
Chapter 2
Automated Domain Model Learning
Tools for Planning

Rabia Jilani

Abstract Intelligent agents solving problems in the real world require domain
models containing widespread knowledge of the world. Domain models can be
encoded by human experts or automatically learned through the observation of some
existing plans (behaviours). Encoding a domain model manually from experience
and intuition is a very complex and time-consuming task, even for domain experts.
This chapter investigates various classical and state-of-the-art methods proposed
by the researchers to attain the ability of automatic learning of domain models
from training data. This concerns with the learning and representation of knowledge
about the operator schema, discrete or continuous resources, processes and events
involved in the planning domain model. The taxonomy and order of these methods
we followed are based on their standing and frequency of usage in the past research.
Our intended contribution in this chapter is to provide a broader perspective on
the range of techniques in the domain model learning area which underpin the
developmental decisions of the learning tools.

1 Introduction

Automated planning is one of the most prominent AI challenges. It is the process of
finding a procedural course of action through explicit deliberation process to reach
a pre-stated objective in the form of goals while optimizing overall performance.
Planning is a pivotal task that has to be performed by autonomous agents. The
planning community is uplifting planning systems from small problems to capture
more complex domains that closely reflect real life applications (e.g., planning space
missions, fire extinction management and operation of underwater vehicles)—a way
to satisfy the aims of autonomic systems.

R. Jilani (�)
School of Computing and Engineering, University of Huddersfield, Huddersfield, UK
e-mail: R.Jilani@hud.ac.uk

© Springer Nature Switzerland AG 2020
M. Vallati, D. Kitchin (eds.), Knowledge Engineering Tools and Techniques
for AI Planning, https://doi.org/10.1007/978-3-030-38561-3_2

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38561-3_2&domain=pdf
mailto:R.Jilani@hud.ac.uk
https://doi.org/10.1007/978-3-030-38561-3_2

22 R. Jilani

In order to perform automated reasoning, planning techniques require formal
specification of the application knowledge to be encoded in the form of domain
models. In the action-centred view of problem representation, a domain model
encodes the domain knowledge in the form of actions that can be executed together
with relevant action properties and features. A domain model typically includes the
action description, the objects involved in actions, a set of logical state space axioms
along with the rules of inference and heuristics to accurately define the operators’
description of some real-world domain. It includes both a dynamic and a static
object-type hierarchy, constant objects (if any) and the declaration of predicates and
functions (for hierarchical domains). In short, it is a declarative depiction of domain
world functionalities.

In a centralised approach, this domain model is represented as a knowledge
base and automated logical reasoning could be used to determine acts in plans.
To generate plans, planning engines search the action descriptions in the provided
domain model to achieve the goals. Figure 2.1 shows a typical view of plan
generation in AI planning. One of the key factors for the correctness of the
planner outcome is the quality of the domain knowledge that otherwise can prove
catastrophic.

In the complex domain scenarios, planners also use manually encoded or auto-
matically learned domain-specific control knowledge (in addition to domain model)
to guide planner search and cater to scalability issues. Most planners define control
knowledge separately from domain model to support different representations. This
chapter only focuses on the domain model learning aspect.

Synthesising domain models for planning from scratch by hand is time intense,
error-prone and challenging. Knowledge engineering for planning domain mod-
els using machine learning (ML) techniques is considered as a paramount for
empowering the autonomous learning systems with the capacity to fill implicit
human knowledge gaps and errors, requiring least human intervention in domain
model development. It not only involves acquisition of a new knowledge from
the environment but also the refinement of the already available knowledge of the
domain under consideration.

As a result of a planning process the successfully generated plans can be used as
the solutions to the desired problems in self-learning systems to enable autonomic
properties. The area of ML application to domain model learning systems has
received active research attention in recent years but did not make as much stride as
the learning of control knowledge.

Fig. 2.1 Automated planning
as an independent component

2 Automated Domain Model Learning Tools for Planning 23

1.1 Knowledge Representation for Knowledge Engineering
of Domain Models

Knowledge representation (KR) is to encoding human knowledge in the form of
symbols which can be processed by a computer to obtain intelligent behaviour.
Automated reasoning and KR stay in close association with each other as the core
aim of the explicit KR is to enable reasoning and inference process. To represent
complex problems, KR uses declarative programming for expressing the logic of
the computation and behavioural description as compared to describing the control
flow as in procedural programming.

In order to effectively engage in the intelligent behaviours, the key attribute
of the theories of autonomous agent relies on the agent’s internal representation
of intelligence. This must be an implicit representation of a domain model to
conduct reasoning process. From the point of view of knowledge engineering of
this intelligent behaviour, the question to ask is, what KR formalism an agent needs
to know to behave intelligently and which computational mechanisms are needed
for manipulation of its knowledge, i.e., description of notions, facts, and rules of the
world. The knowledge engineering of a domain model is the engineering of a set of
sentences/axioms. These sentences are expressed in some KR language which the
agent uses to do inference.

For automated reasoning, expressibility and practicability are generally the two
main considerations for the KR language of the domain. Riddle et al. [59] empir-
ically proved that a used representation mechanism makes an extensive difference
to the planner’s ability to solve a problem by exploring six different representations
of the blocks world domain. In Brachman and Levesque [7] the authors argue that
the expressive power of the representation language is directly proportional to the
computational complexity of reasoning with it. In other words, more expressive
language makes the reasoning process difficult. The authors demonstrated this by
analysing the frame language which later led to an extensive study of the argument
put forward by the author in order to search the optimal trade-off.

In automated planning, the key purpose of an explicit KR language for a domain
model formulation is for a planner to be able to reason with it and infer new
knowledge from it in the form of plans by predicting action outcomes to display
some rational behaviour in an explicit way. The essential part of a domain model in
the process of reasoning is the representation of the set of actions that a planner can
reason with and the elements that include dynamics of the environment that support
the specification of actions. It has long been recognised that there can be a variety
of encodings and exploitable languages for a domain model formulation. However,
the open question is which of these is the best? The choice of encoding language for
KR partially depends on the requirements of the planning application itself.

There is no one KR approach just like the reasoning approach that has combined
properties for all types and level of deliberation problems. Similarly, there is no
single highly specialized KR mechanism to cover a specialized area of learning
domain model.

24 R. Jilani

A well-chosen representation language should explicitly model every action
effect the system might confront. In addition to that, a domain modelling representa-
tion language should have some salient attributes. It should have supporting tools to
check its operation and have logically strong inference mechanism to carry out the
reasoning. It should be sufficiently expressive to explicitly model complex scenario
of the real world. Moreover, it should be customizable and structured to capture
every action effect the system might confront in operator definitions. In addition, it
should have clear syntax and semantics to support operational aspects of the model.

2 Domain Model Learning Techniques and Tools

Both knowledge acquisition and learning for AI planning systems are essential
to improve their effectiveness and to expand the application focus in practice.
Most of the literature on learning for AI planning is based upon classical planning
and concentrates on the learning of search control rules. For producing a domain
model, a general process includes the study of planning application requirements,
creating a model that explains the domain and testing it with suitable planning
engines. Domain models can be encoded by the human experts or automatically
learned through the observation of some existing plans (behaviours). Encoding a
domain model manually from experience and intuition is a very complex and time-
consuming task, even for domain experts.

Regarding the significance of automatic domain model learning system, the
question that arises is why do we need a learning mechanism to learn from data
when we can write a program to fulfil the purpose. The significance of learning
mechanism becomes apparent when the same program parameters do not fit the
new data or when the learning requirements or assumptions of the same data change
slightly. The same hard-coded program needs extensive changes to align with the
new requirements.

Machine learning is a broad area with a wide variety of sub-fields. It includes
various methods starting from sub-symbolic methods like neural networks to high-
level symbolic methods like inductive logic programming. Various approaches and
techniques have been used by the researchers for the domain model learning task.
Inductive learning is the most common technique to expedite learning solutions
that are used in the field of supervised learning. Another less common technique
outside the scope of supervised learning is the model-based reinforcement learning
algorithms that learn model parameters such as probabilities and rewards, but
no algorithm yet can produce states and models from observations and action
sequences.

For the sake of succinctness, this section describes the commonly used domain
model learning techniques in the literature. These techniques are complete in their
own capacity and differ from each other in multiple perspectives including the

2 Automated Domain Model Learning Tools for Planning 25

amount and nature of input required, the extent of learning that takes place in
the output, environmental characteristics these can work in, etc. Some of these
characteristics are discussed in Sect. 4.

2.1 Inductive Learning

Inductive methods produce general rules by searching statistical correlations and
consistencies in the large set of input training data. The main theory and method
behind supervised learning is the inductive learning (IL—Fig. 2.2). Inductive
learning can be defined as learning by inferring generalised rules from the training
data given in the form of input–output example pairs P(xi, yi). By the input–
output pairs, we mean the input samples or examples (xi) and the relevant output
observations or the external feedback to the learning system (yi = f(xi)). External
feedback or output observations are the function of the input samples. The input–
output example pairs generally establish the intended relation of input and output
values. In simple words, IL is also referred to as learning from examples for function
induction. The input–output example pairs can be generated by another system,
produced by an instructor or a human expert or could be the traces of expert’s
behaviour. These do not necessarily need to be numbers and can contain either
continuous or discrete values in the form of logical sentences. In the pairs, states
are represented by the set of features, i.e., by factored representation.

The main IL problem is to generalise the input-to-output mapping candidate
function or hypothesis (h) that satisfies input data so it can estimate the target
function f [85]. Hypothesis space H = (h1, h2, h3, . . . hn) is a set of all possible
approximations of target function that can exist. A further subset of hypothesis space
(H) which is consistent with the given input data is called version space. Extending
a hypothesis with every example or in other words generalising a hypothesis which
should be in close approximation with the target function f is not an easy task
especially when hypothesis space is complex.

A hypothesis (h) is tested for its consistency and correctness of generalised
results by using extensive example test set—a set distinct from the example training
set ET. Formally, using inductive learning algorithm IL, the problem is to find a
hypothesis h which is consistent with the set of example pairs P(xi, yi), such that:

Fig. 2.2 Traditional
programming vs. inductive
learning

Tradi�onal
Programming

Induc�ve
Learning

26 R. Jilani

IL Λ P (xi, yi) � h (Inductive Learning)

where yi = h(xi) for all P and � represents inductive inference. For h to generalise
and pass the consistency test, it needs to produce the results like the true target
function f by agreeing to the sufficiently large example test set. On getting multiple
consistent h in version space, the preference is always given to the simplest h that
requires the least speculation and agrees with the data (Ockham’s razor principle).

A good example of IL is a classification decision tree algorithm for building
prediction models to predict categories from the training dataset. The algorithm
has to find a most appropriate tree structure (h) which is consistent with the input
data, out of all the available trees with variable attributes in its hypothesis space
(H). A decision tree structures like a flow chart where the learning takes place
by labelling the variables at nodes and branches of the tree from the training
data. Models in which state variables represented in the form of trees can take
discrete values are called classification trees. Similarly, trees where state variables
can take continuous values are called regression trees. Inducing domain model and
its features such as action duration for temporal domains have been well-studied
using predictive modelling approaches of a relational decision and regression trees.
Inducing regression trees is itself a well-known method for building models for
numeric variables.

Artificial neural networks (ANN), reinforcement learning (RL), Bayesian learn-
ing (BL) and inductive logic programming (ILP) are some of the most common
inductive learning techniques. More common early contributions of these IL
techniques since their inception are to learn control knowledge to speed up the
classical planning process. An extensive five-dimensional survey of learning-in-
planning early work is provided in Zimmerman and Kambhampati [85].

From the domain learning perspective, each of the IL technique produces
different types of hypothesis and models based on its expressivity, e.g., BL is
used to learn models that allow probabilistic predictions while RL can learn in
dynamic and stochastic environmental conditions with no requirement of prior
knowledge of transition probabilities. More expressive representation of the learned
knowledge which is in close approximation to the target function requires more
training examples to narrow down the hypothesis space. Similarly, every technique
has its own strengths and weaknesses, e.g., decision trees, ANN and ILP are robust
to noisy inputs while RL learns optimal policies even from non-optimal input data.

A number of properties that need consideration for developing IL problem
include:

• The probability that the training is going to be successful in learning the model.
It mainly depends on the quality of training data and also on the inductive bias
(discussed ahead in KBIL). Noisy set of training data leads to poor inconsistent
models if not given alternate guidance.

• How much input training data should be provided for consistent h to converge?
According to computational learning theory, only a few algorithms exhibit this

2 Automated Domain Model Learning Tools for Planning 27

knowledge through the learning curve with the increase in input examples (PAC
learning algorithms).

• Criteria for selection of training data and what presentation medium should be
used to learn from available data, i.e., instructions, images, sensory information,
environmental perceptions, etc.

• What output examples need to be provided to learn the target function f and how
it affects the extent and quality of the learnt model in the outcome.

• Estimation of the overall complexity of hypothesis space and the complexity of
hypothesis in the space. Complex hypotheses are more susceptible to overfitting.

• What should be the acceptable approximation and estimation error between a
consistent hypothesis h and a target function f.

• What is the size and nature (deterministic or non-deterministic) of the hypothesis
space?

• Depending on the nature of the problem, which learning algorithm (e.g., induc-
tive logic programming, Bayesian learning, etc.) and approach to learning will
be used (online or batch).

• Approach to use for building hypothesis towards the target function f. It could
be directly computing the required information to learn the target function,
searching for hypothesis from the hypothesis space or the gradual incremental
construction of the hypothesis.

• Representation mechanism used to represent learned knowledge. This can
include support vector machines, decision trees, graphical models, Bayes net-
works, finite state machines, logic statements, etc.

• On what time scale learning occurs: eager learners are more common and
perform the task up front while lazy learners only learn when needed and are
rarely used in machine learning.

Some of the prominent issues about the IL that researchers are trying to answer
for over a decade include:

• What measures the good hypothesis space and the correctness of the hypothesis
h if the true function f is not known?

• What factors can help reach the trade-off between the complexity of finding
consistent h and the expressiveness of the hypothesis space? Can we even find h
in a complex hypothesis space?

• What features and factors build the confidence in the correctness of the output
model?

• How to find out computationally complex or intractable problems?

2.1.1 When to Use Inductive Learning

Inductive learning can be used to enhance any essential module or element of the
system. It can be used in a variety of situations, some of them include:

28 R. Jilani

1. When the underlying knowledge base or domain model fluctuates frequently and
the occurring changes are complex enough that cannot be handled by human
efforts every single time in changes, e.g., continuous domains like urban road
traffic management, stock market, etc.

2. Situations where the learning only happens with experience and it is not possible
to induce learning with a set of instructions, e.g., intelligent self-driving cars [53]
where the system requires enormous training data in the form of camera visuals
and corresponding steering movements to produce the general rule of driving.

3. Another condition arises when there is no human guidance available to create
a reliable domain model, the agent should be intelligent enough to induce
the domain model through learning. Building the knowledge base of planetary
rovers could be a good example where the lack of reliable, explicit and a priori
knowledge can be supported by inductive learning capability of the agent.

4. Last but not the least, situations, where each area of experimentation requires a
unique underlying domain model, e.g., all the benchmark domains in Interna-
tional Planning Competition (IPC), require unique domain models and relevant
problems to test the efficiency and effectiveness of planning systems.

The strength of the exploited learning approach or algorithm is the key factor to
regulate the extent of learning by the system, as it may get stuck in local minima or
not be able to capture patterns of the target knowledge within a reasonable time and
memory requirements [27]. For example, exploiting reinforcement learning method
to learn from a reward-based approach can learn better in a stochastic environment
as compared to the inductive learning (which is based on drawing from inference).
Similarly, learning for conformant or contingent planning task, the suitable learning
approach to adopt is by inference or by inductive generalization to find the best fit
for the observed facts. The concept of model-lite [30] planning views a planning
problem as an MPE (most plausible explanation) problem. These techniques search
for solution plans that are most plausible according to the current domain model,
specifically for situations where the first bottleneck is getting the domain model at
any level of completeness.

2.2 Knowledge-Based Inductive Learning (KBIL)

Humans learn knowledge with a sequence of experiences and also by reflection
on past experiences to facilitate current learning. The challenge for autonomous
learning agents is the lack of training examples to reflect on and build the hypothesis.
In many learning systems developed since the 1980s, the issue of lacking training
data has been covered by the notion of inductive bias (IB) [41]. Mitchell defines
inductive bias as the constraint on the hypothesis space (H) of a learning system in
addition to the requirement of consistency with the training examples. It is when a
learning system prefers one hypothesis over others in hypothesis space. Inductive
bias significantly assists the optimal convergence of target function particularly

2 Automated Domain Model Learning Tools for Planning 29

in case of scarce or incorrect training data. This works especially where the new
knowledge that needs learning happens with the same set of examples which learned
the knowledge earlier.

One kind of inductive bias is the use of background knowledge (BK) [5] of the
domain theory that explains the input training data. In other words, the agent should
already know something about the domain it is going to formally induce in the form
of accumulated information. Learners use this background knowledge to distinguish
useful features from training examples. Learning the background knowledge is itself
learning that an agent has to do and is known as a cumulative or incremental learning
process. The background knowledge in some cases can be acquired by the relevant
domain experts.

KBIL is one of the good examples of inductive learning (IL) which supports
the notion of cumulative learning (Fig. 2.3). To reduce the hypothesis space, KBIL
induces hypothesis (h) with the inductive bias in the form of background knowledge
(BK) and the training examples (ET), such that:

IL Λ BK Λ P (xi, yi) � h (KBIL)

where IL is the inductive learning algorithm. The resulting hypothesis h should
explain both the background knowledge and training examples. In KBIL, BK, h
and ET are represented as a set of clauses or as a logical program with predicates
(first-order literals) representing the attributes in them. New knowledge learnt for
the incremental construction of hypothesis is exploited to improve the background
domain knowledge as well. This process is referred to in the literature as the
constructive inductive learning [38].

In most of the domain model learning systems, the fundamental motivation
models have to solve is model-based planning tasks. One of the prominent inductive

Classifier

Hypothesis h(xi)

Training
Examples (ET)

Testing
Examples Input Samples

(xi, f(xi))

Inductive Learning
Component

Background
Knowledge (BK)

KBIL

Fig. 2.3 A knowledge-based inductive learning system structure

30 R. Jilani

learning systems is the LOCM system [12, 13]. LOCM uses an object-centred
representation and performs automated induction of the dynamic aspects of a
domain model on FSM representation of object sorts. Each object sort contains
objects of the same type that behave in the same way. LOCM requires only a set of
fully observable plan traces as the training data with no requirement of background
knowledge about the domain. The main assumption which the LOCM relies on is
that all objects in the domain go through transitions. This assumption is too strong
for some scenarios especially when the domain contains static aspects too (as static
constraints are not reflected in the plan traces). Based on this, a drawback of the
LOCM process is that it can only induce a domain model which represents the
dynamic aspects of objects and not the static aspects. This is problematic since most
domains require static predicates to both restrict the number of possible actions and
correctly encode real-world constraints.

This LOCM drawback is overcome by the ASCoL system [26], an inductive
system that exploits graph analysis method to automatically identifying static
relations, in order to enhance planning domain models. It uses the same set of input
as used by LOCM. LOP [21] addresses the same problem of missing static facts
in the learned domain model by using optimal goal-oriented plans. LOP compares
the optimal input plans with the optimal plans found by using the extended domain
model. If the latter is shorter, then some static relations are deemed to be missing.

LOCM2 [86] is an extension of LOCM with the provision of multiple param-
eterised FSMs to represent each object’s separate behavioural aspects. LOCM2
extends the coverage of domains and the captured domain semantics. NLOCM
[22] extends LOCM to generate fixed action cost numeric domains. It exploits
the constraint programming approach to add numeric weights to the states and
transitions of the FSMs produced by LOCM. The LOCM family of algorithms is
distinct in that it induces the fluents without any additional input support alongside
plan traces, i.e., a sequence of actions with no initial, intermediate and goal states
mentioned.

Some other inductive leaning systems include ARMS [72], SLAF [63], Opmaker
[58], Opmaker2 [36], RIMS [84] and LSO-NIO [48]. Zhuo et al. [78] provide two
extensions of their work ARMS [72], in the form of a new system LAMP which
learns domain models written in PDDL, or in other words in terms of quantifiers and
logical implications. The other extended system of ARMS learns domain models for
hierarchical task networks (HTN), called HTN-Learner. LAMMAS (learning action
models for multi-agent systems) [80] extends ARMS for a multi-agent environment
using the same underlying method. HTNLearn [81] is another system that induces
HTN methods and action models by using as input a collection of plans with
partially annotated intermediate state information and a set of annotated tasks.

Hoffmann et al. [23] induce the business process models (BPM) using logs of
actions recorded from real life business activity execution. The model then turns
into the workflow. The main aim of the developed systems is to use the process
mining technique to exploit the sequence of events. The process mining algorithm
induces a model in the form of graphs such as Petri Nets.

2 Automated Domain Model Learning Tools for Planning 31

Framer [34] induces domain models from natural language action description.
It uses an estimate of functional similarity, so sentences that describe similar
behaviours are represented by the same planning operator. After obtaining plan-
ning operators structure, Framer induces formal domain model by using LOCM.
Martínez et al. [35] induce a probabilistic relational model including action and
exogenous effects. It uses a set of completely observable state transitions as input
to learning multiple candidate models using LFIT [25] system. It then uses an
optimiser to select the best model out of all the candidates. LFIT is a KBIL
system that induces a set of propositional rules by understanding the given input
transitions in the form of interpretations. In order to learn transition rules of cellular
automata, LFIT exploits rules as the background knowledge and conditions on rules
as inductive bias.

FAMA [3] induces STRIPS domain model from the observations of plan execu-
tions. It demonstrates the ability to learn from partial or totally unobservable actions
in plan executions which makes FAMA appropriate to learn from sensory inputs.
The least amount of input FAMA requires is the initial and final states of the plan
execution along with partial domain model. FAMA also presents two novel model-
semantics evaluation metrics that build upon two recognised metrics, precision and
recall [14] to evaluate the learned action models with respect to observations of plan
executions.

PlanMiner-O2 [62] is an algorithm that uses a classification algorithm, based on
inductive rule learning techniques, to learn action models with discrete numerical
values (represented as action costs) from incomplete and noisy data. In accepts plan
traces with intermediate partially observable states affected by noise as an input.

There exist many more inductive domain model learning systems (with varying
level of quality and quantity of input they require) proposed in the last decade. Due
to the generality of the topic discussed in this chapter we only include a few here.

2.3 Analytical Learning

KBIL differs from analytical learnings (AL) in the utilisation of training examples.
AL mainly uses prior knowledge and exploits a training example just to analyse and
discern the relevant features from it. AL uses deductive reasoning method while
empirical learning uses inductive reasoning method.

Explanation-based learning (EBL) [15] is the most common type of AL. In
EBL the generalised rule logically follows only the prior or background knowledge
and does not learn any new facts from examples, such that for EBL the following
expression should be valid:

BK � h (EBL)

EBL differentiates from the pure IL in that it looks for only the relevant positive
examples to logically justify the background knowledge while IL learns all the true

32 R. Jilani

features including relevant to learn from and irrelevant to ignore. This is the reason
why IL requires way more training data compared to EBL that can even learn with
one relevant example. Mitchell and Thrun [45] quotes a very useful chess example
to explain the difference in detail.

Much like the beneficial side of AL, it also suffers from the problem of doggie
outcomes if the background knowledge of the domain is incorrect, e.g., in domains
with no correct or complete background knowledge available to produce logically
justified hypothesis like the stock market. In such situations a reliable source
of learning could be the training examples to identify the relevant feature and
regularities, i.e., inductive learning to learn statistically justified hypothesis. This
leads to a hybrid or mixed inductive-analytical learning approach discussed in the
next section.

Some more examples of analytical learning techniques include memorization,
static analysis and abstractions learning and case-based reasoning. The analytical
learning method is rarely used for domain model learning while the common use of
it is in learning of search control knowledge.

One of the most prominent early works that utilise analytical learning is
PRODIGY [9]. PRODIGY is a planning and learning architecture that integrates
a number of learning modules to improve learning and reasoning mechanism. It
refines and improves the underlying domain knowledge through experimentation
and learns the control rules through experience.

Under a deterministic environment, PRODIGY incrementally learns the domain
model actions by a closed-loop integration of observing other agents, learning,
planning and executing plans in the environment. It produces operator hypothesis
by observing the sequence of changes happening in the environment as the effects a
particular action execution. It verifies the correctness of its hypothesised operators
during the plan execution stage of planning. In addition to the observations of
sequential changes and observed state changes of its learned action, PRODIGY also
takes object types and predicate specifications as inputs to learn a domain model.

Among the six main learning modules of the PRODIGY system, the Experiment
[10] and the Apprentice [28] are the two modules used to acquire and improve the
underlying domain knowledge through inductive learning.

The remaining four modules of the Prodigy, i.e., EBL [39], Static [17], Analogy
[11] and Alpine [31], that learn control rules for the PRODIGY planner and assist
efficient planning process, use analytical learning.

2.4 Hybrid Learning

Hybrid learning or the multi-strategy learning offers support when either of
inductive (statistical) or analytical (logical) knowledge learning cannot individually
generalise because of scarce training data or poor background knowledge, respec-
tively. Also, since most machine learning algorithms are custom designed with
particular datasets or learning tasks, merging two or more techniques together can

2 Automated Domain Model Learning Tools for Planning 33

improve the overall results and effectiveness of the learner in most of the cases.
There are a number of hybrid learning approaches in planning where inductive and
analytical learning perform hand-in-hand. These include explanation-based neural
network (EBNN), explanation-based learning and inductive logic programming
(EBL and ILP) and a combination of explanation-based learning and reinforcement
learning (EBL and RL). On literature search, it becomes apparent that the most
accepted analytical learning technique in multi-strategy learning is EBL. Among
the most common uses of logical learning in EBL and of hybrid approaches is in
learning search control rules and heuristics for planning speedup. We only discuss
the hybrid techniques which touch the topic of domain model learning.

From the domain model learning perspective, explanation-based neural network
(EBNN) blends the two techniques together [44, 45]. It uses NN (backpropagation
algorithm) as a form of inductive learning and puts the domain inferences together
by updating the NN weights in consistency with training data. For analytical
learning, EBL analyses and explains the input training data in terms of the extracted
slopes from the prior domain knowledge of already learned NN. The contribution
and extent of participation of each technique in EBNN vary depending upon the
accuracy of training examples and correctness of the prior knowledge.

PRODIGY, SOAR [33] and THEO [42] combines both inductive and analytical
learning, relying more heavily on the EBL-like deductive methods for acquiring
control knowledge.

2.5 Surprise-Based Learning (SBL)

Autonomous agents commonly encounter the unknown events which most of the
times are realistic and still not engineered in their knowledge base. For example,
AUV (autonomous underwater vehicle) that meets an unexpected underwater
creature for which it has no model. Ideally, these events can provide the opportunity
to learn by experiencing them. Unlike knowledge-based learning methods, SBL is
specially designed for autonomous learning and planning in an unforeseen situation
with no background knowledge (of the domain available) to the learning agent. SBL
works with the notion of prediction rules. Such prediction rules present the agent
with the observational model of the environment for pre-action execution time and
the predicted observations for post-action execution.

Most of the times in SBL, the learning occurs based on the notion of goal-driven
autonomy (GDA) [71]. It is a conceptual model for creating an autonomous agent.
In GDA the learning agent continuously monitors and evaluates the activity/plan
execution outcome with the already predicted observations [47]. Wherever the
action outcome does not match the observed predictions, the algorithm detects
and records the discrepancy. The agent then builds explanation by analysing the
discrepancy, its cause and effects and updates its hypothesis model and reformulates
goals to align with its primary objective. Agents that perform goal reasoning,
explicitly model and reason about the goals they try to achieve [2].

34 R. Jilani

The discrepancies in the observations which present themselves as an opportunity
to learn are termed as ‘surprise’ in the title, i.e., situation where the action effects
violate its predicted model. SBL is shown to be successful on a modular robot
learning and navigating in a small static and the fully observable environment with
no prior knowledge available in the knowledge base [55].

FOOLMETWICE [46], the extension of ARTUE [47], is a system with a relaxed
assumption about domain model completeness. The system implements GDA
and presents an algorithm to learn (and apply) environment models of unknown
exogenous events. It generalises a new model’s preconditions by learning from the
states that cause inconsistency.

Nguyen and Leong [51] present STAR (surprise triggered adaptive and reactive)
system that dynamically learns models of its opponents’ strategies in response to
surprises. Ranasinghe and Shen [55] present an algorithm for an agent to learn and
refine its action models based on the SBL. The model can be used to predict the
state changes and identify when surprises occur.

The LIVE system [64] enhanced the GPS (general problem-solving) system [16]
with the ability to learn models. LIVE learns prediction rules by observing changes
in the environment. It assimilates action exploration, experimentation, learning and
problem-solving. To create STRIPS-like rules, it requires actions and percept from
the environment, a process to provide observation from the environment and the
state description of the environment.

EXPO [20] is a learning-by-experimentation system for refining incomplete
planning operators. It refines operators, which have missing preconditions and
effects by failure-driven experimentation with the environment. It does this by
observing plan execution and detecting the inconsistency between observations
and predictions. To adjust the inconsistency, it produces a set of hypothesis and
empirically tests each. EXPO does incremental learning and also learns conditional
effects.

Another example of refinement and incremental learning is the OBSERVER
[69] system. It induces a STRIPS-like initial model and repairs it continuously
during operation by monitoring expert agents. It applies version spaces algorithm
[40] to the observations. It repairs plans from incorrect and partial domain knowl-
edge. The framework learns planning operators by observing expert agents and
subsequent knowledge refinement in a learning-by-doing paradigm. To refine the
learnt operators, it solves practice problems with operators, analyses and learns
from the execution traces of the resulting solutions. It uses the pure inductive
methodology and does not require background knowledge to do learning. The
method is implemented inside PRODIGY [67] that includes a general-purpose
planner and several learning modules to improve the planning domain knowledge
and also the control knowledge to support the planning algorithm.

To efficiently learn models, there needs to be a quantitative bound on a number
of input samples or the required amount of interactions with the environment.
Walsh and Littman [68] demonstrate that learning STRIPS operators through raw-
experience can require an exponential number of samples, but restricting the size
of the precondition lists allows for sample-efficient learning. An external teacher is

2 Automated Domain Model Learning Tools for Planning 35

needed to fulfil the demand of required solution observations in order to eliminate
the restriction on the size of the precondition lists.

2.6 Transfer Learning

Through transfer learning (TL), the system exploits data from one or more source
domains to improve learning performance in a different target domain in the
situations with like and limited training data availability. Knowledge engineering
through transfer learning especially for planning domain models has recently
received active attention and the resulting learning technique provides a good corpus
of work for interested researchers.

Many machine learning methods work well only under a common assumption
that the training and test data are taken from the same feature space and the same
distribution. In the case of altered feature space and distribution, most statistical
models need to be rebuilt from scratch using newly collected training data. In many
practical applications, it is expensive or impossible to recollect the needed training
data and rebuild the models. It would be nice to reduce the need and effort to
recollect the training data especially when data is scarcely available or when it easily
becomes outdated. In such cases, knowledge transfer or transfer learning between
task domains is desirable. Pan and Yang [52] in a survey on TL explain the benefit
of using TL to cover the same feature space assumption of machine learning. The
survey also addresses the primary issues of what, when and how to transfer.

Zhuo et al. [76] learn the hypothesis model from plan traces by transferring
useful information from other domains whose domain models are already known.
The system creates a metric to measure the shared information and transfer this
information according to the metric. The larger the metric is, the bigger the
information is transferred.

Inspired by the educational psychology of meta-cognitive reflection for better
inductive transfer learning practices, a novel L2T framework [73] has been proposed
for transfer learning. The system automatically optimizes what and how to transfer
between a source and a target domain by leveraging previous transfer learning
experiences.

Zhuo et al. [75] present t-LAMP (transfer Learning Action Models from Plan
traces), which can learn action models in PDDL language with quantifiers. The
system exploits plan traces using Markov logic networks to enable knowledge
transfer.

Zhuo and Yang [82] proposed TRAMP (Transfer learning Action Models for
Planning) system, to learn action models with limited training data in the target
domain, by transferring as much of the available information from source domains
by using web search on top of transfer technique to bridge the transfer gap.

36 R. Jilani

2.7 Policy Learning

A policy is a state-action mapping and policy learning is learning what to do in every
possible situation. Based on the assumption that the goals of the learning system
are static, instead of learning the domain model of the environment, the system
simply learns the reaction or response to common situations that may arise in the
environment. The system does not learn the domain model of the environment to
take action rather it only learns the policies to respond to the exact situation and this
is why this approach is called policy learning. This differs from knowledge-based
apprentice systems to learn domain models (discussed in the next section). The
planning literature also describes this method as learning by observation, imitation
or watching.

Behavioural cloning [8] also known as learning by imitation is an example of
a policy learning approach. In behavioural cloning method, the learning system
observes and reproduces the skills of the trainer agent (which is usually human) in
carrying out the particular task. It then records the responses of the trainer in every
situation along with the cause that gave rise to the response. A sequence of these
responses based on the sub-cognitive skills and actions of a trainer is used as input
to the learning system. When the learning system itself confronts some situation,
it compares this situation with the learnt situation from the trainer and responds to
act according to the learnt response of the trainer. It outputs a set of rules which
reproduce skilled behaviour. This technique has many advantages including the
capability to quickly learn from a few training sessions and to act more reliably than
a human trainer that it learnt from Benson [6]. This method is useful for building an
automatic control system.

From the perspective of the complex domains, it appears to be a difficult exercise
to train the system for all the possible values and situations that can occur inside
the environment. However, in cloning the response to take according to a particular
situation is usually the same for a big set of possible state space, as the system can
then generalise the response and develop a policy to cover more inputs.

ALVINN system [54] is one of the best examples of behavioural cloning.
Learning from fully or partially annotated demonstrations by domain expert has
been used by several systems for knowledge acquisition in robotics and task
modelling [4, 19] but has rarely been used to learn declarative domain model [50]
for AI planners. This is partly because even for the moderately complex domains, it
is unfeasible for the area expert to specify conjecture for every action, explanations
for every inconsistency and all possible effects of the model, as the performance
of the learner is affected by the ability of the trainer. In order to cover for trainer’s
implicit knowledge gap, many systems use reinforcement learning techniques to co-
operate with this type of learning such as using Q-learning [70]. Two of the common
demonstration approaches include tele-operation and shadowing [4].

2 Automated Domain Model Learning Tools for Planning 37

2.8 Other Methods of Knowledge Acquisition

This section includes potential knowledge acquisition and learning methods that are
either not formally classed as the typical learning methods for planning or are in
their infancy yet have produced some effective domain learning systems in the past.

Apprentice Systems Mitchell et al. [43] coined the term apprentice system as
an interactive knowledge-based system which induce knowledge by observing the
users interaction with the system and analysing the problem-solving steps. These
systems capture and infer from the training examples of the user’s activity and
the context on which decisions involved in activity were taken. It then generalizes
rules from the training examples that are comparable to the hand-generated rules.
The idea has been implemented in a number of application areas. Based on the
idea, the same authors created LEAP—a learning apprentice and advice system for
digital circuit design. LEAP integrates new knowledge by its experience with the
user approval/rejection of its advice about circuit decomposition by observing and
analysing the user’s problem-solving decisions and steps.

ARMS (acquiring robotic manufacturing schemata) system [61] represents an
important first step towards a learning-apprentice system for manufacturing. It
learns from a user interface where the user instructs the simulated robots to perform
simple tasks. Michele [49]—a groupware toolkit based on a multi-agent model of
communication—induces learning mechanism by its interactions with the user and
stores learned knowledge in each user’s environment. It induces a decision tree
for each query to the user and exploits ID4 [60] learning algorithm. Jourdan et al.
[29], Tecuci and Dybala [65] and Abbeel et al. [1] are some more examples of the
apprentice systems that use various methods of interaction with the user including
passive observations or querying the user to record the reason behind the particular
decision made.

Crowdsourcing Recently crowdsourcing [24] has been exploited as a novel
approach for acquiring planning domain models. Collecting a large amount of
training data is not always feasible in terms of reach and cost, e.g., in a situation
like a military operation. Instead of collecting training examples, crowdsourcing
methods engage different annotators that could include various sources like domain
experts, stakeholders, previous data or experience of the general public about the
domain to learn. The outcome from various annotators built as the soft constraints
can later be solved using max-sat solver to generate a domain model.

While crowdsourcing is comparatively new in learning for planning, it has
been used in several planning applications, e.g., Zhang et al. [74] enable a crowd
to effectively and collaboratively resolve global constraints to carry out itinerary
planning. Gao et al. [18] propose a technique to handle the discrepancy in crowd
inputs by first building a set of human intelligence tasks (HITs) for values collection
and then estimate the actual values of variables and feed the values to a planner
to solve the problem. Raykar et al. [56] label training data for machine learning

38 R. Jilani

by crowdsourcing information from experts and non-experts. The system not only
evaluates the different experts but also gives an estimate of the actual hidden labels.

Recently, crowdsourcing has also been exploited for acquiring planning domain
models [77]. It is worth noting that the problem of encoding domain models is
being analysed not only from the point of view of generating models in a specific
description language—such as PDDL—but also for generating different sorts of
automatically exploitable models. Konidaris et al. [32] proposed a method for
constructing symbolic representations for high-level planning by establishing a
close relationship between an agent’s actions and the symbols required to plan to
use them.

MLN To deal with the probability along with imperfect and uncertain knowledge,
Markov logic network (MLN) [57] is a dense language to determine very large
Markov networks, and has the ability to flexibly and modularly incorporate a wide
range of domain knowledge. Many learning systems exploit the technique of MLN
that applies the concept of a Markov network to the first-order logic (FOL) and
draws the inference from the evidence. In a Markov graph, the vertices are taken
as the atomic FOL formulas, and the edges act as the logical connectives used to
construct the formulas. Several systems including LAMP—to learn domain model
with quantifiers and logical implications [83] and AMAN—a system for action-
model acquisition from noisy plan traces [79], learn domain models based on the
idea of Markov network as a major driving approach.

LAMP system uses the MLN technique to select the most likely subsets of
candidate formulas from all the generated formulas which are later transformed
into learned action models. It learns STRIPS action models (with quantifiers and
logical implications) for classical planning from plan traces with partially observed
states. It learns a domain model for an observable and deterministic environment
from training plans with little or no pre-engineered domain knowledge including
object types, predicate specifications and action headers.

AMAN builds a graphical model to capture the relations between actions (in
plan traces) and states and then learns the parameters of the graphical model. After
that, AMAN generates a set of action models according to the learnt parameters.
Specifically, the system first exploits the observed noisy plan traces to predict correct
plan traces and the domain model based on the graphical model and then executes
the correct plan traces to calculate the reward of the predicted correct plan traces
according to a predefined reward function. Then, AMAN updates the predicted plan
traces and domain model based on the reward. It iteratively performs the above-
mentioned steps until a given number of iterations is reached. Finally, the predicted
domain model is provided.

TRAMP [82] system conducts MLNs assisted transfer learning to learn domain
models.

2 Automated Domain Model Learning Tools for Planning 39

3 Characteristics of the Domain Model Learning Tools

Using machine learning methods, several tools and techniques have been presented
in the recent past to facilitate the transformation process of real planning application
requirements into a solver ready PDDL domain model that uses training or
observation as inputs. These techniques use various types of knowledge besides
plan traces, like general properties and constraints about domain actions, as well
as partial knowledge about the kind of domain in which they are operating. To
learn expressive domain models, systems tend to require more detailed inputs
and substantial a priori knowledge which often include details about initial and
goal state information. Some systems also require state information before and
after an action execution within each training plan. The main aim of this type of
learning is to overcome the knowledge acquisition bottleneck [30], to help planning
agents become more autonomous and make them able to adapt and plan for unseen
situations and to debug existing domain models.

This section presents a brief overview of the automated tools along with their
characteristics that can be exploited to automatically induce planning domain
models.

Input Characteristics Input characteristics of the system depend on what the
system is trying to learn, the learning method and the extent of learning. Some
systems aim to design the complete domain model of a particular world, some
refine already built partial domain model and some aim to transfer knowledge
from one domain to other. Learning techniques can be supervised or unsurprised
learning. It depends if the trainer indicates when something goes wrong in the case
of supervised learning. All traditional domain model learning systems accept input
in the form of training plans. Based on the learning capability some systems may
also have to exploit additional background knowledge BK or information about
the surrounding world. BK can be in any form like observations, constraints, type
structure, initial, intermediate and goal states, fluent, etc. Some systems also require
a partial domain model (with missing preconditions and effects in the actions) in the
input.

Potential plan traces can be gathered from multiple sources and applications, for
example, the sequence of workflow in some process execution, logs of commands
for installing a piece of software or the moves or steps captured from game playing,
etc.

Obtaining the training plans from sensors, sometimes noise inevitably gets
introduced into plan traces when some sensors are occasionally damaged, with
unintentional mistakes in the recording of the action sequence, or may be due to
the presence of other agents in the same environment. To deal with this, several
systems learn domain models with noisy inputs.

Output Characteristics For output, systems can be classified based on the extent
and capability to learn in varying world dynamics and the state of observability in
the environment. For instance, the characteristics of the surrounding environment
can be discrete or continuous, static or dynamic. Action effects can be stochastic or

40 R. Jilani

non-deterministic (rolling of dice) compared to a fully deterministic environment. In
terms of observability, the learning environment can be fully or partially observable.
Learning from deterministic, fully observable, discrete and static environmental
characteristic offer lesser challenges than continuous and dynamic environmental
features. Jiménez et al. [27] provide a thorough review of techniques based on the
learning targets of the systems from various planning paradigms, i.e., learning in
varying level of world dynamics and state observability.

The extent of learning by a system is the granularity of the output and the amount
of details learnt, for example, full or partial domain model in the output or leaning
of domain model with quantifiers and logical implications [83].

No standard evaluation and analysis methods exist to verify the output domain
model completeness and quality and like the requirements specification, these char-
acteristics cannot be objectively assessed and proven correct. Learning systems and
their output are typically evaluated empirically, based on their divergence from the
reference model syntax (which itself can be questionable from multiple perspectives
by multiple experts). A step forward in defining the quality of domain models and
to improve evaluation method semantically, FAMA [3] presents a method to assess
the quality and performance of the learning approaches. The evaluation method
alleviates the common limitation of syntactic evaluation methods. A usual limitation
of syntactic evaluation methods is when the learned model is semantically correct
but syntactically differ from the benchmark model. Unable to evaluate correct
but redundant preconditions in the model is another downside of syntax-based
assessment methods.

McCluskey et al. [37] use the idea of domain model as a formal specification of
a domain and consider what it means to measure the quality of such a specification.
To build the notion of quality assessment, they used dynamic and static testing of
the domain model. Vallati and McCluskey [66] present a quality framework which
aims at representing all the aspects that affect the quality of knowledge in domain
models. The framework is based on the interaction between seven different sets that
underpin the domain quality.

Some learning systems additionally produce heuristics and various graphical
views like finite state machines along with the domain model while some just
improve the partial domain model by learning the missing preconditions and effects
of operators.

Representational Language and Mechanism A well-chosen representation lan-
guage should explicitly model every action effect the system might confront. In
addition to that, a domain modelling representation language should have some
salient attributes. It should have supporting tools to check its operation and
have logically strong inference mechanism to carry out reasoning. It should be
sufficiently expressive to explicitly model a complex scenario of the real world.
Moreover, it should be customizable and structured to capture every action effect
the system might confront in operator definitions. In addition, it should have clear
syntax and semantics to support the operational aspects of the model.

2 Automated Domain Model Learning Tools for Planning 41

Different learning systems use different languages to express the output domain
model including PDDL, STRIPS, OCL, etc. While choosing the representation
language for effective system output, a well-known complexity-expressiveness
trade-off of representation is not easy to attain. More expressive languages let
the systems produce domains that can express input data in a better way while
reducing the expressivity enhances the complexity of the consistent hypothesis. To
overcome the KE bottleneck, most systems in the area of domain model learning use
propositional and first-order logic to represent domain model for the logical agents
and output the model in some variant of PDDL in their initial acquisition phase.

Most learning systems use action-centred representation mechanism where
applying an action on a state transforms the state of the system into a new state.
These models are represented mostly by PDDL and its variants built on first-
order logic. Another mechanism is the object-centred representation that captures
the dynamic relationship between objects in state parameters. OCL (object centred
language) is used to support this mechanism. Figure 2.4 shows a (non-exhaustive)
characteristic that a domain model learning system can cover.

Fig. 2.4 Various characteristics of domain model learning tools

42 R. Jilani

4 Conclusion

Learning is fundamental to autonomic behaviour and it can be defined in many
ways. From the point of view of machine learning, it is defined as a change in
behaviour through learning to allow improvement in performance. This chapter
investigates various classical and state-of-the-art methods to attain such capability
for automatically learning domain models from training data. The taxonomy and
order of these methods we followed is based on their standing and frequency of
usage in the past research. The choice of the learning method and the design of
the learning mechanism based on it can be made easy by thinking in terms of the
following four factors:

• Firstly, the choice of the learning method depends on the learning goals in a
particular domain. For instance, does it need to design the complete domain
model of a particular world? Is it trying to transfer knowledge from one domain
to other?

• Secondly, it depends upon the availability of the information about the surround-
ing world. If available, then what is the type and consistency of input assistance or
prior knowledge? Is it supervised or unsurprised learning? Is input data consistent
or noisy? Sometimes the supervised learning situations become semi-supervised
based on the deliberate systematic inconsistencies in the data, e.g., learning the
age of people from observing pictures where in the training data some people
lied about their age.

• Another factor to consider is what feedback is available. For example, does a
trainer indicate when something goes wrong in the case of supervised learning?

• Finally, the characteristics of the world to learn knowledge from also matters, for
instance, observability and stochasticity of the environment.

There are several knowledge engineering tools with varying capabilities. These
tools support automated planning, not only in the knowledge elicitation process but
also for the design, validation and verification of developed models.

There are several relevant aspects that need more focused attention of the
planning and learning community in the future. In order to deal with the real-world
planning-inherent complexity, learning-augmented planning systems should be able
to apprehend the environment, generate corresponding effects and enhance their
performance according to the previous experience. This has attracted much research
in the recent past but the current state-of-the-art is still a long way from human-
level abilities to work in real world. Instead, most of these systems work under
classical restrictive environmental assumption with toy domains setup that are more
comprehensible and limited proxies of the real-world environment.

Learning systems can be categorized as offline (learns before the planning
process starts) and online (learns during the plan search and execution stages). From
the domain model learning viewpoint, offline learning is comparatively popular
starting from the learning of domain invariants to learning complete domain model
from variable sources. Both online and offline domain model learning have pros

2 Automated Domain Model Learning Tools for Planning 43

and cons. Online learning can continuously/incrementally refine the domain model
in case an anomaly is detected by improving or adapting to the changes while for
offline planning, the planner has to bear with the predefined version till the planning
process finishes. Similarly, for online learning of the domain model, the overhead
cost incurred for the joint planning-learning process is higher in terms of processing
time and efficiency compared to offline learning [85]. This may also explain why
online incremental domain model learning has not been very popular in recent years
and needs active research attention to effectively reduce the overhead cost.

References

1. Abbeel, P., D. Dolgov, A. Y. Ng and S. Thrun (2008). Apprenticeship learning for motion
planning with application to parking lot navigation. 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IEEE.

2. Aha, D., M. Klenk, H. Munoz-Avila, A. Ram and D. Shapiro (2010). Goal-driven autonomy:
Notes from the AAAI workshop, Menlo Park, CA: AAAI Press.

3. Aineto, D., S. J. Celorrio and E. Onaindia (2019). “Learning action models with minimal
observability.” Artificial Intelligence.

4. Argall, B. D., S. Chernova, M. Veloso and B. Browning (2009). “A survey of robot learning
from demonstration.” Robotics and autonomous systems57(5): 469–483.

5. Baxter, J. (1995). Learning internal representations. Proceedings of the eighth annual confer-
ence on Computational learning theory. Santa Cruz, California, USA, ACM: 311–320.

6. Benson, S. (1995). Action model learning and action execution in a reactive agent. Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI-95).

7. Brachman, R. J. and H. J. Levesque (1984). The tractability of subsumption in frame-based
description languages. AAAI.

8. Bratko, I. and T. Urbančič (1997). “Transfer of control skill by machine learning.” Engineering
Applications of Artificial Intelligence10(1): 63–71.

9. Carbonell, J., O. Etzioni, Y. Gil, R. Joseph, C. Knoblock, S. Minton and M. Veloso (1991).
“Prodigy: An integrated architecture for planning and learning.” ACM SIGART Bulletin2(4):
51–55.

10. Carbonell, J. G. and Y. Gil (1990). Learning by experimentation: The operator refinement
method. Machine learning, Elsevier: 191–213.

11. Carbonell, J. G. and M. Veloso (1988). Integrating derivational analogy into a general problem
solving architecture. Proceedings of the First Workshop on Case-Based Reasoning.

12. Cresswell, S. (2009). “LOCM: A tool for acquiring planning domain models from action
traces.” ICKEPS 2009.

13. Cresswell, S., T. L. McCluskey and M. M. West (2009). Acquisition of Object-Centred Domain
Models from Planning Examples. ICAPS.

14. Davis, J. and M. Goadrich (2006). The relationship between Precision-Recall and ROC curves.
Proceedings of the 23rd international conference on Machine learning, ACM.

15. DeJong, G. and R. Mooney (1986). “Explanation-based learning: An alternative view.”
Machine learning1(2): 145–176.

16. Ernst, G. W. and A. Newell (1969). GPS: A case study in generality and problem solving,
Academic Pr.

17. Etzioni, O. (1991). STATIC: A Problem-Space Compiler for PRODIGY. AAAI.
18. Gao, J., H. H. Zhuo, S. Kambhampati and L. Li (2015). Acquiring Planning Knowledge via

Crowdsourcing. Third AAAI Conference on Human Computation and Crowdsourcing.

44 R. Jilani

19. Garland, A. and N. Lesh (2003). “Learning hierarchical task models by demonstration.”
Mitsubishi Electric Research Laboratory (MERL), USA–(January 2002).

20. Gil, Y. (1992). Acquiring domain knowledge for planning by experimentation, DTIC Docu-
ment.

21. Gregory, P. and S. Cresswell (2015). Domain Model Acquisition in the Presence of Static
Relations in the LOP System. ICAPS.

22. Gregory, P. and A. Lindsay (2016). Domain model acquisition in domains with action costs.
Twenty-Sixth International Conference on Automated Planning and Scheduling.

23. Hoffmann, J., I. Weber and F. Kraft (2009). Planning@ sap: An application in business
process management. 2nd International Scheduling and Planning Applications woRKshop
(SPARK’09).

24. Howe, J. (2008). Crowdsourcing: How the power of the crowd is driving the future of business,
Random House.

25. Inoue, K., T. Ribeiro and C. Sakama (2014). “Learning from interpretation transition.” Machine
Learning94(1): 51–79.

26. Jilani, R., A. Crampton, D. Kitchin and M. Vallati (2015). Ascol: A tool for improving
automatic planning domain model acquisition. Congress of the Italian Association for Artificial
Intelligence, Springer.

27. Jiménez, S., T. De la Rosa, S. Fernández, F. Fernández and D. Borrajo (2012). “A review of
machine learning for automated planning.” The Knowledge Engineering Review27(4): 433–
467.

28. Joseph, R. L. (1989). “Graphical knowledge acquisition.” In Proceedings of the Fourth
Knowledge Acquisition For Knowledge-Based Systems Workshop, Banff, Canada.

29. Jourdan, J., L. Dent, J. McDermott, T. Mitchell and D. Zabowski (1993). Interfaces that learn:
A learning apprentice for calendar management. Machine learning methods for planning,
Elsevier: 31–65.

30. Kambhampati, S. (2007). Model-lite planning for the web age masses: The challenges
of planning with incomplete and evolving domain models. Proceedings of the National
Conference on Artificial Intelligence, Menlo Park, CA; Cambridge, MA; London; AAAI Press;
MIT Press; 1999.

31. Knoblock, C. A. (1991). Automatically Generating Abstractions for Problem Solving,
CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER SCIENCE.

32. Konidaris, G., L. P. Kaelbling and T. Lozano-Perez (2014). “Constructing symbolic repre-
sentations for high-level planning.” Proceedings of the 28th AAAI Conference on Artificial
Intelligence.

33. Laird, J. E., A. Newell and P. S. Rosenbloom (1987). “Soar: An architecture for general
intelligence.” Artificial intelligence33(1): 1–64.

34. Lindsay, A., J. Read, J. F. Ferreira, T. Hayton, J. Porteous and P. Gregory (2017). Framer:
Planning models from natural language action descriptions. Twenty-Seventh International
Conference on Automated Planning and Scheduling.

35. Martínez, D., G. Alenya, C. Torras, T. Ribeiro and K. Inoue (2016). Learning relational
dynamics of stochastic domains for planning. Twenty-Sixth International Conference on
Automated Planning and Scheduling.

36. McCluskey, T., S. Cresswell, N. Richardson, R. Simpson and M. M. West (2008). “An
evaluation of Opmaker2.” The 27th Workshop of the UK Planning and Scheduling Special
Interest Group, December 11–12th, 2008, Edinburgh.: 65–72.

37. McCluskey, T. L., T. S. Vaquero and M. Vallati (2017). Engineering knowledge for automated
planning: Towards a notion of quality. Proceedings of the Knowledge Capture Conference,
ACM.

38. Michalski, R. S. (1993). Learning= inferencing+ memorizing. Foundations of Knowledge
Acquisition, Springer: 1–41.

39. Minton, S., J. G. Carbonell, O. Etzioni, C. A. Knoblock and D. R. Kuokka (1987). Acquiring
effective search control rules: Explanation-based learning in the PRODIGY system. Proceed-
ings of the fourth International workshop on Machine Learning, Elsevier.

2 Automated Domain Model Learning Tools for Planning 45

40. Mitchell, T. M. (1977). Version spaces: A candidate elimination approach to rule learning.
Proceedings of the 5th international joint conference on Artificial intelligence-Volume 1,
Morgan Kaufmann Publishers Inc.

41. Mitchell, T. M. (1980). The need for biases in learning generalizations, Department of
Computer Science, Laboratory for Computer Science Research

42. Mitchell, T. M., J. Allen, P. Chalasani, J. Cheng, O. Etzioni, M. Ringuette and J. C. Schlimmer
(1991). “Theo: A framework for self-improving systems.” Architectures for intelligence: 323–
355.

43. Mitchell, T. M., S. Mabadevan and L. I. Steinberg (1990). LEAP: A learning apprentice for
VLSI design. Machine learning, Elsevier: 271–289.

44. Mitchell, T. M. and S. Thrun (2014). Explanation based learning: A comparison of symbolic
and neural network approaches. Proceedings of the Tenth International Conference on
Machine Learning.

45. Mitchell, T. M. and S. B. Thrun (1996). “Learning analytically and inductively.” Mind matters:
A tribute to Allen Newell: 85–110.

46. Molineaux, M. and D. W. Aha (2014). Learning unknown event models. Twenty-Eighth AAAI
Conference on Artificial Intelligence.

47. Molineaux, M., M. Klenk and D. Aha (2010). Goal-driven autonomy in a Navy strategy
simulation. Twenty-Fourth AAAI Conference on Artificial Intelligence.

48. Mourao, K., L. S. Zettlemoyer, R. Petrick and M. Steedman (2012). “Learning strips operators
from noisy and incomplete observations.” arXiv preprint arXiv:1210.4889.

49. Nakauchi, Y., T. Okada and Y. Anzai (1991). Groupware that learns. [1991] IEEE Pacific Rim
Conference on Communications, Computers and Signal Processing Conference Proceedings,
IEEE.

50. Nejati, N., P. Langley and T. Konik (2006). Learning hierarchical task networks by observa-
tion. Proceedings of the 23rd international conference on Machine learning, ACM.

51. Nguyen, T.-H. D. and T.-Y. Leong (2009). A Surprise Triggered Adaptive and Reactive (STAR)
Framework for Online Adaptation in Non-stationary Environments. AIIDE.

52. Pan, S. and Q. Yang (2010). A survey on transfer learning. IEEE Transaction on Knowledge
Discovery and Data Engineering, 22 (10), IEEE press.

53. Pomerleau, D. A. (1989). ALVINN: An autonomous land vehicle in a neural network. Advances
in neural information processing systems.

54. Pomerleau, D. A. (1991). “Efficient training of artificial neural networks for autonomous
navigation.” Neural Computation3(1): 88–97.

55. Ranasinghe, N. and W.-M. Shen (2008). Surprise-based learning for developmental robotics.
2008 ECSIS Symposium on Learning and Adaptive Behaviors for Robotic Systems (LAB-RS),
IEEE.

56. Raykar, V. C., S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni and L. Moy (2010).
“Learning from crowds.” Journal of Machine Learning Research11(Apr): 1297–1322.

57. Richardson, M. and P. Domingos (2006). “Markov logic networks.” Machine learning62(1–2):
107–136.

58. Richardson, N. E. (2008). An operator induction tool supporting knowledge engineering in
planning, University of Huddersfield.

59. Riddle, P. J., R. C. Holte and M. W. Barley (2011). Does Representation Matter in the Planning
Competition? Ninth Symposium of Abstraction, Reformulation, and Approximation.

60. Schlimmer, J. C. and D. Fisher (1986). A case study of incremental concept induction. AAAI.
61. Segre, A. M. (1987). Explanation-Based Learning of Generalized Robot Assembly Plans,

ILLINOIS UNIV AT URBANA COORDINATED SCIENCE LAB.
62. Segura-Muros, J. Á., R. Pérez and J. Fernández-Olivares (2018). “Learning Numerical Action

Models from Noisy and Partially Observable States by means of Inductive Rule Learning
Techniques.” KEPS 2018: 46.

63. Shahaf, D. and E. Amir (2006). Learning partially observable action schemas. Proceedings of
the National Conference on Artificial Intelligence, Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999.

46 R. Jilani

64. Shen, W.-M. and H. A. Simon (1989). Rule Creation and Rule Learning Through Environmen-
tal Exploration. IJCAI, Citeseer.

65. Tecuci, G. and T. Dybala (1998). Building Intelligent Agents: An Apprenticeship, Multistrategy
Learning Theory, Methodology, Tool and Case Studies, Morgan Kaufmann.

66. Vallati, M. and T. L. McCluskey (2018). “Towards a Framework for Understanding and
Assessing Quality Aspects of Automated Planning Models.” KEPS 2018: 28.

67. Veloso, M., J. Carbonell, A. Perez, D. Borrajo, E. Fink and J. Blythe (1995). “Integrating
planning and learning: The PRODIGY architecture.” Journal of Experimental & Theoretical
Artificial Intelligence7(1): 81–120.

68. Walsh, T. J. and M. L. Littman (2008). Efficient learning of action schemas and web-service
descriptions. AAAI.

69. Wang, X. (1995). Learning by observation and practice: An incremental approach for planning
operator acquisition. ICML.

70. Watkins, C. J. C. H. (1989). PhD Thesis: Learning from delayed rewards, University of
Cambridge England.

71. Weber, B. G., M. Mateas and A. Jhala (2012). Learning from demonstration for goal-driven
autonomy. Twenty-Sixth AAAI Conference on Artificial Intelligence.

72. Wu, K., Q. Yang and Y. Jiang (2005). “Arms: Action-relation modelling system for learning
action models.” CKE: 50.

73. Ying, W., Y. Zhang, J. Huang and Q. Yang (2018). Transfer learning via learning to transfer.
International Conference on Machine Learning.

74. Zhang, H., E. Law, R. Miller, K. Gajos, D. Parkes and E. Horvitz (2012). Human computation
tasks with global constraints. Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ACM.

75. Zhuo, H., Q. Yang, D. H. Hu and L. Li (2008). Transferring knowledge from another domain
for learning action models. Pacific Rim International Conference on Artificial Intelligence,
Springer.

76. Zhuo, H., Q. Yang and L. Li (2009). Transfer learning action models by measuring the
similarity of different domains. Pacific-Asia Conference on Knowledge Discovery and Data
Mining, Springer.

77. Zhuo, H. H. (2015). Crowdsourced action-model acquisition for planning. Twenty-Ninth
AAAI Conference on Artificial Intelligence.

78. Zhuo, H. H., D. H. Hu, Q. Yang, H. Munoz-Avila and C. Hogg (2009). Learning applicability
conditions in AI planning from partial observations. Workshop on Learning Structural
Knowledge From Observations at IJCAI.

79. Zhuo, H. H. and S. Kambhampati (2013). Action-model acquisition from noisy plan traces.
Twenty-Third International Joint Conference on Artificial Intelligence.

80. Zhuo, H. H., H. Muñoz-Avila and Q. Yang (2011). Learning action models for multi-agent
planning. The 10th International Conference on Autonomous Agents and Multiagent Systems-
Volume 1, International Foundation for Autonomous Agents and Multiagent Systems.

81. Zhuo, H. H., H. Muñoz-Avila and Q. Yang (2014). “Learning hierarchical task network
domains from partially observed plan traces.” Artificial intelligence212: 134–157.

82. Zhuo, H. H. and Q. Yang (2014). “Action-model acquisition for planning via transfer learning.”
Artificial intelligence212: 80–103.

83. Zhuo, H. H., Q. Yang, D. H. Hu and L. Li (2010). “Learning complex action models with
quantifiers and logical implications.” Artificial Intelligence174(18): 1540–1569.

84. Zhuoa, H. H., T. Nguyenb and S. Kambhampatib (2013). Refining incomplete planning domain
models through plan traces. Proceedings of IJCAI.

85. Zimmerman, T. and S. Kambhampati (2003). “Learning-assisted automated planning: looking
back, taking stock, going forward.” AI Magazine24(2): 73–73.

86. Cresswell, S. and P. Gregory (2011). Generalised domain model acquisition from action traces.
Twenty-First International Conference on Automated Planning and Scheduling.

	2 Automated Domain Model Learning Tools for Planning
	1 Introduction
	1.1 Knowledge Representation for Knowledge Engineering of Domain Models

	2 Domain Model Learning Techniques and Tools
	2.1 Inductive Learning
	2.1.1 When to Use Inductive Learning

	2.2 Knowledge-Based Inductive Learning (KBIL)
	2.3 Analytical Learning
	2.4 Hybrid Learning
	2.5 Surprise-Based Learning (SBL)
	2.6 Transfer Learning
	2.7 Policy Learning
	2.8 Other Methods of Knowledge Acquisition

	3 Characteristics of the Domain Model Learning Tools
	4 Conclusion
	References

