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Interactive Planning-Based Hypothesis
Generation with LTS++
Shirin Sohrabi, Octavian Udrea, Anton Riabov, and Oktie Hassanzadeh

Abstract We present LTS++, an interactive development environment for
planning-based hypothesis generation motivated by applications that require
multiple hypotheses to be generated in order to reason about the observations.
Our system uses expert knowledge and AI planning to reason about possibly
incomplete, noisy, or inconsistent observations derived from data by a set of
analytics, and generates plausible and consistent hypotheses about the state of the
world. Planning-based reasoning is enabled by knowledge models obtained from
domain experts that describe entities in the world, their states, and relationship to
observations. To address the knowledge engineering challenge, we have developed
a language, also called LTS++ that allows the domain expert to specify the
state transition model and encoding of the observations without any knowledge
of AI planning or existing planning languages (i.e., PDDL). LTS++ integrated
development environment facilitates model testing and debugging, generating, and
visualizing multiple hypotheses for user-provided observations, and supports model
deployment for online observation processing, publishing generated hypotheses for
analysis by experts or other systems. To compute hypotheses we use an efficient
planner that finds a set of high-quality plans. We experimentally evaluate our
planning algorithm and conduct empirical evaluation to demonstrate the feasibility
of our approach and the benefits of using planning-based reasoning. In this chapter
we focus on describing the modeling and the knowledge engineering challenges of
our system.
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1 Introduction and Motivation

The set of planning-based tools, collectively called LTS++, address the hypothesis
generation problem that arises in applications that require multiple hypotheses to be
generated in order to reason about possibly incomplete or inconsistent sequences
of observations received from external sources. For example, when analyzing
observations derived from sensor data in intensive care, the goal can be to generate
plausible hypotheses about the condition of the patient. The resulting hypotheses
can then be further refined and analyzed to create a recovery plan for the patient.
In another application, decisions aimed to prevent malware spread in computer
networks can be based on hypotheses about change in behavior of individual hosts
generated by reasoning about observations of network traffic over time.

The core idea of the approach to planning-based hypothesis generation we
implement in LTS++ is the following. Modeling the hypothesis generation problem
as one of inferring a sequence of state transitions from a sequence of observations
and transforming the sequence of observations together with the state transition
model into a planning task. In particular, we extend the work of Sohrabi et al.,
[19] to address unreliable observations and generate multiple near-optimal lowest-
cost plans, mapping the generated plans to hypotheses [17, 27]. This mapping
ensures that lower cost plans are mapped to more plausible hypotheses; hence,
finding a number of lowest-cost plans results in the same number of most plausible
hypotheses.

Our LTS++ implementation uses an efficient planner that finds top-k plans, i.e.,
k plans such that no valid plans with lower cost exist [11, 16, 24]. We have evaluated
several algorithms for this purpose, and currently use the k-shortest path algorithm
K∗ [1]. More details can be found in [16].

Knowledge engineering requirements come to the forefront in designing a system
like LTS++, where domain knowledge is encoded and maintained directly by the
domain experts, such as clinicians or network security engineers. To address these
requirements, we developed the LTS++ language that allows the domain experts to
easily describe the state transition models and observations specific to their domain,
without requiring the experts to learn about the underlying planning technologies
or Planning Domain Definition Language (PDDL) [13]. The LTS++ browser-
based Integrated Development Environment (IDE) includes an editor with syntax
highlighting and static error checking, as well as integrated tools for interactive
model testing and debugging, generating, and visualizing multiple hypotheses for
user-provided observations. Models created in the IDE can then be deployed to
LTS++ servers to generate hypotheses automatically as observations are received,
generating alerts based on hypotheses for further analysis by experts or other
systems.

We build upon a significant body of prior research. While expert judgment is the
primary method used for generating hypotheses and evaluating their plausibility,
automated methods have been proposed, to assist the expert, and help improve
accuracy and scalability. Notably, model-based diagnosis methods can determine
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whether observations can be explained by a model (e.g., [3]). Also, several
researchers have proposed use of automated planning technology to address several
related classes of problems including diagnosis (e.g., [7, 18]), plan recognition (e.g.,
[14, 15, 22]), and finding excuses [5]. These problems share a common goal of
finding a sequence of actions that can explain the set of observations given the
model-based description of the system. However, most of the existing literature
makes an assumption that the observations are reliable and should all be explainable
according to the model. But that is not true in general; as a further complication, we
cannot assume the system model is complete. The hypothesis generation approach
we propose handles the unreliable observations and incomplete models by offering
multiple alternative hypotheses explaining each given observation sequence. Our
LTS++ tool automates the generation and evaluation of hypotheses in addition
to addressing the knowledge engineering challenges of encoding and maintaining
models.

While we have performed experimental evaluation and conducted empirical
evaluation to demonstrate the feasibility of our approach and the benefits of using
planning-based reasoning, in this chapter, we focus on describing the modeling and
the knowledge engineering challenges of our system. In particular, in Sect. 2, we
describe our two applications, early detection of complications in ICU and early
detection of malware in computer networks. In Sect. 3, we describe the hypothesis
generation problem and its relationship to planning. In Sect. 4, we describe our
proposed language LTS++ and its main elements as well as its relationship to a
planning problem. We will then discuss the LTS++ IDE and provide a number of
example hypotheses in Sect. 5. We will conclude with a discussion of related work
and summary.

2 Application Description

In this section we describe two real-world applications that motivate our approach:
the early detection of patient complications in Intensive Care Units (ICUs) and
suspicious behavior of hosts (computers) in computer networks. A key characteristic
of these applications is that the true state of monitored patients, network hosts,
or other entities, while essential for timely detection and prevention of critical
conditions, is not directly observable. Furthermore, there are several ways of
analyzing the raw data to create observations about the entity, and there are
multiple potentially ambiguous observations, each of which can have differing
interpretations. We must then analyze the sequence of available observations to
reconstruct or estimate the entity state, and use that to drive further analysis or take
specific actions. To make this possible, our approach relies on a model of the entity
consisting of states, transitions between states, and a many-to-many correspondence
between states, observations, and actions. The model is a representation of the
knowledge a domain expert uses to perform the corresponding monitoring and
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Fig. 10.1 Patient complication detection

diagnosis task. We next describe two real-world models for patient monitoring and
cybersecurity analysis derived from experts, and the encoded LTS++ language.

To help describe the patient monitoring application, we describe a state transition
model that was drawn by talking with neuro ICU physicians from the Columbia
University Neurological unit. Figure 10.1 shows this state transition model. The
states have types, good drawn with a green outline or bad, drawn with an orange or
red outline. Each state has a name, and has associated observations that it explains,
and actions that it triggers. Note, these actions are analytic actions not to be confused
with planning actions. In the figure, the bad states correspond to critical states of a
patient such as Infection, DCI, Infarction, or sometimes even a terminal state such
as Death. The good states are the non-critical states. Upon admission the patient is
classified as either in Lowrisk or in Highrisk. From a Highrisk state, they may get
to the Infection, Infarction, or the DCI state through intermediate precomplication
states. These intermediate states represent states where some clinical signals are
present, but before the appearance of definitive symptoms. The patient’s condition
may improve; hence, the patient’s state may move back to the Lowrisk state from for
example the Infection state, based on interventions that the physicians can perform.

Observations in the model are computed from raw data captured by patient
monitoring devices (e.g., the patient’s blood pressure, heart rate, temperature) as
well as other measurements and computations provided by doctors and nurses. In
the figure, a subset of all possible observations is shown in light rectangular boxes—
attached to the state that explains them. Examples of observations include measures
computed from physiological parameters, such as the Systemic Inflammatory
Response Syndrome (SIRS) score, may be provided by doctors, such the Hunt and
Hess score (HH), and may be the result of performing lab-tests on the patient, such
as LabTestBacteria+ (positive test for Bacteria). As is shown, the same observation
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Fig. 10.2 Malware detection

can have multiple interpretations. For instance, the patient may have a SIRS score 3
or 4 both in Highrisk as well as in Infection state. Also shown in the figure—within
the shaded parallelograms—are corresponding actions that may be taken when the
patient is identified to be in that state. For instance, when the patient is estimated to
be in the Precomplication state, it is recommended to look at similarity with other
patients to further diagnose the patient’s condition. Such similarity can be computed
using different analytics. Alternately, when the patient is identified as being in a
complication state, the actions can correspond to interventions that the physicians
need to perform, e.g., Perform Pupil Test.

Figure 10.2 shows a state transition model for network host (entity) monitoring in
a computer network. This model is derived through consultation with cybersecurity
and network monitoring analysts. Bad states in this model correspond to the
malware lifecycle, with the host becoming infected with malware. These states
include the Infection and Exploit states shown in the figure. Good states include
states associated within the normal modes of operation of a host such as Crawling,
Normal, Serving (server behavior), etc. There are also intermediate states that are
not completely indicative of infection, but may be pre-cursors to bad states. These
include the Anomalous and Pre-Infected states. Observations for this model are
computed from the raw network traffic, including measurements from Domain
Name System (DNS) queries, from Netflow measurements, and from Firewall alerts,
as well as looking at the network behavior of the hosts. As with the ICU model the
same observation of High Number of DNS Queries may be associated with either
Anomalous behavior for end-user machines or Crawling behavior. Actions in this
case represent analytic tasks, such as Analyze Network History to identify how a
machine got infected, or physical tasks, such as Quarantine Host when the host is
identified as being in the Exploit state.

While the complexity of the analysis involved to derive observations from the
raw data can vary, it is important to note that observations, in both cases described
earlier, are by nature unreliable:
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The Set of Observations Can Be Incomplete Operational constraints will prevent us
running in-depth analysis on all of the data all the time. However, observations are
typically time stamped, and can be temporally ordered.

Observations May Be Ambiguous This is depicted in multiple examples in
Figs. 10.1 and 10.2, where the same observation may be explained by many states.

Not All Observations Are Explainable, Given Other Observations There are several
reasons while some observations may remain unexplained: (1) observations are
(sometimes weak) indicators of a behavior, rather than authoritative measurements;
(2) the model description is by necessity incomplete, unless we are able to design
a perfect model; (3) in the case of malware detection, malware could try to confuse
detectors by either hiding in normal traffic patterns or originating extra traffic.

For instance, consider the cybersecurity model, and a sequence of observations:
Monitoring On, High DNS Queries. This can be explained by the following state
sequences:

• Normal → Misconfigured
• Normal → Anomalous → Misconfigured
• Normal → Misconfigured
• Normal → Anomalous → Crawling

and other observations are required to disambiguate these states. Some of these
may be pre-cursors to infection (e.g., Anomalous) and so require careful analysis.
Given a sequence of observations and the model, the hypothesis generation task
infers a number of plausible hypotheses about the evolution of the entity. In
practice this requires a high degree of human skill to perform. By encoding
domain knowledge using a simple model of the form described, and coupling
with an automated technique that allows for incomplete state transition models,
and unreliable observations, we can provide action decision support to human
experts. The result of our automated technique is presented as recommendations
to physicians or network analysts, or may be used automatically to drive additional
analyses.

3 Hypothesis Generation Problem

In this section, we formally define the hypothesis generation problem. To do so, we
first define a dynamical system that can model the system behavior. We then define
a notion of a hypothesis and hypothesis “plausibility.”

A dynamical system is a tuple Σ = (F,A, I), where F is a finite set of fluent
symbols, A is a set of actions, and I ⊆ F defines the initial state. Actions are defined
by their precondition and effects, over the set of fluents F . The set of actions A

includes both actions that account for the possible transitions in the model as well as
the discard actions, one per each observation o with precondition ¬o and no effect.
The “discard’ actions to simulate the “explanation” of an unexplained observation.
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That is, the instances of the discard action add transitions to the system that account
for leaving an observation unexplained. The added transitions by the discard action
help us define the satisfaction of observations as we will discuss next.

A system state s is a set of fluents which defines all that is true in a particular
state of a dynamical system. For a state s, let Ms : F → {true, f alse} be a truth
assignment that assigns true to f if f ∈ s and f alse otherwise. An action a is
executable in a state s if all of its preconditions are met by the state s or Ms |= c for
every c in the precondition of a. We define the successor state as δ(a, s) = (s\ delete
effects of a) ∪ (add effects of action a) for the executable actions. The sequence of
actions [a1, . . . , an] is executable in s if the state s′ = δ(an, δ(an−1, . . . , δ(a1, s)))

is defined; henceforth, is executable in Σ if it is executable from the initial state.
Let T ⊆ F be the set of fluents that are observable. An observation is a fluent

in T . Observation formula ϕ or what we call a trace is a sequence of observations.
While in general the observation formula ϕ can be expressed as an Linear Temporal
Logic (LTL) formula [4], we consider the trace ϕ to have the form ϕ = [o1, . . . , om],
where oi ∈ T , with the following standard LTL interpretation1:

o1 ∧ ©♦(o2 ∧ ©♦(o3 . . . (on−1 ∧ ©♦on) . . .))

Note that the observations are totally ordered in the above formula. It is typical
for the applications we consider to have observations that are timestamps and hence
are considered to be totally ordered.

Intuitively, not all observations can be explained; hence, we define the notion of
satisfaction of a trace which considers an observation satisfied if it is explained or
discarded as long as the order of which observations are considered is met by the
action sequence. More formally, we define the satisfaction of a trace ϕ by an action
sequence π in Σ as follows.

Definition 1 A trace ϕ = [o1, . . . , om] is satisfied by an action sequence π =
[a1, . . . , an] if π is executable from the initial state and there is a non-decreasing
function f that maps the observation indices j = 1, . . . , m into action indices i =
1, . . . , n, such that for all 0 ≤ j ≤ m, either oj ∈ s, where s is the state reached
after execution of action af (j), or discardoj

= af (j)

Consider the following set of actions: Ao1 with effect o1, Ao2 with effect o2,
Ao3 with effects o2 and o3, and action Ao4 with effects o1, o2, and o4. Then the
trace [o1, o2] is satisfied by action sequence [Ao1, Ao2 ] (f (1) = 1, f (2) = 2),
[Ao4] (f (1) = 1, f (2) = 1),[discardo1 , Ao2 ] (f (1) = 1, f (2) = 2), but not
by the action sequence [Ao2, discardo1] or [Ao1, discardo1]. This is because the
order of observation must be met by the function f . No such function would exist
for [Ao2, discardo1]. Additionally, an action may explain multiple observation. For
example, action Ao4 explains both o1 and o2; hence, the function f maps both
observations to the same action index.

1© is a symbol for next, ♦ is a symbol for eventually.
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Definition 2 Given the dynamical system description Σ = (F,A, I), and a trace
ϕ = [o1, . . . , om], an observation oi ∈ ϕ is said to be ambiguous if there are at
least two actions in A that have the fluent oi as part of their effects. Further, if ϕ

is satisfied by an action sequence π = [a1, . . . an], an observation o is said to be
missing from the trace if (1) o is observable (i.e., o ∈ T ); (2) o /∈ ϕ; and (3) o is part
of an effect of at least one action ai in the action sequence π , and o ∈ ϕ is said to be
noisy if o is never added by any of the actions ai ∈ π .

According to the above definition, observation o1 is ambiguous because both
action Ao1 and action Ao4 may explain it. Also given a trace ϕ = [o1, o2], ϕ is
satisfied by the action sequence [Ao1, Ao3 ] and in that case, observation o3 is said
to be missing from the trace ϕ because o3 is part of the effect of Ao3 , but not
in the given trace. Furthermore, o1 is said to be noisy given the action sequence
[discardo1, Ao2 ] because o1 is not added by any of the actions in the plan.

A hypothesis is the sequence of actions that explains the given trace. In the case
of unreliable observations, a hypothesis may not explain all the observations by
discarding some. Hence, we use our definition of a trace satisfied by an action
sequence to formally define a hypothesis as follows.

Definition 3 Hypothesis generation problem is a tuple HG = (Σ = (F,A, I), ϕ),
where Σ is a dynamical system and ϕ is the given trace. A hypothesis for HG is a
sequence of actions π = [a1, . . . , an], 1 ≤ i ≤ n, ai ∈ A such that the trace ϕ is
satisfied by the sequence of actions π .

Given a trace, there are many possible hypotheses, but some could be stated as
more plausible than others. Hence, we define a notion of plausibility of a hypothesis.
A hypothesis π is said to be at least as plausible as hypothesis π ′, stated as π � π ′,
where � is assumed to be a reflexive and transitive plausibility relation.

Definition 4 Given a hypothesis generation problem HG = (Σ = (F,A, I), ϕ), π
is the most plausible hypothesis for HG if and only if π is a hypothesis for HG and
there does not exists another hypothesis π ′ for HG such that π ′ is more plausible
or π ′ � π and π �� π ′.

Next, we define a few cases for the notion of plausibility between hypothesis. A
hypothesis π is at least as plausible as hypothesis π ′, π � π ′, if one or more of the
following statements hold: π can explain more observations than π ′, π is a shorter
hypothesis, π has minimum number of designated “unlikely” or “bad” actions. The
third criteria is similar to the notion of minimum number of “faulty” actions in a
diagnostic setting, based on having an optimistic view on what can go wrong.

Back to our example, the hypothesis [Ao4] is more plausible than for example,
[Ao1, Ao2 ] because it is shorter, and the hypothesis [Ao1 , Ao2 ] is more plausible
than the hypothesis [discardo1 , Ao3 ] because it explains both observations. The
third criteria is similar to the notion of minimum number of “faulty” actions in a
diagnostic setting, based on having an optimistic view on what can go wrong. Note
that a hypothesis may be shorter but have more discard actions or more unlikely
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actions. We address combining the above plausibility relations using numerical cost
values of the underlining planning domain. Therefore, plans with smaller costs are
more plausible.

4 Model Description in LTS++

In this section, we will describe our proposed language LTS++, derived from LTS
(Labeled Transition System) [12] that can be used to define the domain knowledge
by a domain expert. As described in the application section, encoding the domain
knowledge is itself a challenge specially if the domain expert is not familiar with AI
planning. Hence, we also discuss our knowledge engineering effort that can guide
the domain expert in describing their knowledge about a particular application.
This knowledge is implicitly the same knowledge captured theoretically by the
dynamical system. Furthermore, the LTS++ model description together with a trace
encodes the hypothesis generation problem we are trying to solve.

Note, LTS++ does not have a full expressive power of PDDL since it encodes
state transitions in a simple “next-state” predicate model. A PDDL encoding allows
encoding of richer actions with preconditions and effects. Hence, while we can
express the LTS++ language into PDDL, we cannot go from a PDDL encoding
of the domain to the LTS++ encoding.

We propose a process that further helps the domain experts in creating a model.
Figure 10.3 shows our 7-step creation process for an LTS++ model. The arrows are
intended to indicate the most typical transitions between steps. This process is meant
to help provide guidance to the new users in developing an LTS++ model. While
this process is geared towards our applications, we believe that it also provides
insight and inspiration into creation of a practical planning problem. Next, we will
describe the basic elements in the description of a model in LTS++ following the
steps in the model creation process.

1. Entity: The domain expert needs to identify the entity which is what the system
monitors. This depends on the objective of the hypotheses generator, the available

Step 6: 
Identify 
Initial 
State 

Step 3: Identify 
Observations 

Step 2: 
Identify 
States 

Step 4: Identify 
Transitions 
Between States 

Step 1: 
Identify 
the Entity 

Step 5: Identify 
Relationship 
between States 
& Observations 

Step 7: 
Identify 
State 
Types 

Fig. 10.3 Process for LTS++ model creation
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data, and the available actions. The entity could be a patient or a host or other
objects in the application.

2. States: The domain expert needs to identify the possible states of the entity
(different from a planning state). States are not directly observable but can
be hypothesized. The states of patient for example could be Delayed Cerebral
Ischemia (DCI), SuspectedDCI, Infection, Precomplication or Highrisk. The
states could form a hierarchy, in which case all non-child states are called
hyperstates. For example, there could be multiple precomplication states, each a
child of Precomplication hyperstate. Designating a state as a hyperstate is useful
when it comes to modeling incomplete model and unreliable observations. For
example, if a transition through one or several states of the hyperstate is required,
but no specific observation is associated with the transition, the hyperstate itself is
included as part of the hypothesis, indicating that the model may have a missing
state within the hyperstate, and that state in turn may need a new observation
type associated with it.

3. Observations: The domain experts need to identify a set of observation types that
the system needs to reason about. Since observations are received from analytics
as a result of analyzing raw data, the available data and analytics may limit the
space of observations. Heart Rate Variability Low (OHRVL), is an example of an
observation. It is important to note that observations are by nature unreliable: the
set of observations will be incomplete, observations may be ambiguous, and not
all observation will be explainable.

4. State Transitions: The domain expert has to describe possible transitions
between states. An example transition is going from state Infection to Highrisk.
This transition reflects an improvement in patient state, without describing the
cause of this transition. Enumerating all possible transitions may be a tedious
task, depending on the number of states. However, one can use hyperstates to help
manage these transitions. Any transition into (or out of) a hyperstate is carried to
every child of the hyperstate.

5. Association between States and Observations: The domain expert has to
associate observations to states meaning that this observation can be explained
by this state. Note, this association can be many-to-many as observations could
be ambiguous or indicative of more than one state, and each state can be
associated with multiple observations. The observation OHRVL is an example
of an ambiguous observation because it can be associated with multiple states.
Note we add “O” to the observation as a convention.

6. Initial State: The domain expert can also define the initial state if the initial state
is known. For example in the case of healthcare, the initial state can be the state
Admitted.

7. State Types: States could also have types such as, unlikely, or “bad” states. This
maps to the notion of “faulty” or “unlikely” planning actions.

Figure 10.4 shows an LTS++ model description for our healthcare application.
The states are shown in blue. The observations are specified within the curly
brackets and are shown in green. Multiple observations can be separated by
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Fig. 10.4 Healthcare model description in LTS++

whitespace or a comma. The state types are specified within angle brackets with a
default state type shown in the first line. The transitions between states are specified
using arrows. Multiple transitions between states can be specified using a vertical
bar. The starting state is specified in the last line.

The knowledge encoded in the LTS++ model is implicitly the same knowledge
in the theory of the dynamical system. Informally, each state can be thought of
as a label for a subset of planning states of interest and therefore be modeled
using a special fluent such as “(at-state).” Each observation belongs to the set T of
observable fluents. The state transitions together with the relationship between states
and observations define the set of actions A such that the specified state transition
is ensured and the observations are part of the effect of the actions. The initial
state can also map directly to I . The state types can also map to fluents. Hence,
the hypothesis generation problem can now be captures using the LTS++ model
description together with a provided trace.

4.1 From LTS++ to a Planning Problem in PDDL

In this section, we describe the planning problem using one fixed encoding of the
planning domain, (i.e., description of planning actions, predicates), but varied the
planning problem/instance (i.e., initial state, goal state, and variables) based on the
given LTS++ model and the given observations. The planning domain is shown in
Fig. 10.5 and the planning problem is shown in Fig. 10.6.

The planning domain in Planning Domain Definition Language (PDDL) [13]
includes a total of 6 actions. In short, we use two phases, state transitions
and explaining or discarding observations and switch between these two using
the “ready” predicate. Each transition is followed by either explaining, explain-
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(:action explain-observation
:parameters(?x - state ?obs1 - obs ?obs2 - obs ?cat - obs-type)
:precondition (and (is-next-obs ?obs1 ?obs2)(matches ?obs1 ?cat)

(explains ?x ?cat)(at-state ?x)(at-obs ?obs1))
:effect (and (not (at-obs ?obs1)) (at-obs ?obs2) (ready)

(increase (total-cost) 0)))

(:action discard-observation
:parameters(?x - state ?obs1 - obs ?obs2 - obs)
:precondition (and (is-next-obs ?obs1 ?obs2)(at-state ?x)(at-obs ?obs1))
:effect (and (not (at-obs ?obs1))(at-obs ?obs2)(ready)

(increase (total-cost) 2000)))

(:action state-change
:parameters(?x - state ?y - state ?obs - obs)
:precondition (and (is-next-state ?x ?y)(at-obs ?obs)(at-state ?x)(ready))
:effect (and (not (at-state ?x))(not (ready))(entering-state ?y)

(increase (total-cost) 0)))

(:action enter-state-good
:parameters(?y - state ?obs - obs)
:precondition (and (at-obs ?obs) (entering-state ?y) (good-state ?y))
:effect (and (at-state ?y)(not (entering-state ?y))

(increase (total-cost) 1)))

(:action enter-state-bad
:parameters(?y - state ?obs - obs)
:precondition (and (at-obs ?obs)(entering-state ?y)(bad-state ?y))
:effect (and (at-state ?y)(not (entering-state ?y))

(increase (total-cost) 10)))

(:action allow-unobserved
:parameters(?x - state ?obs - obs)
:precondition (and (at-obs ?obs)(at-state ?x))
:effect (and (ready)(increase (total-cost) 1100)))

Fig. 10.5 Partial encoding of our sample PDDL domain

(:init
(at-state admitted) (at-obs o_1)(ready)

(matches o_1 OHH1)(matches o_2 OSIRS0)(matches o_3 OSIRS2)

(explains lowrisk OSIRS0) (explains highrisk OSIRS2)
(explains precomp OSIRS2) (explains lowrisk OHH1)
(explains dci OANGIOGRAMDCIPOSITIVE)
(explains highrisk OHRVL) (explains precomp OHRVL)

(is-next-state admitted highrisk) (is-next-state admitted lowrisk)
(is-next-state lowrisk highrisk) (is-next-state highrisk lowrisk)
(is-next-state highrisk precomp) (is-next-state dci highrisk)
(is-next-state dci icudeath) (is-next-state dci precomp)

(bad-state dci) (bad-state highrisk) (good-state lowrisk)

(is-next-obs o_1 o_2)(is-next-obs o_2 o_3) (is-next-obs o_3 o_end))

(:goal (and (at-obs o_end) (ready)))

Fig. 10.6 Partial encoding of our sample PDDL problem for the intensive care application
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observation, or discarding, discard-observation, an observation or moving to the
next state transition without explaining or discarding any observation, allow-
unobserved which is useful in order to allow missing observations. The explain
action has a cost of 0, the discard-observation action has a high cost (e.g., 2000),
and the unobserved transition has a cost of 1100 in this encoding. These numbers
were set arbitrary here to show the relative comparison between the different costs
set for each different action. In practice these numbers can be learned from data but
we found that the number we used modeled the behavior as expected.

The predicates “is-next-obs,” and “at-obs” are used to keep track of observation
order. Observation categories (i.e., ?cat) defines the possible observations in the
domain. The predicate “matches” together with the “is-next-obs” defines the
current trace or the sequence of observation. The predicate “explains” is used
to connect states and observations; “(explains ?x ?cat)” means that state ?x can
explain observation of category ?cat. The action explain-observation can explain
an observation if the resulting state can explain the observation category of the
observation in the trace.

We also had one action, state-change that represents the transitions defined by
the actions A. This action had a cost of 0 and the predicate “is-next-state” is used to
encode the transitions between states. Two additional actions, enter-state-good and
enter-state-bad, are used to associate different costs for good and bad states. The
predicates “(bad-state)” and “(good-states)” are used to define the good and bad
states in the problem. We used a cost of 1 for good states and a cost of 10 for bad
states.

This encoding of the domain allowed us to automatically generate multiple
problem sets that include different number of observations as well as different tran-
sitions. Partial encoding of our sample PDDL problem is shown in Fig. 10.6. This
encoding matches our LTS++ description shown in Fig. 10.4 with the following
trace [OHH1, OSIRS0, OSIRS2]. The initial state is a special state ‘admitted’ with
transitions to highrisk and lowrisk states. The goal state is encoded by two predicates
“(ready)” and the “(at-obs o_end)” predicate to ensure the last observation is
considered. The last observation is only considered if all other observations are
considered in the order in which they are given.

Theorem 1 Let P ′ be a planning problem constructed as above for a given LTS++
model and a trace ϕ and HG be the corresponding hypotheses generation problem;
HG has only state transition actions in which observations are part of their effects
and the discard actions. If π is a plan for P ′ then there exists a hypotheses π ′ for
HG that can be constructed from π by considering only the state transition actions
and the discard actions. On the other hand, if π ′ is a hypotheses for HG, then there
exists a plan π for P ′ that can be constructed from π ′ by adding the extra actions
explain, enter, and allow-unobserved and by modifying the state transition action.

Proof If π is a plan for P ′, therefore it is executable from the initial state and the
goal is satisfied; each observation is either explained or discarded and the ordering is
preserved. Therefore, there is a non-decreasing function that maps the observation
indices into the action indices: if the observation is satisfied it maps to the state-
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change action and if it is discarded, it maps to the “discard” action. Therefore, if
only the state transition and discard actions are kept, then the trace is still satisfied.
If the state-change action is modified to include the observation fluent as part of its
effect, then this is a hypotheses for HG. On the other hand, if π ′ is a hypothesis for
HG, then we can add the extra actions to π ′ and modify the state-change action to
remove the explicit mention of the observation and the trace would still be satisfied.
The result is a plan for π .

Note, the exact PDDL encoding of the planning problem P ′ determines if for
each found plan for P ′ there would be exactly one corresponding hypotheses or
multiple. If we used the encoding shown earlier, then for each plan there could
be multiple possible hypotheses because of the positioning of the explain action.
It is possible to have a more complex planning domain and force a one-to-one
relationship between hypotheses and plans. Nevertheless, the above theorem shows
that a hypothesis can be found by translating the hypothesis generation problem into
a planning problem and using an AI planner to find a plan. The resulting plan can
be turned into a hypotheses by a post-processing step that removes the extra actions
from the plan. Furthermore, assuming that the costs of the actions in P ′ model the
plausibility notion correctly, then the lowest-cost plan maps to the most plausible
hypotheses. More formally,

Corollary 1 Let P ′ be a planning problem constructed as above for a given
LTS++ model and a trace ϕ and HG be the corresponding hypotheses generation
problem. Further, let π1 and π2 be two plans for P ′, and π ′

1 and π ′
2 be the

corresponding hypotheses for HG. Then π ′
1 is at least as plausible as π ′

2 if and
only if cost (π1) < cost (π2).

Given the association between plans and hypotheses we use top-k planning to
find a set of plans with low cost. These plans can be translated to hypotheses to find
the most plausible hypotheses to the hypotheses generation problem. For details on
top-k please see [11, 16, 24].

5 LTS++ Integrated Development Environment

LTS++ Integrated Development Environment (IDE) is a web-based tool that helps
the domain experts to create model descriptions by describing LTS++ models and
to generate hypotheses. LTS++ IDE consists of an LTS++ editor, graphical view
of the transition system, specification of the trace, and generation of hypotheses.
The tool automatically generates planning problems from the LTS++ specification
and the entered trace. The generated hypotheses are the result of running our planner
and presenting the result from top-most plausible hypothesis to the least plausible
hypothesis.

Model Editor The top part of the model editor screen (Fig. 10.7) is the LTS++
language editor with syntax highlighting and the bottom part is the automatically
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Fig. 10.7 LTS++ IDE

generated transition graph. In the editor, the states appear in blue. The observations
are specified within the curly brackets and appear in green. You can specify multiple
observations by using space or comma between observations. The transitions
between states are specified using arrows. Multiple transitions between states can
be specified using a vertical bar. The LTS++ model editor automatically detects
errors in LTS++ language and shows them below the text editor.

Model Testing To test the model, a sequence of observations can be entered
by clicking on “Next: edit trace” from the LTS++ IDE main page. The tool
automatically generates planning problems from the LTS++ specification and
entered trace. The generated hypotheses are the result of running a planner and
finding the most plausible hypotheses ranked by plausibility from highest to lowest.
Figure 10.8 shows an example of hypotheses generated for the critical care model;
the result is automatically generated by our tool. Each hypothesis is shown as a
sequence of states matched to an observed event sequence. The observations that
are explained by a state are shown in green ovals, and unexplained observations
are shown in purple. The arrows between the observations show the sequence of
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Fig. 10.8 Sample healthcare example

observations in the trace. Each hypothesis is associated with a cost. The lower the
cost value, the more plausible is the hypothesis.

Model Discovery and Update Our tool uses a simple bootstrapping technique to
discover an initial model given a set of historical observations. Several candidate
models will be presented to the domain expert who can choose one as an initial
LTS++ model and further improve it. We also implement automated model updates
to produce better quality hypotheses as we do not assume the model will be accurate
in perpetuity. To do this, we use an aggregate measure of the plausibility of top-N
hypotheses as our optimization criteria. Using a genetic algorithm, we attempt small
atomic changes to the model (e.g., addition and deletion of states, observations and
transitions) and measure the increase in aggregate hypothesis plausibility as a result.
In subsequent generations, we combine the promising atomic changes and repeat
until we can no longer increase hypothesis plausibility.

Model Composition A single LTS++ model describes a state transition system for
a single type of entity, such as a patient. Given multiple entities, each with their own
associated model, our tool also allows automated composition of multiple models.
It does so by considering a cross product of all possible joint states while paying
special attention to the association between observations and the combined states.

Hypothesis Clustering Many of the generated hypotheses are only slightly differ-
ent from each other. That is, they do seem to be duplicates of each other, except for
one or more states or actions that are different. To consolidate similar plans produced
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by the planner, we apply a clustering algorithm to cluster similar plans and present
clusters of plans, where each cluster can be replaced by its representative plan.

6 Related Work

There are several approaches in the diagnosis literature related to the hypothesis
generation problem in which use of planners as well as SAT solvers are explored
(e.g., [2, 6, 7, 18]). The hypothesis generation problem is also related to the plan
recognition problem and the use of AI planning have been explored in that space
as well [14, 15, 22]. In particular, Sohrabi et al., explored the same ideas as
discussed here with respect to the notion of unreliable observations for the several
related problem such as future state projection problem [23] and enterprise risk
management [20, 21, 25, 26] that have a corresponding a plan recognition problem.
It is important to note that these papers also discuss and address the knowledge
engineering challenge through what is called a Mind Map. A Mind Map is a
graphical representation of the concepts and relations. The domain knowledge can
be encoded by one or more Mind Maps connected by the same concept used in
multiple Mind Maps. The Mind Maps can be created in a tool such as FreeMind that
produces an XML representation of the Mind Maps and be provided to a system. The
system then translates the Mind Maps into an AI planning problem automatically.
It is also possible to learn the causal relation between the concepts in order to build
the Mind Maps automatically from scratch or augment or validate existing ones [8].
Then similarly, a set of top-k or top-quality plans are found through top-k planning
[11, 16, 24]. Diverse planning [9] or top-quality [10] planning can also be explored
to compute such a set of plans.

7 Summary

We presented LTS++, an interactive development environment for planning-based
hypothesis generation. To enable our planning-based reasoning, we proposed a char-
acterization of the hypothesis generation problem and showed its correspondence
to an AI planning problem. To address the knowledge engineering challenge, we
have developed a language, also called LTS++ that allows the domain expert to
specify the state transition model and encoding of the observations without any
knowledge of AI planning or existing planning languages. LTS++ IDE facilitates
model testing and debugging, generating, and visualizing multiple hypotheses for
user-provided observations. The tool automatically generates planning problems
from the LTS++ specification and the entered trace. The generated hypotheses are
the result of running our planner that computes a set of high-quality plans. The
hypotheses can be visualized and shown to the analyst or can be further investigated
automatically.
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