) instead of problem (4). It allows us to
obtain a problem of minimization of differentiable functional on Step 1 of the
method (16). In fact,

min
v,w

M(v, w; l1, l2) = min
v,w

{

1
2a(v, v) − ∫

Ω

fi vi dΩ − ∫

ΓP

Ti vi dΓ+

+
∫

ΓK

(
g|v · t − w| + l2w +

r

2
w2
)

dΓ +
1
2r

∫

ΓK

((
(l1 + rvn)+

)2 − l21

)
dΓ

⎫
⎬

⎭
=

= min
v

⎧
⎨

⎩

1
2
a(v, v) −

∫

Ω

fi vi dΩ −
∫

ΓP

Ti vi dΓ +
1
2r

∫

ΓK

((
(l1 + rvn)+

)2 − l21

)
dΓ+

+ inf
w

∫

ΓK

(
g|v · t − w| + l2w +

r

2
w2
)

dΓ

⎫
⎬

⎭
=

= min
v

⎧
⎨

⎩

1
2
a(v, v) −

∫

Ω

fi vi dΩ −
∫

ΓP

Ti vi dΓ +
1
2r

∫

ΓK

((
(l1 + rvn)+

)2 − l21

)
dΓ+

+
∫

ΓK

inf
w

(
g|v · t − w| + l2w +

r

2
w2
)

dΓ

⎫
⎬

⎭
.

It is known that number function F (v · t) = inf
w

(
g|v · t − w| + l2w + r

2w2
)

is continuously differentiable convex function of real argument (v · t) [5].
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Therefore, Step 1 of method (16) is reduced to minimization problem of dif-
ferentiable with respect v functional

1
2a(v, v) − ∫

Ω

fi vi dΩ − ∫

ΓP

Ti vi dΓ+

+
1
2r

∫

ΓK

((
(l1 + rvn)+

)2 − l21

)
dΓ +

∫

ΓK

F (v · t) dΓ.

5 Conclusion

In this paper a new method of solving semicoercive contact elastic problem with
friction is constructed and investigated. This method is based on the duality
scheme with a modified Lagrangian functional. The modified Lagrange functional
allows us simultaneously to drop constraints of the form “vn ≤ 0 on ΓK” in (4)
and to reduce the semicoercive nondifferentiable problem to the minimization
problem of a differentiable functional.

The authors considered the properties of the modified Lagrangian functional
and proved the convergence theorems. Dual functional is used in the presentation
(11) with the help of sensitivity functional χ(μ1, μ2). The proofs of theorems
are presented under the assumption, that functional χ(μ1, μ2) is weakly lower
semicontinuous functional on domχ.
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Abstract. The Capacitated Vehicle Routing Problem (CVRP) is the
well-known combinatorial optimization problem that has numerous valu-
able practical applications. It is known, that CVRP is strongly NP-hard
even on the Euclidean plane and APX-hard in its metric setting even
for any fixed capacity q ≥ 3. For the Euclidean setting, there are known
several approximation schemes. But, to the best of our knowledge, poly-
nomial bounds for their time complexity were proved either for a fixed
capacity q or under the restriction q � n. Moreover, most of these
schemes were developed for the simplest case, where each customer has
a unit demand, and cannot be extended to the general case of a non-
uniform demand (both splittable or not) directly.

In this paper, we are managed to significantly relax the restriction on
capacity admitting the existence of PTAS for this problem and propose
the first approximation scheme for the CVRP on the Euclidean plane
with non-uniform non-splittable demand parameterized by an upper
bound for the size of an optimum solution. Time complexity of the pro-
posed scheme is polynomial for any fixed parameter values if q = poly(n).

Keywords: Capacitated Vehicle Routing Problem · Non-uniform
splittable demand · Polynomial Time Approximation Scheme

1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) is the classic combinatorial
optimization problem [26] making a great impact to the computation complexity
theory and having numerous important applications in operations research.

In the simplest case, an instance of the CVRP can be specified by a set of
points {x1 . . . , xn}∪{y}, where X = {x1, . . . , xn} consists of customer locations
(or just customers) and y is a dedicated point referred to as a depot. Each
customer has the unit demand that should be serviced by an unbounded fleet of
the identical vehicles having the same integer capacity q.
c© Springer Nature Switzerland AG 2020
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The goal is to service all the customer demand by a family of cyclic routes
of a minimum total length, such that each of routes has the depot y as its origin
and destination point and obeys the capacity constraint.

Introduced by Dantzig and Ramser in their seminal paper [11] as an applied
problem that deals with the servicing of a gas station network by a fleet of
gasoline trucks, the CVRP became a solid mathematical model for numerous
important applications in operations research [2,10] attracting the interest of
both practitioners and specialists on algorithm design and analysis.

To date, the significant progress is achieved in solving the CVRP by optimal
methods based on reduction to appropriate integer and mixed integer programs
(see, e.g. [7,8,26]), in developing fast heuristics and meta-heuristics, among them
are local-search [15], genetic and memetic algorithms [6,23,27], ant and bee
colonies [24,25], and in design of polynomial time algorithms with theoretically
proven accuracy bounds and approximation schemes (see, e.g. [5,19]) dating back
to the classic papers by Haimovich and Rinnooy Kan [14], and Arora [3].

Unfortunately, the exact methods are applicable only to rather small
instances, since the CVRP is strongly NP-hard both in its general formulation
and even in very specific settings. Heuristic techniques, despite their ability to
solve some instances stemming from the practice very efficiently, have no theoret-
ical accuracy guarantees and need an additional tuning for any certain problem
setting.

For the class of approximation algorithms with performance guarantees, there
are a number of promising results, which we overview in Sect. 2. Nevertheless, the
conjecture that the Euclidean CVRP admits1 a Polynomial Time Approximation
Scheme (PTAS) in the case of unbounded capacity still remains open. Moreover,
almost all the results mentioned were obtained for the simplest case of unit
customer demand, which is far from the real-life settings of the problem.

In this paper, we try to bridge these two gaps and propose the first2 approx-
imation scheme for the CVRP on the Euclidean plane with non-uniform integer
non-splittable demand, whose time complexity is polynomial provided the capac-
ity q = poly(n).

The rest of the paper is structured as follows. In Sect. 2 we give a short
overview of known approximation results for the CVRP. Then, in Sect. 3,
we introduce the mathematical notion of the CVRP with non-uniform Non-
Splittable Demand (CVRP-NSD). Further, in Sect. 4, we describe the main idea
of our scheme, while Sect. 5 provides a proof sketch of its correctness and time
complexity bounds. Finally, in Sect. 6, we summarize the results proposed and
discuss some directions of future work.

2 Related Work

Historically, the first approximation scheme for the basic case of the CVRP on
the Euclidean plane was introduced by Haimovich and Rinnooy Kan [14] in
1 Like the Euclidean Traveling Salesman Problem.
2 To the best of our knowledge.
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1985. The main idea of their celebrated scheme was as follows. For any given
ε > 0, they engaged an accuracy-driven partition of the initial CVRP instance
into two subinstances, specified by the outer and inner customers, respectively.
Then, the former subinstance was solved to optimality, whilst the latter one
was approximated by the famous Iterated Tour Partition (ITP) heuristic that
reduces any CVRP instance to some auxiliary instance of the Euclidean Traveling
Salesman Problem (TSP). M. Haimovich and A. Rinnooy Kan showed that their
scheme is PTAS in the case of q = o(log log n). Despite that this result matched
perfectly to instances coming from the practice, where as a rule capacity has large
but constant value, further research in the field of approximation of the Euclidean
CVRP was directed to weakening this restriction. Thus, in [4], a PTAS was
proposed for the case q = O (log n/ log log n). Later, these results were extended
to the case of Euclidean spaces of an arbitrary fixed dimension [16,22], the
case of multiple depots [9,21], and the setting with an additional time windows
constraint [17,18,20].

Another approach to obtain an efficient approximation results for the
Euclidean CVRP dates back to the famous Arora’s PTAS [3] for the Euclidean
TSP. Evidently, this scheme can be applied directly to approximation of the
CVRP with unit demand in the case when q ≥ n. Extending this scheme, Das
and Mathieu [12,13] introduced Quasi Polynomial Time Approximation Scheme
(QPTAS) for the general setting of the CVRP on the Euclidean plane (with-
out any additional constraints on q). For any ε > 0, their scheme provides a
(1 + ε)-approximate solution of the problem in time nlogO(1/ε) n.

Combination of these two brilliant approaches admits Adamaszek, Czumaj,
and Lingas [1] to propose PTAS for the CVRP on the Euclidean plane within the
significantly extended bound on admissible capacity q. Inspired by the former
approach, they carried out decomposition of the initial instance into two families
of the auxiliary subinstances. Then, for approximation of any subinstance of the
first kind they applied the Das-Mathieu’s QPTAS, while all remaining substances
they approximated by the ITP. As a result, they obtained the PTAS for the
CVRP on the Euclidean plane for q ≤ 2log

δ n for some δ = δ(ε) � 1. Recently
[19], their scheme was extended to the CVRP with non-unit splittable demand
and time windows with the same restriction on capacity growth.

To the best of our knowledge, to date, there were no approximation results
for the CVRP on the plane with non-splittable demand, at least in the class
of algorithms with theoretical guarantees. In this paper, we propose the first
parameterized approximation scheme for these problem, whose running time is
polynomial for any fixed parameter value and q = poly(n).

3 Problem Statement

An instance of CVRP-NSD is given by a complete node- and edge-weighted
digraph G = (X ∪ {y}, E, d, w) and an integer capacity bound q. Here, d is a
node-weighting function that assigns to any customer x ∈ X an appropriate
natural-valued demand d(x). For any customer, his (or her) demand d(x) is
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assumed to be non-splittable, i.e. it should be serviced by a single route. A route
is called feasible, if it is a simple cycle Rj = y, xi1 , . . . , xis

, y in the graph G and
fulfills the capacity constraint, i.e.

d(xi1) + . . . + d(xis
) ≤ q.

Further, w is a non-negative edge-weighting function that defines the direct
transportation cost for any ordered pair of nodes (v1, v2) ∈ X ∪ {y}. For any
feasible route R, we assign its transportation cost w(R) by the following formula

w(R) = w(y, xi1) + w(xi1 , xi2) + . . . + w(xis
, y).

Thus, the goal is to find a finite set U of feasible routes of the minimum total
transportation cost that satisfies the entire customers demand.

If the function w satisfies the well-known triangle inequality, then the trans-
portation cost for an arbitrary nodes {v1, v2} ∈ X ∪ {y} is called a distance
(between them) and the given instance of the CVRP is called metric. Further-
more, if the set X ∪{y} is a point set in some finite-dimensional Euclidean space
and w(v1, v2) = ‖v1 − v2‖2, the instance is called Euclidean as well.

For the sake of simplicity, in this paper, we only consider so-called nice
instances [28], satisfying the following conditions

(i) coordinates of all locations (customers and the depot) are integers from
[0, O(n)]

(ii) for any two distinct locations, the distance between them is at least 4.

Also, we parameterize the CVRP-NSD on Euclidean plane a natural value T
assuming that there is an optimum solution with at most T routes.

4 Main Idea

Our scheme extends the famous PTAS proposed by S. Arora for the Euclidean
TSP on the plane [3] that consists of the following stages:

(i) accuracy-driven cost-preserving polynomial time reduction of the initial
instance to an auxiliary instance specified by a set of integer points from
[0, O(n)] such that the distance between any two distinct points is at least
four;

(ii) randomized dissection of the box enclosing the auxiliary instance, construc-
tion a randomly shifted quadtree rooted at this box, location m equidistant
portals at each internal side of any sub-box obtained at any level of the dis-
section, and introduction so-called portal-respecting r-light tours restricted
to cross any side of each sub-box only at portals and at most r times (for
some predefined numbers m and r) (see Fig. 1). By the Arora’s Structure
Theorem, with probability at least 1/2, randomly shifted quadtree pro-
duces in such a tour, which is a (1 + ε)-approximate solution of the initial
instance, provided that m = O(1/ε · log n) and r = O(1/ε);
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(iii) construction of a minimum cost portal-respecting r-light tour for a ran-
domly shifted quadtree by the dynamic programming;

(iv) derandomization of the algorithm by multi-starting at any integer-valued
shift of the initial quadtree.

Fig. 1. A portal-respecting r-light tour passing through portals

Unfortunately, this famous scheme ignores the capacity constraint and cannot
be applied to efficient approximation of the CVRP directly even in the case of
unit demand. Indeed, the scheme is intended to construct a single route of close-
to-optimal length that visits all the given locations. As was shown in well-known
Structure Theorem (see. e.g. [3]), such a suboptimal route can be found in the
class of portal-respecting tours intersecting the boundary of each dissection box
at most r times, for r = O(1/ε). In the case of CVRP, to fulfill the capacity
constraint, we should construct a family of routes such a way that boundaries
of some boxes3 can be intersected much more times than it was assumed in the
Arora’s scheme. Therefore, we cannot employ this scheme for the approximation
of CVRP-NSD as a ‘black-box’.

Nevertheless, our scheme inherits almost all the aforementioned stages except
maybe stages (i) and (iii). Stage (i) is excluded due to our simplifying assumption
to consider nice instances of the problem. In the stage (iii), to construct portal-
respecting r-light approximate solutions of a nice instance of the CVRP-NSD on
the plane (we call them (m, r)-approximations), we propose our own dynamic
programming algorithm. With these modifications, we obtain our main result.

Theorem 1. There exists an algorithm that finds an (1 + O(ε))-approximate
solution for a nice CVRP-NSD instance for the case of Euclidean plane in time
(
n3 log n · q · T

)O(T/ε), where T is the given upper bound for the number of routes
in an optimum solution of the instance considered.

Remark 1. For any fixed value of the parameter T , this algorithm is PTAS, if
q = poly(n).
3 At least, the boxes containing the depot.
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5 Dynamic Programming

First of all, we recall that, during the dissection procedure, current box b is
partitioned into four child sub-boxes, if b contains at least two distinct locations.
Therefore, any leaf of the constructed quadtree either contains a single location
(a customer or the depot) or empty. Such boxes together with not-a-leaf boxes
containing no depot, we call trivial. On the other hand, each not-a-leaf box of
the quadtree that contains the depot (including the root) are called non-trivial.

To any box b (trivial or non-trivial), we associate an entry collection of the
dynamic programming table (whose is initially empty), each of them is indexed
by the corresponding task specified by a sequence of quadruples ((p1i , p

2
i , qi, depi),

i = 1, . . . , T · J), for some number J = O(r). Here, p1i and p2i are portals,
where some route segment should enter and leave the box b, respectively, qi is
a demand that should be serviced by this segment, and depi is a Boolean flag
indicating whether this segment or should not visit the depot inside b. The value
J corresponds to the maximum number of segments that can be constructed for
an arbitrary route.

For any given task t, the goal is either to show that t is infeasible or, for
any quadruple, to construct portal-respecting r-light segments connecting the
portals p1i and p2i , such that

(i) all the demand inside b is serviced
(ii) each segment connecting p1i and p2i visits the depot iff depi = 1 and services

qi units of customer demand exactly
(iii) total length of all segments and additional routes is minimal.

Further, we provide a simple necessarily condition for the feasibility of the
task t with respect to some dissection box b with total customer demand Db.

Lemma 1. The task t is infeasible if any of he following statements holds

(i) b is a trivial box and

I∑

i=1

qi �= Db ∨ (depi = 1 for some i)

(ii) b is a non-trivial box and
∑I

i=1 qi ≥ Db.

Notice, that for the non-trivial box case we should construct additional supple-
mentary (m, r)-approximate routes if

∑I
i=1 qi > Db. Also, Lemma 1 covers the

case of an empty task t0, which is feasible for any non-trivial box. If b is trivial,
t0 is feasible iff Db = 0.

To solve any task t associated with some quadtree box b

(i) we check out the necessarily feasibility condition of t by Lemma 1, if t is
infeasible, we assign to the appropriate entry the constant FAIL and stop,
otherwise

(ii) if b is a leaf
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a. we connect any pair of portals p1i and p2i directly, if b is empty
b. if b contains a customer x, we construct two-legs segment p1i → x → p2i

for any quadruple (p1i , p
2
i , qi, 0), where qi = Db = d(x), and connect p1i

and p2i directly, otherwise
c. if b contains the depot y, construct the segment p1i → y → p2i or p1i → p2i ,

if depi equals to 1 or 0, respectively,
then, in any case, we return the segments constructed (see Fig. 2)

Fig. 2. Example: (a) is an empty leaf box; (b) is a leaf box with a customer x; (c) is a
leaf with the depot

(iii) if b is a not-a-leaf trivial box, we construct a solution from the best outputs
of its child sub-boxes on the sequence of subtasks, each of them is generated
as follows

(a) build a sequence

((ρ1j , ρ
2
j ), j = 1, . . . , I), where I = T ′ · J, T ′ ≤ T

(here T ′ is a number of routes needed for covering task’s demand qi, while
I is a total number of their segments)

(b) to any pair (ρ1j , ρ
2
j ), assign a capacity cj ∈ [0, q]

(c) to any triple (ρ1j , ρ
2
j , cj), assign depj = 0, since the trivial box b contains

no depots
(d) to any tuple (ρ1j , ρ

2
j , cj , depj), assign a number ij ∈ {1, . . . , I} that asso-

ciates this quadruple with the quadruple (p1i , p
2
i , qi, depi) of the task t to

been executed
(e) then, to any tuple (ρ1j , ρ

2
j , cj , depj , ij) assign the child box Cj , which will

obtain the corresponding tuple as a part of its own subtask
(f) finally, if

∑
ij=i cj = qi for any i ∈ {1, . . . , I}, and |{j : ij = t}| ≤ J

for any t ∈ {1 . . . T ′}, we obtain assumedly correct subtasks for the child
boxes specified for any child box C (of current box b) by the subsequence

(
(ρ1j , ρ

2
j , cj , depj) : j = 1, . . . , I, Cj = C

)
; (1)

gather outputs of all child boxes, if all of them are positive, glue the seg-
ments associated with quadruples (p1i , p

2
i , qi, depi) and update the record
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(g) we output the record along with the corresponding glued p1i → p2i seg-
ments, if the record has be updated at least once; otherwise, we return
FAIL

(iv) if b is a non-trivial box (including the root), the subtasks generation pro-
cedure is almost the same except that
– at step (c), depj can take any value from {0, 1}
– if the equality

∑I
i=1 qi < Db is true, then the number ij at step (d)

can take value from {1, . . . , I, I + 1, . . . , T · J}, where the values from
the interval {1, . . . , I} correspond to the quadruples of the initial task t
while other numbers are associated with the additional subtasks needed
to construct supplementary routes (see Fig. 3)

Fig. 3. An example of two routes. The red one is a supplementary route for the bottom
left box

– at step (f), the correctness condition should be replaced as follows

∑

ij=i

[
cj

depj

]
=

⎧
⎪⎪⎨

⎪⎪⎩

[
qi

depi

]
, i ≤ I

[
Qi

1

]
, i > I,

0 < Qi < q,
I∑

i=1

qi +
T ·J∑

i=I+1

Qi ≤ Db,

|{j : ij = t}| ≤ J for any t ∈ {1 . . . T}
As in step (iii), any assumedly correct subtask is assigned to the child
boxes. Then, if they output positive answers, we glue the route subseg-
ments obtained, calculate their total length and upgrade the record.
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5.1 Proof Sketch

We bound the time complexity in the following lemma.

Lemma 2. Time complexity of the proposed dynamic programming procedure is

(n log n · q · T )O(T/ε)
.

Proof. Consider an arbitrary box b and determine how many tasks can be
assigned to it. Total number of portals located on any side of b is O(m), hence
there are O(m2) ways to construct a portal pair (p1i , p

2
i ). For every such a pair

(p1i , p
2
i ) we assign an integer capacity qi ∈ [0, q] and a depot visiting indica-

tor depi ∈ {0, 1} that increases the total number of ways to construct a possible
quadruple to O(m2 ·q). As, for any task t, total number of quadruples is bounded
by O(T · J), we obtain that the total tasks number for b is O

(
m2 · q

)O(T ·J).
Consider, how long an arbitrary task can be executed (skipping the trivial

case of leaf boxes, for the case of brevity). For an arbitrary task we assign a
sequence of subtasks each of them is constructed as follows. At step (a) of the
dynamic programming scheme, we should choose a portal pair (ρ1j , ρ

2
j ) by one

of the O(m2) ways. The capacity value cj considered at step (b) can be chosen
from the interval [0, q] while the depot indicator depj at step (c) is set to 0 for
any trivial box and can take values {0, 1} for each non-trivial one. We set the
quadruple number for that the constructing subtask is assigned at step (d), by
one of the I ways for trivial box and T · J for non-trivial one. Finally, we need
to choose the child box of b at step (e) for that the subtasks is intended, by one
of the four ways. So, there are O

(
m2 · q · T

)
possible subtasks4 associated with

an appropriate quadruple of the given task. In other words, the total number of
subtasks for a given task is O

(
m2 · q · T

)O(T ·J).
For an arbitrary task, checking out its correction (see step (f)) takes time

O(I) and O(T · J) for trivial and non-trivial box respectively. Finally, gluing of
the subtasks positive outputs is also can be done in time O(T · J). Therefore,
the time complexity of processing an arbitrary box b is

(
m2 · q

)O(T ·J) · (
m2 · q · T

)O(T ·J)
=

(
m2 · q · T

)O(T ·J)
.

Since total number of boxes in any quadtree dissection is O(n log n) and m =
O(1/ε log n), for any fixed ε > 0, we obtain the following time complexity upper
bound (

n log n · m2 · q · T
)
)O(T ·J) = (n log n · q · T )O(T/ε)

.

Lemma is proved.

As we consider all possible ways to construct r-light route segments, we obtain
an optimal portal-respecting solution at the root level for the quadtree consid-
ered. Our final results relies to the following straight-forward modification of the
famous Arora’s Structure Theorem (see, e.g. [28])
4 for any fixed J = O(r) = O(1/ε).
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Theorem 2. Let R be a cycle (not necessarily simple) visiting all the nodes
of a complete edge-weighted graph G = (V,E,w), whose nodeset belongs to the
plane end enclosed to the box of size L and the weighting function is specified
by the Euclidean metric. If integers a and b are picked from (−L/2, 0] uniformly
at random, then with probability at least 1/2, the (a, b)-dissection has an r-light
portal-respecting tour of cost at most (1 + ε) · w(R) for portal parameter m =
O

(
1
ε log L

)
and r =

(
1
ε

)
.

Theorem 1, our main result, follows from Lemma 2, Theorem 2, and the simple
derandomization procedure, which tries each integer shift of the quadtree in the
enclosing box of size O(n).

6 Conclusion

In this paper, we propose an approximation scheme for the Euclidean Capac-
itated Vechicle Routing Problem on the plane with non-unit non-splittable
demand parameterized by the upper bound T of routes in its optimum solu-
tion. The scheme has a polynomial running time for any fixed value of T and
the capacity q = poly(n).

In the forthcoming paper, we will try to extend this result to the case of
an unbounded number of routes and an arbitrary dimension of the Euclidean
ground space.

Acknowledgements. This research was funded by the Russian Foundation for Basic
Research, grants no. 17-08-01385 and 19-07-01243.
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Abstract. Some adaptive analogue of the Mirror Prox method for vari-
ational inequalities is proposed. In this work we consider the adaptation
not only to the value of the Lipschitz constant, but also to the magnitude
of the oracle error. This approach, in particular, allows us to prove a com-
plexity near O

(
1
ε

)
for variational inequalities for a special class of mono-

tone bounded operators. This estimate is optimal for variational inequali-
ties with monotone Lipschitz-continuous operators. However, there exists
some error, which may be insignificant. The results of experiments on the
comparison of the proposed approach with some known analogues are pre-
sented. Also, we discuss the results of the experiments for matrix games in
the case of using non-Euclidean proximal setup.
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1 Introduction

Variational inequalities (VI) and saddle point problems often arise in a variety of
important applications [1]. For solving such problems a lot of algorithmic schemes
are known (see e.g. [1–4]). The Mirror Prox method proposed by Nemirovski [4]
is currently one of the most popular of such methods. This method goes back
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effectively solve problems with non-Euclidean norms, as well as with the Hölder-
continuous operators:

‖g(x) − g(y)‖∗ � Lν‖x − y‖ν ∀x, y ∈ Q for some ν ∈ [0; 1], (1)

all notations are explained in Sect. 2 below.
Recently, a universal analogue of the Nemirovski method [4] was proposed in

[6,7]. The universality is understood as an adaptive adjustment to the optimal
smoothness level ν in (1), as well as the constant value Lν > 0. Note that
universal gradient method for convex optimization problems was proposed by
Nesterov [8] (see also Sect. 5 of the textbook [9]). And it is possible to observe
the convergence rate of the proposed method, which is typical for the smooth
case ν = 1 (Lipschitz-continuous operators), for some problems with bounded
operators (L0 < +∞ and Lν = +∞ for all ν > 0).

This paper is devoted to the modification of Mirror Prox method [6,7] for the
following analogue of the Lipschitz condition for the operator g with constant
L > 0

〈g(y) − g(x), y − z〉 � LV (y, x) + LV (y, z) + δ‖y − z‖ ∀x, y, z ∈ Q, (2)

where δ > 0 is a fixed value and V (y, x) is the Bregman divergence (see Sect. 2
below).

We propose an analogue of adaptive Mirror Prox method [6,7]. At the same
time, we consider adaptive tuning both for the value of the parameters L and δ.
One of the features of the proposed method which are important for applications
is the possibility for the value of δ to reflect the inexactness of operator g. In
addition, the value of δ can indicate the degree of discontinuity of the opera-
tor g. Adaptive tuning to its value can approximate the convergence rate for
variational inequalities with bounded operators (ν = 0) to the convergence rate
for variational inequalities with Lipshitz-continuous operators (ν = 1). Effects
of this approach can be observed for the universal method but without a theo-
retical justification for the convergence rate O

(
1
ε

)
for non-smooth operators [6].

This means that the proposed approach in this paper is an alternative to the
universal method.

The contribution of the paper can be summarized as follows:

– An analogue of the Mirror Prox method for variational inequalities with a
monotone Lipschitz-continuous operator, which allows for adaptive tuning to
the value of the Lipschitz constant L, as well as the bounded value of the error
δ of the specifying operator g, is proposed.

– The applicability of the proposed method to a certain class of variational
inequalities with bounded operators (ν = 0) is discussed. The rate of conver-
gence O

(
1
ε

)
of this method is proved with some finite error associated with

the non-smoothness of the operator. Thus, some alternative to the univer-
sal method has been proposed, but with a clearer theoretical rationale for
acceleration.
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– The results of numerical experiments for finding the equilibrium in a bilinear
matrix game (or VI with Lipschitz-continuous operator) with a bounded error
in the definition of the operator are given. A comparison of the quality of the
calculated solution is given depending on the number of iterations for the
adaptive Mirror Prox method from [7] and the method proposed in this paper
with an adaptive setting for the magnitude of the error.

– The results of numerical experiments for a variational inequality with a
bounded (ν = 0) operator (related to the Fermat-Torricelli-Steiner problem)
are presented. These results show that the method due to the proposed adap-
tation of the non-smoothness error can converge much faster than the optimal
lower estimate O

(
1
ε2

)
for the corresponding class of problems.

2 Problem Statement and Some Examples

Let (E, ‖·‖) be a normed finite-dimensional vector space and E∗ be the conjugate
space of E with the norm:

||y||∗ = max
x

{〈y, x〉, ||x|| ≤ 1},

where 〈y, x〉 is the value of the continuous linear functional y at x ∈ E.
Let Q ⊂ E be a (simple) closed convex set, d : Q → R be a distance

generating function (d.g.f.), which is continuously differentiable and 1-strongly
convex with respect to the norm ‖ · ‖ and assume that min

x∈Q
d(x) = d(0).

For all x, y ∈ Q ⊂ E we consider the corresponding Bregman divergence

V (x, y) = d(x) − d(y) − 〈∇d(y), x − y〉. (3)

Let g : Q → E∗ be a continuous operator. We consider the problem of finding
a solution to a variational inequality of the form

〈g(x∗), x∗ − x〉 � 0 ∀x ∈ Q. (4)

Under the assumption of the monotony of the operator g, i.e.

〈g(x) − g(y), x − y〉 ≥ 0 ∀x, y ∈ Q,

the inequality (4) is equivalent to the following weak variational inequality

〈g(x), x∗ − x〉 � 0 ∀x ∈ Q. (5)

Assume that the operator g satisfies the condition (2). In this section, we show
some examples of problems for which a condition of the form (2) naturally arises.
First of all, this is due to the inexactness of the oracle for the operator of a
variational inequality. But also the value of δ‖y − z‖ can describe the degree of
discontinuity of the operator g (i.e. using considered approach, one can propose
an approach to the solution of some VI’s with bounded operators).
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Example 1. Let g : Q → R
n be a Lipschitz-continuous operator with constant

L > 0, i.e.
‖g(x) − g(y)‖∗ � L‖x − y‖ ∀x, y ∈ Q.

However, suppose that the exact value of the operator g is not available, and
only an approximate value of g(x), i.e. g̃(x), is known:

‖g̃(x) − g(x)‖∗ � δ

2
∀x ∈ Q.

Then for each x, y, z ∈ Q we have:

|〈g̃(y)− g̃(x), y−z〉−〈g(y)−g(x), y−z〉| = |〈g̃(y)−g(y), y−z〉+〈g(x)− g̃(x), y−z〉| �

� ‖g̃(y)−g(y)‖∗ ·‖y−z‖+‖g̃(x)−g(x)‖∗ ·‖y−z‖ �
(

δ

2
+

δ

2

)
‖y−z‖ = δ‖y−z‖.

Therefore,

〈g̃(y)−g̃(x), y−z〉 � 〈g(y)−g(x), y−z〉+δ‖y−z‖ � ‖g(y)−g(x)‖∗ ·‖y−z‖+δ‖y−z‖ �

� L‖y − x‖ · ‖y − z‖ + δ‖y − z‖ � L

2
‖y − x‖2 +

L

2
‖y − z‖2 + δ‖y − z‖ �

� LV (y, x) + LV (y, z) + δ.

Example 2. Note that the term δ‖y − z‖ in (2) can describe non-smoothness for
the operator g along any fixed vector segment {ty + (1 − t)x}0≤t≤1. In general
(if you combine all possible vector segments), on the domain of non-smoothness
points there can be an infinite number.

For example, assume that for some subset Q0 ⊂ Q the function f is differ-
entiable at all points of Q\Q0 and that for an arbitrary x ∈ Q0 there exists a
finite subdifferential ∂f(x) in the sense of convex analysis.

For fixed x, y ∈ Q with t ∈ [0; 1] we denote yt := (1 − t)x + ty.

Definition 1. ([10]) Fix δ > 0 and L > 0. We say that the convex function
f : Q → R (Q ⊂ R

n) has (δ, L)-Lipschitz subgradient (f ∈ C1,1
L,δ(Q)), if:

(i) for arbitrary x, y ∈ Q the function f is differentiable at all points of the set
{yt}0�t�1, with the exception of the sequence (possibly finite)

{ytk}∞
k=1 : t1 < t2 < t3 < . . . and lim

k→∞
tk = 1; (6)

(ii) for a sequence of points from (6) there exist finite subdifferentials
{∂f(ytk)}∞

k=1 and

diam ∂f(ytk) =: δk > 0, where
+∞∑

k=1

δk =: δ < +∞, (7)

and diam ∂f(x) = max{‖y − z‖∗ | y, z ∈ ∂f(x)};
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(iii) if for x, y ∈ Q the function f is differentiable at each point yt, t ∈ (0; 1),
then the following inequality holds:

min
∂̂f(x)∈∂f(x),

∂̂f(y)∈∂f(y)

‖∂̂f(x) − ∂̂f(y)‖∗ � L‖x − y‖. (8)

Indeed, the property of (δ, L)-Lipschitzness for each subgradient g(x) =
∂̂f(x) means that

‖g(y) − g(x)‖∗ � L‖y − x‖ + δ. (9)

To prove (9), it suffices to split the segment {yt}0�t�1 into the intervals of
smoothness and take into account the boundedness of diameters of the subdif-
ferentials at non-smoothness points of f .

The inequality (9) means that

〈g(y) − g(x), y − z〉 � ‖g(y) − g(x)‖∗ · ‖y − z‖ � L‖y − x‖ · ‖y − z‖ + δ‖y − z‖ �

� L

2
(‖y − x‖2 + ‖y − z‖2) + δ‖y − z‖ � LV (y, x) + LV (z, y) + δ‖y − z‖.

Let us give a concrete example of a non-smooth functional with a (δ, L)-
Lipschitz subgradient with an arbitrarily large Lipschitz constant.

Example 3. We fix some k > 0, the value δ > 0 and consider the piecewise linear
function f : [0; 1] → R (here Q = [0; 1] ⊂ R) defined as follows

f(x) =

⎧
⎪⎨

⎪⎩

kx ; 0 � x � 1
2 ,

(
k +

∑n
i=1

δ
2i

)
x −∑n

i=1
δ
2i

(
1 − 1

2i

)
; 1 − 1

2n < x � 1 − 1
2n+1 ,

limx→+1 f(x) ;x = 1.

(10)

In this case, Q0 = {1− 1
2n }∞

n=1, ∂f(qn) =
[
k +

n−1∑

i=1

δ
2i ; k +

n∑

i=1

δ
2i

]
with n > 1,

∂f(q1) =
[
k; k + δ

2

]
(here qn = 1 − 1

2n with n = 1, 2, 3, . . .). It is clear that
∂f(qn) = δ

2n , which is true for the entered value δ > 0. Moreover, on the intervals
(0; q1), (qn; qn+1) the function f has a Lipschitz-continuous gradient with the
constant L = 0. Therefore, for the function f from (10), we find that f ∈ C1,1

0,δ (Q).

Any functional with a finite set of non-smooth points along an arbitrary
segment will satisfy the proposed Lipschitz condition for the subgradient. Obvi-
ously, this condition holds for each objective function with finite points of non-
smoothness on each vector segment [x; y]. Thus, it is possible to apply this tech-
nique to problems of minimization for sum distances to several balls in Hilbert
spaces [11]. Such an objective function, obviously, will not be differentiable in
the usual sense at the points of the boundaries of the balls of which there are
infinitely many. Note that among points of each vector segment [x; y] such an
objective function have finite points of non-smoothness. However, the consid-
ered Lipschitz condition for a special choice of subgradient holds for some func-
tions with infinitely many points of non-smoothness (e.g. for maximum of linear
functions).
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3 Adaptive Method for Variational Inequalities
with Adaptation to Inexactness

In this section, we introduce a new version of the Mirror Prox method for varia-
tional inequalities (see [7]), which we call Mirror Prox with Adaptation to Inex-
actness (MPAI). In this version, which is listed as Algorithm 1 below, we con-
sider the adaptation not only to the level of operator smoothness, but also to
the magnitude of the oracle error, which may allow to receive complexity near
O
(
1
ε

)
for VI with bounded operators, i.e. the optimal complexity for VI with

Lipshitz-continuous operators.
We evaluate the solution quality of the problem (4), produced by Algorithm 1,

by using the Bregman divergence (3).

Algorithm 1. Mirror Prox with Adaptation to Inexactness (MPAI).
Input: x0 = arg min

x∈Q
d(x), L0, δ0.

1: N := N + 1; LN+1 := LN

2
; δN+1 := δN

2
.

2: Calculate
yN+1 := arg min

x∈Q
{〈g(xN ), x − xN 〉 + LN+1V (x, xN )}, (11)

xN+1 := arg min
x∈Q

{〈g(yN+1), x − xN 〉 + LN+1V (x, xN )}. (12)

3: If
〈g(yN+1) − g(xN ), yN+1 − xN+1〉 ≤ LN+1V (yN+1, xN )+ (13)

+LN+1V (xN+1, yN+1) + δN+1
∥∥
∥yN+1 − xN+1

∥∥
∥ ,

then go to the next iteration (item 1).
4: Else increase LN+1 and δN+1 by two times and go to item 2.

Theorem 1. After N iterations of Algorithm 1, the following estimate holds:

N−1∑

k=0

1
Lk+1

〈g(yk+1), yk+1−x〉 � V (x, x0)−V (x, xN )+
N−1∑

k=0

δk+1

Lk+1

∥
∥yk+1 − xk+1

∥
∥ .

Proof. One can directly check the following inequalities:
〈∇xV (x, xk)

∣
∣
x=xk+1 , x − xk+1

〉
= V (x, xk) − V (x, xk+1) − V (xk+1, xk), (14)

〈
∇xV (x, xk)

∣
∣
x=yk+1 , x − yk+1

〉
= V (x, xk) − V (x, yk+1) − V (yk+1, xk). (15)

Further, for each x ∈ Q and k = 0, N − 1:
〈
∇x

(〈
g(xk), x − xk

〉
+ Lk+1V (x, xk)

) ∣∣
x=yk+1 , x − yk+1

〉
� 0,
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〈∇x

(〈
g(yk+1), x − xk

〉
+ Lk+1V (x, xk)

) ∣∣
x=xk+1 , x − xk+1

〉
� 0.

Thus,
〈
g(yk+1), xk+1 − x

〉
� Lk+1V (x, xk) − Lk+1V (x, xk+1) − Lk+1V (xk+1, xk)

and
〈
g(xk), yk+1 − x

〉
� Lk+1V (x, xk) − Lk+1V (x, yk+1) − Lk+1V (yk+1, xk).

Taking into account (13), we have for each k = 0, N − 1:
〈
g(yk+1), yk+1 − x

〉
=
〈
g(yk+1), xk+1 − x

〉
+
〈
g(xk), yk+1 − xk+1

〉

+
〈
g(yk+1) − g(xk), yk+1 − xk+1

〉

� Lk+1V (x, xk) − Lk+1V (x, xk+1) − Lk+1V (xk+1, xk) + Lk+1V (xk+1, xk)

−Lk+1V (xk+1, yk+1) − Lk+1V (yk+1, xk) + Lk+1V (yk+1, xk)

+Lk+1V (xk+1, yk+1) + δk+1
∥
∥yk+1 − xk+1

∥
∥ ,

i.e.

1
Lk+1

〈
g(yk+1), yk+1 − x

〉
� V (x, xk) − V (x, xk+1) +

δk+1

Lk+1

∥
∥yk+1 − xk+1

∥
∥ .

(16)
After summing (16) by k = 0, N − 1, we have

N−1∑

k=0

1
Lk+1

〈g(yk+1), yk+1−x〉 � V (x, x0)−V (x, xN )+
N−1∑

k=0

δk+1

Lk+1

∥
∥yk+1 − xk+1

∥
∥ .

Let us denote

SN =
N−1∑

k=0

1
Lk+1

, ỹ =
1

SN

N−1∑

k=0

yk+1

Lk+1
and R2 = max

x∈Q
V (x, x0).

Theorem 2. For monotone operator g after N iterations of Algorithm 1, the
following estimate holds:

max
x∈Q

〈g(x), ỹ − x〉 � R2

SN
+

1
SN

N−1∑

k=0

δk+1

Lk+1

∥
∥yk+1 − xk+1

∥
∥ . (17)

Assume that for fixed ε
N−1∑

k=0

1
Lk+1

� R2

ε
. (18)

Then the following inequality holds:

max
x∈Q

〈g(x), ỹ − x〉 � ε +
1

SN

N−1∑

k=0

δk+1

Lk+1

∥
∥yk+1 − xk+1

∥
∥ . (19)
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If L0 � 2L, then inequality (18) holds at no more than

N =
⌈

2LR2

ε

⌉

iterations of Algorithm 1.

Proof. By monotony of g we have for each k = 0, 1, ...:

〈g(x), yk+1 − x〉 = 〈g(yk+1), yk+1 − x〉+ 〈g(x)− g(yk+1), yk+1 − x〉 �
〈
g(yk+1), yk+1 − x

〉
,

so the inequality

1
SN

max
x∈Q

N−1∑

k=0

1
Lk+1

〈
g(yk+1), yk+1 − x

〉

� R2

SN
+

1
SN

N−1∑

k=0

δk+1

Lk+1

∥
∥yk+1 − xk+1

∥
∥ � ε +

1
SN

N−1∑

k=0

δk+1

Lk+1

∥
∥yk+1 − xk+1

∥
∥

(20)
can be replaced by

max
x∈Q

〈g(x), ỹ − x〉 � R2

SN
+

1
SN

N−1∑

k=0

δk+1

Lk+1

∥
∥yk+1 − xk+1

∥
∥

� ε +
1

SN

N−1∑

k=0

δk+1

Lk+1

∥
∥yk+1 − xk+1

∥
∥ .

(21)

Remark 1. Due to adaptive choice of parameters Lk+1 and δk+1 at each iteration
of Algorithm 1 the expression

R2

SN
+

1
SN

N−1∑

k=0

δk+1

Lk+1

∥
∥yk+1 − xk+1

∥
∥

in (21) may be small enough even in the case of L = +∞ or δ = +∞ in (2).

Remark 2. Clearly, for each k, we have δk � CLδ (CL = max
{
1, 2L

L0

}
) and:

1
SN

N−1∑

k=0

δk+1

Lk+1

∥
∥yk+1 − xk+1

∥
∥ � CLδ max

k=0,N−1

∥
∥yk+1 − xk+1

∥
∥ .

This means that the value associated with the error in the specifying opera-
tor g is bounded on the set Q of a finite diameter.

Remark 3. If g ≡ 0, then the condition L0 � 2L can be satisfied by choosing

L0 :=
‖g(x) − g(y)‖∗

‖x − y‖ at g(x) = g(y).
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Remark 4. Note that the estimate of the number of iterations N =
⌈
2LR2

ε

⌉

with accuracy to a numerical factor is optimal for variational inequalities with a
Lipschitz-continuous operator [12]. Note that the evaluation of the inexactness
of the value of the operator, as we see from the previous remark, is bounded and
does not accumulate.

Note that similarly Remark 4 in [13] the total number of attempts to solve
(11) and (12) is bounded by 4N + max

{
log2

2L
L0 , log2

2δ
δ0

}
.

4 Numerical Experiments for Non-Smooth Optimization
Problem: Variational Inequality for Some Analogue
of Fermat-Torricelli-Steiner Problem

In this section, to show the advantages of the proposed Algorithm 1, we consider
some numerical experiments for the saddle point problem (and the corresponding
VI), which corresponds to the convex programming problem for some analogues
of the Fermat-Torricelli-Steiner problem with functional constraints. Note that
the objective functions are non-smooth and the corresponding operators of the
variational inequality of the problem under consideration are bounded (ν = 0).
However, experimentally, due to adaptation, we can observe an estimate of the
complexity inherent in the case of Lipshitz-continuous operators of VI.

All experiments in this section were implemented in Python 3.4, on a com-
puter equipped with Intel(R) Core(TM) i7-8550U CPU @ 1.80 GHz, 1992 Mhz,
4 Core(s), 8 Logical Processor(s). RAM of the computer is 8 GB.

For a given set of N points {Ak = (a1k, a2k, . . . , ank); k = 1, N}, that rep-
resent the centers of the balls ωk with radii rk, in the n-dimensional Euclidean
space R

n, we need to find such a point X = (x1, x2, . . . , xn) of the objective

function [11] (XAk =
N∑

k=1

√
(x1 − a1k)2 + . . . + (xn − ank)2)

f(x) :=
N∑

k=1

d(X,Ak), (22)

where

d(X,Ak) =

{
XAk − rk, if XAk � rk

0, otherwise,

would take the minimal value on the set Q, which is given by several functional
constraints:

ϕ1(x) = α11x
2
1 + α12x

2
2 + . . . + α1nx2

n − 1,

ϕ2(x) = α21x
2
1 + α22x

2
2 + . . . + α2nx2

n − 1,

. . .

ϕm(x) = αm1x
2
1 + αm2x

2
2 + . . . + αmnx2

n − 1,

(23)
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where the coefficients α11, α12, . . . , αmn are represented by the matrix

⎛

⎜
⎜
⎝

α11 α13 . . . α1n
α21 α23 . . . α2n
. . . . . . . . . . . . . . . . .
αm1 αm3 . . . αmn

⎞

⎟
⎟
⎠ ,

in which one element of each row is an integer belonging to the interval (1; 10),
and the remaining elements of the row are equal to 1.

To solve such a problem, we can consider a saddle point problem
min

x
max

λ
L(x, λ), where

L(x, λ) = f(x) +
m∑

p=1

λpϕp(x),
−→
λ = (λ1, λ2, . . . , λm).

Consider the corresponding variational inequality:

〈G(x∗,
−→
λ ∗), (x∗,

−→
λ ∗) − (x,

−→
λ )〉 � 0 ∀(x,

−→
λ ) ∈ B ⊂ R

n+m,

where

B =

{

(x,
−→
λ ) |

n∑

k=1

x2
k +

m∑

p=1

λ2
p � 1

}

,

G(x, λ) =

⎛

⎝ ∇f(x) +
m∑

p=1
λp∇ϕp(x),

−ϕ1(x),−ϕ2(x), . . . ,−ϕm(x)

⎞

⎠ .

We give an example for n = 100, m = 20, N = 5, initial approximation

(x0, λ0) =
(

1√
m + n

,
1√

m + n
. . . ,

1√
m + n

)
∈ R

n+m,

and δ0 = 1
20 . The coordinates of the points Ak are chosen in such a way that

‖Ak‖ ∈ [1; 2]. We choose the standard Euclidean proximal setup as a prox-
function.

Note that the centers of the balls were chosen with the norm in the interval
[1; 2], and the radii of the balls are 1. Therefore, in a single ball with the center
at zero there will be points of the boundary of the balls in which the objective
function (22) and the operator of the corresponding variational inequality will
be bounded. At the same time, it can be shown that the diameter of the subdif-
ferential at such points will be at least 1. It means that theoretically δ can be at
least 1. However, experimentally, we can see significantly better solution quality
(see the column “General estimate” in Table 1).

The results of the work of Algorithm 1, for objective function (22) are rep-
resented in Table 1 below.
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Table 1. The results of Algorithm 1 for objective function (22).

Iterations General estimate Time (sec.)

17 0.1051 0.264

19 0.0527 0.291

21 0.0266 0.315

22 0.0212 0.342

23 0.0177 0.354

24 0.0133 0.364

25 0.0106 0.380

26 0.0082 0.427

27 0.0063 0.467

28 0.0048 0.423

29 0.0044 0.443

It is known [12,14] that for variational inequalities with bounded operators,
the theoretical estimate of the complexity (the convergence rate) O

(
1
ε2

)
is theo-

retically optimal. However, experimentally we see from Table 1 that, for example,
an accuracy of 0.1051 is achieved in 17 iterations, and a 10-fold greater accuracy
of 0.0106 is achieved in 25 iterations and approximately in the same time. If
the method worked without adaptation and strictly according to optimal lower
bounds for the specified class of problems, then the increase in costs could be
approximately 100 times. Thus, due to the adaptability of the proposed method,
we observe a convergence rate close to O

(
ln
(
1
ε

))
.

Now for a given set of N points {Ak = (a1k, a2k, . . . , ank); k = 1, N} in n-
dimensional Euclidean space Rn we need to find such a point x = (x1, x2, . . . , xn),
that the objective function

f(x) :=
N∑

k=1

√
(x1 − a1k)2 + . . . + (xn − ank)2 =

N∑

k=1

XAk (24)

would take the minimal value on the set Q, which is defined by the previous
constraints (23). The coordinates of the points Ak for k = 1, N , are chosen as
the rows of the matrix A ∈ R

N×n. The entries of the matrix A are random inte-
gers in the closed interval [−10; 10], which are drawn from the discrete uniform
distribution.

The results of the work of Algorithm 1, for objective function (24) and for
some different values of n,m and N , are presented in Table 2 below. These results
demonstrate the number of iterations produced by Algorithm 1 to reach the
solution of the problem, the quality of the solution “General estimate”, which
is the right side of inequality (17), and the running time of the algorithm in
seconds.



438 F. S. Stonyakin et al.

Table 2. The results of Algorithm 1 for objective function (24).

n = 600, m = 400, N = 25 n = 1000, m = 500, N = 50

Iteration General estimate Time (sec.) Iteration General estimate Time (sec.)

22 0.122 67.955 19 0.1343 252.151

23 0.061 70.587 20 0.0672 252.673

24 0.0305 75.107 21 0.0336 266.636

25 0.0153 72.917 22 0.0168 279.883

26 0.0076 76.686 23 0.0084 293.866

As we see from Table 2 we also observe a convergence rate close to O
(
ln
(
1
ε

))
,

due to the adaptability of the proposed method.

Remark 5. Now we take all previous parameters but with points Ak(k = 1, N)
in the unit ball. The results of Algorithm 1, for objective function (24) and for
some different values of n, m and N , with constraints (23), are presented in
Table 3 below.

Table 3. The results of Algorithm 1 for objective function (24), with points Ak in the
unit ball.

n = 100, m = 50, N = 25 n = 200, m = 100, N = 50

Iteration General estimate Time (sec.) Iteration General estimate Time (sec.)

318 0.2539 35.805 684 0.2522 441.744

468 0.1702 52.809 1016 0.1688 645.082

618 0.1279 71.484 1350 0.1267 857.185

768 0.1026 87.851 1682 0.1015 1049.885

918 0.0857 103.686 2016 0.0846 1305.006

1068 0.0736 123.056 2349 0.0727 1534.333

1218 0.0645 141.044 2683 0.0637 1753.489

1368 0.0575 153.877 3014 0.0567 2026.402

1518 0.0518 173.538 3348 0.0511 2210.362

1668 0.0472 190.714 3680 0.0465 2301.327

1818 0.0434 208.966 4014 0.0427 2611.942

1968 0.0401 228.198 4346 0.0394 2970.324

2118 0.0373 243.970 4678 0.0367 3153.905

2268 0.0349 253.112 5012 0.0343 3387.451

2426 0.0323 266.583 5346 0.0322 3619.831

In this case, since the points Ak are chosen in the unit ball, the operator of
the variational inequality is bounded. The results of experiments in Table 3 show
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that the rate of convergence of the proposed method is close to O
(
1
ε

)
, which

is significantly better than the optimal one, which is O
(

1
ε2

)
, for non-smooth

convex optimization problems and bounded variational inequalities [14].

5 Numerical Experiments for Matrix Games
with Inexactness

We continue our experiments with computing a Nash equilibrium of a matrix
game. For that purpose one should solve the saddle point problem

min
x ∈ Δn

max
y ∈ Δm

xT Ay, (25)

where x = (x1, x2, . . . , xn) ∈ R
n, y = (y1, y2, . . . , yn) ∈ R

m, Δn is a standard

simplex in R
n, i.e. Δn = {x ∈ R

n |x ≥ 0,
n∑

i=1

xi = 1}, Δm is a standard simplex

in R
m, A is the payoff matrix for the y player. In all experiments we use payoff

distributions centered at zero. Consider the following operator

g(u) =
( ∇x(xT Ay)

−∇y(xT Ay)

)
=
(

AT y
−Ax

)
, u = (x, y) ∈ Q ≡ Δn × Δm. (26)

The operator g(u) from (26) is monotone on Q, and with this operator the VI (5)
has the same solution as the saddle point problem (25). So, Mirror Prox methods
could be used for solving it.

In all experiments with matrix games we use the entropy prox-function

d(x) =
n∑

i=1

xi ln xi in Bregman divergence (3). Entropy prox for matrix games on

simplex is the best option (see [15]).

(a) (b)

Fig. 1. The first kind of experiments with matrix games. Dependence between experi-
mental and theoretical number of iterations for different ε. (a) 10 × 10 matrix A from
(25), (b) 100 × 100 matrix A from (25).
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First of all, we calculate experimental numbers of iterations for adaptive prox-
imal method for VI [7] and compare these numbers with theoretical estimation
N = C

ε , for some C > 0 [4]. For that kind of experiments we run simulations on
two classes of random matrix games: 10×10 and 100×100 normally distributed
payoff matrices. For the first setting we create 50 games at random and calcu-
late average experimental number of iterations over all games. Figure 1 shows
the results for different ε. The experimental results are better than theoretical
estimation in all cases.

(a) (b)

Fig. 2. The second kind of experiments with matrix games. The logarithmic scale on
the Error-axis. (a) ε = 1/100, δ = 1/300, (b) ε = 1/1000, δ = 1/6000.

In the second part of experiments with matrix games we compare the pro-
posed Algorithm MPAI with adaptive Mirror Prox method from [7]. In this part
of experiments we modified problem (25) by adding inexactness (a bounded by δ
random noise) to the operator g of VI (5). Figures 2 and 3 show the results of
these experiments.

For comparison we calculate the specific values that determine the degree
of influence of the inexactness on the final estimate of the decisions’ accuracy.
Not the whole error estimations are compared, but only improved parts of the
error estimations by our approach. For Algorithm 1 this specific value is equal
to (see (19)):

1
SN

N−1∑

k=0

δk+1

Lk+1

∥
∥yk+1 − xk+1

∥
∥ (27)

and for adaptive Mirror Prox [7] method we can estimate the analogous value
in the following way:

1
SN

N−1∑

k=0

δ

Lk+1

∥
∥yk+1 − xk+1

∥
∥ .
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Fig. 3. The second kind of experiments with huge-scale matrix games. The logarithmic
scale on the Error-axis. 1000 × 1000 matrix A from (25).

According to the scheme of the proofs of Theorems 1 and 2, we can obtain
the analogous value for non-adaptive Mirror Prox with constant step 1/L:

1
N

N−1∑

k=0

δ
∥
∥yk+1 − xk+1

∥
∥ . (28)

It is worth mentioning that estimate (27) should be less than (28) because of
adaptive reduction δk+1 < δ. We may see that the accumulated error for pro-
posed MPAI method is smaller than the error for adaptive Mirror Prox method
from [7].

6 Conclusion

The paper proposes an analogue of the Mirror Prox method for variational
inequalities with adaptive tuning not only for the constant Lν , but also for the
magnitude of the operator’s error. Moreover, such an error can set the degree of
discontinuity of the operator. It is proved that the proposed method converges
with the optimal estimate of complexity O

(
1
ε

)
for the Lipschitz-continuous oper-

ator and the magnitude of the error is limited. It is important that the result
applies to a certain class of variational inequalities with bounded (generally,
discontinuous) operators (ν = 0). The paper also presents the results of experi-
ments that demonstrate the ability to work with the estimate of the complexity
close to O

(
ln
(
1
ε

))
even for a problem with bounded operator (ν = 0) and the

experimental comparison between adaptive Mirror Prox and the proposed algo-
rithm for a special application (matrix games with inexactness). We also note
that the considered method in this paper is applicable for VI with relatively
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smooth operators. More precisely, the prox-function and Bregman divergence in
(2) may not be strongly convex (for convex optimization problems this situation
was studied e.g. in [16,17]).
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the resulting algorithm.

Keywords: Convex optimization · Conjugate function · Approximate
sub-differential · Super-linear convergence · Quadratic convergence ·
Finite convergence · Projection · Epigraph

Introduction

This work considers some computational ideas related to numerical solution of
convex optimization problems

min
x

f(x) (1)

where the objective function f does not need to be a differentiable in a classical
sense.

This work is supported by RF Ministry of Education and Science, project
1.7658.2017/6.7 and RFBR grant 18-29-03071.

c© Springer Nature Switzerland AG 2020
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The main idea is to consider the equivalent problem in the conjugate (sub-
gradient) space of computing the value and subgradient of a conjugate function
at zero. Convexity allows to guarantee a number of attractive features of such
approach [1]: uniform treatment of conditional and unconditional optimization
problems, development of projection-type algorithms with super-linear conver-
gence in the general case, quadratic rate of convergence in sub-quadratic case
and finite convergence in the case of sharp minima. In any case these algorithms
are globally convergent and do not need favorable initial points.

It was further suggested in [2,3] to impose certain additional cuts to improve
the relaxation properties of the algorithm. Convergence of the resulting algo-
rithms was proved under very general conditions however the computational
efficiency of these algorithms remained under the question. Here we intend to
study it at least experimentally starting with the single linear cut for which can
be made a couple of simple natural choices.

1 Notations and Preliminaries

Throughout the paper we use the following notations: E is a finite dimensional
euclidean space of primal variables of any dimensionality. The inner product of
vectors x, y from E is denoted as xy. The cone of non-negative vectors of E is
denoted as E+. The set of real numbers is denoted as R and R∞ = R ∪ {∞}.

The norm in E is defined in a standard way: ‖x‖ =
√

xx and for X ⊂ E
‖X‖ = supx∈X ‖x‖. This norm defines of course the standard topology on E
with the common definitions of open and closed sets and closure and interior of
subsets of E. The interior of a set X is denoted as int(X).

The unit ball in E is denoted as B = {x : ‖x‖ ≤ 1}. The support function of
a set Z ⊂ E is denoted and defined as (Z)x = supz∈Z xz.

A vector of ones of a suitable dimensionality is denoted by e = (1, 1, . . . , 1).
A standard simplex {x : x ≥ 0, xe = 1} with x ∈ E,dim(E) = n is denoted by
ΔE .

We use the standard definitions of convex analysis (see f.i. [6]) related mainly
to functions f : E → R∞: the domain dom f of a function f is the set dom f =
{x : f(x) < ∞}, the epigraph epi f of a function f is a set epi f = {(μ, x) : μ ≥
f(x)} ⊂ R∞ × E.

Further on all functions are closed convex in a sense that their epigraphs are
closed convex subsets of R∞ × E.

Definition 1. For a convex function f : E → R and fixed x ∈ E the set ∂f(x) =
{g : f(y) − f(x) ≥ g(y − x) for all y ∈ dom f} is called a sub-differential of f at
the point x.

The sub-differential ∂f(x) of f at point x is well-defined and is a closed
bounded convex set for all x ∈ int(dom f). At the boundary of dom f it may
or may not exists. The sub-differential ∂f(x) is also upper semi-continuous as a
multi-function of x when exists.
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Definition 2. The directional derivative of a finite convex function f at point x
in direction d is denoted and defined as ∂f(x; d) = limδ→+0(f(x+ δd)−f(x))/δ.

It is well-known from convex analysis that ∂f(x; d) = supg∈∂f(x) gd = (∂f(x))d.

Definition 3. For a convex function f : E → R∞ the function

f�(g) = sup
x

{gx − f(x)} = (epi f)ḡ, where ḡ = (−1, g) ∈ R∞ × E (2)

is called a conjugate function of f .

The key result of convex analysis is that for a closed convex function f

sup
g

{gx − f�(g)} = (epi f�)x̄ = f(x), (3)

where x̄ = (−1, x) ∈ R∞ × E.
It is also easy to see that if (epi f�)x̄ = gxx−f�(gx) then gx ∈ ∂f(x) and the

other way around: for ḡ = (−1, g) if (epi f)ḡ = gxg − f(xg) then xg ∈ ∂f�(g).
The trivial consequence of the Definition 3 is that f�(0) = − infx f(x) which

is the key correspondence used by the conjugate epi-projection algorithm, con-
sidered further on. As the conjugate epi-projection algorithm operates in the
conjugate space its convergence properties depend upon the properties of the
conjugate function of the objective. Therefore we introduce some additional
classes of primal functions to ensure the desired behavior of the conjugates.

Definition 4. Convex function f is called sup-quadratic with respect to a point
x ∈ int(dom f) if there exists a constant τ > 0 such that

f(y) − f(x) ≥ g(y − x) +
1
2
τ‖y − x‖2 (4)

for any g ∈ ∂f(x) and any y.

We will call τ the sup-quadratic characteristic of f at x. Notice that strongly
convex functions are sup-quadratic at any x from their domains, however a
function f , sup-quadratic at some x, need not to be strongly convex.

A symmetric definition can be given for sub-quadratic functions.

Definition 5. Convex function f is called sub-quadratic with respect to a point
x ∈ int(dom f) if there exists a constant τ > 0 such that

f(y) − f(x) ≤ g(y − x) +
1
2
τ−1‖y − x‖2 (5)

for any y ∈ dom f and some g ∈ ∂f(x).
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Notice that it follows from this definition that the function f , sub-quadratic
at point x is in fact differentiable at this point. Of course not all functions
differentiable at x are sub-quadratic.

From the point of view of non-smooth optimization namely sup-quadratic
functions are of particular interest, as the class of such functions contains, for
instance, the common case of a maximum of a finite set of quadratic functions.
The Definitions 4 and 5 establish important properties of conjugates functions
for sup-quadratic primal functions.

Lemma 1. Let f : E → R attains its minimum value f� at the point x� and
f is sup-quadratic at point x� with the positive sup-quadratic characteristic τ .
Then f�(g) is sub-quadratic at g = 0 with the corresponding sub-quadratic char-
acteristic not lower then τ−1.

Proof. By definition for any x

1
2
τ‖x� − x‖2 ≤ f(x) − f� = f(x) + f�(0) (6)

and hence

f�(g) − f�(0) = xgg − (f(xg) + f�(0)) ≤ xgg − 1
2
τ‖x� − xg‖2 (7)

for any xg ∈ ∂f�(g). Hence

f�(g) − f�(0) ≤ x�g + (xg − x�)g − 1
2τ‖x� − xg‖2 ≤

x�g + supz{zg − 1
2τ‖z‖2} = x�g + 1

2τ−1‖g‖2. (8)

Another interesting subclass of convex functions are those which have zero in
the interior of the subdifferential at the solution x� of (1), that is 0 ∈ int(∂f(x�)).
This condition is also known as “sharp minimum” and extended further on in [7]
and others. The special attraction of this case is that the well-known proximal
method has then a finite termination [8] for such problems. The conjugate epi-
projection optimization algorithm has the same property which is based on the
fact that the conjugate functions for the primal functions with sharp minimum
have very simple behavior in the vicinity of zero.

Lemma 2. If solution x� of (1) is such that 0 ∈ int(∂f(x�)) then there is ρ > 0
such that f�(g) = gx� − f(x�) for ‖g‖ < ρ.

Proof. If ρ is small enough then sharp minimum condition implies 0 ∈ ∂(f(x�)−
gx�) = ∂f(x�) − g for any g ∈ ρB and therefore

f�(g) = sup
x

{gx − f(x)} = gx� − f(x�)

is a linear function of g.

Namely this property guarantees the finite termination of the conjugate epi-
projection optimization algorithm.

For additional results on connections between sharp minimum and properties
of conjugate functions see also [9].
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2 Conjugate Epi-Projection Algorithm

As it was already mentioned the basic idea of the conjugate epi-projection algo-
rithms consists in considering the convex problem (1) as the problem of com-
puting the conjugate function of the objective at the origin:

f�(0) = −min
x

f(x) = −f� = inf
(0,μ)∈epi f�

μ.

We suggest to use for computing f�(0) the algorithms based on projection onto
the epigraph epi f�. This idea demonstrates some promises for effective solution
of (1) and suggests some new computational ideas.

The algorithms considered here consist in execution of an infinite sequence
of iterations, which generates the corresponding sequence of points {(ξk, 0) ∈
R × E, k = 0, 1, . . . } with ξk → f�(0) when k → ∞. For each of these iterations
they call a subgradient oracle which for any x ∈ E computes f(x) and some
arbitrary g ∈ ∂f(x). Also they require solution of nonlinear projection problems
which make the algorithms, strictly speaking, un-implementable. However the
analysis of the algorithm demonstrate its potential and can show the ways to its
practical implementations.

We give here first the original version of a conceptual conjugate epi-projection
algorithm and cite here the key results about its convergence. This is followed by
a few simple numerical experiments just to provide a reference point for further
modifications and to indicate some numerical problems which can arise in its
straightforward implementation.

2.1 Basic Computational Scheme

The principal details of the iteration of the conjugate epi-projection algorithm
are given on the figure Algorithm 1. Convergence of the Algorithm 1 is confirmed
by the following theorem.

Theorem 1. Let f be a finite convex function with the finite minimum f� =
minx f(x) = −f�(0) and ξk, k = 1, 2, . . . are defined by the Algorithm1 with
ξ0 < f�(0). Then

lim
k→∞

ξk = f�(0) = −f�

and
f�(0) − ξk+1 ≤ λk(f�(0) − ξk)

with λk → 0 when k → ∞.

It means that Algorithm 1 in general case has at least super-linear rate of con-
vergence.

Next we consider the problem (1) with sup-quadratic objective function f
where we can claim global convergence of the conceptual conjugate epi-projection
algorithm and asymptotic quadratic rate of convergence.
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Data: The convex function f : E → R, the epigraph epi f�, the current
iteration number k and the current approximation ξk ≤ f�(0).

Result: The next approximation ξk+1 such that ξk ≤ ξk+1 ≤ f�(0)
Each iteration consists of two basic operations: Project and Support-Update
Project. Solve the projection problem of the point (ξk, 0) onto epi f�:

min
(ξ,g)∈epi f�

{(ξ − ξk)2 + ‖g‖2} = (ξp
k − ξk)2 + ‖gk

p‖2 (9)

with the corresponding solution (ξp
k , gk

p) = (f�(gk
p), gk

p) ∈ epi f�. We demonstrate
in the analysis of the algorithm convergence that f�(0) ≥ ξp

k > ξk if ξk < f�(0).
Support-Update Compute support function of epi f� with the support vector
zk = −(ξp

k − ξk, gk
p) ∈ R × E

(epi f�)zk = sup(μ,g)∈epi f�{−(ξp
k − ξk)μ + gk

pg)} =

(ξp
k − ξk) sup(μ,g)∈epi f�{−μ +

gk
p

(ξp
k − ξk)

g} = (ξp
k − ξk) sup(μ,g)∈epi f�{−μ + xk

pg} =

(ξp
k − ξk)(xk

p g̃k
p − f�(gk

p)} = (ξp
k − ξk)f(xk

p),

where xk
p = gk

p/(ξp
k − ξk). Notice that as f is assumed to be a finite function this

operation is well-defined.
Finally we update the approximate solution with ξk+1 using the relationship

ξ̄k+1z
k = (epi f�)zk , where ξ̄k+1 = (ξk+1, 0) ∈ R × E,

which actually amounts to ξk+1 = −f(xk
p), increment iteration counter

k → k + 1, etc.

Algorithm 1: The basic iteration of the conceptual conjugate epi-
projection algorithm

Theorem 2. Let objective function f in problem (1) is locally sup-quadratic with
sup-quadratic characteristic τ and ξk, k = 1, 2, . . . are defined by the Algorithm1
with ξ0 < −f�. Then limk→∞ ξk = f�(0) (Algorithm1 converges) and for k large
enough f�(0) − ξk+1 ≤ τ−1(f�(0) − ξk)2 (that is convergence is quadratic).

Finite convergence of this algorithm for sharp minimum is established by the
following theorem.

Theorem 3. Let the objective function of (1) has a sharp minimum at solution
point x�, all assumptions of the Theorem1 are satisfied and ξk, k = 1, 2, . . .
are defined by the Algorithm1 with ξ0 < −f�. Then there exists k� such that
ξk� = f�(0) = −f�.

Notice that in all cases convergence is global and does not require any additional
assumptions.

2.2 Implementation Issues

The critical part in implementation of Algorithm1 is the projection step (9),
where the point (ξk, 0) is projected onto epi f�. The set epi f� is given implicitly
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only, however due to Fenchel-Morou duality we can easily compute the supremum
on it of any linear function p̄z̄ where z̄ = (μ, z), μ ≥ f�(z), p̄ = (π, p). This
supremum is finite when π < 0 and then

( sup
z̄∈epi f�

{πμ + pz} = |π| sup
z,μ≥f�(z)

{pz/|π| − μ} = |π| sup
z

{pz/|π| − f�(z)} = |π|f(pz/|π|).

It gives a chance to suggest simple iteration-like algorithms, using imple-
mentable projection onto inner approximation Pk of epi f� which is represented
on Algorithm 2. This algorithm in practice is interrupted when desirable accu-
racy is achieved. The quadratic optimization problem (10) can be solved by
many off-the-shelf quadratic solvers, however our experience is that the special-
ized algorithms like [4] outperforms them. One can find the OCTAVE-version of
the code as DOI: 10.13140/RG.2.2.21281.86882 at [5].

Data: The epigraph epi f�, its polyhedral approximation, the point
q̄ = (ξ, 0) /∈ epi f�

Result: The sequence {ḡk = (ξk, gk) ∈ epi f�, k = 1, 2, . . . } such that
ḡk → ḡ� ∈ epi f� and ‖ḡ� − q̄‖ = minḡ∈epi f� ‖ḡ − q̄‖

Initialize; P0 = g0, k = 0
While;
Solve quadratic optimization problem:

min
g∈Pk

‖g − q̄‖2 = ‖gk − q̄‖2 (10)

Upgrade:

Pk+1 = co{Pk, gk}, k → k + 1

end while;

Algorithm 2: Iterative algorithm for projection on epi f�

2.3 Numerical Example

The most interesting and difficult tests of non-smooth optimization consist in
minimization of piece-wise quadratic problems which are constructed as finite
maximum of convex quadratics. We demonstrate performance of the imple-
mentable version of Algorithm 1 with iterative Algorithm 2 for approximate
solution of the auxiliary projection problem (9) on a simple problem (1) with
f(x) = maxi=1,2(x − ai)Ai(x − ai) with a1 = (0, 0, 0), a2 = (2, 3, 9) and Ai

are diagonal matrices: A1 = diag(9, 4, 1), A2 = diag(1, 4, 9). The optimization
solver CONDOR 1.06, running on NEOS optimization solver [10] reported suc-
cessful completion after 63 function evaluations with the objective value of
0.4348696068. Our solver attained slightly worse 0.43673 with 27 function
evaluations.

https://doi.org/10.13140/RG.2.2.21281.86882


450 E. A. Nurminski and N. B. Shamray

The loss in the value of objective function can be probably explained by the
numerical instability of projection problems (9) at the final iterations of opti-
mization process. The Fig. 1 demonstrates the peculiar features of SU-step during
solution of minimization problem. It shows convergence of the simple projection
Algorithm 2 in solution of the projection problem (9) in terms of optimality con-
dition δk = ‖zk‖2 − infz∈epi f� zzk where zk ∈ epi f�—an approximate solution
of (2) obtained on k-th iteration of this algorithm. For any k the value of δk is
non-negative and if δk = 0 then zk is the solution of (2).

It can be seen from the Fig. 1 that in all cases the auxiliary projection prob-
lem was solved sufficiently quickly with at least the linear rate of convergence.
However, it also can be seen that the projection Algorithm 2 slows down when
projected point approaches the epigraph epi f�. This was expected behavior of
the algorithm and there are known technics to improve solution of 2 in this case,
but this issue requires additional investigation.

3 Conjugate Epi-Projection Algorithm with a Skew Cut

One of the other possible ways to improve computational behavior of the conju-
gate epi-projection algorithm is to introduce additional constraints in Support-
Update (SU) step of this algorithm. Namely, if we assume that there is an
additional condition (μ, g) ∈ Q ⊂ E × R with (f�(0), 0) ∈ Q then

ωx = sup
(μ,g)∈epi f�∩Q

{xg − μ} = xgx − f�(gx) ≤ xgx − xgx + f(x) = f(x)

so ωx will provide better (lower) upper estimates for minx f(x) = −f�(0). Of
course it will be necessary to ensure that an additional constraint (μ, g) ∈ Q
does not cut off the solution (f�(0), 0). It implies that (f�(0), 0) ∈ Q which can
be ensured in different ways.

The corresponding modification of SU-step is shown as Algorithm 3.
Convergence of the Algorithm 3 is confirmed by the following theorem.

Theorem 4. Let f be a finite convex function with the finite minimum f� =
minx f(x) = −f�(0) and ξk, k = 1, 2, . . . are defined by the Algorithm3 with
ξ0 < f�(0). Then limk→∞ ξk = f�(0) = −f�, that is the algorithm converges;

Proof. Assume that on k-th iteration we have ξk < f�(0) as the approximation
of f�(0). According to Algorithm 3 to construct the next (k+1-th) approximation
ξk+1 the point (ξk, 0) ∈ R × E is to be projected onto epi f� ∩ Qk first:

min
(ξ,g)∈epi f�∩Qk

{(ξ − ξk)2 + ‖g‖2} = (ξp
k − ξk)2 + ‖gk

p‖2 (11)

The solution (ξp
k , gk

p) = (f�(gk
p), gk

p ) ∈ epi f� of this problem satisfies optimality
conditions

(f�(gk
p) − ξk)(ξ − ξp

k) + gk
p(g − gk

p) ≥ 0 (12)

for any (ξ, g) ∈ epi f� ∩ Qk.
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Fig. 1. Projection operation on epi f� on different iterations of Algorithm 1. Boxed
numbers on the Figure denote the major iterations of Algorithm 1

Data: The epigraph epi f�, the current iteration number k, the current
approximation ξk ≤ f�(0), and projection vector zk obtained from
Project step.

Result: The next approximation ξk+1 such that ξk ≤ ξk+1 ≤ f�(0).
Modified Support-Update
Compute support function of Gk = epi f� ∩ Qk with the support vector
zk = −(ξp

k − ξk, gk
p) ∈ R × E

(Gk)zk = sup(μ,g)∈Gk
{−(ξp

k − ξk)μ + gk
pg)} =

(ξp
k − ξk) sup(μ,g)∈Gk

{−μ +
gk

p

(ξp
k − ξk)

g} = (ξp
k − ξk) sup(μ,g)∈Gk

{−μ + xk
pg} =

(ξp
k − ξk)(xk

p g̃k
p − f�(gk

p)}.

where xk
p = gk

p/(ξp
k − ξk).

Notice that now gk
p /∈ ∂f(xk

p) and we need an additional operation to recover
the support vector to epi f� at the point (f�(gk

p), gk
p).

Algorithm 3: Modified Support-Update (MSU) step
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It is easy to see that ξp
k > ξk. Indeed the opposite strict inequality ξp

k < ξk

contradicts the optimality of (ξp
k , gk

p) as in this case

(ξk, gk
p) = (ξp

k + (ξk − ξp
k), gk

p ) ∈ epi f� ∩ Qk ⊂ epi f�,

and

(ξk − ξk)2 + ‖gk
p‖2 < (ξk − ξp

k)2 + ‖gk
p‖2 = min

(ξ,g)∈epi f�
{(ξk − ξ)2 + ‖g‖2}.

If ξp
k = ξk then R × {0} is strictly separable from epi f�:

ξ(ξk − ξp
k) + 0gk

p = 0 < ‖gk
p‖2 ≤ μ(ξk − ξp

k) + ggk
p

for any (μ, g) ∈ epi f� as it follows from projection conditions. Hence 0 /∈
dom(f�) which contradicts the assumptions of the theorem.

According to Algorithm3 the next approximation ξk+1 is determined from
the equality

(ξp
k − ξk)(ξk+1 − ξk) − ‖gk

p‖2 = (ξp
k) − (ξk)2 + ‖gk

p‖2

which gives the following expression for ξk+1:

ξk+1 = ξk + ‖gk
p‖2/(ξp

k − ξk) ≥ ξk,

and ξk+1 = ξk if and only if gk
p = 0 which means that we already obtained the

solution.
Repeating this operation we obtain the monotone sequence ξk, k = 0, 1, . . .

such that
ξk ≤ ξk+1 ≤ f�(0), k = 0, 1, . . .

where inequalities turn into equalities only if either ξk = f�(0) or ξk+1 = f�(0)
which of course makes no difference. Under these conditions limk→∞ ξk = f�(0)
which proves the convergence of the Algorithm1.

3.1 Projection in Modified Support-Update Step

The key step in MSU step of Algorithm3 is the computation of projection of
a given point, say z, on Gk = epi f� ∩ Qk where Qk is a cutting set. It can
be approximately solved by the iterative Algorithm2 which in turn requires
computing of the support function (Gk)zk of the set Gk = epi f� ∩ Qk with the
given support vector zk ∈ R× E. By dropping for simplicity the iteration index
k we face the following problem

(G)z = sup
g ∈ epi f�

g ∈ Q

zg = zg�
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the computational difficulty of which critically depends on cutting set Q. To
begin with something constructive we consider here the simplest choice of Q =
Hp,β where Hp,β is the half-space, described by linear inequality Hp,β = {(μ, g) :
pg − μ ≥ β}, where p ∈ E and β ≥ f�(0) to guarantee that (f�(0), 0) ∈ Hp,β .
Such β is easy to obtain from the inner approximation D of epi f� if available.
If the vertical line R×{0} intersects D at some point (−β, 0). Then −β ≥ f�(0)
and therefore (f�(0), 0) ∈ Hp,β .

For the choice of vector p we have almost unlimited freedom and choice of
the best p might be an interesting subject for further consideration.

Then

sup
μ ≥ f�(g)
pg − μ ≥ β

{xg − μ} = inf
θ ≥ 0

sup
μ ≥ f�(g)

{xg − μ + θ(pg − μ − β)} =

inf
θ ≥ 0

sup
μ ≥ f∗(g)

{g(x + θp) − μ(1 + θ)} − βθ =

inf
θ ≥ 0

{−βθ + (1 + θ) sup
μ ≥ f∗(g)

{g
x + θp

1 + θ
− μ}} =

inf
θ ≥ 0

{−βθ + (1 + θ)f(
x + θp

1 + θ
)} = inf

θ ≥ 0
{−βθ + (1 + θ)f(x +

θ

1 + θ
(p − x))}.

By introduction of new variable γ =
θ

1 + θ
the last expression can be trans-

formed in

inf
γ ∈ [0, 1)

{− γ

1 − γ
β+

1

1 − γ
f(x+γ(p−x))} = inf

γ ∈ [0, 1)
(1−γ)−1{f(xγ)−γβ} = ψ(γ),

where xγ = x+γ(p−x) and so the support problem is reduced to one-dimensional
minimization.

Conclusion

It is shown that an implementable version of the conceptual the dual epi-
projection algorithm of convex optimization demonstrate competitive efficiency
even for rather simple-minded approximation of projection operator, however the
resulting computational complexity requires further investigations. The impor-
tant question is numerical stability of the projection operation especially on the
final iterations when projected points are becoming close to the surface of the
epigraph. The interesting possibility to improve convergence properties of the
epi-projection algorithm is insertion of additional cuts into the projection prob-
lem. This can be easily done for the linear cuts in the form of an auxiliary one-
dimensional optimization. The convergence of such algorithms is proved under
very general conditions, but here again we have an open question about the best
choice for such cuts.
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Abstract. The backtracking is a basic combinatorial search algorithm.
As many other deterministic methods it suffers from the high complex-
ity. Fortunately the high performance computing can efficiently cope
with this issue. It was observed that the structure of the search tree
can dramatically affect the efficiency of a parallel search. We study the
complexity of a frontal autonomous scheme for the backtrack search par-
allelization. In this approach several independent cores perform a number
of first steps of the backtrack search. After that each core takes one sub-
problem and solves it completely. Then the results are merged to select
the best solution. To study the impact of the tree structure on the per-
formance of the frontal autonomous scheme we formalize the notion of a
perfectly scalable problem and prove a criterion for a search tree to fit
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The backtrack search [6] is a basic pattern for many algorithms locating a solution
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has a trivially obtainable solution. Though the discarding can significantly reduce
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the size of a search tree in many practical cases it is insufficient to solve a problem
in a reasonable time. Fortunately the backtrack search can take an advantage of
many-core parallel architectures to reduce the running time dramatically.

Last decades many efforts has been invested to the development and efficient
implementation of parallel tree search algorithms [3,11,12]. It was observed that
the structure of a search tree has a tremendous impact to the performance of a
parallel algorithm. Figure 1 depicts two trees. The tree (a) is well-balanced and
the tree (b) has a one-sided narrow structure. Obviously the tree (a) is much
better for a parallel execution than the tree (b). The latter can’t benefit from
large number of cores due to data dependencies preventing concurrent processing
of more than two sub-problems simultaneously. Thus the potential speedup is
limited to two.

Fig. 1. “Good” (a) and “bad” (b) trees from the parallel execution point of view

In this paper we consider a frontal autonomous scheme of parallelization
(FAP-scheme) for the backtrack search parallelization. In the FAP-scheme sev-
eral independent cores perform a number of first steps of the backtrack search.
After that each core takes one sub-problem and solves it completely. Then the
results are merged to select the best solution. This scheme meets the require-
ments of loosely-coupled distributed systems or GPU-accelerators where the
communication among nodes is problematic or very expensive. In this paper we
study the impact of the tree structure on the performance of the FAP-scheme.
We formalize the notion of a perfectly scalable problem and prove a criterion for
a search tree to fit to this class.

The following notations are used through out the paper. Let X be an arbi-
trary set. Then

f(x) = O(g(x)) if f(x) ≤ Cg(x) for some C > 0 and any x ∈ X;
f(x) = Ω(g(x)) if f(x) ≥ Cg(x) for some C > 0 and any x ∈ X;
f(x) = Θ(g(x)) if C ′g(x) ≤ f(x) ≤ C ′′g(x) for some C ′, C ′′ > 0 and

any x ∈ X.
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2 Problem Statement

The backtrack search problem for binary trees can be stated as follows. Let D
be a rooted binary tree. For the sake of convenience by a rooted binary tree we
will mean a full tree (i.e. a tree in which every internal node has exactly two
children) such that to each leaf v of D some cost c(v) be assigned. It is assumed
that from each node v of D any node adjacent to v (the parent or the children
of v) can be accessed in constant time ts. The backtrack search problem for D
is to find the minimum cost of leaves of D, proceeding from the root of D. We
will denote this problem by P (D).

The serial code for finding the solution of P (D) is as follows:
Procedure BackTrack(v)
Input:

v — the tree root
1: (vl, vr) := children(D)
2: if (vl, vr) = ∅ then
3: return c(v)
4: else
5: cl = BackTrack(vl)
6: cr = BackTrack(vr)
7: return best(cl, cr)
8: end if

Initially the pair of children of the node v is obtained (line 1). If the pair
is empty (v is a terminal node) then the cost of a node is returned (line 3).
Otherwise left and right descendants are recursively processed and the best result
is returned (lines 5–7).

Let v be a node of a rooted binary tree D. By the depth d(v) of the node v
we mean the length of the path from the root of D to v1. By d(D) we denote
the depth of the tree D, i.e. the maximum length of paths from the root of D to
leaves of D. Thus the depth d(D) of a tree D is a maximal depth of its nodes.

Let L(D) denote the number of nodes in a rooted binary tree D. By T (D) we
denote the time of sequential solving of the problem P (D) by one processor. If
one step of the BackTrack algorithm consumes time t0, then the time for solving
the problem P (D) is L(D) · t0. Thus, T (D) = Θ(L(D)).

By D[v] we denote the subtree of D rooted in v. Two subtrees D[v′] and D[v′′]
of D are called sibling subtrees if the nodes v′ and v′′ have the same parent node.
For any node v of D the problem P (D[v]) will be called a subproblem of the
problem P (D). By the level of a subproblem P (D[v]) we will mean the depth
d(v) of the node v (the initial problem P (D) is assumed to have level 0). By
ST l(D) we denote the set of all subtrees of D rooted in nodes of depth l, and
by SP l(D) we denote the set of all subproblems of P (D) which have the level l,
i.e.

SP l(D) = {P (D′) : D′ ∈ ST l(D)}.

1 By the length of a path we mean the number of edges contained in the path.
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Let v′, v′′ be the children of the root of the tree D. Note that the solu-
tion of the problem P (D) is the minimum of the solutions of the subproblems
P (D[v′]) and P (D[v′′]), so the solving of P (D[v]) is reduced to the solving of
the subproblems P (D[v′]) and P (D[v′′]). We call this operation decomposition of
the problem P (D) into subproblems P (D[v′]) and P (D[v′′]). The subproblems
P (D[v′]) and P (D[v′′]) will be called children of P (D), and P (D) will be called
the parent of P (D[v′]) and P (D[v′′]).

We study a parallel solving of backtrack search problem for binary trees
by distributed memory many-core parallel systems. Independent processes com-
prising a parallel application communicate via network. We use a simple but
adequate performance model. The time for transferring of n bytes of data is
computed as α + βn, where α and β are the network’s latency and the band-
width respectively. The node’s network interface is assumed to be single ported:
at most one message can be sent and one message can be received simultane-
ously. Since the algorithm considered in the paper uses only constant size data
transfers, further we assume that all data transfers are performed in constant
time.

The FAP-scheme uses the following algorithm of parallel solving of backtrack
search problem for binary trees. Below we assume that the number of processors
m is a power of 2: m = 2s, where s ≤ d(D)/2. It is a common choice in practice
and it perfectly fits the needs of an asymptotic analysis. The second assumption
is that the problem data is available on all processors prior to computations.
Though not always true in practice, we can take this assumption because the
distribution of the problem initial data is not usually a resource-consuming oper-
ation.

The FAP-scheme has three stages. At the first stage the initial problem P (D)
is decomposed into the subproblems at the level s. This stage is performed in
parallel by each processor. After the first stage the problem P (D) is decom-
posed into all the subproblems from the set SP s(D) and each processor has no
more than one subproblem from the set SP s(D). At the Fig. 2 the first stage
is illustrated for the case of s = 2 and m = 4 processors. Black circles depict
subproblems selected for further processing (decomposition or sending). White
circles—discarded subproblems. This first stage requires s parallel steps. Since
each of the steps of the first stage can be performed in constant time, the first
stage can be performed in Θ(s) time.

At the second stage all the subproblems from the set SP s(D) are simultane-
ously solved by the assigned processors. The time of this stage is the maximum
time needed for solving of subproblems from the set SP s(D) by a serial algo-
rithm. Thus, this time is Θ(Ls(D)), where Ls(D) is the maximum number of
nodes in a subtree from the set ST s(D).

The third stage consists in joining the results obtained by processors. This
operation is a reduction pattern widely used in parallel programming. By using
binary tree reduction algorithm [1] this stage can be performed in a time O(s).

Denote by T s
FAP (D) the time of solving of the problem P (D) by FAP-scheme

with the parallelization depth s. Note that this time is the total time of all the
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Fig. 2. The illustration of two parallel steps of the FAP 1-st stage

stages of this scheme, so from the above reasoning we conclude that T s
FAP (D) =

Θ(s + Ls(D)).
Let D be some class of rooted binary trees D such that

T s
FAP (D) = O

(
L(D)

2s
+ d(D)

)

where s ≤ d(D)/2. Note that in this case FAP-scheme, independently on the par-
allelization depth, is time optimal algorithm for parallel solving of all problems
P (D) such that D ∈ D. In this case the class D is called optimally resolvable
by FAP-scheme. In this work we establish characteristic properties of classes
optimally resolvable by FAP-scheme.

3 Related Work

The parallel complexity of a tree search algorithms was addressed in numer-
ous papers. In [7–9] various parallel execution schemes for a branch-and-bound
method for subset sum problem were studied. In this paper we address a paral-
lelization of an arbitrary tree search.

The running time of a parallel algorithm is bounded by the execution time
of a critical path in the dependency graph. Thus any algorithm for a parallel
backtrack solving a problem P (D) by m processors in time O(L(D)/m + d(D))
is time optimal [5].

In [13] the authors proposed an algorithm for parallel solving of the problem
P (D) in a distributed memory model in time O(T (D)/m + md(D)) where m is
the number of processors. This approach was further developed in [2]. A random-
ized algorithm for parallel solving of the problem P (D) in a distributed memory
model in optimal time O(T (D)/m+d(D)) with a high probability was proposed
in [5]. Further improvements in parallel solving of the backtrack search problem
were made for shared memory model. For example, a shared memory parallel
algorithm for the problem P (D) in time O((T (D)/m + d(D))(log log log m)2)
is proposed in [4]. A space-efficient algorithm for parallel solving of P (D) in a
shared memory model in time O((T (D)/m + d(D) log m) was proposed in [10].
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4 Main Result

Before stating and proving the main result we formulate the following evident
auxiliary proposition.

Proposition 1. For any odd l such that 2d + 1 ≤ l ≤ 2d+1 − 1 there exist a
rooted binary tree D of depth d which has l nodes.

Note that trees contained in classes optimally resolvable by FAP-scheme have
to be in some sense “close” to perfect binary trees, i.e. binary trees in which all
leaves have the same depth. A natural example of binary trees which are “close”
to perfect trees is binary trees satisfying a balance property, i.e. rooted binary
trees in which any two sibling subtrees have approximately the same size.

We define the balance property in the following way. Let δ : N → N be a
non-decreasing function, i.e. δ(n) ≤ δ(n+1) for any n ∈ N. We will call a rooted
binary tree D δ-balanced if for any sibling subtrees D[v′] and D[v′′] of D such
that the depth of nodes v′ and v′′ is not greater than d(D)/2 the difference
between the numbers of nodes of D[v′] and D[v′′] is not greater than δ(d) where
d is the depth of the subtree D[v] rooted in the parent node v of nodes v′ and
v′′. Denote by D(δ) the class of all δ-balanced rooted binary trees. In this work
we give the following criterion for a given class D(δ) to be optimally resolvable
by FAP-scheme.

Theorem 1. A class D(δ) is optimally resolvable by FAP-scheme if and only if
s∑

i=1

δ(d + i)
2i

= O(s + d)

where s, d ∈ N.

Proof. Denote Δ(s, d) =
s∑

i=1

δ(d + i)
2i

. Let Δ(s, d) = O(s + d). Then we prove

that D(δ) is optimally resolvable by FAP-scheme in the following way. Let D
be a tree from D(δ), and s ≤ d(D)/2 be a parallelization depth of FAP-scheme
for solving of P (D) by 2s processors. Consider a subtree D[v0] from ST s(D)
with the maximal number of nodes, i.e. L(D[v0]) = Ls(D). Let the path from
v0 to the root of D traverse nodes v0, v1,. . . , vs, i.e. vi be the parent of vi−1

for i = 1, 2, . . . , s and vs be the root of D. Denote by d0 the maximal depth of
subtrees from ST s(D). Note that d(D[vi]) ≤ d0 + i for any i = 1, 2, . . . , s and
d(D) = d0 + s. By induction for n = 1, 2, . . . , s we prove that

L(D[vn]) ≥ 2nL(D[v0]) + (2n − 1) −
n∑

i=1

2n−iδ(d0 + i). (1)

Let n = 1. Consider the sibling subtree D[v′
0] for the subtree D[v0]. Since D ∈

D(δ), we have that the difference between the numbers of nodes of D[v0] and
D[v′

0] is not greater than δ(d(D[v1])), i.e.

L(D[v′
0]) ≥ L(D[v0]) − δ(d(D[v1])).
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Since d(D[v1]) ≤ d0 + 1, we have also δ(d(D[v1])) ≤ δ(d0 + 1), so

L(D[v′
0]) ≥ L(D[v0]) − δ(d0 + 1).

Thus,

L(D[v1]) = L(D[v0]) + L(D[v′
0]) + 1 ≥ 2L(D[v0]) − δ(d0 + 1) + 1

= 2L(D[v0]) + (2 − 1) −
1∑

i=1

21−iδ(d0 + i).

Assume now that n > 1 and

L(D[vn−1]) ≥ 2n−1L(D[v0]) + (2n−1 − 1) −
n−1∑
i=1

2n−1−iδ(d0 + i). (2)

Consider the sibling subtree D[v′
n−1] for the subtree D[vn−1]. Since D ∈ D(δ),

we have that
L(D[v′

n−1]) ≥ L(D[vn−1]) − δ(d(D[vn])).

Since d(D[vn]) ≤ d0 + n, we have also δ(d(D[vn])) ≤ δ(d0 + n), so

L(D[v′
n−1]) ≥ L(D[vn−1]) − δ(d0 + n).

Thus,

L(D[vn]) = L(D[vn−1]) + L(D[v′
n−1]) + 1 ≥ 2L(D[vn−1]) − δ(d0 + n) + 1.

Therefore, applying inequality (2), we obtain that

L(D[vn]) ≥ 2

(
2n−1L(D[v0]) + (2n−1 − 1) −

n−1∑
i=1

2n−1−iδ(d0 + i)

)

− δ(d0 + n) + 1 = 2nL(D[v0]) + (2n − 1) −
n∑

i=1

2n−iδ(d0 + i).

Thus, taking into account that D[vs] = D, for n = s we have

L(D) = L(D[vs]) ≥ 2sL(D[v0]) + (2s − 1) −
s∑

i=1

2s−iδ(d0 + i)

> 2sL(D[v0]) −
s∑

i=1

2s−iδ(d0 + i).

Dividing the last inequality by 2s, we obtain that

L(D)
2s

> L(D[v0]) −
s∑

i=1

δ(d0 + i)
2i

= L(D[v0]) − Δ(s, d0).
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Therefore,

Ls(D) = L(D[v0]) <
L(D)

2s
+ Δ(s, d0) =

L(D)
2s

+ O(s + d0) =
L(D)

2s
+ O(d(D)).

Thus,

T s
FAP (D) = O(s + Ls(D)) = O(d(D) + Ls(D)) = O(

L(D)
2s

+ d(D)),

i.e. D(δ) is optimally resolvable by FAP-scheme.
Now let Δ(s, d) be not O(s + d). First we prove that in this case δ(d) is not

O(d). Suppose by contradiction that δ(d) ≤ Cd for some constant C. Then

Δ(s, d) ≤
s∑

i=1

C(d + i)
2i

= C(
s∑

i=1

d

2i
+

s∑
i=1

i

2i
)

< C(
∞∑

i=1

d

2i
+

∞∑
i=1

i

2i
) = C(d + 2) = O(d)

which contradicts that Δ(s, d) is not O(s + d). Thus, for any C ≥ 2 we can
consider a great enough d such that min(δ(d + 1), 2d+1 − 2) ≥ C(d + 1). Denote
by D′ the rooted binary tree defined in the following way. If δ(d + 1) ≥ 2d+1 − 2
then D′ is the perfect binary tree of depth d. Otherwise, consider the greatest
odd number l not exceeding δ(d + 1) + 1. Note that

l > δ(d + 1) − 1 ≥ C(d + 1) − 1 ≥ Cd + 1 ≥ 2d + 1. (3)

and l ≤ δ(d + 1) + 1 < (2d+1 − 2) + 1 = 2d+1 − 1. Thus, by Proposition 1
there exists a rooted binary tree of depth d which has l nodes and is defined
as D′. Consider a rooted binary tree obtained by attaching of the tree D′ to a
perfect binary tree as a subtree rooted in some leaf of this perfect tree. Denote
the obtained tree by D′′. Note that d(D′′) = 2d and

L(D′′) = 2d+1 − 2 + L(D′) ≤ 2d+1 − 2 + 2d+1 − 1 < 2d+2,

so L(D′′)/2d +d(D′′) < 4+2d = O(d). Note also that D′ is the maximal subtree
from ST d(D′′), so Ld(D′′) = L(D′). Hence, by (3), Ld(D′′) > Cd. Thus,

T d
FAP (D′′) = Θ(d + Ld(D′′)) = Ω(Ld(D′′)) = Ω(Cd).

As C can be arbitrarily large, from L(D′′)/2d +d(D′′) = O(d) and T d
FAP (D′′) =

Ω(Cd) we conclude that T s
FAP (D) is not O(L(D)

2s +d(D)) for any tree D from D(δ)

and any parallelization depth s ≤ d(D)/2, i.e. D(δ) is not optimally resolvable
by FAP-scheme.
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5 Conclusions

In this paper we proved an optimality criterion of a basic parallel backtrack-
ing algorithm (FAP-scheme) for binary trees. The obtained criterion could be
applied in practice in the case when the considered binary trees can be com-
pletely defined. The experimental evaluation of the obtained criterion is a sub-
ject of further research. Recall also that the obtained criterion is stated under
the condition s ≤ d(D)/2 (this constraint is based on an assumption that the
number of processors assigned for solving of the problem P (D) have to be signif-
icantly smaller than the number of nodes of D). A generalization of this criterion
to the case of trees with arbitrary degree of branching of internal nodes or to
the case when the parallelization depth s can be greater than d(D)/2 is one of
the interesting directions of further research. Note that the obtained conditions
of optimality of FAP-scheme are quite strict since FAP-scheme is quite simple
algorithm of parallel solving of the backtrack search problem. Further we intend
to study more complicated parallel schemes for backtrack search problems.
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Abstract. In this paper we consider spaces with an asymmetric semi-
norm and continue to study weakly convex sets. If we consider the
Minkowski functional of the epigraph of some convex function as a semi-
norm, then the results obtained for weakly convex sets can be applied
to weakly convex functions whose epigraphs are weakly convex sets with
respect to this seminorm. We consider two sets in an asymmetric semi-
normed space, one of which is weakly convex with respect to an asym-
metric seminorm, and the other one is strongly convex with respect to
the asymmetric seminorm. We study the nearest points (in the sense
of seminorm) problem and prove that this problem is well posed. Well
posedness is an important property in the optimization theory. If a min-
imization problem is well posed, then one can build stable numerical
algorithms, used for finding the solution of the problem.

Keywords: Asymmetric seminorm · Well posedness · Minimization ·
Convex projection · Weakly convex sets · Strongly convex sets

1 Introduction

Convex analysis is an important instrument of optimization and approximation.
To obtain the necessary estimates in optimization we often need some quanti-
tative characteristics of convexity. The parametrical convex analysis considers
these characteristics of sets, providing the necessary information on the geo-
metric and approximative properties of sets and functions. Thus, parametrically
convex analysis deals with weakly convex and strongly convex sets.

Weakly convex sets were first introduced in [6] under the name of sets with
positive reach in R

n. [2] studied proximally smooth sets in Hilbert space – sets
with continuously differentiable distance function in some neighbourhood of the
set. Later [24] considered prox-regular sets in Hilbert spaces and proved that in
a Hilbert space the class of uniformly prox-regular sets coincides with the classes
of proximally smooth and weakly convex sets.
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Weakly convex and strongly convex sets are often used in differential games
for the construction of more effective algorithms. In [7] the alternative theorem
for a linear differential game with strongly convex admissible control sets and
smooth target set was obtained. In [8] sufficient conditions of smoothness of
reachable sets for nonlinear differential games were considered.

We strive to develop a unified approach for weakly convex sets and func-
tions. So we study weakly convex sets in asymmetric seminormed spaces. Then
the results obtained for weakly convex sets can be used for solving optimization
problems for weakly convex functions, working with their epigraphs. Asymmetric
normed and seminormed spaces were studied in [4,5,21]. Approximation prob-
lems for weakly convex sets in such spaces were considered in [1,11–16,22,23]. In
[13] weakly convex function were characterized as functions with weakly convex
epigraphs in a seminormed space.

An important notion in optimization is the notion of “well posed problem”. A
minimization problem is Tikhonov well posed (further - well posed) if it admits
a unique minimizer and any minimizing sequence converges to this minimizer.
Well posedness property of a minimization problem is needed for stability of
numerical algorithms, used for finding the solution of the problem.

In this paper we consider the nearest points problem for two sets, one of
which is weakly convex, and the other one is strongly convex (in the sense of
the seminorm). We prove that this problem is well posed. This paper generalizes
the results obtained in [10] for Banach spaces with a quasiball. In [10] a Banach
space was considered, in which we then defined a quasiball M as a closed convex
set such that 0 ∈ int M . However, the topology of this space was induced by the
norm of the Banach space, and was not connected to the quasiball introduced.
Also the modulus of bounded uniform convexity (a generalization of uniform
convexity for unbounded sets) was defined using both the initial norm and the
quasiball. In this paper we deal directly with asymmetric normed spaces without
any predefined norm.

2 Definitions and Notation

Let E be a real vector space. Next, we provide some necessary definitions and
notation, used throughout this paper.

Definition 1 (See [3]). A function μ : E → R is called sublinear if it is posi-
tively homogeneous:

μ(λx) = λμ(x) ∀x ∈ E ∀λ ≥ 0

and subaditive:
μ(x + y) ≤ μ(x) + μ(y) ∀x, y ∈ E.

Definition 2 (See [3]). A sublinear function μ : E → [0,+∞) such that

max{μ(x), μ(−x)} > 0 ∀x ∈ E \ {0} (1)

is called asymmetric seminorm. The pair (E,μ) is called asymmetric semi-
normed space.
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Definition 3. If asymmetric seminorm μ satisfies additional condition

μ(x) > 0 ∀x ∈ E \ {0},

then it is called asymmetric norm. In such a case the pair (E,μ) is called asym-
metric normed space.

In some literature (e.g. [5]) a bit different terminology is used: an asymmetric
seminorm is called an asymmetric norm and a sublinear function μ : E →
[0,+∞) (without axiom (1)) is called an asymmetric seminorm.

Definition 4. For ε > 0 and x ∈ E use Uε(x) to denote ε-neighbourhood of x:

Uε(x) = {y ∈ E : μ(x − y) < ε}.

A set X ⊂ E is called μ-open if for any x ∈ X there exists ε > 0 such that
Uε(x) ⊂ X. We shall use τμ to denote the family of all μ-open subsets X ⊂ E.

Remark 1. (E, τμ) is a topological space.

Remark 2. If μ is an asymmetric seminorm, then (E, τμ) is not a Hausdorff space
in general. Consider, for example, an asymmetric seminormed space (E,μ) with
E = R and

μ(x) =
{

x, x ≥ 0,
0, x < 0.

Then for any x ∈ R, ε > 0 we have Uε(x) = (x − ε,+∞) and (E, τμ) is not a
Hausdorff space.

Definition 5 (See [5]). Let X be an arbitrary set. A function � : X × X →
[0,+∞) is called a quasi-metric if

�(x, x) = 0 ∀x ∈ X,

�(x, z) ≤ �(x, y) + �(y, z) ∀x, y, z ∈ X,

�(x, y) = �(y, x) = 0 ⇒ x = y ∀x, y ∈ X.

Remark 3. Any asymmetric seminormed space (E,μ) possesses a quasi-metric

�μ(x, y) = μ(x − y), x, y ∈ E,

a metric
�s

μ(x, y) = max{μ(x − y), μ(y − x)}, x, y ∈ E,

and a norm
‖x‖μ = max{μ(x), μ(−x)}, x ∈ E.

We shall use clX to denote the closure of the subset X ⊂ E with respect
the topology induced by metric �s

μ. Let E∗ be the space of linear functionals
p : E → R, which are continuous with respect to metric �s

μ.
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Definition 6. The diameter of a set X ⊂ E is defined as

diam X = sup
x,y∈X

μ(x − y).

We generalize the definition given in [5] for an asymmetric normed space as
follows.

Definition 7. A sequence {xk} in an asymmetric seminormed space (E,μ) is
called

– �s
μ-Cauchy if

∀ε > 0 ∃Nε : ∀n, k ≥ Nε �s
μ(xn, xk) < ε,

– convergent to x ∈ E (we write xk → x) if �s
μ(xk, x) → 0 as k → ∞.

Definition 8. An asymmetric seminormed space (E,μ) is called biBanach
space if any �s

μ-Cauchy sequence {xk} converges to some x ∈ E.

Remark 4. If (E,μ) is a biBanach space, then (E, ‖ · ‖μ) is a Banach space.

Definition 9. Let (E,μ) be an asymmetric seminormed space.
The μ-distance from a point x ∈ E to a set A ⊂ E is

�μ(x,A) = inf
a∈A

μ(x − a).

The μ-distance from a set C ⊂ E to a set A ⊂ E is

�μ(C,A) = inf
c∈C
a∈A

μ(c − a).

The μ-projection (or μ-nearest point) for a point x ∈ E on a set A ⊂ E is

Pμ(x,A) = {a ∈ A : μ(x − a) = �μ(x,A)}.

Given ε > 0, the ε-μ-projection of a point x ∈ E on a set A ⊂ E is defined
as

P ε
μ(x,A) = {a ∈ A : μ(x − a) ≤ �μ(x,A) + ε}.

The cone of proximal normals to a set A ⊂ E at a point a ∈ A is

Nμ(a,A) = {z ∈ E | ∃t > 0 : a ∈ Pμ(a + tz, A)}.

Definition 10. A set A ⊂ E is called μ-weakly convex if for any a ∈ A and
z ∈ Nμ(a,A) with μ(z) = 1 one has a ∈ Pμ(a + z,A).

Ivanov in [9] suggested the following definition, which generalized the notion
of parabolic sets, also introduced by him (see, for example, [10]).
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Definition 11. An asymmetric seminormed space (E,μ) is called parabolic if
for any b ∈ E

sup
x∈E: μ(x)≤1,

μ(x+b)>2

μ(−x) < +∞.

Definition 12. An asymmetric seminormed space (E,μ) is called uniformly
convex if δμ(ε,R) > 0 for any positive ε and R, where

δμ(ε,R) = inf
{

1 − μ
(

x1+x2
2

)∣∣ x1, x2 ∈ E :
μ(x1) ≤ 1, μ(x2) ≤ 1,
μ(−x1) ≤ R, μ(−x2) ≤ R,
μ(x1 − x2) ≥ ε

⎫⎬
⎭ .

(2)

Remark 5. If (E,μ) is a uniformly convex asymmetric seminormed space, then
(E, ‖ · ‖μ) is a uniformly convex (and consequently reflexive) normed space.

Remark 6. An asymmetric seminormed space (E,μ) is uniformly convex, if
limt→+0 ψμ(t, R) = 0 for any R > 0, where ψμ(·, ·) is

ψμ(t, R) = sup
{

μ(x1 − x2)
∣∣∣ x1, x2 ∈ E :

μ(x1) ≤ 1, μ(x2) ≤ 1,
μ(−x1) ≤ R, μ(−x2) ≤ R,
1 − μ

(
x1+x2

2

) ≤ t,

⎫⎬
⎭ , R > 0, t ≥ 0.

(3)

Note that ψμ(t, R) is increasing with respect to t.

3 Motivation of the Problem

In this section we will discuss the application to optimization problems of the
main result of this paper. But first, let us give the necessary definitions.

Given a function f : A → R ∪ {+∞}, let us consider the problem

min
x∈E

f(x). (4)

A sequence {xk} ⊂ E is said to be a minimizing sequence if

lim
k→∞

f(xk) = inf
x∈E

f(x).

Definition 13. The problem (4) is called well posed, if every minimizing
sequence of this problem converges.

Remark 7. If the problem (4) is well posed and function f(·) is lower-
semicontinuous, then the minimizer is unique.
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Recall that the epigraph of function f : E → R ∪ {−∞,+∞} is defined by

epi f = {(x, y) ∈ E × R | x ∈ E, y ≥ f(x)};

the effective domain of f is

dom f = {x ∈ E | f(x) ∈ R}.

The infimal convolution of the functions f : E → R ∪ {+∞} and g : E →
R ∪ {+∞} is the function f � g, defined by

(f � g)(x) = inf
u∈E

(
f(x − u) + g(u)

)
, x ∈ E.

Remark 8. For any functions f, g : E → R∪{+∞} the following inclusions hold

epi f + epi g ⊂ epi (f � g) ⊂ clepi f + epi g.

So, the infimal convolution of functions f and g is a function whose epigraph
coincides up to closure with the Minkowski sum of the epigraphs of the functions
f and g.

In [9] the nearest point problem was considered. Let there be given functions
f, g : E → R ∪ {+∞} and the set A = epi f . Put M = epi g. Let μ(·) be the
Minkowski functional of M and c = (x0, y0) ∈ E ×R (here x ∈ E and y ∈ R) be
such that ρμ(c,A) = 1. The nearest point problem can be rewritten as follows

min
a∈A

μ(c − a). (5)

Let us show that we can reformulate this problem using the notion of infimal
convolution.

Consider inf
u∈E

(f(x − u) + g(u)) = λ. Suppose that the minimum is attained.

Then there exists u0 ∈ E such that

g(x0 − u0) + f(u0) = min
u∈E

(f(u) + g(x0 − u)).

Consider a = (x, y) ∈ A, where x ∈ E and y ∈ R. Problem (5) can be
rewritten as follows

min
x∈E,y≥f(x),

(x0,y0)−(x,y)∈tM

t.

As ρμ(c,A) = 1, we have that inf
c−a∈tM,

a∈A

t = 1. The inclusion c − a ∈ M can be

rewritten as (x0 − x, y0 − y) ∈ epi g. Thus, y0 − y ≥ g(x0 − x). As we search the
minimum on condition that y ≥ f(x), we obtain that

f(x) ≤ y0 − g(x0 − x).

Hence,
f(x) + g(x0 − x) ≤ y0.
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If the minimum by t is obtained and unique, then there exists u0 ∈ E such that
f(u0)+g(x0−u0) = y0. Thus for any u ∈ E\{u0} we have that f(u)+g(x0−u) >
y0. Thus the well-posedness of nearest points problem (5) for sets that can be
described as the epigraph of some function can be reduced to the problem of
well-posedness of infimal convolution (see Theorem 3.6 [13]).

The infimal convolution problem is very important in optimization. Applica-
tions of the infimal convolution to optimal control are considered e.g. in [17–19].
In [20] it is shown that well-posedness properties of optimization problems are
very important in subdifferential calculus.

4 Auxiliary Results

In this section, we provide some auxiliary results and also recall some lemmas,
proved in previous works. In this section we will prove that the ε-μ-projection
of a r-μ-strongly convex set (the definition will be given later) on a μ-weakly
convex set is bounded. In the main result section we will prove that μ-projection
of a r-μ-strongly convex set (the definition will be given later) on a μ-weakly
convex set consists of a single point.

Lemma 1. Let (E,μ) be a uniformly convex biBanach asymmetric seminormed
space and let the vectors x, y ∈ E and the number R > 0 satisfy the inequalities

0 < μ(−x) ≤ R · μ(x), 0 < μ(−y) ≤ R · μ(y). Then

μ

(
x

μ(x)
− y

μ(y)

)
≤ ψμ

(
μ(x) + μ(y) − μ(x + y)

2min{μ(x), μ(y)} , R

)
,

where ψμ(·, ·) is defined by formula (3).

Proof. Let us denote
a =

x

μ(x)
, b =

y

μ(y)
,

c =
a + b

2
, μ1 = μ(x), μ2 = μ(y),

t =
μ(x) + μ(y) − μ(x + y)

min{μ(x), μ(y)} .

Without loss of generality we assume that μ2 ≤ μ1. Using the sublinearity of
function μ and taking into account that μ(a) = 1, we have that

μ(x + y) = μ((μ1 − μ2)a + μ2(a + b))

≤ (μ1 − μ2) · μ(a) + μ2 · μ(a + b) = μ1 + μ2 − 2μ2 · (1 − μ(c)).

Thus
μ(c) ≥ 1 − t

2
. (6)

Inequality (6) and the facts that μ(a) = μ(b) = 1 and μ(−a) ≤ R, μ(−b) ≤ R,
according to the equality (3), imply that μ(a − b) ≤ ψμ(t, R).
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Lemma 2. Let (E,μ) be a biBanach asymmetric seminormed space and let the
set A ⊂ E be μ-weakly convex, and let the point x0 ∈ E and the number ε > 0
be such that 0 < �μ(x0, A) = � < 1 − ε. Let a0 ∈ Pμ(x0, A), a ∈ P ε

μ(x0, A) and

R = max
{‖x0−a0‖μ

μ(x0−a0)
,

‖x0−a‖μ

μ(x0−a)

}
. Then

‖a − a0‖μ ≤ εR + �ψμ

(
ε

2min{�, 1 − �} , R

)
.

Proof. Let us denote z = x0−a0
� , x = x0 − a, y = (1 − �)z. As the set A is

μ-weakly convex and z ∈ Nμ(a0, A), μ(z) = 1, then �μ(a0 + z,A) = 1. Thus,
� ≤ μ(x) ≤ �+ε, μ(x+y) = μ(a0 +z −a) ≥ �μ(a0 +z,A) = 1 ≥ μ(x)+μ(y)−ε.
So, according to Lemma 1 and Remark 3 we have that

∥∥∥∥ x

μ(x)
− y

μ(y)

∥∥∥∥
μ

≤ ψμ

(
ε

2min{�, 1 − �} , R

)
.

The relations
∥∥∥ x

μ(x) − x
�

∥∥∥
μ

= ‖x‖μ

μ(x)
|μ(x)−�|

� ≤ εR
� ,∥∥∥ y

μ(y) − x
�

∥∥∥
μ

= ‖a−a0‖μ

� imply that the inequality

‖a − a0‖μ ≤ εR + �ψμ

(
ε

2min{�, 1 − �} , R

)

holds.

Let (E,μ) be a biBanach asymmetric seminormed and two sets A,C ⊂ E.
Consider the problem

min
a∈A, c∈C

μ(c − a). (7)

According to the Definition 13 the problem (7) is well posed if any two sequences
{ak} ⊂ A and {ck} ⊂ C such that limk→∞ μ(ck − ak) = �μ(C,A) converge to
some points â ∈ A and ĉ ∈ C respectively. In addition, due to the continuity of
the Minkowski functional, μ(ĉ− â) = �μ(C,A), i.e. the pair of points (â, ĉ) is the
solution of the problem (7).

Let (E,μ) be a biBanach asymmetric seminormed. We will say that

P ε
μ(C,A) = {a ∈ A| ∃c ∈ C : μ(c − a) ≤ �μ(C,A) + ε}

.
By μ− we denote the function μ− : E → R such that μ−(x) = μ(−x).

Remark 9. Let E be a Banach space, M ⊂ E a quasiball and let sets A ⊂ E
and C ⊂ E be closed. The following statements are equivalent:

(1) limε→+0 diam P ε
μ(C,A) = 0 and

limε→+0 diam P ε
μ−(A,C) = 0;

(2) the problem (7) is well posed.
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Proposition 1. [Lemma 4, [9]] Let (E,μ) be a parabolic asymmetric semi-
normed space. Then for any λ1 > 0, λ2 > λ1 and x1, x2 ⊂ E one has

sup
x∈E: μ(x−x1)≤λ1,

μ(x−x2)>λ2

μ(−x) < +∞.

Remark 10. In Proposition 1 the subadditivity of function μ(·) implies that
μ(x) ≤ λ1 + μ(x1). Thus

sup
x∈E: μ(x−x1)≤λ1,

μ(x−x2)>λ2

‖x‖μ < +∞.

The Minkowski sum of sets A,B ⊂ E is

A + B = {a + b | a ∈ A, b ∈ B} .

Definition 14. Let there be given a set M ⊂ E such that M = {x ∈ E :
μ(x) ≤ 1}. We will say that a set C ⊂ E is r-μ-strongly convex if it is convex,
μ-closed (that it, the set E \ C is μ-open) and there exists a set C1 ⊂ E such
that C + C1 = −rM , r > 0.

Theorems 1 and 2 [9] imply the following Proposition.

Proposition 2. Let (E,μ) be a uniformly convex parabolic biBanach asymmet-
ric seminormed space and let A ⊂ E be a μ-closed set. Then the following state-
ments are equivalent:

(1) the set A in μ-weakly convex;
(2) for any point x0 ∈ E such that 0 < �μ(x0, A) < 1 the problem

min
a∈A

μ(x0 − a)

is well posed;

Lemma 3. Let (E,μ) be a uniformly convex parabolic biBanach asymmetric
seminormed space. Let the set A ⊂ E be μ-closed and μ-weakly convex. Let the
set C ⊂ E be r-μ-strongly convex, r ∈ (0, 1), ε > 0, 0 < �μ(C,A) < 1 − r − ε.
Then diam P ε

μ(C,A) < +∞, diam P ε
μ−(A,C) < +∞.

Proof. Consider an arbitrary point x ∈ E \ A such that �μ(x,A) ≥ 1. The
definition of r-μ−-strong convexity implies that there exists a set C1 ⊂ E such
that C + C1 = −rM , where M = {x ∈ E : μ(x) ≤ 1}. Consider an arbitrary
point c1 ∈ C1. Then c1 + C ⊂ −rM . Consider an arbitrary point y ∈ P ε

μ(C,A)
and y′ ∈ P ε

μ−(A,C). Then

μ(y) > μ(x − z), μ(y′) > μ(x − (1 − �μ(C,A) − ε)z)

and
μ(y) ≤ μ(−c1 + (�μ(C,A) + r + ε)z),

μ(y′) ≤ μ(−c1 − rz), ∀z : μ(z) ≤ 1.

Thus, according to Proposition 1, the assertion of the lemma is true.
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We say that a set A ⊂ E is μ−-weakly convex if for any a ∈ A and z ∈
Nμ−(a,A) with μ(−z) = 1 one has a ∈ Pμ−(a + z,A), where

Pμ−(x,A) = {a ∈ A : μ(a − x) ≤ inf
a′∈A

μ(a′ − x)}.

and
Nμ−(a,A) = {z ∈ E | ∃t > 0 : a ∈ Pμ−(a + tz, A)}.

Lemma 3.1 [10] implies the following proposition.

Proposition 3. Let (E,μ) be a uniformly convex biBanach asymmetric semi-
normed space. Let set C ⊂ E be a summand of the set M = {x ∈ E : μ(x) = 1}.
Then

C − c0 ⊂ M − z ∀c0 ∈ C ∀z ∈ Nμ(c0, C)
⋂

∂M.

5 Main Result

Theorem 1. Let (E,μ) be a uniformly convex parabolic biBanach asymmetric
seminormed space. Let A ⊂ E be μ-closed and μ-weakly convex. Let C ⊂ E be
r-μ-strongly convex, r ∈ (0, 1). Let 0 < �μ(C,A) < 1 − r. Then problem (7) is
well posed.

Proof. We denote

�0 = �μ(C,A), Aε = P ε
μ(C,A), Cε = P ε

μ−(A,C).

Let us fix a number ε0 ∈ (0, 1− r − �0). According to Lemma 3 the sets Aε0 and
Cε0 are bounded in the sense of ‖ ·‖μ. This and the inequality μ(c−a) ≥ �0 > 0,
which holds for any a ∈ A, c ∈ C, imply that

R := sup
a∈Aε0 , c∈Cε0

‖c − a‖μ

μ(c − a)
< +∞. (8)

We fix a number ε ∈ (0, ε0] and a point aε ∈ Aε. As the set C is convex, it is μ−-
weakly convex (see Lemma 2 [9]). This and Proposition 2 imply that there exists
a point cε ⊂ E such that cε ∈ Pμ−(aε, C). As the vector zε = cε−aε

μ(cε−aε)
satisfies

the inclusion zε ∈ −Nμ−(cε, C) and μ(zε) = 1 then, according to Proposition 3,
we have

C − cε ⊂ r(zε − M), (9)

where M = {x ∈ E : μ(x) ≤ 1}. Using the inclusion aε ∈ Aε, we get
�−μ(aε, C) = infc∈C μ(c − aε) ≤ �0 + ε. Therefore

�0 ≤ �(cε, A) ≤ μ(cε − aε)
= μ(−aε + cε) = �μ−(aε, C) ≤ �0 + ε < 1 − r.

(10)

Proposition 2 implies that there exists a point

a′
ε ∈ Pμ(cε, A). (11)
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Then the vector z′
ε = cε−a′

ε

μ(cε−a′
ε)

satisfies the inclusion z′
ε ∈ Nμ(a′

ε, A) and the
equality μ(z) = 1. As the set A is μ-weakly convex, we have

a′
ε ∈ Pμ(a′

ε + z′
ε, A). (12)

According to the relation (10), we have aε ∈ P ε
μ(cε, A). The equality (8) and the

inclusions aε ∈ Aε, a′
ε ∈ Aε, cε ∈ Cε imply the inequalities

‖zε‖μ ≤ R, ‖z′
ε‖μ ≤ R. (13)

Lemma 2 and the relations (10), (11) imply that

‖aε − a′
ε‖ ≤ Δ(ε) := εR + ψμ

(
ε

min{�0, r} , R

)
. (14)

As

zε − z′
ε =

cε − aε

μ(cε − aε)
− cε − a′

ε

μ(cε − a′
ε)

=
a′

ε − aε

μ(cε − aε)
+

(
1

μ(cε − aε)
− 1

μ(cε − a′
ε)

)
(cε − a′

ε),

we have

‖zε − z′
ε‖μ ≤ ‖aε − a′

ε‖μ

�0
+ R

|μ(cε − a′
ε) − μ(cε − aε)|

�0
.

Remark 3 implies that function μ(·) is Lipschitz with constant 1. Therefore

‖zε − z′
ε‖μ ≤ ‖aε − a′

ε‖μ

�0
(1 + R). (15)

Since
μ(cε − a′

ε) = �μ(cε, A) ≤ μ(cε − aε) ≤ �0 + ε < 1 − r

and
cε + rz′

ε − a′
ε =

(
μ(cε − a′

ε) + r
)
z′
ε, (16)

we have cε + rz′
ε ∈ [a′

ε, a
′
ε + z′

ε]. This and the inclusion (12) imply that

a′
ε ∈ Pμ(cε + rz′

ε, A). (17)

We denote

Δ1(ε) = ε +
r(1 + R)

�0
Δ(ε). (18)

Let us prove that
Aε ⊂ PΔ1(ε)

μ (cε + rz′
ε, A). (19)

Indeed, let a ∈ Aε. Using the inclusion (9), we obtain that a ∈ C − (�0 + ε)M ⊂
cε + rzε − (r +�0 + ε)M , i.e. μ(cε + rzε −a) ≤ r +�0 + ε. Therefore the relations
(14), (15), (18) imply that

μ(cε + rz′
ε − a) ≤ r + �0 + ε + rμ(z′

ε − zε)
≤ r + �0 + ε + r‖z′

ε − zε‖μ ≤ r + �0 + Δ1(ε).
(20)
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The relations (16), (17) imply that

�μ(cε + rz′
ε, A) = μ(cε + rz′

ε − a′
ε)

= μ(cε − a′
ε) + r ≥ �0 + r.

(21)

Combining the inequalities (20), (21), we obtain that μ(cε + rz′
ε − a) ≤ �(cε +

rz′
ε, A) + Δ1(ε), which proves the inclusion (19).
The inequalities (13), (21), the inclusions a′

ε ∈ Aε ⊂ Aε0 , cε ∈ Cε ⊂ Cε0 , and
the boundedness of the set Aε0 , Cε0 imply that

sup
ε∈(0,ε0]

sup
a∈Aε

‖cε + rz′
ε − a‖μ

μ(cε + rz′
ε − a)

< +∞.

Then, according to Lemma 2 and the relations (17)–(21), we obtain that
diam Aε → 0 as ε → +0. As the sets Aε are included in each other and closed,
there exists a point â ∈ ⋂

ε>0 Aε.
Let us prove that

Cε ⊂ P ε+diam Aε

μ− (â, C) ∀ε ∈ (0, ε0]. (22)

Let ε ∈ (0, ε0], c ∈ Cε. According to Proposition 2 there exists a point a ∈
Pμ(c,A). Then �−μ(a,C) ≤ μ(c − a) = �μ(c,A) ≤ �0 + ε. Therefore a ∈ Aε and
μ(c − â) ≤ μ(c − a) + μ(a − â) ≤ �0 + ε + diam Aε ≤ �−μ(â, C) + ε + diam Aε.
This implies inclusion 22. Inclusion 22 and Lemma 2 imply that diam Cε → 0
as ε → +0. According to Remark 9 this completes the proof.

Example 1 (proposed by professor G.E. Ivanov). Let us consider a two-
dimensional real vector space E and the function g : R → R, g(x) = x2 − 1. Put
M = epi g, and let μ : E → R be the Minkowski function of M . The pair (E,μ)
is an asymmetric seminormed space.

Consider function a > 0 and f : R → R ∪ {+∞},

f =
{−ax2, |x| ≤ 1,

+∞, |x| > 1.

Put A = epi f and C = {(x0,−0.5)}.
Consider the infimal convolution of functions f and g

f � g(x) = inf
u∈R

(f(u) + g(x − u)).

Let us prove that for a ∈ (0, 1) the problem is well-posed, and for a = 1 the
problem is ill-posed. Consider a ∈ (0, 1). Then

f � g(x0) = inf
u∈[−1,1]

(−au2 + (x0 − u)2 − 1)

= min
u∈[−1,1]

((1 − a)u2 + x2
0 − 2x0u − 1) = −1 − ax2

0

1 − a
.
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Thus umin = − x0
1−a , and the problem is well-posed for any x0 ∈ R (see also

[13]).
Consider now a = 1. Then

f � g(x0) = inf
u∈[−1,1]

(−u2 + (x0 − u)2 − 1) = inf
u∈[−1,1]

(x2
0 − 2x0u − 1).

We obtain that if x0 = 0, then the minimum is attained on [−1, 1]. If we consider
x0 = 0, then the minimum is attained at u = sign x0. Thus the argmin (·)
function of −u2 + (x0 − u)2 − 1 is not continuous, and the problem is ill-posed.

6 Conclusion

The well posedness of the nearest points problems is closely related to the well
posedness of the infimal convolution, which is a very useful instrument in opti-
mization problems.

The author thanks G.E. Ivanov for fruitful discussions and help.
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Abstract. We discuss two optimization problems: minimization of time
and minimization of energy – for a material point, controlled by a lim-
ited force, moving along a straight line in the presence of friction and
under limitation on the velocity. In the second problem, the time inter-
val is fixed, and the recuperation of energy is taken into account. We
describe extremals of these problems, satisfying the maximum principle
for problems with state constraints in the Dubovitskii – Milyutin form.

Keywords: Pontryagin’s maximum principle · State constraint ·
Optimal control · Singular arc · Energy consumption

1 Introduction

In this paper, we consider a train (a tram, a bus, a trolley, etc.) as a material
point of the mass equal to one moving along a given segment of a horizontal
straight line, under the influence of traction or breaking force, in the presence
of friction and subject to limitation on the velocity. The initial position and the
initial velocity, the final position and the final velocity of the point are fixed. The
traction and breaking forces are limited and considered as a control. We consider
two optimality criteria for this problem: minimization of time and minimization
of energy. In the second case, the time interval is fixed and the system admits
a recuperation of a part of the energy, i.e. returning it to the system during
deceleration. We study these two problems using the maximum principle (MP)
for problems with state constraints in the Dubovitskii-Milyutin form.

There is an important literature on the subject, see, e.g., [1–4,7] and the
literature therein. This article is a presentation of the ideas, developed in
[7] and [2].
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The paper is organized as follows. In Sect. 2, we give a formulation of the time
optimal control problem for a material point, which is briefly called Problem A.
We note that the solution exists in this problem. In Sect. 3, for the reader’s
convenience, we formulate the Dubovitskii-Milyutin maximum principle, first
for a class of problems with state constraint, containing Problem A, and then
for this particular problem. In Sect. 4, we describe all possible types (A)-(E) of
extremals of Problem A, and note that the extremals of the type (E) does not
satisfy the second order necessary optimality condition. Therefore one should
find an optimal solution among extremals of the types (A)-(D). At the end of
Sect. 4 we give a numerical example proposed by H. Maurer, where the solution of
Problem A was found for given data. The energy optimal control problem, briefly
called Problem B, is formulated in Sect. 5. In Sect. 6, we recall the formulation of
the Dubovitskii-Milyutin maximum principle for the class of problems with state
constraints, containing Problem B, and then we formulate it for this problem.
In Sect. 7, we describe all possible types of extremals of Problem B. In Sect. 8,
we summarize the results of the paper.

2 Time Optimal Control Problem

Let us give a formal description of the problem. Let the motion occur on an
interval [0, T ], T > 0. Denote by x(t) ∈ IR and by y(t) ∈ IR the position and
the velocity of the point at the time t ∈ [0, T ], respectively. Then ẋ(t) = y(t) for
all t ∈ [0, T ], where ẋ = dx/dt is the derivative of x with respect to the time t.
Denote by u(t) ∈ IR the value of traction or breaking force acting on the material
point at time t. The inequality u > 0 corresponds to the real traction, while the
inequality u < 0 corresponds to the real braking. The function u : [0, T ] → IR
plays the role of the control, which belongs to an interval [a, b] with a < 0 and
b > 0. We consider u : [0, T ] → IR as a measurable and essentially bounded
function, while x : [0, T ] → IR and y : [0, T ] → IR are assumed to be Lipschitz
continuous functions. We call x(·) and y(·) the state variables.

According to Newton’s second law, the dynamics of the point satisfies the
equation

ẍ(t) = −w(y(t)) + u(t) a.e. in [0, T ],

where w(y) is the force of resistance to the motion (friction), depending on the
velocity y.

Assumption 1. The function w : IR → IR is odd, continuous, twice continu-
ously differentiable on the half-line (0,∞), and satisfies the conditions

w′(y) > 0 and w′′(y) ≥ 0 for all y > 0.

Note, that Assumption 1 implies: w(0) = 0 and w(y) > 0 for all y > 0.
For example, let k1 > 0 and k2 ≥ 0. Then the function, determined for y > 0

by w(y) = k1y + k2y
2, prolonged oddly on the entire axis, satisfies conditions of

Assumption 1.
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Thus we come to the control system

ẋ(t) = y(t) a.e. in [0, T ], (1)

ẏ(t) = −w(y(t)) + u(t) a.e. in [0, T ], (2)

u(t) ∈ [a, b] a.e. in [0, T ]. (3)

As was said, the initial position, the initial velocity, the terminal position,
and the terminal velocity are fixed, that is

x(0) = x0, y(0) = y0, x(T ) = xT , y(T ) = yT , (4)

where x0, xT , y0, yT are prescribed values, x0 < xT .
There is a state constraint of the form

y(t) ≤ V for all t ∈ [0, T ], (5)

where V > 0 is the maximal possible speed. To avoid the trivial maximum
principle, we make the following assumption.

Assumption 2. 0 ≤ y0 < V and 0 ≤ yT < V.

Also we will need the following important assumption.

Assumption 3. w(V ) < b.

This implies that if 0 ≤ y ≤ V , then 0 ≤ w(y) ≤ w(V ), and hence −w(y) + b ≥
−w(V ) + b > 0, while −w(y) + a < 0. Consequently, the case u = b corresponds
to acceleration, and the case u = a corresponds to deceleration.

Our goal now is to minimize the time of movement:

minimize T. (6)

For brevity, problem (1)–(6) is called the Problem A. Obviously, an optimal
process (x(·), y(·), u(·), T ) satisfies

Assumption 4. y(t) ≥ 0 for all t ∈ [0, T ], and there is no interval [t1, t2] ⊂ [0, T ]
of positive measure such that y(t) = 0 for all t ∈ [t1, t2].

Otherwise the time T can be reduced. We consider only processes satisfying this
assumption.

In [7], it was shown that the optimal trajectory in this problem exists, and
hence it should be chosen among extremals satisfying the maximum principle.
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3 The Dubovitskii-Milyutin Maximum Principle for
Time Optimal Control Problem

3.1 Maximum Principle for a General Problem of the Type A

For convenience of the reader, we first formulate the maximum principle obtained
by Dubovitskii and Milyutin for a class of problems, containing Problem A, see
[3] or [5]. Consider the following optimal control problem:

minimize T (7)

subject to

ẋ(t) = f(x(t), u(t)), u(t) ∈ U for a.a. t ∈ [0, T ], (8)

x(0) = x0, x(T ) = xT , (9)

ϕ(x(t)) ≤ 0 for all t ∈ [0, T ]. (10)

Here the state variable x : [0, T ] → IRn is a Lipschitz continuous function, the
control variable u : [0, T ] → IRm is a measurable and essentially bounded func-
tion, the mapping f : IRn+m �→ IRn is assumed to be continuous together with
its partial derivative fx, the mapping ϕ : IRn �→ IR is continuously differentiable,
x0, xT ∈ IRn are given vectors, and U ⊂ IRm is an arbitrary set.

A pair of functions (x(·), u(·)) together with their domain of definition [0, T ]
is called the process of the problem. A process (x(·), u(·), T ) is called admissible
if it satisfies all constraints of the problem. An admissible process (x̂(·), û(·), T̂ )
is called a strong local minimum if there is an ε > 0 such that T ≥ T̂ for
all admissible processes satisfying |T − T̂ | < ε and |x(t) − x̂(t)| < ε for all
t ∈ [0, T ] ∩ [0, T̂ ].

In order to formulate necessary conditions for a strong local minimum for a
process (x̂(·), û(·), T̂ ), we introduce the Pontryagin function (or pre-Hamiltonian)

H(x, u, p) := p f(x, u), (11)

where p is a row vector of the dimension n. The function

H(x, p) := sup
u∈U

H(x, u, p) (12)

is called the Hamiltonian.
We say that an admissible process (x̂(·), û(·), T̂ ) satisfies conditions of the

maximum principle if there exist left-continuous functions of bounded variation
p : [0, T ] → IRn and μ : [0, T ] → IR, defining measures dp and dμ, respectively,
such that

dμ ≥ 0, ϕ(x̂(·)) dμ = 0, (13)

Var(p) +
∫
[0,T ]

dμ > 0, (14)
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− dp = Hx(x̂(·), û(·), p(·)) dt − ϕ ′(x(·)) dμ, (15)

max
u∈U

H(x̂(t), u, p(t)) = H(x̂(t), û(t), p(t)) for a.a. t ∈ [0, T ], (16)

H(x̂(t), û(t), p(t)) = const =: α0 ≥ 0 for a.a. t ∈ [0, T ]. (17)

Here, conditions (13) are called the nonnegativeness of the measure and com-
plementarity condition, respectively, inequality (14) is called the nontriviality
condition, (15) is the adjoint equation, (16) is the maximum condition for the
Pontryagin function, and (17) is the condition of the constancy and nonnega-
tiveness of the Hamiltonian.

Theorem 1. If a process (x̂(·), û(·), T̂ ) is a strong local minimum in problem
(7)–(10), then it satisfies conditions of the maximum principle.

3.2 Maximum Principle for Problem A

Observe, that for Problem A we have:

m = 1, n = 2, U = [a, b],

f1(x, y) = y, f2(x, y) = −w(y) + u, ϕ(x, y) = y − V,

and obviously, all assumptions of problem (7)–(10) are fulfilled. According to
(11), the Pontryagin function for Problem A has the form:

H = p1y + p2(−w(y) + u). (18)

Let a process (x(·), y(·), u(·), T ) be admissible in Problem A, and y(t) ≥ 0 for
all t ∈ [0, T ]. The maximum principle for this process consists in the following:
there exist left-continuous functions of bounded variation p1 : [0, T ] → IR,
p2 : [0, T ] → IR, and μ : [0, T ] → IR such that

dμ ≥ 0, (y(·) − V ) dμ = 0, (19)

Var(p1) + Var(p2) +
∫
[0,T ]

dμ > 0, (20)

− dp1 = 0, −dp2 = (p1(·) − p2(·)w′(y(·))) dt − dμ, (21)

max
u∈[a,b]

p2(t)u = p2(t)u(t) a.e. in [0, T ], (22)

p1(t)y(t) + p2(t)(−w(y(t)) + u(t)) = const =: α0 ≥ 0 a.e. in [0, T ]. (23)

Let a triple of multipliers (p1(·), p2(·), dμ) satisfy conditions (19)–(23) of the
maximum principle. According to (21), dp1 = 0, consequently p1 = const. Set

β = −p1, p = p2.
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Then the second equation in (21) takes the form

dp = (p(·)w′(y(·)) + β) dt + dμ, (24)

and from the maximum condition (22) it follows that

if p(t) < 0, then u(t) = a, (25)
if p(t) = 0, then u(t) ∈ [a, b], (26)
if p(t) > 0, then u(t) = b. (27)

As was said, the first case corresponds to deceleration, the third one is called
acceleration. the second one is said to be a singular regime.

It was proved in [7] that (due to the fact that the state constraint has the
order one, that is, control appears after the first differentiation of the state
constraint) the measure dμ is absolutely continuous, and hence dμ = μ̇ dt,
where the density μ̇ is an integrable function. Then the same is true for the
measure dp, and moreover, the densities μ̇ and ṗ are measurable and essentially
bounded functions. This implies that the adjoint equation can be written in the
form

ṗ(t) = p(t)w′(y(t))) + β + μ̇(t).

This fact considerably simplifies the analysis of the maximum principle, see [7].

4 Extremals of Problem A

It was shown in [7] that there are only five possible cases for the adjoint variable
p(·), defining five types of extremals in Problem A (depending on initial and
final conditions for x(·) and y(·)):

(A) p(t) > 0 for all t ∈ (0, T ). In this case

u(t) = b a.e. in [0, T ].

This corresponds to acceleration on the whole segment [0, T ].
(B) p(t) < 0 for all t ∈ (0, T ). In this case

u(t) = a a.e. in [0, T ].

This corresponds to deceleration on the whole segment [0, T ].
(C) There is a point t1 ∈ (0, T ) such that p(t) > 0 for all t ∈ (0, t1) and p(t) < 0

for all t ∈ (t1, T ). In this case

u(t) = b a.e. in (0, t1) and u(t) = a a.e. in (t1, T ).

This corresponds to “acceleration – deceleration” mode with one switching
at the point t1 ∈ (0, T ).
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(D) Main case: there are two points t1, t2 ∈ (0, T ), t1 < t2, such that p(t) > 0
for all t ∈ (0, t1), p(t) = 0 for all t ∈ [t1, t2], and p(t) < 0 for all t ∈ (t2, T ).
In this case

u(t) = b a.e. in (0, t1)
u(t) = a a.e. in (t2, T ),

u(t) = w(V ) a.e. in (t1, t2), y(t) = V for all t ∈ [t1, t2].

This corresponds to “acceleration – singular – deceleration” mode with two
switchings at the points t1, t2 ∈ (0, T ). Moreover, the domain [t1, t2] of the
singular arc, where p(t) = 0, coincide with the domain of the boundary arc,
where y(t) = V (see Fig. 1).

(E) There is a point t1 ∈ (0, T ) such that p(t) < 0 for all t ∈ (0, t1), p(t1) = 0,
and p(t) > 0 for all t ∈ (t1, T ). In this case

u(t) = a a.e. in (0, t1) and u(t) = b a.e. in (t1, T ).

Moreover, y(t1) = 0.
This corresponds to “deceleration – acceleration” mode with one switching
at the point t1 ∈ (0, T ) (see Fig. 2).
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Fig. 1. Extremal D of Problem A

The decomposition in cases (A)–(E) is complete. In [7], it was shown that
in case (E) the extremal (x(·), y(·), u(·), T ) does not satisfy the second-order
necessary conditions for a strong minimum, obtained by Osmolovskii in [6],
and hence this extremal is not a strong local minimum in Problem A. Con-
sequently, for each collection a0, b0, aT , bT of initial and final values of x and y,
we must choose the optimal solution among extremals corresponding to the cases
(A)–(D).
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Example 1. The following numerical example belongs to H. Maurer. We choose
the following data:

w(y) = 0.1 y2, x(0) = y(0) = 0, x(T ) = 10, y(T ) = 0, a = −1, b = 1.

Omitting the state y(t) ≤ V we see that the optimal control is bang-bang switch-
ing from u(t) = 1 to u(t) = −1 at t1 = 4.2507. The minimal terminal time is
T = 6.51. We find max y(t) = 2.7597.

Hence, let us choose the state constraint y(t) ≤ V = 1.5. We get the numerical
results

T = 8.171755, p1 = 2/3, p2(0) = 1,

and the boundary arc in [1.631, 6.771].

5 Energy Optimal Control Problem

Now we assume that the time interval [0, T ] is fixed. On this interval, we con-
sider the same control system (1)–(3) with boundary conditions (4) and state
constraint (5):

ẋ(t) = y(t) a.e. in [0, T ],
ẏ(t) = −w(y(t)) + u(t) a.e. in [0, T ],

u(t) ∈ [a, b] a.e. in [0, T ],
x(0) = x0, y(0) = y0, x(T ) = xT , y(T ) = yT ,

y(t) ≤ V for all t ∈ [0, T ],

where again xT > x0 and Assumptions 1–3 are fulfilled.
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Set S = xT − x0. Then S is a specified route, which can be calculated as
∫ T

0

y(t) dt = S.

The energy consumption on the interval [0, T ] is equal to the integral

J =
∫ T

0

y(t)(u+(t) − εu−(t)) dt,

where u+ = max{u, 0}, u− = max{−u, 0}, and 0 ≤ ε < 1 is the recuperation
coefficient, i.e. the portion of energy returned to the system during deceleration;
the value ε = 0 corresponds to the case when the energy does not return. Let
us explain this formula. If u(t) ≥ 0 on some interval [t1, t2], i.e., there is no
deceleration on this interval, then∫ t2

t1

y(t)(u+(t) − εu−(t)) dt

=
∫ t2

t1

y(t)u(t) dt =
∫ t2

t1

y(t)ẏ(t) dt =
1
2
(y(t2)2 − y(t1)2).

As is known, this difference is the increment of the kinetic energy of the point of
mass m = 1 on the interval [t1, t2]. If u(t) ≤ 0 on some interval [t1, t2], i.e., there
is no acceleration on this interval, then u+(t) = 0, u−(t) = −u(t) on [t1, t2] and

∫ t2

t1

y(t)(u+(t) − εu−(t)) dt = ε

∫ t2

t1

y(t)u(t) dt =
ε

2
(y(t2)2 − y(t1)2).

The modulus of this value is the portion of kinetic energy returning to the system
on the interval [t1, t2].

It is obvious, that the variable x may be removed. Indeed, if we know the
pair (y(·), u(·)) such that

∫ T

0
y(t) dt = S, then the function x(t) = x0+

∫ t

0
x(τ) dτ

satisfies x(0) = x0, x(T ) = xT , ẋ = y.
Moreover, without loss of generality, we can take a = −1 (passing, if neces-

sary, to the values of the control in different conventional units).
Thus we come to the problem:

minimize J =
∫ T

0

y(t)(u+(t) − εu−(t)) dt, (28)

subject to

ẏ(t) = −w(y(t)) + u(t), u(t) ∈ [−1, b] a.e. in [0, T ], (29)

y(0) = y0, y(T ) = yT ,

∫ T

0

y(t) dt = S, (30)

y(t) ≤ V for all t ∈ [0, T ]. (31)

For brevity, problem (28)–(31) will be called Problem B. Note that the optimal
solution in this problem exists, see [2], and then it contains among extremals of
this problem, satisfying the maximum principle.
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6 The Dubovitskii-Milyutin Maximum Principle for
Energy Optimal Control Problem

6.1 Maximum Principle for a General Problem of the Type B

Again, for convenience of the reader, we first formulate the Dubovitskii-Milyutin
maximum principle, see [3] or [5], obtained for a class of problems, containing
Problem B. Consider the following optimal control problem on a fixed time
interval [0, T ]:

minimize J(y, u) :=
∫ T

0

F (y(t), u(t)) dt (32)

subject to

ẏ(t) = f(y(t), u(t)), u(t) ∈ U, for a.a. t ∈ [0, T ], (33)

y(0) = y0, y(T ) = yT , (34)
∫ T

0

G(y(t), u(t)) dt = S, (35)

ϕ(x(t)) ≤ 0 for all t ∈ [0, T ]. (36)

Here the state variable y : [0, T ] → IRn is a Lipschitz continuous function,
the control variable u : [0, T ] → IRm is a measurable and essentially bounded
function, the mappings f : IRn+m �→ IRn, F : IRn+m �→ IR, G : IRn+m �→ IR,
ϕ : IRn → IR are assumed to be continuous together with their partial derivatives
fy, Fy, Gy, and ϕy; the vectors y0, yT ∈ IRn and the real S ∈ IR are fixed, and
U ⊂ IRn is an arbitrary set.

A pair of functions (y(·), u(·)) is called the process of the problem. A process
(y(·), u(·)) is called admissible if it satisfies all constraints of the problem. An
admissible process (ŷ(·), û(·)) is called a strong local minimum if there is an ε > 0
such that J(y, u) ≥ J(ŷ, û) for all admissible processes satisfying |y(t)− ŷ(t)| < ε
for all t ∈ [0, T ].

In order to formulate necessary conditions for a strong local minimum for a
process (ŷ(·), û(·)), we introduce the Pontryagin function

H(y, u, p, α, β) = p f(y, u) − α F (y, u) − β G(y, u), (37)

where p is a row vector of the dimension n, and α and β are real numbers.
We say that a process (ŷ(·), û(·)) satisfies the conditions of the Dubovitskii-

Milyutin maximum principle if there are real numbers α, β, left-continuous func-
tions of bounded variation p : [0, T ] → IRn and μ : [0, T ] → IR, defining measures
dp and dμ, respectively, such that

α ≥ 0, dμ ≥ 0, ϕ(ŷ(·)) dμ = 0, (38)

α + |β| + Var(p) +
∫
[0,T ]

dμ > 0, (39)
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− dp = Hy(ŷ(·), û(·), p(·)) dt − ϕ ′(y(·)) dμ, (40)

max
u∈U

H(ŷ(t), u, p(t)) = H(ŷ(t), û(t), p(t)) for a.a. t ∈ [0, T ], (41)

H(ŷ(t), û(t), p(t)) = const for a.a. t ∈ [0, T ]. (42)

Here, inequality (39) is called the nontriviality condition, (40) is the adjoint
equation, (41) is the maximum condition for the Pontryagin function, and (42)
is the condition of the constancy of the Hamiltonian.

Theorem 2. If a process (ŷ(·), û(·)) is a strong local minimum in problem
(32)–(36), then it satisfies conditions of the Dubovitskii-Milyutin maximum
principle.

6.2 Maximum Principle for Problem B

For Problem B we have:

m = n = 1, U = [−1, b], f = −w(y) + u,

F = y(u+ − εu−), G = y, ϕ = y − V,

and obviously, all assumptions of problem (32)–(36) are fulfilled. According to
(37), the Pontryagin function for Problem B has the form:

H = p(−w(y) + u) − αy(u+ − εu−) − βy. (43)

Let a pair (y(·), u(·)) be a strong minimum in Problem B. It is natural to assume
that y(t) ≥ 0 for all t ∈ [0, T ], i.e. there is no movement in the reverse direction.

The maximum principle for problem B at the point (y(·), u(·)) consists in
the following: there exist real numbers α ≥ 0, β and left-continuous functions of
bounded variation p : [0, T ] → IR and μ : [0, T ] → IR such that

α + |β| + Var(p) +
∫
[0,T ]

dμ > 0, (44)

dp = (p(·)w′(y(·)) + α(u+(·) − εu−(·)) + β) dt + dμ a.e. in [0, T ], (45)
max

u∈[−1,b]
(p(t)u − αy(t)(u+ − εu−))

= p(t)u(t) − αy(t)(u+(t) − εu−(t)) a.e. in [0, T ], (46)
p(t)(−w(y(t)) + u(t)) − αy(t)(u+(t) − εu−(t)) − βy(t)

= const a.e. in [0, T ]. (47)

If the cost multiplier α is equal to zero (the degenerate case), then, as is easily
seen, we obtain the same extremals (y, u) as in the time optimal control problem -
Problem A. Therefore, consider the case α > 0, and then we can put α = 1.
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It was proved in [2] that (due to the fact that the state constraint has the
order one) the measure dμ is absolutely continuous, and hence dμ = μ̇ dt, where
the density μ̇ is an integrable function. Then the same is true for the measure
dp, and moreover, the densities μ̇ and ṗ are measurable and essentially bounded
functions. This implies that the adjoint equations (45) with α = 1 can be written
in the form

ṗ(t) = p(t)w′(y(t)) + (u+(t) − εu−(t)) + β + μ̇,

and the absolute continuity of the measures considerably simplifies the analysis
of the maximum principle, see [2].

It easily follows from the maximum condition (46) that

if p(t) < εy(t), then u(t) = −1, (48)
if p(t) = εy(t), then u(t) ∈ [−1, 0], (49)
if εy(t) < p(t) < y(t), then u(t) = 0, (50)
if p(t) = y(t), then u(t) ∈ [0, b], (51)
if p(t) > y(t), then u(t) = b. (52)

Let us show this. Indeed, for any t ∈ [0, T ], we have to maximize the function

h(t, u) := p(t)u − y(t)(u+ − εu−), u ∈ [−1, 0].

Observe that
u ≥ 0 ⇒ h(t, u) = (p(t) − y(t))u, (53)

u ≤ 0 ⇒ h(t, u) = (p(t) − εy(t))u. (54)

(1) Suppose that p(t) < εy(t). Then p(t) < y(t), since y(t) ≥ 0, 0 < ε < 1. If
u ≥ 0, then by (53), h(t, u) ≤ 0. If u < 0, then by (54), h(t, u) > 0, and the
maximum is attained for u = −1.

(2) Suppose that p(t) = εy(t). Then p(t) ≤ y(t). If u > 0, then by (53), h(t, u) ≤
0. If u ≤ 0, then by (54), h(t, u) = 0. Hence every u ∈ [−1, 0] is a point of
maximum of h(t, u).

Note that conditions (49) and (51) define singular arcs, while conditions (48),
(50), and (52) correspond to braking, overshoot, and acceleration, respectively.
Further analysis of the case α > 0 see in [2].

7 Extremals of Problem B

In the non-degenerate case we have the following types of extremals (see [2]),
which correspond to certain types of control u(t). Below we will write u =
(u1, . . . , uk) if for some division 0 < t1 < . . . < tk < T of the interval (0, T ) into
intervals (ti−1, ti), i = 1, . . . , k + 1 with t0 = 0 and tk+1 = T we have u(t) = ui

a.e. in (ti−1, ti), i = 1, . . . , k + 1.
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Case A (main): u = (b, w(y∗), 0,−1), which corresponds to acceleration u(t) = b
in the interval (0, t1), movement with constant velocity y(t) = y∗ ≤ V
in the interval (t1, t2), overshoot u(t) = 0 in the interval (t2, t3), and
deceleration (braking) u(t) = −1 in the interval (t3, T ), or briefly:
acceleration → constant velocity y = y∗ ≤ V → overshoot → braking
(see Fig. 3). In this case p(t) > y(t) in the interval (0, t1), p(t) = y(t)
(singular arc) in the interval (t1, t2), εy(t) < p(t) < y(t) in the interval
(t2, t3), and p(t) < εy(t) in the interval (t3, T ). At the point t3 we have
p(t3) = εy(t3).
When t1 = t2, i.e. when p(t) = y(t) only in one point t1, then the
control has the type u = (b, 0,−1), that means acceleration, overshoot,
and braking.
Also from the Case A let us separate an important

Case AV: u = (b, w(V ), 0,−1), i.e.
acceleration → constant maximal velocity y = V → overshoot →
braking.
The remaining cases, depending on the initial and final conditions for x
and y, correspond to the following types of control.

Case B: u = (b, w(y∗), 0), i.e.
acceleration → constant velocity y = y∗ ≤ V → overshoot.

Case C: u = (b, w(y∗), b), i.e.
acceleration → constant velocity y = y∗ < V → acceleration.

Case D: u = (0, w(y∗), 0,−1), i.e.
overshoot → constant velocity y = y∗ < V → overshoot → braking.
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Case E: u = (0, w(y∗), 0), i.e.
overshoot → constant velocity y = y∗ < V → overshoot.

Case F: u = (0, w(y∗), b), i.e.
overshoot → constant velocity y = y∗ < V → acceleration.

Case G: u = (−1, 0, w(y∗), 0,−1), i.e.
braking → overshoot → constant velocity y = y∗ < V → overshoot →
braking.

Case H: u = (−1, 0, w(y∗), 0), i.e.
braking → overshoot → constant velocity y = y∗ < V → overshoot.

Case I: u = (−1, 0, w(y∗), b), i.e.
braking → overshoot → constant velocity y = y∗ < V → acceleration.
If t2 = t3, from Case I we separate the following

Case J: u = (−1, 0, b), i.e.
braking → overshoot → acceleration.

Case K: u = (−1, 0,−1), i.e.
braking → overshoot → braking.

The remaining trajectories

u ≡ b, u ≡ 0, u ≡ −1, u = (0,−1), u = (−1, 0)

are special cases of the types given above; moreover, they are in some sense
degenerate.

Thus all the trajectories which satisfy the MP with α > 0 have one of the
types A-K, and the optimal trajectory, for given boundary values for x and y,
belongs to one of these types.

8 Conclusions

This paper presents all possible types of extremals for two optimal control prob-
lems: minimization of time and minimization of energy for a material point,
controlled by a limited force, moving along a straight line in the presence of fric-
tion and under limitation on the velocity. An optimal solution exists in each of
these problems, therefore it contains among extremals. One type of extremals in
the time optimal control problem does not satisfy second order necessary opti-
mality conditions and therefore cannot be optimal. All extremals of the time
optimal control problem correspond to extremals of the energy optimal control
problem with a cost multiplier equal to zero. A detailed study and description of
the extremals of these problems, based on the Dubovitskii-Miltyutin maximum
principle for problems with state constraints, can be found in [7] and [2].
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