
Chapter 11
Web Planner: A Tool to Develop,
Visualize, and Test Classical Planning
Domains

Maurício C. Magnaguagno , Ramon Fraga Pereira , Martin D. Móre ,
and Felipe Meneguzzi

Abstract Automated planning tools are complex pieces of software that take
declarative domain descriptions and generate plans from domains and problems.
New users often find it challenging to understand the plan generation process, while
experienced users often find it difficult to track semantic errors and efficiency issues.
In response, we develop a cloud-based planning tool with code editing and state-
space visualization capabilities that simplifies this process. The code editor focuses
on visualizing the domain, problem, and resulting sample plan, helping the user see
how such descriptions are connected without changing context. The visualization
tool explores two alternative visualizations aimed at illustrating the operation of the
planning process and how the domain dynamics evolve during plan execution.

Keywords Classical planning · STRIPS · PDDL · State-space visualization

1 Introduction

Classical planning algorithms typically require a declarative domain specification
describing action schemata, which, in turn, define the dynamics of the underlying
domain. Since the inception of the International Planning Competition (IPC) [24],
the standard specification language for classical planning is the Planning Domain
Definition Language (PDDL) [3, 15]. Given the declarative nature of PDDL,
planning algorithm implementations are often opaque regarding the intermediate
steps between reading the formalism and generating a plan. This creates a twofold
problem for domain engineers that wish to use automated planning to solve
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problems: ensuring the correctness of each domain description, and optimizing the
efficiency of a planning algorithm for each domain description.

First, regarding correctness, writing PDDL specifications may be a challenging
task for new users even for simple domains, while detecting semantic mistakes in
complex domains is always non-trivial. Even when the user successfully compiles
and executes a planning instance with the chosen heuristic function, the planner
may fail to find a correct plan for the intended domain. In these cases, virtually no
planning algorithm offers extra information, and the user only knows that either the
domain has some kind of description error or that specific problem supplied to the
planner is unsolvable, such that the planner cannot find a correct plan.

Second, practical applications of classical planners require not only a for-
malization of the domain in PDDL that is correct, but also exploit the search
mechanisms employed by the underlying planners to find solutions efficiently. Most
modern classical planning solvers [8, 9, 11, 19] use heuristic functions to estimate
which states are likely to be closer to the goal state and save time and memory
during the planning process. Different planning domains may require different
heuristic functions to focus the search on promising branches and be solved within
a reasonable time with little memory footprint. Thus, key to understanding the
efficiency of a domain formalization is its impact on the heuristic function used
by the underlying planner.

In order to address these challenges, we developed WEB PLANNER, an online
tool aimed at helping domain engineers to tune a formalization to a number of com-
mon planning heuristics and spotting semantic errors in planning domains. Our tool,
which we describe in Sect. 3, includes a PDDL code editor with syntax highlight
and auto-complete aimed at helping users to efficiently develop PDDL domains in
a similar workflow to many popular integrated development environments (IDEs).
Importantly, we integrate the editor to two visualization tools, described in Sect. 2,
developed to help users cope with the declarative nature of PDDL and explore
the effects of changes to the domain in solving concrete problems. First, we use
a visual metaphor from the literature to see how a plan execution achieves (or does
not) a goal state from an initial state [14]. Second, we develop a new state-space
search visualization that uses tree drawing (in both Cartesian and radial layouts)
in conjunction with heatmaps to represent how the distance (e.g., how colder or
warmer) to the goal state changes during search. We conducted a structured case
study (described in Sect. 4.1) to illustrate how our approach works and validate
from user tests, which we describe in Sect. 4.2 showing the results we obtained
from employing the tool in a planning course. WEB PLANNER has been deployed
for 2.5 years as openly available tool for the planning community, which allowed
us to collect anonymous usage statistics. In Sect. 5, we survey related work on
planning tools and data visualization, and conclude the paper in Sect. 6 discussing
our conclusions and future work.
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2 Background

2.1 Planning

Planning is the problem of finding a sequence of actions (i.e., plan) that achieves a
particular goal from an initial state [4]. A state is a finite set of facts that represent
logical values according to some interpretation. Facts are divided into two types:
positive and negated facts. Predicates are denoted by an n-ary predicate symbol
applied to a sequence of zero or more terms. An operator is represented by: a name
that represents the description or signature of an action; a set of preconditions, i.e.,
a set of facts or predicates that must be true in the current state to be executed; a set
of effects, which has an add-list of positive facts or predicates, and a delete-list of
negative facts or predicates. An action is an instantiated operator over free variables.
A planning instance is represented by: a domain definition, which consists of a finite
set of facts and a finite set of actions; and a problem definition, which consists of
an initial state and a goal state. The solution of a planning problem is a plan, which
is a sequence of actions that modifies the initial state into one in which the goal
state holds by the successive execution of actions in a plan. To formalize planning
instances, we use the STRIPS [2] fragment of PDDL [15], which contains domain
and problem definition in different files.

Heuristic functions are used to estimate the cost of achieving a particular goal [4].
In classical planning, this estimate is often the number of actions to achieve the
goal state from a particular state by exploring only promising states. Estimating the
number of actions is a NP-hard problem [1]. In automated planning, heuristics can
be domain-dependent or domain-independent, and a well-tuned heuristic can result
in a substantial reduction in search time by pruning a vast part of the state-space.

2.2 Data Visualization

Visualization techniques aim to convey some kind of information using graphical
representation [26]. The use of data visualization techniques is often associated to
a set of data with the aim of communicating a particular information clearly and
efficiently via graphical representation.

Data visualization techniques are concerned with what is the best way to display
a dataset, for instance, how to display relation information. Relation information
can be displayed efficiently by using hierarchies that convey relation information.
Edges in a hierarchical tree represent a relation between nodes. A Cartesian tree
visualization is a way to display hierarchical trees as a coordinate system. A radial
tree visualization is a way to display a hierarchical tree structure in which such
tree expands outwards and radially. In Sect. 3.2 we explore such tree visualizations.
Besides hierarchical visualization, we highlight other visualization methods that
are closely related to the ones we develop in this work, such as Gantt charts [27],
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which are used to show how tasks are correlated and how much time is expected to
complete them, Waveforms [6, Chapter 1—page 2] are used to express the behavior
of analog or digital data through time, and heatmap visualization [26], which uses
a color scheme to illustrate values in a graphic in which each color in the scheme
represents one limit value and the many values in the interval are represented by the
mix of such colors.

3 WEB PLANNER Architecture

We designed our tool envisioning a development process centered around two tasks
by the domain developer. In the first task, the user aims to describe both domain
and problem correctly. In the second task, the user tries to identify details of the
description (in terms of predicate use) that impact performance and how these
predicates appear during the planning process. The domain designer is free to move
between these tasks and repeat until satisfied with the results. Once a planning
instance is described it is possible to visualize its explored state-space, even when
the planning process fails. When the planning process returns a plan the user is able
to visualize how predicates were added or deleted by each action in the plan. Such
interface could also help planning system developers to explore how planners in
development behave.

To avoid the considerable setup time of some planner implementations and
maintain a consistent interface across platforms, we use a web interface. The planner
is executed in a server, while the editor, output and visualizations are displayed and
executed in the browser. The communication between the two sides uses JSON.1

Figure 11.1 shows the architecture of WEB PLANNER.

Fig. 11.1 Overview of WEB

PLANNER architecture Client Server

Planner

State-space and
plan data

PDDL editor

Visualizations

Plan
Output

Verifier and
Validator

1JSON (JavaScript Object Notation) is an open-standard format for structuring data.
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3.1 Domain Development Interface

To better describe planning domains and problems, we identified three key require-
ments to improve editing such descriptions. First, we required our tool to provide
the two common IDE features of syntax highlighting, code auto-completion, and
templates (PDDL snippets) to streamline the editing process. For example, to define
a new action, our PDDL editor provides an action template (an auto-complete
function of our editor, pressing CTRL+Space after typing the word action) that
shows how an action is defined in PDDL, as illustrated in Fig. 11.2. Besides
templates for PDDL actions, our editor also provides templates for domain and
problem description, just pressing CTRL+Space after typing the word domain or
problem, respectively. Second, we the interface must show both domain and problem
simultaneously, to avoid forcing the user to go back and forth between descriptions
or browser tabs. This interface arrangement improves the designer’s awareness of
the interactions between a domain and instances of its problems and minimizes user
effort in terms of required interface actions (i.e., key presses and mouse clicks).
Finally, our interface must include a visualization and an action button in the same
context as the editors, allowing the designer to execute the current planning instance
without a changing context.

To meet such requirements, we split the editor interface horizontally in three
parts: domain, problem, and output. The ability to see input alongside output is very
important for both advanced users that are modifying or extending legacy PDDL,
and new users, such as students, that are not used with the domain and problem
distinction. Instead of starting with a blank planning instance we opted for a simple
but complete Towers of Hanoi example to be loaded by default.

Fig. 11.2 WEB PLANNER editor interface with domain editor (left), problem editor (center),
and plan output (right). Action template is provided by auto-complete shortcuts. Verification and
validation tools available through caret button
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The Plan button sends the planning instance to the server to obtain an output
based on the domain and problem descriptions contained in the editor. Our editor
uses brace,2 a variant of the ace editor without server-side processing to highlight
programming language elements. In our case most PDDL elements are highlighted,
some of which are currently not supported by the back-end planner. The output
provided by the planner contains the plan and execution time when successful, error
messages when the parser fails, or a failure message when no plan is found. Due
to screen space limitations, the visualizations were left to a secondary interface,
as users can only visualize after an initial description step. Our goal is to make
clear that domain and problem are described together, while planning insights and
optimization steps can be obtained later, if required, without overloading the user
with information.

Verifier and Validator Plan output alone is not enough to identify errors in a
planning description. The declarative nature of PDDL obscures the intermediate
structures of the planner for novice users (or users without working knowledge of
planner implementation), requiring further modification of the chosen planner to
log such information. To address this problem we provide two extra tools to find
description errors and mistakes in their domain and problem. The first is a verifier,
a tool that finds common mistakes in both domain and problem descriptions. The
second is a validator, a tool that tries to execute a plan provided by the user in
the domain and problem previously described, and reports any errors found while
doing so. Tests cover only atomic or conjunctive preconditions and effects, limited
to :strips, :negative-preconditions, :equality, and :typing requirements. Our verifier
includes different test cases for domain, Table 11.1, and problem, Table 11.2. Some
verifier tests refer to uncommon but valid PDDL, and can be seen as warnings for
new users, such as actions with empty preconditions. Our verifier offers substantial
help for novice users to understand their description mistakes by providing an
automated analysis of the PDDL encoding.

Our validator applies each plan action, testing if such action exists (i.e., the action
was defined and all parameters are defined objects/constants), is applicable (all pos-
itive preconditions are present in the current state, while no negative preconditions
are present), and with their effects generate each intermediate state (current state
with delete effects removed and add effects added). Note that the validator ensures
simply that the provided plan is a solution to the problem, regardless of optimality,
therefore empty and sub-step-optimal plans can also be used, as some problems may
require no action, when an initial state satisfies a goal state, while other plans may
even revisit intermediate states or simply take more steps than required using other
action sequences. In this way, validators help domain engineers verify that their
PDDL encoding allows a planner to generate valid plans, and that these plans indeed
correspond to the intended semantics of the planning domain. Nevertheless, verifiers
and validators tools are often separated from the actual planner software [12], which

2https://github.com/thlorenz/brace.

https://github.com/thlorenz/brace
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Table 11.1 Rules used by verifier in the domain description

Domain rule Description

Predicate defined Every predicate must be defined in :predicates

Predicate with valid name Predicates must contain only valid characters, starting with
a-z

Predicate arity Predicates must have the same amount of parameters

Action redefined Each action must have a unique name

Action parameter unused One or more parameters of an action are unused

Action parameter repeated One or more parameters of an action are repeated

Parameter with valid name Parameters must contain valid characters, starting with ?

Predicate repetition Each predicate must appear only once in preconditions and
effects

Empty precondition Preconditions contain no predicates

Null effect Effect is either empty or does modify state based on
preconditions

Unnecessary equality Preconditions contain (= ?x ?y)

Equality contradiction Preconditions contain (not (= ?x ?x))

Precondition contradiction Preconditions contain (pre ?a) and (not (pre ?a))

Effect contradiction Effects contain (pre ?a) and (not (pre ?a))

Effect contains equality Equality is only supported in preconditions

Missing/extra requirements Requirements must match what is used in the description

Table 11.2 Rules used by verifier in the problem description

Problem rule Description

Predicate repetition Each predicate must appear only once in initial or goal states

Object with valid name Objects must contain only valid characters, starting with a-z

Object unused Objects must appear as constant terms in actions, initial, or
goal states

Forced equality Initial or goal states contain (= a b)

Goal contradiction Goal state contain (pre ?a) and (not (pre ?a))

Rigid goal Rigid goal predicate is unachievable unless present in initial
state

Empty goal state No planning is required for an empty goal state

makes reviewing and revising domain formalizations less straightforward. Thus,
our coupling of the validator and verifier with the editor streamlines the domain
formalization process by providing immediate feedback to the domain engineer.

3.2 Visualization Interface

We currently support two visualizations, one focusing on the explored state-space
and the other on the execution of the first plan found.The impact of heuristics in the
state-space is often introduced in AI lectures using images, such as the ones from
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Fig. 11.3 Search contours are defined by search mechanism and heuristic function, either equally
exploring in all directions (left) or giving priority towards the goal state (right)

Fig. 11.3, to show how the contour of the explored states grows in all directions on
blind search and towards the goal state in informed search (using heuristics) [20,
Chapter 3—page 97]. Such images target an audience new to the concept of
using a computed auxiliary function to speed-up search. Different from textbooks,
implementations that target the same audience use dynamic grids to show both
how the state-space is explored and how the heuristic is computed in an Euclidean
space. Such examples show the step-by-step process of search. Since not all domains
can be mapped to a grid, the visualization process is often limited to path-finding
domains. To generate such contours we opted for a tree-based visualization, as they
better represent state relations while ignoring repeated states by not expanding a
previously found state. If we also added connections to previously found states, a
cyclic graph would be obtained and the contours would not be visible.

Heuristic Visualization The heuristic visualization we developed takes advantage
of interactive elements to avoid information overload while providing alternative
layouts, Cartesian and radial tree visualizations. The radial layout matches the
abstraction used by heuristic examples, while the Cartesian layout generates a more
compact visualization. In practice, we use the Reingold–Tilford algorithm [18]3 to
display both tree layouts. Using tree visualizations we aim to show how planning
heuristics explore the state-space to achieve a particular goal.

To compare and explore the state-space of a planning instance, we implemented
two planning methods. The first method is based on breadth-first search, and thus
uses no heuristic, exploring the state-space in the order of distance from the initial
state. The second method implements greedy best-first search using Hamming
distance [7] as a heuristic. While we selected these two methods as examples
to show the impact of no heuristic vs a generic distance metric for states, our
visualization tool supports other search mechanisms and heuristic functions as long
as such mechanisms search through the state-space.

To represent the data obtained from the planning process, we use a tree containing
the explored state-space and heuristic information about each state. In this tree, each
node represents a state (i.e., a set of instantiated predicates), an edge represents a
state-transition (i.e., the execution of an action), and the root node represents the

3Reingold–Tilford is an algorithm for an efficient tidy arrangement of layered nodes. We use an
implementation based on a D3 example available at: http://bl.ocks.org/mbostock/4063550.

http://bl.ocks.org/mbostock/4063550
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Fig. 11.4 Tooltip that
displays the set of instantiated
predicates in a state. This
figure illustrates state 1 and
its predicates for a planning
instance of the Hanoi domain

Fig. 11.5 Tooltip that
displays the instantiated
action applied between two
states. This figure illustrates
state 1 and its predicates for a
planning instance of the
Hanoi domain

initial state. The information about the set of predicates in the states (nodes) and the
applied actions in such states (edges) are hidden in our heuristic visualization. Such
information about states and actions can be seen when the user hovers the cursor
over nodes and edges, which then shows, the state’s and action’s detail as a tooltip.
Figures 11.4 and 11.5, respectively, illustrate how our visualization tool show the
information about states and actions.

Our visualization tool displays the state-space of a planning heuristic by coloring
the estimated distance between states using a heatmap, as in Fig. 11.6. Red nodes
represent the states closer to the goal state, i.e., warmer, while distant nodes
are represented by blue, i.e., colder. Nodes and edges are colored according to
the estimated distance to the goal state. We illustrate the heuristic gradient as
a heatmap in Fig. 11.7. Other heuristic functions could generate not only other
distance estimations for each state (visible through colors in the graph), but also
a different graph, as states would be explored in a different order, as in Figs. 11.10
and 11.11. Here, the radial layout of Fig. 11.11 provides a visualization of the search
contours of the heuristic, provided a large enough sample of the total number of
states has been explored. Edges between initial and goal state are emphasized (in
bold, and as a thick line) to show which path contains the actions that constitute
the plan. Such emphasized path is only available when planning is successful for
the give planning task. Failed planning cases still obtain data to draw the explored
state-space as a tree, which can be used as an interactive debug tool.
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Fig. 11.6 Color scheme that
our visualization tool uses to
represent the estimated
distance (colder) Heuristic Estimated Distance Goal State

(warmer)

Fig. 11.7 Search contours become visible as more states are explored. This planning instance
obtain all goal predicates at the same time, which makes the heatmap mostly blue (colder), while
the goal state is located at the bottom in red (warmer)
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Fig. 11.8 Dovetail plan visualization of Hanoi domain with 3 discs and a plan of size 7

Fig. 11.9 Tooltip that
displays the instantiated
action in a plan on Dovetail

Dovetail Metaphor Visualization The second visualization we implemented is
a visual metaphor called Dovetail [14], which is useful to see how predicates
change along the plan execution. Each ground predicate that appears in an action
effect is represented as one line while both initial state, goal state, and actions are
represented as columns. Our interface allows a user to move and zoom to parts of
this visualization (illustrated in Fig. 11.8), with tooltips providing extra information
as shown in Fig. 11.9 for the domain of the case study of Sect. 4.1. The use of this
visual abstraction (Dovetail) aims to improve the learning curve for defining and
debugging planning domains and problems.

4 Deployment and Evaluation

4.1 Case Study

In order to validate our visualization tool, we now present a case study we carried
out to show a planning instance using different planning heuristics displaying the
state-space. To do so, we selected the Tower of Hanoi domain to illustrate our
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Fig. 11.10 Cartesian tree visualizations of the state-space of Hanoi with 3 discs

Fig. 11.11 Radial tree visualizations of the state-space of Hanoi with 3 discs

heuristic visualizations. In this domain, one must move a stack of discs from one
peg to another without stacking a larger disc onto a smaller one, three pegs are
available in total. Problem instances for this domain show that the goal state cannot
be achieved in an incremental way, requiring a plan to build and destroy partial
towers several times, and then obtain the complete tower in the final peg. Domains
with such particular behavior are not pruned as much as others by the Hamming
distance as a heuristic function and have a visible color fluctuation between the
gradient limits instead of a clear movement towards red, as seen in the Cartesian tree
of Fig. 11.10. The Cartesian tree generates a more compact representation, while the
radial tree highlights the side to which the heuristic gave priority during search, as
seen in Fig. 11.11, where the top-left branch was not explored. Other domains may
suddenly achieve a goal state from a mostly blue colored graph, in which all states
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are far away from the goal, as seen in Fig. 11.7, or incrementally achieving the
goal clearly going from one extreme of the gradient to the other, as in the Logistics
domain.

To better understand how the predicates are affected by the plan we use the
Dovetail [14] metaphor. This particular Hanoi planning instance is solved by a 7-
step plan, represented by the pieces labeled with numbers at the top, Fig. 11.8. Each
piece has preconditions represented on the left side and effects represented on the
right side. In this case we can see the first action, move(d1 d2 peg3), moving a clear
disc d1 that starts on disc d2 to a clear peg peg3, leaving d2 clear and peg3 not clear.
We can see the predicate clear d1 being tested by each odd-index action, revealing
the pattern of movements related with the disc d1.

4.2 Case Study Survey Results

To evaluate WEB PLANNER, a group of four users from our automated planning
course4 were asked to fill a survey after using the tool to describe the RPG domain
from the International Competition on Knowledge Engineering for Planning and
Scheduling.5 The survey contained the following questions and answers:

• How familiar are you with automated planning languages and algorithms?

– Only 2 users have used PDDL before.
– Did WEB PLANNER visualizations help you to find any bugs/errors/interesting

points during the course of your task?
– One user found missing preconditions.
– Mark other planners/tools you used in your experiments:
– Fast-Downard (1), JavaFF (1), JavaGP (3), Planning.domains (3), STRIPS-

Fiddle (1)
– Which features you missed the most?
– Support more requirements (2), Auto-complete (1), Option to clear console

(1), Find (common) errors in PDDL (1).

Results of system reaction show evidence of the utility of our tool, albeit
with many suggested improvements, in Fig. 11.12 with minimum, maximum, and
average represented. The current planning output must be improved in order to
provide more meaningful messages about errors while taking advantage of the
integrated editor to draw attention to specific lines where parsing errors were
detected. Other improvements are more related to the editor itself, making it more

4https://github.com/pucrs-automated-planning/syllabus.
5https://ickeps2016.wordpress.com.

https://github.com/pucrs-automated-planning/syllabus
https://ickeps2016.wordpress.com
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Fig. 11.12 Survey results, users were asked to evaluate the system between frustrating (0) and
satisfying (5)

flexible to attend different user needs, such as theme, font size, and the ability to
re-size each part of the editor. Users also asked for more planners/requirements to
be supported.

4.3 General Public Usage Statistics

We collected anonymous data in WEB PLANNER from January 1 to May 30, 2019 to
verify user habits. We identified users from multiple countries with varying session
durations, with most users being in Brazil, where it was proposed as a classroom
tool. World usage can be seen in Fig. 11.13

5 Related Work

We now discuss related work and tools to formalize and validate planning domains,
visualize changes on a large amount of hierarchical data, and visualize state-space
search algorithms.

Planning.Domains6 is a collection of web tools for automated planning.
These web tools provide a PDDL editor, an API that contains a wide collection
of PDDL benchmark domain and problem files (most of them used on the
International Planning Competition), and a planner in the cloud that allows using
not only a planning solver, but also debugging tools, such as TorchLight [10],
and even WEB PLANNER visualizations as plugins. Similar to our approach,
Planning.Domains provides a PDDL editor, however, our approach provides

6http://planning.domains.

http://planning.domains
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Fig. 11.13 User sessions per country during the first 4 months of 2019

not only a web editor with syntax highlighting, but also a set of tools to develop,
analyze, and visualize planning domains using metaphors and alternative data
visualization methods.

We consider two offline tools for PDDL file editing as related enough to our
approach for comparison: myPDDL; and PDDL Studio. myPDDL7 [22] is an editor
extension for Sublime Text, which provides PDDL syntax highlighting, snippets,
and domain visualization (e.g., diagram types). PDDL Studio [16] is an IDE to
edit PDDL domains and problems. This IDE provides syntax highlighting, code
completion, and context hints specifically designed for PDDL. Both tools have
editor capabilities similar to ours, with myPDDL being able to generate type diagram
and calculate distances automatically, two unique features that benefit only users
that are either debugging typing errors or avoiding calculating distances in problems.
PDDL Studio is able to list description errors and integrates with external planners
using a command-line interface, leaving the user responsible for installation and
call to each planner. While myPDDL and PDDL Studio are more flexible than our
approach, being open or able to use any local planner, respectively, they need an
initial setup phase that consumes valuable classroom time. One of our goals was to
minimize the time spent to go from planning description explanation to planner call.

To validate a domain description one can follow the steps of a known valid plan
to solve one problem and either achieve a goal state or discover errors in the domain

7https://github.com/Pold87/myPDDL.

https://github.com/Pold87/myPDDL
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description. An entire branch of plan validation tools was created from VAL8 [12]
to do this job automatically. More recent implementations, InVAL9 and ReviVAL,10

try to complement VAL, being independent implementations that can increase trust
in domain descriptions and warn ambiguous PDDL descriptions to users. More
PDDL validation tools means more interest in their usage in real-life activities, yet
they are separated from planners and domain description tools. By adding a plan
validator to our interface we expect to make not only the validation process simpler,
but also essential to a user that wants an automated confirmation of their work, while
bringing awareness that such tools exist.

Graphical Interface for Planning with Objects (GIPO) [21] is a tool for planning
domain knowledge engineering that allows the textual specification of domains
in PDDL and Hierarchical Task Network (HTN), like other code editors. Besides
domain knowledge engineering, GIPO provides an animator tool to graphically
inspect the plans produced by the internal planner, given a domain and problem
specification. Like our approach, GIPO can use a set of plans to validate domain
and problem specification, indicating whether the specification do support the given
plans. Similar to Dovetail metaphor we implemented in WEB PLANNER, GIPO
also provides an animator tool to visualize how a sequence of actions (i.e., a
plan) connects to form a plan that achieves a goal state from an initial state.
VisPlan [5] is an interactive tool to visualize and verify plans’ correctness. This
tool is closely related to Dovetail metaphor in the sense of helping planning users
to better understand how a sequence of actions achieve a goal from an initial state.
VisPlan identifies possible flaws (i.e., incorrect actions) in a plan, allowing users to
manually modify this plan by repairing these identified flawed actions.

PDVer [17] is a methodology and tool that verifies if a PDDL domain satisfies a
set of requirements (i.e., planning goals). This tool allows an automatic generation
of these requirements from a Linear Temporal Logic (LTL) specification into a
PDDL description. This tool is concerned with how the corresponding PDDL action
constraints are translated from an LTL specification. PDVer provides a summary of
test cases (positive and negative) indicating why a PDDL domain specification does
not satisfy a set of requirements to achieve a goal. Our verification tests are only
based on common PDDL mistakes and lack domain-dependent constraints.

itSIMPLE11 [25] is concerned with domain modeling, using steps to guide
the user from informal requirements (UML) to an objective representation (Petri
Nets). itSIMPLE features a visualization and simulation tool to help understanding
planning domains through diagrams. itSIMPLE uses UML diagrams to model
planning instances and Petri Nets for validating planning instances. WEB PLANNER

8https://github.com/KCL-Planning/VAL.
9https://github.com/patrikhaslum/INVAL.
10https://github.com/guicho271828/ArriVAL.
11https://github.com/tvaquero/itsimple.

https://github.com/KCL-Planning/VAL
https://github.com/patrikhaslum/INVAL
https://github.com/guicho271828/ArriVAL
https://github.com/tvaquero/itsimple
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does not provide an incremental formalization approach to domain engineering,
requiring users to start with PDDL descriptions and, once done, able to generate
visualizations from it.

Magnaguagno et al. [14] developed a visual metaphor to help users visualize
and learn how the planning process works. Dovetail results suggest that this visual
metaphor can be useful to define and debug the planning process. We have applied
this visual metaphor in WEB PLANNER by using colors each instantiated predicate
in the state along a plan execution.

We found two approaches to data visualization suitable for heuristics. In [13],
Kuwata and Cohen develop visualization methods to understand and analyze the
search-space and behavior of heuristic functions, by exploring the usefulness of
these methods on shaping state-space search. The heuristic functions they explore
are A* and IDA*. Tu and Shen [23] propose a set of strategies to visualize and
compare changes in hierarchical data using treemaps. We currently only support
state-space non-cyclic graphs obtained from the planning process and no graph
comparison, as abrupt layout changes would impact a side-by-side comparison as
perceived by Tu and Shen. We opted for the current tree structure to obtain a visible
contour visualization that better matches abstract explanations.

6 Conclusions

In this paper, we describe WEB PLANNER, a cloud-based planning tool we
developed that consists of a PDDL editor to formalize planning domains and
problems, and visualizations to help understand the effect of planning heuristics
in the domains. This work aims to simplify the setup process required to execute
planners while providing visualizations to better understand how domain differences
and heuristics can impact the performance of the planner. Our small-scale survey
indicated promising results with user-feedback pointing towards improvements and
new features already in development.

As future work, we intend to support user-defined heuristics in our planner
along with alternative options to the user, such as selectable color schemes for the
visualization and a side-by-side state-space view for comparison. WEB PLANNER

has being used in the lectures from the Artificial Intelligence and Automated
Planning courses since August 2016 to explain planning concepts using both PDDL
and visualizations to around 50 students every year while being available to anyone
online, reaching over 300 accesses in the first quarter of 2019.

We believe that such web tool can help new heuristics to be developed and
tested, providing to users a better grasp of the impact of heuristics to the state-space
exploration, which is usually an invisible entity. WEB PLANNER tool is available
online at: https://web-planner.herokuapp.com.

https://web-planner.herokuapp.com
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5. Glinskỳ, R., Barták, R.: VisPlan–Interactive Visualisation and Verification of Plans. Proceed-
ings of the Workshop on Knowledge Engineering for Planning and Scheduling (KEPS) pp.
134–138 (2011)

6. Ha, T.T.: Theory and design of digital communication systems. Cambridge University Press
(2010)

7. Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical Journal
29(2), 147–160 (1950)

8. Helmert, M.: The Fast Downward Planning System. Journal of Artificial Intelligence Research
26, 191–246 (2006)

9. Hoffmann, J.: The Metric-FF Planning System: Translating “Ignoring Delete Lists” to Numeric
State Variables. Computing Research Repository (CoRR) abs/1106.5271 (2011), http://arxiv.
org/abs/1106.5271

10. Hoffmann, J.: The TorchLight Tool: Analyzing Search Topology Without Running Any Search.
In: Proceedings of the System Demonstrations, in the 21th International Conference on
Automated Planning and Scheduling. pp. 37–41 (2011)

11. Hoffmann, J., Nebel, B.: The FF Planning System: Fast Plan Generation Through Heuristic
Search. Journal of Artificial Intelligence Research (JAIR) 14(1), 253–302 (May 2001)

12. Howey, R., Long, D., Fox, M.: VAL: automatic plan validation, continuous effects and
mixed initiative planning using PDDL. In: 16th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI 2004), 15–17 November 2004, Boca Raton, FL, USA. pp. 294–
301 (2004)

13. Kuwata, Y., Cohen, P.R.: Visualization Tools for Real-Time Search Algorithms. Computer
Science Technical Report (1993)

14. Magnaguagno, M.C., Pereira, R.F., Meneguzzi, F.: DOVETAIL - An Abstraction for Classical
Planning Using a Visual Metaphor. In: Proceedings of FLAIRS, 2016. (2016), http://www.aaai.
org/ocs/index.php/FLAIRS/FLAIRS16/paper/view/12966

15. McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., Wilkins,
D.: PDDL − The Planning Domain Definition Language. Technical Report – Yale Center for
Computational Vision and Control (1998)

16. Plch, T., Chomut, M., Brom, C., Barták, R.: Inspect, edit and debug PDDL documents: Simply
and efficiently with PDDL Studio. In: Proceedings of ICAPS’09. pp. 15–18 (2012)

http://arxiv.org/abs/1106.5271
http://arxiv.org/abs/1106.5271
http://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS16/paper/view/12966
http://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS16/paper/view/12966


11 Web Planner: A Tool to Develop, Visualize, and Test Classical Planning Domains 227

17. Raimondi, F., Pecheur, C., Brat, G.: PDVer, a Tool to Verify PDDL Planning Domains. In:
Proceedings of ICAPS’09 Workshop on Verification and Validation of Planning and Scheduling
Systems, Thessaloniki, Greece (2009)

18. Reingold, E.M., Tilford, J.S.: Tidier drawings of trees. IEEE Transactions on Software
Engineering (2), 223–228 (1981)

19. Richter, S., Westphal, M.: The LAMA planner: Guiding cost-based anytime planning with
landmarks. Journal of Artificial Intelligence Research (JAIR) 39(1), 127–177 (2010)

20. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall Press, Upper
Saddle River, NJ, USA, 3rd edn. (2009)

21. Simpson, R.M., Kitchin, D.E., McCluskey, T.L.: Planning domain definition using GIPO.
Knowledge Eng. Review 22(2), 117–134 (2007). https://doi.org/10.1017/S0269888907001063

22. Strobel, V., Kirsch, A.: Planning in the Wild: Modeling Tools for PDDL. In: Joint German/Aus-
trian Conference on Artificial Intelligence. pp. 273–284. Springer (2014)

23. Tu, Y., Shen, H.W.: Visualizing Changes of Hierarchical Data using Treemaps. IEEE Transac-
tions on Visualization and Computer Graphics 13(6), 1286–1293 (Nov 2007). https://doi.org/
10.1109/TVCG.2007.70529

24. Vallati, M., Chrpa, L., McCluskey, T.L.: What you always wanted to know about the
deterministic part of the International Planning Competition (IPC) 2014 (but were too afraid to
ask). Knowledge Engineering Review 33, 383 (2018)

25. Vaquero, T., Tonaco, R., Costa, G., Tonidandel, F., Silva, J.R., Beck, J.C.: itSIMPLE 4.0:
Enhancing the modeling experience of planning problems. In: Proceedings of ICAPS’12. pp.
11–14 (2012)

26. Ward, M.O., Grinstein, G., Keim, D.: Interactive Data Visualization: Foundations, Techniques,
and Applications, Second Edition - 360 Degree Business. A. K. Peters, Ltd., Natick, MA, USA,
2nd edn. (2015)

27. Wilson, J.M.: Gantt charts: A centenary appreciation. European Journal of Operational
Research 149(2), 430–437 (2003)

https://doi.org/10.1017/S0269888907001063
https://doi.org/10.1109/TVCG.2007.70529
https://doi.org/10.1109/TVCG.2007.70529

	11 Web Planner: A Tool to Develop, Visualize, and Test Classical Planning Domains
	1 Introduction
	2 Background
	2.1 Planning
	2.2 Data Visualization

	3 Web Planner Architecture
	3.1 Domain Development Interface
	3.2 Visualization Interface

	4 Deployment and Evaluation
	4.1 Case Study
	4.2 Case Study Survey Results
	4.3 General Public Usage Statistics

	5 Related Work
	6 Conclusions
	References


