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Abstract. Deep Neural Networks (DNNs) have recently received sig-
nificant attention in the side-channel community due to their state-of-
the-art performance in security testing of embedded systems. However,
research on the subject mostly focused on techniques to improve the
attack efficiency in terms of the number of traces required to extract
secret parameters. What has not been investigated in detail is a con-
structive approach of DNNs as a tool to evaluate and improve the effec-
tiveness of countermeasures against side-channel attacks. In this work, we
close this gap by applying attribution methods that aim for interpreting
Deep Neural Network (DNN) decisions in order to identify leaking oper-
ations in cryptographic implementations. In particular, we investigate
three different approaches that have been proposed for feature visual-
ization in image classification tasks and compare them regarding their
suitability to reveal Points of Interest (POIs) in side-channel traces. We
show by experiments with four separate data sets that the three meth-
ods are especially interesting in the context of side-channel protected
implementations and misaligned measurements. Finally, we demonstrate
that attribution can also serve as a powerful side-channel distinguisher
leading to a successful retrieval of the secret key with at least five times
fewer traces compared to standard key recovery in DNN-based attack
setups.

Keywords: Side-Channel Attacks · Deep Learning · Machine
Learning · Leakage analysis

1 Introduction

Side-Channel Analyis (SCA) is a technique by which an adversary circumvents
the security assumptions of a cryptographic system by analyzing its physical
properties. In this regard, timing [19], power consumption [18], and Electromag-
netic (EM) emanation [3] have been investigated to reveal secret parameters.
In order to decrease the information leakage of cryptographic implementations,
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researchers and industry came up with dedicated countermeasures which can be
roughly classified into Masking and Hiding [21]. However, more powerful attacks
demonstrated that even side-channel protected implementations may still be vul-
nerable [23].

A new line of work that deals with the application of DNNs for side-channel
evaluation of protected and unprotected cryptographic implementations has
been presented recently. In general, DNNs provide a powerful method for a
variety of different real-world problems such as image classification [16], natural
language processing [31], and medical applications [10]. In the context of SCA,
especially Convolutional Neural Networks (CNNs) have shown to be advanta-
geous over standard analyzing tools like TAs in different settings (for example
in case of desynchronized traces or an unknown leakage model) [8,17,20,30].

Due to the black-box nature of DNNs, understanding the operation of Deep
Learning (DL) models is an active area of research. It is evident that safety
critical applications such as medicine or autonomously driving cars need to be
validated exhaustively prior to their actual release. Regarding image classifica-
tion, several so-called attribution or heatmapping methods have been proposed
to explain the predictions of DNNs. The idea is to visualize the pixels of an input
image which had the greatest influence of classifying it into a certain category.
By doing so, it is possible to make the decisions of a DNN more transparent
and explainable as it helps to identify if a DNN was able to learn the “correct”
features during training.

In this work, we analyze different attribution methods of DNNs for their
suitability in SCA. More specifically, we investigate saliency maps [28], occlusion
[32], and Layer-wise Relevance Propagation (LRP) [6] to extract the features or
POIs from a trained DNN which are most informative for symmetric key recov-
ery. Proper POI detection is commonly considered as crucial for the success of
profiled SCA (i.e. attacks which assume an adversary with access to a profiling
device which is similar to the target) and usually performed as a preprocessing
step ahead of the actual attack [24]. Here, we take another perspective and show
a technique to compute the relevance of sample points in side-channel traces
after the profiling step, which is applicable even in case of employed counter-
measures. This can be seen as a constructive method for evaluators to identify
the operations of the implementation under test causing the highest leakage.
Furthermore, we demonstrate that attribution methods can also be used as a
distinguisher in DNN-based SCA.

1.1 Contribution

The contributions of this paper are manifold:

1. We show a generic technique that can be used to calculate the POIs from a
trained DNN. It is generic in a sense that it is independent of the actual used
attribution method.

2. Based on the commonly known Key Guessing Entropy (KGE), we define two
novel metrics tailored to the specifics of DNNs in order to quantitatively asses
how well the selection of POIs is done.
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3. We compare three attribution methods on four different data sets: a hardware
implementation (with and without jitter in the traces) and two protected
software implementations of the Advanced Encryption Standard (AES). Our
results confirm that attribution methods are more suitable to extract POIs
from protected implementations than a standard technique from the side-
channel domain.

4. We show how LRP can be embedded in profiled attack setups to distinguish
between correct and incorrect key hypotheses. We demonstrate by practi-
cal experiments that our proposed method is more efficient than using the
network predictions directly for key recovery.

1.2 Related Work

Identifying POIs in side-channel traces has been traditionally studied in the con-
text of TAs introduced by Chari et al. [9], in order to reduce the computational
overhead during calculation of the covariance matrices. In particular, Difference
of Means (DOM) [9], Sum Of Squared pairwise T-differences (SOST), Sum Of
Squared Differences (SOSD) [14], and Principal Component Analysis (PCA) [5]
have been proposed for that purpose. Another common strategy for POIs selec-
tion is based on Pearson correlation, whereby the importance of sample points
is measured by the correlation coefficient of the actual power consumption and
some key-dependent target intermediate value [21]. Picek et al. investigated the
so-called Wrapper and Hybrid methods stemming from the machine learning
domain to determine a suitable subset of features in order to boost the efficiency
of side-channel attacks [24].

In contrast to most of the aforementioned approaches, leakage detection tech-
niques such as Test Vector Leakage Assessment (TVLA) aim for revealing data-
dependent information leakage independent of any power model or intermediate
value [11]. It can thus be considered as a complementary tool to identifying leak-
ing operations in a first step, then performing an actual attack to check whether
the found leakage can be exploited for a successful key extraction.

Very recently, Masure et al. came up with an idea similar to our work: POIs
visualization after successful training of a neural network [22]. Their method
based on sensitivity analysis is related to the saliency technique. In this work,
we conduct a more comprehensive study of DNN attribution methods for side-
channel analysis by comparing different techniques using a novel framework for
POIs selection and evaluation. We additionally present, to the best of our knowl-
edge, the first SCA distinguisher based on DNN attribution.

1.3 Structure of the Paper

The structure of the paper is as follows: In Sect. 2, we shortly recap DL-based
SCA and give an introduction to DNN attribution methods. In Sect. 3, we present
our approach for POIs visualization and apply them to four data sets for leakage
analysis. In Sect. 4, we evaluate the quality of side-channel heatmaps. In Sect. 5,
we describe our attribution-based technique for key recovery and use them to
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attack an unprotected and a protected implementation of the AES. The last
section summarizes the paper and gives insights on possible future work.

2 Preliminaries

This section outlines the foundations of DL-based SCA. Furthermore, back-
ground and motivation of DNN attribution methods is provided.

2.1 Deep Learning-Based Profiled Side-Channel Analysis

Profiled SCA is divided in two stages: profiling phase and key recovery phase. In
the former, the adversary takes advantage of a profiling device on which he can
fully control input and secret key parameters of the cryptographic algorithm.
He uses this to acquire a set of NP profiling side-channel traces x ∈ R

D, where
D denotes the number of sample points in the measurements. Let V = g(p, k)
be a random variable representing the result of an intermediate operation of the
target cipher which depends partly on public information p (plaintext or cipher-
text chunk) and secret key k ∈ K, where K is the set of possible key values. V
is assumed to have an influence on the deterministic part of the side-channel
measurements. In the context of DL or Machine Learning (ML) in general,
the goal of the attacker during the profiling phase is to construct a classifier
that estimates the probability distribution f(x) ≈ P[V |x] using the training set
DTrain = {xi, vi}i=1,...,NP

.
During the key recovery phase, the adversary generates a new set DAttack

with NA attack traces from the actual target device (which is structurally iden-
tical to the profiling device) whereby the secret key k is fixed and unknown. In
order to retrieve it, Log-likelihood (LL) scores over all possible key candidates
k∗ ∈ K are computed and combined to:

dLL(DAttack, f) =
NA∑

i=1

log f(xi)[g(pi, k∗)] (1)

The k-th entry in score vector dLL corresponds to the correct key candidate [25].
A commonly known metric in profiled SCA is the so-called KGE or key rank
function which quantifies the difficulty to retrieve the correct value of the key
regarding the required number of traces from DAttack [29]. It is computed by
performing a ranking of d after the evaluation of each attack trace. Intuitively,
the faster the key rank converges to one, the more powerful is the attack.

2.2 Deep Neural Network Attribution Methods

In recent years there has been a growing interest in neural networks having
several layers of neurons stacked upon each other, which are commonly referred
to as DNNs. They represent a particular powerful type of ML techniques that are
able to represent the learning task as a nested hierarchy of concepts, where more



DNN Attribution Methods for Side-Channel Analysis 649

abstract concept representations are built from simpler ones. Throughout the
paper we assume a DNN as a classification function that takes an input vector
x = [x1, . . . , xD] ∈ R

D and produces an output f(x,W) = [f1(x), . . . , fC(x)],
where C denotes the number of output neurons (=number of categories). The
parameters W are learned during training to approximate f from a broad class
of functions to map x to the desired output. Training a DNN is usually done
in an iterative, multi-step process by which the parameters of the network are
optimized to minimize a loss function, which depicts the difference between the
expected output (i.e. labels) and the prediction result. In practice, optimizer
algorithms such as Stochastic Gradient Descent (SGD) or ADAM are employed
for that purpose [15].

Given a specific class c, attribution methods for DNNs aim to determine
the influence rc = [rc1, . . . , r

c
D] ∈ R

D of each data point xi of an input vector
(sometimes also called features) with respect to the output neuron fc [4]. The
result can be visualized, e.g., as a heatmap that indicates the features that
contributed positively and/or negatively to the activation of the target output.
In the following, we briefly summarize three recent attribution methods that
have been proposed for calculating heatmaps for 2D images, which we later
apply to 1D side-channel traces. We have chosen these three methods for two
reasons: First, they are not designed for a specific type of DNN architecture
(as for example Grad-CAM [27] and deconvolution [32] for CNNs) but generally
applicable to several types of DNN and activation units. Second, we intend to
compare techniques coming from different classes of attribution methods, i.e., a
gradient-based method (saliency maps), a LRP-based method, and one that is
based on the perturbation of the input (occlusion).

Saliency Maps. Simonyan et al. established saliency maps in 2013 in order to
highlight class discriminative areas of images captured by CNNs [28]. To this end,
the norm value ‖·‖∞ over partial derivatives of the output category is computed
with respect to the input features:

rci =
∥∥∥∥

∂fc(x)
∂xi

∥∥∥∥
∞

(2)

Partial derivatives are found by running the back-propagation algorithm
throughout the layers of the network. Intuitively, the magnitude of the derivative
indicates which features need to be modified the least to affect the class score
the most. However, since the sign of the derivative is lost when using the norm,
only positive attributions of input features can be detected with the saliency
method. It consequently provides only local explanations, e.g., by indicating
the features that make a car more/less a car, but no global explanations which
features compose a car [26].

Layer-wise Relevance Propagation (LRP) was introduced by Bach et al.
as a general concept to achieve a pixel-wise decomposition of the prediction f(x)
as a term of the separate input dimensions [6]:
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f(x) ≈
N∑

i=1

ri (3)

where ri > 0 can be interpreted as positive evidence for the presence of a struc-
ture in the picture, and ri < 0 as evidence for its absence. The algorithm follows
a conservation principle that proceeds layer by layer, by which the prediction
score fc is propagated recursively through the network until the input layer is
reached. For redistributing a layers relevance onto the preceding layer, Bach et
al. proposed the following propagation rule:

r
(l)
i =

∑

j

zij∑
i′ zi′j + ε · sign(

∑
i′ zi′j)

r
(l+1)
j (4)

Here, r
(l)
i denotes the relevance associated with the ith neuron in layer l received

from the jth neuron in the layer l + 1, and zij = a
(l)
i w

(l,l+1)
ij the weighted

activation of neuron i onto neuron j in the next layer. The ε term is added in
order to cope with numerical instabilities in case the denominator tends to zero.
The idea of the propagation rule is that neurons of the preceding layer that gave
an larger activation to neurons of the higher layer in the forward pass get more
relevance on the backward pass.

Compared to gradient-based attribution methods such as saliency, LRP
is applicable to any network with monotonous activation units (even non-
continuous). LRP furthermore provides a clear interpretation by indicating the
features for and against a category [26]. We will see later in the paper that this
property can be exploited to construct a side-channel distinguisher.

Occlusion sensitivity analysis as proposed by Zeiler and Vergus attempts to
identify the location of objects in images by systematically occluding different
regions of the input with a grey square, and monitoring the classification result
[32]. Therefore, the relevance of input features can be described as probability
drop of the correct class with respect to the position of the grey patch. It is
evident that the runtime and result of the algorithm heavily depends on the
number of features that are removed together per iteration.

In the remainder of the paper, we refer to the 1-occlusion approach given in
[4]. In 1-occlusion, exactly one feature of the input data is set to zero per time,
while the effect on the output is measured. More formally, the attribution of a
single feature can be calculated as:

rci = fc(x) − fc(x[i] = 0) (5)

where x[i] = v indicates an input vector whose ith data point has been replaced
with the value v. We have chosen 1-occlusion since the leakage information
present in side-channel traces is often concentrated in a small number of sample
points [24].
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3 Attribution for POI Analysis

In this section, we describe a method to generate heatmaps for side-channel
traces using DNN attribution and apply it to four data sets.

3.1 Side-Channel Heatmaps

DNN-based SCA aimed mainly for symmetric key recovery in the past. In this
context, especially CNNs have shown to be a suitable tool due to the fact that
they are able to automatically extract the areas in the side-channel traces which
contain the most information [8,20]. Furthermore, CNNs are able to detect POIs
that would normally not be considered by an attacker. These can be used by
the network in conjunction with the areas that contain a lot of leakage to make
the attack even more efficient, i.e., requiring less/smaller traces for a success-
ful attack. When using established SCA techniques such as TAs, the selection of
POIs has to be done manually as a preprocessing step ahead of the actual attack.
This is not only tedious, but also error prone as proper POI selection has shown
to have a significant impact on the attack efficiency [33]. Furthermore, in case
of first-order secure implementations without access to the mask values during
the profiling step, the adversary has to combine the leakage location of the mask
and the masked target intermediate value when considering a second-order Cor-
relation Power Analysis (CPA) for POIs detection. This requires to combine all
possible combination of sample points and the overhead grows roughly quadrat-
ically with the size of the traces [21].

In this section, we go one step further and describe a way to extract the POIs
from a trained Convolutional Neural Network (CNN) (or any type of DNN) that
have been considered as most discriminative to reveal the correct key, based on
the attribution methods presented in the previous section. The approach works
as follows and is summarized in (6): Given a trained DNN f , the relevance rCk

for an input trace x is found by using one of the attribution methods mentioned
in Sect. 2. Ck represents the output class under the correct key, i.e., the labels
that have been used for training of f . This procedure is conducted for a set of
NAttr traces and the average relevance r̄ ∈ R

D is calculated.

r̄ =
1

NAttr

NAttr∑

i=1

rCk(xi, f) (6)

Because r̄ has the same dimensionality as x, it can be visualized as 1D side-
channel heatmap plot. The information can be used, for example, to determine
leaking operations in cryptographic implementations since it is easily possible to
trace which operations are performed at which time intervals (at least in white-
box evaluation settings). Another use case would be to identify relevant regions
in the side-channel traces using only a subset of the available traces in a first
step, in order to decrease the number of data points for the actual attack with
the complete data set (and thus speed up calculations).
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3.2 Experimental Results

We consider four data sets for the experiments of the paper: An unprotected
hardware AES with and without jitter in the traces (denoted as AES-Serial and
AES-Serial-Desync), and two protected software implementations of the AES
(denoted as ASCAD and AES-RSM). An overview about the data sets is given
in Table 1. We have created attribution heatmaps for all data sets according to
(6) using the Python frameworks Keras [2] and DeepExplain [1]. Additionally, we
have computed Pearson correlations as a baseline. The same DNN architecture
has been used in all experiments in order to allow an unbiased evaluation. The
employed network is a CNN which consists of four blocks of convolution and
max-pooling operations followed by two fully-connected layers. Details about
the network structure along with related training parameters are described in
detail in Table 2 in the Appendix. As a preprocessing step ahead of training the
CNN, we transformed the traces of all data sets to have zero mean and unit
variance (sometimes referred to as data standardization).

Table 1. Overview of data sets

Data set Sample points Traces (Profiling) KGE < 3

AES-Serial 1000 25 000 750

AES-Serial-Desync 950 50 000 100

ASCAD 700 50 000 500

AES-RSM 10 000 100 000 20

AES-Serial. AES-Serial denotes a set of power traces of an unprotected AES
hardware design that have been acquired from a Xilinx ZYNQ UltraScale+
evaluation board. A single measurement contains 1000 data points represent-
ing approximately the time interval when the first AES round is calculated.
Since it is commonly known that the most leakage in a hardware implementa-
tion is caused by register transitions, we have used the XOR of two consecutive
S-Box outputs in the first round as target operation and consequently as labels
for training. We have trained the network using 25 000 traces and subsequently
calculated heatmaps with a subset of NAttr = 1000 measurements for each of
the attribution methods introduced in Sect. 2. NAttr was set to this value since
we observed no improvements when using more than 1000 traces for the calcu-
lation. The resulting heatmaps along with the corresponding correlation for the
correct key hypothesis are shown in the first row of Fig. 1. From there, one can
observe that the region around sample point 800 is considered as most infor-
mative by all three attribution methods as well as by the Pearson correlation.
Interestingly, the saliency heatmap indicates a wider range of samples as impor-
tant and additionally shows a second peak in the first half of the heatmap which
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Fig. 1. Mean attributions for the four data sets (left column) and corresponding corre-
lation analysis result (right column). Each curve has been calculated with 1000 traces.
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is also visible in the correlation plot. We could easily backtrack by examining the
implemented hardware layout that the found leakage is caused by unintended
high routing fanouts between four registers of the state array. Considering this,
it seems that correlation analysis gives better results than the attribution meth-
ods in this data set as four peaks are clearly visible in the correlation plot. We
will see later in the paper that this assumption is correct.

AES-Serial-Desync. This data set is similar to the former one except that
the traces have been artificially desynchronized in order to simulate jitter in
the measurement setup. To this end, we have shifted each trace to the right
with a random offset in the range [0, 50]. Cagli et al. demonstrated that CNNs
are robust to such misalignments due to the spatial invariance property of the
convolutional layers [8]. Here, our goal is to evaluate if the different attribution
methods are still able to extract POIs in case of desynchronized traces. We
examined during the experiments that our CNN architecture is indeed capable
to learn a meaningful representation from the misaligned traces. However, more
training traces have been required for a successful key recovery compared to the
aligned AES-Serial data set (50 000 instead of 25 000).

Attribution and correlation heatmaps for the AES-Serial-Desync data set can
be found in the second row of Fig. 1. One can notice that the attribution curves
look similar to the curves for the aligned traces, while the correlation-based
feature extraction totally fails in this case. Taking a closer look on the lefthand
plots, it can be observed that the four expected peaks are even better visible
than in the attribution heatmaps for the aligned traces. A second observation
that can be made is that the peaks are broader compared to the curves plotted
directly above. This due to the misalignment of the sample points and the fact
that we have calculated then mean relevance over NAttr = 1000 traces.

ASCAD is a public database of side-channel measurements and related meta-
data obtained from a first-order secured software AES implementation [25]. Each
trace is composed of 700 sample points and the targeted intermediate result is the
third byte of the masked S-Box output that is processed during the first round.
The database is split in 50 000 training and 10 000 attack traces and we have
used the complete former set for CNN training. Next, we calculated attribution
heatmaps using NAttr = 1000 measurements which are illustrated in the third
row in Fig. 1. From there, it can be noticed that the heatmaps computed by LRP
and 1-Occlusion are very similar in most areas, while the saliency heatmap shows
a different characteristic with several peaks in regions where no attribution is
found by the other techniques. However, the results look in general more noisy
than for the former data sets. Considering the Signal-to-Noise Ratio (SNR) anal-
ysis that is given in [25], one would expect to see four regions with POIs: One for
the processing of the masked S-box output in linear parts, one for the process-
ing of the S-Box output masked with the output mask, and for the processing
of the two masks each. This is mostly reflected by the LRP and 1-occlusion
heatmaps. The example demonstrates that attribution methods may also help
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to reverse-engineer internal structures of protected cryptographic implementa-
tions. As expected, correlation analysis without sample point combination fails
to extract a meaningful pattern from the first-order secure implementation.

AES-RSM. The fourth data set we have analyzed is based on a secured soft-
ware AES implementation which originates from the DPA Contest v4.2 [7]. It is
equipped with two SCA countermeasures: a first-order secure masking scheme
called Rotating Sbox Masking (RSM), and shuffling of the S-Box execution order.
All traces are composed of 10 000 sample points representing approximately the
first one and a half rounds of an encryption operation and have been acquired
on a ChipWhisperer-Lite board. Previous work showed that the implementation
can be attacked very efficiently using a CNN with Domain Knowledge (DK),
where the profiling is done directly regarding a byte of the secret key (i.e. key is
used as label) and the related plaintext byte is given to the network alongside
the trace [17]. We slightly adapted our CNN architecture used in the former
experiments to this setting. The network was trained using 100 000 traces with
random keys and once again, we calculated attribution heatmaps using a sub-
set of 1000 measurements. Since the DeepExplain framework does not support
occlusion analysis for DNNs having multiple inputs, we only report results for
saliency and LRP. In the last row of Fig. 1, it can be seen that both methods con-
sider only a small fraction of sample points as most important. Same applies to
correlation analysis. However, the remaining part of the correlation curve looks
very noisy compared to the attribution-based methods. When examining the
pseudo code of the implementation that is given in [7], it becomes evident that
the high peak in the plots represent the time window when the key is masked
before the actual AES round transformation. The second smaller peak, which
appears a bit later in the saliency heatmap, is likely due to the XOR of the
plaintext with the masked key. In RSM, the mask values are fixed to carefully
chosen constants which are rotated for every cipher execution. The results show
that such a construction is not secure enough to resist DNN-based attacks. That
is why we recommend to employ masking schemes that provide a higher level of
entropy.

DNN attribution mechanisms are especially interesting in combination with
the DK approach, since here no specific assumption about the leakage behavior
of the implementation under test is assumed. This means, an evaluator using the
method out-of-the-box is only able to validate if the implementation is vulnerable
to such kinds of attacks. Attribution-based leakage analysis supports this process
by identifying which parts of the implementation need to be fixed in order to
increase the SCA resistance.

4 Evaluating Side-Channel Heatmaps

As discussed in the previous section, side-channel heatmaps of the same data set
can vary a lot depending on the used attribution method. A natural question is
therefore which technique for computing DNN attributions is most suitable in
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the context of SCA for leakage analysis. In image classification tasks, heatmaps
are often evaluated qualitatively by human experts. This is supported through
highlighting the important pixels in the ground truth. It is trivial to see that
this process cannot be applied for side-channel traces, as it is not always possible
to judge whether a 1D heatmap indicates the ’important’ sample points only by
visual inspection. Because of that, we introduce two novel quantitative metrics
in the following to assess the quality of side-channel heatmaps.

Given an attribution heatmap r̄, we can derive an ordered sequence s ∈ N
D =

[s1, . . . , sD] that sorts the values of r̄ according to its relevance such that the
property holds:

(i < j) ⇔ (|r̄i| > |r̄j |) (7)

That means, values at the beginning of s indicate the sample points with
the highest relevance, while values at end of the vector can be considered of
less importance. We use absolute values for the comparison since a side-channel
heatmap can also contain negative attribution values as illustrated in Fig. 1.
However, the sign of the attribution can be disregarded in this case since both
positive as well as negative evidence can be considered as important for POI
detection. Based on the ordering s, we can define our heatmap metrics called
Key Rank Perturbation Curve (KRPC) and Zero-Baseline Key Guessing Entropy
(ZB-KGE).

4.1 KRPC

The KRPC is inspired by the region perturbation method proposed in [26] and
measures how the key rank calculated in the recovery phase of a profiled attack
increases when we progressively replace sample points in the traces with Gaus-
sian noise. Algorithm 1 summarizes the procedure to compute the KRPC.

Algorithm 1. KRPC
Inputs: Sorted heatmap indices s, attack (sub-)set DAttack, correct key k, trained

DNN f , number of perturbation (replacement) steps NPert

1: Initialize perturbation counter: i = 1
2: while i < NPert do
3: Get index of sample points to perturb: ip = s[i]
4: for all x ∈ DAttack do
5: Replace sample point with Gaussian noise: x[ip] = N (0, 1)
6: end for
7: Calculate key rank with updated traces: kr[i] = dLL(DAttack, f)[k]
8: Increase perturbation counter: i = i + 1
9: end while
return: Key rank vector kr for key k

We have decided to use a Gaussian noise with mean μ = 0 and standard
deviation σ = 1 (denoted as N (0, 1) in Algorithm 1) as perturbation procedure,
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Fig. 2. Mean KRPC curves of four data sets

since the injected values lie within the same distribution as our standardized
inputs. The KRPC can be interpreted as noise that is present in the attack traces,
but not in the training traces. Replacing the most sensitive samples first (i.e.
the sample points containing the most information regarding the classification)
should imply a fast decrease of the key rank.

We have computed KRPC curves for all four data sets with NPert = 250
perturbation steps. This number was chosen since it represents at least 25%
of the sample points in three of the four data sets. For computational reasons,
and since we did not see a substantial change in the KRPC curves set when
applying more than 250 perturbation steps, we used the same value of NPert for
the AES-RSM data set. Additionally, we have restricted the number of attack
traces that are used in Algorithm 1 to a value that led to a stable key rank
below three without perturbation (The exact numbers are given in Table 1). In
order to decrease the bias that is induced by a fix choice of the attack traces,
we have repeated each experiment five times and used a different subset of the
attack traces for every run. Finally, we calculated average KRPC curves which
are illustrated as a function of perturbation steps in Fig. 2.

From there, we can generally observe that the correlation analysis reaches
the highest key rank after perturbing 250 sample points in the unprotected hard-
ware setting (AES-Serial), whereas the attribution methods perform better in
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case of desynchronized traces (AES-Serial-Desync) and the protected software
implementations (ASCAD, AES-RSM). Looking at the three attribution meth-
ods exclusively, one can see that there is no clear winner over all data sets. For
example, the heatmaps computed by LRP and 1-occlusion better identifies the
most relevant POIs in the ASCAD data set in the beginning, while saliency
performs far better than the two other techniques on the unprotected hardware
implementation. We assume that this is due to the fact that saliency is only able
to provide local explanations and thus is less suitable for POI detection in set-
tings with highly multivariate leakage (i.e. implementations with masking coun-
termeasures). The unprotected hardware implementation, in contrast, exhibits
several independent leakage locations due to its serial architecture, which can be
better detected by the saliency method.

Comparing the plots of AES-Serial with AES-Serial-Desync, it is notable
that the results for the jitter-based setting are almost similar, while there are
significant differences between the attribution methods for the aligned traces. It
seems furthermore that the injected jitter is beneficial for identifying the most
relevant areas in the traces as the corresponding curves rise stronger. However,
we cannot exclude that this is solely due to the misalignment in the traces forcing
the DNN to learn spatially invariant features, or just the fact that we had to use
more traces in the training phase.

Results for AES-RSM again look very similar for Saliency and LRP, which is
not surprising when looking at the corresponding attributions in Fig. 1. Although
AES-RSM is also equipped with a lightweight masking countermeasure, the
exploited leakage is rather of univariate nature since there is only a single peak
visible in the heatmaps that is detected by saliency and LRP likewise. Same
applies to a certain degree also for correlation, but the corresponding KRPC
curve runs a bit flatter than the previous two mentioned.

4.2 ZB-KGE

Using ZB-KGE, we are able to determine how fast the key rank estimated with a
zero-baseline attack set DBaseline (i.e. an attack set where all sample points in the
traces are set to zero) converges when we continuously add relevant sample points
from the actual attack set DAttack to DBaseline. The procedure for calculating a
ZB-KGE curve is described in Algorithm 2. Intuitively, the steeper a ZB-KGE
graph decreases, the more POIs have been identified by the related side-channel
heatmap. Since the ZB-KGE simulates the absence of features, it furthermore
provides insights on how many POIs should approximately be conserved in case
of a dimensionality reduction.

Figure 3 displays the ZB-KGE as function of the number of added POIs for
the four data sets. As in the previous experiment, we have calculated mean curves
over five independent subsets of DAttack. From Fig. 3, it can be noticed that the
results are close to, but not equivalent to those computed with Algorithm 1. For
instance, correlation analysis again performs best on the AES-Serial dataset but
is defeated by the attention methods for the remaining three data sets. What we
find interesting is the fact that 1-occlusion identifies almost equally good relevant
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sample points as LRP and Saliency in the AES-Serial-Desync and ASCAD data
sets, but a bit worse in the AES-Serial data set. This is an indicator that the
information contained in a single sample point of the unprotected hardware
traces is rather small. A greater occlusion factor might be more suitable in such
cases where the univariate leakage is distributed over a large range of connected
sample points. Furthermore, it can be noticed, that the random shifting of the
data points in the AES-Serial-Desync data set has a very positive effect on 1-
occlusion. Intuitively, the random shifting induces a varying occlusion factor
which seems to be beneficial taking the results of the two previous sections into
account. This makes the technique interesting for different setups where traces
are not perfectly aligned, be it due to an unstable measurement setup, or because
of some delay-based countermeasure (e.g. [12]).

The attribution curves for the AES-RSM data set are again very similar
and show that roughly 150 out of 10 000 data points are sufficient to reveal the
correct key. In contrast, the correlation curve decreases very slowly for this data
set. We assume this is due to the noisy result of the correlation analysis shown
above.

Algorithm 2. ZB-KGE
Inputs: Sorted heatmap indices s, attack (sub-)set DAttack, correct key k, trained

DNN f , number of sample points to add NAdd

1: Initialize status counter: i = 1
2: Initialize zero-baseline attack set: DBaseline

3: while i < NAdd do
4: Get index of sample points to add: ia = s[i]
5: for all xA ∈ DAttack,x

B ∈ DBaseline do
6: Replace zero sample point with actual value: xB [ia] = xA[ia]
7: end for
8: Calculate key rank with updated traces: kr[i] = dLL(DBaseline, f)[k]
9: Increase status counter: i = i + 1

10: end while
return: Key rank vector kr for key k

4.3 Limitations

We have seen that DNN-based attribution methods are superior to classical cor-
relation analysis (except for the unprotected data set). However, there is a neces-
sary precondition one have to consider: Meaningful POIs can only be extracted
from the network when the training was successful, i.e., when the network was
able to learn the target function f of the training set and generalize to new data.
Since we were able to drive a successful key recovery on all data sets, we were cer-
tain about the network’s performance. However, performing key recovery is not
necessary to evaluate the training procedure. In order to monitor the learning
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Fig. 3. Mean ZB-KGE curves for the four data sets.

progress, usually a small amount of the training set is used to verify the model’s
performance on unseen data (i.e. validation set) at the end of each epoch (i.e.
an iteration over the complete training dataset [15]). An increasing training and
validation accuracy along with a decreasing training and validation loss indicates
that the DNN model is able to approximate f . If this is not case, the network
either underfits the data (meaning model is not able to obtain a sufficiently low
error on training and validation set), or runs into overfitting (model performs
well on the training set, but not on the validation set). Overfitting and under-
fitting is primarily influenced by the number of parameters of the model, which
reveals another issue of DNN-based POI visualization compared to parameter-
less methods like correlation or DOM: A suitable network architecture has to
be determined which encompasses, amongst others, the number of layers, the
number of neurons per layer, etc. For this paper, we derived our final network
mainly from related work [17,25]. However, there are several methods available
to automatically search for a suitable set of parameters like genetic algorithms
or Bayesian optimization [13]. This facilitates also non-experts in the field an
easy access to DNN-based methods.
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5 Attribution as a Distinguisher

As explained earlier in the paper, LRP provides signed explanations that allow to
distinguish between input features that support the classification decision, and
features speaking against the prediction result. This property is very helpful
in image classification tasks as LRP heatmaps can be easily interpreted, e.g.,
to debug which pixels of an image led to a misclassification. In this section, we
exploit the ability of LRP to provide negative and positive evidence to distinguish
between correct and incorrect key hypothesis in the key recovery phase of a
profiled attack. The basic idea is that there should be a measurable difference
between heatmaps calculated with the attack traces under the correct key guess,
and heatmaps for which the wrong output neuron of the DNN (i.e. label) has
been chosen. Furthermore, the difference should be most distinct in areas which
have been identified as relevant during profiling. The procedure of the complete
attack is as follows:

1. Perform DNN training as in a usual profiled attack according to Sect. 2.1 in
order to build device model f .

2. Create side-channel heatmap r̄ using (6) and a subset of DTrain. Next, build
ordered sequence s that fulfills (7).

3. For each key hypothesis k∗ ∈ K, calculate attribution vector rCk∗ using LRP
and sum up those values that correspond to the NPOI highest ranked com-
ponents in s. Repeat for complete attack set DAttack composed of NA attack
traces such that:

dAT (DAttack, f) =
NA∑

i=1

NPOI∑

j=1

rCk∗ (xi, f)[s[j]] (8)

The attack is successful if k = arg max(dAT )

We have performed the attack on the AES-Serial and ASCAD data sets with
NPOI = 50 (The number of relevant POIs was roughly estimated by inspecting
the corresponding plots in Fig. 1). The remaining parameters as well as the
DNN architecture have been the same as in the previous experiments. Figure 4
shows the evolution of the average key rank as a function of the number of
attack traces computed from ten independent attacks (using 1000 traces per
attack). For comparison, we have done the key recovery also according to (1)
using the same DNN models and exactly the same attack traces. From Fig. 4,
one can see that our proposed attribution-based attack converges faster to a key
rank of one than the LL-based attack in both data sets. More concretely, for
the unprotected hardware AES, our method needs less than ten traces to enter
a key rank below five and stabilizes after roughly 50 attack traces. The LL-
based attack, in contrast, reaches a stable key rank of one only after 750 traces.
Results for the protected software AES differ not to such an extent. However, the
attribution-based attack manages a stable key rank of one using approximately
85 traces while the attack based on LL distinguisher needs around 500 traces
more to pass that mark.
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Fig. 4. Mean key ranks for the unprotected hardware AES (left) and the protected soft-
ware AES (right). The attribution-based attack (AT) needs less traces for a successful
key recovery than the LL-based attack in both setups.

In summary, our experiments demonstrate that attribution methods and
especially LRP are able to use the information that is captured during DNN
training more efficiently for key recovery than the standard LL approach. This
is because to the fact that the attribution-based attack considers only the crucial
parts in the traces during the attack phase, while complete traces are used to cal-
culate the LL scores. Drawback of the method is the increased time complexity
due to the need of computing attributions over all key hypothesis. However, we
stress that time is often not a limiting factor for an adversary. We were able to
do a successful key recovery on a single Nvidia GeForce GTX 1080 GPU in under
5 min (compared to approximately 15 seconds using the LL approach) which is
still practical. This further confirms that our attribution-based distinguisher is a
promising alternative when performing profiled SCA especially in settings where
the adversary is able to acquire only a limited number of attack traces.

6 Conclusion

In this work we have studied DNN attribution methods as a tool for leakage
analysis in DL-based side-channel attacks. In particular, we have presented a
technique to compute heatmaps of side-channel traces in order to find leaking
operations in unprotected and protected cryptographic implementations. We
proposed two metrics to evaluate the quality of side-channel heatmaps and used
them to assess saliency analysis, LRP, and 1-occlusion for their suitability to
detect sensitive sample points in side-channel traces. Furthermore, we have com-
pared the three methods with the widely-used Pearson correlation for POI anal-
ysis. As a summary, we can conclude that the attribution methods are beneficial
especially with regard to secured implementations and in case of desynchronized
traces. For standard unprotected settings, there seems to be no advantage over
standard Pearson correlation especially when taking in consideration that train-
ing a DNN is much more time and computation intensive than a standard CPA.
However, as also demonstrated in the paper, the LRP attribution method can
also be used to build an effective distinguisher for key recovery.
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Future work might investigate other DNN attribution methods in the context
of SCA, such as prediction difference analysis [34] or Deconvolution [32]. Another
interesting path could be to explore the usage of DNN visualization techniques
for network debugging and architecture optimization.

A Network Parameters

Table 2. Network configuration of CNN

Layer Type Hyperparameters

Trace input -

Convolution 1D filters = 8, filter length = 8, activation = ReLU

Max-pooling pool length = 2

Dropout PDrop = 0.3

Convolution 1D filters = 16, filter length = 8, activation = ReLU

Batch normalization -

Max-pooling pool length = 2

Dropout PDrop = 0.3

Convolution 1D filters = 32, filter length = 8, activation = ReLU

Batch normalization -

Max-pooling pool length = 2

Dropout PDrop = 0.3

Convolution 1D filters = 64, filter length = 8, activation = ReLU

Batch normalization -

Max-Pooling pool length = 2

Dropout PDrop = 0.3

Flatten -

(optional) Domain input neurons = 256

(optional) Concatenate -

Fully-connected neurons = 20, activation = ReLU

Batch normalization -

Dropout PDrop = 0.2

Output neurons = 256

In all experiments, we trained the network using Adam optimizer and a
learning rate of 0.0001 (AES-Serial & AES-Serial-Desync) or 0.001 (ASCAD &
AES-RSM).
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