
Chapter 9
Argument-Based Plan Explanation

Nir Oren, Kees van Deemter, and Wamberto W. Vasconcelos

Abstract We describe a tool for providing explanation of plans to non-technical
users, built on formal argumentation and dialogue theory, and supported by natural
language generation and visualisation technologies. We describe how arguments
can be generated from domain rules, and how justified arguments can be identified
through dialogue, allowing the system to use such a dialogue to explain a plan.
We provide information about our prototype system implementation, discussing its
current limitations, and identifying potential avenues for future research.

1 Introduction

Automated planners have, together with other technologies, enabled autonomous
systems to generate and then execute plans in pursuit of a set of goals with little
or no human intervention. While such plans are often better than those a human
planner can create, there is a reliance on the correct specifying the initial and goal
states, as well as the effects of actions, making such plans brittle in the presence of
exceptional (and unexpected) situations.

There is, therefore, a clear need to be able to verify or validate the correctness of
the plan specification with regards to the current environmental state. Furthermore,
autonomous systems do not operate in isolation, but often form part of a human-
agent team. In such cases, joint plans dictate both human and autonomous system
actions, and mechanisms are required to ensure that humans execute their portion
of the plan correctly. If the human actors trust the correctness of a plan, they are

N. Oren (�) · W. W. Vasconcelos
Computing Science, University of Aberdeen, Aberdeen, UK
e-mail: n.oren@abdn.ac.uk; w.w.vasconcelos@abdn.ac.uk

K. van Deemter
Information & Computing Sciences, University of Utrecht, Utrecht, The Netherlands
e-mail: c.j.vandeemter@uu.nl

© Springer Nature Switzerland AG 2020
M. Vallati, D. Kitchin (eds.), Knowledge Engineering Tools and Techniques
for AI Planning, https://doi.org/10.1007/978-3-030-38561-3_9

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38561-3_9&domain=pdf
mailto:n.oren@abdn.ac.uk
mailto:w.w.vasconcelos@abdn.ac.uk
mailto:c.j.vandeemter@uu.nl
https://doi.org/10.1007/978-3-030-38561-3_9


174 N. Oren et al.

more likely to follow it. One way to engender such trust, which also addresses the
validation and verification problem, is to provide an explanation of the generated
plan.

We argue that plan explanation can serve to improve human trust in a plan. Such
plan explanation can take on several forms. Visual plan explanation [25] presents the
user with a graphical representation of a plan (e.g., with nodes representing actions,
edges providing temporal links between actions, and paths representing different
plans), and allows for different filters to be applied in order to mitigate cognitive
overload. We briefly discuss one instantiation of such techniques in Sect. 4.1.

The second approach for plan explanation that we consider here involves a textual
presentation of the plan in natural language, which is created through interaction
with the user. This dialogue based approach allows a user to ask questions about the
plan or about alternative plans, and understand the reasons why specific planning
steps were selected. By allowing users to guide the dialogue, the information most
relevant to them can be presented, reducing the time needed for them to understand
the selected plan, and militating against information overload. An appropriate
choice of dialogue will also allow a user to provide new information to the system,
allowing re-planning to take place in a natural manner. Our focus in this paper
is on how argument and dialogue can be employed to provide plan explanation.
This second approach builds on argumentation and formal dialogue theory to
select what information to convey. The information is then presented using natural
language through the application of Natural Language Generation (NLG), the area
of Language Technology where algorithms are developed that can automatically
convert “data” into text [11, 23].

The remainder of the chapter is structured as follows. In the next section
we provide a brief overview of formal argumentation and dialogue theory, a
branch of knowledge representation on which our dialogue based approach is built.
Following this, we describe some proof dialogues which can be applied to plan
explanation, before describing a plan explanation application we created as part of
the “Scrutable Autonomous Systems” project.1 In Sect. 5 we discuss related work,
before identifying current and future avenues of research in Sect. 6, and concluding.

2 Argumentation and Dialogue

The process of explanation can be viewed as the provision of a justification for some
conclusion, or equivalently, as advancing some set of arguments which justify the
conclusion. Research in formal argumentation theory has described the nature which
such justification can take, and we build our textual explanations on this theory.
We therefore begin by providing a high-level overview of argumentation, which
underpins our approach to plan explanation.

1Funded by the Engineering and Physical Sciences Research Council (EPSRC, UK), Grant ref.
EP/J012084/1, 2012–2015.



9 Argument-Based Plan Explanation 175

2.1 Abstract Argumentation

Dung’s seminal 1995 paper [9] described how, given a set of arguments and attacks
between them, one could identify which arguments remain justified. Dung did not
consider how arguments were formed, and his approach therefore treats arguments
as atomic entities which are part of an abstract argumentation framework.

Definition 1 (Argumentation Framework [9]) An argumentation framework is a
pair (A,D) where A is a set of arguments, and D : A×A is a binary defeat relation
over arguments.

An abstract argumentation framework can be represented visually as a graph, with
nodes denoting arguments, and edges denoting defeats between them.

An extension is a subset of arguments from within A that is in some sense
justified. Perhaps the simplest requirement for a set of arguments to be justified
is that they do not contradict, or conflict with each other, as modelled via the defeat
relation.

Definition 2 (Conflict Free) Given an argumentation framework (A,D), a set of
arguments A ⊆ A is conflict free if there is no a, b ∈ A such that (a, b) ∈ D.

A slightly stronger criteria for an argument to be justified is that no defeat against
it should succeed. For this to occur, the argument should either not be defeated, or
should be defended from the defeat by some other arguments.

Definition 3 (Defence and Admissibility) Given an argumentation framework
(A,D), an argument a ∈ A is defended by a set of arguments S ⊆ A if, for any
defeat (b, a) ∈ D, it is the case that there is a s ∈ S such that (s, b) ∈ D. A set of
arguments S is then said to be admissible if it is conflict free and if each argument
in S is defended by S.

Building on the notion of admissible arguments, we may define extensions, which
identify discrete groups of arguments that can be considered justified together.

Definition 4 (Extensions) Given an argumentation framework (A,D), a set of
arguments S ⊆ A is a

– complete extension if and only if it is admissible, and every argument which it
defends is within S.

– preferred extension if and only if it is a maximal (with respect to set inclusion)
complete extension.

– grounded extension if and only if it is the minimal (with respect to set inclusion)
complete extension.

– stable extension if it is conflict free and defeats any argument not within it.

While other extensions have been defined (see [2]) for details, these four extensions
capture many of the intuitions regarding what it means for a set of arguments to be
justified.



176 N. Oren et al.

It should be noted that for a given argumentation framework, there will be only
a single unique grounded extension. However, multiple complete and preferred
extensions may exist, as can zero or more stable extensions. An argument is said
to be sceptically accepted under a semantics X if it appears in all X extensions; it is
credulously preferred if it appears in at least one, but not all such extensions.

2.2 Labellings

Labellings [1] provide another approach to computing extensions. A labelling L :
A → {IN, OUT, UNDEC} is a total function mapping each argument to a single
label. Informally, IN denotes that an argument is justified; OUT that it is not, and
UNDEC that its status is uncertain.

Wu et al. [28] among others demonstrated an equivalence between such
labellings and different argumentation semantics. For example, the following
constraints are those required for the arguments labelled IN to be equivalent to
those within a complete extension:

– An argument is labelled IN if and only if all its defeaters are labelled OUT.
– An argument is labelled OUT if and only if at least one of its defeaters is labelled

IN.
– It is labelled UNDEC otherwise.

Maximising the number of UNDEC arguments will result in a labelling which is
equivalent to the grounded semantics while minimising these arguments will yield a
preferred extension. While some argue that labellings are more intuitive (especially
to non-technical audiences) than the standard argumentation semantics, the question
of how a legal labelling can be identified still remains. Several algorithms for
identifying legal labellings have been proposed [17] whose complexity mirrors the
complexity of computing the relevant argumentation semantics.

Proof dialogues, which we discuss in Sect. 3 next, are another technique for
computing an argumentation semantics. As their name implies, such proof dialogues
seek to mirror some form of discussion, building up the elements of an extension
as the dialogue progresses. Before considering proof dialogues, we consider how
arguments are generated.

2.3 From Knowledge to Arguments

While abstract argumentation allows us to identify which arguments are justified,
we must also consider how arguments are generated. In this section we introduce
a simple structured argumentation framework which allows for the construction
of arguments from a knowledge base. The system we consider here is a slight



9 Argument-Based Plan Explanation 177

simplification of ASPIC− [4] which in itself is a variant of ASPIC+ which includes
several simplifications and enables unrestricted rebut, as explained below.

The knowledge base of ASPIC− consists of a set of strict and defeasible rules.
The former encode standard modus ponens, while the latter represent rules whose
conclusions hold by default. We write P → c where P is a set of literals and c is
a literal to denote a strict rule; P ⇒ c encodes a defeasible rule. In both cases, P

are the rule’s premises, and c is the rule’s conclusion. We also assume a preference
ordering ≺ over defeasible rules, and that—given the standard negation operator
¬—the set of strict rules is closed under contraposition. In other words, given a
strict rule a → b in the knowledge base, the rule ¬b → ¬a must also be present.

Arguments are constructed by nesting rules. An argument is made up of a set of
sub-arguments and a single top rule. We can formalise this as follows.

Definition 5 Given a set of rules KB and a set of arguments S, we can construct
an argument A = 〈tr, sa〉 where tr ∈ KB is a rule and sa ⊆ S is a set of
arguments such that if tr is of the form P → c or P ⇒ c, then for every
p ∈ P there is an argument ap ∈ sa whose top rule has conclusion p, and
sa = ⋃{ap} ⋃

sub-arguments of ap.

An argument is said to be strict if its top rule is strict, and all of its sub-arguments
are strict. The final conclusion of an argument is the conclusion of its top rule, while
an argument’s conclusions consist of its final conclusion and the final conclusion of
all its sub-arguments.

An argument (A1) for a simple strict or defeasible fact can be introduced through
a rule with no premises, e.g., A1 :→ rw1. If a second rule R2 : rw1 ⇒ rf

exists, then a second argument A2 : A1 ⇒ rf can be obtained. The top rule of this
latter argument is the R2, while its sub-argument is A1. We illustrate the argument
generation process with a running example.

Example 1 Consider a UAV which has two choices regarding where to land, namely
runway 1 (rw1), or runway 2 (rw2). While it believes it has sufficient fuel to reach
both runways, rw1 is further, meaning it will have to utilise its reserve fuel. However,
given the runway length and weight of surveillance equipment it is carrying, landing
at rw2 is also considered dangerous. The UAV is programmed to prefer dipping
into its fuel reserves over landing on a short runway. This can formally be encoded
through the set of rules shown in Table 9.1. In turn, these rules result in the
arguments shown in Table 9.2.

As in abstract argumentation, arguments interact with each other via attacks.
While ASPIC− considers undercutting attacks (where one rule makes another
inapplicable) as well as rebutting attacks (where the conclusions of a rule are in
conflict with another rule’s premises or conclusions), in this chapter we consider
only the latter type of attack.

Definition 6 Given two arguments A and B, argument A attacks B (via rebut) if
the conclusion of A’s top rule is either



178 N. Oren et al.

Table 9.1 Rules for the UAV
example

Rule Description

R1 ⇒ ¬ow (By default) we are not overweight

R2 ⇒ ¬rf (By default) we are not using
reserve fuel

R3 ⇒ rw1 (By default) we will land at rw1

R4 ⇒ rw2 (By default) we will land at rw2

R5 rw1 → rf Landing at rw1 will use reserve fuel

R6 rw2 → ow Landing at rw2 will cause us to be
overweight

Table 9.2 Arguments
obtained from the rules of
Table 9.1

A0 A13 → ¬rw1 A1 A7 → ¬rw2

A2 A12 → ow A3 A11 → rw1

A4 A3 → rf A5 A13 → ow

A6 ⇒ ¬rf A7 ⇒ rw1

A8 ⇒ ¬ow A9 A6 → ¬rw1

A10 A7 → rf A11 A8 → ¬rw2

A12 A9 → rw2 A13 ⇒ rw2

Fig. 9.1 The attacks
obtained from the UAV
example

– the negation of the conclusion of B’s top rule; or
– the negation of the conclusion of B ′’s top rule where B ′ is a sub-argument of B.

Example 2 Definition 6 applied to the arguments in Table 9.2 results in the
argument graph shown in Fig. 9.1. This argument graph has multiple preferred
extensions, but no grounded extension.

Attacks between arguments reflect inter-argument inconsistencies, but do not
take preferences or priorities between rules into account. Attacks are transformed
into defeats when these priorities are considered. For an argument A, if we denote all
rules used within it (including the rules used within its sub-arguments) as Rules(A),
then such defeats are defined as follows



9 Argument-Based Plan Explanation 179

Fig. 9.2 The argument
framework obtained when
defeats are computed for the
UAV example

Definition 7 Argument A defeats an argument B if A attacks B for all rA ∈
Rules(A), rB ∈ Rules(B), it is the case that rA > rB .

In the above definition, it is assumed that a strict rule is preferred to all defeasible
rules within an argument.

This condition for defeat captures the weakest link principle, computing the
strength of an argument by considering its weakest rule. Furthermore, it complies
with the democratic ordering principle, requiring that a single rule within the
stronger argument be preferred over all rules within the weaker argument. A
discussion of other principles can be found in [18].

Example 3 Figure 9.2 illustrates the abstract argument framework obtained when
defeats are computed for the UAV example. The grounded extension for this argu-
ment framework is {A1, A3, A4, A7, A8, A10, A11}. One can therefore conclude
that the UAV should land on rw1 rather than rw2 while making use of reserve fuel
and not being overweight.

3 Proof Dialogues

While argumentation can be used to identify appropriate arguments which justify
why some plan should be executed, we have not yet considered how such arguments
should be presented to a user. In this section, we describe proof dialogues, which
provide a dialogical approach to justifying arguments. Such a dialogical approach
then naturally provides an explanation as to why an argument (and in turn a plan) is
justified.

Proof dialogues seek to determine the status of a single argument, i.e., whether
it does, or does not appear within an extension according to some semantics (or



180 N. Oren et al.

alternatively what its labelling is). In the remainder of this chapter, we refer to this
single argument as the focal argument. In the process of determining the status of
the focal argument, the status of other arguments may also become apparent.

Since our focus lies in explaining why a plan was executed, we do not care
about what could have been, or could be, but rather what was or is. Within
the Scrutable Autonomous Systems project, we therefore concentrated on single
extension semantics, namely the grounded and—to a lesser extent—sceptically
preferred semantics. Less attention was paid to the latter due to the computational
complexity involved in computing the status of arguments under this semantics
[2, 24].

In this section we revisit the proof dialogue described in [17] for the grounded
semantics, in order to illustrate how such dialogues operate. In the next section, we
then consider more advanced proof dialogues which (we argue) are better able to
provide explanation than this dialogue. We discuss this point further below.

Proof dialogues are usually represented as a discussion between two players, Pro,
who wishes to demonstrate that the focal argument appears within the extension
under the given semantics, and Con, who wishes to demonstrate otherwise.

For an argument to appear within a grounded extension, it must be defended
by other arguments within the extension, but cannot (directly or indirectly) defend
itself. This suggests the following structure for a proof dialogue where Pro and Con
alternate in advancing arguments.

Opening move: Pro introduces the focal argument.
Dialogue moves: If the length of the dialogue is odd (i.e., it is Con’s move)

then Con must introduce an argument that attacks the last argument introduced.
Otherwise, if the length of the dialogue is even (i.e., it is Pro’s move), then Pro
must introduce an argument that attacks the last introduced argument, but cannot
introduce an argument that they have already introduced. If a player cannot make
a move, then the dialogue terminates.

Dialogue termination: The last person to be able to make a move is the winner
of the dialogue.

It has been shown that if an argument is in the grounded extension, then there is a
sequence of arguments that Pro can advance (i.e., a strategy) to win the dialogue.

Perhaps the most significant disadvantage of the dialogue game described above
is that they do not describe how a winning strategy may be found. If such a dialogue
is used for explanation, and a non-winning strategy is used, than the explanation
generated will not be appropriate. We therefore describe an alternative dialogue
game for computing whether a focal argument is in the grounded extension, together
with an appropriate strategy. This dialogue game was originally introduced in [3],
and is referred to as the Grounded Discussion Game, abbreviated GDG.

Participants within the game can make four different moves, defined as fol-
lows.

– HTB(A) stating that “A has to be the case”. This move, made by Pro, claims that
A has to be labelled IN within the legal labelling.



9 Argument-Based Plan Explanation 181

– CB(B) stands for “B can be the case”. This move, made by Con, claims that B

does not necessarily have to be labelled OUT.
– CONCEDE(A) allows Con to agree that A has to be the case.
– RETRACT(B) allows Con to agree that B must be labelled OUT.

The game starts with the proponent making a HTB statement about the focal
argument. In response, Con utters one or more CB, CONCEDE, or RETRACT
statements. Pro makes a further HTB statement in response to a CB move. The
precise conditions for each move are as follows:

– HTB(A) is the first move. Alternatively, the previous move was CB(B), and A

attacks B.
– CB(A) is moved when A attacks the last HTB(B) move made by Pro; A has not

been retracted, and no CONCEDE or RETRACT move is applicable.
– CONCEDE(A) is moved if HTB(A) was moved previously, all attackers of A

have been retracted, and this move was not yet played.
– RETRACT(A) is moved if Con made a CB(A) move in the past which has not

yet been retracted, and A has an attacker B for which the move CONCEDE(B)
was played.

An additional condition is that HT B and CB moves cannot be repeated (to prevent
the dialogue going around in circles), and HTB and CB cannot be played for the
same argument.

Pro wins the game if Con concedes the focal argument while Con wins if they
make a CB move to which Pro cannot respond.

Caminada [3] demonstrates a strategy for this game which is sound and complete
for the grounded semantics. That is, Pro will win the game if and only if the focal
argument is in the grounded extension, and Con will win otherwise.

Example 4 Continuing our running example, a user might question whether the
UAV ends up using reserve fuel (i.e., whether A10 is in the grounded extension).
The dialogue could then proceed as illustrated in Table 9.3.

Comparing Table 9.3 with Fig. 9.2, the primary advantage of proof dialogues
over the standard labelling-based approaches becomes apparent. Proof dialogues
allow for the incremental presentation of arguments which are relevant to the user’s
interests, while ignoring arguments which the user accepts (by not having the user
query such arguments), or are not central to the explanation. By operating in this
way, proof dialogues mitigate against information overload and allow the user to
“drill down” to where the explanation is necessary.

The dialogue above illustrates one weakness of many argumentation based
explanation dialogues, namely that preferences are (normally) treated as meta
features which induce defeats between arguments. The dialogue can therefore
not explain these preferences directly. Techniques for overcoming this issue are
discussed in Sect. 5.



182 N. Oren et al.

Table 9.3 Sample dialogue for the UAV example

Pro HTB(A10) “The UAV uses reserve fuel as it
lands on rw1”

CB(A0) “We know that by default, we can
just land on rw2”

Pro HTB(A3) “But not being overweight means we
must land on runway 1”

Con CONCEDE(A3) “I accept that”

RETRACT(A0) “And that for that reason, we can’t
land on runway 2”

CB(A9) “But could it not be the case that no
reserve fuel is used as it doesn’t land
on rw1”?

CB(A6) “After all, by default, no reserve fuel
is used”

Pro HTB(A4) “But we know that the UAV is not
overweight, and therefore can’t land
on rw2”. Not landing on rw2 means
it lands on rw1, and therefore uses
reserve fuel”

Con CONCEDE(A4) “I accept that line of argument”

RETRACT(A9) “And retract what I said”

RETRACT(A6)

4 Putting it all Together: The SAsSy Demonstrator

Figure 9.3 shows a screenshot of the prototype plan explanation tool developed as
part of the Scrutable Autonomous Systems project. In this section, we provide a
brief overview of this tool, its strengths, and its limitations.

Underpinning the tool were plans expressed as YAML workflows.2 Such work-
flows contain choice points with regards to actions, and decisions as to which action
to pursue were made—by the system—through argument-based reasoning. More
specifically, a domain model made up of strict and defeasible rules was constructed.
From this model, arguments could be generated, and extensions computed. The
conclusions of arguments within the extension then identified which actions should
be selected when choices existed (c.f., the UAV running example).

As illustrated in the screenshot, the tool’s user interface consisted of three main
portions. At the top, a visual display of the plan was shown. A textual summary of
the plan (or portions of the plan) appears on the bottom left, while an area wherein
a user can interact with the system via dialogue appears on the bottom right.

2https://www.commonwl.org/user_guide/.

https://www.commonwl.org/user_guide/


9 Argument-Based Plan Explanation 183

Fig. 9.3 A screenshot from the plan explanation tool

4.1 Plan Visualisation

The plan visualisation window provides a simple view of the plan, showing the
ordering between tasks, actions which can be executed in parallel, and the like.

Actions within a plan are executed by different entities, and may affect various
resources. Different filtering options were provided to the user, allowing them—for
example—to highlight or hide only those actions which affect a specific resource.
In [26], the authors show that such highlighting techniques reduce the number of
errors and improve response times for users of the system when considering small
and medium sized plans. Surprisingly, however, while highlighting relevant portions
of the plan led to improved performance, the hiding of unimportant parts of the plan
did not lead to improved performance by the user. In addition, questions remain as
to whether these results carry through to larger plans than those investigated by [26].

4.2 Natural Language Generation

While plan visualisation using action labels may provide users with important
insight, natural language descriptions of these actions can sometimes be easier
for such users to understand. Such descriptions may be offered in isolation or—
as is often preferable—in addition to graphs, and this is where Natural Language
Generation (NLG) comes in.



184 N. Oren et al.

In some cases, NLG can be accomplished via a simple language realisation
toolkit such as SimpleNLG [12], or using template-based techniques as in [8].
This approach works well for the information in our running example (e.g., the
bottom left window in Fig. 9.3). As the plan is filtered, the summary changes to
reflect only the portions relevant to the user. Similarly, as the plan executes, the
natural language summary describes only the current action to be executed, omitting
irrelevant information.

Complicated tasks such as planning, however, pose difficult additional chal-
lenges, particularly when plans become large (i.e., containing many steps) or
structurally complex (e.g., with choices or parallel paths), in which cases NLG needs
to find suitable ways to summarise what would otherwise become an unwieldy list
of lists. In such cases, the NLG-generated text may start with a high-level summary
saying “This plan consist of a large number of actions, which need to be performed
in parallel,” before going into further detail.

Furthermore, the generator needs to avoid misunderstandings. For example,
the text ”But could it not be the case that no reserve fuel is used as it doesn’t
land on rw1“?” contains some syntactic ambiguities that might be misconstrued.
Misunderstandings are also known to arise when English expressions such as “if ..
then” are employed to express a logical construct such as the material implication
(i.e., the standard “arrow” of FOPL), and finding better alternatives automatically is
not always easy.

Finally, plans are often the result of automated theorem proving, where formulas
in First-Order Predicate Logic (FOPL), or more complicated logics, are manipulated
to find the solution for a planning problem. In these cases, the dialogue needs to
inform the user that some action a was chosen (or that some action b, which the
user may have suggested, is not feasible) because of some logic proposition p.
The problem is that, frequently, the system expresses p in a form that may seem
unwieldy to human users, for instance because of background knowledge that they
possess. (For example, p may say that a crane is at location loc1 and not at location
loc2, where the latter part is redundant because a crane can only be at one location
at a time.) Thus, NLG faces the challenge of having to “optimise” p before any
standard NLG techniques can be applied.

4.3 Dialogue Based Plan Explanation

The bottom right portion of the prototype allows users to interact with the system
through dialogue, asking why the system believes certain facts do, or do not hold.
If a query asks why some conclusion holds, the system initiates a proof dialogue
taking on the role of Pro, while if the user asks why some conclusion does not hold,
then the system takes on the role of Con. A simple domain specific language allows
the user to participate in the dialogue, and arguments are presented to the user as
natural language rather than logical formulae.



9 Argument-Based Plan Explanation 185

The dialogue language also allows the user to assert or delete facts within the
knowledge base, enabling them to update the system with new knowledge. If the
user changes the facts within the knowledge base, the system will determine if any
of its actions need to be changed, and will allow the dialogue to restart. The system
can change the user’s beliefs (by presenting them with justified arguments), and
allows the user to change the system’s beliefs (via assertions and deletions) through
the same natural dialogue based interface.

It should be noted that within the prototype, the grounded persuasion game of [5]
was used as the proof dialogue. However, this latter game is not sound, and—unlike
the proof dialogue described above—does not allow both participants to introduce
arguments, a feature which is undesirable in some instances [3].

5 Discussion and Related Work

This chapter described an argument-based system for explaining plans. The plan-
ning domain was encoded using YAML, and argumentation was used to select
actions where choices existed. Other researchers have described how classical
planning techniques can be recreated using argumentation. For example, [10]
provided an algorithm for performing partial order planning in defeasible logic
programming, while Pardo [20] and others [19] described how dialogue can be
used to perform multi-agent planning. Several researchers [14, 27] have examined
how BDI agent programs (which bear strong similarities to HTN planning) can be
explained via simple dialogues. The focus of this strand of work involves using
argument and dialogue to drive the planning process. The techniques described in
this paper can then be used to explain how the plan was generated, and why other
plans were not selected, by advancing arguments for the plan and demonstrating
attacks against other plans’ arguments.

The focus of this work was on dialogue games for the grounded semantics.
This semantics is sceptical, selecting arguments which—in some sense—must be
justified, and can be contrasted with the preferred semantics, which identify sets
of arguments that could be justified together. In the context of explaining planning,
selecting a sceptical semantics appears correct, as it is only possible to have selected
a single alternative for execution [21]. However, other sceptical semantics do exist,
such as the sceptical preferred semantics, which select those arguments lying in the
intersection of all preferred extensions. It has been argued that this latter semantic
is more natural for humans [22], and dialogue games for identifying the sceptical
preferred extension have been proposed [24]. One downside of this semantics is
however the computational complexity involved in computing it [2], which may
make it unfeasible for large domains.

Argumentation and dialogue appear to be natural techniques for explanation,
and is increasingly being used in the context of explainable AI research [13].
Psychologists have claimed that humans innately reason using argument [15],
while computer scientists have shown that formal argumentation agrees with



186 N. Oren et al.

human intuition [6, 22] in most cases. As future work, we intend to evaluate the
effectiveness of our approach to explaining plans through human experimentation.
In addition, we intend to overcome two of the current limitations of our approach,
namely the meta-logical nature of preferences, and the lack of temporal concepts in
our argumentation system.

One approach to addressing this first limitation could be to use an extended
argumentation system [16] which encodes preferences as arguments. Addressing
the second limitation may be possible through the use of timed argumentation
frameworks [7], which explicitly include temporal concepts. However, both these
systems have been described only in abstract terms, and it will therefore be
necessary to create a structured instantiation of them. Doing so will allow us to
provide more refined explanations about more aspects of the plans. Finally, we will
also consider how explanations can be provided for richer planning languages such
as PDDL.

6 Conclusions

In this chapter we described how plans can be explained through the use of a
dialogue game, where participants take turns to make utterances which are used to
establish whether some argument (and therefore its conclusions) is justified. To use
our technique, domain rules describing the plan must be transformed to arguments,
which we achieved through the use of the ASPIC− formalism. Finally, we described
how these plan visualisation and natural language generation, together with dialogue
based explanation, can be used to create a tool to explain plans to non-technical
users.

While our approach appears promising, a complete evaluation with users is
still required. In addition, it suffers from shortcomings with regards to explaining
preferences and temporal concepts, suggesting a clear path for future work.

Acknowledgements This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC, UK), grant ref. EP/J012084/1 (“Scrutable Autonomous Systems”).

References

1. P. Baroni, M. Caminada, and M. Giacomin. An introduction to argumentation semantics. The
Knowledge Engineering Review, 26(4):365–410, 2011.

2. P. Baroni and M. Giacomin. Semantics of Abstract Argument Systems, pages 25–44. Springer
US, Boston, MA, 2009.

3. M. Caminada. A discussion game for grounded semantics. In International Workshop on
Theory and Applications of Formal Argumentation, pages 59–73. Springer, 2015.

4. M. Caminada, S. Modgil, and N. Oren. Preferences and unrestricted rebut. In Proceedings of
the 2014 conference on Computational Models of Argument, pages 209–220, 2014.



9 Argument-Based Plan Explanation 187

5. M. Caminada and M. Podlaszewski. Grounded semantics as persuasion dialogue. In
Proceedings of the 4th International Conference on Computational Models of Argument
(COMMA 2012), volume 245, pages 478–485. IOS Press, 2012.

6. F. Cerutti, N. Tintarev, and N. Oren. Formal arguments, preferences and natural language
interfaces to humans: an empirical evaluation. In Proc. ECAI, pages 207–212, 2014.

7. M. L. Cobo, D. C. Martínez, and G. R. Simari. On admissibility in timed abstract
argumentation frameworks. In ECAI, volume 215, pages 1007–1008, 2010.

8. K. V. Deemter, M. Theune, and E. Krahmer. Real versus template-based natural language
generation: A false opposition? Computational Linguistics, 31(1):15–24, 2005.

9. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–357,
1995.

10. D. R. García, A. J. García, and G. R. Simari. Defeasible reasoning and partial order planning.
In Proceedings of the 5th International Conference on Foundations of Information and
Knowledge Systems, FoIKS’08, pages 311–328, Berlin, Heidelberg, 2008. Springer-Verlag.

11. A. Gatt and E. Krahmer. Survey of the state of the art in natural language generation: Core
tasks, applications and evaluation. Journal of Artificial Intelligence Research, 61:65–170,
2018.

12. A. Gatt and E. Reiter. SimpleNLG: A realisation engine for practical applications. In
Proceedings of the 12th European Workshop on Natural Language Generation (ENLG 2009),
pages 90–93, 2009.

13. D. Gunning, Explainable artificial intelligence (XAI). Defense Advanced Research Projects
Agency, DARPA/I20, (DARPA, 2017).

14. V. Koeman, L. A. Dennis, M. Webster, M. Fisher, and K. Hindriks. The “Why did you do that?”
Button: Answering Why-questions for end users of Robotic Systems. In Proceedings of the 7th
International Workshop in Engineering Multi-Agent Systems, Montreal, Canada, 2019.

15. H. Mercier and D. Sperber. The enigma of reason. Harvard University Press, 2017.
16. S. Modgil. Reasoning about preferences in argumentation frameworks. Artificial Intelligence,

173(9–10):901–934, 2009.
17. S. Modgil and M. Caminada. Proof Theories and Algorithms for Abstract Argumentation

Frameworks, chapter 6. Springer, 2009.
18. S. Modgil and H. Prakken. The ASPIC+ framework for structured argumentation: a tutorial.

Argument and Computation, 5(1):31–62, 2014.
19. S. Pajares and E. Onaindia. Temporal defeasible argumentation in multi-agent planning. In

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence -
Volume Three, IJCAI’11, pages 2834–2835. AAAI Press, 2011.

20. P. Pardo, S. Pajares, E. Onaindia, L. Godo, and P. Dellunde. Multiagent argumentation for
cooperative planning in DeLP-POP. In The 10th International Conference on Autonomous
Agents and Multiagent Systems-Volume 3, pages 971–978. International Foundation for
Autonomous Agents and Multiagent Systems, 2011.

21. H. Prakken. Combining sceptical epistemic reasoning with credulous practical reasoning.
COMMA, 144:311–322, 2006.

22. I. Rahwan, I. Madakkatel, M., J. Bonnefon, R. N. Awan, and S. Abdallah. Behavioral
experiments for assessing the abstract argumentation semantics of reinstatement. Cognitive
Science, 34(8):1483–1502, 2010.

23. E. Reiter and R. Dale. Building applied natural language generation systems. Natural
Language Engineering, 3(1):57–87, 1997.

24. Z. Shams and N. Oren. A two-phase dialogue game for skeptical preferred semantics. In
JELIA, volume 10021 of Lecture Notes in Computer Science, pages 570–576, 2016.

25. N. Tintarev, R. Kutlak, J. Masthoff, K. Van Deemter, N. Oren, and W. W. Vasconcelos.
Adaptive visualization of plans. In UMAP Workshops, 2014.

26. N. Tintarev and J. Masthoff. Effects of individual differences in working memory on plan
presentational choices. Frontiers in Psychology, 7:1793, 2016.



188 N. Oren et al.

27. M. Winikoff. Debugging agent programs with why? Questions. In Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems, pages 251–259. International
Foundation for Autonomous Agents and Multiagent Systems, 2017.

28. Y. Wu, M. Caminada, and M. Podlaszewski. A labelling-based justification status of arguments.
Studies in Logic, 3(4):12–29, 2010.


	9 Argument-Based Plan Explanation
	1 Introduction
	2 Argumentation and Dialogue
	2.1 Abstract Argumentation
	2.2 Labellings
	2.3 From Knowledge to Arguments

	3 Proof Dialogues
	4 Putting it all Together: The SAsSy Demonstrator
	4.1 Plan Visualisation
	4.2 Natural Language Generation
	4.3 Dialogue Based Plan Explanation

	5 Discussion and Related Work
	6 Conclusions
	References


