
Mauro Vallati
Diane Kitchin Editors

Knowledge
Engineering
Tools and
Techniques for AI
Planning

Knowledge Engineering Tools and Techniques
for AI Planning

Mauro Vallati • Diane Kitchin
Editors

Knowledge Engineering
Tools and Techniques
for AI Planning

Editors
Mauro Vallati
Department of Computer Science
University of Huddersfield
Huddersfield, UK

Diane Kitchin
Department of Computer Science
University of Huddersfield
Huddersfield, UK

ISBN 978-3-030-38560-6 ISBN 978-3-030-38561-3 (eBook)
https://doi.org/10.1007/978-3-030-38561-3

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-38561-3

Preface

Automated planning plays a central role in artificial intelligence (AI), as it focuses
on investigating approaches for producing plans, in terms of sequences of actions
that need to be performed. These plans allow an agent to achieve identified and
clearly stated goals. Being able to plan for the future is a pivotal characteristic of any
intelligent system and is an essential capability of autonomous systems. Automated
planning has been successfully applied for decades in several areas, including space
exploration, machine tool calibration, control of unmanned robots, and urban traffic
control to mention a few.

Undoubtedly, the intensive development of domain-independent planners has
contributed to the advancement of planning technology, as planning engines can be
exploited as embedded components within a larger framework. Since they accept the
domain and problem instance in a well-defined interface language and return plans
using the same syntax, they can be interchanged without any changes to the rest of
the system. On the other hand, the efficiency of plan generation remains one of the
most prominent challenges in artificial intelligence. Domain-independent planning
engines have to deal with the complexity issues inherent in plan generation, which
are exacerbated by the separation of planner logic from domain knowledge.

Knowledge Engineering in Planning and Scheduling (KEPS) was defined in
the 2003 PLANET Roadmap, specifically for domain-independent planners, as the
collection of processes involving (i) the acquisition, validation and verification,
and maintenance of planning domain models; (ii) the selection and optimisation
of appropriate planning machinery; and (iii) the integration of (i) and (ii) to form
automated planning and scheduling applications.

KEPS can be seen as a special case of knowledge engineering, where the need for
methodologies for acquiring, domain modelling, and managing formally captured
knowledge has long been accepted. It is also related to the area of capturing
conceptual knowledge and developing domain models for qualitative reasoning in
the general modelling and simulation area. However, the peculiarities of automated
planning and scheduling applications distinguish KEPS from general knowledge-
based and simulation systems. Firstly, KEPS is concerned with the acquisition and
representation of knowledge about actions, resources, processes, events, and the

v

vi Preface

effect these have on a state. Secondly, this knowledge is to be used to create a
system that synthesises plans, rather than performing the more common functions
of knowledge systems such as classification, diagnosis, or decision-making. Thirdly,
the knowledge is often acquired in two parts: a specification of persistent knowledge
(in the literature this part is called the “domain” or “domain model”) and a
specification of particular scenarios representing the planning problem instance.

Studies on KEPS have led to the creation of several tools and techniques to
support the design of domain knowledge structures and the use of planners for real-
world problems. Most of these tools have been presented in specialised workshops
such as the Knowledge Engineering for Planning and Scheduling workshop and the
Verification and Validation of Planning Systems workshop, as well as competitions
such as the International Competition on Knowledge Engineering for Planning and
Scheduling (ICKEPS).

This book provides an overview of the state of the art of knowledge engineering
for planning and scheduling, bringing together work from leading researchers in the
field, and covering a variety of tools and approaches. Aiming at being as inclusive as
possible, the focus is not given to a specific formalism or paradigm but to the variety
of planning approaches and languages that are exploited in real-world applications,
as well as in research.

Besides the clear aim of providing a holistic vision of the KEPS field, we hope
that this book can foster discussions around KEPS approaches and techniques and
highlight areas in which future effort has to be focused in order to advance the field.

Huddersfield, UK Mauro Vallati
Diane Kitchin

Contents

Part I Knowledge Capture and Encoding

1 Explanation-Based Learning of Action Models . 3
Diego Aineto, Sergio Jiménez, and Eva Onaindia

2 Automated Domain Model Learning Tools for Planning 21
Rabia Jilani

3 Formal Knowledge Engineering for Planning:
Pre and Post-Design Analysis . 47
Jose Reinaldo Silva, Javier Martinez Silva, and Tiago Stegun Vaquero

4 MyPDDL: Tools for Efficiently Creating PDDL Domains
and Problems . 67
Volker Strobel and Alexandra Kirsch

5 KEPS Book: Planning.Domains. 91
Christian Muise and Nir Lipovetzky

6 Modeling Planning Tasks: Representation Matters . 107
Lukáš Chrpa

Part II Interaction, Visualisation, and Explanation

7 An Interactive Tool for Plan Generation, Inspection,
and Visualization . 127
Alfonso E. Gerevini and Alessandro Saetti

8 Interactive Visualization in Planning and Scheduling 157
Roman Barták

9 Argument-Based Plan Explanation . 173
Nir Oren, Kees van Deemter, and Wamberto W. Vasconcelos

vii

viii Contents

10 Interactive Planning-Based Hypothesis Generation with LTS++ 189
Shirin Sohrabi, Octavian Udrea, Anton Riabov,
and Oktie Hassanzadeh

11 Web Planner: A Tool to Develop, Visualize, and Test Classical
Planning Domains . 209
Maurício C. Magnaguagno, Ramon Fraga Pereira, Martin D. Móre,
and Felipe Meneguzzi

Part III Case Studies and Applications

12 Design of Timeline-Based Planning Systems for Safe
Human-Robot Collaboration . 231
Andrea Orlandini, Marta Cialdea Mayer, Alessandro Umbrico,
and Amedeo Cesta

13 Planning in a Real-World Application: An AUV Case Study 249
Lukáš Chrpa

14 Knowledge Engineering and Planning for Social Human–Robot
Interaction: A Case Study . 261
Ronald P. A. Petrick and Mary Ellen Foster

Part I
Knowledge Capture and Encoding

Chapter 1
Explanation-Based Learning of Action
Models

Diego Aineto, Sergio Jiménez, and Eva Onaindia

Abstract The paper presents a classical planning compilation for learning STRIPS

action models from partial observations of plan executions. The compilation is
flexible to different amounts and types of input knowledge, from learning samples
that comprise partially observed intermediate states of the plan execution to samples
in which only the initial and final states are observed. The compilation accepts
also partially specified action models and it can be used to validate whether an
observation of a plan execution follows a given STRIPS action model, even if the
given model or the given observation is incomplete.

Keywords Learning action models · Classical planning

1 Introduction

Action models in planning are not only required for plan synthesis [10] but also for
other tasks like plan/goal recognition [19, 20]. In both cases, automated planners
are required to reason about action models that correctly and completely capture
the possible world transitions [9]. Unfortunately building planning action models
is complex, even for planning experts, and this knowledge acquisition task is a
bottleneck that limits the potential of AI planning [14].

Machine Learning (ML) techniques have shown to be suitable to learn a wide
range of different kinds of models from examples [17]. The application of inductive
ML to learning STRIPS action models, the vanilla action model for planning [6], is
not straightforward though:

– The input to ML algorithms (the learning/training data) is usually a finite vector
that represents the value of some fixed object features. The input for learning

D. Aineto · S. Jiménez (�) · E. Onaindia
Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València,
Valencia, Spain
e-mail: dieaigar@dsic.upv.es; serjice@dsic.upv.es; onaindia@dsic.upv.es

© Springer Nature Switzerland AG 2020
M. Vallati, D. Kitchin (eds.), Knowledge Engineering Tools and Techniques
for AI Planning, https://doi.org/10.1007/978-3-030-38561-3_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38561-3_1&domain=pdf
mailto:dieaigar@dsic.upv.es
mailto:serjice@dsic.upv.es
mailto:onaindia@dsic.upv.es
https://doi.org/10.1007/978-3-030-38561-3_1

4 D. Aineto et al.

planning action models is, however, the observation of plan executions, where
each plan has a possibly different length (plan length is not a priori bounded) and
refers to a different number of objects.

– The output of ML algorithms is usually a scalar value (an integer, in the case of
classification tasks, or a real value, in the case of regression tasks). The learning
of action models outputs a declarative definition of the preconditions and effects
of the modeled actions.

Learning STRIPS action models is a well-studied problem with sophisticated
algorithms such as ARMS [27], SLAF [2], or LOCM [4]. All of these learning
systems are capable of dealing with partial or null observability of the intermediate
states traversed along the plan execution but they also require a full specification of
the sequence of actions of the learning examples. Motivated by recent advances on
the synthesis of different kinds of generative models with classical planning [3, 22–
24], this paper describes a classical planning compilation approach for learning
STRIPS action models. The compilation approach is appealing by itself, because it
opens up the door to the bootstrapping of planning action models, but also because
it is flexible to different amounts and types of available input knowledge:

1. Learning examples can range from plans that comprise partially observed
intermediate states of the plan execution to samples in which no intermediate
state/action is observed, that is, only the initial and final states are observed.

2. Partially specified action models, expressing prior knowledge about the structure
of actions, can also be provided to the compilation. In the extreme, the com-
pilation can validate whether an observed plan execution is consistent with a
given STRIPS action model, even if the model is not fully specified or the input
observation is incomplete.

2 Background

In this section we formalize the classical planning model, for the observation model
to represent the execution of a classical plan and the model for the explanation of a
given observation.

2.1 Classical Planning with Conditional Effects

F is the set of fluents or state variables (propositional variables). A literal l is a
valuation of a fluent f ∈ F , i.e., either l = f or l = ¬f . L is a set of literals
that represents a partial assignment of values to fluents, and L(F) is the set of all
literals sets on F , i.e., all partial assignments of values to fluents. A state s is a full
assignment of values to fluents. We explicitly include negative literals ¬f in states
and so |s| = |F | and the size of the state space is 2|F |.

1 Explanation-Based Learning of Action Models 5

A planning frame is a tuple Φ = 〈F,A〉, where F is a set of fluents and A is
a set of actions. An action a ∈ A is defined with preconditions, pre(a) ∈ L(F),
and effects eff(a) ∈ L(F). The semantics of actions a ∈ A is specified with two
functions: ρ(s, a) denotes whether action a is applicable in a state s and θ(s, a)

denotes the successor state that results of applying action a in a state s. Therefore
ρ(s, a) holds iff pre(a) ⊆ s and the result of applying a in s is θ(s, a) = {s \
¬eff(a)) ∪ eff(a)}, with ¬eff(a) = {¬l : l ∈ eff(a)}.

A planning problem is defined as a tuple P = 〈F,A, I,G〉, where I is the initial
state in which all the fluents of F are assigned a value true/false and G is the goal
set. A plan π for P is an action sequence π = 〈a1, . . . , an〉, and |π | = n denotes
its plan length. The execution of π in the initial state I of P induces a trajectory
τ = 〈s0, a1, s1, . . . , an, sn〉 such that s0 = I and, for each 1 ≤ i ≤ n, it holds
ρ(si−1, ai) and si = θ(si−1, ai). A plan π solves P if G holds in the last state of
the induced trajectory τ ; i.e., G ⊆ sn. A solution plan is optimal iff its length is
minimal.

Now we define actions with conditional effects because they allow us to
compactly define our compilation. An action ac ∈ A with conditional effects is
defined as a set of preconditions pre(ac) ∈ L(F) and a set of conditional effects
cond(ac). Each conditional effect C � E ∈ cond(ac) is composed of two sets of
literals: C ∈ L(F), the condition, and E ∈ L(F), the effect. An action ac ∈ A is
applicable in a state s if and only if pre(ac) ⊆ s, and the triggered effects resulting
from the action application are the effects whose conditions hold in s:

triggered(s, ac) =
⋃

C�E∈cond(ac),C⊆s

E.

The result of applying ac in state s follows the same definition of successor state,
θ(s, a), but applied to the conditional effects in triggered(s, ac).

2.2 The Observation Model

Given a planning problem P = 〈F,A, I,G〉, a plan π that solves P , and
the corresponding trajectory τ induced by the execution of π in I , τ =
〈s0, a1, s1, . . . , an, sn〉; there exist as many observations of τ as combinations of
observable actions and observable fluents of the states of τ . The observation model
of the trajectory τ comprises all possible combinations of observable elements of
τ . We will refer to the set of observations of τ as Obs(τ).

Formally, one observation in Obs(τ) is defined as O = 〈so
0 , so

1 . . . , so
m〉, so

0 = I ,
a sequence of possibly partially observable states, except for the initial state so

0
which is fully observable. A partially observable state is one in which |so

i | < |F |,
1 ≤ i ≤ m ≤ n; i.e., a state in which at least a fluent of F is not observable. It
may be also the case that |so

i | = 0 when an intermediate state is fully unobservable.

6 D. Aineto et al.

The minimal observation needed by our model is O = 〈so
0 , so

1 〉, where s0
0 is the fully

observable initial state and so
1 is a partially observable final state.

The observation model can also include observed actions as fluents indicating
the applied action in a given state. This means that a sequence of observed actions
〈ao

1 , . . . , ao
l 〉 is a sub-sequence of π = 〈a1, . . . , an〉 such that ao

i ∈ so
i−1, 0 ≤ i ≤ l.

Consequently, the number of fluents that represent observed actions, l, can range
from 0 (in a fully unobservable action sequence) to |π | = n (in a fully observed
action sequence).

Given O ∈ Obs(τ), the number of observed states of O = 〈so
0 , so

1 . . . , so
m〉 ranges

from 2 (at least the initial and final states, as explained above) to |π |+1. The number
of fluents of the full observable state so

0 will be |F |, or |F | + 1 in case the fluent
of the applied action in s0 is also observed. Every observable intermediate state
will comprise a number of fluents between [1, |F | + 1], where a single fluent may
represent a sensing fluent of the state or the observation of the applied action.

This observation model can also distinguish between observable state variables,
whose value may be read from sensors, and hidden (or latent) state variables, that
cannot be observed. Given a subset of fluents Γ ⊆ F we say that O is a Γ -
observation of the execution of π on P iff for every observed state so

i , 1 ≤ i ≤ m,
so
i only contains fluents in Γ .

2.3 Explaining Observations with Classical Planning

In this section we will explore the relationship between a trajectory τ and an obser-
vation O. Particularly, we are interested in determining the necessary conditions for
O to belong to Obs(τ). When the membership O ∈ Obs(τ) is established, we say
that O is consistent with τ or that τ explains O.

For the sake of simplicity, and given that our observation model encodes the
observed applicable actions as fluents in the corresponding state, we will denote
a trajectory as τ = 〈s′

0, s
′
1, . . . , s

′
n〉, where s′

i comprises a fluent representing the
applicable action ai+1 in s′

i .
Given an observation O = 〈so

0 , so
1 . . . , so

m〉 and a trajectory τ = 〈s′
0, s

′
1, . . . , s

′
n〉,

where m ≤ n, so
0 = s′

0, and so
m ⊆ s′

n, it holds that O ∈ Obs(τ) iff τ embeds O; i.e.,
if there is a monotonic function f mapping the observation indices j = 1, 2, . . . , m

into the trajectory indices i = 1, 2, . . . , n such that so
j ⊆ s′

f (j). This definition is
a generalization of the one introduced in [19], which states the conditions under
which an action sequence satisfies an observation sequence. Since all the elements
(sets) of O are associated to an element (set) of τ , but not vice versa, the fluents of a
set of O are all included in the corresponding set of τ , we can say that τ is a superset
of O. All this means that transiting between two consecutive observed states in O
may require the execution of more than a single action (θ(so

i , 〈a1, . . . , ak〉) = so
i+1,

where k ≥ 1 is unknown but finite. In other words, the information of O does not
imply knowing the actual length of the trajectory τ .

1 Explanation-Based Learning of Action Models 7

Given a planning frame Φ = 〈F,A〉 and an observation of a plan execution, O =
〈so

0 , so
1 . . . , so

m〉, we define PO, within the given planning frame, as the planning
problem that is built as follows: PO = 〈F,A, so

0 , so
m〉.

Definition 1 (Explanation) A plan π (or the trajectory τ) explains O iff π is a
solution for PO and O ∈ Obs(τ).

There may exist more than one solution plan for PO, one or more of which will
be optimal solutions if their plan length is minimal. Additionally, other solutions
longer than the optimal plan can also be found.

Definition 2 (Best Explanation) A plan π (or the trajectory τ) that solves PO is
the best explanation for O iff |π | = n and for every other τi s.t. O ∈ Obs(τi),
|πi | > n.

That is, in case that π is optimal, we say that π is the best explanation for the
input observation O.

The observation O can also be regarded as a sequence of ordered landmarks for
the planning problem PO [11] since all the fluents of the sets in O must be achieved
by any plan that solves PO and in the same order as defined in the observation O.

3 Explanation-Based Learning of Strips Action Models

The task of learning action models by explaining the observation of a plan execution
is defined as a tuple Λ = 〈M,O〉, where

– M is the initial empty model that contains only the header (i.e., the name and
parameters) of each action model to be learned.

– O = 〈so
0 , so

1 . . . , so
m〉 is a sequence of partially observed states, except for the

initial state so
0 which is fully observable.

A solution to a Λ = 〈M,O〉 learning task is a model M′ that is consistent
with the headers of M and that explains O. We say that a model M′ explains an
observation O iff there exists a solution plan for PO = 〈F,A, so

0 , so
m〉, where the

semantics of the set of actions A are given by M′, such that π explains O. The set
of fluents F ∈ PO is induced from so

0 ∈ O since it represents a full state.

3.1 The Space of Strips Action Models

We analyze here the solution space of the addressed learning task; in this case the
space of STRIPS action models.

8 D. Aineto et al.

A STRIPS action model is defined as ξ = 〈name(ξ), pars(ξ), pre(ξ), add(ξ),

del(ξ)〉, where name(ξ) and parameters, pars(ξ), define the header of ξ ; and
pre(ξ), del(ξ), and add(ξ)) are sets of fluents that represent the preconditions,
negative effects, and positive effects, respectively, of the actions induced from the
action model ξ .

Let Ψ be the set of predicates that shape the fluents F (the initial state of an
observation is a full assignment of values to fluents, |so

0 | = |F |, and so
the predicates Ψ are extractable from the observed state so

0). The set of
propositions that can appear in pre(ξ), del(ξ), and add(ξ) of a given ξ ,
denoted as Iξ,Ψ , are FOL interpretations of Ψ over the parameters pars(ξ).
For instance, in a four-operator blocksworld [25], the Iξ,Ψ set contains
five elements for the pickup(v1) model, Ipickup,Ψ ={handempty,
holding(v1),clear(v1),ontable(v1), on(v1, v1)} and eleven ele-
ments for the model of stack(v1,v2), Istack,Ψ ={handempty, holding(v1),
holding(v2), clear(v1),clear(v2),ontable(v1),ontable(v2),
on(v1, v1),on(v1, v2), on(v2, v1), on(v2, v2)}. Hence, solving a Λ =
〈M,O〉 learning task is determining which elements of Iξ,Ψ will shape the
preconditions, positive effects, and negative effects of the corresponding action
model.

In principle, for a given STRIPS action model ξ , any element of Iξ,Ψ can
potentially appear in pre(ξ), del(ξ), and add(ξ). In practice, the actual space of
possible STRIPS schemata is bounded by:

1. Syntactic constraints. The solution M′ must be consistent with the STRIPS

constraints: del(ξ) ⊆ pre(ξ), del(ξ) ∩ add(ξ) = ∅, and pre(ξ) ∩ add(ξ) = ∅.
Typing constraints are also a type of syntactic constraint that reduce the size of
Iξ,Ψ [16].

2. Observation constraints. The solution M′ must be consistent with these
semantic constraints derived from the input observation O. Specifically, the
states induced by plans computable with M′ must comprise the observed states
of the sample, which further constrains the space of possible action models.

Considering only the syntactic constraints, the size of the space of possible
STRIPS models is given by 22×|IΨ,ξ | because one element in Iξ,Ψ can appear
both in the preconditions and effects of ξ . Given p ∈ IΨ,ξ , the belonging of p

to the preconditions, positive effects, or negative effects of ξ is handled with a
propositional encoding that uses fluents of two types, prep,ξ and effp,ξ . The four
possible combinations of these two fluents are summarized in Fig. 1.1. This compact
encoding allows for a more effective exploitation of the syntactic constraints, and
also yields the solution space of Λ = 〈M,O〉 to be the same as its search space.

To illustrate better this encoding, Fig. 1.2 shows the PDDL encoding of the
stack(?v1,?v2) schema and our propositional representation for this same
schema with prep,stack and effp,stack fluents (p ∈ IΨ,stack).

1 Explanation-Based Learning of Action Models 9

Fig. 1.1 Combinations of the propositional encoding and their meaning

(:action stack
:parameters (?v1 ?v2)
:precondition (and (holding ?v1) (clear ?v2))
:effect (and (not (holding ?v1)) (not (clear ?v2))

(clear ?v1) (handempty) (on ?v1 ?v2)))

(pre_holding_v1_stack) (pre_clear_v2_stack)
(eff_holding_v1_stack) (eff_clear_v2_stack)
(eff_clear_v1_stack) (eff_handempty_stack) (eff_on_v1_v2_stack)

Fig. 1.2 PDDL encoding of the stack(?v1,?v2) schema and our propositional representation
for this same schema

(:predicates (on ?x ?y) (ontable ?x) (clear ?x) (handempty) (holding ?x))
(:objects blockA blockB blockC)
(:init (ontable blockA) (on blockB blockA) (clear blockB) (handempty))
(:observation (on blockA blockB))

Fig. 1.3 Example of a two-state observation for the learning of STRIPS action models in the
blocksworld domain

3.2 The Sampling Space

According to our observation model the minimal expression of an observation must
comprise at least two state observations O = 〈so

0 , so
m〉, a fully observable initial

state so
0 and a partially observed final state so

m. Figure 1.3 shows an example of
O = 〈so

0 , so
m〉 observation that contains only two states. An initial state of the

blocksworld where the robot hand is empty and there are two blocks (blockB on
top of blockA). The observation represents also a partially observable final state
in which blockA is on top of blockB.

On the other hand, the maximal expression of an observation corresponds to
a fully observed trajectory O = τ , meaning that all traversed states, and applied
actions, are fully observed. Between our minimal and maximal expressions of

10 D. Aineto et al.

observation, there exists a whole range of possible degrees of observability. For
example, the majority of learning systems such as ARMS [27] or SLAF [2] use
observations that comprise the initial state and all the actions of the executed plan.

4 Learning STRIPS Action Models with Classical Planning

Our approach to address a learning task Λ = 〈M,O〉 is to compile it into a classical
planning problem PΛ. The intuition behind the compilation is that when PΛ is
solved, the solution plan πΛ is a sequence of actions that build the output model
M′ and verify that M′ explains the observation O.

A solution plan πΛ includes then two differentiated blocks of actions: a
plan prefix with a set of actions, each defining the insertion of a fluent as
a precondition or an effect of an action model and a plan postfix with a set
of actions that determine the application of the learned modes while succes-
sively validating the effects of the action application in every partial state of O.
Roughly speaking, in the blocksworld, the format of the first block of actions
of πΛ looks like (insert_pre_stack_holding_v1), (insert_eff_
stack_clear_v1), (insert_eff_stack_holding_v1). . . , where the
first effect denotes a positive effect and the second one a negative fluent to be
inserted in name(ξ) = stack; and the format of the second block of actions
of πΛ is like (apply_unstack blockB blockA),(apply_putdown
blockB), and (validate_1), (validate_2), where the last two actions
denote the points at which the states generated through the action application must
be validated with the observed states in O.

4.1 Compilation

Given a learning task Λ = 〈M,O〉 the compilation outputs a classical planning
task PΛ = 〈FΛ,AΛ, IΛ,GΛ〉 such that:

– FΛ extends the set of fluents F (obtained from so
0) with the model fluents that

are used to represent the preconditions and effects of each ξ ∈ M as well as
some other fluents to keep track of the validation of O. Specifically, FΛ contains
also:

• Fluents prep,ξ and effp,ξ , defined as explained in Sect. 3.1.
• A set of fluents {testj }0≤j≤m to point at the state observation so

j ∈ O where
the action model is validated. In the example of Fig. 1.3 two tests are required
to validate the programmed action model, one corresponding to the initial state
and the second one corresponding to the final state.

1 Explanation-Based Learning of Action Models 11

• A fluent, modeprog , to indicate whether action models are being programmed
or validated and a fluent invalid to indicate that the programmed action model
is inconsistent with the input observation.

– IΛ encodes so
0 and the following fluents set to true: modeprog , test0. Our

compilation assumes that action models are initially programmed with no
precondition, no negative effect, and no positive effect.

– GΛ includes the positive literal testm and the negative literal ¬invalid. When
these goals are achieved by the solution plan πΛ, we will be certain that the
action models of M′ are validated in the input observation.

– AΛ includes three types of actions that give rise to the actions of πΛ.

1. Actions for inserting a precondition or effect into ξ ∈ M following the
syntactic constraints of STRIPS models. These actions will form the prefix
of the solution plan πΛ. Among the inserting actions, we find:

• Actions for inserting a precondition p ∈ Iξ,Ψ into ξ .

pre(insertPrep,ξ) ={¬prep,ξ ,modeprog},
cond(insertPrep,ξ) ={∅} � {prep,ξ }.

• Actions for inserting an effect p ∈ Iξ,Ψ into ξ .

pre(insertEffp,ξ) ={¬effp,ξ ,modeprog},
cond(insertEffp,ξ) ={∅} � {effp,ξ }

For instance, given name(ξ)= stack and {(pre_stack_holding_v1),
(pre_stack_holding_v2),(pre_stack_on_v1_v2),(pre_stack
_clear_v1), (pre_stack_clear_v1), . . .}, the insertion of each item
p ∈ Iξ,Ψ in ξ will generate a different alternative in the search space when
solving PΛ. The same applies to effects {(eff_stack_holding_v1),
(eff_stack_holding_v2), (eff_stack_on_v1_v2), (eff_
stack_clear_v1), (eff_stack_clear_v1),. . .}.
Note that executing an insert action, e.g., (insert_pre_stack_holding
_v1), will add the corresponding model fluent (pre_stack_holding
_v1) to the successor state. Hence, the execution of the insert actions of
πΛ yields a state containing the valuation of the model fluents that shape
every ξ ∈ M. For example, executing the insert actions that shape the action
model name(ξ) = putdown leads to a state containing the positive literals
(pre_putdown_holding_v1),(eff_putdown_holding_v1),

(eff_putdown_clear_v1),(eff_putdown_ontable_v1),
(eff_putdown_handempty).

2. Actions for applying the action models ξ ∈ M built by the insert actions and
bounded to objects ω ⊆ Ωar(ξ). These actions will be part of the postfix of
the plan πΛ and they determine the application of the learned action models

12 D. Aineto et al.

according to the values of the model fluents in the current state configuration.
Since action headers are known, the variables pars(ξ) are bounded to the
objects in ω that appear in the same position.

pre(applyξ,ω) = {},
cond(applyξ,ω) = {prep,ξ ∧ effp,ξ } � {¬p(ω)}∀p∈Ψξ ,

{¬prep,ξ ∧ effp,ξ } � {p(ω)}∀p∈Ψ ξ ,

{prep,ξ ∧ ¬p(ω)}∀p∈Ψξ � {invalid},
{modeprog} � {¬modeprog}.

Figure 1.4 shows the PDDL encoding of (apply_stack) for applying
the action model of the stack operator. Let us assume the action
(apply_stack blockB blockA) is in πΛ. Executing this action in a
state s implies activating the preconditions and effects of (apply_stack)
according to the values of the model fluents in s. For example, if {
(pre_stack_holding_v1),(pre_stack_clear_v2)} ⊂ s, then it
must be checked that positive literals (holding blockB) and (clear

(:action apply_stack
:parameters (?o1 - object ?o2 - object)
:precondition (and)
:effect (and (when (and (pre_stack_on_v1_v1) (eff_stack_on_v1_v1)) (not (on ?o1 ?o1)))

(when (and (pre_stack_on_v1_v2) (eff_stack_on_v1_v2)) (not (on ?o1 ?o2)))
(when (and (pre_stack_on_v2_v1) (eff_stack_on_v2_v1)) (not (on ?o2 ?o1)))
(when (and (pre_stack_on_v2_v2) (eff_stack_on_v2_v2)) (not (on ?o2 ?o2)))
(when (and (pre_stack_ontable_v1) (eff_stack_ontable_v1)) (not (ontable ?o1)))
(when (and (pre_stack_ontable_v2) (eff_stack_ontable_v2)) (not (ontable ?o2)))
(when (and (pre_stack_clear_v1) (eff_stack_clear_v1)) (not (clear ?o1)))
(when (and (pre_stack_clear_v2) (eff_stack_clear_v2)) (not (clear ?o2)))
(when (and (pre_stack_holding_v1) (eff_stack_holding_v1)) (not (holding ?o1)))
(when (and (pre_stack_holding_v2) (eff_stack_holding_v2)) (not (holding ?o2)))
(when (and (pre_stack_handempty) (eff_stack_handempty)) (not (handempty)))
(when (and (not (pre_stack_on_v1_v1)) (eff_stack_on_v1_v1)) (on ?o1 ?o1))
(when (and (not (pre_stack_on_v1_v2)) (eff_stack_on_v1_v2)) (on ?o1 ?o2))
(when (and (not (pre_stack_on_v2_v1)) (eff_stack_on_v2_v1)) (on ?o2 ?o1))
(when (and (not (pre_stack_on_v2_v2)) (eff_stack_on_v2_v2)) (on ?o2 ?o2))
(when (and (not (pre_stack_ontable_v1)) (eff_stack_ontable_v1)) (ontable ?o1))
(when (and (not (pre_stack_ontable_v2)) (eff_stack_ontable_v2)) (ontable ?o2))
(when (and (not (pre_stack_clear_v1)) (eff_stack_clear_v1)) (clear ?o1))
(when (and (not (pre_stack_clear_v2)) (eff_stack_clear_v2)) (clear ?o2))
(when (and (not (pre_stack_holding_v1)) (eff_stack_holding_v1)) (holding ?o1))
(when (and (not (pre_stack_holding_v2)) (eff_stack_holding_v2)) (holding ?o2))
(when (and (not (pre_stack_handempty)) (eff_stack_handempty)) (handempty))
(when (and (pre_stack_on_v1_v1) (not (on ?o1 ?o1))) (invalid))
(when (and (pre_stack_on_v1_v2) (not (on ?o1 ?o2))) (invalid))
(when (and (pre_stack_on_v2_v1) (not (on ?o2 ?o1))) (invalid))
(when (and (pre_stack_on_v2_v2) (not (on ?o2 ?o2))) (invalid))
(when (and (pre_stack_ontable_v1) (not (ontable ?o1))) (invalid))
(when (and (pre_stack_ontable_v2) (not (ontable ?o2))) (invalid))
(when (and (pre_stack_clear_v1) (not (clear ?o1))) (invalid))
(when (and (pre_stack_clear_v2) (not (clear ?o2))) (invalid))
(when (and (pre_stack_holding_v1) (not (holding ?o1))) (invalid))
(when (and (pre_stack_holding_v2) (not (holding ?o2))) (invalid))
(when (and (pre_stack_handempty) (not (handempty))) (invalid))
(when (modeProg) (not (modeProg)))))

Fig. 1.4 PDDL action for applying an already programmed model for stack

1 Explanation-Based Learning of Action Models 13

blockA) hold in s. Otherwise, a different set of precondition literals will
be checked. The same applies to the conditional effects, generating the
corresponding literals according to the values of the model fluents of s.
Note that executing an apply action, e.g., (apply_stack blockB
blockA), will add the literals (on blockB blockA),(clear
blockB),(not(clear blockA)),(handempty), and (not(clear
blockB)) to the successor state if name(ξ) = stack has been correctly
programmed by the insert actions. Hence, while insert actions add the values
of the model fluents that shape ξ , the apply actions add the values of the
fluents of F that result from the execution of ξ .
When the input plan trace contains observed actions extra preconditions have
to be added to ensure that actions are applied in the same order as they appear
in O [1].

3. Actions for validating partially observed states so
j ∈ O. These actions are also

part of the postfix of the solution plan πΛ and they are aimed at checking that
the observation O follows after the execution of the apply actions.

pre(validatej) =so
j ∪ {testj−1},

cond(validatej) ={∅} � {¬testj−1, testj }.

There will be a validate action in πΛ for every observed state in O. The
position of the validate actions in πΛ will be determined by the planner
by checking that the state resulting after the execution of an apply action
comprises the observed state so

j ∈ O.

In some contexts, it is reasonable to assume that some parts of the action model
are known and so there is no need to learn the entire model from scratch [28]. In
our compilation approach, when an action model ξ is partially specified, the known
preconditions and effects are encoded as fluents prep,ξ and effp,ξ set to true in
the initial state IΛ. In this case, the corresponding insert actions, insertPrep,ξ and
insertEffp,ξ , become unnecessary making the classical planning task PΛ easier to
be solved.

So far we explained the compilation for learning from a single input trace. How-
ever, the compilation is extensible to the more general case Λ = 〈M,O1, . . . ,Ok〉
where there is an input set of k observations. Taking this into account, a small
modification is required in our compilation approach. In particular, the actions in
PΛ for validating the last state so

m,t ∈ Ot , 1 ≤ t ≤ k of an observation Ot reset
the current state. These actions are now redefined as follows:

pre(validatej) = so
m,t ∪ {testj−1} ∪ {¬modeprog},

cond(validatej) = {∅} � {¬testj−1, testj }∪
{¬f }∀f ∈F,f /∈so

0,t+1
∪ {f }∀f ∈so

0,t+1
.

14 D. Aineto et al.

Fig. 1.5 Plan for
programming the stack

action model and for
validating the programmed
stack action model with
previously specified action
models for pickup,
putdown, and unstack

Finally, we will detail the composition of a solution plan πΛ to a planning task
PΛ and the mechanism to extract the action models of M′ from πΛ. The plan of
Fig. 1.5 shows a solution to the task PΛ that encodes a learning task Λ = 〈M,O〉
for obtaining the action models of the blocksworld domain, where the models for
pickup, putdown, and unstack are already specified in M. Therefore, the
plan shows the insert actions and validate action for the action model stack. Plan
steps 00–01 insert the preconditions of the stack model, steps 02–06 insert the
action model effects, and steps 07–11 form the plan postfix that applies the action
models (only the stack model is learned) and validates the result in the input
observation.

Given a solution plan πΛ that solves PΛ, the set of action models M′ that solves
Λ = 〈M,O〉 learning task is computed in linear time and space. In order to do
so, πΛ is executed in the initial state IΛ and the action model M′ will be given by
the fluents prep,ξ , and effp,ξ that are set to true in the last state reached by πΛ,
sg = θ(IΛ, πΛ). For each ξ ∈ M′, we build the sets of preconditions, positive
effects, and negative effects as follows:

pre(ξ) ={p | prep,ξ ∈ sg}∀p∈Ψξ ,

del(ξ) ={p | prep,ξ ∈ sg ∧ effp,ξ ∈ sg}∀p∈Ψξ ,

add(ξ) ={p | ¬prep,ξ ∈ sg ∧ effp,ξ ∈ sg}∀p∈Ψξ .

An optimally solved learning task will learn the minimum set of required
preconditions; i.e., those that are at the same time negative effects. Optionally, it
is possible to infer the maximum set of preconditions that is consistent with the
observation and the learned model. This is done via a post-process based on the
one proposed by the LOUGA system [15]. The intuition is going through every
action counting the number of cases where a literal is present before the action
is executed. If a literal is present in all the cases before the action, the literal is
considered to be a precondition. This is done by traversing the actions/states found
in the validation part of the solution plan πΛ. For instance, in the example of Fig. 1.5,
the used sequence of actions is (unstack blockB blockA), (put-down
blockB), (pick-up blockA), and (stack blockA blockB).

1 Explanation-Based Learning of Action Models 15

4.2 Properties of the Compilation

Lemma 1 Soundness. Any classical plan π that solves PΛ produces a model M′
that solves the Λ = 〈M,O〉 learning task.

Proof According to the PΛ compilation, once a given precondition or effect is
inserted into the domain model M it cannot be undone. In addition, once an action
model is applied it cannot be modified. In the compiled planning problem PΛ, only
(apply)ξ,ω actions can update the value of the state fluents F . This means that a
state consistent with an observation so

m can only be achieved executing an applicable
sequence of (apply)ξ,ω actions that, starting in the corresponding initial state so

0 ,
validates that every generated intermediate state sj (0 < j ≤ m), is consistent with
the input state observations. This is exactly the definition of the solution condition
for model M′ to solve the Λ = 〈M,O〉 learning task.

Lemma 2 Completeness. Any model M′ that solves the Λ = 〈M,O〉 learning
task can be computed with a classical plan π that solves PΛ.

Proof By definition Iξ,Ψ fully captures the set of elements that can appear in
an action model ξ using predicates Ψ . In addition the PΛ compilation does not
discard any model M′ definable within Iξ,Ψ . This means that, for every model M′
that solves the Λ = 〈M,O〉, we can build a plan π that solves PΛ by selecting
the appropriate (insertpre)p,,ξ and (inserteff)p,ξ actions for programming
the precondition and effects of the corresponding action models in M′ and then,
selecting the corresponding (apply)ξ,ω actions that transform the initial state
observation so

0 into the final state observation so
m.

The size of the classical planning problem PΛ depends on the arity of the
predicates in Ψ , that shape variables F , and the number of parameters of the action
models, |pars(ξ)|. The larger these arities, the larger |Iξ,Ψ |. The size of Iξ,Ψ is
the most dominant factor of the compilation because it defines the prep,ξ /effp,ξ

fluents, the corresponding set of insert actions, and the number of conditional
effects in the (apply)ξ,ω actions. Note that typing can be used straightforward to
constrain the FOL interpretations of Ψ over the parameters pars(ξ), which will
significantly reduce |Iξ,Ψ | and hence the size of PΛ output by the compilation.

Classical planners tend to prefer shorter solution plans, so our compilation may
introduce a bias to Λ = 〈M,O〉 learning tasks preferring solutions that are referred
to action models with a shorter number of preconditions/effects. In more detail, all
{prep,ξ , effp,ξ }∀e∈Iξ,Ψ

fluents are false at the initial state of our PΛ compilation
so classical planners tend to solve PΛ with plans that require a smaller number of
insert actions.

This bias can be eliminated defining a cost function for the actions in PΛ (e.g.,
insert actions have zero cost, while (apply)ξ,ω actions have a positive constant
cost). In practice we use a different approach to disregard the cost of insert
actions since classical planners are not proficient at optimizing plan cost with zero-
cost actions. Instead, our approach is to use a SAT-based planner [21] that can apply
all actions for inserting preconditions in a single planning step (these actions do

16 D. Aineto et al.

not interact). Further, the actions for inserting action effects are also applied in
another single planning step. The plan horizon for programming any action model
is then always bounded to 2. The SAT-based planning approach is also convenient
for its ability to deal with planning problems populated with dead-ends and because
symmetries in the insertion of preconditions/effects into an action model do not
affect the planning performance.

An interesting aspect of our approach is that when a fully or partially specified
STRIPS action model M is given in Λ, the PΛ compilation also serves to validate
whether the observation O follows the given model M:

– M is proved to be a valid action model for the given input data O iff a solution
plan for PΛ can be found.

– M is proved to be a invalid action model for the given input data O iff PΛ is
unsolvable. This means that M cannot be consistent with the given observation
of the plan execution.

This validation capacity of our compilation is beyond the functionality of VAL (the
plan validation tool [12]) because our PΛ compilation is able to address model
validation of a partial (or even an empty) action model with a partially observed plan
trace. VAL, however, requires a full plan and a full action model for plan validation.

5 Experimental Results

We have tested the proposed explanation-based learning approach in 12 IPC
domains that satisfy the STRIPS requirement [7], taken from the PLAN-
NING.DOMAINS repository [18]. In our experiments, we use a set of 5 observations
of length 5–7 as learning examples. Each observation corresponds to plan executions
generated via random walks. All experiments are run on an Intel Core i5 3.10 GHz
× 4 with 16 GB of RAM.

The learned models are evaluated using the precision and recall metrics for
action models proposed in [1], which compare the learned models against the
reference model. Precision measures the correctness of the learned models, while
recall measures their completeness. Formally

Precision = tp

tp + fp

Recall = tp

tp + f n
,

where tp (true positives) is the number of predicates that appear in both the learned
and reference action models, fp (false positives) is the number of predicates that
appear in the learned action model but not in the reference model, and f n (false
negatives) is the number of predicates that should appear in the learned action model
but are missing.

1 Explanation-Based Learning of Action Models 17

Table 1.1 Precision and recall scores for learning tasks from labeled plans

Pre Add Del Global

P R P R P R P R

Blocks 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Driverlog 0.9 0.64 0.56 0.71 0.86 0.86 0.78 0.73

Ferry 1.0 0.57 1.0 1.0 1.0 1.0 1.0 0.86

Floortile 0.68 0.68 0.89 0.73 1.0 0.82 0.86 0.74

Grid 0.79 0.65 1.0 0.86 0.88 1.0 0.89 0.83

Gripper 1.0 0.67 1.0 1.0 1.0 1.0 1.0 0.89

Hanoi 0.75 0.75 1.0 1.0 1.0 1.0 0.92 0.92

Miconic 0.89 0.89 1.0 0.75 0.75 1.0 0.88 0.88

Satellite 0.82 0.64 1.0 1.0 1.0 0.75 0.94 0.80

Transport 1.0 0.70 0.83 1.0 1.0 0.80 0.94 0.83

Visitall 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Zenotravel 1.0 0.64 0.88 1.0 1.0 0.71 0.96 0.79

0.90 0.74 0.93 0.92 0.96 0.91 0.93 0.86

5.1 Learning from Labeled Plans

For our first experiment, we use the setting typically followed by most approaches,
that is, learning from observations consisting of initial and final states, and the full
sequence of actions between these two. In this setting, the number of trajectories
that explain a given observation is bounded by the length of the observation and
further constrained by the observed sequence of actions.

The results of this experiment are compiled in Table 1.1. Precision (P) and recall
(R) are computed separately for the preconditions (Pre), positive effects (Add), and
negative effects (Del), while the last two columns and the last row report average
scores. The table show high scores across all domains, with an average precision
of 0.93 and average recall of 0.86. Recall is noticeably lower for preconditions at
0.74, which is to be expected given that any relaxation on the preconditions of the
reference model will still be able to generate an explanation for the observation.

5.2 Learning from Initial/Final State Pairs

Now, we evaluate our approach when observations are reduced to their minimal
expression O = 〈so

0 , so
m〉; i.e., only the initial and final states are observed. In

contrast to the previous experiment, this setting presents an unbounded number of
trajectories consistent with the observation. Moreover, the planner must determine
how many “gaps” need to be filled between the two observed states.

Table 1.2 summarizes the results obtained for this experiment. Values for the
Zenotravel and Grid domains are not reported because no solutions were found

18 D. Aineto et al.

Table 1.2 Precision and recall scores for learning tasks from initial and final states

Pre Add Del Global

P R P R P R P R

Blocks 0.75 0.67 0.86 0.67 0.86 0.67 0.82 0.67

Driverlog 1 0.29 0.5 0.71 0.67 0.29 0.72 0.43

Ferry 1 0.57 1 1 1 1 1 0.86

Floortile 0.57 0.36 1 0.64 0.67 0.36 0.75 0.45

Grid – – – – – – – –

Gripper 1 0.67 1 1 1 1 1 0.89

Hanoi 1 0.5 1 1 1 1 1 0.83

Miconic 0.5 0.11 0.67 0.5 0.5 0.33 0.56 0.31

Satellite 0.5 0.21 0.57 0.8 0.75 0.75 0.61 0.59

Transport 1 0.3 0.71 1 1 0.6 0.9 0.63

Visitall – – – – – – – –

Zenotravel 1 0.29 0.57 0.57 1 0.57 0.86 0.48

0.83 0.4 0.79 0.79 0.85 0.66 0.82 0.61

under the given timeout of 1000 s. Although the learned models are able to produce
explanations for the input observations, we can see that the values of precision
and recall are significantly lower than in Table 1.1. This is indicative that the
learned models are now considerably different from the reference ones, which is
caused by the larger solution space originated from the removal of some observation
constraints.

6 Conclusions

We presented a classical planning compilation for learning STRIPS action models
from partial observations of plan executions. To the best of our knowledge, this
is the first approach on learning action models that is exhaustively evaluated over
a wide range of domains and uses exclusively an off-the-shelf classical planner.
The work in [26] proposes a planning compilation for learning action models from
plan traces following the finite domain representation for the state variables. This
is a theoretical study on the boundaries of the learned models and no experimental
results are reported.

When example plans are available, we can compute accurate action models from
small sets of learning examples (five examples per domain) in little computation
time (less than a second). When action plans are not available, our approach still
produces action models that are compliant with the input information. In this case,
since learning is not constrained by actions, operators can be reformulated changing
their semantics, in which case the comparison with a reference model turns out to
be tricky.

1 Explanation-Based Learning of Action Models 19

An interesting research direction related to this issue is domain reformulation to
use actions in a more efficient way, reduce the set of actions identifying dispensable
information or exploiting features that allow more compact solutions like the
reachable or movable features in the Sokoban domain [13].

Generating informative examples for learning planning action models is still
an open issue. Planning actions include preconditions that are only satisfied by
specific sequences of actions which have low probability of being chosen by
chance [5]. The success of recent algorithms for exploring planning tasks [8]
motivates the development of novel techniques that enable to autonomously collect
informative learning examples. The combination of such exploration techniques
with our learning approach is an appealing research direction that opens up the door
to the bootstrapping of planning action models.

Acknowledgements This work is supported by the Spanish MINECO project TIN2017-88476-
C2-1-R. Diego Aineto is partially supported by the FPU16/03184 and Sergio Jiménez by the
RYC15/18009, both programs funded by the Spanish government.

References

1. Diego Aineto, Sergio Jiménez, and Eva Onaindia. Learning STRIPS action models with
classical planning. In International Conference on Automated Planning and Scheduling,
(ICAPS-18), pages 399–407, 2018.

2. Eyal Amir and Allen Chang. Learning partially observable deterministic action models.
Journal of Artificial Intelligence Research, 33:349–402, 2008.

3. Blai Bonet, Héctor Palacios, and Héctor Geffner. Automatic Derivation of Memoryless
Policies and Finite-State Controllers Using Classical Planners. In International Conference
on Automated Planning and Scheduling, (ICAPS-09). AAAI Press, 2009.

4. Stephen N Cresswell, Thomas L McCluskey, and Margaret M West. Acquiring planning
domain models using LOCM. The Knowledge Engineering Review, 28(02):195–213, 2013.

5. Alan Fern, Sung Wook Yoon, and Robert Givan. Learning Domain-Specific Control
Knowledge from Random Walks. In International Conference on Automated Planning and
Scheduling, ICAPS-04, pages 191–199. AAAI Press, 2004.

6. Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2(3–4):189–208, 1971.

7. Maria Fox and Derek Long. PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence Research, 20:61–124, 2003.

8. Guillem Francès, Miquel Ramírez, Nir Lipovetzky, and Hector Geffner. Purely declarative
action descriptions are overrated: Classical planning with simulators. In International Joint
Conference on Artificial Intelligence, (IJCAI-17), pages 4294–4301, 2017.

9. Hector Geffner and Blai Bonet. A Concise Introduction to Models and Methods for Automated
Planning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers, 2013.

10. Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and practice.
Elsevier, 2004.

11. Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered landmarks in planning. Journal
of Artificial Intelligence Research, 22:215–278, 2004.

12. Richard Howey, Derek Long, and Maria Fox. VAL: Automatic plan validation, continuous
effects and mixed initiative planning using PDDL. In Tools with Artificial Intelligence, 2004.
ICTAI 2004. 16th IEEE International Conference on, pages 294–301. IEEE, 2004.

20 D. Aineto et al.

13. Franc Ivankovic and Patrik Haslum. Optimal planning with axioms. In International Joint
Conference on Artificial Intelligence, (IJCAI-15), pages 1580–1586, 2015.

14. Subbarao Kambhampati. Model-lite planning for the web age masses: The challenges of
planning with incomplete and evolving domain models. In National Conference on Artificial
Intelligence, (AAAI-07), 2007.

15. Jirí Kucera and Roman Barták. LOUGA: learning planning operators using genetic algorithms.
In Pacific Rim Knowledge Acquisition Workshop, PKAW-18, pages 124–138, 2018.

16. Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela
Veloso, Daniel Weld, and David Wilkins. PDDL—The Planning Domain Definition Language,
1998.

17. Ryszard S Michalski, Jaime G Carbonell, and Tom M Mitchell. Machine learning: An artificial
intelligence approach. Springer Science & Business Media, 2013.

18. Christian Muise. Planning.domains. ICAPS system demonstration, 2016.
19. Miquel Ramírez and Hector Geffner. Plan recognition as planning. In International Joint

conference on Artificial Intelligence, (IJCAI-09), pages 1778–1783. AAAI Press, 2009.
20. Miquel Ramírez. Plan recognition as planning. PhD thesis, Universitat Pompeu Fabra, 2012.
21. Jussi Rintanen. Madagascar: Scalable planning with SAT. In International Planning

Competition, (IPC-2014), 2014.
22. Javier Segovia-Aguas, Sergio Jiménez, and Anders Jonsson. Generating Context-Free Gram-

mars using Classical Planning. In International Joint Conference on Artificial Intelligence,
(IJCAI-17), pages 4391–4397. AAAI Press, 2017.

23. Javier Segovia-Aguas, Sergio Jiménez, and Anders Jonsson. Computing hierarchical finite
state controllers with classical planning. Journal of Artificial Intelligence Research, 62:755–
797, 2018.

24. Javier Segovia-Aguas, Sergio Jiménez Celorrio, and Anders Jonsson. Computing programs for
generalized planning using a classical planner. Artificial Intelligence, 2019.

25. John Slaney and Sylvie Thiébaux. Blocks world revisited. Artificial Intelligence, 125(1–
2):119–153, 2001.

26. Roni Stern and Brendan Juba. Efficient, safe, and probably approximately complete learning of
action models. In International Joint Conference on Artificial Intelligence, (IJCAI-17), pages
4405–4411, 2017.

27. Qiang Yang, Kangheng Wu, and Yunfei Jiang. Learning action models from plan examples
using weighted MAX-SAT. Artificial Intelligence, 171(2–3):107–143, 2007.

28. Hankz Hankui Zhuo, Tuan Anh Nguyen, and Subbarao Kambhampati. Refining incomplete
planning domain models through plan traces. In International Joint Conference on Artificial
Intelligence, IJCAI-13, pages 2451–2458, 2013.

Chapter 2
Automated Domain Model Learning
Tools for Planning

Rabia Jilani

Abstract Intelligent agents solving problems in the real world require domain
models containing widespread knowledge of the world. Domain models can be
encoded by human experts or automatically learned through the observation of some
existing plans (behaviours). Encoding a domain model manually from experience
and intuition is a very complex and time-consuming task, even for domain experts.
This chapter investigates various classical and state-of-the-art methods proposed
by the researchers to attain the ability of automatic learning of domain models
from training data. This concerns with the learning and representation of knowledge
about the operator schema, discrete or continuous resources, processes and events
involved in the planning domain model. The taxonomy and order of these methods
we followed are based on their standing and frequency of usage in the past research.
Our intended contribution in this chapter is to provide a broader perspective on
the range of techniques in the domain model learning area which underpin the
developmental decisions of the learning tools.

1 Introduction

Automated planning is one of the most prominent AI challenges. It is the process of
finding a procedural course of action through explicit deliberation process to reach
a pre-stated objective in the form of goals while optimizing overall performance.
Planning is a pivotal task that has to be performed by autonomous agents. The
planning community is uplifting planning systems from small problems to capture
more complex domains that closely reflect real life applications (e.g., planning space
missions, fire extinction management and operation of underwater vehicles)—a way
to satisfy the aims of autonomic systems.

R. Jilani (�)
School of Computing and Engineering, University of Huddersfield, Huddersfield, UK
e-mail: R.Jilani@hud.ac.uk

© Springer Nature Switzerland AG 2020
M. Vallati, D. Kitchin (eds.), Knowledge Engineering Tools and Techniques
for AI Planning, https://doi.org/10.1007/978-3-030-38561-3_2

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38561-3_2&domain=pdf
mailto:R.Jilani@hud.ac.uk
https://doi.org/10.1007/978-3-030-38561-3_2

22 R. Jilani

In order to perform automated reasoning, planning techniques require formal
specification of the application knowledge to be encoded in the form of domain
models. In the action-centred view of problem representation, a domain model
encodes the domain knowledge in the form of actions that can be executed together
with relevant action properties and features. A domain model typically includes the
action description, the objects involved in actions, a set of logical state space axioms
along with the rules of inference and heuristics to accurately define the operators’
description of some real-world domain. It includes both a dynamic and a static
object-type hierarchy, constant objects (if any) and the declaration of predicates and
functions (for hierarchical domains). In short, it is a declarative depiction of domain
world functionalities.

In a centralised approach, this domain model is represented as a knowledge
base and automated logical reasoning could be used to determine acts in plans.
To generate plans, planning engines search the action descriptions in the provided
domain model to achieve the goals. Figure 2.1 shows a typical view of plan
generation in AI planning. One of the key factors for the correctness of the
planner outcome is the quality of the domain knowledge that otherwise can prove
catastrophic.

In the complex domain scenarios, planners also use manually encoded or auto-
matically learned domain-specific control knowledge (in addition to domain model)
to guide planner search and cater to scalability issues. Most planners define control
knowledge separately from domain model to support different representations. This
chapter only focuses on the domain model learning aspect.

Synthesising domain models for planning from scratch by hand is time intense,
error-prone and challenging. Knowledge engineering for planning domain mod-
els using machine learning (ML) techniques is considered as a paramount for
empowering the autonomous learning systems with the capacity to fill implicit
human knowledge gaps and errors, requiring least human intervention in domain
model development. It not only involves acquisition of a new knowledge from
the environment but also the refinement of the already available knowledge of the
domain under consideration.

As a result of a planning process the successfully generated plans can be used as
the solutions to the desired problems in self-learning systems to enable autonomic
properties. The area of ML application to domain model learning systems has
received active research attention in recent years but did not make as much stride as
the learning of control knowledge.

Fig. 2.1 Automated planning
as an independent component

2 Automated Domain Model Learning Tools for Planning 23

1.1 Knowledge Representation for Knowledge Engineering
of Domain Models

Knowledge representation (KR) is to encoding human knowledge in the form of
symbols which can be processed by a computer to obtain intelligent behaviour.
Automated reasoning and KR stay in close association with each other as the core
aim of the explicit KR is to enable reasoning and inference process. To represent
complex problems, KR uses declarative programming for expressing the logic of
the computation and behavioural description as compared to describing the control
flow as in procedural programming.

In order to effectively engage in the intelligent behaviours, the key attribute
of the theories of autonomous agent relies on the agent’s internal representation
of intelligence. This must be an implicit representation of a domain model to
conduct reasoning process. From the point of view of knowledge engineering of
this intelligent behaviour, the question to ask is, what KR formalism an agent needs
to know to behave intelligently and which computational mechanisms are needed
for manipulation of its knowledge, i.e., description of notions, facts, and rules of the
world. The knowledge engineering of a domain model is the engineering of a set of
sentences/axioms. These sentences are expressed in some KR language which the
agent uses to do inference.

For automated reasoning, expressibility and practicability are generally the two
main considerations for the KR language of the domain. Riddle et al. [59] empir-
ically proved that a used representation mechanism makes an extensive difference
to the planner’s ability to solve a problem by exploring six different representations
of the blocks world domain. In Brachman and Levesque [7] the authors argue that
the expressive power of the representation language is directly proportional to the
computational complexity of reasoning with it. In other words, more expressive
language makes the reasoning process difficult. The authors demonstrated this by
analysing the frame language which later led to an extensive study of the argument
put forward by the author in order to search the optimal trade-off.

In automated planning, the key purpose of an explicit KR language for a domain
model formulation is for a planner to be able to reason with it and infer new
knowledge from it in the form of plans by predicting action outcomes to display
some rational behaviour in an explicit way. The essential part of a domain model in
the process of reasoning is the representation of the set of actions that a planner can
reason with and the elements that include dynamics of the environment that support
the specification of actions. It has long been recognised that there can be a variety
of encodings and exploitable languages for a domain model formulation. However,
the open question is which of these is the best? The choice of encoding language for
KR partially depends on the requirements of the planning application itself.

There is no one KR approach just like the reasoning approach that has combined
properties for all types and level of deliberation problems. Similarly, there is no
single highly specialized KR mechanism to cover a specialized area of learning
domain model.

24 R. Jilani

A well-chosen representation language should explicitly model every action
effect the system might confront. In addition to that, a domain modelling representa-
tion language should have some salient attributes. It should have supporting tools to
check its operation and have logically strong inference mechanism to carry out the
reasoning. It should be sufficiently expressive to explicitly model complex scenario
of the real world. Moreover, it should be customizable and structured to capture
every action effect the system might confront in operator definitions. In addition, it
should have clear syntax and semantics to support operational aspects of the model.

2 Domain Model Learning Techniques and Tools

Both knowledge acquisition and learning for AI planning systems are essential
to improve their effectiveness and to expand the application focus in practice.
Most of the literature on learning for AI planning is based upon classical planning
and concentrates on the learning of search control rules. For producing a domain
model, a general process includes the study of planning application requirements,
creating a model that explains the domain and testing it with suitable planning
engines. Domain models can be encoded by the human experts or automatically
learned through the observation of some existing plans (behaviours). Encoding a
domain model manually from experience and intuition is a very complex and time-
consuming task, even for domain experts.

Regarding the significance of automatic domain model learning system, the
question that arises is why do we need a learning mechanism to learn from data
when we can write a program to fulfil the purpose. The significance of learning
mechanism becomes apparent when the same program parameters do not fit the
new data or when the learning requirements or assumptions of the same data change
slightly. The same hard-coded program needs extensive changes to align with the
new requirements.

Machine learning is a broad area with a wide variety of sub-fields. It includes
various methods starting from sub-symbolic methods like neural networks to high-
level symbolic methods like inductive logic programming. Various approaches and
techniques have been used by the researchers for the domain model learning task.
Inductive learning is the most common technique to expedite learning solutions
that are used in the field of supervised learning. Another less common technique
outside the scope of supervised learning is the model-based reinforcement learning
algorithms that learn model parameters such as probabilities and rewards, but
no algorithm yet can produce states and models from observations and action
sequences.

For the sake of succinctness, this section describes the commonly used domain
model learning techniques in the literature. These techniques are complete in their
own capacity and differ from each other in multiple perspectives including the

2 Automated Domain Model Learning Tools for Planning 25

amount and nature of input required, the extent of learning that takes place in
the output, environmental characteristics these can work in, etc. Some of these
characteristics are discussed in Sect. 4.

2.1 Inductive Learning

Inductive methods produce general rules by searching statistical correlations and
consistencies in the large set of input training data. The main theory and method
behind supervised learning is the inductive learning (IL—Fig. 2.2). Inductive
learning can be defined as learning by inferring generalised rules from the training
data given in the form of input–output example pairs P(xi, yi). By the input–
output pairs, we mean the input samples or examples (xi) and the relevant output
observations or the external feedback to the learning system (yi = f(xi)). External
feedback or output observations are the function of the input samples. The input–
output example pairs generally establish the intended relation of input and output
values. In simple words, IL is also referred to as learning from examples for function
induction. The input–output example pairs can be generated by another system,
produced by an instructor or a human expert or could be the traces of expert’s
behaviour. These do not necessarily need to be numbers and can contain either
continuous or discrete values in the form of logical sentences. In the pairs, states
are represented by the set of features, i.e., by factored representation.

The main IL problem is to generalise the input-to-output mapping candidate
function or hypothesis (h) that satisfies input data so it can estimate the target
function f [85]. Hypothesis space H = (h1, h2, h3, . . . hn) is a set of all possible
approximations of target function that can exist. A further subset of hypothesis space
(H) which is consistent with the given input data is called version space. Extending
a hypothesis with every example or in other words generalising a hypothesis which
should be in close approximation with the target function f is not an easy task
especially when hypothesis space is complex.

A hypothesis (h) is tested for its consistency and correctness of generalised
results by using extensive example test set—a set distinct from the example training
set ET. Formally, using inductive learning algorithm IL, the problem is to find a
hypothesis h which is consistent with the set of example pairs P(xi, yi), such that:

Fig. 2.2 Traditional
programming vs. inductive
learning

Tradi�onal
Programming

Induc�ve
Learning

26 R. Jilani

IL Λ P (xi, yi) � h (Inductive Learning)

where yi = h(xi) for all P and � represents inductive inference. For h to generalise
and pass the consistency test, it needs to produce the results like the true target
function f by agreeing to the sufficiently large example test set. On getting multiple
consistent h in version space, the preference is always given to the simplest h that
requires the least speculation and agrees with the data (Ockham’s razor principle).

A good example of IL is a classification decision tree algorithm for building
prediction models to predict categories from the training dataset. The algorithm
has to find a most appropriate tree structure (h) which is consistent with the input
data, out of all the available trees with variable attributes in its hypothesis space
(H). A decision tree structures like a flow chart where the learning takes place
by labelling the variables at nodes and branches of the tree from the training
data. Models in which state variables represented in the form of trees can take
discrete values are called classification trees. Similarly, trees where state variables
can take continuous values are called regression trees. Inducing domain model and
its features such as action duration for temporal domains have been well-studied
using predictive modelling approaches of a relational decision and regression trees.
Inducing regression trees is itself a well-known method for building models for
numeric variables.

Artificial neural networks (ANN), reinforcement learning (RL), Bayesian learn-
ing (BL) and inductive logic programming (ILP) are some of the most common
inductive learning techniques. More common early contributions of these IL
techniques since their inception are to learn control knowledge to speed up the
classical planning process. An extensive five-dimensional survey of learning-in-
planning early work is provided in Zimmerman and Kambhampati [85].

From the domain learning perspective, each of the IL technique produces
different types of hypothesis and models based on its expressivity, e.g., BL is
used to learn models that allow probabilistic predictions while RL can learn in
dynamic and stochastic environmental conditions with no requirement of prior
knowledge of transition probabilities. More expressive representation of the learned
knowledge which is in close approximation to the target function requires more
training examples to narrow down the hypothesis space. Similarly, every technique
has its own strengths and weaknesses, e.g., decision trees, ANN and ILP are robust
to noisy inputs while RL learns optimal policies even from non-optimal input data.

A number of properties that need consideration for developing IL problem
include:

• The probability that the training is going to be successful in learning the model.
It mainly depends on the quality of training data and also on the inductive bias
(discussed ahead in KBIL). Noisy set of training data leads to poor inconsistent
models if not given alternate guidance.

• How much input training data should be provided for consistent h to converge?
According to computational learning theory, only a few algorithms exhibit this

2 Automated Domain Model Learning Tools for Planning 27

knowledge through the learning curve with the increase in input examples (PAC
learning algorithms).

• Criteria for selection of training data and what presentation medium should be
used to learn from available data, i.e., instructions, images, sensory information,
environmental perceptions, etc.

• What output examples need to be provided to learn the target function f and how
it affects the extent and quality of the learnt model in the outcome.

• Estimation of the overall complexity of hypothesis space and the complexity of
hypothesis in the space. Complex hypotheses are more susceptible to overfitting.

• What should be the acceptable approximation and estimation error between a
consistent hypothesis h and a target function f.

• What is the size and nature (deterministic or non-deterministic) of the hypothesis
space?

• Depending on the nature of the problem, which learning algorithm (e.g., induc-
tive logic programming, Bayesian learning, etc.) and approach to learning will
be used (online or batch).

• Approach to use for building hypothesis towards the target function f. It could
be directly computing the required information to learn the target function,
searching for hypothesis from the hypothesis space or the gradual incremental
construction of the hypothesis.

• Representation mechanism used to represent learned knowledge. This can
include support vector machines, decision trees, graphical models, Bayes net-
works, finite state machines, logic statements, etc.

• On what time scale learning occurs: eager learners are more common and
perform the task up front while lazy learners only learn when needed and are
rarely used in machine learning.

Some of the prominent issues about the IL that researchers are trying to answer
for over a decade include:

• What measures the good hypothesis space and the correctness of the hypothesis
h if the true function f is not known?

• What factors can help reach the trade-off between the complexity of finding
consistent h and the expressiveness of the hypothesis space? Can we even find h
in a complex hypothesis space?

• What features and factors build the confidence in the correctness of the output
model?

• How to find out computationally complex or intractable problems?

2.1.1 When to Use Inductive Learning

Inductive learning can be used to enhance any essential module or element of the
system. It can be used in a variety of situations, some of them include:

28 R. Jilani

1. When the underlying knowledge base or domain model fluctuates frequently and
the occurring changes are complex enough that cannot be handled by human
efforts every single time in changes, e.g., continuous domains like urban road
traffic management, stock market, etc.

2. Situations where the learning only happens with experience and it is not possible
to induce learning with a set of instructions, e.g., intelligent self-driving cars [53]
where the system requires enormous training data in the form of camera visuals
and corresponding steering movements to produce the general rule of driving.

3. Another condition arises when there is no human guidance available to create
a reliable domain model, the agent should be intelligent enough to induce
the domain model through learning. Building the knowledge base of planetary
rovers could be a good example where the lack of reliable, explicit and a priori
knowledge can be supported by inductive learning capability of the agent.

4. Last but not the least, situations, where each area of experimentation requires a
unique underlying domain model, e.g., all the benchmark domains in Interna-
tional Planning Competition (IPC), require unique domain models and relevant
problems to test the efficiency and effectiveness of planning systems.

The strength of the exploited learning approach or algorithm is the key factor to
regulate the extent of learning by the system, as it may get stuck in local minima or
not be able to capture patterns of the target knowledge within a reasonable time and
memory requirements [27]. For example, exploiting reinforcement learning method
to learn from a reward-based approach can learn better in a stochastic environment
as compared to the inductive learning (which is based on drawing from inference).
Similarly, learning for conformant or contingent planning task, the suitable learning
approach to adopt is by inference or by inductive generalization to find the best fit
for the observed facts. The concept of model-lite [30] planning views a planning
problem as an MPE (most plausible explanation) problem. These techniques search
for solution plans that are most plausible according to the current domain model,
specifically for situations where the first bottleneck is getting the domain model at
any level of completeness.

2.2 Knowledge-Based Inductive Learning (KBIL)

Humans learn knowledge with a sequence of experiences and also by reflection
on past experiences to facilitate current learning. The challenge for autonomous
learning agents is the lack of training examples to reflect on and build the hypothesis.
In many learning systems developed since the 1980s, the issue of lacking training
data has been covered by the notion of inductive bias (IB) [41]. Mitchell defines
inductive bias as the constraint on the hypothesis space (H) of a learning system in
addition to the requirement of consistency with the training examples. It is when a
learning system prefers one hypothesis over others in hypothesis space. Inductive
bias significantly assists the optimal convergence of target function particularly

2 Automated Domain Model Learning Tools for Planning 29

in case of scarce or incorrect training data. This works especially where the new
knowledge that needs learning happens with the same set of examples which learned
the knowledge earlier.

One kind of inductive bias is the use of background knowledge (BK) [5] of the
domain theory that explains the input training data. In other words, the agent should
already know something about the domain it is going to formally induce in the form
of accumulated information. Learners use this background knowledge to distinguish
useful features from training examples. Learning the background knowledge is itself
learning that an agent has to do and is known as a cumulative or incremental learning
process. The background knowledge in some cases can be acquired by the relevant
domain experts.

KBIL is one of the good examples of inductive learning (IL) which supports
the notion of cumulative learning (Fig. 2.3). To reduce the hypothesis space, KBIL
induces hypothesis (h) with the inductive bias in the form of background knowledge
(BK) and the training examples (ET), such that:

IL Λ BK Λ P (xi, yi) � h (KBIL)

where IL is the inductive learning algorithm. The resulting hypothesis h should
explain both the background knowledge and training examples. In KBIL, BK, h
and ET are represented as a set of clauses or as a logical program with predicates
(first-order literals) representing the attributes in them. New knowledge learnt for
the incremental construction of hypothesis is exploited to improve the background
domain knowledge as well. This process is referred to in the literature as the
constructive inductive learning [38].

In most of the domain model learning systems, the fundamental motivation
models have to solve is model-based planning tasks. One of the prominent inductive

Classifier

Hypothesis h(xi)

Training
Examples (ET)

Testing
Examples Input Samples

(xi, f(xi))

Inductive Learning
Component

Background
Knowledge (BK)

KBIL

Fig. 2.3 A knowledge-based inductive learning system structure

30 R. Jilani

learning systems is the LOCM system [12, 13]. LOCM uses an object-centred
representation and performs automated induction of the dynamic aspects of a
domain model on FSM representation of object sorts. Each object sort contains
objects of the same type that behave in the same way. LOCM requires only a set of
fully observable plan traces as the training data with no requirement of background
knowledge about the domain. The main assumption which the LOCM relies on is
that all objects in the domain go through transitions. This assumption is too strong
for some scenarios especially when the domain contains static aspects too (as static
constraints are not reflected in the plan traces). Based on this, a drawback of the
LOCM process is that it can only induce a domain model which represents the
dynamic aspects of objects and not the static aspects. This is problematic since most
domains require static predicates to both restrict the number of possible actions and
correctly encode real-world constraints.

This LOCM drawback is overcome by the ASCoL system [26], an inductive
system that exploits graph analysis method to automatically identifying static
relations, in order to enhance planning domain models. It uses the same set of input
as used by LOCM. LOP [21] addresses the same problem of missing static facts
in the learned domain model by using optimal goal-oriented plans. LOP compares
the optimal input plans with the optimal plans found by using the extended domain
model. If the latter is shorter, then some static relations are deemed to be missing.

LOCM2 [86] is an extension of LOCM with the provision of multiple param-
eterised FSMs to represent each object’s separate behavioural aspects. LOCM2
extends the coverage of domains and the captured domain semantics. NLOCM
[22] extends LOCM to generate fixed action cost numeric domains. It exploits
the constraint programming approach to add numeric weights to the states and
transitions of the FSMs produced by LOCM. The LOCM family of algorithms is
distinct in that it induces the fluents without any additional input support alongside
plan traces, i.e., a sequence of actions with no initial, intermediate and goal states
mentioned.

Some other inductive leaning systems include ARMS [72], SLAF [63], Opmaker
[58], Opmaker2 [36], RIMS [84] and LSO-NIO [48]. Zhuo et al. [78] provide two
extensions of their work ARMS [72], in the form of a new system LAMP which
learns domain models written in PDDL, or in other words in terms of quantifiers and
logical implications. The other extended system of ARMS learns domain models for
hierarchical task networks (HTN), called HTN-Learner. LAMMAS (learning action
models for multi-agent systems) [80] extends ARMS for a multi-agent environment
using the same underlying method. HTNLearn [81] is another system that induces
HTN methods and action models by using as input a collection of plans with
partially annotated intermediate state information and a set of annotated tasks.

Hoffmann et al. [23] induce the business process models (BPM) using logs of
actions recorded from real life business activity execution. The model then turns
into the workflow. The main aim of the developed systems is to use the process
mining technique to exploit the sequence of events. The process mining algorithm
induces a model in the form of graphs such as Petri Nets.

2 Automated Domain Model Learning Tools for Planning 31

Framer [34] induces domain models from natural language action description.
It uses an estimate of functional similarity, so sentences that describe similar
behaviours are represented by the same planning operator. After obtaining plan-
ning operators structure, Framer induces formal domain model by using LOCM.
Martínez et al. [35] induce a probabilistic relational model including action and
exogenous effects. It uses a set of completely observable state transitions as input
to learning multiple candidate models using LFIT [25] system. It then uses an
optimiser to select the best model out of all the candidates. LFIT is a KBIL
system that induces a set of propositional rules by understanding the given input
transitions in the form of interpretations. In order to learn transition rules of cellular
automata, LFIT exploits rules as the background knowledge and conditions on rules
as inductive bias.

FAMA [3] induces STRIPS domain model from the observations of plan execu-
tions. It demonstrates the ability to learn from partial or totally unobservable actions
in plan executions which makes FAMA appropriate to learn from sensory inputs.
The least amount of input FAMA requires is the initial and final states of the plan
execution along with partial domain model. FAMA also presents two novel model-
semantics evaluation metrics that build upon two recognised metrics, precision and
recall [14] to evaluate the learned action models with respect to observations of plan
executions.

PlanMiner-O2 [62] is an algorithm that uses a classification algorithm, based on
inductive rule learning techniques, to learn action models with discrete numerical
values (represented as action costs) from incomplete and noisy data. In accepts plan
traces with intermediate partially observable states affected by noise as an input.

There exist many more inductive domain model learning systems (with varying
level of quality and quantity of input they require) proposed in the last decade. Due
to the generality of the topic discussed in this chapter we only include a few here.

2.3 Analytical Learning

KBIL differs from analytical learnings (AL) in the utilisation of training examples.
AL mainly uses prior knowledge and exploits a training example just to analyse and
discern the relevant features from it. AL uses deductive reasoning method while
empirical learning uses inductive reasoning method.

Explanation-based learning (EBL) [15] is the most common type of AL. In
EBL the generalised rule logically follows only the prior or background knowledge
and does not learn any new facts from examples, such that for EBL the following
expression should be valid:

BK � h (EBL)

EBL differentiates from the pure IL in that it looks for only the relevant positive
examples to logically justify the background knowledge while IL learns all the true

32 R. Jilani

features including relevant to learn from and irrelevant to ignore. This is the reason
why IL requires way more training data compared to EBL that can even learn with
one relevant example. Mitchell and Thrun [45] quotes a very useful chess example
to explain the difference in detail.

Much like the beneficial side of AL, it also suffers from the problem of doggie
outcomes if the background knowledge of the domain is incorrect, e.g., in domains
with no correct or complete background knowledge available to produce logically
justified hypothesis like the stock market. In such situations a reliable source
of learning could be the training examples to identify the relevant feature and
regularities, i.e., inductive learning to learn statistically justified hypothesis. This
leads to a hybrid or mixed inductive-analytical learning approach discussed in the
next section.

Some more examples of analytical learning techniques include memorization,
static analysis and abstractions learning and case-based reasoning. The analytical
learning method is rarely used for domain model learning while the common use of
it is in learning of search control knowledge.

One of the most prominent early works that utilise analytical learning is
PRODIGY [9]. PRODIGY is a planning and learning architecture that integrates
a number of learning modules to improve learning and reasoning mechanism. It
refines and improves the underlying domain knowledge through experimentation
and learns the control rules through experience.

Under a deterministic environment, PRODIGY incrementally learns the domain
model actions by a closed-loop integration of observing other agents, learning,
planning and executing plans in the environment. It produces operator hypothesis
by observing the sequence of changes happening in the environment as the effects a
particular action execution. It verifies the correctness of its hypothesised operators
during the plan execution stage of planning. In addition to the observations of
sequential changes and observed state changes of its learned action, PRODIGY also
takes object types and predicate specifications as inputs to learn a domain model.

Among the six main learning modules of the PRODIGY system, the Experiment
[10] and the Apprentice [28] are the two modules used to acquire and improve the
underlying domain knowledge through inductive learning.

The remaining four modules of the Prodigy, i.e., EBL [39], Static [17], Analogy
[11] and Alpine [31], that learn control rules for the PRODIGY planner and assist
efficient planning process, use analytical learning.

2.4 Hybrid Learning

Hybrid learning or the multi-strategy learning offers support when either of
inductive (statistical) or analytical (logical) knowledge learning cannot individually
generalise because of scarce training data or poor background knowledge, respec-
tively. Also, since most machine learning algorithms are custom designed with
particular datasets or learning tasks, merging two or more techniques together can

2 Automated Domain Model Learning Tools for Planning 33

improve the overall results and effectiveness of the learner in most of the cases.
There are a number of hybrid learning approaches in planning where inductive and
analytical learning perform hand-in-hand. These include explanation-based neural
network (EBNN), explanation-based learning and inductive logic programming
(EBL and ILP) and a combination of explanation-based learning and reinforcement
learning (EBL and RL). On literature search, it becomes apparent that the most
accepted analytical learning technique in multi-strategy learning is EBL. Among
the most common uses of logical learning in EBL and of hybrid approaches is in
learning search control rules and heuristics for planning speedup. We only discuss
the hybrid techniques which touch the topic of domain model learning.

From the domain model learning perspective, explanation-based neural network
(EBNN) blends the two techniques together [44, 45]. It uses NN (backpropagation
algorithm) as a form of inductive learning and puts the domain inferences together
by updating the NN weights in consistency with training data. For analytical
learning, EBL analyses and explains the input training data in terms of the extracted
slopes from the prior domain knowledge of already learned NN. The contribution
and extent of participation of each technique in EBNN vary depending upon the
accuracy of training examples and correctness of the prior knowledge.

PRODIGY, SOAR [33] and THEO [42] combines both inductive and analytical
learning, relying more heavily on the EBL-like deductive methods for acquiring
control knowledge.

2.5 Surprise-Based Learning (SBL)

Autonomous agents commonly encounter the unknown events which most of the
times are realistic and still not engineered in their knowledge base. For example,
AUV (autonomous underwater vehicle) that meets an unexpected underwater
creature for which it has no model. Ideally, these events can provide the opportunity
to learn by experiencing them. Unlike knowledge-based learning methods, SBL is
specially designed for autonomous learning and planning in an unforeseen situation
with no background knowledge (of the domain available) to the learning agent. SBL
works with the notion of prediction rules. Such prediction rules present the agent
with the observational model of the environment for pre-action execution time and
the predicted observations for post-action execution.

Most of the times in SBL, the learning occurs based on the notion of goal-driven
autonomy (GDA) [71]. It is a conceptual model for creating an autonomous agent.
In GDA the learning agent continuously monitors and evaluates the activity/plan
execution outcome with the already predicted observations [47]. Wherever the
action outcome does not match the observed predictions, the algorithm detects
and records the discrepancy. The agent then builds explanation by analysing the
discrepancy, its cause and effects and updates its hypothesis model and reformulates
goals to align with its primary objective. Agents that perform goal reasoning,
explicitly model and reason about the goals they try to achieve [2].

34 R. Jilani

The discrepancies in the observations which present themselves as an opportunity
to learn are termed as ‘surprise’ in the title, i.e., situation where the action effects
violate its predicted model. SBL is shown to be successful on a modular robot
learning and navigating in a small static and the fully observable environment with
no prior knowledge available in the knowledge base [55].

FOOLMETWICE [46], the extension of ARTUE [47], is a system with a relaxed
assumption about domain model completeness. The system implements GDA
and presents an algorithm to learn (and apply) environment models of unknown
exogenous events. It generalises a new model’s preconditions by learning from the
states that cause inconsistency.

Nguyen and Leong [51] present STAR (surprise triggered adaptive and reactive)
system that dynamically learns models of its opponents’ strategies in response to
surprises. Ranasinghe and Shen [55] present an algorithm for an agent to learn and
refine its action models based on the SBL. The model can be used to predict the
state changes and identify when surprises occur.

The LIVE system [64] enhanced the GPS (general problem-solving) system [16]
with the ability to learn models. LIVE learns prediction rules by observing changes
in the environment. It assimilates action exploration, experimentation, learning and
problem-solving. To create STRIPS-like rules, it requires actions and percept from
the environment, a process to provide observation from the environment and the
state description of the environment.

EXPO [20] is a learning-by-experimentation system for refining incomplete
planning operators. It refines operators, which have missing preconditions and
effects by failure-driven experimentation with the environment. It does this by
observing plan execution and detecting the inconsistency between observations
and predictions. To adjust the inconsistency, it produces a set of hypothesis and
empirically tests each. EXPO does incremental learning and also learns conditional
effects.

Another example of refinement and incremental learning is the OBSERVER
[69] system. It induces a STRIPS-like initial model and repairs it continuously
during operation by monitoring expert agents. It applies version spaces algorithm
[40] to the observations. It repairs plans from incorrect and partial domain knowl-
edge. The framework learns planning operators by observing expert agents and
subsequent knowledge refinement in a learning-by-doing paradigm. To refine the
learnt operators, it solves practice problems with operators, analyses and learns
from the execution traces of the resulting solutions. It uses the pure inductive
methodology and does not require background knowledge to do learning. The
method is implemented inside PRODIGY [67] that includes a general-purpose
planner and several learning modules to improve the planning domain knowledge
and also the control knowledge to support the planning algorithm.

To efficiently learn models, there needs to be a quantitative bound on a number
of input samples or the required amount of interactions with the environment.
Walsh and Littman [68] demonstrate that learning STRIPS operators through raw-
experience can require an exponential number of samples, but restricting the size
of the precondition lists allows for sample-efficient learning. An external teacher is

2 Automated Domain Model Learning Tools for Planning 35

needed to fulfil the demand of required solution observations in order to eliminate
the restriction on the size of the precondition lists.

2.6 Transfer Learning

Through transfer learning (TL), the system exploits data from one or more source
domains to improve learning performance in a different target domain in the
situations with like and limited training data availability. Knowledge engineering
through transfer learning especially for planning domain models has recently
received active attention and the resulting learning technique provides a good corpus
of work for interested researchers.

Many machine learning methods work well only under a common assumption
that the training and test data are taken from the same feature space and the same
distribution. In the case of altered feature space and distribution, most statistical
models need to be rebuilt from scratch using newly collected training data. In many
practical applications, it is expensive or impossible to recollect the needed training
data and rebuild the models. It would be nice to reduce the need and effort to
recollect the training data especially when data is scarcely available or when it easily
becomes outdated. In such cases, knowledge transfer or transfer learning between
task domains is desirable. Pan and Yang [52] in a survey on TL explain the benefit
of using TL to cover the same feature space assumption of machine learning. The
survey also addresses the primary issues of what, when and how to transfer.

Zhuo et al. [76] learn the hypothesis model from plan traces by transferring
useful information from other domains whose domain models are already known.
The system creates a metric to measure the shared information and transfer this
information according to the metric. The larger the metric is, the bigger the
information is transferred.

Inspired by the educational psychology of meta-cognitive reflection for better
inductive transfer learning practices, a novel L2T framework [73] has been proposed
for transfer learning. The system automatically optimizes what and how to transfer
between a source and a target domain by leveraging previous transfer learning
experiences.

Zhuo et al. [75] present t-LAMP (transfer Learning Action Models from Plan
traces), which can learn action models in PDDL language with quantifiers. The
system exploits plan traces using Markov logic networks to enable knowledge
transfer.

Zhuo and Yang [82] proposed TRAMP (Transfer learning Action Models for
Planning) system, to learn action models with limited training data in the target
domain, by transferring as much of the available information from source domains
by using web search on top of transfer technique to bridge the transfer gap.

36 R. Jilani

2.7 Policy Learning

A policy is a state-action mapping and policy learning is learning what to do in every
possible situation. Based on the assumption that the goals of the learning system
are static, instead of learning the domain model of the environment, the system
simply learns the reaction or response to common situations that may arise in the
environment. The system does not learn the domain model of the environment to
take action rather it only learns the policies to respond to the exact situation and this
is why this approach is called policy learning. This differs from knowledge-based
apprentice systems to learn domain models (discussed in the next section). The
planning literature also describes this method as learning by observation, imitation
or watching.

Behavioural cloning [8] also known as learning by imitation is an example of
a policy learning approach. In behavioural cloning method, the learning system
observes and reproduces the skills of the trainer agent (which is usually human) in
carrying out the particular task. It then records the responses of the trainer in every
situation along with the cause that gave rise to the response. A sequence of these
responses based on the sub-cognitive skills and actions of a trainer is used as input
to the learning system. When the learning system itself confronts some situation,
it compares this situation with the learnt situation from the trainer and responds to
act according to the learnt response of the trainer. It outputs a set of rules which
reproduce skilled behaviour. This technique has many advantages including the
capability to quickly learn from a few training sessions and to act more reliably than
a human trainer that it learnt from Benson [6]. This method is useful for building an
automatic control system.

From the perspective of the complex domains, it appears to be a difficult exercise
to train the system for all the possible values and situations that can occur inside
the environment. However, in cloning the response to take according to a particular
situation is usually the same for a big set of possible state space, as the system can
then generalise the response and develop a policy to cover more inputs.

ALVINN system [54] is one of the best examples of behavioural cloning.
Learning from fully or partially annotated demonstrations by domain expert has
been used by several systems for knowledge acquisition in robotics and task
modelling [4, 19] but has rarely been used to learn declarative domain model [50]
for AI planners. This is partly because even for the moderately complex domains, it
is unfeasible for the area expert to specify conjecture for every action, explanations
for every inconsistency and all possible effects of the model, as the performance
of the learner is affected by the ability of the trainer. In order to cover for trainer’s
implicit knowledge gap, many systems use reinforcement learning techniques to co-
operate with this type of learning such as using Q-learning [70]. Two of the common
demonstration approaches include tele-operation and shadowing [4].

2 Automated Domain Model Learning Tools for Planning 37

2.8 Other Methods of Knowledge Acquisition

This section includes potential knowledge acquisition and learning methods that are
either not formally classed as the typical learning methods for planning or are in
their infancy yet have produced some effective domain learning systems in the past.

Apprentice Systems Mitchell et al. [43] coined the term apprentice system as
an interactive knowledge-based system which induce knowledge by observing the
users interaction with the system and analysing the problem-solving steps. These
systems capture and infer from the training examples of the user’s activity and
the context on which decisions involved in activity were taken. It then generalizes
rules from the training examples that are comparable to the hand-generated rules.
The idea has been implemented in a number of application areas. Based on the
idea, the same authors created LEAP—a learning apprentice and advice system for
digital circuit design. LEAP integrates new knowledge by its experience with the
user approval/rejection of its advice about circuit decomposition by observing and
analysing the user’s problem-solving decisions and steps.

ARMS (acquiring robotic manufacturing schemata) system [61] represents an
important first step towards a learning-apprentice system for manufacturing. It
learns from a user interface where the user instructs the simulated robots to perform
simple tasks. Michele [49]—a groupware toolkit based on a multi-agent model of
communication—induces learning mechanism by its interactions with the user and
stores learned knowledge in each user’s environment. It induces a decision tree
for each query to the user and exploits ID4 [60] learning algorithm. Jourdan et al.
[29], Tecuci and Dybala [65] and Abbeel et al. [1] are some more examples of the
apprentice systems that use various methods of interaction with the user including
passive observations or querying the user to record the reason behind the particular
decision made.

Crowdsourcing Recently crowdsourcing [24] has been exploited as a novel
approach for acquiring planning domain models. Collecting a large amount of
training data is not always feasible in terms of reach and cost, e.g., in a situation
like a military operation. Instead of collecting training examples, crowdsourcing
methods engage different annotators that could include various sources like domain
experts, stakeholders, previous data or experience of the general public about the
domain to learn. The outcome from various annotators built as the soft constraints
can later be solved using max-sat solver to generate a domain model.

While crowdsourcing is comparatively new in learning for planning, it has
been used in several planning applications, e.g., Zhang et al. [74] enable a crowd
to effectively and collaboratively resolve global constraints to carry out itinerary
planning. Gao et al. [18] propose a technique to handle the discrepancy in crowd
inputs by first building a set of human intelligence tasks (HITs) for values collection
and then estimate the actual values of variables and feed the values to a planner
to solve the problem. Raykar et al. [56] label training data for machine learning

38 R. Jilani

by crowdsourcing information from experts and non-experts. The system not only
evaluates the different experts but also gives an estimate of the actual hidden labels.

Recently, crowdsourcing has also been exploited for acquiring planning domain
models [77]. It is worth noting that the problem of encoding domain models is
being analysed not only from the point of view of generating models in a specific
description language—such as PDDL—but also for generating different sorts of
automatically exploitable models. Konidaris et al. [32] proposed a method for
constructing symbolic representations for high-level planning by establishing a
close relationship between an agent’s actions and the symbols required to plan to
use them.

MLN To deal with the probability along with imperfect and uncertain knowledge,
Markov logic network (MLN) [57] is a dense language to determine very large
Markov networks, and has the ability to flexibly and modularly incorporate a wide
range of domain knowledge. Many learning systems exploit the technique of MLN
that applies the concept of a Markov network to the first-order logic (FOL) and
draws the inference from the evidence. In a Markov graph, the vertices are taken
as the atomic FOL formulas, and the edges act as the logical connectives used to
construct the formulas. Several systems including LAMP—to learn domain model
with quantifiers and logical implications [83] and AMAN—a system for action-
model acquisition from noisy plan traces [79], learn domain models based on the
idea of Markov network as a major driving approach.

LAMP system uses the MLN technique to select the most likely subsets of
candidate formulas from all the generated formulas which are later transformed
into learned action models. It learns STRIPS action models (with quantifiers and
logical implications) for classical planning from plan traces with partially observed
states. It learns a domain model for an observable and deterministic environment
from training plans with little or no pre-engineered domain knowledge including
object types, predicate specifications and action headers.

AMAN builds a graphical model to capture the relations between actions (in
plan traces) and states and then learns the parameters of the graphical model. After
that, AMAN generates a set of action models according to the learnt parameters.
Specifically, the system first exploits the observed noisy plan traces to predict correct
plan traces and the domain model based on the graphical model and then executes
the correct plan traces to calculate the reward of the predicted correct plan traces
according to a predefined reward function. Then, AMAN updates the predicted plan
traces and domain model based on the reward. It iteratively performs the above-
mentioned steps until a given number of iterations is reached. Finally, the predicted
domain model is provided.

TRAMP [82] system conducts MLNs assisted transfer learning to learn domain
models.

2 Automated Domain Model Learning Tools for Planning 39

3 Characteristics of the Domain Model Learning Tools

Using machine learning methods, several tools and techniques have been presented
in the recent past to facilitate the transformation process of real planning application
requirements into a solver ready PDDL domain model that uses training or
observation as inputs. These techniques use various types of knowledge besides
plan traces, like general properties and constraints about domain actions, as well
as partial knowledge about the kind of domain in which they are operating. To
learn expressive domain models, systems tend to require more detailed inputs
and substantial a priori knowledge which often include details about initial and
goal state information. Some systems also require state information before and
after an action execution within each training plan. The main aim of this type of
learning is to overcome the knowledge acquisition bottleneck [30], to help planning
agents become more autonomous and make them able to adapt and plan for unseen
situations and to debug existing domain models.

This section presents a brief overview of the automated tools along with their
characteristics that can be exploited to automatically induce planning domain
models.

Input Characteristics Input characteristics of the system depend on what the
system is trying to learn, the learning method and the extent of learning. Some
systems aim to design the complete domain model of a particular world, some
refine already built partial domain model and some aim to transfer knowledge
from one domain to other. Learning techniques can be supervised or unsurprised
learning. It depends if the trainer indicates when something goes wrong in the case
of supervised learning. All traditional domain model learning systems accept input
in the form of training plans. Based on the learning capability some systems may
also have to exploit additional background knowledge BK or information about
the surrounding world. BK can be in any form like observations, constraints, type
structure, initial, intermediate and goal states, fluent, etc. Some systems also require
a partial domain model (with missing preconditions and effects in the actions) in the
input.

Potential plan traces can be gathered from multiple sources and applications, for
example, the sequence of workflow in some process execution, logs of commands
for installing a piece of software or the moves or steps captured from game playing,
etc.

Obtaining the training plans from sensors, sometimes noise inevitably gets
introduced into plan traces when some sensors are occasionally damaged, with
unintentional mistakes in the recording of the action sequence, or may be due to
the presence of other agents in the same environment. To deal with this, several
systems learn domain models with noisy inputs.

Output Characteristics For output, systems can be classified based on the extent
and capability to learn in varying world dynamics and the state of observability in
the environment. For instance, the characteristics of the surrounding environment
can be discrete or continuous, static or dynamic. Action effects can be stochastic or

40 R. Jilani

non-deterministic (rolling of dice) compared to a fully deterministic environment. In
terms of observability, the learning environment can be fully or partially observable.
Learning from deterministic, fully observable, discrete and static environmental
characteristic offer lesser challenges than continuous and dynamic environmental
features. Jiménez et al. [27] provide a thorough review of techniques based on the
learning targets of the systems from various planning paradigms, i.e., learning in
varying level of world dynamics and state observability.

The extent of learning by a system is the granularity of the output and the amount
of details learnt, for example, full or partial domain model in the output or leaning
of domain model with quantifiers and logical implications [83].

No standard evaluation and analysis methods exist to verify the output domain
model completeness and quality and like the requirements specification, these char-
acteristics cannot be objectively assessed and proven correct. Learning systems and
their output are typically evaluated empirically, based on their divergence from the
reference model syntax (which itself can be questionable from multiple perspectives
by multiple experts). A step forward in defining the quality of domain models and
to improve evaluation method semantically, FAMA [3] presents a method to assess
the quality and performance of the learning approaches. The evaluation method
alleviates the common limitation of syntactic evaluation methods. A usual limitation
of syntactic evaluation methods is when the learned model is semantically correct
but syntactically differ from the benchmark model. Unable to evaluate correct
but redundant preconditions in the model is another downside of syntax-based
assessment methods.

McCluskey et al. [37] use the idea of domain model as a formal specification of
a domain and consider what it means to measure the quality of such a specification.
To build the notion of quality assessment, they used dynamic and static testing of
the domain model. Vallati and McCluskey [66] present a quality framework which
aims at representing all the aspects that affect the quality of knowledge in domain
models. The framework is based on the interaction between seven different sets that
underpin the domain quality.

Some learning systems additionally produce heuristics and various graphical
views like finite state machines along with the domain model while some just
improve the partial domain model by learning the missing preconditions and effects
of operators.

Representational Language and Mechanism A well-chosen representation lan-
guage should explicitly model every action effect the system might confront. In
addition to that, a domain modelling representation language should have some
salient attributes. It should have supporting tools to check its operation and
have logically strong inference mechanism to carry out reasoning. It should be
sufficiently expressive to explicitly model a complex scenario of the real world.
Moreover, it should be customizable and structured to capture every action effect
the system might confront in operator definitions. In addition, it should have clear
syntax and semantics to support the operational aspects of the model.

2 Automated Domain Model Learning Tools for Planning 41

Different learning systems use different languages to express the output domain
model including PDDL, STRIPS, OCL, etc. While choosing the representation
language for effective system output, a well-known complexity-expressiveness
trade-off of representation is not easy to attain. More expressive languages let
the systems produce domains that can express input data in a better way while
reducing the expressivity enhances the complexity of the consistent hypothesis. To
overcome the KE bottleneck, most systems in the area of domain model learning use
propositional and first-order logic to represent domain model for the logical agents
and output the model in some variant of PDDL in their initial acquisition phase.

Most learning systems use action-centred representation mechanism where
applying an action on a state transforms the state of the system into a new state.
These models are represented mostly by PDDL and its variants built on first-
order logic. Another mechanism is the object-centred representation that captures
the dynamic relationship between objects in state parameters. OCL (object centred
language) is used to support this mechanism. Figure 2.4 shows a (non-exhaustive)
characteristic that a domain model learning system can cover.

Fig. 2.4 Various characteristics of domain model learning tools

42 R. Jilani

4 Conclusion

Learning is fundamental to autonomic behaviour and it can be defined in many
ways. From the point of view of machine learning, it is defined as a change in
behaviour through learning to allow improvement in performance. This chapter
investigates various classical and state-of-the-art methods to attain such capability
for automatically learning domain models from training data. The taxonomy and
order of these methods we followed is based on their standing and frequency of
usage in the past research. The choice of the learning method and the design of
the learning mechanism based on it can be made easy by thinking in terms of the
following four factors:

• Firstly, the choice of the learning method depends on the learning goals in a
particular domain. For instance, does it need to design the complete domain
model of a particular world? Is it trying to transfer knowledge from one domain
to other?

• Secondly, it depends upon the availability of the information about the surround-
ing world. If available, then what is the type and consistency of input assistance or
prior knowledge? Is it supervised or unsurprised learning? Is input data consistent
or noisy? Sometimes the supervised learning situations become semi-supervised
based on the deliberate systematic inconsistencies in the data, e.g., learning the
age of people from observing pictures where in the training data some people
lied about their age.

• Another factor to consider is what feedback is available. For example, does a
trainer indicate when something goes wrong in the case of supervised learning?

• Finally, the characteristics of the world to learn knowledge from also matters, for
instance, observability and stochasticity of the environment.

There are several knowledge engineering tools with varying capabilities. These
tools support automated planning, not only in the knowledge elicitation process but
also for the design, validation and verification of developed models.

There are several relevant aspects that need more focused attention of the
planning and learning community in the future. In order to deal with the real-world
planning-inherent complexity, learning-augmented planning systems should be able
to apprehend the environment, generate corresponding effects and enhance their
performance according to the previous experience. This has attracted much research
in the recent past but the current state-of-the-art is still a long way from human-
level abilities to work in real world. Instead, most of these systems work under
classical restrictive environmental assumption with toy domains setup that are more
comprehensible and limited proxies of the real-world environment.

Learning systems can be categorized as offline (learns before the planning
process starts) and online (learns during the plan search and execution stages). From
the domain model learning viewpoint, offline learning is comparatively popular
starting from the learning of domain invariants to learning complete domain model
from variable sources. Both online and offline domain model learning have pros

2 Automated Domain Model Learning Tools for Planning 43

and cons. Online learning can continuously/incrementally refine the domain model
in case an anomaly is detected by improving or adapting to the changes while for
offline planning, the planner has to bear with the predefined version till the planning
process finishes. Similarly, for online learning of the domain model, the overhead
cost incurred for the joint planning-learning process is higher in terms of processing
time and efficiency compared to offline learning [85]. This may also explain why
online incremental domain model learning has not been very popular in recent years
and needs active research attention to effectively reduce the overhead cost.

References

1. Abbeel, P., D. Dolgov, A. Y. Ng and S. Thrun (2008). Apprenticeship learning for motion
planning with application to parking lot navigation. 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IEEE.

2. Aha, D., M. Klenk, H. Munoz-Avila, A. Ram and D. Shapiro (2010). Goal-driven autonomy:
Notes from the AAAI workshop, Menlo Park, CA: AAAI Press.

3. Aineto, D., S. J. Celorrio and E. Onaindia (2019). “Learning action models with minimal
observability.” Artificial Intelligence.

4. Argall, B. D., S. Chernova, M. Veloso and B. Browning (2009). “A survey of robot learning
from demonstration.” Robotics and autonomous systems57(5): 469–483.

5. Baxter, J. (1995). Learning internal representations. Proceedings of the eighth annual confer-
ence on Computational learning theory. Santa Cruz, California, USA, ACM: 311–320.

6. Benson, S. (1995). Action model learning and action execution in a reactive agent. Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI-95).

7. Brachman, R. J. and H. J. Levesque (1984). The tractability of subsumption in frame-based
description languages. AAAI.

8. Bratko, I. and T. Urbančič (1997). “Transfer of control skill by machine learning.” Engineering
Applications of Artificial Intelligence10(1): 63–71.

9. Carbonell, J., O. Etzioni, Y. Gil, R. Joseph, C. Knoblock, S. Minton and M. Veloso (1991).
“Prodigy: An integrated architecture for planning and learning.” ACM SIGART Bulletin2(4):
51–55.

10. Carbonell, J. G. and Y. Gil (1990). Learning by experimentation: The operator refinement
method. Machine learning, Elsevier: 191–213.

11. Carbonell, J. G. and M. Veloso (1988). Integrating derivational analogy into a general problem
solving architecture. Proceedings of the First Workshop on Case-Based Reasoning.

12. Cresswell, S. (2009). “LOCM: A tool for acquiring planning domain models from action
traces.” ICKEPS 2009.

13. Cresswell, S., T. L. McCluskey and M. M. West (2009). Acquisition of Object-Centred Domain
Models from Planning Examples. ICAPS.

14. Davis, J. and M. Goadrich (2006). The relationship between Precision-Recall and ROC curves.
Proceedings of the 23rd international conference on Machine learning, ACM.

15. DeJong, G. and R. Mooney (1986). “Explanation-based learning: An alternative view.”
Machine learning1(2): 145–176.

16. Ernst, G. W. and A. Newell (1969). GPS: A case study in generality and problem solving,
Academic Pr.

17. Etzioni, O. (1991). STATIC: A Problem-Space Compiler for PRODIGY. AAAI.
18. Gao, J., H. H. Zhuo, S. Kambhampati and L. Li (2015). Acquiring Planning Knowledge via

Crowdsourcing. Third AAAI Conference on Human Computation and Crowdsourcing.

44 R. Jilani

19. Garland, A. and N. Lesh (2003). “Learning hierarchical task models by demonstration.”
Mitsubishi Electric Research Laboratory (MERL), USA–(January 2002).

20. Gil, Y. (1992). Acquiring domain knowledge for planning by experimentation, DTIC Docu-
ment.

21. Gregory, P. and S. Cresswell (2015). Domain Model Acquisition in the Presence of Static
Relations in the LOP System. ICAPS.

22. Gregory, P. and A. Lindsay (2016). Domain model acquisition in domains with action costs.
Twenty-Sixth International Conference on Automated Planning and Scheduling.

23. Hoffmann, J., I. Weber and F. Kraft (2009). Planning@ sap: An application in business
process management. 2nd International Scheduling and Planning Applications woRKshop
(SPARK’09).

24. Howe, J. (2008). Crowdsourcing: How the power of the crowd is driving the future of business,
Random House.

25. Inoue, K., T. Ribeiro and C. Sakama (2014). “Learning from interpretation transition.” Machine
Learning94(1): 51–79.

26. Jilani, R., A. Crampton, D. Kitchin and M. Vallati (2015). Ascol: A tool for improving
automatic planning domain model acquisition. Congress of the Italian Association for Artificial
Intelligence, Springer.

27. Jiménez, S., T. De la Rosa, S. Fernández, F. Fernández and D. Borrajo (2012). “A review of
machine learning for automated planning.” The Knowledge Engineering Review27(4): 433–
467.

28. Joseph, R. L. (1989). “Graphical knowledge acquisition.” In Proceedings of the Fourth
Knowledge Acquisition For Knowledge-Based Systems Workshop, Banff, Canada.

29. Jourdan, J., L. Dent, J. McDermott, T. Mitchell and D. Zabowski (1993). Interfaces that learn:
A learning apprentice for calendar management. Machine learning methods for planning,
Elsevier: 31–65.

30. Kambhampati, S. (2007). Model-lite planning for the web age masses: The challenges
of planning with incomplete and evolving domain models. Proceedings of the National
Conference on Artificial Intelligence, Menlo Park, CA; Cambridge, MA; London; AAAI Press;
MIT Press; 1999.

31. Knoblock, C. A. (1991). Automatically Generating Abstractions for Problem Solving,
CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER SCIENCE.

32. Konidaris, G., L. P. Kaelbling and T. Lozano-Perez (2014). “Constructing symbolic repre-
sentations for high-level planning.” Proceedings of the 28th AAAI Conference on Artificial
Intelligence.

33. Laird, J. E., A. Newell and P. S. Rosenbloom (1987). “Soar: An architecture for general
intelligence.” Artificial intelligence33(1): 1–64.

34. Lindsay, A., J. Read, J. F. Ferreira, T. Hayton, J. Porteous and P. Gregory (2017). Framer:
Planning models from natural language action descriptions. Twenty-Seventh International
Conference on Automated Planning and Scheduling.

35. Martínez, D., G. Alenya, C. Torras, T. Ribeiro and K. Inoue (2016). Learning relational
dynamics of stochastic domains for planning. Twenty-Sixth International Conference on
Automated Planning and Scheduling.

36. McCluskey, T., S. Cresswell, N. Richardson, R. Simpson and M. M. West (2008). “An
evaluation of Opmaker2.” The 27th Workshop of the UK Planning and Scheduling Special
Interest Group, December 11–12th, 2008, Edinburgh.: 65–72.

37. McCluskey, T. L., T. S. Vaquero and M. Vallati (2017). Engineering knowledge for automated
planning: Towards a notion of quality. Proceedings of the Knowledge Capture Conference,
ACM.

38. Michalski, R. S. (1993). Learning= inferencing+ memorizing. Foundations of Knowledge
Acquisition, Springer: 1–41.

39. Minton, S., J. G. Carbonell, O. Etzioni, C. A. Knoblock and D. R. Kuokka (1987). Acquiring
effective search control rules: Explanation-based learning in the PRODIGY system. Proceed-
ings of the fourth International workshop on Machine Learning, Elsevier.

2 Automated Domain Model Learning Tools for Planning 45

40. Mitchell, T. M. (1977). Version spaces: A candidate elimination approach to rule learning.
Proceedings of the 5th international joint conference on Artificial intelligence-Volume 1,
Morgan Kaufmann Publishers Inc.

41. Mitchell, T. M. (1980). The need for biases in learning generalizations, Department of
Computer Science, Laboratory for Computer Science Research

42. Mitchell, T. M., J. Allen, P. Chalasani, J. Cheng, O. Etzioni, M. Ringuette and J. C. Schlimmer
(1991). “Theo: A framework for self-improving systems.” Architectures for intelligence: 323–
355.

43. Mitchell, T. M., S. Mabadevan and L. I. Steinberg (1990). LEAP: A learning apprentice for
VLSI design. Machine learning, Elsevier: 271–289.

44. Mitchell, T. M. and S. Thrun (2014). Explanation based learning: A comparison of symbolic
and neural network approaches. Proceedings of the Tenth International Conference on
Machine Learning.

45. Mitchell, T. M. and S. B. Thrun (1996). “Learning analytically and inductively.” Mind matters:
A tribute to Allen Newell: 85–110.

46. Molineaux, M. and D. W. Aha (2014). Learning unknown event models. Twenty-Eighth AAAI
Conference on Artificial Intelligence.

47. Molineaux, M., M. Klenk and D. Aha (2010). Goal-driven autonomy in a Navy strategy
simulation. Twenty-Fourth AAAI Conference on Artificial Intelligence.

48. Mourao, K., L. S. Zettlemoyer, R. Petrick and M. Steedman (2012). “Learning strips operators
from noisy and incomplete observations.” arXiv preprint arXiv:1210.4889.

49. Nakauchi, Y., T. Okada and Y. Anzai (1991). Groupware that learns. [1991] IEEE Pacific Rim
Conference on Communications, Computers and Signal Processing Conference Proceedings,
IEEE.

50. Nejati, N., P. Langley and T. Konik (2006). Learning hierarchical task networks by observa-
tion. Proceedings of the 23rd international conference on Machine learning, ACM.

51. Nguyen, T.-H. D. and T.-Y. Leong (2009). A Surprise Triggered Adaptive and Reactive (STAR)
Framework for Online Adaptation in Non-stationary Environments. AIIDE.

52. Pan, S. and Q. Yang (2010). A survey on transfer learning. IEEE Transaction on Knowledge
Discovery and Data Engineering, 22 (10), IEEE press.

53. Pomerleau, D. A. (1989). ALVINN: An autonomous land vehicle in a neural network. Advances
in neural information processing systems.

54. Pomerleau, D. A. (1991). “Efficient training of artificial neural networks for autonomous
navigation.” Neural Computation3(1): 88–97.

55. Ranasinghe, N. and W.-M. Shen (2008). Surprise-based learning for developmental robotics.
2008 ECSIS Symposium on Learning and Adaptive Behaviors for Robotic Systems (LAB-RS),
IEEE.

56. Raykar, V. C., S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni and L. Moy (2010).
“Learning from crowds.” Journal of Machine Learning Research11(Apr): 1297–1322.

57. Richardson, M. and P. Domingos (2006). “Markov logic networks.” Machine learning62(1–2):
107–136.

58. Richardson, N. E. (2008). An operator induction tool supporting knowledge engineering in
planning, University of Huddersfield.

59. Riddle, P. J., R. C. Holte and M. W. Barley (2011). Does Representation Matter in the Planning
Competition? Ninth Symposium of Abstraction, Reformulation, and Approximation.

60. Schlimmer, J. C. and D. Fisher (1986). A case study of incremental concept induction. AAAI.
61. Segre, A. M. (1987). Explanation-Based Learning of Generalized Robot Assembly Plans,

ILLINOIS UNIV AT URBANA COORDINATED SCIENCE LAB.
62. Segura-Muros, J. Á., R. Pérez and J. Fernández-Olivares (2018). “Learning Numerical Action

Models from Noisy and Partially Observable States by means of Inductive Rule Learning
Techniques.” KEPS 2018: 46.

63. Shahaf, D. and E. Amir (2006). Learning partially observable action schemas. Proceedings of
the National Conference on Artificial Intelligence, Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999.

46 R. Jilani

64. Shen, W.-M. and H. A. Simon (1989). Rule Creation and Rule Learning Through Environmen-
tal Exploration. IJCAI, Citeseer.

65. Tecuci, G. and T. Dybala (1998). Building Intelligent Agents: An Apprenticeship, Multistrategy
Learning Theory, Methodology, Tool and Case Studies, Morgan Kaufmann.

66. Vallati, M. and T. L. McCluskey (2018). “Towards a Framework for Understanding and
Assessing Quality Aspects of Automated Planning Models.” KEPS 2018: 28.

67. Veloso, M., J. Carbonell, A. Perez, D. Borrajo, E. Fink and J. Blythe (1995). “Integrating
planning and learning: The PRODIGY architecture.” Journal of Experimental & Theoretical
Artificial Intelligence7(1): 81–120.

68. Walsh, T. J. and M. L. Littman (2008). Efficient learning of action schemas and web-service
descriptions. AAAI.

69. Wang, X. (1995). Learning by observation and practice: An incremental approach for planning
operator acquisition. ICML.

70. Watkins, C. J. C. H. (1989). PhD Thesis: Learning from delayed rewards, University of
Cambridge England.

71. Weber, B. G., M. Mateas and A. Jhala (2012). Learning from demonstration for goal-driven
autonomy. Twenty-Sixth AAAI Conference on Artificial Intelligence.

72. Wu, K., Q. Yang and Y. Jiang (2005). “Arms: Action-relation modelling system for learning
action models.” CKE: 50.

73. Ying, W., Y. Zhang, J. Huang and Q. Yang (2018). Transfer learning via learning to transfer.
International Conference on Machine Learning.

74. Zhang, H., E. Law, R. Miller, K. Gajos, D. Parkes and E. Horvitz (2012). Human computation
tasks with global constraints. Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ACM.

75. Zhuo, H., Q. Yang, D. H. Hu and L. Li (2008). Transferring knowledge from another domain
for learning action models. Pacific Rim International Conference on Artificial Intelligence,
Springer.

76. Zhuo, H., Q. Yang and L. Li (2009). Transfer learning action models by measuring the
similarity of different domains. Pacific-Asia Conference on Knowledge Discovery and Data
Mining, Springer.

77. Zhuo, H. H. (2015). Crowdsourced action-model acquisition for planning. Twenty-Ninth
AAAI Conference on Artificial Intelligence.

78. Zhuo, H. H., D. H. Hu, Q. Yang, H. Munoz-Avila and C. Hogg (2009). Learning applicability
conditions in AI planning from partial observations. Workshop on Learning Structural
Knowledge From Observations at IJCAI.

79. Zhuo, H. H. and S. Kambhampati (2013). Action-model acquisition from noisy plan traces.
Twenty-Third International Joint Conference on Artificial Intelligence.

80. Zhuo, H. H., H. Muñoz-Avila and Q. Yang (2011). Learning action models for multi-agent
planning. The 10th International Conference on Autonomous Agents and Multiagent Systems-
Volume 1, International Foundation for Autonomous Agents and Multiagent Systems.

81. Zhuo, H. H., H. Muñoz-Avila and Q. Yang (2014). “Learning hierarchical task network
domains from partially observed plan traces.” Artificial intelligence212: 134–157.

82. Zhuo, H. H. and Q. Yang (2014). “Action-model acquisition for planning via transfer learning.”
Artificial intelligence212: 80–103.

83. Zhuo, H. H., Q. Yang, D. H. Hu and L. Li (2010). “Learning complex action models with
quantifiers and logical implications.” Artificial Intelligence174(18): 1540–1569.

84. Zhuoa, H. H., T. Nguyenb and S. Kambhampatib (2013). Refining incomplete planning domain
models through plan traces. Proceedings of IJCAI.

85. Zimmerman, T. and S. Kambhampati (2003). “Learning-assisted automated planning: looking
back, taking stock, going forward.” AI Magazine24(2): 73–73.

86. Cresswell, S. and P. Gregory (2011). Generalised domain model acquisition from action traces.
Twenty-First International Conference on Automated Planning and Scheduling.

Chapter 3
Formal Knowledge Engineering for
Planning: Pre and Post-Design Analysis

Jose Reinaldo Silva, Javier Martinez Silva, and Tiago Stegun Vaquero

Abstract The interest and scope of the area of autonomous systems have been
steadily growing in the last 20 years. Artificial intelligence planning and scheduling
is a promising technology for enabling intelligent behavior in complex autonomous
systems. To use planning technology, however, one has to create a knowledge base
from which the input to the planner will be derived. This process requires advanced
knowledge engineering tools, dedicated to the acquisition and formulation of the
knowledge base, and its respective integration with planning algorithms that reason
about the world to plan intelligently. In this chapter, we shortly review the existing
knowledge engineering tools and methods that support the design of the problem
and domain knowledge for AI planning and scheduling applications (AI P&S).
We examine the state-of-the-art tools and methods of knowledge engineering for
planning & scheduling (KEPS) in the context of an abstract design process for
acquiring, formulating, and analyzing domain knowledge. Planning quality is asso-
ciated with requirements knowledge (pre-design) which should match properties of
plans (post-design). While examining the literature, we analyze the design phases
that have not received much attention, and propose new approaches to that, based
on theoretical analysis and also in practical experience in the implementation of the
system itSIMPLE.

Keywords Planning design · Post-design analysis · Planning automation ·
Automation by planning

J. R. Silva (�)
Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
e-mail: reinaldo@usp.br; http://dlab.poli.usp.br

J. M. Silva
Centro Universitario da FEI, São Bernardo do Campo, SP, Brazil
e-mail: jmartinez@fei.edu.br

T. S. Vaquero
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
e-mail: tiago.stegun.vaquero@jpl.nasa.gov

© Springer Nature Switzerland AG 2020
M. Vallati, D. Kitchin (eds.), Knowledge Engineering Tools and Techniques
for AI Planning, https://doi.org/10.1007/978-3-030-38561-3_3

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38561-3_3&domain=pdf
mailto:reinaldo@usp.br
http://dlab.poli.usp.br
mailto:jmartinez@fei.edu.br
mailto:tiago.stegun.vaquero@jpl.nasa.gov
https://doi.org/10.1007/978-3-030-38561-3_3

48 J. R. Silva et al.

1 Introduction

The last 20 years witnessed a steady growth in the demand for AI planning
technology addressed to real applications. Particularly in the last 5 years we have
different applications such as:

– Robotics [20, 30, 48],
– Space exploration [12, 28],
– Traffic management [10, 47],
– Manufacturing [3, 8, 36, 54, 55],
– Workflow generation in business processes, [5, 23, 40],
– Narrative generation in New Media [31],
– Logistics [16, 22], and
– Disaster management [19, 56].

The design of such complex applications requires the engineering of application
knowledge into a precise form, so that automated reasoning can derive valid
plans that will meet mission goals. This knowledge engineering task, however,
is poorly served with both general tools and theoretical underpinnings [27]. At
best, these applications are created using in-house application-specific knowledge
editing tools, and at worst, a text editor. The immaturity of knowledge engineering
techniques in the planning community is demonstrated by the poor use of notation
and terminology for the knowledge engineering aspects of AI P&S. For example, in
many AI P&S papers the word “domain” is used to refer to a set of formal sentences
describing the environment where actions should be executed.

Indeed, for the KEPS researcher or developer, there is currently little published
work on how to proceed when developing a knowledge base to be used in a planning
application, and on which design steps and tools exist to support that process. An
understanding of what makes a good or bad representation is missing, yet it is
acknowledged that the representation used makes a large difference to the planners’
ability to solve a problem [34]. This conclusion was based on experiments where
the use of different, yet logically equivalent, representations can lead to different
results in the International Planning Competition (IPC).

The special case of automated planning problems brings an extra challenge: to
find a feasible compliance between the automated cycle (the time necessary to sense,
process, find the proper control action, and actuate) and the characteristic time of
specific applications, that is, the maximum time required to get a feedback from the
system.

Applications in manufacturing, traffic management, logistic and, naturally,
robotics, are good examples of demand for new applications that raise new services,
driven by the digital convergence [42]. In all these applications the automation
cycle compliance requires a sound design for AI planning tools that could deliver
traceability between requirements model and the planning domain, which we call
post-design. That implies also a revision of the terminology to refine the concept
of planning domain to include properties of the context where the plan should be
executed.

3 Formal Knowledge Engineering for Planning: Pre and Post-Design Analysis 49

In this chapter we revisited available approaches for KEPS and propose a practi-
cal one that delivers traceability between the problem definition (requirements) and
design. That is a key issue to analyze the plan generated by a planner fed by the
design system. itSIMPLE (Integrated Tools and Software Interface for Modeling
Plan Environments) will be used as an example for a first attempt to model a design
process that is object-oriented and based on UML and Petri Nets, as well as on
goal-oriented method with Hierarchical Petri Nets.

2 Knowledge Engineering and Planning

Knowledge engineering for planning & scheduling (KEPS) is concerned with the
knowledge modeling for the development a problem solving environment and their
respective integration with tools that will synthesize plans. KEPS was defined in the
2003 PLANET Roadmap as the processes involving:

1. The acquisition, validation, verification, and maintenance of planning domain
models,

2. The selection and optimization of appropriate planning machinery, and
3. The integration of (1) and (2) to form a planning and scheduling application [25].

The area can be seen as a special case of knowledge-based systems (KBS), where
the need for methodologies for acquiring, modeling, and managing knowledge
at the conceptual level has long been accepted. However, the peculiarities of AI
P&S applications clearly distinguish KEPS from general knowledge-based systems,
mainly in the area of the principled acquisition and representation of knowledge
about actions [25, 26].

KEPS research focuses on the design process for creating reliable, high quality
knowledge models of real domains [24, 50]. It includes the investigation of methods,
tools, and representation languages to support and organize the phases of design life
cycle. Using a well-structured life cycle to guide design increases the chances of
building an appropriate application while reducing the costs of encountering and
fixing errors in the future. A simple design life cycle is feasible for the development
of a small prototype system, but is likely to fail to produce large, knowledge-intense
applications that are reliable and maintainable.

In addition to investigating new techniques to support the design of knowl-
edge models and their integration with planners, research on KEPS has another
fundamental purpose. Current P&S technology has limited accessibility to non-
experts, such as someone with substantial domain knowledge but no understanding
of automated planning and scheduling. The use of planners as an off-the-shelf
technology by non-experts is not realistic, given the current state of AI P&S, as
a deep understanding of automated planning and scheduling techniques is needed to
adequately utilize them.

Research on KEPS has the goal of bridging the gap between P&S non-experts
and the AI P&S technology, making it accessible for practical problems in the

50 J. R. Silva et al.

real world. An extreme of this is the area of learning domain knowledge from
observation and/or training. In certain applications where flexibility is important
(e.g., embedding an intelligent agent with planning capabilities), it may be desirable
to avoid the need to design a knowledge model, but rather to design a learning
component that can learn and maintain the knowledge model. Studies on KEPS
have led to the creation of tools and techniques to support the design of knowledge
models and the use of planners for real-world problems. Most of these tools have
been presented in specialized workshops and competitions such as the International
Competition on Knowledge Engineering for Planning & Scheduling (ICKEPS).
The competition has motivated the development of powerful KEPS systems and
the advances in modeling techniques, languages, and analysis approaches. In the
next section, we use a design process for knowledge models as a framework for
organizing the KEPS literature.

KEPS has not yet reached the maturity of other traditional engineering areas
(e.g., software engineering [45]) in having an established standard design process.
Nevertheless, research in the KEPS literature has developed design tools and
identified the needs and singularities of the design process and life cycle of AI P&S
applications [25, 44, 50].

Knowledge Engineering arose initially from the knowledge-based systems
(KBSs) community, following by the development of successful expert systems
in 1970s, such as Mycin [39] and others. The field’s motivation was similar to that
of software engineering: “turning the process of constructing KBSs from an art into
an engineering discipline” [46].

The focus of all methods and frameworks developed subsequently were the
creation of a precise, declarative, and detailed model of the area of knowledge
engineering that could be attached to the development life cycle of processes and
systems—including its evolution and maintenance. This emphasis was due partly in
response to the apparent failure of earlier approaches to knowledge-based system
construction and partly to the lack of software tools to support the development
life cycle. Systems were composed by a large number of expert-engineered rules
without a formal model for the underlying domain knowledge [53].

CommonKADS [37] was considered the first environment to structure a method
emphasizing the modeling—together—of expert knowledge and application area.
The development of a KBS in CommonKADS involved the construction of the
expertise model, which contains a mix of knowledge about the problem solving
strategies and the declarative knowledge about the application domain.

The field of knowledge engineering is now considerably broader than when the
term was coined in the context of expert systems. Nowadays, the key rationale
for KEPS is to create declarative representations formalized as requirements
specification, instead of relying in implicit code, and potentializing verification
and reuse. Replication and restrictions to actions eventually executed with the
plan should be directly represented by ontologies. Historically the construction of
ontology engineering environments started with Protege [32].

Since 2005 the current discussion about KEPS has focused on the following
points:

3 Formal Knowledge Engineering for Planning: Pre and Post-Design Analysis 51

– The initial model for the process of planning could be directed to the capture of
knowledge requirements to domain modeling, which could be later transferred to
PDDL or another language understood by planners;

– Using schematic languages such graphs and Petri Nets [14, 49] to analyze and
validate/verify planning domain modeling;

– To improve the abstraction of the design process to deal with objectives,
intentions, and behavior.

The present work deals with the first two objectives. In what follows, we will
describe the domain modeling used in AI planning and specifically the modeling
used by itSIMPLE. Therefore we will start discussing the domain modeling process.

3 Domain Modeling in AI Planning

Domain modeling is a term used perhaps with a variety of meanings in computer
science and applied mathematics. A domain model is often described as an
abstract conceptual description of some application, and is used as an aid to the
software development process. It is formed as part of the requirements analysis
in order to specify objects, actors, roles, attributes etc., independent of a software
implementation. Domain model is often represented imprecisely using diagrams,
such as in the Unified Modeling Language (UML), for human consumption—
that is, for the benefit of analysts and developers to explore requirements and to
subsequently create software in the application area being modeled.

The meaning of domain model for representing knowledge within a planning
application is much more specific: it is still an abstract conceptual description
of some application area but it is encoded for a different purpose—that is, for
the analysis, reasoning, and manipulation by a planning engine in order to solve
planning problems.

A planning domain model is a formal description of the application domain
part of the requirements specification which represents entities invariant over every
planning problem, such as object classes, functions, properties, relations, and
actions in the domain. A problem instance is a specific tuple composed by a couple
of initial and final state, a set of admissible actions, and a set of rules and heuristics
about sequencing such actions. Therefore, domain modeling implies in providing a
formal representation to both planning domain and problem instance. It would be
even more interesting if an integrated model can be achieved.

However, the process starts with the capture of information about a planning
domain and about heuristics that could guide the planning process. Such information
should compose a requirements model, in a process we call pre-design.

Let us assume that requirements specification for a planning component of some
wider project is available. The requirements may be in the minds of domain experts,
be described informally in diagrams and textual documents, or described (at least
in part) in a formal language (e.g., as in the use of LTL [33]). The requirement
specification would naturally contain descriptions of the kind of planning problems

52 J. R. Silva et al.

Fig. 3.1 PDM (planning domain modeling properties) basic properties as defined by LeeMc-
Cluskey et al. and discussed later in McCluskey [27]

that the planner needs to solve and the kind of plans that need to be output. For
example, it might be essential that resource consumption is taken into consideration
and so plans need to be generated which achieve goals while minimizing resource
consumption. Before a domain-independent planner can be chosen and used, the
domain information needs to be conceptualized and formalized. During this process
(elaborated in the sections below) the assumptions and features that are essential to
represent a domain model are derived from the overall requirements.

Figure 3.1 shows the relationship between requirements and PDM, which should
be represented in knowledge model language. Requirements could be modeled in
LTL or Petri Nets and verified in a pre-design process to check for completeness and
consistency (pre-design mode). PDM is modeled in a knowledge model language
and should also be verified to check completeness and consistency. Consistent and
sound requirements can then fit PDM design model in a post-design mode to verify
accuracy and adequacy.

3.1 Accuracy

Accuracy is an attribute of the PDM, related to application domain features consid-
ered as part of the requirements specification (often just referred as “requirements”
below). Considering the PDM as a logical expression,

3 Formal Knowledge Engineering for Planning: Pre and Post-Design Analysis 53

A PDM accurately represents the requirement specification if the interpreta-
tion given to it by mapping its components to features (objects, relations, etc.)
in that specification makes all assertions in the PDM true.

Verifying accuracy is essentially an informal process if the requirements are
described informally. If the requirements are already encoded in some formal
language, then a PDM is accurate if the requirements provide a model of the PDM.
For example, if there is a semantic model encoding the requirements, the accuracy
of the PDM equates to interpreting it using the semantic model, and hence accuracy
in this case can be proved formally.

If a PDM is encoded in PDDL, then assessing accuracy of the domain model
entails,

1. Creating all possible groundings of operator schema, using the objects in the
problem file,

2. Mapping the logical expression in the precondition of each grounded schema to
a set P of relations and properties in the requirements,

3. Mapping the logical expression in the effects to a set E of relations and properties
in the application, and

4. Checking that if P is true in the application, then the action modeled could be
executed, and if executed would make E true.

A similar process would be used to assess the accuracy of the problem descrip-
tion. Assessing accuracy of the problem specification is a matter of checking
that the initial state and goal map to the problem embedded in the requirements
specification.

3.2 Adequacy

Adequacy is a relationship between the requirements and the language in which the
PDM is encoded.

A language is adequate with respect to a requirements specification if it has
the expressive power to represent the requirements within a PDM in sufficient
detail so that a complete PDM can be expressed.

Adequacy is related to the level of granularity needed by the requirements and
derives from the idea of representational or expressive adequacy of a knowledge
representation language.

54 J. R. Silva et al.

Completeness of a PDM depends on language adequacy. A PDM could be
accurate—all the features present conform to the requirements, in the sense that
their interpretation is true—but it may be the case that some requirements cannot be
represented at all. Hence, the completeness of a PDM may be prevented because of
an inadequate language.

3.3 Operationality

In the AI planning and scheduling literature, the validation of a domain model is
often solely based on a test of whether it will lead to acceptable behavior in a P&S
system [38], that is, if an acceptable plan can be output. This is a weak form of
completeness as defined above. However, there are normally many encodings of
any given PDM that would pass this test, but some encodings lead to much more
efficiently generated solutions than others. Given a complete model exists, there will
always be ways of re-representing the model without compromising completeness.
These models may give different results when input to a planner: for example, some
may not satisfy some real time constraints in the requirements. More generally, it
is also possible that two distinct domain models are complete, but one leads to a
more efficient implementation, or better quality plans. Hence, the process of finding
an acceptable plan in an application depends not only on the strategy used by the
planner, but also the PDM. For example, if the model is not accurate, then the
planner will generate flawed plans or no plans at all [25]. Even the planner’s speed
can be affected under such circumstances. For instance, case studies have shown
that fixing and refining the model itself (e.g., adding additional relevant knowledge)
can improve the performance of planners, without modifying the planners and their
search mechanism [52]. In addition, works like [4, 35] show that adding relevant,
redundant constraints (in the form of control knowledge and rules) in the PDM can
also speed up planners.

For a given planner and requirements specification, we define operationality as
an attribute of a PDM and a planning engine E as follows.

A PDM is operational with respect to planning engine E if E produces a
solution S to P within an acceptable time, such that I (S) is an acceptable
solution to I (P) according to the requirements.

Note that the definitions do not demand that the planner outputs all the acceptable
solutions—this is somewhat unfeasible computationally, hence we have a weaker
definition that is more in tune with practice.

3 Formal Knowledge Engineering for Planning: Pre and Post-Design Analysis 55

Accepted PDM are sent to a planning engine that provide plans which fit PDM
operationality—a second level of post-design. In this chapter we will focus only on
the first level of post-design.

There are many tools available addressing PDM, and also claiming to do post-
design, but up to 2013 only two use requirements specification and therefore could
not implement the first level of post-design mentioned above. Figure 3.2 shows a
list of tools and its corresponding features concerning KEPS and PDM.

KEPS process is still in use, relying on sound requirement engineering and
formal requirement specification (pre-design), which could match a PDM. Those
applications use a unified domain model of problem specification where post-design
analysis is applied. In what follows, we will present a clear proposal to achieve that.

Fig. 3.2 Summary of available tools and methods in the Knowledge Engineering For Planning
and Scheduling literature, Design phases: (1) Requirements, (2) Knowledge Modeling, (3) Model
Analysis, (4) Model Preparation, (5) Plan/Schedule Synthesis, (6) Plan/Schedule Analysis and
Post-Design. Checkmark means that the feature is present in the tool, approx means that it is to
some degree present, and blank means that it is not present

56 J. R. Silva et al.

4 A Knowledge Engineering Design Approach for Planning

It is clear that a formal design process must be adopted in P&S—specially for
the real applications mentioned in the introduction for this chapter. Figure 3.3
summarizes the main phases of such process highlighting pre-design and the post-
design focused in this work. Notice that the last block is the classic post-design,
commonly addressed to the output of the plan engine (which is chosen by a
corresponding selection of the planning algorithm). Early post-design can reduce the
impact of the classic post-design, which has to translate the plan back to a modeling
language to be really effective. We will return to that later, now with opening the
possibility to use Petri Nets in this process.

The design process of Fig. 3.3 is generic and does not specify either the
engineering requirement approach, the modeling representation to requirements, the
knowledge model language or the model translation approach. All that should be
clearly specified to have a real design process.

Requirements
Specification
Pre-design

requirements

model

Model Transition input ready model

plan

Plan Analysis and
Post-Designplan issues and missing and new constraints (order,

temporal, conditions)

Planner Selection
and Plan Synthesisplanner capability and performance

requirements runtime issues

model translation constraints

validated and verified
model

Model Analysis
Post-Design

missing
requirements
or constraints

missing requirements
or constraints

Problem and
Domain Modeling

Fig. 3.3 KEPS and PDM design process depicting pre and post-design. First level of post-design
is PDM formal verification and traceability with requirements model—pre-design—while a classic
post-design approach is directed to the plan engine output

3 Formal Knowledge Engineering for Planning: Pre and Post-Design Analysis 57

Fig. 3.4 Integration of languages

Starting from last one—model translation—PDDL [17] is a formal represen-
tation that collects domain model and problem instance and can feed almost all
plan engines, except those that use hierarchical approach. SHOP2 [11] will be the
selected representation to hierarchical models.

Both requirements model and knowledge model to PDM will be done in Hierar-
chical Petri Nets [18, 36, 40]. Requirements will be engineered based on objectives,
instead of objects and functionality. Goal oriented requirements engineering is the
base for this approach [2, 21], which also uses LTL as a formal representation to
requirements. Figure 3.4 shows the choice for language representations proposed
to PDM: (1) requirements captured in UML or KAOS diagram [1, 21]1; (2) model
requirements in KAOS can be automatically transferred to LTL or to a based model
in XML; (3) formal requirements in XML can be transferred to Petri Nets (using a
system called GHENeSys and GNML) or directly to PDDL, and to the plan engine.

There are some reasons to introduce goal-oriented modeling requirements, which
are shortly described next.

Using Goal Orientation in Plan Design In the last 5 years the number of tools
that give support to requirements modeling grew considerably, many of them using
UML. That also means a choice to a functional object-oriented approach which
also results in good performance, as in the itSIMPLE tool [51, 52]. However,
functional approaches also depend on a complete representation of non-functional
requirements, and it is really a challenge to prove such completeness during the
acquisition process.

Instead of dozens of diagrams with superposing expressive power, KAOS
concentrate the modeling in goals or objectives, which dispense the pair-wising

1KAOS (knowledge acquisition in automated specification) is a visual diagram schema proposed in
goal oriented requirements engineering that captures knowledge based on goals instead of objects.

58 J. R. Silva et al.

Object modeling
Operation modeling

Responsibility

Responsibility modeling

KAOS

Who?

Performs

Operationalization

What to do?
When?

OPERATION

Cause

On what?

Input

Output

Aggregation
Binary

Association
Isa

Link

Concerns

ENTITY

N-ARY
ASSOCIATION

ENTITY

ENTITY

Attr:Type

EVENT

AGENT

AGENT

EXPECTATION

GOAL

GOAL DOMAIN
PROPERTY REQUIREMENT

GOAL

OBSTACLE

Why ?
How ?

Refinement

Goal modeling

Fig. 3.5 KAOS modeling diagrams (www.objectiver.com/fileadmin/download/documents/
KaosTutorial.pdf)

between functional and non-functional requirements to achieve completeness.
Incomplete requirements modeling are only due to the lack of knowledge or missing
requirements, which is present in any modeling process (Fig. 3.5).

Modeling with KAOS is concentrated in four integrated modeling diagrams:
goal model, object model, operation model, and responsibility model. Goal model
captures the abstract knowledge about the target and, in the case of planning
applications, can capture knowledge about domain and specific problem in an
integrated form; object model captures and specifies all objects involved, be it
humans or machines, and encapsulates their behavior (which is the main advantage
of object-oriented approach); requirements model receives the specification of
the planning environment and specifies heuristics, restrictions, and properties that
should be used in the planning process; finally, responsibility diagrams map agents
and requirements or deliverable expectations providing a base to traceability.

Traceability is a key issue to post-design and also in the guide to fix problems
detected in the post-design process. However, it is very hard to implement using
object-oriented models. That is the basic reason to look for an alternative represen-
tation to knowledge requirements.

Requirements model can be automatically translated to LTL (linear tree logic),
which would complete the pre-design process for many short applications. However,
to many of the real problems mentioned in the beginning of this chapter that is not
enough, and applications require distributed state-transition representation. That is
where Petri Nets fit the process.

www.objectiver.com/fileadmin/download/documents/KaosTutorial.pdf
www.objectiver.com/fileadmin/download/documents/KaosTutorial.pdf

3 Formal Knowledge Engineering for Planning: Pre and Post-Design Analysis 59

Petri Nets can be used to model requirements, specially the relationship between
the specific problem and the domain environment. The same representation can be
refined to fit PDM as shown in Fig. 3.3. Therefore, post-design can be reduced to
Petri Net isomorphism and property analysis.

Notice that in what concerns classic post-design, the output of the plan engine
should be translated to Petri Nets and can follow the same analysis process, being
compared to both nets synthesized from PDM and from requirements. We will
not explore this possibility in this work, but from previous experience we can say
that is just a matter of adjusting algorithms already developed. A more advanced
approach could be achieved by introducing hierarchical Petri Nets into the post-
design process, which is what we plan for further work.

Practical problems to translate requirements to Petri Nets are summarized with
a realistic example extracted from ROADEF [29]: a sequence of activities in car
manufacturing.

5 PDM and Post-Design Modeling Using Petri Nets

Car sequencing is a model problem extracted from a realistic one in the manufac-
turing process of Renault. It is similar to many similar problems from different car
manufacturer that automate partially their sites. The assembling system is divided in
three stations: the “white body,” where the basic structure is assembled; the painting
station; and the assembly, where the final parts (such as doors, windows, etc.) are
assembled.

The sequence optimization depends on the proper planning of the demand to
reduce setup on stations: changes on the parts available, change of painting gun,
etc. It is in fact a classic example where applying AI planning in the manufacturing
industry has very good practical results. For that reason it is suitable to show the
impact of new planning design approaches (Fig. 3.6).

According to the model of Fig. 3.3, the practical problem to be highlighted is
transferring from knowledge modeling representation using in PDM and problem
specification to a formal language suitable to model distributed process: Hierarchi-
cal Petri Nets (HPN) will be used to formalize post-design analysis.

Automatic transferring from KAOS diagrams to Petri Nets is performed by a
tool developed by some of the authors of this work and is called RekPlan [43].
The transference put together an algorithm developed for the tool itSIMPLE which
captures object structures in Petri Nets—enhanced by Silva and del Foyo in [41]—

Fig. 3.6 Sequence of stations
in car assembling [29]

60 J. R. Silva et al.

Fig. 3.7 RekPlan system capturing KAOS diagram, which can be delivered by XML from a goal-
oriented requirement modeling system

with a new translation algorithm that captures all elements of KAOS diagrams and
its context. RekPlan is a stand-alone tool and can be adapted to any other KEPS
system, as shown in Fig. 3.7.

Once the KAOS diagram is captured, a Petri Net can be synthesized, as shown in
Fig. 3.8.

The Petri Net synthesized is not just a normal place transition net but an
extension, called a Unified Net System, which can model classic place/transition
net, high level nets and support a transference language—GNML, which stands
for GHENeSys Markup Language—and some extensions such as special control
elements and hierarchy [41]. All that features fit the standard ISO/IEC 15.909.

The gray circles denote a special place, linked by gates, which marking is not
controlled by the system. For instance, the first element is associated with the
operator (human) or the availability of a transport system (AGV) from the white
body to the painting station. Macro places contains hierarchical subnets and are
represented with a rectangle inside, meaning that this an hierarchical place and this
place could be replaced by a more detailed network which show, for instance, cars
are grouped by special features or according spray gun limitations.

3 Formal Knowledge Engineering for Planning: Pre and Post-Design Analysis 61

Fig. 3.8 Petri Net generated from the KAOS diagram for the car sequencing problem

Using hierarchical nets makes the transference between requirements modeling
to PDM and problem model just by filling up the hierarchical elements with its
sub-nets. That guarantees a matching between pre and post-design analysis.

The net models the workflow among the stations without “solving” the planning
problem, which will be done by a plan engine. However, all the restrictions
and constraints of the domain are present in the net with clear parallelism and
distribution. Notice that a plan is not represented just by its shop floor specification.
Instead, it is necessary to arrange the demand of cars with defined by the model,
color, and, eventually, special features, with the constraints to resource allocation of
pieces, such as paint, spray-guns, and others.

Post-design analysis will be done first by property analysis, which is shown in
Fig. 3.9.

It is also possible to improve the analysis by introducing analysis of invariants
and synchronic distance [36] and timed model checking [41]. That will provide
enough elements to face any challenge application as mentioned in the beginning of
this chapter.

62 J. R. Silva et al.

Fig. 3.9 Property analysis
generated by GHENeSys
tools [41]

6 New Perspectives for AI Planning in Automation Systems

Research in KEPS methods and tools are evolving and taking different routes, as
being directed to specific problem applications as roadwork in huge metropolis [47]
or complex logistic systems [22], directed to improve the performance of processes
[15], to enhance the methods and concepts [13] or by improving the expressibility
of methods to model real time systems [7]. Some work rely on machine learning
[28], big data [55], or business complex business process [23].

However, there is also a line of work that focuses on the improvement of the
abstraction of KEPS design models. In that line of work the goal is to enhance KEPS
models to deal with abstract conceptual elements [6, 30] that can provide enough
guide to plan engines, but that could also reduce the processing time to synthesize
a plan. That will be very important to new collaborative systems composed by
humans and robots [9] which will be the new demand, for instance, to new digital
manufacturing approaches [42].

Planning systems should face the challenge of fitting the “automated cycle”
which stands for the time necessary to sense, process a PDM+problem model,
plan the control, and act. Such goal demand more work in abstraction and KEPS
modeling but can certainly have a great impact in the use of planning and scheduling
systems all over the world.

A step towards a tight automated cycle could be done by using the hierarchical
approach showed here to work over a model of behaviors, instead of actions, which
can be applied to companion robots and to apprentice machines, that is, machines
that work with humans in direct collaboration.

3 Formal Knowledge Engineering for Planning: Pre and Post-Design Analysis 63

References

1. Almisned, F., Keppens, J.: Requirements Analysis: Evaluating KAOS Models. Journal of
Software Engineering and Applications 3, 869–874 (2010)

2. Ambreen, T., Ikram, N., Usman, M., Niazi, M.: Empirical Research in Requirements Engineer-
ing: trends and opportunities. Requirements Engineering 23(1), 63–95 (2018)

3. Asai, M., Fukunaga, A.: Fully automated cyclic planning for large-scale manufacturing
domains. In: 24th. Int. Con. Artificial Planning and Scheduling (June 2014)

4. Bacchus, F.: The AIPS-00 planning competition. AI Magazine 20(3), 47–56 (2001)
5. van Beest, N., Russel, N., ter Hofstede, A., Lazovik, A.: Achieving intention-centric BPM

through automated planning. In: 7th. IEEE Int. Conf. on Service-oriented Computing and
Applications (2014)

6. Bonet, B., Fuentetaja, R., E-Martin, Y., Bonet, B.: Guarantees for Sound Abstractions for
Generalized Planning. In: In Proceedings of the 29th. Int. Joint Conference on Artificial
Intelligence. AAAI (2019)

7. Cenamor, I.and Vallati, M., Chrpa, L.: On the predictability of domain-independent temporal
planners. Computational Intelligence 35(3) (2019)

8. Cesta, A., Orlandini, A., Umbrico, A.: Fostering Robust Human-Robot Collaboration through
AI Task Planning. Procedia CIRP 72, 1045–1050 (2018)

9. Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E.: Validation and Verification Issues in a
Timeline-based Planning System. In: Proceedings of the ICAPS 2008 Workshop on Knowledge
Engineering for Planning and Scheduling (KEPS). Sydney, Australia (2008)

10. Chen, C., Rickert, M., Knoll, A.: A traffic knowledge aided vehicle motion planning engine
based on space exploration guided heuristic search. In: IEEE Intelligent Vehicles Symposium
Proceedings. pp. 535–540 (June 2014)

11. Cheng, K., Chen, G., Zhang, R., Wu, L., Wang, Z., Kang, R.: A Method for Unifying the
Representation of Domain Knowledge and Planning Algorithm in Hierarchical Task Network.
Int. Journal of Pattern Recognition and Artificial Intelligence 31(8) (2017)

12. Chien, S., Morris, R.: Editorial: Space applications of artificial intelligence. AI Magazine
35(4), 3–6 (2014)

13. Chrpa, L., Vallati, M., Mccluskey, T.: Inner Entanglements: Narrowing the search in classical
planning by problem reformulation. Computational Intelligence 35(2), 395–429 (2019)

14. Edelkamp, S., Jabbar, S.: Action Planning for Direct Model Checking of Petri Nets. Electronic
Notes in Theoretical Computer Science 149(2), 3–18 (2006)

15. Franco Axela, S., Vallati, M., Mccluskey, T.: Improving Planning performance in PDDL+
Domains via Automated Predicate Reformulation. In: In Proceedings of the International
Conference on Computational Science. Springer Verlag (2019)

16. Gath, M., Herzog, O., Edelkamp, S.: Autonomous and flexible multiagent system to enhance
transport logistic. In: Proc. of 11th Proc. of the Int. Conf. & Expo on Emergent Technologies
for a Smarter World (October 2014)

17. Gerevini, A., Long, D.: Preferences and Soft Constraints in PDDL3. In: Gerevini, A., Long, D.
(eds.) Proceedings of ICAPS workshop on Planning with Preferences and Soft Constraints. pp.
46–53. AAAI Press (2006), http://www.plg.inf.uc3m.es/icaps06/preprints/i06-ws1-allpapers.
pdf

18. Harie, Y., Mitsui, Y., Fujimori, K., Batajoo, A., Wasaki, K.: HiPS: Hierarchical Petri Nets
design, simulation, verification and model checking tool. In: Proceedings of IEEE Global
Conference on Consumer Electronics (2017)

19. Kim, S., Shin, Y., Lee, G., Moon, I.: Early stage response problem for post-disaster incidents.
Engineering Optimization 50(7), 1198–1211 (2018)

20. Lallement, R., Silva, L., Alami, R.: HATP: An HTN planner for robotics. In: 24th. Int. Con.
Artificial Planning and Scheduling (June 2014)

21. Lamsweerde, A.: Requirements Engineering: from system goals to UML Models to Software
Specifications. John Wiley & Sons (2009)

http://www.plg.inf.uc3m.es/icaps06/preprints/i06-ws1-allpapers.pdf
http://www.plg.inf.uc3m.es/icaps06/preprints/i06-ws1-allpapers.pdf

64 J. R. Silva et al.

22. Leofante, F., Abraham, E., Tacchela, A.: Task Planning with OMT: An Application to
Production Logistic. In: C., F., Winter, K. (eds.) Integrated Formal Methods—Lecture Notes in
Computer Science. vol. 11023. Springer (2018)

23. Marrella, A.: Automated Planning for Business Process Management. Journal of Data Seman-
tics pp. 1–20 (2018), https://doi.org/10.1007/s1374

24. McCluskey, T.L.: Knowledge Engineering: Issues for the AI Planning Community. In: Work-
shop on Knowledge Engineering Tools and Techniques for AI Planning. Sixth International
Conference on Artificial Intelligence Planning and Scheduling. pp. 1–4. Toulouse, France
(2002)

25. McCluskey, T.L., Aler, R., Borrajo, D., Haslum, P., Jarvis, P., Refanidis, I., Scholz, U.:
Knowledge Engineering for Planning Roadmap (2003)

26. McCluskey, T.L., Simpson, R.M.: Knowledge Formulation for AI Planning. In: Knowledge
Acquisition, Modeling and Management (EKAW). pp. 449–465 (2004)

27. McCluskey, T.L., V.T.V.M.: Engineering Knowledge for Automated Planning: Towards a
Notion of Quality. In: Proceedings of the Knowledge Capture Conference (2017)

28. Mohr, F., Wever, M., Hullermeier, E.: ML-Plan: Automated Machine learning via hierarchical
Planning. Machine Learning 107(8–10) (2018)

29. Nguyen, A.: Challenge ROADEF 2005: Car sequencing problem. Online reference at http://
challenge.roadef.org/2005/files/suite_industrielle_2005.pdf, last visited on August of 2016 23
(2005)

30. Pecora, F., Andreasson, H., Mansouri, M., Peckov, V.: A Loosely-coupled Approach for Multi-
Robot Coordination on Automated Planning and Scheduling. In: In Proceedings of the 28th.
Int. Joint Conference on Artificial Intelligence. AAAI (2018)

31. Porteous, J., Cavazza, M., Charles, F.: Applying planning to interactive storytelling: Narrative
control using state constraints. ACM Transactions on Intelligent Systems and Technology 1(2),
1–21 (2014)

32. Puerta, A., Egar, J., Tu, S., Musen, M.: A multiple-method knowledge-acquisition shell for
the automatic generation of knowledge-acquisition tools. Knowledge Acquisition 4, 171–196
(1992)

33. Raimondi, F., Pecheur, C., Brat, G.: Verification and Validation of Planning and Scheduling
Systems. In: Proceedings of ICAPS 2009. AAAI (2009)

34. Riddle, P., Holte, R.C., Barley, M.: Does representation matter in the planning competition. In:
Gnesereth, M.R., Revesz, P.Z. (eds.) SARA. AAAI (2011)

35. de la Rosa, T., McIlraith, S.: Learning Domain Control Knowledge for TLPlan and Beyond.
In: Proceedings ICAPS 2011—Workshop on Planning and Learning (2011)

36. Salmon, A., del Foyo, P., Silva, J.: Scheduling real-time systems with periodic tasks using
model-checking approach. In: Proc. of 12th IEEE Int. Conf. on Industrial Informatics (July
2014)

37. Schreiber, G., Wielinga, B., Breuker, J. (eds.): KADS: A Principled Approach to Knowledge-
Based System Development, Knowledge Based Systems, vol. 11. Academic Press, London
(1993)

38. Shah, M., Chrpa, L., Kitchen, D., McClyskey, T.L., V.M.: Exploring Knowledge Engineering
Strategies in Designing and Modelling a Road Traffic Accident Management Domain. In:
Proceedings IJCAI 2013. AAAI (2013)

39. Shortliffe, E.: MYCIN: A rule-based computer program for advising physicians regarding
antimicrobial therapy selection. Ph.D. thesis, Stanford University (1974)

40. Sid, I., Reichert, M., Ghomari, A.: Enabling Flexible task compositions, order and granularities
for Knowledge-intensive business process. Enterprise Information System 13(3), 376–423
(2019)

41. Silva, J., del Foyo, P.: Timed Petri Nets. In: IntechOpen (ed.) Petri Nets—Manufacturing and
Computer Science. Springer-Verlag (2012)

42. Silva, J., Nof, S.: Perspectives on Manufacturing Automation Under the Digital and Cyber
Convergence. Polytechnica 1(1–2), 36–47 (2018)

https://doi.org/10.1007/s1374
http://challenge.roadef.org/2005/files/suite{_}industrielle{_}2005.pdf
http://challenge.roadef.org/2005/files/suite{_}industrielle{_}2005.pdf

3 Formal Knowledge Engineering for Planning: Pre and Post-Design Analysis 65

43. Silva, J.M, Silva, J.R.: A New Hierarchical Approach to Requirements Analysis of Problems
in Automated Planning. Eng. App. of Artificial Intelligence, 81, 373–386 (2019).

44. Simpson, R.M.: Structural Domain Definition using GIPO IV. In: Proceedings of the Second
International Competition on Knowledge Engineering for Planning and Scheduling. Provi-
dence, Rhode Island, USA (2007)

45. Sommerville, I.: Software Engineering. Pearson, 10th edn. (2016)
46. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge Engineering: Principles and Methods. Data

and Knowledge Engineering 25(1–2), 161–197 (March 1998)
47. Vallati, M., Chrpa, L., Kitchin, D.: How to Plan Roadworks in Urban Regions? A Principled

Approach Based on AI Planning. In: In Proceedings of the International Conference on
Computational Science. Springer Verlag (2019)

48. Vaquero, T.S., Nejat, G., Beck, J.: Planning and scheduling single and multi-person activities
in retirement home settings for a group of robots. In: 24th. Int. Con. Artificial Planning and
Scheduling (June 2014)

49. Vaquero, T.S., Silva, J.R., Tonidandel, F., Beck, J.C.: itSIMPLE: Towards an Integrated Design
System for Real Planning Applications. The Knowledge Engineering Review Journal, special
issue on International Competition on Knowledge Engineering for Planning and Scheduling
(ICKEPS) (2011)

50. Vaquero, T.S., Romero, V., Tonidandel, F., Silva, J.R.: itSIMPLE2.0: An integrated Tool for
Designing Planning Environments. In: Proceedings of the 17th International Conference on
Automated Planning and Scheduling (ICAPS 2007). pp. 336–347. AAAI Press (2007)

51. Vaquero, T.S., Sette, F.M., Silva, J.R., Beck, J.C.: Planning and Scheduling of Crude Oil
Distribution in a Petroleum Plant. In: Proceedings of ICAPS 2009 Scheduling and Planning
Application workshop (2009)

52. Vaquero, T.S., Silva, J.R., Beck, J.C.: Improving Planning Performance Through Post-
Design Analysis. In: Proceedings of ICAPS 2010 workshop on Scheduling and Knowledge
Engineering for Planning and Scheduling (KEPS). pp. 45–52 (2010)

53. Vaquero, T., Silva, J., Beck, J.: A brief review on tools and methods for knowledge engineering
for planning and scheduling. In: Proc. of KEPS Workshop, ICAPS 2011. AAAI Press (2011)

54. Xu, L., Wang, C., Bi, Z., Yu, J.: Object-oriented templates for automated assembly planning of
complex products. EEE Trans. on Automation Science and Engineering 11(2), 492–503 (2014)

55. Xu, Y., S., T., Zeng, X.: AI for Apparel Manufacturing in Big Data Era: A Focus on Cutting
and Sewing. In: S., T., Zeng, X. (eds.) Artificial Intelligence for Fashion Industry in the Big
Data Era, pp. 125–151. Springer (2018)

56. Yuan, C.C., Chua, F.F.: Autonomic execution of web service composition using AI planning
method. Int. J. of Information Technologies and Systems Approach 8(1), 28–45 (2015)

Chapter 4
MyPDDL: Tools for Efficiently Creating
PDDL Domains and Problems

Volker Strobel and Alexandra Kirsch

Abstract The Planning Domain Definition Language (PDDL) is the state-of-the-
art language for specifying planning problems in artificial intelligence research.
Writing and maintaining these planning problems, however, can be time-consuming
and error- prone. To address this issue, we present myPDDL—a modular toolkit for
developing and manipulating PDDL domains and problems. To evaluate myPDDL,
we compare its features to existing knowledge engineering tools for PDDL. In a
user test, we additionally assess two of its modules, namely the syntax highlighting
feature and the type diagram generator. The users of syntax highlighting detected
36% more errors than non-users in an erroneous domain file. The average time on
task for questions on a PDDL type hierarchy was reduced by 48% when making
the type diagram generator available. This implies that myPDDL can support
knowledge engineers well in the PDDL design and analysis process.

Keywords PDDL · Planning · Knowledge engineering

1 Introduction

Being a key aspect of artificial intelligence (AI), planning is concerned with
devising a sequence of actions to achieve a desired goal [7]. AI planning has made
remarkable progress in solving planning problems in large state spaces that would
be impossible for humans to handle. The International Planning Competition1 has

1http://www.icaps-conference.org/index.php/Main/Competitions/.

V. Strobel (�)
IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
e-mail: vstrobel@ulb.ac.be

A. Kirsch
Independent Scientist, München, Germany

© Springer Nature Switzerland AG 2020
M. Vallati, D. Kitchin (eds.), Knowledge Engineering Tools and Techniques
for AI Planning, https://doi.org/10.1007/978-3-030-38561-3_4

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38561-3_4&domain=pdf
http://orcid.org/0000-0003-2974-9827
http://orcid.org/0000-0002-5663-1798
http://www.icaps-conference.org/index.php/Main/Competitions/
mailto:vstrobel@ulb.ac.be
https://doi.org/10.1007/978-3-030-38561-3_4

68 V. Strobel and A. Kirsch

led to a number of open source planners that are ready to be used by practitioners
and researchers outside the AI planning field.

However, the effectiveness of planning largely depends on the quality of the
problem formalization [18]. PDDL (Planning Domain Definition Language) [11]
is the de facto standard for the description of planning tasks [10]. It divides the
description of a planning task into a domain model and problem descriptions: the
description of a household with its objects and locations would be a domain, with
possible tasks such as making breakfast, cleaning the windows, or changing a light
bulb. Someone with a non-planning background, for example, from robotics, has
to get used to the PDDL syntax and its possibilities to describe the world. She also
has to keep track of the facts in the domain model and the different planning tasks.
While automated planning can save vast amounts of time to find a valid solution,
creating the planning task specifications is a complex, error-prone, and cumbersome
task. An ill-defined problem is often the reason for finding suboptimal plans or no
plan at all. The household domain in this example comes with another challenge.
For many tasks the distances between objects or other numerical input may be
necessary. PDDL is by its very nature as a planning language designed for symbolic
specifications. To use numerical data efficiently, it must often be preprocessed.

In this chapter, we describe MYPDDL (Fig. 4.1), a knowledge engineering toolkit
that supports knowledge engineers in the entire design cycle of specifying planning

myPDDL

-new
Create new pddl project

-snippet
Code templates

-syntax
Context-aware syntax highlighting

-clojure
Preprocessor for PDDL files via Clojure

-distance
Distance calculation in spatial domains

-diagram
Visualization of type hierarchy

-plan
Planner integration

Fig. 4.1 MYPDDL is a highly customizable and extensible modular system, designed for sup-
porting knowledge engineers in the process of writing, analyzing, and expanding PDDL files and
thereby promoting the collaboration between knowledge engineers and the use of PDDL in real-
world applications. It consists of the parts shown in the figure

4 MyPDDL: Tools for Efficiently Creating PDDL Domains and Problems 69

tasks without having to become an expert in AI planning. In the initial stages,
it allows for the creation of structured PDDL projects that should encourage a
disciplined design process. With the help of snippets, that is, code templates, often
used syntactic constructs can be inserted into PDDL files. A syntax highlighting
feature that speeds up the error detection supports intermediate stages. Understand-
ing the textual representation of complex type hierarchies in domain files can be
confusing, so an additional tool enables their visualization. PDDL’s limited modeling
capabilities were bypassed by developing an interface that converts PDDL code into
code of the functional programming language Clojure [8] and vice versa. Within this
project, the interface was employed for a feature that calculates distances between
objects specified in a problem model, but the interface provides numerous other
possibilities and could also be used to further automate the modeling process. A
basic planner integration allows for quickly running a desired planner. All of the
features were integrated into the customizable and extensible Sublime Text2 editor.

Since the main aim in the development of the toolkit was for it to be easy to
use and maintain, it is evaluated with regard to these criteria. Another aim was to
make planning more accessible in real-life tasks and to enable inexperienced users
to get started with planning problems. Therefore, MYPDDL’s usability was assessed
by means of a user test with eight subjects that had no prior experience with AI
planning. The results show that MYPDDL facilitates both error detection and the
understanding of a given domain.

This chapter is an extended version of work published in a previous paper [20].
The remainder of this chapter is structured as follows. Section 2 compares PDDL

knowledge engineering tools to lay a foundation for MYPDDL. Section 3 describes
the different modules of MYPDDL and their design principles. Section 4 evaluates
MYPDDL via a user test. Section 5 concludes the chapter and outlines future work.

2 Related Work

This section introduces, compares, and discusses knowledge engineering tools that
allow text-based editing of PDDL files to set the stage for MYPDDL (Table 4.1).

PDDL STUDIO [15] is an IDE (integrated development environment) for creating
and managing PDDL projects, that is, a collection of PDDL files. Its main features
are syntax highlighting, error detection, context sensitive code completion, code
folding, project management, and planner integration. Many of these features are
based on a parser, which continuously analyzes the code and divides it into syntactic
elements. These elements and the way in which they relate to each other can then
be identified. The syntax highlighter is a tool that colors constructs according
to their syntactical meaning within the code. In the case of PDDL STUDIO, it
colors names, variables, errors, keywords, predicates, types, and brackets each

2http://www.sublimetext.com/.

http://www.sublimetext.com/

70 V. Strobel and A. Kirsch
Ta

bl
e

4.
1

C
om

pa
ri

so
n

of
kn

ow
le

dg
e

en
gi

ne
er

in
g

to
ol

s
an

d
th

ei
r

fe
at

ur
es

Fe
at

ur
e

Fu
nc

tio
n

P
D

D
L

S
T

U
D

IO
IT

S
IM

P
L

E
P

D
D

L
-m

od
e

Pl
an

ni
ng

.d
om

ai
ns

vs
co

de
-P

D
D

L
M

Y
P

D
D

L

L
at

es
ts

up
p.

P
D

D
L

ve
rs

io
n

C
on

si
de

ri
ng

re
ce

nt
P

D
D

L
fe

at
ur

es
1.

2
3.

1
2.

2
3.

1
3.

1
3.

1

Sy
nt

ax
hi

gh
lig

ht
in

g
Su

pp
or

tin
g

er
ro

r
de

te
ct

io
n

an
d

co
de

na
vi

ga
tio

n
Y

es
B

as
ic

B
as

ic
B

as
ic

Y
es

Y
es

Se
m

an
tic

er
ro

r
de

te
ct

io
n

Su
pp

or
tin

g
er

ro
r

de
te

ct
io

n
Y

es
N

o
N

o
N

o
Y

es
N

o

A
ut

om
at

ic
in

de
nt

at
io

n
Su

pp
or

tin
g

re
ad

ab
ili

ty
an

d
na

vi
ga

tio
n

N
o

N
o

Y
es

N
o

Y
es

Y
es

C
od

e
co

m
pl

et
io

n
Sp

ee
di

ng
-u

p
th

e
kn

ow
le

dg
e

en
gi

ne
er

in
g

pr
oc

es
s

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

C
od

e
sn

ip
pe

ts
Sp

ee
di

ng
-u

p
th

e
kn

ow
le

dg
e

en
gi

ne
er

in
g

pr
oc

es
s

ex
te

rn
al

iz
in

g
us

er
’s

m
em

or
y

N
o

Y
es

Y
es

B
as

ic
Y

es
Y

es

C
od

e
fo

ld
in

g
Su

pp
or

tin
g

ke
ep

in
g

an
ov

er
vi

ew
of

th
e

co
de

st
ru

ct
ur

e
Y

es
N

o
Y

es
Y

es
Y

es
Y

es

D
om

ai
n

vi
su

al
iz

at
io

n
Su

pp
or

tin
g

fa
st

un
de

rs
ta

nd
in

g
of

th
e

do
m

ai
n

st
ru

ct
ur

e
N

o
N

o
N

o
N

o
N

o
Y

es

Pr
oj

ec
tm

an
ag

em
en

t
Su

pp
or

tin
g

ke
ep

in
g

an
ov

er
vi

ew
of

as
so

ci
at

ed
fil

es
Y

es
Y

es
N

o
Y

es
Y

es
Y

es

U
M

L
to

P
D

D
L

tr
an

sl
at

io
n

Su
pp

or
tin

g
in

iti
al

m
od

el
in

g
N

o
Y

es
N

o
N

o
N

o
N

o

Pl
an

ne
r

in
te

gr
at

io
n

A
llo

w
in

g
fo

r
co

nv
en

ie
nt

pl
an

ne
r

ac
ce

ss
Y

es
Y

es
N

o
Y

es
Y

es
Y

es

Pl
an

vi
su

al
iz

at
io

n
Su

pp
or

tin
g

un
de

rs
ta

nd
in

g
an

d
cr

os
sc

he
ck

in
g

th
e

pl
an

N
o

Y
es

N
o

N
o

Y
es

N
o

D
yn

am
ic

an
al

ys
is

Su
pp

or
tin

g
dy

na
m

ic
do

m
ai

n
an

al
ys

is
N

o
Y

es
N

o
N

o
N

o
N

o

D
ec

la
ra

tio
n

m
en

u
Su

pp
or

tin
g

co
de

na
vi

ga
tio

n
N

o
N

o
Y

es
N

o
Y

es
N

o

In
te

rf
ac

e
w

ith
pr

og
ra

m
m

in
g

la
ng

ua
ge

A
ut

om
at

in
g

ta
sk

s
ex

te
nd

in
g

P
D

D
L

’s
m

od
el

in
g

ca
pa

bi
lit

ie
s

N
o

N
o

N
o

N
o

N
o

Y
es

C
us

to
m

iz
at

io
n

fe
at

ur
es

A
ck

no
w

le
dg

in
g

in
di

vi
du

al
ne

ed
s

an
d

pr
ef

er
en

ce
s

B
as

ic
N

o
Y

es
B

as
ic

Y
es

Y
es

4 MyPDDL: Tools for Efficiently Creating PDDL Domains and Problems 71

in a different customizable color. PDDL STUDIO’s error detection can recognize
both syntactic (missing keywords, parentheses, etc.) and semantic (wrong type of
predicate parameters, misspelled predicates, etc.) errors. This means that PDDL

STUDIO can detect errors based on a mismatch between domain and problem file in
real time. The code completion feature offers recommendations for standard PDDL

constructs as well as for previously used terms. Code folding allows the knowledge
engineer to hide currently not needed code blocks. In this case only the first line of
the block is displayed. Lastly, a command-line interface allows the integration of
planners in order to run and compare different planning software.

Unlike PDDL STUDIO, which provides a text-based editor for PDDL, the ITSIM-
PLE [22] editor has, as its main feature, a graphical approach that allows designing
planning tasks in an object-oriented approach using UML (Unified Modeling
Language). In the process leading up to ITSIMPLE, UML.P—UML in a planning
approach—was proposed, which is a UML variant specifically designed for model-
ing planning domains and problems [21].

The main purpose of ITSIMPLE is supporting knowledge engineers in the initial
stages of the design phase by making tools available which help transform the
informality of the real world to formal specifications of domain models. The
professed aim of the project is to provide a means to a “disciplined process of
elicitation, organization, and analysis of requirements” [22]. However, subsequent
design stages are also supported. Once domain and problem models have been
created, PDDL representations can be generated from the UML.P diagrams, edited,
and then used as input to a number of different integrated planning systems.

With ITSIMPLE, it is possible to directly input the domains and problems into
a planner and to inspect the output from the planning system using the built-in
plan analysis. This consists of a plan visualization, which shows the interaction
between the plan and the domain by highlighting every change caused by an action.
ITSIMPLE’s modeling workflow is unidirectional as changes in the PDDL domain do
not affect the UML model and UML models have to be modeled manually, meaning
that they cannot be generated using PDDL.

Starting in version 4.0, ITSIMPLE expanded its features to allow the creation of
PDDL projects from scratch, that is, without the UML to PDDL translation process
[23]. So far, a basic syntax highlighting feature recognizes PDDL keywords, vari-
ables, and comments. ITSIMPLE also provides templates for PDDL constructs, such
as requirement specifications, predicates, actions, initial state, and goal definitions.

PDDL-mode3 for Emacs builds on the sophisticated features of the widely used
Emacs editor and uses its extensibility and customizability. PDDL-mode provides
syntax highlighting by way of basic pattern matching of keywords, variables, and
comments. Additional features are automatic indentation and code completion as
well as bracket matching. Code snippets for the creation of domains, problems, and
actions are also available. Finally, PDDL-mode keeps track of action and problem

3http://rakaposhi.eas.asu.edu/planning-list-mailarchive/msg00085.html.

http://rakaposhi.eas.asu.edu/planning-list-mailarchive/msg00085.html

72 V. Strobel and A. Kirsch

declarations by adding them to a menu and thus intending to allow for easy and fast
code navigation.

PDDL-mode for Emacs supports PDDL versions up to 2.2, which includes derived
predicates and timed initial predicates [3], but does not recognize later features like
object-fluents.

The online tool editor.planning.domains allows for editing PDDL files in a web
browser. Its features comprise syntax highlighting, code folding, PDDL-specific
auto-completion, and multi-tab support. The editor is part of the Planning-Domains4

initiative which aims at providing three pillars to the planning community: (1) an
API to access existing PDDL domains and problems; (2) a planner-in-the-cloud
service which can be accessed via a RESTful API; and (3) an online PDDL editor.
The online editor is also connected to the planner in the cloud.

The PDDL plugin vscode-PDDL5 for the editor VS Code (Visual Studio Code)
offers a wide range of editing functions, such as syntax highlighting, code comple-
tion, code folding, and code snippets. It offers a mature planner integration and plan
visualization. Thanks to a PDDL parser integration, it is possible to detect semantic
errors immediately when they are made.

2.1 Critical Review

All the above-mentioned tools provide environments for the creation of PDDL code.
Their advantages and disadvantages are reviewed in this section. At the end of each
discussed feature, the approach that was used in MYPDDL is introduced.

PDDL STUDIO, ITSIMPLE, and editor.planning.domains for the most part do not
build on existing editors and therefore cannot fall back on refined implementations
of features, such as selection of tab size, defining custom key shortcuts, customizing
the general look and feel, and bracket matching. In contrast, vscode-PDDL and
PDDL-mode for Emacs are integrated into mature code editors and can be used
in combination with other plugins. To have both basic editor features and a high
customizability, it was decided to use an existing, extensible text editor to integrate
MYPDDL into.

The tools can also be compared in terms of their syntax highlighting capabilities.
In PDDL-mode for Emacs (up to PDDL 2.2), editor.planning.domains (up to PDDL

3.1), and vscode-PDDL (up to PDDL 3.1) keywords, variables, and comments are
highlighted. However, this is only done via pattern matching without controlling for
context. This means that wherever the respective terms appear within the code they
will get highlighted, regardless of the syntactical correctness. Different colors can
be chosen by customizing Emacs and Visual Studio Code. editor.planning.domains
provides two fixed color schemes. ITSIMPLE’s syntax highlighting for PDDL 3.1

4http://planning.domains/.
5https://marketplace.visualstudio.com/items?itemName=jan-dolejsi.pddl.

http://planning.domains/
https://marketplace.visualstudio.com/items?itemName=jan-dolejsi.pddl

4 MyPDDL: Tools for Efficiently Creating PDDL Domains and Problems 73

is, except for the PDDL version difference, equally as extensive as that of PDDL-
mode for Emacs but does not allow for any customization. PDDL STUDIO has
advanced syntax highlighting that distinguishes all different PDDL 1.2 constructs
depending on the context and allows knowledge engineers to choose their preferred
highlighting colors. One of the primary objectives of MYPDDL is to help users in
keeping track of their PDDL programs. As a means to this end, it was decided to also
implement sophisticated, context-dependent syntax highlighting.

Another useful feature for fast development is the ability to insert larger
code skeletons or snippets. PDDL STUDIO does not support the insertion of code
snippets. ITSIMPLE features some code templates for predicates, derived predicates,
functions, actions, constraints, types, comments, requirements, objects, and metrics.
However, the templates are neither customizable nor extensible. PDDL-mode for
Emacs provides three larger skeletons: one for domains, one for problems, and one
for actions. Further skeletons could be added. Both editor.planning.domains and
vscode-PDDL provide many code snippets. MYPDDL aims to combine the best of
these latter tools and support customizable and extensible snippets for domains,
problems, types, predicates, functions, actions, and durative actions.

PDDL STUDIO, PDDL-mode for Emacs, and editor.planning.domains do not
provide visualization options. ITSIMPLE, on the other hand, is based entirely on
visually modeling domains and problems. Therefore, since the first version, the
focus has mainly been on exporting from UML.P to PDDL and to visualize plans.
MYPDDL is to reverse this design approach and enable type diagram visualization of
some parts of the PDDL code. vscode-PDDL does not provide domain visualization
but is able to visualize a found plan.

Searching for errors can be one of the most time-consuming parts of the
design process. Hence, any tool that is able to help detect errors faster is of great
value to the knowledge engineer. While PDDL-mode for Emacs, ITSIMPLE, and
editor.planning.domains facilitate error detection only by basic syntax highlighting,
both PDDL STUDIO and vscode-PDDL are able to detect errors via a PDDL parser. In
MYPDDL, a different approach is taken and syntactic errors are not highlighted by
the syntax highlighting feature, while all correct PDDL code is highlighted.

A major drawback of PDDL STUDIO and PDDL-mode for Emacs especially is
that they are not updated regularly to support the most recent PDDL versions. PDDL

STUDIO’s parser is only able to parse PDDL 1.2, while the latest PDDL version is
3.1. PDDL has significantly evolved since PDDL 1.2 and was extended in PDDL 2.1
to include durative actions to model time dependent behaviors, numeric fluents to
model non-binary changes of the world state, and plan-metrics to customize the
evaluation of plans. PDDL-mode for Emacs is only compatible with PDDL versions
up to 2.2, which introduced derived predicates and timed initial predicates but does
not recognize later features like object-fluents. It follows that the range of functions
specified in the domain file cannot include object types in addition to numbers.
ITSIMPLE, editor.planning.domains, vscode-PDDL, and MYPDDL support the latest
PDDL version.

PDDL STUDIO falls short of customization options since they are limited to
the choice of font style and color of highlighted PDDL expressions. Furthermore,

74 V. Strobel and A. Kirsch

PDDL STUDIO is written as a standalone program, meaning that there are no PDDL-
independent extensions. The same holds true for ITSIMPLE. Since both Emacs
and VS Code are established editors, PDDL-mode and vscode-PDDL are highly
customizable and extensible. This is the other major reason why it was decided
that MYPDDL should be integrated into an existing, extensible, and customizable
text editor. These requirements are met by Sublime Text, a text editor that offers a
wide variety of features and plugins.

All in all, MYPDDL must be understood as complementary to the other existing
knowledge engineering tools. MYPDDL is distributed as a package for Sublime
Text and provides context-aware syntax highlighting, code snippets, syntactic error
detection, and type diagram visualization. Additionally, it allows for the automation
of modeling tasks due to an interface with Clojure that supports the conversion
of PDDL code into Clojure code and vice versa. Therefore, MYPDDL is intended
to support both the initial design process of creating domains with code snippets,
syntax highlighting and the Clojure interface, and the later step of checking the
validity of existing domains and problems with the type diagram generator. Lastly,
the visualization capabilities of MYPDDL are meant to facilitate collaboration
among knowledge engineers.

3 MyPDDL

MYPDDL is a highly customizable and extensible modular system, designed for
supporting knowledge engineers in the process of writing, analyzing, and expanding
PDDL files and thereby promoting the collaboration between knowledge engineers
and the use of PDDL in real-world applications. The modules of MYPDDL are
described in the next section.

3.1 Modules

myPDDL-IDE is an integrated development environment (IDE) for the use of
MYPDDL in the text and code editor Sublime Text.6 Since MYPDDL-SNIPPET and
-SYNTAX (see below) are devised explicitly for Sublime Text, their integration
is implicit. The other tools described below (MYPDDL-new, -diagram, -distance,
-plan) can be used independently of Sublime Text via the command-line but can
also be called from the editor.

myPDDL-new helps to organize PDDL projects. In many cases PDDL domains are
created ad hoc [19]. However, each implementation of a PDDL task specification
comprises one domain and at least one corresponding problem file. Since

6http://www.sublimetext.com.

http://www.sublimetext.com

4 MyPDDL: Tools for Efficiently Creating PDDL Domains and Problems 75

several team members may be working on these files, keeping PDDL projects
organized will facilitate collaboration. An automatically created, standardized
project folder structure could facilitate the collaboration between users and the
maintenance of consistency across projects. To this end, MYPDDL-NEW creates
the following folder structure when creating a new PDDL project:

project-name/

domains/

problems/

p01.pddl

solutions/

domain.pddl

README.md

plan

All of the templates to create the files can be customized and new templates
can be added. The domain file domain.pddl and the problem file p01.pddl
initially contain corresponding PDDL skeletons. Additionally the project name
is used as the domain name within the files domain.pddl and p01.pddl.
All problem files that are associated with one domain file are collected in
the folder problems/. README.md is a Markdown file, which is intended
for information about the authors of the project, contact information, informal
domain and problem specifications, and licensing information. Markdown files
can be converted to HTML by various hosting services like GitHub or Bitbucket.
The basic planner integration MYPDDL-PLAN provided by the file plan is
described below.

myPDDL-snippet provides code skeletons, that is, templates for often used
PDDL constructs such as domains, problems, type and function declarations, and
actions. They can be inserted by typing a triggering keyword. Table 4.2 displays
descriptions of all available snippets and the corresponding trigger.
For example, typing action and pressing the tabulator key inserts a skeleton
to specify an action. PDDL constructs with a specified arity can be generated
by adding the arity number to the trigger (p2 would insert the binary predicate
template (pred-name ?x - object ?y - object)).

Table 4.2 The snippets that
can be inserted into PDDL

files by typing the trigger

Snippet description Trigger

Domain skeleton domain

Problem skeleton problem

Type declaration t1, t2, ...

Typed predicate
declaration

p1, p2, ...

Typed function
declaration

f1, f2, ...

Action skeleton action, durative-action

76 V. Strobel and A. Kirsch

Every snippet is stored in a separate file, located in the packages folder of Sub-
lime Text. New snippets can be added and existing snippets can be customized
by changing the templates in this folder.

myPDDL-syntax is a context-aware syntax highlighting feature for Sublime
Text. It recognizes all PDDL constructs up to version 3.1, such as comments,
variables, names, and keywords and highlights them in different colors. Using
regular expressions and a sophisticated pattern matching heuristic, it detects both
the start and the end of PDDL code blocks and constructs. It then divides them
into scopes, that is, named regions. Sublime Text colorizes the code elements
via the assigned scope names and in accordance with the current color scheme.
These scopes allow for a fragmentation of the PDDL files, so that constructs are
only highlighted if they appear in the correct context. Thus missing brackets,
misplaced expressions, and misspelled keywords are visually distinct and can be
identified (Fig. 4.2).

myPDDL-Clojure provides a preprocessor for PDDL files to bypass PDDL’s
limited mathematical capabilities, thus reducing modeling time without over-
charging planning algorithms. Since PDDL is used to create more and more
complex domains [5, 6], one might need the square root function for a distance
optimization problem or the logarithmic function for modeling an engineering
problem. While these mathematical operations are currently not supported by
PDDL itself, preprocessing PDDL files in a programming language and then
hardcoding the results back into the file seem to be a reasonable workaround.
With the help of such an interface, the modeling time can be reduced. We decided
to use the functional programming language Clojure [8], a modern Lisp dialect,
facilitating input and output of the Lisp-style PDDL constructs. Once a part is
extracted and represented in Clojure, the processing possibilities are diverse and
the full capacities of Clojure are available. It can be used for generating PDDL

Fig. 4.2 The figure shows
the use of MYPDDL in the
text editor Sublime Text.
Syntax errors in the domain
are detected by
MYPDDL-SYNTAX’s
context-aware syntax
highlighting feature and
displayed in white

4 MyPDDL: Tools for Efficiently Creating PDDL Domains and Problems 77

constructs, reading domain and problem files, handling, using and modifying the
input, and generating PDDL files as output.
The interface is provided as a Clojure library and based on two methods
described below.

read-construct(keyword, file) This method allows for the extraction of code
blocks from PDDL files. The following code block shows an example in
which the goal state (:goal (exploited magicfailureapp)) is
extracted from a PDDL problem file.

Clojure command:

(read-construct :goal "garys-huge-problem.pddl")
;;=> ((:goal (exploited magicfailureapp)))

add-construct(file, block, part) This method provides a means for adding
constructs to a specified code block in PDDL domain and problem files. This
is illustrated in the following two code blocks where the predicate (hungry
gisela) is added to the (:init ...) block.

Clojure command:

(add-construct "garys-huge-problem.pddl" :init '((hungry gisela)))

Updated PDDL file:

(:init (hungry gary)
(in pizza-box big-pepperoni)
(has-access gisela magicfailureapp))
(hungry gisela))

myPDDL-distance provides special preprocessing functions for distance calcu-
lations. In some domains, every object needs a location specified by x and
y coordinates. While the location of objects can be implemented using the
predicate (location ?o - object ?x ?y - number), with x and y
being the spatial coordinates of an object, calculating the Euclidean distance
requires using the square root function. However, PDDL 3.1 supports only the
four basic arithmetic operators.
Parkinson and Longstaff [14] describe a workaround for this drawback. By
writing an action calculate-sqrt, they bypass the missing square root
function by making use of the Babylonian root method. Although this method
approximates the square root function, it requires many iterations and would most
likely have an adverse effect on plan generation [14].
More usable and probably faster results can be achieved by using the interface
between PDDL and Clojure as a distance calculator, implemented in the
tool MYPDDL-DISTANCE. It reads a problem file into Clojure and extracts
all locations, defined in the (:init ...) code block. The Euclidean
distances between these locations are then calculated and written back into

78 V. Strobel and A. Kirsch

a new and now extended copy of the problem file, using the predicate
(distance ?o1 ?o2 - object ?n - number), which specifies the
distance between two objects. The code blocks below show the (:init ...)
block of a PDDL problem file before and after using MYPDDL-distance.
Before:

(:init ...
(location gary 4 2)
(location pizza 2 3))

After:

(:init ...
(location gary 4 2)
(location pizza 2 3)
(distance gary gary 0.0)
(distance gary pizza 2.2361)
(distance pizza gary 2.2361)
(distance pizza pizza 0.0))

The calculator works on any arity of the specified location predicate, so that
locations can be specified in 1D, 2D, 3D, and even used in higher dimensions.
A disadvantage of this method is that the calculated distances have to be stored in
the PDDL problem file, potentially requiring many lines of code. If the number of
locations is n, the number of calculated distances is n2, so that every location has
a distance to every other location and itself. Therefore, a sensible next step would
be to extend PDDL by increasing its mathematical expressivity [14], perhaps by
declaring a requirement :math that specifies further mathematical operations.

myPDDL-diagram generates a PNG image based on the type hierarchy of a PDDL

domain file (Fig. 4.3). The diagrammatic representation of textual information
helps to quickly understand the connection of hierarchically structured items and
should thus be able to simplify the communication and collaboration between
developers. In the diagram, types are represented with boxes, with every box
consisting of two parts:

– The header displays the name of the type.
– The lower part displays all predicates that use the corresponding type at least

once as a parameter. The predicates are written just as they appear in the PDDL

code.

4 MyPDDL: Tools for Efficiently Creating PDDL Domains and Problems 79

Fig. 4.3 The type diagram generated by MYPDDL-DIAGRAM helps to grasp the relationship
between types in the domain file. Additionally, it displays all predicates that use the corresponding
type at least once as a parameter

Generalization relationships express that every subtype is also an instance of the
illustrated super type (e.g., “a hacker is a person). This relationship is indicated
in the diagram with an arrow from the subtype (here: hacker) to the super type
(here: person).
In order to create the diagram, MYPDDL-diagram utilizes dot from the Graphviz
package [4] and takes the following steps:

1. A copy of the domain file is stored in the folder domains/.
2. The (:types ...) block is extracted via the PDDL/Clojure interface.
3. In Clojure, the types are split into super types and associated subtypes using

regular expressions and stored in a Clojure hashmap.
4. Based on the hashmap, the description of a directed graph in the DOT language

is created and saved in the folder dot/.
5. The DOT file is passed to dot, creating a PNG diagram and saving it in the

folder diagrams/.
6. The PNG diagram is displayed in a window.

Every time MYPDDL-diagram is invoked, these steps are executed and, option-
ally, the names of the saved files are extended by an ascending revision number.
Thus, one cannot only identify associated PDDL, DOT, and PNG files, but also use
this feature for basic revision control.

myPDDL-plan is a basic planner integration for MYPDDL. After creating a new
project with MYPDDL-NEW, the file plan in the project folder contains a shell
script for executing a planner with the new domain and problem files as input.
The desired planner can be specified in the file plan or by editing the templates
of MYPDDL-NEW. Due to the versatility of shell scripts, any planner can be used
and arbitrary command-line options can be specified. The planner can be invoked
from Sublime Text or via the command-line.

80 V. Strobel and A. Kirsch

In order to provide easy installation and maintenance, MYPDDL-IDE can be
installed using Sublime Text’s Package Control.7 The project source code is hosted
on GitHub,8 providing the possibility to actively participate in the design process.
Additionally, MYPDDL-CLOJURE is hosted on GitHub9 as well as a standalone
version to call the functions from the command- line.10 The MYPDDL project site11

provides room for discussing features and reporting bugs.

4 Validation and Evaluation

To assess the utility of MYPDDL, we evaluated its performance in terms of
collaboration, experience, efficiency, and debugging in a user test. We analyzed the
user performance both with and without using MYPDDL-SYNTAX and MYPDDL-
DIAGRAM.

4.1 User Evaluation

The two most central modules of MYPDDL are MYPDDL-SYNTAX and MYPDDL-
DIAGRAM, since they support collaboration, efficiency, and debugging indepen-
dently of the user’s experience with PDDL. To evaluate their usability, they were
evaluated in a user study. To this end, we compared the user performance regarding
several tasks, both with and without using the respective module.

Participants In Usability Engineering, a typical number of participants for user
tests is five to ten. Studies have shown that even such small sample sizes identify
about 80% of the usability problems [9, 12]. Our study design required eight
participants. Three female and five male participants took part in the study (average
age of 22.9, standard deviation of age 0.6). All participants were required to have
basic experience with at least one Lisp dialect in order not to be confused with the
many parentheses, but no experience with PDDL or AI planning in general.

Approach Twenty-four hours before the experiment was to take place, participants
received the web link12 to a 30-min interactive video tutorial on AI planning and

7https://sublime.wbond.net/about.
8https://github.com/Pold87/myPDDL.
9https://github.com/Pold87/pddl-clojure-interface.
10https://github.com/Pold87/pddl-clojure-interface-standalone.
11http://pold87.github.io/myPDDL/.
12Tutorial in German: https://www.youtube.com/watch?v=Uck-K8VnNOU&list=
PL3CZzLUZuiIMWEfJxy-G6OxYVzUrvjwuV.

https://sublime.wbond.net/about
https://github.com/Pold87/myPDDL
https://github.com/Pold87/pddl-clojure-interface
https://github.com/Pold87/pddl-clojure-interface-standalone
http://pold87.github.io/myPDDL/
https://www.youtube.com/watch?v=Uck-K8VnNOU&list=PL3CZzLUZuiIMWEfJxy-G6OxYVzUrvjwuV
https://www.youtube.com/watch?v=Uck-K8VnNOU&list=PL3CZzLUZuiIMWEfJxy-G6OxYVzUrvjwuV

4 MyPDDL: Tools for Efficiently Creating PDDL Domains and Problems 81

PDDL. This method was chosen in order not to pressure the participant with the
presence of an experimenter when trying to understand the material.

Procedure We defined four tasks (Appendix “Tasks”): two debugging tasks for
testing the syntax highlighting feature and two type hierarchy tasks for testing the
type diagram generator. A within-subjects design was considered most suited due to
the small number of participants. Therefore, it was necessary to construct two tasks
matched in difficulty for each of these two types to compare the effects of having the
tools available. Each participant started either with a debugging or type hierarchy
task and was given the MYPDDL tools either in the first two tasks or the second two
tasks, so that each participant completed each task type once with and once without
MYPDDL. This results in 2 (first task is debugging or hierarchy) × 2 (task variations
for debugging and hierarchy) × 2 (starting with or without MYPDDL) = 8 individual
task orders, one per participant.

– Debugging Tasks
For the debugging tasks, participants were given 6 min (a reasonable time frame
tested on two pilot tests) to detect as many of the errors in the given domain as
possible. They were asked to record each error in a table using pen and paper
with the line number and a short comment. Moreover, they were instructed to
immediately correct the errors in the code if they knew how to, but not to dwell
on the correction otherwise. For the type hierarchy task, participants were asked
to answer five questions concerning the domains, all of which could be facilitated
with the type diagram generator. One of the five questions (Question 4, see
Appendix sections “Planet Splisus” and “Store”) also required looking into the
code. Participants were told that they should not feel pressured to answer quickly,
but to not waste time either. Also they were asked to say their answer out loud as
soon as it became evident to them. They were not told that the time it took them
to come up with an answer was recorded, since this could have made them feel
pressured and thus led to more false answers.

– Type Hierarchy Tasks
The two tasks to test syntax highlighting presented the user with domains
that were 54 lines in length, consisted of 1605 characters and contained 17
errors each. Errors were distributed evenly throughout the domains and were
categorized into different types. The occurrence frequencies of these types were
matched across domains as well, to ensure equal difficulty for both domains.
To test the type diagram generator, two fictional domains with equally complex
type hierarchies consisting of non-words were designed (five and six layers in
depth, 20 and 21 types). The domains were also matched in length and overall
complexity: five and six predicates with approximately the same distribution of
arities, one action with four predicates in the precondition and two and three
predicates in the effect.

– System Usability Scale
At the end of the usability test the participants were asked to evaluate the
perceived usability of MYPDDL using the system usability scale [2].

82 V. Strobel and A. Kirsch

4.1.1 Analysis

– Debugging Tasks
To compare differences in the debugging tasks, a paired sample t-test was
used; normality was tested with a Shapiro–Wilk test. To compare the arithmetic
means (Ms) of detected errors, the test was performed two-tailed, since syntax
highlighting might both help or hinder the participants. Arithmetic standard
deviations (SDs) were calculated for each condition.

– Type Hierarchy Tasks
For the type hierarchy tasks, t-tests were performed on the logarithms of the
data values to compare the geometric means for the two conditions for each
question; normality was tested with a Shapiro–Wilk test on the log-normalized
data values. The geometric mean is a more accurate measure of the mean for
small sample sizes as task times have a strong tendency to be positively skewed
[17]. The geometric standard deviation (GSD) was calculated for each question
and condition. Only those task completion times were included in the calculation
of the t-values, where the respective participant gave a correct answer for both
occurrences of a question. This approach should reduce the influence of random
guessing. Again, two-tailed t-tests were used to account for both, improvements
and drawbacks, of using MYPDDL-DIAGRAM.

– System Usability Scale
The arithmetic mean and standard deviation for the score on the system usability
scale was calculated.

4.1.2 Results

– Debugging Tasks
The participants detected more errors using the syntax highlighting feature (M =
10.3, SD = 3.45) than without it (M = 7.6, SD = 2.07); t (7) = 2.68, p = 0.03.
That is, approximately 36% more errors were found with syntax highlighting.
The arithmetic means are displayed in Fig. 4.4, where each cross (×) represents
the data value of one participant.

– Type Hierarchy Tasks
Figure 4.5 shows the geometric mean of the completion time of successful
tasks for each question with and without the type diagram generator. With the
type diagram generator participants answered all questions (except Question 4)
on average nearly twice as fast (GM = 33.0, GSD = 2.23) as without it
(GM = 57.8, GSD = 2.05); t (32) = −3.34, p = 0.002. This difference
slightly increases if Question 4 is excluded from the calculations: with type
generator: GM = 31.1, GSD = 2.17, without: GM = 58.1, GSD = 2.07;
t (30) = −3.68, p < 0.001. Table 4.3 gives an overview of geometric means,
geometric standard deviations, t-values, and p-values for each question.

– System Usability Scale

4 MyPDDL: Tools for Efficiently Creating PDDL Domains and Problems 83

Fig. 4.4 Comparison of
detected errors with and
without the syntax
highlighting feature. Each
cross (×) shows the data
value of one participant. The
bars display the arithmetic
mean

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

No Yes
Tool

E
rr

or
s

Syntax
Highlighted
Code (myPDDL
−syntax)

No
Yes

Found Errors (Arithmetic Mean)

Fig. 4.5 Task completion
time for the type hierarchy
tasks. The bars display the
geometric mean averaged
over all participants; each
cross (×) represents the data
value of one participant. The
percent values at the bottom
of the bars show the
percentage of users that
completed the task
successfully. The questions
can be found in the Appendix
sections “Planet Splisus”
and “Store”

100% 100% 100% 100% 87.5% 87.5% 62.5% 50% 100% 100%0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

Q1 Q2 Q3 Q4 Q5
Question

S
ec

on
ds

myPDDL−
diagram

No

Yes

Task Completion Time per Question
(Geometric Mean)

84 V. Strobel and A. Kirsch

Table 4.3 Overview of
geometric means (GMs),
geometric standard deviations
(GSDs), degrees of freedom
(df), t-values, and p-values

Type diagram generator

With Without

Question GM GSD GM GSD df t p

Q1 21.8 1.52 40.0 2.26 7 −1.86 0.11

Q2 23.8 1.49 50.8 2.16 7 −1.91 0.10

Q3 48.0 3.49 83.2 2.20 5 −0.86 0.43

Q4 84.3 2.22 54.1 1.93 1 4.48 0.14

Q5 41.2 2.24 78.0 1.48 7 −2.75 0.03

The calculation for Q4 is based on only two paired data values
(df = 1). This table only considers paired data values, this
means only if a participant answered the question correctly in
both domains, the data value is considered (since paired t-
tests are calculated). In contrast, Fig. 4.5 displays the geometric
means for all correct answers

MYPDDL reached a score of 89.6 on the system usability scale [2], with a
standard deviation of 3.9.

Discussion The user test shows that MYPDDL-SYNTAX and -DIAGRAM provide
useful tools for novices in AI planning and PDDL. Below, we will discuss each part
of the user test in turn.

– Debugging Tasks
While, in general, the syntax highlighting feature was considered very useful,
two participants remarked that the used colors confused them and that they found
them more distracting than helpful. One of them mentioned that the contrast of
the colors was so low that they were hard for her to distinguish. She found the
same number of errors with and without syntax highlighting. The other of the
two was the only participant who found less errors with syntax highlighting
than without it. With MYPDDL-SYNTAX, two participants found all errors in
the domain, while none achieved this without syntax highlighting. While every
participant had to use the same color scheme in the experiment, colors are
customizable in Sublime Text.

– Type Hierarchy Tasks
In spite of the rather large difference between the GMs for Question 3, a high
p-value is obtained (p = 0.43). This might be due to the high GSD for the
with condition and the rather small degrees of freedom (df = 5). Testing
more participants would probably yield clearer results here. The fact that the
availability of tools did not have a positive effect on task completion times for
Question 4 can probably be attributed to the complexity of this question (see
Appendix sections “Planet Splisus” and “Store”): in contrast to the other four
questions, here, participants were required to look at the actions in the domain
file in addition to the type diagram. Most participants were confused by this,
because they had assumed that once having the type diagram available, it alone

4 MyPDDL: Tools for Efficiently Creating PDDL Domains and Problems 85

would suffice to answer all questions. This initial confusion costs some time, thus
negatively influencing the time on the task.
Visualization tools such as MYPDDL-diagram can improve the understanding of
unknown PDDL code and thus support collaboration. But users may be unaware
of the limitations of such tools. A possible solution is to extend MYPDDL-
diagram to display actions, but this can overload the diagram and, especially
for large domains, render it unreadable. Different views for different aspects of
the domain or dynamically displayed content could integrate more data, but this
also hides functionality, which is generally undesired for usability [13].

– System Usability Scale
Since the overall mean score of the system usability scale has an approximate
value of 68 with a standard deviation of 12.5 [16], the score of MYPDDL is
well above average with a small standard deviation. A score of 89.6 is usually
attributed to superior products [1]. Furthermore, 89.6 corresponds approximately
to a percentile rank of 99.8%, meaning that it has a better perceived ease of use
than 99.8% of the products in the database used by Sauro [16].

In summary, the user test shows that customizability is important, as not all users
prefer the same colors or syntax highlighting at all and their personal preferences
seem to correlate with the effectiveness of the tools.

5 Conclusion

We designed MYPDDL to support knowledge engineers in creating, understanding,
modifying, and extending planning domains. MYPDDL’s code editing features such
as syntax highlighting and code snippets, as well as a type diagram generator, an
interface with the programming language Clojure, and a planner integration can
help in the various stages of working with PDDL domains. MYPDDL’s extensible and
customizable architecture helps to fulfill the different preferences and requirements
of knowledge engineers. In the conducted user test, MYPDDL users were able to
grasp the domain structure of a PDDL file more quickly than non-users and also
found more errors in a deliberately erroneous domain file. Moreover, the users found
the tools easy and pleasant to use.

In future work, MYPDDL’s set of features could be extended in several directions.
The interface between PDDL and Clojure offers a basis for creating dynamic
planning scenarios. Applications could be the modeling of learning and forgetting
by adding facts to or retracting facts from a PDDL file or the modeling of an ever
changing real world via dynamic predicate lists. Another way of putting the interface
to use would be by making the planning process more interactive, allowing for the
online interception of planning software in order to account for the needs and wishes
of the end user. Since many features of MYPDDL can be called via the command line,

86 V. Strobel and A. Kirsch

interfaces with other editors could be developed. So far, there is a basic integration
with the code editor Atom.13

All in all, the overall increase of efficiency due to facilitated collaboration and
support in maintaining an overview should encourage a shift of focus toward real-
world problems in knowledge engineering. The full modeling potential can only
be reached with appropriate tools, with MYPDDL hopefully leading to a broader
acceptance and use of PDDL for planning problems.

Appendix: Tasks

Deliberately Erroneous Logistics Domain

;;;; Logistics domain

(define (domain ?logistics)

(:requirements
:types)

(:typing truck airplane motorboat - vehicle
package vehicle suitcase furniture - thing
airport garage station - location
car1 car 2 car3 - vehicle
city location thing - object)

(:predicates (in-city ?l - location ?c - city)
(at ?obj - thing ?l - location)
(key ?v - vehicle) = true
(full ?v - vehicle)
(in ?p - package ??veh - vehicle))

(:action drive
:parameters (?t - truck ?from ?to - location ?c - city)
:precondition (and (at ?tr ?from)

(in-city ?from ?c)
(incity ?to ?c))

:effect (and (not (at ?t ?from))
(at ?t ?to)))

(:action fly
:parameters (?a - airplane ?from ?to - airport)
:precondition (at ?a ?from)
:effect (and (n0t (at ?a ?from))

(at ?a ?to)))

(:action fuel
:parameters (?v - vehicle ?c - city ?to airport)
:precondition (and (not (full ?v))

(in-city ?to ?c)
(at ?v ?to))

:effect (full ?v))

(:action load
parameters: (?v - vehicle ?p - package ?l - location)
precondition: (and (?v ?l)

(at ?p ?l))
:effect (and (ay ?p ?l)

(in ?p ?v)))

(:action unload
:parameters (?v - vehicle p - package ?l - location)
:precondition (and (at ?v ?l)

?p ?v)
:effects (and (not (in ?p ?v))

(at ?p - ?l))))

13https://github.com/Pold87/myPDDL-Atom.

https://github.com/Pold87/myPDDL-Atom

4 MyPDDL: Tools for Efficiently Creating PDDL Domains and Problems 87

The original file can be downloaded at http://ipc.informatik.uni-freiburg.de/
PddlExtension:

Deliberately Erroneous Coffee Domain

(define COFFEE

(requirements
:typing)

(:types room - location
robot human _ agent
furniture door - (at ?l - location)
kettle ?coffee cup water - movable
location agent movable - object)

(:predicates (at ?l - location ??o - object)
(have ?m - movable ?a - agent)
(hot ?m - movable) = true
(on ?f - furniture ?m - movable))

(:action boil
:parameters (?m - movable \$k - kettle ?a - agent)
:preconditions (have ?m ?a)
:effect (hot ?m))

(:action grip-some
:parameters (?m - movable ?r - robot ?f - _furniture ?l - location)
:precondition (and (at ?l ?r)

(on ?fu ?m)
(at ?l ?f))

:effect (and (have ?m ?r)))

(:action move
:parameters: (?m - movable ?a - agent ?from ?to - location)
:precondition (or (\"{a}nd (at ?from ?a)

(at ?from ?m))
(and (at ?from ?m)

(location ?from ?a)))
:effect (and (not (at ?from ?m))

(at ?to ?m)))

(:action change-room
:parameters (?from-r ?to-r - room ?a - agent)
:precondition (at ?fromr ?a)
:effect (and (not (at ?from-r ?a))

(at ?tor ?a)))

(:action prep-coffee
:parameters (?a - agent ?c - cjp ?w - water ?cof - coffee)
:precondition (and (have ?c ?a)

(hot ?w))
:effect (have ?cof ?a))

(:action ?hand-over
:parameters (?m - movable ?a1 - agent ?a2 - agent)
:precondition (have ?m ?a1))
:effect (and (not (have ?m ?a1))

(have ?m ?a2))))

http://ipc.informatik.uni-freiburg.de/PddlExtension
http://ipc.informatik.uni-freiburg.de/PddlExtension

88 V. Strobel and A. Kirsch

Planet Splisus

(define (domain splisus)

(:requirements :typing)

(:types splis - gid
spleus - splos
schprok schlok - splus
rud mekle - lech
hulpf hurpf - hupf
sipsi flipsi hupf - splis
schmok schkok - splus
gid splos splus - ruffisplisus
merle - hupf
ruffisplisus mak lech - object)

(:predicates (father-of ?r1 - ruffisplisus ?r2 - ruffisplisus)
(married ?s1 - splos ?s2 - splis)
(has-weapon ?h - sipsi)
(dead ?r1 - ruffisplisus)
(at ?l - lech ?r - ruffisplisus))

(:action kill
:parameters (?l - lech ?r1 - ruffisplisus ?s - splis)
:precondition (and (at ?l ?r1)

(at ?l ?s)
(married ?r1 ?s)
(has-weapon ?s))

:effect (and (dead ?r1)
(not (married ?r1 ?s)))))

Please answer the following five questions on the society and structure of Planet
Splisus:

1. Are all Flipsis also of the type Ruffisplisus?
2. Are all Merles also Splus?
3. Can a Spleus be married to a Schlok?
4. Only theoretically: Could a Hurpf murder a Spleus?
5. Let us assume there are three categories of object types on Splisus: places, beings,

and food. Match the three object types Ruffisplisus, Mak, and Lech with these
categories.

4 MyPDDL: Tools for Efficiently Creating PDDL Domains and Problems 89

Store

(define (domain store)

(:requirements :typing)

(:types lala lila - zahls
blisis blusis - ultri
iltre lula - nulls
zahls schwinds - knozi
minis - lala
ultri sopple schmitzl - lila
ultres raglos wexis - lola
kosta - nulls
nulls spax - minis
lola - zahls
knozi schmus - object)

(:predicates (product ?k - knozi) ; Produkt
(workplace ?l1 - lola ?l2 - lala)
(product-at ?l1 - lola ?l2 - lila)
(cashier ?k - knozi)
(customer ?s - spax)
(owns ?l - lila ?s - spax))

(:action sell
:parameters (?p - lila ?z - zahls ?l - lola ?w - wexis ?s - spax)
:precondition (and (product ?p)

(cashier ?z)
(product-at ?l ?p)
(customer ?s))

:effect (and (product-at ?w ?p)
(not (product-at ?l ?p))
(owns ?p ?s))))

Please answer the following five questions concerning the environment store:

1. Are objects of the type Lula also of the type Minis?
2. Are Spax and Schmus Zahls?
3. Is it possible for an Iltre to work at a workplace of the type Knozi?
4. Only theoretically: Could a Lala sell a Schmitzl to a Kosta?
5. Let us assume our domain store models a grocery store. There are three

categories: humans, products, and places. Can you match these world terms with
the object types lila, lala, and lola from the domain?

References

1. Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system usability scale.
Intl. Journal of Human–Computer Interaction 24(6), 574–594 (2008)

2. Brooke, J.: Sus—a quick and dirty usability scale. Usability evaluation in industry 189 (1996)
3. Edelkamp, S., Hoffmann, J.: PDDL2.2: The language for the classical part of the 4th

International Planning Competition. 4th International Planning Competition (IPC-04) (2004)
4. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz—open source

graph drawing tools. In: Graph Drawing. pp. 483–484. Springer (2002)

90 V. Strobel and A. Kirsch

5. Goldman, R.P., Keller, P.: “Type problem in domain description!” or, outsiders’ suggestions
for PDDL improvement. WS-IPC 2012 p. 43 (2012)

6. Guerin, J.T., Hanna, J.P., Ferland, L., Mattei, N., Goldsmith, J.: The academic advising
planning domain. WS-IPC 2012 p. 1 (2012)

7. Helmert, M.: Understanding Planning Tasks: Domain Complexity and Heuristic Decomposi-
tion, vol. 4929. Springer (2008)

8. Hickey, R.: The Clojure programming language. In: Proceedings of the 2008 symposium on
Dynamic languages. ACM (2008)

9. Hwang, W., Salvendy, G.: Number of people required for usability evaluation: the 10±2 rule.
Communications of the ACM 53(5), 130–133 (2010)

10. Ilghami, O., Murdock, J.W.: An extension to PDDL: Actions with embedded code calls. In:
Proceedings of the ICAPS 2005 Workshop on Plan Execution: A Reality Check. pp. 84–86
(2005)

11. McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., Wilkins,
D.: PDDL—the planning domain definition language (1998)

12. Nielsen, J.: Estimating the number of subjects needed for a thinking aloud test. International
journal of human-computer studies 41(3), 385–397 (1994)

13. Norman, D.A.: The design of everyday things. Basic books (2002)
14. Parkinson, S., Longstaff, A.P.: Increasing the numeric expressiveness of the Planning Domain

Definition Language. In: Proceedings of The 30th Workshop of the UK Planning and
Scheduling Special Interest Group (PlanSIG2012). UK Planning and Scheduling Special
Interest Group (2012)

15. Plch, T., Chomut, M., Brom, C., Barták, R.: Inspect, edit and debug PDDL documents: Simply
and efficiently with PDDL Studio. ICAPS12 System Demonstration (2012)

16. Sauro, J.: A practical guide to the system usability scale: Background, benchmarks & best
practices. Measuring Usability LLC (2011)

17. Sauro, J., Lewis, J.R.: Quantifying the user experience: Practical statistics for user research.
Elsevier (2012)

18. Shah, M., Chrpa, L., Jimoh, F., Kitchin, D., McCluskey, T., Parkinson, S., Vallati, M.:
Knowledge engineering tools in planning: State-of-the-art and future challenges. Knowledge
Engineering for Planning and Scheduling (2013)

19. Shah, M.M., Chrpa, L., Kitchin, D., McCluskey, T.L., Vallati, M.: Exploring knowledge
engineering strategies in designing and modelling a road traffic accident management domain.
In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence.
pp. 2373–2379. AAAI Press (2013)

20. Strobel, V., Kirsch, A.: Planning in the wild: Modeling tools for PDDL. In: Lutz, C., Thielscher,
M. (eds.) KI 2014: Advances in Artificial Intelligence, LNCS, vol. 8736, pp. 273–284.
Springer, Cham, Switzerland (2014)

21. Vaquero, T.S., Tonidandel, F., de Barros, L.N., Silva, J.R.: On the use of UML.P for modeling
a real application as a planning problem. In: ICAPS. pp. 434–437 (2006)

22. Vaquero, T.S., Tonidandel, F., Silva, J.R.: The itSIMPLE tool for modeling planning domains.
Proceedings of the First International Competition on Knowledge Engineering for AI Planning,
Monterey, California, USA (2005)

23. Vaquero, T., Tonaco, R., Costa, G., Tonidandel, F., Silva, J.R., Beck, J.C.: itSIMPLE4.0:
Enhancing the modeling experience of planning problems. In: System Demonstration–
Proceedings of the 22nd International Conference on Automated Planning & Scheduling
(ICAPS-12) (2012)

Chapter 5
KEPS Book: Planning.Domains

Christian Muise and Nir Lipovetzky

Abstract In this chapter we describe the main pillars of the Planning.Domains
initiative (API, Solver, Editor, and Education), detail some of the current use-cases
for them, and outline the future path of the initiative. We further dive into some of
the most recent developments of Planning.Domains, and shed light on what is next
for the platform.

Keywords PDDL · Modeling · Online services

The inaugural International Planning Competition (IPC) was held in 1998.1 Since
that time, there have been 9 IPCs,2 each with their own set of benchmarks and
problem compilers. While many of the contest websites are still available online, the
benchmark problems used by the planning community are scattered and collected
only in an ad-hoc manner for specific planners (for example, on the websites for
FD3 and FF 4 planners). In 2016, The Planning.Domains initiative was announced
to address this and other key pain points for researchers in the planning community.

The fundamental objective of the Planning.Domains (PD) initiative is to provide
a set of resources, repositories, and tools for researchers and educators to discover,

1http://ipc98.icaps-conference.org/.
2http://icaps-conference.org/index.php/Main/Competitions.
3http://hg.fast-downward.org/file/1b5bf09b6615/benchmarks.
4https://fai.cs.uni-saarland.de/hoffmann/ff-domains.html.

C. Muise (�)
School of Computing, Queen’s University, Kingston, ON, Canada
e-mail: muise@cs.queensu.ca

N. Lipovetzky
University of Melbourne, Melbourne, VIC, Australia
e-mail: nir.lipovetzky@unimelb.edu.au

© Springer Nature Switzerland AG 2020
M. Vallati, D. Kitchin (eds.), Knowledge Engineering Tools and Techniques
for AI Planning, https://doi.org/10.1007/978-3-030-38561-3_5

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38561-3_5&domain=pdf
http://ipc98.icaps-conference.org/
http://icaps-conference.org/index.php/Main/Competitions
http://hg.fast-downward.org/file/1b5bf09b6615/benchmarks
https://fai.cs.uni-saarland.de/hoffmann/ff-domains.html
mailto:muise@cs.queensu.ca
mailto:nir.lipovetzky@unimelb.edu.au
https://doi.org/10.1007/978-3-030-38561-3_5

92 C. Muise and N. Lipovetzky

develop, and disseminate planning problems and planning techniques. PD is made
up of four principal components:

1. http://api.planning.domains: A programmatic interface to all existing planning
problems

2. http://solver.planning.domains: An open and extendable interface to a planner-
in-the-cloud service

3. http://editor.planning.domains: A fully featured editor for creating and modifying
PDDL

4. http://education.planning.domains: A central source for educational resources for
planning.

Development on the PD initiative began in 2014, and the site was announced at
ICAPS-2015 in Jerusalem, Israel. It has since garnered the involvement of seven
institutions, as well as financial support from the ICAPS organization. Ultimately,
the aim for the PD initiative is to be a resource created both for and by planning
researchers, as well as an avenue for outreach to other communities unfamiliar with
planning technology.

One of the pillars—the online editor—has served as the foundation for several
courses in AI that focus on the modeling of planning problems, and in 2016 the
editor was extended to include a rich plugin framework. This has subsequently
enabled individual contributions from planning researchers throughout the world
on the shared platform for engineering planning models.

In this chapter, we will exhibit each of the PD pillars, their capabilities, and
general use. We will also explore the future of each, and shed light on the future of
the initiative.

1 Planning.Domains Solver

The genesis of Planning.Domains was to represent a canonical source for the
existing planning benchmarks. However, there are a variety of issues that arise
when one considers the naïve solution of a simple directory containing the existing
benchmarks: What naming convention should be used? What is the hierarchy? How
do you treat repeated domains over multiple years? and How do you partition the
benchmarks? To address these and other concerns, we store the benchmarks in
a version controlled publicly accessible repository, and provide a programmatic
access to the domains through an API. While access to files directly is always
available, the structure is flat and not intended to be the first point of contact. Rather,
the API and the set of libraries that surround it are the direct entry-point for anyone
looking to retrieve or interact with existing planning problems.

Database access is provided at three levels: (1) individual planning Problems; (2)
a set of Problem objects for a single Domain; and (3) a set of Domain objects for a
single Collection. Collections can correspond to individual IPCs or commonly used

http://api.planning.domains
http://solver.planning.domains
http://editor.planning.domains
http://education.planning.domains

5 KEPS Book: Planning.Domains 93

benchmark suites. One key advantage is the ability to define canonical collections
such as “all STRIPS IPC domains”—a general term that many papers in the field
reference, but few align on—that incorporates best practices of picking such a set of
domains. Several experts in the field were solicited for advice on building such a set,
and the following desiderata is what influences the current collection #12 (All-IPC
(STRIPS)):

– Only one copy of each domain is used.
– Benchmarks from the satisficing tracks are preferred over the optimal track.
– Use only the most recent versions of domains when duplicates exist.
– Use bug-free versions if they become available after the IPC.
– Sample uniformly from large domain sets so that all domains have roughly the

same number of instances.
– Discard domains that are trivially solved by all modern planning techniques.

Domains represent a set of Problem instances, and naturally have their associated
descriptions and origin information. Individual Problems have information about the
correct domain and problem PDDL to use (which may be non-standard for some
benchmarks), as well as statistics about the individual instances. These include best
known lower bounds, upper bounds, classical effective width [9], etc. This enables
queries such as “all problems where we do not know the optimal plan, but have
effective width 1 and are thus trivial to satisfy suboptimally.”

1.1 Libraries

The API component of PD also comes with JavaScript and Python libraries to
interface with the database, as well as a command-line utility to fetch and use
the stored benchmarks. These three components represent the direct interface for
researchers to interact with the API, and we will briefly illustrate their functionality
here.

Python API The Python API is meant to mirror the programmatic access to all
of the collections, domains, and problems online. A common use-case, shown in
the following example, is to build a dictionary mapping a domain name to the list
of domain-problem file tuples for testing planners locally. Note that only one line
would need to be changed in order to test with a different collection (e.g., a newer
IPC).

1

2 i m p o r t s y s
3

4 p r i n t " Loading domains . . . " ,
5 s y s . s t d o u t . f l u s h ()
6

94 C. Muise and N. Lipovetzky

7 i m p o r t p l a n n i n g _ d o m a i n s _ a p i a s a p i
8

9 # 12 i s t h e c o l l e c t i o n f o r a l l STRIPS IPC domains
10 domains = {}
11 f o r dom i n a p i . ge t_doma ins (1 2) :
12

13 # Turn t h e l i n k s i n t o r e l a t i v e p a t h s f o r t h i s machine
14 p r o b s = a p i . g e t _ p r o b l e m s (dom [’ domain_id ’])
15

16 # Map t h e domain name t o t h e l i s t o f domain−problem p a i r s
17 domains [dom [’ domain_name ’]] = []
18 f o r p i n p r o b s :
19 domains [dom [’ domain_name ’]] . append ((p [’ domain_pa th ’] , \ \
20 p [’ p r o b l e m _ p a t h ’]))
21

22 p r i n t " done ! "

Example to load all of the domain/problem files

JavaScript API The JavaScript API serves a slightly different purpose than that
of the Python API. Rather than mirror the RESTful API directly, it surfaces
functionality that allows web developers to quickly build out interfaces around
the exploration of the data behind the endpoints. In the example below, two
functionalities are shown: (1) a table showing the domains in a particular collection;
and (2) an interactive table to explore all of the collections, domains, and problems.

1

2 <h2>Showing IPC−2018 Domains : < / h2>
3 < d i v i d =" domains− t a b l e ">
4 Loading . . .
5 < / d i v >
6

7 <h2>Problem N a v i g a t o r < / h2>
8 < d i v s t y l e =" min−h e i g h t : 600 px " i d =" problem−n a v i g a t o r ">
9 Loading . . .

10 < / d i v >
11

12 < s c r i p t t y p e =" t e x t / j a v a s c r i p t " s r c =" p l a n n i n g −domains . j s ">
13 f e t c h _ d o m a i n s (’ / domains / 1 3 ’ , ’# domains ’) ;
14 i n s e r t _ n a v i g a t o r (’ # problem−n a v i g a t o r ’ , ’ a l e r t ’) ;
15 < / s c r i p t >

Examples to (1) create a navigator for collections and (2) display the domains of a particular
collection

The function fetch_domains used above populates the HTML object
“domains-table” with the domains from IPC-2018 collection, and insert_navigator
populates the HTML object “problem-navigator,” calling the built-in javascript alert
function when a row is selected.

Command-Line Utility For quick access to the database information, packaging
of the benchmarks, etc., a command-line utility was also constructed. Figures 5.1

5 KEPS Book: Planning.Domains 95

Fig. 5.1 Command-line
example to show problem
details

Fig. 5.2 Command-line
example to show the plan of a
problem

and 5.2 (respectively) show just two examples of the utility to (1) fetch details on a
particular problem and (2) show an incumbent plan for the problem.

1.2 API Future

Moving forward, we have three key objectives for the API: (1) to expand the
repository to alternative planning formalisms (FOND, POND, RDDL, RMPL); (2)
to open the database to a curated form of statistics submission so that any researcher
may contribute to the information on problems; and (3) to introduce a tagging
mechanism for Problems, Domains, and Collections to allow for custom categories
(e.g., identifying all delete relaxed problems, specifying the requirements used in
the modeling language, etc.).

The general setting of having a crowd-sourced database of statistics for academic
use poses interesting design challenges for the infrastructure and API. Most
crucially, we must address the authenticity and accuracy of the submitted data so
that the statistics can be trusted for academic use. For some aspects, such as the
best known plan cost, we can independently verify the data using tools such as
VAL [7].5 For other aspects, such as the best known lower bound, we must develop
a mechanism for trusted submission and traceability of the results (so any error
discovered can be cross-referenced with all potential erroneous entries). This is an
area of ongoing work in the development of the API.

5This is, in fact, already in place for the (potentially anonymous) submission of new incumbent
plans.

96 C. Muise and N. Lipovetzky

2 Solver Planning Domains

For many outside of the automated planning research community, getting a planner
to compile and run can be a daunting task. The Solver component of PD offers a
planner-in-the-cloud service that can be invoked using a standard RESTful API—
the PDDL is sent as raw text, and a planner running remotely returns a plan. The
following Python code, for example, operates as an IPC-ready planner that accepts
PDDL files and produces a plan using the service.6

1

2 i m p o r t u r l l i b 2 , j son , s y s
3

4 dom = open (s y s . a rgv [1] , ’ r ’) . r e a d ()
5 p rob = open (s y s . a rgv [2] , ’ r ’) . r e a d ()
6 u r l = ’ h t t p : / / s o l v e r . p l a n n i n g . domains / s o l v e ’
7

8 d a t a = { ’ domain ’ : dom , ’ problem ’ : prob }
9 d a t a = j s o n . dumps (d a t a)

10

11 r e q = u r l l i b 2 . Reques t (u r l)
12 r e q . a d d _ h e a d e r (’ Conten t−Type ’ ,
13 ’ a p p l i c a t i o n / j s o n ’)
14 r e s p = u r l l i b 2 . u r l o p e n (req , d a t a)
15 r e s p = j s o n . l o a d s (r e s p . r e a d ())
16

17 p l a n = []
18 f o r a c t i n r e s p [’ r e s u l t ’] [’ p l a n ’] :
19 p l a n . append (a c t [’ name ’])
20

21 w i th open (s y s . a rgv [3] , ’w’) a s f :
22 f . w r i t e (’ \ n ’ . j o i n (p l a n))

Usage: ./planner.py domain.pddl problem.pddl plan.ipc

The deployed planner is a variant of the LAPKT project [12] that is tailored to
be extremely fast (and not necessarily optimal). The planner is restricted to 10 s
and 500 Mb, but the project is open source and free for anyone to deploy on their
own using different resource limits. There is also a cool-off mechanism in place
that restricts users from calling the service too often if multiple users are currently
requesting plans.

With these limits and functionality combined, the single-threaded deployment
of the solver has had a tremendous adoption. At the time of writing, the service has
been called approximately 585,000 times, and has been the basis for many courses in
AI and planning, as well as a prototyping component for planning-related research
(e.g., robotic way-point navigation).

6It is not recommended to submit this to an IPC, as it violates many of the rules for entered
planners, and the spirit of the contest itself.

5 KEPS Book: Planning.Domains 97

The open source element of the server infrastructure has also served as a useful
basis for several other planning-like services. The common thread among these
services is the functionality to take a domain and problem PDDL as input in order
to produce a text output (e.g., problem analysis or reformulation).

2.1 Solver Future

The future of the solver pillar of PD is to do a more thorough evaluation of the
planners out there that are capable of solving problems quickly. The Agile track of
the regularly held IPC is an excellent source for this. Ultimately, we want to use the
planner that solves the majority of problems as fast as possible, and the techniques
that go into making this a reality are not the same as those that lead to a successful
IPC planner (e.g., parsing and grounding time becomes a major issue when only
10 s is provided).

We also hope to expand on the capability of the service to provide planning-
related information. Currently, the set of ground actions in the produced plan is
provided. Further options could include reasons a plan cannot be found, syntax
errors on the PDDL sent directly, metrics on the plan itself, etc.

3 Editor Planning Domains

Perhaps the largest of the PD initiatives is an online editor for PDDL. The initiative
is similar to previous efforts such as the model acquisition tool itSIMPLE [14], the
PDDL Studio software [11], and the online basic editor myPDDL [13]. The PD
Editor builds on the myPDDL editor in order to tie together the other PD initiatives,
and includes features found in PDDL Studio and itSIMPLE. Among the standard
features of an editor (e.g., syntax highlighting, bracket matching, and code folding),
the following custom features have been developed:

– The PD Solver is integrated so that solutions can be computed and displayed
during editing (see Fig. 5.3). Custom deployed solvers may also be used instead
of the default.

– PDDL-specific auto-completion can be used.
– Domain and problem files can be imported from remote servers by browsing

through the PD API by Collection, Domain, and Problem.
– Problem analysis can be conducted using an online version of TorchLight [6];

deployed using the same infrastructure as the open source PD Solver.

Two larger features were added subsequent to the introduction of the PD
initiative: sessions and plugins. We discuss each in deeper detail here.

98 C. Muise and N. Lipovetzky

Fig. 5.3 Online solver, and resulting plan

3.1 Plugin Framework

In 2016, the editor went through a major revision to enable a full plugin function-
ality, and much of the features moved to this modular architecture (e.g., loading
problems, invoking the remote solver, etc.). This opened the door to democratizing
the development of the online editor, and allows for a rich configuration of the editor
for specific use-cases.

One central use-case is in the classroom setting. We observed several examples
of custom plugin configurations that captured dedicated solver URL’s, initial PDDL
tabs, etc. These configurations were shared with the student body for work during
the course, and customized by the instructor.

Currently, the list of publicly shared plugins includes:

1. Save Tabs: Provides the ability to save the content of all PDDL tabs.
2. Solver: Connects the editor to the online solver service.
3. Timeline Viewer: Allows the display of temporal plans via an interactive Gantt

chart.

5 KEPS Book: Planning.Domains 99

4. SDAC Translator: Translates problems with state-dependent action costs into
ones without.

5. Torchlight: Provides in-depth problem analysis on reachability and other fea-
tures.

6. Misc PDDL Generators: Collection of utilities for common modeling patterns
(e.g., dealing with numbers, grids, connected networks, etc.).

3.2 Session Functionality

Building on the plugin architecture, and its capability to export the state and
configuration of all plugins currently loaded, session functionality was introduced to
store this data remotely. Combined with the (enabled-by-default) Save Tabs plugin,
this provides a rich mechanism for continuing work on a collection of PDDL files
at a later time.

The implementation provides both read-only and read/write links for sharing.
While the latter provides a natural ability to continue work at a later time, the former
has opened the door to sharing exemplary PDDL files or plugin configurations.
Links to pre-configured editor views appear in the recently published book on PDDL
[5], as primary links for courses in AI, and generally as a means for debugging
modeling errors; a session is saved, shared as a read-only version, and modifications
re-shared as a new session.

3.3 Editor Future

There are many features planned for the PD Editor, and many surround the plugin
framework that is now in place. The modeling process is where the vast majority of
PDDL errors occur as models are incorrectly specified, and there is arguably very
little tooling available to help in this process. Some of the ideas targeted for future
plugin development include:

– An interactive tutorial to introduce newcomers to PDDL.
– General syntax checking for valid PDDL.
– Computation of symmetry analysis and mutex information.
– Reachability analysis on fluents and actions (indicating those that can never be

seen in a plan).

Two larger-scale initiatives are underway to improve on the editor capabilities
(and that of Planning.Domains in general), and we detail them in the following sec-
tion. Finally, beyond extending the editor with new features to facilitate modeling,
we also intend to enhance the collaborative nature of the tool by adding support for
multiple simultaneous users.

100 C. Muise and N. Lipovetzky

4 Education Planning Domains

The PD Editor has been embraced as a teaching tool in several AI and automated
planning courses across the world, highlighting the need of resources targeted for
the purpose of education. Hence, the fourth pillar of PD aims to collect available
information for learning (teaching) automated planning and modeling techniques.
The initial distribution of contents targets:

1. Course materials such as slides, hands-on exercises, and workshops.
2. Online resources such as video lectures, demos, and reference manuals.
3. Project ideas, such as course or honors projects, and general activities that could

be used for education.

The education pillar is in its infancy, but it stands to become a vital resource for
the education of planning techniques and technologies.

5 What Is Next for Planning.Domains

The Planning.Domains initiative will continue to be a community driven collection
of initiatives both for and by the planning community. Already, we have given a
sense of what is on the horizon for each of the pillars. However, there are two major
projects undergoing rapid development that are worth noting.

5.1 Planimation

Planimation is a modular and extensible open source framework to visualize
sequential solutions of planning problems specified in PDDL. Such visualizations
make solutions more amenable to humans interacting with planners, and assist in the
modeling process as well as in the education of AI planning. Planimation introduces
a preliminary declarative PDDL-like animation profile specification, expressive
enough to synthesize animations of arbitrary initial states and goals of a benchmark
with just a single profile.

PDDL is used to specify a model of a planning problem, and a planner
synthesizes a solution which can take the form of a sequence, policy, or a tree,
depending on the model being solved [4]. Solutions for classical planning take the
form of a sequential plan expressed as text-based keywords identifying the grounded
actions mapping the initial state to a goal state. Special tools exist to validate the
soundness of a plan given a problem specification in PDDL, and assist on the
detection of errors in existing solvers [8]. Other tools have been developed to assist
the PDDL modeling process [1, 14]. For instance, itSIMPLE assists the analysis
of PDDL by translating state chart diagrams encoded by a modeler into Petri-Nets

5 KEPS Book: Planning.Domains 101

[14]. Other tools provide insights about solvers through search tree visualizations
of a given search algorithm [10], or visualizations of the internal decision-making
process of a solver [2].

If the PDDL specification is syntactically correct but fails to model the classical
planning problem the modeler had in mind, then there is no tool to give feedback
and facilitate detecting the source of failure. For example, missing preconditions are
prevalent and hard to detect if the only feedback is the name of the actions in a valid
plan. Planimation, a plan visualizer, intends to close the feedback loop and animate
a plan given a PDDL specification, relying on visual cues to help modelers find the
sources of mental and model misalignment. Furthermore, the tool diminishes the
effort needed to understand and explain the dynamics encoded by PDDL problems,
as plans explain themselves visually.

PDDL encodes a transition system declaratively by providing typically a single
domain file specifying actions and predicates, and a problem file defining objects,
the initial state, and goal states. Actions changing the valuation of predicates induce
the state transition we aim to animate visually. In order to do so, we provide a third
PDDL-like animation file that specifies a sprite for each object, and the animation
behavior triggered when a predicate becomes true in a state. The declarative visual
animation language decouples the visualization engine in the same way PDDL
decouples models from solvers. PDDL modelers can extend their problems with
a single animation profile and visualize the plans returned by existing solvers [3].
For example, the animation profile to visualize any Blocksworld problem can be
viewed at http://editor.planning.domains/#read_session=yiCWKZREGv.

The animation language has been developed taking into account the diversity
represented within the IPC domains. New special purpose functions can easily be
added to the visual solver. Indeed, more functions may be needed in the future,
but the current language has been sufficient to animate a variety of domains such
as Blocksworld, Grid, Logistics, and Towers of Hanoi. All animations result in
translations in space, scaling, or appear/disappear effects on objects. For more
information we refer the reader to the existing repositories and documentation at
http://github.com/planimation.

User Interface Functionality The Planimation UI is shown in Fig. 5.4. It consists
of the following panels:

– a steps panel, which shows the plan and action currently being executed. Any
action a is clickable, and sets the visualization to the resulting state s′ = f (s, a).

– The Step Info panel shows the preconditions and effects of the current action;
– the Animation panel displays the animation canvas and darkens objects if they

are in their goal position;
– the Control panel allows animation speed changes and playback controls;
– the Subgoal panel shows all the goal predicates and changes their color when

they are satisfied. Clicking on a subgoal opens a dropdown list with all the steps
in which the subgoal is satisfied, jumping to such step if selected.

– The last panel is the header, which contains help information, a button to show
the goal state, and a button to download the visualization in a JSON VFG format.
The file can be used to load Planimation without invoking a planner.

http://editor.planning.domains/#read_session=yiCWKZREGv
http://github.com/planimation

102 C. Muise and N. Lipovetzky

Fig. 5.4 Planimation animating Blocksworld

Fig. 5.5 Planimation plugin for editor.planning.domains

How to Use It In order to visualize a PDDL domain, the modeler has to write an
animation profile following the syntax accepted by Planimation. Once the animation
profile is ready, an animation can be synthesized by uploading the problem, domain,
and animation PDDL files into https://planimation.planining.domains. Any planner
in the cloud using the PD Solver RESTful API can be used to solve the problem.

Alternatively, the modeler can load the Planimation plugin within the PD Editor,
and generate animations as new tabs (see Fig. 5.5). Multiple animations can be
generated using different tabs and animation profiles.

http://editor.planning.domains
https://planimation.planining.domains

5 KEPS Book: Planning.Domains 103

5.2 VSCode Integration

In 2018, a plugin was released for Microsoft’s Visual Studio Code (VSCode)
editor to assist in the creation of PDDL models.7 This effort shared many of
the same motivations and functionality as the editor.planning.domains initiative,
with a greater emphasis on the advanced PDDL modeler using common software
engineering practices (e.g., unit tests, compilation analysis, etc.). As of 2019, there
is a concerted effort underway to unify both the online editor and offline VSCode
plugin.

The ultimate vision for the integration is to allow for universal plugins to be writ-
ten for both editors. An early example of this is the solver functionality; both editors
using the same online service and API to retrieve classical plans. Another common
integration is access to all of the benchmark problems at api.planning.domains. A
screenshot of this functionality is shown in Fig. 5.6.

Aside from the shared solver and API access, early integration efforts have
focused on a seamless integration of the session functionality. Sessions can be
loaded and modified in both editors, allowing for users to move between their choice

Fig. 5.6 VSCode Integration of api.planning.domains

7https://marketplace.visualstudio.com/items?itemName=jan-dolejsi.pddl.

http://editor.planning.domains
http://api.planning.domains
http://api.planning.domains
https://marketplace.visualstudio.com/items?itemName=jan-dolejsi.pddl

104 C. Muise and N. Lipovetzky

Fig. 5.7 VSCode Integration of editor.planning.domains sessions

of editor and continue the modeling process. Figure 5.7 shows an early prototype of
this functionality in action.

The two-way channel of sessions between the online and offline editors opens the
door to a much richer experience in the education setting as well. Instructors are now
able to create a read-only session, distribute it to a set of students, and allow them
to maintain their own individual sessions shared with the instructor. Analogous to
version controlled repositories that are forked, shared, and monitored, this method
of instruction brings modern teaching pedagogy to the setting of PDDL modeling.

6 Conclusion

In this chapter we have described the various aspects of the Planning.Domains
initiative: (1) an online API for programmatic access to planning problems; (2) a
remote service for invoking a quick satisfiable planner; (3) an online editor for the
modeling of planning problems; and (4) a collection of educational resources.

The various efforts are community driven, and represent a shifting landscape in
the current capability of modeling tools and techniques for authoring PDDL. We
invite you to first and foremost try the services for yourself and let us know what
you think, and ultimately would ask for anyone interested to join us in contributing
to the variety of services so that the community may benefit.

References

1. Barreiro, J., Boyce, M., Do, M., Frank, J., Iatauro, M., Kichkaylo, T., Morris, P., Ong, J.,
Remolina, E., Smith, T., et al.: Europa: A platform for AI planning, scheduling, constraint
programming, and optimization. 4th International Competition on Knowledge Engineering for
Planning and Scheduling (ICKEPS) (2012)

http://editor.planning.domains

5 KEPS Book: Planning.Domains 105

2. Chakraborti, T., Fadnis, K.P., Talamadupula, K., Dholakia, M., Srivastava, B., Kephart,
J.O., Bellamy, R.K.: Visualizations for an explainable planning agent. arXiv preprint
arXiv:1709.04517 (2017)

3. Chen, G., Ding, Y., Edwards, H., Hin Chau, C., Hou, S., Johnson, G., Sharukh Syed, M., Tang,
H., Wu, Y., Yan, Y., Tidhar, G., Lipovetzky, N.: Planimation. ICAPS system demonstration
(2019)

4. Geffner, H., Bonet, B.: A concise introduction to models and methods for automated planning.
Morgan & Claypool Publishers (2013)

5. Haslum, P., Lipovetzky, N., Magazzeni, D., Muise, C.: An Introduction to the Planning Domain
Definition Language. Morgan & Claypool Publishers (2019)

6. Hoffmann, J.: The TorchLight Tool: Analyzing Search Topology Without Running Any Search.
In: Proceedings of the System Demonstrations, in the 21th International Conference on
Automated Planning and Scheduling. pp. 37–41 (2011)

7. Howey, R., Long, D., Fox, M.: Val: Automatic plan validation, continuous effects and mixed
initiative planning using PDDL. In: 16th IEEE International Conference on Tools with
Artificial Intelligence. pp. 294–301. IEEE (2004)

8. Howey, R., Long, D., Fox, M.: VAL: Automatic plan validation, continuous effects and
mixed initiative planning using PDDL. In: 16th IEEE International Conference on Tools with
Artificial Intelligence. pp. 294–301. IEEE (2004)

9. Lipovetzky, N., Geffner, H.: Width and Serialization of Classical Planning Problems. In: ECAI.
pp. 540–545 (2012)

10. Magnaguagno, M.C., Pereira, R.F., Móre, M.D., Meneguzzi, F.: Web planner: A tool to develop
classical planning domains and visualize heuristic state-space search. In: Proceedings of the
Workshop on User Interfaces and Scheduling and Planning, UISP. pp. 32–38 (2017)

11. Plch, T., Chomut, M., Brom, C., Barták, R.: Inspect, edit and debug PDDL documents: Simply
and efficiently with PDDL studio. System Demonstrations and Exhibits at ICAPS pp. 15–18
(2012)

12. Ramirez, M., Lipovetzky, N., Muise, C.: Lightweight Automated Planning ToolKiT. http://
lapkt.org/ (2015), accessed: 2019-06-7

13. Strobel, V.: myPDDL—Knowledge Engineering for PDDL. http://pold87.github.io/myPDDL/
(2015), accessed: 2016-03-18

14. Vaquero, T.S., Silva, J.R., Ferreira, M., Tonidandel, F., Beck, J.C.: From Requirements and
Analysis to PDDL in itSIMPLE3.0. Proceedings of the Third International Competition on
Knowledge Engineering for Planning and Scheduling, ICAPS 2009 pp. 54–61 (2009)

http://lapkt.org/
http://lapkt.org/
http://pold87.github.io/myPDDL/

Chapter 6
Modeling Planning Tasks:
Representation Matters

Lukáš Chrpa

1 Introduction

Domain-independent planning decouples planning task description, specified in
a description language (e.g., PDDL), and planning engines that accept the task
description as an input and generate plans (if they exist). A planning domain model
gives general description of the environment and actions of a given domain while
a planning problem specifies concrete objects, an initial state, and a goal. Planning
domain model together with planning problem description form a planning task.
Hence it is typical that one domain model can be used for a class of planning tasks.

Whereas the planning community, driven by International Planning Competitions
(IPC),1 focuses on developing advanced planning techniques for solving planning
tasks, the engineering process of developing models of planning tasks is also
important, although as shown in the last International Competition on Knowledge
Engineering for Planning and Scheduling (ICKEPS) it does not receive much
attention from the community [16]. Efficiency of a model of a planning task, or
a domain model is however a crucial factor determining performance of planning
engines and hence the usability of the model in a real application.

This chapter focuses on existing concepts that can be leveraged for developing
efficient domain models while emphasizing common weaknesses of the state-of-the-
art planning engines and discussing options how the weaknesses can be overcome
by efficient modeling. Specifically, we will discuss macro-operators that, roughly

1http://ipc.icaps-conference.org.

L. Chrpa (�)
Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic

Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
e-mail: chrpaluk@fel.cvut.cz

© Springer Nature Switzerland AG 2020
M. Vallati, D. Kitchin (eds.), Knowledge Engineering Tools and Techniques
for AI Planning, https://doi.org/10.1007/978-3-030-38561-3_6

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38561-3_6&domain=pdf
http://orcid.org/0000-0001-9713-7748
http://ipc.icaps-conference.org
mailto:chrpaluk@fel.cvut.cz
https://doi.org/10.1007/978-3-030-38561-3_6

108 L. Chrpa

speaking, represent “shortcuts” in the state space, entanglements that reduce size
of the search space, “bagged” representation that alleviates unwanted symmetries
between objects of the same type, and, finally, Domain Control Knowledge that,
roughly speaking, provides guidance for planning engines through the search space.
Each type of extra knowledge has certain benefits and limitations (e.g., macro-
operators might help to find a plan in fewer steps but might considerably increase
branching factor) that will be discussed in order to provide useful tips and trick for
domain modelers.

2 Outer Entanglements

As state-of-the-art planning engines perform grounding in a preprocessing step, i.e.,
they instantiate all predicates and operators, the size of the representation might
grow considerably that, in consequence, causes higher CPU time overheads and
memory requirements. Reducing the size of grounded representation can therefore
have a positive impact on performance of planning engines.

Outer Entanglements [14, 18] aim at reducing the size of planning task represen-
tation by eliminating possibly useless instances of planning operators. Specifically,
Outer Entanglements are relations between planning operators and predicates whose
instances are present in the initial state or the goal. These relations capture a
useful knowledge that some planning operators are needed only to modify initial
situations (e.g., picking up a package at its initial location) or achieve goal situations
(e.g., delivering a package to its goal location). Consequently, a limited number of
instances of “entangled” operators have to be considered in the planning process.
Eliminating some operators’ instances often makes some atoms unreachable (e.g.,
a package cannot be in other than initial or goal location). Hence, the size of task
representation is smaller too and planning engines have to make less effort to find
solution plans.

Formally, Outer Entanglements are defined as follows [18]:

Definition 1 Let Π be a planning task, where IΠ is the initial state and GΠ is the
goal. Let o be a planning operator and p be a predicate defined in the domain model
of Π . We say that operator o is entangled by init (resp. goal) with a predicate p

in Π if and only if p ∈ pre(o) (resp. p ∈ add(o)) and there exists π , a solution
plan of Π , such that for every action a ∈ π being an instance of o and for every
atom pgnd being an instance of p, it holds: pgnd ∈ pre(a) ⇒ pgnd ∈ IΠ (resp.
pgnd ∈ add(a) ⇒ pgnd ∈ GΠ). We also say that π satisfies the entanglement (by
init or goal) conditions.
Henceforth, entanglements by init and goal are denoted as outer entanglements.

To illustrate the meaning of Definition 1, we consider the well-known
BlocksWorld domain [35]. An entanglement by init between the unstack(?x ?y)
operator and the (on ?x ?y) predicate captures that if an instance of on (e.g., (on a
b) is required by a corresponding instance of unstack (e.g., unstack(a b)), then that

6 Modeling Planning Tasks: Representation Matters 109

instance of on (e.g., (on a b) is present in the initial state. Similarly, an entanglement
by goal captures the stack(?x ?y) operator and the (on ?x ?y) predicate captures
that if an instance of on (e.g., (on a b) is achieved by a corresponding instance of
stack (e.g., stack(a b)), then that instance of on (e.g., (on a b) is present in the
goal.

In order to leverage Outer Entanglements in a planner-independent fashion,
they can be encoded into the planning task representation. This can be done by
introducing static predicates into the preconditions of “entangled” operators such
that only instances “complying” with the entanglements are considered in the
planning process. Let Π be a planning task, I be its initial state, and G be its
goal. Let an operator o be entangled by init (resp. goal) with a predicate p in Π

(o and p are defined in the domain model of Π). Then the task Π is reformulated
as follows [18]:

1. Create a predicate p′ (not defined in the domain model of Π) having the same
arguments as p and add p′ into the domain model of Π .

2. Modify the operator o by adding p′ into its precondition. p′ has the same
arguments as p which is in precondition (resp. positive effects) of o.

3. Create all possible instances of p′ which correspond to instances of p listed in I

(resp. G) and add the instances of p′ to I .

Adding a static predicate p′ into the precondition of o causes that only instances
of o “complying” with the entanglement are considered in the planning process.
Figure 6.1 depicts the encoding of an entanglement by init between the unstack
operator and the predicate on. In our terminology, unstack(?x ?y) refers to o, on(?x
?y) to p, and entinit_on(?x ?y) to p′.

The aim of Outer Entanglements is to decrease the number of operator instances
that planning engines have to reason with for solving the given planning task.
In the BlocksWorld example, we can observe that the original model considers
quadratic number of the unstack and stack operators (with respect to the number
of blocks), while the “entangled” model considers linear number of these operators.
Consequently, in can be observed that each block can be at most in four states:
stacked on the initial block, held by the robotic hand, put on the table, and stacked
on the goal block. Moreover, unless the initial and goal blocks are the same, once
the block is unstacked from the initial position it cannot be returned to it and after
the block is stacked on the goal position it can no longer be moved.

Fig. 6.1 An example of the encoding of an entanglement by init between the unstack operator
and the on predicate

110 L. Chrpa

Deciding Outer Entanglements is PSPACE-complete (as well as classical plan-
ning) and in literature, they are learnt from training plans, solutions of simple
planning tasks [18]. The learning method, however, might not be accurate, i.e., learn
entanglements that do not generalize (i.e., they do not hold for the whole class of
tasks), or miss some entanglements (e.g., training plans are too suboptimal). On the
other hand, Outer Entanglements might be specified by domain engineers as they
have a good knowledge of the domain.

The success of Outer Entanglements depends mostly on how they can reduce the
size of the state space. This applies, for instance, in the BlocksWorld domain and its
variants (e.g., Depots, Matching-BlocksWorld) or in logistic types of domains (e.g.,
TPP, Gripper). For deeper insights about Outer Entanglements see [14, 18].

3 Macro-Operators

Macro-operators (macros) are encoded in the same way as ordinary planning
operators, but encapsulate sequences of planning operators [28]. Technically, an
instance of a macro is applicable in a state if and only if a corresponding sequence
of operators’ instances is applicable in that state and the result of the application of
the macro’s instance is the same as the result of application in the corresponding
sequence of operators’ instances. Macros can be added to the original domain
models, which gives the technique the potential of being planner independent.
Informally speaking, macros can be understood as shortcuts in the search space
allowing planning engines to generate plans in fewer steps.

Formally, a macro oi,j is constructed by assembling planning operators oi and oj

(in that order) as follows. Let Φ and Ψ be mappings between variable symbols (we
need to appropriately rename variable symbols of oi and oj to construct oi,j).

– pre(oi,j) = pre(Φ(oi)) ∪ (pre(Ψ (oj)) \ add(Φ(oi)))

– del(oi,j) = (del(Φ(oi)) \ add(Ψ (oj))) ∪ del(Ψ (oj))

– add(oi,j) = (add(Φ(oi)) \ del(Ψ (oj))) ∪ add(Ψ (oj))

For a macro to be sound, no instance of Φ(oi) can delete an atom required by a
corresponding instance of Ψ (oj), otherwise they cannot be applied consecutively.
Whereas it is obvious that if a predicate deleted by Φ(oi) (and not added back)
is the same (both name and variable symbols) as a predicate in the precondition
of Ψ (oj), i.e., (del(Φ(oi)) \ add(Φ(oi)) ∩ pre(Ψ (oj)) �= ∅), then the macro
oi,j is unsound, another source of macro unsoundness is often not being even
considered in literature. Instantiating two or more macro’s variables to a same object
might make the macro unsound. For example, in the BlocksWorld domain, a macro
pickup-stack(?x ?y) that has (clear ?x)(ontable ?x)(clear ?y)(handempty) in
its precondition can be instantiated into pickup-stack(A A) that is applicable if
(clear A)(ontable A)(handempty) is true in a current state. However, actions
(pickup A) and stack(A A) cannot be applied consecutively because (pickup A)
deletes (clear A) which is required by stack(A A) and hence pickup-stack(?x

6 Modeling Planning Tasks: Representation Matters 111

Fig. 6.2 The pickup-stack macro in PDDL

?y) is unsound. These situations can be easily identified by checking whether the
same object substitution leads to the situation in which the first operator deletes a
precondition for a second operator. To make the affected macro sound, inequality
constraints have to be added to macro’s precondition (e.g., (not (= ?x ?y)) is added
into pickup-stack(?x ?y)’s precondition) [13]. For illustration, see Fig. 6.2 in which
the pickup-stack macro is depicted.

Longer macros, i.e., those encapsulating longer sequences of original planning
operators can be constructed iteratively by the above approach.

The use of macros dates back to 1970s when the REFLECT system was
developed [20]. In 1980s, that MORRIS system was developed [31]. MORRIS
learns macros from parts of plans appearing frequently (S-macros) or being poten-
tially useful despite having low priority (T-macros). Noteworthy, S-macros have a
planner-independent aim as they tend to be used frequently in the planning process,
while T-macros aim at specific weaknesses of a given planning engine. Macro
Problem Solver [28] learns macros for particular non-serializable sub-goals (e.g.,
in Rubik’s cube). Korf [28] also shows that use of macros can reduce computational
complexity.

Besides a clear advantage, that is, providing shortcuts in the search space, macros
often have many instances that in consequence increase branching factor as well
as memory requirements. Therefore, there exist works that aim at opposite, either
eliminate “redundant” actions whose effects can be achieved by sequences of other
actions [24], or split operators into simpler ones [2]. That said, it is important that
benefits of macros outweigh their drawbacks, which is also known as the utility
problem [31].

As planner-dependent macro generation systems, we can mention the SOL-EP
version of Macro-FF [7], or Marvin [19] that generate macros that help to escape
local heuristic minima of the well-known FF planner [25]. Specifically, FF uses
enforced hill climbing search that if stuck in local heuristic minima performs
breadth-first search to find a state with better (lower) heuristic value. The FF
heuristics represents an estimation of the (nearly optimal) cost of delete-relaxed
plans (action delete effects are not considered). That said, macros aim to make
FF heuristic to be monotonically decreasing, therefore, mitigating (and ideally
eliminating) the breadth-first search episodes.

Wizard [32] that is a planner-independent macro generating system that learns
macros from training plans by leveraging genetic programming. The learning pro-

112 L. Chrpa

cess incorporates a cross-validation phase in which generated macros are evaluated
on a set of test problems being solved by a given planner. Hence, the aim is to learn
macros that maximize performance of a given planning engine in a given domain.
Such macros can be considered as planner-specific (despite being generated by a
planner-independent technique).

In planner-independent settings, a frequent occurrence of sequences of actions in
training plans usually plays a pivotal role in macro generation systems. Examples
of such systems include the work of Chrpa [13] in which macros are learnt by
analyzing dependencies between actions in training plans. Dulac et al. [21] exploit
n-gram algorithm to analyze training plans to learn macros. DBMP/S [27] applies
Map Reduce for learning macros from a larger set of training plans. The CA-
ED version of MacroFF [7] generates macros according to several pre-defined
rules (e.g., the “locality rule” stemming from Component Abstraction) that apply
on adjacent actions in training plans. Noteworthy, CAP [4] leverages Component
Abstraction for generating sub-goal specific macros.

BloMa [17] is a macro learning approach that exploits block deordering [34]
such that training plans are deordered into “blocks,” i.e., sequences of actions that
have to be applied in a given order, that are further combined into “macroblocks”
according to several rules describing relationships between blocks. Macroblocks
that are frequent in training plans are assembled into macros. The advantage of
BloMa is that it can learn useful longer macros, for example, a macro capturing
shaking a cocktail and cleaning the shaker afterwards.

MUM [11] aims at learning “instance-wise” macros. In other words, macros
learnt by MUM should have a comparable number of instances to the original
operators. To do so, MUM exploits Outer Entanglements by applying them on
macros reducing the number of their instances. Outer Entanglements also serve as
a heuristic for macro generation such that operators with the entanglement by init
relation go first while operators with the entanglement by goal relation go last. In the
ideal case, macros directly connect initial state of an object with its goal state (e.g.,
pick-move-drop). Frequency of macro occurrence in training plans is a secondary
criterion.

Critical Section Macros [10], inspired by Critical Sections in parallel computing
in which processes deal with shared resources, capture activities that use limited
resources (e.g., a robotic hand). In planning, resource availability and use is
represented by mutex predicates, for example, (handempty) and (holding ?x),
respectively. Then we can identify locker and releaser operators that locks and
releases the resource respectively. For example, unstack is a locker as it deletes
(handempty) and achieves (holding ?x), while putdown is a releaser as it deletes
(holding ?x) and achieves (handempty). Straightforwardly, a Critical Section
Macro starts with a locker and ends up with a releaser. In between, the macro might
contain users that contain the resource use predicate in their preconditions (e.g., a
paint operator that paints the block held by the robotic hand), or gluing operators
that have to be present in the macro for some reason (e.g., a move operator that
moves the robotic hand between tables). Critical Section Macros hence represent the
whole activities from locking to releasing resources and, consequently, encapsulate

6 Modeling Planning Tasks: Representation Matters 113

the whole period of resource use. As it is often the case that the resource can
be locked by multiple objects, delete-relaxation heuristics that are widely used in
planning tend to (heavily) underestimate the plan cost as they assume the resource
can be used by multiple objects at the same time. Critical Section Macros since
they “bypass” the resource use part, therefore, mitigate the discrepancy between
delete-relaxed heuristic estimation and the real cost of the plan. On top of that, the
aggressive version of the Critical Section Macros generation technique removes the
original operators that are replaced by the generated macros. This approach has
shown to be very efficient in a couple of domains [10].

Besides systems that learn macros by training on a set of small problems, there
are several systems such as DHG [3] or OMA [12] that extracts planner-independent
macros online, i.e., without the training phase. These systems, however, usually
underperform the learning ones [12].

From the Knowledge Engineering perspective, macros can be designed and
encoded manually by an engineer. Alternatively, an engineer can manually choose
macros generated by any of the existing macro generation systems. Helpful macros
usually appear frequently in plans, connect an initial state of an object with its goal
state, replace original operators, or address a weakness of a class of planning engines
(e.g., escaping from local minima of a heuristic function). Unhelpful macros often
have too many instances, or appear less frequently in plans. Although there are
some observations determining macro utility in general, it might largely depend on
a specific planning engine as well as a specific planning task (in a given domain).
Hence, an engineer should test his/her macros on a set of non-trivial planning tasks
and a selected planning engine to see how the performance improves (or degrades).

4 Bagged Representation

Representing particular objects explicitly is typical for the STRIPS representation
on which the PDDL language is based. However, in some cases we require to know
only quantities of some types of objects rather than distinguishing between each
individual one. For example, in the IPC 1998 version of the Gripper domain, the
task is to move balls from one room to another with a robot having two grippers.
Typically, each ball is represented as an individual object. That, however, introduces
unnecessary symmetries as the planner might reason about which ball has to be
moved first (and which ball next and so on). As all the balls have to be moved to the
other room anyway, it is straightforward that it does not matter in which order the
balls are moved.

Generally speaking, instead of representing such objects individually, it is better
to represent the numbers of these objects satisfying particular conditions (e.g.,
how many balls are in each room). The natural way to represent the numbers of
objects is by numeric fluents [22]. Such a representation, however, goes beyond
classical planning and would require planners supporting numeric fluents (e.g.,
Metric-FF [26] or LPG [23]).

114 L. Chrpa

To keep in the classical planning representation, we can leverage bagged
representation [33]. In a nutshell, instead of numeric fluents we use predicate
counters that represent numbers of objects satisfying given conditions. That involves
a class of objects where each object represents specific number (integer), starting at
zero up to a given upper bound. The upper bound has to be specified up front as
the STRIPS representation does not allow to create objects during planning. As we
already know the number of objects we want to count, the upper bound for the
numeric objects can be determined from that.

Technically speaking, predicates having the object o we want to count as
a parameter, i.e., p(o, x1, . . . , xn), are replaced with predicate counters, i.e.,
po(n, x1, . . . , xn), where n represents the number of p’s instances true in the given
state under the same instantiations of x1, . . . , xn. For example, let (at room1 ball1),
(at room1 ball2), (at room2 ball3) be true in some state, then the corresponding
predicate counters are (at-ball room1 n2), (at-ball room2 n1), where n1, n2
represent numbers 1 and 2, respectively.

Operators that delete k instances of the p predicate with the same object o

decrement the corresponding predicate counter po by k. Analogously, operators
that add l instances of the p predicate with the same object o increment the
corresponding predicate counter po by l. For this purpose, additional predicates
specifying arithmetics between numeric objects have to be defined. For example,
we can define (sum ?n1 ?n2 ?n3) that represents n3 = n1 + n2, or if we
increment/decrement predicate counters only by one, we can define (next ?n1 ?n2)
that represents n2 = n1 + 1.

An example of bagged representation of the pick and drop operators is shown in
Fig. 6.3.

Fig. 6.3 Bagged representation of the pick and drop operators

6 Modeling Planning Tasks: Representation Matters 115

5 Procedural Domain Control Knowledge

Domain Control Knowledge (DCK) captures useful information that guides search
for solution plans. One idea how to express DCK is via search-control rules with
PRODIGY [8] as one of the earliest planning systems that incorporated such rules.
PRODIGY rules were in form of expert-system rules guiding search decisions.
More recent and more efficient systems used versions of Linear Temporal Logic
to express control rules. The representatives of such systems are TALplanner [29]
and TLPlan [5].

Control rules can be understood as state-centric DCK, i.e., they express what
state and/or sequences of states are permissible. In contrast, action-centric DCK
focuses on representing how actions should be ordered in solution plans. A good
example of action-centric DCK is Procedural DCK that leverages a procedural
programming paradigm such that the DCK is in the form of sequence of instructions
determining which actions can be applied in a given step [6].

Procedural DCK can be encoded in Golog-like programs alongside with a
planning task. Let A be a set of actions and ψ a Boolean formula over the atoms
defined in the planning task. Then atomic programs are specified as follows [6]:

1. nil—an empty program
2. a—a single action (a ∈ A)
3. any—any action
4. ψ?—a test action

If σ, σ1, σ2 are programs, then the following are also programs [6]:

1. (σ1; σ2)—a sequence of programs
2. if ψ then σ1 else σ2—a conditional statement
3. while ψ do σ—a while loop
4. σ∗—a non-deterministic iteration
5. (σ1|σ2)—a non-deterministic choice of programs
6. π(x−t)σ—a non-deterministic choice of a variable x of a type t

The atomic programs, or instructions, in other words, refer to actions that can
be applied in a given step. An exception is the test action that verifies whether a
given formula is true in the current state. The programs define three types of non-
deterministic choices: performing the program zero or more times σ∗, a simple
choice between two programs (σ1|σ2), and a variable instantiation choice π(x−t)σ .

The programs can be translated into a Finite State Automata that are then
compiled into the planning task specification [6]. Hence the programs can be
exploited in a planner-independent way, although the compilation introduces some
ADL features (e.g., quantified preconditions) that might not be supported by all
classical planning engines. Noteworthy, Finite State Automata can be adapted to
represent DCK directly [15] as shown in the following section.

Besides Golog-like programs, planning programs that can be understood as Pro-
cedural DCK have recently been introduced [1]. Similarly to Golog-like programs,

116 L. Chrpa

planning programs are sequences of instructions, where an instruction is an action or
a conditional jump. The latter differs from Golog-like programs as it allows to jump
to a specified instruction if the condition is satisfied. The if and while statements
can be easily represented by conditional jumps. On top of that, planning programs
support defining and calling procedures [1].

6 Transition-Based Domain Control Knowledge

Besides Procedural DCK, an engineer can exploit Transition-Based Domain Control
Knowledge (TB-DCK) that is inspired by Finite State Automata [9, 15]. TB-DCK
represents a “grammar” of solution plans which is, roughly speaking, knowledge
about ordering of planning operators in plans. On top of that, TB-DCK allows to
define extra preconditions that can be used to restrict applicability of some instances
of planning operators that are not useful.

In principle, TB-DCK consists of a set of DCK states and transitions that refer
to which planning operators can be applied under specified conditions in a given
planning state. The formal definition of TB-DCK follows [15].

Definition 2 Transition-based Domain Control Knowledge (TB-DCK) is a quadru-
ple K = (S,O, T , s0), where S is a set of DCK states, s0 ∈ S is the initial DCK
state, O is a set of planning operators, and T is a set of transitions in the form
(s, o, C, s′), where s, s′ ∈ S, o ∈ O, and C is a set of constraints, where each
constraint is in the form:

– p,¬p—a predicate p must or must not be present in the current planning state
– g:p—a predicate p is an open goal in the current planning state

To illustrate the concept of TB-DCK, we consider a simple logistic domain,
where packages have to be delivered from their initial locations to their goal
locations by a truck that can carry at most one package. All locations are connected.
We define four predicates: (at-truck ?l)—the truck is at location ?l; (at ?p ?l)—a
package ?p is at location ?l; (in ?p)—a package ?p is in the truck; (empty-truck)—
a truck is empty (no package is in it). Then, we define three planning operators:
Drive(?from ?to)—the truck moves from the location ?from to a location ?to;
Load(?p ?l)—a package ?p is loaded into the truck at the location ?l; and
Unload(?p ?l)—a package ?p is unloaded from the truck at the location ?l. We
may observe that (1) an empty-truck has to be moved only to locations where some
package is waiting for being delivered, and (2) if a package is loaded to the truck
(in its initial location), then the truck has to move to package’s goal location, where
the package is then unloaded. Such an observation can be encoded as a TB-DCK as
depicted in Fig. 6.4. In particular, the DCK state s0 represents that the truck is empty,
s1 represents that the truck has just been loaded with a package, and s2 represents
that the package is ready to be unloaded in its goal location.

6 Modeling Planning Tasks: Representation Matters 117

s0

Drive; (at ?p ?to), g:
(at ?p ?dest), ?to != ?dest

s1

s2

Load; g: at(?p ?dest), ?dest != ?l Drive; (in ?p), g:(at ?p ?to)

Unload; g:(at ?p ?l)

Fig. 6.4 Transition-based DCK for our simple logistic domain

Conceptually, a generic planning algorithm iterates by non-deterministically
selecting an applicable action in the current state and updating the current state
by applying the action, until a goal state is reached (or no action is applicable).
With TB-DCK, the generic planning algorithm is extended such that it non-
deterministically selects an outgoing transition from the current DCK state and
then it non-deterministically selects an action that is an instance of the operator
associated with the transition and the transition constraints are met. Besides
updating the state of the environment, the current DCK state is updated as well
(the incoming DCK state of the selected transition).

To illustrate the benefits of planning with TB-DCK, we can observe in our
running example that the action selection is done only while being in the DCK
state s0—the truck can load a package that has not yet been delivered, or move to
a location in which there is a package that has not yet been delivered. In the DCK
states s1 and s2, there is only one option—move to the goal location of the loaded
package, or unload the package, respectively.

One of the advantages of TB-DCK is that it can be encoded into a planning task
and thus exploited by standard planning engines. The environment description of a
TB-DCK enhanced planning task is extended by “DCK state” predicate, i.e., (DCK-
state ?s), and open goal predicates that are “twins” of the goal predicates (i.e., they
have the same arguments but different names). In the initial state of the enhanced
planning task, we have an instance of the DCK state predicate corresponding to the
initial DCK state (e.g., (DCK-state s0)), and instances of the open goal predicates
corresponding to their “twins” present in the goal.

Transitions are encoded as planning operators in a TB-DCK enhanced domain
model. In particular, let (sa, o, C, sb) be a transition, then the schema of the
associated planning operator o is extended by:

– Adding the DCK state predicate (DCK-state sa) into o’s (positive) precondition
as well as o’s delete effects, and the DCK state predicate (DCK-state sb) into
o’s add effects (noteworthy if sa = sb, then we need to only add (DCK-state
sa) into o’s precondition),

– Adding constraints in form p,¬p into o’s positive and negative precondition,
respectively,

– For a constraint in form g:p, adding the open goal predicate “twin” of p into o’s
(positive) precondition,

– Adding p’s open goal “twin” into o’s delete effects if o has p in its add effects.

118 L. Chrpa

Fig. 6.5 Modified planning operators (in PDDL) of our simple logistics domain with respect to
the transition-based DCK as in Fig. 6.4

Noteworthy, more transitions can be associated with the same planning operators.
Hence, operators encoding these transitions have to have unique names. In our
running example, we have two transitions referring to the Drive operator. So,
we create two operators, for instance, Drive-empty and Drive-full to reflect two
different transitions in the given TB-DCK (see Fig. 6.4). The TB-DCK enhanced
domain model of our running example is depicted in Fig. 6.5.

TB-DCK has the strongest impact in domains where goals can be achieved
one by one, or where it can help to avoid dead-ends. Of course, if the domain is
particularly challenging, i.e., NP- or PSPACE-hard, then TB-DCK cannot bridge
the complexity gap. For details, see [9].

6 Modeling Planning Tasks: Representation Matters 119

7 A Case Study: The Spanner Domain

The Spanner domain has been introduced in the learning track of IPC 2011. It
is about a worker who can collect spanners on the way to the gate, where the
worker has to tighten nuts. However, after tightening a nut, the spanner will become
unusable. Also, the worker cannot go back, hence the worker has to collect all the
spanners before arriving to the gate. An illustrative example is depicted in Fig. 6.6
and the original PDDL representation as in the IPC 2011 is shown in Fig. 6.7.

Although the original domain model is encoded naturally, i.e., accurately
reflecting the domain requirements, most state-of-the-art planning engines struggle
with such a model despite it is easy to solve for a domain-dependent algorithm
(e.g., pick-up all the spanners at a given location before moving on). There are two
main reasons: (1) unnecessary symmetries as we do not have to distinguish between
individual spanners (as well as nuts), and (2) deep dead-ends that are undetectable
by delete-relaxed heuristics as it wrongly assumes that one spanner can be used to
tighten all the nuts.

The first issue can be addressed by exploiting bagged representation, so the
model would consider the number of spanners at each location as well as the

Fig. 6.6 An illustrative example of the Spanner domain

Fig. 6.7 The PDDL representation of the Spanner domain as in the IPC 2011

120 L. Chrpa

Fig. 6.8 The optimized PDDL representation of the Spanner domain

number of spanners carried by the worker. Noteworthy, bagged representation can
be also used to represent the number of untightened nuts (for the sake of clarity
we refrain from representing nuts in bagged representation). The second issue can
be addressed by adding an extra precondition to the walk operator restricting its
applicability to situations where no spanner is present at a current worker location.2

Adding such a precondition is easy if the spanners are represented by bagged
representation, otherwise (the individual spanner representation) an engineer would
have to exploit quantifiers (supported by ADL). The optimized representation of the
Spanner domain addressing both the above issues is shown in Fig. 6.8.

8 Conclusion

Designing and developing good quality planning domain models is a process aiming
at completeness and accuracy of the models, so they reflect the requirements of
the real-world domain, as well as their operationality, so the planning engines can
efficiently reason with them [30]. This chapter provided an overview of existing
techniques that can help engineers to develop models that are more efficient for

2Adding extra preconditions can be understood as a part of specifying TB-DCK with only one
DCK state where each operator is associated with one transition.

6 Modeling Planning Tasks: Representation Matters 121

planning engines. Although some knowledge can be extracted from training plans
(e.g., macros, entanglements), more sophisticated Domain Control Knowledge has
to be specified by domain engineers (e.g., Procedural or Transition-based DCK).

Another important aspect regarding clarity of the Knowledge Engineering
process is to separate a “raw” domain model, which captures the physics of
the environment, and additional knowledge (e.g., DCK) making the model more
efficient. Although for generic planning engines they have to be put together into an
“enhanced” domain model, which can be done automatically, keeping them separate
make them easier to maintain. Also, a small change in requirements might not only
propagate to the “raw” domain model but also, and sometimes considerably, into the
shape and possible usefulness of additional knowledge.

Acknowledgement This research was funded by the Czech Science Foundation (project no. 18-
07252S).

References

1. Aguas, J.S., Celorrio, S.J., Jonsson, A.: Computing programs for generalized planning using a
classical planner. Artif. Intell. 272, 52–85 (2019). https://doi.org/10.1016/j.artint.2018.10.006

2. Areces, C., Bustos, F., Dominguez, M., Hoffmann, J.: Optimizing planning domains by
automatic action schema splitting. In: Proceedings of ICAPS (2014)

3. Armano, G., Cherchi, G., Vargiu, E.: Automatic generation of macro-operators from static
domain analysis. In: Proceedings of the 16th European Conference on Artificial Intelligence,
ECAI’2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia,
Spain, August 22–27, 2004. pp. 955–956 (2004)

4. Asai, M., Fukunaga, A.: Solving large-scale planning problems by decomposition and macro
generation. In: ICAPS. pp. 16–24 (2015)

5. Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowledge
for planning. Artificial Intelligence 116(1–2), 123–191 (2000). https://doi.org/http://dx.
doi.org/10.1016/S0004-3702(99)00071-5, http://www.sciencedirect.com/science/article/pii/
S0004370299000715

6. Baier, J.A., Fritz, C., McIlraith, S.A.: Exploiting procedural domain control knowledge in state-
of-the-art planners. In: Proceedings of ICAPS. pp. 26–33. Providence, Rhode Island (Septem-
ber 22–26 2007), http://www.cs.toronto.edu/~jabaier/publications/bai-fri-mci-icaps07.pdf

7. Botea, A., Enzenberger, M., Müller, M., Schaeffer, J.: Macro-FF: improving AI planning with
automatically learned macro-operators. Journal of Artificial Intelligence Research (JAIR) 24,
581–621 (2005)

8. Carbonell, J., Etzioni, O., Gil, Y., Joseph, R., Knoblock, C., Minton, S., Veloso, M.: Prodigy:
An integrated architecture for planning and learning. SIGART Bull. 2(4), 51–55 (Jul 1991).
https://doi.org/10.1145/122344.122353, http://doi.acm.org/10.1145/122344.122353

9. Chrpa, L., Barták, R.: Enhancing domain-independent planning by transition-based domain
control knowledge. In: The 33rd Workshop of the UK Planning and Scheduling Special Interest
Group (PlanSIG) (2015)

10. Chrpa, L., Vallati, M.: Improving domain-independent planning via critical section macro-
operators. In: Proceedings of Thirty-Third AAAI Conference on Artificial Intelligence (2019)

11. Chrpa, L., Vallati, M., McCluskey, T.L.: Mum: A technique for maximising the utility of
macro-operators by constrained generation and use. In: Proceedings of the International
Conference on Automated Planning and Scheduling, ICAPS. pp. 65–73 (2014)

https://doi.org/10.1016/j.artint.2018.10.006
https://doi.org/http://dx.doi.org/10.1016/S0004-3702(99)00071-5
https://doi.org/http://dx.doi.org/10.1016/S0004-3702(99)00071-5
http://www.sciencedirect.com/science/article/pii/S0004370299000715
http://www.sciencedirect.com/science/article/pii/S0004370299000715
http://www.cs.toronto.edu/~jabaier/publications/bai-fri-mci-icaps07.pdf
https://doi.org/10.1145/122344.122353
http://doi.acm.org/10.1145/122344.122353

122 L. Chrpa

12. Chrpa, L., Vallati, M., McCluskey, T.L.: On the online generation of effective macro-operators.
In: Proceedings of IJCAI. pp. 1544–1550 (2015)

13. Chrpa, L.: Generation of macro-operators via investigation of action dependencies in plans.
Knowledge Eng. Review 25(3), 281–297 (2010). https://doi.org/10.1017/S0269888910000159

14. Chrpa, L., Barták, R.: Reformulating planning problems by eliminating unpromising actions.
In: Eighth Symposium on Abstraction, Reformulation, and Approximation, SARA 2009, Lake
Arrowhead, California, USA, 8–10 August 2009 (2009)

15. Chrpa, L., Barták, R.: Guiding planning engines by transition-based domain control knowl-
edge. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth
International Conference, KR 2016, Cape Town, South Africa, April 25–29, 2016. pp. 545–548
(2016), http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12806

16. Chrpa, L., McCluskey, T.L., Vallati, M., Vaquero, T.: The fifth international competition on
knowledge engineering for planning and scheduling: Summary and trends. AI Magazine 38(1),
104–106 (2017), http://www.aaai.org/ojs/index.php/aimagazine/article/view/2719

17. Chrpa, L., Siddiqui, F.H.: Exploiting block deordering for improving planners efficiency. In:
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI. pp. 1537–1543 (2015)

18. Chrpa, L., Vallati, M., McCluskey, T.L.: Outer entanglements: a general heuristic technique for
improving the efficiency of planning algorithms. J. Exp. Theor. Artif. Intell. 30(6), 831–856
(2018). https://doi.org/10.1080/0952813X.2018.1509377

19. Coles, A., Fox, M., Smith, A.: Online identification of useful macro-actions for planning. In:
Proceedings of ICAPS. pp. 97–104 (2007)

20. Dawson, C., Siklóssy, L.: The role of preprocessing in problem solving systems. In: Proceed-
ings of IJCAI. pp. 465–471 (1977)

21. Dulac, A., Pellier, D., Fiorino, H., Janiszek, D.: Learning useful macro-actions for planning
with n-grams. In: 25th IEEE International Conference on Tools with Artificial Intelligence,
ICTAI 2013, Herndon, VA, USA, November 4–6, 2013. pp. 803–810 (2013)

22. Fuentetaja, R., de la Rosa, T.: Compiling irrelevant objects to counters. special case of creation
planning. AI Commun. 29(3), 435–467 (2016). https://doi.org/10.3233/AIC-150692

23. Gerevini, A., Saetti, A., Serina, I.: Planning with numerical expressions in LPG. In: Pro-
ceedings of the 16th European Conference on Artificial Intelligence, ECAI’2004, including
Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain, August 22–27,
2004. pp. 667–671 (2004)

24. Haslum, P., Jonsson, P.: Planning with reduced operator sets. In: Proceedings of AIPS. pp.
150–158 (2000)

25. Hoffmann, J.: FF: the fast-forward planning system. AI Magazine 22(3), 57–62 (2001), http://
www.aaai.org/ojs/index.php/aimagazine/article/view/1572

26. Hoffmann, J.: The metric-FF planning system: Translating “ignoring delete lists” to numeric
state variables. J. Artif. Intell. Res. 20, 291–341 (2003). https://doi.org/10.1613/jair.1144

27. Hofmann, T., Niemueller, T., Lakemeyer, G.: Initial results on generating macro actions from
a plan database for planning on autonomous mobile robots. In: ICAPS. pp. 498–503 (2017)

28. Korf, R.: Macro-operators: A weak method for learning. Artificial Intelligence 26(1), 35–77
(1985)

29. Kvarnström, J., Doherty, P.: TALplanner: a temporal logic based forward chaining planner.
Annals of Mathematics and Artificial Intelligence 30(1–4), 119–169 (2000)

30. McCluskey, T.L., Vaquero, T.S., Vallati, M.: Engineering knowledge for automated planning:
Towards a notion of quality. In: Proceedings of the Knowledge Capture Conference, K-CAP
2017, Austin, TX, USA, December 4–6, 2017. pp. 14:1–14:8 (2017). https://doi.org/10.1145/
3148011.3148012

31. Minton, S.: Quantitative results concerning the utility of explanation-based learning. In:
Proceedings of AAAI. pp. 564–569 (1988)

32. Newton, M.A.H., Levine, J., Fox, M., Long, D.: Learning macro-actions for arbitrary planners
and domains. In: Proceedings of the International Conference on Automated Planning and
Scheduling, ICAPS. pp. 256–263 (2007)

https://doi.org/10.1017/S0269888910000159
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12806
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2719
https://doi.org/10.1080/0952813X.2018.1509377
https://doi.org/10.3233/AIC-150692
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1572
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1572
https://doi.org/10.1613/jair.1144
https://doi.org/10.1145/3148011.3148012
https://doi.org/10.1145/3148011.3148012

6 Modeling Planning Tasks: Representation Matters 123

33. Riddle, P.J., Barley, M.W., Franco, S., Douglas, J.: Automated transformation of PDDL
representations. In: Proceedings of the Eighth Annual Symposium on Combinatorial Search,
SOCS 2015, 11–13 June 2015, Ein Gedi, the Dead Sea, Israel. pp. 214–215 (2015)

34. Siddiqui, F.H., Haslum, P.: Block-structured plan deordering. In: AI 2012: Advances in
Artificial Intelligence—25th Australasian Joint Conference, Sydney, Australia, December 4–7,
2012. Proceedings. pp. 803–814 (2012). https://doi.org/10.1007/978-3-642-35101-3_68

35. Slaney, J., Thiébaux, S.: Blocks world revisited. Artificial Intelligence 125(1–2), 119–153
(2001)

https://doi.org/10.1007/978-3-642-35101-3_68

Part II
Interaction, Visualisation, and Explanation

Chapter 7
An Interactive Tool for Plan Generation,
Inspection, and Visualization

Alfonso E. Gerevini and Alessandro Saetti

Abstract In mixed-initiative planning systems, humans and AI planners work
together for generating satisfactory solution plans or making easier solving hard
planning problems, which otherwise would require much greater human planning
efforts or much more computational resources. In this approach to plan generation,
it is important to have effective plan visualization capabilities, as well to support the
user with some interactive capabilities for the human intervention in the planning
process. This paper presents an implemented interactive tool for the visualization,
generation, and revision of plans. The tool provides an environment through which
the user can interact with a state-of-the-art domain-independent planner, and obtain
an effective visualization of a rich variety of information during planning, including
the reasons why an action is being planned or why its execution in the current plan is
expected to fail, the trend of the resource consumption in the plan, and the temporal
scheduling of the planned actions. Moreover, the proposed tool supports some ways
of human intervention during the planning process to guide the planner towards a
solution plan, or to modify the plan under construction and the problem goals.

Keywords Interactive planning · Mixed-initiative planning · Plan visualization
and inspection · Graphical user interfaces for planning

1 Introduction

In the AI planning literature, many approaches to plan generation or revision
combining automated techniques with human-driven decisions have been proposed
(e.g., [1, 4, 6, 7, 10, 11, 31, 38–40]). The rationale of these interactive, mixed-
initiative approaches is that the collaborative joint work of a human and an AI
planner can be much more effective than either human planning or fully automated

A. E. Gerevini · A. Saetti (�)
Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Brescia, Italy
e-mail: alfonso.gerevini@unibs.it; alessandro.saetti@unibs.it

© Springer Nature Switzerland AG 2020
M. Vallati, D. Kitchin (eds.), Knowledge Engineering Tools and Techniques
for AI Planning, https://doi.org/10.1007/978-3-030-38561-3_7

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38561-3_7&domain=pdf
mailto:alfonso.gerevini@unibs.it
mailto:alessandro.saetti@unibs.it
https://doi.org/10.1007/978-3-030-38561-3_7

128 A. E. Gerevini and A. Saetti

planning alone, in terms of problem solvability, planning speed, or user satisfaction
about the quality of the generated solutions.

For example, a mixed-initiative planning system has been successfully applied to
the Mars Exploration Rovers Mission project, which involved two NASA rovers for
the ground exploration of Mars [3]. As argued in [3], the complexity of this project
and the aggressive operations plan made using an automated tool for generating
the daily activity plans necessary. However, also the human involvement during the
planning process was needed. The activity plan needed to be presented, critiqued
and, hopefully, accepted. If the plan had been constructed fully automatically, it
would have been too difficult to analyze for humans. Another concern in this
application was the infeasibility of formally encoding and effectively utilizing
during automated plan generation all the knowledge that characterizes plan quality.

As argued by Ferguson and Allen [11], in mixed-initiative planning the descrip-
tion of a plan that the system provides to the user should be richer than just a list of
action names with the associated temporal information (e.g., for each action, its start
time and expected duration [12, 20]). In particular, for an interactive planning tool it
is essential to have specialized user interface capabilities explaining the reasons why
an action has been planned, or why, in the context of the plan under consideration,
it is expected that its execution will fail. Moreover, it is desirable that the system
supports an effective visualization and inspection of the plan, which helps the user
to understand the ongoing planning process, the decisions taken by the planner, and
the feasibility and quality of the solution plan proposed by the system to the user.

An adequate description of the current plan and the planning process that
led to its generation is very useful to the user for deciding the possible human
interventions in order to (a) guide the planning process for a faster generation
of a solution, (b) constrain the plan under construction so that, e.g., it contains
certain actions or crosses some particular intermediate states specified by the user,
or (c) modify the problem goals during planning. However, plan visualization is
a scarcely investigated area in AI planning, and only very few planning systems
currently incorporate a user interface with effective plan visualization capabilities
(e.g., [25, 26]).

In the last years, automated domain-independent planning has dramatically
improved in terms of planning performance and especially speed [34]. However,
to the best of our knowledge, all modern domain-independent planners (e.g.,
[14, 21, 22, 27, 35]) have been developed for a fully automated planning context,
and are not equipped with an interactive tool supporting their use in a mixed-
initiative framework. This limits their applicability to real-world applications where,
often, the domain experts want to analyze the plan generated by the planner and
possibly refine some portion(s) of it, before committing to its execution. The output
information of all recent efficient domain-independent planners is given to the user
only in a simple high-level textual form, indicating some very general information
about the planning process and describing the generated plan as a simple list of
actions with the relative scheduled start times and durations. Moreover, there is
no possibility of human intervention to guide the planning process, to inspect the
generated plan, and to possibly revise it.

7 An Interactive Tool for Plan Generation, Inspection, and Visualization 129

In this work, we concentrate on a successful approach to fully automated
domain-independent planning with the aim of making it more suitable for mixed-
initiative planning, and provide a general tool for plan visualization, inspection, and
generation. This approach, which is implemented in the well-known LPG planner,
is based on some particular graphs called action graphs for representing the plans
during search, and on a stochastic local search procedure for searching a solution
plan [14, 16, 17]. LPG is a modern planner supporting the standard language
PDDL2.2 [12, 20, 23], and belonging to the so-called satisficing style of planning,
which in the last 15 years has received significant interest in the AI planning
community (e.g., [13, 23, 28, 34]).1 Other efficient satisficing planners have been
recently proposed, but LPG remains competitive for many existing benchmark
domains, especially for metric-temporal domains (see, e.g., [9, 17]).

The main contribution of the work presented in this paper is a new interactive
environment for the visualization, inspection, generation, and revision of plans.
The tool implementing this environment is called InLPG, and uses LPG as the
underlying automated planning system. The user can interact through InLPG with
the underlying planner about

– the plan under construction or revision: e.g., the user requests a temporal
scheduling for some planned action that is different from the one decided by
the planner, or imposes that some particular action must be in the solution plan;

– the planning problem under consideration: e.g., the user communicates to the
system that some particular goal can be ignored, or adds some new goals;

– the automated planning process: e.g., when the search process of the planner
is trapped into a local minimum the user pauses the search of the planner and
modifies the planner decisions about the next search states to explore, so that the
planner learns how to escape from similar local minima visited during the search.

Moreover, the proposed tool supports plan visualization through various
(dynamic) views of the plan, such as a Gantt chart of the planned actions, a
constraint graph for the temporal constraints in the plan, a resource graph for
monitoring and describing the trend of the resource consumption in the plan, a
graphical representation of the main data structure representing the search states
and partial plans explored by the automated planner, several plots describing the
trend of the search process.

Although built on top of a specific planner, the proposed tool is very general,
because LPG is domain-independent and most of the various plan visualization
techniques of InLPG can be also applied to an input plan taken from a plan library,
generated by another planner or completely created by humans.

1The word satisficing was coined by Simon to mean “rational enough” [36], and subsequently
it was adopted by the optimization community to mean “good enough.” This term has also been
adopted by the planning community to indicate planners aimed at computing plans of good quality,
but with no guarantee of their optimality w.r.t. a specified plan metric [23].

130 A. E. Gerevini and A. Saetti

The paper is organized as follows. Section 2 introduces the necessary background
and preliminaries about automated AI planning and the LPG planner. Section 3
describes the main components of the proposed interactive planning tools. Section 4
gives a walk-through example about possible interactions and plan visualization
during a plan generation session through the proposed tool. Section 5 presents
some experimental results about using the proposed tool for solving some planning
problems more effectively than with a fully automated planner alone. Finally, the
last section is devoted to the conclusions and possible future work.

2 Preliminaries

In this section, we introduce the necessary background and the preliminaries about
automated AI planning and the LPG planner.

2.1 The Planning Problem

Informally, the plan generation is a task consisting in determining and organizing a
set of actions (a plan) whose execution transforms a given initial state of the world
into a new state satisfying some desired goals. More formally, a (propositional)
planning problem Π is a tuple 〈L,A, s0, g〉, where

• L is a set of positive literals called the Facts of Π ;
• A is the set of Actions of Π ; each action a is a triple 〈P(a), E(a)+, E(a)−〉,

where

– P(a) ⊆ L is a set of positive literals called the preconditions of a,
– E(a)+ ⊆ L is a set of positive literals called the positive effects of a,
– E(a)− ⊆ L is a set of negative literals called the negative effects of a;

• s0 ∈ 2L is the initial world state of Π ;
• g ⊆ L is a set of literals called the goals of Π .

For instance, consider a simple problem of delivering some packages by trucks
from some depots to some customers. Figure 7.1 shows the facts and actions of
such a problem using the standard Planning Domain Definition Language (PDDL)
[12, 20, 23]. Predicates (package ?p), (location ?l), and (truck ?t) specify
that ?p, ?l, and ?t are a package, a location, and a truck, respectively; predicate (at
?x ?l) specifies that either truck or package ?x is at location ?l; predicate (in ?p

?t) specifies that package ?p is inside truck ?t; finally, predicate (delivered ?p

?l) specifies that package ?p has been delivered to the customer at location ?l.
Action (load ?p ?t ?l) represents the movement of package ?p from location
?l into truck ?t; action (unload ?p ?t ?l) represents the opposite movement;
action (drive ?t ?from ?to) represents the movement of truck ?t from location

7 An Interactive Tool for Plan Generation, Inspection, and Visualization 131

(define (domain SimpleLogistic)
(:predicates (package ?p) (location ?l) (truck ?t)

(at ?x ?l) (in ?p ?t) (delivered ?p ?l))

(:action load
:parameters (?p ?t ?l)
:precondition (and (package ?p) (truck ?t) (location ?l) (at ?p ?l) (at ?t ?l))
:effect (and (not (at ?p ?l)) (in ?p ?t)))

(:action unload
:parameters (?p ?t ?l)
:precondition (and (package ?p) (truck ?t) (location ?l) (in ?p ?t) (at ?t ?l))
:effect (and (not (in ?p ?t)) (at ?p ?l)))

(:action drive
:parameters (?t ?from ?to)
:precondition (and (truck ?t) (location ?from) (location ?to) (at ?t ?from))
:effect (and (not (at ?t ?from)) (at ?t ?to)))

(:action deliver
:parameters (?p ?l)
:precondition (and (package ?p) (location ?l) (at ?p ?l) (at ?p ?l))
:effect (and (not (at ?p ?l)) (delivered ?p ?l))))

Fig. 7.1 PDDL specification of the facts and actions for a simple package delivery problem. Each
action (predicate) specification has a set of parameters making it a schema of ground actions
(predicates) where parameters are replaced with objects of the planning problem

(define (problem truck-1)
(:domain SimpleLogistic)
(:objects Truck1 NY Wa Bo package1 package2 package3)
(:init (truck Truck1) (location NY) (location Wa) (location Bo)

(package package1) (package package2) (package package3)
(at truck1 Wa) (at package1 Bo) (at package2 Bo) (at package3 NY))

(:goal (and (delivered package1 NY)(delivered package2 Wa)(delivered package3 Wa))))

Fig. 7.2 An example of PDDL specification of the initial world state and the set of goals of a
simple instance of the package delivery problem

?from to location ?to; finally, action (delivery ?p ?l) represents delivering
package ?p to the customer at location ?l.

The tokens starting with “?” indicate parameters, which have to be substituted
with problem objects (airplanes, trucks, and locations) specified in the description
of the problem (for an example, see Fig. 7.2). Hence, each PDDL action (predicate)
description corresponds to a schema of ground actions (predicates) where each
parameter is instantiated.

Figure 7.2 shows the PDDL specification of an initial world state and a set of
goals for the package delivery problem with three packages (package1, package2,
and package3), three locations New York, Washington, and Boston (NY, Wa, and Bo,
respectively), and one truck (truck1). In the initial state, package1 and package2

are at Boston, package3 is at New York, and, finally, truck1 is at Washington. In
our example, the goals of the problem are that package1 is delivered at New York,
and package2 and package3 at Washington.

An action a is executable in a world state s if the preconditions of a are satisfied
in s, i.e., P(a) ∈ s. The state s′ resulting from the execution of a in s is obtained by

132 A. E. Gerevini and A. Saetti

Fig. 7.3 An example of a
plan for the package delivery
problem in Fig. 7.2

0: (DRIVE TRUCK1 WA BO)
1: (LOAD PACKAGE1 TRUCK1 BO)
2: (LOAD PACKAGE2 TRUCK1 BO)
3: (DRIVE TRUCK1 BO NY)
4: (LOAD PACKAGE3 TRUCK1 NY)
5: (UNLOAD PACKAGE1 TRUCK1 NY)
6: (DRIVE TRUCK1 NY WA)
7: (UNLOAD PACKAGE2 TRUCK1 WA)
8: (UNLOAD PACKAGE3 TRUCK1 WA)
9: (DELIVER PACKAGE1 NY)
10: (DELIVER PACKAGE2 WA)
11: (DELIVER PACKAGE3 WA)

(:durative-action drive
:parameters (?t ?from ?to)
:duration (= ?duration (drive-time ?from ?to))
:condition (and (at start (at ?t ?from) (movable ?t))

(at start (>= (fuel ?t) (required-fuel ?from ?to))))
:effect (and (at start (not (at ?t ?from))) (at end (at ?t ?to))

(at end (increase (total-fuel-used) (required-fuel ?from ?to)))
(at end (decrease (fuel ?t) (required-fuel ?from ?to)))))

Fig. 7.4 An example of an action with duration, scheduling constraints, and consuming resources

adding the positive effects of a to s and removing the negative effects of a from s,
i.e., s′ = s ∪ E(a)+ \ E(a)−.

A solution of a planning problem is a plan, that is a partially ordered set of
(executable) actions, whose execution from the initial world state achieves the
problem goals. If two actions in a plan are not ordered, they can be executed with
any relative ordering. Figure 7.3 shows an example of solution plan for our running
example.

The previous definition of the planning problem has some strong simplifying
assumptions. In real-world problems, actions take time, consume resources, and in
some cases their execution can only occur during some predefined time windows
where one or more necessary conditions hold. Moreover, usually the quality of a
solution plan takes resource consumption and makespan (overall plan duration) into
account.

Figure 7.4 shows an example of a more complex model of the action moving
truck ?t from a location ?from to a location ?to that can be formalized through
version 2.1 of PDDL [12]. Constraint (= ?duration (drive-time ?from ?to))

imposes that the duration of action (move ?t ?from ?to) is equal to the value
of numerical fluent (drive-time ?from ?to).2 Condition (movable ?t) is a
special fact that holds only during some predefined time windows specified in
the description of the problem initial state, and that imposes some scheduling
constraints to action (move ?t ?from ?to). Numerical condition (>= (fuel ?t)

(required-fuel ?from ?to) constraints action (move ?t ?from ?to) to start
its execution only if the amount of fuel of truck ?t is greater than the value of
numerical fluent (required-fuel ?from ?to). At the end of the action, effect

2In PDDL, numerical fluents are functions over real values.

7 An Interactive Tool for Plan Generation, Inspection, and Visualization 133

(define (problem truck-1)
(:domain SimpleLogistic)
(:objects Truck1 NY Wa Bo package1 package2 package3)
(:init (truck Truck1) (location NY) (location Wa) (location Bo) (package package1)
(package package2) (package package3) (at truck1 Wa) (at package1 Bo) (at package2 Bo)
(at package3 NY) (at 8.00 (movable truck1)) (at 20.00 (movable truck1))
(at 30.00 (movable truck1)) (at 42.00 (not (movable truck1)))
(= (drive-time NY Wa) 3.0) (= (drive-time NY Bo) 4.0) (= (drive-time Wa NY) 3.0)
(= (drive-time Wa Bo) 8.0) (= (drive-time Bo NY) 4.0) (= (drive-time Bo Wa) 8.0)
(= (capacity truck1) 50) (= (required-fuel NY Wa) 40.6) (= (required-fuel NY Bo) 7.31)
(= (total-fuel-used) 0) (= (required-fuel Wa NY) 40.6) (= (required-fuel Wa Bo) 35.6)
(= (fuel truck1) 0) (= (required-fuel Bo NY) 7.31) (= (required-fuel Bo Wa) 35.6))

(:goal (and (delivered package1 NY)(delivered package2 Wa)(delivered package3 Wa)))
(:metric minimize (total-time)))

Fig. 7.5 An example of PDDL specification of the initial world state and the set of goals of
a simple package delivery problem with action durations, scheduling constraints, and numerical
fluents

(decrease (fuel ?t) (required-fuel ?from ?to)) decreases the value of
numerical fluent (fuel ?t) by the value of numerical fluent (required-fuel

?from ?to), and, similarly, (increase (total-fuel-used) (required-fuel

?from ?to) increases the value of numerical fluents (total-fuel-used).
Figure 7.5 shows the PDDL description of the initial world state and the goal state

of a package delivery problem in which each package must be delivered to a location
by a certain deadline. The truck movements take time, can happen only during some
time windows (when the movable conditions hold), and consume some amounts of
fuel, depending on the distance traveled between locations. Finally, the “metric”
field specifies that the quality of plans is measured in terms of makespan. For the
objects of our running example, the (initial) value of fluents (drive-time ?from

?to), (required-fuel ?from ?to), (total-fuel-used) and the time windows
when the (movable ?t) conditions hold are defined in the initial state.

2.2 The LPG Planner

In the rest of this section, we give a brief description of the planner, LPG [14, 17],
used by our interactive tool. While LPG supports the complex action models
and planning problems that can be specified by PDDL2.2, for simplicity, we will
focus the presentation on simple propositional planning problems. For a more
comprehensive description of LPG, the interested reader can refer to the previously
cited papers.

Like in partial-order causal-link planning, (e.g., [29, 32, 33]), LPG searches
a solution plan in a search space of partial plans that are represented by linear
action graphs. A linear action graph is a variant of the well-known planning graph
representation [2]. Starting from an initial LA-graph, LPG uses a stochastic local
search process that transforms it into a LA-graph representing a valid plan through
the iterative application of some search steps modifying the graph. We describe first
the linear action graph representation, and then the general search process of LPG
in the space formed by these graphs.

134 A. E. Gerevini and A. Saetti

2.2.1 Plan Representation Through LA-Graphs

A linear action graph (LA-graph) A for a planning problem Π is a directed acyclic
leveled graph alternating a fact level and an action level. Each (action) level of the
graph corresponds to a time step. Fact levels contain fact nodes, each of which is
labeled by a literal representing a fact that is purposeful for Π . Each fact node f at
a (fact) level l is associated with a no-op action node at (action) level l representing
a dummy action having the literal labeling f as its only precondition and positive
effect. The purpose of the no-op nodes is propagating the possible truth of a fact
from one (action) level to the next one. Each action level contains one action node
labeled by the name of a problem action that it represents and the no-op nodes
corresponding to that level.

An action node labeled a at an (action) level l is connected by incoming edges
from the fact nodes at (fact) level l representing the preconditions of a (precondition
nodes) and by outgoing edges to the fact nodes at (fact) level l + 1 representing the
effects of a (effect nodes). The initial level contains the special action node astart

and the last level the special action node aend . The effect nodes of astart represent
the facts of the problem initial state, and the precondition nodes of aend the problem
goals. Figure 7.6 gives an example of a simple LA-graph containing five action
nodes (astart , a1, a2, a3, aend) and several fact nodes representing ten facts.

A pair of actions (possibly no-ops) can be constrained by a persistent mutex
relation [12], i.e., a binary constraint imposing that the involved actions can never
occur in parallel in a valid plan. An LA-graph A also contains a set Ω of ordering
constraints between actions in the (partial) plan represented by the graph. These
constraints are (1) constraints imposed during search to deal with mutually exclusive
actions: if an action node a at level l of A interferes with an action node b at a level

p7

p8

p9p9p9p9

a2

p4

p1 p1 p1 p1 p1

p3

p2

p4 p4

a1

p6

p5p5 p5 a3

p8 p8

Goal levelLevel 1 Level 2 Level 3

aend
astart

m
utex p10

Fig. 7.6 An example of LA-graph. Square nodes are action nodes; circle nodes are fact nodes.
Dashed edges form chains of no-ops blocked by interfering (mutex) actions

7 An Interactive Tool for Plan Generation, Inspection, and Visualization 135

after l, then a is constrained to finish before the start of b and (2) constraints between
actions implied by the causal structure of the plan: if an action a is used to achieve a
precondition of an action b, then a is constrained to finish before the start of b. The
set Ω of ordering constraints in the LA-graph of Fig. 7.6 is

{astart ≺ a1, astart ≺ a2, astart ≺ a3, a1 ≺ a3, a2 ≺ a3,

a1 ≺ aend, a2 ≺ aend, a3 ≺ aend}.

For instance, a1 ≺ a3 ∈ Ω , because the pair of actions involved in the constraint is
mutex (a1 deletes p1 that is precondition of a3), and the level of a3 is greater than
the level of a1. a2 ≺ a3 ∈ Ω , because a2 achieves precondition p7 of a3.

An LA-graph A represents the (partial) plan formed by the actions labeling
the action nodes of A scheduled at the earliest possible time steps according to
the ordering constraints in Ω . Concerning the LA-graph of Fig. 7.6, the earliest
execution time step for actions a1 and a2 is 1, while for action a3 it is 2. Hence, the
plan represented by the graph of Fig. 7.6 is π = 〈{a1, a2}, {a3}〉.

An action graph can represent a plan that is not valid for the problem under
consideration. A plan is not valid when it contains at least one flaw, i.e., an action
with precondition nodes that are not supported. A precondition node q at a level i of
an LA-graph A is supported if in A there is an action node at level i−1 representing
an action with positive effect q. An LA-graph without flaws represents a valid plan,
and is called a Solution Graph. For example, the plan represented by the LA-graph
of Fig. 7.6 is not a valid plan, because it contains action node a2 having precondition
node p6 that is not supported at level 2.

2.2.2 Local Search in the Space of LA-Graphs

Given the PDDL specification of a planning problem, LPG uses a stochastic local
search process for computing a solution graph from an LA-graph that initially
contains only astart and aend . Figure 7.7 gives a high-level description of the
procedure for searching a solution graph (valid plan) in LPG. Step 1 initializes
the current LA-graph A to the empty plan. At each iteration of the loop 2–6, step 3
selects an unsupported precondition in A. In order to resolve the selected flaw, LPG

Fig. 7.7 The general scheme of the search procedure of LPG

136 A. E. Gerevini and A. Saetti

uses two basic graph modifications consisting in an extension of A to include a new
action node, or a reduction of A to remove an action node (and the relevant edges).

When an action node is added to a level l, the LA-graph is extended by one
level, all action nodes from l are shifted forward by one level, and the new action
is inserted at level l. Similarly, when an action node is removed, the LA-graph is
“shrunk” by one level (a more detailed description is given in [14]).

Step 4 of Fig. 7.7 identifies the search neighborhood of A for the selected flaw
σ . The neighborhood N(σ,A) of A for σ is the set of LA-graphs obtained from A
by applying a graph modification that resolves σ . Step 5 evaluates each element
A′ in N(σ,A) using a heuristic evaluation function estimating the number of
additional search steps required to find a solution graph from A′. Then, step 6 selects
an element with the lowest estimated search cost from N(σ,A) using a “noise
parameter” [14]. This parameter introduces some randomization in the choice of
A′, which is useful to “escape” from search states corresponding to local minima
when the local search process is trapped. This procedure is repeated until either the
current LA-graph contains no flaw or a maximum number of iterations is exceeded
(step 2). Finally, step 7 returns the computed solution LA-graph.

3 Architecture of InLPG

In this section, we describe the architecture of the proposed interactive tool for the
visualization, generation, and revision of plans, along with its main components.

3.1 Architecture Overview

The architecture of InLPG is sketched in Fig. 7.8. It consists of five main compo-
nents that are integrated in the LPG planner:

– The Input Module, which inputs the files containing the description of the
planning problem under consideration;

– The Search Process Monitor, which monitors the search process, and at each step
of the search displays the information about the current search state;

– The Search State Monitor, which provides different views of the current state
during the search process;

– The Search State Editor, which provides some tools for human-driven changes
to the plan under construction;

– Search Process Editor, which provides some tools for human-driven changes to
the search process and to the current planning problem.

Our environment includes an open-controllable version of LPG, i.e., all the
decision points of the search procedure sketched in Fig. 7.7 can be controlled by
an external process that, in our context, is under the control of a human user. In

7 An Interactive Tool for Plan Generation, Inspection, and Visualization 137

Fig. 7.8 A sketch of the
main components of InLPG
and their interactions

Application
Front-end

Search State
Monitor

C
om

plete
inform

ation
aboutthe

currentL
A

-graph

m
odified

L
A

-graph
A

n
optionally

ora
selected

flaw

(LPG)

Constraint Graph,
Gaant chart, Etc.

Automated Planner

U
sercom

m
andsMessages

Socket

Search Process
Editor

the search process

D
om

ain,Problem
,Planning

settings,E
tc.

Graphs monitoring

Monitor
Search Process

Sum
m

ary
inform

ation

neighborhood

aboutthe
currentL

A
-graph

A
search

Domains/Problems
KB

Plans

Input
Module

Plan Editor

particular, at each search step, the user can select a plan flaw to repair (step 3 of
the procedure in Fig. 7.7), modify the definition of the search neighborhood (step
4), and select a graph modification among those that generate the elements in the
search neighborhood (step 5). Specifically, LPG runs as a separate process, and
it communicates with the rest of the environment through socket messages. The
decisions about the search process taken by the user through InLPG overwrite the
decisions taken by the heuristics of LPG.

Figure 7.9 shows two screenshots of the user interface. The left frames show the
Gantt chart of the plan computed at the 368th search step (upper screenshot) and
the trend of some resources during the execution of the plan (bottom screenshot).
The plan is flawed, because it contains actions that cannot be executed (the darker
boxes in the Gantt chart, which in the actual screen are red). The information in
this frame can be moved to the secondary frame (right frame), as displayed by the
bottom screenshot, or into different windows. This latter option is particularly useful
if the user wants to compare different plans.

The quality of the displayed plan is 1350.3 The right-hand side of the upper
screenshot contains four plots. The first three plots (starting from the top) show, for
each search step, the number of flaws (1st plot), the number of actions (2nd plot),
and the makespan of the plan constructed at the current search step (3rd plot). The

3The quality of the plan is automatically measured according to the metric expression specified in
the problem formulation. In this example, the quality is expressed by the duration of the plan.

138 A. E. Gerevini and A. Saetti

Fig. 7.9 Two screenshots of the graphical user interface of InLPG

bottom plot informs the user about the trend of the quality of the solutions computed
so far: for the example of Fig. 7.9, LPG first found one solution with quality 7836.6
using 0.171 CPU-seconds; subsequently, a better solution with quality 4868.6 was
found using about 0.4 CPU-second, and finally another slightly better solution with
quality 4522.8 was generated using about 1.5 CPU-second.

In the next subsections, we will give a detailed description of the components
integrated in our environment, and in the next section we will illustrate an example
of possible interactions with InLPG using its components.

7 An Interactive Tool for Plan Generation, Inspection, and Visualization 139

3.2 Input Module

By using standard acquisition tools the user inputs the basic planning information
to our environment: a domain file containing the action schemata and the predicates
of the planning problem to solve (e.g., the PDDL description in Fig. 7.1), a problem
file describing the problem initial state and goals (e.g., the PDDL descriptions in
Figs. 7.2 and 7.5), and, optionally, a plan file containing the description of a plan
taken from a plan library (for an example, see the textual description in Fig. 7.3).
The language for encoding the planning information in these files is version 2.2 of
PDDL [12, 20, 23]. The possibility of loading a plan is particularly useful for solving
plan adaptation problems [18, 19], in which the input plan is modified to become
a solution of the planning problem. In addition, the user can change the default
values of some technical parameters of the search algorithm implemented in LPG.
A complete list of such parameters is described in [15].

After the necessary information has been acquired, the input module verifies the
syntax of the PDDL files, and, if they are syntactically correct, it sends a message to
LPG in order to start a planning process for solving the given planning problem.

3.3 Search Process Monitor

At each search step, LPG sends a message to the search process monitor containing
the following basic information about the current LA-graph: the number of flaws in
the LA-graph, the number of actions in the represented plan, and the makespan
of this plan. The search process monitor processes this information and plots
the corresponding graphs in order to visualize a variety of information about the
ongoing search process. For example, if the user sees that the number of actions or
the plan makespan is much higher than the desired value, then she is informed that
the search process is most likely visiting a portion of the search space that is faraway
from the portion where the desired solution is located. Moreover, if the number of
flaws does not decrease with the search steps, then the search might be trapped in a
local minimum or plateau. Figures 7.9 (right frame of the upper screenshot) and 7.10
show two examples of these plots.

Identifying which are the search steps where the planner makes wrong decisions
that are crucial for the success of the search process can be difficult. The plots of the
search process monitor help the user to identify them. The intervention of a human
to revise the wrong decisions made by the planner for these steps could be very
important in order to effectively guide the process towards a solution plan. In our
context, when the search process visits a portion of the space which contains no
solution LA-graph, the number of flaws does not significantly decrease. The plot of
the number of flaws can indicate this problematic behavior in which the planner is
continuously making wrong decisions, and hence it can suggest that a human-driven
choice could improve the search.

140 A. E. Gerevini and A. Saetti

Fig. 7.10 A portion of the
screen of the user interface
showing an example of the
plots displayed by the search
process monitor: the number
of flaws (upper plot), the
number of actions in the
current LA-graph (middle
plot), and duration of the plan
under construction (bottom
plot). On the x-axis we have
the corresponding sequence
of performed search steps

For example, according to the upper plot in the right frame of Fig. 7.9, the
planning system is working well: at several search steps the number of flaws in the
current LA-graph is zero.4 On the contrary, according to the plots about the number
of actions, flaws and duration of the plan in Fig. 7.10, LPG is not approaching a
solution LA-graph.

3.4 Search State Monitor

When the user intervenes in the search process of LPG, e.g., by pausing the search
process, LPG sends a detailed description of the current search state (LA-graph) to
the search state monitor. The search state monitor processes such information by
computing the following information:

4When a search step reaches an LA-graph with no flaw, the planner has found a valid plan.
However, this plan is given in output only if its quality improves the quality of the previous output
plan. In the example of Fig. 7.9, some valid plans are computed, but only the one found at about
the 350th step is given as the third output plan.

7 An Interactive Tool for Plan Generation, Inspection, and Visualization 141

Fig. 7.11 A portion of the screen of the user interface showing the current LA-graph. Square
nodes are action nodes; elliptical nodes are fact nodes. Dark elliptical nodes (red nodes in the
actual screen) are plan flaws (unsatisfied action preconditions). For lack of space, the label of some
nodes is abbreviated. By moving the mouse on a node, a tooltip displays the corresponding full
label. The darkened level (blue area in the actual screen) is the level of the last change performed
by the planning process

– a complete graphical representation and some compact representations of the
current LA-graph;

– a graphical representation of the temporal constraints involving the actions in the
plan represented by the current LA-graph;

– a textual description of the plan represented by the current LA-graph;
– a Gantt chart of the actions in the current plan; and
– a graph showing the trend of the involved resources during the plan.

All these graphs are dynamic. At each search step, they are automatically
recomputed and, in order to guarantee their readability, they are automatically
scaled and appropriately displayed. For example, at each search step, the temporal
constraints involving the actions in the plan change because either an action is
removed or inserted, and thus the search state monitor recomputes an appropriate
graphical organization of the nodes in the revised constraint graph, in order to avoid
edge crossing and to reduce the edge length. The new constraint graph is computed
by GRAPHVIZ (http://www.graphviz.org/), an automated tool for layered drawing
of directed graphs. Moreover, the nodes of the graphs can be clicked to obtain
information on the represented action or to change some property of the action (e.g.,
a new start time for the represented action). Figures 7.11, 7.12, 7.14, and 7.15 give
examples of the LA-graph, constraint graph, Gantt chart, and graph of the resources,
respectively.

By looking at the graphical representations of the computed plan, the user
can evaluate the current search state and realize (or at least hypothesize) how
the current plan has to be modified. In particular, the user interface highlights
the graphical objects corresponding to plan actions that are not executable, and
provides information exploiting why they are not executable (for instance, because
of a precondition is not satisfied, a scheduling constraint is violated, or not enough
resources are available in the state where the action is executed).

http://www.graphviz.org/

142 A. E. Gerevini and A. Saetti

Fig. 7.12 A window of the user interface containing the graph representing the temporal
constraints in the current LA-graph. The label of the nodes is abbreviated. By moving the mouse
on a node, a tooltip displays the corresponding full label

3.5 Plan Editor

The plan editor is activated when the user revises the plan under construction. In
a mixed-initiative planning context, the possibility for the user to inspect a plan
and revise it through a plan editor is useful both during the process of constructing
high quality plans and during the process of adapting an existing plan to satisfy the
requirements of a new planning problem.

The plan editor allows the user to remove undesired actions, to add new actions
(possibly satisfying some preconditions that currently are unsatisfied), and to
reschedule an action in the plan. In the following, we describe the tools provided
by the plan editor for supporting these plan revisions. If the user adds (removes)
an action from the current plan, the plan editor sends a special message to LPG
containing the desired (undesired) action selected by the user. Then, the planner
computes a new LA-graph obtained from the previous one by adding (removing)
the corresponding action node. Similarly, the plan editor allows the user to constrain
the start time of an action in the plan to be after a desired time, and the end time
of an action to be before a desired time. Moreover, the plan editor allows the user
to restart the search from an empty plan, instead of continuing it from the current
plan, which can be a good option when the current plan contains too many undesired
actions or too many actions violating the desired scheduling constraints.

When the plan under construction is not valid, the plan editor allows the user to
repair “by hand” a flaw in the current partial plan. This interaction requires the usage

7 An Interactive Tool for Plan Generation, Inspection, and Visualization 143

of some handshaking messages. The plan editor sends a message to the planner
containing the flaw selected by the user; then, LPG sends a new message to the
component containing the elements in the search neighborhood for the selected
flaw. The plan editor displays such a neighborhood (each element is compactly
represented by the corresponding action addition/removal that eliminates the flaw
under consideration), while the user selects an element from the neighborhood (for
an example, see Fig. 7.16). Finally, the plan editor sends a message describing the
graph modification selected by the user to the planner, which then computes a new
LA-graph obtained by applying the selected graph modification.

3.6 Search Process Editor

The search process editor allows the user to control the progress of the search. The
user can inspect and run the search by different modalities: with “no interruption,”
“step by step” and by “multi steps.” For instance, the user can “pause” the search
at any time, inspect the current plan and LA-graph and then continue the search
step-by-step, i.e., the search progresses only one step and then waits that the user
clicks the command button to proceed for the next step. If the user observes that
the heuristics of LPG make an incorrect choice when repairing the selected flaw,
the search process editor allows her to move the search one step backward, so that
she can intervenes and forces the planner to make an alternative decision among a
set of alternatives provided by the system. The multi-step modality is very useful to
obtain a graphical animation of the search progress. Under this modality, for each
search step all graphs provided by the environment are automatically updated and
re-displayed after k-milliseconds, where k is the speed of the animation that can be
set by the user.

Moreover, the search process editor gives the user a tool for affecting the
future search steps of the planning process by modifying the definition of the
search neighborhood for every flaw in the current plan. For example, by inspecting
the (partial) plan computed so far, the user realizes that, in order to achieve a
desired solution plan, some actions should never be removed from the plan under
consideration. The search process editor allows her to specify this constraint to the
search, and, in this case, the search process editor sends a special message to the
planner imposing that in the rest of the search process the removal of these actions
will not be part of any search neighborhood.

The search process editor also allows the user to associate a “breakpoint” with a
flaw in the plan under construction. When this happens, the editor sends a special
message to the planner containing the selected flaw, which modifies the standard
behavior of the planner in the following way. Whenever the planning process of
LPG selects such a flaw to repair, the process is interrupted; the system presents all
possible options for repairing the flaw to the user; and the user choices one of these
options repairing the flaw “by hand.”

For each flaw σ repaired by hand and search neighborhood N , the search process
editor memorizes the successor action graph (a graph modification) selected by the

144 A. E. Gerevini and A. Saetti

user. In the successive search steps, if the planning process of LPG attempts to repair
flaw σ again, evaluating a search neighborhood similar to N , then the successor
action graph selected by the planner is the graph obtained by performing the graph
modification previously selected by the user, which could be different from the
action graph that the planner would select from the neighborhood according to its
heuristic evaluation. Let Ncurr be the neighborhood for solving the flaw σ under
consideration, the similarity between Ncurr and N is measured by |Ncurr∩N |

max{|Ncurr |,|N |} .
A similarity threshold t can be customized as an input setting of the graphical
user interface. Thus, the search process repairs flaw σ using the graph modification
previously chosen by the user for σ with neighborhood N , if the similarity measure
between Ncurr and N is greater than or equal to t ; it repairs flaw σ using the graph
modification selected according to the default criteria of LPG, otherwise.

Finally, the search process editor allows the user to impose intermediate goals,
i.e., facts that must be true at some point in the plan. In Sect. 5, we will show that
the use of appropriate intermediate goals can be helpful to speed up the planning
process.

4 Walk-through Example of a User Interaction

This section illustrates through a simple example how a user can interact with our
environment in order to inspect and improve the plan generation in LPG. The figures
in this section are screenshot portions of the user interface.

The considered planning problem is a very simple instance of the Trucks
problem developed for the fifth International Planning Competition [8, 13]. This
problem instance concerns moving three packages (package1, package2, and
package3) between New York, Washington, and Boston (NY, Wa and Bo, respec-
tively) by one truck (truck1) under certain constraints (the general Trucks
problem involves an arbitrary number of objects, cities, and trucks) [8, 13]. The
Trucks planning problem is similar to the package delivery problem with action
durations, scheduling constraints, and numerical fluents, previously defined in
Sect. 2. The main differences are the time windows defined in the initial state of
the planning problem which impose scheduling constraints to the actions delivering
packages instead of to the actions moving trucks, and that the loading space in each
truck is decomposed into a collection of areas, which are organized by a spatial
map imposing an order to their access and usage. In our example, the loading space
inside the truck is decomposed in only two areas (a1 and a2).

It should be noted that, although the running example is based on a logistic
planning problem, our tool is completely domain independent, and hence, without
changes to the implementation of the system, it can be used to support planning in
any domain specified by PDDL2.2.

Figure 7.10 gives a screenshot of a portion of the screen showing the information
about the planning process solving the running problem. The upper plot shows
the number of flaws in the LA-graph at each search step; the middle plot shows

7 An Interactive Tool for Plan Generation, Inspection, and Visualization 145

the number of action nodes in the LA-graph; finally, the bottom plot shows the
makespan of the plan represented by the LA-graph. At each search step, the search
process monitor processes the basic information about the current LA-graph that it
has received from LPG, and it updates these plots. By inspecting these plots, the
user notices that from search step 220 to step 340, the number of flaws, the number
of actions, and the plan duration do not significantly change. This information
indicates that the local search procedure used by the planner is trapped into a local
minima, and suggests the user intervention in the involved search steps, in order
to better guide the choices of the planner. Hence, the user decides to pause the
search process by clicking the corresponding command button in the tool bar of the
graphical user interface. As a consequence of this, the search process editor sends
a command to the planner interrupting the search, the planner sends a complete
description of the current computed LA-graph to the search state monitor, and the
search state monitor displays a graphical representation of such a graph, which can
be analyzed by the user. Figure 7.11 gives a screenshot of a portion of the screen
containing the graphical representation of the current LA-graph at the search step
where the user has interrupted the search process. The LA-graph contains at level 1
action (load package1 truck1 a2 Wa) (abbreviated with “(load packag..”),
at level 2 action (drive truck1 Bo NY) (abbreviated with “(drive truck..”),
at level 3 action (unload package1 truck1 a2 NY) (abbreviated with “(unload
pack..”), at level 4 action (deliver-ontime package1 NY) (abbreviated with
“(delivered-ont..”), and at level 5 the special action aend (“END”).5

The effect nodes of an action that are also precondition nodes of other actions
at the successive levels of the graph indicate the reasons why such an action has
been planned. For example, action (drive truck1 Bo NY) is in the plan because
truck1 must be at New York before package1 is unloaded from truck1 to New
York city (this is the activity represented by the action node at level 3). The
unsupported precondition nodes of an action are plan flaws making this action non-
executable. Action node (drive truck1 Bo NY) is not executable because node
(at truck1 Bo) is not supported in the LA-graph.

Then, the user opens the interface window visualizing the temporal constraints
for the actions in the LA-graph of Fig. 7.11, which is shown in Fig. 7.12. The nodes
in Fig. 7.12 correspond to actions in the plan represented by the LA-graph, while the
edges represent the temporal constraints between them. For example, the edge from
action (load package1 truck1 a2 Wa) (abbreviated with “(load packag..”)
to action (drive truck1 Bo NY) (abbreviated with “(drive truck..”) imposes
that in the current plan package1 is loaded from Washington on area a2 of truck1
before truck1 is moved from Boston to New York. The edges connecting the
special action node astart (“START”) and action (deliver-ontime package1 NY)

(abbreviated with “(deliver-ont..”) impose that package1 must be delivered to

5Action (load ?p ?t ?a ?l) represents the movement of package ?p from location ?l onto area
?a in truck ?t, while action (unload ?p ?t ?a ?l) represents the opposite movement.

146 A. E. Gerevini and A. Saetti

Fig. 7.13 A window of the
user interface containing the
textual description of the plan
represented by the computed
LA-graph

Fig. 7.14 A window of the user interface showing the Gantt chart of the actions labeling
the nodes of the LA-graph in Fig. 7.11. The gray area represents the time window during
which action (deliver-ontime package1 NY) must be scheduled in order to satisfy the input
delivery constraints of the example. The chart indicates that action (drive truck1 Bo NY) is not
executable

New York at a time between 300 and 919.7 time units since the beginning of the
plan (this constraint is defined in the input problem specification).

Figure 7.13 shows the textual description of the plan under construction rep-
resented by the LA-graph of Fig. 7.11. At time 0.0, package1 is loaded from
Washington on area a2 of truck1; at time 356.8, truck1 is moved from Boston
to New York; at time 429.9, package1 is unloaded from area a2 of truck1 to New
York; finally, at time 449.9, package1 is delivered to the customer in New York.
Figure 7.14 shows the Gantt chart of the actions in the plan. The darker boxes
(the red boxes in the actual screen) in a Gantt chart represent actions in the LA-
graph that are not executable. In our example, action (drive truck1 Bo NY) is
not executable. By inspecting the frame of the graphical user interface containing the
LA-graph (Fig. 7.11), the user can immediately see that this action is not executable
because of the unsupported precondition (at truck1 Bo). This action needs that,

7 An Interactive Tool for Plan Generation, Inspection, and Visualization 147

Fig. 7.15 A simple example of the resource consumption chart of the user interface for resource
(fuel truck1) in the running example. On the x-axis we have the plan execution time. The gray
area in the graph represents the fuel level required by action (drive truck1 Bo NY) over all its
execution

at the time of its execution, truck1 is at Boston, while at that time truck1 is at
Washington ((at truck1 Wa) is true in the world state identified with level 2 of
the LA-graph).

Let us assume that action (drive truck1 Bo NY) consumes 7.31 fuel units,
and hence that an amount of fuel greater than or equal to 7.31 is required over all
its execution. Figure 7.15 shows an example of the user interface resource graph
showing the trend of the fuel consumption for truck1 during the execution of the
plan under consideration. In the initial state, the fuel level of truck1 is 0; at the end
of action (drive truck1 Bo NY) the fuel level decreases from 0 to −7.31, and
remains this quantity until the end of the plan. When in the resource consumption
chart the line representing a certain resource crosses the gray area (green area in
the actual screen) corresponding to the usage of the resource for a certain action,
such an action is not executable in the context of the current plan. In particular,
in Fig. 7.15 action (drive truck1 Bo NY) is not executable, because, at the time
when it is expected to be executed, there is not enough fuel.

By looking at the graphs of Figs. 7.11, 7.12, 7.14, and 7.15, which are computed
and appropriately displayed by the search state monitor, the user can realize that, in
order to deliver package1 to New York on time, driving truck1 to New York from
Washington is better than driving from Boston. Hence, the user decides to intervene
by using the tools of the search state editor to revise the current (partial plan):
she clicks the right mouse button on the box representing action (drive truck1

Bo NY) in the Gantt chart and, by using the context menu that is activated, she

148 A. E. Gerevini and A. Saetti

Fig. 7.16 Two frames of the user interface containing a portion of the current LA-graph (left
frame) and the search neighborhood of such a graph for repairing the flaw (at truck1 NY) at
level 2 of the LA-graph (right frame)

selects the option of removing this action from the current plan. Then, she clicks
the right mouse button on the box representing the flawed node (at truck1 NY)

in the modified LA-graph A′, and, by using the context menu that is activated,
she selects the option for repairing such a flaw. The right frame of Fig. 7.16 is
then automatically displayed to her. This window indicates the possible graph
modifications for repairing the selected flaw, i.e., it shows the search neighborhood
of A′ for repairing (at truck1 NY). The search neighborhood is formed by three
graphs obtained from A′ by (1) removing action node (unload package1 truck1

a2 NY) at level 2; (2) adding action node (drive truck1 Wa NY) at level 2; and
(3) adding action node (drive truck1 Bo NY) at level 2. The flaw repair frame of
the user interface also shows the heuristic values of each graph modification, i.e., the
values of the heuristic function used by planner LPG to evaluate each element in the
search neighborhood (see third column of the table in the right frame of Fig. 7.16).
Lower heuristic values indicate better possible graph modifications (neighborhood
elements). Note that, since the only action supporting goal (at truck1 NY) is
action (unload package1 truck1 a2 NY), the heuristic value corresponding to
removing this action is infinity (approximated by using very large number).6 The

6In LPG, the evaluation of the successor LA-graph obtained by removing an action a supporting
a precondition g is the estimated number of search steps required to support g by planning actions
different from a.

7 An Interactive Tool for Plan Generation, Inspection, and Visualization 149

heuristic value of adding action (drive truck1 Bo NY) is 1.5, and the heuristic
value for adding action (drive truck1 Wa NY) is 2.28. This indicates that, if the
user did not intervene to determine the choice of the graph modification to make
for repairing flaw (at truck1 NY), the planner would re-insert action (drive

truck1 Bo NY) into A′. On the contrary, in our example, we assume that the user
selects the element in the search neighborhood corresponding to the insertion of
action (drive truck1 Wa NY) at level 2 of A′. Therefore, in the resulting plan
truck1 is moved to New York from Washington instead of from Boston.

Since the user also wants that in the final plan truck1 arrives at New York from
Washington instead of from Boston, by using the tools of the search process editor,
she modifies the rest of the search process as follows. She clicks the right mouse
button on the box corresponding to action (drive truck1 Wa NY) in the new
generated graph and, by the context menu that is activated, she selects the option
imposing that the action is never removed during the search process. Finally, the
user clicks on the “play” button in the tool bar of the user interface in order to
resume the automated search process of LPG.

In general, when a local search procedure is in proximity to a local minimum,
it is likely that it moves towards such a minimum, and then it gets stuck in that
portion of the search space. As we will see in the next section, if this happens, few
human-driven search steps could significantly improve the search process, because
they would take the search away from the local minimum. The interactive graphical
user interface of InLPG provides significant assistance to perform such a form of
mixed-initiative planning, which in our simple running example is illustrated by
the user-driven substitution of action (drive truck1 Bo NY) with action (drive

truck1 Wa NY).

5 Experiments

In this section, we present the results of an experimental study aimed at testing the
effectiveness of our mixed-initiative approach to improving plan generation using
planner LPG.7

The experimental tests were run using an Intel Xeon(tm) 3 GHz machine, with
1 Gbytes of RAM. As test domains we used five instances of the Philosophers
planning problem [24], and four instances of the Storage problem [8, 13],
which are standard benchmarks originally designed for the international planning
competition, for which LPG does not perform very well.

In the Philosophers problem, the state of some processes of a concurrent
system has to be changed in order to cause a system deadlock. The communication
between these processes is performed via message queues or shared access to global

7LPG is written in C and is available from http://lpg.ing.unibs.it, while the user interface is written
in Java and will soon be made publicly available.

http://lpg.ing.unibs.it

150 A. E. Gerevini and A. Saetti

Table 7.1 Performance of LPG, InLPG guided by a human user who repairs some flaws “by
hand” during the search process (InLPG “flaw repair”), and InLPG guided by a human user who
defines some intermediate goals at the beginning of the search process (InLPG “intermediate
goals”) for nine instances of the planning problems Storage and Philosophers

Problem LPG InLPG “flaw repair” InLPG “intermediate goals”

CPU-Time TSS CPU-Time TSS HSS CPU-Time TSS HSS

Storage-15 2.09 1412 0.46 26 3 0.55 30 1

Storage-20 7.75 901 1.05 43 7 1.39 55 1

Storage-25 227.9 8130 2.41 86 11 2.98 107 1

Storage-30 421.1 6047 7.86 115 15 8.53 121 1

Philosopher-1 1.16 4292 0.08 37 3 0.04 18 1

Philosopher-2 – – 0.11 62 5 0.05 27 1

Philosopher-3 – – 0.10 81 8 0.05 40 1

Philosopher-4 – – 0.13 106 12 0.05 47 1

Philosopher-5 – – 0.18 183 15 0.05 56 1

CPU-seconds (2nd, 4th, and 7th columns), total number of search steps indicated with TSS (3rd,
5th, and 8th columns), and number of human-driven search steps indicated with HSS (6th and 9th
columns). “–” means no solution found by LPG within 10 CPU-minutes

variables. The Storage problem involves spatial reasoning, and concerns moving
a certain number of crates from some containers to some depots by hoists. Inside a
depot, each hoist can move according to a specified spatial map connecting different
areas of the depot.

The experiment was performed by two users having some general background
knowledge on artificial intelligent (undergraduate students who had attended an
introductory AI course). First, the users familiarized with the planning domains
and the interactive framework of InLPG. Then, they were asked to solve the test
problems using InLPG, i.e., interacting with LPG to solve the problem (when LPG
failed) or to reduce the number of search steps performed by the planner. For each
experimental test, the maximum elapsed time limit was 10 min, after which the
problem under consideration was considered unsolved.

Table 7.1 shows the results of two experiments. In the first experiment (4th–6th
columns), the users have interrupted the planning process of LPG, appropriately
repairing some crucial flaws by hand, and then restarted the planning process.8

For the problems of Philosophers, the crucial planning decisions concern the
choice of the process states where the deadlock may happen. For the problems of
Storage, the crucial planning decisions concern the choice of the spatial location
inside a depot where a crate is stored. Basically, for the considered instances of both
these problems, these crucial decisions are determined by the choice of the final

8In this experiment, the similarity threshold is set to 1, i.e., the memorized human decisions are
reused only if the current neighborhood is the same as the neighborhood previously evaluated by
the user.

7 An Interactive Tool for Plan Generation, Inspection, and Visualization 151

actions achieving the problem goals, and hence they can be suggested to the planner
by few human-driven search steps.

In the second experiment (7th–9th columns), the human user intervention is
entirely at the beginning of the planning process of LPG: the user specified few
significative intermediate goals suggesting the particular way in which the problem
goals can be achieved in the plan.

LPG solved all the considered Storage instances, but, in both our experiments,
it performed many more search steps, and was almost two orders of magnitude
slower than InLPG. For the Philosopher instances, the performance gap was
even more dramatic, because, for these problem instances, the search process of
LPG is often trapped into local minimum. The only problem that was completely
automatically solved by LPG is the simplest one, while, in both our experiments,
InLPG efficiently solved all the considered problems.

6 Related Work

Like several approaches proposed in the mixed-initiative planning framework, our
approach is based on the idea of human-in-the-loop control of planning visualization
[37, 38]. A difference of our approach is the strong use of plan visualization tools.

The graphical representation of a linear action graph in our system is in
line with the plan representation proposed by Allen and Ferguson for human-
machine collaborative planning [11]: it provides the reasons why an action is being
planned, and the reasons why actions are not executable in the computed plan. For
complex planning domains, when these reasons concern numerical resources, our
environment provides a graph showing the trend of the resources over the plan
execution period.

One among the most related work is the PRODIGY system [5, 6, 39]. Like
InLPG, a human can break the planning process of PRODIGY, and impose to the
planner particular choices based on the current planning scenario. Both PRODIGY

and InLPG allow case-based reasoning (i.e., the retrieval of plans in order to
compute a new solution plan starting from them, instead of from the empty plan)
and plan generation, and they are anytime planners, i.e., they generate a sequence
of valid plans with increasing quality. However, PRODIGY uses a state-space
non-linear planner and follows a backward-chaining search procedure, while our
approach searches in the space of action graphs through a local search procedure,
and it uses heuristics based on relaxed plans [17]. Also, we developed tools for
supporting human decisions (such as different views of the plan under construction),
and our approach supports a more expressive planning language including some
complex constructs (including action durations, scheduling constraints, managing
of numerical amounts of resources).

Another related work is MAPGEN [3], the interactive environment used by NASA

for the Mars Exploration Rover mission. Like LPG, MAPGEN supports planning in

152 A. E. Gerevini and A. Saetti

complex domains, but it is based on EUROPA, an advanced version of HSTS [30],
which uses domain specific input knowledge, while our approach is fully domain-
independent.

7 Conclusions

We have presented InLPG, an implemented interactive tool for the visualization,
inspection, generation, and revision of plans, which supports a form of “human-in-
the-loop” control of planning that is typical in the mixed-initiative approach to plan
generation. InLPG includes a graphical interface through which the user can interact
with a state-of-the-art domain-independent planner, obtaining an effective visualiza-
tion of a variety of information about the plan under construction or inspection, as
well as about the undergoing planning process. Moreover, the tool provides some
capabilities allowing the user to intervene during the planning process to modify
the problem goals, the plan under construction or the planner heuristic decisions at
search time. InLPG assists the user by a number of instruments, including:

– a dynamic graphical visualization of the plan under construction in terms of (1)
the LA-graph data structure used by the underlying planner, (2) the temporal
constraint graph of the actions in the plan, (3) a Gantt chart representation of the
plan, (4) a graphical visualization of the resource consumption over time of the
plan, (5) some plots about the trend of the undergoing search process, and (6) a
forward and backward step-by-step execution of the underlying planner;

– a visual explanation of the reason why an action has been planned, or why, in the
context of the current plan, its execution is expected to fail;

– a user interface including a set of graphical tools for an effective visualization
of a variety of plan information, such as scrollable windows for panning the
whole displayed graphs; image zooming for highlighting portions of the graphs;
instruments for searching an action, a fact or a flaw in the plan under construction
and in the corresponding LA-graph.

The paper includes a detailed example illustrating a possible use of the proposed
interactive system, and presents the results of an experiment indicating that the user
interaction with system can be very helpful to solve hard planning problems. Few
human-driven search steps or intermediate goals specified through the user interface
of InLPG can significantly help the underlying planner LPG to reach a solution
plan, which otherwise would be much harder to find for the planner (and for the
user) alone.

In the planning literature, a number of mixed-initiative planning systems have
been proposed (e.g., [1, 4, 6, 7, 10, 11, 31, 38–40]). While many of these systems
are based on domain-dependent planners or use domain specific knowledge, our
approach builds on a recent domain-independent planner. Like InLPG, PRODIGY
allows the user to interact with a domain-independent planner [5, 6, 39]. However,
there are many differences between PRODIGY and InLPG. A major difference

7 An Interactive Tool for Plan Generation, Inspection, and Visualization 153

(which concerns the comparison with all other existing systems supporting some
form of mixed-initiative planning) is the planning approach of the underlying
planner: PRODIGY and InLPG use very different search procedures, heuristics, and
search spaces. Moreover, InLPG supports an expressive standard planning language
including some practically useful features that are not supported by version 4.0 of
PRODIGY (e.g., action scheduling constraints). Finally, the user interface of InLPG
has some plan visualization capabilities that are not included in the PRODIGY
system (version 4.0).

Current and future work concerns the extension of InLPG with further innovative
techniques of information visualization for improving the readability of large plans.
We also intend to augment the options offered by the tool to the human intervention
during the plan construction, and to conduct some experiments to test the usability
of the tool for novice and expert users of planning technology. In particular, we
believe that the proposed tool can be useful also in an educational context to support
teaching and learning AI planning. Currently, we are testing the use of InLPG with
this purpose for an AI course at the master degree level.

References

1. J. Allen and G. Ferguson, Human-machine collaborative planning, in Proc. of the 3rd Int.
NASA Workshop on Planning and Scheduling for Space (2002).

2. A. Blum and M. Furst, Fast planning through planning graph analysis, in Artificial Intelligence.
90(1997) 281–300.

3. J. Bresina, A. Jonsson, P. Morris, and R. K. Activity planning for the Mars Exploration Rovers.
in Proc. of the 15th Int. Conf. on Automated Planning and Scheduling, (Monterey, California,
USA, 2005), pp. 40–49.

4. M. Cox and C. Zhang, Planning as mixed-initiative goal manipulation, in Proc. of the 15th
Int. Conf. on Automated Planning and Scheduling, (Monterey, California, USA, 2005), pp.
282–291.

5. M. T. Cox and M. Veloso, Supporting Combined Human and Machine Planning, in Proc. of
the 2nd Int. Conf. on Case-Based Reasoning, (Providence, Rhode Island, USA), pp. 531–540.

6. M. T. Cox and M. Veloso, Controlling for unexpected goals when planning in a mixed-initiative
setting. in Proc. of the 8th Portuguese Conf. on Artificial Intelligence, (Coimbra, Portugal,
1997), pp. 309–318.

7. K. Currie and A. Tate, O-plan: the open planning architecture, in Artificial Intelligence.
52(1991):49–86.

8. Y. Dimopoulos, A. Gerevini, P. Haslum, and A. Saetti, The benchmark domains of the
deterministic part of IPC-5, in Abstract Booklet of the competing planners of ICAPS-06,
(Cumbria, UK, 2006), pp. 14–19.

9. P. Eyerich, R. Mattmüller, and G. Röger, Using Context-Enhanced Additive Heuristics for
Temporal Numerical Planning, in Proc. of the 19th Int. Conf. on Automated Planning and
Scheduling, (Thessaloniki, Greece, 2009), pp. 130–137.

10. G. Ferguson, J. Allen, and B. Miller, TRAINS-95: Towards a mixed-initiative planning
assistant, in Proc. of the 3rd Conf. on Artificial Intelligence Planning Systems, (Edinburgh,
UK, 1996) pp. 70–77.

11. G. Ferguson and J. F. Allen, Arguing about plans: Plan representation and reasoning for mixed-
initiative planning, in Proc. of the 2nd Int. Conf. on AI Planning Systems, (Chicago, Illinois,
1994), pp. 43–48.

154 A. E. Gerevini and A. Saetti

12. M. Fox and D. Long, PDDL2.1: An extension to PDDL for expressing temporal planning
domains, in Journal of Artificial Intelligence Research. 20(2003):61–124.

13. A. Gerevini, P. Haslum, D. Long, A. Saetti and Y. Dimopoulos, Deterministic Planning in
the Fifth International Planning Competition: PDDL3 and Experimental Evaluation of the
Planners, in Artificial Intelligence. 173(2009):619–668.

14. A. Gerevini, A. Saetti, and I. Serina, Planning through stochastic local search and temporal
action graphs, in Journal of Artificial Intelligence Research. 20(2003):239–290.

15. A. Gerevini, A. Saetti, and I. Serina, An empirical analysis of some heuristic features for
local search in LPG, in Proc. of the 14th Int. Conf. on Automated Planning and Scheduling,
(Whistler, Canada, 2004), pp. 171–180.

16. A. Gerevini, A. Saetti, and I. Serina, An approach to temporal planning and scheduling in
domains with predictable exogenous events, in Journal of Artificial Intelligence Research.
25(2006):187–231.

17. A. Gerevini, A. Saetti, and I. Serina, An Approach to Efficient Planning with Numerical Fluents
and Multi-Criteria Plan Quality, in Artificial Intelligence. 172(2009):899–944.

18. A. Gerevini and I. Serina, Fast plan adaptation through planning graphs: Local and systematic
search techniques, in Proc. of the 5th Int. Conf. on Artificial Intelligence Planning and
Scheduling, (Breckenridge, Colorado, USA, 2000), pp. 112–121.

19. A. Gerevini and I. Serina, Efficient Plan Adaptation through Replanning Windows and
Heuristic Goals, in Journal of Algorithms in Cognition, Informatics and Logic. 102(2010):287–
323.

20. M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, D. Wilkins,
PDDL – The Planning Domain Definition Language, CVC TR98-003/DCS TR-1165 (1998),
Yale Center for Computational Vision and Control, available at http://cs-www.cs.yale.edu/
homes/dvm/,

21. M. Helmert, The Fast Downward Planning System, in Journal of Artificial Intelligence
Research. 26(2006) 191–246.

22. J. Hoffmann and B. Nebel, The FF Planning System: Fast Plan Generation Through Heuristic
Search, in Journal of Artificial Intelligence Research. 14(2001):253–302.

23. J. Hoffmann and S. Edelkamp, The deterministic part of IPC-4: An overview, in Journal of
Artificial Intelligence Research. 24(2005):519–579.

24. J. Hoffmann, S. Edelkamp, S. Thiebaux, R. Englert, F. Liporace and S. Trueg, Engineering
Benchmarks for Planning: the Domains Used in the Deterministic Part of IPC-4, in Journal of
Artificial Intelligence Research. 26(2006):453–541.

25. N. Lino and A. Tate, A visualisation approach for collaborative planning systems based on
ontologies, in Proc. of the 8th Int. Conference on Information Visualisation, (London, England,
UK, 2004), pp. 807–811.

26. N. Lino, A. Tate, and Y.-H. Chen-Burger. Semantic support for visualisation in collaborative
AI planning. In Proc. of the Workshop on The Role of Ontologies in Planning and Scheduling
(2005).

27. N. Lipovetzky and H. Geffner, Best-First Width Search: Exploration and Exploitation in
Classical Planning, in Proc. of the 31st AAAI Conference on Artificial Intelligence, (San
Francisco, USA, 2017), pp. 3590–3596.

28. D. Long and M. Fox, The 3rd international planning competition: Results and analysis, in
Journal of Artificial Intelligence Research. 20(2003):1–59.

29. D. McAllester and D. Rosenblitt, Systematic nonlinear planning, in Proc. of the 9th National
Conf. on Artificial Intelligence, (Anaheim, California, USA, 1991), pp. 634–639.

30. N. Muscettola, HSTS: Integrating Planning and Scheduling, in Intelligent Scheduling, eds.
M. Zweben and M.S. Fox (Morgan Kauffmann, San Francisco, USA, 1994), pp. 169–212.

31. K. L. Myers, P. A. Jarvis, W. M. Tyson, and M. J. Wolverton, A mixed-initiative framework for
robust plan sketching, in Proc. of the 13th Int. Conf. on Automated Planning and Scheduling,
(Trento, Italy, 2003), pp. 256–265.

32. X. Nguyen and S. Kambhampati, Reviving partial order planning, in Proc. of the 17th Int.
Joint Conf. on Artificial Intelligence , (Seattle, Washington, USA, 2001), pp. 459–464.

http://cs-www.cs.yale.edu/homes/dvm/
http://cs-www.cs.yale.edu/homes/dvm/

7 An Interactive Tool for Plan Generation, Inspection, and Visualization 155

33. J. Penberthy and D. Weld, UCPOP: A sound, complete, partial order planner for ADL, in Proc.
of the 3rd Int. Conf. on Principles of Knowledge Representation and Reasoning (Cambridge,
Massachusetts, USA, 1992), pp. 103–114.

34. F. Pommerening, A. Torralba, T. Balyo, The ninth international planning competition (2018),
https://ipc2018.bitbucket.io

35. S. Richter, M. Westphal, The LAMA Planner: Guiding Cost-Based Anytime Planning with
Landmarks, in Journal of Artificial Intelligence Research, 29(2010):127–177.

36. H. A. Simon, Models of Man, (John Wiley & Sons Inc., New York, USA, 1957).
37. A. Tate, In Advanced Planning Technology: Technological Achievements of the ARPA/Rome

Laboratory Planning Initiative, (AAAI Press, Menlo Park, California, USA, 1996).
38. G. Tecuci, Proc. of the IJCAI Workshop on Mixed-Initiative Intelligent Systems, (AAAI Press,

Menlo Park, California, USA, 2003).
39. M. Veloso, M. Mulvehill, A., and T. Cox, M, Rationale-supported mixed-initiative case-

based planning, in Proc. of the 9th Conf. on Innovative Applications of Artificial Intelligence,
(Providence, Rhode Island, USA, 1997), pp. 1072–1077.

40. C. Zhang, Cognitive models for mixed-initiative planning, (PhD thesis, Wright State
University, Computer Science and Engineering Department, Dayton, Ohio, USA, 2002).

https://ipc2018.bitbucket.io

Chapter 8
Interactive Visualization in Planning
and Scheduling

Roman Barták

Abstract Planning and scheduling are two closely related areas that deal with
organizing activities to achieve a particular goal (planning) and allocating these
activities to limited time and resources for execution (scheduling). However,
regarding the tools supporting the planning and scheduling processes, these two
areas are still far from each other. Progress in scheduling has been driven by
industry and many techniques and tools to support the scheduling process have
been designed. On the other hand, planning is still more an academic topic and,
until recently, engineering support of the planning process has been limited. The
focus of planning community was mainly on design of efficient planners, but this
started to change in recent years and several tools supporting the planning process
have been designed. This chapter focuses on interactive visualization of plans and
schedules, that is, on the way how plans and schedules can be presented visually to
users, and on tools that can work with these visualizations.

Keywords Planning · Scheduling · Visualization · Interactivity

1 Introduction

For both plan and schedule visualization, there is a common way of exploiting
intuitive Gantt charts that visualize activities as rectangles organized on a timeline.
The concepts of activity and relations between activities are richer in planning.
Causal relations are related to precedence relations but have stronger semantics
of preserving some property between the activities. Activities themselves have
preconditions for their execution and effects modifying the world state and hence
it is important to include information about world state in the visualization. The
visualization tools should support plans and schedules with flaws and should be

R. Barták (�)
Charles University, Prague, Czech Republic
e-mail: bartak@ktiml.mff.cuni.cz

© Springer Nature Switzerland AG 2020
M. Vallati, D. Kitchin (eds.), Knowledge Engineering Tools and Techniques
for AI Planning, https://doi.org/10.1007/978-3-030-38561-3_8

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38561-3_8&domain=pdf
mailto:bartak@ktiml.mff.cuni.cz
https://doi.org/10.1007/978-3-030-38561-3_8

158 R. Barták

able to highlight these flaws for easier identification by a human user. Last but not
least, the visualization tools should support interactivity, where the users are allowed
to modify plans and schedules and the tools help users in such modifications, for
example, by repairing possible flaws introduced there.

This chapter presents three systems as examples of tools for interactive visual-
ization of plans and schedules. The first system, iGantt, is a pure schedule visualizer
that brings the concept of interactive schedule modification and automated repair
of flaws [2]. The follow-up system, FlowOpt, extends iGantt to support the whole
scheduling processes starting with model design and finishing with analysis of
schedules [4]. It gives an example of a complete integrated environment for schedul-
ing. In planning, there existed several pioneering systems providing graphical user
interface supporting the planning process: itSimple [10], GIPO [9], and VLEPPO
[11]. They are effective tools for modeling and updating planning domains, however,
their plan analysis lacks features mentioned above. We will present system VisPlan
[8] that is a planning counterpart of iGantt. iGantt and VisPlan are freely available
tools written in Java, FlowOpt is a part of commercial system MAKAC [3] and it is a
demonstration prototype showing possible capabilities of complex tools supporting
the whole scheduling process.

2 Interactive Gantt Chart (iGantt)

iGantt is software to visualize schedules, to interactively modify the schedules, and,
finally, to automatically correct violated constraints in the schedules [2]. It is written
in Java and hence runs under various operating systems without installation. It is
available to download at http://ktiml.mff.cuni.cz/~bartak/CLP/iGantt.html.

There exist many classes of scheduling problems [7], so one needs to describe
first, what type of scheduling task is supported by a given tool.

2.1 Problem Specification

Basically, the scheduling problem is defined by resource constraints, by temporal
constraints among the activities, and by the objective function [7]. For activities,
iGantt assumes classical non-interruptible activities, which are probably the most
widespread form of activity type. It means that each activity, more precisely, its
temporal location in the schedule, is fully determined by its start time and its
duration. The end (completion) time of the activity is simply its start time plus its
duration as the activity runs from its start till its end. Interruptible activities might
be temporarily stopped during their execution and hence their active duration could
be smaller than the distance between the start and end times as there might be some
interruptions, when the activity is not being processed. There exist other types of
activities, for example, elastic (energetic) activities, where some energy is assigned

http://ktiml.mff.cuni.cz/~bartak/CLP/iGantt.html

8 Interactive Visualization in Planning and Scheduling 159

to the activity and duration of activity is determined by this energy and number
of resources allocated to this activity (for example, energy 4 implies duration 4,
if the activity runs on a single resource, and duration 2, if the activity runs on
two resources). iGantt supports only unary resources, where each activity is pre-
allocated to some resources, and occupies those resources from its start time till its
completion. Note that a single activity can be allocated to several unary resources
and hence occupies all of them during execution. The choice of supported resources
is closely related to supported type of activities. Again, there exist other types of
resources, for example, a cumulative resource allows processing more activities in
parallel while respecting resources capacity. Resources might also be more complex
by assuming set-up times between activities, etc. The only direct relation between
activities, that iGantt supports, is a precedence constraint. If activity A precedes
activity B then A must finish no later than B starts. Precedence constraints are the
most widely used temporal constraint among the activities. They can be specified
more precisely in the form of temporal constraints, for example, by defining minimal
and maximal distances between the activities. The choice of simple precedence
constraints in iGantt was intentional as together with other supported constraints,
it guarantees existence of a valid schedule under some easy-to-verify conditions
(see later). Regarding the objective function, no specific function is assumed as
visualization just displays an existing schedule. Nevertheless, during schedule
repairs, iGantt is trying to make the schedule as compact as possible, which
corresponds to using makespan as the objective function. Makespan is defined as
the distance between the start of the first activity in the schedule and the end of the
last activity, and this distance is being minimized during scheduling. Again, it is
probably the most widely used objective function in scheduling. In summary, iGantt
works with unary resources, non-interruptible activities, and precedence constraints
between the activities. This is a quite general specification of a scheduling problem.
The reader may see easily that widely used types of scheduling problems, such as
job-shop scheduling problems, fit this problem specification.

Notice that in scheduling problems, the constraints are given explicitly and
directly. Schedule is defined by a set of activities, each having its start time, duration,
and resource(s) to which it is allocated and by a set of precedence relations between
the activities. This is also the input to the iGantt software.

2.2 Visualization of Schedules

There is not much to be invented about the form of visualization of schedules and,
as the name of software indicates, the classical Gantt chart is used to visualize
schedules in iGantt. Basically, there are two possible views of the schedule, one
is focusing on the precedence constraints between the activities and one is focusing
on the resource constraints. In the first (activity) view, each activity has its own
row in the visualization, the position of activity in this row is defined by its start
time, and precedence constraints are visualized as arcs between the activities. In the

160 R. Barták

Fig. 8.1 Gantt charts visualization of violated precedence (left) and resource (right) constraint

second (resource) view, each resource has its own row, and activities allocated to
that resource are displayed in this row based on their allocation in time. With these
views, it is easy to highlight the violation of precedence constraints (activity view)
and the violation of resource constraints (resource view). Figure 8.1 shows both
views and violation of precedence (left) and resource (right) constraints is identified
there. Detecting these violations in a given schedule is straightforward.

2.3 Interactive Schedule Modifications

Fully automated scheduling seems like the Holy Grail of scheduling community, but
most practitioners frequently require the freedom of manually altering the generated
schedules, for example, to introduce some aspects of the particular area that
were hard to formalize and hence are not reflected in the automatically generated
schedule. iGantt allows modification of any aspect of the scheduling problem. By
intuitive drag-and-drop operations, the user can modify allocation of activity in time
as well as to resources and change activity duration. It is possible to add and remove
activities, resources, and precedence constraints. In fact, the user may start with an
empty schedule and design the schedule completely manually. It is a very general
concept as the user can modify anything in the schedule. iGantt always visualizes
the current schedule and highlights violation of precedence and resource constraints.

2.4 Automated Schedule Repair

Despite the high experience of human schedulers, there is a high probability that
after a manual modification of a schedule some flaws are introduced to the schedule.
This probability is higher if the density of scheduling constraints is large and the
constraints are highly coupled. For example, delaying one activity may delay other
dependent activities due to precedence constraints between them or due to limited

8 Interactive Visualization in Planning and Scheduling 161

capacity of resources. It might be enough just to detect such violations and report
them to the user who will be responsible for manual correction. Nevertheless,
such manual corrections may be boring and sometimes very hard because of
interconnectivity of the constraints (correction of one flaw introduces other flaws,
etc.). iGantt supports fully automated schedule repair, namely we address the
problem of correcting precedence constraints and unary resource constraints by
shifting locally the affected activities in time.

Let us assume that some initial allocation of all activities to time (an initial
schedule) is known. This time allocation may violate some precedence constraints
(activity starts before some of its predecessors finishes) or some resource constraints
(two or more activities are processed at the same time by the same resource). The
goal is to correct the schedule (re-schedule) by shifting the activities in time, that is,
to find a feasible schedule that does not violate any constraint. We do not assume
changing durations of activities and reallocation to other resources during schedule
repair. Moreover, the new schedule should not differ a lot from the initial time
allocation of activities. Note that finding a feasible schedule is always possible
unless there is a loop in the precedence constraints—activities can always be shifted
to later times as there are no deadlines. To minimize the number of changes between
the initial and final schedule we apply a local approach, where particular flaws
are repaired by local changes of affected activities rather than by generating a
completely new schedule from scratch. A local repair may introduce other flaws
in the neighborhood which spread like a wave until all flaws are resolved.

We use a three-step approach to repair a schedule. In the first step, loops of
precedence constraints are detected, and the user is asked to break each loop by
removing at least one precedence constraint from it. This is the only step, where user
intervention is used (it is possible to randomly remove some precedence constraint
from each loop or even to minimize the number of removed precedence constraints
to break all loops, but in our opinion, the human decision is more appropriate in
this step). In the second step, we repair all precedence constraints; two methods are
used for this repair. Finally, in the third step we repair violation of resource capacity
constraints while keeping the precedence constraints valid. Each repair is realized
by shifting affected activities locally in time and it is done fully automatically. Let
us now describe these repairs in more details; the full technical details including
proofs of soundness are available in a separate paper [2].

The precedence constraints are repaired from left to right starting with the earliest
precedence constraints. Topological ordering of precedence constraints is used to
determine this order (see Fig. 8.2).

Let us now assume that precedence (A→B) is violated, where A and B are
activities, and it is the first violated precedence constraint in the topological ordering
(all earlier precedence constraints are satisfied). One can shift activity B to some
later time to repair the constraint, but this may eventually extend the makespan.
Hence, we suggest to, first, shift activity A to earlier time without violating
any preceding precedence constraint and only then to shift activity B to a later
time; minimal shift necessary to repair the constraint is always used. This is a
straightforward way of repairing precedence constraints. Unfortunately, it can shift

162 R. Barták

1

2

3

4

6

5

Fig. 8.2 Possible topological ordering of precedence constraints

D

B

C

A

D

C

A

B

unexploited

time

Fig. 8.3 Simple repair of violated precedence does not exploit fully available time on left of D

D

B

C

A

D

C

B

A

Fig. 8.4 More aggressive repair method exploits better available time on left of D

activities forward more than necessary and hence it can increase makespan more
than necessary and make the schedule less compact. Figure 8.3 gives an example
of schedule, where repair of violated precedence constraint (C→D) shifts D to later
time, while there is some unexploited time available before.

Therefore, iGantt uses a more aggressive method of repair, where the first activity
in the violated precedence constraint is shifted slightly more to the left to exploit
possible free time there. This may violate some earlier precedence constraints, so
the algorithm repairs these violations before continuing with further precedence
constraints in the topological order (see Fig. 8.4).

After all precedence constraints are corrected (repaired), the possible resource
conflicts are repaired. Recall that activities require for their processing unary
resources; it is possible that an activity requires more than one resource (for
example, machine, tool, and worker). There is a resource conflict if two (or more)
activities require the same resource at the same time. We repair the resources
conflicts again from left to right in the following way. If two activities overlap in
time and share the same resource, the later activity is shifted to the right to repair
the resource conflict. All precedence conflicts are repaired before continuing to the
next resource conflict. By sweeping the schedule from past to future we remove

8 Interactive Visualization in Planning and Scheduling 163

BA

D

B

C

A

DCt t

new resource

conflict

old resource

conflict

Fig. 8.5 New resource conflicts may appear after repairing another resource, but these conflicts
appear only in the future part of the schedule

all violated constraints (recall that there are no deadlines so any activity can be
shifted forward). As we shift activities to right only, new conflicts (precedence and
resource) may only appear at the not-yet corrected part of the schedule so they will
be eventually repaired later (see Fig. 8.5).

3 Interactive Workflow Optimization (FlowOpt)

iGantt was a pioneering system that supports interactive modification of schedules
with fully automated schedule repair. Our follow-up project FlowOpt extended
its capabilities to a complete system for production workflow optimization [4].
FlowOpt allows users to describe visually and interactively the process of producing
any item in the form of a nested workflow with alternatives [1]. After specifying
what and how many items should be produced, the system generates a production
plan taking in account the limited resources in the factory. The plan is visualized in
the form of a Gantt view that uses information about workflows and allows users to
arbitrarily modify the plan by selecting alternative processes or allocating activities
to different times or resources. Finally, the schedule can be analyzed, the bottleneck
parts are highlighted, and some improvements are suggested to the user. Let us now
summarize the major functionality of individual modules.

Workflow Editor allows users to create and modify workflows in a visual way. We
use the concept of nested workflows [1] that are built by decomposing the top task
until the primitive tasks are obtained. This is similar to hierarchical task networks,
but without recursion. Three types of decompositions are supported: either the task
is decomposed into a sequence of sub-tasks which forms a serial decomposition or
the task is decomposed into a set of sub-tasks that can run in parallel—a parallel
decomposition—or finally, the task is decomposed into a set of alternative sub-
tasks such that exactly one sub-task will be processed to realize the top task—an
alternative decomposition (Fig. 8.6). The final primitive tasks are then filled with
activities; each activity has a given duration and a set of resources necessary for its
processing. The workflow can be built in the top-down way by decomposing the
tasks or in the bottom-up way by composing the tasks; both approaches can be used
together as the user prefers. In addition to the core nested structure, the user can
also specify extra binary constraints between the tasks such as precedence relations,

164 R. Barták

Fig. 8.6 Visualization of
nested workflow in the
FlowOpt Workflow Editor
(from top to down there are
parallel, serial, and alternative
decompositions)

temporal synchronizations, or causal relations. Everything is done using an intuitive
drag-and-drop approach. The system also supports import of foreign workflows and
it has the function of fully automated verification of workflows [5].

When the workflows for all items are defined, this is the modeling stage, it is
possible to generate production plans. This is as easy as selecting the required
items (workflows) in the Order Manager, specifying their quantities and required
delivery date and starting the Optimizer by pressing a single button in GUI. The
data about workflows, activities, and resources are automatically converted to the
scheduling model and the system produces a schedule that is a selection of activities
(tasks) from the workflows (if there are alternatives) and their allocation to time and
resources. The Optimizer attempts to optimize both earliness and lateness costs that
are derived from the delivery dates.

The generated schedule (production plan) can by visualized in the Gantt Viewer
that generalizes the ideas of iGantt. This module provides both traditional views
of the schedule, namely the task-oriented and resource-oriented views. Because the
Gantt Viewer has full access to the workflow specification, it can also visualize the
alternatives that were not selected by the Optimizer. The Gantt Viewer allows users
to modify any aspect of the production plan using the drag-and-drop techniques.

8 Interactive Visualization in Planning and Scheduling 165

The user can move activities to different times and resources and change their
duration. It is even possible to select another alternative than that one suggested
by the Optimizer. Because the Gantt Viewer is aware about all the constraints
originating from the workflow specification, it can also highlight violation of any
of these constraints. Even more, the Gantt Viewer can automatically repair the flaws
that were introduced to the schedule by the user’s modifications. Flaws are repaired
similarly to iGantt by allowing time shift of activities only, but there already exist
techniques that allow schedule repair by selecting a different alternative from the
nested workflow [6].

The final module is an Analyzer that is responsible for suggesting improvements
of the production process. The Analyzer first finds bottlenecks in a given schedule,
for example, an overloaded resource. For each bottleneck, the analyzer suggests
how to resolve it—this could be by buying a new resource or by decreasing the
duration of certain activities (for example, by staff training). Each such improvement
is evaluated by the Optimizer. Finally, the system selects a set of improvements such
that their combination brings the best overall improvement of the production process
under the given constraints such as a limited budged to realize the improvements.

4 Interactive Visualization and Verification of Plan (VisPlan)

Plan analysis is an inevitable part of complete planning systems. With the growing
number of actions and causal relations in plan, this analysis becomes a more
and more complex and time-consuming process. In fact, plans with hundreds of
actions are practically unreadable for humans. In order to make even larger plans
transparent and human readable, we have developed a program which helps users
with the analysis and visualization of plans. The program called VisPlan [8] finds
and displays causal relations between actions, it identifies possible flaws in plans
(and thus verifies plans’ correctness), it highlights the flaws found in the plan and
finally, it allows users to interactively modify the plan and hence manually repair
the flaws. The software is available to download at http://glinsky.org/visplan/.

VisPlan is a graphical application (Fig. 8.7) written in Java with the ultimate goal
to visualize any plan, to find and highlight possible flaws, and to allow the user to
repair these flaws by manual plan modification. VisPlan works with three types of
files that the user should specify as program input:

• planning domain file in PDDL
• planning problem file in PDDL
• plan file specified in text format

VisPlan supports STRIPS-like plans and temporal plans. The program recognizes
the plan type (strips/temporal) automatically and verifies and visualizes it based on
its type. The plan type is determined by the planning domain—durative-actions
indicate a temporal plan, actions with no duration indicate a STRIPS-like plan. The
following PDDL requirements are currently supported in the program: strips,

http://glinsky.org/visplan/

166 R. Barták

Fig. 8.7 Graphical user
interface of VisPlan

typing, negative-preconditions, disjunctive-preconditions, equality, existential-
preconditions, universal-preconditions, quantified-preconditions, durative-actions.

Planning domain and problem need to be syntactically correct and mutually
consistent (separately parsed planning domain and problem files can be linked with
each other). Otherwise, visualization and verification is not performed and errors
from the PDDL parser are displayed. Sometimes, PDDL parser encounters errors
and issues which are not critical. In these cases, warning and non-critical error
messages are displayed and the program continues. Recognized plan actions are
given in the following format:

start_time: (action_name param1 param2 . . .) [duration]

In the plan file each action is supposed to be on a separate line. The parser
recognizes the lines and creates actions given only in the above-mentioned format.
Other lines are ignored. Eventually, a modified plan can be saved either to the
original file or to a new text file.

4.1 Plan Verification

Plan verification is automatically executed after the plan is initially loaded and then
after each user interaction modifying the plan. The verification process is based on
simulation of plan execution and the main idea is to incrementally construct “layers”

8 Interactive Visualization in Planning and Scheduling 167

of facts. Each fact layer is determined by a corresponding set of facts and an action
due to which the layer has been created.

At the beginning of the verification, all possible facts (grounded predicates) are
instantiated. This domain-specific data remains fixed and is computed only once at
the beginning; re-verifications do not change the data. This attitude permits us not
to manipulate with the facts during the whole verification process, but to work only
with the indexes to the array of grounded facts. Because of that, operations like
checking if an action is applicable, application of action’s effects, finding missing
conditions, etc. are just logical bit-sets operations (where one bit-set has its bits set
to true at indexes corresponding to the selected grounded facts). Such operations are
very fast.

Unlike facts, only actions present in the plan are grounded (meaning related to
an operator with grounded conditions and effects). The operator is found based
on matching the planning domain operator and concrete parameters of the action.
As mentioned in the previous paragraph, conditions and effects of the grounded
operator are represented by bit-sets (pointing to the fix array of grounded facts).
The verification process makes sure it has a matching operator available for each
examined plan action (otherwise, for instance, when a user adds a new action, the
verification process additionally finds and stores the operator). Actions, which do
not comply with any operator definition, are marked as invalid and omitted from the
verification. Nevertheless, such actions are still displayed (but distinguished from
others by a different color and marked as invalid).

There are two special “actions” artificially added into the plan. They are called
“init” and “goal” and their aim is to represent the initial state and the goal. A
classical plan-space approach is used to define these actions. The init action has
empty preconditions and the facts that apply at the initial state are considered as its
effects. The goal action has empty effects and the set of facts that need to be satisfied
at the final world state are considered as its preconditions. By treating the initial
state and the goal as regular plan actions we are able to recognize causal relations
also at the margins of the plan without any further work. This way we easily find
dependencies on the initial state and, eventually, marking the “goal” action as non-
applicable means that the goal conditions are not satisfied.

4.2 Visualization of Sequential and Temporal Plans

As shown in the right-upper frame of Fig. 8.7, plan’s actions are visualized as cells
(boxes) of fixed size filled by the action name. Each action is colored either green
or red (or any other color chosen by the user) depending on whether the action is
applicable or non-applicable. Causal relations between the actions are visualized by
edges. These edges are annotated by grounded facts that are “passed” between the
actions. Only the causal relations for the currently highlighted action are displayed
to remove a cluttered view. Display position of the edges is automatically adjusted
every time an action is highlighted in order to assure that the edges do not overlap

168 R. Barták

and their labels (describing the causal relations) are fully readable. The edge
position adjustment is vertical (with fixed space size between edges), as well as
horizontal (source and target points of edges on the same cell have regular space
between themselves).

If the process of verification is still going on, actions whose state has not been
decided yet are colored grey (or any other color chosen by the user). The state of an
action can be one of the following:

• invalid (action does not match any definition in the planning domain file),
• un-decided (action is still being checked by the validation module),
• applicable (action is valid and can be used),
• non-applicable (action cannot be used due to non-satisfied preconditions).

Two special actions, “init” and “goal” are colored differently to distinguish their
special meaning. These are the only two actions which cannot be modified in any
way.

For the highlighted action, the system displays complete information about the
action including the satisfied and violated preconditions and actions giving these
preconditions (the right-bottom frame of Fig. 8.7), as well as world change caused
by the action. World change illustrates which facts are true prior the action and
which after the action. Naturally, world state information is not available for non-
applicable actions. Facts that were subject of change (either added or deleted) are
marked (by color and/or by strike through their names).

On the left side of the window a list of actions is shown to provide a brief plan
summary (the left frame of Fig. 8.7). Actions in the list are sorted by their order/start
time and are visually differentiated based on their states. The list gets updated every
time a modification is done to the plan. Selecting an action in the list results in
adjusting the scrollbar view to comprise the visualized action in the graph and vice
versa. If the user needs more space for graphical plan analysis, he/she is free to hide
the action summary list completely (as well as informative tab pane at the bottom of
the application).

During a plan analysis, the ruler (Fig. 8.7) helps to orientate within a time axis.
Its default size of units is one inch (without dependence on user’s screen resolution).
Size of units can be adjusted by the combo box (upper-right frame of Fig. 8.7) or by
dragging any tick of the ruler.

While dragging an action (to change its position), actions providing precondi-
tions and actions using effects of the dragged action are dynamically highlighted,
so that the user knows where he/she can drop the action. When actions are swapped
it usually changes causal relations between the actions significantly. Due to this
fact, highlighting preconditions and effects partially would not provide enough
information. Therefore, the plan is re-verified when an action changes its order
while dragging. Having such information, the program chooses the correct actions to
highlight. Color for highlighting is the same as color for preconditions/effects edges.
If actual color of an action is the same as the color for edges when highlighting,
another (but similar) color is used then.

8 Interactive Visualization in Planning and Scheduling 169

Each user has an opportunity to set his/her own user preferences regarding the
visual appearance and behavior of software according to the personal needs. The
user preferences are saved in the home directory of the user and include various
(mostly graphical) settings, for instance:

• colors for actions (each state has its own color), edges (both preconditions and
effects), and ruler,

• font size (for different GUI components),
• automatic loading of last successfully loaded files (domain, problem, plan) at

start-up,
• default action width in STRIPS-like plans.

4.2.1 Visualization of STRIPS Plans

As the STRIPS plans are sequential, cells representing the actions are displayed
in a row. When changing the order of an action by drag & drop, the new order
is computed after each movement by checking the horizontal position of the cell
being dragged and ruler’s units. In the case the new position is different from the
current one, a cell placed at that moment on the “new order” position is immediately
repositioned to the “current order” position, and thus these two actions swap their
position. When the action is finally dropped, it is just placed in the row.

4.2.2 Visualization of Temporal Plans

Ruler units in temporal plans reflect durations of actions. However, as individual
durations of actions within a plan can vary a lot, the median duration has been
chosen to be the initial ruler unit. Auxiliary ticks are also present on the ruler. All
actions (meaning cells) are also guaranteed to have a minimum horizontal size (in
order to be visible even if real duration is too small).

Horizontal position of an action is fully determined by its start time and duration.
Although actions in temporal plans can overlap with each other, cells representing
the actions are positioned in order to be fully visible. This is performed by placing
the cells in rows. All cells in the same row have the same vertical position. Cells
position adjustment is iterative, and cells are positioned into the first row (from top)
where the cell would not overlap with other cells (Fig. 8.8).

When an action is being dragged, in contrast to STRIPS plans, the start time of
the action is determined by the horizontal position only (multiplied by the current
ruler units). In such a situation re-verification of the plan is done only when the
action has changed its position significantly, meaning the relative order of the
dragged action margins (start/end) changed with respect to other actions.

170 R. Barták

Fig. 8.8 Example of visualization of temporal plans

4.3 Interactive Plan Modifications

In addition to visualization of plans the software supports interactive modification
of the plan. The following operations with plans are supported:

• inserting new actions (selection of actions and their parameters is automatically
restricted to the current planning domain and the problem and offered in the
corresponding number of pre-filled combo boxes),

• removing actions,
• modifying actions,
• changing the order of actions in STRIPS plans and start time of action in temporal

plans by drag & drop technique.

Modifications are revertible and are under control by undo manager. Undo
manager waits for performing an undoable (revertible) modification, which is any
of the above. When an undoable change is fired, undo manager clones and saves
both the current plan and verificator state (this includes the constructed layers
of facts, the causal relations among actions, actions’ indexes to layers before
and after application, missing conditions). On the one hand, this approach is
memory consuming, due to the fact that undo manager stores as many plans and
verificator states as the maximal number of possible “undo”s. On the other hand,
the approach is time-saving. Re-verification is not needed to be performed after each
“undo”/“redo.” All the necessary steps include just retrieving previous/next plan and
verificator state plus redrawing the graph based on the retrieved plan. In comparison
with a memory-saving approach, which would save only modifications’ description
and would perform opposing action during “undo”/“redo,” the chosen approach is
easier and more “defect-resistant.” That is because it coherently maintains entire
plans and states.

Besides the already mentioned plan and verificator state, undo manager saves
two more items for user-friendliness and informative purposes. These include id of
an action causing an undoable change (in order to select this action and to adjust

8 Interactive Visualization in Planning and Scheduling 171

view to comprise it) and a string describing the change (in order to print informative
message onto status panel at the bottom of the application).

Modified plans can be saved in the text format to either the same (initially loaded)
file or to a new file (save as).

5 Conclusions

This chapter described three systems for interactive visualization of plans and
schedules. Two systems, iGantt and FlowOpt, are used for scheduling problems and
they demonstrate advanced prototypes demonstrating capabilities when working
interactively with schedules. FlowOpt is in fact a system that supports a complete
development cycle from modeling, through solving (scheduling), till schedule
visualization and analysis. The system can verify the workflow models and auto-
matically repair manually modified schedules with flaws. It shows possible direction
for tools developed for automated planning as the capabilities of tools for planning
are behind those for scheduling problems. The last presented system, VisPlan, is a
research prototype showing the current capabilities for plan visualization. Though
there exist some systems supporting design of planning domain models, as far as we
know, there are no tools supporting verification of models and automated correction
of plans.

Acknowledgments Roman Barták is supported by the Czech Science Foundation under the
project 18-07252S.

References

1. R. Barták, O. Čepek: Nested Precedence Networks with Alternatives: Recognition, Tractability,
and Models. Proceedings of 13th International Conference on Artificial Intelligence: Method-
ology, Systems, and Applications (AIMSA), Varna, Bulgaria, pp. 235–246, 2008.

2. R. Barták, T. Skalický: A local approach to automated correction of violated precedence and
resource constraints in manually altered schedules. Proceedings of Fourth Multidisciplinary
International Scheduling Conference: Theory and Applications (MISTA), Dublin, Ireland,
2009, pp. 507–517, 2009.

3. R. Barták, C. Sheahan, A. Sheahan: MAKAC – A System for Modelling, Optimising, and
Analyzing Production in Small and Medium Enterprises. Proceedings of 38th Conference on
Current Trends in Theory and Practice of Computer Science (SOFSEM), Špindlerův Mlýn,
Czech Republic, pp. 600–611, 2012.

4. R. Barták, M. Jaška, L. Novák, V. Rovenský, T. Skalický, M. Cully, C. Sheahan, T.-T. Dang:
FlowOpt: Bridging the Gap Between Optimization Technology and Manufacturing Planners.
Proceedings of 20th European Conference on Artificial Intelligence (ECAI), Montpellier,
France, pp. 1003–1004, 2012.

5. R. Barták, V. Rovenský: On verification of nested workflows with extra constraints: From
theory to practice. Expert Systems with Applications, Elsevier, Vol. 41(3), pp. 904–918, 2014.

172 R. Barták

6. R. Barták, M. Vlk: Hierarchical Task Model for Resource Failure Recovery in Production
Scheduling. Proceedings of 15th Mexican International Conference on Artificial Intelligence
(MICAI), Cancún, Mexico, pp. 362–378, 2016.

7. P. Brucker: Scheduling algorithms (4. ed.). Springer 2004, pp. I-XII, 1–367.
8. R. Glinský, R. Barták: VisPlan – Interactive Visualisation and Verification of Plans. Proceed-

ings of the ICAPS Workshop on Knowledge Engineering for Planning and Scheduling (KEPS),
pp. 134–138, 2011.

9. R.M. Simpson, D.E. Kitchin, T.L. McCluskey: Planning Domain Definition using GIPO. The
Knowledge Engineering Review 22(2): pp. 117–134, 2007.

10. T. S. Vaquero, J.R. Silva, J.C. Beck: Analyzing Plans and Planners in itSIMPLE3.1. Proceeding
of the ICAPS Workshop on Knowledge Engineering for Planning and Scheduling (KEPS).
Toronto. Canada, pp. 45–52, 2010.

11. O. Hatzi, D. Vrakas, N. Bassiliades, D. Anagnostopoulos, I. Vlahavas. VLEPPO system, A
Visual Programming System for Automated Problem Solving, Expert Systems with Applica-
tions, Elsevier, Vol. 37 (6), pp. 4611–4625, 2010.

Chapter 9
Argument-Based Plan Explanation

Nir Oren, Kees van Deemter, and Wamberto W. Vasconcelos

Abstract We describe a tool for providing explanation of plans to non-technical
users, built on formal argumentation and dialogue theory, and supported by natural
language generation and visualisation technologies. We describe how arguments
can be generated from domain rules, and how justified arguments can be identified
through dialogue, allowing the system to use such a dialogue to explain a plan.
We provide information about our prototype system implementation, discussing its
current limitations, and identifying potential avenues for future research.

1 Introduction

Automated planners have, together with other technologies, enabled autonomous
systems to generate and then execute plans in pursuit of a set of goals with little
or no human intervention. While such plans are often better than those a human
planner can create, there is a reliance on the correct specifying the initial and goal
states, as well as the effects of actions, making such plans brittle in the presence of
exceptional (and unexpected) situations.

There is, therefore, a clear need to be able to verify or validate the correctness of
the plan specification with regards to the current environmental state. Furthermore,
autonomous systems do not operate in isolation, but often form part of a human-
agent team. In such cases, joint plans dictate both human and autonomous system
actions, and mechanisms are required to ensure that humans execute their portion
of the plan correctly. If the human actors trust the correctness of a plan, they are

N. Oren (�) · W. W. Vasconcelos
Computing Science, University of Aberdeen, Aberdeen, UK
e-mail: n.oren@abdn.ac.uk; w.w.vasconcelos@abdn.ac.uk

K. van Deemter
Information & Computing Sciences, University of Utrecht, Utrecht, The Netherlands
e-mail: c.j.vandeemter@uu.nl

© Springer Nature Switzerland AG 2020
M. Vallati, D. Kitchin (eds.), Knowledge Engineering Tools and Techniques
for AI Planning, https://doi.org/10.1007/978-3-030-38561-3_9

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38561-3_9&domain=pdf
mailto:n.oren@abdn.ac.uk
mailto:w.w.vasconcelos@abdn.ac.uk
mailto:c.j.vandeemter@uu.nl
https://doi.org/10.1007/978-3-030-38561-3_9

174 N. Oren et al.

more likely to follow it. One way to engender such trust, which also addresses the
validation and verification problem, is to provide an explanation of the generated
plan.

We argue that plan explanation can serve to improve human trust in a plan. Such
plan explanation can take on several forms. Visual plan explanation [25] presents the
user with a graphical representation of a plan (e.g., with nodes representing actions,
edges providing temporal links between actions, and paths representing different
plans), and allows for different filters to be applied in order to mitigate cognitive
overload. We briefly discuss one instantiation of such techniques in Sect. 4.1.

The second approach for plan explanation that we consider here involves a textual
presentation of the plan in natural language, which is created through interaction
with the user. This dialogue based approach allows a user to ask questions about the
plan or about alternative plans, and understand the reasons why specific planning
steps were selected. By allowing users to guide the dialogue, the information most
relevant to them can be presented, reducing the time needed for them to understand
the selected plan, and militating against information overload. An appropriate
choice of dialogue will also allow a user to provide new information to the system,
allowing re-planning to take place in a natural manner. Our focus in this paper
is on how argument and dialogue can be employed to provide plan explanation.
This second approach builds on argumentation and formal dialogue theory to
select what information to convey. The information is then presented using natural
language through the application of Natural Language Generation (NLG), the area
of Language Technology where algorithms are developed that can automatically
convert “data” into text [11, 23].

The remainder of the chapter is structured as follows. In the next section
we provide a brief overview of formal argumentation and dialogue theory, a
branch of knowledge representation on which our dialogue based approach is built.
Following this, we describe some proof dialogues which can be applied to plan
explanation, before describing a plan explanation application we created as part of
the “Scrutable Autonomous Systems” project.1 In Sect. 5 we discuss related work,
before identifying current and future avenues of research in Sect. 6, and concluding.

2 Argumentation and Dialogue

The process of explanation can be viewed as the provision of a justification for some
conclusion, or equivalently, as advancing some set of arguments which justify the
conclusion. Research in formal argumentation theory has described the nature which
such justification can take, and we build our textual explanations on this theory.
We therefore begin by providing a high-level overview of argumentation, which
underpins our approach to plan explanation.

1Funded by the Engineering and Physical Sciences Research Council (EPSRC, UK), Grant ref.
EP/J012084/1, 2012–2015.

9 Argument-Based Plan Explanation 175

2.1 Abstract Argumentation

Dung’s seminal 1995 paper [9] described how, given a set of arguments and attacks
between them, one could identify which arguments remain justified. Dung did not
consider how arguments were formed, and his approach therefore treats arguments
as atomic entities which are part of an abstract argumentation framework.

Definition 1 (Argumentation Framework [9]) An argumentation framework is a
pair (A,D) where A is a set of arguments, and D : A×A is a binary defeat relation
over arguments.

An abstract argumentation framework can be represented visually as a graph, with
nodes denoting arguments, and edges denoting defeats between them.

An extension is a subset of arguments from within A that is in some sense
justified. Perhaps the simplest requirement for a set of arguments to be justified
is that they do not contradict, or conflict with each other, as modelled via the defeat
relation.

Definition 2 (Conflict Free) Given an argumentation framework (A,D), a set of
arguments A ⊆ A is conflict free if there is no a, b ∈ A such that (a, b) ∈ D.

A slightly stronger criteria for an argument to be justified is that no defeat against
it should succeed. For this to occur, the argument should either not be defeated, or
should be defended from the defeat by some other arguments.

Definition 3 (Defence and Admissibility) Given an argumentation framework
(A,D), an argument a ∈ A is defended by a set of arguments S ⊆ A if, for any
defeat (b, a) ∈ D, it is the case that there is a s ∈ S such that (s, b) ∈ D. A set of
arguments S is then said to be admissible if it is conflict free and if each argument
in S is defended by S.

Building on the notion of admissible arguments, we may define extensions, which
identify discrete groups of arguments that can be considered justified together.

Definition 4 (Extensions) Given an argumentation framework (A,D), a set of
arguments S ⊆ A is a

– complete extension if and only if it is admissible, and every argument which it
defends is within S.

– preferred extension if and only if it is a maximal (with respect to set inclusion)
complete extension.

– grounded extension if and only if it is the minimal (with respect to set inclusion)
complete extension.

– stable extension if it is conflict free and defeats any argument not within it.

While other extensions have been defined (see [2]) for details, these four extensions
capture many of the intuitions regarding what it means for a set of arguments to be
justified.

176 N. Oren et al.

It should be noted that for a given argumentation framework, there will be only
a single unique grounded extension. However, multiple complete and preferred
extensions may exist, as can zero or more stable extensions. An argument is said
to be sceptically accepted under a semantics X if it appears in all X extensions; it is
credulously preferred if it appears in at least one, but not all such extensions.

2.2 Labellings

Labellings [1] provide another approach to computing extensions. A labelling L :
A → {IN, OUT, UNDEC} is a total function mapping each argument to a single
label. Informally, IN denotes that an argument is justified; OUT that it is not, and
UNDEC that its status is uncertain.

Wu et al. [28] among others demonstrated an equivalence between such
labellings and different argumentation semantics. For example, the following
constraints are those required for the arguments labelled IN to be equivalent to
those within a complete extension:

– An argument is labelled IN if and only if all its defeaters are labelled OUT.
– An argument is labelled OUT if and only if at least one of its defeaters is labelled

IN.
– It is labelled UNDEC otherwise.

Maximising the number of UNDEC arguments will result in a labelling which is
equivalent to the grounded semantics while minimising these arguments will yield a
preferred extension. While some argue that labellings are more intuitive (especially
to non-technical audiences) than the standard argumentation semantics, the question
of how a legal labelling can be identified still remains. Several algorithms for
identifying legal labellings have been proposed [17] whose complexity mirrors the
complexity of computing the relevant argumentation semantics.

Proof dialogues, which we discuss in Sect. 3 next, are another technique for
computing an argumentation semantics. As their name implies, such proof dialogues
seek to mirror some form of discussion, building up the elements of an extension
as the dialogue progresses. Before considering proof dialogues, we consider how
arguments are generated.

2.3 From Knowledge to Arguments

While abstract argumentation allows us to identify which arguments are justified,
we must also consider how arguments are generated. In this section we introduce
a simple structured argumentation framework which allows for the construction
of arguments from a knowledge base. The system we consider here is a slight

9 Argument-Based Plan Explanation 177

simplification of ASPIC− [4] which in itself is a variant of ASPIC+ which includes
several simplifications and enables unrestricted rebut, as explained below.

The knowledge base of ASPIC− consists of a set of strict and defeasible rules.
The former encode standard modus ponens, while the latter represent rules whose
conclusions hold by default. We write P → c where P is a set of literals and c is
a literal to denote a strict rule; P ⇒ c encodes a defeasible rule. In both cases, P

are the rule’s premises, and c is the rule’s conclusion. We also assume a preference
ordering ≺ over defeasible rules, and that—given the standard negation operator
¬—the set of strict rules is closed under contraposition. In other words, given a
strict rule a → b in the knowledge base, the rule ¬b → ¬a must also be present.

Arguments are constructed by nesting rules. An argument is made up of a set of
sub-arguments and a single top rule. We can formalise this as follows.

Definition 5 Given a set of rules KB and a set of arguments S, we can construct
an argument A = 〈tr, sa〉 where tr ∈ KB is a rule and sa ⊆ S is a set of
arguments such that if tr is of the form P → c or P ⇒ c, then for every
p ∈ P there is an argument ap ∈ sa whose top rule has conclusion p, and
sa = ⋃{ap} ⋃

sub-arguments of ap.

An argument is said to be strict if its top rule is strict, and all of its sub-arguments
are strict. The final conclusion of an argument is the conclusion of its top rule, while
an argument’s conclusions consist of its final conclusion and the final conclusion of
all its sub-arguments.

An argument (A1) for a simple strict or defeasible fact can be introduced through
a rule with no premises, e.g., A1 :→ rw1. If a second rule R2 : rw1 ⇒ rf

exists, then a second argument A2 : A1 ⇒ rf can be obtained. The top rule of this
latter argument is the R2, while its sub-argument is A1. We illustrate the argument
generation process with a running example.

Example 1 Consider a UAV which has two choices regarding where to land, namely
runway 1 (rw1), or runway 2 (rw2). While it believes it has sufficient fuel to reach
both runways, rw1 is further, meaning it will have to utilise its reserve fuel. However,
given the runway length and weight of surveillance equipment it is carrying, landing
at rw2 is also considered dangerous. The UAV is programmed to prefer dipping
into its fuel reserves over landing on a short runway. This can formally be encoded
through the set of rules shown in Table 9.1. In turn, these rules result in the
arguments shown in Table 9.2.

As in abstract argumentation, arguments interact with each other via attacks.
While ASPIC− considers undercutting attacks (where one rule makes another
inapplicable) as well as rebutting attacks (where the conclusions of a rule are in
conflict with another rule’s premises or conclusions), in this chapter we consider
only the latter type of attack.

Definition 6 Given two arguments A and B, argument A attacks B (via rebut) if
the conclusion of A’s top rule is either

178 N. Oren et al.

Table 9.1 Rules for the UAV
example

Rule Description

R1 ⇒ ¬ow (By default) we are not overweight

R2 ⇒ ¬rf (By default) we are not using
reserve fuel

R3 ⇒ rw1 (By default) we will land at rw1

R4 ⇒ rw2 (By default) we will land at rw2

R5 rw1 → rf Landing at rw1 will use reserve fuel

R6 rw2 → ow Landing at rw2 will cause us to be
overweight

Table 9.2 Arguments
obtained from the rules of
Table 9.1

A0 A13 → ¬rw1 A1 A7 → ¬rw2

A2 A12 → ow A3 A11 → rw1

A4 A3 → rf A5 A13 → ow

A6 ⇒ ¬rf A7 ⇒ rw1

A8 ⇒ ¬ow A9 A6 → ¬rw1

A10 A7 → rf A11 A8 → ¬rw2

A12 A9 → rw2 A13 ⇒ rw2

Fig. 9.1 The attacks
obtained from the UAV
example

– the negation of the conclusion of B’s top rule; or
– the negation of the conclusion of B ′’s top rule where B ′ is a sub-argument of B.

Example 2 Definition 6 applied to the arguments in Table 9.2 results in the
argument graph shown in Fig. 9.1. This argument graph has multiple preferred
extensions, but no grounded extension.

Attacks between arguments reflect inter-argument inconsistencies, but do not
take preferences or priorities between rules into account. Attacks are transformed
into defeats when these priorities are considered. For an argument A, if we denote all
rules used within it (including the rules used within its sub-arguments) as Rules(A),
then such defeats are defined as follows

9 Argument-Based Plan Explanation 179

Fig. 9.2 The argument
framework obtained when
defeats are computed for the
UAV example

Definition 7 Argument A defeats an argument B if A attacks B for all rA ∈
Rules(A), rB ∈ Rules(B), it is the case that rA > rB .

In the above definition, it is assumed that a strict rule is preferred to all defeasible
rules within an argument.

This condition for defeat captures the weakest link principle, computing the
strength of an argument by considering its weakest rule. Furthermore, it complies
with the democratic ordering principle, requiring that a single rule within the
stronger argument be preferred over all rules within the weaker argument. A
discussion of other principles can be found in [18].

Example 3 Figure 9.2 illustrates the abstract argument framework obtained when
defeats are computed for the UAV example. The grounded extension for this argu-
ment framework is {A1, A3, A4, A7, A8, A10, A11}. One can therefore conclude
that the UAV should land on rw1 rather than rw2 while making use of reserve fuel
and not being overweight.

3 Proof Dialogues

While argumentation can be used to identify appropriate arguments which justify
why some plan should be executed, we have not yet considered how such arguments
should be presented to a user. In this section, we describe proof dialogues, which
provide a dialogical approach to justifying arguments. Such a dialogical approach
then naturally provides an explanation as to why an argument (and in turn a plan) is
justified.

Proof dialogues seek to determine the status of a single argument, i.e., whether
it does, or does not appear within an extension according to some semantics (or

180 N. Oren et al.

alternatively what its labelling is). In the remainder of this chapter, we refer to this
single argument as the focal argument. In the process of determining the status of
the focal argument, the status of other arguments may also become apparent.

Since our focus lies in explaining why a plan was executed, we do not care
about what could have been, or could be, but rather what was or is. Within
the Scrutable Autonomous Systems project, we therefore concentrated on single
extension semantics, namely the grounded and—to a lesser extent—sceptically
preferred semantics. Less attention was paid to the latter due to the computational
complexity involved in computing the status of arguments under this semantics
[2, 24].

In this section we revisit the proof dialogue described in [17] for the grounded
semantics, in order to illustrate how such dialogues operate. In the next section, we
then consider more advanced proof dialogues which (we argue) are better able to
provide explanation than this dialogue. We discuss this point further below.

Proof dialogues are usually represented as a discussion between two players, Pro,
who wishes to demonstrate that the focal argument appears within the extension
under the given semantics, and Con, who wishes to demonstrate otherwise.

For an argument to appear within a grounded extension, it must be defended
by other arguments within the extension, but cannot (directly or indirectly) defend
itself. This suggests the following structure for a proof dialogue where Pro and Con
alternate in advancing arguments.

Opening move: Pro introduces the focal argument.
Dialogue moves: If the length of the dialogue is odd (i.e., it is Con’s move)

then Con must introduce an argument that attacks the last argument introduced.
Otherwise, if the length of the dialogue is even (i.e., it is Pro’s move), then Pro
must introduce an argument that attacks the last introduced argument, but cannot
introduce an argument that they have already introduced. If a player cannot make
a move, then the dialogue terminates.

Dialogue termination: The last person to be able to make a move is the winner
of the dialogue.

It has been shown that if an argument is in the grounded extension, then there is a
sequence of arguments that Pro can advance (i.e., a strategy) to win the dialogue.

Perhaps the most significant disadvantage of the dialogue game described above
is that they do not describe how a winning strategy may be found. If such a dialogue
is used for explanation, and a non-winning strategy is used, than the explanation
generated will not be appropriate. We therefore describe an alternative dialogue
game for computing whether a focal argument is in the grounded extension, together
with an appropriate strategy. This dialogue game was originally introduced in [3],
and is referred to as the Grounded Discussion Game, abbreviated GDG.

Participants within the game can make four different moves, defined as fol-
lows.

– HTB(A) stating that “A has to be the case”. This move, made by Pro, claims that
A has to be labelled IN within the legal labelling.

9 Argument-Based Plan Explanation 181

– CB(B) stands for “B can be the case”. This move, made by Con, claims that B

does not necessarily have to be labelled OUT.
– CONCEDE(A) allows Con to agree that A has to be the case.
– RETRACT(B) allows Con to agree that B must be labelled OUT.

The game starts with the proponent making a HTB statement about the focal
argument. In response, Con utters one or more CB, CONCEDE, or RETRACT
statements. Pro makes a further HTB statement in response to a CB move. The
precise conditions for each move are as follows:

– HTB(A) is the first move. Alternatively, the previous move was CB(B), and A

attacks B.
– CB(A) is moved when A attacks the last HTB(B) move made by Pro; A has not

been retracted, and no CONCEDE or RETRACT move is applicable.
– CONCEDE(A) is moved if HTB(A) was moved previously, all attackers of A

have been retracted, and this move was not yet played.
– RETRACT(A) is moved if Con made a CB(A) move in the past which has not

yet been retracted, and A has an attacker B for which the move CONCEDE(B)
was played.

An additional condition is that HT B and CB moves cannot be repeated (to prevent
the dialogue going around in circles), and HTB and CB cannot be played for the
same argument.

Pro wins the game if Con concedes the focal argument while Con wins if they
make a CB move to which Pro cannot respond.

Caminada [3] demonstrates a strategy for this game which is sound and complete
for the grounded semantics. That is, Pro will win the game if and only if the focal
argument is in the grounded extension, and Con will win otherwise.

Example 4 Continuing our running example, a user might question whether the
UAV ends up using reserve fuel (i.e., whether A10 is in the grounded extension).
The dialogue could then proceed as illustrated in Table 9.3.

Comparing Table 9.3 with Fig. 9.2, the primary advantage of proof dialogues
over the standard labelling-based approaches becomes apparent. Proof dialogues
allow for the incremental presentation of arguments which are relevant to the user’s
interests, while ignoring arguments which the user accepts (by not having the user
query such arguments), or are not central to the explanation. By operating in this
way, proof dialogues mitigate against information overload and allow the user to
“drill down” to where the explanation is necessary.

The dialogue above illustrates one weakness of many argumentation based
explanation dialogues, namely that preferences are (normally) treated as meta
features which induce defeats between arguments. The dialogue can therefore
not explain these preferences directly. Techniques for overcoming this issue are
discussed in Sect. 5.

182 N. Oren et al.

Table 9.3 Sample dialogue for the UAV example

Pro HTB(A10) “The UAV uses reserve fuel as it
lands on rw1”

CB(A0) “We know that by default, we can
just land on rw2”

Pro HTB(A3) “But not being overweight means we
must land on runway 1”

Con CONCEDE(A3) “I accept that”

RETRACT(A0) “And that for that reason, we can’t
land on runway 2”

CB(A9) “But could it not be the case that no
reserve fuel is used as it doesn’t land
on rw1”?

CB(A6) “After all, by default, no reserve fuel
is used”

Pro HTB(A4) “But we know that the UAV is not
overweight, and therefore can’t land
on rw2”. Not landing on rw2 means
it lands on rw1, and therefore uses
reserve fuel”

Con CONCEDE(A4) “I accept that line of argument”

RETRACT(A9) “And retract what I said”

RETRACT(A6)

4 Putting it all Together: The SAsSy Demonstrator

Figure 9.3 shows a screenshot of the prototype plan explanation tool developed as
part of the Scrutable Autonomous Systems project. In this section, we provide a
brief overview of this tool, its strengths, and its limitations.

Underpinning the tool were plans expressed as YAML workflows.2 Such work-
flows contain choice points with regards to actions, and decisions as to which action
to pursue were made—by the system—through argument-based reasoning. More
specifically, a domain model made up of strict and defeasible rules was constructed.
From this model, arguments could be generated, and extensions computed. The
conclusions of arguments within the extension then identified which actions should
be selected when choices existed (c.f., the UAV running example).

As illustrated in the screenshot, the tool’s user interface consisted of three main
portions. At the top, a visual display of the plan was shown. A textual summary of
the plan (or portions of the plan) appears on the bottom left, while an area wherein
a user can interact with the system via dialogue appears on the bottom right.

2https://www.commonwl.org/user_guide/.

https://www.commonwl.org/user_guide/

9 Argument-Based Plan Explanation 183

Fig. 9.3 A screenshot from the plan explanation tool

4.1 Plan Visualisation

The plan visualisation window provides a simple view of the plan, showing the
ordering between tasks, actions which can be executed in parallel, and the like.

Actions within a plan are executed by different entities, and may affect various
resources. Different filtering options were provided to the user, allowing them—for
example—to highlight or hide only those actions which affect a specific resource.
In [26], the authors show that such highlighting techniques reduce the number of
errors and improve response times for users of the system when considering small
and medium sized plans. Surprisingly, however, while highlighting relevant portions
of the plan led to improved performance, the hiding of unimportant parts of the plan
did not lead to improved performance by the user. In addition, questions remain as
to whether these results carry through to larger plans than those investigated by [26].

4.2 Natural Language Generation

While plan visualisation using action labels may provide users with important
insight, natural language descriptions of these actions can sometimes be easier
for such users to understand. Such descriptions may be offered in isolation or—
as is often preferable—in addition to graphs, and this is where Natural Language
Generation (NLG) comes in.

184 N. Oren et al.

In some cases, NLG can be accomplished via a simple language realisation
toolkit such as SimpleNLG [12], or using template-based techniques as in [8].
This approach works well for the information in our running example (e.g., the
bottom left window in Fig. 9.3). As the plan is filtered, the summary changes to
reflect only the portions relevant to the user. Similarly, as the plan executes, the
natural language summary describes only the current action to be executed, omitting
irrelevant information.

Complicated tasks such as planning, however, pose difficult additional chal-
lenges, particularly when plans become large (i.e., containing many steps) or
structurally complex (e.g., with choices or parallel paths), in which cases NLG needs
to find suitable ways to summarise what would otherwise become an unwieldy list
of lists. In such cases, the NLG-generated text may start with a high-level summary
saying “This plan consist of a large number of actions, which need to be performed
in parallel,” before going into further detail.

Furthermore, the generator needs to avoid misunderstandings. For example,
the text ”But could it not be the case that no reserve fuel is used as it doesn’t
land on rw1“?” contains some syntactic ambiguities that might be misconstrued.
Misunderstandings are also known to arise when English expressions such as “if ..
then” are employed to express a logical construct such as the material implication
(i.e., the standard “arrow” of FOPL), and finding better alternatives automatically is
not always easy.

Finally, plans are often the result of automated theorem proving, where formulas
in First-Order Predicate Logic (FOPL), or more complicated logics, are manipulated
to find the solution for a planning problem. In these cases, the dialogue needs to
inform the user that some action a was chosen (or that some action b, which the
user may have suggested, is not feasible) because of some logic proposition p.
The problem is that, frequently, the system expresses p in a form that may seem
unwieldy to human users, for instance because of background knowledge that they
possess. (For example, p may say that a crane is at location loc1 and not at location
loc2, where the latter part is redundant because a crane can only be at one location
at a time.) Thus, NLG faces the challenge of having to “optimise” p before any
standard NLG techniques can be applied.

4.3 Dialogue Based Plan Explanation

The bottom right portion of the prototype allows users to interact with the system
through dialogue, asking why the system believes certain facts do, or do not hold.
If a query asks why some conclusion holds, the system initiates a proof dialogue
taking on the role of Pro, while if the user asks why some conclusion does not hold,
then the system takes on the role of Con. A simple domain specific language allows
the user to participate in the dialogue, and arguments are presented to the user as
natural language rather than logical formulae.

9 Argument-Based Plan Explanation 185

The dialogue language also allows the user to assert or delete facts within the
knowledge base, enabling them to update the system with new knowledge. If the
user changes the facts within the knowledge base, the system will determine if any
of its actions need to be changed, and will allow the dialogue to restart. The system
can change the user’s beliefs (by presenting them with justified arguments), and
allows the user to change the system’s beliefs (via assertions and deletions) through
the same natural dialogue based interface.

It should be noted that within the prototype, the grounded persuasion game of [5]
was used as the proof dialogue. However, this latter game is not sound, and—unlike
the proof dialogue described above—does not allow both participants to introduce
arguments, a feature which is undesirable in some instances [3].

5 Discussion and Related Work

This chapter described an argument-based system for explaining plans. The plan-
ning domain was encoded using YAML, and argumentation was used to select
actions where choices existed. Other researchers have described how classical
planning techniques can be recreated using argumentation. For example, [10]
provided an algorithm for performing partial order planning in defeasible logic
programming, while Pardo [20] and others [19] described how dialogue can be
used to perform multi-agent planning. Several researchers [14, 27] have examined
how BDI agent programs (which bear strong similarities to HTN planning) can be
explained via simple dialogues. The focus of this strand of work involves using
argument and dialogue to drive the planning process. The techniques described in
this paper can then be used to explain how the plan was generated, and why other
plans were not selected, by advancing arguments for the plan and demonstrating
attacks against other plans’ arguments.

The focus of this work was on dialogue games for the grounded semantics.
This semantics is sceptical, selecting arguments which—in some sense—must be
justified, and can be contrasted with the preferred semantics, which identify sets
of arguments that could be justified together. In the context of explaining planning,
selecting a sceptical semantics appears correct, as it is only possible to have selected
a single alternative for execution [21]. However, other sceptical semantics do exist,
such as the sceptical preferred semantics, which select those arguments lying in the
intersection of all preferred extensions. It has been argued that this latter semantic
is more natural for humans [22], and dialogue games for identifying the sceptical
preferred extension have been proposed [24]. One downside of this semantics is
however the computational complexity involved in computing it [2], which may
make it unfeasible for large domains.

Argumentation and dialogue appear to be natural techniques for explanation,
and is increasingly being used in the context of explainable AI research [13].
Psychologists have claimed that humans innately reason using argument [15],
while computer scientists have shown that formal argumentation agrees with

186 N. Oren et al.

human intuition [6, 22] in most cases. As future work, we intend to evaluate the
effectiveness of our approach to explaining plans through human experimentation.
In addition, we intend to overcome two of the current limitations of our approach,
namely the meta-logical nature of preferences, and the lack of temporal concepts in
our argumentation system.

One approach to addressing this first limitation could be to use an extended
argumentation system [16] which encodes preferences as arguments. Addressing
the second limitation may be possible through the use of timed argumentation
frameworks [7], which explicitly include temporal concepts. However, both these
systems have been described only in abstract terms, and it will therefore be
necessary to create a structured instantiation of them. Doing so will allow us to
provide more refined explanations about more aspects of the plans. Finally, we will
also consider how explanations can be provided for richer planning languages such
as PDDL.

6 Conclusions

In this chapter we described how plans can be explained through the use of a
dialogue game, where participants take turns to make utterances which are used to
establish whether some argument (and therefore its conclusions) is justified. To use
our technique, domain rules describing the plan must be transformed to arguments,
which we achieved through the use of the ASPIC− formalism. Finally, we described
how these plan visualisation and natural language generation, together with dialogue
based explanation, can be used to create a tool to explain plans to non-technical
users.

While our approach appears promising, a complete evaluation with users is
still required. In addition, it suffers from shortcomings with regards to explaining
preferences and temporal concepts, suggesting a clear path for future work.

Acknowledgements This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC, UK), grant ref. EP/J012084/1 (“Scrutable Autonomous Systems”).

References

1. P. Baroni, M. Caminada, and M. Giacomin. An introduction to argumentation semantics. The
Knowledge Engineering Review, 26(4):365–410, 2011.

2. P. Baroni and M. Giacomin. Semantics of Abstract Argument Systems, pages 25–44. Springer
US, Boston, MA, 2009.

3. M. Caminada. A discussion game for grounded semantics. In International Workshop on
Theory and Applications of Formal Argumentation, pages 59–73. Springer, 2015.

4. M. Caminada, S. Modgil, and N. Oren. Preferences and unrestricted rebut. In Proceedings of
the 2014 conference on Computational Models of Argument, pages 209–220, 2014.

9 Argument-Based Plan Explanation 187

5. M. Caminada and M. Podlaszewski. Grounded semantics as persuasion dialogue. In
Proceedings of the 4th International Conference on Computational Models of Argument
(COMMA 2012), volume 245, pages 478–485. IOS Press, 2012.

6. F. Cerutti, N. Tintarev, and N. Oren. Formal arguments, preferences and natural language
interfaces to humans: an empirical evaluation. In Proc. ECAI, pages 207–212, 2014.

7. M. L. Cobo, D. C. Martínez, and G. R. Simari. On admissibility in timed abstract
argumentation frameworks. In ECAI, volume 215, pages 1007–1008, 2010.

8. K. V. Deemter, M. Theune, and E. Krahmer. Real versus template-based natural language
generation: A false opposition? Computational Linguistics, 31(1):15–24, 2005.

9. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–357,
1995.

10. D. R. García, A. J. García, and G. R. Simari. Defeasible reasoning and partial order planning.
In Proceedings of the 5th International Conference on Foundations of Information and
Knowledge Systems, FoIKS’08, pages 311–328, Berlin, Heidelberg, 2008. Springer-Verlag.

11. A. Gatt and E. Krahmer. Survey of the state of the art in natural language generation: Core
tasks, applications and evaluation. Journal of Artificial Intelligence Research, 61:65–170,
2018.

12. A. Gatt and E. Reiter. SimpleNLG: A realisation engine for practical applications. In
Proceedings of the 12th European Workshop on Natural Language Generation (ENLG 2009),
pages 90–93, 2009.

13. D. Gunning, Explainable artificial intelligence (XAI). Defense Advanced Research Projects
Agency, DARPA/I20, (DARPA, 2017).

14. V. Koeman, L. A. Dennis, M. Webster, M. Fisher, and K. Hindriks. The “Why did you do that?”
Button: Answering Why-questions for end users of Robotic Systems. In Proceedings of the 7th
International Workshop in Engineering Multi-Agent Systems, Montreal, Canada, 2019.

15. H. Mercier and D. Sperber. The enigma of reason. Harvard University Press, 2017.
16. S. Modgil. Reasoning about preferences in argumentation frameworks. Artificial Intelligence,

173(9–10):901–934, 2009.
17. S. Modgil and M. Caminada. Proof Theories and Algorithms for Abstract Argumentation

Frameworks, chapter 6. Springer, 2009.
18. S. Modgil and H. Prakken. The ASPIC+ framework for structured argumentation: a tutorial.

Argument and Computation, 5(1):31–62, 2014.
19. S. Pajares and E. Onaindia. Temporal defeasible argumentation in multi-agent planning. In

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence -
Volume Three, IJCAI’11, pages 2834–2835. AAAI Press, 2011.

20. P. Pardo, S. Pajares, E. Onaindia, L. Godo, and P. Dellunde. Multiagent argumentation for
cooperative planning in DeLP-POP. In The 10th International Conference on Autonomous
Agents and Multiagent Systems-Volume 3, pages 971–978. International Foundation for
Autonomous Agents and Multiagent Systems, 2011.

21. H. Prakken. Combining sceptical epistemic reasoning with credulous practical reasoning.
COMMA, 144:311–322, 2006.

22. I. Rahwan, I. Madakkatel, M., J. Bonnefon, R. N. Awan, and S. Abdallah. Behavioral
experiments for assessing the abstract argumentation semantics of reinstatement. Cognitive
Science, 34(8):1483–1502, 2010.

23. E. Reiter and R. Dale. Building applied natural language generation systems. Natural
Language Engineering, 3(1):57–87, 1997.

24. Z. Shams and N. Oren. A two-phase dialogue game for skeptical preferred semantics. In
JELIA, volume 10021 of Lecture Notes in Computer Science, pages 570–576, 2016.

25. N. Tintarev, R. Kutlak, J. Masthoff, K. Van Deemter, N. Oren, and W. W. Vasconcelos.
Adaptive visualization of plans. In UMAP Workshops, 2014.

26. N. Tintarev and J. Masthoff. Effects of individual differences in working memory on plan
presentational choices. Frontiers in Psychology, 7:1793, 2016.

188 N. Oren et al.

27. M. Winikoff. Debugging agent programs with why? Questions. In Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems, pages 251–259. International
Foundation for Autonomous Agents and Multiagent Systems, 2017.

28. Y. Wu, M. Caminada, and M. Podlaszewski. A labelling-based justification status of arguments.
Studies in Logic, 3(4):12–29, 2010.

Chapter 10
Interactive Planning-Based Hypothesis
Generation with LTS++
Shirin Sohrabi, Octavian Udrea, Anton Riabov, and Oktie Hassanzadeh

Abstract We present LTS++, an interactive development environment for
planning-based hypothesis generation motivated by applications that require
multiple hypotheses to be generated in order to reason about the observations.
Our system uses expert knowledge and AI planning to reason about possibly
incomplete, noisy, or inconsistent observations derived from data by a set of
analytics, and generates plausible and consistent hypotheses about the state of the
world. Planning-based reasoning is enabled by knowledge models obtained from
domain experts that describe entities in the world, their states, and relationship to
observations. To address the knowledge engineering challenge, we have developed
a language, also called LTS++ that allows the domain expert to specify the
state transition model and encoding of the observations without any knowledge
of AI planning or existing planning languages (i.e., PDDL). LTS++ integrated
development environment facilitates model testing and debugging, generating, and
visualizing multiple hypotheses for user-provided observations, and supports model
deployment for online observation processing, publishing generated hypotheses for
analysis by experts or other systems. To compute hypotheses we use an efficient
planner that finds a set of high-quality plans. We experimentally evaluate our
planning algorithm and conduct empirical evaluation to demonstrate the feasibility
of our approach and the benefits of using planning-based reasoning. In this chapter
we focus on describing the modeling and the knowledge engineering challenges of
our system.

S. Sohrabi (�) · O. Udrea · O. Hassanzadeh
IBM Research, Yorktown Heights, NY, USA
e-mail: ssohrab@us.ibm.com; udrea@us.ibm.com; hassanzadeh@us.ibm.com

A. Riabov
Logitech Inc., Newark, CA, USA
e-mail: ariabov@logitech.com

© Springer Nature Switzerland AG 2020
M. Vallati, D. Kitchin (eds.), Knowledge Engineering Tools and Techniques
for AI Planning, https://doi.org/10.1007/978-3-030-38561-3_10

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38561-3_10&domain=pdf
mailto:ssohrab@us.ibm.com
mailto:udrea@us.ibm.com
mailto:hassanzadeh@us.ibm.com
mailto:ariabov@logitech.com
https://doi.org/10.1007/978-3-030-38561-3_10

190 S. Sohrabi et al.

1 Introduction and Motivation

The set of planning-based tools, collectively called LTS++, address the hypothesis
generation problem that arises in applications that require multiple hypotheses to be
generated in order to reason about possibly incomplete or inconsistent sequences
of observations received from external sources. For example, when analyzing
observations derived from sensor data in intensive care, the goal can be to generate
plausible hypotheses about the condition of the patient. The resulting hypotheses
can then be further refined and analyzed to create a recovery plan for the patient.
In another application, decisions aimed to prevent malware spread in computer
networks can be based on hypotheses about change in behavior of individual hosts
generated by reasoning about observations of network traffic over time.

The core idea of the approach to planning-based hypothesis generation we
implement in LTS++ is the following. Modeling the hypothesis generation problem
as one of inferring a sequence of state transitions from a sequence of observations
and transforming the sequence of observations together with the state transition
model into a planning task. In particular, we extend the work of Sohrabi et al.,
[19] to address unreliable observations and generate multiple near-optimal lowest-
cost plans, mapping the generated plans to hypotheses [17, 27]. This mapping
ensures that lower cost plans are mapped to more plausible hypotheses; hence,
finding a number of lowest-cost plans results in the same number of most plausible
hypotheses.

Our LTS++ implementation uses an efficient planner that finds top-k plans, i.e.,
k plans such that no valid plans with lower cost exist [11, 16, 24]. We have evaluated
several algorithms for this purpose, and currently use the k-shortest path algorithm
K∗ [1]. More details can be found in [16].

Knowledge engineering requirements come to the forefront in designing a system
like LTS++, where domain knowledge is encoded and maintained directly by the
domain experts, such as clinicians or network security engineers. To address these
requirements, we developed the LTS++ language that allows the domain experts to
easily describe the state transition models and observations specific to their domain,
without requiring the experts to learn about the underlying planning technologies
or Planning Domain Definition Language (PDDL) [13]. The LTS++ browser-
based Integrated Development Environment (IDE) includes an editor with syntax
highlighting and static error checking, as well as integrated tools for interactive
model testing and debugging, generating, and visualizing multiple hypotheses for
user-provided observations. Models created in the IDE can then be deployed to
LTS++ servers to generate hypotheses automatically as observations are received,
generating alerts based on hypotheses for further analysis by experts or other
systems.

We build upon a significant body of prior research. While expert judgment is the
primary method used for generating hypotheses and evaluating their plausibility,
automated methods have been proposed, to assist the expert, and help improve
accuracy and scalability. Notably, model-based diagnosis methods can determine

10 Interactive Planning-Based Hypothesis Generation with LTS++ 191

whether observations can be explained by a model (e.g., [3]). Also, several
researchers have proposed use of automated planning technology to address several
related classes of problems including diagnosis (e.g., [7, 18]), plan recognition (e.g.,
[14, 15, 22]), and finding excuses [5]. These problems share a common goal of
finding a sequence of actions that can explain the set of observations given the
model-based description of the system. However, most of the existing literature
makes an assumption that the observations are reliable and should all be explainable
according to the model. But that is not true in general; as a further complication, we
cannot assume the system model is complete. The hypothesis generation approach
we propose handles the unreliable observations and incomplete models by offering
multiple alternative hypotheses explaining each given observation sequence. Our
LTS++ tool automates the generation and evaluation of hypotheses in addition
to addressing the knowledge engineering challenges of encoding and maintaining
models.

While we have performed experimental evaluation and conducted empirical
evaluation to demonstrate the feasibility of our approach and the benefits of using
planning-based reasoning, in this chapter, we focus on describing the modeling and
the knowledge engineering challenges of our system. In particular, in Sect. 2, we
describe our two applications, early detection of complications in ICU and early
detection of malware in computer networks. In Sect. 3, we describe the hypothesis
generation problem and its relationship to planning. In Sect. 4, we describe our
proposed language LTS++ and its main elements as well as its relationship to a
planning problem. We will then discuss the LTS++ IDE and provide a number of
example hypotheses in Sect. 5. We will conclude with a discussion of related work
and summary.

2 Application Description

In this section we describe two real-world applications that motivate our approach:
the early detection of patient complications in Intensive Care Units (ICUs) and
suspicious behavior of hosts (computers) in computer networks. A key characteristic
of these applications is that the true state of monitored patients, network hosts,
or other entities, while essential for timely detection and prevention of critical
conditions, is not directly observable. Furthermore, there are several ways of
analyzing the raw data to create observations about the entity, and there are
multiple potentially ambiguous observations, each of which can have differing
interpretations. We must then analyze the sequence of available observations to
reconstruct or estimate the entity state, and use that to drive further analysis or take
specific actions. To make this possible, our approach relies on a model of the entity
consisting of states, transitions between states, and a many-to-many correspondence
between states, observations, and actions. The model is a representation of the
knowledge a domain expert uses to perform the corresponding monitoring and

192 S. Sohrabi et al.

Fig. 10.1 Patient complication detection

diagnosis task. We next describe two real-world models for patient monitoring and
cybersecurity analysis derived from experts, and the encoded LTS++ language.

To help describe the patient monitoring application, we describe a state transition
model that was drawn by talking with neuro ICU physicians from the Columbia
University Neurological unit. Figure 10.1 shows this state transition model. The
states have types, good drawn with a green outline or bad, drawn with an orange or
red outline. Each state has a name, and has associated observations that it explains,
and actions that it triggers. Note, these actions are analytic actions not to be confused
with planning actions. In the figure, the bad states correspond to critical states of a
patient such as Infection, DCI, Infarction, or sometimes even a terminal state such
as Death. The good states are the non-critical states. Upon admission the patient is
classified as either in Lowrisk or in Highrisk. From a Highrisk state, they may get
to the Infection, Infarction, or the DCI state through intermediate precomplication
states. These intermediate states represent states where some clinical signals are
present, but before the appearance of definitive symptoms. The patient’s condition
may improve; hence, the patient’s state may move back to the Lowrisk state from for
example the Infection state, based on interventions that the physicians can perform.

Observations in the model are computed from raw data captured by patient
monitoring devices (e.g., the patient’s blood pressure, heart rate, temperature) as
well as other measurements and computations provided by doctors and nurses. In
the figure, a subset of all possible observations is shown in light rectangular boxes—
attached to the state that explains them. Examples of observations include measures
computed from physiological parameters, such as the Systemic Inflammatory
Response Syndrome (SIRS) score, may be provided by doctors, such the Hunt and
Hess score (HH), and may be the result of performing lab-tests on the patient, such
as LabTestBacteria+ (positive test for Bacteria). As is shown, the same observation

10 Interactive Planning-Based Hypothesis Generation with LTS++ 193

Fig. 10.2 Malware detection

can have multiple interpretations. For instance, the patient may have a SIRS score 3
or 4 both in Highrisk as well as in Infection state. Also shown in the figure—within
the shaded parallelograms—are corresponding actions that may be taken when the
patient is identified to be in that state. For instance, when the patient is estimated to
be in the Precomplication state, it is recommended to look at similarity with other
patients to further diagnose the patient’s condition. Such similarity can be computed
using different analytics. Alternately, when the patient is identified as being in a
complication state, the actions can correspond to interventions that the physicians
need to perform, e.g., Perform Pupil Test.

Figure 10.2 shows a state transition model for network host (entity) monitoring in
a computer network. This model is derived through consultation with cybersecurity
and network monitoring analysts. Bad states in this model correspond to the
malware lifecycle, with the host becoming infected with malware. These states
include the Infection and Exploit states shown in the figure. Good states include
states associated within the normal modes of operation of a host such as Crawling,
Normal, Serving (server behavior), etc. There are also intermediate states that are
not completely indicative of infection, but may be pre-cursors to bad states. These
include the Anomalous and Pre-Infected states. Observations for this model are
computed from the raw network traffic, including measurements from Domain
Name System (DNS) queries, from Netflow measurements, and from Firewall alerts,
as well as looking at the network behavior of the hosts. As with the ICU model the
same observation of High Number of DNS Queries may be associated with either
Anomalous behavior for end-user machines or Crawling behavior. Actions in this
case represent analytic tasks, such as Analyze Network History to identify how a
machine got infected, or physical tasks, such as Quarantine Host when the host is
identified as being in the Exploit state.

While the complexity of the analysis involved to derive observations from the
raw data can vary, it is important to note that observations, in both cases described
earlier, are by nature unreliable:

194 S. Sohrabi et al.

The Set of Observations Can Be Incomplete Operational constraints will prevent us
running in-depth analysis on all of the data all the time. However, observations are
typically time stamped, and can be temporally ordered.

Observations May Be Ambiguous This is depicted in multiple examples in
Figs. 10.1 and 10.2, where the same observation may be explained by many states.

Not All Observations Are Explainable, Given Other Observations There are several
reasons while some observations may remain unexplained: (1) observations are
(sometimes weak) indicators of a behavior, rather than authoritative measurements;
(2) the model description is by necessity incomplete, unless we are able to design
a perfect model; (3) in the case of malware detection, malware could try to confuse
detectors by either hiding in normal traffic patterns or originating extra traffic.

For instance, consider the cybersecurity model, and a sequence of observations:
Monitoring On, High DNS Queries. This can be explained by the following state
sequences:

• Normal → Misconfigured
• Normal → Anomalous → Misconfigured
• Normal → Misconfigured
• Normal → Anomalous → Crawling

and other observations are required to disambiguate these states. Some of these
may be pre-cursors to infection (e.g., Anomalous) and so require careful analysis.
Given a sequence of observations and the model, the hypothesis generation task
infers a number of plausible hypotheses about the evolution of the entity. In
practice this requires a high degree of human skill to perform. By encoding
domain knowledge using a simple model of the form described, and coupling
with an automated technique that allows for incomplete state transition models,
and unreliable observations, we can provide action decision support to human
experts. The result of our automated technique is presented as recommendations
to physicians or network analysts, or may be used automatically to drive additional
analyses.

3 Hypothesis Generation Problem

In this section, we formally define the hypothesis generation problem. To do so, we
first define a dynamical system that can model the system behavior. We then define
a notion of a hypothesis and hypothesis “plausibility.”

A dynamical system is a tuple Σ = (F,A, I), where F is a finite set of fluent
symbols, A is a set of actions, and I ⊆ F defines the initial state. Actions are defined
by their precondition and effects, over the set of fluents F . The set of actions A

includes both actions that account for the possible transitions in the model as well as
the discard actions, one per each observation o with precondition ¬o and no effect.
The “discard’ actions to simulate the “explanation” of an unexplained observation.

10 Interactive Planning-Based Hypothesis Generation with LTS++ 195

That is, the instances of the discard action add transitions to the system that account
for leaving an observation unexplained. The added transitions by the discard action
help us define the satisfaction of observations as we will discuss next.

A system state s is a set of fluents which defines all that is true in a particular
state of a dynamical system. For a state s, let Ms : F → {true, f alse} be a truth
assignment that assigns true to f if f ∈ s and f alse otherwise. An action a is
executable in a state s if all of its preconditions are met by the state s or Ms |= c for
every c in the precondition of a. We define the successor state as δ(a, s) = (s\ delete
effects of a) ∪ (add effects of action a) for the executable actions. The sequence of
actions [a1, . . . , an] is executable in s if the state s′ = δ(an, δ(an−1, . . . , δ(a1, s)))

is defined; henceforth, is executable in Σ if it is executable from the initial state.
Let T ⊆ F be the set of fluents that are observable. An observation is a fluent

in T . Observation formula ϕ or what we call a trace is a sequence of observations.
While in general the observation formula ϕ can be expressed as an Linear Temporal
Logic (LTL) formula [4], we consider the trace ϕ to have the form ϕ = [o1, . . . , om],
where oi ∈ T , with the following standard LTL interpretation1:

o1 ∧ ©♦(o2 ∧ ©♦(o3 . . . (on−1 ∧ ©♦on) . . .))

Note that the observations are totally ordered in the above formula. It is typical
for the applications we consider to have observations that are timestamps and hence
are considered to be totally ordered.

Intuitively, not all observations can be explained; hence, we define the notion of
satisfaction of a trace which considers an observation satisfied if it is explained or
discarded as long as the order of which observations are considered is met by the
action sequence. More formally, we define the satisfaction of a trace ϕ by an action
sequence π in Σ as follows.

Definition 1 A trace ϕ = [o1, . . . , om] is satisfied by an action sequence π =
[a1, . . . , an] if π is executable from the initial state and there is a non-decreasing
function f that maps the observation indices j = 1, . . . , m into action indices i =
1, . . . , n, such that for all 0 ≤ j ≤ m, either oj ∈ s, where s is the state reached
after execution of action af (j), or discardoj

= af (j)

Consider the following set of actions: Ao1 with effect o1, Ao2 with effect o2,
Ao3 with effects o2 and o3, and action Ao4 with effects o1, o2, and o4. Then the
trace [o1, o2] is satisfied by action sequence [Ao1, Ao2] (f (1) = 1, f (2) = 2),
[Ao4] (f (1) = 1, f (2) = 1),[discardo1 , Ao2] (f (1) = 1, f (2) = 2), but not
by the action sequence [Ao2, discardo1] or [Ao1, discardo1]. This is because the
order of observation must be met by the function f . No such function would exist
for [Ao2, discardo1]. Additionally, an action may explain multiple observation. For
example, action Ao4 explains both o1 and o2; hence, the function f maps both
observations to the same action index.

1© is a symbol for next, ♦ is a symbol for eventually.

196 S. Sohrabi et al.

Definition 2 Given the dynamical system description Σ = (F,A, I), and a trace
ϕ = [o1, . . . , om], an observation oi ∈ ϕ is said to be ambiguous if there are at
least two actions in A that have the fluent oi as part of their effects. Further, if ϕ

is satisfied by an action sequence π = [a1, . . . an], an observation o is said to be
missing from the trace if (1) o is observable (i.e., o ∈ T); (2) o /∈ ϕ; and (3) o is part
of an effect of at least one action ai in the action sequence π , and o ∈ ϕ is said to be
noisy if o is never added by any of the actions ai ∈ π .

According to the above definition, observation o1 is ambiguous because both
action Ao1 and action Ao4 may explain it. Also given a trace ϕ = [o1, o2], ϕ is
satisfied by the action sequence [Ao1, Ao3] and in that case, observation o3 is said
to be missing from the trace ϕ because o3 is part of the effect of Ao3 , but not
in the given trace. Furthermore, o1 is said to be noisy given the action sequence
[discardo1, Ao2] because o1 is not added by any of the actions in the plan.

A hypothesis is the sequence of actions that explains the given trace. In the case
of unreliable observations, a hypothesis may not explain all the observations by
discarding some. Hence, we use our definition of a trace satisfied by an action
sequence to formally define a hypothesis as follows.

Definition 3 Hypothesis generation problem is a tuple HG = (Σ = (F,A, I), ϕ),
where Σ is a dynamical system and ϕ is the given trace. A hypothesis for HG is a
sequence of actions π = [a1, . . . , an], 1 ≤ i ≤ n, ai ∈ A such that the trace ϕ is
satisfied by the sequence of actions π .

Given a trace, there are many possible hypotheses, but some could be stated as
more plausible than others. Hence, we define a notion of plausibility of a hypothesis.
A hypothesis π is said to be at least as plausible as hypothesis π ′, stated as π � π ′,
where � is assumed to be a reflexive and transitive plausibility relation.

Definition 4 Given a hypothesis generation problem HG = (Σ = (F,A, I), ϕ), π
is the most plausible hypothesis for HG if and only if π is a hypothesis for HG and
there does not exists another hypothesis π ′ for HG such that π ′ is more plausible
or π ′ � π and π �� π ′.

Next, we define a few cases for the notion of plausibility between hypothesis. A
hypothesis π is at least as plausible as hypothesis π ′, π � π ′, if one or more of the
following statements hold: π can explain more observations than π ′, π is a shorter
hypothesis, π has minimum number of designated “unlikely” or “bad” actions. The
third criteria is similar to the notion of minimum number of “faulty” actions in a
diagnostic setting, based on having an optimistic view on what can go wrong.

Back to our example, the hypothesis [Ao4] is more plausible than for example,
[Ao1, Ao2] because it is shorter, and the hypothesis [Ao1 , Ao2] is more plausible
than the hypothesis [discardo1 , Ao3] because it explains both observations. The
third criteria is similar to the notion of minimum number of “faulty” actions in a
diagnostic setting, based on having an optimistic view on what can go wrong. Note
that a hypothesis may be shorter but have more discard actions or more unlikely

10 Interactive Planning-Based Hypothesis Generation with LTS++ 197

actions. We address combining the above plausibility relations using numerical cost
values of the underlining planning domain. Therefore, plans with smaller costs are
more plausible.

4 Model Description in LTS++

In this section, we will describe our proposed language LTS++, derived from LTS
(Labeled Transition System) [12] that can be used to define the domain knowledge
by a domain expert. As described in the application section, encoding the domain
knowledge is itself a challenge specially if the domain expert is not familiar with AI
planning. Hence, we also discuss our knowledge engineering effort that can guide
the domain expert in describing their knowledge about a particular application.
This knowledge is implicitly the same knowledge captured theoretically by the
dynamical system. Furthermore, the LTS++ model description together with a trace
encodes the hypothesis generation problem we are trying to solve.

Note, LTS++ does not have a full expressive power of PDDL since it encodes
state transitions in a simple “next-state” predicate model. A PDDL encoding allows
encoding of richer actions with preconditions and effects. Hence, while we can
express the LTS++ language into PDDL, we cannot go from a PDDL encoding
of the domain to the LTS++ encoding.

We propose a process that further helps the domain experts in creating a model.
Figure 10.3 shows our 7-step creation process for an LTS++ model. The arrows are
intended to indicate the most typical transitions between steps. This process is meant
to help provide guidance to the new users in developing an LTS++ model. While
this process is geared towards our applications, we believe that it also provides
insight and inspiration into creation of a practical planning problem. Next, we will
describe the basic elements in the description of a model in LTS++ following the
steps in the model creation process.

1. Entity: The domain expert needs to identify the entity which is what the system
monitors. This depends on the objective of the hypotheses generator, the available

Step 6:
Identify
Initial
State

Step 3: Identify
Observations

Step 2:
Identify
States

Step 4: Identify
Transitions
Between States

Step 1:
Identify
the Entity

Step 5: Identify
Relationship
between States
& Observations

Step 7:
Identify
State
Types

Fig. 10.3 Process for LTS++ model creation

198 S. Sohrabi et al.

data, and the available actions. The entity could be a patient or a host or other
objects in the application.

2. States: The domain expert needs to identify the possible states of the entity
(different from a planning state). States are not directly observable but can
be hypothesized. The states of patient for example could be Delayed Cerebral
Ischemia (DCI), SuspectedDCI, Infection, Precomplication or Highrisk. The
states could form a hierarchy, in which case all non-child states are called
hyperstates. For example, there could be multiple precomplication states, each a
child of Precomplication hyperstate. Designating a state as a hyperstate is useful
when it comes to modeling incomplete model and unreliable observations. For
example, if a transition through one or several states of the hyperstate is required,
but no specific observation is associated with the transition, the hyperstate itself is
included as part of the hypothesis, indicating that the model may have a missing
state within the hyperstate, and that state in turn may need a new observation
type associated with it.

3. Observations: The domain experts need to identify a set of observation types that
the system needs to reason about. Since observations are received from analytics
as a result of analyzing raw data, the available data and analytics may limit the
space of observations. Heart Rate Variability Low (OHRVL), is an example of an
observation. It is important to note that observations are by nature unreliable: the
set of observations will be incomplete, observations may be ambiguous, and not
all observation will be explainable.

4. State Transitions: The domain expert has to describe possible transitions
between states. An example transition is going from state Infection to Highrisk.
This transition reflects an improvement in patient state, without describing the
cause of this transition. Enumerating all possible transitions may be a tedious
task, depending on the number of states. However, one can use hyperstates to help
manage these transitions. Any transition into (or out of) a hyperstate is carried to
every child of the hyperstate.

5. Association between States and Observations: The domain expert has to
associate observations to states meaning that this observation can be explained
by this state. Note, this association can be many-to-many as observations could
be ambiguous or indicative of more than one state, and each state can be
associated with multiple observations. The observation OHRVL is an example
of an ambiguous observation because it can be associated with multiple states.
Note we add “O” to the observation as a convention.

6. Initial State: The domain expert can also define the initial state if the initial state
is known. For example in the case of healthcare, the initial state can be the state
Admitted.

7. State Types: States could also have types such as, unlikely, or “bad” states. This
maps to the notion of “faulty” or “unlikely” planning actions.

Figure 10.4 shows an LTS++ model description for our healthcare application.
The states are shown in blue. The observations are specified within the curly
brackets and are shown in green. Multiple observations can be separated by

10 Interactive Planning-Based Hypothesis Generation with LTS++ 199

Fig. 10.4 Healthcare model description in LTS++

whitespace or a comma. The state types are specified within angle brackets with a
default state type shown in the first line. The transitions between states are specified
using arrows. Multiple transitions between states can be specified using a vertical
bar. The starting state is specified in the last line.

The knowledge encoded in the LTS++ model is implicitly the same knowledge
in the theory of the dynamical system. Informally, each state can be thought of
as a label for a subset of planning states of interest and therefore be modeled
using a special fluent such as “(at-state).” Each observation belongs to the set T of
observable fluents. The state transitions together with the relationship between states
and observations define the set of actions A such that the specified state transition
is ensured and the observations are part of the effect of the actions. The initial
state can also map directly to I . The state types can also map to fluents. Hence,
the hypothesis generation problem can now be captures using the LTS++ model
description together with a provided trace.

4.1 From LTS++ to a Planning Problem in PDDL

In this section, we describe the planning problem using one fixed encoding of the
planning domain, (i.e., description of planning actions, predicates), but varied the
planning problem/instance (i.e., initial state, goal state, and variables) based on the
given LTS++ model and the given observations. The planning domain is shown in
Fig. 10.5 and the planning problem is shown in Fig. 10.6.

The planning domain in Planning Domain Definition Language (PDDL) [13]
includes a total of 6 actions. In short, we use two phases, state transitions
and explaining or discarding observations and switch between these two using
the “ready” predicate. Each transition is followed by either explaining, explain-

200 S. Sohrabi et al.

(:action explain-observation
:parameters(?x - state ?obs1 - obs ?obs2 - obs ?cat - obs-type)
:precondition (and (is-next-obs ?obs1 ?obs2)(matches ?obs1 ?cat)

(explains ?x ?cat)(at-state ?x)(at-obs ?obs1))
:effect (and (not (at-obs ?obs1)) (at-obs ?obs2) (ready)

(increase (total-cost) 0)))

(:action discard-observation
:parameters(?x - state ?obs1 - obs ?obs2 - obs)
:precondition (and (is-next-obs ?obs1 ?obs2)(at-state ?x)(at-obs ?obs1))
:effect (and (not (at-obs ?obs1))(at-obs ?obs2)(ready)

(increase (total-cost) 2000)))

(:action state-change
:parameters(?x - state ?y - state ?obs - obs)
:precondition (and (is-next-state ?x ?y)(at-obs ?obs)(at-state ?x)(ready))
:effect (and (not (at-state ?x))(not (ready))(entering-state ?y)

(increase (total-cost) 0)))

(:action enter-state-good
:parameters(?y - state ?obs - obs)
:precondition (and (at-obs ?obs) (entering-state ?y) (good-state ?y))
:effect (and (at-state ?y)(not (entering-state ?y))

(increase (total-cost) 1)))

(:action enter-state-bad
:parameters(?y - state ?obs - obs)
:precondition (and (at-obs ?obs)(entering-state ?y)(bad-state ?y))
:effect (and (at-state ?y)(not (entering-state ?y))

(increase (total-cost) 10)))

(:action allow-unobserved
:parameters(?x - state ?obs - obs)
:precondition (and (at-obs ?obs)(at-state ?x))
:effect (and (ready)(increase (total-cost) 1100)))

Fig. 10.5 Partial encoding of our sample PDDL domain

(:init
(at-state admitted) (at-obs o_1)(ready)

(matches o_1 OHH1)(matches o_2 OSIRS0)(matches o_3 OSIRS2)

(explains lowrisk OSIRS0) (explains highrisk OSIRS2)
(explains precomp OSIRS2) (explains lowrisk OHH1)
(explains dci OANGIOGRAMDCIPOSITIVE)
(explains highrisk OHRVL) (explains precomp OHRVL)

(is-next-state admitted highrisk) (is-next-state admitted lowrisk)
(is-next-state lowrisk highrisk) (is-next-state highrisk lowrisk)
(is-next-state highrisk precomp) (is-next-state dci highrisk)
(is-next-state dci icudeath) (is-next-state dci precomp)

(bad-state dci) (bad-state highrisk) (good-state lowrisk)

(is-next-obs o_1 o_2)(is-next-obs o_2 o_3) (is-next-obs o_3 o_end))

(:goal (and (at-obs o_end) (ready)))

Fig. 10.6 Partial encoding of our sample PDDL problem for the intensive care application

10 Interactive Planning-Based Hypothesis Generation with LTS++ 201

observation, or discarding, discard-observation, an observation or moving to the
next state transition without explaining or discarding any observation, allow-
unobserved which is useful in order to allow missing observations. The explain
action has a cost of 0, the discard-observation action has a high cost (e.g., 2000),
and the unobserved transition has a cost of 1100 in this encoding. These numbers
were set arbitrary here to show the relative comparison between the different costs
set for each different action. In practice these numbers can be learned from data but
we found that the number we used modeled the behavior as expected.

The predicates “is-next-obs,” and “at-obs” are used to keep track of observation
order. Observation categories (i.e., ?cat) defines the possible observations in the
domain. The predicate “matches” together with the “is-next-obs” defines the
current trace or the sequence of observation. The predicate “explains” is used
to connect states and observations; “(explains ?x ?cat)” means that state ?x can
explain observation of category ?cat. The action explain-observation can explain
an observation if the resulting state can explain the observation category of the
observation in the trace.

We also had one action, state-change that represents the transitions defined by
the actions A. This action had a cost of 0 and the predicate “is-next-state” is used to
encode the transitions between states. Two additional actions, enter-state-good and
enter-state-bad, are used to associate different costs for good and bad states. The
predicates “(bad-state)” and “(good-states)” are used to define the good and bad
states in the problem. We used a cost of 1 for good states and a cost of 10 for bad
states.

This encoding of the domain allowed us to automatically generate multiple
problem sets that include different number of observations as well as different tran-
sitions. Partial encoding of our sample PDDL problem is shown in Fig. 10.6. This
encoding matches our LTS++ description shown in Fig. 10.4 with the following
trace [OHH1, OSIRS0, OSIRS2]. The initial state is a special state ‘admitted’ with
transitions to highrisk and lowrisk states. The goal state is encoded by two predicates
“(ready)” and the “(at-obs o_end)” predicate to ensure the last observation is
considered. The last observation is only considered if all other observations are
considered in the order in which they are given.

Theorem 1 Let P ′ be a planning problem constructed as above for a given LTS++
model and a trace ϕ and HG be the corresponding hypotheses generation problem;
HG has only state transition actions in which observations are part of their effects
and the discard actions. If π is a plan for P ′ then there exists a hypotheses π ′ for
HG that can be constructed from π by considering only the state transition actions
and the discard actions. On the other hand, if π ′ is a hypotheses for HG, then there
exists a plan π for P ′ that can be constructed from π ′ by adding the extra actions
explain, enter, and allow-unobserved and by modifying the state transition action.

Proof If π is a plan for P ′, therefore it is executable from the initial state and the
goal is satisfied; each observation is either explained or discarded and the ordering is
preserved. Therefore, there is a non-decreasing function that maps the observation
indices into the action indices: if the observation is satisfied it maps to the state-

202 S. Sohrabi et al.

change action and if it is discarded, it maps to the “discard” action. Therefore, if
only the state transition and discard actions are kept, then the trace is still satisfied.
If the state-change action is modified to include the observation fluent as part of its
effect, then this is a hypotheses for HG. On the other hand, if π ′ is a hypothesis for
HG, then we can add the extra actions to π ′ and modify the state-change action to
remove the explicit mention of the observation and the trace would still be satisfied.
The result is a plan for π .

Note, the exact PDDL encoding of the planning problem P ′ determines if for
each found plan for P ′ there would be exactly one corresponding hypotheses or
multiple. If we used the encoding shown earlier, then for each plan there could
be multiple possible hypotheses because of the positioning of the explain action.
It is possible to have a more complex planning domain and force a one-to-one
relationship between hypotheses and plans. Nevertheless, the above theorem shows
that a hypothesis can be found by translating the hypothesis generation problem into
a planning problem and using an AI planner to find a plan. The resulting plan can
be turned into a hypotheses by a post-processing step that removes the extra actions
from the plan. Furthermore, assuming that the costs of the actions in P ′ model the
plausibility notion correctly, then the lowest-cost plan maps to the most plausible
hypotheses. More formally,

Corollary 1 Let P ′ be a planning problem constructed as above for a given
LTS++ model and a trace ϕ and HG be the corresponding hypotheses generation
problem. Further, let π1 and π2 be two plans for P ′, and π ′

1 and π ′
2 be the

corresponding hypotheses for HG. Then π ′
1 is at least as plausible as π ′

2 if and
only if cost (π1) < cost (π2).

Given the association between plans and hypotheses we use top-k planning to
find a set of plans with low cost. These plans can be translated to hypotheses to find
the most plausible hypotheses to the hypotheses generation problem. For details on
top-k please see [11, 16, 24].

5 LTS++ Integrated Development Environment

LTS++ Integrated Development Environment (IDE) is a web-based tool that helps
the domain experts to create model descriptions by describing LTS++ models and
to generate hypotheses. LTS++ IDE consists of an LTS++ editor, graphical view
of the transition system, specification of the trace, and generation of hypotheses.
The tool automatically generates planning problems from the LTS++ specification
and the entered trace. The generated hypotheses are the result of running our planner
and presenting the result from top-most plausible hypothesis to the least plausible
hypothesis.

Model Editor The top part of the model editor screen (Fig. 10.7) is the LTS++
language editor with syntax highlighting and the bottom part is the automatically

10 Interactive Planning-Based Hypothesis Generation with LTS++ 203

Fig. 10.7 LTS++ IDE

generated transition graph. In the editor, the states appear in blue. The observations
are specified within the curly brackets and appear in green. You can specify multiple
observations by using space or comma between observations. The transitions
between states are specified using arrows. Multiple transitions between states can
be specified using a vertical bar. The LTS++ model editor automatically detects
errors in LTS++ language and shows them below the text editor.

Model Testing To test the model, a sequence of observations can be entered
by clicking on “Next: edit trace” from the LTS++ IDE main page. The tool
automatically generates planning problems from the LTS++ specification and
entered trace. The generated hypotheses are the result of running a planner and
finding the most plausible hypotheses ranked by plausibility from highest to lowest.
Figure 10.8 shows an example of hypotheses generated for the critical care model;
the result is automatically generated by our tool. Each hypothesis is shown as a
sequence of states matched to an observed event sequence. The observations that
are explained by a state are shown in green ovals, and unexplained observations
are shown in purple. The arrows between the observations show the sequence of

204 S. Sohrabi et al.

Fig. 10.8 Sample healthcare example

observations in the trace. Each hypothesis is associated with a cost. The lower the
cost value, the more plausible is the hypothesis.

Model Discovery and Update Our tool uses a simple bootstrapping technique to
discover an initial model given a set of historical observations. Several candidate
models will be presented to the domain expert who can choose one as an initial
LTS++ model and further improve it. We also implement automated model updates
to produce better quality hypotheses as we do not assume the model will be accurate
in perpetuity. To do this, we use an aggregate measure of the plausibility of top-N
hypotheses as our optimization criteria. Using a genetic algorithm, we attempt small
atomic changes to the model (e.g., addition and deletion of states, observations and
transitions) and measure the increase in aggregate hypothesis plausibility as a result.
In subsequent generations, we combine the promising atomic changes and repeat
until we can no longer increase hypothesis plausibility.

Model Composition A single LTS++ model describes a state transition system for
a single type of entity, such as a patient. Given multiple entities, each with their own
associated model, our tool also allows automated composition of multiple models.
It does so by considering a cross product of all possible joint states while paying
special attention to the association between observations and the combined states.

Hypothesis Clustering Many of the generated hypotheses are only slightly differ-
ent from each other. That is, they do seem to be duplicates of each other, except for
one or more states or actions that are different. To consolidate similar plans produced

10 Interactive Planning-Based Hypothesis Generation with LTS++ 205

by the planner, we apply a clustering algorithm to cluster similar plans and present
clusters of plans, where each cluster can be replaced by its representative plan.

6 Related Work

There are several approaches in the diagnosis literature related to the hypothesis
generation problem in which use of planners as well as SAT solvers are explored
(e.g., [2, 6, 7, 18]). The hypothesis generation problem is also related to the plan
recognition problem and the use of AI planning have been explored in that space
as well [14, 15, 22]. In particular, Sohrabi et al., explored the same ideas as
discussed here with respect to the notion of unreliable observations for the several
related problem such as future state projection problem [23] and enterprise risk
management [20, 21, 25, 26] that have a corresponding a plan recognition problem.
It is important to note that these papers also discuss and address the knowledge
engineering challenge through what is called a Mind Map. A Mind Map is a
graphical representation of the concepts and relations. The domain knowledge can
be encoded by one or more Mind Maps connected by the same concept used in
multiple Mind Maps. The Mind Maps can be created in a tool such as FreeMind that
produces an XML representation of the Mind Maps and be provided to a system. The
system then translates the Mind Maps into an AI planning problem automatically.
It is also possible to learn the causal relation between the concepts in order to build
the Mind Maps automatically from scratch or augment or validate existing ones [8].
Then similarly, a set of top-k or top-quality plans are found through top-k planning
[11, 16, 24]. Diverse planning [9] or top-quality [10] planning can also be explored
to compute such a set of plans.

7 Summary

We presented LTS++, an interactive development environment for planning-based
hypothesis generation. To enable our planning-based reasoning, we proposed a char-
acterization of the hypothesis generation problem and showed its correspondence
to an AI planning problem. To address the knowledge engineering challenge, we
have developed a language, also called LTS++ that allows the domain expert to
specify the state transition model and encoding of the observations without any
knowledge of AI planning or existing planning languages. LTS++ IDE facilitates
model testing and debugging, generating, and visualizing multiple hypotheses for
user-provided observations. The tool automatically generates planning problems
from the LTS++ specification and the entered trace. The generated hypotheses are
the result of running our planner that computes a set of high-quality plans. The
hypotheses can be visualized and shown to the analyst or can be further investigated
automatically.

206 S. Sohrabi et al.

References

1. Aljazzar, H., Leue, S.: K*: A heuristic search algorithm for finding the k shortest paths.
Artificial Intelligence 175(18), 2129–2154 (2011)

2. Bauer, A., Botea, A., Grastien, A., Haslum, P., Rintanen, J.: Alarm processing with model-
based diagnosis of discrete event systems. In: Proceedings of the 22nd International Workshop
on Principles of Diagnosis (DX). pp. 52–59 (2011)

3. Cassandras, C., Lafortune, S.: Introduction to discrete event systems. Kluwer Academic
Publishers (1999)

4. Emerson, E.A.: Temporal and modal logic. Handbook of theoretical computer science: formal
models and semantics B, 995–1072 (1990)

5. Göbelbecker, M., Keller, T., Eyerich, P., Brenner, M., Nebel, B.: Coming up with good excuses:
What to do when no plan can be found. In: Proceedings of the 20th International Conference
on Automated Planning and Scheduling (ICAPS). pp. 81–88 (2010)

6. Grastien, A., Anbulagan, Rintanen, J., Kelareva, E.: Diagnosis of discrete-event systems
using satisfiability algorithms. In: Proceedings of the 22nd National Conference on Artificial
Intelligence (AAAI). pp. 305–310 (2007)

7. Haslum, P., Grastien, A.: Diagnosis as planning: Two case studies. In: International Scheduling
and Planning Applications Workshop (SPARK). pp. 27–44 (2011)

8. Hassanzadeh, O., Bhattacharjya, D., Feblowitz, M., Srinivas, K., Perrone, M., Sohrabi, S.,
Katz, M.: Answering binary causal questions through large-scale text mining: An evaluation
using cause-effect pairs from human experts. In: Proceedings of the 28th International Joint
Conference on Artificial Intelligence (IJCAI) (2019)

9. Katz, M., Sohrabi, S.: Reshaping diverse planning. In: Proceedings of the 34th Conference on
Artificial Intelligence (AAAI-20) (2020)

10. Katz, M., Sohrabi, S., Udrea, O.: Top-quality planning: finding practically useful sets of best
plans. In: Proceedings of the 34th Conference on Artificial Intelligence (AAAI-20) (2020)

11. Katz, M., Sohrabi, S., Udrea, O., Winterer, D.: A novel iterative approach to Top-k planning.
In: Proceedings of the 28th International Conference on Automated Planning and Scheduling
(2018)

12. Magee, J., Kramer, J.: Concurrency - state models and Java programs (2. ed.). Wiley (2006)
13. McDermott, D.V.: PDDL—The Planning Domain Definition Language. Tech. Rep. TR-98-

003/DCS TR-1165, Yale Center for Computational Vision and Control (1998)
14. Ramírez, M., Geffner, H.: Plan recognition as planning. In: Proceedings of the 21st Interna-

tional Joint Conference on Artificial Intelligence (IJCAI). pp. 1778–1783 (2009)
15. Ramírez, M., Geffner, H.: Probabilistic plan recognition using off-the-shelf classical planners.

In: Proceedings of the 24th National Conference on Artificial Intelligence (AAAI). pp. 1121–
1126 (2010)

16. Riabov, A., Sohrabi, S., Udrea, O.: New algorithms for the top-k planning problem. In:
Proceedings of the Scheduling and Planning Applications Workshop (SPARK) at the 24th
International Conference on Automated Planning and Scheduling (ICAPS). pp. 10–16 (2014)

17. Riabov, A.V., Sohrabi, S., Sow, D.M., Turaga, D.S., Udrea, O., Vu, L.H.: Planning-based
reasoning for automated large-scale data analysis. In: Proceedings of the 25th International
Conference on Automated Planning and Scheduling (ICAPS). pp. 282–290 (2015)

18. Sohrabi, S., Baier, J., McIlraith, S.: Diagnosis as planning revisited. In: Proceedings of the 12th
International Conference on the Principles of Knowledge Representation and Reasoning (KR).
pp. 26–36 (2010)

19. Sohrabi, S., Baier, J.A., McIlraith, S.A.: Preferred explanations: Theory and generation via
planning. In: Proceedings of the 25th National Conference on Artificial Intelligence (AAAI).
pp. 261–267 (2011)

20. Sohrabi, S., Katz, M., Hassanzadeh, O., Udrea, O., Feblowitz, M.D.: IBM scenario planning
advisor: Plan recognition as AI planning in practice. In: Proceedings of Demonstration Track
at the 27th International Joint Conference on Artificial Intelligence (IJCAI-18) (2018)

10 Interactive Planning-Based Hypothesis Generation with LTS++ 207

21. Sohrabi, S., Katz, M., Hassanzadeh, O., Udrea, O., Feblowitz, M.D., Riabov, A.: IBM scenario
planning advisor: Plan recognition as AI planning in practice. AI Commun. 32(1), 1–13 (2019)

22. Sohrabi, S., Riabov, A., Udrea, O.: Plan recognition as planning revisited. In: Proceedings
of the 25th International Joint Conference on Artificial Intelligence (IJCAI). pp. 3258–3264
(2016)

23. Sohrabi, S., Riabov, A., Udrea, O.: State projection via AI planning. In: Proceedings of the 31st
Conference on Artificial Intelligence (AAAI-17). pp. 4611–4617 (2017)

24. Sohrabi, S., Riabov, A., Udrea, O., Hassanzadeh, O.: Finding diverse high-quality plans
for hypothesis generation. In: Proceedings of the 22nd European Conference on Artificial
Intelligence (ECAI). pp. 1581–1582 (2016)

25. Sohrabi, S., Riabov, A., Udrea, O., Yuan, F.: Using lightweight semantic models to assist risk
management in a large enterprise. In: Proceedings of the 16th International Semantic Web
Conference - Industry Track (ISWC-17) (2017)

26. Sohrabi, S., Riabov, A.V., Katz, M., Udrea, O.: An AI planning solution to scenario generation
for enterprise risk management. In: Proceedings of the 32nd National Conference on Artificial
Intelligence (AAAI). pp. 160–167 (2018)

27. Sohrabi, S., Udrea, O., Riabov, A.: Hypothesis exploration for malware detection using
planning. In: Proceedings of the 27th National Conference on Artificial Intelligence (AAAI).
pp. 883–889 (2013)

Chapter 11
Web Planner: A Tool to Develop,
Visualize, and Test Classical Planning
Domains

Maurício C. Magnaguagno , Ramon Fraga Pereira , Martin D. Móre ,
and Felipe Meneguzzi

Abstract Automated planning tools are complex pieces of software that take
declarative domain descriptions and generate plans from domains and problems.
New users often find it challenging to understand the plan generation process, while
experienced users often find it difficult to track semantic errors and efficiency issues.
In response, we develop a cloud-based planning tool with code editing and state-
space visualization capabilities that simplifies this process. The code editor focuses
on visualizing the domain, problem, and resulting sample plan, helping the user see
how such descriptions are connected without changing context. The visualization
tool explores two alternative visualizations aimed at illustrating the operation of the
planning process and how the domain dynamics evolve during plan execution.

Keywords Classical planning · STRIPS · PDDL · State-space visualization

1 Introduction

Classical planning algorithms typically require a declarative domain specification
describing action schemata, which, in turn, define the dynamics of the underlying
domain. Since the inception of the International Planning Competition (IPC) [24],
the standard specification language for classical planning is the Planning Domain
Definition Language (PDDL) [3, 15]. Given the declarative nature of PDDL,
planning algorithm implementations are often opaque regarding the intermediate
steps between reading the formalism and generating a plan. This creates a twofold
problem for domain engineers that wish to use automated planning to solve

M. C. Magnaguagno (�) · R. F. Pereira · M. D. Móre · F. Meneguzzi
Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Technology, Porto
Alegre, RS, Brazil
e-mail: mauricio.magnaguagno@acad.pucrs.br; ramon.pereira@acad.pucrs.br;
martin.more@acad.pucrs.br; felipe.meneguzzi@pucrs.br

© Springer Nature Switzerland AG 2020
M. Vallati, D. Kitchin (eds.), Knowledge Engineering Tools and Techniques
for AI Planning, https://doi.org/10.1007/978-3-030-38561-3_11

209

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38561-3_11&domain=pdf
http://orcid.org/0000-0002-7401-1859
http://orcid.org/0000-0002-3600-3348
http://orcid.org/0000-0002-8320-8389
http://orcid.org/0000-0003-3549-6168
mailto:mauricio.magnaguagno@acad.pucrs.br
mailto:ramon.pereira@acad.pucrs.br
mailto:martin.more@acad.pucrs.br
mailto:felipe.meneguzzi@pucrs.br
https://doi.org/10.1007/978-3-030-38561-3_11

210 M. C. Magnaguagno et al.

problems: ensuring the correctness of each domain description, and optimizing the
efficiency of a planning algorithm for each domain description.

First, regarding correctness, writing PDDL specifications may be a challenging
task for new users even for simple domains, while detecting semantic mistakes in
complex domains is always non-trivial. Even when the user successfully compiles
and executes a planning instance with the chosen heuristic function, the planner
may fail to find a correct plan for the intended domain. In these cases, virtually no
planning algorithm offers extra information, and the user only knows that either the
domain has some kind of description error or that specific problem supplied to the
planner is unsolvable, such that the planner cannot find a correct plan.

Second, practical applications of classical planners require not only a for-
malization of the domain in PDDL that is correct, but also exploit the search
mechanisms employed by the underlying planners to find solutions efficiently. Most
modern classical planning solvers [8, 9, 11, 19] use heuristic functions to estimate
which states are likely to be closer to the goal state and save time and memory
during the planning process. Different planning domains may require different
heuristic functions to focus the search on promising branches and be solved within
a reasonable time with little memory footprint. Thus, key to understanding the
efficiency of a domain formalization is its impact on the heuristic function used
by the underlying planner.

In order to address these challenges, we developed WEB PLANNER, an online
tool aimed at helping domain engineers to tune a formalization to a number of com-
mon planning heuristics and spotting semantic errors in planning domains. Our tool,
which we describe in Sect. 3, includes a PDDL code editor with syntax highlight
and auto-complete aimed at helping users to efficiently develop PDDL domains in
a similar workflow to many popular integrated development environments (IDEs).
Importantly, we integrate the editor to two visualization tools, described in Sect. 2,
developed to help users cope with the declarative nature of PDDL and explore
the effects of changes to the domain in solving concrete problems. First, we use
a visual metaphor from the literature to see how a plan execution achieves (or does
not) a goal state from an initial state [14]. Second, we develop a new state-space
search visualization that uses tree drawing (in both Cartesian and radial layouts)
in conjunction with heatmaps to represent how the distance (e.g., how colder or
warmer) to the goal state changes during search. We conducted a structured case
study (described in Sect. 4.1) to illustrate how our approach works and validate
from user tests, which we describe in Sect. 4.2 showing the results we obtained
from employing the tool in a planning course. WEB PLANNER has been deployed
for 2.5 years as openly available tool for the planning community, which allowed
us to collect anonymous usage statistics. In Sect. 5, we survey related work on
planning tools and data visualization, and conclude the paper in Sect. 6 discussing
our conclusions and future work.

11 Web Planner: A Tool to Develop, Visualize, and Test Classical Planning Domains 211

2 Background

2.1 Planning

Planning is the problem of finding a sequence of actions (i.e., plan) that achieves a
particular goal from an initial state [4]. A state is a finite set of facts that represent
logical values according to some interpretation. Facts are divided into two types:
positive and negated facts. Predicates are denoted by an n-ary predicate symbol
applied to a sequence of zero or more terms. An operator is represented by: a name
that represents the description or signature of an action; a set of preconditions, i.e.,
a set of facts or predicates that must be true in the current state to be executed; a set
of effects, which has an add-list of positive facts or predicates, and a delete-list of
negative facts or predicates. An action is an instantiated operator over free variables.
A planning instance is represented by: a domain definition, which consists of a finite
set of facts and a finite set of actions; and a problem definition, which consists of
an initial state and a goal state. The solution of a planning problem is a plan, which
is a sequence of actions that modifies the initial state into one in which the goal
state holds by the successive execution of actions in a plan. To formalize planning
instances, we use the STRIPS [2] fragment of PDDL [15], which contains domain
and problem definition in different files.

Heuristic functions are used to estimate the cost of achieving a particular goal [4].
In classical planning, this estimate is often the number of actions to achieve the
goal state from a particular state by exploring only promising states. Estimating the
number of actions is a NP-hard problem [1]. In automated planning, heuristics can
be domain-dependent or domain-independent, and a well-tuned heuristic can result
in a substantial reduction in search time by pruning a vast part of the state-space.

2.2 Data Visualization

Visualization techniques aim to convey some kind of information using graphical
representation [26]. The use of data visualization techniques is often associated to
a set of data with the aim of communicating a particular information clearly and
efficiently via graphical representation.

Data visualization techniques are concerned with what is the best way to display
a dataset, for instance, how to display relation information. Relation information
can be displayed efficiently by using hierarchies that convey relation information.
Edges in a hierarchical tree represent a relation between nodes. A Cartesian tree
visualization is a way to display hierarchical trees as a coordinate system. A radial
tree visualization is a way to display a hierarchical tree structure in which such
tree expands outwards and radially. In Sect. 3.2 we explore such tree visualizations.
Besides hierarchical visualization, we highlight other visualization methods that
are closely related to the ones we develop in this work, such as Gantt charts [27],

212 M. C. Magnaguagno et al.

which are used to show how tasks are correlated and how much time is expected to
complete them, Waveforms [6, Chapter 1—page 2] are used to express the behavior
of analog or digital data through time, and heatmap visualization [26], which uses
a color scheme to illustrate values in a graphic in which each color in the scheme
represents one limit value and the many values in the interval are represented by the
mix of such colors.

3 WEB PLANNER Architecture

We designed our tool envisioning a development process centered around two tasks
by the domain developer. In the first task, the user aims to describe both domain
and problem correctly. In the second task, the user tries to identify details of the
description (in terms of predicate use) that impact performance and how these
predicates appear during the planning process. The domain designer is free to move
between these tasks and repeat until satisfied with the results. Once a planning
instance is described it is possible to visualize its explored state-space, even when
the planning process fails. When the planning process returns a plan the user is able
to visualize how predicates were added or deleted by each action in the plan. Such
interface could also help planning system developers to explore how planners in
development behave.

To avoid the considerable setup time of some planner implementations and
maintain a consistent interface across platforms, we use a web interface. The planner
is executed in a server, while the editor, output and visualizations are displayed and
executed in the browser. The communication between the two sides uses JSON.1

Figure 11.1 shows the architecture of WEB PLANNER.

Fig. 11.1 Overview of WEB

PLANNER architecture Client Server

Planner

State-space and
plan data

PDDL editor

Visualizations

Plan
Output

Verifier and
Validator

1JSON (JavaScript Object Notation) is an open-standard format for structuring data.

11 Web Planner: A Tool to Develop, Visualize, and Test Classical Planning Domains 213

3.1 Domain Development Interface

To better describe planning domains and problems, we identified three key require-
ments to improve editing such descriptions. First, we required our tool to provide
the two common IDE features of syntax highlighting, code auto-completion, and
templates (PDDL snippets) to streamline the editing process. For example, to define
a new action, our PDDL editor provides an action template (an auto-complete
function of our editor, pressing CTRL+Space after typing the word action) that
shows how an action is defined in PDDL, as illustrated in Fig. 11.2. Besides
templates for PDDL actions, our editor also provides templates for domain and
problem description, just pressing CTRL+Space after typing the word domain or
problem, respectively. Second, we the interface must show both domain and problem
simultaneously, to avoid forcing the user to go back and forth between descriptions
or browser tabs. This interface arrangement improves the designer’s awareness of
the interactions between a domain and instances of its problems and minimizes user
effort in terms of required interface actions (i.e., key presses and mouse clicks).
Finally, our interface must include a visualization and an action button in the same
context as the editors, allowing the designer to execute the current planning instance
without a changing context.

To meet such requirements, we split the editor interface horizontally in three
parts: domain, problem, and output. The ability to see input alongside output is very
important for both advanced users that are modifying or extending legacy PDDL,
and new users, such as students, that are not used with the domain and problem
distinction. Instead of starting with a blank planning instance we opted for a simple
but complete Towers of Hanoi example to be loaded by default.

Fig. 11.2 WEB PLANNER editor interface with domain editor (left), problem editor (center),
and plan output (right). Action template is provided by auto-complete shortcuts. Verification and
validation tools available through caret button

214 M. C. Magnaguagno et al.

The Plan button sends the planning instance to the server to obtain an output
based on the domain and problem descriptions contained in the editor. Our editor
uses brace,2 a variant of the ace editor without server-side processing to highlight
programming language elements. In our case most PDDL elements are highlighted,
some of which are currently not supported by the back-end planner. The output
provided by the planner contains the plan and execution time when successful, error
messages when the parser fails, or a failure message when no plan is found. Due
to screen space limitations, the visualizations were left to a secondary interface,
as users can only visualize after an initial description step. Our goal is to make
clear that domain and problem are described together, while planning insights and
optimization steps can be obtained later, if required, without overloading the user
with information.

Verifier and Validator Plan output alone is not enough to identify errors in a
planning description. The declarative nature of PDDL obscures the intermediate
structures of the planner for novice users (or users without working knowledge of
planner implementation), requiring further modification of the chosen planner to
log such information. To address this problem we provide two extra tools to find
description errors and mistakes in their domain and problem. The first is a verifier,
a tool that finds common mistakes in both domain and problem descriptions. The
second is a validator, a tool that tries to execute a plan provided by the user in
the domain and problem previously described, and reports any errors found while
doing so. Tests cover only atomic or conjunctive preconditions and effects, limited
to :strips, :negative-preconditions, :equality, and :typing requirements. Our verifier
includes different test cases for domain, Table 11.1, and problem, Table 11.2. Some
verifier tests refer to uncommon but valid PDDL, and can be seen as warnings for
new users, such as actions with empty preconditions. Our verifier offers substantial
help for novice users to understand their description mistakes by providing an
automated analysis of the PDDL encoding.

Our validator applies each plan action, testing if such action exists (i.e., the action
was defined and all parameters are defined objects/constants), is applicable (all pos-
itive preconditions are present in the current state, while no negative preconditions
are present), and with their effects generate each intermediate state (current state
with delete effects removed and add effects added). Note that the validator ensures
simply that the provided plan is a solution to the problem, regardless of optimality,
therefore empty and sub-step-optimal plans can also be used, as some problems may
require no action, when an initial state satisfies a goal state, while other plans may
even revisit intermediate states or simply take more steps than required using other
action sequences. In this way, validators help domain engineers verify that their
PDDL encoding allows a planner to generate valid plans, and that these plans indeed
correspond to the intended semantics of the planning domain. Nevertheless, verifiers
and validators tools are often separated from the actual planner software [12], which

2https://github.com/thlorenz/brace.

https://github.com/thlorenz/brace

11 Web Planner: A Tool to Develop, Visualize, and Test Classical Planning Domains 215

Table 11.1 Rules used by verifier in the domain description

Domain rule Description

Predicate defined Every predicate must be defined in :predicates

Predicate with valid name Predicates must contain only valid characters, starting with
a-z

Predicate arity Predicates must have the same amount of parameters

Action redefined Each action must have a unique name

Action parameter unused One or more parameters of an action are unused

Action parameter repeated One or more parameters of an action are repeated

Parameter with valid name Parameters must contain valid characters, starting with ?

Predicate repetition Each predicate must appear only once in preconditions and
effects

Empty precondition Preconditions contain no predicates

Null effect Effect is either empty or does modify state based on
preconditions

Unnecessary equality Preconditions contain (= ?x ?y)

Equality contradiction Preconditions contain (not (= ?x ?x))

Precondition contradiction Preconditions contain (pre ?a) and (not (pre ?a))

Effect contradiction Effects contain (pre ?a) and (not (pre ?a))

Effect contains equality Equality is only supported in preconditions

Missing/extra requirements Requirements must match what is used in the description

Table 11.2 Rules used by verifier in the problem description

Problem rule Description

Predicate repetition Each predicate must appear only once in initial or goal states

Object with valid name Objects must contain only valid characters, starting with a-z

Object unused Objects must appear as constant terms in actions, initial, or
goal states

Forced equality Initial or goal states contain (= a b)

Goal contradiction Goal state contain (pre ?a) and (not (pre ?a))

Rigid goal Rigid goal predicate is unachievable unless present in initial
state

Empty goal state No planning is required for an empty goal state

makes reviewing and revising domain formalizations less straightforward. Thus,
our coupling of the validator and verifier with the editor streamlines the domain
formalization process by providing immediate feedback to the domain engineer.

3.2 Visualization Interface

We currently support two visualizations, one focusing on the explored state-space
and the other on the execution of the first plan found.The impact of heuristics in the
state-space is often introduced in AI lectures using images, such as the ones from

216 M. C. Magnaguagno et al.

Fig. 11.3 Search contours are defined by search mechanism and heuristic function, either equally
exploring in all directions (left) or giving priority towards the goal state (right)

Fig. 11.3, to show how the contour of the explored states grows in all directions on
blind search and towards the goal state in informed search (using heuristics) [20,
Chapter 3—page 97]. Such images target an audience new to the concept of
using a computed auxiliary function to speed-up search. Different from textbooks,
implementations that target the same audience use dynamic grids to show both
how the state-space is explored and how the heuristic is computed in an Euclidean
space. Such examples show the step-by-step process of search. Since not all domains
can be mapped to a grid, the visualization process is often limited to path-finding
domains. To generate such contours we opted for a tree-based visualization, as they
better represent state relations while ignoring repeated states by not expanding a
previously found state. If we also added connections to previously found states, a
cyclic graph would be obtained and the contours would not be visible.

Heuristic Visualization The heuristic visualization we developed takes advantage
of interactive elements to avoid information overload while providing alternative
layouts, Cartesian and radial tree visualizations. The radial layout matches the
abstraction used by heuristic examples, while the Cartesian layout generates a more
compact visualization. In practice, we use the Reingold–Tilford algorithm [18]3 to
display both tree layouts. Using tree visualizations we aim to show how planning
heuristics explore the state-space to achieve a particular goal.

To compare and explore the state-space of a planning instance, we implemented
two planning methods. The first method is based on breadth-first search, and thus
uses no heuristic, exploring the state-space in the order of distance from the initial
state. The second method implements greedy best-first search using Hamming
distance [7] as a heuristic. While we selected these two methods as examples
to show the impact of no heuristic vs a generic distance metric for states, our
visualization tool supports other search mechanisms and heuristic functions as long
as such mechanisms search through the state-space.

To represent the data obtained from the planning process, we use a tree containing
the explored state-space and heuristic information about each state. In this tree, each
node represents a state (i.e., a set of instantiated predicates), an edge represents a
state-transition (i.e., the execution of an action), and the root node represents the

3Reingold–Tilford is an algorithm for an efficient tidy arrangement of layered nodes. We use an
implementation based on a D3 example available at: http://bl.ocks.org/mbostock/4063550.

http://bl.ocks.org/mbostock/4063550

11 Web Planner: A Tool to Develop, Visualize, and Test Classical Planning Domains 217

Fig. 11.4 Tooltip that
displays the set of instantiated
predicates in a state. This
figure illustrates state 1 and
its predicates for a planning
instance of the Hanoi domain

Fig. 11.5 Tooltip that
displays the instantiated
action applied between two
states. This figure illustrates
state 1 and its predicates for a
planning instance of the
Hanoi domain

initial state. The information about the set of predicates in the states (nodes) and the
applied actions in such states (edges) are hidden in our heuristic visualization. Such
information about states and actions can be seen when the user hovers the cursor
over nodes and edges, which then shows, the state’s and action’s detail as a tooltip.
Figures 11.4 and 11.5, respectively, illustrate how our visualization tool show the
information about states and actions.

Our visualization tool displays the state-space of a planning heuristic by coloring
the estimated distance between states using a heatmap, as in Fig. 11.6. Red nodes
represent the states closer to the goal state, i.e., warmer, while distant nodes
are represented by blue, i.e., colder. Nodes and edges are colored according to
the estimated distance to the goal state. We illustrate the heuristic gradient as
a heatmap in Fig. 11.7. Other heuristic functions could generate not only other
distance estimations for each state (visible through colors in the graph), but also
a different graph, as states would be explored in a different order, as in Figs. 11.10
and 11.11. Here, the radial layout of Fig. 11.11 provides a visualization of the search
contours of the heuristic, provided a large enough sample of the total number of
states has been explored. Edges between initial and goal state are emphasized (in
bold, and as a thick line) to show which path contains the actions that constitute
the plan. Such emphasized path is only available when planning is successful for
the give planning task. Failed planning cases still obtain data to draw the explored
state-space as a tree, which can be used as an interactive debug tool.

218 M. C. Magnaguagno et al.

Fig. 11.6 Color scheme that
our visualization tool uses to
represent the estimated
distance (colder) Heuristic Estimated Distance Goal State

(warmer)

Fig. 11.7 Search contours become visible as more states are explored. This planning instance
obtain all goal predicates at the same time, which makes the heatmap mostly blue (colder), while
the goal state is located at the bottom in red (warmer)

11 Web Planner: A Tool to Develop, Visualize, and Test Classical Planning Domains 219

Fig. 11.8 Dovetail plan visualization of Hanoi domain with 3 discs and a plan of size 7

Fig. 11.9 Tooltip that
displays the instantiated
action in a plan on Dovetail

Dovetail Metaphor Visualization The second visualization we implemented is
a visual metaphor called Dovetail [14], which is useful to see how predicates
change along the plan execution. Each ground predicate that appears in an action
effect is represented as one line while both initial state, goal state, and actions are
represented as columns. Our interface allows a user to move and zoom to parts of
this visualization (illustrated in Fig. 11.8), with tooltips providing extra information
as shown in Fig. 11.9 for the domain of the case study of Sect. 4.1. The use of this
visual abstraction (Dovetail) aims to improve the learning curve for defining and
debugging planning domains and problems.

4 Deployment and Evaluation

4.1 Case Study

In order to validate our visualization tool, we now present a case study we carried
out to show a planning instance using different planning heuristics displaying the
state-space. To do so, we selected the Tower of Hanoi domain to illustrate our

220 M. C. Magnaguagno et al.

Fig. 11.10 Cartesian tree visualizations of the state-space of Hanoi with 3 discs

Fig. 11.11 Radial tree visualizations of the state-space of Hanoi with 3 discs

heuristic visualizations. In this domain, one must move a stack of discs from one
peg to another without stacking a larger disc onto a smaller one, three pegs are
available in total. Problem instances for this domain show that the goal state cannot
be achieved in an incremental way, requiring a plan to build and destroy partial
towers several times, and then obtain the complete tower in the final peg. Domains
with such particular behavior are not pruned as much as others by the Hamming
distance as a heuristic function and have a visible color fluctuation between the
gradient limits instead of a clear movement towards red, as seen in the Cartesian tree
of Fig. 11.10. The Cartesian tree generates a more compact representation, while the
radial tree highlights the side to which the heuristic gave priority during search, as
seen in Fig. 11.11, where the top-left branch was not explored. Other domains may
suddenly achieve a goal state from a mostly blue colored graph, in which all states

11 Web Planner: A Tool to Develop, Visualize, and Test Classical Planning Domains 221

are far away from the goal, as seen in Fig. 11.7, or incrementally achieving the
goal clearly going from one extreme of the gradient to the other, as in the Logistics
domain.

To better understand how the predicates are affected by the plan we use the
Dovetail [14] metaphor. This particular Hanoi planning instance is solved by a 7-
step plan, represented by the pieces labeled with numbers at the top, Fig. 11.8. Each
piece has preconditions represented on the left side and effects represented on the
right side. In this case we can see the first action, move(d1 d2 peg3), moving a clear
disc d1 that starts on disc d2 to a clear peg peg3, leaving d2 clear and peg3 not clear.
We can see the predicate clear d1 being tested by each odd-index action, revealing
the pattern of movements related with the disc d1.

4.2 Case Study Survey Results

To evaluate WEB PLANNER, a group of four users from our automated planning
course4 were asked to fill a survey after using the tool to describe the RPG domain
from the International Competition on Knowledge Engineering for Planning and
Scheduling.5 The survey contained the following questions and answers:

• How familiar are you with automated planning languages and algorithms?

– Only 2 users have used PDDL before.
– Did WEB PLANNER visualizations help you to find any bugs/errors/interesting

points during the course of your task?
– One user found missing preconditions.
– Mark other planners/tools you used in your experiments:
– Fast-Downard (1), JavaFF (1), JavaGP (3), Planning.domains (3), STRIPS-

Fiddle (1)
– Which features you missed the most?
– Support more requirements (2), Auto-complete (1), Option to clear console

(1), Find (common) errors in PDDL (1).

Results of system reaction show evidence of the utility of our tool, albeit
with many suggested improvements, in Fig. 11.12 with minimum, maximum, and
average represented. The current planning output must be improved in order to
provide more meaningful messages about errors while taking advantage of the
integrated editor to draw attention to specific lines where parsing errors were
detected. Other improvements are more related to the editor itself, making it more

4https://github.com/pucrs-automated-planning/syllabus.
5https://ickeps2016.wordpress.com.

https://github.com/pucrs-automated-planning/syllabus
https://ickeps2016.wordpress.com

222 M. C. Magnaguagno et al.

5

4

3

2

1

0
Overall
reaction

System
usability

System
efficiency

Visualization Interface
intuitiveness

Fig. 11.12 Survey results, users were asked to evaluate the system between frustrating (0) and
satisfying (5)

flexible to attend different user needs, such as theme, font size, and the ability to
re-size each part of the editor. Users also asked for more planners/requirements to
be supported.

4.3 General Public Usage Statistics

We collected anonymous data in WEB PLANNER from January 1 to May 30, 2019 to
verify user habits. We identified users from multiple countries with varying session
durations, with most users being in Brazil, where it was proposed as a classroom
tool. World usage can be seen in Fig. 11.13

5 Related Work

We now discuss related work and tools to formalize and validate planning domains,
visualize changes on a large amount of hierarchical data, and visualize state-space
search algorithms.

Planning.Domains6 is a collection of web tools for automated planning.
These web tools provide a PDDL editor, an API that contains a wide collection
of PDDL benchmark domain and problem files (most of them used on the
International Planning Competition), and a planner in the cloud that allows using
not only a planning solver, but also debugging tools, such as TorchLight [10],
and even WEB PLANNER visualizations as plugins. Similar to our approach,
Planning.Domains provides a PDDL editor, however, our approach provides

6http://planning.domains.

http://planning.domains

11 Web Planner: A Tool to Develop, Visualize, and Test Classical Planning Domains 223

Fig. 11.13 User sessions per country during the first 4 months of 2019

not only a web editor with syntax highlighting, but also a set of tools to develop,
analyze, and visualize planning domains using metaphors and alternative data
visualization methods.

We consider two offline tools for PDDL file editing as related enough to our
approach for comparison: myPDDL; and PDDL Studio. myPDDL7 [22] is an editor
extension for Sublime Text, which provides PDDL syntax highlighting, snippets,
and domain visualization (e.g., diagram types). PDDL Studio [16] is an IDE to
edit PDDL domains and problems. This IDE provides syntax highlighting, code
completion, and context hints specifically designed for PDDL. Both tools have
editor capabilities similar to ours, with myPDDL being able to generate type diagram
and calculate distances automatically, two unique features that benefit only users
that are either debugging typing errors or avoiding calculating distances in problems.
PDDL Studio is able to list description errors and integrates with external planners
using a command-line interface, leaving the user responsible for installation and
call to each planner. While myPDDL and PDDL Studio are more flexible than our
approach, being open or able to use any local planner, respectively, they need an
initial setup phase that consumes valuable classroom time. One of our goals was to
minimize the time spent to go from planning description explanation to planner call.

To validate a domain description one can follow the steps of a known valid plan
to solve one problem and either achieve a goal state or discover errors in the domain

7https://github.com/Pold87/myPDDL.

https://github.com/Pold87/myPDDL

224 M. C. Magnaguagno et al.

description. An entire branch of plan validation tools was created from VAL8 [12]
to do this job automatically. More recent implementations, InVAL9 and ReviVAL,10

try to complement VAL, being independent implementations that can increase trust
in domain descriptions and warn ambiguous PDDL descriptions to users. More
PDDL validation tools means more interest in their usage in real-life activities, yet
they are separated from planners and domain description tools. By adding a plan
validator to our interface we expect to make not only the validation process simpler,
but also essential to a user that wants an automated confirmation of their work, while
bringing awareness that such tools exist.

Graphical Interface for Planning with Objects (GIPO) [21] is a tool for planning
domain knowledge engineering that allows the textual specification of domains
in PDDL and Hierarchical Task Network (HTN), like other code editors. Besides
domain knowledge engineering, GIPO provides an animator tool to graphically
inspect the plans produced by the internal planner, given a domain and problem
specification. Like our approach, GIPO can use a set of plans to validate domain
and problem specification, indicating whether the specification do support the given
plans. Similar to Dovetail metaphor we implemented in WEB PLANNER, GIPO
also provides an animator tool to visualize how a sequence of actions (i.e., a
plan) connects to form a plan that achieves a goal state from an initial state.
VisPlan [5] is an interactive tool to visualize and verify plans’ correctness. This
tool is closely related to Dovetail metaphor in the sense of helping planning users
to better understand how a sequence of actions achieve a goal from an initial state.
VisPlan identifies possible flaws (i.e., incorrect actions) in a plan, allowing users to
manually modify this plan by repairing these identified flawed actions.

PDVer [17] is a methodology and tool that verifies if a PDDL domain satisfies a
set of requirements (i.e., planning goals). This tool allows an automatic generation
of these requirements from a Linear Temporal Logic (LTL) specification into a
PDDL description. This tool is concerned with how the corresponding PDDL action
constraints are translated from an LTL specification. PDVer provides a summary of
test cases (positive and negative) indicating why a PDDL domain specification does
not satisfy a set of requirements to achieve a goal. Our verification tests are only
based on common PDDL mistakes and lack domain-dependent constraints.

itSIMPLE11 [25] is concerned with domain modeling, using steps to guide
the user from informal requirements (UML) to an objective representation (Petri
Nets). itSIMPLE features a visualization and simulation tool to help understanding
planning domains through diagrams. itSIMPLE uses UML diagrams to model
planning instances and Petri Nets for validating planning instances. WEB PLANNER

8https://github.com/KCL-Planning/VAL.
9https://github.com/patrikhaslum/INVAL.
10https://github.com/guicho271828/ArriVAL.
11https://github.com/tvaquero/itsimple.

https://github.com/KCL-Planning/VAL
https://github.com/patrikhaslum/INVAL
https://github.com/guicho271828/ArriVAL
https://github.com/tvaquero/itsimple

11 Web Planner: A Tool to Develop, Visualize, and Test Classical Planning Domains 225

does not provide an incremental formalization approach to domain engineering,
requiring users to start with PDDL descriptions and, once done, able to generate
visualizations from it.

Magnaguagno et al. [14] developed a visual metaphor to help users visualize
and learn how the planning process works. Dovetail results suggest that this visual
metaphor can be useful to define and debug the planning process. We have applied
this visual metaphor in WEB PLANNER by using colors each instantiated predicate
in the state along a plan execution.

We found two approaches to data visualization suitable for heuristics. In [13],
Kuwata and Cohen develop visualization methods to understand and analyze the
search-space and behavior of heuristic functions, by exploring the usefulness of
these methods on shaping state-space search. The heuristic functions they explore
are A* and IDA*. Tu and Shen [23] propose a set of strategies to visualize and
compare changes in hierarchical data using treemaps. We currently only support
state-space non-cyclic graphs obtained from the planning process and no graph
comparison, as abrupt layout changes would impact a side-by-side comparison as
perceived by Tu and Shen. We opted for the current tree structure to obtain a visible
contour visualization that better matches abstract explanations.

6 Conclusions

In this paper, we describe WEB PLANNER, a cloud-based planning tool we
developed that consists of a PDDL editor to formalize planning domains and
problems, and visualizations to help understand the effect of planning heuristics
in the domains. This work aims to simplify the setup process required to execute
planners while providing visualizations to better understand how domain differences
and heuristics can impact the performance of the planner. Our small-scale survey
indicated promising results with user-feedback pointing towards improvements and
new features already in development.

As future work, we intend to support user-defined heuristics in our planner
along with alternative options to the user, such as selectable color schemes for the
visualization and a side-by-side state-space view for comparison. WEB PLANNER

has being used in the lectures from the Artificial Intelligence and Automated
Planning courses since August 2016 to explain planning concepts using both PDDL
and visualizations to around 50 students every year while being available to anyone
online, reaching over 300 accesses in the first quarter of 2019.

We believe that such web tool can help new heuristics to be developed and
tested, providing to users a better grasp of the impact of heuristics to the state-space
exploration, which is usually an invisible entity. WEB PLANNER tool is available
online at: https://web-planner.herokuapp.com.

https://web-planner.herokuapp.com

226 M. C. Magnaguagno et al.

Acknowledgements We acknowledge the support given by CAPES/Pro-Alertas (88887.115590/
2015-01) and CNPQ within process number 305969/2016-1 under the PQ fellowship.

This research was achieved in cooperation with HP Brasil Indústria e Comércio de Equipamen-
tos Eletrônicos LTDA using incentives of Brazilian Informatics Law (Law n◦ 8.2.48 of 1991).

Part of this research was also financed by the Coordenação de Aperfeiçoamento de Pessoal de
Nivel Superior—Brasil (CAPES)—Finance Code 001.

References

1. Bylander, T.: The Computational Complexity of Propositional STRIPS Planning. Journal of
Artificial Intelligence Research (JAIR) 69, 165–204 (1994)

2. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem proving to
problem solving. Journal of Artificial Intelligence Research (JAIR) 2(3), 189–208 (1971)

3. Gerevini, A., Long, D.: Plan Constraints and Preferences in PDDL3. The Language of the
Fifth International Planning Competition. Technical Report, Department of Electronics for
Automation, University of Brescia, Italy (2005)

4. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning—Theory and Practice. Elsevier
(2004)

5. Glinskỳ, R., Barták, R.: VisPlan–Interactive Visualisation and Verification of Plans. Proceed-
ings of the Workshop on Knowledge Engineering for Planning and Scheduling (KEPS) pp.
134–138 (2011)

6. Ha, T.T.: Theory and design of digital communication systems. Cambridge University Press
(2010)

7. Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical Journal
29(2), 147–160 (1950)

8. Helmert, M.: The Fast Downward Planning System. Journal of Artificial Intelligence Research
26, 191–246 (2006)

9. Hoffmann, J.: The Metric-FF Planning System: Translating “Ignoring Delete Lists” to Numeric
State Variables. Computing Research Repository (CoRR) abs/1106.5271 (2011), http://arxiv.
org/abs/1106.5271

10. Hoffmann, J.: The TorchLight Tool: Analyzing Search Topology Without Running Any Search.
In: Proceedings of the System Demonstrations, in the 21th International Conference on
Automated Planning and Scheduling. pp. 37–41 (2011)

11. Hoffmann, J., Nebel, B.: The FF Planning System: Fast Plan Generation Through Heuristic
Search. Journal of Artificial Intelligence Research (JAIR) 14(1), 253–302 (May 2001)

12. Howey, R., Long, D., Fox, M.: VAL: automatic plan validation, continuous effects and
mixed initiative planning using PDDL. In: 16th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI 2004), 15–17 November 2004, Boca Raton, FL, USA. pp. 294–
301 (2004)

13. Kuwata, Y., Cohen, P.R.: Visualization Tools for Real-Time Search Algorithms. Computer
Science Technical Report (1993)

14. Magnaguagno, M.C., Pereira, R.F., Meneguzzi, F.: DOVETAIL - An Abstraction for Classical
Planning Using a Visual Metaphor. In: Proceedings of FLAIRS, 2016. (2016), http://www.aaai.
org/ocs/index.php/FLAIRS/FLAIRS16/paper/view/12966

15. McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., Wilkins,
D.: PDDL − The Planning Domain Definition Language. Technical Report – Yale Center for
Computational Vision and Control (1998)

16. Plch, T., Chomut, M., Brom, C., Barták, R.: Inspect, edit and debug PDDL documents: Simply
and efficiently with PDDL Studio. In: Proceedings of ICAPS’09. pp. 15–18 (2012)

http://arxiv.org/abs/1106.5271
http://arxiv.org/abs/1106.5271
http://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS16/paper/view/12966
http://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS16/paper/view/12966

11 Web Planner: A Tool to Develop, Visualize, and Test Classical Planning Domains 227

17. Raimondi, F., Pecheur, C., Brat, G.: PDVer, a Tool to Verify PDDL Planning Domains. In:
Proceedings of ICAPS’09 Workshop on Verification and Validation of Planning and Scheduling
Systems, Thessaloniki, Greece (2009)

18. Reingold, E.M., Tilford, J.S.: Tidier drawings of trees. IEEE Transactions on Software
Engineering (2), 223–228 (1981)

19. Richter, S., Westphal, M.: The LAMA planner: Guiding cost-based anytime planning with
landmarks. Journal of Artificial Intelligence Research (JAIR) 39(1), 127–177 (2010)

20. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall Press, Upper
Saddle River, NJ, USA, 3rd edn. (2009)

21. Simpson, R.M., Kitchin, D.E., McCluskey, T.L.: Planning domain definition using GIPO.
Knowledge Eng. Review 22(2), 117–134 (2007). https://doi.org/10.1017/S0269888907001063

22. Strobel, V., Kirsch, A.: Planning in the Wild: Modeling Tools for PDDL. In: Joint German/Aus-
trian Conference on Artificial Intelligence. pp. 273–284. Springer (2014)

23. Tu, Y., Shen, H.W.: Visualizing Changes of Hierarchical Data using Treemaps. IEEE Transac-
tions on Visualization and Computer Graphics 13(6), 1286–1293 (Nov 2007). https://doi.org/
10.1109/TVCG.2007.70529

24. Vallati, M., Chrpa, L., McCluskey, T.L.: What you always wanted to know about the
deterministic part of the International Planning Competition (IPC) 2014 (but were too afraid to
ask). Knowledge Engineering Review 33, 383 (2018)

25. Vaquero, T., Tonaco, R., Costa, G., Tonidandel, F., Silva, J.R., Beck, J.C.: itSIMPLE 4.0:
Enhancing the modeling experience of planning problems. In: Proceedings of ICAPS’12. pp.
11–14 (2012)

26. Ward, M.O., Grinstein, G., Keim, D.: Interactive Data Visualization: Foundations, Techniques,
and Applications, Second Edition - 360 Degree Business. A. K. Peters, Ltd., Natick, MA, USA,
2nd edn. (2015)

27. Wilson, J.M.: Gantt charts: A centenary appreciation. European Journal of Operational
Research 149(2), 430–437 (2003)

https://doi.org/10.1017/S0269888907001063
https://doi.org/10.1109/TVCG.2007.70529
https://doi.org/10.1109/TVCG.2007.70529

Part III
Case Studies and Applications

Chapter 12
Design of Timeline-Based Planning
Systems for Safe Human-Robot
Collaboration

Andrea Orlandini, Marta Cialdea Mayer, Alessandro Umbrico,
and Amedeo Cesta

Abstract During the last decade, industrial collaborative robots have entered
assembly cells supporting human workers in repetitive and physical demanding
operations. Such human-robot collaboration (HRC) scenarios entail many open
issues. The deployment of highly flexible and adaptive plan-based controllers is
capable of preserving productivity while enforcing human safety is then a crucial
requirement. The deployment of plan-based solutions entails knowledge engineers
and roboticists interactions in order to design well-suited models of robotic cells
considering both operational and safety requirements. So, the ability of supporting
knowledge engineering for integrating high level and low level control (also from
non-specialist users) can facilitate deployment of effective and safe solutions
in different industrial settings. In this chapter, we will provide an overview of
some recent results concerning the development of a task planning and execution
technology and its integration with a state of the art Knowledge Engineering
environment to deploy safe and effective solutions in realistic manufacturing HRC
scenarios. We will briefly present and discuss a HRC use case to demonstrate the
effectiveness of such integration discussing its advantages.

1 Introduction

During the last decade, industrial robotic systems have entered assembly cells
supporting human workers in repetitive and physical demanding operations. The co-
presence of robots and humans in a shared environment entails many issues to be

A. Orlandini (�) · A. Umbrico · A. Cesta
Institute of Cognitive Science and Technology, CNR – National Research Council of Italy, Rome,
Italy
e-mail: andrea.orlandini@istc.cnr.it

M. Cialdea Mayer
Department of Engineering, University “Roma TRE”, Rome (RM), Italy
e-mail: cialdea@ing.uniroma3.it

© Springer Nature Switzerland AG 2020
M. Vallati, D. Kitchin (eds.), Knowledge Engineering Tools and Techniques
for AI Planning, https://doi.org/10.1007/978-3-030-38561-3_12

231

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38561-3_12&domain=pdf
mailto:andrea.orlandini@istc.cnr.it
mailto:cialdea@ing.uniroma3.it
https://doi.org/10.1007/978-3-030-38561-3_12

232 A. Orlandini et al.

properly addressed requiring robust controllers capable of preserving productivity
and enforcing human safety [1]. Namely, Human-Robot Collaboration (HRC)
scenarios entail challenges on physical interactions, to always guarantee safety of
human operators, and activities coordination, to improve cell productivity. Thus,
the deployment of highly flexible and adaptive controllers, capable of preserving
productivity while enforcing human safety, is a crucial requirement.

Flexible plan-based solutions are a key enabling feature of HRC controllers
where robot motions must be continuously adapted to the presence of humans,
which act as uncontrollable “agents” in the environment. Their presence entails the
ability of evaluating robot execution time variability and, in this sense, standard
control methods are not fully effective. Moreover, the integration of Planning and
Scheduling (P&S) technology with Knowledge Engineering solutions and, more
specifically, with Verification and Validation (V&V) techniques is a key element to
synthesize safety critical systems in robotics [2]. Indeed, the deployment of plan-
based solutions requires domain experts (i.e., production engineers), knowledge
engineers, and roboticists to deeply interact in order to design well-suited models
of robotic cells considering both operational and safety requirements [3]. Therefore,
the ability of supporting knowledge engineering for integrating high level and low
level control (also from non-specialist users) can facilitate deployment of effective
and safe solutions in different industrial settings.

Since a decade, a research initiative has been started to investigate the possible
integration of a timeline-based planning framework (APSI-TRF [4]) and V&V
techniques based on Timed Game Automata (TGA) [5] to automatically synthesize a
robot controller that guarantees robustness and safety properties [6, 7]. Indeed, some
plan-based controllers rely on temporal planning mechanisms capable of dealing
with coordinated task actions and temporal flexibility (e.g., [8, 9]) that leverage
temporal planners (e.g., [10, 11]). Unfortunately, these systems do not allow an
explicit representation of uncontrollability features. Consequently, the resulting
controllers are not endowed with the robustness needed to deal with the temporal
uncertainty of HRC scenarios and controllability issues [12]. These system usually
rely on replanning mechanisms that may however strongly penalize the production
performance. The long-term research goal is to realize a robust task planning system
enabling flexible, safe, and efficient HRC. In [13], the general pursued approach is
presented aiming at realizing controllers capable to dynamically coordinate tasks
according to the behaviors of human workers.

This chapter provides an overview of the results collected in the last decade con-
cerning the development of a task planning and execution framework (PLATINUM)
[14, 15] and its integration with a Knowledge Engineering ENvironment (KEEN)
describing its deployment in safe and effective solutions for manufacturing HRC
scenarios. KEEN [16] is a knowledge engineering environment with Verification and
Validation features based on Timed Game Automata model checking. PLATINUM

is a timeline-based planning systems capable of supporting flexible temporal plan-
ning and execution with uncertainty. Also, more recent results on the development

12 Design of Timeline-Based Planning Systems for Safe Human-Robot Collaboration 233

of a task planning and execution technology deployed in realistic manufacturing
scenarios will be presented. Specifically, the paper presents an Engineering &
Control Environment which integrates a task planning system with an engineering
environment taylored to support robust human-robot collaboration.

2 Fostering Autonomy via Timeline-Based Planning and
Execution

Planning for real world problems with explicit temporal constraints is a challenging
problem. Among different approaches, the use of flexible timelines in Planning and
Scheduling (P&S) has been shown to be successful in a number of concrete appli-
cations, such as, for instance, autonomous space systems [17–19]. Timeline-based
planning has been introduced by Muscettola [19], under a modeling assumption
inspired by classical control theory. A planning problem is modeled by identifying a
set of relevant components whose temporal evolution must be controlled to obtain a
desired behavior. Components represent logical or physical subsystems whose state
may vary over time. The behavior of the domain features under control is modeled as
temporal functions whose values have to be decided over a temporal horizon. Such
functions are synthesized during problem solving by posting planning decisions.
The evolution of a single temporal feature over a temporal horizon is called the
timeline of that feature.

In general, plans synthesized by temporal P&S systems may be (1) temporally
flexible and (2) not fully controllable. Time flexibility reflects on modeling plans as
made up of flexible timelines, describing transition events that are associated with
temporal intervals (with given lower and upper bounds), instead of exact temporal
occurrences. In other words, a flexible plan describes an envelope of possible
solutions with the aim of facing uncertainty during actual execution. As a matter of
fact, many P&S architectures return flexible plans, which are commonly accepted
to be less brittle than fully specified plans, when coping with execution. The second
above-mentioned property is due to the fact that not every value transition in a
plan is under the system control, as events exist that depend on the environment.
The execution of a flexible plan is usually under the responsibility of an executive
system that forces value transitions over the timelines dispatching commands to the
concrete system, while continuously accepting feedback and, thus, monitoring plan
execution. In such cases, the execution time of controllable tasks should be chosen
so that they can face uncontrollable events. This is known as the controllability
problem [20].

2.1 A Theoretical Framework

After several attempts, a formal framework has been presented to provide a unique
theoretical background on timelines [21]. This section provides a brief informal
overview of the basic notions regarding flexible timelines and plans.

234 A. Orlandini et al.

A timeline-based planning domain contains the characterization of a set of
state variables, representing the components of a system. A state variable x is
characterized by the set of values it may assume, denoted by values(x), possible
upper and lower bounds on the duration of each value, and rules governing the
correct sequencing of such values. A timeline for a state variable is made up of a
finite sequence of valued intervals, called tokens, each of which represents a time
slot where the variable assumes a given value. In general, timelines may be flexible,
i.e., the start and end times of each of its tokens are not necessarily fixed time points,
but may range in given intervals. For the sake of generality, temporal instants and
durations are taken from an infinite set of non-negative numbers T, including 0. The
notation T

∞ will be used to denote T ∪ {∞}, where t < ∞ for every t ∈ T.
Tokens in a timeline for the state variable x are denoted by expressions of the

form xi , where the superscript indicates the position of the token in the timeline.
Each token xi is characterized by a value vi ∈ values(x), an end time interval
[ei, e

′
i] referred to as endtime(xi), and a duration interval [di, d

′
i] (as usual, the

notation [x, y] denotes the closed interval {t | x ≤ t ≤ y}). The start time interval
starttime(xi) of the token xi is [0, 0] if xi is the first token of the timeline (i.e.,
i = 1), otherwise, if i > 1, starttime(xi) = endtime(xi−1). So, a token has
the form xi = (vi, [ei, e

′
i], [di, d

′
i]) and a timeline is a finite sequence of tokens

x1, . . . , xk . The metasymbol FT L (FT Lx) will henceforth be used to denote a
timeline (for the state variable x), and FTL to denote a set of timelines. Being
tokens flexible, their exact start end times will be decided at execution time. Tokens
can be either controllable (the controller can decide both their start and end time),
or uncontrollable (both start and end time depend on the environment’s choices), or
partially controllable (the controller can decide when to start them , but their exact
duration is outside the system’s control). Each token is consequently equipped also
with a controllability tag, identifying the class it belongs to.

A scheduled timeline is a particular case where each token has a singleton [t, t]
as its end time, i.e., the end times are all fixed. A schedule of a timeline FT Lx is
essentially obtained from FT Lx by narrowing down token end times to singletons
(time points) in such a way that the duration requirements are fulfilled. In a given
timeline-based domain, the behavior of state variables may be restricted by requiring
that time intervals with given state variable values satisfy some temporal constraints.
Such constraints are stated as a set of synchronization rules which relate tokens
on possibly different timelines through temporal relations between intervals or
between an interval and a time point. These temporal relations refer to token start
or end points that will henceforth be called events. If FTL is a set of timelines and
tokens(FTL) the set of the tokens in FTL, then the set Υ (FTL) of the events in FTL
is the set containing all the expressions of the form starttime(xi) and endtime(xi)

for xi ∈ tokens(FTL). A temporal relation on tokens has then one of the following
forms:

p ≤[lb,ub] p′ p ≤[lb,ub] t t ≤[lb,ub] p

where p, p′ ∈ Υ (FTL), t, lb ∈ T and ub ∈ T
∞.

12 Design of Timeline-Based Planning Systems for Safe Human-Robot Collaboration 235

Intuitively, p ≤[lb,ub] p′ states that the token start/end point denoted by p

occurs from lb to ub time units before that denoted by p′; p ≤[lb,ub] t states
that the token start/end point denoted by p occurs from lb to ub time units
before the time point t and the third relation that it occurs from lb to ub time
units after t . Other relations between tokens [22] can be defined in terms of
the primitive ones, e.g., xi before[lb,ub] yj is the same as endtime(xi) ≤[lb,ub]
starttime(yj); xi during[lb1,ub1][lb2,ub2] y

j can be defined as starttime(yj) ≤[lb1,ub1]
starttime(xi) and endtime(xi) ≤[lb2,ub2] endtime(yj); a contains relation is its
converse: xi contains[lb1,ub1][lb2,ub2] yj if and only if yj during[lb1,ub1][lb2,ub2] x

i .
Temporal relations are also used to state the synchronization rules of the planning

domain. Here, it is sufficient to say that such rules allow to state requirements of the
following form: for every token xi

0 where the state variable x0 assumes the value

v0, there exist tokens x
i1
1 , . . . , x

in
n where the state variables x1, . . . , xn hold some

given specified values, and all these tokens are related one to another by some given
temporal relations. Unconditioned synchronization rules are also allowed and are
useful for stating both domain invariants and planning goals.

A flexible plan Π is a pair (FTL,R), where FTL is a set of timelines and R is
a set of temporal relations, involving tokens in some timelines in FTL. An instance
of the flexible plan Π = (FTL,R) is any schedule of FTL that satisfies every
relation in R. In order for a flexible plan Π = (FTL,R) to satisfy a synchronization
rule it must be the case that R contains temporal relations guaranteeing what
the rule requires. For the formal definitions the reader is again referred to [21],
where it is also proved that whenever a flexible plan satisfies (in this sense) all the
synchronization rules of a domain, then also any of its instances does.

2.2 PLATINUm: A Timeline-Based Planning and Acting
Framework

Born as a follow-up of APSI-TRF, PLATINUM1 is a general-purpose timeline-
based planning and execution framework capable of dealing with temporal uncer-
tainty and controllability issues [14, 23] that complies with the formalization given
in Sect. 2.1. PLATINUM is able to deal with uncontrollable dynamics at both
planning and execution time. Its solving process pursues a plan refinement approach
which consists in iteratively refining a partial plan by reasoning in terms of flaws that
must be solved. Flaw selection is supported by dedicated heuristics that guide the
planning procedure. A PLATINUM-based planner relies on a set of data structures
and algorithms called, respectively, components and resolvers. Components model
the types of features that may compose a planning domain. They specify the set of
states and constraints that characterize the temporal behaviors of a particular type

1https://github.com/pstlab/PLATINUm.

https://github.com/pstlab/PLATINUm

236 A. Orlandini et al.

of domain feature. Resolvers are dedicated algorithms that encapsulate the logic for
building valid temporal behaviors of a particular component. The reader may refer to
[14, 23] for a more detailed description of the framework and the solving approach.
However, it is important to point out that resolvers are not responsible for making
decisions during the search process. They are responsible for detecting flaws on a
component and computing all possible solutions of such flaws in order to guarantee
completeness of the search. Each solution of a flaw represents a branch in the search
and it is up to the planner deciding which flaw to solve and which solution to apply
for search expansion (i.e., plan refinement). The types of flaws a PLATINUM-based
planner is capable to deal with depend on the set of components and resolvers
available in the framework. PLATINUM provides state variables components and
the related resolvers that allow a planner to build valid timelines according to the
semantics proposed in [21]. Thus, PLATINUM has been extended by adding new
components and new resolvers in order to properly deal with discrete and reservoir
resources [15].

3 KEEN: Knowledge Engineering ENvironment

In order to foster the deployment of reliable timeline-based P&S applications, the
development of a Knowledge Engineering ENvironment (KEEN) for timeline-based
planning has been pursued [16]. Here, the context in which the needs for a new
tool emerged is described, and the main requirements for the new environment are
presented. Then, the core design choices that lead the development of KEEN are
discussed, divided accordingly to the features that they are intended to support.

KEEN is an open source software released under the Eclipse Public License,
version 1.0, and as such its source code can be downloaded from its GitHub
repository.2 There were no tools for timeline-based planning supporting graphical
modeling of the solution, and neither domain validation and plan verification; this
alone might justify the creation of a new tool to specifically fill this niche. However,
the motivations that led to the development of KEEN were due to some specific
needs that arose in the Planning and Scheduling Technology (PST) Laboratory at
the National Research Council of Italy (CNR-ISTC). Specifically, some research
done in the field of Verification and Validation (V&V) for timeline-based planning
[2, 6, 24]: specifically, a formalism has been developed to translate planning domains
in the form of Timed Game Automata (TGA) [5], so as to make it possible to employ
existing model checkers to verify the translated domain. Regarding plan verification,
other work was done [24, 25] to also encode flexible plans generated by a timeline-
based planner in the form of Timed Game Automata, thus making it possible to
verify generated plans in the same way as mentioned earlier. Additionally, at the

2https://github.com/ugilio/keen. The reader interested in knowing how to use KEEN can find a
detailed description at https://ugilio.github.io/keen/userguide.

https://github.com/ugilio/keen
https://ugilio.github.io/keen/userguide

12 Design of Timeline-Based Planning Systems for Safe Human-Robot Collaboration 237

PST there was the need to more efficiently exploit the technologies underlying
the planners and frameworks that have been developed there during the years; a
common language to express domains and problems, DDL, did exist, but there were
no integrated tools to ease the development of timeline-based systems; this situation
was far less than ideal because the work practice required to write domains using
standard text editors, then manually invoking a planner on the files, and possibly
execute tools to translate domains and plans to TGA encoding and running other
tools to verify them; this was cumbersome and time-consuming in the first place;
maintaining systems or refining them after some time had passed was a daunting
task; if this development style was already very complicated for planning experts, it
was a real stopper for beginners who approached the field for the first time.

This suggested that a tool to make developing comfortable was an absolute mini-
mum; moreover, given the availability of Knowledge Engineering tools with support
for graphical modeling in other fields of Automated Planning and Scheduling, it
would have been desirable to have one for timeline-based planning too. And finally,
a truly integrated environment had to also incorporate the work done on validation
and verification to make it accessible to the developer in a simple and productive
form.

3.1 Knowledge Engineering and Verification and Validation
Features in KEEN

Requirements for the new environment were elicited by interviewing the potential
new users of the system: developers of planning domains that already have a deep
knowledge of timeline-based planning, and their colleagues which were marginally
interested in writing code in detail, but were more concerned about the ability
of sketching domains to be further refined by planning experts, or which needed
to visualize the high-level information about the work done by them. A list of
broad, high-level requirements has been identified as the following: provide all
the traditional features of a modern Integrated Development Environment, i.e.,
(a) syntax highlighting, (b) code assist, (c) tree-view of syntactic elements, (d)
error detection; leverage existing, well-known tools already in use at PST; support
graphical editing of domains. Support Round-Trip Engineering, i.e., (a) be able
to edit both the textual and graphical representations in a synchronized way, (b)
without having to import and export code to/from the graphical representation,
(c) synchronization between the views should be automatic; make it possible to
use existing planners from the environment; support code sharing using popular
version control systems; enable users to easily validate domains and verify plans.
These requirements all refer to the quite common and well-known field of integrated
development environments, given that these tools are commonly used in their daily
work; for these reason, it has not been necessary to conduct in-depth analyses to
better explore the domain of application of some requirements: instead, it has been

238 A. Orlandini et al.

enough clarify some aspects via informal conversations and releasing often early
versions of the product to have a continuous feedback on the work being done
(Fig. 12.1).

KEEN, built around APSI-TRF and now applied to PLATINUM, was designed
as a set of active services to support knowledge engineering. We distinguish
between two different service layers, i.e., a set of Knowledge Engineering Services
(upper part of Fig. 12.2) and a set of V&V services (lower part of Fig. 12.2). The
Knowledge Engineering Services provide “classical” KE functionalities specifically
developed for timeline-based planning. At present, this part is composed of (1) a
Domain/Problem Editing and Visualization module that supports synthesis and
modification of planning models and (2) a Plan Editing and Visualization module

Fig. 12.1 KEEN graphical interface: eclipse-generated text highlights (left-side); a graphical view
of the planning domain (right-side)

Component
Based

Modeling
Engine

Domain
Description
Language

Problem
Description
Language

Current Plan

Plan Execution

Problem Solver

APSI-TRF

Domain/Problem
Editing & Visualization

Domain
Validation

KEEN Design Support System

TGA
Encoding Planner Validation

Plan
Verification

Plan
Validation

Plan Editing &
Visualization

Plan Execution
Validation

Dispatch
Services

Execution
Feedback

TIGA

Fig. 12.2 The general V&V architecture in KEEN

12 Design of Timeline-Based Planning Systems for Safe Human-Robot Collaboration 239

that helps inspection, analysis, and direct manipulation of solution plans. The V&V
Services contribute to the KEEN tool with a set of fully automated V&V features
obtained by making operational some research results presented in [7, 25, 26]. The
V&V functionalities are all based on model checking for Timed Game Automata
(TGA) and rely on UPPAAL-TIGA [27] as the verification engine. UPPAAL-TIGA
extends UPPAAL [28] by providing a toolbox for the specification, simulation,
and verification of real-time games. Somehow such model checker constitutes
an additional core engine for KEEN. The general KEEN concept is depicted in
Fig. 12.2.

A TGA Encoding module provides the basic TGA automatic translation for P&S
specification [25] which constitutes the basis for implementing the KEEN V&V
services: (1) Domain Validation supports the model building activity allowing to
check the P&S model with respect to system requirements; (2) Planner Validation
assesses the P&S solver with respect to a given set of requirements. In this
regard, two sub-modules are further deployed, i.e., Plan Verification to verify the
correctness of the solution plans and Plan Validation to evaluate their adequacy;
finally, (3) a TGA-based approach to Plan Controller Synthesis [7] is able to enforce
robust execution of solution plans through the generation of robust plan controllers.

The pursued idea is the integration of KEEN with either an accurate simulator
of a real environment or a real physical system (e.g., a robot). In this context,
it is possible to take advantage of all KEEN functionalities during the different
design phases, i.e., from initial design to actual solution execution and continuously
exploiting the combination of “classical” KE and V&V functionalities. Users
can also ask for solution plan generation by means of the KEEN functionalities.
Indeed, exploiting the PLATINUM capabilities, this may be performed by means
of specific planners. As for the domain, plan representation is completely handled
by PLATINUM and a specific language generation component is deputed to the
generation of a source file encoded with a Problem Description Language syntax.
The user can then modify the generated solution plan and ask KEEN to perform
V&V tasks.

4 Deploying Task Planning Solutions for Safe Human-Robot
Collaboration

In order to deploy reliable task planning solutions for safe human-robot collabo-
ration, we may consider a collaborative robotic workcell as a bounded connected
space with two agents located in it, a human and a robot, and their associated
equipment [29]. The robot system in a workcell consists of a robotic arm with
its tools, its base, and possibly additional support equipment. In such a workcell
four different degrees of interaction between a human operator and the robot can
be defined [30] in which they may occupy the same spatial location and interact
according to different modalities: Independent, the human and the robot operate

240 A. Orlandini et al.

on separate workpieces without collaboration, i.e., independently from each other;
Synchronous, the human and the robot operate on sequential components of the
same workpiece, i.e., one can start a task only after the other has completed a
preceding task; Simultaneous, the human and the robot operate on separate tasks
on the same workpieces at the same time; Supportive, the human and the robot
work cooperatively to complete the processing of a single workpiece, i.e., they work
simultaneously on the same task. Different interaction modalities entail the robot to
be endowed with different safety settings while executing tasks.

4.1 A Specific Human-Robot Collaboration Case Study

In manufacturing, different production processes can be performed with HRC
solutions, i.e., assembly/disassembly of parts, welding operations, large parts
management, machine tending, etc. Among these, here we describe a specific case
study considered in a research project named FourByThree3 [31]. This case study
corresponds to a real production industry with different relevant features for our
perspective (e.g., space sharing, collaboration, interaction needs, etc.). The overall
production process consists of a metal die which is used to produce a wax pattern in
an injection machine. Once injected, the pattern is taken out of the die. Several
patterns are assembled to create a cluster. The wax assembly is covered with a
refractory element, creating a shell (this process is called investing). The wax pattern
material is removed by the thermal or chemical means. The mould is heated to a
high temperature to eliminate any residual wax and to induce chemical and physical
changes in the refractory cover. The metal is poured into the refractory mould.
Once the mould has cooled down sufficiently, the refractory material is removed
by impact, vibration, and high pressure water-blasting or chemical dissolution.
The casting is then cut and separated from the runner system. Other post-casting
operations (e.g., heat treatment, surface treatment or coating, hipping) can be carried
out, according to customer demands.

Here, we focus on the first step (preparation of the die for wax injection and
extraction of the pattern from the die) which is a labor demanding operation that
has a big impact on the final cost of the product. Specifically, the operation consists
of the following steps: (1) mount the die; (2) inject the wax; (3) open the die and
remove the wax; (4) repeat the cycle for a new pattern starting back from step (1).
The most critical sub-operation is the opening of the die because it has a big impact
on the quality of the pattern. In this context, the involvement of a collaborative robot
has been envisaged to help the operator in the assembly/disassembly operation.

Due to the small size of the dies and the type of operations done by the worker
to remove the metallic parts of the die, it is very complex for the robot and the
worker to operate on the die simultaneously. However, both of them can cooperate

3http://www.fourbythree.eu.

http://www.fourbythree.eu

12 Design of Timeline-Based Planning Systems for Safe Human-Robot Collaboration 241

in the assembly/disassembly operation. Once the injection process is finished, the
die is taken to the workbench by the worker. The robot and the worker unscrew the
bolts of the top cover. There are nine bolts, the robot starts removing those closer
to it, and the worker the rest. The robot unscrews the bolts on the cover by means
of a pneumatic screwdriver. The worker removes the top cover and leaves it on the
assembly area (a virtual zone that will be used for the re-assembly of the die). The
worker turns the die to remove the bottom die cover. The robot unscrews the bolts
on the bottom cover by means of a pneumatic screwdriver. Meanwhile the operator
unscrews and removes the threaded pins from the two lateral sides to release the
inserts. The worker starts removing the metallic inserts from the die and leaves them
on the table. Meanwhile, the robot tightens the parts to be assembled/reassembled
together screwing bolts. The worker re-builds the die. The worker and the robot
screw the closing covers. Thus the human and the robot must collaborate to perform
assembly/disassembly on the same die by suitably handling different parts of the die
and screwing/unscrewing bolts. Specifically, the human worker has the role of leader
of the process while the robot has the role of subordinate with some autonomy.
Moreover, the robot must be able to manage a screwdriver device and monitor the
human location and its activities.

4.2 An Engineering and Control Architecture for HRC

Given the HRC scenarios described above, many features and constraints must be
considered by the envisaged control architecture in order to realize an effective,
robust, and safe collaboration. Such architecture must implement a well suited
tradeoff among the requirements of the different stakeholders involved into the pro-
duction process, i.e., a Production Engineer, a Knowledge Engineer, and a Human
Worker in addition to the specific Robot requirements. The Production Engineer is
the expert of the production needs and specifies operational requirements of the
different processes that can be performed. The Knowledge Engineer knows the
features of the robot and of the specific working environment and, therefore, is
responsible to model the production processes according to specified operational
requirements. The Human Worker and the Robot are the main actors that actually
carry out the production tasks to achieve the production process. In general, several
production processes can be performed within a factory. Each process consists of
a set of tasks that must be executed according to some operational requirements.
The perspective pursued here is the following: a Worker and a Robot represent two
autonomous agents capable of executing different types of task. Some tasks can
be executed only by the human, some tasks can be executed only by the robot, and
some tasks can be executed both by the human and the robot. Thus, given a particular
process, the control system is responsible for synthesizing the set of needed tasks to
complete the working process, assigning tasks to the human and to the robot, and
guaranteeing to robustly and safely executing them.

242 A. Orlandini et al.

Figure 12.3 shows the envisaged FOURBYTHREE Engineering & Control Archi-
tecture [32] developed for flexible human-robot collaboration and implemented by
means of PLATINUM and KEEN. The architecture shows the elements and the
actors involved within the control loop as well as their relationships. Specifically, the
labeled arrows describe all the phases of the control process starting from domain
modeling up to physical task execution. The FbT Engineering Environment relies
on KEEN (Knowledge Engineering ENvironment) [16] to support domain experts in
the design of the control model exploited by the FbT Controller to coordinate the
human and the robot tasks. Specifically, the FbT Engineering Environment allows
the Production Engineer and/or the FbT Knowledge Engineer to model the working
environment and the production processes without knowing in details the specific
planning and execution technology utilized. Once the model is defined, the FbT
Task Planner synthesizes a temporal flexible plan assigning tasks to the human and
to the robot and the FbT Plan Executive executes such plans in order to achieve
the production goals. Both the FbT Task Planner and the FbT Plan Executive rely
on PLATINUm. Specifically, the developed task planner is capable of generating
temporally robust plan by dealing with temporal uncertainty at solving time. This
is crucial in the considered scenarios where a human must tightly cooperate with a
robot. Indeed, a human is uncontrollable and his/her behavior may affect also the
behavior of the robot from the control perspective. Thus, the Human is modeled as
an autonomous and completely uncontrollable agent whose behavior may affect the
behavior of the Robot which is modeled as a partially controllable agent.

A plan is executed by dispatching commands to the robot and to the human and
by receiving feedback through dedicated communication channels implemented on

FbT Engineering
Environment

Produc�on
Model

FbT Controller

FbT
Task Planner

FbT Plan Execu�ve

Dispatcher

Monitor

Failure
Manager

Ro
bo

t O
pe

ra
�n

g
Sy

st
em

M
o�

on
 P

la
nn

er

2. plan

3. execute

3.1b. failure

3.1b.1
replan

3.1a.*
send

command

3.1a.*
receive

feedback

feedback

(s
af

e)
 H

-R
 C

ol
la

bo
ra

tio
n

Production Eng./
Knowledge Eng.

1. model
requirements

Fig. 12.3 The FOURBYTHREE engineering and control architecture

12 Design of Timeline-Based Planning Systems for Safe Human-Robot Collaboration 243

ROS.4 The FbT Plan Executive realizes a closed-loop control process which puts
the human-in-the-loop. Broadly speaking, the executive is capable of dynamically
adapting a task plan (i.e., robot task execution) according to the detected behavior
of the human. Thus, the executive can temporally adapt a task plan by absorbing
execution delays and generate a new plan through replanning only if strictly needed.
Replanning allows the executive to manage exogenous events the plan cannot
capture, e.g., a failure of a robot actuator or a human task whose duration is longer
than expected and synthesizes a new (adapted) plan which tries to complete the
execution of the process. It is worth pointing out that the integration of temporal
uncertainty at both planning and execution time makes the control process more
robust than classical approaches in the literature, e.g., T-REX [8] or IXTET-EXEC
[9], limiting the need for replanning.

4.3 The FOURBYTHREE Controller

The FbT Controller is the element responsible to actually carry out production
processes and to coordinate the robot and the human. The synthesized tasks
and the coordination of the human and the robot must follow the operational
requirements specified by the Production Engineer and encoded into the domain
model through KEEN. As Fig. 12.3 shows, the controller is composed by the FbT
Task Planner and the FbT Plan Executive both relying on the timeline-based
formalisms. The FbT Task Planner is responsible for generating the set of tasks
needed to perform the production processes according to the desired requirements.
In HRC scenarios, it is necessary to guarantee the safety of the human without
penalizing the productivity of the factory. The task planner is in charge of finding a
tradeoff between performance and safety and therefore there are several features to
take into account when synthesizing plans.

The planning model can be characterized according to three different levels of
abstraction: (1) the supervision level; (2) the coordination level; (3) the implemen-
tation level. At the supervision level, the task planner has to decide the set of tasks
needed to execute the production process by modeling the operational requirements
specified by the Production Engineer. At the coordination level, the task planner
has to decide who, between the human and the robot, must perform each task
harmonizing the activities of both. In this context, the human and the robot are
modeled as two autonomous agents capable of executing some types of task. Given a
production process, some tasks can be performed only by the human, some tasks can
be performed only by the robot, and some tasks are free to be performed either by
the human or by the robot. This choice-point represents the main branching factor
of the task planning process. It can affect the quality of the collaboration and the
efficiency of processes. Finally, at the implementation level, the task planner has to

4http://www.ros.org/.

http://www.ros.org/

244 A. Orlandini et al.

decide the operations the robot must perform in order to execute the assigned tasks.
According to the particular type of collaboration decided at coordination level, the
task planner decides the most appropriate execution modality of the tasks of the
robot in order to preserve the safety of the human.

Figure 12.4 (automatically generated by KEEN) shows an example of a timeline-
based planning model for the collaborative assembly scenario. The model is
hierarchically organized according to the three levels of abstraction identified (i.e.,
supervision, coordination, implementation). The ALFA (i.e., the name of the pilot
plant) and AssemblyProcess state variables compose the supervision level of the
model. These variables characterize the considered production context in terms of
tasks that can be executed. The AssemblyProcess specifies the set of high-level tasks
needed to complete the process and the related operational requirements. For exam-
ple, the RemoveTopCover and RemoveBottomCover values in AssemblyProcess
represent high-level tasks modeling part of the assembly/disassembly procedure.
Notice that no task assignment is performed at this level of abstraction. The Human,
RobotController and CollaborationType state variables compose the coordination
level of the model. Specifically, the Human and RobotController state variables
model the low-level tasks the human and the robot agents can perform over time.
For example, the Screw or Unscrew values of Human and RobotController state
variables model the capability of both agents of performing screwing operations.
Instead, RemovePart or Rotate values of the Human state variables model critical
operations that only the human is allowed to perform. The CollaborationType
state variable models the possible types of human-robot collaboration within the

Fig. 12.4 A graphical overview of the hierarchical P&S model for collaborative assembly
generated by KEEN

12 Design of Timeline-Based Planning Systems for Safe Human-Robot Collaboration 245

execution of the tasks of the desired process. The supervision and coordination
layers are connected by a set of synchronization rules that specify decomposition
constraints of high-level tasks in terms of low-level tasks. These rules specify how
the tasks composing the process can be performed in collaboration by the human
and the robot. Namely, these rules describe the possible task assignments between
the human and the robot and specify the collaboration modalities suited for human–
robot interactions.

The RobotArmController, ScrewDriverController, and ExecutionModality state
variables constitute the implementation level of the model. These variables represent
the physical and/or logical elements composing the production environment the
system must directly interact with. The RobotArmController together with the
ExecutionModality model the robotic arm. They represent the functional control
interface of the robot provided by the integrated motion planner (see Fig. 12.3).
Specifically, the RobotArmController models the motion tasks the robot can per-
form, while the ExecutionModality models the type of trajectory that must be used
to perform the motion. The coordination and implementation layers are connected
by another set of synchronization rules that specify how the robot must execute
the assigned tasks. A particular execution modality of robot motions is selected
according to the expected collaboration modality in the coordination layer.

4.4 Implementation with a Real Robot

The engineering & control architecture described above was deployed in a man-
ufacturing case study integrating the task planning technology described above
with a motion planning system for industrial robots [33]. The reference selected
application is a human-robot collaborative environment for the preparation of the
load/unload station (LUS) of a flexible manufacturing system (FMS). At the LUS,
machined parts and raw parts have to be unmounted and mounted on ad-hoc
fixturing system, called pallet, by a worker and a robot in order to be machined
by the FMS. With the aim to increase productivity and grant human ergonomics
and safety, robot trajectories and task allocation have to be, respectively, adequately
designed and planned.

Thus, PLATINUM and KEEN features were leveraged to implement an integrated
task and motion planning system capable of selecting different execution modalities
for robot tasks according to the expected collaboration of the robot with a human
operator. This is the result of a tight integration of PLATINUM with a motion
planning system. Indeed, the pursued approach realizes an offline analysis of the
production scenarios in order to synthesize a number of collision-free robot motion
trajectories for each collaborative task with different safety levels. Each trajectory is
then associated with an expected temporal execution bound and represents a tradeoff
between “speed” of the motion and “safety” of the human. The integrated system
has been deployed and tested in laboratory on an assembly case study similar to
collaborative assembly/disassembly scenario described above. In [34], an empirical

246 A. Orlandini et al.

evaluation is provided in order to assess the overall productivity of the HRC cell
while increasing the involvement of the robots. The idea is to gradually make free
a set of tasks originally preallocated to the human, so to increase the number of
degrees of freedom of the task planner during the minimization of the assembly
time. The results show the effectiveness of the control architecture in finding well
suited distribution of tasks between the human and the robot in different scenarios
with an increasing workload for the control system. Indeed, the total assembly time
was reduced of 65% (from 259 s to 169 s) and the percentage of tasks assigned by the
controller to the robot moved from 25 to 65%. Thus, PLATINUM and KEEN have
shown to be capable of increasing the productivity of the production process without
affecting the safety of the operator. It is worth underscoring that the outcome of
this integration constitutes the technological basis on which a new research project
development is undergoing, i.e., the ShareWork project5 funded by the European
Commission within the Factories of the Future area.

5 Conclusions

A research initiative has been started to investigate the possible integration of a
timeline-based planning framework (APSI-TRF [4]) and V&V techniques based on
Timed Game Automata (TGA) [5] to automatically synthesize a robot controller
that guarantees robustness and safety properties [6, 7]. This chapter provided an
overview of the results collected in the last decade concerning the development of
a task planning and execution framework (PLATINUM) [14, 15] and its integration
with a Knowledge Engineering ENvironment (KEEN) describing its deployment
for developing safe and effective solutions for manufacturing HRC scenarios. KEEN
[16] is a knowledge engineering environment with Verification & Validation features
based on Timed Game Automata model checking. PLATINUM is a timeline-based
planning systems capable of supporting flexible temporal planning and execution
with uncertainty. A brief overview on recent results about the development of a task
planning and execution technology deployed in realistic manufacturing scenarios
was presented. The research agenda is far from being completed. The long-term
goal is to realize a robust task planning system enabling flexible, safe, and efficient
HRC with a more tight integration of P&S technology with Knowledge Engineering
solutions and V&V techniques is a key element to synthesize more effective, robust,
and reliable safety critical systems in robotics [2].

Acknowledgements Amedeo Cesta, Andrea Orlandini, and Alessandro Umbrico wish to
acknowledge the support by the European Commission and the ShareWork project (H2020—
Factories of the Future—G.A. nr. 820807).

5https://sharework-project.eu/.

https://sharework-project.eu/

12 Design of Timeline-Based Planning Systems for Safe Human-Robot Collaboration 247

References

1. Freitag, M., Hildebrandt, T.: Automatic design of scheduling rules for complex manufacturing
systems by multi-objective simulation-based optimization. {CIRP} Annals - Manufacturing
Technology 65(1) (2016) 433–436

2. Bensalem, S., Havelund, K., Orlandini, A.: Verification and validation meet planning and
scheduling. International Journal on Software Tools for Technology Transfer 16(1) (2014) 1–
12

3. La Viola, C., Orlandini, A., Umbrico, A., Cesta, A.: ROS-TiPlEx: How to make experts in A.I.
planning and robotics talk together and be happy. In: 28th IEEE International Conference on
Robot and Human Interactive Communication (RO-MAN), New Delhi, India, 2019, pp. 1–6.
http://dx.doi.org/10.1109/RO-MAN46459.2019.8956417

4. Cesta, A., Cortellessa, G., Fratini, S., Oddi, A.: Developing an End-to-End Planning Appli-
cation from a Timeline Representation Framework. In: IAAI-09. Proc. of the 21st Innovative
Application of Artificial Intelligence Conference, Pasadena, CA, USA. (2009)

5. Maler, O., Pnueli, A., Sifakis, J.: On the Synthesis of Discrete Controllers for Timed Systems.
In: STACS. LNCS, Springer (1995) 229–242

6. Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E.: Validation and Verification Issues in
a Timeline-Based Planning System. Knowledge Engineering Review 25(3) (2010) 299–318

7. Orlandini, A., Suriano, M., Cesta, A., Finzi, A.: Controller synthesis for safety critical
planning. In: IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI
2013), IEEE (2013) 306–313

8. Py, F., Rajan, K., McGann, C.: A systematic agent framework for situated autonomous systems.
In: AAMAS. (2010) 583–590

9. Lemai, S., Ingrand, F.: Interleaving Temporal Planning and Execution in Robotics Domains.
In: AAAI-04. (2004) 617–622

10. Barreiro, J., Boyce, M., Do, M., Frank, J., Iatauro, M., Kichkaylo, T., Morris, P., Ong, J.,
Remolina, E., Smith, T., Smith, D.: EUROPA: A Platform for AI Planning, Scheduling,
Constraint Programming, and Optimization. In: ICKEPS 2012: the 4th Int. Competition on
Knowledge Engineering for Planning and Scheduling. (2012)

11. Ghallab, M., Laruelle, H.: Representation and control in IxTeT, a temporal planner. In: 2nd Int.
Conf. on Artificial Intelligence Planning and Scheduling (AIPS). (1994) 61–67

12. Morris, P.H., Muscettola, N.: Temporal Dynamic Controllability Revisited. In: Proc. of AAAI
2005. (2005) 1193–1198

13. Cesta, A., Orlandini, A., Bernardi, G., Umbrico, A.: Towards a planning-based framework for
symbiotic human-robot collaboration. In: 21th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), IEEE (2016)

14. Umbrico, A., Cesta, A., Cialdea Mayer, M., Orlandini, A.: PLATINUM: A new Framework for
Planning and Acting. In: AI*IA 2016 Advances in Artificial Intelligence: XVth International
Conference of the Italian Association for Artificial Intelligence, Genova, Italy, November 29 –
December 1, 2016, Proceedings, Springer International Publishing (2017) 508–522

15. Umbrico, A., Cesta, A., Cialdea Mayer, M., Orlandini, A.: Integrating resource management
and timeline-based planning. In: The 28th International Conference on Automated Planning
and Scheduling (ICAPS). (2018)

16. Orlandini, A., Bernardi, G., Cesta, A., Finzi, A.: Planning meets verification and validation in
a knowledge engineering environment. Intelligenza Artificiale 8(1) (2014) 87–100

17. Cesta, A., Cortellessa, G., Fratini, S., Oddi, A., Policella, N.: An Innovative Product for Space
Mission Planning: An A Posteriori Evaluation. In: ICAPS. (2007) 57–64

18. Jonsson, A., Morris, P., Muscettola, N., Rajan, K., Smith, B.: Planning in Interplanetary Space:
Theory and Practice. In: AIPS-00. Proceedings of the Fifth Int. Conf. on AI Planning and
Scheduling. (2000)

19. Muscettola, N.: HSTS: Integrating Planning and Scheduling. In Zweben, M. and Fox, M.S.,
ed.: Intelligent Scheduling. Morgan Kauffmann (1994)

http://dx.doi.org/10.1109/RO-MAN46459.2019.8956417

248 A. Orlandini et al.

20. Vidal, T., Fargier, H.: Handling Contingency in Temporal Constraint Networks: From Consis-
tency To Controllabilities. JETAI 11(1) (1999) 23–45

21. Cialdea Mayer, M., Orlandini, A., Umbrico, A.: Planning and execution with flexible timelines:
a formal account. Acta Informatica 53(6–8) (2016) 649–680

22. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11) (1983)
832–843

23. Umbrico, A., Cesta, A., Cortellessa, G., Orlandini, A.: A goal triggering mechanism for
continuous human-robot interaction. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11298 LNAI
(2018) 460–473

24. Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E.: Flexible Timeline-Based Plan
Verification. In: KI 2009: Advances in Artificial Intelligence. Volume 5803 of LNAI. (2009)

25. Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E.: Analyzing Flexible Timeline Plan. In:
ECAI 2010. Proceedings of the 19th European Conference on Artificial Intelligence. Volume
215., IOS Press (2010)

26. Orlandini, A., Finzi, A., Cesta, A., Fratini, S.: TGA-based controllers for flexible plan
execution. In: KI 2011: Advances in Artificial Intelligence, 34th Annual German Conference
on AI. Volume 7006 of Lecture Notes in Computer Science., Springer (2011) 233–245

27. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K., Lime, D.: UPPAAL-TIGA: Time
for playing games! In: Proc. of CAV-07. Number 4590 in LNCS, Springer (2007) 121–125

28. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. International Journal on Software
Tools for Technology Transfer 1(1–2) (1997) 134–152

29. Marvel, J.A., Falco, J., Marstio, I.: Characterizing task-based human-robot collaboration safety
in manufacturing. IEEE Trans. Systems, Man, and Cybernetics: Systems 45(2) (2015) 260–275

30. Helms, E., Schraft, R.D., Hagele, M.: rob@work: Robot assistant in industrial environments.
In: Proceedings. 11th IEEE International Workshop on Robot and Human Interactive Commu-
nication. (2002) 399–404

31. Maurtua, I., Pedrocchi, N., Orlandini, A., Fernández, J.d.G., Vogel, C., Geenen, A., Althoefer,
K., Shafti, A.: Fourbythree: Imagine humans and robots working hand in hand. In: 2016 IEEE
21st International Conference on Emerging Technologies and Factory Automation (ETFA).
(Sept 2016) 1–8

32. Cesta, A., Orlandini, A., Umbrico, A.: Fostering robust human-robot collaboration through AI
task planning. Procedia CIRP 72 (2018) 1045–1050 51st CIRP Conference on Manufacturing
Systems.

33. Pellegrinelli, S., Moro, F.L., Pedrocchi, N., Tosatti, L.M., Tolio, T.: A probabilistic approach
to workspace sharing for human–robot cooperation in assembly tasks. {CIRP} Annals -
Manufacturing Technology 65(1) (2016) 57–60

34. Pellegrinelli, S., Orlandini, A., Pedrocchi, N., Umbrico, A., Tolio, T.: Motion planning
and scheduling for human and industrial-robot collaboration. CIRP Annals - Manufacturing
Technology 66 (2017) 1–4

Chapter 13
Planning in a Real-World Application:
An AUV Case Study

Lukáš Chrpa

1 Introduction

Automated planning deals with the problem of finding a (partially ordered) action
sequence, a plan, transforming the environment from a given initial state to some
required goal state [7]. In a nutshell, automated planning accounts for deliberative
reasoning that intelligent entities leverage for finding strategies (plans) for their
longer-term goals. There are many successful real-world applications ranging
from space and planet observations [1], Urban Traffic Control [9] to narrative
generation [8].

Domain-independent planning decouples a planning task descriptions (for exam-
ple, in PDDL) and planning engines that can be understood as general solvers of
planning tasks. The advantage of such approach is its modularity, i.e., the task
description and the planning engine are independent components, that makes it
easier to plug into larger systems. Planning task description can be further decoupled
into a domain model that describes the environment and action in general level, and
a planning problem that describes concrete objects, an initial state, and a goal. To
communicate with the planning component, the system has to be able to generate
planning problems (for example, in PDDL) and be able to interpret (and execute)
generated plans.

This chapter summarises an experience of an automated planning expert with the
application of task planning for autonomous underwater vehicles (AUVs) who went
through the process of knowledge elicitation, domain modelling, and plan execution
in real environment. The aim of the chapter is to give insights into how easy or hard

L. Chrpa (�)
Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic

Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
e-mail: chrpaluk@fel.cvut.cz

© Springer Nature Switzerland AG 2020
M. Vallati, D. Kitchin (eds.), Knowledge Engineering Tools and Techniques
for AI Planning, https://doi.org/10.1007/978-3-030-38561-3_13

249

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38561-3_13&domain=pdf
http://orcid.org/0000-0001-9713-7748
mailto:chrpaluk@fel.cvut.cz
https://doi.org/10.1007/978-3-030-38561-3_13

250 L. Chrpa

it might be for a planning expert to develop a reasonable domain model for a real-
world application in which s/he is not an expert. On top of that the experience from
the field experiments gives good insights into robustness of the planning approach
and points out possible issues that arise from the discrepancy of the real environment
and the (simplified) domain model. The chapter is based on the conference papers
describing the “one-shot” model [3] and the “dynamic” model [2].

2 Background

While operating AUVs, human operators interact with a network of vehicles via
NEPTUS, a graphical decision-support system with graphical user interface and
analysis capabilities [4]. NEPTUS therefore allows users to view vehicle data and
to define behaviours and tasks of the vehicles. NEPTUS is connected via inter-
module communication protocol to DUNE that runs on board of each vehicle and is
responsible for command execution and gathering of sensory data [10].

In a nutshell, an operator can specify and execute high-level commands in
NEPTUS, for example, “move AUV1 to location X”, or “sample AUV1 an object
Y at location X”. However, operating multiple (heterogeneous) AUVs to perform
several tasks might be time-consuming and error prone for human operators even
though the mission might not be very complex.

The idea how to automatise AUV operations is to leverage automated planning
for generating plans for AUVs such that they eventually complete all tasks specified
by operators [3]. An automated planning component can be embedded to the
NEPTUS toolchain as depicted in Fig. 13.1. Intuitively, the high-level commands an

Mission
Mgmt.

(Neptus)

Planning
engine

(LPG-TD)

Domain
Model

(PDDL)

User Interaction

Plan

Problem
specification

Mission
Mgmt.

(Neptus)

Planning
engine

(LPG-TD)

Domain
Model

(PDDL)

User Interaction

Plan

Problem
specification

Dispatch and execution

LAUV 1 LAUV n

Fig. 13.1 A modular architecture of the system [3]

13 Planning in a Real-World Application: An AUV Case Study 251

operator can specify in NEPTUS will correspond to actions specified in a planning
domain model.

We use PDDL 2.1 [5] for representing our planning tasks. The environment is
described by predicates and numeric fluents. Actions are specified via preconditions,
effects, and the duration of their execution. Preconditions are sets of logical
expressions that must be true in order to have the actions executable. In PDDL 2.1,
these expressions can take place prior to starting action execution, prior to finishing
action execution, or over the whole time period when the action is executed.
Effects are sets of literals and function assignments that take place following action
execution. In PDDL 2.1, effects can occur just after starting action execution, or just
after finishing action execution.

As a planning engine, LPG-td [6] is used. LPG-td performs local search in a
planning graph [7] which allows executing actions that do not interfere with each
other in one step and thus LPG-td performs well in our domain.

3 One-Shot Planning

The initial idea of leveraging automated planning for task planning for AUVs can
be summarised in three consecutive steps.

1. An operator specifies tasks
2. The planning component generates a plan
3. The plan is executed by AUVs

Henceforth, we will refer to such an approach as “one-shot planning” [3].

3.1 Requirements

Given a fleet of heterogeneous AUVs where each AUV has different payloads
attached to it, a human operator specifies tasks in NEPTUS such that each task
consists of an object or area of interest and a payload which has to be used to collect
data about the object/area of interest. Noteworthy each task has to be fulfilled by a
single AUV.

During operations none of the AUVs has to run out of power. Also, two or more
AUVs cannot operate at the same location or in the same area. On the other hand,
when moving between locations AUVs can be in different depths and hence they
should not collide.

Each AUV can move between two locations if it has enough power. An AUV
can sample an object of interest or survey an area of interest if it is in the required
location, has enough energy, and has a required payload. If an AUV is close to the
operation centre, it can transfer acquired data there.

252 L. Chrpa

The planning engine has to then find a plan that allocate all user-specified tasks
to particular AUVs such that the above constraints are met (e.g., AUVs will not run
out of power) and the AUVs return to their “safe spots” next to the operation centre
and transmit acquired data.

3.2 Domain Model Specification

We have conceptualised the requirements in the form of a domain model speci-
fication. We consider three categories: object types, predicates and functions, and
actions similar to [11]. Noteworthy such conceptualisation might be seen as biased
towards PDDL as we use it for describing the domain model.

Object types refer to classes of objects that are relevant for the planning process,
such as vehicle (V), payload (P), phenomenon (X), task (T), location (L). By
“phenomenon” we mean either an object or an area of interest.

Predicates and numeric fluents describe states of the environment. In particular,
predicates represent relationships between objects, and numeric fluents refer to
quantity of resources related to the objects. We have defined the following predi-
cates: at ⊆ V × L—a location of the vehicle, base ⊆ V × L—a location of the
vehicle’s depot, i.e., a safe location next to the control centre, has ⊆ V × P —
whether a payload is attached to the vehicle, at-phen ⊆ X × L—a location of
the phenomenon, task ⊆ T × X × P —a task description of getting data about
a phenomenon from a specific payload, sampled ⊆ T × V —whether data of a
given task has been acquired by the vehicle, data ⊆ T —whether the task data has
been transmitted to the control centre. Then, we have defined the following numeric
fluents: dist : L × L → R

+—a distance between two locations, speed : V →
R

+—speed over ground of the vehicle, battery-level : V → R
+
0 —the amount of

energy in a vehicle’s battery, battery-use : V ∪ P → R
+—battery consumption per

distance unit (moving a vehicle) or per time unit (using a payload). Noteworthy, we
assume a linear energy use both for moving or using a payload.

Actions modify the environment according to their effects. We consider “durative
actions” that reason with time, i.e., action execution takes time. We have specified
four actions (we denote ts as time when an action is executed, and te as time when
an action execution ends):

– move(v, l1, l2)—the vehicle v moves from its location of origin l1 to a location
of its destination l2. As a precondition is must hold that in ts : (v, l1) ∈ at ,
battery-level(v) ≥ dist (l1, l2) ∗ battery-use(v); and in te: ¬∃vx �= v : (vx, l2) ∈
at . The effect is that in ts : (v, l1) �∈ at , and battery-level(v) = battery-level(v)−
dist (l1, l2) ∗ battery-use(v),and in te: (v, l2) ∈ at .

– sample(v, t, x, p, l)—the vehicle v samples a phenomenon x by payload p. As a
precondition it must hold that in ts : battery-level(v) ≥ (te − ts) ∗ battery-use(p),
and in [ts , te]: (v, l) ∈ at , (x, l) ∈ at-phen, (v, p) ∈ has and (t, x, v) ∈

13 Planning in a Real-World Application: An AUV Case Study 253

task. The effect is that in ts : battery-level(v) = battery-level(v) − (te − ts) ∗
battery-use(p), and in te: (t, v) ∈ sampled.

– survey(v, t, x, p, l1, l2)—the vehicle v surveys the area (between l1 and l2) of
phenomenon x occurrence by the payload p. As a precondition is must hold that
in ts : (v, l1) ∈ at , battery-level(v) ≥ dist (l1, l2) ∗ battery-use(v) + (te − ts) ∗
battery-use(p), and in [ts , te]: (x, l1) ∈ at-phen, (x, l2) ∈ at-phen, (v, p) ∈ has

and (t, x, v) ∈ task. Also, no other vehicle can perform the survey action
over the phenomenon x in [ts , te]. The effect is that in ts : (v, l1) �∈ at , and
battery-level(v) = battery-level(v) − (dist (l1, l2) ∗ battery-use(v) + (te − ts) ∗
battery-use(p)), and in te: (v, l2) ∈ at , (t, v) ∈ sampled.

– collect-data(v, t, l)—the data associated with a task t is collected by vehicle v.
As a precondition it must hold that in [ts , te]: (v, l) ∈ at , (v, l) ∈ base and
(t, v) ∈ sampled. The effect is that in te: t ∈ data.

Durations of the move and survey actions are determined from the distance
between locations and speed of the vehicle. Durations of the collect-data and sample
actions are constant. As an example, the Sample action is encoded as depicted in
Fig. 13.2.

3.3 Problem Specification

The planning problem is specified by concrete objects (e.g., AUVs, phenomena,
locations), an initial state and a goal. The goal is to have all the required data
transmitted to the control centre and having AUVs back in their depots. The initial
state consists of initial locations of AUVs and their depots, locations or areas of
phenomena, vehicles’ payloads, task descriptions (specified by a human operator
in NEPTUS), i.e., which types of payloads is to be used to collect data about
the phenomena, distance between the locations, vehicle speed, battery levels, and
battery consumption values per vehicle/payload.

The planner decides which AUV does which task and in which order the tasks
are performed. Plans follow the constraints specified in the action descriptions, i.e.,

Fig. 13.2 The Sample
action of the One-shot model
in PDDL

254 L. Chrpa

collision avoidance and energy constraints with plans optimised for total mission
time. If the planner is unable to find a plan, the user is notified of plan failure,
requiring her/him to iteratively relax constraints (e.g., remove some tasks).

3.4 Field Experiment

The concept has been evaluated on a “mine-hunting” scenario in Porto Harbour [3].
We used three AUVs that in the first stage were set to perform several survey tasks,
while in the second stage they were set to perform several sample tasks. Generated
plans were successfully executed, hence AUVs successfully completed assigned
tasks in both stages.

On the other hand, the results have shown considerable discrepancies between
anticipated and actual action durations, especially for the move and survey actions.
The reasons cover ocean currents, rough ocean floor, to mention a few, affecting
actual duration of the survey and move actions. For our settings in which AUVs
operate individually such discrepancies are not a major issue. For collaborative
scenarios or longer-term missions, the discrepancies might be problematic. For
deeper insights about the experiments, see [3].

4 Dynamic Planning, Replanning, and Plan Execution

The “one-shot” model [3] does not consider user changes during the mission
execution. In other words, the two-stage mine-hunting scenario has to be planned
and executed one by one, i.e., all the first-stage tasks have to finish before the
operator can specify tasks of the second stage. In longer-term operations, such an
approach is impractical as the mission operators cannot react to acquired data as
soon as they get them. That said, mission operators should be able to add, modify,
or remove tasks during the mission.

Another issue concerns possible vehicle failure while performing a given action.
For example, an AUV might fail to complete a sample action if its payload is faulty.
The “one-shot” model, however, does not reason with such cases and it is up to the
operator to reinsert failed tasks into NEPTUS.

Also, while operating underwater AUVs might not be able to maintain reliable
communication with the control centre. This is exacerbated in lager areas or higher
depths where AUVs are often radio silent for several minutes. Lack of communi-
cation complicates monitoring plan execution as well as sending new or amending
old plans to AUVs. Hence, AUVs have to establish a reliable communication with
control centre from time to time to report completion/failure of tasks and receiving
new ones. Details can be found in [2].

13 Planning in a Real-World Application: An AUV Case Study 255

4.1 Requirements

To incorporate dynamic task allocation as well as recovery from task failures, the
system has to be able to replan, i.e., to generate a new plan which replaces the old
one. In particular, any user change might trigger replanning; however, for practical
reason replanning is triggered (if a change occurs) periodically. Task failures can be
directly reported to the system that reinserts the failed task back into the system and
the task is considered for replanning.

Addressing the communication issue can be done by requesting AUVs to return
to their “depots” and establish communication with the control centre in a given
period of time. Specifically, each AUV can be away for at most a given period of
time before returning to its “depot” to establish communication and then it can go
away again (for at most the given period of time). That said, AUV will complete
tasks in “rounds”.

4.2 Domain Model Specification

In contrast to the “one-shot” model, the “dynamic” model [2] distinguishes between
Objects of Interest (O) and Areas of Interest (A) instead of phenomenons.

In the dynamic model, we introduce a can-move ⊆ V predicate determining
whether a vehicle can perform a move action. The at-phen predicate is replaced by
at-obj ⊆ O × L determining locations of objects of interest, and at-entry ⊆ A × L

and at-exit ⊆ A × L determining entry and exit locations of areas of interest. The
battery constraints are relaxed since vehicles have to regularly visit their depots and
if their battery level is not high enough for the next “round”, they are no longer
considered for planning. On the other hand, we define two fluents determining how
long the vehicles are away, away : V → R

+
0 , and the maximum time they can be

away from their depots, max-away : V → R
+
0 .

We consider “durative actions” that reason with time, i.e., action execution takes
time. We have specified six actions (we denote ts as time when an action is executed,
and te as time when an action execution ends). Noteworthy we split the move action
into three variants depending where the vehicle goes, i.e., move-to-sample, move-
to-survey, and move-to-depot:

– move-to-sample(v, l1, l2, o)—the vehicle v moves from its location of origin l1
to a location of its destination l2 in which it has to take a sample of o. As a
precondition is must hold that in ts : (v, l1) ∈ at , v ∈ can-move, (o, l2) ∈ at-obj,
away(v) ≤ max-away(v) − (te − ts); and in te: ¬∃vx �= v : (vx, l2) ∈ at . The
effect is that in ts : (v, l1) �∈ at, v �∈ can-move, and away(v) = away(v) + (te −
ts),and in te: (v, l2) ∈ at

– move-to-survey(v, l1, l2, a)—the vehicle v moves from its location of origin l1 to
a location of its destination l2 in which it has to survey a. As a precondition is
must hold that in ts : (v, l1) ∈ at , v ∈ can-move, (a, l2) ∈ at-entry, away(v) ≤

256 L. Chrpa

max-away(v) − (te − ts); and in te: ¬∃vx �= v : (vx, l2) ∈ at . The effect is that
in ts : (v, l1) �∈ at, v �∈ can-move, and away(v) = away(v) + (te − ts),and in te:
(v, l2) ∈ at

– move-to-depot(v, l1, l2)—the vehicle v moves from its location of origin l1 to a
location of its depot at l2. As a precondition is must hold that in ts : (v, l1) ∈ at ,
v ∈ can-move, (v, l2) ∈ base, away(v) ≤ max-away(v) − (te − ts); and in
te: ¬∃vx �= v : (vx, l2) ∈ at . The effect is that in ts : (v, l1) �∈ at , and in te:
(v, l2) ∈ at and away(v) = 0.

– sample(v, t, o, p, l)—the vehicle v samples an object of interest o by payload p.
As a precondition it must hold that in ts : away(v) ≤ max-away(v) − (te − ts);,
and in [ts , te]: (v, l) ∈ at , (o, l) ∈ at-obj, (v, p) ∈ has and (t, o, v) ∈ task. The
effect is that in ts : away(v) = away(v) + (te − ts), and in te: (t, v) ∈ sampled,
v ∈ can-move.

– survey(v, t, a, p, l1, l2)—the vehicle v surveys the area a (between l1 and l2)
by the payload p. As a precondition is must hold that in ts : away(v) ≤
max-away(v) − (te − ts), (v, l1) ∈ at and in [ts , te]:, (a, l1) ∈ at-entry,
(a, l2) ∈ at-exit, (v, p) ∈ has and (t, a, v) ∈ task. Also, no other vehicle
can perform the survey action over the area a in [ts , te]. The effect is that in
ts : (v, l1) �∈ at , and away(v) = away(v) + (te − ts), and in te: (v, l2) ∈ at ,
(t, v) ∈ sampled, v ∈ can-move.

– collect-data(v, t, l)—the data associated with a task t is collected by vehicle v.
As a precondition it must hold that in [ts , te]: (v, l) ∈ at , (v, l) ∈ base and
(t, v) ∈ sampled. The effect is that in te: t ∈ data.

Durations of the move and survey actions are determined from the distance
between locations and speed of the vehicle. Durations of the collect-data and sample
actions are constant. As an example, the Sample action is encoded as depicted in
Fig. 13.3.

Fig. 13.3 The Sample action of the dynamic model in PDDL

13 Planning in a Real-World Application: An AUV Case Study 257

4.3 Problem Specification

The All-tasks model [2] specifies the problem analogously to the “one-shot” model
(defining the “away” constraints instead of the “battery” constraints). Plans allocate
all specified tasks and are optimised for minimising makespan, i.e., the duration of
plans’ execution, and the number of move-to-depot actions. The latter is used to
minimise the number of “rounds” vehicles have to take as well as the number of
vehicles necessary to fulfil the tasks.

The One round model [2] plans only for the next round. Specifically, the move-to-
depot action removes the can-move predicate and the collect-data action increments
a fluent (additionally defined) tasks-completed. Goals, in contrast to the All-Tasks
model, are to have all involved vehicles in their depots and a specified minimum
number of tasks completed. Plans are optimised for maximising the number of
completed tasks.

4.4 Planning and Execution

On top of the “one-shot” model, here large survey tasks are split into smaller ones (to
satisfy the “away” constraints). The move actions are given more lenient durations
as they are translated into timed waypoint behaviours which specify target location
and absolute time of arrival. As a result, when vehicles move between locations they
adapt their speed according to remaining time to arrive at the location of the task.

A new planning request is generated by operator changes as well as by reported
failures of vehicles. Planning requests are considered periodically. If a new planning
request arrives while a vehicle is executing the previous plan, the vehicle continues
executing the former plan until its earliest arrival to its depot. Then, the new plan
is assigned to the vehicle (notice that the planning request considers the estimated
time when the vehicle will be available).

4.5 Field Experiment

Again, the dynamic models were evaluated on a “mine-hunting” scenario that
incorporates a surveying and sampling stages. In contrast to “one-shot”, the operator
could add sampling tasks that were processed and allocated to AUVs before the
stage-one survey tasks finished. Although in one case an AUV reported a temporary
depth sensor fault and failed a given task, the task was reinserted to NEPTUS and
later allocated to a different AUV that completed the task. In the remaining cases,
plans were executed successfully.

258 L. Chrpa

Also, with the timed waypoint move actions, plans became more robust to
discrepancies between planned and actual plan duration hence the vehicles always
arrived to their depots in a planned time (or very close to it).

The “All-tasks” model generates better quality plans than the “one-round” model.
On the other hand, we believe that for larger missions (dozens of tasks), the “All-
tasks” model might struggle to generate plans in required time (plans will be longer)
in contrast to the “one-round” model.

5 Conclusion

Domain-independent planning can be fruitfully exploited in application areas such
as task planning for AUVs. The advantage is its modularity that makes it easy to
plug into larger systems. The key part is developing of effective domain model that
provides a symbolic description of the environment and (high-level) actions. This
chapter described the knowledge engineering process of domain model development
for the problem of task planning for AUVs. The field experiments indicate that
the use of domain-independent planning can automatise task allocation for AUVs
and that generated task allocation can be successfully executed in the real-world
environment.

The future challenges concern robustness and adaptability of domain models.
Collaborative as well as long-term missions require accurate and robust models as
even small discrepancies might easily propagate and might cause mission failure. In
particular, domain models should be able to adapt themselves according to current
observations and generated plans must be safe or with a minimal risk of failure if
environment unexpectedly changes. That would require to combine several research
areas such as automated planning and machine Learning.

Acknowledgement This research was funded by the Czech Science Foundation (project no. 17-
17125Y).

References

1. Ai-Chang, M., Bresina, J.L., Charest, L., Chase, A., Hsu, J.C., Jónsson, A.K., Kanefsky, B.,
Morris, P.H., Rajan, K., Yglesias, J., Chafin, B.G., Dias, W.C., Maldague, P.F.: MAPGEN:
mixed-initiative planning and scheduling for the mars exploration rover mission. IEEE
Intelligent Systems 19(1), 8–12 (2004). https://doi.org/10.1109/MIS.2004.1265878

2. Chrpa, L., Pinto, J., Marques, T.S., Ribeiro, M.A., de Sousa, J.B.: Mixed-initiative planning,
replanning and execution: From concept to field testing using AUV fleets. In: 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2017, Vancouver, BC,
Canada, September 24–28, 2017. pp. 6825–6830 (2017). https://doi.org/10.1109/IROS.2017.
8206602

https://doi.org/10.1109/MIS.2004.1265878
https://doi.org/10.1109/IROS.2017.8206602
https://doi.org/10.1109/IROS.2017.8206602

13 Planning in a Real-World Application: An AUV Case Study 259

3. Chrpa, L., Pinto, J., Ribeiro, M.A., Py, F., de Sousa, J.B., Rajan, K.: On mixed-initiative
planning and control for autonomous underwater vehicles. In: 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS 2015, Hamburg, Germany, September
28 - October 2, 2015. pp. 1685–1690 (2015). https://doi.org/10.1109/IROS.2015.7353594

4. Dias, P.S., Gomes, R.M.F., Pinto, J., Gonçalves, G.M., de Sousa, J.B., Pereira, F.M.L.:
Mission planning and specification in the Neptus framework. In: Proceedings of the 2006
IEEE International Conference on Robotics and Automation, ICRA 2006, May 15–19, 2006,
Orlando, Florida, USA. pp. 3220–3225 (2006). https://doi.org/10.1109/ROBOT.2006.1642192

5. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal planning
domains. J. Artif. Intell. Res. (JAIR) 20, 61–124 (2003)

6. Gerevini, A., Saetti, A., Serina, I.: Planning with numerical expressions in LPG. In: Pro-
ceedings of the 16th European Conference on Artificial Intelligence, ECAI’2004, including
Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain, August 22–27,
2004. pp. 667–671 (2004)

7. Ghallab, M., Nau, D., Traverso, P.: Automated planning, theory and practice. Morgan
Kaufmann (2004)

8. Haslum, P.: Narrative planning: Compilations to classical planning. J. Artif. Intell. Res. 44,
383–395 (2012). https://doi.org/10.1613/jair.3602

9. McCluskey, T.L., Vallati, M.: Embedding automated planning within urban traffic management
operations. In: Proceedings of the Twenty-Seventh International Conference on Automated
Planning and Scheduling, ICAPS 2017, Pittsburgh, Pennsylvania, USA, June 18–23, 2017. pp.
391–399 (2017), https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15645

10. Pinto, J., Dias, P.S., Martins, R., Fortuna, J., Marques, E., Sousa, J.: The LSTS toolchain for
networked vehicle systems. In: OCEANS-Bergen, 2013 MTS/IEEE. pp. 1–9. IEEE (2013)

11. Shah, M.M.S., Chrpa, L., Kitchin, D.E., McCluskey, T.L., Vallati, M.: Exploring knowledge
engineering strategies in designing and modelling a road traffic accident management domain.
In: IJCAI (2013)

https://doi.org/10.1109/IROS.2015.7353594
https://doi.org/10.1109/ROBOT.2006.1642192
https://doi.org/10.1613/jair.3602
https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15645

Chapter 14
Knowledge Engineering and Planning for
Social Human–Robot Interaction: A Case
Study

Ronald P. A. Petrick and Mary Ellen Foster

Abstract The core task of automated planning is goal-directed action selection;
this task is not unique to the planning community, but is also relevant to numerous
other research areas within AI. One such area is interactive systems, where
a fundamental component called the interaction manager selects actions in the
context of conversing with humans using natural language. Although this has
obvious parallels to automated planning, using a planner to address the interaction
management task relies on appropriate engineering of the underlying planning
domain and planning problem to capture the necessary dynamics of the world, the
agents involved, their actions, and their knowledge. In this chapter, we describe
work on using domain-independent automated planning for action section in social
human–robot interaction, focusing on work from the JAMES (Joint Action for
Multimodal Embodied Social Systems) robot bartender project.

1 Introduction

At a high level, automated planning can be viewed as a problem of context-
dependent action selection: given a set of initial state conditions, action descriptions,
and goals, the planner must generate a sequence of actions whose application to
the initial state will bring about the goal conditions. However, this view of action
selection is not unique to planning. One important area where this problem is also of
primary concern is in interactive systems, a subfield of natural language dialogue
that is focused on implementing tools and applications for interacting with human
users.

R. P. A. Petrick (�)
Department of Computer Science, Heriot-Watt University, Edinburgh, UK
e-mail: R.Petrick@hw.ac.uk

M. E. Foster
School of Computing Science, University of Glasgow, Glasgow, UK
e-mail: MaryEllen.Foster@glasgow.ac.uk

© Springer Nature Switzerland AG 2020
M. Vallati, D. Kitchin (eds.), Knowledge Engineering Tools and Techniques
for AI Planning, https://doi.org/10.1007/978-3-030-38561-3_14

261

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38561-3_14&domain=pdf
mailto:R.Petrick@hw.ac.uk
mailto:MaryEllen.Foster@glasgow.ac.uk
https://doi.org/10.1007/978-3-030-38561-3_14

262 R. P. A. Petrick and M. E. Foster

A fundamental component in the construction of an interactive system, such as a
robot that is able to converse with a human using natural language, is the interaction
manager [6], whose primary task is to carry out a form of action selection: based on
the current state of the interaction and of the world, the interaction manager makes
a high-level decision as to which spoken, non-verbal, and task-based actions should
be taken next by the system as a whole. Compared with more formal, descriptive
accounts of dialogue which aim to model the full generality of language use [3],
work on interaction management has concentrated primarily on developing end-to-
end systems that operate in specific task settings, and on evaluating them through
interaction with human users [20, 27].

In contrast, the planning community has addressed the problem of high-level
action selection through the development of domain-independent planners: systems
that employ general-purpose problem-solving techniques that can be applied to a
wide range of planning domains and problems, modelled in common representation
language such as PDDL [26]. Action selection strategies are regularly compared
within this common context, especially through events like the International Plan-
ning Competitions [16], while the representation languages themselves are often
studied to better understand their expressiveness and applicability [36]. Applying
planning tools to a complex scenario, therefore, involves appropriate engineering
of the underlying planning domain and planning problem, to capture the necessary
dynamics of the world, the agents involved, their actions, and their knowledge, for
a suitable choice of planning system and representation language—and then often
integrated as part of a larger system.

While the link between automated planning and natural language processing
has a long tradition, the planning approach to natural language interaction has
for the most part been largely overlooked more recently. In this chapter, we
describe work on using domain-independent automated planning for action section
in human–robot interaction, using an application from the JAMES (Joint Action for
Multimodal Embodied Social Systems)1 robot bartender project [35]. We survey
recent work in the interactive systems community in the form of toolkits used for
constructing interactive dialogue systems. We then describe how we use knowledge
engineering techniques to perform similar tasks with an epistemic automated
planning system. In the specific context of the JAMES robot system, we show
how social states are inferred from low-level sensors, using vision and speech
as input modalities; how planning domains and problems are modelled for the
bartending scenario; and how an epistemic planner is used to construct plans with
task, dialogue, and social actions, as an alternative to other methods of interaction
management.

1http://james-project.eu/.

http://james-project.eu/

14 Knowledge Engineering and Planning for Social Human–Robot Interaction 263

2 Interaction Management

Since both interaction management and automated planning deal with goal-directed
action selection, in principle interaction management presents an opportunity for
showcasing planning tools and demonstrating how different approaches can be
applied, benchmarked, and compared. Although early applications of planning in
this area can be traced back to the 1980s [2, 7, 15, 32, 39], the planning approach has
for the most part been largely overlooked more recently. Instead, interactive systems
researchers tend to use purpose-built toolkits for constructing end-to-end dialogue
systems. Foster and Petrick [9] present a survey of such toolkits; we summarise the
main features of some of these toolkits below.

An interaction management toolkit generally incorporates three main features.
First, it provides a representational formalism for specifying states and actions.
Second, the state/action representation is usually tightly linked to a reasoning
strategy that is used to carry out action selection. Finally, most toolkits also include
a set of infrastructure building tools designed to support modular system devel-
opment. While these three features can clearly simplify the task of implementing
an individual end-to-end system, the fact that the features are so tightly connected
does complicate the task of comparing representational formalisms or reasoning
strategies: in general, to carry out such a comparison, there is no alternative but to
re-implement the entire system in multiple frameworks [28, 31].

Historically, one of the most widely used approaches to dialogue management
was the information state update (ISU) approach, which is exemplified by the
TrindiKit toolkit [22]. The core of this approach is the use of an information state
which represents the state of the dialogue and which is updated by applying update
rules following a given update strategy. A similar ISU approach has also been taken
in more recent dialogue systems, but using other infrastructures [18, 19]. A more
recent approach is exemplified by OpenDial [23], an open-source toolkit designed
to support robust dialogue management, using a hybrid framework that combines
logical and statistical approaches through probabilistic rules to represent the
internal models of the framework. OpenDial also includes a Java-based blackboard
architecture where all modules are connected to a central information hub which
represents the dialogue state, along with a plugin framework allowing new modules
to be integrated.

Many modern interactive systems are built with online toolkits such as the
Amazon Alexa Skills Kit [1] or Dialogflow [14]—these toolkits generally use
machine learning to learn the correct responses to user actions given sample
inputs. One current interactive system which does incorporate aspects of automated
planning is the MuMMER social robot [29], which combines a planner used
for action selection with a more traditional dialogue manager. Other approaches
[4, 5, 21] have also explored the use of planning for dialogue and interaction, while
recent work on explainable planning [12] has also highlighted the links between
planning and user interaction.

264 R. P. A. Petrick and M. E. Foster

3 Task-Based Social Interaction: A Robot Bartender
Scenario

The goal of this work is to use domain-independent planning as the high-level
decision-making mechanism for action selection in an interactive robot system. In
particular, the target domain for this work is a task-based human–robot interaction
scenario involving a bartending robot, as shown in Fig. 14.1 (left). In this setting,
the robot acts as a bartender that serves customers that approach the bar area
seeking attention. The robot hardware itself consists of two 6 degrees-of-freedom
industrial manipulator arms with grippers, mounted to resemble human arms. Sitting
on the main robot torso is an animatronic talking head capable of producing facial
expressions, rigid head motion, and lip-synchronised synthesised speech.

A sample bartender interaction is shown in Fig. 14.2. In this example, two
people enter the bar area and attempt to order drinks from the robot. During the
interaction, a third person approaches the bar and attempts to attract the attention
of the bartender. When the third customer appears while the bartender is engaged
with the first two customers, the bartender reacts appropriately by telling the third
customer to wait, finishing the transaction with the first two people, and then serving
the third customer.

Even this simple interaction presents challenges to the robot system tasked with
the role of the bartender (see Fig. 14.1, right): the visual processor system must
track the locations and body postures of the agents; the speech recogniser must
detect and deal with speech in an open setting and, using the parser, transform the
input into a logical form representing the speech; the state manager must make
sense of the social scene using the processed input modalities; the planner and
execution monitor must determine who requires attention and should ensure that
they are served correctly, while appropriately responding to unexpected outcomes
as they arise; while the output planner must select and execute concrete behaviours
for each output channel to correctly realise high-level actions, communicating with
the talking-head controller and robot motion planner.

State
Manager

Parser

Planner/
Execution Monitor

Output
Planner

Robot Motion
Planner

Talking-Head
Controller

Real World

Visual
Processor

Speech
Recogniser

Fig. 14.1 The robot bartender and bar setting (left) and the software architecture for the robot
(right)

14 Knowledge Engineering and Planning for Social Human–Robot Interaction 265

epytnoitcAnoitcaretnI

Two people, A and B, each individually approach and look at the robot bartender
noitcagnisneS?uoyplehInacwoH]AnosrePtaskooL[:TOBOR

PERSON A: A pint of cider, please.
Person C approaches the bar and tries to attract the attention of the bartender
ROBOT: [Looks at Person C] One moment, please. Social action

noitcalacisyhP]AnosrePsevreS[:TOBOR
noitcagnisneS?evahuoylliwtahW]BnosrePtaskooL[:TOBOR

PERSON B: A glass of red wine.
noitcalacisyhP]BnosrePsevreS[:TOBOR

noitcalaicoS.gnitiawrofsknahT]CnosrePtaskooL[:TOBOR
noitcagnisneS?uoyplehInacwoH

PERSON C: I’d like a pint of beer.
noitcalacisyhP]CnosrePsevreS[:TOBOR

Fig. 14.2 An example interaction in the robot bartending scenario

From a high-level planning perspective, the task of applying planning in this
scenario centres around the knowledge engineering task of accurately modelling the
states, actions, and goals that reflect the types of activities the robot is expected to
perform. Considering the sample interaction, this includes a mixture of physical
actions in the underlying task domain (e.g., serving the actual drinks), sensing
actions that acquire new information (e.g., asking a customer for a drink order), and
social actions that help facilitate the interactive context (e.g., thanking a customer).
As a result, we also require a suitably expressive representation that enables such
actions to co-exist within a planning domain. This task is further complicated by the
fact that the planner is a single component situated in a much larger architecture,
with the representation of states, actions, and goals having connections to the input
and output modalities processed by other system components.

4 Modelling Social Human–Robot Interaction for Planning

In this section, we describe how planning techniques are applied to the problem of
social human–robot interaction in the robot bartender scenario by considering how
states, actions, and goals are modelled. We begin by presenting an overview of the
particular planner used in this work, the epistemic PKS planner; we then describe
how states are inferred from the low-level sensor data and how those states are
translated into the representations used by PKS in the context of user interaction.

4.1 Planning with Knowledge and Sensing

The high-level planner is responsible for selecting robot actions to respond appro-
priately in the current scenario state. Since the activities of the robot include a mix of

266 R. P. A. Petrick and M. E. Foster

physical, dialogue, and social behaviours, the representation language of the planner
must be able to support such action models. In this work, we use PKS (Planning with
Knowledge and Sensing) [33, 34], a contingent planner that works with incomplete
information and sensing actions. PKS is an epistemic planner that operates at the
knowledge level and reasons about how its knowledge state, rather than the world
state, changes due to action. To do this, PKS works with a restricted first-order
language with limited inference. While features such as functions and run-time
variables are supported, these restrictions mean that some types of knowledge (e.g.,
general disjunctive information) cannot be modelled.

PKS is based on a generalisation of STRIPS [8]. In STRIPS, the state of the
world is modelled by a single database. Actions update this database and, by doing
so, update the planner’s world model. In PKS, the planner’s knowledge state is
represented by a set of five databases, each of which models a particular type of
knowledge, and can be understood in terms of a modal logic of knowledge. Actions
can modify any of the databases, which update the planner’s knowledge state. To
ensure efficient inference, PKS restricts the type of knowledge it can represent:

Kf: This database is like a STRIPS database except that both positive and negative
facts are permitted and the closed world assumption is not applied. Kf is used to
model action effects that change the world and can include any ground literal or
function (in)equality mapping �, where � ∈ Kf means “the planner knows �”.

Kw: This database models the plan-time effects of sensing actions that have one
of two possible outcomes. φ ∈ Kw means that at plan time the planner either
“knows φ or knows ¬φ”, and that at run time this disjunction will be resolved.
PKS uses such information to build contingent branches in a plan, where each
branch assumes one of the possible outcomes is true.

Kv: This database stores information about function values that will become
known at execution time. Kv can model the plan-time effects of sensing actions
that return a range of possible constants, where any unnested function term
f ∈ Kv means that at plan time the planner “knows the value of f ”. At execution
time, the planner will have definite information about f ’s value. As a result, PKS
can use Kv terms as run-time variables in its plans, and can build conditional plan
branches when the set of possible mappings for a function is restricted.

Kx: This database models the planner’s “exclusive or” knowledge. Entries in Kx
have the form (�1|�2|...|�n), where each �i is a ground literal. Such for-
mulae represent a type of disjunctive knowledge common in planning domains,
namely that “exactly one of the �i is true”.

(A fifth database modelling local closed world (LCW) information is not used.)
Questions about the knowledge state are answered using a set of primitive queries:

K(φ): is φ known to be true?
Kw(φ): does the planner know whether φ is true or not?
Kv(t): does the planner know the value of t?

The negation of the queries is also permitted. An inference procedure evaluates the
queries by checking the database contents and applying a set of reasoning rules.

14 Knowledge Engineering and Planning for Social Human–Robot Interaction 267

Actions in PKS are modelled by a set of preconditions that query the knowledge
state and a set of effects that update the knowledge state. Preconditions are simply
a list of primitive queries. Effects are described by a collection of STRIPS-style
“add” and “delete” operations that modify the contents of individual databases. For
example, add(Kf, φ) adds φ to the Kf database, while del(Kw, φ) removes φ from
Kw.

PKS builds plans by reasoning about actions in a forward-chaining manner: if
the preconditions of a chosen action are satisfied by the knowledge state, then
the action’s effects are applied to produce a new knowledge state. Planning then
continues from the resulting state. PKS can also build plans with branches, by
considering the possible outcomes of its Kw and Kv knowledge. Planning continues
along each branch until it satisfies the goal conditions, also specified as a list of
primitive queries.

4.2 State Management

For PKS to operate successfully in the context of the larger robot system, it
requires a discrete representation of the world, the robot, and all entities in the
scene, integrating social, interaction-based, and task-based properties. Converting
the continuous, low-level sensor information into the discrete states is the job of the
state manager.

The social state is represented as a list of properties and their values, where
every relation in the state has an associated confidence value, represented as a
number between 0 and 1. In addition, every relation in the state can potentially have
multiple values, with each possible value having its own confidence. Table 14.1
shows a sample social state using this representation, including multiple possible
values for the drinkOrder(A1) relation. Social state properties fall into two
main categories: properties that are directly transferred from the input sensors such
as headPos (which tracks the 3D position of each customer’s head), as well as
derived properties such as lastSpeaker and seeksAttention which are
computed by the state manager based on the input data.

Table 14.1 Excerpt of a social state identified by the state manager

Property Value Confidence

seeksAttention(A1) true 0.75

seeksAttention(A2) false 0.45

lastSpeaker() A1 1.00

lastEvent() userSpeech(A1) 1.00

drinkOrder(A1) green lemonade 0.68

blue lemonade 0.32

lastAct(A1) greet 0.25

268 R. P. A. Petrick and M. E. Foster

For speech, the speech recogniser produces an n-best list of recognition hypothe-
ses, each with an estimated confidence score, along with an estimate of the sound
source angle and the angle confidence. The recognised hypotheses are parsed
to extract the syntactic and semantic information using a grammar implemented
in OpenCCG [38], while the source angle is used together with the location
information from vision to estimate which of the customers in the scene is most
likely to have been speaking (lastSpeaker). If a possible speaker is found, the
semantic information from speech is used to update lastAct. In the case that the
customer says something regarding their drink order, we also update the value of
drinkOrder, using a generic belief tracking procedure proposed by [37], which
maintains beliefs over user goals based on a small number of domain-independent
rules using basic probability operations. This enables us to maintain a dynamically
updated list of the possible drink orders made by each customer, with an associated
confidence value for each.

Information from the robot bartender’s vision system [30] provides a continuous
estimate of the location, gaze behaviour, and body language of all people in the
scene in real time. Every feature reported by the vision system includes an estimated
confidence value, which is incorporated into the state and also used for further
processing. The information from the vision system contributes to the processing of
speech as outlined above; it is also used to estimate which customer(s) are currently
seeking attention (seeksAttention). seeksAttention is one of the most
important properties required for the bartender scenario, and we have experimented
with several methods of estimating it, including a rule based on the observation
of customers in a real bar [24] and a set of classifiers trained on annotated robot
bartender interactions [11].

4.3 Representing Properties, Actions, Objects, and Goals

The properties, actions, and goals that make up the planning domain definition are
built on the state properties defined by the state manager but exist at a higher level of
representation local to the planning system. All of the robot’s high-level actions in
the bartending scenario (physical, dialogue, and social) are modelled as part of the
same planning domain, rather than using specialised tools for certain aspects of the
problem (e.g., separating task and dialogue) as is common practice in many modern
interactive systems. As a result, the planning domain representation must capture
the dynamics of the task, the world, the agents, and the available objects.

Planning domain properties in the bartender scenario are shown in Table 14.2
(left). These properties are defined at a high level of abstraction and in many
cases are based on the properties defined by the state manager. For instance, the
planning property seeksAttn(?a) corresponds to the state manager property
seeksAttention, while a property like badASR(?a) is extracted from the
confidence values of other properties maintained by the state manager. Other
planning properties like greeted(?a) or served(?a) do not have a direct
analogue in the state manager but are instead derived from a set of properties being
tracked at that level.

14 Knowledge Engineering and Planning for Social Human–Robot Interaction 269

Table 14.2 Example of properties and action in the robot bartender domain

Properties Actions

seeksAttn(?a) ?a is seeking attention greet(?a) Greet ?a

greeted(?a) ?a has been greeted ask-drink(?a) Ask ?a for a drink
order

ordered(?a) ?a has ordered ack-order(?a) Acknowledge ?a’s
order

ackOrder(?a) ?a’s order has been
acknowledged

serve(?a,?d) Serve drink ?d to ?a

served(?a) ?a has been served wait(?a) Tell ?a to wait

otherAttnReq Other agents are
seeking attention

ack-wait(?a) Thank ?a for waiting

badASR(?a) ?a was not understood inform(?a,?d) Tell ?a about
drink ?d

transEnd(?a) The transaction with
?a has ended

bye(?a) End interaction
with ?a

inTrans=?a The robot is
interacting with ?a

not-understood(?a) alert that ?a was not
understood

request(?a)=?d ?a has requested
drink ?d

Fig. 14.3 Example encoding of PKS actions in the robot bartender domain

Actions in the bartending domain are also described at a high level of abstraction,
and are inspired by studies of human customers ordering drinks from real bartenders
in real bars [24]. A list of the available actions is given in Table 14.2 (right) with
the PKS encoding for a selection of actions shown in Fig. 14.3. The available list
includes a mix of physical, dialogue, and social actions to reflect some of the
behaviours that arise in typical interactions (e.g., as in Fig. 14.2). For instance,
serve is a standard planning action with a deterministic effect (i.e., it adds definite

270 R. P. A. Petrick and M. E. Foster

knowledge to PKS’s Kf database so the planner comes to know particular facts like
the customer has been served); however, when executed it causes the robot to hand
over a drink to an agent and confirm the drink order through speech. Actions like
greet, ack-order, and bye are modelled in a similar way, but only map to
speech output at run time (e.g., “hello”, “okay”, and “good-bye”). The inform
action is used to supply information about specific drinks in response to a customer
query. The most interesting action is ask-drinkwhich is modelled as a sensing or
knowledge-producing action: the function term request is added to the planner’s
Kv database as an effect, indicating that this piece of information will become
known at execution time. In other words, the planner will come to know the value
of the drink the customer requested. The not-understand action is used as a
directive to the speech output system to produce an utterance that (hopefully) causes
the agent to repeat its last response. The wait and ack-wait actions control
interactions when multiple agents are seeking the attention of the bartender.

The planning domain model also includes a list of the objects (drinks) and agents
(customers) in the bar. This information is not hard-coded but is instead provided
to the planner dynamically by the state manager, based on real-time observations
provided by the input sensors, and defined as part of the planning problem’s initial
state (denoted in PKS syntax using two defined types, drink and agent). Changes
in the object or agent list, when identified by the state manager, are also sent to the
planner, causing it to update its domain model. Initially, the inTrans function is
initially set to nil to indicate that the robot is not interacting with any customers.
The planner’s goal is simply to serve each agent seeking attention, i.e.,

forallK(?a : agent) K(seeksAttn(?a)) ⇒ K(transEnd(?a)).

This goal is viewed as a rolling target which is reassessed each time a state update
is received from the state manager.

5 Planning for Social Human–Robot Interaction

Using the planning model defined above, plans can now be generated to respond to
many common interactive situations that arise in the bartender domain. This process
is triggered by the appearance of agents (customers) in the scene which are reported
to be seeking attention by the state manager. The planner responds by attempting to
generate a plan to achieve the goal of serving all agents in the bar. Here we consider
the generated behaviour in a number of common scenarios.

5.1 Ordering a Drink

The simplest interactive situation in the bartender domain is the case where a single
agent A1 is seeking attention in the bar, represented by the state manager adding
a new fact seeksAttn(A1) to the initial Kf database. Initially, the robot is not

14 Knowledge Engineering and Planning for Social Human–Robot Interaction 271

interacting with any agent (inTrans = nil ∈ Kf). In response, the planner can
build the following plan to achieve the goal:

greet(A1) Greet agent A1

ask-drink(A1) Ask A1 for drink order

ack-order(A1) Acknowledge A1’s drink order

serve(A1,request(A1)) Serve A1 the drink they requested

bye(A1) End the transaction

Initially, the planner can choose greet(A1) since no transaction is taking place
(inTrans = nil ∈ Kf) and A1 is seeking attention (seeksAttn(A1) ∈
Kf). The other preconditions of greet(A1) are trivially satisfied (i.e., none
of greeted(A1), ordered(A1), otherAttnReq, or badASR(A1) are in
Kf). After greeting A1, the ask-drink(A1) action is then chosen, updating the
planner’s knowledge state so that ordered(A1) ∈ Kf and request(A1) ∈
Kv, i.e., the planner knows that A1 has ordered and knows the value of the
drink that was requested. The ack-order(A1) is then selected to acknowledge
the drink order to the customer. The most interesting action in the plan is
serve(A1,request(A1)) which, intuitively, has the effect of “serving A1 the
drink that A1 requested”. This follows as a consequence of the planner knowing
the value of request(A1), which is recorded in the planner’s Kv database. Thus,
request(A1) acts as a run-time variable whose definite value (A1’s actual drink
order) will become known at run time. Finally, after serving the drink the bye(A1)
action can be selected, resulting in inTrans = nil ∈ Kf and transEnd(A1) ∈
Kf, thereby ending the transaction and satisfying the goal.

5.2 Ordering Drinks with Multiple Agents

The planning domain model also enables more than one agent to be served if
multiple customers are reported as seeking attention. For instance, in the case of
two agents, A1 and A2, the following plan might be built:

wait(A2) Tell agent A2 to wait

greet(A1) Greet agent A1

ask-drink(A1) Ask A1 for drink order

ack-order(A1) Acknowledge A1’s drink order

serve(A1,request(A1)) Give the drink to A1

bye(A1) End A1’s transaction

ack-wait(A2) Thank A2 for waiting

ask-drink(A2) Ask A2 for drink order

ack-order(A2) Acknowledge A2’s drink order

serve(A2,request(A2)) Give the drink to A2

bye(A2) End A2’s transaction

272 R. P. A. Petrick and M. E. Foster

Thus, A1’s drink order is taken and processed, followed by A2’s order. The wait
and ack-wait actions (which are not needed in the single-agent plan) act as
social actions that are used to defer a transaction with A2 until A1’s transaction has
finished. (The otherAttnReq property, whose value depends on seeksAttn,
ensures that other agents seeking attention are told to wait before an agent is served.)

Larger number of customers result in plans with the same general structure. For
example, a plan for three agents, A1, A2, and A3, would look like the following:

wait(A2) Tell agent A2 to wait

wait(A3) Tell agent A3 to wait

greet(A1) Greet agent A1

... Transact with A1

bye(A1) End A1’s transaction

ack-wait(A2) Thank A2 for waiting

... Transact with A2

bye(A2) End A2’s transaction

ack-wait(A3) Thank A3 for waiting

... Transact with A3

bye(A3) End A3’s transaction

Similarly, if a new customer appears, it is dynamically reported to the planner,
possibly triggering a replanning operation: the newly built plan might result in
the extension of an existing plan (which might reflect a transaction currently in
progress) to include actions for interacting with the new agent if they are seeking
attention. However, it is important to note that we are not just stitching together
single-agent plans to account for the number of agents in the scenario. Instead, the
planner generates a plan appropriate to the social context in response to the state
information reported to it by the state manager.

5.3 Ordering a Drink with Restricted Drink Choices

From a planning point of view, the above plans rely on the planner’s ability to reason
about particular types of knowledge (e.g., functions like request(A1)) which act
as variables in parameterised plans. However, an alternative type of plan can also be
built in the case that the possible set of drinks is explicitly restricted. For instance,
consider a single-agent A1 seeking attention, where the planner also told there are
three possible drinks that can be ordered: juice, water, and beer. This information is
represented in the planner as a type of “exclusive or” knowledge in the Kx database:

request(A1) = juice | request(A1) = water | request(A1) = beer

14 Knowledge Engineering and Planning for Social Human–Robot Interaction 273

The planner can now build a plan of the following form to serve the customer:

greet(A1) Greet agent A1

ask-drink(A1) Ask A1 for drink order

ack-order(A1) Acknowledge A1’s order

branch(request(A1)) Form conditional plan

K(request(A1) = juice): If juice was requested

...

serve(A1,juice) Serve juice to A1

K(request(A1) = water): If water was requested

...

serve(A1,water) Serve water to A1

K(request(A1) = beer): If beer was requested

...

serve(A1,beer) Serve beer to A1

bye(A1) End the transaction

In this case, a contingent plan is built with branches for each possible mapping of
request(A1). For example, in the first branch request(A1) = juice is
assumed to be true; in the second branch request(A1) = water is true; and
so on. Planning continues along each branch under the given assumption. (We note
that this type of branching is only possible here because the planner had initial Kx
knowledge that restricted request(A1), combined with Kv knowledge provided
by the ask-drink action.) Along each branch, an appropriate serve action is
added to deliver the appropriate drink. The places in the plan indicated by “...”
indicate places where drink-specific interactions (subdialogues) could be inserted.
For instance, each branch may require different actions to serve a drink, such as
putting the drink in a special glass, or requesting additional information from the
customer (i.e., “would you like ice in your water?”).

6 Plan Execution, Monitoring, and Recovery

Once a plan is built, it is executed by the robot one action at a time. A plan execution
monitor tracks the plan, comparing the expected plan states against sensed states
provided by the state manager, to determine whether a plan should continue to be
executed. To do this, it tries to ensure that a state still permits the next action (or set
of actions) in the plan to be executed and that effects needed by actions or goals later
in the plan have been achieved as expected. In the case of a mismatch, the planner
is directed to build a new plan, using the sensed state as a new initial state.

The execution of individual actions is handled by dividing each high-level
planned action into specific output modalities—speech, head motions, and arm
manipulation behaviour—that can be executed by the robot. This mapping is

274 R. P. A. Petrick and M. E. Foster

specified by a simple rule-based structure containing specifications of each output
[17]. The resulting structure is then passed to the multimodal output planner, which
mediates execution to each output channel. Language output is specified in terms
of communicative acts based on rhetorical structure theory (RST) [25], using a
generation module that translates RST into speech by the robot’s animatronic head.
The robot also expresses itself through facial expressions, gaze, and arm motions.
The animatronic head can express a number of predefined expressions, while the
robot arm can perform tasks like grasping objects (e.g., to hand over a drink to a
customer). Multimodal behaviour is coordinated across the various output channels
to ensure they are synchronised temporally and spatially. For instance, an action
serve(?a,?d) to serve an agent a drink might be transformed into multimodal
outputs that result in the robot smiling at ?a (an animatronic head facial expression)
while physically handing over drink ?d (a robot arm manipulation action) and
saying to the customer “here is your drink” (speech output).

If the plan execution monitor detects a situation where a plan has failed, for
instance, due to unexpected outcomes like action failure, the planner is invoked
to construct a new plan. This method is particularly useful for responding to
unexpected responses by agents interacting with the robot. For example, if the
planner receives a report that an agent A1’s response to ask-drink(A1) was
not understood due to low-confidence automatic speech recognition, the state report
sent to the planner will have no value for request(A1), and badASR(A1) will
be set to true. This situation will be detected by the plan execution monitor and
the planner will be directed to build a new plan. One possible result is a modified
version of the original plan that first informs A1 they were not understood before
repeating the ask-drink action and continuing the plan:

ask-drink(A1) Ask A1 for drink order

??? A1 was not understood

[Replan] Replan

not-understood(A1) Alert A1 it was not understood

ask-drink(A1) Ask A1 again for drink order

. . .

Another consequence of this approach is that certain types of overanswering
can be handled through plan execution monitoring and replanning. For instance,
a greet(A1) action by the robot might cause the customer to respond with an
utterance that includes a drink order:

greet(A1) Greet A1

??? A1 says “I’d like a beer”

[Replan] Replan

ack-order(A1) Acknowledge A1’s drink order

serve(A1,request(A1)) Serve A1 their drink

. . .

14 Knowledge Engineering and Planning for Social Human–Robot Interaction 275

In this case, the state manager would include request(A1)=beer in its state
report, along with ordered(A1). The execution monitor would detect that the
preconditions of ask-drink(A1) are not met and direct the planner to replan. A
new plan could then omit ask-drink and proceed to acknowledge and serve the
requested drink.

7 Discussion and Conclusions

This chapter has described how automated planning can be applied to the problem
of social human–robot interaction in the JAMES robot bartending domain, as an
alternative to mainstream approaches to interaction management. In particular,
we have shown how the planning representation is engineered from social states
induced from different input modalities, and how plans are built incorporating a
mix of task, dialogue, and social actions, with execution involving various output
modalities on the robot. The use of the epistemic PKS planner has also provided
certain benefits during the work, such as enabling sensing actions to be used to
model certain types of dialogue actions, generating parameterised high-level plans,
and considering subdialogues with contingent branches.

The planning approach has also presented certain technical advantages. For
instance, the JAMES robot system has been evaluated through a series of user
studies aimed at exploring socially appropriate interaction in the bartender scenario,
where participants successfully ordered and received drinks from the bartender [10].
An interesting variant of the study compared the full planning domain described
above with a domain that dealt with task-based actions only. From a representation
point of view, this was done by simply removing the social actions from the
domain model. Results showed that the social version led to more efficient dialogues
[13]. Another variant of multiple customer drink ordering also considered different
ordering strategies when agents arrive in groups (e.g., interacting with a group
representative versus transacting with all agents in a single group before moving to
another group). Again, the changes required to support planning in this new setting
resulted from modifications to the domain model: in this case adding a new property
to track agents in groups, and introducing another type of drink ordering action to
accommodate multiple agents ordering drinks in a group.

More generally, interactive systems also offer several opportunities for the auto-
mated planning community to showcase their tools and techniques. For instance,
interaction problems could form the basis for new challenge domains in planning,
and the standard planning representation languages offer an approach to modelling
problems that break the tight link between representation and reasoning that is
often found in interaction toolkits. There are lessons that the planning community
can also learn from the interactive systems community. For example, the issue of
user evaluation is at the heart of interactive systems research, with a focus on
(non-expert) users interacting with the developed tools. The fact that interactive
systems are also inherently application driven means that planning must be situated

276 R. P. A. Petrick and M. E. Foster

in the context of larger, more complex systems, requiring a degree of maturity and
robustness in development that often goes beyond lab settings, but which could
facilitate the wider adoption of planning approaches in such settings. Our ongoing
research aims to address some of these issues by adapting our planning techniques
to other types of service robots and scenarios that involve interacting with humans
in public spaces.

Acknowledgements The authors thank their JAMES colleagues who helped implement the
bartender system: Andre Gaschler, Manuel Giuliani, Amy Isard, Maria Pateraki, and Richard
Tobin. This research has received funding from the European Union’s 7th Framework Programme
under grant No. 270435 (JAMES, http://james-project.eu/).

References

1. Amazon (2020) Alexa Skills Kit Official Site. https://developer.amazon.com/en-GB/alexa/
alexa-skills-kit, accessed: 2020-02-09

2. Appelt D (1985) Planning English Sentences. Cambridge University Press
3. Asher N, Lascarides A (2003) Logics of Conversation. Cambridge University Press
4. Benotti L (2008) Accommodation through tacit sensing. In: Proceedings of LONDIAL 2008,

London, United Kingdom, pp 75–82
5. Brenner M, Kruijff-Korbayová I (2008) A continual multiagent planning approach to situated

dialogue. In: Proceedings of LONDIAL 2008, pp 67–74
6. Bui TH (2006) Multimodal dialogue management - state of the art. Tech. Rep. 06–01,

University of Twente (UT), Enschede, The Netherlands
7. Cohen P, Levesque H (1990) Rational interaction as the basis for communication. In: Intentions

in Communication, MIT Press, Cambridge, MA, pp 221–255
8. Fikes RE, Nilsson NJ (1971) STRIPS: A new approach to the application of theorem proving

to problem solving. Artificial Intelligence 2:189–208
9. Foster ME, Petrick RPA (2017) Separating representation, reasoning, and implementation for

interaction management: Lessons from automated planning. In: Dialogues with Social Robots:
Enablements, Analyses, and Evaluation, Springer Singapore, Singapore, pp 93–107, https://
doi.org/10.1007/978-981-10-2585-3_7

10. Foster ME, Gaschler A, Giuliani M, Isard A, Pateraki M, Petrick RPA (2012) Two people walk
into a bar: Dynamic multi-party social interaction with a robot agent. In: Proceedings of ICMI
2012, pp 3–10, https://doi.org/10.1145/2388676.2388680

11. Foster ME, Gaschler A, Giuliani M (2017) Automatically classifying user engagement
for dynamic multi-party human–robot interaction. International Journal of Social Robotics
9(5):659–674, https://doi.org/10.1007/s12369-017-0414-y

12. Fox M, Long D, Magazzeni D (2017) Explainable planning. In: Proceedings of the IJCAI
Workshop on Explainable AI

13. Giuliani M, Petrick RPA, Foster ME, Gaschler A, Isard A, Pateraki M, Sigalas M (2013)
Comparing task-based and socially intelligent behaviour in a robot bartender. In: Proceedings
of ICMI 2013, https://doi.org/10.1145/2522848.2522869

14. Google (2020) Dialogflow. https://dialogflow.com/, accessed: 2020-02-09
15. Hovy E (1988) Generating natural language under pragmatic constraints. Lawrence Erlbaum

Associates, Hillsdale, NJ, USA
16. ICAPS (2019) ICAPS Competitions. http://www.icaps-conference.org/index.php/Main/

Competitions, accessed: 2019-08-01

http://james-project.eu/
https://developer.amazon.com/en-GB/alexa/alexa-skills-kit
https://developer.amazon.com/en-GB/alexa/alexa-skills-kit
https://doi.org/10.1007/978-981-10-2585-3_7
https://doi.org/10.1007/978-981-10-2585-3_7
https://doi.org/10.1145/2388676.2388680
https://doi.org/10.1007/s12369-017-0414-y
https://doi.org/10.1145/2522848.2522869
https://dialogflow.com/
http://www.icaps-conference.org/index.php/Main/Competitions
http://www.icaps-conference.org/index.php/Main/Competitions

14 Knowledge Engineering and Planning for Social Human–Robot Interaction 277

17. Isard A, Matheson C (2012) Rhetorical structure for natural language generation in dialogue.
In: Proceedings of SemDial-2012 (SeineDial), pp 161–162

18. Janarthanam S, Hastie H, Deshmukh A, Aylett R, Foster ME (2015) A reusable interaction
management module: Use case for empathic robotic tutoring. In: Proceedings of goDIAL 2015,
Gothenburg, Sweden

19. Johnston M, Bangalore S, Vasireddy G, Stent A, Ehlen P, Walker M, Whittaker S, Maloor P
(2002) MATCH: An architecture for multimodal dialogue systems. In: Proceedings of ACL
2002, Philadelphia, Pennsylvania, USA, pp 376–383

20. Jokinen K, McTear M (2009) Spoken dialogue systems. Synthesis Lectures on Human
Language Technologies 2(1):1–151

21. Koller A, Stone M (2007) Sentence generation as planning. In: Proceedings of ACL 2007,
Prague, Czech Republic, pp 336–343

22. Larsson S, Traum DR (2000) Information state and dialogue management in the TRINDI
dialogue move engine toolkit. Natural Language Engineering 6(3&4):323–340, https://doi.org/
10.1017/S1351324900002539

23. Lison P (2015) A hybrid approach to dialogue management based on probabilistic rules.
Computer Speech & Language https://doi.org/10.1016/j.csl.2015.01.001

24. Loth S, Huth K, De Ruiter JP (2013) Automatic detection of service initiation signals used in
bars. Frontiers in Psychology 4(557), https://doi.org/10.3389/fpsyg.2013.00557

25. Mann WC, Thompson SA (1988) Rhetorical structure theory: Toward a functional theory of
text organization. Text 8(3):243–281

26. McDermott D, Ghallab M, Howe A, Knoblock C, Ram A, Veloso M, Weld D, Wilkins D
(1998) PDDL – The Planning Domain Definition Language (Version 1.2). Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control

27. McTear M, Callejas Z, Griol D (2016) The Conversational Interface. Springer International
Publishing, https://doi.org/10.1007/978-3-319-32967-3

28. Olaso JM, Milhorat P, Himmelsbach J, Boudy J, Chollet G, Schlögl S, Torres MIT (2016)
A multi-lingual evaluation of the vAssist spoken dialog system: Comparing Disco and
RavenClaw. In: Proceedings of IWSDS 2016, Saariselkä, Finland

29. Papaioannou I, Dondrup C, Lemon O (2018) Human-robot interaction requires more than
slot filling - multi-threaded dialogue for collaborative tasks and social conversation. In:
Proceedings of the FAIM/ISCA Workshop on Artificial Intelligence for Multimodal Human
Robot Interaction, pp 61–64

30. Pateraki M, Sigalas M, Chliveros G, Trahanias P (2013) Visual human-robot communication
in social settings. In: Proceedings of ICRA Workshop on Semantics, Identification and Control
of Robot-Human-Environment Interaction

31. Peltason J, Wrede B (2011) The curious robot as a case-study for comparing dialog systems.
AI Magazine 32(4):85–99, https://doi.org/10.1609/aimag.v32i4.2382

32. Perrault CR, Allen JF (1980) A plan-based analysis of indirect speech acts. American Journal
of Computational Linguistics 6(3–4):167–182

33. Petrick RPA, Bacchus F (2002) A knowledge-based approach to planning with incomplete
information and sensing. In: Proceedings of AIPS 2002, pp 212–221

34. Petrick RPA, Bacchus F (2004) Extending the knowledge-based approach to planning with
incomplete information and sensing. In: Proceedings of ICAPS 2004, pp 2–11

35. Petrick RPA, Foster ME (2013) Planning for social interaction in a robot bartender domain. In:
Proceedings of ICAPS 2013, Rome, Italy

36. Rintanen J (2004) Complexity of planning with partial observability. In: Proceedings of ICAPS
2004, pp 345–354

37. Wang Z, Lemon O (2013) A simple and generic belief tracking mechanism for the dialog state
tracking challenge: On the believability of observed information. In: Proceedings of SIGDIAL
2013

38. White M (2006) Efficient realization of coordinate structures in Combinatory Categorial
Grammar. Research on Language and Computation 4(1):39–75

39. Young RM, Moore JD (1994) DPOCL: a principled approach to discourse planning. In:
Proceedings of INLG 2004, Kennebunkport, Maine, USA, pp 13–20

https://doi.org/10.1017/S1351324900002539
https://doi.org/10.1017/S1351324900002539
https://doi.org/10.1016/j.csl.2015.01.001
https://doi.org/10.3389/fpsyg.2013.00557
https://doi.org/10.1007/978-3-319-32967-3
https://doi.org/10.1609/aimag.v32i4.2382

	Preface
	Contents
	Part I Knowledge Capture and Encoding
	1 Explanation-Based Learning of Action Models
	1 Introduction
	2 Background
	2.1 Classical Planning with Conditional Effects
	2.2 The Observation Model
	2.3 Explaining Observations with Classical Planning

	3 Explanation-Based Learning of Strips Action Models
	3.1 The Space of Strips Action Models
	3.2 The Sampling Space

	4 Learning Strips Action Models with Classical Planning
	4.1 Compilation
	4.2 Properties of the Compilation

	5 Experimental Results
	5.1 Learning from Labeled Plans
	5.2 Learning from Initial/Final State Pairs

	6 Conclusions
	References

	2 Automated Domain Model Learning Tools for Planning
	1 Introduction
	1.1 Knowledge Representation for Knowledge Engineering of Domain Models

	2 Domain Model Learning Techniques and Tools
	2.1 Inductive Learning
	2.1.1 When to Use Inductive Learning

	2.2 Knowledge-Based Inductive Learning (KBIL)
	2.3 Analytical Learning
	2.4 Hybrid Learning
	2.5 Surprise-Based Learning (SBL)
	2.6 Transfer Learning
	2.7 Policy Learning
	2.8 Other Methods of Knowledge Acquisition

	3 Characteristics of the Domain Model Learning Tools
	4 Conclusion
	References

	3 Formal Knowledge Engineering for Planning: Pre and Post-Design Analysis
	1 Introduction
	2 Knowledge Engineering and Planning
	3 Domain Modeling in AI Planning
	3.1 Accuracy
	3.2 Adequacy
	3.3 Operationality

	4 A Knowledge Engineering Design Approach for Planning
	5 PDM and Post-Design Modeling Using Petri Nets
	6 New Perspectives for AI Planning in Automation Systems
	References

	4 MyPDDL: Tools for Efficiently Creating PDDL Domains and Problems
	1 Introduction
	2 Related Work
	2.1 Critical Review

	3 MyPDDL
	3.1 Modules

	4 Validation and Evaluation
	4.1 User Evaluation
	4.1.1 Analysis
	4.1.2 Results

	5 Conclusion
	Appendix: Tasks
	Deliberately Erroneous Logistics Domain
	Deliberately Erroneous Coffee Domain
	Planet Splisus
	Store

	References

	5 KEPS Book: Planning.Domains
	1 Planning.Domains Solver
	1.1 Libraries
	1.2 API Future

	2 Solver Planning Domains
	2.1 Solver Future

	3 Editor Planning Domains
	3.1 Plugin Framework
	3.2 Session Functionality
	3.3 Editor Future

	4 Education Planning Domains
	5 What Is Next for Planning.Domains
	5.1 Planimation
	5.2 VSCode Integration

	6 Conclusion
	References

	6 Modeling Planning Tasks: Representation Matters
	1 Introduction
	2 Outer Entanglements
	3 Macro-Operators
	4 Bagged Representation
	5 Procedural Domain Control Knowledge
	6 Transition-Based Domain Control Knowledge
	7 A Case Study: The Spanner Domain
	8 Conclusion
	References

	Part II Interaction, Visualisation, and Explanation
	7 An Interactive Tool for Plan Generation, Inspection, and Visualization
	1 Introduction
	2 Preliminaries
	2.1 The Planning Problem
	2.2 The LPG Planner
	2.2.1 Plan Representation Through LA-Graphs
	2.2.2 Local Search in the Space of LA-Graphs

	3 Architecture of InLPG
	3.1 Architecture Overview
	3.2 Input Module
	3.3 Search Process Monitor
	3.4 Search State Monitor
	3.5 Plan Editor
	3.6 Search Process Editor

	4 Walk-through Example of a User Interaction
	5 Experiments
	6 Related Work
	7 Conclusions
	References

	8 Interactive Visualization in Planning and Scheduling
	1 Introduction
	2 Interactive Gantt Chart (iGantt)
	2.1 Problem Specification
	2.2 Visualization of Schedules
	2.3 Interactive Schedule Modifications
	2.4 Automated Schedule Repair

	3 Interactive Workflow Optimization (FlowOpt)
	4 Interactive Visualization and Verification of Plan (VisPlan)
	4.1 Plan Verification
	4.2 Visualization of Sequential and Temporal Plans
	4.2.1 Visualization of STRIPS Plans
	4.2.2 Visualization of Temporal Plans

	4.3 Interactive Plan Modifications

	5 Conclusions
	References

	9 Argument-Based Plan Explanation
	1 Introduction
	2 Argumentation and Dialogue
	2.1 Abstract Argumentation
	2.2 Labellings
	2.3 From Knowledge to Arguments

	3 Proof Dialogues
	4 Putting it all Together: The SAsSy Demonstrator
	4.1 Plan Visualisation
	4.2 Natural Language Generation
	4.3 Dialogue Based Plan Explanation

	5 Discussion and Related Work
	6 Conclusions
	References

	10 Interactive Planning-Based Hypothesis Generation with LTS++
	1 Introduction and Motivation
	2 Application Description
	3 Hypothesis Generation Problem
	4 Model Description in LTS++
	4.1 From LTS++ to a Planning Problem in PDDL

	5 LTS++ Integrated Development Environment
	6 Related Work
	7 Summary
	References

	11 Web Planner: A Tool to Develop, Visualize, and Test Classical Planning Domains
	1 Introduction
	2 Background
	2.1 Planning
	2.2 Data Visualization

	3 Web Planner Architecture
	3.1 Domain Development Interface
	3.2 Visualization Interface

	4 Deployment and Evaluation
	4.1 Case Study
	4.2 Case Study Survey Results
	4.3 General Public Usage Statistics

	5 Related Work
	6 Conclusions
	References

	Part III Case Studies and Applications
	12 Design of Timeline-Based Planning Systems for Safe Human-Robot Collaboration
	1 Introduction
	2 Fostering Autonomy via Timeline-Based Planning and Execution
	2.1 A Theoretical Framework
	2.2 PLATINUm: A Timeline-Based Planning and Acting Framework

	3 KeeN: Knowledge Engineering ENvironment
	3.1 Knowledge Engineering and Verification and Validation Features in KeeN

	4 Deploying Task Planning Solutions for Safe Human-Robot Collaboration
	4.1 A Specific Human-Robot Collaboration Case Study
	4.2 An Engineering and Control Architecture for HRC
	4.3 The FourByThree Controller
	4.4 Implementation with a Real Robot

	5 Conclusions
	References

	13 Planning in a Real-World Application: An AUV Case Study
	1 Introduction
	2 Background
	3 One-Shot Planning
	3.1 Requirements
	3.2 Domain Model Specification
	3.3 Problem Specification
	3.4 Field Experiment

	4 Dynamic Planning, Replanning, and Plan Execution
	4.1 Requirements
	4.2 Domain Model Specification
	4.3 Problem Specification
	4.4 Planning and Execution
	4.5 Field Experiment

	5 Conclusion
	References

	14 Knowledge Engineering and Planning for Social Human–Robot Interaction: A Case Study
	1 Introduction
	2 Interaction Management
	3 Task-Based Social Interaction: A Robot Bartender Scenario
	4 Modelling Social Human–Robot Interaction for Planning
	4.1 Planning with Knowledge and Sensing
	4.2 State Management
	4.3 Representing Properties, Actions, Objects, and Goals

	5 Planning for Social Human–Robot Interaction
	5.1 Ordering a Drink
	5.2 Ordering Drinks with Multiple Agents
	5.3 Ordering a Drink with Restricted Drink Choices

	6 Plan Execution, Monitoring, and Recovery
	7 Discussion and Conclusions
	References

