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1  Introduction

Urban population of the world has seen a rapid growth, from 751 million in 1950 
to 4.2 billion in 2018 [1]. According to UN 55% of all world’s population lives in 
urban areas and this figure is predicted to go up, by as much as 68% by 2050. The 
net effect of urbanization according to projections in the growth of global popula-
tion is another 2.5 billion people will be added to urban areas by 2050, with close 
to 90% of this demographic expected to be in Asia and Africa [1]. All of this means 
the world has been becoming urban and the trend is poised to continue in the future.

An increase in urban population comes with its own set of associated challenges 
in several areas, some of which include: an increase in environmental pollution, 
managing increasingly complex transportation system, making healthcare acces-
sible for growing population, making government services accessible to all citi-
zens, and providing safety and security to all population. All of these has led to the 
increase in intelligence in cities and a trend toward smart urban development by 
taking advantage of existing IoT technologies to mitigate most of the abovemen-
tioned issues; we will explore a few solutions in this chapter.
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The current technological framework is primarily based upon cloud and local 
computing with increasing reliance on edge and fog in the recent years. With the 
expected growth in gathering large amounts of data (“big data”) in highly populated 
urban areas, cloud-based technologies suffer from major shortcomings, which we 
will highlight in this chapter; we will also present the technological trends to miti-
gate the same.

In moving toward the next generation of innovative and more capable applica-
tions, IoT big data analytics comes as an important cornerstone. With the current 
wave of the rapidly increasing data volumes, which are generated by many sensors, 
actuators, and devices, the need for decision-making and extracting knowledge out 
of this data is a necessity. IoT big data analytics plays an important role in achieving 
the same. The real-time response requirement stated by emerging applications, such 
as connected vehicles, arises a new challenge. Therefore, edge computing came into 
the picture to overcome the delay of processing the data entirely on the cloud. In this 
chapter, we show the current design approaches, protocols, and technologies that 
are being proposed for IoT big data analytics on both the cloud and the edge in the 
context of smart urban development. Also, we present some of the use cases that fit 
the context of smart cities and urban development.

With the recent boom in IoT and related technologies the trend in urban develop-
ment has been toward increasing intelligence, i.e., it’s common to see “smart cities” 
where sensors are deployed in key areas and the data collected is processed using 
intelligence analytics. Efficient machine learning algorithms are used to enable pre-
viously unavailable services and making available services more accessible; this is 
the whole paradigm of smart city development [2].

More recently with the explosion in the fields of IoT, big data analytics, and 
artificial intelligence, there is a convergence among all these fields in the context of 
urban development; this paradigm shift has led to what we call “cognitive smart 
cities” [3]. All of this will be further elaborated in this chapter.

2  Edge Networking for Internet of Things

Wireless networks will eventually become key enablers of ultra-reliable and low- 
latency applications. The driving force for wireless systems is the demand for high- 
quality applications which they provide to users. While industry pilots such as 
automotive, intelligent automation, telemedicine, and entertainment applications 
offer new opportunities for operators, they present new challenges in terms of reli-
ability, latency, and cost requirements. For example, augmented reality applications 
will change the entertainment industry as they improve the user experience through 
realism. Providing a realistic and user-friendly experience requires minimal round- 
trip time to act and react [4].

To meet these challenging needs, edge computing and network function virtual-
ization (NFV) has become a solution for bringing cloud services to the proximity 
of the user. On the one hand, multiple access edge computing (MEC) and fog 
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 virtualize network edge applications, reducing end-to-end latency. On the other 
hand, NFV separates network functions and applications from the underlying hard-
ware and allows them to be implemented as software. Mobile services can now be 
deployed in a distributed manner independent of hardware, and software-defined 
networking (SDN) can provide a dynamic responsive network for new services. 
SDN decouples the control and data planes, and thus it benefits MEC and NFV by 
simplifying management, enabling programmability, and enhancing performance.

These technologies work together to provide operators with effective means to 
coordinate and scale their infrastructures. An innovative joint of these technolo-
gies is presented by 5G-CORAL [5] which exploits edge solutions to provide 
low- latency and enhanced QoS across multiple-RAT environment (see Fig. 1). 
It adopts ETSI NFV and MEC standards as well as considers mobile and volatile 
resources.

2.1  Edge and Fog Computing System

The EFS is a logical system comprised of fog and edge resources belonging to an 
administrative domain. An administrative domain is a collection of isolated 
resources managed by a single organization. The EFS virtualizes functions and 
applications and can interact with EFS in other domains. The software part of EFS 
consists of the following:

• Function is a virtualized instance deployed within the EFS for networking 
purposes.

• Application is a virtualized instance deployed within the EFS for serving end 
users and third parties.

• Service platform is a data storage for telemetric data collected from the EFS 
environment.

• Entity manager is responsible for applying configuration and management poli-
cies on the EFS elements as specified by the OCS. Compared to NFV and MEC 

Fig. 1 Cloud, edge, and fog resources and characteristics [6]
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standards, the entity manager of the EFS service platform plays the role of the 
MEC platform manager. For more details, please refer to 5G-CORAL deliver-
able D2.1 [6].

5G-CORAL considers three types of the computing layers in the continuum 
between user devices and core network: fog, edge, and cloud. The most commonly 
known computing layer today is the cloud. Cloud is a remote high-powered data 
center which offers virtualized computing, storage, and networking services to busi-
nesses and end users. Lately, edge (i.e., MEC) and fog emerged aiming at moving 
the virtualized resource closer to IoT and end users to reduce the latency. While 
edge architecture mainly focuses on the deployment of virtualized resources at the 
edge of operators’ infrastructure (e.g., base station), fog architecture extends the 
reach of resources even closer to the user (e.g., home gateway).

2.2  Enabling Virtualization Technologies for IoT in the Edge

Hypervisor-Based Virtualization it runs at the hardware level and provides inde-
pendent and host-isolated virtual machines (VM). Each VM runs its own kernel and 
operating system (OS). Therefore, the hypervisor can create Windows guests on 
Linux host. However, isolation and host abstraction features come with a cost. 
Memory, disk, and CPU resources must be specified at runtime to execute VM ker-
nel and OS. Also, hardware emulation is required for I/O operations. In the case of 
high-density virtualization, VM deployment becomes resource inefficient, espe-
cially for small edge and fog applications. One good example of hypervisor-based 
virtualization is kernel-based virtual machine (KVM).

System-Based Containerization it isolates processes at the OS level and runs on 
top of the host kernel. There are two types of containers, namely, system container 
and application container. System containers (also known as machine containers) 
behave like a standalone Linux system. That is, the system container has its own 
root access, file system, memory, processes, and networking and can be rebooted 
independently from the host. While system containers are lightweight due to the 
absence of guest kernel and hardware emulation, they can only run on Linux host 
and are bonded to the host’s kernel. Linux container (LXC/LXD) is an example of 
system-based containers.

Application-Based Containerization it isolates an application from other applica-
tions running on top of shared kernel and shared OS. Because of sharing the same 
kernel and OS, application containers are lighter than system containers. The appli-
cation container only encapsulates the necessary libraries, configurations, and 
dependencies needed to run the application. Therefore, its resource footprint is sig-
nificantly lower than VM and system containers. This makes the instantiation of 
virtualized applications appropriate for IoT services [7]. A well-known example of 
an application container is Docker.
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 A. State-of-the-Art Edge Network Solutions for IoT Applications
 B. Access Migration

In the standard IEEE 802.11, clients actively scan for available APs for associa-
tion in a discovery phase. During the scanning process, the AP responding to the 
probe message becomes a candidate for the client. When the client selects an AP, the 
association occurs between the AP basic service set identifier (BSSID) and the cli-
ent MAC address. During this process, the infrastructure cannot control client asso-
ciation decisions. In order to change the AP, the client initiates a handoff process, 
which takes approximately 2 seconds [8].

In order to minimize the reassociation time, many fast handoff schemes have 
been proposed in [9–13]. These techniques can be divided into a) scanning time 
minimization and b) authentication time minimization. In the process of minimizing 
the scanning time, the goal is to identify a target AP as soon as possible. For exam-
ple, synchronization scan [9], intelligent channel scanning [10], neighboring graph 
[11], selective neighbor caching [12], AP prediction [13], and IEEE 802.11k are 
scanning time minimization techniques. In authentication time minimization, pre- 
authentication [13] was presented and detailed in IEEE 802.11r. While the proposed 
technique can minimize the reassociation latency, they involve modification to cli-
ent devices and require additional signaling. The fact that these techniques require 
changes to the client side challenges the idea of bring your own device, which states 
that the infrastructure must accommodate variety of user devices.

In order to move client-AP association decisions from the client to the infrastruc-
ture, a virtual access point (vAP) was introduced in [14]. A vAP is an abstraction of 
the network functions created to connect clients. Each client associates to a dedi-
cated vAP with unique parameters. Based on [14], the client associates with the 
vAP and periodically receives beacons to know that it is still within the coverage of 
its AP. The received signal strength perceived by the client is encapsulated in the 
beacon so that neighboring APs can also learn clients signal strength. Each AP 
maintains two databases, namely, managed and monitored lists, which keep clients’ 
signal strength. The managed database stores the signal levels of clients currently 
associated with the AP, while the monitored database stores the signal levels of cli-
ents that the AP can hear. Access migration occurs when a neighboring AP receives 
a beacon from the client with signal strength higher than the signal strength adver-
tised by the serving AP. This way, the association decision is moved to the infra-
structure. However, there are drawbacks. It is assumed that all APs operate on the 
same channel so they are able to hear the advertised signal level. This makes the 
solution impractical for large-scale deployment and frequency planning. In addi-
tion, since the management of the vAPs is in a distributed fashion, a global view 
is absent.

To advance the work presented in [14], a multichannel extension of vAP para-
digm is proposed in [15]. In multichannel vAP deployment, the APs operate in 
 different channels and communicate with each other to support client mobility. 
After a client connects to a vAP managed by physical AP, the AP monitors the client 
signal strength level. If the signal level reaches below a predefined threshold, the AP 
sends a scan request to the neighboring APs. As soon as a neighboring AP responds 
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to the request, the client is instructed to switch channels and continue communicat-
ing with the new AP. This solution defeats the interference problem caused by oper-
ating on the same channel, but still remains a distributed solution without a 
global view.

On the other hand, an SDN-based WiFi framework dubbed Odin is introduced 
in [16]. Odin incorporates SDN solutions into vAP paradigm. In other words, the 
programmability and global view features of SDN are used to manage clients’ 
mobility. The Odin framework is used to migrate vAPs from an AP to another 
while generating game traffic on the client side in [17]. While [16, 17] enable flex-
ible and scalable management, they still consider that all APs are running in the 
same channel. Lately, an approach incorporating the advantages of SDN while also 
operating in a multichannel is considered [18, 19].

 Containerized Application Migration

Service migration can be divided into stateful and stateless. In a stateless migration, 
the state of the application is not preserved when the service is relocated to the tar-
get host. In the case of stateful migration, the state of the application is maintained 
when the execution of the application is continued on the target host. There are three 
types of stateful migration techniques, stop and copy [19], pre-copy [20], and post- 
copy [21]. Stop and copy freezes the application, checkpoints its state, copies the 
application and its state to the target, and then resumes the application. Pre-copy 
executes iterative state checkpoint while the application continues to run and then 
terminates with a shorter stop and copy. Finally, post-copy performs a short stop and 
copy to relocate the important execution state, then resumes the application at the 
target, and retrieves the rest of the data as required.

VM live migration is well investigated [22] and many effective solutions are 
commercially available. For instance, a pre-copy-based VM live migration scheme 
is presented in [21]. An active VM continues to run in the course of in-memory data 
iterative pre-copying. During a consecutive iteration, only changes in memory 
(dirty pages) are transferred. At last, a final state copy is performed while the VM 
instance is frozen and then transferred to the destination host. This way, the amount 
of downtime is greatly reduced when compared to a pure stop-and-copy scheme. 
Although the work in VM migration is mature, most of the existing solutions are 
tailored for data center environment where network-attached storage (NAS) and 
specific virtualization technology are utilized. NAS enables all the host machines 
in a data center to access a network-shared storage which removes the need for 
migrating disk storage. However, in a scenario where migration takes place between 
MECs, state and local disk storage has to also migrate over wide area net-
work (WAN).

Lately, container migration has caught much attention from the research com-
munity [23, 24], especially since containerization offers many advantages, in 
terms of resource efficiency and performance, over traditional hypervisor-based 
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virtualization. This fact enables the instantiation of lightweight containerized 
applications suitable for IoT services [25]. In [23], container migration mecha-
nism is developed for power efficiency optimization in heterogeneous data center. 
This work assumes that the source and destination hosts have access to a NAS and 
thus container data is not copied over WAN.

Furthermore, a framework for migrating containerized applications is presented 
in [24]. The proposed framework is the first to consider MEC environment for con-
tainer migration. Fundamentally, the framework is a layered model which aims to 
reduce the downtime incurred by the migration process. While the presented results 
show reduction in downtime as a result of layering, the framework relies on stop- 
and- copy migration which is not an efficient method for containers with large in- 
memory state. In our proposed solution, we develop a pre-copy procedure to migrate 
containerized applications between edge clouds.

 Mobility Support in Edge User Application

 C. ARNAB Double-Tier Migration

ARNAB [26] is a novel architecture which provides transparent service conti-
nuity through access and application migrations. The term ARNAB is an Arabic 
word which means rabbit. ARNAB is given for the architecture since the user 
service exhibits the rabbit behavior hopping through the WiFi infrastructure to 
support user mobility. Furthermore, ARNAB is said to be transparent since there 
is no modification to the user device required for its operation. The main objective 
of proposed architecture is to deliver seamless user experience. ARNAB utilizes 
double-tier migration, namely, user connectivity migration and application migra-
tion. The first migration scheme uses vAP to eliminate WiFi handoff delay and 
relocate the association decision-making to the infrastructure. The second tier 
uses iterative copying scheme to minimize the downtime during application 
migration.

 D. Follow Me Cloud

Follow me cloud (FMC) [27] is a novel architecture that enables cloud services 
(i.e., running in distributed data centers) to follow the users as they roam through 
the network. The FMC controller manages computing and storage resources of the 
data centers and decides which data center the user should be associated with. 
Based on FMC, a migration mechanism is developed to ensure service low latency 
[28]. However, the minimum reported migration downtime remains high for seam-
less service experience.

 E. Follow Me Fog and sFog

Follow me fog (FMF) and seamless fog (sFog) are proposed to pre-migrate 
computation jobs before radio handover occurs during user mobility. This is 
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accomplished by constantly monitoring the received signal strength indicator 
(RSSI) from different fog nodes. Once the RSSI of the current node (i.e., serving 
the user) keeps decreasing and the RSSI of another node keeps increasing, the 
computing jobs are pre-migrated to the new node before the reassociation takes 
place. This way, FMF and sFog support user mobility by predicting the target fog 
node beforehand and thus reducing the waiting time for computing jobs to be 
available.

 F. SharedMEC

SharedMEC [29] is an architecture which combines the standard cellular hando-
ver process with service handover. In SharedMEC, an edge platform is shared by 
multiple femto base stations to support user mobility. The architecture employs an 
algorithm to decide when to migrate user services. In addition, an analytical model 
is proposed to analyze the total cost of migrating user service.

3  Big Data Enabling Technologies

Velocity (real-time collection), volumes (large amount), and variety (different 
kinds) are the three data characteristics that are usually associated with the defini-
tion of big data. Traditional SQL-based database management systems fail to store 
and manipulate such data. Therefore, NoSQL (not relational) databases came into 
the picture as a solution. In this section, we present some technologies that deal with 
the storage and the analysis of big data.

3.1  Storage

 MongoDB

MongoDB is a general-purpose, document-based, distributed database that is suit-
able for IoT application [30]. It provides an Intelligent Data Platform that supports 
IoT Apps from Edge to the core or the cloud. Figure 2 [31] shows the architecture 
of MongoDB. It also provides real-time and event processing.

 CassandraDB

Apache Cassandra is an open-source NoSQL wide-column database. It adopts a data 
replication mechanism on a cluster of machines. Therefore, if one or more machines 
fail, based on the configuration of the replication factor, it still can provide the 
data with no data loss. Moreover, Cassandra allows adding/removing machines to 
existing clusters which permits scale up or scale down capability [32].

M. A. Zaid et al.



137

 HBase

Apache HBase is an open-source and distributed database that is created after 
Google’s Bigtable. It presents Bigtable-like capabilities on top of Apache Hadoop 
and HDFS. Also, it provides a real-time read/write access and designed to host very 
large tables – billions of rows X millions of columns [33].

 OpenTSDB

It’s very common in IoT solutions that several sensors generate data that monitor 
physical/cyber metrics over time (time series). One suitable way to store such data 
is the time series database OpenTSDB. Time Series Daemen (TSD) provides APIs 
which allows client applications to write and read data. TSD stores the time series 
data on HBase [34].

3.2  Analytics

 Hadoop MapReduce

One of the most widely used analytic frameworks is Hadoop MapReduce. It is 
designed to execute batch processing analytics tasks on a large amount of data in a 
parallel manner. A typical Hadoop cluster could have thousands of machines that 
are running both the storage node (HDFS) and the analytical node (MapReduce) [35].

Fig. 2 Fog/edge placement in IoT architecture
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 Spark

Unlike Hadoop, Apache Spark is designed to support real-time and stream process-
ing. Also, it stores the data on Hadoop; therefore Spark has the ability to run batch 
processing as well. Spark provides rich features with different APIs that make it 
very suitable for running machine learning applications. For example, Spark sup-
ports applications written in Java, Python, and Scala [36].

3.3  IoT Protocols

In this part, we demonstrate some of the used protocols, interfaces, and APIs in the 
realm of IoT, cloud, and big data analytics. Since the protocol stack from sensors to 
business in IoT is very wide, we selected the commonly used ones and applicable in 
the context of smart cities and urban development.

 REST

One of the most commonly used web services is the representational state transfer 
(REST). As Wikipedia’s definition, it is a software architectural technique that 
defines a set of constraints to be used for creating web services. Web services that 
are compliant to the REST architectural style provide interoperability between soft-
ware component systems on the Internet using the http protocol. The exchanged 
messages could be in JSON or XML format [37].

 AMQP

With heterogeneous platforms and systems in the IoT ecosystem. Connecting dif-
ferent systems with each other will become a challenge during the integration 
phase. Middleware technologies such as the Advanced Message Queuing Protocol 
(AMQP) could provide a standard way of getting the system connected. AMQP is 
an open standard for exchanging messages between different applications. Also, in 
a loosely coupled fashion, it connects systems, feeds business processes with the 
required information, and provides reliable transmission of the messages [38].

 MQTT

In IoT architecture, one of the commonly used solutions to connect limited resources 
devices (sensors) to other elements, such as the gateway or the network server, is the 
MQ Telemetry Transport (MQTT). It plays the role of communication infrastructure 
where one device would publish the data to MQTT and another receiver would 
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subscribe to get it. MQTT is fitting for machine-to-machine (M2M) communica-
tion. Several products implement MQTT, for example, RabbitMQ, Mosquitos, and 
Erlang MQTT [39].

 D2D

When we are considering edge computing in the fog devices, device-to-device 
(D2D) communication could play an important role as devices might hand off some 
tasks to a more capable device, to an idle device, or to a less loaded one. From 
another point of view, EC also could help in the utilization of the devices. Therefore, 
we present the D2D which is defined as direct communication between two mobile 
devices with no need for going through the base station (BS) or the core net-
work [40].

The aforementioned technologies for both analyzing and storing big data are 
available as Docker containers. For example, Docker Hub [41] has images for 
MongoDB, Cassandra, HBase, OpenTSDB, and Spark. Also, a Docker image is 
available for [35]. Therefore, edge computing is achievable with the existence of 
these technologies.

3.4  Edge-Based and Cloud-Based Use Cases

 GeeLytics

Large-scale implementation of IoT solutions in different areas will lead to the need 
for real-time processing of stream data. Sensors like surveillance cameras, smart-
phones’ cameras, and audio recording will generate a massive amount of streaming 
data. The proposed system in GeeLytics [42] attempts to provide a solution by 
exploiting the edge computing for processing the stream data. GeeLytics uses the 
cloud for offloading. Moreover, it takes into consideration the geographic location 
of the data stream sources and dynamically steers the processing of the tasks to the 
edge. These tasks could be depicted as isolated Docker containers. In summary, 
GeeLytics [42] could be used in different use cases, such as smart traffic, crowd 
prediction, and globalized smart city, which promises to provide the application 
with real-time processing of stream data.

 Vehicular Fog Computing

Traffic management systems (TMS) play an important role in smart cities and 
urban development. However, it demands an ultralow latency for managing and 
monitoring the traffic. Edge computing can enable TMS to provide services that 
meet the aforementioned demands. The authors in [43] have proposed the vehicular 
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fog computing (VFC), which is a combination of exploiting fog computing 
(cloudlet layer) and vehicular networks. Cloudlet represents the grouping of some 
elements in the layer between the cloud and the vehicles. For example, routers, 
access points, and base stations are cloudlet layer’s components. An important 
design principle of VFC is using both parked and moving vehicles as computing 
resources for data processing. Cloud computing is not totally abandoned, but it’s 
being used for offloading. In order to minimize the response time, the authors in 
[43] proposed a VFC-enabled offloading algorithm for load-balancing optimiza-
tion between the cloudlet fog layer and the vehicular network. The use case for the 
system was the real-world city map and routes of taxis in Shanghai, China. 
Compared to a random approach algorithm for offloading, the results show that 
the response time of the proposed solution was 0.6 second while the randomized 
approach was 4.2 seconds. In conclusion, with the use of edge computing and a 
novel load balancer algorithm, the system in [43] GeeLytics can provide a mini-
mum response time for TMS.

 Recommender System

IoT and big data analytics enable the development of smart and connected com-
munities (SCC), where systems can make decisions such as reduce traffic conges-
tion, fight crime, foster economic development, and manage the effects of a 
changing climate. The proposed architecture in [44] is composed of four layers. 
First is the sensing layer where data is being generated. Data sources are not only 
traditional sensors and open data but also personal smartphones’ sensors as means 
of mobile crowdsensing (MCS). Second is the interconnecting layer which repre-
sents the communication infrastructure among all the layers. Third is the data layer 
which serves as the big data layer where data storage and analysis takes place. 
Finally, the fourth one is the service layer which has the APIs and the applications 
offered to the end users. In Trentino, Italy, the context-aware recommender system 
TreSight was implemented.

The user (tourist) will wear a bracelet IoT device and install the recommenda-
tion system on his/her smartphone. Points of interest locations in the city will have 
a HotSpot device that interacts with the bracelet, senses physical quantities from 
the environment, and provides the data to the cloud. From the connected bracelets 
to the HotSpot, the system can calculate the number of tourists in a particular loca-
tion. The HotSpot sensors feed information about the temperature, humidity, and 
other physical quantities to the system. From OPenData Trentino, the system can 
gather weather information.

The system stores the data in MongoDB and uses Wi-Fare Cosmos for Big 
Data Analysis integrate with Hadoop. Based on the input data, the system makes 
decisions. Therefore, it can send certain knowledge to tourist-related service pro-
viders (restaurants, hotels, etc.) and recommend the user of his/her next place to 
visit [44].
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 Digital Smart City

The community expects smart cities to facilitate the citizens, enhance people’s 
everyday activities, and help the authorities for better planning of the city and the 
provided services. To achieve that there is a need for a general system, which plays 
the role of an integration medium to link all existing IoT smart city systems. Things 
from smart homes, smart parking, vehicular networking, weather stations, and sur-
veillance systems generate a massive amount of heterogeneous data. The goal is to 
connect all these systems; therefore, the proposed system in [36] suggests a central 
data hub for data collection from all sources. Then, it will send it to the cloud for 
processing.

On the cloud, Spark provides real-time processing, Hadoop for batch data pro-
cessing, and Giraph over Hadoop for big city graph processing. The system will 
provide a set of APIs which allow the applications to consume the processed version 
of the data for further application-specific knowledge extraction.

4  Machine Learning for Smart Urban Development

The explosion in data gathering ability of cities itself is not useful, unless effective 
analytics are employed to extract meaningful information. Intelligent machine 
learning (ML) algorithms are applied on the collected data for intelligent insights. 
This is where the big data analytics techniques, introduced in previous section, 
come into play. The focus of this section is on new and efficient machine learning 
algorithms that have been designed to exploit the big data analytics to further 
enhance urban development.

When it comes to Internet of Things, we collectively refer to different sensors, 
actuators, and other smart objects that are essentially the “things” [2] used for data 
collection in smart cities. The data generated in smart cities come with a host of chal-
lenges, in terms of volume, velocity, and variety. The ML algorithms in the context 
of smart cities need to accommodate all the abovementioned factors to process the 
generated data and extract information to make intelligent decisions. The following 
section – a primer on machine learning – will lay a groundwork for ML algorithms 
in the context of smart decision-making for urban development.

4.1  A Primer on Machine Learning

This section will serve as brief introduction to machine learning and various 
approaches in the context of smart urban development. Relevant examples are also 
included in this section. This is to show how the confluence of big data and machine 
learning advances propel smart urban development.
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A pioneer in the area of machine learning is Arthur Samuel who has formulated 
the definition of machine learning as: “Field of study that gives computers the abil-
ity to learn without being explicitly programmed” [45]. A more workable defini-
tion was given by an expert, Tom Mitchell, whom defines a well-posed learning 
problem as: “A computer program is said to learn from experience E with respect 
to some task T and some performance measure P, if its performance on T, as mea-
sured by P, improves with experience E” [46]. To illustrate this definition in the 
context of smart urban development, we base our discussion on smart home sys-
tems, such as Google Home, Amazon’s Alexa, and Apple Home, which cater to 
user’s requests primarily through voice commands. In accordance to the definition, 
the following are defined:

• Task T – The task expected to be performed by the end user, like carrying out the 
desired voice command.

• Performance measure P – The accuracy of the voice command.
• Experience E – The actual execution of the voice command, both when it’s inter-

preted correctly or otherwise. This includes vast amounts of historical data, 
which may also include human feedback.

In general, machine learning algorithms can be broadly classified into: supervised 
learning, unsupervised learning, and reinforcement learning. There are other types 
of algorithms like recommender systems, etc., but the aforementioned are the most 
relevant to the current context.

 Supervised Learning

Algorithms of this category typically solve problems with the following 
characteristics:

• A dataset to train the system.
• There’s a notion of expected output.
• Usually the problems solved using this algorithm have some sort of relationship 

between input and output.

These are typically the defining features of a supervised learning problem. And 
supervised learning problem can be further classified into two categories:

 1. Regression Problem: The basic framework of supervised learning remains the 
same, the characteristics of regression problem is the output is a continuous data 
stream, i.e. input variables are mapped to a continuous function.
Example: Given the sizes of different houses and the respective prices in the cur-
rent real estate market, predicting the price of a house based on size is a regres-
sion problem since price is a continuous function of size here.

 2. Classification Problem: The difference here is the output in supervised learning 
is a discrete quantity and depends on the input.
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Example: Reformulating the previous example in regression problem, if the 
objective is to check if the selling price of house is above or below a certain 
value, then in this case there are just two possible outputs; this is a classification 
problem [47].

 Unsupervised Learning

Algorithms in this category typically solve the problems with the following features:

• There is a dataset to train the system.
• The defining feature is the output; there is very little to no information of what 

the expected output would be.
• Usually the result of applying this algorithm is, a structure is derived in seem-

ingly unrelated data.

The algorithms in this category can be classified as:

 1. Clustering Problem: The objective here is to group the raw data based upon the 
similarities.
Example: A supermarket chain grouping its customers based on the brands they 
prefer, to estimate the future demand of a brand.

 2. Non-clustering Problem: The objective in this case is to filter data from what 
could be considered as irrelevant noise.
Example: A voice recognition intelligent home system trying to separate voice 
commands in a noise-filled environment (more formally known as “the cocktail 
problem” in literature) [48].

 Reinforcement Learning

Reinforced learning algorithms are defined by the following features:

• The software agents involved take actions with the sole purpose to maximize 
some notion of cumulative reward, which depends on the context of the problem 
solved.

• Unlike supervised learning it is not necessary to label the inputs and outputs, and 
there is no need to rectify suboptimal actions.

• The algorithms in RL tend to find a balance between exploring the unknown and 
exploiting the known [49, 50].

Many of the smart city applications involve RL, since there is absence of output 
in many cases and choosing the correct action is cumulatively rewarded, so that the 
desired outcome can be extracted. However, there is a drawback when it comes to 
smart city context. This is due to the enormous volumes of data; it’s practically 
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impossible for humans to provide a reward feedback. A work around for this prob-
lem is to apply semi-supervised learning where data is partially labelled [3].

Most of the ML algorithms in the literature fall into one of the aforementioned 
categories. However, the future trend seems to shift toward deep learning (DL) and 
deep neural network (DNN). Briefly speaking deep learning is a subset of machine 
learning where multiple layers of ML algorithms are applied, such that the output of 
one stage is fed to the input of the next. This is implemented using specialized algo-
rithms known as neural networks, aptly named, since they resemble the network of 
neurons in the human body [51].

4.2  Characteristics and Challenges for ML Algorithms 
in Smart City Ecosystem

Smart cities as mentioned in the previous section must face three Vs – variety, 
volume, and velocity – to handle data and to effectively use it in ML algorithms. 
Another challenge comes when choosing the layer to run the ML algorithm, i.e., 
edge, fog, or cloud. This depends on the type of smart city application. As an exam-
ple, let’s take the case of autonomous vehicles – here the application demands strin-
gent latency requirements for safety purposes. Hence, the processing is usually 
done in the vehicle itself, i.e., the edge node, instead of sending it to the cloud. It’s 
imperative that all these factors are taken into consideration when implementing 
ML algorithms.

M. Mohammadi et al. in [3] also observe the following challenges for ML in 
smart city context:

• Implementing constant human feedback to enable learning would be difficult 
due to enormous volume of data involved.

• The rate of data generation, i.e., the velocity, also further makes it difficult for 
human review; hence learning should be automated.

• Since applications in smart cities tend to evolve overtime, a continuous and 
dynamic learning mechanism becomes a need.

• Because of the huge scale and volume, uncertainty and noise exist in thus gener-
ated data. Challenges are summarized in Fig. 3.

4.3  ML Smart Urban Development: A Few Use Cases 
from Literature

Accurate object detection is needed for traffic control and autopilot in self-driving 
cars. NVIDIA has developed a state-of-the-art tool called NVIDIA Deep Learning 
GPU Training System (DIGITS) [52]. The link to the complete article can be found 
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in the bibliography. YOLO (current version YOLOv3) [53] is another object detec-
tion algorithm commonly used for object detection. Nagaraj et  al. [54] imple-
mented a traffic object detection using the abovementioned tools on the edge node. 
Edge node was chosen to keep the latency low, a common requirement for such 
applications. Their system could distinguish and detect objects from 14 different 
categories. In another case, Pacheco et al. [55] have implemented object detection 
in all the three different nodes, i.e., edge, fog, and cloud, for their smart classroom, 
thus demonstrating the versatility of these algorithms.

Nikouei et al. further have implemented surveillance as a service on the edge 
[56]. They have used lightweight detection tracking algorithms. The focus of their 
work is human object detection, further demonstrating that edge node can be used 
for effective implementation of ML algorithms.

In the field of crime and security for cities, Lourenco et  al. [57] developed a 
framework called CRiMINaL (Crime patteRn MachINe Learning). The system uses 
historical data of various crimes like theft to assist the authorities in crime preven-
tion. A relational machine learning approach was used in this framework. This sys-
tem has been implemented by the authors.

Traffic flow prediction is another area of concern for any city. This can also be 
tackled by ML algorithms. Mohammed and Kianfar [58] designed and implemented 
ML algorithms to predict the traffic flow in Interstate 64, Missouri, USA. With such 
systems, proactive traffic management can be implemented for smart cities.

There are many use cases where ML techniques are increasingly being used to 
undertake smart urban development. In Fig. 4, the gist of data flow and levels in ML 
algorithms for smart city applications are summarized.

Fig. 3 Challenges in smart cities for ML implementation [3]
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5  Conclusion

This chapter discusses the role of emerging technologies in smart urban develop-
ment, specifically how edge computing empowers big data and machine learning 
with computational power to enable disruptive IoT applications. Also, it presents 
the current trending technologies in the storage and the analytics of big data. For 
example, NoSQL databases enable the storage of massive amounts of data. 
Moreover, analytics frameworks provide the necessary data analysis, processing, 
and visualization. Machine learning algorithms allow knowledge extraction, clas-
sification, clustering, as well as other functions to make sense of the data, thereby 
enabling a more intelligent decision-making system. On the other hand, from the 
use cases presented in this chapter, we infer that edge computing holds great poten-
tial in improving the way computational tasks are currently being processed. In 
applications such as waste management systems, smart traffic, and recommender 
systems, the use of edge computing can dramatically reduce the latency. Such 
improvements will expedite the development process toward smart cities.
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