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Chapter 1
Big Data and Privacy:
Challenges and Opportunities

Amin Azmoodeh and Ali Dehghantanha

1 Introduction

The contemporary decade is distinguished for the explosion of information that is
generating, transferring, and storing over vast and complex networks [1]. Techno-
logical advancements in information technology are creating a sea change in today’s
life. A majority of public and private sectors [2] beyond different industries are
utilizing digital devices and procedures to provide their clients with high quality
and reliable services. This widespread usage ranging from healthcare [3] and
transport systems [4] to smart grids [5] and military services [6] has resulted in
an inconceivable volume of data being generated and processed. The importance
and sensitivity of such big data have turned it into an invaluable target for
cybercriminals.

The privacy of big data has acquired new urgency due to the different issues
linked to it [7, 8]. Regulating the pace of data growth with confidentiality, integrity,
and availability of data processing technique is a challenging issue [9] which should
be addressed. Moreover, investigation of big data on cloud-based platforms to
identify and recover traces of criminal activities for forensic investigations is a
time-consuming process [10] that demands novel approaches to overcome this
challenge. Besides, big data storage, processing, sharing and management are
crucial procedures [11] that should be carefully tuned because it may increase attack
surface for malicious activities and data leakage.

On the other hand, and in terms of big data advantages, big data provides exem-
plary opportunities to leverage the high volume of data. It is projected that increasing
data will lead to in-depth knowledge about the domain of data. Consequently,
extracting in-depth knowledge from big data paves the way for proposing robust and
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2 A. Azmoodeh and A. Dehghantanha

outstanding mechanisms for protecting data and securing information technology
networks [12]. Besides, storing big data and recovery mechanisms designed for it
provides forensic investigators with more pieces of evidence that lead them to quick
and accurate decision making [13].

2 Book Outline

This handbook presents existing state-of-the-art advances from both academia
and industry, in big data and privacy. The remainder of the book is structured
as follows. The second chapter [14] reviews security challenges and concerns
related to critical infrastructure and methods that utilize artificial intelligence to
protect these infrastructures. In the third chapter [15], authors survey new concepts,
methodologies, and applications to achieve full autonomy in industry 4.0. In the
fourth chapter [16], Moghadam et al. propose a privacy protection key agreement
protocol for smart grid based on energy consumption controllers (ECC).

The fifth chapter [17] reviews the application of machine learning for the
Internet of Things and discuss about their challenges and issues. In the subsequent
chapter [18] (sixth chapter), Peters et al. apply different machine learning methods
on the Internet of Things malware dataset and compare their performance and
discuss the results. Singh et al. [19](seventh chapter) survey about the latest artificial
intelligence based researches and methodologies undertaken for measuring and
managing industrial cyber threats risks and security metrics that have been identified
as a barrier to implementing these methodologies.

Eighth chapter [20] gives information about traditional machine learning based
threat detection techniques for network security that are incapable of facing with
huge amount of data so as to obtain more efficient knowledge to design and
choose such techniques. In the next chapter, Sharma et al. [21] propose a multi-
level network security and privacy evaluation scheme to evaluate and assess the
security of cyber physical systems. Chapter 10 [22] is dedicated to machine learning
approaches for cyber physical system anomaly detection. Then, through a case
study, authors demonstrate the effectiveness of machine learning techniques for
classifying False Data Injection attacks. The next chapter (Chapter 11) [23] briefly
introduces renewable energy resources as well as different aspects and relations of
security and big data for power systems using such resources. In the subsequent
chapter, Cabello et al. [24] describe the importance of using cyber-physical systems
and big data in healthcare sector. Chapter 13 [25] proposes a deep learning approach
for abnormality detection while preserve privacy for a medical images dataset.

In order to provide a clear insight about researches related to security of smart
farming, Nakhodchi et al. [26] in the fourteenth chapter propose a bibliometric
analysis to comprehensively assess security and privacy of smart agriculture systems
and related literature. In the next chapter, Amrollahi et al. [27] highlight the impact
of big data and privacy in financial systems and survey the work related to FinTech
banking cyber security concerns and detection methods. Chapter 16 [28] proposes
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a hybrid deep generative metric learning approach for intrusion detection and
protect critical infrastructures. Nassiri et al. [29] present a method that combines
the static and dynamic machine learning based malware detection methods. They
experimentally demonstrate the performance of their proposed method. In the
subsequent chapter [30], BehradFar et al. introduce a machine learning algorithm
that applies a two-layer feature selection to obtain the optimum set of features
for Remote access Trojan (RAT) detection and achieve high performance for RAT
detection. In the last chapter [31], Azmoodeh et al. propose an active spectral
clustering method to tackle problem of massive data in botnet detection research
sphere that consumes the minimum number of similarity between network nodes to
identify botnets.
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Chapter 2
AI and Security of Critical Infrastructure

Jacob Sakhnini, Hadis Karimipour, Ali Dehghantanha , and Reza M. Parizi

1 Introduction: Towards Smart Urbanization

Smart technologies are a part of many aspects of our daily lives. The advancement
of society is directed in the path of interconnected devices aimed at improving
every-day life. From smartphones and tablets, to smart appliances and internet-
controlled lights, smart technologies are involved in many elements of daily life;
Fig. 2.2 shows some of these elements which include security and surveillance,
remote control and automation, as well as smart entertainment. Aside from our
daily lives, information and communication technologies (ICTs) have played a
major role in shaping economic activities and urban infrastructure. Such exponential
technological growth incited substantial buzz in the topics of integrating ICTs in
urban development projects such as the smart grid and smart cities.

Cities and communities today have embraced ICT in their development strategies
utilizing digital infrastructure for regulatory and entrepreneurial purposes [1]. For
the last two decades, this phenomenon has been referred to by various names, such
as “wired cities” [2], “cyber cities” [3], “digital cities” [4], and the most popular
of these terms, “smart cities” [5]. Each of these terms is used to conceptualize
the relationship between modern urbanism and ICT in a particular way. However,
modern interpretation of the use of ICT in urban development has been largely
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Fig. 2.1 Virtualization of a smart city [1]

referred to with the label “smart cities”, a term which has gained substantial
attention in business, government, and academia.

The meaning of “smart city” has been controversial in literature, but can be
broadly defined by the increasing extent to which urban areas are composed of
pervasive computing and digital devices built into the fabric of urban environments
that are used to monitor and regulate city processes [6]. Applications of such
devices in the urban platform include fixed and wireless telecom networks, digitally
controlled transport infrastructure, and sensor and camera networks designed to
strengthen and optimize urban flows and processes, as highlighted in Fig. 2.1.
Furthermore, mobile computing and the use of smartphones and other devices
provides substantial data that can be used to model and predict urban processes and
simulate likely future outcomes in urban development [7]. The use of such public
data is argued to make a city knowable and controllable, as well as provide a more
consolidated, efficient, and sustainable network [8].

Another definition of the notion of “smart city” is the broad development of
a knowledge economy within a city [9]. In other words, a smart city is a city in
which the economy and governance is being driven by technological innovation and
entrepreneurship. The importance of ICT still stands in this definition of a smart
city; it is seen as the platform for realizing ideas and innovations. In fact, ICT
plays an integral role in both aforementioned definitions of smart city. In the first
conceptual definition, a smart city uses ICT in managing and regulating the city
from a technological perspective. However, in the second definition, policies related
to education, economic development, and human capital are enhanced by ICT
constituting networked infrastructures as the enabler of innovation and creativity
which facilitates environmental, economic, social and cultural development [8]. In
both cases, ICT plays a major role in urban development (Fig. 2.2).
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Fig. 2.2 The applications of smart technologies in everyday life

The integration of smart technology goes beyond the applications obvious to the
general public. Networked infrastructure, smart devices, and sensors are used in
various other applications ranging from healthcare to energy generation. Internet
of Things (IoT) is the phenomenon referring to the integration of internet in
various devices; such devices are used to increase the efficiency in a number of
areas, including transport, healthcare, and manufacturing [9]. The integration of
networks and ICT in all aspects of the community evokes larger security risks.
Furthermore, the use of networks to connect various devices creates vulnerabilities
in which attacks can cascade from a small device into a network where it can create
significant damage to a community. As such, security is a critical topic and crucial
to the exponential development of technologies in all aspects of the community.
Furthermore, the increased complexity of technological and networked systems
being used today induces the need for intelligent defense mechanisms.

In this chapter, the focus will be on the integration of networks and smart
technologies in critical infrastructure and the use of artificial intelligence (AI) and
big data for security of these infrastructures. The following sections will discuss
the applications smart technologies, the vulnerabilities and security challenges
associated with these applications, as well as some defense mechanisms discussed
in literature. Furthermore, this chapter will dive into the applications of AI and
importance of big data in cybersecurity.
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2 Applications of Smart Technologies

Smart technology, referring to the incorporation of sensors and networked infras-
tructures, is used in many applications today. The use of smart technology has
the potential to enhance every service or product. Furthermore, the incorporation
of smart technology has been introduced and used for decades. For example, in
the 1980s, students at Carnegie Melon University used internet-connected sensors
to a vending machine to keep count of soft drinks served [10]. This allowed the
product providers to keep track of product count in each vending machine for
more efficient product delivery and service. Such examples of smart technology
adoption are abundant in many applications and are continually growing in variety
and complexity. These applications can be seen in Fig. 2.3, which shows the number
of IoT smart devices connected world wide in each application.

Among the prominent applications of smart technology and IoT, healthcare is
a significant and promising area. IoTs, in combination with Cloud Computing,
are receiving increased attention and value in the development of healthcare
services [12]. According to market analyst Grand View Research, the healthcare
IoT market is expected to grow to $330 billion by 2020 [13]. The integration
of internet connections in medical devices can increase the capability of health
monitoring and diagnosis [14]. The medical industry is expanding towards the
use of IoT and network infrastructures. These IoT based healthcare techniques are
proposed to analyze problems like heart rate, ECG, and oxygen saturation in the

Fig. 2.3 The number of IoT devices connected worldwide in 2017 and 2018 [11]
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Fig. 2.4 The three major components of CPS; which are communication, control, and computa-
tion

blood [15]. Furthermore, cloud-based health monitoring systems have also been
proposed for increased monitoring by medical personnel to improve healthcare and
reduce costs [16].

Another pivotal set of applications of smart technology is in critical infrastruc-
ture. Sensors are used along city infrastructure and buildings for data collection
to be used in more efficient modelling and prediction of likely outcomes. The
concepts of smart meters, smart buildings, and smart grids are often discussed
as the pinnacle of smart urbanization [17]. With data flowing across a city’s
infrastructure, relevant information can be used in various analysis, most notably
efficient energy generation. Knowledge of energy consumption along a city’s
infrastructure enhances the predictive analysis of control centers, which in turn
allow for more efficient energy distribution. Furthermore, the increased demand for
green energy calls for a smart networked infrastructure capable of efficient use of
energy sources. As such, the concept of the smart grid plays a major role in shaping
the technological advancement of urban areas (Fig. 2.4).

The idea of the smart grid comprises of integrating smart meters and sensors
and advanced computing technologies into the power systems [18, 19]. This smart
grid technology greatly enhances the power generation efficiency and prompts the
incorporation of various sources of energy generation into one system [20, 21].
Network communications and control centers accommodate the combination of
green energy sources; and the association of smart meters and sensors along
the power grid network allows the generation centers access to real-time power
demand information, which can be used to implement an efficient generation and
distribution plan [22]. As such, integration of these technologies into the power
system infrastructure has greatly increased the energy efficiency as well as reduced
the price of electricity[23]. The combination of communication networks and
physical systems, referred to as cyber physical systems, are discussed in the next
section.
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3 Cyber Physical Systems

The integration of cyber components into physical systems is a phenomenon known
as Cyber Physical Systems (CPS). CPS are systems that operate on various levels
through different layers. These layers are the physical layer, which comprises of the
physical components of the system, a sensor and actuator layer, a network layer, and
a control layer. Sensors and actuator are used to communicate information between
the physical components and the network, and the control layer is to send commands
to the various aspects of the system. These layers are illustrated in Fig. 2.5.

As shown in Fig. 2.4, CPS can be defined by its three major components:
communication, control, and computation [24]. CPS are characterized by the
following actions that they perform:

• Detection and capturing events or data such as pressure, temperature, presence
of an object, electrical demand, user data, etc.

• Actuators or physical components that affect a physical process within the
system.

• Interactions with other CPS.
• Evaluation of saved data.
• Use of global data.
• Human machine interfaces [25]

As such, many industries adopted the use of CPS. Some examples of these
applications include:

• Healthcare
• Transportation
• Manufacturing
• Energy generation and distribution
• Critical Infrastructure
• Agriculture [26].

The most prominent applications of CPS are discussed in the subsections that
follow.

Fig. 2.5 The four layers of CPS; which are communication, control, and computation
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3.1 CPS in Healthcare

Recent developments in medical devices have shifted towards integrating complex
computing networks classifying them as CPS [27]. This shift in technology
allows continuous monitoring and control of patients’ physiological processes and
functions. The integration of CPS in medical devices also provides the ability to
remotely observe patients’ condition [28]. Furthermore, the embedded sensing,
computing, communications, and integration with physical elements and processes
allow these CPS to achieve a level of functionality that is beyond simpler passive
systems. CPS also have the potential to reach the body using minimally invasive
techniques. They also lower costs, enhance mobility, independence, and quality
of life. The sensitive nature of dealing with medical issues makes the design of
CPS in healthcare challenging. Continuous exponential development of medical
devices calls for comprehensive and efficient testing. Furthermore, the standards of
healthcare are among the highest in all fields of technology. Security and privacy are
also among the largest concerns with CPS in the healthcare. The flow of sensitive
data and the access of CPS to the body means attacks can have devastating, and
sometimes life-threatening, impacts.

3.2 CPS in Transportation

To meet the increasing demands of society, transportation systems are growing and
evolving towards increasing complex systems. The European Rail Traffic Manage-
ment System (ERTMS) as an excellent example of CPS integration in transportation.
ERTMS use GSM communication, or global system for mobile communication,
to connect the trains and infrastructure system for better management. Many
other companies and organizations are integrating CPS in transportation. Cloud
Computing and online databases are used in keeping track and optimization of bus
or train schedules. Additionally, smart phones play a growing role in transportation;
a smart phone can act as a train ticket, a GPS tracker, and, in some cases, connect
to and operate some parts of a vehicle. Modern solutions for mobility emphasize
automated forms of transportation, with interconnected vehicles, to address the
societal goals of increased security, safety, convenience, and efficiency.

3.3 CPS in Manufacturing

Manufacturing has been a forerunner in automation. Automation tools, such as
industrial robots and autonomous machines, are initiated in manufacturing before
moving to other domains. Manufacturing encompasses CPS in various forms,
ranging from 3D printers to cloud manufacturing. As such, integration of CPS
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in manufacturing creates opportunities for customized manufacturing schemes
that can be beneficial and affordable to small businesses. Additionally, Life-cycle
integration is introduced by industrial companies, which involves tracing data
back to development and manufacturing for future improvement. CPS also provide
solutions for increased sustainability through accurate and continuous monitoring
of physical systems.

3.4 CPS in Power Systems: The Smart Grid

Among the most prominent and studied applications of CPS is the smart grid, the
power systems of the next generation. The development of today’s power systems
is aimed towards integrating smart meters and sensors and advanced computing
technologies to enhance the power generation efficiency[29]. The association of
smart meters and sensors along the power grid network allows the generation
centers access to real-time power demand information, which can be used to
implement an efficient generation and distribution plan [30–32]. As such, integration
of these technologies into the power system infrastructure has greatly increased
the energy efficiency as well as reduced the price of electricity. The smart grid
system consists various resources and technologies. Smart meters are incorporated
to collect consumption data for more efficient power distribution. Additionally,
interconnection of supervisory control and data acquisition (SCADA) allows for
more expanded centralized distribution along large geographical areas [32–34]. The
smart grid also allows for interaction among transmission and distribution grid,
building controllers, as well as various sources of energy generation.

With the increased use and integration of CPS, security risks and challenges are
raised and considered. The next section outlines and describes these challenges.

4 Security Challenges in Cyber Physical Systems

Most of today’s critical infrastructures are based on cyber-physical systems [35];
meaning that they contain both physical and virtual aspects that operate on
technology. This cyber-physical structure exposes critical infrastructure to cyber
risks that can have devastating physical consequences. These cyber risks lead to
security penetration that can go beyond breaking into the system and progress to
controlling it [36]. And since CPS are used in many aspects of life, compromising
these systems can have devastating and potentially lethal impact. In healthcare, for
example, many machines and devices are connected to a network; compromising
these devices can have destructive impact. Compromising an X-ray machine, for
example, can alter the level of radiation given to a patient and causing serious harm
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or death [37]. Another example of compromised CPS that can have devastating
impacts is the smart grid. Compromising some of the smart meters can result in
faulty measurements passed to the control centers, which can result in wrongful
energy generation and distribution inducing a blackout or physical damage to some
infrastructure [38]. As such, safety and security of CPS is crucial. A secured and
functioning CPS is defined by satisfying the following categories:

Confidentiality The ability to prevent unauthorized individuals from disclosing
information.

Integrity Inability to modify or alter data without authorization.
Availability The ability of the CPS to provide the intended services.
Authenticity Ensuring safe data communication and transmission [39].

Ensuring the security of CPS begins by identifying the types of threats that
endanger these systems. There are various types and subtypes of attacks that
exploit different vulnerabilities of a CPS. These attacks can be subdivided into
two categories: passive and active attacks [40]. Passive attacks have the purpose of
being undetected over a long period of time. These attacks are aimed at intercepting
sensitive data without causing any destruction. Active attacks, however, are aimed
at causing direct damage or taking control of a system [41]. In general, CPS can
endure any of the following attacks:

1. Eavesdropping
2. Spoofing
3. Denial of Service (DoS)
4. Code Injection
5. Malware
6. Control Hijacking

Each of the above attacks have unique purposes and exploit specific vulnera-
bilities. Furthermore, each of these attacks have various subtypes. These attacks
and subtypes are defined and described in the following sections and demonstrated
in Fig. 2.6.

4.1 Eavesdropping

Eavesdropping attacks are aimed at stealing data and information from a system.
Subtypes of these attacks include Man-in-the-Middle, traffic sniffing, and replay
attacks [42]. The first is an active type of attack in which an intruder intervenes
between the communicating entities to intercept the packets. Traffic sniffing is a
passive attack with the purpose of traffic analysis. Replay attacks aim to intercept
authentication information.
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Fig. 2.6 The types of attacks that can face CPS

4.2 Spoofing

The main types of spoofing are GPS spoofing, ARP spoofing, and IP spoofing [43].
IP spoofing uses a modified IP to pass through security systems. This type of attack
is typically the first stage of a complex intrusion. GPS spoofing, however, is based
on broadcasting incorrect signals of higher strength than received from the satellites
to deceive the victim. ARP spoofing is where falsified ARP (Address Resolution
Protocol) messages are used to link the attacker’s MAC address with the IP address
of the victim; thus all data in the compromised system will pass through the intruder.
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4.3 Denial of Service (DoS)

DoS attacks are subdivided into permanent DoS, distributed DoS, and reflected
attacks [44]. Permanent DoS is a type of attack where the intruder tries to exploit
unpatched vulnerabilities to install modified firmware to the system. However, a
distributed DoS attack is an attack where several systems are sending requests to
a victim system to occupy resources like bandwidth and processor time [45]. With
this attack, the victim system is unable to provide services or continue its usual
tasks. Reflected attacks are attacks that send forged requests to a large number of
systems with the IP address set to that of the target victim. This results in the target
victim being flooded with the responses. Smurf attacks and Fraggle attack are some
of the variations of reflected attacks and they use ICMP packets and UDP packets
respectively.

4.4 Code Injection

The four main types of code injection attacks are as follows:

SQL Injection Attack Involves insertion of malicious SQL statements leading to
failure of input data.

Cross Site Scripting Exploits open script vulnerabilities and adds malicious code
into web application for execution.

Remote File Injection Files with malicious code are downloaded on the server
side of web applications and are executed on the server.

Shell Injection Malicious shell code is inserted into the code string for further
interpretation by the shell [46].

4.5 Malware

Malware is any program or file that is harmful to a computer user and includes
viruses, Trojan horses, rootkits, and worms [42, 47]. Each of these types are defined
as follows:

Virus A type of malware that infects files and programs in the system.

Trojan Horse A type of malware that intrudes the system under the disguise of a
legitimate software.

Rootkit A set of software, such as scripts, executable files, and configuration files,
with the ability to hide itself and other malicious software.
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Worm A type of malware software with the ability to replicate itself resulting in a
waste of network bandwidth.

4.6 Control Hijacking

This type of attack is aimed at taking control of a target machine or system. This is
done through the three main subtypes of control hijacking attacks each designed to
exploit a specific vulnerability. These attacks are listed and defined as follows:

Buffer Overflow Attack An attack designed to force the target system to write
data outside its given buffer.

Integer Overflow Attack An attack aimed at creating an integer overflow error,
which occurs due to the system’s inability to represent numerical values within its
given storage space.

Format String Intrusion An intrusion in which the input string is executed as a
command.

Considering the variety of attack types, particular types of CPS are more prone
to specific attacks. For example, medical devices are prone to eavesdropping attacks
such as replay and traffic sniffing. Critical infrastructure, while also prone to
eavesdropping attacks, have additional vulnerabilities with high potential impact.
Therefore, security of critical infrastructures, such as the smart grid, is a much more
elaborate task. Furthermore, certain types of CPS, such as the smart grid, are prone
to specific types of attacks designed just for these systems. For example, False Data
Injection (FDI) attacks are a type of attack in which malicious data is injected into
the smart meters to deceive the control centers with inaccurate power demand data
[48]. This type of attack, when successful, can potentially cause blackouts or serious
infrastructural damage to power stations.

The variety of vulnerabilities and attack methods in CPS calls for comprehensive
defense strategies at various levels of the systems. The next section describes the
defense mechanism used and proposed to date.

5 Defense Mechanisms

Considering the important applications and complexity of CPS, ensuring their
security is crucial. Furthermore, the distributed nature of modern CPS is a key
concern; complex CPS consist of various components at different levels, all of
which with their own vulnerabilities. Therefore, ensuring a secured CPS involves
securing each of the components and considering all possible consequences of a
compromised component on the whole system [49]. As such, numerous challenges
can arise from securing a CPS, with distinct challenges for each type of CPS.
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Security approaches in literature vary upon the application and the type of CPS.
However, a general methodology to secure networks and infrastructure is proposed
by CISCO [50], and contains the following elements:

• Security Policy (SP): Procedures of conducting necessary measures to maintain
security. This involves all relevant security measures such as firewalls, authen-
tication, and authorization. A well-established security policy is defined by the
following aspects [51]:

– A set of security measures for particular threats
– Role distribution.
– Clear definition of normal or accepted behavior.
– Resource classification based on sensitivity.
– Communication process organization.
– Reporting and logging of essential information.

• Monitoring and Response: Includes routine knowledge extraction about the
environment of the system and potential threats, as well as conventional
responses to potential threats.

• Testing: Constant checking of the system abilities to react to threats as well
as the response time. The purpose is to maintain constant control of state or
configuration of the security system and detecting weaknesses.

• Management and Improvement: Organizing efficient use of security assets and
acting on identified security gaps. This includes maintaining proper functioning
of the system and keeping security systems up to date.

An important component of cyber security systems is intrusion detection. Intru-
sion detection systems (IDS) aim to inform the system or the operator of an intrusion
or attack through collecting relevant historic data and analyzing subsequent gathered
data [52]. According to the National Institute of Standards and Technology (NIST),
there are four main types of IDS listed as follows [53]:

• Network Based: Focuses on network traffic and considers network protocols,
traffic, and devices.

• Wireless: Similar to network based, however protocols are in the scope of the
IDS used.

• Network behavior analysis: Considers network traffic flows and identifies
suspicious patterns and policy violations.

• Host-based IDS: Monitors activities related to a certain host such as traffic,
application activities, operations, and configurations. This type of IDS is usually
applied in critical infrastructure.

When it comes to detecting the threats, however, most modern IDS can be divided
into three subgroups, which are based on their algorithmic operations [54]. These
subgroups are listed and defined as follows:

• Anomaly-based: Detects behavioral patterns in system’s data which are different
of normal system’s functioning.
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• Signature-based: Identifies threats using a set of threat models. This requires an
up-to-date storage of various types of threats and their models.

• Specification-based: Suspicious activity is detected using the specifications of
the system as well as its components

Many techniques are proposed in literature that claim a high threat detection
accuracy. One approach uses trusted devices, or sensors with guaranteed security,
and compares data from these devices to other devices with potential threats in order
to detect attacks on the system [55]. Such model-based techniques are not practical
due to their vulnerability to passive attacks as well as DoS attacks. While each CPS
is associated with its own security challenges, resource and time constraints are
issues that prevail in the security of almost all systems. Considering the importance
and sensitivity of the applications of CPS, time and resources are scarce and must
be used wisely. Furthermore, detection of intrusions and attacks must occur in
a precise and timely manner, in which security mechanisms and protocols are
given the appropriate time and resources to act and mitigate the threat. To solve
for the issue of resource constraint, scheduling techniques are proposed in which
responsibilities are shared among the various components of a CPS [56]. However,
it is difficult to propose a model-based technique that is both time-efficient and
highly accurate. As such, intelligent systems are proposed, which employ Artificial
Intelligence (AI) and Big Data for more accurate and time-efficient attack detection.
The next section discusses the applications of AI in the security of CPS and its
importance in designing comprehensive security systems.

6 Applications of AI in Cyber Security

Artificial Intelligence (AI) is a fast-growing field in the technology industry. Many
researchers and developers are implementing methods and techniques that simulate
human-like intelligence in algorithmic operations. AI and the emergence of deep
learning has increased the potential of many applications. AI, unlike ordinary
programming tools, does not require a clearly modelled process; in many cases, AI
can use input-output data to learn and generate system parameters that can classify
and predict unlearned data. Such a tool can have a wide range of applications,
such as speech recognition, facial recognition, and robotics. Cyber security is also
one of the largely studied applications of AI [57, 58]; in fact, most organizations
working with AI focus on detecting and deterring security intrusions, as per Fig. 2.7.
Intelligent systems are also used for malware monitoring and intrusion detection.
Furthermore, machine learning (ML) algorithms are commonly used to classify and
detect cyber threats in CPS. The abundant use of AI in cyber security is due to
its high potential efficiency and scalability. As opposed to model-based solutions,
intelligent systems have the capability of learning and thus adapting to larger
systems.
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Application areas of artificial intelligence (AI) in organizations
worldwide in 2018 Share of respondents
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Resolving users’ technology problems
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Fig. 2.7 The types of applications of AI sorted by number of organizations working in each
field [59]

The issue with the use of ML in cyber security mainly comes from the
dependence of these algorithms on a set of variables or features. When designing an
ML algorithm for detecting a malware, for example, key features of a malware must
be identified. And if certain variables are not used as features, the ML algorithm
will ignore them. As such, feature selection or feature extraction is a key concept in
developing ML algorithms. As such, to maintain a high classification accuracy, ML
algorithms must employ a comprehensive and efficient feature extraction technique
[60–63]. To overcome this flaw, researchers began to migrate from traditional ML
algorithms to deep neural networks or deep learning (DL).

DL is a sub-domain of ML with the ability to directly train on original data
without extracting its features. In the past decade, DL has greatly improved
the performance in the fields of computer vision, speech recognition, and text
recognition achieving a historic leap in the AI field [64]. The main advantages of
DL are its ability to detect nonlinear relationships and support new file types; and
therefore, it can detect unknown attacks in systems, which is an attractive trait for
cyber security. DL, as well as general ML algorithms, can be categorized into the
following three categories:

Supervised Learning Requires the use of labeled input data to train a classification
or regression algorithm. Classification is used to analyze data and allocate it to a
specific class while regression is used to output a prediction value of continuous
nature.

Unsupervised Learning Uses unlabeled input data. This class of algorithms is
often used to cluster data or reduce its dimensions.

Reinforcement Learning Based on a reward system that rewards satisfactory
actions. These types of algorithms can be considered as a fusion of supervised
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and unsupervised learning, and are mainly suitable for tasks that have long-term
feedback [65].

There are many ML and DL algorithms that fall within the above categories,
many of which are used in various areas of cyber security. The following sections
discuss traditional ML algorithms and DL algorithms and their applicability to cyber
security.

6.1 Traditional ML Algorithms for Cyber Security

Traditional ML solutions consist of the following four main steps [66]:

1. Feature Extraction
2. Choosing an appropriate ML algorithm
3. Training models with varying parameters and selecting the model with optimal

performance.
4. Classify or predict unknown data using the trained model.

Examples of ML algorithms include support vector machines (SVM), K-nearest
neighbor (KNN), decision trees, and artificial neural networks. There are other ML
algorithms, however, the aforementioned four algorithms are among the most used
ML algorithms in cyber security. The following subsections discuss each of those
algorithms and their application to cyber security.

6.1.1 Support Vector Machines (SVM)

SVM is a supervised learning algorithm that can be used for classification and
regression, which are known as support vector classification and support vector
regression respectively. SVM works by separating the input data through the
construction of an appropriate split plane. The most common way of creating such a
split plane is through the use of a Gaussian Kernel, which is defined by the following
equation:

K (xi, xi′) = exp

⎧
⎨

⎩
−γ

p∑

j=1

(
xij − xi′j

)2

⎫
⎬

⎭
(2.1)

where γ is the kernel coefficient and x represents the data. This split plane is used
to divide and distinguish between classes of data. An example visualization of this
split plane can be seen in Fig. 2.8.

SVM has been used in various applications of cybersecurity including the
detection of distributed DoS attacks in software-defined network and real-time
detection of malware uniform resource locator (URL) [67, 68]. SVMs are also used
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Fig. 2.8 An example of SVM classifications

in detection of false data injection (FDI) attacks in the smart grid [69, 70]. In each
of these implementations of SVM, it was proved, when compared to other ML
algorithms, that SVM has the potential of achieving high classification accuracy
and a low false positive rate. The main disadvantage, however, is the long training
time.

6.1.2 K Nearest Neighbor (KNN)

K-nearest neighbors (KNN) algorithm is another supervised learning method that
classifies data based on its closest k neighbors. The closeness between the data is
determined using the Euclidean distance,

dij = ∥
∥si − sj

∥
∥ , sj ∈ S (2.2)

where S and s correspond to labelled and unlabeled data respectively, and k > 1
corresponds to the number of neighbors. The KNN algorithm has been proposed for
various applications in cybersecurity. The main use of this classifier is for intrusion
detection. One method represents program behavior by frequencies of system calls
which are classified as normal or intrusive via the KNN algorithm [71]. KNN was
also used with particle swarm optimization (PSO) for intrusion detection. PSO was
claimed to increase the classification accuracy by 2% [72].
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Fig. 2.9 An example ANN architecture [73]

6.1.3 Artificial Neural Network (ANN)

ANN is an algorithm composed of interconnected elements, called neurons or
nodes, which process information based on specific weights. ANN can be con-
structed in various methods and architectures and typically consist of an input layer,
hidden layers, and an output layer each consisting of several nodes. Each of the
input nodes contains a feature of the data; these nodes are activated through various
types of activation functions which process the information into the next layer of
nodes. This activation process occurs in every layer until the data is classified in the
output layer of the ANN (Fig. 2.9).

ANNs are used in many areas of cyber security. One study developed an
intrusion detection system for supervisory control and data acquisition (SCADA)
systems [74]. The ANN monitors the physical behavior of the SCADA system to
successfully detect man-in-the middle response injection and DoS attacks. Another
study proposed a computationally efficient ANN for intrusion detection [75]. The
experimental results showed promising results in reducing runtime and memory
requirements; which are key concerns associated with neural networks.

6.2 Deep Learning Algorithms

Through automatic feature selection, deep learning (DL) attempts to obtain deeper
and more accurate relationships in the input data. Most commonly used DL
algorithms include recurrent neural networks (RNN), convolutional neural networks
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(CNN), deep belief networks (DBN), and automatic encoders. The functionality and
applications of each of the DL algorithms are discussed in the following subsections.

6.2.1 Deep Belief Networks (DBN)

DBN is a learning algorithm based on probabilistic generative models, and is com-
posed of stochastic hidden units acting as feature detectors. A typical architecture
of DBN consists of two top layers with symmetric connections between them
forming an associative memory, and two bottom layers receiving top-down directed
connected from the above layers. This creates an efficient layer-by-layer procedure
in which generative weights determine how variables in one layer depend on the
variables in the layer above. After learning, the DBN classifies and predicts data
through a bottom-up pass that starts with the data vector at the bottom layer, and
uses the generated weights in the reverse direction. The unique feature of DBNs is
their efficient greedy learning, in which the network learns one layer at a time by
treating the values of the previous layers and training data for the next layer.

In cyber security, DBN has been implemented in malware detection in android
applications [76]. The results of this study prove the superiority of DBN over
traditional ML algorithms such as SVM and ANN. Another study proposed a novel
intrusion detection scheme that combines DBN with a probabilistic neural network
(PNN) and particle swarm optimization (PSO) [77]. In this technique, DBN is
used to extract characteristics from the raw data, PNN is used to classify the low-
dimensional data, and PSO is used to optimize the number of nodes in each hidden
layer.

6.2.2 Recurrent Neural Networks (RNN)

RNNs are a class of ANN in which connections between nodes form a directed
graph along a temporal sequence. This allows RNNs to use previous predictions
as part of the input data. In other words, RNNs have memory and use present
and recent past inputs in their decision making. This is done through a feedback
loop connecting past decisions to current inputs in the RNN architecture. The most
prominent type of RNNs are long short-term memory (LSTM) networks. LSTM
networks have been notably used in language modelling, machine translation, and
speech recognition [78].

In cyber security, LSTM-RNNs are used to classify permission-based Android
malware due to their ability to learn from temporal behaviors in sparse represen-
tations, in which they achieved accuracy as high as 89.7% [79]. A cloud-based
intrusion detection scheme for Internet of Vehicles (IoV) has also been proposed
[80]. This pointed out very promising results, as the LSTM learned temporal
context of various attacks such as DoS, command injection, and malware. The high
computational demands of RNN, as well as other DL methods, were also addressed
through the use of cloud-based computational offloading.
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6.2.3 Convolutional Neural Networks (CNN)

CNNs are another class of deep neural networks that use convolutional layers.
The use of convolutional layers is an approach towards regularization, in which
hierarchical patterns in data are used to break down complex patterns into smaller
and simpler patterns. The main use of CNNs is for image classification and facial
recognition [81, 82]. In cyber security, however, CNN was proposed in the use of
malware classification based on malware gene sequences [83]. CNN, due to its
convolutional property, proved successful in identifying malwares based on patterns
in the gene sequences representing the malwares attributes. Another approach of
using DL for cyber security presented the use of CNN for intrusion detection,
coupled with two traditional ML classifiers, SVM and KNN, which performed few-
shot intrusion on the outputs of each layer of the CNN [84].

6.2.4 Automatic Encoders

Unlike the aforementioned DL algorithms, automatic encoder, also known as
autoencoder, is an unsupervised learning algorithm. Autoencoders are very different
from traditional learning algorithms; instead of classifying or predicting data,
autoencoders attempt to reduce the dimensions of the data by learning represen-
tations or encoding for a dataset. In other words, autoencoders attempt to reduce
and reconstruct the data to be as close as possible to the original input. This method
is extremely useful for dimensionality reduction or automatic feature selection.

Autoencoders are extensively used in the field of cyber security. Stacked
autoencoders are used for unsupervised DL that can classify cyberspace attacks in
fog-to-things computing [85]. Autoencoders are also used for anomaly detection.
One study used autoencoders and de-noising autoencoders and concluded optimal
performance in detecting attacks from unlabeled data [86]. Additionally, detection
of DoS attacks in applications was also tackled by the use of autoencoders.
This scheme analyzes communications between a web server and its clients and
distributes them using a stacked autoencoder and DL algorithms to detect DoS-
related attacks [87]. The benefit of this scheme is that it does not require decryption
of the encrypted traffic, thus obeying the ethical norms concerning privacy.

7 Deep Learning: Adapting to the Real World

Most intelligent algorithms are developed and tested in a simulated environment
or on miniaturized systems. As such, generalization of these techniques is of
great importance for the purpose of scalability and application to larger real-time
systems. Since the main goal of an intelligent system is to adapt to unseen data,
generalization demonstrates the dependency of a trained model on unseen training
set. This is expressed by the generalization gap, which represents the difference
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between empirical risk and expected risk, which are statistical terms expressing the
adaptability of the learning algorithm to new data through testing and numerical
estimation.

Generalization Gap := R
[
fA(S)

] − RS

[
fA(S)

]
(2.3)

Where R
[
fA(S)

]
is the expected risk and R

[
fA(S)

]
is the empirical risk. The goal

is empirical risk minimization, which is minimizing the computable empirical risk
in order to minimize the non-computable expected risk. The primary challenge of
analyzing the generalization gap stems from the dependence of the learning function
on the dataset. Several approaches in statistical learning theory have been developed
to handle this dependence [88, 89], which include:

• Hypothesis-space complexity: This approach handles the dependency by decou-
pling the model function from its training data and considering the worst-case gap
for functions in the hypothesis space.

• Stability: The stability approach deals with the dependence of the model on
the dataset by considering the stability of the learning algorithm with respect to
different datasets. This considered stability is a measure of the effect of changing
a data point in the original dataset.

• Robustness: The robustness approach avoids certain details of the dependence
of the model function on the dataset by considering the robustness of the learning
algorithm for all possible datasets. As opposed to stability, robustness measures
the loss value variation with respect to the input space. This approach, however,
requires a known and fixed partition of the input space.

The main goal of adapting AI systems to real-world application is achieved
through minimizing the generalization error. The various strategies of generalization
fall under the definition of regularization, which is any modification to the algorithm
that reduces the generalization error without reducing the training error [90]. There
are two categories of regularization: implicit and explicit [91]; both are defined as
follows.

Implicit Regularization regularization using the characteristics of the learning
algorithm, the network architecture, or the data. Examples of this include the use
of convolution layers or batch normalization.

Explicit Regularization regularization that is not through a structural part of the
network architecture, algorithm, or the data. These methods of regularization can be
added or removed easily and include dropout layers, data augmentation, and weight
decay.

Regularization plays a critical role in developing a successful and efficient AI
system. This is because regularization improves the scalability and adaptability of
the intelligent system on larger applications. Therefore, the shift from a theoretical
model to an applicable model must involve some regularization methods. The
commonly used regularization methods in deep learning are:
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• Weight Decay: Also known as L2 Regularization, weight decay is an explicit
regularization method that constrains and decreases the complexity of a neural
network. Limiting the weights or parameters prevents the learning algorithm
from producing too large values, which can in turn increase the computational
cost [92].

• Dropout: The dropout technique revolves around using dropout layers within
the neural network. The dropout layers avoid over-fitting by randomly dropping
units from the network forcing the network to learn using varying combinations
of features [93].

• Sparsity Regularization: Sparsity refers to layers with most coefficients being
zero. The idea behind this is that the model can learn by reduced number of
variables, which leads to reduction of computational and memory requirements.
Sparsity can be enforced by either implicit or explicit regularization [94].
Implicitly, sparsity regularization can be achieved through convolution layers.
In explicit regularization, however, sparsity can be achieved by including a loss
function that penalizes non-zero weights.

• Weight Sharing: This method consists of sharing a single weight among many
nodes in the neural network. In other words, groups of neuron nodes share weight
values such that each group processes a local region of the input [95]. This
technique results in a shift-invariant system aiding in the generalization capability
of the model. It also reduces the complexity and computational cost due to the
reduced number of parameters.

• Data Augmentation: An explicit regularization technique where additional
generated data is used in the training of the model [90]. This additional data
is usually fake and generated to train the model on additional adversaries.

• Pooling: An operation used in almost all CNNs which makes output represen-
tations invariant to small translation of the input image. Pooling layers function
by progressively reducing the spatial size of the data representation to reduce the
amount of parameters and computation in the network [90]. This strategy helps
avoid overfitting.

• DropConnect: A recently introduced regularization method for neural networks.
In this method, randomly selected subsets of weights are replaced by zero [96].
This introduces dynamic sparsity within the network which can help it adapt
to more adverse and variant data. In certain cases, this can be considered as an
improvement to dropout, but not always [97].

• Adversarial Training: The process of explicitly training the model on adversar-
ial examples to increase robustness and reduce test error on clean input samples
[90]. This is useful because malicious inputs can be designed to fool a machine
learning model, and adversarial training can aid in avoiding that [98].

As previously highlighted, AI tools have the potential of solving many cyber-
related challenges. Although advanced intelligent solutions are essential for the
unsolved challenges of cyber security, such solutions raise technical questions and
uncertainties for the consequences of employing AI tools, particularly in critical
infrastructure. There is a number of serious ideological, ethical, and legal concerns
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that could arise from the use of such advanced and intelligent technology in sensitive
areas like critical infrastructure. There are also challenges associated with the
immaturity of the subject itself. These challenges are discussed in the next section.

8 Challenges of AI in Cyber Security

The integration and development of AI in security of CPS is concluding towards
the use of deep learning methods. DL provides a rich collection of models that
can approximate any function and adapt to any data. Furthermore, DL provides a
scalability factor, which is essential for large critical infrastructure. These attributes
are desirable because CPS typically have high dimensional data coming from a
large number of sensors. Furthermore, CPS are constantly updated with new data
with consistent growth; as such DL is extensively used in cyber security of CPS.
However, there are many challenges associated with DL.

One of the major problems with DL approaches is the lack of theoretical
background in the topic. Most studies in the topic demonstrate the impressive
performance of DL methods without detailed explanation of how they generalize
well [89]. This lack of transparency has reduced peoples’ trust in DL approaches
[99]. Furthermore, it has made it difficult to implement proper regularization
techniques for real world applications.

Regularization is an integral part of applying AI methods to any application; it
involves modifications of parameters to ensure scalability to the real world systems.
For example, in classic ML theories, regularization typically involves changing
parameters so that the number of training samples outweighs the number of param-
eters in the ML algorithms [100]. In DL methods, however, good generalization
has been achieved even with over-parameterized settings [89]. Some DL methods
require different techniques for good generalization such as weight sharing, weight
decay, drop out layers, and data augmentation. While these techniques are often
used, their importance is seldom highlighted and expressed.

Another critical challenge in implementing AI, and specifically DL methods,
is the selection of the correct parameter and setting balance of the algorithm.
Increased development of GPU has increased the potential of DL algorithms. This
increased processing power has encouraged researchers to train broader and deeper
networks [101]. These deeper networks have the potential of learning more complex
patterns. However, it has been shown that networks with larger capacities reduce the
practicality of regularization methods, such as dropout or weight decay, as well as
requiring longer training time [90, 102]. As such, researchers and AI developers
must find the balance between implementing deeper architectures and usage of
regularization methods. This is a key to increasing the robustness of DL methods,
which can be sensitive to adversarial samples [103].

The exponential development and integration of AI in cyber security, and all
aspects of technology, has raised ideological and ethical concerns as well. Reports
outline that reliance on AI could create new vulnerabilities that could be exploited
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by adversaries [104]. As such, some attention should be focused on technological
or policy-oriented solutions that can mitigate malicious applications of these AI
tools. The integration of AI also introduces new difficulties in interactions between
machines and humans. Interpreting information from complex autonomous systems
can become increasingly difficult. Speculations also exist regarding the creation
of autonomic mechanisms for judgements and decisions that can be deemed too
affected by information overload or human emotions [105].

Some technical recommendations were suggested for the design and develop-
ment of intelligent systems include [106]:

• A guarantee of appropriate control under all circumstances
• Strict constraints are set for the algorithm’s behavior
• Careful testing and validation is performed to satisfy safety concerns
• Restricted environment in which the intelligent system is permitted to operate on

known platforms.

Another concern to be further examined is the protocol of communication.
A main concern is whether communication should be one-way, only allowing
gathering of information, or two-way, allowing swift actions to be taken. Two-way
communication can have advantages such as faster reaction time but is also prone
to additional security concerns such as loss of control over the intelligent system.
Comprehensive communication protocols also have a larger potential in dealing
with multi-agent threats, or threats that deal with possible cooperative behavior or
various agents. Such multi-agent formations have high potential in application of
cyber operations. Inter-agent communications can be used for more comprehensive
cooperation to achieve more general goals [106]. However, unwanted coalitions
between agents can occur if agents are given too much autonomy in decision-
making. This can have severe consequences that can be difficult to reverse [107].
The technical solutions suggested for such problems include the use of safeguards
such as back-doors and forced destruction.

Clarity questions and uncertainties also surround the legal implications of the
development of intelligent mechanisms. Some suggest that autonomous agents are
similar to any other tool and should therefore exist under international law [107].
However, it is unclear to whether a developer could be held responsible if an
intelligent agent exceeds its assigned tasks and makes unauthorized decisions. As
such, the use of mandatory signatures or watermarks as well as automatic safeguards
can have beneficial effects on the integration of AI into society.

9 Conclusion

The increased integration of smart technology into critical infrastructure is accom-
panied with many advantages. However, the reliance of these technologies on
communication networks raises many concerns regarding security. Moreover, the
use of these cyber physical systems in critical infrastructure, such as healthcare,
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transportation, and power generation, induces severe consequences that accompany
these security concerns. With the advancement of technology in the direction of
networked devices, security of such cyber physical systems has become a topic
of great interest. As such, many security measures and defense mechanisms were
introduced to tackle the security issues of these systems.

There are many challenges associated with the security of cyber physical
systems. The variety of threats and vulnerabilities deems model-based techniques
ineffective. The diversity of the system types, as well as the types of cyber
attacks that may inflict them, calls for more comprehensive techniques capable
of detecting threats of varying nature. These comprehensive detection methods
must rely on artificial intelligence in order to accurately classify these threats. This
is because non-intelligent model-based systems require substantial complexity to
attain sufficient results. As such, the use of AI is an ideal solution to security of
cyber physical systems and critical infrastructure.

In this chapter, the importance of smart technology and the adoption of cyber
physical systems in everyday life, specifically pertaining to critical infrastruc-
ture. Additionally, the security challenges of these systems are highlighted and
discussed. The use of AI for cyber security is also examined in this chapter;
various machine learning and deep learning techniques are identified and their
applications are explained. Furthermore, generalization methods are discussed,
which aim at increasing the robustness and scalability of these algorithms to large
complex systems. While the significance and advantages of using AI in security of
critical infrastructure is strongly recommended, associated challenges and risks, also
discussed in this chapter, must be considered. Therefore, it can be concluded that
while AI offers many advantages and shortcuts, thorough testing and monitoring
must take place to minimize the associated risk while taking advantage of the
solutions these AI algorithms can provide.
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Chapter 3
Industrial Big Data Analytics: Challenges
and Opportunities

Abdulrahman Al-Abassi, Hadis Karimipour, Hamed HaddadPajouh,
Ali Dehghantanha , and Reza M. Parizi

1 Introduction

Manufacturing industries have faced several industrial revolutions to withstand com-
petition in global production capacity, quality and cost [1]. Industrial revolutions
in the past have been influenced by several technical innovations, as illustrated in
Fig. 3.1. The first industry revolution was introduced at the end of the eighteenth
century [2]. It is generally considered to be the steam-powered mechanical machines
which made the steam power exploitable opening the industry age [1, 2]. The second
industry revolution, which targets mass production and assembly lines [3] was first
introduced at the beginning of the twentieth century [1]. In this division, we see
an introduction of programmable logic controllers (PLCs) to automation industries
in applications of electricity to create mass production [2]. The third industry
revolution focuses on digitalization and automation [4]. It is usually linked to the
extensive use of electronics and information technology to automate production [2].

Even though the three industrial revolutions are based on break-through scientific
discoveries [2], experts believe that internet will play a major role in running
industrial facilities through Cyber Physical Systems (CPS) [1]. Therefore, Industry
4.0 refers to the fourth industrial revolution introduced in 2011 [5] (Lu, Industry
4.0: A Survey on Technologies, Applications and Open Research Issues [6]) and
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Fig. 3.1 Evolution cycle from Industry 1.0 to Industry 4.0

designed to decentralize production through shared facilities in industrial global
systems and achieve personalization and resource efficiency [1]. This industrial
revolution was first introduced in 2011 by the German Government [7, 8]. It has
a profound impact on producers and consumers as it contributes over 25% of the
Gross Domestic Product (GDP) and provides over seven million jobs [1].

The impact on producers is minimal since it uses marginal human interventions
with computers automatically reconfiguring facilities to achieve the production
goal [9]. In addition, manufacturers do not necessarily need to have their own
factories and facilities anymore [1] because certain specialized companies provide
their physical facilities to rent for production purposes. Furthermore, maintenance
specialized companies can be hired by industrial owners; thus, maintaining their
facilities and reducing additional costs due to their economic scale [3].

Similarly, Industry 4.0 has a great impact on consumers. It allows clients to get
their individualized products [3], since manufactures can dynamically reconfigure
manufacturing systems based on the collected customer needs in an online platform
[10]. Hence, small and medium sized companies can benefit from Industry 4.0
methodologies and effectively provide other market opportunities [1, 3].

The German government had to revolutionize the industry to withstand an
increasing global competition on product quality and production costs [1]. Existing
manufacturing companies face tough challenges since customers are not willing
to pay large price premiums for incremental quality improvements [1]. Hence, the
industrial facility has moved to produced customized products with fast time to
market [9]. In order to close the productivity and quality gab, several industries have
moved their facilities to low wage aspiring countries. Thus, resolving the tension
between economics of scale and scope as well as planning and value orientation [1].
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Today, large investment companies, such as Amazon, Google, Apple and Face-
book inspire to revive their investments in industrial fields grabbing a dispropor-
tionately large market share from today consolidated market leader [2]. Industry
4.0 uses a concept called “metered service” which highly flexible and can achieve
a much higher resource efficiency [3]. To illustrate, a typical manufacturer must
own several facilities to ensure production outcome during busy seasons. Then, the
manufacturer can release unnecessary facilities to the cloud for other companies
to be utilized during their off seasons [3]. Recent research shows great promise
towards defining and decoding principles of Industry 4.0 [2]. This is done through a
publication where governments plan to add a “super” tax incentive for investments
in “Smart Factories” and outline the benefits of this new industrial revolution [2].

Even though current research in Industry 4.0 promises decentralized facilities,
personalization and source efficiency [3], Industry 4.0 is a fairly a new concept with
many unidentified terms related to CPS [11, 12].

The term ‘Cyber Physical System’ was first introduced by Helen Gill at the NSF
in US [3] to inspire other researchers to study the interaction between physical
systems and computing systems [13]. CPS include physical facilities with embedded
devices that are controlled by external devices, including sensors, processors and
actuators [4]. These systems have a great impact on computing procedures as they
usually carry a feedback loop with physical facilities [3] to enhance the scalability
of the system and improve its security and flexibility [14]. Additionally, CPS have
a variety of applications in the medical, military, power, traffic and many other
monitoring and control fields [13].

Industry 4.0 and CPS are two different concept even though they have a lot
in common and used together in many cases. CPS not only carry applications in
industrial fields, but other areas as well, such as healthcare, public transportation,
and military [3]. Alternatively, Industry 4.0 serves the entire business cycle as
shown in Fig. 3.2. It starts by gathering natural resources used to produced
different customized components. Then, these components are assembled to deliver
personalized products to customers [15].

Manufacturing industries have developed their physical facilities through acquir-
ing more affordable sensors and better data acquisition systems. As a result,
manufacturing systems usually produce a great amount of data, called Big Data [16],
more than any other sector [17, 18]. According to [4], one machine can ultimately
produce thousands of records, subsequently reaching several trillion records in a
year. Also, data sizes range from a few dozen terabytes to many petabytes of data
in a single data set [19]. Thus, the potential to reduce malfunction rates is affected
by big data analytics tools and could ultimately improve production quality and
capacity [4]. Furthermore, they have the potential to affect different sections of the
manufacturing business management and supply chain [9].

In this paper, research regarding the connection between CPS and big data
frameworks in Industry 4.0 is conducted to outline the key differences between them
and help future researchers. The remainder of this chapter is organized as follows:
Section 2 will present big data characteristics. Then, several industrial big data
sources and applications are discussed in Sect. 3. Section 4 will bring more attention
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to industrial big data challenges and issues. Section 5 will outline solutions and
future remarks to handle big data-intensive applications. Finally, Sect. 6 concludes
the chapter and discusses the future of big data research on CPS in Industry 4.0.

2 Big Data Characteristics

Manufacturing industries run their physical facilities through sensors and data
acquisition systems generating extensive data to process, called Big Data [16].
There are several techniques to process large amounts of data, including capturing,
transferring, storing, curing, analysing, visualizing, securing and ensuring privacy
[4]. Data size variables are continuously changing due to large data sets and vary
from Terabytes, Petabytes and Exabyte or Zettabyte [4]. There are many challenges
that exist in the age of big data. To illustrate, GE company produces a personal
care product which generates 5000 data samples every 33 ms. McKinsey institute
reported that an effective use of industrial big data has the underlying benefits to
transform economies and deliver new wave of production growth [9]. Hence, taking
advantages of valuable industrial big data analytics will create competitions for
today’s enterprises and attract employees that have the critical skills on industrial
big data [9].
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The industrial manufacturing stream characterizes big data into five categories,
called the “five V’s” [20], seen in Fig. 3.3. The most-widely used characteristics of
Big Data are volume, velocity, and variety [21, 22].

According to the Central Limit Theorem, volume, which is related to the large
amounts of data generated, is an important feature because more reliable data can
be analyzed to produce accurate results [4]. Another important characteristic is
velocity which detects how fast data is being generated and collected. This feature
is very critical because data generated from social interactions, sensor monitors
and business activities must be processed faster than its generation speed [4]. If
the processing speed does not meet the minimum requirements, some data can be
missed, thus making it challenging to accurately analyze and gain inside on the
collected data. The last important characteristic of big data is variety which focuses
on the different types of formats of data being generated from various sources. For
example, certain animals are hard to locate in jungles through pictures, but through
cameras combined with infrared photo analyzing techniques, animals are easier to
capture due to their high body temperature when compared to the background [4].
Consequently, variety is very important as certain useful patterns can be observed
and analyzed from different perspectives if they exit.

Other characteristics, which are not widely used, include veracity which deter-
mines the accuracy of data through inconsistencies and uncertainties [23]. Another
feature is value which focuses on the ultimate gain and social impact that could



42 A. Al-Abassi et al.

be extracted from the data [24]. There are five other characteristics which have
been gradually developed over time in Industry 4.0 by [20]. These characteristics
include:

1. Validity: correctness of data.
2. Variability: dynamic behaviour
3. Volatility: tendency to change in time
4. Vulnerability: vulnerable to breach or attacks
5. Visualization: visualizing meaningful usage of data

Henceforth, different characteristics of big data require techniques that can
handle and process large amounts data quickly. The must also be secure and robust
to deal with heterogeneous data [4]. Large companies facilitate their growth through
developing various data mining tools to aid them in better decision making [20].
Depending on the corporation’s requirements, online big data analytics tools are
vast and can vary from Hadoop, PiG, Hive, Cassandra, Spark, Kafka and many
others.

While big data analytics tools are used more often in Industry 4.0 and other
applications, more research is being conducted towards developing better big data
analytics techniques and gain relevant information. Some of the main domains in
which big data applications are revolutionized include, entertainment, insurance,
education, automobiles and government. Since big data is utilized in many applica-
tions, the scope of big data will create numerous job opportunities in this field and
a rising demand with huge salary aspects for individuals with professional big data
analytics skills.

3 Industrial Big Data Sources and Applications

Industrial big data is generated by a wide variety of sources that need be distributed
effectively to optimize industrial applications. This section analyzes some of the
main industrial big data sources and their corresponding applications.

3.1 Industrial Big Data Sources

Generating reliable data analytics techniques will primarily rely on proper data
collection devices. Such devices in Industry 4.0 include sensors, communication
devices, logistics vehicles, factory buildings, humans, and many other manufac-
turing tracking systems [9]. The main distributing industrial big data sources are
categorized by [9] into five main categories, including large-scale data devices, life-
cycle production data, enterprise operation data, manufacturing value chain sources
and finally collaboration data from external sources.
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3.1.1 Large-Scale Data Devices

This section mainly involves CPS and their connection to physical sensors (IoT
enabled devices), such as actuators, video cameras and RFID readers [9]. Ultimately,
these devices will always be connected to the internet and the generated data will be
collected, processed and analyzed either on-premises or through a remote facility
such as a server farm or in the cloud. Once the data is analyzed, is can be used to
help optimize machinery process and produce valuable decisions.

3.1.2 Life-Cycle Production Data

A life cycle analysis of a company involves data from all types of factory
process, including production requirements, design, manufacturing, testing, sale
maintenance and management [9]. The data is recorded, processed and analyzed
to produce a production life cycle system that meet the demand of products. Current
research focuses on eliminating external data collecting devices through embedding
sensors around the product. Hence, generating a faster real time data management
of the processes through making changes in production requirements, design, sales
and work force.

3.1.3 Enterprise Operation Data

This section involves data used for operational business reporting, such as business
management, organization structure, production, devices, marketing, quality con-
trol, procurement, inventory stocks and future goals and plans [9]. The industry
can optimize its production lines through real-time monitoring of equipment
and processes. Additionally, the industry can optimize the supply chain through
procurement, storage, sales and efficient distribution of products. Finally, optimal
production can be achieved through analyzing the sales and supplies data and
dynamically adjust the production rhythm to meet the specified requirements and
optimize energy consumption [9]. Additionally, Demand Response Management
(DRM) models save money by offering a two-way communication between cus-
tomers and suppliers, which in turn help utilize operations more efficiently [25].

3.1.4 Manufacturing Value Chain

The section includes other types of data involving customers, suppliers, and other
partners. The current industrial global economical system brings enormous competi-
tion in production development, procurement, sales, services, and other internal and
external logistic competitiveness factors [9]. Every part of the economical system
carries an important role in developing each link of the manufacturing value chain.
Hence, enterprise managers will regularly create strategic changes to enhance future
decisions.
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3.1.5 External Collaboration Data

External data involves data gathered from economy, industry, market, competitors
and other external data sources. Since these types of data are external, they are
susceptible to attacks from external sources [9]. Thus, organizations operating today
must collaborate with their employees, customers and stakeholders to increase
safety and encourage everyone to be responsible for the success of the organization
[26]. Additionally, sharing external company information, skills, tools and other
essentials influences everyone to make better decisions and in a timely manner [9].

3.2 Industrial Big Data Applications

The landscape of industrial big data is vast and includes different applications for
different purposes. While big data analytics tools are used more often to analyze
big data applications, more research is being conducted to revolutionize industrial
big data applications. This section presents current major industrial applications and
their big data processing techniques.

3.2.1 Smart Factory Visibility

Many manufacturing facilities usually have their devices and managing processes
connected with IT and online operating systems. Thus, certain studies have intro-
duced models that utilize Internet of Things (IoT) enabled smart factory visibility
platforms to achieve real time production visualization and reflect on the production
operations and behaviours [27, 28]. Another study presents a big data analytics
platform that provides production line information to decision makers, displays per-
formance data and status update and improves factory efficiency [9]. An additional
referenced model of ubiquitous infrastructure was proposed for manufacturing
information sharing and visualization [29]. Thus, with the development of IoT
technologies in Industry 4.0, factories can manage their facilities in a timely manner
and effectively collaborate with their production personnel [30].

3.2.2 Machine Fleet Management

Machine fleet refers to a large set of identical machines which are exposed
to different working conditions for different tasks [9]. Current industries use
predictive and prognostic methods to support similar machines without treating
them as identical machines. Thus, contractors and equipment rental companies use
Telematics, which is the integration of wireless communications, vehicle monitoring
systems, and location devices to provide real-time spatial and performance data of
the fleet machines [31]. Many machine fleet management platforms are simulated
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to integrate every instance within a plant and provide connectivity and information
sharing across multiple locations and business processes [9]. This is done through
automating workflows of different equipment and processes, with limited human
intervention, to support machine fleet tasks and optimize production.

3.2.3 Proactive Maintenance

Many manufacturing facilities have implemented various preventive maintenance
strategies to correct root causes of failure and avoid breakdowns of equipment
through condition-based monitoring. According to [9], smaller companies, with low
working capital, can implement low cost sensors, wireless connectivity and big data
processing tools to make it cheaper and easier to collect actual performance data
and monitor equipment health. This is done through using a data-driven algorithm
which analyzes the information collected from a given machine and its ambient
environment, and then process it back to the machine for adaptive control of
effective and efficient production planning and in-time maintenance scheduling [9].
Due to significant downtime and frequent machine failures in current industries,
[9] proposes a model that improves the system performance and achieves high
reliability and maintenance availability through two main factors:

• Mitigation of production uncertainties to reduce unscheduled downtime and
increase operational efficiency.

• Efficient utilization of the finite resources on the critical sections of the system
by detecting its bottleneck components.

3.2.4 Service Innovation and Just in Time Smart Supply Chain

Just in time (JIT) supply chain manufacturing is an important concept that enhances
competitiveness through service innovation and lead time reduction. Implementing
JIT manufacturing process that provide full control of every part in the chain
is very challenging due to many reasons including lack of required information
sharing or communication between stakeholders and insufficient sound action or
planning system [32]. A model is proposed by [9] to help manufacturers gain
a better acquisition of the supply chain information, the flow of materials and
manufacturing cycle times through integrating the production line and balance
of plant equipment to suppliers. The model can also collect and feed delivery
information into an Enterprise Resource Planning (ERP) system which can provide
real time information regarding the availability of products and effectively update
general product information [9]. Another case study proposes a framework that
utilizes IoT technologies to collect real time data and facilitate dynamic JIT
manufacturing [33]. This is done through adding functions that respond to the
dynamic changes with customer orders, production progress, and availability of
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required resources to allows manufacturers to maximize production outputs with
limited resources and proper planning [32].

4 Industrial Big Data Challenges and Issues

Industrial big data analytics bring about several challenges in Industry 4.0, including
industrial data access, integration, and sharing [34]. Furthermore, Big data are
often massive and defined using different representation methods and structural
specifications [9]. Thus, big data should be properly prepared for integration and
management, and the technical infrastructures must include appropriate information
infrastructure services to support big data analytics [9]. Challenges of big data
analytics in Industry 4.0 can be characterised into five different fields:

4.1 Lack of Largescale Spatiotemporal Database
Representation

Big data is usually generated from manufacturing devices that are placed at a
specific geographic location with a time stamp. The time stamp of every device is
collected and processed to conduct statistical analysis on the data. Since manufactur-
ing field produce large amounts of data, industries lack the appropriate infrastructure
services to support analysis of the data and perform data spatiotemporal integration
and fusion [9]. Hence, it will be very challenging to find cheaper approximation for
such manufacturing procedures.

4.2 Lack of Effective and Efficient Online Machine Learning
Algorithms

Big data generated from industries that utilize IoT has different characteristics
than traditional big data. Based on data collection sources, conventional data
characteristics including heterogeneity, variety, unstructured feature, noise, and high
redundancy [9]. Detecting machine anomalies and monitoring production quality
requires instant answers in manufacturing industries and increasing the number of
machines to speed up the computation will result in high cost preventive measure
that are not effective and efficient in the long run. Hence, online large-scale
machine learning algorithms are currently applied in Industry 4.0 big data analytics
framework to improve big data analytics techniques. Additionally, traditional data
management techniques usually involve a single data source where industrial big
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data management techniques have additional data sources to account for device
status streaming, geospatial, and textual data [9].

4.3 Lack of Whole Processes Lifecycle Data Management
Systems

Big data, generated from CPS in manufacturing industries, is usually produced at an
unprecedented rate and scale which bring about various challenges in storage man-
agement system technologies. Industries with small storage management facilities
cannot host huge data and thus data quality assurance techniques should be applied
to help identify essential and irrelevant data [9].

4.4 Lack of Data Visualization Systems

Data visualization systems help convert massive amounts of raw data in graphical
presentations to help in decision making and quickly reveal intuitive knowledge.
Additionally, visualizing such a tremendous amount of information presents quan-
titative and qualitative information in some schematic form, indicating patterns,
trends, anomalies, constancy, variation, in ways that cannot be presented in other
forms like text and tables [35, 36]. Since Industry 4.0 systems are more challenging
than conventional systems that reside in one location, these system must communi-
cate with many devices and users simultaneously as well as send and receive data of
different formats and at different frequencies [9]. While past studies focus mostly
on geographic information capability systems, additional research is required to
analyze massive heterogenous data that exhibit unique features that are difficult to
visualize [37].

4.5 Lack in Data Confidentiality Mechanisms

As previously mentioned, Industry 4.0 relies on big data being shared with multiple
online sources from different locations. Small industries cannot effectively analyze
such huge datasets due to their limited income capacity. They are forced to rely
on other enterprises and online tools to analyze their data and other sensitive
information, which introduces potential safety risks [9]. Thus, small industries
should be careful when dealing with a third party and develop proper preventive
measures to protect their sensitive data [38].
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5 Industrial Big Data Analytics: Solutions and Future
Remarks

Big data and CPS in Industry 4.0 are considered highly distributed data sources
which can ultimately cause several challenges, including data access, sharing and
processing. Additionally, massive data allocated from various sources are often
defined using large structural specifications and different representation methods
[9]. Hence, industries usually handle big data challenges through proper integration
and management as well as improvement of infrastructures to appropriately provide
technical services to support big data analytics [9].

The correlation between industrial CPS and big data analytics can be demon-
strated through two main categories. The first category will look after challenges of
the system’s infrastructure to ensure ultimate communication between facilities. The
other category will focus on challenges of various data analytics techniques used
to improve product personalization and resource efficiency. Figure 3.4 provides an
outline of the main industrial challenges as well as current techniques used to handle
industrial big data analytics of industrial CPS. The challenges and potential solution
are highlighted in red and green, respectively.

5.1 System Infrastructures

The first main component of big data to be analyzed is the systems information
infrastructure. As seen in Fig. 3.5, the three main solutions to solve challenges
related to system infrastructures include data capturing, storing and distributing.

Fig. 3.4 An outline of Industrial challenges and solutions
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Fig. 3.5 Big data landscape [40]

5.1.1 Data Capture

Current industrial system infrastructures produce a huge amount of data in a matter
of seconds. Capturing accurate and reliable data is essential to gain consistent
results and observe useful patterns. Existing capturing techniques have been recently
developed to capture data in a reliable and cost-effective manner. These capturing
techniques involve sensor data, system logs, camera images, radio-frequency iden-
tification (RFID) records, GPS data, Enterprise resource planning (ERP) data, and
social media data [4].

High distributed data that are usually captured through the above-mentioned
techniques bring about several challenges when it comes to capturing, accessing,
sharing and analyzing the data. There are several key factors to consider when
capturing accurate meaningful data. Initially, the process of collecting and trans-
ferring data to storing them on servers must be seamless and efficient [39]. Manual
intervention can delay the efficiency of the process and result in missed warning
signals being tracked on time [4]. Thus, maintenance preventive measures can be
delayed and cause machine failure [39]. Another issue that could potentially arise
from manual intervention is increasing the company’s labor costs. According to [4],
digital devices are more reliable and efficient to run routine processing tasks when
compared to humans.

Secondly, generating reliable data analytics techniques will primarily rely on
proper data collection devices [13] Choosing appropriate sensors to collect large
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amount of data based on the industry’s infrastructure is important to continuously
monitor the status of operating facilities [4, 9].

5.1.2 Data Storage

Industrial system infrastructures must ensure effective real-time communication
between their facilities and CPS. Hence big data needs databases that can process
any given data within a tolerable amount of time [4]. Industries have achieved that
through storing large amounts of data in external database systems.

The landscape of external database systems is vast and includes different
applications for different purposes. Figure 3.6 illustrates the landscape of various
databases that are involved with big data and CPS in Industry 4.0.

The most widely used databases to consistently store and accurately handle
and process big data include Cassandra, MongoDB and data warehouse [4]. The
proposed databases are widely used in current industries and can handle various
big data analyzing techniques when compared to rational external database systems
[41]. Although rational database systems are constantly improving their accuracy
and consistency, only the proposed systems will be discussed due to their high
accuracy of analyzing monetary transaction data [4].

Fig. 3.6 Methods and techniques of big data analytics
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Industrial big data analytics require strong computers or clusters to process them
[4]. Generally, database systems save large amounts of data into tables for easy
access. The first commonly used database system is Cassandra which is designed to
save its values into a cluster database consisting of tables with rows and columns,
unlike traditional database systems [42]. This makes it faster and more robust
to retrieve data since the workload is being distributed over a cluster database
instead of a single computer [4]. However, [43] indicates that such systems cannot
fully guarantee the row level, when updating values that are in the same row at
approximately the same time, due to certain attributes not being accurately updated.
Therefore, Cassandra may be useful for applications with news feed and system logs
but not be the main option for applications with inconsistent updates, such as stock
trading and customer purchases and relationships [4].

Another commonly used database system is MongoDB where normalization of
tables is critical to ensure the entity type and source [4]. To illustrate, MongoDB
targets connected entity types, such as product information and customer reviews
and saves them into one JSON-like document through secondary indexes [4],
where other traditional systems create different documents for different tables.
Consequently, MongoDB supports rich and expressive models and avoids high cost
operations for objects with related properties since they can be nested in one another
for multiple levels [44].

The final database system which is widely used by many industries are data
warehouses. These systems are designed to save summarized information daily for
further analysis [45–47]. For example, the total amount of sale records can reach
billions for an individual company in a single year. Data warehouses avoid slow
computational processes by adding daily total sales, which involve 365 worth of
records, instead of adding billions of records at once [4]. This makes it much faster
to calculate and attain information.

5.1.3 Data Process

As mentioned earlier, big data needs very strong computers with high storage space
to accurately store and process data. Subsequently, most industries use clusters
since they are efficient and more cost effective. There are several environmental
settings in Industry 4.0 under which companies use clusters. The most common
setting involves a large amount of data being retrieved from different computers
that have a common location and use the same local area network. This type of
setting is robust as it provides high speed network connection and prevent any delay
in communication between computers. Thus, research shows that more attention is
paid by industries to coordinate thousands of computers in one location [4].

The most widely used system in this field is the Hadoop-based industrial big
data repository system which provides storage support and additional distributed
database functionalities. The system assumes that hardware failures will occur only
in a large cluster [48]. To explain further, if a cluster consists of 1000 computers,
with a typical computer lasting 3 years before its first hardware failure, it can expect
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one hardware failure everyday. Hadoop systems are able to spread the data over
a cluster and adjust the data when new computers are present [48]. Henceforth,
upcoming research of data programming models should be directed towards data
analytical algorithms and search for useful patterns instead of concerning about
system failures.

Another environmental setting, in which clusters are being utilized, involves data
gathered from computers in different locations. This environment is mostly present
in international companies that have several branches in different countries. These
settings provide network bandwidth challenges as the amount of data transferred
needs to be reduced to achieve ultimate communication speed between computers
[49]. To further illustrate, all raw data must be transferred to one computer to
perform a simple calculation that involves information from global computers. This
requires the system to have a large network bandwidth which is not very cost
effective. A more effective solution is to perform the calculations needed in each
computer, then transfer the results to a central server in which final calculations can
be performed. This method makes it easier and faster to perform calculations and
reduces large amounts of data being transferred. Another common challenge that
exists in this environmental setting involves companies that use a lot of small cheap
sensors to calculate certain functions. These sensors can quickly run out of battery
and be rapidly overworked when sending daily information to the central server.
Thus, [50] proposes a solution that utilizes one main powerful sensor to control
other small sensors, summarize and analyze the data collected and send them to the
central server. This solution provides consistent and accurate data and much more
cost effective.

Another important environmental setting which involves processing big data
is cloud computing. This environmental setting enables companies to share their
system resources over the internet. Since the database is in the cloud, companies
can minimize their IT infrastructures and leave management of IT to a third party
could computing company [51]. Studies show that this technique has been utilized
by Tao et al. [52] through combining current manufacturing models with clouding
computing to improve service routines of cloud manufacturing. Additional research
is proposed by Xu [53] to outline the key technologies for managing distributed
resources encapsulated into cloud services.

5.2 Data Analytics Methods and Techniques

The second main component of big data and CPS in Industry 4.0 is data analytics.
This section will focus on supporting functionalities and methods that help gain
insight from data provided by the system infrastructures [4]. Such analytical
methods can be divided into three main groups:

1. Descriptive Analytics: describes what happened to the data in the past [54, 55].
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2. Predictive Analytics: predicts future results based on previous past assumptions
[54, 55].

3. Prescriptive Analytics: prescribes preventive measuring techniques based on
future predictions [54, 55].

5.2.1 Descriptive Analytics

There is a wide variety of methods used by CPS and Industry 4.0 to gain descriptive
analytics from big data. Certain methods utilize Machine Learning and Data Mining
algorithms to provide basic understanding of different data trends, correlation
among attributes and outlier detection [3, 9, 56]. Such methods include descriptive
statistical functions, such as mean, median and variance [4, 27]. Other methods
which provide more consistent and accurate results, include correlation, clustering
and generative models. However, these methods are relatively complicated and quite
expensive.

Correlation Method

Since big data are usually presented in structured tables, correlation methods can
easily analyze the rows and columns for changing attributes. There are many
research papers conducted on various correlation techniques. Being a subtopic in
statistics, correlation methods usually target attributes of big data that are changing
at the same time [4]. Such methods include Chi-square [57] for categorical data,
and Pearson correlation coefficient [58] for numeric data. To effectively understand
correlation methods better, studies conducted on correlation are divided into two
main components:

• Effectiveness Component

In this section, each method will highlight different patterns base on impacts
of random noise [4]. Current research propose alternative new methods to handle
random noise, such as odds ratio, relative risk, likelihood ratio, lift, leverage,
BCPNN, two-way support, added value, and putative causal dependency [4].

Other research focuses on the causal analysis part of correlation, since the final
analysis can be used to predict useful future patterns [59]. For example, if event
A and B are correlated, certain patterns can be analyzed from event A based on
event B. However, this relationship is not as useful when an intervention of a third
event occurs. Thus, there should be a confounding factor called event C which can
relate to both event A and B [60]. To illustrate, the medicine Advil is positively
correlated with headaches. However, headaches are symptoms of many diseases
and Advil cannot prevent all of them. Popular methods for detecting confounding
factors include the Cochran-Mantel-Haenszel method, logistic regression model and
partial correlation [4].
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Furthermore, timestamps, which are a sequence of encoded information iden-
tifying when a certain event occurs, are very useful for causal analysis, since the
cause event always happens before its effect [61]. Timestamps are effective in
monitoring machine failure and providing preventive measures in Industry 4.0.
Since different events require different intervention and maintenance techniques,
correlation and causal analysis techniques can identify associated events with iden-
tical failure modes to effectively predict machine failure and provide maintenance
plan improvement [4].

• Efficiency component

This section uses the co-occurrence function as a sub-optimal measure for
correlation measurements. One of the most recognised algorithms is the Apriori
algorithm proposed by [62] to search for the items frequency of co-occurring
through utilizing downward closed properties [4]. For instance, the Apriori algo-
rithm can analyze the exponential properties of a co-occurring event through
Power Law Distribution methods which can mine frequent properties for Boolean
association rules [4].

Other classical methods found in this field of research include FP-Tree [63],
which uses an extended prefix-tree structure for storing compressed information,
and ECLAT [64] which store transaction information in a vertical data layout
for fast support counting [4]. However, these algorithms only utilize the co-
occurrence function properties without comparing the actual properties against
the expected ones. Hence, recent research, which utilizes the downward closed
properties independently, include [65] who proposed a framework that decouple
correlation functions to satisfy the downward-closed property [4].

Clustering Method

While correlation analysis looks for changing attributes, clustering methods target
groups with similar records. Current research focuses on utilizing clustering algo-
rithms to optimize costs and overall efficiency in Industry 4.0. For example, [66]
used clustering techniques to group similar machines for fault detection. Clustering
algorithms proposed in the past are many and can be categorized into four main
groups.

• Partitioning Algorithms

Partitioning algorithms subdivide the data set into groups through moving objects
into different clusters. Common algorithms of this group include K-means, K-
modes, CLARANS, and K-medians [4]. While these algorithms are simple and can
automatically assign items to clusters, they are sensitive to outliers since objects
with extremely large value may substantially distort the distribution of data to the
closest cluster center [4].
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• Density-based Clustering

DBSCAN is a partitioning method which has been proposed by [big data (Ester
1996)] to look for clusters of different shapes and sizes. Other common density-
based algorithms include ST-DBSCAN, LDBSCAN, and OPTICS [3]. Although
these methods are robust towards outlier detection and can discover random shaped
clusters, they are expensive when used to process large amounts of data [37]. To
illustrate, border values than can be reached from more than one cluster can be part
of either cluster depending on how the data was processed. Advanced clustering
techniques, such as gird-based algorithms can solve the issue by dividing the cluster
space into girds [4, 67].

• Grid-based Algorithms

Grid-based algorithms divide the whole featured space into grids and then merge
those cells to their corresponding grid [4]. Since the objects are being nested
into grids, the overall number of girds becomes much smaller and hence, these
algorithms can run fast as clustering is performed on summaries and not individual
objects. Current gird-based clustering methods include STING, OptiGrid, and DGB
[4]. The clustering quality of these algorithms depends on the grid granularity, thus
making them unsuitable for high dimensional data. Defining infinite number of gird
cells is very difficult because the grid space is limited to a union of gird-cells with
boundaries that are either vertical or horizontal [4].

• Model-based Clustering:

Unlike the above-mentioned algorithms, model-based clustering techniques are
based on formal models where detecting the most fitting parameter becomes easier
with clear predefined clustering structures. Model-based methods focus on finding
the best parameters suitable for a predetermined model. Current models include the
statistical model which covers methods such as COBWEB and GMM [4]. Another
widely used model is the neural network model which includes SOM and ART
where SOM is based on reducing the mapping dimension and ART is an algorithm
used to generate new neurons when current neurons present underlying patterns [3].
Hence, the above-mentioned models aid in reducing the dimensional space of big
data with clear clustering structures to improve efficiency and performance.

Generative Models

Generative models focus on generating real life data through a user defined set of
rules [4]. Current research in Industry 4.0 presents several manufacturing models
[68] propose a model to improve the dynamic development of Computer Aided
Design where [69] utilizes matrix factorization models to monitor air pollution
in industrial zones. Real data can be approximated through defining a ‘likelihood
function’ to analyze similarities between the generated data and real data. Models
that utilize a likelihood function include Naïve Bayes, Latent Dirichlet Allocation,
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Hidden Markov Models and Matrix factorization [4]. Thus, these models can reveal
certain hidden parameter from real data records due to the proximation generated
by utilizing the likelihood function.

5.2.2 Predictive Analytics

While descriptive analytics focus on analyzing events in the past, predictive
analytics focus on utilizing the past patterns to predict the future. This process is
possible under the assumption that what happened in the past will happen in a
similar way in the future [4]. A research paper proposed by [70] utilizes neural
networks and cheap sensors to predict machine status. Thus, helping low capital
factories who cannot afford expensive sensor-embedded devices. Another paper
applies acoustic signals on a gearbox to predict worn faces and broken tooth gears
[71]. Predictive methods proposed in the past are numerous and can be categorized
into five main groups.

• Regression Methods

Regression methods share a long history in statistics and can be used in
descriptive and predictive models. The first model to utilize regression is the linear
regression model proposed by [72] which predicts numeric target features and
attributes. Logistic regression is a model proposed by [73] which utilizes a logistic
function to model binary dependent variables. These models are linear and can
produce wrong assumptions. Hence, other models, such as LOESS and LOWESS
are proposed to fit non-linear models [3].

• Decision Tree Methods

Decision tree models consist of a tree-like structure with data records being
allocated to each branch. It utilizes different functions to make records in each
branch as pure as possible. These functions include information gain, gain ratio,
and gini index [4]. As the number of records increase, the size of a decision tree can
become quite large. Pruning is a technique in machine learning which reduces the
size of a tree by removing sections that provide litter power to classify events [4],
consequently improving the decision tree prediction performance.

• Bayesian Statistics

Bayesian statistics are statistical method that utilize Bayes’ theorem to compute
and update probabilities after obtaining new data [74]. These methods can achieve
high prediction performance as long as the assumption of independency is correct.
Other papers focus on solving the dependency issue in statistical modeling through
a redefined Bayesian network that improves prediction performance [75].

• Neural Networks

A neural network is a construct of different networks which can be organized
in layers. These layers are made of several interconnected nodes, including input
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nodes, hidden nodes, and output nodes [76]. These nodes are connected by weighted
edges that are randomly assigned [4]. Each neural network includes a set of learning
rules that modify the weights of the nodes according to the input pattern its presented
with. Based on the distance between the predicted and actual value, neural networks
can adjust the weights accordingly to achieve a more stable trained model [77].

• Support Vector Machine Algorithm

Support Vector Machine algorithms searches for a linear hyperplane in an N-
dimensional space to distinctly classify data points of two different classes [78].
These methods utilize a linear hyperplane for separation, which requires long
times to train when large data sets are present. Some studies use non-linear kernel
functions to relocate the original feature space and map it to a higher dimension area
that could be linearly separated [79].

5.2.3 Prescriptive Analytics

While predictive analytics focus on predicting future attributes, prescriptive analyt-
ics provide preventive measures in Industry 4.0 through optimization and program-
ming techniques. Industries can use their products demands prediction analytics
to calculate when certain products are need, the requirements of raw materials,
production capacity, labor costs and other preventive measures [4].

Current research on industrial prescriptive analytics focuses on algorithms that
can find an optimal plan with the lowest overall cost. A paper proposed by Maggio
et al. [80] looks into different self-optimizing strategies to accomplish given targets
in environments with changing requirements and needs. Another paper utilizes self-
organized algorithms to reduce certain design costs in a distributed manner and
enhance the industrial autonomy of CPS [81].

Due to the complicated nature of some industries, certain scholars focus on other
prescriptive techniques to find the global optimal solution. Such techniques include
typical heuristic algorithms, such as genetic algorithm, simulated annealing, hill
climbing, tabu search, and colony optimization [4, 37].

6 Conclusion

Industrial revolutions in the past have been influenced by several technical innova-
tions to withstand competition in global production capacity, quality and efficiency.
Since industrial big data analytics and CPS are continuously developing, there exist
several challenges. Manufacturing systems usually generate a large amount of data
from various devices, systems and applications which can be applied to various
processes to achieve personalization and improve robustness and efficiency.

In this chapter, research regarding the connection between Industry 4.0, CPS
and industrial big data frameworks is conducted to outline the key differences
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between them. Also, Challenges including both data management and data analysis
in Industry 4.0 are discussed to bring more attention to existing industrial issues
and highlight the upcoming research path. Also, this survey will present new
concepts, methodologies, and applications scenarios to reach a fully autonomous
industry. Finally, this paper will propose potential effects of different manufacturing
frameworks, business management models and service innovation in supply chain.
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Chapter 4
A Privacy Protection Key Agreement
Protocol Based on ECC for Smart Grid

Mostafa Farhdi Moghadam, Amirhossein Mohajerzdeh, Hadis Karimipour,
Hamid Chitsaz, Roya Karimi, and Behzad Molavi

1 Introduction

Electrical distribution network today as an intelligent network, work with a more
complex system structure compared to past electricity network and the needs of
the twenty-first century make it more complicated and also unpredictable [1–
5]. There are some shortages and disorders that is noteworthy like: Lack of an
automatic analysis system, Weak field of view, Mechanical switches with low
response speed and lack of situational awareness in the network [6, 7]. In the
current situation, an intelligent electrical distribution network can be described as
an electrical distribution network which uses ICT to meet communication needs and
goals such as providing electricity in an appropriate, sustainable and sustainable
manner and as a new model reliability of network management, performance and
sustainability are significant [8]. In this network, which is also known as the next
generation of electrical network it uses different smart devices in its structure which
are used in different parts of the network, for example, smart devices at electrical
stations, intelligent devices in the local network, RTU, PLC, smart network control
system and other outdoor equipment. The smart network can be divided into
three parts: control center, electrical substations and smart devices [9–11]. Due
to the integration of the distribution system with the communication network,
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Fig. 4.1 Electricity distribution system and communication network architecture

it is expected that the electricity producer and information have the two-way
communication [12, 13]. These networks can instantaneously monitor and control
customers’ consumption and produce power as much as they need. The intelligent
network uses integrated solar energy and energy distribution systems to increase
the efficiency and reliability of the electrical generation system [14–16]. However,
in order to achieve this, it is necessary to use smart devices that can help identify
and fix network vulnerabilities and weaknesses. The existence of vulnerability in
the intelligent network is inevitable therefore, preventing vulnerabilities in such a
network is much more important than the vulnerability in conventional networks.
So that the vulnerability causes the attack to succeed and a successful attack by a
network can put smart grids over large areas and cause greater financial losses [17].
In infrastructure electrical distribution intelligent network, the distribution system
is one of the main components of the grid that is responsible for energy supply
for consumers. This network uses two distribution posts, the main post and the
secondary post [18]. Figure 4.1 shows the architecture and distribution electrical
system in the intelligent electrical distribution network.
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There are several components in the intelligent network that communicate
through communication paths and sensors, such as distribution terminals, trans-
mission systems, residential, commercial, and industrial locations. On the home
network, power distribution is an instantaneous element of the electricity distri-
bution system, and the amount of power consumed is provided to the consumer.
At present, the communication infrastructure in the intelligent distribution network
of IEC 61850 is used for communication between network components [19, 20].
This standard is based on Ethernet, and most of the intelligent network connections
are Ethernet-dependent. IEC Standard 61850 provides standard communication
protocols for communicating and connecting to hardware for the network, but it is
not possible to cover network security [21, 22]. Intelligent network service providers
based on information from smart devices in the network provides services to users
[23]. In intelligent networks, various wired and wireless technologies are used to
communicate between different network components [24]. These technologies are:
power line carrier communication, industrial Ethernet, communications Fiber optics
and other wireless networks that are used. The use of different technologies or the
combination of different network models in the intelligent network communica-
tion system is common practice. The existence of different technologies allows
communications for different parts of the network Smart has made it easy, but
the consensus of these network communications with the vulnerability distribution
system Creates security challenges for network [25]. Challenge security attacks such
as the attack on the feasibility of further attacks, attacks MITM and phishing attacks
by attackers [26–29]. In order to cover security issues in the smart network, it can
use authentication, data encryption, access control, and other available methods.
Also, authentication methods and key agreement schemes for smart watch have been
considered in recent years. Despite the anticipated plans, most of them suffered from
security breaches and did not fully meet security requirements [30, 31]. In other
cases, the proposed methods, the anonymity and the unidentified entities Attention
has been paid [30–34].

Another issue that should be considered with regard to intelligent network
security schemes is their performance. As a result, the security of the network,
especially privacy protection at lower cost in computing, is another challenge.

2 Related Work

Smart grid consists of two parts: computer network and power generation infrastruc-
ture. Since highly sensitive data are exchanged in this grid, the issue of providing
security becomes critical. In recent years, several studies have been conducted
on the security and its challenges. In 2014, Nicanfar et al., proposed an efficient
authentication scheme for home area network using initial password, and reduced
the number of secure password steps and exchanged packets. In addition, they pre-
sented an efficient key exchange protocol based on self-authentication cryptography



66 M. Farhdi Moghadam et al.

with public key infrastructure [35]. In 2016, He et al., employed an ECC-based
key distribution scheme (AKD) providing anonymity and mutual authentication
between entities without the help of trusted third entity. The proposed AKD scheme,
performs efficiently and better than its predecessor [36]. Privacy and anonymity of
smart meters are very important in smart grid and then, different schemes have been
proposed to meet these features. In 2016, Tsai et al., proposed a key distribution
scheme for smart grid environment that utilized identity-based signature and
identity-based encryption to generate key anonymously. In the proposed scheme, a
smart meter can anonymously access the network services through service provider
in middle. The access is performed using private key, without the interference of
trusted third entity during authentication [37]. Despite all the efforts made, the
scheme wasn’t able to provide session key security and resist some security attacks
[31]. To fix such issues, Odelu et al., exploited bilinear pairings to achieve mutual
authentication and session key generation between smart meter and service provider
entities [31]. Similarly, in spite of mutual authentication, this scheme was vulnerable
to spoofing attack, and the smart meter was traceable by key generation center [38].
To address those issues, Chen et al., proposed the same bilinear pairings with Diffie-
Hellman [38]. To prove the security of the proposed scheme, they used BAN logic
and Random Oracle models. Nevertheless, the performance cost of the scheme is not
negligible. Considering the requirements of smart grid and developing lightweight
schemes, in 2018, Mahmood et al., presented a scheme providing an efficient ECC-
based authentication for smart grid [34]. They exploited Burrows-Abadi-Needham
(BAN) logic to prove the integrity and completeness of their scheme. Compared
to schemes using public key cryptography, the ECC-based authentication ones
have lower computational costs. Recently, Abbasinezhad-Mood and Nikooghadam
proposed a key distribution scheme providing ECC-based privacy [39]. To show
the security of their scheme, they utilized Random Oracle Model and implemented
the cryptographic elements on two ARM chips. Moreover, Kumar et al., developed
a key agreement and anonymous authentication scheme that includes parameters
like ECC, symmetric cryptography, hash function and MAC [40]. Nonetheless,
the timestamp they utilized in the scheme, may encounter the clock synchro-
nization problem. Abbasinezhad-Mood and Nikooghadam proposed an anonymous
password-authenticated key exchange protocol using extended Chebyshev chaotic
maps for smart meters [41]. Their scheme solves the limitations of scheme of Sha
et al., and provides the anonymity as well. Since the physical security is important
too, Gope and Sikdar presented a novel privacy-aware authenticated key agreement
scheme in which the physical security is considered in addition to communication
security [41]. Duo to the wide range of security issues and challenges posed by
the spread of smart grid, researchers also have proposed different schemes and
security issues in 2019. Zhang et al., proposed a key exchange and lightweight
anonymous authentication scheme for smart meter and service provider entities in
smart grid [42]. They used Real-or-Random Oracle Model to evaluate their scheme.
With respect to the widespread use of smart meters in smart grid and two-way
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communications between them, the authentication of smart meter is very important.
Hence, Chen et al., proposed an authentication scheme based on bilinear map
pairing, which is capable of providing more security features, e.g. complete privacy
and message integrity [43]. Key generation security protocols play a significant
role in maintaining secure communications over insecure channels. In this regard,
due to various attacks and security challenges in smart grid, Abbasinezhad-Mood
et al., developed a key exchange model that can resist Canetti and Krawczyk
attacks. They utilized descriptive security analysis, an automatic formal verifier
and exhaustive comparative efficiency analysis to prove their scheme [44]. All
the proposed schemes reviewed here, attempt to provide communication security
and privacy with low computational cost over authentication process in smart grid.
However, in some schemes proposed, security requirements were not satisfied or the
schemes were suffering from high computational costs due to heavy computation
operations, e.g. bilinear map pairing in the process of performing the protocol. As a
result, how to manage to achieve a good performance in authentication process and
preserving privacy, still remains a challenge.

3 Contribution

The main contribution of our work summarized as follows:

Strong Authentication and Key Agreement Based on ECC Due to the impor-
tance of authentication of interlocking in the smart grid, the proposed method for
authenticating entities is used as a strong method for authentication based on the
elliptic curve and generates a separate session key for each session. It has the ability
to prevent various attacks, which in the next attacks are specifically targeted.

Privacy Protection In the proposed schema, hash functions have been used to
protect entity’s identity in each session. The entity identity parameters are merged
with other parameters and then they are hashed. Then the message that sent on the
channel is protected by asymmetric encryption. In addition, no parameters related
to the identity of the entities are sent to the channel. Also, in the proposed method,
the authentication parameters were completely separate from the sessions with the
previous sessions, so if an attacker can access to the messages under circumstances,
he/she cannot determine which consecutive messages are related to which entity
exists on the network. However, the adversary must first have to cross symmetric
encryption in order to access the message. As a result, privacy and anonymity of
entities in our plan are of high security.

Analyzed Security We analyze the proposed scheme to prove its security with
manual and formal methods. We implement it with AVISPA tools and the result
show that the proposed protocol is safe. In addition, different attacks are described
and show how the proposed approach is safe against these attacks.
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The rest of the chapter is organized as follows. Section 4 will describe the
proposed scheme. The security and performance of the proposed scheme described
in Sect. 5. Finally, conclusions are described in Sect. 6.

4 Proposed Key Agreement and Authentication Scheme

In this section we present our strong Authentication and key agreement scheme
for entities in smart grid. The scheme consists of two phases: the registration and
key agreement phase. The authentication is performed during the key production
process. Table 4.1 shows the protocol symbols.

4.1 Registration Phase

In our scheme every smart meter or devices must be registered by the service
provider in the first step. In this phase the entities (smart meter, Substation,
. . . ) that they want to start a communication with data center must exchange
Initial parameters such as: their ID, public keys. When the data center receives
the parameters from the entities, generate a special certificate for the entities.
There are different generation/authentication algorithms to generate certificates. The
certificate is one the important parameters for authenticate the entities during the key
generation process. Figure 4.2 show the registration phase.

Table 4.1 Symbols used in
the proposed protocol

Symbol Quantity

PUent The Public Key of entity
Kent The Private Key of entity
PUdc The Public Key of Data Center
Kdc The Private Key of Data Center
Cert The certificate of substation
H One-way hash function
Epudc Encrypt with data center public key
L1 Concatenation operator
IDx Identity of Entity x
Epuent Encrypt with entity public key
ΔTi The time of sending a packet
A Random value
M, P, L1 The values generated by the entity
SK Session Key
(.)′ Regenerate the parameter by another entity
|| Concatenation operator
L2 The values generated by the data center
Sign The values generated by the entity and data center
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Fig. 4.2 Registration phase

4.2 Key Agreement and Authentication Phase

In this phase the entity and data center communicate each other and send parameters
to generate session key. Authentication between the entity and data center is done
during the key generation process. The steps in this phase are as follows:

At the first step entity generate Sign = Kent.PUdc. The Sign parameter is one
way that entity and data center can authenticate each other because on the other side
of communication data center can compute the parameter Sign (Sing = Kdc.PUent).
The Private key of entity and data center is used to generate the parameter Sign and
its worth noting that without sending this parameter in the channel, it is possible the
entity and data center authenticate each other.

Then entity attempt to generate the P = H(Cert||IDent||sign). The second
parameter that used for authentication process is P. In this parameter used the Cert
that it is specially for the entity and Sign that generated by Private key of entity.

In the first step of Key agreement and Authentication phase, the entity after
generating the Sign and P, choose A random number to generate parameter M.

M = H
(
Sign ‖A‖ P

)

In the process of implementing our protocol, we need to make a difference
between the keys of each session and the lack of dependence between them. To
achieve this advantage, a random number has been used to generate the parameter
M. Parameter M is one of the parameters used in generating the session key by the
data center.

Next, L1=H(M||P||sign) generated by the entity. This is another parameter used
by the data center to authenticate the entity. Parameters Sign and P are used to
generate the L1 and this parameter just generated by the private parameter that only
data center can compute them. For parameter Sign if any parameter except entity
private key used on other side the result of multiplication of the private key of the
data center and the device will not be the same. The value of the parameter Sign on
both sides will be the same if the following process is established:

Kent.PUdc = Sign = Kdc.PUent
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If any other entity attempts to communicate, the generated Sign will not be the
same as the generated Sign on the data center side. Also needed to parameter Cert
that it specially for the entity and other entity cannot access it.

At last of the first step, the entity encrypt the L1, M, Ti with data center public
key that it just decrypted by private key of data center.

The second step, Data center receive the encrypted message and in first action
decrypt the message. When the message decrypted by Data center, it attempt
to Check massage freshness by check the ΔT. In this step Data center authen-
ticate the entity by computing the parameters Sign, P and L1. First it compute
Sign′ = Kdc.PUent if Sign′ = Sign then compute P′ = H(Cert||IDent||Sign). Next,
Data center compute L1

′ = H(M||P||Sign) and check L1 = L1
′
. If the value of

parameters are equal, the data center verifies the identity of the entity and then
proceeds to generate the session key SK = H(Sign||M||Cert). At the last Data
center generate L2 = H(Sign′||P′||SK) for Authentication process on both sides and
encrypt the L2 and Ti by entity Public key. If the value of Sign′ and P′ are not equal
to Sign and P, the entity drops the connection.

The final step, entity receive the encrypted message that sent by Data center.
First, decrypt the message by its Private key and check the ΔT to confirm
freshness of the message. Then compute SK′ = H(Sign||M||Cert). Second compute
L2

′ = H(Sign||P||SK′) to authenticate the Data center and correctness of parameters.
If L2

′ = L2. At the end, entity make sure of identity of data center and Accuracy
of data then SK selected as session key. Figure 4.3 shows the key agreement and
authentication phase.

5 Security and Performance Analyze of the Proposed Scheme

In this section, we analyzed the security of our proposed scheme. For prove
the security of long-term parameters and security aspect the proposed scheme
implemented by AVISPA tools. Also, Common attacks have been introduced and
expressed how the proposed method resistant to these attacks.

5.1 Security Review of the Proposed Method Against All Types
of Network Attacks

Reply Attack In the network, the reply attack is one the attacks that the intruder
captures the valid data in communication and used them for malicious acts or
fraudulently to repeated or delayed. To prevent this attack, we used time stamps
to check the novelty of the message and a random number to make a difference in
packets for each session. In each step of protocol, entities and data center check the
time stamp, so attacker cannot perform this attack.
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Fig. 4.3 Authentication and key agreement phase

Impersonation Attack In this attack, the intruder attempt to introduce himself as
an authorized entity in network. He/she tries to communicate with other devices or
entities. The proposed scheme to prevent this type of attacks, implement strong
mutual authentication. In the protocol we consider three important parameters
Sign, M and Carteret is a private parameter that generated by data center for each
entity. Parameter Sign, this parameter depends on private key of both entities in
communication and entities can computed it fully separate and using your private
key. So if any attacker wants to generated the Sign must access to the private key
of entities or data center. On the other hand, to generate the parameters P and M
used the Sign and Cert, therefore, attacker first needed to two private parameters.
To authenticate entity by the data center parameters Sign, P, L1 computed by data
center and in the next step it used this three parameters to authenticate itself to the
entity. It is notable that any of this parameters (Cert, Sign and P) does not sent in
channel.

Perfect Forward Secrecy It is important for each communication that the session
keys be separated each other and if attacker can access to one session key. He/she
cannot guess or calculate the other session keys. Perfect forward secrecy helps to
the protocols to have secure communications by generating unique keys during the
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Table 4.2 Security feature comparison

[30] [31] [32] [34] [35] [36] [37] [45] Ours

Impersonation Attack × × × � × � × � �
Mutual Authentication � � � � � � � � �
Session Key Security × � × � � � × � �
Anonymity × � × × × � � × �
Perfect Forward Secrecy × � × × � � � × �
Reply Attack × � � � � � � � �
Man-In-The-Middle attack × × � � � � × � �
Safe from DOS attack - × × � × × × – �
NO Key Escrow Issue � × × – – × × × �
Private Key Privacy × – – × � – – – �

transferring the information. In our proposed scheme we used a random number
to generate the parameter M and this parameter is one of the main parameters to
generate the session key. This random number provide the different session key
values in each session of communication.

Man-in-the-Middle Attacks In some cases, the hostile person changes infor-
mation between sender and receiver. However, the two entities believe they are
communicating directly with each other. In security and cryptography this type
of attack called as man-in-the-middle attack. Our proposed scheme considered the
strong authentication process. At the first step the attacker needed to private key of
each entity to decrypt the message and if can access it, he/she reach to hash values
that they are not usable. Also, two entities Authenticate each other in every steps
with three parameters (Sign, P, L1, L2). Table 4.2 demonstrate the compassion of
security feature of our proposed scheme with eight related schemes.

5.2 Result and Formal Analyze

In this section to prove safety of our proposed scheme against the passive and active
attacks, we used the AVISPA software to analysis the security. This software is
one of the trusted evaluation tools to verifying and analyzing the security protocols
in network. This tool evaluate the capability of the protocols under variant attacks.
AVISPA has an integrated automated security analysis and back-end servers, such as
the On-the-Fly Modeler (OFMC) analyst and Constraint-Logic (Cl-AtSe) attacker.
Due to the abilities of this software, we decided to verify the security of our protocol
against the attacks and confidentiality of the private values among the relevant
agents using the AVISPA tool [33]. Figure 4.4 illustrate the security result.
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Fig. 4.4 AVISPA results. (a) ATSE (b) OFMC

Figure 4.4 shows the safety of our protocol against the deference type of passive
and active attacks. The OFMC and CL-ATSE output show the confidentiality of the
private parameters between the entity and data center is retained. Also show that the
protocol is safe against active and non-active attacks. This analyzed result shows
that the generated parameters during the performing the protocol are not available
for attackers and they are safe.

5.3 Performance Analysis

In this section, we listed other existing authentication and key agreement protocols
and compare them with each other. The two factor is considered communication
steps and the number of message in transferring the protocol. The proposed protocol
in some cases is far better than other and finally is more efficient than all listed
protocols. It is needs fewer communication step and messages to reach the session
key. Table 4.3 shows the performance of related protocols with the proposed method.
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Table 4.3 Performance
comparison

Protocol Communications Messages

Sha et al.’s [43] 2 5
Zhang et al.’s [42] 4 5
Abbasinezhad et al.’s [46] 5 18
Gope et al.’s [41] 4 9
Kumar et al.’s [40] 2 12
Abbasinezhad et al.’s [39] 3 5
Tsai and Lo [37] 3 5
He et al.’s [36] 3 5
Nicanfar et al.’s [35] 3 10
Mahmood et al.’s [34] 2 10
Nicanfar et al.’s [33] 9 9
Proposed scheme 2 2

6 Conclusion

In this paper, we proposed a strong Authentication and key agreement scheme that
can provide privacy protection for the entities of smart grid communications. The
proposed scheme can achieve mutual authentication and key agreement between
the smart grid entities just in two steps of communication and with less number of
messages in communication. Furthermore, two advantages such as intractability and
perfect forward secrecy for entities of communication. This features can reach with
low computation cost in communication steps and generated messages. As we show
in security discussion, the proposed protocol is secure against the attacks and the
result of performance analysis show that it lower that other protocols in messages
and communication steps. At last, providing the security is a very difficult and every
person has their ideas for security.
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Chapter 5
Applications of Big Data Analytics
and Machine Learning in the Internet
of Things

Shamim Yousefi, Farnaz Derakhshan, and Hadis Karimipour

1 Introduction

Over the last decades, the software computing systems moved from the domain
of the traditional desktops to the dynamic environments. The Internet of Things
(IoT), also known as the Internet of Everything, is a novel technology paradigm in
this realm, which is gaining significant attention from a wide range of industries
[1]. The internet of things envisioned as the globally networked interconnection
between the millions of smart sensors, machines, and everyday physical devices
(things) interacted with each other to offer specific functionality, without human
intervention [2–4]. To satisfy the requirements of the industries, IoT systems are
facing some critical challenges that need to be dealt with to exploit the potential of
IoT devices fully, including resource limitation (i.e., battery, bandwidth, memory,
and computation), security (i.e., data confidentiality, trust, and privacy), and quality
of services (throughput, and computational/transmission delay) [5–7].

To deal with IoT challenges, Machine Learning (ML) can be a promising
solution. Machine learning is an artificial intelligence mechanism, which has
acceptable performance in dynamic environments like IoT and does not need
explicit programming [8]. Indeed, ML provides the potential of approaches for
satisfying the requirement of reliable and efficient internet-based systems.

We found that so far several review paper on the applications of machine learning
in the internet of things have been published [8–10]. However, we aim to prepare an
up to date literature review for covering all significant issues on IoT by exploiting
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ML mechanisms. The fundamental contributions of this chapter are summarized as
follows:

• The literature on the machine learning applications in the internet of things is
reviewed until most recent articles.

• The IoT systems, architecture, applications, and challenges are presented.
• Different machine learning mechanisms and their advantages/disadvantages to

address various IoT applications are comprehended.
• A state-of-the-art review has been provided on ML-based data analysis, wireless

communication, healthcare systems, industrial systems, and security approaches
on the internet of things.

• Finally, possible challenges on the machine learning applications in IoT systems
and some recommendations or research direction are presented.

The rest of this chapter is organized as follows: Sect. 2 presents an overview of
IoT, consisting of the architecture, applications, and challenges in these systems.
Section 3 describes machine learning on the internet of things, including different
types of learning algorithms. The applications of ML in IoT and their challenges
have been presented in Sect. 4. Section 5 shows an analysis of reviewed literature on
ML-based applications in the internet of things. The challenges of machine learning
mechanisms in IoT and some recommendations have been explained in Sect. 6.
Finally, the chapter is concluded in Sect. 7.

2 Internet of Things

The internet of things has become one of the hottest software systems in the
twenty-first century. The term IoT which masters entire world with its intelligent
technologies and services refers the globally networked interconnection between
smart physical devices, such as sensors, actuators, smartphones, and RFID tags
that are scattered all over the monitoring area to communicate with each other and
perform specific tasks without human intervention.

Kevin Ashton first introduced a concept called the Internet of Things in his
researches in 1999 [11]. Since that time, IoT has become the heart of the technology-
based world, which tries to communicate between human and smart devices offering
different services. On the other, relying on the recent advances in multiple software
and hardware technologies, IoT devices are equipped with sensing, identifying,
processing, computing, and networking capabilities [12]. According to these abil-
ities, the vision of IoT is couched on a broad scale of applications across various
domains, including autonomous healthcare systems [13, 14], the smart world (cities,
homes, offices, museums and gyms) [15, 16], intelligent energy systems [17], smart
transportation and logistics [18, 19], industrial processing controllers [20], and
intelligent agriculture [21, 22]. An overview of the IoT applications is illustrated
in Fig. 5.1.
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Fig. 5.1 IoT applications

These applications show that everything was dreaming in the past decades, is now
a reality relying on advancements in IoT services. It is estimated that IoT systems
will catch around 3.9–11.1 trillion U.S. dollar economic market by 2025 [23, 24].
Indeed, nearly 50 billion devices are going to be linked to the internet by 2020, and
it will enhance exponentially through time [25]. Therefore, research and analysis
on the internet of things, its architecture, the progress of IoT devices and their
challenges are located at the center of the attention of the electrical and computer-
since researchers in the last decades. The remainder of this section is organized
as follows: Sect. 2.1 presents IoT architecture briefly, and Sect. 2.2 explains the
significant challenges in the field of IoT systems.

2.1 IoT Architecture

The architecture of IoT, which starts with a software layer and ends in the hardware
one, provides different platforms to offer services in various industries. The internet
of things technology requires efficient communication protocols for connecting
the power-constrained sensor nodes to the everyday physical objects. Different



80 S. Yousefi et al.

Fig. 5.2 IoT communication protocols

low-power communication protocols (i.e., ZigBee, Z-Wave, and Bluetooth) and
traditional ones (i.e., Ethernet, IEEE 802.15.4, and Wi-Fi) are adopted in the
layers of IoT architecture to send/receive the data [26, 27]. Figure 5.2 shows IoT
communication protocols and the devices associated with them.

Due to the full range of communication protocols on the internet of things,
high-tech companies such as Google Cloud, Microsoft Azure suite, Samsung Artik
Cloud, and Amazon AWS expand their IoT-based platforms to offer certain services
[28]. However, the standard architecture of IoT is composed of three layers:
application, network, and perception ones.

Application Layer is at the top level of IoT systems. It provides the desired
service of consumers through web-based or mobile programs [29]. Based on the
recent technologically advances in this layer, IoT offers uncounted applications and
services like smart home, city, health, transportation, etc. [30].

Network Layer is the second important one on the internet of things, who plays
the role of the transmission/receiving medium of data using different protocols
to connect IoT devices with intelligent services. The network layer contains local
clouds/servers that process the data [31]. Nowadays, due to the ever-growing
industries, IoT devices located in the physical layer are producing a massive amount
of data continuously [13]. This big data should be processed, transmitted, or stored
in the internet-based devices to satisfy the requirements of the smart services in this
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Fig. 5.3 Layers of a standard IoT architecture

layer [32]. Therefore, besides other typical methods, machine learning is extensively
applied to analyze the big data in IoT devices [33].

Perception Layer is the lowest layer in IoT systems, which has two Physical
(PHY) and Medium Access Control (MAC) sub-layers [34]. The physical sub-layer
has a close relationship with hardware (i.e., IoT devices), which transmits/receives
data using different communication protocols. Medium access control sub-layers
also establish a link between IoT devices and the network layer using various
protocols for big data transfers [35].

Figure 5.3 illustrates the layers of a standard IoT architecture.

2.2 IoT Challenges

The internet of things tries to bring everyday physical devices to close, connects the
whole world, and provide low-power consumption, and high-performance services.
However, it faces a different type of challenges, including resource limitation



82 S. Yousefi et al.

Fig. 5.4 The main IoT challenges

(i.e., battery, bandwidth, memory, and computation), security (i.e., data confi-
dentiality, trust, and privacy), and quality of services (throughput, and computa-
tional/transmission delay). Figure 5.4 illustrates the various type of IoT challenges.

Resource limitation is the most crucial challenge, which limits the reliable and
uninterrupted processing/communication in the internet of things [36]. In spite of
significant developments in hardware and software technologies in the domain of
IoT systems, the operational task of such networks still limited by the capacity
of energy-constrained batteries. Furthermore, IoT devices have limited bandwidth,
memory, and computation capabilities. In the heterogeneous networks of hundreds
of wireless technologies and a large number of physical devices, resource limitation
causes remarkable degradation to the quality of IoT systems [37].

Security is another significant challenge in almost all IoT applications. A funda-
mental principle about wireless communications proves that connection is perfect
unless you expose poorly protected; i.e., personal information or the business data
of the organizations should not be in public or semi-public [38, 39]. Although
some approaches establish security in the internet of things, all these methods focus
on basic privacy, including authentication, encryption, context removal, and data
anonymity [40]. However, the security of vital data should be maintained while
wireless communications. Besides, increasing security challenges appear with the
invention of new technologies, for example, the integration of cloud computing,
internet of things, and wireless sensor networks [41].

Quality of Services (QoS) refers to different technologies, which manages data
traffic over the internet of things to minimize transmission delay, packet loss, and
jitter. In today’s technology-based world, big data collected by IoT devices should
be transmitted and analyzed for suitable reactions to events in the shortest time.
Although data analyzing speeds have enhanced rapidly, network bandwidth has not
improved as acceptable [42]. On the others, supporting the transmission process of
billions of data over geo-distributed IoT devices is hard to accomplish [43].
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3 Machine Learning in the Internet of Things

Machine learning is an artificial intelligence-based mechanism, which trains IoT
equipment using various algorithms to learn from their experience instead of explicit
programming using human assistance or complicating mathematical equations [10,
44]. ML mechanisms can yield an acceptable performance in uncertain environ-
ments, such as the internet of things. Therefore, in the previous few decades,
ML-based algorithms have been significantly expanded to deal with IoT challenges,
including resource limitation, security, and quality of services [8, 45]. In this section,
we review the machine learning mechanisms.

3.1 Machine Learning Mechanisms

Machine learning mechanisms consist of supervised learning, unsupervised learn-
ing, and reinforcement learning [10]. These algorithms could be applied to satisfy
the requirements of IoT applications for acceptable services. In Fig. 5.5, ML-based
mechanisms used in the IoT domain is illustrated.

3.1.1 Supervised Learning

Supervised learning is the most current machine learning mechanism that classifies
the output based on the input, and a trained dataset (which is a called “learning

Fig. 5.5 Classification of ML-based algorithms
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Fig. 5.6 Supervised learning

algorithm”). These algorithms find the relation between a set of input and datasets
with labels (outputs) while training the system. Indeed, the main purpose of
supervised learning algorithms is to generate the model to represent the relationships
and dependency links between input and forecast objective outputs. The schematic
presentation of supervised learning is shown in Fig. 5.6. Here we mention some of
the well-known techniques for supervised learning.

1. Classification is one group of supervised learning algorithms. The output of
these algorithms is a fixed discrete value/category, including (True or False) or
(Yes or No). The classification contains various algorithms, such as logic-based
(decision tree and random forest), perceptron-based (artificial neural network
and deep learning), statistical learning (Bayesian/Naïve Bayes and support vector
machine), and instance-based (k-nearest neighbor) algorithms.

a. Naïve Bayes (NB) or the Bayesian theorem [46] is a widely-used machine
learning algorithm, which requires the prior information to implement the
Bayesian probability and predict the probable output. Indeed, NB is per-
formed based on the probability of statistics theorem (Bayesian probability)
to distribute learning and gets new outputs based on the present information
using Bayesian probability. It should be noted that the result prediction is
one of the major challenges in the internet of things; It successfully deploys
using Naïve Bayes-based approaches in IoT [47]. The advantages of NB are
understandable, less data requirement for classifications, applicable for multi-
stage classification, and implementable. However, it depends on the prior
information, features, and interactions between them, which is a challenge
to reach the exact output.

b. K-Nearest Neighbor (KNN) [48] refers to a nonparametric statistical algo-
rithm, which exploits the Euclidian distance between data points as the
main parameter to separate them into several classes, determine the average
value of a new sample point and predict its classification. Indeed, if a data
point is missed, then it is anticipated from the average value of the nearest
neighbor. It is not an exact process but helps to estimate the possible lost data
points. Accordingly, KNN is employed to provide monitoring, identification,
localization, and security services in the smart environments of IoT [49].
However, a high consumed time to identify the missing data point and low
accuracy are the challenges, which should be dealt with in the domain of K-
nearest neighbor algorithm.

c. Support Vector Machine (SVM) is a suitable machine learning algorithm for
regression and classification analysis of data. This algorithm uses a plane,
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which is called “hyperplane”, between two classes to maximize the distance
of them. The main purpose of the hyperplane is to specify the classes with a
minimum error at the maximum margin. For some scenarios, SVM exploits
the kernel function to add new features for the hyperplane, when it becomes
nonlinear after each analysis. This learning algorithm provides a high accu-
racy level, which makes it acceptable for classification, detection, and security
application in the internet of things [50]. However, it is challengeable to
employ the optimal kernel function in SVM [51].

d. Deep Learning (DL) [52] is a data learning representation algorithm, which
is used for classification by providing multi-layer representations between
the input and the output layers. The major purpose of this mechanism is to
extract high-level features from the datasets, perform with or without labels,
and train to solve the fulfill multi-objective challenges. So, deep learning is
a useful algorithm to satisfy the requirements of various IoT applications,
such as social network analysis, smart business, image processing, and pattern
recognition [45]. However, a high amount of data should be trained in the
scenario of a deep learning algorithm.

e. Decision Tree (DT) [53] is a natural machine learning algorithm which is
categorized as a classification one. Each DT contains some branches as edges
and leaves as nodes; it uses this structure to sort the desired samples based on
the feature values. Since the decision tree algorithm has simple construction,
easy implementation, and could handle a large number of samples, it is
suitable for healthcare and privacy-centric services [54, 55]. However, this
algorithm has some disadvantages, including a high space requirement to store
the data and high complexity.

f. Random Forest (RF) [56] is a supervised machine learning algorithm with a
set of trees, so that, each tree in the forest acts as a classifier. This algorithm
consists of two main phases: (1) the creation of random forest classifier, and
(2) prediction of results. RF predicts the missing values efficiently in the large
and heterogeneous datasets. Besides, it will be the best appropriate approach
to classify the hyperspectral data. Therefore, RF has been exploited to deal
with various challenges in IoT systems, such as coverage and MAC protocol
issues [57]. However, the sensitivity level of the random forest algorithm is
less than other streamline ML-based classifiers due to the quality of training
samples.

g. Artificial Neural Network (ANN) is an ML-based classification algorithm,
which operates based on the neuron structure in the humans’ brain to deal
with the nonlinear problems in complex environments such as the internet
of things. Indeed, it reduces the response time of the learning networks and
subsequently enhances the performance of IoT systems. The main networks
in the ANN are hierarchical and interconnected, which perform based on the
three standard functional layers of the neuron: input, hidden, and output ones.
However, the neural network has high complexity, and it is hard to implement
it in distributed environments [9].
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2. Regression [58] is a straightforward supervised learning algorithm, which pre-
dicts output values based on the input (a given set of features) with minimum
errors. The variables of the regression models are quantitative or continuous. Due
to simplicity and ease with implementation, regression is applied to the internet
of things to analyze, monitor, and detect the events online [59]. However, all
problems in our real world are not linear.

3.1.2 Unsupervised Learning

Unsupervised learning returns no output for the desired input variables. The input
data of this group of machine learning algorithms are unlabeled; the system
tries to extract the relationships from the data and classify dataset into different
groups. Unsupervised learning mechanism also has been exploited to satisfy the
requirements of IoT applications. It is divided into two sub-groups: clustering and
dimensionality reduction. The schematic presentation of unsupervised learning is
illustrated in Fig. 5.7.

1. Clustering is a group of unsupervised machine learning algorithms. These
algorithms receive a dataset as the input, extract the similarities of its members,
and classify the data into some clusters. The clustering algorithms categorized
into various algorithms, such as k-means, hierarchical, and fuzzy-c-means.

a. K-means [60] is a well-known unsupervised machine learning algorithm,
which creates small clusters to group the samples of the desired dataset. First,
the algorithm differentiates the member of the dataset into some clusters,
where each cluster has a cluster-head. In this point, it selects a member from
each cluster and relates it with the nearest cluster-head. This step is continued
until every member of the dataset is contacted. Finally, the K-means redo its
previous steps until it reaches the intended value [61]. Due to the actions
of K-means, it is a simple algorithm to satisfy the requirements of the IoT

Fig. 5.7 Unsupervised
learning
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applications, when the labeled data is not available, including suitable area
identification for human living and anomaly detection. However, the K-means
algorithm is less effective than supervised ones [62].

b. Hierarchical clustering [63] groups similar data into clusters, which have a
pre-determined bottom-up or top-down order. Bottom-up hierarchical clus-
tering, which also named agglomerative clustering, assigns each observation
to clusters based on density functions. In top-down hierarchical clustering
which also called as divisive clustering, a large partition split recursively until
a cluster is formed for each observation. Since the hierarchical clustering
algorithm needs no prior data about the number of clusters, and its imple-
mentation process is easy, it is used to serve various services in the internet of
things, such as data aggregation in mobile IoT systems, synchronization, and
energy harvesting. However, unacceptable time-complexity of this clustering
algorithm is the most apparent disadvantage [64].

c. Fuzzy-C-Means (FCM) or soft clustering [65] assigns the observation to some
clusters, which are identified based on the similarity parameters, such as
distance, intensity, and connectivity. The key objective of FCM is to find the
optimal cluster centers. Therefore, it provides the optimal clusters in compar-
ison to k-means for the overlapped systems. Accordingly, this algorithm used
in various application of IoT, including smart world, localization, and mobile
sink controlling [66]. However, fuzzy-c-means requires prior information
about the number of clusters, have a high time-complexity, and it mainly
depends on the number of clusters, iterations, dimensions, and data points.

2. Dimensionality reduction [67] is one of the statistics ML-based algorithms,
which reduces the number of random variables based on the information theory,
a set of principal variables, and under particular consideration. Dimensionality
reduction algorithms are usually used for feature selection/extraction. Principal
Component Analysis is a well-known dimensionality reduction algorithm in the
IoT domain.

a. Principal Component Analysis (PCA) [68] or feature reduction algorithm
decreases the complexity of the systems by converting a large dataset into
smaller ones. This algorithm is usually combined with other machine learning
mechanisms to select efficient features for high-frequency data analysis in
vital applications, such as IoT-based healthcare systems.

3.1.3 Reinforcement Learning

Reinforcement Learning (RL) is a group of ML-based mechanisms, which continu-
ously learn by interacting with the environment and collect information to perform
specific actions. Therefore, it maximizes the performance of systems by determining
the efficient information. The schematic presentation of RL is illustrated in Fig.
5.8. Q-learning is the best-known RL-based algorithm in the scenario of IoT
applications.
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Fig. 5.8 Reinforcement learning

Fig. 5.9 Machine learning applications in the internet of things

1. Q-learning [69] is a model-free RL algorithm, which deals with the problems
based on stochastic transitions and rewards, without adaptation. In this mecha-
nism, each agent interacts with the environment of the system to reach a sequence
of observations. The final objective of Q-learning is to find a policy, which tells
an agent what action should be selected under a specific situation. Indeed, it finds
an effective policy that maximizes the value of the reward. Q-learning guarantees
the convergence even when approximation of function is exploited to estimate the
value of actions. Therefore, it is a suitable solution for big data analyzing in smart
IoT applications. However, Q-learning could make an overload of states, which
diminish the outputs.

4 ML-Based Applications in IoT

Machine learning applications for IoT systems has become an emerging research
field, which attracts the attention of researchers and developers. In this section,
different ML-based applications in the internet of things have been presented in five
categories: data analysis, wireless communication, healthcare systems, industrial
systems, and security. Figure 5.9 illustrates the overall scheme of ML-based
applications in IoT.
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4.1 Data Analysis

Since the internet of things generates the increased volume of data in every location
at any time, with different quality, and by various modalities, data science is
considered a basic intelligent analysis approach to access new patterns from this big
data (smart data) for smart IoT applications [10]. The smart data which is obtained
from these analysis deals with the challenges posed by accuracy and volume of big
data; accordingly provides operational information to make vital decisions.

To enhance the accuracy of data analysis, support vector machine and unsuper-
vised classifiers have been combined to classify the big data streams on the Intel
Lab dataset [70]. Since conventional classification mechanisms have an unbounded
memory requirement, it is more accurate to organize the data using the combination
of unsupervised classifier and a supervised one such as SVM on the internet of
things.

In addition to increasing the accuracy of smart systems, analyzing public and
private data could drive effective solutions for decision supporting in real-world
applications. The main challenge in such scenarios is the dynamic selection of
essential data and IoT sources for predictive analytics. Accordingly, Derguec et al.
[71] presented an approach for the prediction of energy consumption of a building
using essential data and IoT-based platform. Their solution consists of two main
steps: data management for collection, and filtering information, and data analytics
for source selection and prediction. The simulation results show that using the ANN
for dynamic selection in IoT systems improve the accuracy and computational cost.

Since the supervised learning mechanisms such as random forest are fast,
accurate, and scalable to the large datasets, they have been employed in various
real-world applications, i.e., body poses recognition [72]. The fundamental purpose
of this method is to determine the 3D positions of body joints on a single
depth image, without the need for previous frame information. The complex pose
estimation issue becomes a simple per-pixel classification problem by designing an
intermediate representation, which random forest algorithm could estimate body
part labels from the desired image invariant to body shape, pose, clothing, and
other irrelevances. Other article developed an accurate big data analytics on the
IoT-based healthcare systems using the random forest classifier and MapReduce
process [73]. The data aggregated from patients are classified using the optimal
attributes, Improved Dragonfly Algorithm (IDA), and random forest classifier. The
implementation results show that the accuracy of the presented approach is better
than the precision of other ML-based ones.

Kotenko et al. [74] proposed an artificial neural network-based architecture to
forecast the states of IoT elements. Indeed, the presented mechanism is a combina-
tion of a probabilistic neural network and a multilayered perceptron for health data
analyzing. To offer better IoT-based services over the online healthcare applications,
other work presented a systematic approach for monitoring and diagnosing diabetes
diseases. It suggested an artificial neural network-based data analyzing algorithm to
diagnose the severity of the illness [75].
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Fig. 5.10 Hierarchy of data generation in IoT [52]

In addition to health and smart building data analysis, other IoT applications,
which appeared in different vertical domains, including transportation, agriculture,
education, and smart city, need to an intelligent machine learning mechanism
for prediction, pattern recognition, and data mining [52]. Deep learning is a
classification approach has been exploited to provide IoT services. It should be
noted that the terms of deep learning and the internet of things are among the top
three strategic technologies of Gartner Symposium/ITxpo 2016 [76].

Figure 5.10 presents the hierarchy of data generation in IoT. There are three
main sources of data in IoT: Clouds, Edge Device/Fog Computing, and IoT Devices.
Machine learning algorithms play key roles in analyzing this massive amount of
data; deep learning is employed to improve the data analysis methods for several
applications related to IoT, such as image recognition [77, 78], physiological and
psychological state detection [79–81], indoor localization [82, 83], and speech/voice
recognition [84].

One of the other main issues in the big data analysis is to provide a strict quality
of service. In [85], the quality of users’ experience in edge computing to the internet
of things has been addressed in terms of service response time. Authors presented
a machine learning-based approaches for QoS improvement in IoT systems provide
Pareto-efficiency, incentive compatibility, and computationally effectiveness.

The ever-growing wasted energy to satisfy the requirements of IoT applications
generates many electricity consumption data. Clustering methods are essential
data mining techniques to deal with such massive data. The classic privacy k-
means algorithm efficiently deals with this problem [86]. However, its performance
reduces when faces with the data distortion. To address this issue, other authors
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presented a privacy and availability data clustering mechanism exploiting k-means
and differential privacy to minimize the outlier effect. This method, at the equal
privacy level with the classic one, enhances the availability of clustering results [87].
At the same time, another paper designed an RFID IoT clustering analysis prototype
system to tests the feasibility of the existing mechanisms [88].

4.2 Wireless Communication

As internet-based devices contribute to every aspect of modern lives, the require-
ment for wireless resources is increasing significantly. Based on Ericsson’s mobility
report 2018, there are 5.2 billion mobile devices all over the world, which generate
more than 130 Exabyte wireless traffic each month [89]. Also, It is expected that
the number of mobile devices increases to 50 billion by 2020, which will form
a global internet of things [90]. To deal with this large volume of data, wireless
communication technologies should coordinate with IoT devices in a distributed
manner for spectrum usage optimization, overhead reduction, and efficient energy
consumption. Machine learning mechanisms are introduced as a well-defined
mathematical model to solve classification or regression challenges in IoT-based
world [9].

Machine learning-based approaches are exploited to improve IoT data rate,
throughput, bit error rate, and energy consumption. Indeed, adaptive rate control
provides a useful structure to adapt the data rate on the channel conditions efficiently
for maximizing the channel utilization. In [91], it is presented an adaptive rate
control mechanism based on reinforcement learning to control the dynamic channel
conditions. As the instantaneous channel gains could be estimated, they modeled the
fading channel situation as an optimization problem forms to be solved in dynamic
programming. To improve the transmission delay in IoT wireless communications,
other paper described the necessity of congestion estimation in the internet of things
and proposed a regression-based congestion classifier to model an adaptive data rate
control mechanism [92]. The principal objective of this work is to avoid unnecessary
data rate changes. Accordingly, the method predicts congestion status by ML-based
way and determines whether a device changes data rate or not.

Furthermore, in [93], the authors provided a time-correlated region query
approach for responding to continuous queries in the internet of things based on a
grid cell. The paper firstly divides the monitoring environment into grid cells. Then,
it develops a hierarchical clustering index tree for grid organization to minimize the
energy consumption for messages transmission between IoT devices. To leverage
the hierarchy of index tree, the authors presented a time-correlated region query
mechanism for responding to continuous queries. The simulation results illustrate
that responding to the queries by assembling the values of IoT devices could
improve the energy consumption of the system.

Since sensor-based IoT devices often provide their required energy from low-
power batteries, each layer of the network should be designed in such a way
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that minimizes the total energy consumption [94, 95]. Exploiting power control
mechanisms reduces the energy consumption of IoT devices and consequently
enhances the lifetime of the system [96]. To address the resource consumption
and network lifetime issue, Yousefi et al. [36] presented an intelligent route
planning for mobile agents on the internet of things by considering the distance
of the devices from each other, the distance of the devices from the sink, residual
energy of the devices and the priority of them as input parameters. The principal
objective of this approach is to reach an advanced decision-making method, which
enhances tradeoff between the performance metrics in IoT systems. In particular, the
authors exploited reinforcement learning as an optimization approach to improve
the decision-making process under uncertainty. Besides, considering the impact
coefficient for parameters provides a tradeoff between the performance metrics
in uncertain internet of things, including the energy consumption of the system,
lifetime of IoT devices, data priority of the devices and reliability.

Vashishth et al. [97] presented an unsupervised machine learning-based mecha-
nism for efficient route planning on the internet of things. The authors claim that
infrequent connectivity, lack of network infrastructure, and random mobility of IoT
devices make route planning as an increasingly complex problem. Therefore, using
the ML-based soft clustering mechanisms to develop the proposed route planning
combines the advantages of both context-aware and context-free approaches and
consequently improves the delivery mobility, average hop count, network overhead
ratio, and the number of messages dropped.

4.3 Healthcare Systems

Among the services provided by IoT technology, healthcare systems are particularly
important ones. In IoT-based healthcare systems, data generated from devices
attached to the elderlies or patients is made available to family and doctors for
giving them the ability to monitor their vital signs from anywhere in 24 h a day
[13]. The general architecture of IoT-based healthcare systems is illustrated in Fig.
5.11, which consist of three major elements: device (body area sensor network), fog
(internet-connected smart gateways), and cloud layers.

Fig. 5.11 The general architecture of IoT-based healthcare systems
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Different applications offer services to the elderlies or patients through this
platform. In many healthcare applications, wearable sensor-based IoT devices
generate a massive volume of data continuously. To deal with health data, Kumar
et al. [98] presented a scalable multi-tier architecture, which could organize and
process the enormous amount of data: (1) The first tier collects wearable sensor
data; (2) The second tier exploits Apache HBase to store sensed data in a cloud
platform; and (3) The third tier provides a logistic regression-based model for heart
disease prediction. Nguyen et al. [99] presented another multi-tier architecture for
IoT health systems, which collects data from sensor-based devices, analyze it, and
transform vital information into clinical feedback. The architecture consists of five
layers: (1) sensing layer for collecting individual health data using wearable IoT
devices or the sensors; (2) sending layer for transferring data to a cloud system
using different communication mechanism; (3) processing layer for generating
notifications and alerts after processing; (4) storing layer for storing processed
data in clouded or servers; (5) mining and learning layer for converting data to
decisions or predictions using machine learning algorithms. Other papers presented
different multi-layer architectures for healthcare decision-making systems using
deep learning, fuzzy logic, and reinforcement learning to improve the critical
parameters in IoT systems, such as latency, energy consumption, and accuracy [100,
101].

Asthana et al. [102] proposed a recommendation system for individual wearable
IoT devices. The sensor-based equipment collects health data of elderlies/patients,
such as demographic features, health history, and previously collected data from IoT
health devices. Since each disease has some attributes that need to be monitored, the
recommendation system makes predictions about the conditions using the classifi-
cation models like decision tree, and logistic regression. Finally, a mathematical
optimization approach was employed to recommend the best solution for wearable
IoT devices.

The first step towards smart healthcare systems is to continuously monitor
an elderly/patient using wearable IoT-based devices for analyzing the possibility
of health hazards, which may be deadly if not identified in time. To enhance
the prediction process in healthcare systems, Walinjkar et al. [103] presented a
prognostic method for real-time Electrocardiograph (ECG) analysis. The paper
focussed on constantly monitoring of elderlies/patients’ ECG data using a wearable
3-lead kit and performing real-time processing to identify arrhythmia to be able
to predict heart risk. It first analyzes the real-time ECG data of IoT devices with
K-NN algorithm for arrhythmia classification, which depends on the morphology
of the electrocardiograph waveforms and the accuracy of ECG devices. Besides,
a monitoring IoT network was set up for transferring the analysis results to the
cloud system (National Health Services) in real-time. As a case study, a well-known
Arrhythmia dataset (MIT-BIH, Physionet) was employed to test machine learning,
classification, and prediction mechanisms. The simulation results illustrate that the
ML-based healthcare system is accurate, de-noised, filtered, and real-time.

In the same way, a classifier integrated the decision trees and artificial neural
network into an IoT-based healthcare system to process the data from breast cancer
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patients in an appropriate manner [104]. Since during mammogram screening, 16%
of breast cancer detection is missed, some cases of this illness are not identified by
radiologists. However, exploiting the image processing mechanisms improves the
accuracy of the image segmentation process, solves breast cancer detection problem,
and reduces the error in the classification of malignant cancers. The machine
learning-based segmentation algorithm classifies the area between the breast and
pectoral muscle for a reasonable feature estimation. It successfully predict the breast
cancer in comparison with other well-kwon approaches, such as support vector
machine, k-nearest neighbors, and Bayesian ones.

In today’s IoT world, human presence detection is the first step to satisfy the
requirements of several healthcare applications, including automation, problem
detection, and person’s pattern learning. Previous intrusion detection approaches
usually have not an ideal performance in this area. Coordination between IoT
devices for higher operation requires extra hardware or software for communicating
and controlling them. Muzzley is a company, which creates a mobile application to
register all devices of a person and manage them. Madeira et al. [105] proposed an
IoT system to detect the human presence based on messages transmitted between
devices and the Muzzley platform. For this, datasets generated by the Muzzley
platform are exploited to create essential features for training and testing of the
machine learning algorithms. In this point, the health system collects interaction
data, including reading and writing, with the enormous diversities of IoT devices.
Then it can predict the human presence using the decision tree and random forest
algorithms.

Another paper exploited cloud computing and the internet of things to enhance
the disease prediction process in smart cities [106]. In this approach, IoT devices
are used to collect data from the monitoring environment and transfer it onto a
cloud system. The paper focused on predicting healthcare services on the cloud
system using a hybrid intelligent model based on linear regression and artificial
neural network; linear regression is used to specify the critical factors, and artificial
neural network is employed to prediction.

The modern health world has seen strong dependency between stress and heart
disease. Also, stressful conditions have been proved to weaken humans’ immune
systems and lead to various cancers. This psychological challenge is tough to detect.
However, when a person is stressed or nervous, his/her heartbeat is increased just
like a heart attack situation. Smart stress detector is an IoT-based system which
can identify the stress level of the humans using their heartbeat sensing. In this
scenario, IoT devices locally sensed heartbeat information of a person and transmit
it to a central server. Machine learning-based mechanisms are executed on this
server to predict whether a person is stressed/nervous or not. Pandey [107] analyzed
the reliable data of different persons’ heartbeat for stress/nervousness prediction.
For this purpose, a Wi-Fi-equipped board is designed to sense pulse waveform
of persons’ heartbeat. Then, the collected data is transferred to the central server.
The central server predicts a person’s stress level using an SVM-based algorithm
or logistic regression. Kwapisz et al. [108] presented a user activity recognition
mechanism using logistic regression on phone accelerometers. The approach first
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collects activity data from users’ phones. Then, the system transforms it into
user features, e.g., standard deviation, and average to classify the feature vectors
into different activities using the logistic regression and multilayer perceptron.
The results of analyzing data collected from 29 users show that the precision of
multilayer classifier is better than standard logistic regression.

4.4 Industrial Systems

Smart industrial systems are the trend that has developed in a connected and
sustainable world. To address the system challenges with the characteristics of smart
connected, real-time monitoring, automation, and collaborative control, big data
collected by IoT devices should be analyzed efficiently [109]. In the following, we
mention some of the significant works in IoT based industrial systems:

Park et al. [110] presented a lossy compression mechanism for industrial data
using artificial neural network algorithm. This approach uses some combining
techniques for accurate data representation and prediction. Since vectorization of
the technical data through the artificial neural network regression is inefficient on
an hourly basis, the paper suggests a combinational method that exploits the data
vectorization by dividing the whole data according to a specific range. Indeed, it
compresses the data using a divide-and-conquer mechanism, splits the data into time
units, and then applies neural regression to each of them. The comparison results of
the presented method with various machine learning techniques show that the high
accuracy of ANN-based one.

For efficiency of the compression mechanism, the divide-and-conquer method
is exploited to handle the data based on the chunk size of it. Besides, machine
learning mechanisms could improve the performance of smart meter operations.
Due to the increasing number of smart meters on the internet of things, it is vital to
predicting whether to transfer a technician to a customer location or not. To satisfy
this requirement of IoT applications, different classification algorithms, including
Bayesian, decision tree, and random forest, were tested [111]. The results illustrate
that the random forest algorithm achieves the highest accuracy at a reasonable cost
in comparison with other ML-base ones.

Patil et al. [112] proposed an internet of things for monitoring the environmental
conditions of agriculture sites, including the temperature, humidity, and moisture
to predict the grape diseases in its early stages. The collected data is transmitted to
the server using ZigBee for extra analyzing based on reinforcement learning. The
system is implemented in the real site to prove the accuracy of machine learning
method.

Guo et al. [113] proposed an ML-based mechanism to detect the characterization
of flowering dynamics of rice. The technique collects time-series of images from
the rice fields to extract local feature points; this method employs SVM to classify
the time-series of images, and specify the flowering part. Finally, visual words
are generated as the object-recognition approach. The results illustrate that SVM
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Fig. 5.12 Manufacture inspection system for the smart industry

performs well for counting the number of flowering panicles by the accuracy of
over 80% when good training data are selected.

One of the most popular IoT application is to detect the defects of the products
in the manufacturing environment. To address this issue, Li et al. [114] proposed
an artificial neural network and deep learning-based classification mechanism to
implement a robust and high-accuracy inspection system, which finds the defective
products in the industrial area. The main objective of this work is to improve
the performance of fog computing for big data processing in real-time. Since
computation offloading is a vital element to enhance computing efficiency and
provide a real-time wireless system, fog computing could be the right solution for
defect detection. The presented manufacture inspection system is built from three
modules: The fog-side and the server-side computing modules are responsible for
calculating the deployed deep models, and the backend communication module
exchanges the data and transfers command. The combination of these modules
decreases the response time of the defect detection system and injected low traffic
into the internet of things. As shown in Fig. 5.12, some IoT devices are deployed
in some location of the manufacture to capture the multi-media data regarding the
products. The sensed data will be uploaded to the fog nodes to analyze, detect
the possible defects, and transmit the result packets to the central server. Finally,
the central server aggregates all the useful data to provide recommendations and
feedback on the current status.

For improving IoT technical data feature learning in such applications, an
adaptive dropout deep computation model is presented with crowdsourcing to cloud
in [69]. The model defined a distribution function to specify a dropout rate for each
layer. Then, the selection algorithm based on the maximum entropy is used to select
appropriate samples from the training set. In this point, supervised learning from
multiple expert schemes is exploited to collect answers given by human workers
and update the parameters.

Zhang et al. [115] presented an efficient deep learning mechanism based on the
canonical polyadic decomposition for cloud workload prediction on the internet of
things. The approach compresses the parameters by substituting the weight matrices
to the canonical polyadic format. Then, the presented deep learning model is applied
to the workload prediction after training the parameters. The experimental results on
the PlanetLab datasets show that this ML-based approach has high accuracy and the
potential to offer predictive services for industrial applications on the internet of
things.
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4.5 Security

The security issue in IoT services has become an emerging research field that
attracts a lot of attention from the scientific community and addresses at other
applications [116, 117]. Traditional authentication mechanisms used in the physical
layer of IoT systems do not satisfy the security requirements in modern applications
because of unwanted signals or fake alarms. However, ML-based approaches,
like Q-learning, could minimize the authentication error and improve the overall
performance of the systems [118]. Besides, an approach exploited some methods
to specify the parameters of the logistics regression model for spoofing detection,
overhead reduction, and secure authentication [119].

Aref et al. [120] employed a reinforcement learning mechanism and jamming
signal information for selecting sub-band in a multi-agent environment. The princi-
pal objective of this method is to offer a low-complexity solution to avoid a jammer
signal in the internet of things, which sweeps across over the spectrum band; it uses
spectrum knowledge acquisition ability for location tracking of sweeping jammer
and the signals of other wideband autonomous cognitive radios. Some additional
papers used the combination of reinforcement learning and artificial neural network
to avoid jamming signals of cognitive radios and expand an effective anti-jamming
system [121, 122].

Furthermore, ANN is one of the well-known methods to enhance anti-DoS
systems. Saied et al. [123] presented an ANN-based model for DDoS attack
detection. In this scheme, only the real data packets got permission to transmit over
the network (the fake packets are blocked). The authors argued that artificial neural
network performed acceptably in detecting DDoS attack, where it was trained with
updated datasets. Also, artificial neural network-based techniques were exploited to
train the machines for anomaly detection in the internet of things [124]. Although
using the ANN provides acceptable results in the field of IoT security, the system
performance should be analyzed with more massive datasets in which more data
have tampered with attacks.

To protect vital data through the internet of things and users’ privacy, a principal
component analysis-based intrusion detection system is developed for matching the
characteristics of IoT systems and reducing dimensions of large datasets [125].
Besides, [126] focused on the FCM algorithm to enhance the segmentation accuracy
in IoT systems. The paper exploited Graphics Process Unit (GPU) capabilities for
reducing the execution times of the segmentation process and reaching the expected
performance.

Pajouh et al. [127] presented a two-layer dimension reduction and two-tier
classification model for anomaly-based intrusion detection in IoT systems. The
principal objective of this approach is to detect “hard-to-detect” anomaly-based
intrusions, such as user to root and remote to local attacks. It provides high
detection rates using a multi-layer classification, low false-positive exploiting a
refinement feature, accurate intrusion detection of security attacks without reducing
the performance of the system, and low computational complexity employing



98 S. Yousefi et al.

dimension reduction in both layers. It should be noted that the paper applies the
Bayesian and K-nearest neighbor algorithms to detect suspicious behaviors and
deal with the user to root and remote to local attacks over IoT backbone network.
The simulation results illustrate that the ML-based intrusion detection mechanism
distinguishes between different attack types accurately.

Another article introduced learning-based Deep-Q-Networks to minimize the
malware attacks in the healthcare applications of IoT [128]. Although the internet of
things provides efficient protocols for health data management, several intermediate
attacks could access this information and reduce the security, privacy, and reliability
of the system. To solve these challenges, Deep-Q-Networks examined the health
information in different layers using the Q-learning algorithm to reduce the
intermediate attacks with minimum complexity.

Chatterjee et al. [129] proposed an artificial neural network-based approach for
real-time authentication of wireless devices on IoT systems based on their original
signatures automatically transmitted on a communicated signal, leading to an
accurate analysis of the Physical Unclonable Functions (PUF) properties to improve
the security level of the physical layer. This method employed the already-existing
asymmetric IoT communication framework and stand-alone security feature for
sufficient multifactor authentication. For this purpose, the conceptual development
of radio-frequency PUF is proposed for an asymmetric internet of things. It consists
of multiple low-power, low-cost, and preamble-less distributed transmitters, and a
central hub as a receiver for intrinsic PUF-based authentication in IoT systems. The
presented approach enables RF-PUF operation without any additional on-chip/off-
chip circuitry hardware on the resource-constrained IoT devices and exploits a
light-weight machine learning framework to accounts for both data and channel
variability parallel; an artificial neural network is used as a learning engine for
nonlinear multidimensional classification. The simulations show that using the
supervised learning mechanisms which proves the practical feasibility of RF-PUF
on the internet of thins, enhances the accuracy of wireless device authentication.

Recent improvements in power grids exploiting the IoT platform constructs a
smart grid to handle the electricity smartly; accordingly, enhance the efficiency
and security of the systems [130, 131]. IoT platform could prevent disasters in a
smart grid and decrease economic losses. Due to these features, Karimipour et al.
[132, 133] presented a real-time anomaly detection mechanism in smart grid envi-
ronments to identify the patterns of changes in False Data Injection (FDI) attacks
using the revealed features. A computationally efficient feature extraction model
is generated using the Symbolic Dynamic Filtering (SDF) for causal interaction
detection between the smart grids systems through Bad Data Detection (DBN).
Indeed, DBN, mutual information, and machine learning methods are employed to
detect unobservable cyberattacks. The authors have tried to identify dependencies
between variables through assigning scalar energy to each of them, which consider
as a measure of compatibility. The simulation results prove the high accuracy of
the anomaly detection mechanism; it has low false alarm under different operation
conditions because the method relies on the free energy to differentiate between the
energy level and regular data sets besides using the pattern in the training ones.
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5 Analysis

We review the literature, which exploiting the machine learning mechanisms to
improve the quality of IoT services since 2010. Our studies show that this area
grows increasingly every day. Figure 5.13 shows the dispersion of reviewed papers
of the ML-based applications on the internet of things and their publication year.
The numerical results illustrate that recently special attention has been paid to the
integration of machine learning mechanisms and IoT for improving the quality
of everyday human life, reducing the energy/other resource consumptions, and
enhancing the security of systems.

Figure 5.14 illustrated statistical results on different machine learning mecha-
nisms in IoT applications until 2019. The results show that reinforcement learning
mechanisms like Q-learning, deep learning, and artificial neural networks were
mostly used to improve the quality of IoT services in comparison with other Ml-
based methods.

6 Challenges

In this section, we sum up the limitations of ML-based applications in the internet
of things and provide some research directions to improve the performance of these
integrated systems.

Fig. 5.13 Percentage of the most papers published about the application of machine learning in
the IoT from 2010 to 2019
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Fig. 5.14 Percentage of the paper published on various machine learning algorithms on IoT

There are several challenges about utilizing the machine learning mechanisms in
IoT environments, including:

1. Lack of standard datasets: The main issue to developing machine learning
mechanisms in the internet of things is the lack of access to standard real-
world datasets, while more data is needed for achieving ideal accuracy, empirical
validation and system evaluation in domains with ML-based services, such as
the application of deep learning [52]. On the other, exploiting the private and
copyrighted datasets is a burden in the field of personal data such as education
and healthcare.

2. Energy restrictions: In spite of growing developments in IoT hardware and
software technologies, most devices still have to provide their required energy
for data processing or packet transmission from energy-constrained batteries.
Besides, sensor-based IoT devices have limited computational capabilities, and
they have been used in harsh and inaccessible natural environments for a long
time [36]. Thus, the resource limitation of IoT devices such as power, memory,
and processor is another challenge for executing high-complexity machine
learning mechanisms.

3. Lack of accurate analysis and correlation: Most of IoT devices do not save any
metadata, which makes pieces of evidence becomes a challenge for researchers.
In the absence of aggregated data, correlation of evidence collected from
different devices is almost impossible [134]. Beyond technical issues, privacy
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is a significant challenge in the scenario of analyzing and correlating aggregated
data, especially as sensor-based IoT devices are sensing personal information.
Finally, the massive volume of aggregated data in heterogeneous IoT systems
makes it impossible to provide an end-to-end analysis of residual evidence.

4. False confidence: False confidence in the domain of machine learning for
predicting data, which is unrecognizable by humans, is known as another vital
issue in IoT applications [52]. The malicious systems produce fooling data, and
the classifiers such as artificial neural networks detect it as a familiar one.

Due to these challenges, some of the future works are presented to enhance the
performance of machine learning mechanisms on the internet of things, including:

1. Providing IoT standard datasets: Obtaining standard free datasets would be a
big step forward development of IoT systems based on the machine learning
mechanisms. Since a remarkable part of big data in IoT systems is generated by
mobile devices, exploiting efficient methods to provide standard datasets from
this massive volume of data is a way to offer distributed learning framework in
IoT domains, including smart city, traffic systems, and industrial environments.

2. Presenting efficient data processing/aggregation methods: It could be proposed
more specialized approaches to reduce resource consumption in the internet of
things, e.g., using the efficient data aggregation methods reduces the energy con-
sumption of IoT systems, and exploiting sufficient data processing mechanisms
improves the memory, processor, and energy consumption of IoT devices.

3. Aggregating vital data: Providing efficient approaches to memorize critical
metadata, which is sensed by IoT devices could help the users for subsequent
processing. However, the situation of complex systems cannot be analyzed by
the IoT device data alone. Therefore, it is essential to IoT data would be fused
with other sources for quick and accurate decision making, e.g., the pictures of
a smart camera could be fused with contextual information such as users’ daily
habits to helps the system for performing best action.

4. Security enhancement: Presenting different techniques, guiding rules, protocols,
and standards to improve the security, privacy, and trust level of IoT systems,
which match the implementation of machine learning approaches could be a help
for researchers and developers. Indeed, the success of each application in the IoT
world significantly depends on the environment characteristics, e.g., openness,
and heterogeneity, which security mechanisms employed in it.

7 Conclusion

In this chapter, we present a review of the applications of the machine learning
mechanisms on the internet of things. First, the critical challenges behind IoT and
the efficiency of using ML to solve them were discussed. Then, the approaches of
ML-based mechanism in the internet of things were classified into five categories:
data analysis, wireless communication, healthcare systems, industrial systems, and
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security. Practically, using the capability of the machine learning mechanisms in IoT
systems could enhance the quality of real-world services, but in spite of all progress
in IoT fields, lack of standard datasets, trust, and resource limitation are significant
challenges in the ML-based applications. Therefore, it is necessary to improve the
system security factors, resource consumption, and datasets for the next-generation
applications of machine learning mechanisms in the internet of things.
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Chapter 6
A Comparison of State-of-the-Art
Machine Learning Models for
OpCode-Based IoT Malware Detection

William Peters, Ali Dehghantanha , Reza M. Parizi, and Gautam Srivastava

1 Introduction

The Internet of Things (IoT) is a set of devices that are interconnected nodes that
are sensing, processing, and communication data [1]. A wide range of applications
have been introduced using IoT from healthcare [2–5], transportation [6, 7], smart
grid [8, 9], urban management [10] and also agriculture [11]. It is predicted that well
over 63 million IoT devices will be on the market by 2025 [12]. The IoT industry
is expanding rapidly and could potentially generate $3.9 to $11.1 trillion by 2025
[13]. Evaluation Ericsson projects we see that by 2023, there will approximately 3.5
billion cellular IoT connections [14].

The widespread utilization and critical role of IoT networks have motivated
cyber-criminals to devise detrimental and sophisticated attacks against IoT nodes
and networks to misuse IoT’s nodes and infrastructures [15, 16]. Mirai was one
of the first malware to exploit IoTs on a large scale. Mirai organized a network of
infected IoT devices (Botnet) to stage a Distributed Denial of Service (DDoS) attack
[17]. Announcing Mirai’s source code showed that it is very easy to create malicious
IoT malware type attacks. For instance, BrickerBot which spreads by using the Mirai
code and connects the infected device to a botnet removes the firmware and resets
the device.
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Machine Learning (ML) is a cutting-edge technology that has extensively
leveraged to enhance the accuracy and robustness of detective and defensive systems
in cybersecurity [18–20]. The ability of ML to learn complex patterns within com-
plicated cyberattacks and its robustness to cope with unforeseen malicious attacks
makes it a promising approach for detecting IoT’s cyberattacks and protecting IoT
networks against them. ML techniques have been widely leveraged in security [21–
26], privacy [27] and forensic [28, 29] areas.

Typically, the following criteria are used to evaluate the utility of machine
learning in malware detection [30–32]:

• True Positive (TP): indicates that a malware is correctly identified as a malicious
application.

• True Negative (TN): indicates that a benign is detected as a non-malicious
application correctly.

• False Positive (FP): indicates that a benign is falsely detected as a malicious
application.

• False Negative (FN): indicates that a malware is not detected and labeled as a
non-malicious application And the following metrics calculate the performance
of an ML model:

Accuracy The percentage of correctly classified samples.

Accuracy = T P + T N

T P + T N + FN + FP
(6.1)

Precision The percent of predicted malware samples which were correct.

Precision = T P

T P + FP
(6.2)

Recall The percent of malware that were correctly identified.

Recall = T P

T P + FN
(6.3)

F1 Score Is a weighted average of recall and precision.

F1 − Score = 2 ∗ T P

2 ∗ T P + FP + FN
(6.4)

In addition, Cross-validation is an ML technique to validate the extent that
findings of an experiment can be generalized into an independent dataset [33, 34].
This chapter analyzes and reports findings for applying several different ML
models on a collected dataset of IoT applications using extracted Operational Code
(OpCode) of both malicious and benign samples.
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The remainder of this chapter is divided into four sections. Section 2 reviews
related literature and Sect. 3 gives information of used methodology. In subsequent,
Sect. 4 presents experimental results, Sect. 5 discusses findings and Sect. 6 con-
cludes this chapter.

2 Related Work

Malware detection approach is a topical category of cybersecurity divided into
static and dynamic malware detection [35–37]. Dynamic methods employ run-time
properties of samples such as system-calls, registry access, network traffic, and
others to recognize its class. On the contrary, static methods statically inspect a
program code to detect suspicious applications by using features such as Byte-Code,
OpCode, control flow graph traversal, etc.

Darabian et al. [21] proposed an OpCode based static method using sequential
pattern mining technique to recognize maximal frequent patterns withing executable
samples and then inputted extracted feature for state-of-the-art supervised machine
learning algorithms and achieved accuracy of 99% in the detection of unseen
malware. In other related work, Pajouh et al. [38] utilized kernel base Support Vector
Machine, and a novel weighting measure on samples’ library calls to detect OSX
malware and obtained accuracy of approximately 91% and false alarm rate of 3.9%.
Dovom et al. [39] applied fuzzy and fast fuzzy pattern tree on a transmuted OpCodes
to vector space and obtained an accuracy of higher than 90% for VX-Heaven, IoT
and Kaggle datasets.

In order to dynamically detect intrusions, Pajouh et al. [40] proposed a layered
architecture that included a dimension reduction and two-tier classification mod-
ules to detect malicious activities using dynamic behaviors of NSL-KDD dataset
accurately. They achieved an overall accuracy of 84.86% as well as a detection rate
of 70.15 and 42% for U2R and R2L attacks, respectively. Azmoodeh et al. [41]
presented a grinding method to dynamically accept the power consumption signal
of IoT application as input and grind it to sub-samples. Then, they classified sub-
samples using KNN as a classifier and Dynamic Time Warping as distance measure
and finally, aggregated sub-samples’ class to identify crypto-ransomware [42, 43].
The method outperformed other classifiers and achieved accuracy of 90.67% to
recognize malicious applications correctly.

Homayoun et al. [44] utilized frequent pattern mining approach on run-time
activities of ransomware applications extracted by a virtual machine and could
classify ransomware with an accuracy of 99.4% and area under curve 99%. In
another related work, Homayoun et al. [45] leveraged network transactions as input
and two deep structures where the first layer uses stacked autoencoders for feature
extraction and the second layer uses Convolutional Neural Networks (CNN) in order
to train a classifier for botnet detection. The method was applied on ISCX dataset
and achieved 91% true positive rate with a false positive rate of only 13%.
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3 Methodology

3.1 Dataset

In order to evaluate state-of-the-art ML techniques for IoT malware detection, an
IoT dataset which includes 512 samples was used. The dataset consists of 268
benign samples and 244 malware samples. The last version of dataset as well as
source code of this chapter are available on https://www.cybersciencelab.org/iot-
malware-detection-dataset.

3.2 Dataset Preprocessing

Each dataset’s sample includes a sequence of assembly OpCodes such ass ADD,
MOV, SUB, PUSH, etc. First of all, a dictionary of unique OpCodes within
all samples was generated. Then, so as to transmute the sequence of OpCodes to
vector space, each sample was sequentially parsed and vector V was generated for
each sample. Equation 6.5 describes vector V .

|V | = Number of Unique OpCodes (6.5)

Vi = T otal Number of OpCodei in Sample

Finally, in each sample is normalized between [0, 1] (see Eq. 6.6).

Vi = Vi/max(V ) (6.6)

3.3 Dataset Complexity

The preprocessed dataset includes 512 samples and each sample contains 378
features(number of unique OpCodes). In order to obtain a clear insight about the
dataset, we have plotted the dataset in 2D plot using t-SNE [46] and PCA [47]

https://www.cybersciencelab.org/iot-malware-detection-dataset
https://www.cybersciencelab.org/iot-malware-detection-dataset
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Fig. 6.2 Dataset visualization using PCA method

methods. Figures 6.1 and 6.2 illustrate 2D visualization of IoT dataset using t-
SNE and PCA methods, respectively. Besides, to measure the effectiveness of each
OpCode for classification, Information Gain of dataset was calculated. Figure 6.3
shows score of top 30 OpCode based on their information gain scores.
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4 Experiment Results

4.1 Settings

All experiments were conducted on a PC with 8 GB of RAM and Core-i7(1.8 GHz)
CPU. In addition, all source code was implemented using Python 3.7.1 and the
library for ML task was scikit-learn version 0.20.2. In order to validate experiments,
tenfold cross-validation technique was applied.

4.2 Accuracy

In order to evaluate accuracy of ML models to distinguish malware and benign
samples, Accuracy metric was calculated using Eq. 6.1 and Fig. 6.4 gives informa-
tion about performance of models. As can be clearly seen from Fig. 6.4, RBF SVM
and Naive Bayes outperformed other algorithms and obtained maximum accuracy of
100%. Also, Linear SVM and Random Forest are less accurate models that obtained
accuracy of 93.11 and 94.47%, respectively.

4.3 Precision

According to Precision performance measurement metric described in Eq. 6.2,
precision of models were calculated. Figure 6.5 illustrates the performance of ML
models based on the metric. RBF SVM, Naive Bayes, AdaBoost, Random Forest and
Decision Tree achieved precision of 100% while those of Neural Net and Linear
SVM were lowest and about 95.99 and 99.3%, respectively.
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4.4 Recall

In order to figure out Recall performance of models (Eq. 6.3), recall of all models
were evaluated (See Fig. 6.6). As can be evident, KNN(k = 1 and k = 3), RBF
SVM, Gaussian Process, Neural Net and Naive Bayes achieved recall of 100%
while Random Forest has obtained lowest recall (86.46%) and similarly the figure
for Linear SVM is 86.66%.
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4.5 F1 Score

Finally, F1-measurement of ML models calculated using Eq. 6.4 and as can be seen
from Fig. 6.7, RBF SVM and Naive Bayes obtained the 100% of F1-measure while
the lowest ranked models are Random Forest and Linear SVM that only achieved
93.49 and 92.21% of the metric, respectively.
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5 Discussion

In our experiments, the most successful ML models for IoT malware detection were
RBF SVM and Naive Bayes based on their F1-measurement. The success of Naive
Bayes model suggests that the normalized values of OpCodes can be assumed as an
independent. Otherwise, the model would not have succeeded. Analyzing Figs. 6.1
and 6.2 explains the success of the RBF SVM model since, in both figures, the
malware and benign applications are separate from each other. This divide allows
for an RBF SVM to accurately separate and classify the data.

The least successful ML models were the linear SVM and Random Forest.
Analyzing Figs. 6.1 and 6.2 show that a perfect linear divide between malware and
benign applications does not exist which negatively affected the performance of the
linear SVM. The Random Forest model’s lack of success could be caused by the
low information gain of the OpCodes. A Random Forest is made up of several small
decision trees; however, the low information gain of individual OpCodes would
reduce the accuracy of a smaller decision tree. When a random forest is composed
of several small decision trees with low information gain decisions, it will perform
sub-optimally, which could be what causes the low accuracy of the Random Forest.
Both Naive Bayes and the Random Forest had low recalls as well.

The remaining models performed well with accuracies higher than 97% but not as
well as Naive Bayes or RBF SVM. Most of the remaining models suffered from high
false-positive rates leading to high recalls but low precisions. The Neural Network
was the most extreme example of this disparity between precision and recall with a
precision of 95.99%. An exception to this trend was the Decision Tree, which had a
100% precision but and a lower but still respectable recall of 99.59%.

6 Conclusion

With the advancement of the Internet of Things and significant prevalence of
IoT networks to provide a wide range of high quality electronic services, cyber-
criminals are endeavoring to misuse IoT network and devices to degrade its
performance. Moreover, they also threaten the privacy of information that is being
sensed, processed and communicated over the networks and there is an arms
race between malware developers and security groups. In this chapter and so as
to evaluate and compare state-of-the-art machine learning models, ten different
models were applied to a dataset of malicious and benign IoT samples. Several
experiments were conducted to analyze the dataset, distribution of samples, and
score of each feature for classification tasks. Then, ML models were trained, and
four performance measurement metrics were calculated. The overall evaluation
demonstrates that RBF SVM and Naive Bayes outperform other models and can
distinguish IoT malware and benign samples accurately.
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Chapter 7
Artificial Intelligence and Security
of Industrial Control Systems

Suby Singh, Hadis Karimipour, Hamed HaddadPajouh,
and Ali Dehghantanha

1 Introduction

Industrial Control Systems (ICS) is a standardized approach and an increasingly
diverse and extensively connected set of technologies to command that automate
and control significant portions of our connected society [1, 2]. This includes
travelers commuting on rail systems, power moving through the electrical grid,
oil flowing through pipelines, and systems controlling pharmaceutical and food
manufacturing. ICS, which is a part of the Operations Technology (OT) environment
in industrial enterprises, consists of mainly two parts. First part has combinations
of components such as mechanical, electrical, hydraulic and pneumatic. They all
act together to achieve an industrial objective e.g., manufacturing or transportation
of matter or energy. This part of the system is referred to as process and is
primarily concerned with producing the output at manufacturing and production
departments. Second part of ICSs which can be considered larger than the first
part, it is implemented by several types of control systems, including Supervisory
Control and Data Acquisition (SCADA) systems, Distributed Control Systems
(DCSs), and other smaller control system configurations such as programmable
logic controllers (PLCs), intelligent electronic devices (IEDs), remote terminal units
(RTUs) and other field devices [3–5]. These controllers are regularly applied to
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the systems that monitor, control and manage large production systems or critical
infrastructure industries, such as electric power generators, transportation systems,
dams, agriculture and chemical factories, water pipelines, petrochemical operations,
oil and natural gas, food and beverage, pulp and paper, discrete manufacturing
(e.g., aerospace, automotive, and durable goods) industries and others [6–8]. These
control systems can be fully automated or may include a human in the process.
Likewise, systems can be configured to operate in open-loop, closed-loop, and
manual mode. In open-loop control systems, established settings are made to control
the output and whole process is expected to faithfully follow its input command or
set points regardless of the final result. In closed-loop control systems which are
also known as the feedback control systems, an input has the effect of output (which
can be considered as feedback) in such a way that desired objectives are maintained,
whereas in manual mode, it requires humans to operate the whole system. Numerous
control loops such as remote diagnostics and maintenance tools built using an array
of network protocols and Human Machine Interfaces (HMIs) are used in a typical
ICS system as shown in Fig. 7.1.

ICSs were originally designed to achieve the primary goal of infrastructure units
such as increasing performance, reliability, and safety by reducing manual effort.
Traditionally, physical isolation or a so-called air gap (i.e. security by obscurity) was
a dominant way of achieving an ICS’s security [9]. The fourth industrial revolution
(Industry 4.0), a concept where cyber-physical systems such as the Internet of
things are brought together, has started to find more resonance with OEMs [10],
system integrators and asset owners. Many industrial and manufacturing firms have

Fig. 7.1 General industrial control systems layout
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felt the need of integrating wireless networks for sensors and controller systems
to function effectively, and accordingly implemented this integration to upgrade
internal processes, as ICS are allowing plants (from power plants to oil refineries,
to manufacturing facilities of all types) to operate at higher efficiency and lower
cost. Now, a lot of ICS information are routed to sophisticated applications across
enterprises, through a wide area network; and this is where security by obscurity
no longer offers valid security protection. Government plans to connect ICSs to the
Internet for the projects such as smart grids and smart cities, which will significantly
increase the risk of intrusion from malicious actors since ICSs are very crucial to the
operation of critical infrastructures that are often highly interconnected and mutually
dependent systems.

There have been tremendous developments in the field of communication
technologies, hardware and software that have promoted the emergence of internet-
based sensory devices [11, 12]. Great numbers of such Internet of Things (IoT)
devices have been introduced to improve productivity and enhance system control,
as a result of ICS modernization. According to various forecasts, it is expected that
around 25–50 billion IoT devices would be connected to the Internet by 2020 [13].
Data monitoring, process controls, and communication with other systems have
simplified with the use of related embedded technological IoT devices. One of the
basics reasons for using these computing devices is to enhance human activities
and experiences. However, as the technology becomes matured and number of
these devices in ICS increases, amount of data generated also increases. A massive
volume of data is published by these internet-connected physical devices, sensors
and actuators. This data is characterized by velocity in terms of time and location;
and variety in terms of different data formats and data quality. The amount of data
generated is huge for ex. a single flight running between New York and London
generates 0.98 GB of data/per day [14]. IoTs generated raw data can further be used
to represent better real-time services to its users. Another use can be to enhance IoT
framework performance to accomplish the tasks intelligently. In order to make use
of this data, systems should be able to access and process raw data collected from
different resources, located at different regions and mounted over the network; then
analyze this data to extract information and knowledge useful to present realistic
services to its users or possibly predict the future demand and upcoming threats.
Apart from increased amount of data, as the internet-connected devices technology
continues to boost the current network arena by providing easy connection and
interaction between the physical and cyber worlds, it also increases the risk of cyber
threats associated with it. Due to technological innovation and advancements of
the Industrial IoT (IIoT) achieved in last 10 years, the industrial automations have
directed themselves to become driven by a large amount of data. All the industrial
data are being routed through the networks. This increases the inter-connectivity
of networks, but may escalate threat scenarios. It becomes increasingly difficult
to segregate and protect ICS platforms from both external and internal threats.
Managing IoT devices in such a complex networked ICS environment can create
major challenges in security because each device needs to be defended and secured
properly [15–17].
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Sophisticated attacks on ICS are on the rise, such as the Ivano-Frankivsk, Ukraine
incident, just one of the multiple attacks that leveraged BlackEnergy malware. Also
in 2015, Kemuri Water Company’s ICS infrastructure in the US was attacked. In
this attack, hackers had targeted company’s computers after exploiting unpatched
web vulnerabilities in its internet-facing customer payment portal. This attack had
resulted in infiltrating the water utility’s control system and changing the levels of
chemicals being used to treat tap water. Device loss is also a major cause of data
breach because one misplaced device may give cybercriminals the necessary access
to penetrate and get into the target’s network. Data generated from IoT devices can
be useful in detecting such breaches by observing the anomalous patterns of the
standard process. Thus, intelligent processing and analysis of this large data are
the major factors to developing smart and secure IoT applications. Big data and
Artificial Intelligence (AI) can play a big role to achieve this.

With the help of big data, companies can have the ability to visualize the
quantities of data they collect, so that they can bring better improvements to products
and processes. Cyber security approaches built along with the concept of big data
techniques provide a run-time intelligence to monitor the packet’s behavior over a
network and also the network traffic itself, so that organizations can be safeguarded
from external threats and attacks. Big data can be scaled up in size and speed
predictably and straightforwardly way which provides business analytics reporting
tools to grow organically. Speed is a critical parameter to the whole ICS process and
big data may provide an advantage by adding a real-time view capability which can
enable operational, engineering, and supervisory personnel to be more responsive
and stay alerted in day-to-day situations. This reduces the response time in taking
an appropriate action. The big data solution also increases the range and variety of
data that can be analyzed all together. This can result in providing additional context
and insights which could help in better decision-making process, optimization of
process, and security awareness activities. Another concept, cognitive algorithms,
an intelligence ability to do much as a human mind would do; which can undertake
interpretation of data and previously discovered patterns to predict. If Cognitive
IoT systems are built, they improve themselves by learning from feed data and
previously generated patterns, while performing repetitive tasks by self-predicting
the things; this makes the whole system to function under closed loop fashion,
usually known as feedback system. Cognitive computing analyzes massive amounts
of data and can act as prosthesis for human cognition when making certain decisions
while responding to it in humanly manner. IoTs enabled with cognitive intelligence
can play an important role in extracting the meaningful patterns from the IoT
generated smart data. Also, AI technology not only potential to provide panacea for
modern business problems or capable of helping enterprise and industrial companies
make sense of mountains of data (including from IIoT devices), but also can help
them boost the security of industrial control systems by providing an automated
way to look over anomalies or vulnerabilities. The convergence of OT and IT is
driven by industrial analytics applied to machine data for operational insights; this
ultimately creates value for the fourth industrial revolution (Business 4.0). One
proposed use case of AI systems, or to be more precise machine learning, is its use
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for detecting malware or anomalies on a network. If you have a baseline of how the
network should operate and have sound machine learning algorithms and sufficient
data access, this technology can be powerful in detecting network threats very
quickly and over time, potentially reducing the number of false alarms for possibly
suspicious code or network behavior. Thus, AI and big data have considerable
potentials for ICS enhancement and its cyber security.

2 Architecture of ICS Networks

Industrial Control Systems (ICS) have transformed from traditional stand-alone iso-
lated systems to interconnected systems. These modern ICS systems extensively use
existing communication protocols and platforms. This transformation has resulted
in increased productivity, reduced operational costs and improved organizational
support model. To be benefitted from this new model, organizations have started to
perform more and more integration, between not only common ICS applications but
also have started integrating the typical business applications like Manufacturing
Production Planning systems or Enterprise Resource Planning systems with the
supervisory components of the ICS. This gradually increased the need for real-time
information sharing, which caused the business operations of industrial networks to
increase. It is widely recommended to segregate the ICS network from the corporate
network while designing network architecture for an ICS deployment, so as to
reduce the possibility of security threats as the nature of network traffic on these
two networks is different. By saying different nature of traffic could mean that
Internet access, FTP, email, and remote access. These are typically being allowed
on the corporate network but should be blocked on the ICS network. Carrying
ICS network traffic on the corporate network could be intercepted and subjected to
Denial of Service or Man-in-the-Middle attacks. Having separate network policies
for both corporate and ICS should help industries to guarantee that security and
performance problems on the corporate or public network can not affect the ICS
network. ICS systems generally have several different levels of networks, from
enterprise level through to processes and control and then field level having sensors
and actuators. These levels focus on functional hierarchy of different parts of critical
infrastructure, be that an industrial operation, a power plant or a public facility. As
shown in Fig. 7.2, Enterprise level can be considered as the general IT network of
an organization, where the general-purpose IT systems such as Enterprise Resource
Planning (ERP) and Manufacturing Execution Systems (MES) are connected and
are functional at this level. Industrial Control System uses ERP, a business process
management software and system of integrated applications, to manage the business
functions and automate many back office tasks related to technology, services, and
human resources. It also helps in providing business with a reliable and robust
system and increased business efficiency. On the other hand, MES is an information
system, and ICS uses this system because it provides a way to connect, monitor and
control the complex manufacturing systems and data that flows in the factory. The
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Fig. 7.2 Industrial connectivity

main objective of MES is to improve production output in an industry by ensuring
an effective execution of the manufacturing operations. These are computerized
systems used in manufacturing, to track and document the transformation of raw
materials to finished goods.

Remote Operations provide the ability to remotely control, monitor, and manage
ICS endpoints by enabling to perform changes remotely and investigate endpoint
status in real time while reducing the need for on-site visits. This may involve a
large physical distance between the site or the hub of the networks and person
monitoring the system. Data among all these points need to be transmitted with
the help of telephone cables, radio, satellite or wireless industrial network at the
different levels of the ICS. As this mechanism allows data to flow on public network,
it also poses a possible security risk. At factory process level, SCADA systems
control the dispersed assets such as sensors and actuators, using a centralized data
acquisition and supervisory control method, whereas production systems within a
local area such as a factory are controlled by DCS using supervisory and regulatory
control. In a SCADA network, the control level sends the coded information from
higher level coordinating components to industrial machinery of an ICS and vice
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versa. This control level acts as the nerve center of the network, and it’s how PLCs
and sensors are associated with the broader network. The information carried though
this level is generally transferred via wired networks, but could be broadcasted in
wireless fashion in some cases, which may or may not be connected to the wider
public internet. Data received at this level can be integrated with cloud computing
technologies. Some of the main objectives of using cloud techniques is to save cost
on processing vast amount of data, relax and get benefitted from the embedded
security, ensure the uptime, and guarantee system redundancy which can be used
in case of disaster. SCADA devices are also critical systems and require reliable
redundancy, robust security, reduced operating costs, and maximum uptime. Thus,
relocating SCADA devices to cloud technology can be preferred which can solve
critical issues mainly related to uptime and redundancy in industrial control systems
(ICS) environments. As discussed previously ICS environments have notoriously
high uptime requirements which can be guaranteed with the use of cloud. Moreover,
cloud computing for SCADA devices is also beneficial for providing access from
any internet-connected location, featuring easy way to access the data. Also, in terms
of scalability, cloud computing and big data allow new services and servers to be
spun up in only a matter of minutes. Moving critical devices and/or services to cloud
could help in setting up the baselines for uptime and redundancy while reducing the
cost and protecting the system against cyber-attack by ensuring that data carried by
ICS are firewalled and filtered. At the field Asset network level, information about
the industrial process are collected by sensors and relayed to the PLC, which then
broadcasts this information across the wider ICS. A number of different field sites
or devices may be connected to a single control center (as a production line with
a number of lathe machines, or a power plant with several reactors). Each PLC in
the network is connected to a pertinent SCADA server, because of which sensors
are monitored periodically, field sites or devices are repaired or reprogrammed
whenever required, and developments in any faults are ascertained or notified in
a reliable way with the help of alarms connected to it. The main control center is a
critical component and it processes decisions by taking data into account, generated
across the whole network. So, in the example of a railway station, multiple field
sensors record when and which sections of railway are occupied by rail and when
the trains are boarding. Then, this information is relayed to control centers, which
then decides whether to allow trains to arrive at certain platforms and proceed with
the announcements for the benefit of passengers.

Connection between the ICS and corporate network is required, but practical
considerations, such as ICS installation cost and sustaining homogenous network
infrastructure such as similar kind of network devices i.e. firewalls, often poses a
significant security risk for possible cyber threats. This connection must be protected
by boundary protection devices such as firewalls from different vendors or providing
limited access to ICS information from outside environment of ICS. If the networks
need be connected, it is strongly recommended that only minimal (single point if
possible) connections should be allowed from corporate network, and even that
connection should be through a DMZ (Demilitarized zone) and a firewall. A DMZ
referred to as a screened subnet or perimeter network, is a separate subnetwork
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segment which connects directly to the firewall and exposes an organization’s
external-facing services to a larger network such as the Internet. It contains servers
consisting of data or services from the ICS that needs to be accessed from the
corporate network or untrusted network. Also, with any external connections, the
minimum access should be allowed through the firewall to this network segment,
opening only the ports required for specific communication. In this way, ICS
networks and corporate networks should be kept segregated to maintain cyber
security using different network architectures. Such several possible architectures
have been discussed in below section along with the advantages and disadvantages
of each.

2.1 Dual-Homed Computer

Dual-homed or dual network interface cards computers are capable of passing
network traffic from one network to another. A computer having no proper security
controls could pose additional threats and firewalls should be configured as dual-
homed to traverse data from both the control and corporate networks to prevent
these threats. Every connection between control network and corporate network
must have a firewall, but this configuration lacks security improvement and should
not be used to connect ICS and corporate networks [18].

2.2 Firewall Between Corporate and Control Network

As shown in Fig. 7.3 two-port firewall is used between the corporate and the control
networks. This can help in achieving a noticeable security improvement, and if
properly configured, a firewall significantly decreases the chance of a successful

Fig. 7.3 Firewall between corporate and control network
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execution of external attack on the control field level network. Alas, still the two
issues exist with this ICS network architecture. First issue is related to data historian,
if it is designed to be located on the corporate network, the firewall must allow the
data historian residing at corporate level, to communicate with the control devices
and services on the control network. This can lead to a packet originating from a
corporate network’s malicious program or incorrectly configured host (appearing
to be the data historian itself) to be forwarded to individual PLCs/DCS residing
at control field level network. And if the data historian is designed to reside
on the control network, a firewall rule must exist that should allow all hosts
from the enterprise or corporate level network to communicate with the historian,
which again can lead to malicious packets to be injected. Another issue with this
architecture i.e. having a simple firewall mechanism between the networks is that
spoofed packets could be transmitted which can affect the control network by
allowing covert data to be tunneled in allowed protocols. Overall, this architecture
enables a significant improvement over a non-segregated network. But if not very
carefully designed and monitored, use of firewall rules that allow direct links
between the corporate network and the control network devices in this architecture
can lead to possible security breaches [18].

2.3 Firewall and Router Between Corporate and Control
Network

Figure 7.4 shows a slightly more sophisticated design of ICS network architecture
with the use of a router/firewall combination. In this architecture, router offers basic
packet filtering services while a firewall handles the more complex issues using
either proxy techniques or stateful inspection. This design allows a faster router to
manage the amplitude of the incoming packets, especially in the case of Denial

Fig. 7.4 Firewall and router between corporate and control network
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of Service attacks, and reduce the load on firewall. This makes the architecture
very popular in internet-facing systems. As an adversary must bypass two different
devices, this design offers an improved defense-in-depth facility [18].

2.4 Firewall with DMZ Subnet Between Corporate and Control
Network

Firewalls with the ability to establish a DMZ between the corporate and control
networks can provide a significant improvement. Figure 7.5 shows that each DMZ
can contain one or more critical components, such as data historian, wireless access
point, or remote and third party access systems. Intermediate network segment can
be created by DMZ capable firewalls, and these firewalls need to offer three or more
interfaces, rather than just public and private interfaces. Among these interfaces, one
can be connected to the corporate network, the second to the control network, and
the remaining to the shared devices such as data historian server on the DMZ sub
network. Corporate-accessible components are placed in the DMZ. Firewall rules
should be set in such a way that communication between the control network and
DMZ should be initiated by only control network devices. No direct communication
paths must be formed from the corporate network to the control network; each
path must effectively end in the DMZ. As Fig. 7.5 shows, an arbitrary corporate
network packet can be blocked by firewall, from entering the control network.
Firewall can also regulate network traffic from the other network zones including the
control network. This architecture with little or no traffic passing directly between
the corporate and the control networks and strict set of rules can provide a clear
separation of ICS networks [18].

Fig. 7.5 Firewall with DMZ subnet between corporate and control network
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Fig. 7.6 Paired firewalls between corporate and control network

2.5 Paired Firewalls Between Corporate and Control Network

In this design, a pair of firewalls with a DMZ solution can be positioned between the
corporate and ICS networks, as shown in Fig. 7.6. Shared servers such as the data
historian are located between the firewalls in a DMZ-like sub network, sometimes
this configuration is referred to as a Manufacturing Execution System (MES) layer
[18].

In this architecture, the first firewall blocks arbitrary packets from establishing
communication with the shared historians or the control network whereas the second
firewall prevents an unwanted traffic from a compromised server from entering the
control network. This prevents control network traffic from getting impacted by the
compromised shared servers. Additionally, if firewalls from two different vendors
are used, then this solution may offer an advantage. This also clearly separates the
responsibility of the control and the IT group, as each group can manage a firewall
device on its own. This architecture has some strong advantages for environments
with stringent security requirements and where clear management separation is
needed, but the primary disadvantage associated with this two-firewall architecture
is increased cost and complex management.

3 ICS Protocols

ICS protocols may be serial, IP, or Ethernet-based versions. The security challenges
and vulnerabilities are different for each variant. Following sections discuss some
of the common industrial protocols and their respective security concerns.
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3.1 Modbus

Modbus is one of the most commonly used protocols in industries such as utilities
and manufacturing environments. Modbus protocol is available in multiple variants
(for ex. serial, TCP/IP), and was originally programmed by Modicon, the first
programmable logic controller (PLC) vendor and this protocol has been in use
since the 1970s. Some older versions of Modbus communicate via broadcast.
A common security challenge with Modbus is that it has no Default authentication
process between communicating endpoints which means that only Modbus address
and function call (code) are necessary for a message to reach its destination.
This can allow an inappropriate source to send improper commands to its target
destination. Upon receiving the improper command, the recipient can act on it
accordingly, without realizing the actual intension behind it. In this way, an attacker
can potentially impact recipient devices. Another security challenge with Modbus
is that initiating application does not validate the message content. Instead, Modbus
waits for the network stack to perform validation of the message content. This could
lead to protocol abuse in the system [19].

3.2 DNP3 (Distributed Network Protocol)

DNP3, which provides serial communication between controllers and simple IEDs,
is common in utilities and found in multiple deployment scenarios, industries,
discrete and continuous process systems. Although DNP3 has placed great emphasis
on the reliable delivery of messages, but there are many insecure implementations
of DNP3 protocol. The ability to establish trust in the system’s state is the missing
security component in this protocol. It means that participants do not really verifies
the messages and allow for unsolicited responses, which can cause an undesired
response. This protocol does not guarantee the veracity of the information being
presented.

3.3 ICCP (Inter-Control Center Communications Protocol)

ICCP, another common control protocol used in utilities, basically in North
America, travels across the boundaries between different networks. Due to this,
ICCP protocol carries an extra level of exposure and risk that can uncover an
utility to cyber-attack. In difference to other protocols, ICCP was designed to work
across a WAN. Despite having a role to work across WAN, initial implementations
of ICCP could not deliver expected security measures and instead had several
significant security gaps. One major vulnerability with ICCP is that system required
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no authentication for establishing communication. Another is that it did not provide
encryption as a default condition across the protocols which could cause revealing
connections to man-in-the-middle (MITM) and replay attacks.

3.4 OPC (OLE for Process Control)

OPC is a Microsoft interoperability methodology’s OLE-based protocol. It is lim-
ited to operate at the higher levels of the control space in industrial control networks
where devices have dependency on Windows-based platforms. Correspondingly,
concerns around OPC rise with the operating system on which it operates, because
many of the Windows based devices in the operational space are not fully patched,
old, or at risk due to overabundance of well-known vulnerabilities. Attackers
may take advantage of these well-known vulnerabilities. OPC is implemented in
client/server fashion and another concern with OPC, particularly in this area is
that OPC protocol is dependent on the Remote Procedure Call (RPC) protocol.
This generates the need to have clear understanding and exposure of vulnerabilities
associated with RPC, and also another need to identify the level of risk these
vulnerabilities could bring to a particular network.

3.5 International Electro Technical Commission (IEC)
Protocols

The IEC is a standard serial data transmission TCP/IP based network protocol.
It was originally developed to provide vendor-agnostic solution for power utility
systems. So that, it can facilitate the ability to exchange information between ven-
dors and standardized communication protocols in a large heterogeneous network.
This is broadly used for SCADA tele-control in Europe which are geographically
dispersed control systems. Three types of messages were initially defined under this
protocol:

1. MMS (Manufacturing Message Specification)
2. GOOSE (Generic Object Oriented Substation Event)
3. SV (Sampled Values).

Later, Web services were added as a fourth protocol, following is a short
summary of each:

• MMS (61850-8.1): It is a client/server, TCP/IP based protocol which functions
at Layer 3 i.e. Network layer and provides same functionality as other SCADA
protocols, for ex. Modbus.

• GOOSE (61850-8.1): It is a Layer 2 i.e. Data Link layer protocol and functions
through multicast over Ethernet. This message type is used with IEDs and allows
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it to interchange information horizontally between bays and substations in order
to interlock, measure, and trip the signals.

• SV (61850-9-2): Just like GOOSE, this message type is also a Layer 2 protocol
and functions through multicast over Ethernet. It carries sample details such as
voltage and current samples on the process bus. It can also function over the
station bus. Both SV and GOOSE provide no reliable methods to ensure delivery
of the data.

IEC has multiple known-security-challenges and vulnerabilities that could be
exploited by skilled attackers who can then compromise a control system. In MMS,
authentication is provided with clear-text passwords which can easily be exploited,
whereas the other two messages types i.e. GOOSE or SV do not have any provision
for authentication. It means that IES provides no verification for authenticity and
integrity because no firmware is signed between client and server. GOOSE and SV
have integrity of the message but that is limited, which makes proportionally easy
for attackers to imitate a sender. Some of the versions of IEC provided little security
capabilities with the introduction of certificate exchange for secure connection [19].

3.6 PROFIBUS

PROFIBUS (Process Field Bus) was first promoted in 1989 by BMBF, a German
department of education and research. As the name only depicts, it is a standard
Industrial computer network protocol which used for Fieldbus communication
involving microprocessors in automation technology. This is typically used by
Siemens. It sounds similar to PROFINET, a standard for data communication
over Industrial Ethernet, but one should not get confused with these. PROFIBUS
functions over client/server architecture by creating a hierarchy of two types of
stations in a network. First is Active station which acts as master and the second
one is passive station which acts as a slave and can never initiate communication
on its own. Passive can only answer the Active’s commands and at least one master
present must be present in every PROFIBUS network.

3.7 Other Protocols

Before implementing any kind of controls or security measures, it is strongly
recommended that a security practitioner must identify all aspects of the traffic
traversing the network Understanding the most basic protocols including ARP, UDP,
TCP, IP, and SNMP, transport mechanisms, and basic elements of any network
are held into account. Few specialized environments where IoT networks need
to contact the individual sensors, it may use other background control protocols
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such as Datagram Transport Layer Security (DTLS) and Constrained Application
Protocol (CoAP). Such protocols have to be considered separately from a security
perspective.

4 Constraints Faced by ICS Systems

Some of the potential security deficiencies with regards to network architectures in
ICS systems have been observed in previous sections. ICS IT networks are different
from ordinary IT networks and must deal with many different restrictions that don’t
generally apply to ordinary IT networks. This is because rather than only managing
high throughput of information, ICS networks usually have to function more
towards carrying out tasks reliably and punctually. It often has redundant systems
so that when a component fails, other spare component shall be made available to
carry out the processes continuously without any break. When failure occurs, ICS
networks can’t simply be rebooted just like a normal computer network. Safety of
every field unit in ICS environments is responsibility of ICS network managers
and sometimes they have to handle the scenarios where a network failure can
cause a serious and instantaneous real-world repercussions or consequences such
as a reactor meltdown or contamination of drinking water. Thus, risk management
becomes a significant aspect of ICS network manager’s job.

Inclusion of components that require direct physical connection with an Indus-
trial process is another major difference that ICS possess than IT networks. These
elements may include forces or high temperatures which can create challenging
conditions for the components involved. ICS systems use software which may not
be familiar to conventional IT managers. Also, these ICS software packages are
developed by specialist firms and are proprietary, which makes upgrading these
packages difficult. Another constraint is the irregular security patches for these
software which is rarely the case with a well-run IT networks. Even while to
change software, many ICS networks cannot easily be turned off and ICS managers
must plan for any alterations well in advance. Any minor mistakes can lead to
serious vulnerabilities, which in turn can cause security incidents. Following graph
shows the trend line of ICS security related incidents reported in the years between
2009 and 2016, according to reports by the Industrial Control Systems Computer
Emergency Readiness Team (ICS-CERT) (Fig. 7.7).

As we can observe from the trend line that the number of security-related
incidents containing industrial control systems (ICSs) in the year 2012 was more
than five times in the year 2010 (197 ICS security incidents were reported in 2012
as compared to 39 in 2010). This rising trend line in the incident count has acted
a catalyst for the grown focal point on securing the industrial control systems.
Earlier, ICSs were negligibly inclined towards traditional information technology
(IT) systems in which proprietary control protocols were used by specialized
hardware and software and had the resemblance of isolated ICS systems. Now,
low-cost and widely available Internet Protocol (IP) based devices are taking place
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Fig. 7.7 Trend line of ICS incidents reported by reporting entity (source: ICS-CERT US)

of these proprietary solutions. This increases the probability of cyber security
vulnerabilities and incidents due to Internet exposure. ICSs are acquiring IT
solutions, so that it can provide remote access capabilities and corporate business
systems connectivity. These facilities are designed and developed using industrial
standard computers, operating systems (OS) and network protocols. This has made
ICS to be more paralleled with IT systems. This integration provides ICS with
IT capabilities such as controlling and monitoring the processes have become a
lot easier while taking better decisions for future requirements. But along with
these new capabilities, this integration also provides little or no isolation for ICS
from the outside world. This creates a greater need to have these systems secured
from remote and external threats. Increasing use of wireless networking causes ICS
implementations to be at greater risk. Hostile governments, malicious intruders,
terrorist groups, complexities, accidents, disgruntled employees, natural disasters,
as well as malicious or accidental actions by insiders, are various sources which
cause threats to control systems.

Most of the industries rely on security through obscurity i.e. using secrecy in
an attempt to ensure security. These industrial control system stakeholders look
at security as a low priority goal. Security through obscurity method has been in
use consistently, but its success rate has differed across the three generations of
industrial control systems. It greatly worked for first generation i.e. monolithic and
second generation i.e. distributed industrial control systems. In these generations,
proprietary software and closed-source components, standards and protocols were
used with restricted or no connectivity to non-industrial-control-systems. However,
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third generation which is the networked industrial control systems regularly use
open technologies. It requires connection to and communication over other net-
works, potentially non-industrial-control-system. Increased awareness of industrial
control system technologies, their use of standard protocols and openness to
networking has advanced the susceptibility to attack. Most of industrial control
systems are considered as critical infrastructures, making them attractive targets for
attack [20].

Followings are the possible incidents, an ICS may face:

1. Flow of information through ICS networks can be blocked or delayed, and this
could discontinue the ICS operation.

2. Damaging, disabling or shutting down the equipment can be caused by unautho-
rized changes to commands and instructions, or alarm thresholds. This could also
create environmental impacts and endanger human life.

3. Incorrect information can be sent to system operators in order to hide unautho-
rized changes or to accelerate the operators to begin inappropriate actions. This
could have various negative effects.

4. Inappropriately modified settings of ICS software or configuration or ICS
software infected with malware could have various negative effects on ICS.

5. Human life can be put endangered due to interference with the operation of safety
systems.

5 IT and OT Cyber Security Challenges

Operational Technology (OT) is a combination of hardware and software appliances
which are responsible for detecting or promoting a change via direct monitoring and
controlling of physical devices, processes and events in the enterprise. As discussed
previously, industrial systems were solely based upon proprietary protocols and
software for many years. Those systems were managed and monitored by human
beings, manually. It provided no connection to the outside world for any reason.
Because of their isolation from outside world, they did not provide any opportunities
to hackers for any kind of threats as they had no network interface for causing an
attack also no medium by which attackers could gain or destroy. Acquiring physical
access to a terminal was the only way for attackers to exploit these systems, but
this was not an easy task. Then in few years, even with limited integration of OT
with IT could not raise the same kinds of vulnerabilities as ICS is facing today. Now
with modernization, more industrial systems expect to deliver big and smart data
analytics with the inclusion of online system. This technological integration helps
them in adopting new capabilities and efficiencies which it provides to IT industries.
This convergence provides organizations a single view point for industrial systems,
all together with process management solutions. These systems make sure that
accurate information in expected format is delivered to machines, sensors, switches,
devices, and people at the right time. If configured properly, collaboration between
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OT and IT provides new capabilities to remotely monitor and manage the devices.
This advancement from closed to open systems has also lead to new security risks
which need to be addressed and mitigated.

5.1 Reasons for Industrial Control Systems Being Targeted

Businesses and organizations are seeking for efficient control systems that can
automatically manage their processes, so that they can sustain in today’s market
driven economy. ICS in plants or critical infrastructures has a significant role in
operating a country. ICS with increased efficiency also introduces new risks for
security. When such plants or critical infrastructures are attacked successfully, it can
cause serious impact on any organization and provide attackers with much more to
gain like intellectual property theft, shutting down the operations or damaging the
equipment. This cost organizations in terms of financial loss and personnel’s health
and safety risks. Threat actors have different motives when an enterprise is targeted,
some of which could be financial gain, political cause, or even a military objective.
These attacks may be sponsored by competitors or may be directed by insiders
with a malicious goal, and even hacktivists. For example, ICS attack that happened
with 13 of DaimlerChrystler’s car manufacturing plants in 2005 [21]. When the
attack happened, these car plants went offline for nearly an hour which resulted in a
production backlog and costing the company thousands of dollars. The main reason
for the attack was Zotob PnP worm infections that affected a Windows Plug and
Play service. The attack was not related to a group or individual; competitors could
also hire cybercriminals and directed the attack because they have much to gain
from the damage caused by such attack.

5.2 Implementation of ICS Attacks

The first step of building an attack against ICS is reconnaissance which means
that attackers first start surveying the ICS environment. Then the next step is to
develop different approaches and tactics that help attackers in gaining a foothold
or entering in the target network. These tactics and strategies depend on targeted
devices. Attackers make use of specific configurations of an ICS and all the possible
vulnerabilities while launching a malware. After identifying and exploiting these
vulnerabilities, attackers could carry out unexpected changes to certain operations
and functions, and make adjustments to the existing controls and configurations.
Different factors such as security of the system and intended attack impact
determine the complexity of an attack being launched on ICS. For example, a denial-
of-service is much easier than manipulating a service and removing its intended
effects from the controllers because DoS attacks only cause disruption in the process
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Fig. 7.8 Possible weaknesses in ICS network

of the target ICS. There are already a lot of methods for attackers to damage or
disrupt an ICS process, but new strategies will continue to evolve with the devices
that are introduced to every ICS environment. The following figure shows the
possible weaknesses in an ICS network (Fig. 7.8).

5.3 Security Challenges for ICS

For most of the organizations, digital transformation synonymizes with the incorpo-
ration of IoT and OT devices and be a part of the hyper-connected world. And with
the IoT devices adding up at a rapid pace, it becomes vital for the network security
professionals to deeply understand the metrics that affect cybersecurity in the IoT
ecosystem. Here are some of them:

5.3.1 Rapid Growth in the Amount of Data

As the volume of IoT connected devices increases, it is inevitable not to expect the
drastic explosion of IoT data. This data is stored freely between the widespread
physical and cloud-based networks. Availability of this enormous amount of data
poses a high degree of challenges for the cyber security experts.
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5.3.2 Gap Between OT and IT Team

Manufacturing operations are changing and becoming more and more connected.
It’s unlocking new levels of productivity and profit for the industry. Since OT
professionals are expected to be the experts about what makes plants run, they
must change too. And, indeed, OT teams are becoming more skilled at networking
and plant connectivity, but many OT professionals do not have sufficient training
or education in cyber security necessary to manage the nuances and pitfalls of
combatting advanced ransomware or other kinds of evolving threats. Thus, plants
find themselves in an awkward position, one where OT teams depend on IT staff
that may not be local to the facility to ensure security and manage connected
operations and also many IT teams often aren’t familiar with the complexities
of plant operations and manufacturing technologies. Because of disparate system
and compounded by the physical or virtual gap, OT teams often have limited
visibility into IT security policies. As OT teams make control system changes, they
can accidentally violate IT security policies, potentially leading to an attack or to
unplanned downtime.

5.3.3 Abrasion of Network Architecture

Standards and best practices either being misunderstood or the network interfaces
being poorly managed are the biggest threat and challenge to network security. It is
always a good security design practice to consider communication paths as insecure,
rather than knowing what the actual communication paths are. It is very common
that introduction of wireless communication in a standalone fashion, ad hoc updates
and individual changes to hardware and machinery, are being considered as a solid
design, but at the same time we may neglect its broader network impact, by not
taking its impact to the original security design into considerations. This has led
to underestimating the expanded and uncontrolled or poorly controlled OT network
which can make systems security weak or inadequate [22].

5.3.4 Extensive Legacy Systems

Many operational systems are being treated as legacy systems due to the static nature
and long lifecycles of components being used in industrial environments. It is not
unusual to have bundle of aged mechanical equipment which are still operating
alongside the modern intelligent electronic devices (IEDs), whereas in many
scenarios, these legacy components have crossed the boundary of isolated network
segments and have now been integrated with the IT operational environment.
These pervasive legacy devices may have historical vulnerabilities or weaknesses,
also may not be patched up or updated with the latest security trends. This is
potentially dangerous from a security perspective because it is possible that patches
are not even handy due to the epoch of the equipment. Their shared centralized
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compute resources and communication infrastructure are generally not built to
be compliant with the modern standards. Communication methods and protocols
of such devices could be generations old and interoperable with only the oldest
operating objects in the communications path. These components may include
routers, wireless Access points, servers, firewalls, switches, remote access systems,
and network management or patch management tools, and may also have operable
and exploitable vulnerabilities [22].

5.3.5 Less-Secured Operational Protocols

Most of the industrial control protocols were not designed with inherent strong
security requirements, for ex. serial based protocol such as Modbus. These protocols
were implemented under assumption that it will be used in secure network, and
hence their operational environments were not designed with secured access control.
Older variants of Industrial protocols such as SCADA, suffer from common
security issues such as absence of authentication procedure between communicating
endpoints, no protection or security measures being applied to data traversing over
the link, and insufficient control measures to properly specify recipients or no
mechanism provided to avoid default broadcast approaches. These protocols may
not be as critical in an isolated self-contained systems or zones, but it requires
special considerations while using in public network such as a WAN. Such industrial
protocols may not be originated by private firms, and their operational methods
and structure are easily available publicly because these are generally published for
others to implement for the sake of interoperability. Thus, it comparatively becomes
simple for these protocols to be compromised and then the malicious actors may
use them to hack control systems for the purpose of either reconnaissance or attack,
which could lead a normal functioning systems operation to an undesirable state
[22].

5.3.6 Insufficient Security Knowledge

Traditionally, it has been observed that mostly investment in the industrial oper-
ations space is primarily for connectivity and increasing the computation speed,
whereas little attention is paid to its security relating to the IT counterpart. Another
relevant challenge is that industrial workforce has workers of higher age while new
connection technologies being introduced in OT industrial environments require up-
to-date skills. For example traditional serial based legacy technologies are being
replaced with wireless, Ethernet and TCP/IP based technologies for connectivity.
Extensive expansion and advancement of extended communications networks, has
developed the need for having an industrial controls and security measures-aware
workforce, otherwise it generates an equally serious gap in security awareness. This
security knowledge gap in OT could be bridged by providing education for industrial
security environments, particularly in the field of electrical utility, where some
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regulations such as IEC 62351 and NERC CIP (CIP 004) require duly training due
to its criticality. Due philosophical differences between IT and OT environments;
the process of upgrading industrial networks to the latest and most secure levels is
a slow process [22].

5.3.7 Cryptojacking

Cryptojacking is a process by which the computing devices are secretly used to
mine cryptocurrency. Now that IoT and OT devices are potentially less visible,
they provide opportunities for the cryptojacking attacks by which these devices can
be exploited to mine cryptocurrency. This poses a more significant threat for the
networks that use IT for managing the operations. The success of cryptojacking
efforts directly affect the efficiency of the overall system and cause it to slow down
[23].

5.3.8 Headless Devices

Demand for IoT devices due to its efficiency has increased, so is the price of it,
which resulted in vendors engineering these devices with only the bare essentials
required to ensure functionality of these devices. These devices lack the controlling,
monitoring and visibility (user interface) measures, making them inaccessible to
patch or update. These devices may include conspicuous vulnerabilities and provide
cybercriminals a way to inject AI-assisted attacks that can compromise IoT and
OT devices. Swarm technology is one of such emerging techniques, which first
transforms devices to malware proxies and then provides attackers with an ability to
attack networks on a large scale [23].

5.3.9 Poor Network Visibility

Lack of visibility into the components or equipment functioning within an ICS
network at any given time is one of the biggest vulnerabilities in OT environments.
At any given point of time, thousands or more internet-connected devices can
access a network from different locations, including the devices from remote offices
connected via SD (Software-defined)-WAN, a new type of OT network. The main
challenge, in this case, is that security is basically dependent on the ability of
cybersecurity professionals to identify each device connected on the network. These
professionals are also responsible for assigning ownership and policy, grouping
the devices accordingly, and then actively monitoring and tracking those devices.
Data generated by internet-connected devices and their applications must also be
monitored even when they are highly mobile. Manual threat analysis, detection,
and mitigation becomes extremely difficult in a large scale network and could lead
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unauthorized devices, rogue access points to operate secretly, but remain undetected
in the network [23].

As connectivity on the plant floor increases, so does complexity and so do
security concerns. Every new asset you put on the network, gets added to the list of
devices which require monitoring and security consideration as they are just another
risk which gets added to the system. In many plants, the increasing number of assets
is making it difficult to see the security context and truly understand the network at
any given moment. Organizations lack the ability to identify what even just normal
network activity looks like. When abnormal conditions arise, that means they have
no baseline for comparison making it difficult to identify threats.

Why can’t they see the network? Since industrial control system (ICS) environ-
ments consist of many types of equipment operating with many different Industrial
Internet of Things (IIoT) protocols, getting a centralized view is difficult, if not
impossible. The greater scope of asset types and ages presents challenges that
traditional IT environments don’t encounter. At the same time, the manufacturing
industry is becoming an increasingly alluring target for cybercriminals. Again,
because of all those assets. Each one is a potential entry point. Many manufacturers
are operating with aging assets and equipment. Having originated in a time far
removed from today’s threats, this equipment wasn’t designed to guard against
complex, high-tech cyber-attacks. And this leaves the IT/OT staff to pick up the
slack (Cisco).

5.3.10 Multi-Vendor Environments

When an organization adopts the information systems, it gives rise to some
challenges such as requiring regular system updates, change and patch management,
or updates for all lower and middle level hardware used by information systems.
This can involve the following types of hardware:

• Portable systems such as computers for operating and engineering staff
• Virtual servers or SCADA monitoring servers
• Network routing devices such as industrial routers
• Network switches
• Programmable Logic Controllers (PLC)
• Field devices of various levels of autonomy with digital or analog input/output

and complexity

As the digital transformation efforts in industries have drastically increased
the need for IoT and OT devices, different manufactures have been quick to
margin their profit in it. This resulted in a myriad variety of IoT devices from
numerous vendors being installed in network infrastructure. However, this has
made harder for IT teams to secure, track, and account for each device due to the
large number of multi-vendor devices being used in ICS environment. Upgrading
industrial control systems is more time consuming than upgrading traditional IT
systems. Industrial organizations have evolved with high-level information control
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systems using traditional IT based technologies [24]. These organizations needed
to create an additional communication and information exchange path techniques,
so that integration of these new information systems with existing industrial
control systems could be done smoothly. But this approach can put the entire
Confidentiality-Integrity-Availability (CIA) concept, and the safety of individual
processes and related hardware, at risk.

Some of the additional cyber security challenges due to multi-vendor devices
have been identified as below:

1. The risk of known and unknown vulnerabilities can be increased and exploited
due to hardware devices and component software being implemented by different
manufactures and these devices may be implemented with minimal security
considerations. This can also increase the complexity of integrating Information
systems.

2. Systems configured with compatible devices in newly designed information
systems may be weak or highly vulnerable, because sometimes these devices
lack the measures designed to ensure compliance with CIA requirements.

3. In the event of direct tampering with the control process, the safety measured
deployed in a SCADA systems, including the field level devices may not perform
well. These direct tampering can be caused by remote intruders or malicious use
of access rights given to enterprise staff.

4. Around 10 or 15 years ago, air gap solution between the industrial network
and other networks was an easy approach to implement, but now with the
ever-growing dependence of modern supply, finance, and planning processes on
business analytics and connectivity has made this air-gap methods impracticable
[25].

6 Potential Impact of Cyberattacks on Industrial Systems

Target device’s nature of operation and the motivation of cybercriminals define the
impact of cyber-attacks on the industries using ICS equipment. Systems tampering
may affect the output of actor’s target and produce unpredictable and unwanted
results. This may also cause change in functioning of Remote Terminal Units
(RTU), Programmable Logic Controllers (PLC), and other controllers. A change
in controller modules and controlling devices may lead to unexpected behavior
of the system and damaged equipment or facilities. This process malfunction can
disable the controls over a process or provide wrong information to operations
which may lead to the execution of unwanted processes or perform unnecessary
actions due to misinformation. Moreover, the malicious activity, injected code or
the incident itself can be made unnoticed as wrong information may be passed.
Post tampered safety controls, systems may fail to follow a systematic operation
of fail safes and safeguards. This may lead to putting the lives of employees, staff,
and possibly even the external clients at risk. For ex. in a manufacturing plant, a
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cyber-attacker may change the operations of storage tanks while processing raw
material such as chemical reagents, and threatens to corrupt chemical products if a
ransom is not paid. Another example of system tampering is, in the transport sector,
cyber attackers may invade the control systems to shut off lighting in a tunnel and
intervene with the running of traffic signals. Also, in Los Angeles during a strike
in 2006, few disgruntled employees had caused traffic jams over many days, just
by connecting to the city’s network from their homes and reprogramming only four
traffic lights. A latest example of ICS attacks comes from the energy sector, in which
ISIS had attempted to hack the US energy grid, as informed by FBI publicly (Cyber
Attacks 2017).

The following are some of the impacts of Cyber-attacks launched on industrial
systems:

1. Material or equipment damage/endanger human life: Altering the normal set-
tings of processes or installations could lead to physical damage, not only in the
form of material or equipment but also human lives.

2. Profits loss: Sometimes production systems can not directly be targeted, so
altering manufacturing settings of these production systems play a vital role. This
can result in the output of nun-compliant products and cost considerable amount,
and lead to a substantial loss of profits.

3. Environmental impact: Malfunctions in systems can lead to serious environmen-
tal issues, such as opening sluice gates to release polluting products openly,
would promote significant pollution to industrial sites and its surrounding areas.

4. Data theft: Theft of confidential industrial data, such as loss of production
statistics and secrets may be beneficial for competitors and a big loss for the
companies at target.

5. Non-compliance to regulatory risk management: High monetary penalties are
fined to the industries for being non-compliant with strict regulations of security.
For ex. several hundreds of thousands of euros for the military spending law
(LPM) in France.

6. Criminal liability and civil reputation: If services such as power and water
distribution are made unavailable or defective products that could endanger
consumers’ lives are provided to the customer, not only it could lead to lawsuits
for the damage it has caused but also adulterate the company’s image in its
customer’s eyes for the future.

Industrial attacks may have serious impact on production systems, tools and
processes and sometimes even on staff or general public. Enterprise managing teams
and heads need to stop assuming that their infrastructures are impenetrable and
untouchable. Instead, they must acquire safety measures to safeguard the security
of their systems and installations.
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7 IT and OT Security State

According to a survey held by Kaspersky, in the field of OT/ICS cybersecurity
market (The state of Industrial Cybersecurity [26]), 58% of the companies surveyed
consider that hiring ICS cybersecurity employees with the right skills is a major
challenge. They consider this as a global cybersecurity challenge. This aspect is
more critical because companies are integrating their OT/ICS systems with their IT
systems and IoT ecosystems, which means that they are becoming more open to the
outside world. Industrial workforce may not be fully aware of all security measures,
as may be an IT team. Thus, to have a secured ICS space, IT department also needs
to be involved throughout the entire implementation process of the ICS, rather than
retrospectively involving them just after a cyber-attack occurs. The current problem
is that the department set to benefit the most from the implementation of the new
technology often focuses solely on deployment to see the results faster. However,
this is when oversights occur and vulnerabilities materialize. For organizations to
start understanding the problem with OT/ICS security, they will need to begin with
looking closely at their network and involving IT in the conversation.

7.1 OT Threats Stats

According to Skybix Security’s latest Vulnerability and threat trends report, there
is an increased risk to the growing attack surface, typically brought about by the
likes of the industrial internet of things (IIoT) and OT networks [27]. Attacks on
OT have increased by 10% between 2017 and 2018. Taiwanese Semiconductor
Manufacturing Co Ltd (TSMC), a chipmaker company was hit by a mutated
WannaCry outbreak in 2018. It was a prime example of how a cybercriminal tool
such as ransomware can create the perfect cyber-attack storm, wreaking havoc on
a network and a company’s bottom line. Stuxnet also caused similar damage in
2010. With the internet of things (IoT) technology, operational technology is a
target because of its wide use and, as with IoT devices; OT devices are yet another
endpoint. Hackers can use these devices to gain access to an otherwise secure and
often valuable network and hamper it.

7.2 Looping in the IT Departments

An industry should first develop some kind of security framework. A lot of resources
with IT skills are available now, but they lack experience in dealing with security
breaches and may don’t have security processes knowledge. This poses a lot
of challenges for an industry. Traditional security components such as firewalls
cannot simply manage the typical traffic produced by OT sensors and control these
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Fig. 7.9 Distribution of ICS security responsibilities with different departments [26]

devices. This makes IT department especially vital in remaining secured. Currently,
Industrial production and resources department handle the responsibility for OT
devices, but security of these devices from cyber threats should be handled by IT
team. One of the main reasons for doing this is that these devices are connected
to the internet. Efforts to secure industrial control systems (ICS) somewhere lags
behind with the pace, as connectivity in the IIoT continues to accelerate. Despite
these growing security concerns, internet-connected devices increasingly continue
to get integrated with traditionally air-gapped OT because they improve operational
processes, reduce costs and minimize downtime. But industrial organizations would
remain soft targets for threat actors until security becomes a priority. Following bar
graph shows the distribution of ICS security responsibilities with IT departments.

The graph in Fig. 7.9 shows that most of the organizations depend on IT people
or department, making IT people necessarily to be looped in all the processes being
carried out at Industrial sites. OT solutions highly depend on IT infrastructure and
services, which increases the overlap of skills for managing the both OT solutions
and IT services, and further justifies the need for having greater IT involvement.
From the outset, employees should be duly educated and provided knowledge on
security best practices just as with any digital transformation project, everything
from regularly changing passwords, to being able to spot a phishing email. Securing
multiple points of vulnerability has always been a major challenge for businesses
and whether it’s a company laptop, a phone, or a smart temperature gauge in a fish
tank in an individual’s home, the solution to securing different devices is never one-
size-fits-all, it differs from device by device. Last year, the state of California passed
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a law setting higher security standards for net-connected devices making default
password such as “admin” and “password” illegal to use. This same exemplar should
be applied throughout the implementation roll-out of any operational technologies.
Such best security policies need to be followed when it comes to securing IT
devices. Some of security patterns defined by Open Security Architecture which
can be applied ICS networks:

• Access Control: This mechanism assures that the person who is trying to access
a system or application is who he/she says it is. It checks the authenticity of the
person by making them to submit a unique identifier, such as a user ID, and the
corresponding authenticating and secret information, such as a password.

• Network Security: It protects the confidentiality, integrity, and availability of
information systems when connected to network, from external or even internal
threats using a variety of security control devices, such as DMZ and firewalls.

• Log Management: This is a security control and let the critical systems and
applications to generate and record the important security related events, these
events can later be analyzed to assist in identifying threats to system and
troubleshooting network or system related issues, and also help industries to be
compliant with regulatory requirements.

• Remote Access: This lets users and vendors to seek access to the ICS environ-
ment for remote maintenance and support. This remote connection must secured
with connection to private network and updated antivirus applications, also must
not be permitted to connect to unwanted sites [28].

Apart from these measures, security awareness programs for staff, contractors
and vendors with adequate and required access must be held. Security audits and
assessments of control systems and their networks, including penetration tests, are
also important and highly recommended in all sectors but less often implemented.
Other technology-oriented measures should also be considered such as network
monitoring, log analytics, IoT device behaviors analysis and vulnerability scanning
techniques to make sure systems and applications are up to date, so that the known
problems are fixed with this updates and patches. Vulnerability scans should be
continuously performed without any fail, and should at least be done after every
vulnerability database update. These measures can be implemented, and security
related attacks can be avoided with the help of big data and Artificial Intelligence
as mentioned in the beginning of this book chapter. In the future, we can expect
more devices to become connected to the internet; and with this, IT teams will
increasingly apply machine learning and artificial intelligence to keep them secure.
Any changes in the implementation of OT must be shared with IT team. Also, any
employees who share the responsibility of OT must adhere to the security policies
and should be educated on basic security protocol. As the roll-out of OT continues to
gather pace, the channel must do all that it can when it comes to helping to educate
its customers and partners. In this way, educating every employee and department
form the ground level on staying OT secure. In coming sections, we will discuss
about how IT team can make use of big data and AI to prevent ICS cyber threats in
detail in the next section.
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8 Leveraging Big Data and Artificial Intelligence for Security

Experiencing increased number of IoT devices, the main challenge in Industrial
environment originates from the vast amount of information being generated from
these devices. In traditional systems, information was collected periodically like
on monthly basis. Modern industrial systems present a new framework, in which
information about different matters is gathered by all the interconnected nodes,
at very frequent basis. For example, in smart grid infrastructure, devices gather
information not only about consumption of the power but also other information
such as peak loads, real-time prices, power quality issues, network status, etc.
In this regard, one of the main challenges for computational intelligence is that
managing such a huge amount of information intelligently. This is because valuable
conclusions and inferences can be extracted from this data, to support the decision
making processes. Complex Event Processing (CEP) techniques can be used to
address this challenge effectively. The collection of information over the network
of extensive logs is performed through a distributed file system (DFS). This is
basically designed to safeguard the real-time requirements of industrial control
systems and networks. Data analytics through big data computing algorithms can
help in achieve this goal of finding conclusions. These analytics are designed with
knowledge discovery from big data, predictive analytics, and descriptive statistics
based on inference and probability theory. Distributed algorithms for very large
graphs and matrices also help in deriving these analytics. Local cluster of computers
runs these computing algorithms on cloud computing technique (Fig. 7.10).

Raw data plays no significant role unless it analyzed and is converted into knowl-
edge. Then the knowledge extracted from data is beneficial for decision-makers
while taking major decisions regarding architecture of the ICS network. With a Big

Fig. 7.10 Big data approach for ICS
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Data point of view, this can lead to development of software-based analytics and
decision tools which are suitable for industrial operations and management. Using
these solutions, companies can observe the quantities of data they collect and then
drive desirable improvements to processes and products. The foundation of any Big
Data architecture is the data historian and infrastructure to feed real-time data to
this historian. Big Data architecture and its implementation must ensure that the
communication paths used by sensors are secured and sophisticated enough to allow
forensic investigations for any security related incidents. Big Data architecture is
determined by functional and network unit. More the information-based resources
used, more the data will be produced and provide more advantages to an enterprise.

8.1 Advantages of Big Data

Big data solutions indicates the ability to aggregate disparate sources of data,
disparate sources could be multi-vendor devices. This solution also provides ability
to analyze this collected data to generate relevant patterns. End users can refer these
patterns to make better decisions. This can also help in defining new baseline for
competition and growth that creates a remarkable value for the world economy.
Gathering information from multiple remote sites, systems, and sensors can be
a challenge in designing big data solution. This implementation also requires
considerable cost, engineering expertise, and time.

Big Data can be beneficial in achieving below goals:

• Information is made more transparent by providing visualization ability to the
end users to visualize the insights that would not have been visible

• Quality and performance of the processes are increased
• Discover insights and utilize refined analytics to minimize risks
• Helps companies in taking investment decisions by implementing theories and

analyzing its results in controlled experimental environments
• Increased automation and analytics help with real-time operations
• Increased risk management
• Minimized downtime also can result in 15% staffing reductions and 5% increased

production.
• Revolutionize solutions such as supply chain management, demand forecasting,

integrated business planning, and supplier collaboration and risk analytics.

Machine learning models can utilize this real-time data and help in detecting any
unfamiliar activity. This provides owners and auditors with detection capabilities
and visibility in any kind of incidents such as cyber-attack or even operational
malfunction event. Every packet flowing through network is captured and examined
by Capture and analysis. After analyzing every packet, a normal traffic patterns can
be discovered, and any deviations from this normal traffic can be detected. There
also exist the security challenges associated with Big Data, and once identified must
be mitigated. These security challenges can be resolved by using security measures
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Fig. 7.11 Distribution of
organizations acquiring cloud
services (source: [26])
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for automated data transfers, security solutions to keep up with the continuous
evolution of non-relational database and ensuring data validation for trust i.e. origin
and accuracy of the data. The following pie chart shows distribution of organizations
acquiring cloud solutions for Industrial networks (Fig. 7.11).

8.2 Cloud and Edge Computing for Remote Operations

Both raw and processed data drive the implementation of all business processes
and there is a need to compute this data as close to where the data originates
as possible. Edge computing provides local processing of the data collected from
different IoTs. This offers an opportunity for process industries to improve the end-
to-end operational integrity for real-time remote operations [29]. The goal of remote
operations is to avoid asset related issues and keep workers safe while persistently
abide by industry, environmental, and other government regulations. Operating cost
and downtime can be reduced by monitoring and controlling the assets at the edge,
even it becomes feasible to dispatch repairs and replace equipment components
before they fail.

8.3 Ability to Take Local Action

Remote operations, even in case of isolated locations, must be prepared and capable
of taking local actions as necessary. An instant value secured from the data first
processed at the edge, triggers IT/OT network managers to move edge data to the
cloud. Data moved from edge to cloud can be widely accessed. It also provides
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the advantage of other integration services such as performing big data analytics to
serve many applications. Edge computing can help remote sites to effectively work
upon the data that matters to a location’s real time situation and optimize the process
based on the collected data.

Cloud techniques can also provide additional value in terms of leveraging a way
to effectively train the machine learning algorithms which we deploy at the edge.
Machines and systems can learn and become optimized from what is learned from
other edge data, these machines and systems could be located at remote sites.

8.4 AI and Automation to Manage Cyber Security Threats

Artificial intelligence (AI) was first discovered in the late 1950s by Marvin Minsky.
It is a method, tool or technique that imitates cognitive tasks that are associated with
the human mind. Cognitive tasks could be learning, planning, problem solving, or
reasoning. The importance of AI in cyber security can be related in two opposing
directions. First side focuses that AI-controlled systems such as smart cities or smart
grid, could also be a potential targets for cyber-attacks, this is because of their
growing role in controlling complex and vital systems. On the flip side, second
direction focuses that AI is a set of tools that can help identify cyber risk and cyber
breaches.

Rapid growth in the number of IoT devices develops the need for a new security
and data-processing architecture. Machines have much higher computational abili-
ties than humans. They can process through the massive amount of data and use it
to derive better decisions. AI can:

• Help in finding patterns, associations, and trends
• Disclose inefficiencies
• Become better by learning
• Execute plans
• Forecast future outcomes based on the historical trends
• Advise fact-based decisions
• Improve and automate complex analytical tasks

Look at data in real-time, adjusting its behavior with minimal need for
supervision

Machine learning is a type of AI that learns without being explicitly programmed.
It allows computer processes to calibrate when exposed to new data. This is similar
to data mining where databases are inspected by humans to produce new insight.
Artificial intelligence (AI) and machine learning (ML) algorithms can be used to
extract actionable insights from the immense amount of IoT data. These algorithms
could be deployed at the edge such as flagging up and transmitting anomalous data
patterns, or at the core such as analyzing medium or long-term trends. IoT data may
come in great volumes, varieties and velocities, but the broad goal is to use data
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mining and AI/ML algorithms to discover patterns and generate insights in the most
efficient manner possible.

IT professional and engineers have started to re-implement their security mea-
sures to include AI for integrating and automating security fabrics. This would
secure IoT and OT devices, and also mitigate the common threats targeting them
[23]. Artificial intelligence will eventually be used by every industry in the world.
Here are a few ways that use AI to transform certain industries:

1. Comprehensive Device Visibility over network: AI can be integrated with network
access module. Cyber security professional with the help of AI-assisted network
access control, can have clear picture about every device connected to the
network or accessing it at any point of time. Each device can be segmented,
tracked, appropriately inventoried and secured with AI provided granular device
visibility at machine speeds.

2. Unified Threat Analysis and Threat hunting: Due to digital transformation,
organizations continuously put efforts in expanding their networks, both cloud
based and physically connected devices. It becomes difficult for them to carry out
threat analysis and mitigation activities for the increased network size, at a same
rate as to keep up with the pace of modern cyber threats. AI provides a solution
to this problem, by which latest threat analysis data can be collected by the IT
team. AI would also help in identifying the vulnerabilities those exist within the
ICS networks, and deploy those security solutions to mitigate the chances of
having cyber-attacks. AI prediction technology makes itself intelligent by going
through the millions of files and attack history, and learns from it. AI-based threat
detection solutions prevent and protect network against future attacks. AI will
repetitively walk through all the system data in search of recurring patterns,
anomalous behavior and other outliers to present threat hunters for further
investigation. SIEM utilizes AI to analyze network factors such as data, net
flow, proxy, DNS, packets. User behavior analytics product will apply machine
learning on user data to detect malware.

3. Incident analysis and Investigation: In the event of attack, AI will increasingly
answer what happened to the asset (the attack’s impact), who the attackers were,
what were the past sequence in the attack chain on asset, what was attack’s
blast radius (including which other assets were part of the attack), and who
was patient zero (where the attack originated). AI will mine past alerts, network
and asset information, security logs and other relevant data to uncover clusters,
associations and patterns to present human investigators in a concise manner.

4. Automated Threat Anticipation: A network breach can happen in just a fraction
of seconds. The longer a network breach remains unnoticed or unattended, the
more the damage can be spread. This is very significant across the healthcare,
financial services, and critical infrastructure sectors because all required systems
in these sectors need to be operational and available at all time. If these sectors
are successfully attacked then it can cost excessive amount of money and even
the lives of patients, citizens, or employees. Under these infrastructures, IoT and
OT containment procedures can be automated by Artificial intelligence, which
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can properly segment the infected devices or take such devices offline before
they get a chance to spread affection to additional areas throughout the network.

5. Incident Response: AI techniques such as knowledge engineering and course
based reasoning will be used to create playbooks that guide incident responders
on what to do in the event of an incident. AI will review previous incidents and
codified knowledge from experts, and it will continuously modify or create new
branches in the main playbook as it learns from the new incidents.

6. Reduced Energy Cost: Companies in the energy sector can adopt AI intelli-
gence to reduce operational costs and mitigate issues by increasing automation,
optimizing asset management, improving operational performance, identifying
efficiencies, and decreasing downtime.

For example, DeepMind is a technology based company. It was acquired by
Google in 2014. It uses machine learning to solve everyday problems such as
reducing energy usage. Then Google data centers also applied DeepMind’s machine
learning algorithms. As a result Google managed to reduce the amount of energy
they consume for cooling, by up to 40%. These algorithms were designed to
deal with complex data as every data center followed a unique architecture and
environment. It required to build a custom-tuned model which is once used for one
system may not be applicable to another. Hence, a common intelligence framework
was required to have understanding of the data center’s interactions andhistorical
data from thousands of sensors within the data center such as power, temperatures,
speed, pump, set points, etc. are collected and used it to train an orchestra of deep
neural networks. With machine learning application to the problem, DeepMind
researchers could significantly ameliorate the system’s utility in less time.

8.5 Artificial Intelligence and Computational Intelligence
for ICS

Different Artificial and Computational techniques which can be applied to different
features of ICS are shown in Fig. 7.12. Managing a massive amount of data intel-
ligently and extracting inferences from this vast information to better support the
decision making process are done by Complex Event Processing (CEP) techniques.
These techniques tend to look for relevant patterns by event filtering. These filtered
events must logically-so powered that can provide clear understanding of on-going
scenarios. CEP systems need to support the understanding of a process semantically,
possibly by using the approaches of Qualitative Reasoning. For example, Smart
Grid technologies, where these complex reasoning systems can be used to enhance
the grid technologies. These systems are large-scale knowledge-based systems
of common sense such as Scone, Cyc, or ConceptNet [30], which can provide
advanced ability to help and power supervisory, control, and data acquisition process
of SCADA systems. There also exists the problem of supplying the right amount of
resources, at the right time and the right location. Active Demand Management tool
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Fig. 7.12 Artificial intelligence and computational intelligence techniques

can assist in solving the allocating problems of resources which involves some sort
of load balancing methods, and AI planning and knowledge-based techniques can
contribute in this regard with great improvements. ICS can use the capabilities of AI
not just to tackle the need for Information management, whereas, on the flip side, AI
can also help ICS in dealing with several unpredictable and uncertain scenarios. For
ex., ANN, the Active Network Management technology can intelligently automate
the tasks such as fault detection, take a proper decision during fault occurred
situation, and self-healing from these faults. Communication infrastructure is the
primary requirement of this technology so that it can support SCADA systems,
and intelligent distributed systems can play an important role in establishing such
communication infrastructure. Distributed systems can help through communication
approaches, algorithms, and consistent and replication (redundant data for disaster)
techniques. Intelligent distributed systems such as Multi-Agent Systems (MAS) can
assist in finding a suitable field of application in the ICS environment due to the
heterogeneous essence of the problem.

Computational techniques such as Fuzzy logic or ANN can be used to solve
dynamic and stochastic natured problems. Computational Intelligence techniques
and AI are two main approaches while dealing with unpredictable or uncertain
scenarios. Bothe approaches can be looked at as equivalent, but differ in a way they
approach to solve a complex problem. Artificial intelligence technique uses some
sort of goal-oriented approach, where finding association between the problems to
be solved and the actions that can help in getting to the desired output can be a
great help. This approach for complex problems is not much suitable for stochastic
situations though. Such dynamic situations can be better resolved by computational
intelligence techniques and approaches such as fuzzy logic, evolutionary computa-
tion, or artificial neural networks [31]. All these approaches focus on solutions rather
than providing knowledge having a set of actions attached with a common goal.
Traditional artificial intelligence techniques may find difficulties when several goals
to be accomplished, are in conflict with each other. In contrary, such scenarios can



156 S. Singh et al.

be well-handled by computational intelligence techniques. These techniques support
enriched methods to enable intelligent behavior under uncertain circumstances; they
provide ability to anticipate germane information which can help in decision making
support systems. ANNs, Artificial Neural Networks, comprise of interconnected
nodes which are nothing but multiple processing units and each are associated with
two values i.e. a weight and an input. ANNs are used in replication process of
biological neural systems. Rather than being programmed explicitly, these neural
networks can be trained to observe different data patterns. Initially, data and the
targets are provided to the neural networks, making them to learn the identification
of certain patterns. This technique requires a large amount of input data, enough for
deriving correct behavioral patterns. Most relevant applications of ANN techniques
is in energy systems such as while modeling solar energy and generating heat-up
response, monitoring voltage stability, creating adaptive critic design, and predicting
of the global solar irradiance or even for security issues.

8.6 Contribution of Intelligent Systems to Cyber Security

Two very familiar classes of AI techniques are knowledge-based systems and
machine learning methods that contain valuable tools, which can be used cyber
security. In knowledge-based systems, which are also referred to as expert systems,
a massive amount of expert’s knowledge is loaded to the computer memory [32].
In these systems, the learning part i.e. reasoning related to the knowledge is
accounted by a programmed logics such as if-then or inference logic rules. Anti-
span and antivirus software packages use implementations of expert systems in
cyber security. In this regard, knowledge is obtained through a large amount of
transactions methods that apply protocols, network traffic (e.g., VoIP, or email),
and I/O interactions with operating system. All these parameters are analyzed
systematically to protect systems from cyber breaches.

Machine-learning techniques are usually applied to the methods where learning
factor is achieved by the computers themselves, usually by extracting germane
and relevant patterns from the information. These methods are used in deriving
predictions or smart recommendations, such as recommending users to buy cer-
tain products based on their historical search items. ML algorithms are matured
automatically through experience with the data and give systems the ability to
learn without being programmed explicitly. Cyber-security tasks such as spam fil-
tering, monitoring, risk analysis, zero-day attack identification can be addressed by
machine learning algorithms. Machine-learning methods are divided into two main
classes and a hybrid of these two classes of ML methods. First class is unsupervised
learning methods [33], where untagged data samples are uploaded to the system,
to find relevant patterns. Some of the applications of unsupervised methods include
anomaly detection in communication protocols [34], Fraud detection in financial
systems, and identifying potential risk of software packages. These methods use
anomaly detection and clustering technique to identify both positive and negative
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deviations from the expected behavior, which are then mapped into actions. For ex.
blacklisted websites, risk assessment of software packages, or blocking suspicious
users from internet connections.

The second class of machine-learning methods is supervised learning. In this
class, tagged data samples (attached with desired output) are injected to the system,
where it maps inputs to the correct outputs. For example, while generating a
software’s risk score in cyber security domain, descriptive features of software such
as such as the communication paths, time, and the type of interaction with OS,
etc. are taken into account and tagged as risky or non-risky. Then systems learn to
predict high-risk software in advance [35]. Methods consisting neural networks with
multiple processing levels form Deep- learning models, which are highly complex
models. As discussed previously about ANNs, which require a large amount of data
to derive certain patterns, in the same way data modelling methods also require
a massive amount of data and high-speed processing units. These requirements
can be made available with the development of big-data and cloud technologies.
Deep- learning models, capable of addressing supervised learning methods and are
found successful in signal processing, where a lot of tagged data is available. These
techniques are also used for image processing, which provides computer vision,
and for speech recognition, which can help in providing correct measure for user
authorization. Deep learning is a type of machine learning and a central branch
of AI, which can serve as an important tool in the cyber security. Deep leaning is
useful in analytics activities, which require complex modeling of large data, often
non-linear and establishing relations between inputs and outputs [36].

Machine learning and artificial intelligence are being applied increasingly in
the energy sector in three essentially distinct areas. One is for predictive purposes
such as weather forecasting, using past and current datasets to predict future
patterns on varying time scales. Another is for management applications such as
energy efficiency and demand response. The third, of a more detective nature, is
for monitoring of data streams to pick out variances from determined ‘normals’
as indicative of a current or emerging problem. One application where this is
being applied is asset monitoring and preventive maintenance. Another, which is
attracting growing interest in cybersecurity, with one novel solution from Israeli
company CyActive—subsequently acquired by PayPal—incorporating bio-mimicry
to generate future malwares which can then be guarded against [37].

Andrew Tsonchev, Director of Technology at Darktrace says “Darktrace’s
machine learning and artificial intelligence-based solution is designed to cut through
the challenges as well as to better support a disaster recovery”. Darktrace considers
the OT security problems as its priority and resolves those problems by extensive
use of AI to identify and counteract cyber threats in critical infrastructure in real
time [38]. Darktrace’s Industrial Immune System, enriched by machine learning
techniques, undertakes the normal ‘pattern of life’ for every device and ensures that
cyber-attacks across OT and IT are stopped before they escalate into a crisis [23].
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9 Impediments to Applying AI to Cyber Security

Automation delivers remarkable value to organizations in terms of carrying out
repetitive and boring tasks such as analyzing large data samples, which usually are
considered to waste valuable time and result in unengaged and unhappy employees.
Nonetheless, Scientists opine that there should be some regulatory charges, maybe
applied at the national and international level due to the impediments that might
arise and need to be resolved while applying AI to solve cyber security issues. Some
of such impediments have been identified and discussed as following:

1. Some of the challenges for OT and IT security protection in utilities include the
mix of technologies of different ages or protocols, both open and proprietary, the
large number of endpoints and the siloed approach to protection, having separate
OT and IT security teams and those teams not always solely dedicated to security.
Moreover, the protections must be of the same level, indicating that OT and IT
is a complex task to protect technologically, and requires the right people in the
right places.

2. Leading global companies are investing large amount of monetary values and
resources in developing AI models for new applications, such as Google’s self-
driving cars, Apple’s Siri, and Facebook’s automated image tagging. Although,
these models have delivered excellent results in accomplishing some specific
tasks, its performance is not always assured, especially in non-continuity cases.
Moreover, sometimes output from these models is by misunderstood cyber
security analysts (Chief Information Officer) and decision makers because these
models lack descriptive interpretation of the results.

3. False ICS Anomaly Detection: Power generation, substation and electric grid
operators and many other critical infrastructure sectors typically use equipment
from a heterogeneous assortment of vendors. This equipment runs thousands of
real-time processes generating a huge volume of data. Increasing the intercon-
nectedness and digitization of these systems is a pillar of improved operational
efficiencies; however, it isn’t risk free. Analyzing and monitoring this data to
detect anomalies that might be caused by a cyber-attack is akin to searching for a
needle, in thousands or even millions of haystacks. An ideal system should have
a 100% detection rate with 0% false alarms. Organizations need to find a way
to detect anomalies in their ICS environment as a foundation for reliable and
resilient power delivery [39].

4. Many electric utilities have hundreds or even thousands of substations and they
are critical for realizing the efficiency and adaptability vision of the smart grid.
With the smart grid, information about consumption and operations needs to be
sent back to a central point for analysis by energy management systems and
substation automation systems, requiring two-way communication of data. To
facilitate this, the communications networks of substations are being retooled to
facilitate connectivity with multiple systems. The preferred networking technolo-
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gies are based on Ethernet and TCP/IP, and adhere to the IEC 61850 standards.
Modern substation systems need to support interoperability and deliver high
reliability and availability. They also need to do this while addressing increasing
concerns about cyber security [39].

5. Lack of knowledge, confidence: According to a survey, more than 25% of the
companies surveyed informed that they did not have any current investment plans
for Big Data and IoT, whereas some industries opined that they did not have
justified knowledge to invest the costs in leveraging this technology. Over half
of the companies cited that their organization is running fine without big data
and cloud approach and they already have reliable and cost-effective measures
and systems to ensure success and safety. Others reported that they lacked
enough time, resources, and workforce. A challenge in exhausting the advantages
provided with Big Data is not deploying a proper visualization tool which can
capture all the available data to go through the iterative and multi-structured
discovery methods that uncover information.

6. Passive monitoring devices solve an important part of the SCADA (supervisory
control and data acquisition) security problem by automatically identifying
industrial assets and providing comprehensive, real-time cyber security and vis-
ibility of industrial control networks. They should provide optimal performance
while monitoring thousands of substations and assets across low bandwidth
networks. However, delivering this functionality requires overcoming significant
technical challenges. For starters, electric power generation systems and grids
are characterized by large a geographic area, which similarly means a substantial
amount of infrastructure. Asset tracking, including their real-time status, results
in large volumes of data that needs to be mined to identify anomalous inci-
dents. High-Performance Computing (HPC) is critical for on-line, scalable and
distributed intrusion detection.

Increasing cyber threats, management fears, and government policies are driving
using AI and ML techniques to improve the resiliency of their systems, with
enhancements to their ICS cyber security programs. Five years ago, it was very
difficult to have real-time visibility and cyber security of industrial control networks,
which has changed now. The scale and complexity inherent in substation and power
grid systems make identifying anomalous and harmful incidents complex, but that
doesn’t mean they can’t be found. Just like the right equipment will eventually find
the needle in the haystack, it is now possible to have comprehensive ICS cyber
security that addresses the advancing threat environment in a manner that reduces
cyber risks while improving operational excellence and reliability.
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10 Case Study

10.1 An Intelligent System to Detect Unauthorized Internet
of Things Devices

An AI-powered intelligent system is capable of detecting unauthorized and suspi-
cious IoT devices. These systems can detect devices not only which are part of
the ICS but also which are not part of the organizations. It maintains a white list
of trustworthy IoT devices and provides a way to detect unauthorized IoT devices
connected to their networks. Supervised machine-learning algorithms are applied in
these systems to monitor the network traffic and precisely identify the IoT devices
which are listed on the approved white list and will raise a security alert on finding
any device that is not listed on the white list or found suspicious. The activity of
identifying devices on network or within the organization can be looked at as a
multiclass classification problem, in which two sets, one having the list of authorized
devices D, typically a white list, and another structured set consists of traffic data,
are mapped. Second set also has the assumption that each device Di in the set D has
labeled dataset to represent its behavior. Then, the intelligent system observes the
behavior of all the authorized devices on the white list, particularly with supervised
learning method. It then induces a classifier C for unlabeled network traffic data
post identifying a device on new stream. This intelligent system demonstrates how
machine-learning and AI methods can be used for IoT security to solve cyber
security threats.

10.2 ODIX Kiosk Solution

Use Case: Critical Infrastructure (Energy) US Power Plant
Challenge: US Power Plant’s highly-secure critical infrastructure network is air-

gapped, completely blocking access to external files, except via removable media.
Yet one of the most severe threats to any organization is files inserted via removable
media like USB drives, CDs, DVDs, and portable hard disks—and malware attacks
take advantage of this vulnerability.

Solution: US Power Plant implemented the ODIX Kiosk solution. Ideal for
critical infrastructure organizations with air-gapped networks, the ODIX Kiosk does
not need to be connected to the organizational network. This configuration makes
ODIX Kiosk a safe and secure solution for inserting files into such networks (Fig.
7.13).

After scanning files from removable media, the ODIX Kiosk stores them on
a writable DVD. Then, the clean files can be safely inserted into the air-gapped
system. A secure ICS/SCADA network Deployment assists the customer to meet
NERC-SIP and NIST 800-53 requirements.
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Fig. 7.13 ODIX Kiosks—ICS/SCADA network diagram (air gap) (source: Odix)

10.3 Real-World Example

At the last Black Hat Europe conference, security research firm CyberX demon-
strated how data exfiltration was possible from a supposedly air-gapped ICS
network. By delivering a payload of specific ladder logic code into Programmable
Logic Controllers, the attack was programmed to send out copies of data through
encoded radio signals which can be received by AM radios and analyzed by special-
purpose software. As the communication channel is outside the TCP/IP stack, there
is no encryption to safeguard the data once it’s captured.

How does AI respond to this threat? In this case, Machine Learning can be used
to craft an algorithm which establishes a “normal” state and monitors traffic and
configurations to compare against that state. This baseline can include network
traffic, equipment settings, and even the source code of PLCs. With its continuous
heartbeat checks, the algorithm can detect when the system deviates from the
baseline and immediately alert security staff of the change.

Another real-world example comes very recently from the ransomware attack on
Atlanta’s municipal infrastructure, which involved encrypting city files, blocking
the city from processing court cases and warrants, and blocking access to online
services. This is just the latest in a string of attacks on American cities. Previously,
hackers gained access to Dallas’s tornado warning system and set off sirens in the
middle of the night. In the case of Atlanta, an AI cyber security layer would have
been able to spot irregularities in system access and lockdown channels before the
hackers could manipulate the permissions [40].

Where does AI fit into your existing ICS security program? You already have
the ICS equipment sectioned off on its own VLAN(s), firewalled, monitored, and
protected by IDS/IPS, SIEMs, and other security tools. Where does it make sense to
insert AI/ML into the equation? The biggest advantage of implanting an AI solution
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is its real-time response and orchestration. AI tools don’t need to wait for security
staff to make a decision. They don’t see a black and white picture of firewall
rules which often miss malware traffic flying under the radar, masquerading as
“normal” network signals. Machine algorithms can detect abnormal data exchanges
and immediately respond to the threat, long before a SOC resource would be
alerted. Some AI offerings can even monitor devices that don’t communicate over
TCP/IP, creating powerful visibility into non-networked equipment. A particularly
interesting tool to protect industrial control systems is Cyberbit’s ScadaShield,
a layered solution to provide full-stack ICS detection, visibility, smart analytics,
forensics, and response. ScadaShield performs continuous monitoring and detection
across the entire attack surface for both IT and OT components and can be combined
with SOC automation to trigger workflows that accelerate root cause identification
and mitigation [40].

11 Conclusion

This Perspective explores that digital transformation efforts of organizations have
sparked a trend towards IoT and OT adoption. Organizations in all sort of industries
across the world continue to augment their on-going transformation efforts by
adopting IoT and OT devices in great number. Nevertheless, cybercriminals are also
into the competition and they are simultaneously expanding their capabilities to
leverage new development and exploitation techniques to launch attacks faster and
more sophisticated ways. Our focus was on highlighting the potential vulnerabilities
and inequities that the use of IoT devices imposes on ICS environment in terms of
security, and also explored that how AI and big data together can play a significant
role in combating the security challenges associated with ICS. In our exploration
of the security challenges, we identified that dealing with large amount of data
generated by ICS devices, poor network architecture and protocols, and its visibility
and lack of security knowledge are the major concerns which may provide attacker
with an opportunity to exploit the smooth functioning of ICS industries, where
Cyber security is a necessary component in this digital age.

In order to protect the triumph of digital transformation efforts of organizations,
cyber security personnel should accept this challenge and stay ahead in game in to
order to protect the new digital economy that driving this digital transformation.
Cyber security actors can now adopt AI-assisted cyber security solutions that
provide the efficient detection and response capabilities so that they keep pace
with their competitors i.e. modern cybercriminals. With advancement in cutting
edge technologies such as big data, cloud and AI, new vulnerabilities and exploits
could easily be segmented, identified, and analyzed to avoid further attacks. Incident
response systems could also be made more efficient by leveraging these techniques.
These response systems must be able to identify the entry point of an attack, stop
the attack as soon as it is identified, and patch the vulnerabilities so that similar
attack should not occur in future. The application of artificial intelligence (AI)
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via the implementation of machine learning (ML) can help response systems to
function in this expected way, when any system is attacked. This method is the
fastest growing area of cyber security. ML-enhanced products produce results faster
and more accurately than can be achieved by human operators; and this can result
in cost savings through the need for fewer analyst employees. Artificial Intelligence
can add values to the ICS security and with the advancements in AI, we can mitigate
the problems being faced.
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Chapter 8
Enhancing Network Security Via
Machine Learning: Opportunities
and Challenges

Mahdi Amrollahi, Shahrzad Hadayeghparast, Hadis Karimipour,
Farnaz Derakhshan, and Gautam Srivastava

1 Introduction

Today, if you say that malware may hack into your Facebook account using your
home toaster, one would be horrified and quickly cut off the toaster from power!
The fact is that internet networking is capable of connecting all digital devices
surrounding us; such as devices in our homes, workplaces, cars, and even in our
bodies. In addition, the use of the Internet has grown dramatically in many activities
of daily life. However, threats and Internet attacks have doubled with the use of the
Internet. Therefore, using security tools in computer networks is essential.

Network security refers to the network protection against cyber-threats which
may compromise network availability, abuse resources accessible by the network,
or cause illegal access (Fig. 8.1). Businesses that are in cybersecurity threats, not
only incur billions of dollars for the recovery of their systems but also experience
negative effects on their reputation [1]. Consequently, one of the most important
parts of network operations and management is network security. This is a fact that
while security experts are trying to defend networks from attackers by different
means, attackers are trying to find other ways to penetrate the network [2].
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Fig. 8.1 Network security: threats, network defense, and host defense systems

Network security can be provided in different ways. Some examples of security
processes are mentioned as follows [3]:

1. Network traffic encryption, most importantly the payload, for protecting the data
transfer through the network.

2. Using authorization functions to restrict users from accessing different parts of
the network and ban unauthorized users.

3. Adopting policies to give special rights to different users with different roles.
4. Using antiviruses and antimalware to protect systems as well as firewalls to

protect or block unknown network traffic.

If login credential and keys can be accessed, the network is susceptible to
various types of threats. Moreover, the mentioned set of patches and rules restrict
the prevention capabilities of antiviruses and firewalls. Consequently, the second
layer of defense for detecting signs of cyber-threats and quick reaction before any
damage is necessary. The already mentioned systems are usually called Intrusion
Detection/Prevention Systems (IDS/IPS). Intrusion detection systems are used to
secure networks. These systems are classified according to the way in which
intrusion detection operations are performed. One of the methods used to detect
an intrusion is machine learning [4, 5].

Traditional detection techniques are inefficient when dealing with a huge amount
of data because their analysis processes are complex and time-consuming. Hence,
in order to reduce processing and training time, big data tools and techniques are
utilized for the analysis and storage of data in intrusion detection systems. The two
main methods used in the IDS (Intrusion Detection System) to detect attacks are
Anomaly-based detection, which is dynamic as well as Signature-based detection
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which is static [6]. Signature-based detection schemes aim to acknowledge known
attacks by utilizing the actual signatures of the attacks. It works well in identifying
known attacks that have been pre-loaded in the IDS database. Thus, it is frequently
viewed as considerably more exact at recognizing an intrusion attempt of known
attacks [7]. However, the detection of new types of attacks is not possible since their
signature is not provided. Therefore, the databases are often updated to improve
detection effectiveness [8]. To overcome these problems, a dynamic scheme called
anomaly-based detection which compares all known current activity against a
predefined set of profiles is used to detect any behaviors that are deemed abnormal
and identify patterns that may be considered intrusions. Due to the vast amount
of malware with different behaviors, machine learning (ML) has created methods
to overcome this dynamic range because ML covers a wide range of attack types
such as spam, network intrusions, malware, false data injection, insider threats, and
malicious domain names utilized by botnets [9–11].

This chapter gives a thorough literature review of new techniques for detection.
We primarily focus on techniques that use ML approaches. Our chapter categorizes
malware, spam and intrusion detection approaches into two focal groups: signature-
based and anomaly-based detection under shallow and deep learning approaches.
We summarize the significant contributions of this chapter as follows:

• Presenting an outline concerning identification approaches using ML and its
challenges in the current era.

• Displaying a principled and classified review of the present ways to deal with
machine learning instruments in the malware, spam and intrusion identification
aspects.

• Investigating a structure of the significant strategies that are critical in the
identification approach.

• Considering the significant factors of classification ML approaches in the
detection and cybersecurity to deal with their problems in the futures.

The rest of this chapter is organized as follows. First, network security is
explained in Sect. 2, followed by machine learning in Sect. 3 to provide the
fundamental concepts and context. Then, in Sect. 4, different applications of
machine learning in network security is discussed, from malware detection to
various intrusion detection systems. After that, the chapter is ended up with a short
summary, followed by opportunities and challenges section.

2 Network Security

System security can be defined as any action intended to ensure the ease of use of
your system and information. It deals with both hardware and software technologies.
Successful network security then manages access to the system. It aims at several
different sorts of dangers, detects and prevents them from entering or spreading
on your network. There are different types of network security, which can be
summarized as follows [12–14]:
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• Firewalls
• Behavioral analytics
• Data loss prevention
• Application security
• Access control
• Wireless security
• Intrusion prevention systems
• Network segmentation
• VPN and Web security
• Security information and event management
• Mobile device security

Many different layers of defense are brought together at the edge and in the
network by network security (as shown in Fig. 8.2). Different controls and policies
are adopted by each network security layer. While network resources are accessible
for authorized users, malicious actors are prevented from conducting threats and
exploits.

Security router and stateful
application firewall

DMZ(s):DNS,VPN

Internet Firewall

Web proxy, Network access
control, Intrusion Detection

system (IDS), internal
networking

Internal devices: Host based
IDS, Host based FW, Host

based AV

Fig. 8.2 Multiple layers of network security/architecture



8 Enhancing Network Security Via Machine Learning: Opportunities and Challenges 169

Physical security is the first and fundamental stage of providing network security.
It is a type of system security, guaranteeing that computer networks are safe from
physical damages such as natural disasters, fire, and illegal access. Therefore, one
network ensures that limitations of computer are met and followed by computers
connecting to them. In addition, these types of systems contain alarm verification
systems, and monitoring.

Perimeter protection is another type of system security. This kind of network
security, as it can be easily understood from its name, separate the computer
systems from physical computers and the rest of the world when you are online.
Also, it may be virtual or physical. Firewalls and routers are some of the parts of
perimeter protection network security. For the purpose of network protection against
unauthorized access, there also exist application based firewalls. These kinds of
network security provide protection and can block data from leaving or entering
the network. Furthermore, protocols are implemented in perimeter protections in
order to protect the entire network against unauthorized access.

Monitoring is the next kind of network security. In addition to blocking unau-
thorized data transfer to/from the computer, eyes on the whole network are needed.
In the presence of monitoring, the entire computer system and network are being
viewed so that unauthorized access to the system will be prohibited. However,
monitoring tools are utilized by a large number of hackers when they hack into a
system. This is a process where the hackers first observe the normal flow in the
network before they hack and access the system and network as well.

Finally, the last item is training and user education. This part of network
security deals with training and education of people, implementing network security
protocols. This is not just due to the fact that they have a lot of information about
computer systems. It means that they can maintain the safety of the network. It is
noteworthy that there may be particular protocols implemented by people and if
they do not have enough knowledge about them, they might not be able to deal with
them. Due to the fact that it is how one will understand the limitations regarding the
access to network security, this is a significant type of network security. Moreover,
security protocols must be updated every so often. Consequently, informing people,
who have access to the computer network, about these changes to guarantee its
safety is essential.

3 Machine Learning

In this chapter, an introduction to machine learning and its algorithms will be pre-
sented. The algorithms of machine learning are classified into different categories,
which will be briefly mentioned.
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3.1 What Is Machine Learning?

The phrase machine learning was created by Arthur Samuel in the year 1959.
After this, the definition of machine learning was mentioned in the textbook of
Machine Learning by Tom M. Mitchell. This definition of machine learning field
is as follows:

A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P if its performance at tasks in T, as measured by P, improves
with experience E [14].

Machine learning from above presents just a basic operational. Turing posed the
question in his paper titled “Computing Machinery and Intelligence”, that “Can a
machine think?”. This question was then replaced with a new question that is “Can
a machine do what we can do?”. We see clearly this in Turing’s proposal, it is
revealed that various characteristics that a thinking machine could have as well as
several implications if one of them is constructed.

In fact, Machine Learning (ML) is a subset of Artificial Intelligence (AI) (Fig.
8.3). Artificial means something that is non-natural or created by human and
Intelligence refers to the ability to think or understand. It is important to note that
AI is not a system, in fact, AI is developed in the system [15–17].

3.2 Machine Learning Algorithms

Machine learning algorithms vary from different aspects such as their approach,
the type of problem or task which they aim to solve, and the type of input and
output data. Moreover, different applications and views can result in different
classifications. Therefore, it is not possible to refer to a completely accepted
taxonomy from literature. Therefore, it is preferred to present an original taxonomy,
which can capture the differences among countless techniques that cyber detection
is applied to, as clearly illustrated in Fig. 8.4. Figure 8.4 is specific to security
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Fig. 8.4 Classification of ML algorithms for cybersecurity application

operators and not for all AI experts and application cases since it does not present
ultimate classifications. One of the main differences between traditional ML, also
known as shallow learning (SL), is the differences with more recent learning
techniques such as Deep Learning (DL). For SL to work properly, an expert is
needed to carry out tasks involving recognizing the characteristics of relevant data
prior to performing SL algorithms. DL is based on a multi-layered representation
of the input data. Also, by using process defined representations learning, DL is
capable of carting out feature selection autonomously [18, 19].

3.2.1 Supervised Learning

Algorithms that are based on supervised learning are known to create models that
are heavy in mathematics that focus on the inputs that the desired output of the
algorithm. The data used for teaching the algorithm is known as training data. There
is also the supervisory signal which can be defined as the one or more inputs in a
training sample used to formulate the desired output. The training data is usually
given in a matrix. Furthermore, training examples are given by an array or vector,
which are often referred to as feature vectors. The main task of a supervised learning
algorithm is to educate themselves about a given function, which can be adopted for
the prediction of output connected with the new inputs, by iterative optimization
of an objective function [20, 21]. The algorithm accurately specifies the output for
inputs, which are not a part of the training data, by using an optimal function. An
algorithm is said to have learned to carry out a task if it can increase accuracy of
outputs/predictions. Supervised learning algorithms and how they work is shown in
Fig. 8.5.
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Fig. 8.5 A supervised learning algorithm/how supervised learning algorithms work?

In this method, each pattern has a Label, which is the desired output of that
pattern. The purpose of this learning method is to map the patterns of input
attributes to their corresponding labels. In fact, this works in phases. During the
testing phase, the patterns whose labels are not specified are given to the system
and the system is designed with the help of its learned function outputs or tags.
Then, if the output of the discrete learning system is considered, the classification
problem is called, and the function that maps the input to the output is called the
classifier. Supervised learning algorithms consist of classification and regression.
The utilization of regression algorithms is when any given output is any numerical
value within some range, while we only use classification algorithms when outputs
are limited to a finite value set. Similarity learning, which is part of supervised
machine learning, is closely connected with classification and regression. However,
it aims at learning from examples by through function known as similarity functions.
Similarity functions measure the relation index between similar objects. Some
common use cases include face verification, speaker verification, recommendation
systems, and many others. In contrast, semi-supervised learning algorithms usually
deal with problems where training data is missing training labels. In these cases,
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algorithms can still be used to increase quality level of a given model. Lastly, weakly
supervised learning is used on data where the training labels are noisy, limited, or
not very accurate. These labels are often cost-effective to obtain, which can result
in much larger effective training sets [22].

3.2.2 Unsupervised Learning

We can define unsupervised learning algorithms as algorithms that:

1. Obtain in input data set
2. detect structures in the data such as clustering or grouping of data points.

Therefore, we can say that the algorithms learn from the data, where the
data here has not been labeled, categorized or classified. The algorithms try to
determine common features in the data and react accordingly. Then, when new
data is presented to the algorithm it reacts based on common features or lack of
common features. Unsupervised learning can be applied to density estimation. We
also see unsupervised learning in other applicable areas such as the summary and
explanation of data features. In the well-known field of cluster analysis, we can
cluster data using unsupervised learning based on the similarity or lack thereof
in the data as presented. The assumptions made on the structure of the data
varies in different clustering techniques, frequently specified by some similarity
metric and assessed. Some examples include internal compactness, similarity in
the same cluster, and separation or difference between clusters. We have also seen
unsupervised learning used in graph connectivity and estimated density [23, 24].

4 Machine Learning in Network Security

Many areas for application of ML are present for network security such as Malware
Detection and Classification, Domain Generation Algorithms (DGA) and Botnet
Detection (BD), Network Intrusion Detection/Intrusion Detection System (IDS),
Network Traffic Identification, SPAM and Phishing Identification/Detection, Insider
Threat Detection (ITD) and False Data Injection Attack Detection [25–27].

In Table 8.1, the most important ML algorithms, presented to solve the mentioned
identified cybersecurity problems, are demonstrated. ML algorithms employed for
each problem are shown in a specific cell. It is noteworthy that empty cells, to the
best of the author’s knowledge, indicate no proposal for that category of problems.
According to Table 8.1, Supervised Learning (SL) algorithms can be adapted to
all mentioned problems. Supervised Deep Learning (DL) algorithms can be widely
used in the analysis of malware and not as much in the detection of intrusions.
We often base spam detection solely on unsupervised deep learning algorithms.
Also, DL algorithms are not adopted in DGA detection, although they are related to
natural language processing. The overall number of algorithms based on SL is sig-
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Table 8.1 Main ML algorithms for application on cybersecurity [27]

IDS
Malware
detection

SPAM
detection Network Botnet DGA

Deep
learning

Supervised RNN RNN

Unsupervised DBN
SAE

DBN
SAE

DBN
SAE

– –
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learning
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NB
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LR
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KNN
SNN

RF
NB
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SNN

RF
NB
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KNN
SNN

RF
NB
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KNN
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RF
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Unsupervised Clustering
Association

Clustering
Association

Clustering
Association

Clustering Clustering

nificantly larger than those based on DL. We see that Deep Learning using massive
neural networks are the current best approach compared to older SL algorithms.
This hole between algorithm styles creates lots of research chances. Eventually,
an important difference between supervised and unsupervised algorithms is that
the first one is employed for classification purposes and can implement complete
detectors, while the later approaches conduct ancillary activities. We have seen
that unsupervised SL algorithms can be used for grouping data that have similar
independent characteristics of classifications that are predefined as well as a farewell
at the identification of useful features in situations where the data that needs to be
analyzed has a high level of dimensionality.

Three fields where most cybersecurity and ML algorithms are adopted are
Malware Detection, Spam and Phishing Detection and Intrusion Detection. We
consider these next.

4.1 The Detection of Malware

There has been a significant increase in the frequency and diversity of malware
attacks make a defense against them employing standard methods more difficult [28,
29]. ML provides the possibility of creating generalized models for autonomous
detection and classification of malware. This can provide defense against light
adversaries utilizing known malware and large adversaries utilizing new malware
for attacks. There exist some methods to detect malware. DL detectors of adversarial
applications on Android OS employing both dynamic and static feature analyses
have been developed in [30]. Three sources namely sensitive Application Program
Interfaces (APIs), static analysis of required permission, and dynamic behaviors
were specifically utilized for obtaining features. Static features can come from
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the installation APK file and parsing the AndroidManifest XML and classes DEX
files. This gives the needed authorization and the APIs utilized. The features that
behave dynamically are from a dynamic analysis Droid Box data gathering. The
features were then input to a DBN with two hidden layers. The results accomplished
were 96.8% in precision, a 97.9% in TPR, and 4.3% in FPR. A two hidden layer
DBN was shown to be successful after looking at many different configurations.
The outcomes are better than those achieved using Naive Bayes, SVMs, random
forests, and logistic regression that they tested. Dynamic features are likely to be
more reliable compared to static features, which can be obscured without difficulty.
Consequently, utilizing features like API calls, which are taken from running the
software in a sandbox, is common. An example of this is Pascanu et al. [31],
who developed a method for detecting malware employing RNN combined with
multilayer perceptron (MLP) and logistic regression for classification. In order to
forecast the next API call, the RNN is trained in an unsupervised manner. Max-
pooling was performed systematically on the feature vector, and it was noticed that
the output of the hidden layer corresponding to this RNN once fed into the classifier
prevents it from reordering events temporal in nature.

CNNs and RNNs are used by Kolosnji et al. [32] for recognizing malware. By
using one-hot encoding, the API call sequences are then turned into vectors binary
in nature. The definition of one-hot encoding is to aim at storing data categorical
in nature in a form that is easier for ML. The data is usually used to train the
DL algorithm, which usually includes CNN and RNN. Accuracy close to 90%,
recall also close to 90%, and also precision approximately 86% were shown for
this model. A malware detector was developed by Tobiyama et al. [33] which
experimented with API data regarding time series into an RNN to focus on feature
extraction. After that, the extracted features are modified into image versions and
a CNN is used for categorization of the features as either normal features or as
malicious features. The RNN uses an LSTM, and a CNN using for the most part two
distinct pooling layers and two distinct convolution layers. This is then proceeded
by two connected layers. A DBN using the operational codes was then developed
by Ding et al. [34] by preprocessing all Windows Portable Executable (PE) files,
to then be able to extract the n-grams. Three of the layers are hidden in the DBN.
The dataset included 3000 files benign in nature, 10,000 files unlabeled in nature,
and 3000 malicious files. When the DBN model is pre-trained utilizing unlabeled
data, it outperforms decision trees, SVMs, and k-nearest. The best performing DBN
was accurate to approximately 97%. Furthermore, a detector, which does not need
any feature selection or engineering, was built by McLaughlin et al. [35] by using
opcodes from malware files. They used an embedded layer for opcode data raw in
nature and then used a CNN with two distinct convolution layers, alongside one
max-pooling layer, and also a connected layer. Lastly, they used a classification
layer. The results differed with different datasets. They obtained accuracies of 98%
and 80%, recall at 95% and 85%, precision at 99% and 27%, and an FI Score of 97%
and 78% respectively. API calls were also used by hardy et al. [36] for developing
a DL malware detector. For this purpose, they used auto encoders coupled with a
sigmoid classification layer and the accuracy of 95.64% was attained.
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4.2 SPAM and Phishing Detection

Spam and phishing detection consist of a great number of techniques with the
purpose of decrease in time wastage and potential hazards caused by unwanted
emails. Nowadays, a preferred way for attackers to establish initial penetration in
a network is through a well-known technique of unsolicited emails, also known
as phishing. The usual was that techniques known as phishing work is to include
links to designated websites or malware within the emails. Due to the advanced
evasion strategies adopted by attackers for bypassing traditional filters, spam and
phishing detection becomes more and more difficult. The spam detection process
can be improved by ML approaches.

Tzortzis and Likas study the classification of spam emails using DL in [37].
Feature extraction was performed by them using common words in emails and
utilizing a deep belief network, also called a DBN. The accuracy of an SVM is
known to be less than that of a DBN. The SVM was accurate to approximately
99%, 97%, and 96%. Comparatively the DBN was accurate to 99.4%, 97.5%, and
97.4% respectively. In [38], we have seen Mi et al. adopt auto-encoders. The authors
used a total of five hidden layers as well as a final classification layer for spam
detection. Comparative analysis was conducted between their method and other ML
algorithms. Their methods were shown to be better than other existing methods,
attaining accuracies higher than 95% on multiple data sets.

4.3 Intrusion Detection Systems (IDS)

Intrusion detection is a kind of security software developed for administrators in
order to automatically alert them in case of information system compromise by
security policy violations or malicious activities. On the other hand, an intrusion
detection system, also known as an IDS, is a device primarily but also can be
software that tries to detect policy violations or malicious activity by monitoring
a network or systems. Malicious activity is reported to an administrator. The
reports are usually through a SIEM system, short for security information and
event management, which combines outputs from many resources and adopts
techniques for alarm filtering that can differentiate false alarms from their malicious
counterparts.

4.3.1 IDS vs. Intrusion Prevention Systems (IPS) and Firewalls

Firewalls restrict access between networks for preventing intrusion and do not
indicate an attack from inside the network. In case of a suspected intrusion, an
IDS describes it as well as signaling an alarm. Also, attacks originated from
within a system are observed by IDSs. This is accomplished by recognizing
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Fig. 8.6 Firewalls and IDS for cybersecurity

heuristics and patterns (commonly known as signatures) of common computer
attacks, inspecting network communications, and taking action to alert operators.
An intrusion prevention system is a system, which terminates connections and
controls access like an application layer firewall. On the other hand, firewall is an
access security gateway that allows or blocks the uplink and downlink network
traffic, based on the predefined rules. Anti-virus software detects and removes
computer viruses, worms and Trojans and malware. Rule violations in information
systems or malicious and unauthorized activities are recognized by IDSs. Each
carries out its own tasks for protection of central servers, network communication
and edge devices (Fig. 8.6).

A number of systems might try on preventing intrusion attempts. However, it
is not expected or required for monitoring systems. The main focus of Intrusion
detection and prevention systems (IDPS) are recognizing incidents. From there,
the information must be logged and reported. Moreover, IDPS is adopted by
organizations for other aims like recognizing problems with security policies,
deterring individuals from violating security policies, and documenting existing
threats. Almost every organization has added IDPS to its security infrastructure
as a necessary part. IDPS typically record data concerning observed events, alert
security administers about significant observed events, and produce report. Also
a possible IDPS response to threats that are detected may be to stop its success.
Various techniques are adopted by IDPS such as changing the security environment
(e.g. reconfiguring a firewall), stopping the attack by the IDPS itself, or changing
the content of the attack.

The most important tasks of intrusion prevention systems include recognizing
the malicious activity, log information concerning this activity, report it and try
to block or stop it. Intrusion prevention systems are considered extensions of
intrusion detection systems since both of them monitor network traffic and/or
system activities for malicious activity. Intrusion prevention systems are placed
in-line and are able to actively prevent or block detected intrusions in contrast
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to intrusion detection system that forms the basic differences between them. IPS
is capable of functions like sending an alarm, resetting a connection or blocking
from the offending IP address, and traffic dropping detected malicious packets. In
addition, an IPS is able to correct cyclic redundancy check (CRC) errors, clean up
unwanted transport and network layer options, alleviate TCP sequencing problems,
defragment packet streams [39].

4.3.2 IDS Classification

The types of IDS vary from single machines to massive networks. Common
classifications for IDS are

1. Network intrusion detection systems (NIDS)
2. Host-based intrusion detection systems (HIDS).

Systems which analyzes incoming network traffic is an example of a NIDS, while
a system which monitors main operating system files is an example of a HIDS.
IDS can also be classified based on the approach used. There are signature-based
detection and anomaly-based detection. There is also reputation-based detection.
Signature-based detection recognize bad patterns. Anamoly based detection detect
bad traffic from normal good traffic on the network. Finally, reputation-based
detection uses a scoring model to assign a reputation to network parties. A number
of IDS players are capable of responding to detected intrusions. Intrusion prevention
systems are typically described as systems with response capabilities. Generally IDS
can be classified based on the employed detection method (signature or anomaly-
based) or where detection happens (network or host) (Fig. 8.7).

IDS Algorithm

IDS Classifica�on Based
on Detec�on Loca�on

IDS Classifica�on Based on
Detec�on Method

Anomaly-based
Methods

Signature-based
Methods

Host IDS Network IDS

Fig. 8.7 Classification of IDS algorithms for cybersecurity application
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4.3.3 IDS Classification Based on Detection Location

Network IDS, also known as NIDS, are placed at distinct points in a given
network to monitor traffic. The traffic is then analyzed and compared to traffic of
known attacks that are stored in a library. The alert is sent to the administrator
when abnormal behavior is sensed or an attack is recognized. A good example
of using NIDS is to install it on a subnet where firewalls are located to attempt
to see if a hack occurred to the firewall. In an ideal scenario one would scan all
traffic (incoming/outgoing). This, however may be network inefficient, causing a
bottleneck for the network. Usually, OPNET and NetSim are used to simulated
networks to detect network intrusions. Moreover, another capability of NIDS is
comparing signatures to link similar packets and packets that are deemed harmful
are dropped where their signature is a match in the library. There are two types
when the design of the NIDS is classified based on the system interactivity
property namely Online NIDS and offline NIDS, often called inline and tap mode,
respectively. Online NIDS is known to deal with real-time data. In order to detect an
attack, it performs an analysis of the Ethernet packets and uses a number of rules.
Off-line NIDS deals with stored data and passes it through some processes to know
whether or not it is an attack. We add here that NIDS can be made more effective
when mixed with other technologies. Artificial Neural Network-based IDS are able
to analyze enormous amount of data, in an intelligent manner, because of the self-
organizing structure that gives INS IDS the opportunity of recognizing intrusion
patterns more efficiently. Neural networks can assist IDS with predicting attacks.
INN IDS are based on two layers. Layer 1 receives single values, while the input
to the layer 2 is the first layer’s output; the cycle repeats and leads to automatic
recognition of new unexpected patterns in the network by the system. This system
can achieve close to 100% rates for classification and detection [40].

HIDS which stands for host intrusion detection systems can run on individual
hosts or devices on the network. Only inbound and outbound packets from the
device are monitored by HIDS and will alert the administrator or user in case
of detecting suspicious activity. A snapshot is taken of existing system files
and matches it to the previous snapshot. The administer will receive an alert to
investigate in case of modification or deletion of the critical system files.

4.3.4 IDS Classification Based on Detection Method

Signature-based IDS refers to the detection of attacks by searching specific patterns,
such as known malicious instruction sequences adopted by malware, or byte
sequences in network traffic. The origin of this terminology comes from anti-virus
software in which the term “signature” is used for the detected patterns. Although
detecting known attacks is easy for signature-based IDS, detecting new attacks with
unavailable patterns is difficult. The signatures are released for its all products by
a vendor in signature-based IDS. Therefore, on-time updating of the IDS with the
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signature is very critical. On the other hand, Misuse-based IDS includes monitoring
the network and matching the network activities against the expected behavior of an
attack.

The comprehensiveness of the attack signatures is the most important component
of such a system. The signatures are typically given to misuse-IDS depend on expert
knowledge. The source of this knowledge can either be extracted from data, or it
can be human experts. However, manual inspection is made practically impossible
because of the enormous volume of generated network traces. Furthermore, com-
plex attacks with intermittent symptoms or capturing advanced persistent threats
are not possible for attack signatures extracted by sequentially scanning network
traces. Inserting noise in the data is a simple way which can be adopted by intruders
for evading detection if the signatures depend on a stream of suspicious activities.
According to the above discussion, ML becomes a suitable tool for misuse-based
IDSs. The ability of ML to find patterns in big datasets is suitable for learning
signatures of attacks from collected network traces. Consequently, seeing a large
number of studies for misuse-detection relying on ML is not surprising. These works
are summarized in Fig. 8.8. As expected, all existing studies use adopt supervised
learning, and most of them perform offline detection. It is noteworthy that all studies
in which normal and attack data is used in their training set are classified as misuse-
detection and the resultant accuracy for each class is shown in Fig. 8.8. All data
were collected from various sources such as [41].

One of the restrictions of the aforementioned research is its adoption offline.
This prevents their practical use in online systems. A small number of studies
investigated IDS. Re-training is required for most classifiers (e.g., image, text
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recognition systems). However, the nature of cyber-threats leads to retraining for
IDS carried out very often. Therefore, fast training time is important for adaptable
IDS.

Denning proposed anomaly detection for intrusion detection systems in [42].
Anomaly detection is usually accomplished with thresholds and statistics for IDS,
but can also be accomplished with soft computing, and inductive learning. Types
of statistics proposed by 1999 included profiles of users, workstations, networks,
remote hosts, groups of users, and programs based on frequencies, means, variances,
covariances, and standard deviations. Anomaly-based intrusion detection systems
are known to be historically used to detect unknown attacks. This is mostly due
to the fast-moving threats from malware. The main method is to use ML to create
a model of activity that can be deemed trustworthy. Then, the model is compared
with new behaviour. This approach is known to enable the detection of previously
unknown attacks. That being said, it is also known to suffer from many false
positives.

An example of ML for anomaly-based detection can be seen as follows: if a
student who usually logs in to the system around 9 am from a dormitory logs in
at 6:30 am from an address in another country, the system would deem this as an
anomaly. Anomaly detection focusses on a clear and present boundary between what
is normal and what can be considered anomalous behaviours.

Anomaly detection can be split into flow feature or payload-based detection. On
the other hand, it can also be divided into static, cognition and machine learning
techniques, as seen in Fig. 8.9. We have also seen DL and RL added to the list of
techniques in recent years [43–46].

Payload-based anomaly detection teaches themselves normal behaviour from
packet payloads. From this, they can detect attacks inside the payloads, which
sometimes can easily bypass system defenses. We discuss ML techniques that have
been used to be used as a detection mechanism for anomalies using packet payloads
or flow features here in the chapter. PAYL uses a method known as 1-g to model
packet payloads. We have also seen the use of N-gram for text analysis as shown in
[47]. The main idea is that of a sliding window of size n that scans the payload and
counts the frequency of each n-gram. The mean and the standard deviation are also
computed for each byte in the payload. PAYL generates a payload model for many
attributes as the payload exhibits different characteristics for different services. After
the models are generated, a distance measure known as the Mahalanobis distance is
used to measure the deviation between incoming packets and the payload models.
The larger distance coincides with the higher the likelihood that the newly arrived
packet is abnormal (Fig. 8.10).

As an example, we have seen Zanero et al. initialize a two-tier architecture
to be used for anomaly detection in their pivotal work in [48]. Tier 1 uses an
unsupervised outliers detection algorithm that can classify packets. Tier 1 then
provides a reduction of features as the result “compresses” classification for each
packet into one byte of data. Tier 1 results are then fed into Tier 2 which is an
algorithm for anomaly detection. In the first tier, packet header, as well as payload,
are mentioned for detection of outliers. The authors compare three techniques
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Fig. 8.9 Anomaly-based detection techniques

Fig. 8.10 Different between payload and flow-based approach

• SOM
• Principal Direction Divisive Partitioning (PDDP) algorithm
• k-Means

SOM was shown to outperform PDDP and k-Means. The factors for comparison
were computational cost and classification accuracy. A preliminary prototype was
evaluated in [49]. The authors show a 75% improvement in DR over an ID. We
also have seen Gornitz et al. use semi-supervised Support Vector Data Description,
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which is known as SVDD. They present an active learning technique to build an
active SVDD (Active SVDD) model in [50]. Their model is first and foremost trains
unlabeled examples and refines them by using labeled data. Their evaluation results
are given in [51]. Summary of the most popular payload-based anomaly detection
methods and their accuracy is listed in Fig. 8.11.

4.3.5 Deep and Reinforcement Learning-Based Anomaly Detection

During the last couple of years self-taught learning (STL) [52] techniques including
deep Bayesian network (DBN) [53, 54], and recurrent neural network (RNN) [55]
resulted in promising outcome for anomaly detection. In 2007, STL was introduced
and is improved compared to semi-supervised learning. This technique uses data
that is unlabeled from object class and improves the task of classification through
learning of good feature representation. As an example, in [56], an encoder is
mentioned to be used for dimensionality reduction. Their proposed model resulted
in an accuracy of 92.10% with 1.58% false positive. In contrast, Tang et al. [57]
used deep neural network (DNN) for anomaly detection that is flow-based by
extracting features from the software-defined networking switches. The proposed
DNN achieved an accuracy of 72%, precision of 79%, recall of 72%, and F-measure
of 72% on the low end.

Reinforcement learning (RL) is an iterative algorithm that uses feedback from
the environment to learn the correct sequence of actions to maximize a cumulative
reward. In other words, it allows the machine to learn from the interaction with its
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environment by performing actions to maximize the total feedback. RL algorithms
do not know the exact mathematical model so are very useful when exact models
are shown to be infeasible. RL is best suited for making cognitive choices, such as
decision making, planning, and scheduling. We give a summary of most popular
anomaly detection methods based on deep and reinforcement learning techniques
along with their accuracy is depicted in Fig. 8.12 [58].

5 Summary

In this chapter. we survey the applications of ML for network security. We have
focused on network-based intrusion detection techniques, algorithms, and schemes.
We have been able to group work based on anomalies, hybrid networks IDSs,
and misuse. The different ML techniques were presented and we also touched on
some more recent applications of both DL and RL. In Fig. 8.13, there is clear
illustration at the rate of publication in all fields is increasing when looking at the
publications in ML-based methods on cybersecurity from 2010 to 2018. We also see
a steady growth of publications. This clearly indicates the potential for researchers
to contribute to this field. In Fig. 8.14, we present statistical results on different ML
algorithms based on publications on the topic of cybersecurity until 2019. We still
see that the research is increasing with time. We can conclude by stating that DL
was mostly used cybersecurity technique compared to the other well known to learn
methods. We hope that these figures can help future researchers in focussing their
work in potential fields.
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6 Opportunities and Challenges

The benefits of ML for IDS and Malware detection are clear. However, there is still
much speculation about the application of machine learning techniques in this field.

There is still a big challenge with real-time Malware detection. We have
seen considerable research showing the advances in design and systems that can
automatically predicate the maliciousness of specific files, programs, and websites.
Malware is a continuously growing area in terms of numbers and maliciousness.
Web-based Malware detection is growing with the expansion of the Internet as well.
With the availability of higher speeds and bandwidths for internet use, we potentially
will see malware reach new heights in the coming years. The main issue that leads to
difficulty in detection is the expansion of behaviors of different attacks. Polymorphic
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properties can cause IDSs to not be able to detect malware when required. Therefore,
it takes time to find a pattern of the new malware and then detect it as an attack.

A major downside to these models is their accuracy. There is always an inherent
risk of using any tool that is new, especially one that involves DL. Mainly, DL tool
lacks a general understanding of the public. From this, when errors happen, it is
often hard to diagnose what is causing the errors. For industry, cybersecurity has
added costs involved with proper implementation. We also see that many of the
models presented here focus on specific threat models. There is still a strong need
for more flexible solutions. Ideally, a future could see multiple DL approaches and
techniques running in parallel and acting synergistically.

In this chapter, we will end by saying that machine learning techniques in cyber-
security still have many downsides that can reduce their ability to be successful.
Everything we have presented is vulnerable to adversarial attacks and often require
constant re-training of the system. Deep learning itself is still in its early stages for
cybersecurity implementation.

Our main takeaways here are that machine learning techniques can support better
security. ML techniques can automate certain tasks however there are still positives
and negatives of each model. The autonomous capabilities of some systems must
not be taken lightly. We still need human supervision so that skilled attackers cannot
infiltrate systems and leave them vulnerable.
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Chapter 9
Network Security and Privacy Evaluation
Scheme for Cyber Physical Systems
(CPS)

Mridula Sharma, Haytham Elmiligi, and Fayez Gebali

1 Introduction

Cyber Physical Systems (CPS) are the backbone of the modern Internet of Things
(IoT) applications. CPS is the integration of three main subsystems namely phys-
ical/control subsystem, networking subsystem and cyber subsystem. The physi-
cal/control subsystem is the physical layer consists of sensors, actuators, RFID
etc. The cyber subsystem does all the computations and decision making whereas,
networking subsystems helps the other two subsystems communicate with each
other. The physical subsystem has the ability to generate the data using devices
for sensing and controlling, whereas, calculations and decision making is done at
cyber layer to control the physical processes. Through the communication layer,
data flows across the other two layers [1, 2]. The three subsystems interact with
each other as shown in Fig. 9.1.

Cyber-physical systems are in the process of being widely integrated into various
critical infrastructures. Many known examples of CPS include industrial control
systems, smart grid systems, medical systems, smart cars, nuclear power plants,
water and sewage systems, weather monitoring systems, agricultural and irrigation
monitoring systems, etc. [1, 3, 4]. Smart grids are one area of applications of CPS. In
smart grids, remote activities are monitored and controlled by specialized computing
system called Industrial Control Systems (ICSs) or Supervisory Control And Data
Acquisition (SCADA) systems. To keep a CPS secure, it is quite important to keep
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Fig. 9.1 CPS structure
integrating physical layer,
communication layer and
computation layer

ICS/SCADA system safe and secure, so that we may prevent CPS from security
attack causing a physical hazard to the smart grid [5].

The physical subsystem of CPS consists of large number of sensors connected
together as a Wireless Sensor Network (WSN) to collect environmental data for a
variety of CPS. Any CPS may face many security challenges due to its widespread
use, inclusion of heterogeneous devices, its distribution area, limited capabilities of
the sensors etc. Few vulnerabilities of a CPS are: security protocols, establishing
trust between several subsystems, security of the physical layer as well as the
security of wireless protocols at this layer, etc. These are the common active attacks
on the CPS. There is another categories of attacks where the target is on the data
collection that can be used to leak sensitive information without anybody noticing
any change in the network. Known as passive attacks, these are the privacy attacks
in the network.

There is an ongoing need to address the security and privacy concerns at every
level of CPS right from the early stage of design to the final stage of deployment.
There are several well known cases of failure of CPS deployments as these are
vulnerable to intrusions.

1.1 Chapter Road-MAP

In this chapter, we are proposing a novel Network Security and Privacy Evaluation
Scheme (NSES) for CPS [6]. To do so, Sect. 2 will review some examples of CPS
attacks and the commonly used countermeasures to protect a network are explained
in Sect. 3. A thorough discussion of the prevailing security standards and other
standards proposed in the literature are discussed in Sect. 4. This is done to show
the rationale of developing the scheme followed by scheme explanation in Sect. 5.
The proposed scheme is based on the use of the countermeasures deployed in the
network. At the end of the chapter in Sect. 6, we will demonstrate the use of our
security scheme using different CPS examples.
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2 CPS Attack Examples

This section discusses few examples of CPS attacks to understand the severity an
the impact of such attacks on commercial platforms.

2.1 Stuxnet

Stuxnet targeted SCADA systems and caused substantial damage to nuclear cen-
trifuges in Iran. Stuxnet, was discovered in June 2010, whereas known to be
conceived back in 2005. In this attack, the cyber worm dubbed ‘Stuxnet’ and struck
the Iranian nuclear facility at Natanz. Stuxnet targeted each of the three layers
of a cyber-physical system. It used the cyber layer to distribute the malware and
identify its targets, control layer (in this case, specific models of programmable
logic controllers (PLCs) manufactured by Siemens) to control physical processes,
and finally the physical layer, causing physical damage.

In action, the cyber worm of the Stuxnet alters the PLCs’ programming, making
the centrifuges spin very quickly and for too long, leading to the damage of the
delicate equipment. At the same time, the PLCs of the systems tell the controller
that everything is working fine, making it difficult to detect or diagnose what’s going
wrong until it’s too late [7].

The worm infected over 200,000 computers and caused 1000 machines to
physically degrade, and the effect spread through all across Iran and many other
countries including India, Indonesia, China, Azerbaijan, South Korea, Malaysia,
the United States, the United Kingdom, Australia, Finland and Germany. Stuxnet
malware is comprised of three modules, a worm that executes all code related to the
main payload of the attack; a link file to propagate the copies of the worm; and a
rootkit component that may hide all malicious files and processes, so that the attack
is not been detected.

Duqu, Flame, and Gauss are also similar attacks and are called as Cousins of
Stuxnet [8].

2.2 Ukraine SCADA Attack

Ivano-Frankivsk region of Western Ukraine had a SCADA network, that controlled
the power grid, allowed the attackers to hijack their credentials and gain crucial
access to systems that controlled the breakers. By this attack, hackers caused the
massive Ukraine power outage in December 2015, by sabotaging the control system
and remotely opening the breakers.

This incident affected about 230,000 people and was regarded as the first high
severity cyber-attack that caused power outage [9]. As studied in details, the skilled
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attackers planned their careful strategies over many months. In this period, first
they studied the networks and found operator‘s credentials, and then launched
synchronized assault in well-structured manner. They used social engineering and
phishing in email to gain access.

It is claimed that the logging remotely into the SCADA network that controlled
the grid was not secure and wasnt́ using two-factor authentication, which allowed
the attackers to hijack their credentials and gain crucial access to systems that
controlled the breakers.

2.3 Mirai Attack

The infamous Mirai attack brute-forced IoT devices using factory default usernames
and passwords, and logged into them to infect these IoT devices with the Mirai
malware. Discovered by MalwareMustDie!,1 a white-hat security research group, in
August 2016, this malware was created using ELF binaries and targets SSH or Telnet
network protocols, so that it can exploit default and hardcoded credentials [10].

The malware hijacked nearly half a million internet connected devices, and
resulted in the inaccessibility of several high-profile websites such as GitHub,
Twitter, Reddit, Netflix, Airbnb and many others. The scale of the attack was
unprecedented, and the exploitation of IoT devices to launch this DDoS attack may
lead to more cyber-attacks in an even larger scale in the future.

By the end of November 2016, approximately 900,000 routers were infected and
crashed due to failed TR-064 exploitation attempts by a variant of Mirai, which
resulted in Internet connectivity problems for the users of these devices.

2.4 Maroochy Water Service Attack

A SCADA system breach occured on Maroochy Water Services on Queensland’s
Sunshine Coast in Australia. It was discovered in March 2000, when Maroochy
Shire Council experienced problems with its new wastewater system [11]. The
communications been sent to waste-water pumping stations by radio links were
being lost, and as a result, pumps started mal-functioning. This case is also an
important case that has been cited around the world as an example of the damage
that could occur if SCADA systems are not secured.

This attack lead to severe disruptions of the plant, including disruption of proper
pump operation, suppression of alarms, and even releasing of untreated sewage
into local waterways. The attack caused 800,000 liters of raw sewage to spill
out into local parks, rivers and even the grounds of a Hyatt Regency hotel. The

1http://www.malwaremustdie.org/, 2012, [Online; accessed 2019/07/07].

http://www.malwaremustdie.org/
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marine life died, the creek water turned black and the stench became unbearable for
residents [12].

The detailed analysis of the incidents discussed above lead to several important
points:

1. It is very important yet difficult to protect CPS against attacks
2. Radio communications commonly used in SCADA systems is insecure but

should be monitored
3. SCADA devices and software should be secured to the extent possible using

physical and logical controls
4. The security controls in SCADA should be used properly
5. SCADA systems must record all device accesses and commands, especially those

involving connections to or from remote sites, and must follow sophisticated
logging mechanisms.

In the next section, many possible countermeasures that may be deployed in the
networks to make them secure are discussed.

3 Common Countermeasures to Protect Cyber Physical
Systems

Security of any network is concerned with confidentiality, integrity, availability, non
repudiation, authentication and safety. Typically, confidentiality and integrity have
high priority on regular IT infrastructures, whereas, availability, privacy, integrity
and safety dominate security concerns for CPS. In a regular IT infrastructure, where
people use machine in networks, maintaining security is comparatively easier as
we may develop standard human usage policies and performance requirements,
whereas for CPS, it is very diverse and difficult to deploy. Since, the hardware
requirements, policies and process requirements are very different and are very
unique, therefore, a unique standard security solution for all CPSs is extremely
difficult to develop. Since, CPSs are build using very diverse hardware, software
and user policies, we need to understand and analyze these differences in order to
manage expectations of future CPS security [13].

At the physical later of a CPS, the main security needs are availability, integrity
and safety. We need to ensure that all the nodes are available and generating data.
Besides that, data generated from each node reaches its target without been tampered
in any way so that the data generated at the nodes is protected and is not misused. It
is also important to ensure that the nodes are not tempered physically and are safe.

Let us compare the physical layer of a CPS with a house. The house security can
be done through a three step process:

1. Install a physical lock on the main door. This lock is used to secure the house
when we go out of the house. The keys are only with the authorized people i.e.
home owners, and they can enter the door using those keys. They may give the
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keys to their trusted friends or relatives only. Also the walls of the house are
sound proof, so that the communication going on inside is also protected and is
not heard outside.

2. Install motion sensors inside the house. These sensors can detect if somebody
breaks in, and sends the message on our system or raise the alarm.

3. Install security locks in the inner rooms. All rooms in the house are locked so
that the intruder cannot go further.

These three steps can represent three actions: prevention, detection and mitigation.
In the following sub-sections, we will explain these scenarios in more details. We
should point out that detection is the most challenging task and hence is the main
focus of this chapter. Just to mention, no any single security countermeasure is fully
effective against all threat scenarios, so we may use the collection of many.

3.1 Prevention

Prevention can be defined as the process in place that may/should not allow a new
and unauthorized user to join the network or tamper the already connected devices.
prevention requires careful analysis of the various targeted attacks. Prevention in a
CPS needs to be done at all the three layers i.e. physical layer, communication layer
as well as cyber layer. Our work mainly deals with the prevention at the physical
layer only.

Prevention can be done using four main measures [14]:

3.1.1 Physical Protection

Some special lock and key arrangement to protect the hardware physically from the
intentional tampering. The sensor nodes must be equipped with a certain physical
hardware to enhance protection against various attacks. As an example, in order to
protect against physical tampering of the sensors, one possible defense is to tamper-
proof the node’s physical package.

3.1.2 Firewall

An effective defense mechanism that acts as a gatekeeper over the communication
traffic entering and exiting a network [15]. This may be done using some physical
(extra hardware) security management or using cryptographic keys to ensure
that only the authorized nodes can join the network. Even though, it is claimed
that firewalls are quite impossible for the wireless networks, yet, it is possible
to selectively control and block radio communication or using rule definition
language [15, 16].
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3.1.3 Access Control

Access Control is the enforced restrictions to the network to prevent unauthorized
users to be able to access the network. It also protects the network by imposing
restrictions on the access rights of the authorized users. Also implemented as user
authentication, a tool to help identify and validate the identity of a particular user.
Access control ensures that the new node needs to prove that it is not only has
correct identity, also is truly new and authenticated to be admitted into the sensor
network. [17]. This is possible using key establishment, which is a part of access
control, that will help the new nodes to establish shared keys with its neighbors to
ensure a secure communications with them.

3.1.4 Cryptography and Key-Exchanges

In order to ensure privacy in the network, the confidentiality of the data travelling
through the network must be maintained. To do so, it is required to verify that the
data is not be tampered while travelling. Encryption is the solution for this. Data is
encrypted before sending, and is decrypted by the receiver to read it back. This may
be achieved using key management. When a single key is used for both encryption
and decryption, it is called Symmetric key and is a preferred method in WSN, as
it consumes less battery power, memory and has minimum computation overhead.
The other method is Asymmetric key cryptography, which uses two separate keys,
one for encryption and another for decryption, and the two keys are interconnected
with complex mathematical algorithm. This method, even though more reliable and
safe, is rarely used in WSN as it has huge overhead on power, computation and
memory [18, 19]. Cryptography and Key exchanges directly may not prevent an
intrusion, but plays a big role in protecting the network by restricting the entry
of an unauthorized user and also help in secure data transmission across different
nodes and may protect data from tampering i.e. helps in maintaining privacy in the
network.

3.2 Detection

In spite of all efforts of prevention, intrusion still may occur. Detection of one or
several compromised nodes is extremely critical and difficult. We need to make our
system to be able to detect an intrusion as early as possible. Intrusion detection
systems (IDS) are the main tool used for this purpose [20–22]. An IDS can monitor
the system activities and notifies as soon as a suspicious activity is found in
the system. The IDS systems are prepared or trained to be able to detect attack
signatures in terms of any changes in files, configurations or network activity. Role
of the IDS is to monitor the entire system and hence should be strategically placed
at a suitable position in the network. This is more of an art than a science. The main
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responsibility while using a IDS is to place it in a network at a suitable location from
where it can monitor the entire network. This decision is taken keeping into account
the threats, as well as intruder types, methods and processes [14].

3.2.1 Intrusion Detection System (IDS)

An Intrusion Detection System (IDS) can be defined as the process of identifying
intrusions, that occur as a result of a security breach. The detection is then reported
to the administrators, who can take any further action. IDS can identify attacks at
run-time, but it is not defined to provide a response to the intrusion and hence cannot
prevent any further disruptions of service [23, 24]. Known as the second line of
defence, an IDS may perform the following actions:

• Monitors and analyzes the system and user activities
• Audits the vulnerabilities and system configuration
• May also assess the integrity of data files and critical systems
• Commonly analyze abnormal activities

It can be a software or hardware, or a combination system to automate the
intrusion detection process [25].

IDS methodologies are classified as three major categories [26–28]:

1. Signature based intrusion detection—Only detects a specific signature of an
attack. Also known as Rule-based IDS, they detect intrusions with the help
of built-in signatures. The IDS belonging to this class can only detect well-
known attacks with great accuracy because their signatures are already known,
but it is unable to detect new attacks because of the absence of the their known
signatures [29].

2. Anomaly based intrusion detection—Monitors the abnormal behavior of a
network. The anomaly-based IDSs can detect intrusion by matching the traffic
patterns or resource utilization’s in the well known network. These IDS can
detect both well-known attacks as well as new attacks, but the problem is of more
false positive and false negative alarms i.e. detection even when no intrusion is
there or not able to detect an intrusion [30, 31].

3. Hybrid intrusion detection—combination of both above. This IDS maintains
the signature database as well as monitor the traffic for the changes that may
occur to detect an intrusion. Composed of two detection modules; one for well-
known attacks using signatures, and another, detecting the malicious patterns
over the normal profile, these are more accurate in terms of attack detection with
less number of false positives. The main drawback of the hybrid IDSs is more
consumption of resources, therefore, they are generally not recommended for
WSN’s [32].

The main point to remember here is that IDSs are always passive in nature i.e. they
can only detect intrusion, but cannot take any preventive action. Its role is to detect
and raise an alarm.
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3.3 Mitigation

Once the intrusion is detected, the possibility of a network to be able to take
preventive actions can ensure the highest level of security. There are mainly two
approaches of mitigation. First, as soon as an intrusion is detected with its location,
the intruder is cut off from the network ensuring the intrusion is not spread across.
Second approach is to pursue and prosecute the attacker. Whatever is the approach
is, the main role is to take the response in timely manner. In the next section we will
review the several tools used for prevention, detection as well as mitigation.

After an intrusion is identified and responded, the further need is to assess the
damage done to the systems as well the need is to clean and recover the system
to the original form. Another step is the post incident analysis and generating the
reports that may be used for strengthening the information security cycle for future.

3.3.1 Intrusion Prevention System (IPS)

The Intrusion Prevention System (IPS) is an extension of IDS, having all IDS
capabilities, and also could attempt to stop possible incidents. They only differ by
one characteristic i.e. IPS can respond to a detected threat by attempting to prevent
it from succeeding or spreading further. To do this, they may change the attacks
content or may change the security environment by disabling the infected node. It
is a pre-emptive control tool that can identify the potential threats first and then can
respond to them very quickly.

Extending the role of IDS, an IPS can also:

• Send an alarm to the administrator
• Drop the malicious packets
• Block traffic from the source address
• Reset the connection

IPS methodologies can be classified as two major categories [26, 33]:

1. Network—This is a monitoring device, that can capture the entire network and
analyze the traffic. The network IPS can detect any malicious activity in real
time, and then take an immediate action. This can be done by deploying special
sensors at some designated areas so that the entire network can be successfully
monitored. To deploy network IPS, sometimes, additional hosts can be added
with special monitoring capabilities in addition to the normal sensors. At the
time of setting up the network, this is quite easy to deploy [33].

2. Host—by auditing log files, host file systems and resources, this IPS monitors
operating system processes so that it can protect the critical system resources.
Known as HIPS, it can be a combination of the best features of antivirus,
behavioral analysis, signature filters, network firewalls, and application firewalls
etc. The problem with this IPS is that it needs to run on every node in the
network [33].
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3.3.2 Secured Protocol

The protocol in any WSN allows the nodes to communicate. A secured protocol may
protect the network by only authenticating and transferring the legitimate packets
and defending the attack packets. Another role of the secure protocol is to detect
an intrusion by monitoring the real-time behavior of their neighbors in order to
detect malicious behavior. Re-routing by eliminating the malicious participants and
to restore back the network functionality is also a task in secured protocol. Role of
the secure protocol is to provide data confidentiality, two-party data authentication,
integrity, and ensuring the freshness of data. Another role is providing authentication
for data broadcast as well. Several secure protocols for WSN are SPINS, LEAP,
RKP, TinySec, µTESLA etc.

4 Available Security Standards

To protect any network against the theft and misuse of confidential information
as well as to protect it from the malicious attacks, several measures need to be
taken. One of the methods is to define the security of the network at the time
of setting up the network using the certified products. Certified products are the
products that have passed some performance and quality assurance tests and meet
the quality assurance criteria set by the certifying agencies. Using these products
provides a confidence that the product will perform as the certified claims indicated.
Although, security may not be assured by the use of certified products, a set of
barriers may be used to protect the network. In this case, if one solution fails,
others still can guard the network. In this section, we discuss three main certifying
agencies namely Common Criteria, Federal Information Processing Standard and
ETSI, which deals with certification of the products. Many researchers have also
proposed some complex security measures to protect the network. In the later
subsection, we will also discuss their contributions.

4.1 Common Criteria Security Standards (CC-EAL’s)

Common Criteria is an international standard for computer security specifications.
There are two key components of common criteria i.e. Protection Profiles (PP’s)
and Evaluation Assurance Levels (EAL’s). The role of the Protection Profile is to
define a standard set of security requirements for a specific type of product, e.g. a
firewall. EAL are used to define the testing of the product. Scaled from 1–7, EAL’s
only assures the level of testing with one being the lowest-level evaluation and seven
being the highest-level of evaluation. EAL are only numbers used to describes the
rigor and depth of an evaluation testing for the security assurance requirements.
This helps in certifying the development of an IT product across a certain level of
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strictness. These levels are considered as the security for applications in extremely
high risk situations [34–36]. Each EAL level introduces a set of security assurance
components (SARs) that must be included in the evaluation such that the EAL level
is met. For the organizations to achieve a particular EAL level, they have to meet
very specific assurance requirements, which may lead from design documentation
and analysis to various testing, or implementation of extra hardware/software. For
gaining high level of security, the organization may need to have more detailed
documentation, analysis, and testing than the lower ones, which costs more money
and time. The main benefit of this level number assignment is the indication of
the security test level maintained by the organization. These security standard are
applicable for an IT product or system, and is an international standard in effect
since 1999. The EAL levels only state the level of security of the system at the
time of testing and certifying. The Common Criteria evaluations are done solely on
computer security systems and products.

In order to get the certified EAL level, the vendor needs to submit the product
for validation to CC. The product is tested in the laboratory to verify the product’s
security features and then it is evaluated how well the product meets the specifica-
tions defined in the Protection Profile to grant an official certification of the product.
The ultimate goal of a CC certification is just to assure customers about the products
they are buying that it has been evaluated and the vendor’s claims have been verified
by a vendor-neutral third party. But, EAL levels does not ensures what the product
must do. The EAL level itself is only one indicator on the security of a product and
does not measure the security of the complete system or network, and specially not
of the WSN.

4.2 Federal Information Processing Standard (FIPS)

Another commonly used security standard is FIPS i.e. Federal Information Process-
ing Standard (FIPS) published by U.S. government computer security to approve
cryptographic modules [37]. The main role of FIPS standards is to specify the
best practices and security requirements for implementing crypto algorithms and
encryption schemes. In order to handle important data, when cryptographic-based
security systems are used, FIPS standards come into picture. FIPS defines specific
methods for encryption and specific methods for generating encryption keys that
can be used in these cases. These are the set of standards that only describe
document processing, encryption algorithms and other information technology
standards. Used within non-military government agencies, government contractors
and the vendors working with the agencies, these standards include both hardware
and software components. Covering many FIPS standards (140-2, 180-4 etc.), this
specifically applies to the areas related to the secure design and implementation
of a cryptographic modules like cryptographic module specification, cryptographic
module ports and interfaces; their roles, services, and authentication etc. For
example, FIPS (140) standard only defines the cryptographic algorithms that are
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approved by US Federal government to be used in their computer systems for the
protection of sensitive data. Although, cryptography has a major contribution in
maintaining security, but it alone does not ensure it all.

4.3 ETSI Security Standard for IoT

ETSI works for the establishment of the effective telecommunications systems to
protect citizens on security issues in many fields like next generation networks,
machine-to-machine communication, intelligent transport systems, quantum cryp-
tography etc. The Cyber Security Technical Committee (TC CYBER) of ETSI is
developing standards to protect the Internet and the communications. In a recently
released standard ETSI TS 103 645, this committee has proposed a standard for
cyber-security in the IoT, in order to establish a security baseline for internet
connected consumer products [38]. They have tried bringing together widely
considered good practices to maintain the security for internet-connected consumer
devices. The document has a list of specifies high-level provisions for the security of
consumer devices that are connected to network infrastructure, such as the Internet
or home network, and their associated services. The list of recommended security
provisions as listed in the document are: No universal default passwords, Implement
a means to manage reports of vulnerabilities, Keep software updated, Securely store
credentials and security-sensitive data, Communicate securely, Minimize exposed
attack surfaces, Ensure software integrity, Ensure that personal data is protected,
Make systems resilient to outages, Examine system telemetry data, Make it easy for
consumers to delete personal data, Make installation and maintenance of devices
easy, Validate input data etc.

In the next subsection, we discuss several security systems proposed in the
literature.

4.4 Other Security Evaluation Standards

Till now, common certification standards are discussed that are used in industry. A
lot of research is done to secure networks and several new schemes and measures are
proposed from time to time. In this subsection, we will list some security systems
proposed in the literature.

Alvaro, Tanya and Sastry proposed a security scheme for SCADA systems [39].
They proposed different countermeasures for different attacks by categorizing the
attacks in three categories; (1) physical attacks from outsiders, (2) key compromise
attacks and (3) insider attacks from somebody controlling a legitimate node. They
first ranked the threats to calculate the score of the difficulty of accomplishing the
attack. For their security scheme, they have considered extra hardware installation,
physical access security, and required technical skills to enforce attacks. They did
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discuss various issues related to SCADA systems, but failed to provide any measure
to provide security to the network.

Another framework that is used for modelling the security of CPS is based on
traditional Byzantine model [40]. In this method, they considered only those cyber
attacks that could lead to physical damages. Using state-based semi-Markov chain
(SMC) model, they described the attacker and the system behaviour over time. They
performed quantitative security analysis using metrics like mean time to security
failures, steady state security, and steady state physical availability failures. This
model does not consider deployment of any countermeasures in the network.

A game-theoretical model for cyber-physical security for wide area monitoring,
protection and control applications (WAMPAC) is proposed, where authors con-
sidered the attacks as timing based attacks, integrity attacks and replay attacks [41].
They also considered security as three components: Wide-Area Monitoring (WAM),
Wide-Area Control (WAC) and Wide-Area Protection (WAP). Their model works
on various cyber attack scenarios based on the attack model, and the information
sets available to the attacker and the defender.

Sensor data security estimator (SDSE), a new comprehensive security estimation
module defined for WSNs [42]. This module is deployed on the base station
and based on the cryptography algorithm, key management scheme and intrusion
detection system, calculates the security level of the network. The main goal of
this work is to calculate the security level (SL) of sensor data based on the three
countermeasures and provide that to the WSN users.

A comprehensive value Q is defined as the security value of the whole network
by analyzing the security value of network elements, and by adopting the Geometric
mean method to determine this value [43]. A higher value of Q ensures that
the network is secured. Common criteria EALs are used to calculate this value.
Although their use of CCs CAP (Composed Assurance Package), which is an
evaluation method to evaluate the composed information security where two or more
IT products are used. Since CC is a well established standard and make this scheme
more trustworthy but still the lack of consideration of deployed countermeasures
does not make it practically very applicable.

A Three-Dimensional Model for Software Security Evaluation is proposed which
provides a systematic way to analyze software security in three dimensions i.e.
technology, management and engineering [44]. In technological dimension, CCs
7 security levels based on Evaluation Assurance Levels (EALs) are considered.
For the management dimension, the management of software infrastructures,
development documents and risks are considered and the engineering dimension
is mainly focused on 5 stages of software development life-cycle.

A special threat framework proposed specifically for CPSs is based on the
traditional Byzantine paradigm for cryptographic security [45]. In this scheme, the
basic security features and requirements as specified are used to identify system
vulnerabilities. The advantage of this framework is the use of formal analyses and
security proofs that are done using existing cryptographic methodologies.
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Using Trusted Platform Module (TPM), this scheme works for securing the
data [46]. TPM is developed by the Trusted Computing Group2 and works by
generating the asymmetric key pair, their secure storage, generation of signatures
and finally encryption and decryption of data. The scheme is tested and verified
using Castalia simulator. The TPM needs to be deployed at every node in the
network.

In Table 9.1, a summary of these security standards and systems is provided.
Although a lot of research has been done for defining security evaluations, but

mainly these are for IT networks and systems. In the area of CPS, a standard scheme
that can certify the security level of its physical layer, seems to be missing. To
fulfill this gap, we have proposed a standard methodological Security Evaluation
Scheme that may assess the level of security of the physical layer of CPS and
may even provide recommendations to enhance the security level to the next
level. The role of the Security Evaluation Scheme would be to provide a standard
language for expressing security characteristics of any network and work towards
establishing an objective basis for evaluating the security of a network in relation
to these characteristics. The scheme may be used to express the required security
characteristics of a network and then evaluate the deployment in context of the
defined criteria. This scheme can also serve as frameworks based on their utility
to both users and vendors in support of their security goals.

5 Network Security Evaluation Scheme (NSES) for CPS

Security requirement may vary from one CPS to another. This may be decided
according to the importance of the CPS application and the information that is
being obtained and/or exchanged. In the area of Cyber Physical Systems, this
novel scheme can certify the security level of physical layer of the network and
can recommend different security levels based on the security need of the specific
domain of CPS.

5.1 Objective

Main objective of NSES is to maintain the required security level of physical
layer of CPSs. Based on the basic security mechanism of prevention, detection and
survivability [39], we have defined various levels. The minimum level of security is
defined that may prevent any attack in the network as it will prevent a new insertion
of a node. But even then an attack may occur. The next level will ensure an early

2https://trustedcomputinggroup.org/, 2019, [Online; accessed 2019/07/07].

https://trustedcomputinggroup.org/


Table 9.1 Security evaluation standards and systems

Evaluation
standard Description Application domain

EAL 7 level security scheme defined by CC needing
detailed documentation, analysis, and testing to get
standards

IT products [34]

FIPS Published by U.S. government computer security to
approve cryptographic modules. four levels of
security for potential applications and environments
using cryptographic modules

Only for cryptographic
modules [37]

ETSI security
standard

Published by TC cyber to protect the internet and
the communication. Has standards that increase
privacy and security for organizations and citizens
across Europe and worldwide

Businesses across
different domains [38]

SMC based
model

State-based semi-Markov chain (SMC) model to
describe the attacker and the system behaviour over
time. Only the cyber attacks that could lead to
physical damages were considered

For any CPS [40]

Security scheme
for SCADA

Taxonomy composed of the security properties of
the sensor network, the threat model, and the
security design space to protect SCADA systems.
This aims to provide a holistic view of the security
of Sensor Network by ranking the threats to
calculate the difficulty level of an attack

Any commonly used
CPS [39]

WAMPAC
security

A game-theoretic framework to model CPS security
covering various cyber attacks using
attacker/defender model. Works by looking for the
attacker strategies based on the defender actions.
The defender progressively updates his strategy

Control systems [41]

Sensor data
security
estimator
(SDSE)

Designed to estimate the sensor data security level
based on security metrics by analyzing both attack
prevention and detection mechanisms. The security
evaluation module is at the base station that
monitors the network by comparing the sent and
returned messages

WSN [42]

CAP based
security scheme

Using the Geometric mean method, this scheme
determine the security value of the entire network.
Also deals with the analysis and testing of the
vulnerabilities in the network

Any network [43]

3-D model for
security
evaluation

Provides a systematic way to analyze software
security in 3-D i.e. technology, management and
engineering. The security evidences are collected
from three points of view and are evaluated under a
rule to calculate the value.

Software [44]

Security
framework for
CPS

Combines the cyber and physical aspects in terms of
threat model and protect it according to the
prevailing security policies. Identifies the features
needs to be protected and apply the prevailing
security policies

Cyber physical
systems [45]

Security scheme
for WSN using
TPM

Used for WSN using the TPM deployed on every
node. TPM works by generating the asymmetric key
pair, their secure storage, generation of signatures
and finally encryption and decryption of data

WSN [46]



206 M. Sharma et al.

detection of the attack. IPS on the next level will prevent it from expanding and
breaking the entire network. Countermeasures deployed in the network may ensure
a much secured and survived network.

5.2 Challenges

Main challenge for us was to design a security mechanism that can be used to
prevent, detect and mitigate the attacks. Once the attacks at physical layer are
classified, it becomes easier for system engineers to take different measures to
protect the network from them. Different counter measures mechanism that can be
followed are access control, key agreement, data encryption, secure routing protocol
and trust management [1]. The proposed security evaluation scheme is defined based
on these countermeasures in a network to ensure that any CPS network can achieve
the level of security as required.

5.3 Advantages

This scheme has multiple levels of security based on the difficulty level of an
intruder to get into the network. The applicability of the scheme is based on the
knowledge about the processes controlled by the CPSs and the required level
of security maintenance in the system. The main advantage of the scheme is to
define a standard evaluation method to secure physical layer of CPS. For ease and
standardization, every level has been given a specific color to depict the security
level of a network. This will help developers to better streamline their security
expectations for various CPS applications.

Benefit of our security evaluation scheme is both for the network engineers and
the clients. The network engineers can always claim to have the security properly
implemented and functioning in their network deployment based on the clients
specifications. In future, verification of such claims and a stamp of approval by
several clients will strengthen the network vendors reputation of setting up the
networks as per the clients specifications. The clients gets the surety of the security
maintained in their network as required as well as they have the recommendations
from the network engineers to enhance their security specifications.

NSES is applicable to almost every IoT and CPS‘s physical layer. This scheme
considers five countermeasures i.e. physical security, key management, cryptogra-
phy and access control, IDS, IPS, and Secure protocol. For gaining high level of
security in any network, network engineers may keep adding more countermeasures
as recommended.

We would like to mention here that this scheme can further be extended for the
entire CPS with some modifications and enhancements.
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5.4 Security Level Codes with Description

The five levels of the security range from A to F. Starting from the highest level of
security, we move to the minimum security needs of a network.

• Security Level A: Fully Secured Network—Defined as the highest level of
security, ‘A’ certified networks can detect any kind of attack and take preventive
actions automatically.

• Security Level B: Highly Secured Network—The network with ‘B’ level
certification can detect attacks and do some basic level of prevention based on
the tool used. This is done by raising alarm or inactivating the affected node so
that to stop the invasion further.

• Security Level C: Moderately Secure Network—The network with ‘C’ level
security can only detect the intrusion but cannot take any further action.

• Security Level D: Above Basic Secure Network—This level is only defined
to ensure the Confidentiality, Integrity and Authentication (CIA) control in the
network. The data exchange across the nodes is also protected using encryp-
tion/decryption to maintain privacy in the network.

• Security Level E: Basic Secured Network—Defined as a minimally secured
networks, ‘E’ level networks has low level of security i.e. the nodes are physically
secured and join the network using authenticated keys.

5.5 Deployed Countermeasures

• Security Level A—To ensure the highest level of security, this network has all
the five major components i.e. Physical Security + Cryptography + IDS + IPS
+ Secure protocol in place. The Secure routing protocol ensures a correct and
efficient route establishment between a pair of nodes. Any kind of attack can be
traced and alarmed through this security level.

• Security Level B—This network has all the four components except the secure
protocol in place i.e. Physical Security + Cryptography + IDS + IPS. Since
an IDS can detect attacks but cannot prevent or respond. To ensure high level
security, an immediate action must take place once the attack is detected. The IDS
must raise an alarm to inform the controller that may take an action to stop the
attack impact further. The Intrusion Prevention System will prevent the invalid
node to invade further.

• Security Level C—This level has the network with Physical Security, Cryp-
tography and IDS in place. It is said that the security-related solutions like
authentication and key exchange can provide some security however they cannot
eliminate most of the security attacks [47]. The implementation of IDS can
enhance the security of network as it will ensure the authenticity of the data
transmission over the network. Known as the second line of defence, this
security measure can detect an intrusion into the network at an early stage. Most
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Challenging attacks are because of node fabrication. An early detection of any
attack is the objective of this security level.

• Security Level D—D level networks also secures the messages transmitting
across the network to maintain privacy. This can be done by adding Cryptog-
raphy and Key Exchange in addition to physical security. This will ensure the
Confidentiality, Integrity and Authentication (CIA) control in the network.

• Security Level E—For the minimum level of security, the only have physical
security of the nodes ensured by adding software firewall. This level ensures that
the nodes are somewhat physically protected and can join the network by only
using the authenticated key.

5.6 Color Codes

• Security Level A: Fully Secured Network—An olive green color indicates a fully
secured network.

• Security Level B: Highly Secured Network—The green color is the indication of
high degree secured network.

• Security Level C: Moderately Secure Network—The yellow color shows that
network can detect the intrusion at an early stage.

• Security Level D: Above Basic Secure Network—Orange code is the indicator of
a network that cannot detect an intrusion but may protect the message transfers
using encryption.

• Security Level E: Basic Secured Network—Red color is the alarm that there is
only a physical protection of nodes and new nodes can join using passKey.

The color scheme is defined in the Table 9.2.

Table 9.2 Color scheme of NSES

Level Description
Security level A A fully secured network
Security level B Highly secured network
Security level C Moderately secure network that can detect

the intrusion at an early stage
Security level D Above basic secure network where mes-

sage transfer is secured in the network
Security level E Basic secured network that only has phys-

ical protection and uses passkey to join the
network
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6 Case Studies

In order to illustrate the way this scheme can be used in real life Cyber Physical
Systems, we would like to take a few examples. Since a CPS may range from smaller
deployments like Body Area Networks (BAN) to larger one’s like Environment
Monitoring Systems, we are taking five different case studies and explain the
applicability of this security scheme in that deployment.

6.1 Environment Monitoring System

There are several applications of the monitoring system i.e. agricultural, habitat,
greenhouse, climate, forest monitoring etc. [48]. In such systems, reliability of the
network is important in order to prevent packet loss.

6.1.1 Common Threats to the Network

The main threats to this type of networks are physical tampering or unauthorized
access by the intruder i.e. preventing a node removal or insertion of an unauthorized
node. Not only that, if there is an intrusion, the network should be able to prevent the
spreading of the intrusion by either blocking the infected node or by re-configuring
the network to re-route packets.

6.1.2 Required Security and Safety Specifications and Recommended
Security Level of NSES

The security specifications for environment monitoring system should be that no
unauthorized user is able to join the network. Also, the data transmission should be
secure so that the message broadcast is also secure. Since the network is in large
geographical area, we also need to monitor for any unauthorized activity happening
in the network like node removal or an unauthorized node insertion or a node
replacement with a faulty node. To meet this security need, the sensors must be
physically protected. Also, there must be key exchange mechanism in place that
restrict the new unauthorized nodes to join the network. In addition, deployment of
IDS/IPS will detect any intrusion at an early stage. So for that purpose, the network
should at least follow Security Level B as shown in Fig. 9.2. Just to note, Security
Level B already covers the measures of Level C, D and E. This will ensure that the
intrusion is detected and network is protected for spreading the attack.
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Fig. 9.2 Security level of
environment monitoring
system

6.2 Body Area Network

CPeSC3 (Cyber Physical enhanced Secured wireless sensor networks integrated
Cloud Computing for u-life Care) is the use of WSN for health care [49]. In this
system, the sensed data is either human health data or data to be used for detection
of human activities for health care services. Here, the sensors are either attached
to the body of the patient or onto the walls in the home environment, and these
sensors can track the patients movement. This may collect the data about the patients
personal health or body movements. The recommendation is to have Image-based
authentication and activity-based access control mechanism to enhance security
and flexibility of users access [49]. The Key Management Techniques are most
relevant for data protection in MCPS [50]. Another similar example is of WBAN,
a communication network between the humans and computers through wearable
Devices [51]. They have also mainly stressed upon Cryptography, Key Management
and Trust Management. Secure routing in their work is also to ensure the end-to-end
communication verification purposes mainly. The recommendations in this work
are also of security and privacy in transferring data like human body signals, needs
Authentication, integrity, access control, non-repudiation and encryption features.

6.2.1 Common Threats to the Network

Physical tampering of the nodes or unauthorized access to modify the readings.
The need is that the patient‘s vital information must be stored and used with
confidence. Moreover, for the patients with a socially unaccepted disease, it is
even vital. Any failure or leakage of this type of patient‘s health information could
lead to humiliation, wrong treatments, relationship issues, or even job loss. In
case of negative perception of the health information can also invariably hinder
an individuals ability to get good treatment or coverage. Due to these reasons, it
is critically important to ensure the security and privacy of medical data of different
patients [52].
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6.2.2 Required Security and Safety Specifications and Recommended
Security Level of NSES

In this network, if we may just restrict unauthorized insertion as well may secure
the message transmission, the network will work fine and will be maintaining the
privacy of the data transmitting across. To match this need, the system administra-
tors need to ensure that the network should have an above minimum security level,
where the environment will be controlled physically and has cryptography deployed.
The physical protection will protect the sensors so that they are not intentionally
tampered externally and cryptography and key exchange barrier, will secure the
message transmission. This will protect the patients data at the physical level as
well only allow authenticated sensors and actuators. So, for that reason Security
Level D will be appropriately suitable for this network as shown in Fig. 9.3. To be
more critical patients, who are may be disabled or so, Security Level C may be
more appropriately suitable.

6.3 Surveillance Control

The forest wildfire monitoring application is useful in remote areas. A Sybil attack
is known to be a common attack on this network. A two-tier detection scheme is
proposed by the authors [53]. Sybil attack is by the attacked nodes that transmit
high false-negative alerts to an end user so that they may divert the attention to the
less vulnerable geographical regions.

6.3.1 Common Threats to the System

Common threats here are nodes modification as well as the new node insertion.

Fig. 9.3 Security level of
body area network (BAN)
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Fig. 9.4 Security level of
surveillance control systems

6.3.2 Required Security and Safety Specifications and Recommended
Security Level of NSES

We need a full-proof security and safety of this network. So, the network must be
protected at the Security Level A as shown in Fig. 9.4, so that any intruder can be
identified as well as the protection alarm will ring. Moreover, through the secure
protocol, the sybil nodes can immediately be identified and will be stopped from
making an adverse effect on the network.

6.4 Smart-Home System

The current boom is the Internet connected household devices, such as light-bulbs,
cameras, smoke-alarms, and door-locks, leading to a smart-home [54]. This helps
in family safety, property protection, lighting/energy management, as well as pet
monitoring. Garden irrigation system is also an added component.

6.4.1 Common Threats to the Network

The various devices in the smart home are from different vendors. This vast
heterogeneity in devices makes overall attack vector very large and very challenging
for a security professional to cover out the entire threat space.

6.4.2 Required Security and Safety Specifications and Recommended
Security Level of NSES

As per our scheme, the sensors need to have some physical protection. Since the
coverage in these networks in heterogeneous space and devices, it is important to
define security through secure protocol in addition to key exchanges and IDS/IPS so
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Fig. 9.5 Security level of
smart-home systems

that any intrusion may be detected at an early stage. So for that purpose, the network
should follow Security Level A as per our scheme as shown in Fig. 9.5.

6.5 Smart Cars

Smart cars, or popularly known as intelligent cars, are the cars that are more
environment-friendly, fuel-efficient, safe by automatic monitoring of the road
threats. They also have enhanced entertainment and convenience features. The cars
have multiple computers networked together, known as Electronic Control Units
(ECUs). These ECUs mainly monitor and control various car functions. There are
sensors that keep sensing the road threats and accordingly control the car activities
like speeding or stopping [4].

6.5.1 Common Threats to the Network

As mentioned, the threat to the smart car is a hacker, who can attack a car’s ECUs
(target) by exploiting weakness in the wireless interfaces (vector) so that it can cause
a collision or loss of control (consequence). If we may stop an external node to join
the local network that is collecting data and checking with the outside threats, we can
protect the car. So the plan may be to protect the car sensor network physically and
disable the unauthorized node to join the car network; then, it will ensure security
of the smart car.

6.5.2 Required Security and Safety Specifications and Recommended
Security Level of NSES

As per our scheme, the sensors need to have some physical protection. Since the
coverage in these networks in heterogeneous space and devices, it is important to
define security through key exchanges so that no new node can join the network. So
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Fig. 9.6 Security level of
smart-cars

for that purpose, the network should follow Security Level D as per our scheme as
shown in Fig. 9.6.

7 Summary

Out of the three subsystems of CPS, namely, cyber subsystems, networking
subsystem and physical subsystems; physical subsystem is the one made up of
wireless sensors and actuators and is known as WSN. WSN is used to generate
data to send to cyber layer and also control physical layer using actuators.

To secure any network, several new and old security standards are widely
available. However, a scheme that defines the security level of a network as a
whole, is still needed. A novel security scheme that provides a holistic view of the
security of WSN for IoT/CPS applications is described in this chapter. Known as
NSES, this scheme is divided into 5 different security levels based on the deployed
countermeasures. The five levels of the security starts from the very basic security
level ‘E’ to the highest security level ‘A’, which is the fully secured network. Level
‘A’ covers all the levels from E to A with reference to the security countermeasures
deployed at every level.

Supported by a few CPS/IoT examples, the use of NSES is explained with a
particular focus on the security need of every network and the recommendations of
the security level from the NSES. These recommendations can be used by network
administrators at early design phases to define the security needs of the network and
then match them at the time of deployment.

The main advantage of NSES is that it can be used as a common platform by
the network users and network administrators to match their security needs with its
implementations.
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Chapter 10
Anomaly Detection in Cyber-Physical
Systems Using Machine Learning

Hossein Mohammadi Rouzbahani, Hadis Karimipour, Abolfazl Rahimnejad,
Ali Dehghantanha , and Gautam Srivastava

1 Introduction

Cyber-Physical Systems are a result of an efficient combination of cyber systems
and the physical world into an integrated structure for vital tasks which originated
from advancements in digital electronics [1]. In these systems, physical components
and computational resources are integrated through communication links for remote
monitoring and control [2, 3].

The smart grid, as a cyber-physical system, emerged from the restructuring of
traditional power networks [4]. These systems require smart tools not only for
electrical flow, but also for better performance that has led to self-healing, adaptive
protection, control, customer involvement, just to name a few [5–7].

Even though Cyber-Physical Systems develop system operator interaction with
the consumer and other parties, many challenges have been created including secu-
rity, reliability, stability, maintainability, safety, and predictability [8, 9]. Security
is one of the most important challenges in cyber-physical systems due to the
integration of many components which has made them vulnerable on both the
physical and cyber sides. Malicious attacks have led to interrupt system operation
or theft of arcane data which can be directed at the cyberinfrastructure or physical
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Fig. 10.1 Machine learning subsections in CPS security

components [8, 10–12]. Cyber-physical systems are facing a tsunami of generated
data on different components which are too large and complex for real-time
processing. Cloud computing techniques along with analytic methods such as
machine learning (ML) can help generated information be secure whilst being
processed, analyzed and stored [13, 14]. ML in the context of this chapter is referring
to making predictions after learning from available data by a system. Figure 10.1
shows the application of ML in smart grid security.

There are many approaches such as ML to intrusion detection systems which are
classified into supervised, unsupervised, and reinforcement learning and can build
the requisite model based on training data [15]. In supervised ML, both normal and
abnormal behaviors are provided to the model to learn trained labeled data. It is
very difficult for attackers on cyber-physical systems to obtain labeled data [16, 17]
while they do not need abnormal data in the training phase and it is a great advantage
for unsupervised learning [2, 18, 19]. In reinforcement learning, there is no training
data and as a result, the agent can learn from their own experience. In fact, it gathers
the training examples by trial and error while it is attempting its tasks.

This chapter surveys ML methods for an anomaly attack detection framework for
cyber-physical systems. Anomaly detection is defined as detecting patterns that do
not fit into predictable behavior [20, 21]. Since the characteristics, structure, quanti-
ties, and patterns of research activities are understood by bibliometric analysis, the
purpose of this chapter is to identify the state-of-the-art of anomaly attack detection
in cyber-physical systems.

Web of Science is used as the search engine for this analysis. First, the related
keywords are inputted for extracting publications. Then, we limit research time
to the last 10 years. Finally, non-relevant and non-English publications were
removed and the inquiry to collect the data for bibliometric analysis was as follows:
(TS = ((anomaly detection OR outlier detection) AND (cyber-physical system OR
cyber-physical system OR smart grid OR CPS cyber-physical systems))). As a
result, in the primitive search, 389 publications were found which were reduced
to 379 after the mentioned filters.

Results show that the greater number of the publications fall under computer
science and engineering and most of them belong to the United States and China
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(154 and 72 publications respectively). Iowa State University and the United States
Department of Energy are the most productive institutions in this field of study, both
being located in the United States.

Figure 10.2 shows 87 documents were published in 2018 while there was only
one publication in 2010. Considering the fact that the study was conducted in August
2019, it is predictable to see the number of publications to be higher for 2019
compared to 2018.

The rest of this chapter is organized as follows. Section 2 presents an overall view
of cyber-physical systems. Attack detection methods in CPS and anomaly detection
are studied in Sects. 2 and 3 respectively. Section 4 provides a case study and Sect.
5 concludes the chapter.

2 Cyber-Physical Systems

According to the application of CPSs, these systems can be defined in differ-
ent ways, such as deeply intertwined computation, communication, networking,
advanced tools, and physical processes interacting with each other relying on IT
systems, which are used to monitor and control the physical world [22, 23]. Figure
10.3 shows a holistic view of CPSs.

Different characterizations are presented for CPS which focus on different
aspects of these systems including cyber capability, automation, dependability,
networking, integration, complexity and reconfiguring [24] which we will briefly
mention them [25].

Cyber-physical systems are the integrations of cyber capability and physical
components which include distributed networks (i.e. Local Area Network, Blue-
tooth, Global System for Mobile Communications, etc.) and are severely limited by
spatiality and real-time computation. Due to reliability and security necessities for
CPS, there is a need to have adaptive capabilities with advanced feedback control
technologies.
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Fig. 10.3 Holistically view of CPSs

Fig. 10.4 CPS challenges

Since cyber-physical systems use distributed communication and smart tools and
sensors, these systems are facing various challenges from different points of view
which are presented in Fig. 10.4 [1]. However, in the rest of this part, we focus
on security issues because CPSs are more vulnerable to cyber-physical malicious
attacks [26–28].

Security solutions for cyber-physical systems are required and could be enhanced
with Information Technology (IT) systems and techniques like cryptography, access
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Fig. 10.5 Smart grid as a CPS

control, attack detection, or others. Lack of security in CPSs (e.g. nuclear power
station or medical devices) could cause a worldwide threat or disaster.

Security is also one of the most important challenges in the smart grid due to
the high dependency of these systems on cyber information yielding new security
vulnerabilities [12, 26, 27, 29]. These systems with extensive communication capa-
bilities are good examples of CPSs, which provide the required infrastructure for
handling new challenges. Rising electrical energy demand and several technological
developments have motivated the advancement of the smart grid. From this, it can
be seen that a comprehensive approach is needed for the realization of this issue to
quantify attack impacts and assess the effectiveness of countermeasures. The smart
grid view as a cyber-physical system is shown in Fig. 10.5.

3 Attack Detection in CPSs

There are three main security properties for a Cyber-Physical system including
confidentiality, integrity, and availability [30]. So, attacks are classified considering
the security properties as shown in Fig. 10.6.

The most efficient way of defending against network-based attacks is Network
Intrusion Detection Systems (NIDS). NIDS are used in almost all Cyber-physical
systems. Anomaly-based NIDS and signature-based NIDS are the two main kinds
of these detection procedures [31]. Signature-based systems use pattern recognition
methods while anomaly-based systems configure a statistical model defining the
standard network traffic and flag any abnormal behavior that diverges from the
model [32]. It should be noted here that the database of previous attack signatures
are preserved and compared with analyzed information for signature-based systems
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Fig. 10.6 Attack taxonomy for CPS

while in anomaly-based systems the database of general attacks a training phase
is required, and it is a complex process due to the setting of a threshold level
of detection. Since innovative attacks can be detected as soon as they take place,
anomaly detection systems can detect zero-day attacks and it is a major advantage
of this system in contrast to signature-based systems [33]. The rest of this section is
focused on anomaly-based detection.

3.1 Anomaly Based Detection

The network’s behavior is a very important factor and if it does not follow the
predicted behavior which is learned by the specifications of the network managers,
anomaly detection will commence. Given that various protocols are affected by
the rule defining process, the ruleset can be recognized as the main drawback of
anomaly detection. Rule definition becomes a difficult process when it is facing
custom protocols. Network managers should be comprehensively familiar with the
accepted network behavior because the malicious action goes unnoticed if it falls
under the accepted behavior, while by defining the rules anomaly detection systems
work properly [34]. Finally, anomaly detection is related to novel attacks without a
signature which can be detected by anomaly-based method if it falls out of the usual
traffic patterns [10]. This is a very big difference between anomaly and signature-
based detection methods.

Anomaly detection could be matured upon a variety of general methods bor-
rowed from various scientific fields including ML, statistics, artificial intelligence,
clustering, pattern recognition, classification, system theory, signal processing, etc.
Figure 10.7 shows a taxonomy for anomaly detection.
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Fig. 10.7 Anomaly detection taxonomy

3.1.1 Statistical Methods

Anomaly detection methods have been advanced using statistical theories which are
characterized and qualify the behavior of every component of the system. In these
methods, the collected data should be given a probability distribution. The difference
between current behavior and normal behavior is detected by using statistical
properties such as mean, variance, etc. [35]. Corresponding to the currently observed
and the previously trained profile are two different datasets during the anomaly
detection which are used by statistical methods. There are many advantages for
this method but the most important one is related to decreasing false detection rate
because they can provide more accurate detection of malicious actions over a long
duration. Given that the ability to learn from observation in statistical methods,
detailed awareness about the standard activity of the system is not necessary [36,
37]. It should be noted here that these methods have some drawbacks. For example,
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the system can be attacked again by generating network traffic in such a way that
looks similar to normal behavior. Another disadvantage is that if the system can be
modeled in such a way that statistical methods cannot be used, it leaves the detection
methods in a useless state [38].

3.1.2 Classification Based Methods

Each attack with a recognized outline and plan can be detected right away if it
is dropped while the network administrator prepared details of the features to the
detection system. That is why classification methods depend on administrators’
substantial knowledge of the specifications of attacks [39]. If an attack signature
has been provided previously by a network manager, the system is capable of
detecting that because it can detect only what it knows is vulnerable to another
new attack. Even if a new signature of attack is created and put into the system, the
inflicted damages are not changeful and there are many losses likewise, the repair
process is very expensive [40]. Finally, these methods are dependent on a standard
traffic outline that makes the cognizance base and consider activities that stray from
baseline outline as anomalous [41, 42].

3.1.3 Clustering Based Methods

One of the main subclasses of unsupervised ML is called classification. In this
method, rules are found for grouping similar data examples without the need to
labeled data [43]. There are many types of clustering methods but the two most
important and functional ones are regular clustering and co-clustering [44, 45]. The
difference between these methods is related to the method of clustering. In regular
clustering, the rows of the data set are considered. In co-clustering the clusters are
based on both rows and columns of the dataset simultaneously [46]. K-means is an
example of regular clustering.

3.1.4 Signal Processing Approaches

Signal processing methods rely on time-series and spatial-temporal data [47, 48]
which includes three sub-methods: Min-Max-Threshold, Filtering, and Modeling.
The simplest form of anomaly detection is Min-Max-Threshold, where minimal,
maximal or threshold values are defined from a series considered normal [49].
Filtering method compares a signal with a low-pass filtered version which gives
an indication of an outlier value. Finally, the modeling method generates a model
based on system identification techniques which are used to predict the next values.
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3.1.5 Pattern Recognition

In this method, the difference between a normal and an abnormal state is made by
the sequence of samples as the shape of the signal whereas the individual data alone
is not important. Support vector machine, Neural networks, and Markov chains are
trained in order to detect a difference between normal and abnormal shapes [50, 51].

3.1.6 Machine Learning

Machine learning aims to find patterns, make predictions, and make decisions
based on historical information to perform a task [12]. Supervised, Unsupervised,
Reinforcement and Semi-supervised learning are four types of ML. In supervised
techniques, the rules are learned from different examples which are positive or
negative and labeled data are used to find a model that explains the dataset. In
unsupervised learning, a procedure cannot consider specified anomalies and the
main objective is to find a pattern for unlabeled data. Finally, in semi-supervised
learning, just the normal performance can be learned from positive examples so
only a portion of data is labeled [16].

Machine learning approaches usually separate data into different categories:
training and testing. Training data, which commonly is larger in size, is used for
learning and providing a model for the system. Testing data, which is completely
independent of the training, is used to assess the efficiency of the algorithm. In
anomaly-based detection, the normal behavioral pattern is described and modeled
by using a training set. Then, the model is applied to testing dataset in order to
classify it as either normal or anomalous. In addition, some ML methods separate
datasets into three categories instead of two, adding a validation dataset. The
validation dataset is used to validate the testing dataset’s accuracy when used as
input to the given ML method. For illustration, the number of layers and nodes in
Artificial Neural Network (ANN) can be varied and the best parameters are chosen
that have less estimation of error and more efficient to be built depending on the
performance on the validation dataset [12].

One important part of any anomaly detection method is evaluating the perfor-
mance of ML algorithms. Classification accuracy is the most intuitive method in
this evaluation, which measures the performance of the model by computing the
ratio number of accurate predictions to the whole number of observations. The main
drawback in this metric is that it works properly only when the dataset has equal
values for false positives and false negatives [16, 18, 19].

F1 score is another metric in measuring the accuracy in uneven class distribution,
which computes the balance between Precision and Recall. Precision is the ratio
of correctly predicted positive observation compared to total positive observation,
while Recall is the ratio of correct positive prediction to the total number of
predictions in the same class (true positives and false negatives of the same class).
As a result, F1-score can compute the performance by taking both false positives and
false negatives into account. In multi-label ML algorithms, F1-score is usually used
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to evaluate the classification performance. Therefore, by maximizing the F1-score
in multi-label classification, the performance of the algorithm can be considerably
improved. Finally, ML is used in a wide range of cyber-physical systems due to the
prediction and detection are the two most vital factors for these system operations.
Anomaly detectors can be built based on ML algorithms, which could lead to
secured cyber-physical systems [18, 19, 52].

4 Case Study

The use of ML techniques for the detection of anomalies can be exhibited through
the following case study. Heuristic optimization algorithms are proposed as feature
selection techniques to reduce the training time of the algorithms. Since one of the
main concerns of the use of ML is computational efficiency, this case study aims to
implement automated methods to reduce the dimensions of the data prior to training.
This reduces the training and operating time of the ML algorithms for increased
computational efficiency.

In this case study, ML classifiers are used to categorize the smart grid mea-
surements as normal or malicious. A Support Vector Machine (SVM), K-Nearest
Neighbor (KNN), and Naïve Bayesian (NB) classifier are implemented and com-
pared in terms of classification accuracy. Each of the three classifiers is tested
with three heuristic feature selection techniques, which are: Binary Cuckoo Search
(BCS), Binary Particle Swarm Optimization (BPSO), and Genetic Algorithm (GA).
These feature selection methods are optimization algorithms that find the ideal
subset of features that produces the best accuracy. The classifiers are tested with
each of the resultant subsets of features and evaluated based on its accuracy and F1
score.

Three different IEEE standard power systems are used in this experiment: The
IEEE 14-bus system and the IEEE 118-bus system. The measurement data consists
of power flow of branches and buses. For each power system, three sets of data
were generated; a set of 1000 samples used for feature selection, a set of 40,000
samples used for training of the classification algorithms and a set of 10,000 samples
used for testing and evaluation. Each set of data is divided in half into good and
malicious data. The malicious data consists of measurements infected with a false
data injection (FDI) attack.

Each of the classifiers, as well as the feature selection algorithms, consists of
modifiable parameters that can affect the solution. As such, appropriate parameters
must be chosen to ensure optimal solutions. For each of the classifiers, the
parameters were chosen based on an accuracy test in which accuracy of the classifier
was evaluated at varying parameters. Figure 10.8 shows the accuracy of the SVM
with varying kernel coefficient (γ) and penalty parameter (C). Similarly, Fig. 10.9
shows the accuracy of the KNN with varying number of neighbors. These tests are
performed on the smallest system, IEEE 14-bus system, due to their time-consuming
nature. Based on these results, the parameters of the classifiers are chosen. The
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Fig. 10.8 Accuracy of SVM

penalty parameter and kernel coefficient of the SVM is chosen as 1000 and 0.0001
respectively, and the number of neighbors for the KNN algorithm is chosen to be
12. The Naïve Bayesian Classifier, however, was trained with the default smoothing
rate of 1 × 10−9.

Each machine learning classifier is tested with the subset of features produced
by each of the feature selection algorithms. For each pair of classifier and feature
selection algorithms, the classifier is used as the fitness of the solution for each
of the heuristic feature selection techniques. The accuracy and F1-score of the
classifiers are recorded for each of the resultant feature sets as well as without any
feature selection. Furthermore, the runtime for each of the algorithms is recorded
for analysis regarding computational efficiency.

The classification accuracy, F1-score, training time, and feature selection time are
recorded for each combination of algorithms in Tables 10.1 and 10.2 for the IEEE
14-bus and IEEE 118-bus respectively. The results clearly demonstrate the trade-
off between classification accuracy and runtime. The more simplistic classification
algorithms like KNN and NB resulted in a much lower runtime; the associated
feature selection time and training time is significantly lower than that of the
SVM. The complex nature of the SVM algorithm results in a significantly longer
feature selection time as well as training time. However, the resultant accuracy and
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Table 10.1 Results for the IEEE 14-bus system

Classifier FSL NF CA (%) F1-score (%) FST TT TRT

SVM None 34 88.89 88.85 0 1715.245 1715.245
SVM BCS 10 90.16 90.07 109.855 522.311 632.17
SVM BPSO 14 90.58 90.50 82.96 873.63 956.59
SVM GA 8 89.64 89.53 1753.38 155.21 1908.59
KNN None 34 73.33 73.10 0 0.0937 0.0937
KNN BCS 21 74.23 74.03 19.59 0.0469 19.63
KNN BPSO 5 75.62 75.53 15.05 0.0312 15.082
KNN GA 11 75.06 74.97 265.78 0.0312 265.808
NB None 34 77.73 77.20 0 0.0469 0.0469
NB BCS 5 80.25 79.77 1.984 0.0156 2.000
NB BPSO 5 81.00 80.56 1.509 0.0156 1.524
NB GA 14 78.95 78.45 50.897 0.0156 50.91

FSL feature selection algorithm, NF number of features, CA classification accuracy, FST feature
selection time, TT training time, TRT total runtime time

F1- score of the SVM algorithm is significantly higher. Furthermore, appropriate
feature selection can significantly lower the overall runtime of the SVM, as can be
seen from comparing SVM with no feature selection to that with BCS or BPSO for
both power systems.

This case study demonstrates the effectiveness of ML techniques at classifying
FDI attacks, which typically bypass the standard bad data detection systems.
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Table 10.2 Results for the IEEE 118-bus system

Classifier FSL NF CA (%) F1-Score (%) FST TT TRT

SVM None 304 89.23 89.18 0 1584.34 1584.34
SVM BCS 195 88.52 88.49 163.73 1172.16 1335.89
SVM BPSO 185 87.50 87.47 154.04 1240.50 1394.55
SVM GA 116 94.33 94.33 1816.94 1025.07 2842.01
KNN None 304 76.07 74.95 0 0.7498 0.7498
KNN BCS 189 75.90 74.83 68.308 0.4609 0.4609
KNN BPSO 219 76.04 74.94 77.592 0.5166 0.5166
KNN GA 125 78.43 77.67 776.94 0.2968 0.2968
NB None 304 76.64 76.45 0 0.2656 0.2656
NB BCS 91 79.17 78.97 6.341 0.0937 6.435
NB BPSO 180 80.69 80.51 5.615 0.1718 5.786
NB GA 146 81.11 80.93 106.53 0.1406 106.67

FSL feature selection algorithm, NF number of features, CA classification accuracy, FST feature
selection time, TT training time, TRT total runtime time

Additionally, this study reveals the trade-off between computational time and
performance. Furthermore, it was proven that heuristic feature selection can be
successful at reducing the number of features and, as a result, reduce the training
time of the classification algorithms. When combined with a computationally
expensive classifier, heuristic feature selection can significantly reduce the overall
runtime thus improving the computational efficiency of certain classifiers. This,
however, was not exhibited in the more simplistic classifiers due to their much faster
training time, which is reduced by less than the runtime of the feature selection
algorithms. In realistic applications, with larger systems and larger data, the training
time is expected to be significantly larger. As such, the reduction in runtime is
expected to be much larger.

5 Conclusion

The main idea of cyber-physical systems is designing an integrated system instead
of separate systems on cyber and physical systems. These systems could be a
propitious paradigm for current and future engineered systems which are able to
make an impressive impact on our interactions with physical components.

Security is one of the most important factors in CPSs because of the frequency
of reported cyber-attacks. Although many detection methods have been proposed,
new solutions are still expected against new threats and vulnerabilities. Many
approaches are presented in this chapter for attack detection in CPSs such as
anomaly detection by using ML including supervised, unsupervised, reinforcement,
and semi-supervised methods. We also briefly introduce cyber-physical systems and
security concerns about them. Then, detection methods were presented. Finally,
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a case study showing the effectiveness of different ML algorithms in classifying
cyber-physical systems attack was given. Our results demonstrated that reducing
the number of features can reduce the overall runtime of the program.
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Chapter 11
Big Data Application for Security
of Renewable Energy Resources

Hossein Mohammadi Rouzbahani, Hadis Karimipour,
and Gautam Srivastava

1 Introduction

Modern power grids have seen substantial technological advancements during the
past century [1]. Traditional electric power systems consist of four sub-systems from
power stations as the first section to the end-users as the latest one. Intermediate
subsections include transmission and distribution systems [2]. The Renewable
Energy Sources (RES) have helped to keep these systems updated while, smart
monitoring, security, control, load management, and demand response techniques
have also been added to power systems [3, 4]. These new advanced features help
the system achieve better performance [5].

Modern electric power systems are facing a series of challenges which is causing
their decision-making process to become more difficult [5]. These challenges can
be divided into two main categories: permanent and emerging ones through the
expansion of the network and the use of new technologies [6]. Stability, reliability,
load growth, expenses, environmental concerns, and security are some of the key
issues in power systems [7]. While these issues themselves are interdependent they
still affect each other.

Application of smart appliances, electric vehicles, and house monitoring systems
will grow the global electricity demand by an unprecedented 30% by the year
2035. To handle the load increases, transmission, and generation expansions are
required [8]. Demand utilizing inverter-based technologies, including applications
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of RES and the large-scale growth of energy efficiency would intensify the need
for network control. An increased need for regulation, ramping, and reserves are
needed for overcoming issues as a result of the successful integration of variable
energy resources [9]. The demand for energy resource development and demand
for response impose additional changes to the distribution system. These changes
result in power flows to perform in two directions where traditionally power flowed
in only one direction [3]. This issue has been the subject of many researchers due
to electrical power systems moving towards the next-generation [10]. The central
controllers of the smart grid through two way communication have continuous
interaction with local actuators [11]. This type of communication is used to respond
digitally to the changing demand. The smart grid solutions aim at the calculation of
optimum generation-transmission-distribution algorithms and storing power system
data. RES can be considered as a potential solution for environmental concerns as
well as efficient generation and distribution [12].

The dominance of large-scale centralized power stations is changing due to the
expansion of RES. Therefore, traditional centralized control strategy is becoming
less effective as a result of unidirectional power flow [13]. In addition, real-time data
processing is required to deal with the formed mass data generated via integrating
smart communication, automation and electric network control [14]. This large
volume of data requires real-time management and storage of historical information
for an evidence-based decision making based on specific cases [15]. Smart meter
communications with other devices generate detailed data which is required for
automated decision support and reliable information. Although the data itself has
great value, the analysis and application of the data is a complex process which can
threaten security and privacy.

In dealing with challenges of big data in RES, novel and advanced methods
are required for gathering, managing, and intelligent interpretation compared to
conventional methods [16]. Renewable energy production and consumption patterns
have been impacted by big data. Big data analytics enables rapid failure detection
and restoration as well as faster demand response. Also, customers will have more
control over their consumption as a result of more reliable and economical energy
supply.

The outline of security in RES is provided in Sect. 2. Next, the application of
big data to support the RES in the smart grid is presented in Sect. 3. We continue
this chapter with the relationship between big data and RES security illustrated in
Sect. 4. Finally, Sect. 5 concludes this chapter.

2 Security in Renewable Energy Sources

Over the last decade, the portion of RES (i.e. wind, solar, biomass, hydro,
and geothermal energy) in total energy consumption has significantly increased.
Figure 11.1 shows the worldwide growth of renewable energy consumption and
the capacity over the past few years [17]. Based on the International Energy
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Fig. 11.1 Total renewable energy capacity

Agency (IEA), the most optimistic scenario is that the renewable share of electricity
generation will increase to 39% by 2050 from 18.3% as recent as 2002. The new
generation of energy systems including RES is specially designed to tolerate heavy
power generation which delivers energy to its distant consumers through a two-way
structure. For the efficient operation of these systems, smart decentralized integrated
communication, smart metering, monitoring and controlling [18] will be necessary
for these systems [19].

This new generation of tools and specifically RES will play a key role in the
preventing of global warming by reducing global CO2 emissions [17]. Although
RES has great benefits, there are many challenges which must be addressed. The
most important challenges are related to policy, technical details, economics, human
resources, and cybersecurity [20]. While security is one of the most significant
concerns in the new generation of power systems, this factor to support RES
has been less investigated [21]. Integrity, privacy, and availability of service are
three main points for security. Moreover, there are security threats due to mutual
communications between consumers and also between consumers and utilities,
at both the physical and logical layers. There has been lots of research interest
in this security issue [22, 23]. While data confidentiality can be mentioned as a
vulnerability at the logical layer, the physical layer is facing many threats including
sabotage, theft, and vandalism [24, 25].

2.1 Potential Risks and Vulnerability

There is a range of vulnerabilities in RES including a reduction in demand as
a result of lack of availability of services initiated by cyber-attacks [26]. The
scope of an attack is broad and covers many areas from physical breaches and
social engineering attacks to brute force server and Distributed Denial of Service
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Fig. 11.2 Different types of vulnerabilities

Network Component
Configuration

Network Design and
structure

Poor Network Protocol
Implementations

Category of Common
Vulnerability

Port security not
implemented on network
equipment

Lack of network
segmentation

Firewall bypassed

Information Disclosure

Weak protection of user
credentials

Open network shares

Lack of input validation

Lack of input validation

Weak authentication

Weak encryptionInformation leak through
insecure service
configuration

Unencryted
communication

Access to specific ports on
hosts not restricted to
required IP address

Fig. 11.3 Vulnerabilities assessment of RES

(DDoS) attacks. These types of attacks can focus on specific vulnerabilities or be
general in nature like DoS attacks. Figure 11.2 shows some of the key attacks to
consider [27].

Vulnerabilities regarding data network securities which are also possible for the
smart grid technology are given in Fig. 11.3 which is categorized by Control System
Security Program (CSSP) [28, 29].

An attacker can breach into the network, take over controlling the system to dis-
rupt operation in unforeseeable actions due to system vulnerabilities [30]. Thus, to
determine securities requirements, all likely vulnerabilities for Supervisory Control
And Data Acquisition (SCADA) and the smart grid should be considered. Many
approaches and solutions are discussed in the literature to moderate vulnerabilities
[31]. The vulnerabilities related to network design in the smart grid infrastructure
requires more attention. The distributed structure of these system has led to many
chances for an attacker to interrupt the system.
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Some significant cases of possible security risks due to increase’s accessibility
and expansion of networks are presented by the National Institute of Standards and
Technology (NIST) [32]:

• Manifold complexity may have led to unintended errors and facing attackers.
• Networks with more interaction with others, present common vulnerabilities.
• Chance of DOS attacks has been increased due to more interconnections.
• Two-way communication and massive data gathering may lead to a breach of

data confidentiality and consumer privacy.

2.2 Possible Threats and Cyber Attackers

Threats are not only limited to cyber threats but also include social engineering,
physical, and environmental threats that can contain unauthorized access to these
layers where an attacker breaks into the system and debilitates hypercritical
facilities. Environmental threats include natural disasters and extreme weather
conditions while in social engineering, techniques are used to get information from
employees to get access to internal networks. Finally, in cyber threats, weaknesses
in security are analyzed and discovered to gain access to systems using software
[33]. This subsection focuses on cyber threats as the smart grid is a cyber-physical
system (CPS). The three leading causes of cyber threats are manipulation, sabotage,
and espionage which can happen consciously or unconsciously. The Application
Centric Infrastructure (ACI) principles in the system are intentionally harmed by
conscious attacks such as hackers, cyber and organized crimes, anti-governments
and terrorists. Also, customers may attack energy infrastructure through smart
meters for energy theft, fraud, sabotage, and vandalism [34].

There are different types of cyber attackers such as non-malicious attackers,
terrorists, consumers, internal employees and rivals [35]. Non-malicious attackers
use intellectual concepts trying to decrypt the security system as a puzzle while
terrorists aim to shut down the system or restore critical information. Consumers and
internal employees are two types of attacker driven by retaliation or perhaps lack of
training. Finally, for saber-rattling, personal benefits or interrupting the resources of
a counterpart, rivals may attack each other.

Unconscious attacks are non-intentional attacks which are committed by users
who are uneducated in cybersecurity. Conscious attackers usually manipulate these
users.

2.3 Security Goals and Requirements

The three high-level security objectives are cited in this section based on the NIST
comprehensive guideline for cybersecurity [30].
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1. Confidentiality: To keep authorized limitations on data access and revelation
to shield proprietary information and personal privacy, in particular, to protect
information from unauthorized access.

2. Integrity: To protect against inappropriate modification of data or demolition
to ensure data authenticity. A loss of this factor can further enforce incorrect
decision regarding load management.

3. Availability: The most vital objective of the smart grid is to guarantee apropos
and reliable approachability to and use of information where a loss of availability
may further undermine the electrical energy delivery.

In addition, this guideline recommends specific requirements, including CPS.
The cybersecurity portion entails security issues and requirements for information
and network systems; the physical security part defines details related to environ-
ment protection and physical equipment as well as jobholder and staff security rules.
Cybersecurity requirements are presented as follows [30, 36].

• Attack detection and resilience operations: Smart system structures open
telecommunication over an extensive distributed network which makes it
impossible to ensure every node to be invulnerable to cyber-attacks [37]. Thus,
consistent profiling, testing, and comparison are required by the communication
network. It is necessary to recognize and find irregular events due to attacks via
monitoring the system traffic. Furthermore, a self-healing ability is needed for
the network to operate during attacks [10].

• Identification, authentication and access control: The key process of verifying
the identity of a device or user is known as identification and authentication
which is a prerequisite to allowing access to resources in any system. The
objective is to confirm only allowed staffs who are exactly identified can access
the resources. For every node, a basic cryptographic algorithm is vital to secure
these requirements such as symmetric and asymmetric cryptographic primitives.

• Secure and efficient communication protocols: In two-way communications,
message delivery imposes both time-criticality and security which usually con-
tradict each other. Since, smart networks are not constantly provided with secure,
physically protected and high-bandwidth communication channels, optimum
trading is essential to delivering high-performance interactions and data security
in the communications protocols and structures.

2.4 Attack Taxonomy and Classification

Attacks are classified considering the security objectives including confidentiality,
integrity, and availability (CIA) as mentioned in the previous subsection. Table 11.1
shows a taxonomy of cyber-attacks which can block CIA directly or indirectly.
Generally, all of the attacks can be created by malware (i.e. virus, spyware, trojan,
etc.) [25, 38–40] and intrusions [24]. Developers can intentionally implant the last
three types of malware into software to initiate attacks at a future time.
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Table 11.1 Cyber-attack taxonomy in RES

Confidentiality Integrity Availability

Man in the middle Tampering, wormholes Wormholes
Password pilfering Message replay Flooding
Spoofing Spoofing Puppet attack
Unauthorized access Data injection DoS/DDoS
Traffic analysis Time synchronization Jamming
Eavesdropping Data modification Buffer overflow

Even though attackers use various methodologies, they usually follow an overall
outline. In this subsection, we present examples for each level of the cyber-
attacks.

• Reconnaissance can happen by sending a tsunami of phishing electronic mails
to staffs of a corporation or scanning of IP addresses visible to attackers.
Organization of information from phishing scams might result in enumeration
which can be considered the research element of an attack.

• Vulnerability assessment is a component of an attack and a process of checking
exposed devices or services for identified vulnerabilities. Systems with a web-
interface will give details which can expose them to vulnerabilities that could
be simple (e.g. looking up the default login information for a particular control
system model) or complex (e.g. seeking for weaknesses in the security of
physical components over time).

In the exploitation stage, the cyber-attack breaches system defenses. Some
examples include malware being placed onto a machine and changing the settings
by logging into a control system.

In the following section, we present general and more detailed categorizations for
different types of attacks [41, 42]. The general category contains two types of secu-
rity attacks including passive (e.g. eavesdropping attacks and traffic analysis) and
active attacks which are carried out by third parties intentionally or unintentionally.

In a passive attack, the attacker learns the system architecture, configuration, and
typical behavior by obtaining transmitted data. The focus for preventing these types
of attacks should be on prevention as the detection of these attacks is difficult due
to no change in the data. These attacks violate the confidentiality principle.

Active Attacks aim to disturb the operation of the system and result in the
violation of availability, integrity, or partial confidentiality principles. These attacks
are performed by altering the dispatched information or by adding retouched and
managed data. An attacker can use malware to smash the smart appliance and smart
meters or vital resources in the system by altering/deleting sensitive data.

For unauthorized access, we mention here that in any given network if a security
mechanism to check the authenticity of logins is not used, an attacker can easily
access the network. This can lead to the exploitation of network resources as
well as long term issues such as undetectability of future login breaches. In the
replay category of attacks, an attacker sends false messages or retransmits the same
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message several times. In DoS attacks the response from servers is delayed for
authorized users and it has the possibility of vulnerabilities as the smart grid logs
IP addresses and can also block message packet transmission over the network.
Therefore, valid transmissions may become blocked unnecessarily. Finally, in traffic
analysis attacks, a cyber-attack would simply analyze the pattern in which data
packets are directed as well as the network traffic. Next, crucial data such as energy
usage and price, and system structure becomes available to the attacker.

3 Application of Big Data in RES

There is no clear description of the application of big data in RES at present.
However, there is an agreement among available descriptions, and it can be defined
depending on the data analytics concepts and the hardware requirements used to
process massive data. Big data is an evolving technical issue presented by a large
volume of data, complicated structures, and several categories and for effective
data mining there is need for unique framework and methods [43]. To deal with
challenges related to handling and processing big data from different components
of RES, various technologies have been introduced which covers the big data term.
These technologies provide value by excavating the intelligence from data that can
change the energy production and consumption pattern [44].

3.1 Big Data Characteristics

There is a universal model to explain big data characteristics which is known as the
5-V model which includes Volume, Velocity, Variety, Veracity, and Value. A short
description of each is provided below [45].

In this model, volume refers to the huge amount of data which makes datasets
large for storing and analyzing using customary database technology. RES appli-
cations in the smart grid provide huge amounts of data by using smart tools such
as smart meters and sensors. Storing data in connected distributed locations and
bringing them together by software is a possible solution to this problem. Velocity
refers to the speed of generating and moving data. For example, when one million
smart meters are installed in a network and sampling happens every 15 min, just
higher than 35 billion records get generated which is equivalent to 2920 terabytes
in quantification [46]. Variety is the types of data we can use, and we need to
handle unstructured data and bring them together with big data technology. These
different types include video or voice recordings, social network chat, pictures, etc.
Veracity covers the messiness or reliability of data where the accuracy is less reliable
with huge quantity of data are involved. In power system operation, security and
efficiency rely on the data assessment and state estimation. However, failures in
tools or errors in data transmission might impact measurements in the smart grid.
Finally, value refers to the capability of deriving valuable data from big data and
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extracting a well understanding of the value. The density of valuable information in
big data is not correlated to the quantity of data, meaning if the amount of data is
large, the value density will be lower.

3.2 Big Data Analytics

Data analysis or data mining is a computational process and is the most important
stage of a big data analytics which discovers valuable information and potential
relations between variables with different concepts to support the decision-making
process. These concepts are listed in Fig. 11.4.

There are different categories and algorithms in data analytics as shown in
Fig. 11.5. The most frequently used categories are supervised and unsupervised
learning as shown in Fig. 11.5 along with other categories (i.e. correlation and
dimensionally reduced). The analytics model for supervised learning algorithms can
be trained based. This can happen using the given data to determine the relationship
between data characteristics and the matching categories while, for those without
labels, the possible clusters among all the items are identified by the different design
of analytics model [23, 36].

Data is collected from various sources and stored as a huge number of datasets
ready for analytics which plays a vital role to make the system more beneficial,
gainful, and lastly smarter. Various types of analytics in the smart grid are presented
in Fig. 11.6. Signal analytics and event analytics focus on signal processing and
events respectively. Furthermore, state analytics help with having a perspective for
the state of the network. We add here that engineering operations aim at the grid

Fig. 11.4 Data analysis concepts
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operating side. Finally, customer data can be processed through customer analytics.
There are two procedures to process big data including batch and stream processing.
In batch processing, the data is processed without high requirements on response
time in a period of time. Stream processing requires a very low response delay, it is
used for real-time applications [47].

Next, we present some of the related research that has used big data in renewable
energy where the common purpose of all works has been cost minimization. Paro
and Fadigas [48] proposed a methodology for efficiency assessment of biomass
energy which can be applied in the distributed network. MacGillivray et al. [49]
and Wool et al. [50] focused on marine energy. MacGillivray et al. presented a
simple learning model to describe a series of learning investments which makes
marine energy technologies become more cost-competitive while the latter looked
at the tribological design of three green marine energy systems (i.e. tidal, offshore
wind, and wave machines). Additionally, Kaldellis [51] presents an independent
wind energy system sizing by using recorded data of wind speed for remote
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consumers. Kaldellis used the proposed system to address the electrical energy
demand necessities to improve these consumers welfare.

4 Big Data and Security of the Renewable Energy Sources

To understand the state-of-the-art applications of big data for RES security, we
have conducted a bibliometric analysis which will be presented here. It is vital to
identify related keywords, top-tier researchers, organization, institutes, country, and
collaboration amongst them as well as hot topics. This bibliometric analysis is based
on relevant publications in the Web of Science from 2010 to 2019. The retrieval time
was dated July 18, 2019. After using Web of Science as the database, we identified
related keywords for extracting publications. There is some equivalent work done
for Big Data in [52, 53] which we use to search the database. The inquiry to gather
data in this bibliometric analysis was as follows:

• (TS = ((Big Data OR Massive Data OR Data Lake OR Massive Information
OR Big Information OR Semi-Structured Data OR Semi-structured Data OR
Unstructured Data) AND ((Security OR Cybersecurity OR cyber-physical secu-
rity OR security and privacy) AND (Renewable Energy Sources OR Renewable
Energy OR Solar energy OR Wind energy OR Hydroelectric energy OR Geother-
mal energy OR Biomass Energy OR smart grids)))

As a result of this bibliometric analysis, we detected a total of 228 publications,
from which we filtered non-relevant and non-English databases. From this filtering
process, 215 publications were left for analysis purposes. The number of publica-
tions in different years is shown in Fig. 11.7. The number of publications has a peak
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occurring in 2017. Since the study was conducted in the middle of July 2019, it is
expected to see the number of publications to be higher for 2019.

The majority of publications are related to engineering and computer science.
In terms of productivity, China and the United States are the lead countries in the
number of publications. Table 11.2 lists the findings for authors who published three
or more documents on the related topics. As Table 11.2 demonstrates, the majority
of the authors are from the United States, with authors from Canada and China also
contributing.

Finally, a total of 6176 keywords and 652 titles were extracted from the filtered
215 publications between 2010 and 2019. To provide an in-depth analysis, Fig. 11.8
demonstrates a word map based on keywords and title analysis of the publications.
The keywords are divided into two clusters where the green cluster highlighted
keywords related to “big data”, “renewable energy”, “security”, “energy security”.
The red cluster contains keywords such as “network”, “smart grid”, “system”,
“network”.

Table 11.2 Author information

Author Publication (No) Publication (%) Country

Zhou, KL 4 1.86 China
Kim, YJ 3 1.39 United States
Zhang, YC 3 1.39 United States
Choi, BJ 3 1.39 Canada
Thottan, M 3 1.39 United States
Du, XJ 3 1.39 United States
Yang, SL 3 1.39 China

Fig. 11.8 Keyword map
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Potential vulnerabilities in RES infrastructures are related to having devices
integrated via communication networks. Moreover, to reduce investment cost in
areas such as hardware and energy, the electrical companies run their applications
using virtual technologies as shown in [54]. These virtual technologies have some
security limitations. One major security issue is related to shared platforms between
multiple users. There is another challenge which causes low latency problems
in real-time applications originating from network bandwidth and requires highly
scalable, available, and fault-tolerant connections.

Next, we discuss the main security vulnerabilities and requirements in privacy,
integrity, authentication and third-party protection from a big data perspective.

4.1 Privacy

Privacy of information is an important issue for energy management systems [55,
56]. The data collected from smart meters containing consumer consumption infor-
mation which can picture customer’s behavior and habits is a certain kind of privacy
that should be protected. The development of data mining and social engineering
technology can be boosted through some financial or political incentives [57]. One
of the well-known security problems with big data applied in power systems is
connected to the end user’s privacy where many approaches have been proposed
to answer this problem. For example, a distributed incremental data aggregation
method is presented by Li et al. [58] using neighborhood gateways. Kalogridis et
al. [59] proposed using battery storage to hide consumption data. Rastogi and Nath
[60] introduced an algorithm for time-series data which suggests proper utility with
no trusted server.

4.2 Integrity

Integrity focuses on preventing unauthorized access (persons or systems) to modify
information. In the smart grid domain, integrity avoids changes via message delay,
reply and injection and focuses on data for instance product and control guidelines
and sensor values. Liu et al. [61] study the possibility of integrity-targeting attacks
which is definitely actual and sophisticated.

Ruj and Pal [62] presented a model to attack nodes by eliminating them with
possibility comparative to the node’s degree meaning a node with a lower degree
will be deleted with less possibility.

Yuan et al. [63] identified that the inordinate generation dispatch and energy
routing would raise the cost of system operation. Tan et al. [64] employed a
control theory to control the real-time Locational Marginal Prices (LMP) exactly
when an attack is taking place. Their method analyzes the attack effect on pricing
stability using control theory. Further, Jia et al. [65] proposed an analysis framework
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to quantify the data quality impact on real-time LMP. Esmalifalak et al. [66]
characterized the relationship between attackers and defenders by implementing a
novel tactic.

4.3 Authentication

Authentication means validating a user’s identity and mapping it to the existing
authentication table in the system [16, 67]. In most security solutions, authentication
is used to differentiate legal and illegal identity. Hamlyn et al. [68] present a security
management and network authentication method by designing a new security
structure to cover actions and requests in multiple security fields. Based on the
Diffie-Hellman key launch protocol, Fouda et al. [69] presented a light-weight
message authentication mechanism which lets distributed smart meters to make
mutual authentication.

4.4 Third-Party Protection

Power systems after being attacked would potentially result in initiating different
type of attacks on the grid or a third party. This will damage the owner’s character,
or perhaps compensation to a third party due to damage.

Trusted Third Party (TTP) could be a useful strategy for Personally Identifiable
Information (PII) in the security of electrical systems since the third party is not
mentioned in authentication roster. To analyze identity data on untrusted hosts,
Ranchal et al. [70] used a predicate encryption outline and multi-party calculating.
Also, Ben-Or et al. [71] used secret input from all parties to define a multi-party
computing protocol.

5 Conclusion

In this chapter, we have surveyed the state-of-the-art application of big data for
RES security. Using RES is transitioning towards deployment of advanced tools,
specifically smart communication devices and metering. This, in turn, will generate
big data in terms of volume, velocity, and variety. The big data generated by
RES requires novel data analytics methods (i.e. machine learning, deep learning,
data mining, artificial intelligence, and pattern recognition) for data extraction and
appropriate management. Big data knowledge has been considered as the main
factor for smart network structure and becomes more common in technology and
different industries.
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Even though there is a lot of benefits in big data application, this has also
brought a lot of data security threats to the system. However, concurrently big data
application has made security and privacy much easier. In this chapter, we have also
given an in-depth look at big data analytics and security. As a crucial part of the
big data, the security in using RES was demonstrated in different aspects including
integrity, authentication, privacy, and third-party protection.
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Chapter 12
Big-Data and Cyber-Physical Systems
in Healthcare: Challenges and
Opportunities

Jesus Castillo Cabello, Hadis Karimipour, Amir Namavar Jahromi,
Ali Dehghantanha , and Reza M. Parizi

1 Introduction

The term “Cyber-Physical Systems” (CPS) was coined by Helen Gill in 2006 [1]. A
system has to integrate networking, computation and physical processes in order to
be considered a CPS. Understanding the physical and computational components of
systems are not enough to perceive the CPS, but also, it is necessary to understand
the interaction between its underlying areas. CPS provides the foundation of
critical infrastructure and will bring advances in areas like personalized healthcare,
emergency response, traffic flow management, and electric power generation and
distribution [2].

CPS are physical systems with a computing and communication center that
monitors, coordinates and integrate the operations of said system. CPS enables the
organizations to live monitor networks, patients, and systems. Also, CPS transform
communication protocols around us. Demands from sectors like aerospace, building
and environmental control, critical infrastructure, process control, factory automa-
tion, and healthcare have given helped CPS technology to gain popularity [3].

The potential benefits of CPS are enabled by several trends like low-cost sensors,
abundant internet bandwith, and wireless communication. However, this large scale
and transformation of systems brings new challenges like lacking a technology
base to build a proper large-scale safety-critical CPS or lacking a solution for
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measurement tampering and cyber-attacks in systems that allow internal two-way
communication [3, 4].

Using the current cyber-physical systems, the rate of data generation has been
growing up in the last few years. Every 18 months,the data volume increases more
than double in size [5]. This growth generates challenges in data management and
analysis, as well as the opportunity of using data to achieve valuable information.
However, this rate of growth has left conventional data structures unable to handle
new datasets effectively [5]. To handle the challenge of big datasets, researchers
defined the term of big-data and build techniques to handle it. The NIST big-data
interoperability Framework defines big-data as:

Big-data consists of extensive datasets primarily in the characteristics of volume, variety,
velocity, and/or variability that require a scalable architecture for efficient storage, manipu-
lation, and analysis [5].

Big-data brings significant opportunities and transformative potentials for vari-
ous sectors; it also presents new challenges when trying to exploit the vast growing
volumes of data. Advanced data analysis techniques, and efficient data mining and
machine learning methods are essential to explore data, explain the relationships
between features, monitor the changes, and predict future observations from big-
data. However, big-data analysis presents challenges, including the data volume,
velocity, value, veracity, variety (five V’s of big-data; see Fig. 10), also the need
for scalability, and performance with real-time responsiveness. These challenges
get harder in fields like social networks navigation„ biomedicine, finance, and
astronomy [6].

Big-data has accelerated the evolution of the hardware and software of systems
architectures. Also, it handles the development of analytical techniques like statisti-
cal analysis, visualization, data mining, and machine learning. This areas are usually
dealt with by proposing new techniques, or by strengthening the existing ones,
another approach is experimenting with the combination of different algorithms [6].

The effective use of big-data in the industrial sector has the potential to
transform economies, and create new means of achieving productive growth [7].
This possibility is present in other areas too. There are studies on challenges, data
sources, techniques, technologies, as well as the future directions in the field of
big-data analytics in healthcare [8]; automatization, augmentation, and integration
of systems in areas likeenergy efficiency, smart cities, autonomous vehicles, and
smart manufacturing [9]. In the last 20 years, information technology has played
an essential role healthcare. The availability, traceability, and liquidity of data has
improved in the health sector [10]. Healthcare data from cyber-physical systems
(CPS) can be efficiently managed with the assistance of cloud computing and big
data.

In the healthcare industry, cloud and big-data have become the trend in healthcare
innovation. Big-data analytics provides benefits in healthcare areas like infrastruc-
ture, operations, organization of the healthcare system, management, and strategic
approach [11]. However, there are also downsides, for example, cloud computing
systems make it difficult for users to know when the devices are collecting data,
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therefore endangering the user’s privacy [12]. The job of a doctor is transforming
into a decision support role for the patients, this is due to the increasing reliance
of medicine on the analysis of patient data. Medical knowledge is growing thanks
to the assimilation of technologies like 3-D printing, cloud computing, gene
sequencing, and wireless sensors to the health sector. Furthermore, joining big-data
with healthcare can yield the following benefits [13].

• Services based on patient needs: Discovering symptoms of disease at earlier
stages, minimizing drug doses and using genetic makeups to administer medicine
are benefits derived of big data applications. The benefits of implementing this
measures are lower readmission rate, and faster relief of the patients.

• Earlier detection of spreading diseases: Live analysis can be used to predict the
spread of viral diseases before and epidemic outbreak occurs. Obtaining and
analyzing the social logs of the patients in particular region can give an early
warning so healthcare professionals can take preventive action.

• Supervise the hospital’s condition: Periodical check-ups on the hospitals condi-
tion makes it easier to detect unfit hospitals and to take appropriate measures.

• Upgrade the treatment techniques: Individualized patient treatment and regular
checkups on the patient’s response to medication allow faster relief and proactive
care for patients. Medics can make better treatment decisions by leveraging the
data of the patients that presented the same conditions.

The remaining of the chapter is organized as follows. In section two, the
methodology of this research is described. Section three explains the usage of
cyber-physical systems and big-data in the healthcare sector that followed by the
characteristics of big-data in section four. In section five, the architecture of the
cyber-physical system in the healthcare area is described. Section six introduces
machine learning and its applications in the healthcare area. In section seven,
challenges of using big-data to develop models are explained that is followed by
the opportunities described in section eight.

2 Methodology

Figure 12.1 shows the method that was followed to conduct this research. In the first
phase, the research questions and protocol were defined. The search for articles was
conducted in Web of Science and IEEE Xplore Library. The search query that was
used was: “(Big Data) and (Cyber-Physical Systems)” that comprises all the books,
articles and conference papers from 2009 to 2019. The research questions are:

• What are the publication trends of big-data and CPS in the healthcare context?
• How is big-data and CPS applied in healthcare?
• What are the strengths and weakness of big-data and CPS in healthcare?
• What are some of the unresolved problems/challenges of big-data and CPS in

healthcare?
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Fig. 12.1 Flowchart of methodology

3 Cyber-Pysical Systems and Big-Data in Healthcare

3.1 Applications

Figure 12.2 shows the escalation in the use of big-data in healthcare sector from
2010 to 2018. Big-data publications in the healthcare sector were increased eight
times in 2018 compared to 2013. The total number of papers also grew almost
21 times in the last 5 years, based on the number of google scholar publications
retrieved by the query of “Applications of Big Data” and “Healthcare”.

The applications of big-data in healthcare industry revolutionize the medical
industry by providing better health and information to patients [14]. In the following
paragraphs, we will provide some examples of applications of big-data in the
healthcare industry.

• Cross-domain sensing: Sensing information can be used to identify an individ-
ual patient. Reference [15] talks about an authentication mechanism that can val-
idate if two nodes are part of the same BSN using the hearthbeat timing as input.
Patients having small sensors (EMG (electromyography), SpO2, accelerometer,
and ECG) attached to them can improve future healthcare treatments [15].

• Decision/actuation system: There are six roles in a recommendation system for
doctors and nurses: Actuator Entity (AE), Surveillance Center (SC), Home
Manager (HM), Sensing Entity (SE), Local Responder (LR), and Locality
Manager (LM) [15].
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Fig. 12.2 Comparison of big-data publications in healthcare from 2010 to 2018

• Real-time anomaly detection: Real-time anomaly detection is becoming more
critical for older people who are living alone. This capability assists doctors
and nurses to make wiser decisions by detecting anomalies in patients at more
convenient times [16].

Figure 12.3 shows the most popular big-data Tools that are in use today. The
y-axis represents the number of papers published in the Web of Science database
from 2010 to 2019. The queries used are: “Data integration” and “Healthcare”;
“Machine Learning” and “Healthcare”; “Searching and Processing” and
“Healthcare”; “Stream Data” and “Healthcare”; “Visual Data” and “Healthcare”.
Seventy nine percentage of the publications are related to machine learning, and
the second place is data integration with 10% of the publications.

4 Big-Data Characteristics

The term Big Data refers to growing data sets that can be classified in structured,
unstructured and semi-structured data. The complicated constitution of Big Data
generates demand for powerful technologies and advanced algorithms. For example,
domain decomposition techniques are used to solve complex systems [17].

The sources of data can be summarized in three types. The first type is the
structured data type. This data has a defined format, data type, and structure. Some
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Fig. 12.3 Comparison of big-data tools usage in healthcare publications from 2010 to 2018

examples of this data are laboratory results, symptoms and diagnosis information,
and drug and billing information. The second type is the semi-structured data,
it has been standardized with little structure but it describes itself via metadata.
Data from sensors is a good example of this type of data. The last category is
the unstructured data, it has no structure. Medical prescriptions written by hand,
discharge summaries, biomedical literature, and clinical letters are good examples
of this category of data [18]. Parizi et al. have made some steps in this area, they
proposed a Coordinate Based Information Extraction System (CBIES) this is a tool
capable of extracting PDF batch data in an automatic way. This tool has the potential
to release health organizations from duplicate efforts and may reduce labor costs by
extracting patients informations from their documents automatically [19].

The Vs of big-data are important characteristics. However, there is no consensus
on how many Vs there are. The Vs range from 3Vs to 9Vs [20].We present the five
more common Vs that define big-data.

• Volume: The total digital data created, replicated, and consumed is growing at
faster rates. In 2015 digital data was 8 ZB, and will reach 40 ZB by 2020 [6]. This
enormous increase in data is generated by the plethora of devices and applications
that create data continuously.

• Velocity: Wall-mart creates over 2.5 PB of data hourly from its clients’ purchases.
In order to extract useful information and relevant insights, data should be
processed as quickly as possible [6].
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• Variety: Big-data is created from various sources and in different formats (photos,
videos, documents, comments, logs, etc). As a result of this big data sets can
contain structured data and/or unstructured data, public and/or private, local
and/or remote, complete and/or incomplete, etc [6].

• Veracity: Garbage in, garbage out. Without accuracy data is meaningless and
useless, veracity is accuracy, truthfulness, and meaningfulness. Answering the
question: “how do we know that the operation is successful and accurate?” is no
easy task [20].

• Value: Big Data is preoccupies itself with the discovery of hidden value from
stored data. Data in itself has no value, what gives the data value is being able to
uncover a useful information or relationship from the data. Therefore Big Data is
a platform that transforms unworthy data into something valuable [20].

Big-data is appropriate for some applications, including Internet of Things
(IoT), smart grid, public utilities, transportation and logistics, e-health, and public
monitoring. The role of Big Data in the healthcare sector is to serve predictive
methods and machine learning algorithms so that viable solutions, like personal
treatment plans, can be discovered and implemented. Big data characteristics have
been redefined in the healthcare context into three characteristics: Silo, Security,
and Variety. Silo is a database that holds public healthcare data. The security
characteristic suggests extra care is needed to protect health-care data. The variety
characteristic keeps the same connotation about the form of the data (structured,
unstructured and semi-structured) [18] (Fig. 12.4).

4.1 Stakeholders and Big-Data Sources in Healthcare

4.1.1 Patients

Patients desire a vast spectrum of healthcare services with personalized recommen-
dations and reasonable cost. Big-data sources can be a powerful tools that enable
the patients by allowing them to connect with other patients to gain knowledge on
side-effects, drug information, and other relevant information on their sickness and
treatment while also enhancing their privacy [18]. Telemedicine becomes a viable
option for patients who are incapable to go to hospitals. An archive could be created,
using this technology, by capturing and streaming important health signs such as
heart rate, temperature, and blood pressure into a central storage unit.

4.1.2 Medical Practitioners

Using of data from wearables for healthcare applications can provide advantages
like facilitating physicians to keep record of the use of drugs and oversee the
patient’s health whenever he feels the need to do so. Classification methods for
diseases, laboratory results, clinical notes, medical imaging data, and sensor devices
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Fig. 12.4 Patienent-centric heatlhcare ecosystem from the big-data perspective

are all big-data generators in the healthcare system. This big-data sources improve
public health vigilance and offer quicker response, and adequate diagnosis of
disease patterns when they are considered when building the Clinical Disease
Repository (CDR) [18].

4.1.3 Hospital Operators

Improvement of descriptive models based on data produced after treatment (phone
calls, email, and text messages) eases the improvement of the offered services.
Hospital operators depend greatly on big-data sources in order to administer the
patient’s experiences while optimizing resource usage. Data scientists develop
predictive and prescriptive models in order to measure and understand how patient
satisfaction is affected by the services provided [18].

4.1.4 Pharma and Clinical Researchers

Pharmaceutical enterprises can benchmark the performance of drugs in development
with smaller trials by doing an adequate study of health data. Building predictive
models to understand the biological and drug processes with great success rate
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on adequate medicine designs are a consequence of using clinical big-data in the
building processes of said drug [18].

4.1.5 Healthcare Insurers

Mobile IoT is in a can revolutionize the healthcare system. IoT allows new business
models to arise while changing work processes, it also improves productivity and
customer experiences. The combined use of big-data and IoT improves the success
of insurers by introducing new and innovative business models by studying the
patients behavior [18].

4.2 Big-Data Frameworks in Healthcare

In scientific applications, like Body Area Networks (BANs), were the health
conditions of a patient are important we must use a multitude of linked sensors over
the patient’s body to gather data like blood, pulse, blood pressure, breath, glucose,
insulin, and body temperature must be deployed. However, the original MapReduce
(will be introduced in next sub-section) model does not support transmitting and
analyzing a stream of health data. Several expansions have been made to the usual
MapReduce model to permit iterative computing. Two such expansions are the
Hadoop system and Twister. Hadoop was conceived to deal with big-data which
was already at hand in the distributed file system. However, resource wastage may
occur in network bandwidth and processor resources due to the need to reload and
reprocess data on each iteration because processed data may stay constant over
distinct iterations. Unlike Hadoop and existing MapReduce expansions, Spark gives
ground for dynamic queries and iterative computing. Spark is effective in repetitive
use-cases that demand several processes on huge in-memory datasets thanks to RDD
caching [21].

Hadoop and Spark are the most common frameworks used in healthcare applica-
tions [21].

4.2.1 Apache Hadoop

Hadoop is an Apache project started by Doug Cuttin and Mike Cafarella in 2008
[21]. Hadoop has two key elements, one which manages data storage (Hadoop
Distributed File System) and an implementation of the MapReduce model (Hadoop
MapReduce).

Hadoop Distributed File System (HDFS)
The HDFS presents a scalable distributed file system for storing huge files reliably
and efficiently. HDFS is based on the Google File System (GFS), its architecture
is a master/slave one and is open-source. The name node is the master node while
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a number of data nodes function as slaves. Setting aside and distributing physical
space were large files can be stored is a responsibility of the name node. The files
are provided by the HDFS client. The name node searches those files in its indexing
system and forwards the files’ location to the client. Finally, the name node sends
the relevant metadata (filename, file location, etc.) of the stored files to the HDFS
client. The secondary name node serves as a backup node in the event of a name
node failure and it will take control over immediately. In order to do so successfully
it must record the state of the name node regularly [21].

MapReduce Programming Model
MapReduce was conceived by Google to handle with parallel processing of vast
amounts of data. This programming model has two key functions: Map and Reduce.
A single key–value pair is used as input in the Map function and creates several
intermediate key–value pairs. After being organized those values are transferred to
the Reduce function, along with the corresponding intermediate key. The purpose
of the Reduce function is creating a small set of values that contains the merged
information of the intermediate key and the original set of values. The principal
steps of Map Reduce are:

• Data reading: The input is divided into a number fixed-size subsets and processed
by the Map function.

• Map phase: Map function generates a set of intermediate key–value pairs.
• Combine phase: All intermediate key–value pairs related with the corresponding

intermediate key are grouped.
• Partitioning phase: The outcomes of the last phase are distributed over the disrinct

Reduce functions.
• Reduce phase: The key–value pairs having the same key are merged by the

Reduce function. Then, this function calculates the final result [21] (Fig. 12.5).

4.2.2 Apache Spark

Originally conceived at UC Berkeley in 2009 as a way to ease the efficient analytics
of heterogeneous data. Spark is employed by enerprises like Yahoo, Baidu, and
Tencent. Resilient Distributed Datasets (RDDs) is an important term in the Spark
architecture. RDD is an immutable collection of objects dispersed over a Spark
cluster.Transformations and actions are the two types of operations we are able to
use in RDDs. A transformations generates a new RDD from previously existing ones
by employing functions like map, filter, union, and join. Actions are the final product
of RDD calculations. Figure 12.6 shows the architecture of this framework [21].
Like the HDFS architecture the Spark cluster takes inspiration from a master/slave
architecture and it has three important elements:

• Driver Program: It preserves the Spark context (an object), manages the Spark
context, and supervises running applications. Its role is comparable to one of a
slave node.



12 Big-Data and Cyber-Physical Systems in Healthcare: Challenges and Opportunities 265

Fig. 12.5 Hadoop distributed file system (HDFS) architecture

Fig. 12.6 Spark architecture
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• Cluster Manager: All resources in the cluster are controlled and monitored
by this cluster. It also provides their state to the driver program. The driver
program assigns the workflow application to workers, this cluster coordinates
the workflow.

• Worker Nodes: One operation correspond to a single worker node [21].

5 Health-CPS Architecture

The architecture of Health-CPSs is comprised of three different layers (data
collection, data management, and application service).

5.1 Data Collection Layer

The important elements of this layer are data nodes and adapters, it allows
the management of multi-source heterogeneous data (sources include hospitals,
Internet, or user-generated content) in a unified system access interface. Crude input
with different makeup and frameworks can be prepared so that the transfer of data
to the data management layer is protected.

5.2 Data Management Layer

This layer is comprised of a distributed file storage (DFS) element and a distributed
parallel computing (DPC) element. The DFS will boost the effectiveness of
the healthcare system by allowing the adequate recording of information. DPC
contributes the complementary processing and analysis methods, those methods
expect the data to be well-timed and that preference is given to the analysis task.

5.3 Application Service Layer

An open unified API is created so that developers can provide relevant personalized
healthcare services. It also gives users access to the visual data and the results from
the analysis (Fig. 12.7).
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Fig. 12.7 Health-CPS architecture

6 Machine Learning

Figure 12.8 shows the number of machine learning publications in the healthcare
sector from the Web of Science database by year. As illustrated in this figure, the
number of papers was increased nine times from 2014 to 2018. In this section, some
machine learning applications in healthcare area will be introduced.

In big scale data focused applications the MapReduce architecture is one of the
most practical ones. It allows the development of of distributed data-intensive appli-
cations in the cloud [22]. Recently, machine learning is popular in big-data problems
and applying machine learning approaches to resolve big-data problems becomes
an attractive research theme. Due to the challenges presented by biomedical data,
machine learning algorithms will hold an essential job in big-data handling [22].
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Machine Learning in healthcare
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Fig. 12.8 Comparison of machine learning publications in healthcare from 2013 to 2018

An expandable and precise classification method for the geometries of protein-
ligand binding was proposed by Estrada et al. [23]. The technique is useful for drug
design applications in the real-world. This technique was implemented in Hadoop
and it uses the MapReduce programming model. It encompasses three phases. The
first returns a 3D point from the geometry of a three-dimensional ligand adaptation.
The second phase creates an octree by allotting an octant identifier to each one of
the points, finally the densest octant is determined. According to the results, the
technique is well suited for clustering docking consequences. The duration of the
time series and a low level of parallelism are some of the limitations of this method
[22].

Moreover, an optimized two phase entity recognition method suitable for big-
data applications exists. This method takes advantage of conditional random fields
and MapReduce. This method betters the performance of optimization model by
employing a conditional random. All real entities are specified on the first level,
also, entity detection takes place. Then, the label of the semantic class of the entity
is identified. The results obtained by this method illustrated small training times and
strong performance, but it also presents poor trainig efficiency depending on the
sample size. This technique could influence current biological big-data processing
methods [22].

Zhu-Hong Youa et al. [24] suggested a MapReduce-based parallel Support Vector
Machine (SVM) model that uses protein sequences as input for predicting Protein-
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Protein Interactions (PPI). The proposed model extracted the regional sequential
characteristics from protein sequences. Then the MapReduce framework trained
SVM classifiers to improve the training time and accuracy. After that new training
set was created from the union of the support vectors of two classifiers. This process
went on until am individual classifier left. The results demonstrated that the parallel
algorithms could handle large-scale PPIs datasets and perform appropriately when
using velocity and accuracy as evaluation metrics. This method was used for large-
scale PPI forecasting. Despite the benefits, there was a high overhead of training
process caused by sharing of training data between different nodes [22].

Huaming Chen et al. [25] formulated a simple shallow neural network as a
supervised machine learning algorithm on gene expression data. The Monte Carlo
algorithm was used to govern the structure. The supervised model demonstrated
a shallow neural network model with a batch of parameters, and narrowed its
computational process into several parts. This batch was processed easily and
reached the optimal goal. Over learning was minimized using function design. This
neural network suffers from an inadequate number of dataset samples.

Moreover, a procedure more precise for health related datasets has been pro-
posed. The individual’s health criterion required extra attention, given that the
patient’s disease status is affected by the patient’s metabolism. This methodology
employed a decision tree forest for assorting the individuals. To test this method,
the clinical measurements and patterns of individuals were assessed by classifying
the pathologic community [22, 26].

The presented mechanisms are useful to solve the big-data challenges while
lowering computational time. In addition, these mechanisms provide accuracy,
performance and scalability, while averting the problem of single point failures.
One common downside of these mechanisms is their high execution times. Having
to retrain the model, during the whole building process, for each kind of drug is
another disadvantage of these techniques. Moreover, the data-labeling process is
very time, labor, and budget-consuming [22] (Fig. 12.9).

7 Challenges

There are two main challenges when using big-data. The first challenge is the
selection of the big-data platform to develop the model for a certain application. The
selected platform must contain all necessary tools to handle big-data, including the
machine learning libraries. Also, some solutions are needed to aggregate data from
divergent sources. Since no single algorithm provides a fit-all solution to healthcare
data, so ensemble learning is an important technique in healthcare area. Ensemble
learning is defined as the use of multiple machine learning models to solve a single
problem that can provide better and more reliable results than using a single model
[8]. Nature of the big-data is the second challenge of handling big-data problems.
This challenge arises with five characteristics of big-data, regardless of the area.
Figure 12.10 summarizes these characteristics [20].
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Fig. 12.9 Machine learning techniques in healthcare area

In this section, challenges of using big-data are introduced, including chal-
lenges of implementation of big-data in an organization, safety, security, privacy,
sustainability, data cleaning, big-data aggregation, imbalanced system capacities,
imbalanced datasets, big-data machine learning, and quality of service.

7.1 Challenges on Implementation of Big-Data in an
Organization

Big-data practitioners, must determine the strategic and business value of big-data
analytics in place of solely concentrating on a technological understanding of the
implementation of big-data. Despite that, 77% of companies do not have clear and
well defined strategies for implementing big-data analytics into their organization.
This is especially true for healthcare industries were healthcare transformation is
still in its early stages. Appropriate strategies are needed so healthcare organizations
can harness benefits from big-data analytics in an efficient and effective way [11].
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Fig. 12.10 Five V’s of big-data

To implement big-data in an organization successfully, nine challenges should be
solved.

• Big-data governance: Data governance is an expansion of IT governance, it
focuses on using enterprise-wide data generate business value and opportunities.
Big-data analytics can backfire on a company as healthcare organizations with
insufficient IT governance might incur in substantial financial burden by making
poor IT investment decisions [11].

• Information-sharing culture: If an information-sharing culture is not promoted
within the organization, data collection and delivery will be impaired. Adverse
impacts can involve the effectiveness of the analytical and predictive capabilities.
Resistance to new information management systems might be diminished by this
culture thus speeding the full implementation of big-data in the organization This
will also improve the quality of data, the accuracy of analysis and the accuracy
of prediction [11].

• Training key personnel: Incorrect interpretation of the reports could mislead
the organizations judgment and augment the probability of taking questionable
decisions. Equipping managers and employees with appropriate professional
capabilities (critical thinking and correct interpretation of the results) is crucial
for the correct usage of big data analytics [11].

• Incorporating cloud computing: Almost all hospitals are small and Medium-
Sized Enterprises (SMEs) and often struggle with cost and data storage, analysis,
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and bottom line. Public cloud is a significant cost savings option with many
security and privacy-preserving issues. However, a private cloud solves these
problems by providing a more secure environment and keeping the critical data
in-house. Despite the benefits of private clouds, they are more expansive than the
public ones.

• Business ideas from big-data analytics: New ideas can change business
operations that increases productivity and build competitive advantages. specific
reporting and identification of market trends grant companies the ability speed up
new business ideas. Managers should also encourage staffs to leverage outputs
such as reports, alerting, KPIs, and interactive visualizations [11].

• Lack of appropriate IT infrastructure: Dealing with the lack of IT infras-
tructure and transitioning from printed records to distributed data processing
are key for the successful implementation of big data analysis in healthcare.
Adding to those problems the resistance to modernizing processes, resistance to
technologies that change the way the healthcare system operates and the demand
of high initial investment, makes it difficult to implement Big Data technology in
the medical sector [27].

• Real time analysis: A plain, comfortable and transparent Big Data analytics
system that can be used in real-time cases is needed [28]. However, concerns
with the use of Big Data analytics in healthcare like processing of information
without human supervision that might lead to false conclusions remain.

• Data Management: The major technical challenges in Big Data analytics,
with respect to data management, encompass fragmented data, limitations of
observational data, validation, data structure, data standardization, data inaccu-
racy, data veracity, data reliability, semantic interoperability, network bandwidth,
scalability, and cost, integration of structured, semi-structured and unstructured
data from different sources, missing data and false-positive associations [27].

7.2 Safety

Safety, as established, by ISO 60601, is the action of preventing the emergence
of hazards in the physical environment. ISO 60601 can be used on CPSs in a
non-medical context by extending the definition of threats. Faulty operation of
the computing unit and thermal effects are some examples of this threats [29].
Safety demands a deep awareness of the physical state of the surroundings and
characteristics of the computing unit. We can classify the interaction safety hazards
into three kinds of cyber-physical interactions.

• Computing unit to computing unit interactions: Cyber-physical interactions of
computing units could interfere with each other’s operation in dangerous ways.
A good example of this are the problems caused by headphones in peacemakers.

• Computing units to physical environment interactions: This interactions of the
computing units with the environment may create adverse effects.
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• Physical environment to computing unit interactions: The physical activity of
the enviroment may create obstacles to the operation of the computing unit,
for example, tissue expansion into or around the implanted sensors can impede
sensing and communication [29].

7.3 Security

The security of a CPS is can be as the capacity to ensure that system’s capabilities
can only be accessed when authorized. The healthcare industry continues to be one
of the most susceptible to publicly disclosed data breaches [30]. So, the growth
of malware in volume and complexity adds danger to this vulnerability [31].
Traditional security methods are no longer capable to fully defend the network
against advanced intrusion attacks [32]. However, there are several publication
focused on intrusion detection techniques [4, 32–38]. There are other challenges
regarding the use of CPS in healthcare.

• Mission-critical nature: A security breach of the cyber or the physical compo-
nent of a CPS can have deep consequences due to the frequent use of CPS in
mission-critical applications. This is why CPS are popular objectives for cyber
attacks. One example of this attacks is the attack targets pacemakers, is not
only revealed the patient’s electrocardiogram data but forced the peacemaker to
actuate an improper pulse [30].

• Information detail and sensitivity: CPSs contain sensitive information about
important physical processes. This information can be exploited to facilitate loss
of privacy, abuse, and discrimination [30].

• Ability to actuate: Allowing unauthorized parties to use the CPS’s ability to
effect changes in the environment can be harmful to the environment itself [30].

• Ubiquity: Spetial attention has to be paid to CPSs’ protection measures so that
automated and efficient service management is possible and, also, extended into
the area [30]. A compromised insider can easily access information stored in a
compromised node [37]. This is why individual sensors in a large-scale network
are the main target of security compromises.

7.4 Privacy

Privacy is the right of individuals to decide when, how and how much information
is shared to others. The objective of privacy protocols is preventing others from
reviewing a person’s personal and sensitive information [39]. Two important
elements in healthcare are patient privacy and confidentiality. The emergence of
advanced persistent threats, targeted attacks against information systems, whose
main purpose is to smuggle recoverable data by the attacker have created a challenge
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for organizations to address these different complementary and critical problems
[30]. K-anonymity and two-phase top-down specialization (TDS) are techniques
developed to deal with this problem, however, both of those are still vulnerable to
correlation attack [30].

Data sharing between various agents to obtain intuitions from data can increase
the need for privacy [40]. Informed consent and privacy are key areas of concern
in the medical industry. The dearth of data standards and protocols are some of
the control problems that faced big-data analytics must sort out in healthcare.
Implementing (big) data governance developing an information-sharing culture,
employing security measures, Training key personnel. Incorporating cloud comput-
ing into the organization’s Big Data analytics are strategies useful for curbing the
aforementioned issues [27].

Current cyber-physical systems do not support the control rights over our data
asserted by EU and US legislation. The individual who is being studied has
insufficient control and insight of what is being collected and how it is used [41].

7.5 Sustainabilty

The battery or the AC mains usually provide the energy needed in CPS components
like sensors or servers. The traditional energy supply model for CPS has to change
due to the changes in supply technologies, pushing toward alternative green sources
of energy, and the new role of the customer and his increasing impact are that
shapes the electricity system architecture [29, 42]. The cyber-physical energy
supply creates some problems when trying to achieve a sustainable design of
CPSs [29] and security of the network [43]. There are two main concerns in the
sustainability sector. The first one is the intermittent energy supply. The intermittent
nature of green energy sources creates problems when trying to secure the energy
demand of the computing units of CPSs. Supply and demand, usually, are not
naturally synchronized. The sustainable CPS design must match the power from
energy sources with the total demand of the system and it also must minimize
energy misuse. Load characteristics must be taken into account when calculating
the optimum operational voltage and current to maximize the system’s energetic
performance [29].

7.6 Data Cleaning

Making sure that the data sources are trustworthy and the data is of sufficient quality
is of utmost importance to achieve reliable analysis results. Data sources may be
erroneous, noisy or incomplete, this complicates the management, processing and
cleaning of big-data and makes the reliability question harder to answer [6].
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7.7 Big-Data Aggregation

Analyzing the organizations generated data is not enough, also, there are some
external source of data that should be considered in most of big-data applications.
This heightens the importance of the synchronization of external data generators
with the internal frameworks of the institution. Merging internal data and external
sources is imperative for an adequate implementation of Big-Data [6].

7.8 Imbalanced Systems Capacities

The CPU and disk drive performance are doubled every 18 months according to
Moore’s Law, but, the I/O operations are not subject to this law. So, imbalanced
system capacities makes the data access slow which in turn affects the performance
and the scalability of big-data applications. Imbalanced system capacity may slow
down the system performance and affect other devices capabilities (sensors, disks,
and memories) over a network [6].

7.9 Imbalanced Big-Data

Traditional learning techniques are not suitable for imbalanced datasets. Classes
with different distributions result from real world applications. The first type of
class, known as the minority class, is underrepresented with a negligible number of
instances. The second, called majority class, have an abundant number of instances.
The minority classes are important in fields such as medical diagnosis, software
defect detection, finance, drug discovery, and bioinformatics. If the model design
was inspired on global search that does not consider the number of instances,
the minority class would be neglected during the model construction due to the
privileged given to global rules. The disregard for underrepresented classes is
important because they may hold the important cases to identify. Handling multi-
class tasks, is more difficult than dealing with two-class ones. Real world problems
are harder to manage given that usually problem domains present more than two
classes and uneven distributions. To faced the mentioned challenges, two categories
of solutions have raised. The first category consists of extending multiple binary
classification algorithms so that they can solve multi-class classification problems
(decision trees, Naive Bayes,discriminant analysis, k-nearest neighbors, support
vector machines, and neural networks). The second category of solutions is called
Decomposition and Ensemble Methods (DEM). DEM breaks down a multiclass
classification problem into several sets of binary classification problems. Binary
Classifiers (BCs) can solve this type of sets [6].
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7.10 Big-Data Machine Learning

7.10.1 Data Stream Learning

Applications like banking transactions, sensors networks, blog posts, stock manage-
ment, and network traffic generate vast datasets. Discovering patterns and finding
buried valuable information in huge datasets and streams of data is made possible
thanks to data mining. Nonetheless, commonly used data mining methods such
as clustering, classification, and association mining are less efficient, scalable,
and accurate when used on big datasets in a changing environment. The speed,
variability, and size of streams does not allow permanent storage and posterior
analysis. Researchers require new methods so analytical techniques are optimized,
data instances are processed in a timely manner and with low resources usage and to
accurate real-time results are provided. Additionally, incoming variable data streams
present unpredictable changes (changing the distribution of instances for example).
Because the model is trained by past instances this change have an influence of
accuracy of the classification model. Several data mining techniques have been
modified so that the algorithm is able to cope with the changing algorithm and the
drift can be detected. Experiments on data streams demonstrate that modifications
to the latent concept have consequences on the performance of the classifier. Thus,
analytical methods capable of adapting and detecting concept drift are needed [6].

7.10.2 Deep Learning

Deep learning is an active area of research in ML and pattern recognition.
Commonly used machine learning techniques and feature engineering algorithms
have trouble processing raw data. Deep learning, on the other side, solves analytical
and learning problems inherent to large datasets. Deep Learning can also draw out
complex data representations from unsupervised and uncategorized raw data. Due
to its hierarchical learning feature, deep Learning can be easily used to simplify the
analysis of large data volume into a fitting internal representation so that the learning
subsystem can classify or determine patterns. Even though big-data has advantages
it must still surpass significant challenges related to deep learning [6]:

• Vast volumes of big-data: the training phase is a complicated matter. The
challenge relies on parallelizing the iterative computations of the learning
algorithms. Efficient and scalable parallel algorithms are still needed to better
the training of deep models.

• Heterogeneity: Heterogeneity concerns itself with high dimensionality
(attributes), different outputs, and huge numbers of inputs.

• Noisy labels, and non-stationary distribution: Analytical researchers must face
old challenges like missing labels, data incompleteness, and noisy labels due to
the different sources of big-data.
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• High velocity: high velocity, data is often non-stationary which means that its
distributuin is not constant over time. Data are processed in real time at an
astonishing speed.

Deep learning solutions lack maturity and require further research to improve the
results. Further considerations should be taken on how to optimize deep learning
algorithms so that streaming data, high dimensionality, and model scalability
issues are dealt with. Furthermore, some researches are required to better criteria
selection for extracting good data representations, data abstractions’ formulation,
data tagging, semantic indexing, distributed computing, information retrieval, and
domain adaptation [6].

7.10.3 Incremental and Ensemble Learning

Incremental learning and ensemble learning are two, widely used, dynamic learning
strategies. These two methods are commonly used when working with data streams
and big-data. They tackle challenges, such as data availability, and limited resources.
They are employed in applications such as user profiling and stock trend prediction.
Employing incremental learning enables the model to provide faster classification
times while processing fresh data. By comparing these algorithms, it is noticed
that incremental algorithms have faster execution times, but not all classification
algorithms are compatible with incremental learning. Using an incremental algo-
rithm when there is a lack of concept drift or smooth concept drift is present is
recommended. Also, incremental algorithms can be used when the data stream is
simple or presents a high level of real-time processing. Flexibility and adaptability
to concept drift are the strong points of ensemble algorithms. furthermore, most
classification algorithms can be implemented in ensemble algorithms. Ensemble
algorithms are favored when high accuracy is important or when the concept drift is
big or sudden. Regarding data streams ensemble learning constitutes a better choice
if the stream is complicated or presents an unknown distribution [6]. Ensemble
algorithms are favored when high accuracy is important or when the concept drift is
big or sudden. Regarding data streams ensemble learning constitutes a better choice
if the stream is complicated or presents an unknown distribution [6].

7.10.4 Granular Computing

Granular Computing (GrC), initially called information granularity, was first intro-
duced in 1997. GrC encompasses a variety of theories, methodologies, and tech-
niques that use “granules” to solve complex problems. A granule, in the most basic
leves, is made up of basic elements like subsets, classes, objects, clusters, and
elements of a universe. This granules can be grouped together by their differences,
similarity and functionality to generate bigger granules. Granules can be categorized
into different levels depending on complexity, abstract and size [44]. GrC has gained



278 J. C. Cabello et al.

popularity applications in big-data domains. It possesses advantages for intelligent
data analysis, pattern recognition, machine learning, and uncertain reasoning. Users
must understand big-data at different granularity levels aided by distributed systems.
Data analysis and different perspective results are also needed. Comprehension and
analysis of the complexity of various big datasets is enabled by GrC’s tools for
multiple granularity and multiple viewing of data analysis.

Furthermore, GrC techniques can function as processing tools for real-world
intelligent systems. GrC allows the model to tackle changing attributes and objects
in streams over time. The integration of GrC and computational intelligence has
become a prominent research area that aims to advance decision-making models so
complex big-data problems can be solved. GrC can be put into action by a plethora
of technologies such as rough sets, random sets, fuzzy sets, etc. Fuzzy sets allow us
to explore and represent the set-members relationship by using a continuum degree
of belonging and they help us to depict and handle information at distinct levels of
granularity. Moreover, fuzzy set methods are embedded in all stages of the big-data
value chain, from handling raw data to data annotation and representation. Thanks
to the structure supports for lar datasets matrices are being used, more and more, for
rough data analysis and approximations. In order to handle evolving data streams,
the model is updated and rather than recalculating the entire relation matrix the
computations are made on small relation matrices (sub-matrices). Therefore, GrC
methods can boost big-data techniques while dealing with the big-data challenges
like 5Vs, preprocessing data, or reframing the problem at certain granular problem.
Finally, we must not forget that the main job of GrC and fuzzy techniques is to
provide tools for representing and abstracting knowledge [6].

7.11 Quality of Service

The current mechanisms for Quality of Service (QoS) have major limitations
in the provision and support of Service Level Agreements (SLAs) in IoT and
clouds. These mechanisms must be revised so that the challenges posed by remote
health care chain applications are met. This challenge is accentuated by the
shortage of standardized end-to-end approaches for QoS assurance. There are other
requirements needed such as detect/notify events within 5 min of occurrence that
must be also guaranteed [45]. The ability to collect and monitor data from all the
big-data processing frameworks while allowing administrators to easily track and
understand application-level QoS without the understanding of the whole platform
is an obstacle to the widespread use of big-data in the healtcare sector [45].

Figure 12.11 shows a summary of this section.
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Fig. 12.11 Challenges for big-data in healthcare

8 Opportunities

Despite the progress has been made, there are still areas of improvement in the
research. An important open problem in big-data in healthcare sector is the lack
of five-star algorithms for environmentally coupled CPS workload. The ability to
control the physical environment demands a precise characterization of the cyber–
physical interactions during the workload scheduling [29]. In order to gain cloud
computation power and achieve high scalability, an anonymization algorithm to
speed up anonymization of big-data streams is needed. Even though an algorithm
has been proposed there are still many work left to be done in the design and
implementation of a distributed cloud-based framework [30]. An efficient algorithm
capable of solving all particular cases of the Non-deterministic Polynomial time-
hard (NP-hard) problem does not exist. Optimization problems in the bioinformatics
domain require methods that capable of handling that level of complexity [22].

The heterogeneous data fusion and the open platform data access and analysis is
another problem to be solved. The lack of universal standards and systems makes
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it difficult to integrate heterogeneous data and the relevant managements [46].
Virtual Reality (VR) research integrates multiple technologies such as computer
simulation, multimedia technology and sensing. Integration of VR technology with
physiological signals has not been achieved. The combination of smart clothing
signal monitoring and virtual reality technology will support the emergence of
broader ranges of applications [47].

A single system that considers all challenges (reliability, scalability, security,
and ease to use) in healthcare big-data does not exist. Most of the methods in the
research assess and evaluate the proposed components via recreation. For the next
research stage, these methods should become viable in real case scenarios so that
their elasticity to supervise instances autonomously can be exploited. Self-caring
services may become a possibility in the future if home diagnosis is developed.
Understanding the level of self-efficacy and its relationship to performance hold
promise as future research lines due to the ever present concern of data security.

In addition, modeling pipelines is important in the healthcare analytics area.
Developing pipelines, like treatment comparison, risk stratification, and patient
similarity is the objective of future work. Furthermore, special attention must be
paid on how the big-data handler in healthcare and manager systems can maintain
the models remotely the models can be maintained remotely [22].

There is also work to be done in the CPS dimension. For example, future trends
for passive RFID (Radio Frequency Identification) tag antenna-based sensors can be
categorized into three directions. The first issue is networking and standardization.
Future work can be done in the array or tag-tag coupling for boosting coverage,
integration with UWB technology, creating a standard for integration of sensing
capability, Wireless Integrated Sensing Platforms (WISPs) evolution for reduced
power consumption and more external sensors in the systems, and integration with
narrow-band IoT. The second direction is how to further the ubiquity and adaptabil-
ity of the sensors. For example, integration with chip-embeddable sensors, analog
memory with function materials, automatic impedance matching and digitalization
of RSSI, and wearable electronics. The last direction focuses on how to make the
sensors more reliable and straightforward: Software-Defined Radio (SDR) for clear
and cheap readers, harsh environment monitoring, and a chipless antenna with a
changable programming system [46].

Examining the impact of big-data analytics capabilities on healthcare organiza-
tion with a quantitative analysis method based on primary data could shed different
lights. Reference [11] notes the need for more scientific, quantitative studies,
and better analytic methods, such as deep machine learning algorithm capable of
detecting instances of interest in vast volumes of unstructured data, and capable of
discovering connections on the data without needing coding the instructions. This is
crucial analytical and decision support capabilities. Future scientific studies should
develop efficient unstructured data analysis algorithms and applications as primary
technological developments [11].

Also, there is a lack of theory in the current cyber defense architecture. The
effectiveness of security measures varies significantly and the insider threat cannot
be mitigated by one solution. Most security measures require breaches to occur
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before an analysis of malicious activity can prevent it. This reactive approach is not
effective in the protection of the healthcare system and infrastructure [48]. Artificial
intelligence, machine learning, and advanced data mining techniques are needed due
to the increase in the number of cyber-attacks that require detection, analysis, and
defense in almost real-time [49].

Finally, the published work notes the importance of the future employment of
big-data. However, documentation of a real-world implementation of big-data in
healthcare was not found. The qualitative approach is usually employed by studies
to demonstrate the advantages and disadvantages of the implementation of big-data
in healthcare applications. The qualitative studies are needed to demonstrate the
practical benefits and facilitate the wide-scale adoption of technology. Finally, [27]
notes that most of the papers included in the review are from developed countries.
Data analytics in developing countries will allow the delivery of better quality care.
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Chapter 13
Privacy Preserving Abnormality
Detection: A Deep Learning Approach

Wenyu Han, Amin Azmoodeh, Hadis Karimipour, and Simon Yang

1 Introduction

Artificial Intelligence (AI) is the concept used to describe computer systems that
can learn from their own experiences and solve complex problems in different
situations [1]. Around 2010, the field of AI has been shaken by the broad and
unforeseen successes of multi-layer Neural Networks (NNs). This success is due to
the introduction of high performance computing, Graphic Processing Unit (GPUs),
and the availability of large labeled data sets that could be used as training testbeds.
This combination has allowed the rise of Deep Learning (DL) on Deep Neural
Networks (DNNs), especially on the architecture called Convolutional Neural
Networks (CNNs) [2, 3].

The development of AI has made major advances in recent years and its
potential appears to be promising. In the healthcare sector, scientific competitions
like ImageNet large-scale visual recognition challenges are providing evidence that
computers can achieve human-like competence in image recognition. Researches
demonstrated that AI is able to make clinical diagnoses at levels equal to clinicians
in some specific cases using medical images [4, 5].

This venture will have a considerable impact on healthcare operation, manage-
ment and research. However, there are still barriers and challenges that need to
be addressed. Several growing trends in the healthcare, such as clinician mobility
and wireless networking, health information exchange, and cloud computing are
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increasing the concerns related to privacy and data protection [6]. Other trends
that are aggravating the problem are the emergence of advanced persistent threats,
targeted attacks against information systems, whose main purpose is to smuggle
recoverable data by the attacker [7–10]. We cannot ignore the challenges in ethics,
and security raised using AI, which is why on this chapter we will focus on one of
this concern: privacy and the use of personal data in AI.

2 Background

2.1 Privacy and Healthcare

Preserving the privacy of healthcare information is a considerable challenge of
the field [11]. Protecting patient and Health Information Systems (HIS) and
maintaining the system security is a major obstacle to provide digital services in
this context [12]. Critical role and imperative stored information stored in HIS
turn it to a gold mine for cybercriminals for data breach and causing intentional
system failures [13]. Despite a considerable attentions and researches to propose
approaches to provide HIS with security and privacy, the research area is still
controversial [14]. On the one hand, the digital revolution has affected the health
industry. The cost of health and medical services has experienced a dramatic fall
by employing information technology [15]. Besides, quality of medical services
has been significantly increased according to using electronic health record systems
[16]. On the other hand, during the past decades, security and privacy have became a
challenging issue. A rapid escalate has occurred in data breaches somehow in 2016,
CynergisTek has released the Redspin’s seventh annual breach report [17].

AI is playing a significant role in the quality and quantity of HIS services. A
wide range of medical activities are leveraging AI ranging from diagnostic, imaging
to screening and genetic testing [18]. Firstly, an automated, accurate and on-time
medical service decrease the possibility of data breach and privacy issues lie in
human-centric traditional healthcare systems [19]. Secondly, AI techniques transfer
knowledge from document and health records into hyperparameters and models
which can not be easily being understood, recovered, or extracted. It is notable that
while designing an AI-based healthcare system, careful surveillance is necessary
to consider AI-based privacy issues such as differential privacy [20]. In this work,
a privacy preserving abnormality detection technique is proposed which employs
CNN for image classification without human interaction.

2.2 Convolutional Neural Network

A CNN is a deep network structure which can take image as input and adjust various
aspect in the image to differentiate one from another [1, 21]. Compared to the
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other classification algorithms, CNN requires less pre-processing. The architecture
of a CNN is inspired by the organization of the Visual Cortexis and is analogous
to that of the connectivity pattern of Neurons in the Human Brain [22]. In 1982,
Fukushima’s proposed neurocognitive machine based on the wilderness concept
(Neocognitron) which was the first implementation version of the CNN [22–25].
Later at 1989 a five-layer CNN, LeNet was proposed that completely solved hand-
written digit recognition [26]. This was the start of the CNN from theory to practical
implementation. However, the absence of sample and computing power resulted in
the unpopularity of the CNN. Instead, the design methods for characteristics such as
support vector machines have accomplished excellent outcomes on tiny sample sets
and have become mainstream. The CNN itself has been continually enhanced after
many years of silence, with the emergence of the age of large information, and the
prevalence of parallel computing based on GPU [27, 28]. In 2012, AlexKrizhevsky
and others used an eight-layer CNN, AlexNet, to win that year’s championship in
the ImageNet image classification competition, far exceeding the second place by
10% points, allowing the CNN to come back to the sight of people [29]. Thereafter,
different enhanced NN structures have emerged, most notably VGG, GoogleNet and
Residual Neural Network (ResNet) [30–33].

The first significant notion of CNNs is local perceptual field where each neuron
only requires perceiving the image’s local characteristics to achieve the image’s
worldwide characteristics [34]. This is also inspired by the human visual nervous
system. When humans recognize images, the nerves of the cerebral cortex only
respond to local stimuli, indicating that human cognition of images is also a process
from partial to whole [35].

The second important concept of CNNs is weight sharing. CNN use convolution
operations to extract features from images, and the same convolution kernel extracts
the same feature on the image. For multiple features extraction, multiple convolution
kernels is required [36]. It is called “weight sharing” because the same convolution
kernel slides between multiple parts of the image, and a locally extracted feature
can be used in other areas, or the features of the image are independent of position.
The sharing of weights can greatly reduce the amount of computation of the neural
network [37]. Figure 13.1 shows an example of weight sharing.

The third important property of the CNN is the image extraction function that
uses kernels of convolution. The method of convolution is a method that reduces the
amount of parameters. The most important part of the process of convolution is the

Fig. 13.1 Weight sharing
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Fig. 13.2 Convolution
operation

Fig. 13.3 Pooling operation

design of the step size and the number of kernels of convolution. The more number
of features are obtained, the more features are being extracted, but the network’s
complexity is also increasing, which is susceptible to over-fitting issues. The
convolution kernel size influences the network structure’s identification capacity,
and the size of the step determines the size and amount of image characteristics
taken [38, 39]. A sample convolution operation is shown in Fig. 13.2.

Pooling is another useful property of CNN. The pooling layer generally reduces
the eigenvector dimension of the convolutional layer output. The pooling method
minimizes image resolution and decreases the image’s processing dimension, but
maintains the image’s efficient data, decreases the processing complexity of the
subsequent convolution layer, and significantly decreases the image’s network
rotation and translation. There are two particular techniques of pooling: mean
pooling and maximum pooling. The average pooling relates to calculating the
average value of the image target’s local region as the unit value after pooling. The
maximum pooling is to pick as the pooled value the highest value of the target image
region [40, 41]. Pooling operation is described in Fig. 13.3.

2.3 TensorFlow

TensorFlow is a second-generation machine learning system created by Google that
overcomes the constraints of the first generation system, DistBelief, which can only
develop neural network algorithms, is difficult to configure, depends on Google’s
internal hardware, is more widely used, and improves flexibility and portability [42,
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Fig. 13.4 TensorFlow architecture framework

43]. Architecture of TensorFlow is shown in Fig. 13.4. As shown in Fig. 13.4 the
system architecture is divided into two parts:

• Front-end: provides a computer graphics programming model and offers assis-
tance for various languages such as Python, C, Java, and Go.

• Backend: provides a runtime environment responsible for executing computa-
tional graphs, implemented in C.

Literally, it is a framework for the implementation of tensor flow on a graph
and the implementation of machine learning algorithms, and has the following
characteristics [44–46]:

• Flexibility—TensorFlow is not a rigorous library of NN. It can be used as partial
differential solution in scientific computing, as long as the calculation can be
represented as a data flow graph.

• Portability—the same code can be deployed to a PC, server or mobile device with
any number of CPUs, GPUs or TPUs.

• Automatic differentiation—TensorFlow supports automatic differentiation, and
the user does not need to solve the gradient by backpropagation.

• Multi-language support—TensorFlow officially supports Python, C, Go, and Java
interfaces. Users can experiment with Python in a well-configured machine and
deploy it in C in environments with tight resources or low latency.

• Performance—Although TensorFlow only supported stand-alone machines when
it was first released, it is not good in performance evaluation, but with the strong
development strength of Google, TensorFlow performance has caught up with
other frameworks.

When constructing an algorithm, the user can construct a calculation graph
according to personal preference and actual needs using a suitable front-end
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language. After the graph is built, the session is connected to the back end of
the TensorFlow with the session as the bridge, and the calculation process of the
graph is started and executed. The back end of the TensorFlow performs the specific
calculation according to the current hardware environment calling the Kernel of
Operation [47].

3 Medical Image Analysis Based on Deep Learning

Medical imaging technology plays a key role in early diagnosis, staging, and disease
assessment. Medical image assessment has become an essential component of
medical studies, clinical illness diagnosis and therapy with the ongoing growth
and advancement of medical imaging technology and computer technology [48].
Medical imaging technologies include medical imaging, image processing, imaging
analysis, and AI decision-making. Analysis of medical image is an interdisciplinary
subject based on medical imaging, digital image processing and analysis, numerical
algorithms, mathematical modeling and artificial intelligence [49, 50]. In the field of
medical image analysis, it mainly includes image segmentation, image registration,
image denoising, image fusion, image texture analysis, time series image analysis
and image retrieval based on image content, as well as image understanding, image
recognition and intelligent decision-making. In recent years, the increase of big
data and computing power has made AI one of the key technology, which play a
significant role in practical applications [51, 52]. AI and specifically DL can use
complex neural network architecture to model patterns in data with unprecedented
accuracy. In the field of medical health, the application of DL in medical imaging
often appears as an application for assisted diagnosis or imaging detection [48].

Since 2006, DL has made important breakthroughs in many areas. The great
success of deep learning in the field of computer vision has inspired many scholars
at home and abroad to apply it to medical image analysis. Since 2016, in the medical
image analysis, many specialists have summarized, evaluated and discussed the
study position and issues of deep learning. A study released recently in Medical
Image Analysis offers an extensive overview of deep learning in classification,
identification and segmentation of medical images, registration and retrieval [53,
54].

3.1 CNN in Medical Image Classification

Medical image classification can be divided into image screening and target or
lesion classification. Image screening is one of the earliest applications of deep
learning in the field of medical image analysis [52]. It refers to taking one or more
inspection images as input, predicting it through a trained model, and outputting
a signal indicating whether it has a certain disease or severity. Nowadays, CNN is
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gradually becoming a standard technology in image screening classification, and
its application is very extensive. For example, Arevalo et al. proposed a feature
learning framework for breast cancer diagnosis, and used CNN to automatically
learn the distinguishing features to classify mammogram lesions [55]. Kooi et al.
compared the manual design and automatic CNN feature extraction methods in
traditional Computer Aided Diagnosis (CAD), both of which were trained on large
data sets of about 45,000 mammograms [52]. The results show that CNN is superior
to traditional CAD system methods at low sensitivity, and both are comparable
under high sensitivity. In addition, there are some work to combine CNN with
Recurrent Neural Network (RNN). For example, [56] uses CNN to extract low-
level local feature information in the slit lamp image, and further extracts high-level
features in combination with RNN to classify nuclear cataract.

CNN is also widely used in the classification of targets or lesions [57]. used
CNN to extract depth features at different levels, which improved the classification
accuracy of breast cancer [58]. compared the tasks of detecting lung nodules in
CT images and distinguishing between benign and malignant pulmonary nodules.
The two types of end-to-end training artificial nerves were compared with Massive
Training Artificial Neural Networks (MTANNs) and CNN. The experimental results
show that the performance of MTANN is significantly higher than CNN only when
minimum training data is used [58].

4 Proposed Case Study

This paper is focused on identifying abnormality detection in musculoskeletal
radiographs using CNN as a binary classification task. Inspired by [59], Resnet and
DenseNet models [30, 60] are used for classification task. Besides that, a network
that separate local and global features and then combines them together is also
proposed to improve the overall accuracy.

4.1 Dataset

MURA dataset [61], a large data set of bone X-rays provided by Stanford University
School of Medicine is used in this work [61]. The main goal of this work is to train
a CNN to perform the assignment of binary classification for normal and abnormal
images. MURA is currently one of the largest X-ray dataset of 14,982 cases with
40,895 musculoskeletal X-rays. There were 9067 ordinary upper musculoskeletal
and 5915 upper extremity unusual musculoskeletal X-rays in more than 10,000
instances, including the chest, arches, knees, forearms, wrists, palms, and toes.

The data is split by default into a training set (36,808 images) and a validation set
(3197 images). The data is also partitioned based on studies. A study can consist of
multiple X-ray images of a single patient and a single body part, but the images can
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be of different angles. Having multiple views helps radiologists to come to a more
informed conclusion. This means that in the dataset, all the images belonging to a
study would have the same class.

4.2 Data Augmentation

Data augmentation refers to the effect of appropriately transforming the original data
to achieve an expanded data set based on some prior knowledge [62]. Specifically,
in the image classification task, under the premise of keeping the image category
unchanged, the following transformation can be performed on each image in the
training set:

1. Random rotation, translation, scaling, cropping, filling, left and right flipping,
etc. within a certain degree, these transformations correspond to observations of
the same target at different angles.

2. Adding noise perturbations to pixels in the image, such as salt and pepper noise,
Gaussian white noise, and so on.

3. Color conversion.
4. Changing the brightness, sharpness, contrast, sharpness, etc. of the image.

In the image classification task, image data expansion is generally one of the
methods that most people will adopt. This is because deep learning has certain
requirements on the size of the data set. If the original data set is small, the network
cannot be well satisfied. The training of the model affects the performance of the
model, and the image enhancement is to process the original image to expand the
data set, which can improve the performance of the model to some extent.

In this work random sized crop in pre-processing stage is used. In other word,
each input image is resized to 256 × 256 and then random-cropped to 224 × 224
before feeding into the network. Before applying the training process, each image
is loaded in as a grayscale image with only one channel, and has the following
augmentations applied to it:

• Zero padded and resized to be 256 × 256
• Random cropped to 224 × 224.
• Random rotation within ±30◦.
• Randomly flipped horizontally.

For the preprocess improvement, the sharpen filter and contrast enhancing filter
have also been applied to make dataset better for later training process. Figure 13.5
shows an example of an image of the shoulder part that was run through the data
augmentation pipeline five times.
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Fig. 13.5 Data augmentation

Fig. 13.6 Prediction pipeline of the model

4.3 Abnormality Detection Based on CNN

Figure 13.6 shows the prediction pipeline of the model used in this work which
is adopted from [61]. The model feeds each image in the study into the network
and evaluate the probability of abnormality for each image. Then it calculates the
arithmetic mean value of the probabilities and outputs it as the final probability of
the study.

If the probability is higher than 0.5, then can regard it as an abnormal study. The
network uses DenseNet-169. The final fully connected layer is replaced with one
that has a single output, and a sigmoid nonlinearity is added. To solve the problem
of class imbalance, the loss function of each image X is defined by the weighted
binary cross entropy:

L (X, y) = −wT,1 y logP (Y = 1| X )−wT,0 y logP (Y = 0| X)
(13.1)

where y is the label of the study, P(Y = 1|X) is the probability that the network
classifies the image as abnormal, P(Y = 0|X) is the probability that the network
classifies the image as normal, wT, 1 is the proportion of normal images and wT, 0 is
the proportion of abnormal images in the dataset.

Since using only horizontal flip and rotation will cause overfitting, data-
augmentation is also performed at training stage because. After trying different
batch sizes 8, 16, 32, 64, 128 and the corresponding learning rate, batch size 16 and
an initial learning rate 0:0001 is used which decays by a factor of ten each time the
validation loss plateaus after an epoch as the hyper parameters.
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Fig. 13.7 Resnet residual
learning module

4.3.1 ResNet and DenseNet

ResNet’s primary concept is to add a direct link channel to the network, which is
the highway network concept [30]. ResNet’s concept is very comparable to that of
the highway network, enabling direct passage of the initial entry to the subsequent
sections as shown in Fig. 13.7.

DenseNet was inspired by both ResNet and Inception Network [30, 60]. As with
ResNet, in order to help reduce information and gradients being washed out due
to the numerous layers, a convolution layer in DenseNet takes the feature maps
produced by all the previous convolution layers within the dense block to which
it belongs as input. However, the input from the different levels is not associated
with the summation, but coupled with function maps similar to Inception Network.
The BC in DenseNet-BC relates to the use and compression of bottleneck. The
bottleneck layers assist to decrease the input size in terms of the number of channels
for the tightly linked convolution layers while minimizing the quantity of missed
data. Similarly, to decrease the amount of function maps generated between dense
frames, compression is used. Structure of DenseNet is shown in Figs. 13.8 and 13.9.

4.3.2 Global and Local Features Combination

Considering that the abnormalities of bones usually happens in small areas, this
work suggest a hierarchical feature selection to increase the accuracy of the
abnormality detection. Inspired by the Attention Guided Convolutional Neural
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Fig. 13.8 Architecture of combined features network

Network [63], a combination of global and the local features on radiographs is
proposed. The framework of the proposed network is shown in Fig. 13.8.

The network consists of three parts: global branch, local branch, and classifier.
An input image (preprocessed image) first goes through the global branch and output
the global feature (the 1-D feature after global average pooling). Then a heatmap
is generated based on the feature maps (the 7 × 7 features before global average
pooling).

After that, the heatmap is turned into a binary map under a threshold. By locating
the maximum connected component on the binary map, the local area is cropped
from the input image (preprocessed image). Afterwards, the cropped local image,
after the same procedure of preprocessing, goes through the local branch and output
the local feature. Finally, the global feature and the local feature are concatenated
and fed into the fully-connected layer for classification.

For heatmap generation, the class activation map of the image is used as follows:

Mc =
∑

k

wc
kA

k (13.2)

where c is the given class, wc
k is the weight corresponding to class c and A1, A2,

. . . AN are the feature maps.
The global branch and local branch are all based on ResNet-50 model. The

ResNet-50 model which was trained previously is used in this model as the
initialization for both global branch and local branch. Notice that the global branch
needs no training.
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Fig. 13.9 DenseNet structure
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5 Results

The learning abilities and memorization properties of the algorithms are measured
by the False Positive Rate (FPR), True Positive Rate (TPR), and Accuracy (Acc)
values, which are defined as [64]:

FPR = FP

T N + FP

T PR = T P

T P + FN

ACC = T P + T N

T P + T N + FP + FN

(13.3)

Figure 13.10 shows the results of training and validation loss during training. As
can be seen the training loss is consistently being reduced, and the validation loss is
decreasing on average.

Table 13.1 shows the summary of the results, including the accuracy of each type
of the global branch, the local branch as well as the Area Under the Curve (AUC).

Fig. 13.10 Training and validation loss

Table 13.1 Summary of the results

Type ResNet50 (b16, global) ResNet50 (b16, local) Combined features net

Elbow 0.8688 0.8438 0.8688
Finger 0.8400 0.8229 0.8171
Forearm 0.8394 0.8321 0.8467
Hand 0.7784 0.7605 0.8383
Humerus 0.8897 0.8603 0.9118
Shoulder 0.8000 0.7949 0.7897
Wrist 0.8950 0.8529 0.8908
All 0.8452 0.8237 0.8510
AUC 0.9049 0.8848 0.9076
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Fig. 13.13 Comparison of different models accuracy for Forearm part
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Fig. 13.14 Comparison of different models accuracy for Hand part

As seen from the results, local model of ResNet-50 performs slightly worse, due
to the cropping process, which results in partial loss of information. However, the
overall results for different body parts turns out to be higher on accuracy and AUC
than the global branch, indicating that the idea of combine global and local features
works better. Detailed results for different body parts are shown in Figs. 13.11,
13.12, 13.13, 13.14, 13.15, and 13.16.
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Fig. 13.16 Comparison of different models overall accuracy

Fig. 13.17 Final model accuracy through epochs

Accuracy of the final model eventually converges into about 90% after training
for 50 epochs as can be seen in Fig. 13.17. The final model’s confusion matrix of
performance on validation set is also shown below in Fig. 13.18. The confusion
matrix is a situation analysis table that summarizes the prediction results of the
classification model in data science, data analysis and machine learning. The records
in the data set are summarized in a matrix form according to the two categories of
classification and judgment made by the real category and the classification model.
Since this task is a binary classification problem, the data set has two types of
records: positive category and negative category, and the classification model may
make a positive judgment on the record classification (the judgment record belongs
to the positive category) or the negative judgment (the judgment record belongs to
the negative category). This confusion matrix is a 2 × 2 situation analysis table
showing the number of the following four groups of records: a positive record that
makes a correct judgment (true positive), a positive record that makes a wrong
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Fig. 13.18 Confusion Matrix
of final model for validation
dataset
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judgment (false negative), a negative record that makes a correct judgment (true
Negative) and a negative record (false positive) that makes a false judgment.

6 Conclusion

DL and in particular CNN are among the most popular choices for medical or
biomedical images analysis. In this work abnormality detection and abnormality
localization using CNN is implemented on musculoskeletal radiographs in MURA
dataset. At first, model are trained based on ResNet and DenseNet to classify
the images as either normal or abnormal. In the second step, global and local
feature are combined to improve the performance. Google GPU platform is used
for DL implementation to reduce the computational burden. It should be noted that
ResNet and DenseNet models are mainly used for nature image classification in the
literature, which is quite different from a radiograph. It might be possible to get
better results with a different models.
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Chapter 14
Privacy and Security in Smart
and Precision Farming: A Bibliometric
Analysis

Sanaz Nakhodchi, Ali Dehghantanha , and Hadis Karimipour

1 Introduction

Big data analytics are one of the prominent parts of data science and are becoming
more significant year after year, because most companies both small and large, are
collecting huge amounts of useful information [1, 2]. The information may contain
data such as “national intelligence, cyber security, fraud detection, marketing, med-
ical information” [3], agriculture information and financial information. Popular
companies such as Microsoft and Google are using data analysis in the means
of gaining perspective for their decision making, as well as further understanding
the links between existing and next generation technologies [3–7]. Moreover,
agriculture is another noteworthy domain that these new technologies have impacted
that should not be overlooked. For instance, traditional agricultural systems used
animal force instead of mechanic force as well as the simpler methods used for
planting and collection of crops.

Merging the advanced technologies and agriculture, led to the appearance of
smart farming resulting in an increase in the quality and quantity of products as well
as helping to reduce the “heavy labor and tedious tasks” [8]. Internet of Things (IoT)
and Artificial Intelligence (AI) technologies are two prominent tools with a crucial
role in smart farming such as driverless tractors, automatic watering and irrigation,
real-time monitoring and analysis, and the connected farms which is sensors and
IoT [2, 9–13]. In addition, in the terms of big IoT data, security and privacy are
becoming important especially in processing and storing data from sensors.
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Fig. 14.1 Architecture of agri-IoT [14]

Figure 14.1 shows the architecture of agriculture IoT with different layers. As
can be seen, all layers require to provide privacy and security approaches. Changes
in agricultural systems and the processes of food production, create an opening
for cyber-attack vectors and security implications. Meaning that structures and
architecture of modern networks of food production can be vulnerable as a result of
the high number of operations and systems. In addition, the system vulnerabilities
may lead to “hybrid warfare tactics of both state and non-state actors”. For instance,
if there is a vulnerability in a major system, the risk will threat all dependent systems
which can be financial, manufacturing and other sectors [15].

In 2016, FBI warned the farmers from the United States about industry devices
hacks and data breaches. FBI reported that cyber-attackers can target any entities in
the farms for stealing information such as soil content, past crop yields and planting.
Moreover, attackers might encrypt data which is collected and ask for ransom
along with damaging food process and production [16]. Although the large-scale
companies can be more absorbable for attacks, the small and medium sized cannot
be overlooked, due to the fact that over 60% of all compromised companies were
small to medium in 2014. For instance, agribusiness enterprises and agricultural
suppliers are directly targeted by attackers although small businesses compromised
with 75% of spear-phishing attacks in 2015 [17].

Upon new technology, hackers can hide their intrusion in the systems. Although
there are some existing approaches to boost smart farming systems, the significant
spikes of the aforementioned agriculture statistic still need new approaches to
have a better and secure system in agricultural sectors. In this regard, there are
activities that researchers have been working on. For example, due to a variety of
vulnerabilities in critical systems, researchers have been discussing and suggesting
recommendation to tackle such vulnerability [18]. Moreover, [19] an algorithm have
been presented for cyber-attack on wind farms. The method can detect attacks based
on updating each node dynamically. Therefore, a reliable and secure framework for
farming is introduced in [20] which can encrypt collected data and store them in



14 Privacy and Security in Smart and Precision Farming: A Bibliometric Analysis 307

a secure environment. The aforementioned examples indicate that researchers did
significant effort in this domain, although there is no bibliometric article in this
area.

“Bibliometrics encompasses the measurement of ‘properties of documents, and
of document related processes” [21]. It can help researchers to better understand
the research patterns and activities. It is a comprehensive report which evaluate
distribution of research. Energy analysis for hybrid electric vehicles [22] and
technology mining [23] are the example used for bibliometrics. In addition, one of
the benefits of using bibliometrics analysis is relying on authors who help them to
represent the significance of their activities and papers. The second advantage is that
institutions can assess the performance of publication and evaluate impact factor.
Prediction of future research and effectivity in other areas along with increasing
knowledge are the other advantages of studying bibliography.

In order to demonstrate the importance and increased number of cyberattack
in agriculture sectors, this paper aims to provide an investigation of the domain
by doing comprehensive assessment of cybersecurity in agriculture in the Web
of Science from 2008 to 2018. The method includes the publication patterns,
assessment on cybersecurity in agriculture and research topics. This study is based
on two questions: (a) what is the trend of publications in cybersecurity approach of
agriculture, and (b) how does this trend help to identify the future direction of this
study?

Using “cybersecurity” and “agriculture” as the main keyword, 147 articles were
found which were filtered and classified narrowing it down to 141 as the main
result. All of these were collected from the Web of Science Core Collection. The
exclusion parts were Arts and Humanities Citation Index (A&HCI) and Conference
Proceedings Citation Index-Social Science and Humanities (CPCI-SSH) due to
being unrelated. The English language was also another filter. The analysis was
based on generating relationship between the abstract, title, publication, citation,
research area, geographical location and the keywords used.

The following sections are organized as Sect. 2 which discusses the methodology
used to retrieve information, Section 3 discusses the findings of the information and
results and Sect. 4, includes the conclusion of the study.

2 Methodology

“Bibliometrics offers a powerful set of methods and measures for studying the
structure and process of scholarly communication” [21]. It shows the information of
publications and demonstrate that how publications can have an impact on institutes.
According to [24] bibliometric is one of the oldest research techniques in library
and information. The bibliometric method is divided into two sections based on
[24]: general instruction, which is about using a search engine with researcher to
avoid likely error in the search process, and publication analysis, which describes
the evaluation methods of publications. This approach used different articles. For
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instance, [25] focused on researching about human resource training with 900
publications from 1975 to 2016. Furthermore, [26] considered 149,652 articles of
obstetrics science between 2002 and 2013.

In this paper, general instruction with the manual and automatic methods
are used for retrieving information. The main keywords are cybersecurity and
agriculture which in the first search brought forth 147 articles which included
articles, processing papers, reviews, books and so on. Although, after removing
unrelated papers, 141 results remained between 2008 and 2018. The query used
in this study is: ((cybersecurity OR cyber-security OR cyber-attack OR data theft
OR malware detection OR privacy) AND ((agriculture OR farming OR agri-food
OR smart farming OR dairy OR poultry OR livestock OR chattels) NOT (nuclear
power plant))).

All the publication indexed in the Web of Science Core Collection. The
exclusion included ignoring non-English articles, and Arts and Humanities Citation
Index (A&HCI) and Conference Proceedings Citation Index-Social Science and
Humanities (CPCI-SSH). The analysis was considered based on (a) productivity (b)
research areas (c) institutions (d) authors (e) impact journals (f) highly cited article
and (g) keyword frequency. In addition, for visualizing the results, VOSviewer tool
was used.

2.1 Web of Science

There are a variety of databases which are indexing articles such as IEEE explore,
Google Scholar, Science Direct, Web of Science, Elsevier and Springer. Web of
Science (WoS) was a major database for bibliometric until 2004 before launching
Scopus [27]. Moreover, Google Scholar is another popular database for searching
[28]. In this study, WoS is selected for searching due to three reasons. First, WoS
is a unique tool for bibliometric analysis before Google Scholar and Scopus [27].
Second, more than 90% of the highest impact factor journals indexes in WoS. Last
but not least, because of avoiding overlap, WoS is the only search engine for this
research [29].

3 Finding

This section considers the finding of the topic related to cybersecurity, privacy
and agriculture which is divided into seven sections: productivity, research areas,
institutions, authors, impact journals, highly-cited articles and keywords frequency.
This finding is significant due to showing publication rate and bibliometric data.
Figure 14.2 shows the number of publications from 2008 to 2018.

Figure 14.2 shows the different types of publication released during the period
which are article, proceeding paper, review and editorial material. As can be seen,
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in overall, the article has the highest ranking of publication and proceeding paper
is in the follow as the second. 2015 and 2017 are the 2 years that the number
of proceeding papers were just more than two publications rather than articles.
Although there is a fluctuation in the number of review papers between 2015 and
2018, the number of materials is still the same in the 2015 and 2016 and do not
appear during the other years. In general, the trend of articles increased from 2008
to 2018.

The frequency of journal is evaluated based on the citations indexed used during
citation analysis. It also used for assessing researcher’s performance in academic.
Figure 14.3 shows the citation distribution over the last 10 years. It presents that the
number of publications have an impact on the number of citations. The number of
citations is 946 along with average citation per year which is 86 between 2008 and
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2018. Based on publications during recent years, it is predicted that the number of
citations will increase in the following years.

3.1 Productivity

This part considers productivity among continents. The frequency of number of
publications rely on productivity. It can be used as a tool to evaluate the number
of publications which are released among different continents. The significant
impact of discussing about productivity is that the researcher can improve efficiency
and productivity of the publications. Moreover, it is useful for contributing in
new technology and identifying the best one. Table 14.1 shows the number of
publications in different countries and continents between 2008 and 2018. It can be
seen that continent of Europe had the most contributions (66) while North America
with <10 difference is second one. In contrast, Australia and Africa continents have
the lowest articles, 6 and 15 respectively. United Stated had significant effort in
publication, 50 between 2008 and 2018.

3.2 Research Areas

This part considers the number of publications in a variety of research areas.
Research area usually include one and two disciplinaries for developing specific
areas and how it can impact on different research areas. WoS covers more than
150 different scientific research areas. Table 14.2 provides the information about
top five research areas between 2008 and 2018 in this search. As can be seen,
Engineering has 37.58% of publications which is the highest, followed by Computer
Science with 28.36%. Moreover, after 21 publications in Telecommunications areas,
agriculture and environmental sciences ecology are the least ones with 16 and 14
publications, respectively.

3.3 Institute

This part considers the number of publications based on institutes. The goal of this
part is to recognize the active institutes and evaluate the quality of them based on
publications. Table 14.3 shows top six institutions which have the publications in
the cybersecurity and agriculture approaches. It can be seen that United States has
17 publications which is the highest number of papers. University of Oxford from
England, University of Tennessee Knoxville and University of Tennessee System
from United States are the prominent university with the majority publications.
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Table 14.1 Productivity

List of continents Number of articles Number of articles (%)

Asia 51 36.06
India 14 9.92
Malaysia 1 0.70
Iran 2 1.41
China 15 10.63
Singapore 1 0.70
South Korea 6 4.25
Taiwan 3 2.12
Saudi Arabia 3 2.12
Pakistan 1 0.70
Jordan 1 0.70
Turkey 2 1.41
Kazakhstan 1 0.70
United Arab Emirates 1 0.70

North America 57 40.42
United States 50 35.46
Canada 7 4.96

South America 1 0.70
Bolivia 1 0.70

Europe 66 46.65
Spain 2 1.41
England 16 11.34
Greece 7 4.96
Hungary 1 0.70
Italy 3 2.12
Netherlands 5 3.54
Portugal 2 1.41
Belgium 4 2.83
Finland 2 1.41
Germany 5 3.54
France 4 2.83
Bulgaria 1 0.70
Denmark 4 2.83
Latvia 1 0.70
Romania 2 1.41
Scotland 2 1.41
Switzerland 2 1.41
Austria 1 0.70
Ireland 1 0.70
Sweden 1 0.70

Australia 6 4.24
Australia 5 3.54

(continued)
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Table 14.1 (continued)

List of continents Number of articles Number of articles (%)

New Zealand 1 0.70
Africa 15 10.57

South Africa 6 4.25
Botswana 1 0.70
Ethiopia 1 0.70
Kenya 1 0.70
Morocco 2 1.41
Nigeria 2 1.41
Tanzania 1 0.70
Zimbabwe 1 0.70

Table 14.2 Research areas

Research areas Number of publications Number of publications (%)

Engineering 53 37.58
Computer science 40 28.36
Telecommunications 21 14.89
Agriculture 16 11.34
Environmental sciences ecology 14 9.92

Table 14.3 Institutions

Institutions Publications Country

University of Oxford 4 England
University of Tennessee Knoxville 4 United States
University of Tennessee System 4 United States
State University Of New York SUNY System 3 United States
United States Department of Agriculture USDA 3 United States
University of Wisconsin System 3 United States

3.4 Authors

This part considers the number of publications based on the authors under country.
The goal of this part is to identify who is more active in this area. Table 14.4 shows
top ten authors that who were more productive according to country as well. It can
be seen that United States has the most authors with six publications. There also
are four publications with British authors after china with five publications. Nigeria,
Finland and Morocco are the countries that each author has one publication. Thus,
North America has more contribution in terms of privacy, security and agri-food.
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Table 14.4 Authors

Authors Publications Publications (%) Country

Lan Li 3 2.12 China
P. K. Freeman 2 1.41 United States
R. S. Freeland 2 1.41 United States
Jay Graham 2 1.41 United States
Li Ming 2 1.41 China
Michael J. Tildesley 2 1.41 England
Hans Bauer 2 1.41 England
B. Adegbuyi 1 0.70 Nigeria
Elisa Aaltola 1 0.70 Finland
Youssef Abarghaz 1 0.70 Morocco

Table 14.5 Greatest journals based on the number of publications

Journals title IF Q P P (%)

Computers and Electronics in Agriculture 3.17 Q1 2 1.41
IEEE Communications Magazine 10.35 Q1 2 1.41
IEEE Internet Of Things Journal 9.51 Q1 2 1.41
IEEE Transactions on Smart Grid 7.364 Q1 2 1.41
PLOS One 2.77 Q1 2 1.41

3.5 Impact Journals

This part considers top four impact journals. The goal of this part is helping the
researchers to publish their works in the good quality journals. Table 14.5 shows that
although the number of publications in the list are the same, IEEE Communications
Magazine has the better impact factor.

3.6 Highly-Cited Articles

This part considers the number of citations which received by journals from 2008
and 2018. The goal of this part can have impact on the quality of research. Table
14.6 shows top three cited articles. It provides information such as the number of
times cited, title of published journal, year of publication and research area. As can
be seen, “Big Data in Smart Farming—A review” had most citations. The article
considers big data applications with smart farming approach [30].
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Table 14.6 Top three cited articles

Titles Times cited Published journal Year Research area

Big Data in Smart
Farming—A review [30]

123 Agricultural
System

2017 Agriculture

Low-Altitude Unmanned
Aerial Vehicles-Based
Internet of Things
Services: Comprehensive
Survey and Future
Perspective [31]

97 IEEE Internet of
Thing Journal

2016 Computer science;
engineering;
telecommunications

A Database For
Integrated Assessment of
European Agricultural
Systems [32]

51 Environmental
Science and
Policy

2009 Environmental sciences
and ecology

Table 14.7 Frequency of titles and keywords

Title Frequency Keywords Frequency

Framework 9 Wind farm 20
Farm 8 Identification 17
Application 7 theft 17
Analysis 6 Cyber attack 11
Wireless sensor network 6 Control system 11
Big data 5 Computer 8
Cyber security 4 Farm location 7
RFID 4 Livestock loss 7

3.7 Keywords Frequency

This part considers the variety of keywords which are used by researchers fre-
quently. This section can help researchers to recognize current and past topic of
research. Table 14.7 shows the list of keywords and titles frequencies. This list
is created of 4298 keywords and 498 titles which were merged from 141 articles
between 2008 and 2018. It is shown that most of titles are related to wireless
systems, security and farm. It means that the majority of researches has used these
keywords. Figure 14.4 provides more information for deep analysis. It shows that the
word map has five clusters which has drawn from content analysis of publications.
Moreover, Table 14.8 is another view of Fig. 14.4.

Figure 14.4 presents that the majority of research related to “IoT” technology
and farming. These are the two main clusters (red and green). The highlighted
of IoT key terms are “smart grid”, “smart city”, “smart farming” and “critical
infrastructure” while “farmer”, “bird”, “livestock”, “disease” are related terms for
agriculture. Moreover, “rfid”, “server” and. “science”, “database” are the terms that
create links between research topics.
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Table 14.8 Keywords clustering

Red Green Purple Yellow Blue

IoT Farmer Protocol Database Threat
Thing Factor Server Access Disruption
Drone Disease Rfid Life Critical infrastructure
Architecture Livestock Cattle rustling Business Cyber security
Cloud Household Property right Large number
Smart grid Respondent Science
Information infrastructure Bird Water
Smart grid Link Traceability
Precision farming Public access

Communal farmer
Nanotechnology

Fig. 14.4 Keywords clusters

4 Conclusion

Huge amounts of data have been produced which brings the concept of big
data which can be structural or nonstructural data. Thus, data management in
the environment which is expanding continuously, creates concerns about data
processing, analysis, privacy and security [33]. Critical infrastructures such as
power grid systems, precision agriculture and healthcare systems are some of the
prominent circumstances that face big data and challenges [34]. In addition, as with
any Internet-based technology, there tangible number of IoT with differences in
the scale of the networks [2]. IoT applications and technologies are vulnerable to
cyber threats from adversary attackers. Smart farming and their systems are not
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exceptions. There was a lot of research in order to provide applications or solutions
for having secure systems in farming.

In this paper, the trends of agriculture and cybersecurity, privacy research is
considered from 2008 to 2018 by bibliometric method. In this study, there were
seven (7) criteria including keywords frequency, impact journals, highly cited
articles, productivity, research areas, authors and institutions. In the past 10 years, it
was shown that the number of publications which are related to agriculture and
security had grown. Moreover, the analysis demonstrated that the trends of the
publications faced a significant increase in the last 2 years along with increasing
the number of citations. Hence, it was mentioned that for having better quality of
research and increasing citations, it is required to have a publication in highly ranked
journals.

In this paper, the publication analysis is done between 2008 and 2018.
First, it presented that Europe based on continents had most publications

followed by North America. Second, it was determined that Engineering domain
had 37.58% of all research areas. Third, the active institutions were identified which
were mostly located in the United States. Forth, according to active authors, data
shown that Lan Li with three publications had the first rank. At last but not least, the
map analysis of keywords demonstrated the trends of research activities which can
be used for future study. In the period, the keywords such as “iot”, “thing”, “smart
farming”, “factor”, “database”, “protocol”, “farmer” used as important terms related
to security in agriculture approach.
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Chapter 15
A Survey on Application of Big Data
in Fin Tech Banking Security and Privacy

Mahdi Amrollahi, Ali Dehghantanha , and Reza M. Parizi

1 Introduction

In 1988, an undergraduate student at Cornell University developed the first computer
worm, causing computers to be infected and temporarily shut down. Although this
was done merely as a breakthrough, it was the beginning of a new era in cyberspace.
Since 2000, more than a million attacks have been reported against government
agencies, private and financial centers [1, 2]. The number of reports is the only
ones officially reported, while many might have never been registered. Every year,
many organizations around the world are targeted by virus attacks to cybercrimes
and commercial fraud. Cybercrimes differ from ordinary crimes. The most typical
kinds of cybercrimes, regarding what has been published by CALUPTIX [3] are
web attacks, malwares and application specific attacks (Fig. 15.1a).

Every day at least one news headlines in the world of malware, viruses, cyber
warfare and espionage information is published. Between them, malware is the
most common cyber attacks in 2016 as shown in Fig. 15.1a [3]. Malware is a
malicious code which is developed to disorder or deny functions, collect confidential
information, enter secret systems and more exploiting behaviors [4]. This sort of
cyber threat is the spotlight in this paper because the most widespread financial
threat since 2015 is FinTech (Financial technology) banking malware (Fig. 15.1b).
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Fig. 15.1 (a) The most common cyber attacks in 2016. (b) The most widespread financial threat
in 2015

There are various kinds of malwares but the most persistents are worms, viruses,
trojans, rootkits, key-loggers and botnets [5, 6]. With the advent of the internet, the
interactions and information exchanges have undergone tremendous changes. The
internet environment is a dynamic and innovative environment, but this environment
can make cyber threats more advanced than cyber defenses. The original design of
the internet has been based on stable communication, not security. This issue has
remained the same and no change has been made. Generally, most internet-based
systems are vulnerable and available defensive methods have lost their functionality
and current cyber security strategies are often inadequate and the gap between
aggressive power and defensive power is on the rise. According to 2019 official
annual cybercrime report by Herjavec Group [7], the cost of cyber attacks for the
global economy is estimated at around $6 trillion annually by 2021 and this explains
why cybercrime is a matter of day because the cost of direct and indirect injuries in
the short and long term is as high as the cost of air and missile attacks. Malware
detection with normal antivirus techniques is very difficult and a smart human
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agent should also be used because in many cases the malware is the result of the
combination of various malware and the complexity [8, 9].

Intelligent big data analytics is a promising technique which is already proved
to be useful for malware detection [10]. In May 2012, Intel’s IT Centre examined
200 IT managers in large companies to find out if/how they are performing big data
analysis. The results show that big data analytic can be used in data security, private
data maintenance technology, data transparency, performance benchmarking, data
and system interoperability [11, 12].

In general, analysis of big data and machine learning approaches are providing
new security techniques for network supervising, security information and event
management (SIEM) and forensics which is highly important for financial industries
to detect fraudulent activities, secure and analyze data. This research discusses about
applying big data analytics methods in an effort to address the mentioned concerns.
The difference between big data and traditional approach to provide new security
technologies for network monitoring is shown in Fig. 15.2.

Big data includes lots of advantages:

1. It provides robust analytics and detailed insights into the problem.
2. It is good at analyzing big datasets. As malware corpus keeps increasing

constantly, big data can adapt well in addressing this issue.
3. Big data can help explore data in real-time and take adequate decisions.
4. Big data improves machine learning models’ prediction.
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One of the dangers and threats of cyber security is spying and informational
listening, in which an unauthorized person can listen to a copy of the data being
streamed between the source and destination. In this regard, economic and banking
issues have always been a priority. Therefore, in this study, malwares which target
financial institute are studied. The basic questions are supposed to be answered
are:

(1) How does malware affect on FinTech system?
(2) How malware steal banking information theft, such as the username and

password?
(3) What are the malware detection techniques?
(4) How to implement the malware on FinTech system?

These issues are almost never explicitly disclosed in public. They are mainly
criminals and hacker’s concerns and in some cases for the governments to destroy,
spy and steal information and money. Obviously, none of these groups are willing
to expose their methods of malice and mistreatment.

The rest of this paper is structured as follows. In Sect. 2 research back-
ground and some related works are reviewed. Threats in Cyber Space (Chal-
lenges/Detection/Organization) is described in Sect. 3. Fin Tech Banking malware
(Attitudes and approaches) and proposed cyber-attack detection with big data
methods are presented in Sect. 4. Section 5 discusses the case studies and some
results followed by the conclusion in Sect. 6.

2 Literature Review and Background

Accessing bank information can be achieved by criminals in a variety of hardware
and software environments. According to statistics released by authoritative sources,
information observation, especially confidential information in the field of finance
and banking, has been paid attention more by cybercriminals in recent years. So far,
several methods have been developed to counteract botnets, which of course, are less
likely to be propagated. The first step in preventing these threats is to discover them.
One of the techniques used in these structures is machine learning and data mining.
Researchers from the security team, RSA, have discovered a new and dangerous
Trojan called Pandemiya, which states that cybercriminals in the underworld are
currently using it as a replacement for earlier versions of Zeus. The Trojan can easily
steal banking information from users and companies. The Trojan has the ability to
secretly steal information from forms and user credentials, which can then create
fake web pages and display victim computer pictures. The source of the Trojan Bank
Zeus has led to development over the last few years in undercover associations.

Malicious malware is more complex than Zeus, such as Ice IX, Citadel and
Game Over. However, Pandemiya is far more complex and dangerous than the
malware, which includes 25,000 lines of code written in C. According to McAfee’s
announcement, Gauss’s major goal is to collect system specifications, network
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Fig. 15.3 The relationship of Duqu, Stuxnet, Flame and Gauss malware

card and BIOS specifications, e-mail licenses, social site licenses, and access
permissions to electronic banking systems. The collection of each of these data is
also responsible for various parts of the Gauss malware. According to McAfee’s
security alert, the malware such as Stuxnet and Flam viruses consists of separate
partitions that work together in an integrated manner, and each liability department
has a special function. Some parts of the Gauss malware that McAfee reviewers have
analyzed include features like adding apps to browsers, infecting USB memory,
and executing Java and ActiveX commands. Based on McAfee’s announcement,
Gauss malware is the ultimate goal of collecting system profiles, network card and
BIOS specifications, e-mail licenses, social site licenses, and access permissions
to electronic banking systems. Each of this information is also collected by Gauss
malware (Fig. 15.3) [13, 14].

Experts from Kaspersky Lab also believe that the main purpose of Gauss malware
is to control bank operations in Middle Eastern banks to collect information from
financial transfers related to some regional political and military groups. According
to Kaspersky, Gauss malware has the ability to identify and control bank accounts
at Bank of Beirut, FBLF, Bloom Bank, Byblos Bank, Fransa Bank and Credit
Lebanais. It has also been observed that operations by users in the Middle East
at the Citibank and PayPal financial sites were also monitored by the malware.
The level of infection with Gauss malware is not clear, but it is not thought to
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be widespread. Some contaminated statistics point to several hundred to several
thousand contaminated systems. Most of these infected systems have been identified
in Lebanon, the Palestinian Authority and Israel.

In 2011 there was lots of research about the malware, Duqu, which allegedly
had a close relationship with the Stuxnet virus. Often, these points refer to the
association of this new virus with the virus, Stuxnet, the likely authors of this virus
and the major centers targeted by this virus. For each Windows user, it is important
to know how the Duqu virus exploited a security vulnerability that was not detected
so that it could infiltrate and infect the victim’s computer. This security hole is in the
TrueType font processing section, which is available in all versions of the Windows
operating system. According to Microsoft, threats and risks of the Duqu virus are
limited.

So more than the Duqu virus, we should be worried about exploiting the
Windows security hole. Although this security hole has not been fixed yet, Microsoft
has provided a temporary solution to prevent access to and abuse of vulnerable
components in the operating system. So maybe it’s not bad, users are advised to use
and install this temporary solution. Most of the content and explanations that have
been published about this security hole also refer to the malicious Word file. But the
important point is that the security crash is in the Windows operating system, and not
in Word. Word software is just one tool to exploit this cache. In the upgraded version,
Microsoft’s announcement states explicitly that using a malicious web page can also
easily be exploited to crash. To get infected with the Duqu, it is just enough to visit
a malicious site that includes TrueType fonts. No email, no Word, nor opening an
attached file is necessary [15].

The Equation group uses malicious software for multiple operating systems,
some of which are known as Regin. The Equation Group is undoubtedly one of
the most experienced and skilled cyber team in the world, and acts in a complex
and completely mysterious way. The tool developed by this group is unique in some
cases and also works well in extraction and theft of information. The malware has
the ability to program hard disk firmware and can make a hidden part of the hard
disk accessible only by the API. Even after the malware has been installed, it’s
impossible to erase it, even formatting the hard disk normally. The malware attacks
hard disks such as Seagate and can change the drivers of Toshiba, Samsung, Hitac
hand Western Digital are known by two different platforms known as Equation
Drug and Gray Fish. The vaguest and important point is whether the hard disk
manufacturer is working with the NSA?

Seagate and Micron acknowledged that they unknowingly provided the source
code for firmware to the NSA and this would require the NSA to change it in case
of a violation. In fact, obtaining the source code for hard disk firmware for the NSA
is very convenient for hiring a software developer or by stealing it from another
method. The malware has the ability to program the firmware of the hard disk, and
is able to build a hidden partition on a hard disk that is accessible only by the API.

Even after the malware has been installed, it’s impossible to erase it, even
formatting the hard disk does not have any effect at all. The malware hides hard disks
such as Seagate Western Digital, Hitachi, Samsung, Toshiba and can change drivers
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and are known by two different platforms called Equationdrug and GrayFish. The
vague and very important point is whether the hard disk manufacturer cooperates
with the NSA. Seagate and Micron acknowledged that they unknowingly provided
NSA with source code for firmware, and this would require the NSA to change it
in case of an offense. In fact, obtaining the hard disk firmware source code for the
NSA is very convenient with hiring a software developer or stealing it from another
method. The Equation group infects its victims by relying on multiple techniques.
These techniques include:

(1) Self replicating Code-Worm
(2) Physical media, CD-ROMs
(3) Uses the USB port − USB sticks + exploits
(4) Web based exploit Internet attacks

Kaspersky is one of the most prestigious companies active in network security
and cyber space since 1997. According to data collected from November 2013 to
October 2014, 12,100 mobile banking Trojans were detected, which is 9 times more
than the Trojans discovered in 2013, and 45,032 users were minted at least once in
the year (Fig. 15.4a) [16].

Internet fraudsters use different software to implement their goals. As seen in Fig.
15.4b, Java platform has the most prominence among internet fraudsters. Although
many attempts have been made to formulate maladaptive math, there is not a
common category that everyone agrees with. Instead of trying to precisely define
the details of these words, the general characteristics of each of the varieties are as
follows. Three features are about types of malware [17–19]:

(1) Malicious malware actively tries to reproduce by creating new or similar copies.
Malware may also be reproduced passively, for example by a user who copies
it incorrectly, but they do not say the same thing.

(2) The growth of the malware population is indicative of a change in the total
number of malware-generated malformations as a result of reproduction. A
malware that does not reproduce is always a population growth of zero, but
malware that has zero population growth may also be as causal.

(3) Parasitic malware needs other executable codes to survive. The word “exe-
cutable” here should be very general, which includes all types of valid code,
such as the block boot code on the hard disk, the binary code of the software
and the interpretative code. It also includes code-like scripting languages as well
as codes that may need to be compiled before running.

3 Threats in Cyber Space
(Challenges/Detection/Organization)

To be protected from all threats in cyber space, we should develop a comprehensive
security program, and to achieve this goal, we should recognize the type of crimes
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and cyber wars and strategies to overcome them. The detection of a spyware
malware with normal antivirus techniques is very difficult, and in this case, a
smart human agent should also be used, because in many cases the malware
is the result of the combination of various malware and the complexity. In this
regard, the spyware malware, anti-virus techniques and its performance in the field
of banking information are being investigated. The financial industry overcomes
difficulties in both to handle cyber-attacks and to provide secure customer protection
against various cybercrimes such as malware attacks, phishing and fraudulent
activities [20]. In these times, organizations are able to use security techniques in
order to protect themselves from cyber-attacks. As an example, Minded Security
has developed a cutting-edge technology called AMT (Agentless anti-Malware
Technology) to detect and manage banking malware. Their program can detect
all the different kinds of banking malware. The software can be developed for a
particular bank to detect malwares precisely [21].
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Fig. 15.5 Detection techniques [22]

3.1 Kałuz̈ny & Olejarka’s Malware Detection
Approach/Proposed Cyber-Attack Detection Method

Jakub Kałuz̈ny and Mateusz Olejarka [22] claim that the best method to prohibit
malwares from obtaining financial information is to detect the web injections. In
addition, special JavaScript codes in the bank’s website can analyze the DOM
(Document Object Model) tree and find patterns from web injection or fingerprints
from gathering clients’ data [22]. Figure 15.5 shows different detection techniques
such as signatures, fingerprints and user behavior based on JavaScript.

To collect the information about malware infection, there is way of mixing three
input data:

• browser fingerprint,
• HTTP response data,
• Browser behavior.

The JavaScript code includes the web injected signature check, which verifies
the function name, JS object’s name and type and the constant strings. Users are
allowed to work only after the code verifies the website for any possible malware.
The second useful way to detect malwares is to utilize browser fingerprints. The
aim is to check the website for setting which is seemed to be suspicious. Moreover,
the user behavior can also be used to detect malicious codes. It can be measured
using measurements such as speed of the mouse movement and speed on tapping
buttons. The result can represent the distinguish between humans and bots. Another
way defined by Jakub Kałuz̈ny and Mateusz Olejarka [22] is designing Ã fraud
detecting system which can use the output of the previous techniques and mix the
results with the data gathered from other banking systems. A disadvantage of this
detection method is that it uses the signature-based detection technique to identify
malwares. In order to act properly, the signature of existing malware should be
available in the system repository. In other words, this technique acts only with
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well-known malware and it fails to identify zero-day attacks [23]. However, lots of
researches have been done in the telecommunication domain and a bit in the banking
area. In addition, the majority of today’s researchers aim at different kinds of
tools or/and programs for detecting malicious software, but there is no information
about their application in financial industries. Most of the researches they were
done in this domain are not in official form of studies, but other than it, they
have been published on websites or blogs (a.k.a. grey literature). Companies and
organizations are under cyber-attacks persistently. Small delinquency can damage
thousands of dollars where majors can cost millions for organizations [24]. Emails
are very important for the businesses as a communication tool [25]. Even though the
application of emails has made the communication faster and more efficient, some
significant threats associated with emails have emerged [26].

3.2 SANS Institute Malware Detection

SANS Institute suggested number of solutions to stop cyber-attacks such as network
supervising and analysis, files analysis, email analysis, URL analysis and data
analysis. Regarding SANS Institute, malicious emails can be detected before
reaching to end user by using email monitoring system. In cases that malicious
emails have reached to the user undetected, the email security system should check
all the links and attachments in a sandbox environment before the final user has
been allowed to open it. The network monitoring is the key due to receive an
instant detection and respond [27, 28]. Different tools can be used for network
traffic monitoring such as IDS/IPS [27]. The functionality is the key differences
between intrusion detection systems (IDS) and intrusion prevention systems (IPS).
IDS creates alerts when an intrusion is found on the network. The main goal of these
kinds of systems is to supervise the traffic, but it cannot ban network attacks [29]. On
the other hand, IPS covers both functions of monitoring and preventing an attack.
These systems can also block the traffic within a network. In most situations, IPS
is used to stop the ongoing attacks. IDS and IPS are good for analyzing data came
from internet and finding issues in the network traffic, but they are not developed to
analyze the emails content when an email is involved in a network as one of the most
important data. Both systems are good to be implemented in financial institutions
as a defense layer, but they are not suitable to identify malwares which have been
received by emails. In order to analyze and protect the content of an email, email
scanning system is needed to run on the email server. The system needs to resolve
the message body, attachments and URLs and considers the address from which the
message has been sent [27]. Barracuda Networks Email Security Technology is one
of the systems existing to check the network security with which companies can
manage all email traffic and protect the company systems from threats. Anti-spam
protection, email analysis, sender profile scanning and real time protection are the
main functions of this system [30]. Infected files are another way for a malware
to enter a network. Thus, developing a file analyzer is essential for the system to
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identify and remove malicious files. As an example, if an unknown file is figured
out, it must be verified in a secure environment. URL and IP address monitoring
is another method to improve security systems. The system should contain a list
of suspicious URLs and IPs. This blacklist needs to be updated consistently. The
blacklist is created by manual reports, web crawlers and website analysis [31].

4 Fin Tech Banking Malware (Attitudes and Approaches)

4.1 Fin Tech Banking Malware

The most dangerous malware in the financial industry are Zbot/Zeus, Zeus
Gameover, SpyEye, Ice IX, Citadel and Botnets [32]. Zeus known as Zbot is a type
of Trojan trying to achieve confidential information with infecting Windows users.
The main goal of this malware is to penetrate the systems and collect passwords,
bank credentials and other financial data. Zeus can be manipulated in order to work
in different systems. To send and receive data over the network, this malware needs
Command and Control servers. However, it was mentioned that this malware tends
to change in order to penetrate different systems. Thus, the latest Zeus includes
domain generation algorithm (DGA) to control the malware weakness which was
mentioned above. This malware is still very active in the banking industry by
affecting thousands of systems and achieving data being worth hundreds of millions
dollars [33]. Banking malwares has the highest rate of threats in financial industries
in 2015.

Zeus Gameover is a kind of Zeus relying on a peer-to-peer botnet infrastructure.
It looks constantly for data on somebody’s computer and when Gameover finds it,
sends it to another peer. The data is transferred to another computer which is also on
the same network that Zeus P2P uses [34]. The goal of Gameover is the same as the
Zeus Malware. SpyEye is also a member of the Zeus family aim to steal money from
bank accounts [35]. This malware includes different components working together.
So, some parts of this bot can be improved to work in proper situations [36].

Ice IX is a Trojan which emerges from Zeus with some improved components
and it has the same goal with Zeus. Another type of the Zeus banking malware is
the Citadel Trojan. Regarding an article written by Jason Milletary, Citadel is used
mainly for stealing information from online banking activities [37].

These are the top widely used malwares in the financial industry used by
cybercriminals to achieve credentials and private information. However, there are
lots of them aiming to penetrate the networks [38].
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4.2 Malware Detection Techniques with Big Data Aspect

A program that aims to detect malicious efforts is called a malware detector that
aims to help protect the system by detecting malware [39]. Of the various diagnostic
methods, one can refer to the following: anomaly-based detection and signature-
based detection. In addition, there is also a specific type of anomaly-based detection
method called profile-based detection [40]. This section de-scribes the various
malware detection techniques mentioned in the literature. As shown in Fig. 15.6,
anomaly-based detection and signature-based detection, and specification-based
detection are a subset of anomaly-based detection.

4.2.1 Anomaly-Based Detection

The behavior of a given network is characterized by detecting anomalies by
separating normal behavior from suspicious [41–44]. The two main parts of this
technique are: training phase and supervision phase. Firstly, the system tries to get
familiar with the normal behavior of the monitored system. Network performance
is determined dependent on predefined conduct, which is a lot of host and/or PARC
UIs (PUIs).

The most important advantage of using indirect methods based on anomalies is
the possibility to use this technique to detect unknown (zero-day) attacks, which are
unfamiliar attacks to detect malware [45]. This is done by evaluating the deviations
between normal and irregular behavior.

Another advantage of this procedure is that regular activity profiles dependent
on a system make it hard for cybercriminals to recognize which safety efforts are
low and can be assaulted without distinguishing them [46]. However, according
to Jyothsna and Prasad research [47], one of the major limitations of anomaly-
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based detection is the process of defining the set of rules and establishing the
system’s acceptable behavior by the administrator. System performance relies upon
the degree of system combination and protocol testing. Moreover, administrator
knowledge assumes a significant role in characterizing appropriate net-work behav-
ior [47]. There is a special type of anomaly-based diagnosis called profile-based
diagnosis that plans to discover regular false alerts that happen in anomaly-based
diagnosis [48].

4.2.2 Signature-Based Detection

Another way to detect malware is signature-based detection. This technique tries to
find a sequence of bits that are inside the malware code [48]. Information on the code
sequence (signature) is stored in a repository called signature-based recognition
knowledge [49]. Signature-based diagnostics, unlike malware-based diagnostics,
cannot detect anonymous attacks (i.e. zero-day attacks) because new malware code
sequences are not available in the database, so signatures only work with well-
defined behavior patterns. And failed to properly handle new malware with modified
behavior characteristics [41, 45]. Another disadvantage of this technique is that
the development of the new signature requires human intervention, as suggested
by Idika and Mathur [23]. Therefore, human errors may occur, which can reduce
the security of a given network and may take developers a long time to sign.
Another way to identify malware is by file size. Using this method, any antivirus
program can easily detect whether a particular file is infected. Some viruses have
their own code at the end of the file [49]. Furthermore, the most significant part of
any antivirus program is the scan engine that that scans the file and measures it prior
and afterward. In the event that the document is bigger than expected, it is probably
going to be infected.

4.3 Spyware

Spyware is software that collects information from a computer and sends it to
someone else. Before emerging as a serious threat in recent years, the word spyware
was first used in 1995 in a post to joke and mock the Microsoft Business Competitive
Model. The exact information that spyware collects may be different, but they can
include anything potentially valuable:

• Usernames and passwords. This information can be obtained from files on the
machine, or by using an event log, by recording the things the user types in. The
incident is different from the Trojan, it only records the keys that are compressed
by the user, without any response to it, and there is no trick.

• Email addresses that are valuable to mail spam senders.
• Bank account numbers and credit card numbers.
• Software activation keys to facilitate illegal duplication.
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Viruses and worms may also collect similar information, but spyware is not
considered because spyware can be transmitted in a different way in a different
way, for example, with software that the user installs, or exploits the technical
and security shortcomings of web browsers. The last method makes it easy for the
spyware to be installed on the user’s computer by opening and viewing an Internet
page.

4.4 Key Logger Structure

The main idea behind the incident is the occurrence of the two connections in
the chain of events. This is when the key is pressed on the keypad and when it
is displayed on the screen. This is done by visual monitoring, a hardware bug on
the keyboard or the computer system itself, replacing the keyboard driver, filtering
the drivers in the keyboard stack, replacing the addresses in the system tables, and
requesting information [50] from the keyboard [51]. Event reports are divided into
hardware and software for development. In the hardware process, a small electronic
piece is installed on the keyboards and is designed and implemented in software
using a series of software applications. The most commonly used methods to build
a software incident are as follows (Fig. 15.8):

• System hook method: When a key is pressed, a system message is sent. This is
done with a Win API system function called Set Windows Hook Ex.

• Query information request from the keyboard: This is done by a WinAPI system
function called Get (Async) Keystate or Get Keyboard State.

• Use Filter Driver

Key logger use rootkits to hide, and rootkits are often of two types: cover in user
mode and kernel coverage [51]. The rate of use of key logger from various routocrats
is shown in Fig. 15.7.

4.5 Core and User Level

Depending on the type of code that is running, the processor decides which mode to
take. In brief, applications and some launches are executed in user mode. Also, the
main operating system parts and most launchers are running in kernel mode. When
an application runs in a user mode, Windows operates a process for it. A process
involves two parts for each program: Private Handle Table, Private Virtual Address
Space. Each program runs in an isolated environment, no program can access and
modify the program’s other program’s space; also, when an application crashes and
continues to work, only the program is affected and other programs are affected. All
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core level programs use a single environment that shares all. Therefore, kernel level
programs can change the amount of virtual memory that is at the disposal of others,
and this change causes the operating system to encounter an error (Fig. 15.8) [52].

4.6 Protection Against Key Logger Attack

Banks must use a trusted device concept to ensure users’ authentication when
logging in. If the user is logged in from an untrusted device, the banking system
must send an SMS alert to confirm that the user has been targeted. User training
is one of the key components to ensuring a secure Internet banking experience.
After successfully logging in, the bank can issue a security alert on its web pages
to alert users to the threats it poses to Internet banking. Banks should use artificial
intelligence or machine-based learning software that can judge user behavior and
transfer large amounts of cash to the destination rather than the user’s monthly
pattern.

This software can be used to detect all electronic transactions including credit
card transaction and will be able to detect if the user has made a purchase not within
the customer’s pattern and will alert and sometimes disable the credit card or Fin
Tech banking account in extreme cases until the customer’s identity is verified. The
machine based learning or artificial intelligence should predict this anomaly and
take appropriate action.

Information security is an important part of the Internet banking process.
Therefore, banks can improve their security features by securing their own servers
and linking between the user and the internet banking server. Figure 15.9 describes
a list of security features that each bank must include to describe the security of user
data and communications [53].
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Most antivirus software detects incident events as potentially malicious or
potential undesirable software and stores them in their database. As the main goal
of incident events is to obtain confidential data as described in Fig. 15.10. They can
be summarized as follows:

• Use one-time password or two-step identification
• Use of active protection systems to detect incident events
• Use virtual keyboard
• Antivirus software updates
• Firmware update
• Failure to grant software user permission to normal users
• Limit the number of system administrators and apply strict policies to protect

passwords
• Lack of trust in files and emails from invalid sources
• Inspection of computer keyboard and suspicious hardware
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4.7 Strategies of FinTech Banking Malware Attack (Spyware
and Hacking Malware)

According to a study conducted on malware released in the past few years, it has
been attempted to provide a comprehensive template for implementing this type
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of malware. A number of commonly used strategies/model for implementing these
malware includes:

• Compress and encrypt information.
• Capture a screen at a specified time and from specified pages.
• Record the values of keys pressed on the keyboard.
• Use multiple servers to keep anonymity.
• Update malware.
• Lack of recognition by antivirus and antispyware software.
• Capture Visual Keyboard.
• Work with low bandwidth.
• Use Google Drive, Dropbox to dump the server.
• Logging of running processes.
• Create Shell access at certain times.
• Use backup programs to prevent Process Kill.
• Send all files such as photos and databases and compressed.
• Hide the Process name in the Task manager.
• Delete files in the registry.
• Create an infected file using non-infected files such as .jpg
• Disabling anti-viruses.
• Residing in inaccessible memory.
• Intelligent publishing and propagation process.
• Formation of Agent networks.
• Failure to identify the central server.
• Ability to fake as genuine services like Windows Services.
• Run on non-Windows operating systems.

Table 15.1 summarizes the response of some FinTech banking malwares to these
attacks.

The results show comparative study of the proposed FinTech banking malwares
attack and the effect of these attackers on server and settings of banking systems.

The results demonstrated that the all malwares mentioned in Table1 can be
affected on FinTech banking systems through: command to run the server and
settings, logging of running processes, ability to encrypt logs, ability to compress
logs, lack of recognition by antivirus, ability to use multiple servers to keep
anonymity and hide the process name in the Task manager. But some of them are
resistant to these attackers technique such as “Use registry to destroy” for Flame
malware.
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Table 15.1 Compare the response of some FinTech banking malwares to some attacks model

Zbot Stuxnet Duqu Flame Guass Equation Regin

Command to run the server and settings Ya Y Y Y Y Y Y
Logging of running processes Y Y Y Y Y Y Y
Ability to encrypt logs Y Y Y Y Y Y Y
Ability to compress logs Y Y Y Y Y Y Y
Infect shortcuts for user to run Y Y Na Y N N N
Take a screenshot and record the key
pressed

Y N Y Y Y N Y

Hide the process name in the task
manager

Y Y Y Y Y Y Y

Use registry to destroy Y Y Y N Y Y Y
Ability to use multiple servers to keep
anonymity

Y Y Y Y Y Y Y

Lack of recognition by antivirus Y Y Y Y Y Y Y
Clever releases Y Y Y Y Y Y Y
Digital certificate abducting Y Y Y Y N N N

aY = Yes (it means responding (yes or no) of some Fin Tech banking malwares to some common
attacks technique), and N = No

5 Case Study: Implement a Fin Tech Malware Model
with Key Logger

Given the subject matter, it was necessary to implement malware similar to Zeus
with the purpose of collecting confidential bank information. Therefore, a sample
of spyware was designed and implemented. The purpose of producing this malware
is to collect information from bank cards of the network of accelerated networks.
This information is collected when the victim is entering his card information in
an online payment system (such as buying a cell phone charge, paying a bill online,
etc.), and after the payment, this information is sent to the attacker’s host. Currently,
the malware can only work when the victim is paying by using the Google Chrome
browser.

The capabilities of this spyware include:

• Ability to compress and encrypt information.
• Ability to capture a screen at a specified time and from specified pages.
• Ability to record the values of keys pressed on the keyboard.
• Ability to use multiple servers to keep anonymity.
• Ability to update malware.
• Lack of recognition by antivirus and antispyware software.
• Ability to capture Visual Keyboard.
• Ability to work with low bandwidth.

After spyware runs on a victim machine, it starts its activity. The software will
search for specific processes at chrome.exe at specified intervals. If this particular
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sheet is not found, the software continues to search for its period. But if you find
the page you are interested in, it will collect the mouse and keyboard input knobs
to get started. This will cause spyware to be transferred to spyware, as long as the
desired sheet is active in the chrome.exe process, the values of the keys pressed on
the keyboard, as well as the location of mouse clicks on the screen, are transmitted
to the spyware in accordance with the messaging system on the Windows operating
system. Since, information may be entered both from the physical keyboard and
the virtual keyboard, the values entered by the keyboard are stored in a memory in a
straightforward manner and the input values by mouse, in terms of the position of the
cursor, as an image in size 60 × 60 pixels are stored on the memory. Usually, most
users enter a 16-digit card number and expiration date of the card via the keyboard
and the Internet code and CVV2 code via virtual keyboards. After paying out and
leaving the Internet payment page, a string is generated from the values of the keys
pressed from the keyboard in a file and in the direction where the screenshots have
been saved. At this point, the collected data are sent to the attacker’s host. Because
of the low bandwidth usage and the lack of user access or network administrators
(in the case of data observation) of the sent information, the data should first be
stored in a packet, and then, using a compression method, the volume of the sent
data are reduced. The method used to package data is an innovative method. In
this way, binary saved data are stored in a new file. To avoid interference with
different file information, a separator is used to separate the content of different files.
In the next step, since the malware process is a client-server, a re-attack should be
prevented on the server. For this reason, the prepared package overview is computed
with the SHA-1 abstract method and re-integrates the result into the package. After
receiving this packet, the server discards the abstract sent from the packet. Then
separately calculates the package abstract with the SHA-1 method and compares
with the received abstract. If both abstracts are the same, user can be sure that the
data received along the path is unchanged. Also, by storing the abstract of each
packet in the database, it is possible to accept packets received in the presence
of abstracts in the database, and thus prevent a repeat attack. The compression
method used to compress a packet is the Gzip method. The choice of this method
is due to the proper function of the algorithm, as well as the low compression time
and, therefore, the lack of user attention in the case of CPU usage observation.
Also, to prevent disclosure of information, encryption should be performed on the
compressed package. Using the AES encryption algorithm, we encrypt the file
information. An important point at this point is the key exchange between the
malware and the host, which should both use the same key for encryption and
decryption. To use a single password key, we use a single-time password method.
Malware, based on the current time on a global scale and the application of a fixed
algorithm on it, obtains the key to the encrypted data. On the other hand, on the host
side, the same algorithm is performed according to the current time, and as a result,
the unit key is redefined. Given the number of servers provided to receive data from
malware, data is sent to a server. On the server side, decryption, incompatibility
and closing tasks are performed, and the files obtained are stored in a single path
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Collecting Data Data Packet Abstract

Data Coding Data Encryption Data Compression

Sending Data

Fig. 15.11 Proposed malware model for operating on Fin Tech system with key logger

for each packet, and the attacker can reach their goal by analyzing and verifying.
The malware producer method to operate on Fin Tech system is summarized in
Fig. 15.11.

6 Conclusion

Currently, many countries have launched aggressive cyber-attacks under the name
of spying. Such operations are not limited to governments. Individuals, groups and
organizations can do this. All manufacturing and information services are now
exclusively integrated into the Internet. This trend began in the 1990s with a shift
in the focus of mass communication to the Internet and the growing demands in
the area of production, distribution, communications and financial issues. Such a
heavy reliance on the Internet has further exacerbated the potential damage caused
by cybercrime attacks. Smart hackers disrupt vital websites to steal personal and
confidential personal information from individuals and institutions. The most severe
of these attacks occurs when hackers invade financially and military institutions that
have been recently activated. Informational listening and observing is done in a
variety of software and hardware.

In this study, Fin Tech banking malware is considered and the different methods
of their detection were investigated. The malware is designed with the goal of
collecting bank information in a native form, where bank card details of the network
member will be accelerated and will be sent to the attackers after processing for
specified purposes. The most important indicators of this malware include the ability
to encrypt and compress information, as well as the lack of recognition by antivirus.
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In case study section, by reviewing and evaluating the behavior of malware in this
field, a malware model for implementation on Fin Tech system was purposed. Apart
from the specific objectives targeted by attackers with the support of specific groups,
the main target of the attackers is economic goals, and among them, the banks are
the right target for them. In this regard, native malware have been designed and
implemented to obtain victims’ bank information. After installing the malware on
the victim machine, the malware scans the browsers loaded pages and begins to
collect information about bank cards after finding online electronic payment pages.
This information will be sent to the attacker’s servers after the victim’s work is
completed after various processing operations, such as encryption and compression
of the information.
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Chapter 16
A Hybrid Deep Generative Local Metric
Learning Method for Intrusion Detection

Mahdis Saharkhizan, Amin Azmoodeh, Hamed HaddadPajouh,
Ali Dehghantanha , Reza M. Parizi, and Gautam Srivastava

1 Introduction

In recent times, the fast growing pace of industrialization and information technol-
ogy has tightly connected the prevalence of using computerized system. Enormous
amounts of data are being generated and communicated over computer networks
that has turned these networks as an absorbing target for cyber-criminals [3, 8, 11].
In recent decades, the industrial revolution using information technology has pen-
etrated into all aspects of our modern life ranging from agriculture, manufacturing
to healthcare and urbanization [1, 7, 15, 23, 37]. The stream of data communication
over networks is increasing and being targeting by attackers continuously [39]. On
the other hand, Machine Learning based systems are increasingly being employed
to enhance the accuracy and robustness of security mechanisms to cope with such
cyber attacks [9, 20–22, 28, 40].

In order to secure and protect networks and infrastructure, Intrusion Detection
Systems (IDSs) must be deployed as an critical module in the networks [13, 24, 29,
30, 45]. IDS system provide a safeguard for both inside and outside intrusion attacks
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and are generally categorized into two taxonomies: signature-based and anomaly-
based detection [14, 17].

Signature-based IDSs utilize patterns of previously identified malicious activities
as signatures to recognize intrusions and Anomaly-based IDSs endeavor to detect
deviations from normal patterns to hunt intrusions [6]. While signature-based IDSs
are more accurate to detect previously known attacks, they operate ineffectively
against unknown or polymorphic attacks [32].

In this chapter, we propose a hybrid machine learning approach to maximize
detection rate for User to Root (U2R) and Root to Local (R2L) which are minor
but more harmful attacks within NSL-KDD dataset which is a refined version of its
predecessor the KDD’99 dataset [42]. The dataset includes 22 different categories
of attacks that can be classified into four major classes as seen in Table 16.1.

In the first stage, the proposed method employs Deep Autoencoders [4] to cluster
attacks and then it leverages Generative Local Metric Learning (GLML) to learn
distance metrics within each cluster and mitigate the effect of overlapped and minor
class on mis-classification.

Typically, the following criteria are used to evaluate the utility of machine
learning aided techniques in intrusion detection:

• True Positive (TP): indicates that a intrusion is correctly identified.
• True Negative (TN): indicates that a benign is detected as a non-malicious

activity correctly.
• False Positive (FP): indicates that a benign is falsely detected as a malicious

activity.
• False Negative (FN): indicates that an intrusion is not detected and labeled as a

non-malicious activity.

Table 16.1 NSL-KDD
attacks

Attack class Attack type

Probe Satan, Ipsweep, Nmap,

Portsweep, Mscan, Saint

DoS Back, Land, Neptune,

Pod, Smurf, Teardrop,

Apache2, Udpstorm,

Processtable, Worm

U2R Buffer-overflow,

Loadmodule, Rootkit,

Perl, Sqlattack, Xterm, Ps

R2L Guess-Password,

Ftp-write, Imap, Phf,

Multihop, Warezmaster,

Warezclient, Spy, Xlock,

Xsnoop, Snmpguess,

Snmpgetattack, Httptunnel,

Sendmail, Named
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Based on the criteria described above, the following metrics will be introduced to
quantify a given system:

Accuracy indicates the number of samples that a classifier correctly detects,
divided by the number of all samples:

Accuracy = T P + T N

T P + T N + FP + FN
(16.1)

Precision is another metric that indicates the ratio of predicted intrusion samples
that are correctly predicted:

Precision = T P

T P + FP
(16.2)

Recall indicates the ratio of intrusion samples that are correctly predicted:

Recall = T P + T N

T P + FN
(16.3)

F-Measure is the harmonic mean of prediction and recall, and defined as follows:

F − Measure = 2 ∗ T P

2 ∗ T P + FP + FN
(16.4)

The rest of the chapter is organized as follows. In Sect. 2 we briefly review the
related literature. Next, Sect. 3 presents our proposed method and Sect. 4 describes
our dataset and the approach we prepare it for the learning task. We follow this
with its evaluation in Sect. 5. Section 6 concludes this chapter and suggests a future
research agenda.

2 Related Work

The importance of industrial networks and protecting them against harmful cyber-
attacks has motivated researches to propose new approaches in this area. In order
to protect ICS against advanced persistent group attacks, Grooby et al. [19] deeply
analyzed some campaign attacks targeting industrial networks and proposed a triage
defensive process based on Diamond model to protect ICSs. Zhang et al. [49]
proposed a multi-layer, defense-in-depth based IDS system for robustly detecting
intrusions in industrial control system (ICS). They employed an auto-associative
kernel regression to strengthen early attack detection and used k-Nearest Neighbor,
Decision Tree, Random Forest and Bagging Tree as base models and an optimizer to
alongside an optimizer to build a multi-layer detection system. In a similar approach,
Daryabar et al. [11] analyzed risks and vulnerabilities of Supervisory Control
And Data Acquisition (SCADA) systems and presented strategies to improve the
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SCADA security systems. Modiri et al. [12] applied fuzzy pattern tree on several
datasets of malware and benign and obtained the average accuracy of 95.74%.

During the past decade, proposing novel and modified approaches to empower
intrusion detection mechanisms has been an active area of research. Haddadpajouh
et al. [34] proposed a two-tier classification models based on machine learning
approaches namely Naïve Bayes, certainty factor voting version of KNN classifiers
and also Linear Discriminant Analysis for dimension reduction and intrusion
classification. Their method obtained detection rate of 67.16 and 34.18% for
U2R and R2l attacks respectively. Using Fuzzy Rough Sets, Selvakumar [39]
proposed a feature selection algorithm for intrusion detection system in Wireless
Sensor Networks (WSN). The model is based on the fuzzy rough set-based nearest
neighborhood classification (FRNN) model for training the classifier and robustly
works with biased intrusion dataset and achived detection rate of 99.87% on their
dataset.

Panda et al. [35] proposed a hybrid approach for detecting network intrusions
using a combination of decision trees as classifiers and Principal Component Anal-
ysis for dimensionally reduction. They applied two-class classification approaches
and achieved a low false alarm rate of 0.1%. In another recent project, Salo et al. [38]
proposed a hybrid dimensional reduction algorithm that overcomes high-dimension
data for anomaly-based intrusion detection. Their model includes information gain
and principal component analysis with an ensemble classifier based on a support
vector machine, Instance-based learning algorithms and multi layer perceptron.
They obtained acceptable results for normal/attack detection scenarios on the
majority of datasets. In another work, Haddadpajouh et al. [33] proposed a two-
tier classification algorithm for anomaly-based intrusion detection for Internet of
Things(IoT) backbone networks. The algorithm includes a dimension reduction
component and two-tier classification module to recognize malicious activities
belonging to User to Root (U2R) and Remote to Local (R2L) attacks and obtained
accuracy of 70.15% for U2R and 42% for R2L class respectively.

Nowadays, machine learning has demonstrated its capabilities to combat chal-
lenging cybersecurity problems and to provide robust and accurate solutions for IT
and OT networks [16, 25, 36, 40]. Azmoodeh et al. [2] proposed a novel approach
to identify crypto-ransomeware in IoT nodes using energy consumption information
of the node and achieved accuracy of 94.27% by applying a grinding mechanism on
power signals and using KNN as classification. Darabian et al. [10] has presented a
method using maximal frequent patterns to differentiate malware and benign IoT
applications and achieved accuracy rate of 99% in the detection of unseen IoT
malware. Complexity of overlapped data of network intrusions necessitates robust
and modern techniques to deal with the complexity.

Deep Learning [27] methods have rapidly become a methodology of choice for
analyzing wide range of cybersecurity problems [44]. Autoencoders (AE) [18] is
a category of deep learners that can efficiently operate in unsupervised learning.
Autoencoders learn a representation of data and encode higher dimensions of data
to a compressed lower dimension code in the output layer. AEs have been widely
used to overcome the curse of dimensionality [27] as well as unsupervised learning
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[4]. Yousefi-Azar et al. [47] proposed a novel feature learning algorithm using AE
to learn latent representation of cybersecurity datasets to maximize discrimination
of classes in the new space and obtained accuracy of 95.7% for Microsoft Malware
Classification dataset.

Performance of machine learning methods relies on distance metrics that they are
using. Metric Learning is the task of discovering an alternative distance metric for
the input space of data somehow the learned metric preserves the distance relation
among the training data [31, 46]. Kong and Yang [26] proposed a framework that
extracts function call graphs of malware and learns discriminant malware distance
metrics and maximizes the margin between classes to increase the performance
of classification. They achieved an accuracy rate of 86.67% Hupigon and 93.3%
for benign class. In other security related research, Tao et al. [41] proposed
regularized smoothing KISS metric learning method by integrating smoothing and
regularization techniques to increase the performance of person identification and
obtained matching rate 96%.

3 Proposed Method

The proposed method is a hybrid approach that in the first stage pre-processes data
and then leverages AE to encode data into a more separable latent space. Next, the
approach utilizes k-means to cluster data into a subset of data and then finds local
metrics of each cluster. Figures 16.1 and 16.2 illustrate training and test phase of the
proposed method respectively.

Fig. 16.1 Flowchart of training phase of the proposed method

Fig. 16.2 Flowchart of test phase of the proposed method
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Fig. 16.3 NSL-KDD’s class distribution

3.1 Autoencoders

Autoencoders (AEs) form a major category of unsupervised neural networks. An
AE network accepts a tensor and tries to transmute it to another tensor of latent
space [5]. In other words, AE are able to automatically learning a reasonable notion
of semantic similarity among input features (Fig. 16.3).

The process of AE training consists of two parts namely encoders and decoders.
An encoder is used for mapping the input data into hidden representation. A decoder
is used for reconstructing input data from the hidden representation [31]. The hidden
layer contains important information about original feature space in order to realize
unsupervised feature extraction [43], Fig. 16.4 illustrates structure and data flow of a
typical AE and Fig. 16.3 plots the dataset into a two-dimensional space to illustrate
its complicated and overlapped data distribution.

In this case, we utilized AE with a ReLU activation function to learn the
whole structure of dataset with no need of using explicit labels to reconstructing
them. Indeed, reconstructing data can be helpful to avoid memorizing data and
the consequent overfitting and underfitting in the result. In this chapter it is of
crucial importance that AE learns the generality of dataset. In other words, it is not
necessary to reduce the dimension of dataset and as a result, the quality of learning
becomes better.

3.2 K-Means Clustering

A wide variety of machine learning based intrusion detection methods integrate
both supervised and unsupervised learning to enhance detection performance.
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Fig. 16.4 Autoencoder structure

K-means is a popular unsupervised component in intrusion detection. While the
majority of intrusion attack data includes complex and overlapped data distribution,
a clustering component assists the proposed method to divide data into subsets that
approximately include uncomplicated data distribution to learn. The general setting
for the clustering algorithm is as follows:

• Accepts transmuted dataset from AE component.
• Partitions objects into k non-empty subsets.
• Identifies the cluster centroids (mean point) of the current partition.
• Assigns each point to a specific cluster.
• Computes the distances from each point and allot points to the cluster where the

distance from the centroid is minimum.

3.3 Generative Local Metric Learning

In this study, the bias problem arising from overlapped attack distribution that
causes misclassifying harmful attack scenario such as U2R and R2L has been the
focus. From the empirical experience, Noh et al. [31] demonstrated that learning
local metric by GLML enhances the discrimination ability of a nearest neighbour
classifier on various datasets. Algorithm 1 describe GLML approach.

One of the main reasons that GLML is selected to apply on NSS-KDD is that
it has demonstrated its performance to deal with high dimensional space. Indeed,
complex distribution of attacks and imbalanced dataset as seen in Fig. 16.3 intensify
hardship to learn from intrusion attack information.
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Algorithm 1: Generative local metric learning for nearest neighbor classifica-
tion

Input: data D = xi , yi |Ni=1 and a point x in
Output: Predicted Attack Label yb(x) out
1: Estimate mean vector μc and covariance matrix

∑
c of each class c = {1, . . . , C} from D.

2: Use the estimated parameters μc,
∑

c and obtain B matrix at the point x while
B = ∑c

i=1 HPi
(
∑

i �=j P 2
j − ∑

i �=j Pj ). and H is Hessian Matrix
3: Use the eigenvectors and the eigenvalues of B and obtain the metric matrix A in

Aopt = β[U+U−]
(

d+Λ+ 0
0 −d−Λ−

)

[U+U−]T .

4: Use metric A, perform the nearest neighbor classification, and obtain yb(x) with the new
distance.

5: return yb(x)

Equation 16.5 is defined as the Mahalanobis distance between two samples
x1 and x2 with a positive definite square matrix A ∈ RD×D where D is the
dimensionality of data space.

d(x1, x2) =
√

(x1 − x2)T A(x1 − x2) (16.5)

Furthermore, The Hessian of the Gaussian density function is presented by
Eq. 16.6.

HPc(X) = [
−1∑

c

(x − μc)(x − μc)
T

−1∑

c

−
−1∑

c

] (16.6)

This expression (Eq. 16.6) is used with estimated parameters to learn the local
metric at each point x.

4 Dataset

NSL-KDD is a recognized dataset for intrusion detection which is the latter version
of KDD99 dataset including 41 attributes (see Table 16.2) [33]. Table 16.3 gives
information about distribution of samples over classes. In this research, GLML is
trained with both training sets (KDDTrain+) and then evaluated using the test set
(KDDTest+).
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Table 16.2 NSL-KDD
features

Type Features

Nominal Protocol-type(2), Service(3), Flag(4)

Binary Land(7), logged-in(12), root-shell(14),

su-attempted(15), is-host-login(21),

is-guest-login(22)

Numeric Duration(1), src-bytes(5),

dst-bytes(6), wrong-fragment(8),

urgent(9), hot(10),

num-failed-logins(11),

num-compromised(13),

num-root(16),

num-file-creations(17),

num-shells(18),

num-access-files(19),

num-outbound-cmds(20), count(23),

srv-count(24), serror-rate(25),

srv-serror-rate(26), rerror-rate(27),

srv-rerror-rate(28), same-srv-rate(29),

diff-srv-rate(30),

srv-diff-host-rate(31),

dst-host-count(32),

dst-host-srv-count(33),

dst-host-same-srv-rate(34),

dst-host-diff-srv-rate(35),

dst-host-same-src-port-rate(36),

dst-host-srv-diff-host-rate(37),

dst-host-serror-rate(38),

dst-host-srv-serror-rate(39),

dst-host-rerror-rate(40),

dst-host-srv-rerror-rate(41)

Table 16.3 NSL-KDD
number of sample for each
attack category

Training dataset Testing dataset

Class Sample Class Sample

Normal 67,343 Normal 9711

DoS 45,927 DoS 7460

Probe 11,656 Probe 2421

U2R 995 U2R 2885

R2L 52 R2L 67

Total 125,973 Total 22,544
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4.1 Nominal Attributes

According to Table 16.2, the dataset contains non-numerical attributes. Generally,
the vale of these attributes are replaced with a number that represents
the attribute value so as to distance calculation. For instance, dictionary
′tcp′ : 0, ‘udp′ : 1, ‘icmp′ : 2 is used to replace protocol-type categorical value
with numerical values in order to calculate distance. However, for a categorical
attributes that includes m distinct items, 0 ≤ distance(valuex, valuey) ≤
m while it is not meaningful and all value should have equal distance
to each other. Therefore, we have designed a transformation function that
converts a feature with m distinct value to an m-dimensional feature somehow
∀ valuex and valuey distance(valuex, valuey) = 1 as in Eq. 16.7.

f eaturex ⇒ ̂f eaturex (16.7)

while size( ̂f eaturex) = |distinct value off eaturex | (16.8)

and ̂f eaturexi
= 1 when f eaturex = i (16.9)

5 Experiments

The proposed method has been evaluated using the aforementioned dataset. While
the dataset includes different sample sets for training and testing, we have trained
dataset with KDDT arin+ set and assessed the proposed method performance by
KDDT est+ on a Microsoft Windows 10 workstation with i7 Core CPU and 8GB
of memory. All scripts were developed by Python (version 3.6).

Table 16.4 compares the performance of rival methods in terms of detection
rate. As can be seen from the Table 16.4, the proposed method outperforms other
approaches and obtained a detection rate of 77.61% and 46.92% for U2R and R2L
attacks respectively (Table 16.5).

Table 16.4 Detection rate(Recall) performance comparison

Method Normal Probe DoS U2R R2L

SVM with BIRCH [42] 99.3 99.5 97.5 28.8 19.7

Association rule IDS [45] 99.5 96.8 74.9 0.79 0.38

Two-tier [33] 94.56 79.76 84.68 67.16 34.81

TDTC[33] 94.43 87.32 88.2 70.15 42

GLML 86.09 67.96 50.19 64.18 44.12

Proposed method 88.94 65.05 73.03 77.61 46.92

Best (optimal) values are highlighted in bold
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Table 16.5 Performance improvement comparison

Class Accuracy Precision Recall F-measure False alarm rate

GLML

Normal 86 86.4 86.09 89.25 14.7

DoS 84 88.2 67.96 76.76 26.3

Probe 84 41 50.19 45.13 10.58

U2R 92 3 64.18 5.73 7

R2L 88 67.14 44.12 53.24 4

Proposed method

Normal 76.5 68 88.94 77 33

DoS 83.54 88 65.05 74 5

Probe 92.65 72 73.03 72 4

U2R 97.33 10 77.61 17 2.5

R2L 90.19 87 46.92 58 1.1

Table 16.6 Overall detection rate

Method Detection rate

Nave Bayes 72

KNN 77.79

TDTC 84.86

Two-tier 81.97

Feature selection with SVM IDS [48] 82

GLML 71

Proposed method 81

Although the proposed approach has been designed so as to enhance the detection
rate over harmful attacks which belong to minor classes, overall detection rate of the
proposed method was evaluated. Table 16.6 describes detection rate of the compared
method when they are trained by KDDTrain+ set and were tested by the KDDTest+
set. TDTC [33] obtained detection rate of 84.86%. However, the proposed method
achieved 81% of recall which is approximately a close performance to the best
value.

In order to evaluate the improvements of the proposed method compared with the
GLML method, all performance metrics were examined for both method. Table 16.5
gives detailed information about performance of GLML and the proposed method.
As can be seen from the Table 16.5, the proposed method outperforms GLML for
all evaluation metric of R2L and U2R class that demonstrates its improvement.
In addition, overall performance of the proposed method for all attack categories
indicates overall improvement.
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6 Conclusion

Rapid evolution of computerized networks has revealed several attack vectors
for cyber-criminals. In addition, the importance of performing functionality and
information stored and transfers over the networks encourage hackers to bypass
security mechanisms to gain access to the network and its information. Intrusion
detection systems are actively involved in attack scenarios and a robust IDS can
significantly improve the defensive capability of network. While there have been
several proposed approaches for boosting IDS functionality, there are dangerous
attack scenarios that can be undetected while attribute and frequency of these attacks
are difficult to learn from attack datasets. In this chapter, we have proposed a
hybrid model that during different steps endeavour to maximize the discrimination
of attack data and correctly classify them. Autoencoder transfer dataset into a
more separable latent space and k-means clusters data to divide a complex data
distribution into some simpler sets. Then, GLML has been utilized to learn distance
metric within each cluster. Experiments demonstrate the usefulness and superiority
of the proposed method for R2L ad U2R attack detection. The recommended
future work includes integrating the proposed method and potential methods into
a decision making system to leverage their outputs and develop a system that
accurately detect all attacks.
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Chapter 17
Malware Elimination Impact on Dynamic
Analysis: An Experimental Machine
Learning Approach

Mohammad Nassiri, Hamed HaddadPajouh, Ali Dehghantanha ,
Hadis Karimipour, Reza M. Parizi, and Gautam Srivastava

1 Introduction

Malware includes any malicious software that enters a computer system with
intentions of sabotage. According to the annual report by Ponemon Institute, 11.7
million dollars spent on cybersecurity in 2018 [19]. Daily increasing expansion of
malware is indicative of the idea that the developers are highly interested in gaining
profits through them. The emergence of digital currency has caused issues in legally
ramifications for cyber-criminals [3]. Computer system misuses have reached their
highest peak [8]. Against such threats, the techniques of malware analysis has also
been advanced [17], and we are now bearing witness to the development of new
methods of malware identification. Malware analysis is divided into two groups,
named as static and dynamic [10, 12]. Static analysis recognizes the malicious
behaviour of software with no need to actually run it. There are many constraints in
this method of analysis, including the obfuscation technique and encoding methods
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[15]. As a result, dynamic analysis entered the field to reduce the limitations of static
analysis. An executable sample of malware runs in this method, and its behaviour is
observed as it runs [22].

The main problem in dynamic analysis is the omission of many of the samples
from the dataset. This is due to improper running and crashing of logs files. By
running improperly, the cause of corruption by malware in the virtual machine
and the subsequent improper forwarding of the log files to the server is the result.
Additionally, a log file may be useless if not satisfying the executable sample in
the Sandbox environments (Virtual Machine). Such malware usually serves specific
purposes, and written for a system featuring specific characteristics or making use of
protectors preventing their execution in the virtual machine or under the supervision
of an observer. Due to the same reason, researchers clear any logs sized below 70
Kb [20] or files where the logs below are 10 APIs record [1]. The other cases cause
the results to be optimum only under experimental conditions, and improper results
would be obtained in case of entering the samples that are either part of or similar
to the eliminated samples.

In this chapter, the static and dynamic analysis methods are combined to present
an appropriate hybrid solution. Outstanding results were obtained with no deletion
of samples from the dataset, even ones having used the packing method. For
reaching the desirable result, conducting of dynamic analysis on software, and also
not eliminating samples even if problems occur. In contrast, static analysis is carried
out on the experimented sample as a substitution and a preliminary detection only
serves as a preliminary prevention.

1.1 Static Analysis

In the static analysis method, the experimented sample is not executed, which causes
the offering of numerous methods for bypassing it. One such solution widely applied
in static analysis is the use of Optional Headers in the Portable Executable (PE)
structure and then supervising the Import Table section [13, 16]. PE is a structure
that every file that runs on the Microsoft Windows operating system has to follow. In
the Import Table section in PE structure, the entire API is required by the program to
be used so that the PE can adequately execute. As a result, it is clear that techniques
such as dynamic API calling or unnecessary APIs, used only for misleading, can
be applied to bypass the method. After extracting the name of APIs from the
Import Table portion, a list names is created and used in the data mining process.
Figure 17.1 illustrates an example of the Import Table and its functions that pertain
to malware.
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Fig. 17.1 Functions of Import Table of a malware’s PE

1.2 Dynamic Analysis

A method that is complementary to static analysis is called dynamic analysis. In
this approach, the examined sample executes, and its behaviour is investigated and
recorded during execution. The entire APIs recalling cases, input arguments, and
functions’ outputs as well as all the registry values are recorded and stored in log
files. These log files, which usually have XML format, are transferred to the next
stage and processed. Next, they are ready to be applied in a data mining phase.

2 Related Work

To perform a study of the works done in this regard, Sami et al. [21] offered a
static analysis to discover malware. In their study, the required properties were
preliminary extracted from PE following which the Fisher algorithm was applied
to score the properties so that those repeatedly utilized in data mining could be
determined and used. The selection matrix obtained from this part transferred as
an input to the data mining algorithm. In the data mining phase, they made use of
WEKA software [25], which is an open-source software frequently employed by
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many researchers. The majority of the data mining and classification algorithms
are implemented in this tool which makes is very useful. Their proposed method
showed an accuracy rate of 98.3%.

Based on static analysis, Belaoued et al. [4] dealt with the statistical study of
the APIs used in the majority of malware. They, as well, extracted their required
properties from PE in a static manner and then selected the frequently repeated one
among them. To determine whether an API was used in the malware or not, they
utilized the Chi-Square test. This also assisted in learning if it has a positive effect
on data mining. The results obtained in their study indicated that the malware mostly
applies the functions used for the creation of new processes, replications, reading,
and writing in memory. They extracted from the system functions obtained for the
malicious and benign files over 60 cases with the highest frequency in each group.
In the end, the experiments and Chi-Square test provided for the extraction of 22 of
the most important APIs recalled by the malware. The selected functions are from
three libraries, named Advapi32.dll, Kerel32.dll and User32.dll.

In [5], we see the use of static analysis to perform Multiple Comparison Analysis
(MCA) for the detection of APIs used in each specific group of malware. 12 special
groups of malware were applied in the study, and each contained 10 PE files. In
total, 120 PE files were analyzed for malware and 90 other PE files were taken into
account for the benign files. The APIs used in PE files were extracted using static
analysis, and 30% of the APIs with the highest iteration applied in the end. After the
creation of the MCA matrix, it is fed into statistical software. Moreover, the output
of the software determines the classification of the malware groups in the end. Also,
Manhattan distance was used to perform APIs assignment to each of the groups.
Once the distance between an API and the defined threshold, the API is assigned to
the group. This research was a supplement to their prior studies in [4] and the APIs
extracted from it classified in the malware groups.

There are numerous studies undertaken in dynamic analysis. Ding et al. [9]
employed Object-Oriented Association Mining and focused on the cost and time
reduction for experimenting and classifying the malware groups. The main problem
of these methods arises when the number of association rules becomes too many
with the reduction of minimum support following which a considerable time has to
be spent on malware analysis. The objective of their work is increasing OOA speed
with an emphasis on the following two principles:

• Increasing the quality of the association rules
• Increasing the accuracy of classification in OOA

First, useless APIs are eliminated. This causes an increase in quality and speed.
Consequently, API datasets incorporate APIs used in the sample dataset sample
formed otherwise the intended API is eliminated. As for the benign cases, as well,
the APIs list is extracted only employing the static method. The dataset used in their
study gave 6181 APIs out of which 1000 frequently applied functions were selected,
and the information gain algorithm was subsequently utilized to select the functions
with the highest rate of turbulence. In their method, a min_obj_support value makes
it clear whether the function used both in the malicious and benign software should
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be retained or deleted from the dataset. In summary, their method is twice as fast
and provides an accuracy rate of 91.2% as compared to basic OOA.

Yang et al. [18] first extracted APIs list using dynamic analysis. The sample anal-
ysis reports have been excerpted from Cuckoo sandbox, usually used for dynamic
analysis. This data is transformed into a data sequence to be input into Malheur
Software for clustering and undergo classification. Also, BBIS was employed
to analyze the reports and make preparations for clustering. They achieved an
accuracy equal to 90.9% through accelerating the clustering and reducing the
volume consumed by the reports.

Cho et al. [7] applied multiple sequence alignment to detect malware. The
Cuckoo sandbox was utilized to extract the APIs. To be able to make use of the
MSA method, the entire API tails should have a fixed length. Similarly, they have
to be uniquely encoded. In their paper, 13 types of classification are applied in
consideration for APIs. Each API is shown in a three-letter designation. The first
letter is indicative of API classification and the rest are the indices used to set where
the API belongs. For example, CAA is reflective of API’s belonging to Process set.
MSA is applied to find the standard segments in API tails in each family of malware.
In the end, 15 malware groups were applied for evaluation, and the obtained results
are generally suggestive of 83% accuracy.

Fan et al. [11] extracted APIs through dynamic analysis. Their proposed method
highly concentrated on APIs extraction in a dynamic manner and implementation of
data mining on the logs extracted from software. In their study, two sets of the used
essential functions have also been pointed out, with the functions required for the
creation of a new process and the functions needed for performing code injection.
For evaluation, two experiments were conducted. The first experiment encompassed
263 malware, and the second one used 773 malware. Both experiments included
251 benign software. Naive Bayes, SVM, and J48 were employed to perform
classification. Also, k-fold cross-validation, with k = 10, was utilized. In the end,
180 features were obtained and the InfoGainAttributeEval algorithm was used to
reduce it. This was followed with experiments being conducted for 20 to about 1800
features. The statistics are expressive of the idea that about 100 features provide
an optimum result, and there is no need for performing experiments with a large
number of features. In the last experiment, an accuracy of 95.3% was attained with
a large number of malware and only 80 total features.

3 Proposed Method

In this study, the static and dynamic analysis methods are applied concomitantly.
The method offered for hybrid analysis in this chapter, is presented in Fig. 17.2.

As shown in Fig. 17.2, the samples are examined in a virtual machine, and their
behaviours recorded. Then, the obtained logs passed to the classification phase.
There is a possibility of observing the unauthentic logs twice during execution and
once during processing, in which case they are subjected to static analysis. Next, the
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Fig. 17.2 Model of the
proposed method

logs, as mentioned earlier, along with the logs obtained from the dynamic analysis,
are transferred to the classification phase.

3.1 Data Processing

Every sample has to undergo processing by a machine learning model. Regarding
the dynamic analysis, the sample should execute, and afterwards, its behaviour is
recorded. The bytes of the sample and its structure should be processed in static
analysis so that the useful information could be extracted from the APIs list used.

In previous work, there is a possibility of error emergence for samples in all
stages of executing, processing, and analysis before data mining. These types of
samples are omitted from the datasets, and they do not enter the classification phase.
However, the present study firstly explains why each of the errors has occurred, and
the analysis follows it so that the obtained results could be perfect and pervasive.

3.2 Virtual Environment Execution

In this phase, the samples are executed in a virtual machine so that their behaviours
can be recorded. One of the methods of monitoring the sample behaviour is the use
of hooking technique. In this method, a DLL is injected into examined software
address space. Then, there is a written jump code at the beginning of each function
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that is required to investigate. Thus, the injected function could execute in place
of the primary function. One of the highly applied software types in this regard is
WinAPIOverride32, which is an open-source software type and perfectly fits such
research tasks. Most of the previous works examined based manual execution of
each sample and to store its corresponding log files. But the proposed method
is replaced by the command line of WinAPIOVerride32 software. Furthermore,
the entire execution, recording, and management stages of the virtual machine is
conducted automatically [6, 14, 26, 27]. Typically, each sample executed for about
2 min, and its behaviour was recorded. It is essential for a monitoring file capable
of determining the functions required by a hook, of recording the sample behaviour
using WinAPIOVerride32. The selection of the functions is crucial and can influence
the classification task because such a selection determines the data mining features.
A large number of the functions mentioned for monitoring purposes in this study
are amongst the functions applied in Cuckoo sandbox [2].

In this stage of analysis, errors can come about in two forms. First, when the
virtual machine is troubled, and the log file not appropriately transferred, or the
malware affects the virtual machine and causes the misbehavior, saying, its network
that causes the failure in log file sending. Second, when the studied sample fails
working correctly due to the absence of its requirements, and an error emerges
accordingly. Furthermore, this case can come about in some examples through the
techniques used by malware developers in such a way that malware undergoes
malfunctioning or does not execute its malicious part upon observing the virtual
machine or under the supervision of a given software type. The technique is a
method of bypassing the dynamic analysis. The researchers can seminally remove
the first case from the dataset and the second case is eliminated when the sample file
size investigated in such a manner that the researchers usually delete the files less
than 70 KB size, or samples using log files below 10 APIs. In this chapter, static
analysis is employed for the first and second case so that a preliminary result can be
obtained by eliminating them and through a quick method. For the second scenario,
there is a possibility of experimenting with dynamic analysis. In the beginning, data
mining results obtained with no deletion of the sample. Therefore, the samples as
mentioned earlier are analyzed statically in the next stage so that they can subject to
data mining along with the other authentic examples brought in from the dynamic
analysis part, and the result of these two stages compared with one another.

3.3 Log Processing

In discussions on the processing of logs, the samples’ logs, usually in XML format,
are parsed. Moreover, the features used in the classification task extracted in this
section. There is a possibility of error emergence in this stage in such a way that
XML file is imperfect or it has been corrupted during the transferring stage the
result of which is its lack of proper obedience of XML structure following which
it will not be parsed. In all of these cases, the file is deleted from the dataset by
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the researchers. In this method, static analysis conducted for these types of files
after the detection of improper cases. After performing static analysis, the results
obtained along with the other results from the dynamic analysis of the authentic
samples will be allowed to enter data mining phase.

4 Dataset

The dataset used in this method is one of the most novel extant datasets. This dataset
pertains to June 2018, and it has been procured from VirusShare Website [24]. Many
of the studies performed on malware utilize the VXHeaven dataset [23]. This dataset
is old and excellent results can be obtained in many of the cases through simple static
analysis while many of the packing techniques are not applied thereto, though the
majority of the researchers delete these files in case they come across them. In the
present study, we use not only a new dataset but also none of the examined samples,
and even the packed ones were not omitted so that the results could be completely
pervasive. There are used 1056 software samples in the experiments out of which
550 were malware. The benign software used in the present study reaches a number
equal to 506, and they have extracted from a newly installed Windows 7 system
folder and several other verified resources.

5 Evaluation and Experimental Result

Three experimental scenarios for evaluating the proposed method were conducted.
The first experiment deals with the investigation of omitting the logs with small sizes
or the lack of using a minimum number, 10, of APIs. In this scenario, the possibility
of making comparisons without using static analysis was verified since the samples
able to execute and passe the first stage of monitoring. In the second experiment,
the samples were eliminated due to the lack of correct execution, and the result of
performing static analysis on them has been explained earlier. The final experiment,
as well, deals with the pooling of the two above mentioned experiments so that
the overall result of the implementation of the proposed method could be obtained.
In the last experiment, all samples, even the packed cases, are involved, and the
obtained results are a lot more pervasive than has been seen in similar research.
Moreover, Python with the Scikit-learn library was applied to perform data mining.
The algorithms selected for data mining from the aforesaid library were Random
Forest, Decision Tree, Naive Bayes, and SVM. It is worth mentioning here that the
k-fold cross-validation method, with k = 10, has been used in all experiments for
authenticating the results. In this method, the dataset is divided into 10 sections, and
each section is used once for the test and the other times for training so that the
mean value of all the results could be announced as the final result in the end.
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5.1 Experiment I

In this experiment, as it is observed in Table 17.1, the results of the dynamic analysis
have been obtained for the dataset containing authentic log files and also the log files
omitted for their smaller size. This shows the potential results of not eliminating
these files. The best performance of the tested algorithms belongs to Random Forest
with an accuracy of 92%.

Table 17.2, in contrast, indicates potential results in case of replacing the files
featuring smaller sizes and having been obtained from dynamic analysis with files
obtained from just static analysis. The experiment results are completely satisfactory
and declares the proper functioning of the proposed method. In this stage, as well,
Random Forest algorithm, with an accuracy equal to 97%, obtains the best result
and the proposed method has succeeded in enhancing the accuracy by 5.43%.

Also, Fig. 17.3 shows the comparison of these two methods.

5.2 Experiment II

In experiment II, we show our results in Table 17.3. There are a few scenarios we
focus on in this run. First, we look at all samples that could not be executed. Second,
we look at samples that when executing the virtual machine found their execution to
be problematic. Lastly, we focus on samples that have not generally undergone any
dynamic analysis. Based on the obtained results, the best results were from Random
Forest. The proposed method has been able to achieve very good accuracy at 97%.

Table 17.1 Results of
classification on dynamic
analyzed samples with the
small size

Classifier Accuracy Precision F1 Recall

Random Forest 0.92 0.98 0.91 0.88

Decision Tree 0.89 0.91 0.88 0.87

Naive Bayes 0.87 0.89 0.83 0.75

SVM 0.89 0.95 0.86 0.77

Table 17.2 Results of
classification on static
analyzed samples with the
small size

Classifier Accuracy Precision F1 Recall

Random Forest 0.97 0.99 0.97 0.96

Decision Tree 0.94 0.91 0.94 0.96

Naive Bayes 0.70 0.64 0.77 0.96

SVM 0.95 0.99 0.94 0.91
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Fig. 17.3 Comparison of static and dynamic analysis of samples with the small size

Table 17.3 Results of
classification of samples that
could not be executed

Classifier Accuracy Precision F1 Recall

Random Forest 0.97 0.99 0.98 0.98

Decision Tree 0.93 0.92 0.95 0.97

Naive Bayes 0.80 0.96 0.83 0.73

SVM 0.93 0.99 0.95 0.94

Table 17.4 Results of
classification of all samples
without any omitted

Classifier Accuracy Precision F1 Recall

Random Forest 0.97 0.99 0.97 0.97

Decision Tree 0.95 0.93 0.95 0.96

Naive Bayes 0.65 0.61 0.74 0.98

SVM 0.95 0.99 0.95 0.94

5.3 Experiment III

In the final experiment, all of the samples were included to obtain a pervasive result
without the elimination of any samples from the dataset. Table 17.4 is indicative
of the results obtained from this experiment. The results indicated that the selected
features and the implementation of the proposed method have been in a very good
condition and the malware and software classes have been classified in an accuracy
equal to 97%.
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6 Conclusion

The expansion of the malware has caused offerings of new methods of malware
analysis. Static analysis limitations have discouraged the use of this method alone.
Additionally, sample elimination from datasets to increase detection accuracy
dragged the present study towards the offering of a method for overcoming such
problems. This chapter tries combining the two analyses and making use of a
hybrid analysis so that the entire samples, both the ones with problems in execution
and the ones using dynamic analysis bypassing techniques, could be examined.
The proposed method showed that through carrying out three experiments on the
unpack and packed samples which using bypassing techniques that it is capable
of increasing the detection accuracy by 5.43% and getting it to a level as high as
97%. Furthermore, the results have been optimal for all of the samples without any
omission in general and only a limited number of features provided for malware
detection in an accuracy equal to 97%. The results here were obtained under up-to-
date and new dataset examination, unlike prior studies. Efforts will be made in the
future research to meet the software sample needs it is possible so that the samples
could be subjected more increasingly to the dynamic analysis for its high detection
accuracy.
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Chapter 18
RAT Hunter: Building Robust Models for
Detecting Remote Access Trojans Based
on Optimum Hybrid Features

Mohammad Mehdi BehradFar, Hamed HaddadPajouh, Ali Dehghantanha ,
Amin Azmoodeh, Hadis Karimipour, Reza M. Parizi, and Gautam Srivastava

1 Introduction

Malware is malfunction working software that can be used to steal information,
compromise computer activities, bypassing access controls, or causing harm to its
victim’s system (even IoT devices [1, 2]). Malware is a broad term that refers to
a variety of malicious programs. These include viruses, worms, trojans, rootkits,
adware, spyware, and others [3]. Trojans refer to malicious software that runs in
a normal way and seems useful but working in a malicious way [4, 5]. A Trojan
malware usually opens access to the infected systems for malicious groups remotely.
When an attacker accesses a victim’s system, he/she will able to steal needed
information, prepare the platform for installing more malware, edit files, monitor
user activity and anonymous Internet activity [6].
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Fig. 18.1 The process of malicious operation by gh0st RAT [9]

Remote Access Trojan (RAT) is a member of the trojan family. RAT works
through an attacker who gains access to a system and is able to control the victim’s
system by sending commands, images, videos or any file type from wherever he/she
wants. Predominantly even defensive mechanisms like Anti-Viruses cannot detect
these types of malware. RAT attacks are generally carried out in the form of spear-
phishing or social engineering [7, 8]. Figure 18.1 shows the process of infiltration
and malware use of RAT [9] in gh0st RAT from APT18 [10].

When the RAT is installed on the victim’s computer system, the attacker can
control the system through network connectivity and perform malicious activities
such as:

• Infecting system files
• Download, send, delete and rename files
• Destroy hardware with overclocking
• System Registry modification
• Formatting Disk Drives
• Stealing passwords and credit card numbers
• Installing programs in stealth mode
• Voice recording with the microphone connected
• Display fake errors
• Recording and remote control of the victim’s screen [11].
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1.1 RAT Structure and Architecture

Remote Access Trojans are a class of Backdoors that are used to control the victim’s
machine remotely. It is a program or set of related programs that the hacker installs
on the target system in order to access the system later. Backdoors can embed inside
an email. The secret is that the hacker knows how to get access to the information
without having to identify it, and use it to gain more access to the targeted system
hack [12]. Before installing a backdoor, attackers asses the system in order to find
the running services. Usually, the attacker installs a backdoor that adds a new
service, giving the service an unrecognizable name, or using a service that has never
been used or disabled in the process list [13].

The service generation technique is beneficial because when a hacking attempt
occurs, the system administrator usually seeks out strange things on the system and
leaves all inactive services untouched. Thus, the intruder can then access the system
at any time without any identification. Backdoor services allow the intruder to have
the highest level of access and permission to the system in most cases.

When the RAT starts up, it acts as an executable (exe) file, and it interacts with
some registry keys that are responsible for starting the processing and creation
of system services. Unlike conventional backdoor machines, RATs connect to the
victim’s system and always wrap with two files: one server file and another client
file.

(a) the server file is installed on the victim’s system
(b) the client file is used to control the victim’s system.

One of the symptoms of an infected system is that it displays abnormal behavior
[14], but in the system infected by RATs it is difficult to diagnose and track abnormal
indications due to the following reasons:

• They will open legal ports on infected machines. For this reason, security
products not detect as a bug.

• They imitate commercial and legal remote management tools.
• They use methods that do not make malware common.

The life cycle of each RAT from when it is initialized to their installation phase
can be seen in Fig. 18.2 and counted as follows:

1. Select the target system by the attacker.
2. Stimulate the system to get specific software or open link or attachment.
3. Malware installation operations automatically and secretly on the victim system.
4. Start malware activity with the first system connected to the network.
5. Connect RAT to the Command and Control (C&C) server to receive control

commands.
6. After connecting the system, it waits for receiving commands.
7. Receive information and conduct attacks.
8. Connect to the C&C server for updating information and getting instructions for

future attacks or terminates itself.
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Fig. 18.2 RAT life cycle from initial to attack phase

In this chapter we propose an intelligence methodology for extracting a promi-
nent feature set from RATs behaviors. The main contributions of this chapter for
hunting RAT malware are listed as follows:

• Collecting an appropriate dataset from real-world RAT malware,
• Applying feature analyzing from dynamic analysis of RATs,
• And selecting the optimum hybrid (from dynamic and static) and prominent

features for RAT hunting.

1.2 Measurement Metrics

To show the performance of the model we use statistical metrics in machine learning
for malware detection as given in [15, 16].

1.2.1 Confusion Matrix

A confusion matrix is a summary of prediction results on a classification problem.
Table 18.1 shows this matrix and its values. Each element of this matrix has a
meaning as follows:

• True Positive (TP): the ratio of RATs sample which classified correctly.
• True Negative (TN): the ratio of RATs sample which classified as normal

sample.
• False Positive (FP): the ratio of normal samples which classified as RAT.
• False Negative (FN): the ratio of normal samples which classified correctly.

There are some other statistical metrics that we used for evaluating of the
proposed methodology as follows:
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Table 18.1 Confusion
matrix for RAT classification
task

Normal RAT

Normal TN FP

RAT TP FN

False Alarm Rate (FAR) : FP

FP + T N
(18.1)

Recall : T P

T P + FN
(18.2)

Accuracy (ACC) : T P + T N

T P + FP + T N + FN
(18.3)

Precision : T P

FP + T P
(18.4)

F − measure : 2 ∗ Precision ∗ Recall

P recision + Recall
(18.5)

2 Related Work

The efforts for hunting RAT malware by machine learning approaches has increased
in recent years. Jiang et al. [17] presented the idea of detecting RATs in the early
stage of communication and implemented the process of detection. Their proposed
method on the network behavior features which extract from the TCP header. Hence,
their approach could execute quickly, even possible to detect an unknown RAT while
it communicates through TCP protocol. DT and RF detection models of show better
results than other machine learning algorithms in detecting RAT sessions, due to
their accuracy of greater than 96% together with their FNR of less than 20%.

Wu et al. [14] proposed a framework to detect RATs at area network borders
using time slicing algorithm to cut the IP flow into flow slices. They used frequent
sequence mining to filter heartbeat and Naïve Bayes to classify the slices. Then,
they performed tests on a week of their lab continuous traffic data and two types
of internet traffic storage. The experiments on the datasets show their proposed
methods are excellent in tracking external control and data exfiltration through
analyzing only a few packets of the flows. Since the external control stands for a
beginning or ongoing attack, their work meets actual demands for security. Their
methods have worked well on real-world traces with a false positive rate of less than
0.6%.

Yamada et al. [18] analyzed the RAT-based reconnaissance behaviors on inter-
nal networks, and also proposed a detection technique for their communication
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sequences that based on the behavioral features. It extracts RAT connection
candidates from the inbound and outbound communications, and the administrative
operations analyzed from the protocol headers of SMB and DCE/RPC packets. It
also integrates and detects the RAT connection candidates and related administrative
communications. Their obtained results showed that the proposed technique can
detect the reconnaissance of 99.26% of the 34 real RATs (29 families) on the
experimental environment, and also accurately distinguish between the behaviors
of the reconnaissance of Advanced Persistent Threat (APT) from that of the normal
users on an actual organization’s internal network.

Awad et al. [19] looked at a host-based framework introduced for RAT bot
detection. The proposed framework depends on the behavior analysis of the running
system of the host machine by capturing the running activities using the monitoring
module. After that, a feature vector for each running process is constructed
and sends to the classifier stage. In the classifier, the decision of whether this
process is benign or malicious is taken raising the alarm to the administrator in
malicious cases. Several classifiers at the classifier stage are evaluated choosing the
best performance one. The proposed framework tested against unknown samples
providing accuracy of about 95% with a low false-positive rate.

Kolosnjaji et al. [20] construct deep neural networks to improve modeling and
classification of system calls sequences as also seen in [21]. By combining convo-
lutional and recurrent layers in one neural network architecture, they obtain optimal
classification results. Using a hybrid neural network containing two convolutional
layers and one recurrent layer, they get a novel approach to malware classification.
Their neural network outperforms not only other simpler neural architectures, but
also previously widely-used Hidden Markov Models and Support Vector Machines.

Wang et al. [22] developed an automatic malware detection system by training
an SVM classifier based on behavioral signatures. A cross-validation scheme used
for solving classification accuracy problems by using SVMs associated with 60
families of real malware. The experimental results reveal that the classification
error decreases as the sizing of testing data increased. For different sizing (N) of
malware samples, the prediction accuracy of malware detection goes up to 98.7%
with N = 100. The overall detection accuracy of the SVC is more than 85% for
unspecific mobile malware.

Xu et al. [23], introduced a framework for malware detection based on online
analysis of virtual memory access patterns using machine learning. This framework
applied to the application-specific malware detection scenario which targets detect-
ing malware-infected runs of known applications. They addressed the challenge of
online memory data collection using a system/function-call epoch based memory
access summary. They experimentally covered both kernel and user level threats
and demonstrated very high detection accuracy against kernel-level rootkits (100%
detection rate with less than 1% false positives) and user-level memory corruption
attacks (99.0% detection rate with less than 5% false positives). A key value of the
proposed methodology is using machine learning to determine malware signatures
for classification in contrast to the traditional reliance on human insight, a major
step in automating this critical analysis problem.
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Fig. 18.3 The conducted research methodology for hunting RAT malware

3 Proposed Methodology

With regards to achieving an optimum model for RAT hunting, we investigated
the characteristics of RAT malware, as shown in Fig. 18.3. After collecting the
real-world samples from public repositories, we run them under Cuckoo Sandbox
environment. The behavioral characteristics of this type of malware are vectorized
in this environment. Next, we applied different machine learning models to obtain
the best match model.

3.1 Dataset

In this chapter, we collected a batch of 450 real-world RAT samples and studied the
behavior of this malware by optimized Cuckoo Sandbox environment. In order to
detect malware with a behavioral analysis method, it is necessary to implement them
to observe specific behavioral characteristics. Because of the inability to observe the
exploitation of RAT malware during real-world execution of system resources and
functions, it is essential to parse the given results that generated from running of the
malicious sample. In this work, we developed a script to parse Cuckoo results for
RAT hunting goal. We also collected benign wares samples from Microsoft Store
platform.

For creating our dataset, we conducted both dynamic and static analysis. In
the Static Analysis section, the DLL files were examined, and all relevant library
functions recorded. Table 18.2 lists commonly used DLLs [24].

In the behavioral (dynamic) analysis section, all suspicious and distinct behav-
ioral APIs between RAT and normal samples exploited in the file and network
section.

RATs mainly rely on network-based invocations to do their malicious work on
this platform by sending targeted communications between the hacker, the C&C
server, and the victim machine. In this context, several Windows API functions
are commonly used for these communications. Of the Windows network options,
malware most commonly uses Berkeley compatible sockets, functionality that is
almost identical on Windows and UNIX systems.

We implement Berkeley compatible sockets’ network functionality in
Windows in the Winsock libraries, primarily in ws2_32.dll. Of these, the
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Table 18.2 Common DLLs in Windows executable files

DLL Description

Kernel32.dll This is a very common DLL that contains core functionality, such as access
and manipulation of memory, files, and hardware

Advapi32.dll This DLL provides access to advanced core Windows components such as
the Service Manager and Registry

User32.dll This DLL contains all the user-interface components, such as buttons,
scroll bars, and components for controlling and responding to user actions

Gdi32.dll This DLL contains functions for displaying and manipulating graphics

Ntdll.dll This DLL is the interface to the Windows kernel. Executable generally do
not import this file directly, although it is always imported indirectly by
Kernel32.dll. If an executable imports this file, it means that the author
intended to use functionality not normally available to Windows programs.
Some tasks, such as hiding functionality or manipulating processes, will
use this interface

WSock32.dll and
Ws2_32.dll

These are networking DLLs. A program that accesses either of these most
likely connects to a network or performs network-related tasks

Wininet.dll This DLL contains higher-level networking functions that implement
protocols such as FTP, HTTP, and NTP

Table 18.3 Berkeley compatible socket networking functions [24]

Function name Description

Socket Creates a socket

Connect Attaches a socket to a particular port, prior to the accept call

Bind Indicates that a socket will be listening for incoming connections

Listen Opens a connection to a remote socket and accepts the connection

Accept Opens a connection to a remote socket; the remote socket must be waiting for
the connection

Send Sends data to the remote socket

recv Receives data from the remote socket

socket, connect, bind, listen, accept, send, and recv
functions are the most common [24], and these are described in Table 18.3.

4 Experimental Results

In order to hunt the RAT samples, we applied feature selection process on the
collected samples and observed empirical results from malware implementation in
the sandbox environment, tracking suspicious behavioral activities. Clearly, we saw
a tangible difference in the use of malware with benign files from Behavioral APIs.
These differences were in file sections, networks, and dropped files. In this regard,
the following features selected, and the relevant data recorded as follows:

• DLL files: Includes include and export DLL files name.
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Table 18.4 Distributions of
each class of the label which
extracted from modified
sandbox

Class of feature Number of feature

DLL 69

Behavioral 129

Dropped file 37

Fig. 18.4 Peaking phenomenon; with an increasing number of features from one point to the next,
classification error increases [25]

• Behavioral APIs: include all API which called during the execution of malware
under sandbox environment. This feature set also include networks features.

• Dropped files: This set consists the feature of dropped file that RAT downloaded
and dropping in victim’s system.

Table 18.4 also shows the distribution of each class of feature which extracted
from the modified sandbox.

By summarizing the analysis of RATs, we eventually managed to create a data set
with 235 attributes related to RAT files and normal files. Feature Selection, known
as Variable Selection and Attribute Selection, as well as Variable Subset Selection,
the sub-selection process is among the features [13]. A classifier error designed by
real data displays a different behaviour in the mode of increasing the number of
attributes. The increase in the number of attributes, in some cases, can lead to an
increase in classification error. This is because in practical cases, the best number
of features is not the highest number of features. Figure 18.4 shows the peaking
phenomenon [25].

4.1 Information Gain

One way to achieve the goal is to eliminate unrelated or excess variables, and
entropy mainly use in the information theory scale, which describes the net amount
of an arbitrary set of specimens as seen in Eqs. (18.6) and (18.7). Entropy is the
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basis of various grading and selection methods in Information Gain [26]. This
measure is considered an unpredictable scale of the system [19]. In this paper, with
the implementation of this algorithm, the number of features from 235 attributes
decreased to 149 ones.

E(S) =
C∑

2

−p log2 pi (18.6)

Gain(T ,X) = Entropy(T ) − Entropy(T ,X) (18.7)

4.2 Correlation-Based Feature Selection

We evaluate the value of a subset of attributes by using the ability to predict
individual characteristics of each feature as well as the degree of redundancy
between them. The subset of the features that match the class is preferred, compared
to less consistency [27]. In this chapter, with the implementation of this algorithm,
the number of features decreased from 235 to 45 using this criteria.

4.3 Classification

With regards to evaluation of the selected feature sets, we applied the traditional
machine learning algorithms such as Bayes Network, Naive Bayes, K-Nearest
Neighbor (with K = 1, 3, 5) trees/J48 as well as Convolutional Neural Network
(CNN).

At the first stage of the classification task, we applied the machine learning
models on the entire obtained features (n = 235) from Sandbox. The results of
overall evaluation of the dataset before the Feature Selection procedure are given in
Table 18.5.

By examining the impact of existing features, based on the classification results,
the main features that are most important in the process of detecting healthy files and

Table 18.5 The obtained classification results before applying feature selection phase

Model FAR Precision Recall F -measure Accuracy

Bayes network 0.115 0.907 0.885 88.30% 88.50%

Naive bayes 0.085 0.927 0.915 91.40% 91.50%

KNN (K = 1) 0.205 0.855 0.795 78.60% 79.50%

J48 0.03 0.97 0.97 97.00% 97.00%

Deep learning (CNN) 0.025 0.9737 0.925 94.87% 95.00%
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RAT are distinguished. As shown in Fig. 18.5, the most important of these features
are the connection functions.

By Applying the information gain algorithm, we obtained 149 features with the
Ranker method, which results from the executed models as described in Table 18.6.

In the second round of the feature selection process, we applied Correlation-
based feature selection algorithm and obtained promising results as it can be seen in
Table 18.7.

0.0 0.1 0.2 0.3

Targets: result

0.4 0.5

WSAStartup

getsockname

setsockopt

shlwapi.dll

gdiplus.dll

msvcrt.dll

ntdll.dll

Fig. 18.5 The impact of prominent features on classification results

Table 18.6 The obtained classification results after applying feature selection phase
(No. of f eature = 149)

Model FAR Precision Recall F -measure Accuracy

Bayes network 0.005 0.995 0.995 99.50% 99.50%
Naive bayes 0.003 0.998 0.998 99.70% 99.75%
KNN 0.05 0.955 0.95 95.00% 95.00%

J48 0.028 0.973 0.97 97.20% 97.25%

Deep learning (CNN) 0 1 0.975 98.73% 98.75%

The bold entries demonstrate the highest value which reached for each metric

Table 18.7 The obtained classification results after applying feature selection phase
(No. of Feature = 45)

Model FAR Precision Recall F -measure Accuracy

Bayes network 0.005 0.995 0.995 99.50% 99.50%

Naive bayes 0.003 0.998 0.998 99.70% 99.75%
KNN (K = 1) 0.05 0.955 0.95 95.00% 95.00%

J48 0.028 0.973 0.973 97.20% 97.25%

Deep learning (CNN) 0 1 0.975 98.73% 98.75%

The bold entries demonstrate the highest value which reached for each metric
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5 Conclusion and Future Work

Malicious activities are entering a new phase in which malicious code, instead
of infecting computers, seeks to access users’ information for personal gain.
Accordingly, the number of malware and its harmful effect are increasing. These
attacks include various aspects such as blackmail, revenge, terror, information theft,
and misuse. Amongst the total set of malware, Remote Access Trojans (RAT) have
gained increasing popularity among hackers and information thieves. In this chapter,
we presented an optimum feature set for hunting RATs. We collected over 400
real-world samples from a valid repository, then investigated over 235 behavioral
features of this type of malware by running them under a modified version of
Cuckoo Sandbox. Furthermore, with the help of a collection of data and execution
different machine learning algorithm and a two-layer feature selection algorithms,
we obtained over 99% detection accuracy and less than 0.03% false alarm rate
in dealing with these types of malware. To extend this research, we propose the
collection of more features from different views of RAT malware such as Opcode
and ByteCode. This can assist the hunting of their exact intent and identify the stage
of their infection in their life-cycle.
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Chapter 19
Active Spectral Botnet Detection Based
on Eigenvalue Weighting

Amin Azmoodeh, Ali Dehghantanha , Reza M. Parizi, Sattar Hashemi,
Bahram Gharabaghi, and Gautam Srivastava

1 Introduction

Advances in a computerized system and its penetration to all aspects of life has
motivated cyber-criminals to target these systems so as to attain private and sensitive
stored information or cause disorders in their services [17]. A typical botnet is
a network of infected systems such as computer, an Internet of Things node or
smartphone that are controlled by cyber attackers to scheme a massive harmful
attack [4, 23, 38]. Botnets can be used to drop malicious programs [24], re-distribute
malware [18, 29], and even run Denial of Service (DoS) attacks [37].

Recognizing botnets and their attacks is an active research sphere in computer
security and several approaches have been proposed for botnet detection [5, 49].
Machine learning techniques have demonstrated their potential for robust and
accurate botnet detection [8]. Zhang et al. [50] proposed a system that identified the
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probable host in a Peer-to-Peer botnet and then statistically generated a profile for
network traffic and distinguished between them to identify malicious activities using
a flow-based clustering algorithm. Stevanovic and Pedersen [44] presented a flow-
based method that analyzed network traffic and employed traditional supervised
machine learning algorithms such as a Bayesian network, Neural Network and
Support Vector Machines and accurately detected botnets. Homayoun et al. [23]
introduced a deep learning-based botnet traffic analyzer called BotShark that uses
only network transactions and therefore, avoiding inherent restrictions such as the
inability to analyze encrypted data and precisely identified botnets.

Clustering is a prevalent machine learning technique for botnet detection [33].
BotMiner, proposed by Gu et al. in [21], clustered malicious and benign network
traffic and performed cross cluster correlation to detect bots that share both similar
communication and malicious activity patterns. In related work, Al-Jarrah et al.
[2] proposed a novel traffic based intrusion detection system by data reduction and
feature selection, randomized data partitioning, and recognize malicious activities
using comparison with the center of clusters.

Graph mining is an active and promising research area to apply to cybersecurity
problems [3, 22]. Graph clustering is a broad category of machine learning which
aims to group vertices of a given graph based on its edges structure and discover
densely connected groups of nodes in a graph [12, 13, 31]. Graph clustering is an
inherent issue in a wide-range of application such as community detection in social
networks, VLSI design, image processing, bioinformatics and and many others
[39]. There are two main categories in graph clustering, namely Local and Global
methods. Local methods are mainly based on a local search criteria and crawl inside
the graph to partially discover partitions and find locally optimal clusters [43]. On
the other hand, global methods cluster the vertices by considering the entire structure
of the graph and make an effort to minimizing a partitioning criterion.

Spectral Clustering [35] as a subset of global clustering algorithms utilizes
eigenspace properties of the graph to perform clustering. Similar to the majority
of graph clustering algorithms, spectral methods presume that the adjacency matrix
of the graph is wholly available and use their intended eigen-decomposition [15]
for clustering. However in wide-range of problems preparation of similarity matrix
arises a potential cost, uncertainty or unavailability.

The rest of the chapter is organized as follows. In Sect. 2 we briefly review
related subjects such as spectral clustering, active learning, perturbation theory.
Section 3 is dedicated to describing related methods and Sect. 4 contains the
proposed method and three suggestions regarding eigenvalue weighting. Section 5
presents the experiments on botnet dataset and in Sect. 6, we discuss the proposed
method and some future agenda is suggested.
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2 Background

2.1 Spectral Clustering

Spectral Clustering [3, 35] is a significant, analytical and prevalent category of
global graph clustering algorithms which leverages eigen-decomposition of a
graph’s matrix to cluster vertices. These methods are an alternative solution for the
graph partitioning problem and have demonstrated performance especially when
the dataset contains complex data shape and structure. Spectral methods embed the
graph into eigenspace and run a traditional clustering algorithm such as K-means
[27] on it. Basic and major reference study for this field was proposed by Shi and
Malik in [42]. The authors start with a normalized cut criteria, convert it to linear
algebra and finally solve it somehow answer proves eigenspace of Laplacian matrix
is an alternative space for graph clustering. Algorithm 1 shows the basic procedure
of these methods.

After proposing spectral clustering in [42], various versions were presented. To
obtain more knowledge about the concept of Spectral Clustering we refer readers
to [32] and to know the most common variations we refer readers to [35]. In
addition, to obtain deep knowledge about spectral graph theory, concepts and
the mathematics of graph spectrums are given in [15]. In some of the studies,
proposed algorithms perform two-way clustering and suggest the recursive approach
to construct k-clusters. In others, authors focus on multi-way clustering. Most of the
k-way methods endeavor to find an appropriate alternative embedding by using k

eigenvectors of the matrix [11, 32].

2.2 Active Learning

Active Learning is an idea to perform on machine learning algorithms to achieve
admissible performance by consuming less learning material. Active learning
algorithms attempt to iteratively find more important data for learning and then
query it. In other words, they adaptively generate a sequence of decisions under
a hypothesis and past experience outcomes [40]. Although supervised learning is
an included part of active learning, there are significant research for unsupervised
learning. The majority of research related to active clustering focus on certain

Algorithm 1: Basic spectral clustering
Input: Graph Adjacency Matrix W

Output: Cluster C1, C2
1. Set D = DegreeMatrix(W) & L = D − W

2. F ind the second eigenvector v2 of L

3. Run Kmeans on v2
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constraints to consider during actively data partitioning. Constraints mainly include
pairwise must-link and cannot-link criteria between instances [1, 20, 46]. In some
other approaches, authors have proposed an active learning algorithm to generate
a representative point from the whole of the dataset for data clustering based on
spectral graph partitioning [7, 28]. From a similarity consumption viewpoint, as
mentioned in Sect. 1, Eriksson et al. [19] introduced and analyzed an efficient
active hierarchical clustering algorithm that could robustly cluster noisy graphs.
Similarly, Krishnamurthy et al. [30] presented another framework that can apply to a
traditional clustering algorithm as an input argument and actively perform clustering
in a hierarchical structure.

2.3 Matrix Perturbation

Perturbation Theory [6, 45] is a mathematical approach to analyze the effect of
an argument’s perturbation on the output of a function to approximate its value.
Perturbation theory aids to approximate a function that exact solutions and equations
cannot be derived from when perturbing. Perturbation theory has a wide range of
usefulness in science and engineering and by joining it with sensitivity analysis [9]
we would be able to notify the amount of sensitivity of an arbitrary function to its
arguments’ perturbation.

Matrix Perturbation theory works on matrix functions especially eigenfunctions,
where eigenfunctions can be defined as Eigenvalues and Eigenvectors. Since eigen-
functions are functions of matrix indices, we are able to apply perturbation theory
on them to evaluate the effects of slight changes to eigenvectors and eigenvalues.
Analyzing the effect of perturbation on Spectral Clustering has been the main or
part of contribution in many works [25, 26, 36, 48].

2.4 Notation and Settings

In this chapter, W refers to similarity matrix of Graph (or distance matrix of the
dataset) with n vertices and therefore, size W is n × n. L denotes Laplacian of W .
λk and vk are used for kth eigenvalue and eigenvector respectively. D is a n × n

non-diagonal degree matrix which entries are zero and diagonal indices generate
by Di,j = ∑n

j=1 Wi,j . All hatted sign variables are related to the non-complete

matrix Ŵ that active clustering algorithms aim to work on it by perturbation
theory to achieve the same clustering performance despite the minimum similarity
consumption.
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3 Related Methods

Similarity challenge is an important issue in botnet detection and on many occa-
sions, preparing a complete similarity matrix is impossible, costly or uncertain. On
the other hand, spectral clustering requires the whole similarity matrix to perform
acceptable partitioning. Hence, proposing an active learning strategy for minimizing
the cost of similarity usage is significantly beneficial. Shamir and Tishby [41]
restricted their proposed method to consume only b number of similarities and
introduced two novel algorithms. A random algorithm for choosing the next
similarity to query randomly and the other was an active query approach, given
in Algorithm 2.

During each iteration, the S&T method tries to find the index that maximizes
the norm-2 of changes in second laplacian eigenvector. Since the beginning of
the algorithm gives all non-diagonal indices inputed to zero, their corresponding
points in eigenspace is also zero. So matrix entries that they are perturbing, or
in other words actual similarity values, will change the second eigenvector which
will help the algorithm to minimize error between v̂2 and v2 and iteratively
approximate v̂2 close to v2. The S&T method employs the perturbation theory

to calculate the ‖ ∂v̂2

∂Ŵi,j

‖. The idea behind partial derivative roots in sensitivity

analysis [9] to discover the most important matrix entry that maximizes changes in
the second eigenvector at each step and aims K-means to perform more accurate
clustering. From a spectral graph theory viewpoint, an eigenvector could well
represent two clusters and therefore, the S&T method would be practical in two-
way clustering and for multi-way clustering, we should apply recursive approach on
each discovered cluster.

Besides the S&T method, considering some intuitive contributions, Wauthier
et al. [47] proposed an active spectral clustering which tracked the most sensitive
entry to perturbation around the uncertain point of the second eigenvector. They
hypothesized that points around K-means’s discrimination point has maximum
error and endeavored to minimize it. We see their algorithm given as Algorithm 3.

Algorithm 2: Shamir and Tishby (S&T ) [41] method

Input: inital zero matrix Ŵ and b

Output: Cluster C1, C2
S = {(i, j) : i, jε{1, . . . ., n}, i < j}
f or t = 1 to b

L̂ = D̂ − Ŵ

(i∗, j∗) = arg max(i,j)εS‖ ∂v̂2

∂Ŵi,j

‖
̂Wi∗,j∗ = Wi∗,j∗ (query Wi∗,j∗ )

run Kmeans on v̂2



390 A. Azmoodeh et al.

Algorithm 3: Wauthier et al. (IU-RED) [47] method

Input: inital zero matrix Ŵ

Output: Cluster C1, C2
S = {(i, j) : i, jε{1, . . . ., n}, i < j}
q = number of queries

f or t = 1 to q

L̂ = D̂ − Ŵ

kmin = argmink |v̂2(k)|
(i∗, j∗) = arg max(i,j)εS | ∂v̂2(kmin)

∂Ŵi,j

|
Ŵi∗,j∗ = Wi∗,j∗ (query Wi∗,j∗ )

run Kmeans on v̂2

IU-RED algorithm structure is close to the S&T algorithm, but the main
difference between described methods is that S&T maximizes global changes of
v̂2, but IU-RED maximizes change around uncertain point kmin. As mentioned for
the S&T method, the IU-RED algorithm just performs active spectral clustering
for two-cluster problems and for multi-way implementation authors used recursive
approach.

From graph theory, each eigenvector can represent two clusters properly. There-
fore, in multi-way clustering, algorithms use at least k−1 eigenvectors for detecting
k clusters. As seen in the schematic of Fig. 19.1, yellow and orange clusters are
not separable using the 2nd eigenvector. Both of the S&T and IU-RED methods
should run twice, the first time for detecting red and blue sections, and the second
time on a red segment for detecting yellow and orange clusters. It is evident that
every learner with similarity cost reduction goals should attempt to find similarities
in the intra-cluster regions (e.g. yellow, orange and blue) as seen in Fig. 19.1 and
avoid finding inter-cluster similarities inside the black and gray regions. An ideal
algorithm endeavors to query intra-cluster similarities and thus eigenvectors tend to
be sharper and more separable due to their corresponding clusters.

There are two major inefficiencies in a combination of described methods with
a recursive approach for multi-way clustering. First, there is ambiguity in recursion
since in actual implementation for real problem datasets, we are not aware of the
correct path to continue recursion and choose proper cluster to divide. Another
problem refers to the inconsistency between the algorithm’s goal and modus
operandi. As seen in Fig. 19.1, algorithms try to separate blue and red part sin 2nd
eigenvector at the first step. Therefore, some chosen similarities in the red part are
inside the black region, or in graph clustering literature this is known as inter-cluster
similarities. Neglecting the fact that a sizable number of inter-cluster edges results
in reducing the performance of any graph clustering algorithm, it is obvious that
queried inter-cluster edges (entries in the black part of Fig. 19.1) to discover red
cluster in the first step, are useless in the second step and will increase similarity
cost.
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Fig. 19.1 Schematic view of an ideal block diagonal similarity matrix and its 2nd and 3rd
eigenvectors

4 Proposed Method

In order to perform multi-way active clustering on botnet dataset, we propose a
general function which considers a linear combination of eigenvalues and eigenvec-
tors in Eq. (19.1). Then, we suggest three different optimization function based on
Eq. (19.1).

(i∗, j∗) = argmaxi,j‖
∑k

l=2 ∂(fv(Ŵ , l) × gλ(Ŵ , l))

∂Ŵi,j

‖ (19.1)

fv(Ŵ , l) calculates the kth eigenvector of matrix Ŵ or a variation of it such as
Laplacian or Normalized Laplacian [10] and similarly gλ(Ŵ , l) calculates the kth
eigenvalue of matrix Ŵ or a variation of it. Function gλ plays a key role in this study
and enables us to tune algorithms by changing the gλ for different detection goals.

Table 19.1 provides information about the proposed method’s suggested combi-
national function.

The main difference between Normalized Laplacian and standard Laplacian is
that Lnorm’s eigenvalues are normalized. Algorithm 4 demonstrates implementation
for Suggested Method III of Table 19.1.

An important preference of Suggested Method III compared with Suggested
Method I and II is its normalized eigenvalues which prevents neglecting small
clusters and focusing on large clusters when graph’s partitions are unbalanced [34].
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Table 19.1 Summary of three suggestive variations of general function

Method Objective Function Description

Suggested
method I (i∗, j∗) = argmaxi,j‖

∑k
l=2 ∂(̂λl v̂l )

∂Ŵi,j

‖ v̂i and λ̂i are ith eigenvector and
eigenvalue of matrix Ŵ respectively

Suggested
method II

(i∗, j∗) = argmaxi,j‖
∑k

l=2 ∂(
v̂l

λ̂l

)

∂Ŵi,j

‖
v̂i and λ̂i are ith eigenvector and
eigenvalue of Laplacian matrix L̂

respectively

Suggested
method
III

(i∗, j∗) = argmaxi,j‖
∑k

l=2 ∂((1 − λ̂l)̂vl)

∂Ŵi,j

‖
v̂i and λ̂i are ith eigenvector and
eigenvalue of Normalized Laplacian
matrix L̂norm[10] respectively

Algorithm 4: Suggested method III implementation

Input: inital zero matrix Ŵ

Output: Cluster C1, C2, . . . ., Ck

S = {(i, j) : i, jε{1, . . . ., n}, i < j}
q = number of queries

f or t = 1 to q

L̂norm = I − D̂
−1
2 Ŵ D̂

−1
2

(i∗, j∗) = argmaxi,j‖
∑k

l=2 ∂((1 − λ̂l )̂vl)

∂Ŵi,j

‖
Ŵi∗,j∗ = Wi∗,j∗ (query Wi∗,j∗ )

run Spectral Clustering on Ŵ

5 Experiments

5.1 Dataset

In this study, the performance of the proposed method evaluated using ISOT,1 which
is a widely cited dataset for botnet detection. Furthermore, to extract information
from log files, Tranalyzer2 is utilized, and a subset of data which included Storm,
Zeus, and Waledac attacks was selected. In order to generate a similarity matrix of

the dataset, Cosine similarity [14] (Wi,j = XiXj

‖Xi‖‖Xj‖ ) method was applied.

1https://www.uvic.ca/engineering/ece/isot/datasets/.
2https://tranalyzer.com/.

https://www.uvic.ca/engineering/ece/isot/datasets/
https://tranalyzer.com/
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5.2 Evaluation Metric

5.2.1 Purity

Purity is an evaluation benchmark to measure performance of clustering algorithms
that identifies which cluster was assigned to the class and then the accuracy of this
assignment is measured using Eq. (19.2).

Purity(Ω,C) = 1

N

∑

k

argmaxj |ωk ∩ cj | (19.2)

where � = ω1, ω2, . . . , ωk is the set of clusters and C = c1, c2, . . . , cj is the set of
classes.

5.2.2 PEDK (Proportionate Eigenvectors Direction Keeping)

PEDK is a measurement metric which is designed with considering the concept
of both Active Learning and Spectral Clustering. PEKD allows users to apply it
on unlabeled datasets and measure the ability of the active clustering method for
preserving the k most important eigenvectors’ direction of Ŵ aligned with those of
W (see Eq. (19.3)).

PEDK(W, Ŵ) =
∑k

i=2
∑k

j=2 |θ(vi, vj ) − θ (̂vi, v̂j )|
2kπ

(19.3)

where θ(x, y) = cos−1(
x.y

‖x‖.‖y‖ ) and θ(vi, vj ) − θ (̂vi, v̂j ) are terms that calculate

the difference of pairwise angles between the ith and j th eigenvectors of W and Ŵ .
Summations would calculate it for all pairs of eigenvectors. The denominator term
2kπ is to normalize measurement.

5.3 Results

To evaluate our proposed method’s performance, we measured Purity on ISOT
dataset to compare the detection rate of active clustering algorithms. Figure 19.2
illustrates and compares Purity of methods. To compare the active clustering
algorithms’ purity, we measured the Purity of complete matrix W using standard
Normalized Cut algorithm [42]. As can be seen from Fig. 19.2, Suggested Method
III outperforms others while consuming less similarity material. Furthermore, its
Purity for 60% of similarity consumption overtakes the Normalized Cut. Another
striking feature of the graph is better performance of suggested methods compared
with S&T and IU-RED for multi-way botnet dataset.



394 A. Azmoodeh et al.

0.000%

10.000%

20.000%

30.000%

40.000%

50.000%

60.000%

70.000%

80.000%

90.000%

100.000%

10% 20% 30% 40% 50% 60% 70% 80% 90%

Pu
rit

y

Similarity Consumption
S&B IU-RED Suggested(1) Suggested(2) Suggested(3) Normalized cut

Fig. 19.2 Purity measurement over similarity consumption

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

PE
D

K

Similarity Consumption

S&B IU-RED Suggested(1) Suggested(2) Suggested(3)

Fig. 19.3 PEDK measurement over similarity consumption

In order to realize the level of algorithm succession for constructing Ŵ structure
similar to W , PEDK is designed. Figure 19.3 depicts that PEDK is a proper metric
to assess this category of methods. Moreover, PEDK value for suggested method III
experienced a substantial decline to reach its minimum value using less similarity
material.
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6 Discussion and Future Work

The increasing pervasiveness of internet-connected devices and the importance of
stored information and provided services necessitate imposing security mechanism
to protect them against cyber-threats [16]. Botnets are networks of infected nodes
controlled by cyber-criminals to organize a group of attackers. Graph clustering is
a prevalent technique to detect botnets that leverages similarity matrix of graph to
perform graph partitioning. However, in many situations preparing complete matrix
of graph is impossible. In this chapter we reviewed two recognized algorithm in
this domain, S&T [41] and IU-RED [47] which proposed for a dataset of two
clusters. Recursive implementation for k, (k > 2) partitions lead to two basic
problems: ambiguity in recursion path for actual executions and low performance
due to query inter-cluster similarities. The proposed method extends its operational
eigenspace to k eigenvectors and leverages a linear combination of eigenvalues-
eigenvectors. Combining eigenvalues assists the algorithm to adaptively control
itself regarding the effect of each eigenvector importance. Then, we evaluated our
approach over a benchmark botnet dataset and demonstrates practical usefulness of
the proposed method. Furthermore, we introduced and measured specific metrics to
compare active graph clustering algorithms. Since calculating the partial derivative
of eigenvectors and eigenvalues is a time-consuming task, future work could include
proposing an approximate model for the proposed method. In addition, scheming
a distributed active clustering algorithm for the Internet of Things [3] and edge
computing could potentially be considered.
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