
Parallelizable Authenticated Encryption
with Small State Size

Akiko Inoue(B) and Kazuhiko Minematsu(B)

NEC Corporation, Kawasaki, Japan
{a inoue,k-minematsu}@nec.com

Abstract. Authenticated encryption (AE) is a symmetric-key encryp-
tion function that provides confidentiality and authenticity of a mes-
sage. One of the evaluation criteria for AE is state size, which is memory
size needed for encryption. State size is especially important when cryp-
tosystem is implemented in constrained devices, while trivial reduction
by using a small primitive is not generally acceptable as it leads to a
degraded security.

In these days, the state size of AE has been very actively studied and
a number of small-state AE schemes have been proposed, but they are
inherently serial. It would be a natural question if we come up with a
parallelizable AE with a smaller state size than the state-of-the-art.

In this paper, we study the seminal OCB mode for parallelizable AE
and propose a method to reduce its state size without losing the bit secu-
rity of it. More precisely, while (the most small-state variant of) OCB
has 3n-bit state, by carefully treating the checksum that is halved, we
can achieve 2.5n-bit state, while keeping the n/2-bit security as original.
We also propose an inverse-free variant of it based on OTR. While the
original OTR has 4n-bit state, ours has 3.5n-bit state. To our knowledge
these numbers are the smallest ones achieved by the blockcipher modes
for parallel AE and inverse-free parallel AE.

Keywords: Authenticated encryption · State size · OCB · OTR ·
Phash

1 Introduction

Authenticated encryption (AE) is a symmetric-key cryptographic scheme that
provides confidentiality and authenticity of a message simultaneously. For exam-
ple, GCM [19] and CCM [20] are the current NIST standard AE modes and used
in TLS [37,40] and many other protocols. Among many criteria, the state size
of AE has become an important one as well as the speed, since it is a key factor
determining the size of hardware implementation. It is the memory size needed
to implement the cryptosystem, in which we exclude core implementation (e.g.
blockcipher) including key register. Thus we only count the memory size for the
implementation of the mode of operation itself.

c© Springer Nature Switzerland AG 2020
K. G. Paterson and D. Stebila (Eds.): SAC 2019, LNCS 11959, pp. 618–644, 2020.
https://doi.org/10.1007/978-3-030-38471-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38471-5_25&domain=pdf
https://doi.org/10.1007/978-3-030-38471-5_25

Parallelizable Authenticated Encryption with Small State Size 619

With the rise of lightweight cryptography, a number of small-state AE
schemes have been proposed. CLOC and SILC proposed by Iwata et al. [25,26]
in 2014 have 2n-bit state using n-bit blockcipher. In 2017, Chakraborti et al.
proposed COFB [16] which has 1.5n-bit state size. Finally, Naito et al. pro-
posed SAEB [36] and achieved n-bit state size which is essentially minimum as a
mode of n-bit blockcipher. In the realm of permutation-based cryptography, the
sponge AE schemes are known to have small state size [13]. However, these AEs
are essentially serial to achieve small state size. Ideally, we want an AE scheme
to perform good on a wide range of platforms, and parallelizability is very effec-
tive particularly for software on high-end to middle-end platforms. For example,
AES runs about 4 ∼ 8 times faster in parallel on CPUs with AES instructions
(AESNI), and the bitslice implementation of lightweight blockciphers typically
run significantly (often by a order of magnitude) faster than the single-block
implementation [12,29] on modern CPUs with SIMD instructions. This obser-
vation and the current research trend in serial AEs of small-state size suggest a
natural question: can we reduce the state size of a parallel AE?

To answer the above question, we study the seminal OCB mode of operation
from the state size perspective. OCB has been known to be the most efficient
parallel AE. It consists of three versions, namely OCB1 [39], OCB2 [38] and
OCB3 [27], and the latest OCB3 is in the final portfolio of CAESAR com-
petition and was standardized in RFC [1]. In the submissions to the NIST
Lightweight Cryptography Standardization project [2], the structure of OCB
has been adopted by a number of schemes. Among the three versions of OCB,
OCB2 has the smallest state size (e.g. OCB3 needs around n blocks in memory
for internal mask generation). Note that OCB2 has been shown to be insecure by
Inoue et al. [23]; we employed the fix of OCB2 suggested in [23] called OCB2f (for
convention, we use “OCB2” to mean this fix unless otherwise stated). The orig-
inal OCB2 needs 3n-bit state, consisting of the blockcipher state and the mask
applied to the blockcipher, and the checksum value to create the authentication
tag. The last one is essentially a sum of the n-bit plaintext blocks.

We propose a way to reduce OCB’s state size. In our method, we halve
the length of checksum and we can reduce 0.5n-bit state size from the original
OCB. An important feature of our method is that it does not lose efficiency (the
number of blockcipher calls needed) nor the essential bit security of OCB. When
our method is instantiated with n-bit blockcipher, it needs m+O(1) blockcipher
calls to encrypt m-block input (this feature is called rate-1). Moreover, it has
n/2-bit security despite of the trade-off relationship between the state size and
security. We find that halving the checksum value does not harm the bit security
of OCB2, and with a careful (though simple) handling of last block, we actually
achieve 2.5n-bit state size with our proposal called OCB-hc (for half-checksum).

One of the factors that increases the implementation size is the need of block-
cipher inverse in its circuit. OCB needs the inverse, while Minematsu’s OTR [31]
derived from OCB is inverse-free. The state size of OTR is 4n bits as its operates
on 2n-bit blocks, thus larger than OCB2. However, thanks to the inverse-freeness,
the total implementation size is expected to be smaller, which is also beneficial

620 A. Inoue and K. Minematsu

to high-throughput implementation (see the results of ATHENA benchmark1

and [41]). Using a similar technique as OCB-hc, we propose OTR-hc that has
3.5n-bit state with n/2-bit security.

We remark that improving OCB in any metric without losing the essential
properties is already very tough. All versions of OCB have been extensively
studied from various perspective, such as the provable security perspective [7,14]
or the efficiency of mask generation scheme [22,33], or the misuse resistance [4,8]
or the security beyond O(2n/2) queries [21]. However, its general structure which
determines the state size profile is already considered to be optimal since the
inception. To the best of our knowledge, there is no previous work to reduce the
state size, and 2.5n-bit state of OCB-hc is the smallest among the known parallel
AE modes. Likewise, 3.5n-bit state size of OTR-hc is the smallest among the
known inverse-free, parallel AE modes, to our knowledge. See Table 1.

Our technique can be applied to some variants of OCB as well, such as
OPP [22] which has a much larger block size than OCB-AES and thus the gain
is larger.

Table 1. Comparison of existing schemes and ours. State size excludes the key register.
Rate is the number of input blocks processed in one primitive call.

Scheme State size (bit) Security Rate Inverse free Parallelizable

OCB [27,38,39] 3n O(2n/2) 1 - �
OTR [31] 4n O(2n/2) 1 � �
CLOC, SILC [25,26] 2n O(2n/2) 1/2 � -

COFB [16] 1.5n O(2n/2) 1 � -

SAEB [36] n O(2n/2) 1/2 � -

OCB-hc (Ours) 2.5n O(2n/2) 1 - �
OTR-hc (Ours) 3.5n O(2n/2) 1 � �

2 Preliminaries

2.1 Notation

Let N be the set of natural numbers. For n ∈ N, we define {0, 1}n as the set of n-
bit strings and {0, 1}∗ as the set of all binary strings, including the empty string ε.
For A,B ∈ {0, 1}∗, A ‖B denotes the concatenation of A and B. The bit length of
a string A is denoted by |A|, and |A|n := �|A|/n�. Dividing a string A into blocks
of n bits is denoted by A[1] ‖ · · · ‖A[m] n←− A, where m = |A|n and |A[i]| = n,
|A[m]| ≤ n for 1 ≤ i ≤ m − 1. For t ∈ N and t ≤ |A|, msbt(A) denotes the first t
bits of A and lsbt(A) denotes the last t bits of A. A sequence of i zeros (ones) is

1 https://cryptography.gmu.edu/athena.

https://cryptography.gmu.edu/athena

Parallelizable Authenticated Encryption with Small State Size 621

written as 0i (1i). When |A| = n′ < n, we define ozp(A) := A ‖ 10n−n′−1, where
100 = 1. When |A| = n′ = n, ozp(A) := A. When the element K is uniformly

and randomly chosen from the set K, it is denoted by K
$←− K.

2.2 (Tweakable) Blockcipher

Let K and M be the set of keys and messages, respectively. Let T be the set of
tweaks, where a tweak is a public parameter. A tweakable blockcipher (TBC) [28]
is a function ˜E : K × T × M → M s.t. ˜E(K,T, ·) is a permutation on M for
∀(K,T) ∈ K × T . It is also denoted by ˜ET

K , ˜ET or ˜E, where K ∈ K and
T ∈ T . If T is singleton (and we thus omit it from the notation) it means a plain
blockcipher. Namely, a blockcipher E is defined as E : K × M → M s.t. E(K, ·)
is a permutation on M for ∀K ∈ K and also denoted by EK or E.

Let Perm(n) denote the set of all permutations on {0, 1}n. A tweakable per-
mutation is a function π : {0, 1}t × {0, 1}n → {0, 1}n s.t. for ∀T ∈ {0, 1}t,
π(T, ·) ∈ Perm(n). Let P̃erm(t, n) denote the set of above all functions π. Let

P s.t. P
$←− Perm(n) be a uniform random permutation (URP) and ˜P s.t.

˜P
$←− P̃erm(t, n) be a tweakable URP (TURP). A blockcipher E or a TBC ˜E

is said to be secure if it is computationally hard to distinguish from the ideal
primitive with oracle access. More precisely, let A be an adversary who (possi-
bly adaptively) queries to an oracle O and subsequently outputs a bit. We write
Pr[AO → 1] to denote the probability that this bit is 1. We define the notions
of advantage of A as

Advprp
E (A) := |Pr[AE → 1] − Pr[AP → 1]|,

Advsprp
E (A±) := |Pr[(A±)E,E−1 → 1] − Pr[(A±)P,P−1 → 1]|,

Advtprp
˜E

(A) := |Pr[A ˜E → 1] − Pr[A˜P → 1]|,

Advtsprp
˜E

(A±) := |Pr[(A±) ˜E, ˜E−1 → 1] − Pr[(A±)˜P,˜P−1 → 1]|,

where the first and the third notions are for adversaries with encryption oracle
(thus chosen-plaintext queries), and the second and the fourth are for adversaries
with encryption and decryption oracles (thus chosen-ciphertext queries).

When the advantage is sufficiently low, E or ˜E is said to be secure against
the underlying adversary.

2.3 Authenticated Encryption

Let K, Mae and Nae be the set of keys, messages and nonce, respectively. Let
Aae be the set of associated data (AD), which is data not encrypted but authen-
ticated, and it can be empty. For convention, by saying AE we may mean AEAD.
If we want to explicitly mean AE with no AD, (i.e. Aae is empty) we call it plain
AE. Suppose AE.E and AE.D as an encryption function and a decryption func-
tion of AE, respectively. We suppose that AE.E and AE.D share the key K ∈ K

622 A. Inoue and K. Minematsu

as input. For encryption, the sender inputs a nonce N ∈ Nae, an associated
data A ∈ Aae and a message M ∈ Mae to AE.EK . Then she gets a ciphertext
C ∈ Mae and a tag T ∈ {0, 1}τ as the output, where τ is the length of tag. The
sender sends the tuple (N,A,C, T), and the receiver inputs them to AE.DK for
decryption. AE.DK outputs a message M ′ if the verification is success, otherwise
outputs ⊥, which means that the verification failed.

The security of AE scheme can be evaluated by two criteria: privacy and
authenticity. Following the existing work [11,38,39], we use the term privacy
to mean confidentiality. For privacy, we define the privacy advantage as the
probability that the adversary successfully distinguishes the encryption function
of AE from the random-bit oracle, $(∗, ∗, ∗), which returns random bits of length
|M |+|T | for any query (N,A,M): Advpriv

AE (A) := |Pr[AAE.E → 1]−Pr[A$ → 1]|.
Here, we assume A is nonce-respecting, that is, A does not repeat nonce N in
the encryption queries. For authenticity, we define the authenticity advantage
as the probability that the adversary creates a successful forgery by accessing
encryption and decryption functions of AE. It is defined as Advauth

AE (A) :=
Pr[AAE.E,AE.Dforges.], where AAE.E,AE.D forges if A receives M ′
= ⊥ from AE.D
by querying (N ′, A′, C ′, T ′) while (N ′, A′,M ′) has never been queried to AE.E .
As well as the privacy case, A is assumed to be nonce-respecting in its encryption
queries, however no restriction on the nonce values in the decryption queries.

2.4 Computation on Galois Field

Let Fpn be a finite filed, where characteristic p is prime and extension degree n ∈
N. We focus on the case n = 128. Following [24,38], we use the lexicographically-
first polynomial for defining the field and thus F2128 := F2[x]/(x128+x7+x2+x+
1) and obtain F2128 = 〈x〉. We regard an element of F2128 as a polynomial of x.
For ∀a ∈ {0, 1}128, we also regard it as a coefficient vector of an element in F2128 .
Thus, the primitive root x is interpreted as 2 in the decimal representation. For
a ∈ F2128 , let 2a denote a multiplication by x and a, which is called doubling [38].
In F2128 , 2a := (a � 1) if msb1(a) = 0 and 2a := (a � 1) ⊕ (012010413) if
msb1(a) = 1, where (a � 1) is the left-shift of one bit. For c ∈ N, we can
calculate 2ca by repeating doubling of a for c-times, and 3a = 2a ⊕ a.

3 Review of OCB and OTR

3.1 OCB

OCB is a blockcipher mode of operation for AE scheme proposed at [27,38,
39]. It is parallelizable, and is a rate-1 scheme which needs one blockcipher
call to process one message block. It also has provable security based on the
pseudorandomness of underlying blockcipher. The security bound of OCB is
O(σ2/2n), which is called birthday-bound security, where σ is the number of
access to n-bit blockcipher. OCB encrypts a message in a mode similar to ECB,
where the blockcipher has input and output masks, and computes the sum of

Parallelizable Authenticated Encryption with Small State Size 623

message blocks, called checksum. The authentication tag is an encryption of the
checksum. Although OCB was initially proposed as a plain AE [39], it can be
converted into AEAD by using PMAC [38] or Phash [27] for AD and taking the
XOR of the output and the tag of (plain-AE) OCB. There are three versions for
OCB: OCB1 [39], OCB2 [38], OCB3 [27]. Among them, OCB2 has the smallest
state size of 3n bits, consisting of n-bit memory for processing of one message
block, the value of the mask, and the checksum. As described before, since OCB2
has shown to be insecure by Inoue et al. [23], this paper focuses on the fix
suggested by [23] called OCB2f, which has the same 3n-bit state. We simply call
it OCB2 or even OCB as the version of OCB that we study, if no confusion is
possible. OBC2 can be interpreted as a TBC mode for AE, which we call ΘCB.
The TBC used in ΘCB is a blockcipher mode called XEX∗.

Let us review the specific (information-theoretic) security bound of OCB2
when it is instantiated with an n-bit URP P. Throughout the paper, we use
a subscript to denote the underlying component, hence OCB2P is the target
scheme. We write ΘCB

˜P to denote ΘCB using TURP ˜P. For n-bit tag case, and
for the privacy-adversary A and the authenticity-adversary A±, the security
bounds of OCB2P (Advpriv

OCB2P
(A), Advauth

OCB2P
(A±)) are given as follows [23,30,

38]:

Advpriv
OCB2P

(A) ≤ Advtprp
XEX∗

P
(B) + Advpriv

ΘCB
˜P
(A) ≤

4.5σ2
priv

2n
+ 0,

Advauth
OCB2P

(A±) ≤ Advtsprp
XEX∗

P
(B±) + Advauth

ΘCB
˜P
(A±) ≤ 4.5σ2

auth

2n
+

qd

2n − 1
,

where B (resp. B±) is the adversary performing chosen-plaintext attack (resp.
chosen-ciphertext attack), σpriv (resp. σauth) is the total number of queried blocks
in privacy (resp. authenticity) game and qd is the number of queries to verifica-
tion (decryption) oracle. Since OCB3 can be also interpreted as a TBC mode,
we can derive similar security bounds to OCB2 as above [27].

3.2 OTR

OTR is an AEAD blockcipher mode of operation proposed by Minematsu [31]. It
is a parallelizable, rate-1 scheme. Whereas OCB needs blockcipher decryption for
the entire decryption, OTR does not need it for both encryption and decryption,
hence it is called inverse-free. As well as OCB, it has provable security based on
the pseudorandomness of blockcipher, with security bound of O(σ2/2n), where
σ is the number of access to n-bit blockcipher2. OTR encrypts a message by
using two-round Feistel permutation based on a blockcipher with an input mask,
and computes the checksum as a sum of even-numbered message blocks. The
authentication tag is an encryption of the checksum. The state size of OTR
is 4n bits. It is composed of 2n-bit memory for processing two message blocks

2 Bost and Sanders [15] pointed a problem of the first version of OTR [31] regarding
its instantiation of XE. Therefore we here refer OTR of the fixed versions [32].

624 A. Inoue and K. Minematsu

(i.e. one Feistel chunk), and each n-bit memory for the value of the mask and
the checksum. As well as OCB, OTR can be interpreted as a mode of TBC,
which we call ΘTR (originally OTR). The TBC used in ΘTR is a blockcipher
mode called XE [38]. The security bound of OTRP can be bounded by a hybrid
argument similar to OCBP. A tweakable uniform random function (TURF) is
denoted by ˜R : T × {0, 1}n → {0, 1}n, where T is the same tweak space as XE.
It is essentially a random function on the whole input domain.

For n-bit tag and for the privacy-adversary A and the authenticity-adversary
A±, the security bounds of OTRP (Advpriv

OTRP
(A), Advauth

OTRP
(A±)) are given as

follows:

Advpriv
OTRP

(A) ≤ Advcpa

XEP,˜R
(B) + Advpriv

ΘTR
˜R
(A) ≤

6σ2
priv

2n
+ 0,

Advauth
OTRP

(A±) ≤ Advcpa

XEP,˜R
(B) + Advauth

ΘTR
˜R
(A±) ≤ 6σ2

auth

2n
+

qd

2n
,

where Advcpa

XEP,˜R
(B) is the probability which the adversary B performing chosen-

plaintext attack can distinguish XEP from ˜R. The parameter σpriv (resp. σauth)
is the total number of queried blocks in privacy (resp. authenticity) game and
qd is the number of queries to the decryption oracle.

4 Our Proposals

4.1 Overview

As we mentioned in Sect. 3, the security bounds of OCB and OTR are evaluated
using the hybrid argument: the bound of OCB is a sum of the bound of XEX∗

and that of ΘCB. Similarly, the bound of OTR is a sum of the bound of XE
and that of ΘTR. One can find that ΘCB and ΘTR have beyond-birthday-
bound security (namely perfect privacy and n-bit authenticity), however the
total security of OCB and OTR are n/2 bits because of the birthday bounds of
XEX∗ and XE. This gap implies a potential improvement in size, by trading the
state size of ΘCB and ΘTR for security, while maintaining the overall n/2-bit
security of OCB and OTR. We found that such a trading-off is indeed possible
by reducing the length of checksum by n/2 bits, which we call half-checksum
method.

Actually, this gap has been exploited in the literature. For example, Naito’s
XKX [34,35] provides a beyond-birthday-bound secure implementation of TBC
and he proposed it to be used within a mode similar to ΘCB so that the resulting
AE has beyond-birthday-bound security.

4.2 OCB-hc

We apply the half-checksum method mentioned in Sect. 4.1 to OCB. The resul-
tant scheme is denoted by OCB-hc. While we first propose OCB-hc as a plain

Parallelizable Authenticated Encryption with Small State Size 625

AE with n/2-bit tag length, we will extend it to an AEAD in Sect. 5. In the
following, we fix the tag length to be n/2 bits as it is essentially minimum to
achieve n/2-bit security. In case a longer tag is required, Sect. 5 will also provide
an extension to the case of the arbitrary tag length up to n bits.

Fig. 1. The encryption of OCB-hcEK , where EK is any n-bit blockcipher. The function
pad denotes the zero padding to n bits.

Specification. We show OCB-hc in Figs. 1 and 2. As mentioned, the tag is n/2
bits and AD is empty. Let EK be an n-bit blockcipher. We define the encryption
function of OCB-hcEK

as OCB-hc.EEK
: (N,M) �→ (C, T), where (N,M) ∈

{0, 1}n × {0, 1}∗ and (C, T) ∈ {0, 1}∗ × {0, 1}n/2. We also define the decryption
function as OCB-hc.DEK

: (N,C, T) �→ M or ⊥, where (N,C, T) ∈ {0, 1}n ×
{0, 1}∗ × {0, 1}n/2 and M ∈ {0, 1}∗. The structure of OCB-hc is generally the
same as OCB, except that it computes the n/2-bit checksum of message blocks
(say the first n/2 bits; in fact any bits would work fine). This is also different in
the last message block M [m], which may be partial. Following OCB, we take an
XOR of M [m] and the checksum padded to n bits, which is needed for security.

State Size. Since the checksum is halved, it is easy to see that the state size of
OCB-hc is reduced to 2.5n bits until the last message block. If 0 < M [m] ≤ n/2,
the state size remains 2.5n bits since the checksum needs only n/2-bit memory.
However if n/2 < M [m] ≤ n, the state size seemingly increases to at most 3n
bits, implying no gain. We can avoid this by only changing the computation
procedure described above: we add M [m] (more precisely, ozp(M [m])) not to

626 A. Inoue and K. Minematsu

the checksum, but to the mask used in the last block for the tag (See line 10,
11 in Algorithm: OCB-hc.E and Algorithm: OCB-hc.D in Fig. 2). This will not
change the algorithm. Since the mask is consistently n bits, this will not increase
the size. Therefore, OCB-hc works with 2.5n-bit state for any plaintext.

Algorithm: OCB-hc.EEK (N, M)

1. M [1] ‖ · · · ‖ M [m − 1] ‖ M [m] n←− M
2. Δ ← 2EK(N), Σ ← 0n/2

3. for i ← 1 to m − 1 do
4. C[i] ← EK(M [i] ⊕ Δ) ⊕ Δ
5. Σ ← Σ ⊕ msbn/2(M [i])
6. Δ ← 2Δ
7. Pad ← EK(0n ⊕ Δ) ⊕ Δ
8. Δ ← 3Δ
9. C[m] ← msb|M [m]|(Pad ⊕ ozp(M [m]))

10. Δ ← Δ ⊕ ozp(M [m])
11. Tag ← EK(Σ ‖ 0n/2 ⊕ Δ)
12. if |M [m]| = n then T ← msbn/2(Tag)
13. else T ← lsbn/2(Tag)
14. return (C[1] ‖ · · · ‖ C[m], T)

Algorithm: OCB-hc.DEK (N, C, T)

1. C[1] ‖ · · · ‖ C[m − 1] ‖ C[m] n←− C
2. Δ ← 2EK(N), Σ ← 0n/2

3. for i ← 1 to m − 1 do
4. M [i] ← DK(C[i] ⊕ Δ) ⊕ Δ
5. Σ ← Σ ⊕ msbn/2(M [i])
6. Δ ← 2Δ
7. Pad ← EK(0n ⊕ Δ) ⊕ Δ
8. Δ ← 3Δ
9. M [m] ← msb|C[m]|(Pad) ⊕ C[m]

10. Δ ← Δ ⊕ ozp(M [m])
11. Tag ← EK(Σ ‖ 0n/2 ⊕ Δ)
12. if |M [m] = n then T ′ ← msbn/2(Tag)
13. else T ′ ← lsbn/2(Tag)
14. if T = T ′ then return M [1] ‖ · · · ‖ M [m]
15. else return ⊥

Fig. 2. The algorithm of OCB-hc. EK is any n-bit blockcipher, and DK is the decryp-
tion of EK .

4.3 Security of OCB-hc

The security bounds of OCB-hc are shown below. We assume the underlying
blockcipher is an n-bit URP, P. When the underlying blockcipher is a PRP, the
security bounds are derived from ours using a standard technique [9], thus we
omitted.

Theorem 1.

Advpriv
OCB-hcP

(A) ≤
4.5σ2

priv

2n
, Advauth

OCB-hcP
(A±) ≤ 4.5σ2

auth

2n
+

4qd

2n/2
,

where A, A± are the adversaries against OCB-hcP and σpriv, σauth and qd are
the parameters for A and A±. The parameter σpriv (resp. σauth) is the number
of accesses to P in privacy (resp. authenticity) game. The parameter qd is the
number of queries to the decryption oracle in authenticity game.

Proof. Let i ∈ N, j ∈ {0, 1, 2, 3}. We define two TBCs XEXEK
and XEEK

as
follows.

XEXN,i
EK

(M) = EK(M ⊕ 2iEK(N)) ⊕ 2iEK(N),

XEN,i,j
EK

(M) = EK(M ⊕ 2i3jEK(N)).

Parallelizable Authenticated Encryption with Small State Size 627

Algorithm: ΘCB-hc.EẼ(N, M)

1. M [1] ‖ · · · ‖ M [m − 1] ‖ M [m] n←− M
2. Σ ← 0n/2

3. for i ← 1 to m − 1 do
4. C[i] ← ẼN,1,i,0(M [i])
5. Σ ← Σ ⊕ msbn/2(M [i])
6. Pad ← ẼN,1,m,0(0n)
7. C[m] ← M [m]⊕ msb|M [m]|(Pad)
8. Checksum ← (Σ ‖ 0n/2)⊕ ozp(M [m])
9. Tag ← ẼN,0,m,1(Checksum)

10. if |M [m]| = n then T ← msbn/2(Tag)
11. else T ← lsbn/2(Tag)
12. return (C[1] ‖ · · · ‖ C[m], T)

Algorithm: ΘCB-hc.DẼ(N, C, T)

1. C[1] ‖ · · · ‖ C[m − 1] ‖ C[m] n←− C
2. Σ ← 0n/2

3. for i ← 1 to m − 1 do
4. M [i] ← D̃N,1,i,0(C[i])
5. Σ ← Σ ⊕ msbn/2(M [i])
6. Pad ← ẼN,1,m,0(0n)
7. M [m] ← C[m]⊕ msb|C[m]|(Pad)
8. Checksum ← (Σ ‖ 0n/2)⊕ ozp(M [m])
9. Tag ← ẼN,0,m,1(Checksum)

10. if |M [m] = n then T ′ ← msbn/2(Tag)
11. else T ′ ← lsbn/2(Tag)
12. if T = T ′ then return M [1] ‖ · · · ‖ M [m]
13. else return ⊥

Fig. 3. The algorithm of ΘCB-hc. Ẽ is any TBC which has the same arguments as
XEX∗, and D̃ is the decryption of Ẽ.

Then we combine them to one TBC denoted by XEX∗
EK

. XEX∗N,b,i,j
EK

(M) =
XEXN,i

EK
(M) if b = 1, XEX∗N,b,i,j

EK
(M) = XEN,i,j

EK
(M) if b = 0. We also define

ΘCB-hc
˜E as a TBC mode for plain AE in Fig. 3 for the security proof of

OCB-hc. When ˜E is XEX∗
E , ΘCB-hc

˜E is equivalent to OCB-hcE . Let ˜P denote a
TURP which has the same arguments as XEX∗. We define Advcpa-nr

F,G (A) (resp.
Advcca-nr

F,G (A)) as the probability that the chosen-plaintext attack (resp. chosen-
ciphertext attack) adversary A, who is nonce-respecting in encryption queries,
can distinguish F from G. Then we obtain

Advpriv
OCB-hcP

(A) ≤ Advcpa-nr
OCB-hcP,ΘCB-hc

˜P
(A) + Advpriv

ΘCB-hc
˜P
(A)

= Advtprp
XEX∗

P
(B) + Advpriv

ΘCB-hc
˜P
(A)

≤
4.5σ2

priv

2n
+ 0 and (1)

Advauth
OCB-hcP

(A±) ≤ Advcca-nr
OCB-hcP,ΘCB-hc

˜P
(A±) + Advauth

ΘCB-hc
˜P
(A±)

= Advtsprp
XEX∗

P
(B±) + Advauth

ΘCB-hc
˜P
(A±)

≤ 4.5σ2
auth

2n
+

4qd

2n/2
, (2)

where B (resp. B±) is the adversary which can simulate A (resp. A±). The first
terms of (1), (2) are derived from [38] and [33]. The derivations of the second
terms of (1), (2) are described below.

Privacy. Every TURP invoked in the privacy game has the different tweak since
the adversary is nonce-respecting. Thus, we have Advpriv

ΘCB-hc
˜P
(A) = 0.

628 A. Inoue and K. Minematsu

Authenticity.

Lemma 1. The authenticity advantage of ΘCB-hc
˜P is

Advauth
ΘCB-hc

˜P
(A±) ≤ 4qd

2n/2
,

where qd denotes the number of verification (decryption) queries.

Proof. We start with the case qd = 1. Without loss of generality, the adversary
performs the decryption query after all encryption queries. Suppose that she
obtains the transcript z = {(N1,M1, C1, T1), . . . , (Nq,Mq, Cq, Tq)} in encryption
query, and she queries (N ′, C ′, T ′) in decryption query. Let Z be the set of
all transcripts, and T ∗ be the valid tag for (N ′, C ′). We define the function
ifPad : {0, 1}∗ → {0, 1} as follows.

ifPad(M) =

{

0 if |M | = 0 mod n;
1 otherwise.

Then we obtain the following equations.

Advauth
ΘCB-hc

˜P
(A±) = Pr[T ′ = T ∗]

=
∑

z

Pr[T ′ = T ∗, Z = z]

=
∑

z

Pr[T ′ = T ∗ | Z = z] Pr[Z = z].

We define FPz := Pr[T ′ = T ∗ | Z = z] and evaluate maxz FPz as below.

1. Let N ′
= Ni for 1 ≤ ∀i ≤ q. Since the TURP which returns valid T ∗ takes a
new tweak, the adversary has no information about T ∗. Thus FPz ≤ 1/2n/2

holds.
2. Let N ′ = Nα, α ∈ {1, 2, . . . , q}, C ′
= Cα. We divide the cases with the value

of |C ′| as follows.
(a) Let |C ′|n
= |Cα|n. The tweak of the TURP which outputs T ∗ is different

from that of TURPs which are invoked in encryption query. Thus FPz ≤
1/2n/2 holds.

(b) Let |C ′|n = |Cα|n and ifPad(C ′)
= ifPad(Cα). Suppose that Checksum∗

and M∗ are the valid checksum and message for (N ′, C ′), respectively, and
Checksumα is the value of the checksum for (Nα,Mα, Cα, Tα). The adver-
sary can make Checksum∗ equal to Checksumα by using padding. When
Checksum∗
= Checksumα, FPz ≤ 2n/2/(2n−1) holds. When Checksum∗ =
Checksumα, FPz ≤ 1/(2n/2) holds since ifPad(C ′)
= ifPad(Cα) and the
adversary obtains no information about T ∗ from Tα.

(c) Let |C ′|n = |Cα|n and ifPad(C ′) = ifPad(Cα). Suppose |C ′|n = |Cα|n =
m. We consider the following cases.
Case e1: When C ′
= Cα, Checksum∗ = Checksumα holds.

Parallelizable Authenticated Encryption with Small State Size 629

Case e2: When C ′
= Cα, T ′ = T ∗ holds.
We first evaluate Pr[e1 | Z = z] = Pr[Checksum∗ = Checksumα | Z = z].
When C ′[m]
= Cα[m] and C ′[i] = Cα[i] for ∀i ∈ {1, . . . , m−1}, we obtain
Pr[e1 | Z = z] = 0 since ozp(M∗[m])
= ozp(Mα[m]) holds. Then suppose
C ′[u]
= Cα[u] for ∃u{1, . . . , m − 1}. We obtain following evaluation.

Pr[e1 | Z = z]

= Pr
[(

msbn/2(M∗[u]) ‖ 0n/2
)

⊕
(

msbn/2(Mα[u]) ‖ 0n/2
)

= δ | Z = z
]

≤ 2n/2

2n − 1
,

where δ =
(

msbn/2(M∗[u]) ‖ 0n/2
)

⊕
(

msbn/2(Mα[u]) ‖ 0n/2
)

⊕ Checksum∗

⊕ Checksumα. Thus, Pr[e1 | Z = z] ≤ 2/2n/2 is obtained. Then we evalu-
ate Pr[e2|ē1, Z = z]. In this case, the TURP outputting T ∗ and the TURP
outputting Tα take the same tweak, and ifPad(C ′) = ifPad(Cα) holds.
However, Checksum∗
= Checksumα holds, and we obtain Pr[e2|ē1, Z =
z] ≤ 2n/2/(2n − 1).

From above, we obtain the following evaluation.

FPz = Pr[e2|Z = z]
≤ Pr[e2 ∩ ē1|Z = z] + Pr[e1|Z = z]
≤ Pr[e2|ē1, Z = z] + Pr[e1|Z = z]

≤ 2n/2

2n − 1
+

2n/2

2n − 1
≤ 4

2n/2
.

From the evaluations of the above cases, we obtain

Advauth
ΘCB-hc(A±) ≤

∑

z

max
z

FPz · Pr[Z = z] ≤ 4
2n/2

.

For the case qd > 1, we apply the generic conversion from qd = 1 to qd > 1 as
shown by [10], which multiplies qd to the above. This concludes the proof.

4.4 OTR-hc

We propose another plain AE scheme denoted by OTR-hc which is obtained by
applying half-checksum method to OTR. As well as OCB-hc, we first propose
OTR-hc as a plain AE with n/2-bit tag. The extension to AEAD with possibly
longer tag is possible with a method applied to OCB-hc (See Sect. 5).

Specification. We show OTR-hc in Figs. 4 and 5. Let EK be an n-bit block-
cipher. We define the encryption function of OTR-hcEK

as OTR-hc.EEK
:

630 A. Inoue and K. Minematsu

(N,M) �→ (C, T), where (N,M) ∈ {0, 1}n × {0, 1}∗ and (C, T) ∈ {0, 1}∗ ×
{0, 1}n/2. We also define the decryption function as OTR-hc.DEK

: (N,C, T) �→
M or ⊥, where (N,C, T) ∈ {0, 1}n×{0, 1}∗×{0, 1}n/2 and M ∈ {0, 1}∗. OTR-hc
encrypts message with 2-round Feistel based on XE. An input to 2n-bit Feis-
tel permutation is called a chunk. The checksum is computed by XORing the
most significant n/2 bits of the right halves of the chunk (i.e. the even-numbered
message blocks) except the last chunk. When the number of message blocks, m,
is odd, we take an XOR of M [m] and the padded checksum. When m is even,
we will take an XOR of msbn/2(Z) and the checksum in the last chunk so that
any small difference in C[m − 1] or C[m] (typically between the encryption and
decryption queries sharing the nonce) will yield the n-bit difference of Z.

Fig. 4. The encryption of OTR-hcEK , where EK is any n-bit blockcipher and
Δ = EK(N). When the number of input blocks m is an odd number, Checksum =

(Σ ‖ 0n/2) ⊕ ozp(M [m]), where Σ =
⊕(m−1)/2

i=1 msbn/2(M [2i]). Otherwise, Checksum =(⊕(m−2)/2
i=1 msbn/2(M [2i]) ⊕ msbn/2(Z)

)
‖ 0n/2.

Parallelizable Authenticated Encryption with Small State Size 631

State Size. When m is odd, OTR-hc has 3.5n-bit state size following the pro-
cedure described above because the last chunk has only one block. When m is
even, it also has 3.5n-bit state size since the checksum can be computed in n/2
bits. Thus, the state size of OTR-hc is 3.5n bits. Unlike OCB-hc, we do not have
to derive an alternative procedure for the last chunk.

Algorithm: OTR-hc.EEK (N, M)

1. M [1] ‖ · · · ‖ M [m − 1] ‖ M [m] n←− M
2. Δ ← EK(N), � ← �m

2
�, Σ ← 0n/2

3. for i ← 1 to � − 1 do
4. C[2i − 1] ← EK(M [2i − 1] ⊕ Δ) ⊕ M [2i]
5. C[2i] ← EK(C[2i − 1] ⊕ 3Δ) ⊕ M [2i − 1]
6. Σ ← Σ ⊕ msbn/2(M [2i])
7. Δ ← 2Δ
8. if m is odd
9. C[m] ← msb|M [m]|(EK(0n ⊕ Δ)) ⊕ M [m]

10. Checksum ← Σ ‖ 0n/2 ⊕ ozp(M [m])
11. else
12. Z ← EK(M [m − 1] ⊕ Δ), Δ ← 3Δ
13. Σ ← Σ ⊕ msbn/2(Z)
14. C[m] ← msb|M [m]|(Z) ⊕ M [m]
15. C[m−1] ← EK(ozp(C[m])⊕Δ)⊕M [m−1]
16. Checksum ← Σ ‖ 0n/2

17. Tag ← EK(Checksum ⊕ 32Δ)
18. if |M [m]| = n then T ← msbn/2(Tag)
19. else T ← lsbn/2(Tag)
20. return (C[1] ‖ · · · ‖ C[m], T)

Algorithm: OTR-hc.DEK (N, C, T)

1. C[1] ‖ · · · ‖ C[m − 1] ‖ C[m] n←− C
2. Δ ← EK(N), � ← �m

2
�, Σ ← 0n/2

3. for i ← 1 to � − 1 do
4. M [2i − 1] ← EK(C[2i − 1] ⊕ 3Δ) ⊕ C[2i]
5. M [2i] ← EK(M [2i − 1] ⊕ Δ) ⊕ C[2i − 1]
6. Σ ← Σ ⊕ msbn/2(M [2i])
7. Δ ← 2Δ
8. if m is odd
9. M [m] ← msb|C[m]|(EK(0n ⊕ Δ)) ⊕ C[m]

10. Checksum ← Σ ‖ 0n/2 ⊕ ozp(M [m])
11. else
12. M [m−1] ← EK(ozp(C[m])⊕3Δ)⊕C[m−1]
13. Z ← EK(M [m − 1] ⊕ Δ), Δ ← 3Δ
14. Σ ← Σ ⊕ msbn/2(Z)
15. M [m] ← msb|C[m]|(Z) ⊕ C[m]
16. Checksum ← Σ ‖ 0n/2

17. Tag ← EK(Checksum ⊕ 32Δ)
18. if |M [m] = n then T ′ ← msbn/2(Tag)
19. else T ′ ← lsbn/2(Tag)
20. if T = T ′ then return M [1] ‖ · · · ‖ M [m]
21. else return ⊥

Fig. 5. The algorithm of OTR-hc. EK is any n-bit blockcipher.

4.5 Security of OTR-hc

We here show the security bounds of OTR-hc. As in the security proof of
OCB-hc, we assume the underlying blockcipher is an n-bit URP, P and omit
the case when the underlying blockcipher is a PRP.

Theorem 2. The security bounds of OTR-hcP are evaluated as follows:

Advpriv
OTR-hcP

(A) ≤
5σ2

priv

2n
, Advauth

OTR-hcP
(A±) ≤ 5σ2

auth

2n
+

2.5qd

2n/2
,

where A, A± are the adversaries against OTR-hc and σpriv, σauth, qd are the
parameters for A, A±. The parameter σpriv (resp. σauth) is the number of
accesses to P in privacy game (resp. authenticity game) and qd is the number of
queries to the decryption oracle in authenticity game.

632 A. Inoue and K. Minematsu

Algorithm: ΘTR-hc.E
˜E(N, M)

1. M [1] ‖ · · · ‖ M [m − 1] ‖ M [m] n←− M
2. � ← �m

2
�, Σ ← 0n/2

3. for i ← 1 to � − 1 do
4. C[2i − 1] ← ẼN,i−1,0(M [2i − 1]) ⊕ M [2i]
5. C[2i] ← ẼN,i−1,1(C[2i − 1]) ⊕ M [2i − 1]
6. Σ ← Σ ⊕ msbn/2(M [2i])
7. if m is odd
8. C[m] ← msb|M [m]|(ẼN,�−1,0(0n)) ⊕ M [m]
9. Checksum ← (Σ ‖ 0n/2) ⊕ ozp(M [m])

10. else
11. Z ← ẼN,�−1,0(M [m − 1])
12. Σ ← Σ ⊕ msbn/2(Z)
13. C[m] ← msb|M [m]|(Z) ⊕ M [m]
14. C[m−1] ← ẼN,�−1,1(ozp(C[m]))⊕M [m−1]
15. Checksum ← Σ ‖ 0n/2

16. if m is odd then Tag ← ẼN,�−1,2(Checksum)
17. else Tag ← ẼN,�−1,3(Checksum)
18. if |M [m]| = n then T ← msbn/2(Tag)
19. else T ← lsbn/2(Tag)
20. return (C[1] ‖ · · · ‖ C[m]) ‖ T

Algorithm: ΘTR-hc.D
˜E(N, C, T)

1. C[1] ‖ · · · ‖ C[m − 1] ‖ C[m] n←− C
2. � ← �m

2
�, Σ ← 0n/2

3. for i ← 1 to � − 1 do
4. M [2i − 1] ← ẼN,i−1,1(C[2i − 1]) ⊕ C[2i]
5. M [2i] ← ẼN,i−1,0(M [2i − 1]) ⊕ C[2i − 1]
6. Σ ← Σ ⊕ msbn/2(M [2i])
7. if m is odd
8. M [m] ← msb|C[m]|(ẼN,�−1,0(0n)) ⊕ C[m]
9. Checksum ← (Σ ‖ 0n/2) ⊕ ozp(M [m])

10. else
11. M [m−1] ← ẼN,�−1,1(ozp(C[m]))⊕C[m−1]
12. Z ← ẼN,�−1,0(M [m − 1])
13. M [m] ← msb|C[m]|(Z) ⊕ C[m]
14. Σ ← Σ ⊕ msbn/2(Z)
15. Checksum ← Σ ‖ 0n/2

16. if m is odd then Tag ← ẼN,�−1,2(Checksum)
17. else Tag ← ẼN,�−1,3(Checksum)
18. if |M [m] = n then T ′ ← msbn/2(Tag)
19. else T ′ ← lsbn/2(Tag)
20. if T = T ′ then return M [1] ‖ · · · ‖ M [m]
21. else return ⊥

Fig. 6. The algorithm of ΘTR-hc. Ẽ is any TBC which has the same arguments as
XE.

Proof. To evaluate the security bound of OTR-hc, we define the TBC mode for
plain AE, which is denoted by ΘTR-hc

˜E in Fig. 6. When ˜E is XEE , ΘTR-hc
˜E is

equivalent to OTR-hcE . Let ˜R denote a TURF which has the same arguments as
XE. For privacy-adversary A and authenticity-adversary A±, we obtain following
security bounds of OTR-hcP.

Advpriv
OTR-hcP

(A) ≤ Advcpa-nr
OTR-hcP,ΘTR-hc

˜R
(A) + Advpriv

ΘTR-hc
˜R
(A)

= Advcpa-nr

XEP,˜R
(B) + Advpriv

ΘTR-hc
˜R
(A)

≤
5σ2

priv

2n
+ 0 and (3)

Advauth
OTR-hcP

(A±) ≤ Advcca-nr
OTR-hcP,ΘTR-hc

˜R
(A±) + Advauth

ΘTR-hc
˜R
(A±)

= Advcpa-nr

XEP,˜R
(B±) + Advauth

ΘTR-hc
˜R
(A±)

≤ 5σ2
auth

2n
+

2.5qd

2n/2
, (4)

where B (resp. B±) is the adversary which can simulate A (resp. A±). The first
terms of (3), (4) are derived from [31]. The second terms of (3), (4) are described
below.

Parallelizable Authenticated Encryption with Small State Size 633

Privacy. As in the case of ΘCB-hc, every TURF invoked in the privacy game
has a different tweak because the adversary is nonce-respecting. Therefore, we
have Advpriv

ΘTR-hc
˜R
(A) = 0.

Authenticity.

Lemma 2. The authenticity advantage of ΘTR-hc
˜R is

Advauth
ΘTR-hc

˜R
(A±) ≤ 2.5qd

2n/2
,

where qd denotes the number of decryption queries.

Proof. We start with the case qd = 1. Without loss of generality, we assume
that the adversary performs decryption query after all encryption queries.
As in the security proof of OCB-hc, suppose that she obtains the transcript
z = {(N1,M1, C1, T1), . . . , (Nq,Mq, Cq, Tq)} in encryption query, and then she
queries (N ′, C ′, T ′) in decryption query. Let Z be the set of all transcripts, and
T ∗ be the valid tag for (N ′, C ′). We define FPz := Pr[T ′ = T ∗ | Z = z] and
evaluate maxz FPz as below.

1. Let N ′
= Ni, 1 ≤ ∀i ≤ q. Since the TURF which returns valid T ∗ takes a
new tweak, the adversary has no information about T ∗. Thus FPz ≤ 1/2n/2

holds.
2. Let N ′ = Nα, α ∈ {1, 2, . . . , q}, C ′
= Cα. We divide the cases with the value

of |C ′| as follows.
(a) Let |C ′|2n
= |Cα|2n. The tweak of TURF which outputs T ∗ is different

from that of TURFs which are invoked in encryption query. Thus FPz ≤
1/2n/2 holds.

(b) Let |C ′|2n = |Cα|2n and |C ′|n
= |Cα|n. As above, the tweak of TURF
which outputs T ∗ is different from that of TURFs which are invoked in
encryption query. Thus FPz ≤ 1/2n/2 holds.

(c) Let |C ′|n = |Cα|n and ifPad(C ′)
= ifPad(Cα). Let |C ′|n = |Cα|n =
m. We first consider the case that m is odd. Suppose that Checksum∗

and M∗ are the valid checksum and message for (N ′, C ′), respectively,
and Checksumα is the value of the checksum for (Nα,Mα, Cα, Tα). The
adversary can make Checksum∗ equal to Checksumα by using padding.
However, we obtain FPz ≤ 1/2n/2 no matter if Checksum∗
= Checksumα

holds or not since ifPad(C ′)
= ifPad(Cα) and the adversary obtains no
information about T ∗ from Tα. Regarding to the case that m is even, we
can discuss in the same way as above.

(d) Let |C ′|n = |Cα|n and ifPad(C ′) = ifPad(Cα). Suppose |C ′|n = |Cα|n =
m and CC[1] ‖CC[2] ‖ · · · ‖CC[�] 2n←− C. We consider the following cases.
Case e1: When CC ′[i]
= CCα[i] for ∃i ∈ {1, . . . , �}, M∗[2i − 1] =

Mα[2i − 1] holds.
Case e2: When C ′
= Cα, Checksum∗ = Checksumα holds.
Case e3: When C ′
= Cα, T ′ = T ∗ holds.

634 A. Inoue and K. Minematsu

We first evaluate Pr[e1 | Z = z] = Pr[M∗[2i−1] = Mα[2i−1] | Z = z]. Let
i ∈ {1, . . . , �−1}. When C ′[2i−1] = Cα[2i−1], C ′[2i]
= Cα[2i] has to hold.
Thus we obtain Pr[e1 | Z = z] = 0 since ˜RN,i−1,1(C ′[2i − 1]) ⊕ C ′[2i]
=
˜RN,i−1,1(Cα[2i−1])⊕Cα[2i] always holds. Then let C ′[2i−1]
= Cα[2i−1].
Pr[e1 | Z = z] ≤ 1/2n holds because ˜RN,i−1,1(C ′[2i − 1]) is unpredictable
for the adversary. When i = � and m is even, Pr[e1 | Z = z] ≤ 1/2n holds
from the almost same discussion as above. When i = � and m is odd,
Pr[e1 | Z = z] = 0 holds.
Secondly, we evaluate Pr[e2 | ē1, Z = z]. Let m is odd. When C ′[m]
=
Cα[m] and CC ′[i] = CCα[i] for ∀i ∈ {1, . . . , � − 1}, we obtain Pr[e2 |
ē1, Z = z] = 0 since ozp(M∗[m])
= ozp(Mα[m]) holds. Then, suppose
CC ′[u]
= CCα[u] for ∃u ∈ {1, . . . , � − 1}. We obtain the following evalu-
ation.

Pr[e2 | ē1, Z = z]

= Pr[msbn/2(M∗[2u]) ‖ 0n/2 ⊕ msbn/2(Mα[2u]) ‖ 0n/2 = δ | ē1, Z = z],

where δ = msbn/2(M∗[2u]) ‖ 0n/2 ⊕ msbn/2(Mα[2u]) ‖ 0n/2 ⊕ Checksum∗ ⊕
Checksumα,

= Pr[msbn/2(˜RN,u−1,0(M∗[2u − 1]) ⊕ C ′[2u − 1]) ‖ 0n/2

⊕ msbn/2(˜RN,u−1,0(Mα[2u − 1]) ⊕ Cα[2u − 1]) ‖ 0n/2 = δ | ē1, Z = z]

≤ 1/2n/2.

The last line is derived since ē1 and ˜RN,u−1,0(M∗[2u−1]) is unpredictable.
Thus, we obtain Pr[e2 | ē1, Z = z] ≤ 1/2n/2 when m is odd. When m is
even, Pr[e2 | ē1, Z = z] ≤ 1/2n/2 also holds from the almost same discus-
sion as above. Then we evaluate Pr[e3 | ē2, ē1, Z = z]. In this case, the
TURF outputting T ∗ and the TURF outputting Tα take the same tweak,
and ifPad(C ′) = ifPad(Cα) holds. However Checksum∗
= Checksumα

holds, and we obtain Pr[e3 | ē2, ē1, Z = z] ≤ 1/2n/2.

From above, we obtain the following evaluation.

FPz = Pr[e3 | Z = z]
≤ Pr[e3 ∩ (e1 ∪ e2) | Z = z] + Pr[e2 ∩ ē1 | Z = z] + Pr[e1 | Z = z]
≤ Pr[e3 | ē2, ē1, Z = z] + Pr[e2 | ē1, Z = z] + Pr[e1 | Z = z]

≤ 1
2n/2

+
1

2n/2
+

1
2n

≤ 2.5
2n/2

From the evaluations of above cases, we obtain

Advauth
ΘTR-hc(A±) ≤

∑

z

max
z

FPz · Pr[Z = z] ≤ 2.5
2n/2

.

For the case qd > 1, we use [10] again. This completes the proof.

Parallelizable Authenticated Encryption with Small State Size 635

5 Extensions

In this section, we show extensions of our proposals. First, we show how to extend
the tag length of OCB-hc to up to n bits. Second, we propose an extension of
OCB-hc to AEAD, denoted by OCB-hc-AD, which is the mode of operation for
AEAD with 2.5n-bit state size. OCB-hc-AD is a combination of OCB-hc and
a variant of Phash [27] with half-checksum method. OTR-hc can be extended
to have arbitrary tag length up to n bits and AEAD in the same manner as
OCB-hc, which we omit here.

5.1 Arbitrary Tag Length

When tag length τ is less than n/2 bits, we can change line 12 and 13 of
OCB-hc.E in Fig. 2 as follows.

line 12 : if |M [m]| = n then T ← msbτ (Tag),
line 13 : else T ← lsbτ (Tag).

For decryption, we can change OCB-hc.D accordingly. When τ > n/2, we can
change line 8 and 12–14 of OCB-hc.E in Fig. 2 as follows.

line 8 : if |M [m]| = n then Δ ← 3Δ, else Δ ← 32Δ,

line 12–14 : return(C[1] ‖ · · · ‖C[m], msbτ (Tag)).

For decryption, we can change OCB-hc.D accordingly. Thus, we have to use the
different masks in the encryption of the checksum, depending on whether the
message is full n bits or partial, which is the same as the original OCB and OTR.

5.2 OCB-hc with AD

Our extension of OCB-hc to AEAD, denoted by OCB-hc-AD, is shown in
Fig. 7. OCB-hc-AD consists of the plain-AE core OCB-hc′ and the authenti-
cation core Phash-hc (Fig. 8 in AppendixA). The way of combination is similar
to ΘCB3† proposed by Naito [34]. In OCB-hc-AD, Phash-hc processes AD and
then OCB-hc′ processes a message using the output of Phash-hc as the initial
value of the checksum. Note that the initial value of the checksum was 0n/2 in
the case of OCB-hc. This way of combination is suitable when AD is processed
first. If the message is processed before AD, one can combine OCB-hc′ and
Phash-hc by XORing the tag of plain-AE OCB-hc′ and the output of Phash-hc.
This combination is similar to OCB3 or AEM [27,38].

Specification. We show OCB-hc-AD in Fig. 7. For simplicity, the tag is n/2
bits. Let EK be an n-bit blockcipher. We define the encryption function of
OCB-hc-ADEK

as OCB-hc-AD.EEK
: (N,A,M) �→ (C, T), where (N,A,M) ∈

{0, 1}≤n−1 × {0, 1}∗ × {0, 1}∗ and (C, T) ∈ {0, 1}∗ × {0, 1}n/2. We also define

636 A. Inoue and K. Minematsu

the decryption function as OCB-hc-AD.DEK
: (N,A,C, T) �→ M or ⊥, where

(N,A,C, T) ∈ {0, 1}≤n−1×{0, 1}∗×{0, 1}∗×{0, 1}n/2 and M ∈ {0, 1}∗. OCB-hc′

is the same algorithm as OCB-hc except the length of nonce and the initial value
of the checksum. We restrict the length of nonce to less than n bits because
Phash-hc always uses 0n as a nonce and so OCB-hc′ cannot use 0n as a nonce.
The initial value of the checksum of OCB-hc′ is an output of Phash-hc. Phash-hc
computes the sum of the most significant n/2 bits of encrypted massage by XE.

State Size. OCB-hc′ has 2.5n-bit state size as OCB-hc′ and OCB-hc are almost
the same. Phash-hc also has 2.5n-bit state size, which includes n-bit memory for
message block and mask, and 0.5n-bit memory for sum of encrypted message.
Therefore, the state size of OCB-hc-AD is 2.5n bits.

5.3 Security of OCB-hc-AD

We here show the security bounds of OCB-hc-AD. For security analysis of
OCB-hc-AD, we define ΘCB-hc-AD as a TBC mode for AEAD in Fig. 7. We
also define ΘCB-hc′ and Phash-hc as TBC versions of OCB-hc′ and Phash-hc,
respectively in Fig. 7. When ˜E is instantiated by XEE , Phash-hc

˜E is equivalent
to Phash-hcE . In this subsection, we first show the security of Phash-hc. Then
we evaluate the security bounds of OCB-hc-AD using hybrid argument.

Lemma 3. Let ∀A,A′ ∈ {0, 1}∗ and A
= A′. Suppose the underlying TBC
of Phash-hc is a TURP denoted by ˜P, which has the same arguments as XE.
Phash-hc

˜P has a following property.

max
∀δ∈{0,1}n/2

Pr
[

Phash-hc
˜P(A) ⊕ Phash-hc

˜P(A′) = δ
]

≤ 2
2n/2

.

The proof is described in AppendixA.
Then we show the security bounds of OCB-hc-AD. As in the security proofs

of OCB-hc and OTR-hc, we assume the underlying blockcipher is an n-bit URP
denoted by P and omit the case when the underlying blockcipher is a PRP.

Theorem 3. The security bounds of OCB-hc-ADP are evaluated as follows:

Advpriv
OCB-hc-ADP

(A) ≤
4.5σ2

priv

2n
, Advauth

OCB-hc-ADP
(A±) ≤ 4.5σ2

auth

2n
+

4qd

2n/2
,

where A, A± are the adversaries against OCB-hc-AD and σpriv, σauth, qd are
the parameters for A, A±. The parameter σpriv (resp. σauth) is the number of
accesses to P in privacy game (resp. authenticity game) and qd is the number of
queries to the decryption oracle in the authenticity game.

We prove Theorem 3 in AppendixB.

Parallelizable Authenticated Encryption with Small State Size 637

Algorithm: OCB-hc-AD.EEK (N, A, M)

1. Auth ← Phash-hcEK (A),
2. return OCB-hc′.EEK (N, Auth, M)

Algorithm: OCB-hc-AD.DEK (N, A, C, T)

1. Auth ← Phash-hcEK (A),
2. return OCB-hc′.DEK (N, Auth, C, T)

Algorithm: OCB-hc′.EEK (N, Auth, M)

1. M [1] ‖ · · · ‖ M [m − 1] ‖ M [m] n←− M
2. Δ ← 2EK(ozp(N)), Σ ← Auth
3. for i ← 1 to m − 1 do
4. C[i] ← EK(M [i] ⊕ Δ) ⊕ Δ
5. Σ ← Σ ⊕ msbn/2(M [i])
6. Δ ← 2Δ
7. Pad ← EK(0n ⊕ Δ) ⊕ Δ
8. Δ ← 3Δ
9. C[m] ← msblen(M [m])(Pad ⊕ ozp(M [m]))

10. Δ ← Δ ⊕ ozp(M [m])
11. Tag ← EK(Σ ‖ 0n/2 ⊕ Δ)
12. if |M [m]| = n then T ← msbn/2(Tag)
13. else T ← lsbn/2(Tag)
14. return (C[1] ‖ · · · ‖ C[m], T)

Algorithm: OCB-hc′.DEK (N, Auth, C, T)

1. C[1] ‖ · · · ‖ C[m − 1] ‖ C[m] n←− C
2. Δ ← 2EK(ozp(N)), Σ ← Auth
3. for i ← 1 to m − 1 do
4. M [i] ← DK(C[i] ⊕ Δ) ⊕ Δ
5. Σ ← Σ ⊕ msbn/2(M [i])
6. Δ ← 2Δ
7. Pad ← EK(0n ⊕ Δ) ⊕ Δ
8. Δ ← 3Δ
9. M [m] ← msblen(C[m])(Pad) ⊕ C[m]

10. Δ ← Δ ⊕ ozp(M [m])
11. Tag ← EK(Σ ‖ 0n/2 ⊕ Δ)
12. if |M [m] = n then T ′ ← msbn/2(Tag)
13. else T ′ ← lsbn/2(Tag)
14. if T = T ′ then return M [1] ‖ · · · ‖ M [m]
15. else return ⊥

Algorithm: Phash-hcEK (A)

1. if A = ε then Auth ← 0n/2, return Auth
2. A[1] ‖ · · · ‖ A[a − 1] ‖ A[a] n←− A
3. Δ ← 2EK(0n), Auth ← 0n/2

4. for i ← 1 to a − 1 do
5. Auth ← Auth ⊕ msbn/2(EK(A[i] ⊕ Δ))
6. Δ ← 2Δ
7. Y ← EK(ozp(A[a]) ⊕ Δ)
8. if |A[a]| = n then Auth ← Auth⊕msbn/2(Y)
9. else Auth ← Auth ⊕ lsbn/2(Y)

10. return Auth

Algorithm: Phash-hc
˜E(A)

1. if A = ε then Auth ← 0n/2, return Auth
2. A[1] ‖ · · · ‖ A[a − 1] ‖ A[a] n←− A
3. Auth ← 0n/2

4. for i ← 1 to a − 1 do
5. Auth ← Auth ⊕ msbn/2(˜E0n,0,i,0(A[i]))
6. Y ← ˜E0n,0,a,0(ozp(A[a]))
7. if |A[a]| = n then Auth ← Auth⊕msbn/2(Y)
8. else Auth ← lsbn/2(Y)
9. return Auth

Algorithm: ΘCB-hc-AD.E
˜E(N, A, M)

1. Auth ← Phash-hc
˜E(A),

2. return ΘCB-hc′.E
˜E(N, Auth, M)

Algorithm: ΘCB-hc-AD.D
˜E(N, A, C, T)

1. Auth ← Phash-hc
˜E(A),

2. return ΘCB-hc′.D
˜E(N, Auth, C, T)

Algorithm: ΘCB-hc′.EẼ(N, Auth, M)

1. M [1] ‖ · · · ‖ M [m − 1] ‖ M [m] n←− M
2. Σ ← Auth, N ← ozp(N)
3. for i ← 1 to m − 1 do
4. C[i] ← ẼN,1,i,0(M [i])
5. Σ ← Σ ⊕ msbn/2(M [i])
6. Pad ← ẼN,1,m,0(0n)
7. C[m] ← M [m]⊕ msb|M [m]|(Pad)
8. Checksum ← (Σ ‖ 0n/2)⊕ ozp(M [m])
9. Tag ← ẼN,0,m,1(Checksum)

10. if |M [m]| = n then T ← msbn/2(Tag)
11. else T ← lsbn/2(Tag)
12. return (C[1] ‖ · · · ‖ C[m], T)

Algorithm: ΘCB-hc.DẼ(N, Auth, C, T)

1. C[1] ‖ · · · ‖ C[m − 1] ‖ C[m] n←− C
2. Σ ← Auth, N ← ozp(N)
3. for i ← 1 to m − 1 do
4. M [i] ← D̃N,1,i,0(C[i])
5. Σ ← Σ ⊕ msbn/2(M [i])
6. Pad ← ẼN,1,m,0(0n)
7. M [m] ← C[m]⊕ msb|C[m]|(Pad)
8. Checksum ← (Σ ‖ 0n/2)⊕ ozp(M [m])
9. Tag ← ẼN,0,m,1(Checksum)

10. if |M [m] = n then T ′ ← msbn/2(Tag)
11. else T ′ ← lsbn/2(Tag)
12. if T = T ′ then return M [1] ‖ · · · ‖ M [m]
13. else return ⊥

Fig. 7. The algorithms of OCB-hc-AD and ΘCB-hc-AD. EK is any blockcipher and
DK is the decryption of EK . Ẽ is any TBC which has the same arguments as XEX∗

and D̃ is the decryption of Ẽ. Note that Ẽ in Algorithm: Phash-hc
˜E(A) can also be

interpreted as a TBC which has the same arguments as XE.

638 A. Inoue and K. Minematsu

6 Discussion on the Security Bounds of Proposals

In the preceding section, we proved OCB-hc and OTR-hc keep the birthday-
bound security as their originals (OCB and OTR). We here compare the secu-
rity bounds of our proposals when the security parameters (e.g. the number of
queries) are less than 2n/2.

For privacy-adversary, our proposals and originals have the exactly same
security bounds, respectively, thus we focus on the authenticity-adversary.

We first compare the security bound of OCB-hc to that of OCB. For arbitrary
tag length τ up to n, the security bound of Advauth

OCB-hcP
(A±) is evaluated to

4.5σ2
auth/2n +2n−τqd/(2n −1)+2n/2qd/(2n −1) in the same manner as the proof

in Sect. 4.3. The security bound of Advauth
OCBP

(A±) is evaluated to 4.5σ2
auth/2n +

2n−τqd/(2n − 1). In the case of τ = n/2, OCB-hc and OCB have the same
security bounds except the constant factor. Therefore, Advauth

OCB-hcP
(A±) and

Advauth
OCBP

(A±) grow with the same rate except the constant factor when 0 <

σauth, qd < 2n/2. In the case of τ < n/2 and σauth ≈ qd, the security bounds
of OCB-hc and OCB are O(qd/2τ). Therefore, there is no difference in their
bounds except the constant factor when 0 < σauth, qd < 2n/2 similarly to the
case of τ = n/2. In the case of n/2 < τ ≤ n, the security bound of OCB-hc
still has the term O(qd/2n/2), which is not included by that of OCB. If we
assume σauth ≈ qd and 0 < σauth, qd < 2n/2, we obtain O(σ2/2n) < O(qd/2n/2).
Therefore, Advauth

OCBP
(A±) < Advauth

OCB-hcP
(A±) always holds when 0 < σauth ≈

qd < 2n/2. It indicates the security bound of OCB is better when n/2 < τ ≤ n
and 0 < σauth ≈ qd < 2n/2. The comparison of OTR-hc with OTR will be similar
as above, thus we omit the details.

7 Conclusion

In this paper, we have proposed the half-checksum method to reduce the state
size of parallel AE mode of operations having birthday-bound security. It main-
tains the bit security and overall efficiency. We have applied it to two represen-
tative parallel AE modes, OCB and OTR, to derive the concrete instantiations,
OCB-hc and OTR-hc. They have almost same properties of OCB and OTR (e.g.
parallelizability, efficiency, bit security, etc) except the reduced state size. When
n is block length of the underlying blockcipher, OCB-hc has 2.5n-bit state size,
and OTR-hc has 3.5n-bit state size. To the best of our knowledge, they achieve
the smallest state size among the parallel, rate-1 AE modes of birthday security.
Our method is applicable to other schemes having a similar structure as OCB
or OTR, such as OPP [22]. While OCB-hc and OTR-hc are plain AE of fixed
n/2-bit tag length, we presented the natural extensions of them to AEAD with
arbitrary tag length up to n bits, without loss of security and increase of state
size. It would be interesting to consider if we can apply the same method to other
types of parallel AE, such as parallel online AE including COLM [3], COPA [5,6]
and ELmD [17,18]. In addition, further study in hardware are required to eval-
uate actual circuit gain of our proposals. Finally, it would be natural to ask if

Parallelizable Authenticated Encryption with Small State Size 639

the state size figures of our proposals are the theoretical minimum for parallel
AE mode of birthday-bound security.

Acknowledgements. We would like to thank the anonymous reviewers for their com-
ments and suggestions.

A Proof of Security of Phash-hc

We here show the proof of Lemma 3. Note that the underlying TURP ˜P has the
same arguments as XE in Lemma 3, however we here write ˜P with the arguments
of XEX∗ following Fig. 7. Thus we always use ˜P∗,0,∗,∗ in this proof.

Proof. We define XorCollδ := Pr
[

Phash-hc
˜P(A) ⊕ Phash-hc

˜P(A′) = δ
]

.

1. Let A = ε and A′
= ε.
(i) We first consider the case of |A′|n = 1. Suppose ifPad(A′) = 0 without
loss of generality. In this case,

Phash-hc
˜P(A) ⊕ Phash-hc

˜P(A′) = Phash-hc
˜P(A′)

= msbn/2(˜P0n,0,1,0(ozp(A′[1])))

holds. Thus we obtain XorColl∀δ ≤ 1/2n/2.
(ii) Let |A′|n > 1. Phash-hc(A′) is a sum of the most (or least) significant n/2
bits of message blocks encrypted by TURPs which are invoked with respective
different tweaks. Thus XorColl∀δ = Pr

[

Phash-hc
˜P(A′) = δ

]

≤ 1/2n/2. This
discussion can be applied to the case that A
= ε and A′ = ε. In following
cases, we suppose A
= ε and A′
= ε.

2. Let |A|n = |A′|n and ifPad(A) = ifPad(A′). Suppose |A|n = |A′|n = a.
Without loss of generality, we suppose ifPad(A) = ifPad(A′) = 0. Since
A
= A′, there exists u ∈ {1, . . . , a} such that A[u]
= A′[u]. For ∃γ ∈
{0, 1}n/2, Phash-hc

˜P(A) ⊕ Phash-hc
˜P(A′) = msbn/2

(

˜P0n,0,u,0(ozp(A[u])
)

⊕

msbn/2

(

˜P0n,0,u,0(ozp(A′[u]))
)

⊕ γ holds. Then we obtain

XorCollδ

= Pr
[

msbn/2

(

˜P0n,0,u,0(ozp(A[u])) ⊕ ˜P0n,0,u,0(ozp(A′[u]))
)

= δ ⊕ γ
]

≤ 2n/2/(2n − 1) ≤ 2/2n/2.

3. Let |A|n = |A′|n and ifPad(A)
= ifPad(A′). Suppose |A|n = |A′|n = a. With-
out loss of generality, we suppose ifPad(A) = 0. Since ifPad(A)
= ifPad(A′)
holds, the case which satisfies A[a]
= A′[a] and A[a] = ozp(A′[a]) can occur.
When A[a] = ozp(A′[a]), we obtain the following evaluation.

XorColl∀δ

= Pr
[

msbn/2

(

˜P0n,0,a,0(A[a])
)

⊕ lsbn/2

(

˜P0n,0,a,0(ozp(A′[a]))
)

= δ ⊕ γ
]

≤ 1/2n/2,

640 A. Inoue and K. Minematsu

where γ = Phash-hc(A) ⊕ Phash-hc(A′) ⊕ msbn/2

(

˜P0n,0,a,0(A[a])
)

⊕

lsbn/2

(

˜P0n,0,a,0(ozp(A′[a]))
)

. When A[a]
= ozp(A′[a]), we also obtain

XorColl∀δ

= Pr
[

msbn/2

(

˜P0n,0,a,0(A[a])
)

⊕ lsbn/2

(

˜P0n,0,a,0(ozp(A′[a]))
)

= δ ⊕ γ
]

≤ 2n/2/(2n − 1) ≤ 2/2n/2.

From these discussions, XorColl∀δ ≤ 2/2n/2 holds.
4. Let |A|n
= |A′|n. Suppose |A|n = a and |A′|n = a′. We also suppose |A|n <

|A′|n and ifPad(A′) = 0 without loss of generality. There exists u ∈ N such
that a + 1 ≤ u ≤ a′ and we obtain the following evaluation.

XorColl∀δ = Pr
[

msbn/2

(

˜P0n,0,u,0(ozp(A′[u]))
)

= δ ⊕ γ
]

≤ 1/2n/2,

where γ = Phash-hc(A) ⊕ Phash-hc(A′) ⊕ msbn/2

(

˜P0n,0,u,0(ozp(A′[u]))
)

.

From above four cases, max∀δ∈{0,1}n/2 Pr
[

Phash-hc
˜P(A) ⊕ Phash-hc

˜P(A′) = δ
]

≤
2/2n/2 holds.

Fig. 8. The algorithm of Phash-hcEK , where EK is any blockcipher.

B Proof of the Security of OCB-hc-AD

We here show the proof of Theorem 3.

Parallelizable Authenticated Encryption with Small State Size 641

Proof. We obtain the following evaluations using hybrid argument.

Advpriv
OCB-hc-ADP

(A) ≤ Advcpa-nr
OCB-hc-ADP,ΘCB-hc-AD

˜P
(A) + Advpriv

ΘCB-hc-AD
˜P
(A)

= Advtprp
XEX∗

P
(B) + Advpriv

ΘCB-hc-AD
˜P
(A)

≤
4.5σ2

priv

2n
+ 0, (5)

Advauth
OCB-hc-ADP

(A±) ≤ Advcca-nr
OCB-hc-ADP,ΘCB-hc-AD

˜P
(A±) + Advauth

ΘCB-hc-AD
˜P
(A±)

= Advtsprp
XEX∗

P
(B±) + Advauth

ΘCB-hc-AD
˜P
(A±)

≤ 4.5σ2
auth

2n
+

4qd

2n/2
, (6)

where B (resp. B±) is the adversary which can simulate A (resp. A±). The first
terms of (5), (6) are derived from [38], [33]. The second terms of (5), (6) are
described below.

Privacy. Similarly to ΘCB-hc and ΘTR-hc, Advpriv
ΘCB-hc-AD

˜P
(A) = 0 holds since

the adversary follows nonce-respecting.

Authenticity. For simplicity, we suppose that the adversary can query to
the decryption oracle only once. Without loss of generality, the adversary per-
forms decryption query after all encryption queries. Suppose that she obtains
the transcript z = {(N1,M1, A1, C1, T1), . . . , (Nq,Mq, Aq, Cq, Tq)} in encryp-
tion query, and she queries (N ′, A′, C ′, T ′) in decryption query. Let Z be the
set of all transcripts, and T ∗ be the valid tag for (N ′, A′, C ′). Then we define
FPz := Pr[T ′ = T ∗ | Z = z] and evaluate maxz FPz as below.

1. Let N ′
= Ni, 1 ≤ ∀i ≤ q. As in the proof of ΘCB-hc, FPz ≤ 1/2n/2 holds.
2. Let N ′ = Nα, α ∈ {1, 2, . . . , q}, A′ = Aα, C ′
= Cα. In this case, we can

evaluate FPz in the same manner as the proof of ΘCB-hc. Thus FPz ≤ 4/2n/2

holds.
3. Let N ′ = Nα, α ∈ {1, 2, . . . , q}, A′
= Aα. We suppose that Checksum∗ is

the valid checksum corresponding to (N ′, A′, C ′) and that Checksumα is the
value of the checksum corresponding to (Nα, Aα, Cα). Let e1 is the event
which Checksum∗ = Checksumα holds. Recall that

Checksum =

(

(

Phash-hc(A) ⊕
m−1
⊕

i=1

msbn/2(M [i])
)

‖ 0n/2

)

⊕ ozp(M [m]).

From the property of Phash-hc mentioned in Lemma 3, we obtain the following
evaluation.

Pr[e1 | Z = z] = Pr[Phash-hc(A′) ‖ 0n/2 ⊕ Phash-hc(Aα) ‖ 0n/2 = γ | Z = z]

≤ 2
2n/2

,

642 A. Inoue and K. Minematsu

where γ =
(

⊕m′−1
i=1 msbn/2(M∗[i])) ‖ 0n/2

)

⊕
(

⊕mα−1
i=1 msbn/2(Mα[i])) ‖

0n/2
)

⊕ ozp(M∗[m′]) ⊕ ozp(Mα[mα]). Then we can evaluate a forgery prob-
ability as follows:

FPz ≤ Pr[T ′ = T ∗ | ē1, Z = z] Pr[e1 | Z = z]

≤ 2n/2

2n − 1
+

2
2n/2

≤ 4
2n/2

.

From the evaluations of above cases, we obtain

Advauth
ΘCB-hc-AD(A±) ≤

∑

z

max
z

FPz · Pr[Z = z] ≤ 4
2n/2

.

When the adversary queries to the decryption oracle qd times, we obtain

Advauth
ΘCB-hc-AD(A±) ≤ 4qd

2n/2

by using a technique from [10].

References

1. The OCB Authenticated-Encryption Algorithm. IRTF RFC 7253 (2014)
2. NIST Lightweight Cryptography Standardization (2019). https://csrc.nist.gov/

Projects/Lightweight-Cryptography
3. Andreeva, E., et al.: COLM v1. Submission to CAESAR competition (2015)
4. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How

to securely release unverified plaintext in authenticated encryption. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 105–125. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 6

5. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-42033-7 22

6. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: AES-COPA vol 2. Submission to CAESAR competition (2015)

7. Aoki, K., Yasuda, K.: The security of the OCB mode of operation without the
SPRP assumption. In: Susilo, W., Reyhanitabar, R. (eds.) ProvSec 2013. LNCS,
vol. 8209, pp. 202–220. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-41227-1 12

8. Ashur, T., Dunkelman, O., Luykx, A.: Boosting authenticated encryption robust-
ness with minimal modifications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10403, pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63697-9 1

9. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: FOCS, pp. 394–403. IEEE Computer Society (1997)

10. Bellare, M., Goldreich, O., Mityagin, A.: The power of verification queries in
message authentication and authenticated encryption. Cryptology ePrint Archive,
Report 2004/309 (2004). https://eprint.iacr.org/2004/309

https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://doi.org/10.1007/978-3-662-45611-8_6
https://doi.org/10.1007/978-3-642-42033-7_22
https://doi.org/10.1007/978-3-642-41227-1_12
https://doi.org/10.1007/978-3-642-41227-1_12
https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1007/978-3-319-63697-9_1
https://eprint.iacr.org/2004/309

Parallelizable Authenticated Encryption with Small State Size 643

11. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

12. Benadjila, R., Guo, J., Lomné, V., Peyrin, T.: Implementing lightweight block
ciphers on x86 architectures. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 324–351. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7 17

13. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge:
single-pass authenticated encryption and other applications. In: Miri, A., Vau-
denay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28496-0 19

14. Bhaumik, R., Nandi, M.: Improved security for OCB3. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 638–666. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 22

15. Bost, R., Sanders, O.: Trick or tweak: on the (In)security of OTR’s tweaks. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 333–353.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 12

16. Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M.: Blockcipher-based authen-
ticated encryption: how small can we go? In: Fischer, W., Homma, N. (eds.) CHES
2017. LNCS, vol. 10529, pp. 277–298. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66787-4 14

17. Datta, N., Nandi, M.: ELmE: a misuse resistant parallel authenticated encryption.
In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 306–321. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08344-5 20

18. Datta, N., Nandi, M.: ELMD v2.0. Submission to CAESAR competition (2015)
19. Dworkin, M.: Recommendation for Block Cipher Modes of Operation:

Galois/Counter Mode (GCM) and GMAC. NIST-SP 800–38D (2007)
20. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: the CCM

Mode for Authentication and Confidentiality. NIST-SP 800–38C (2007)
21. Ferguson, N.: Collision attacks on OCB. Comments to NIST (2002)
22. Granger, R., Jovanovic, P., Mennink, B., Neves, S.: Improved masking for tweak-

able blockciphers with applications to authenticated encryption. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 263–293. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 11

23. Inoue, A., Iwata, T., Minematsu, K., Poettering, B.: Cryptanalysis of OCB2:
attacks on authenticity and confidentiality. Cryptology ePrint Archive, Report
2019/311 (2019). https://eprint.iacr.org/2019/311

24. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T. (ed.) FSE
2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-39887-5 11

25. Iwata, T., Minematsu, K., Guo, J., Morioka, S.: CLOC: authenticated encryption
for short input. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp.
149–167. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-
0 8

26. Iwata, T., Minematsu, K., Guo, J., Morioka, S., Kobayashi, E.: CLOC and SILC
v3. Submission to the CAESAR competition (2016)

27. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Fast Software Encryption - 18th International Workshop, FSE 2011,
Lyngby, Denmark, 13–16 February 2011, Revised Selected Papers, pp. 306–327
(2011). https://doi.org/10.1007/978-3-642-21702-9 18

https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-662-43414-7_17
https://doi.org/10.1007/978-3-662-43414-7_17
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-319-70697-9_22
https://doi.org/10.1007/978-3-662-53887-6_12
https://doi.org/10.1007/978-3-319-66787-4_14
https://doi.org/10.1007/978-3-319-66787-4_14
https://doi.org/10.1007/978-3-319-08344-5_20
https://doi.org/10.1007/978-3-662-49890-3_11
https://eprint.iacr.org/2019/311
https://doi.org/10.1007/978-3-540-39887-5_11
https://doi.org/10.1007/978-3-540-39887-5_11
https://doi.org/10.1007/978-3-662-46706-0_8
https://doi.org/10.1007/978-3-662-46706-0_8
https://doi.org/10.1007/978-3-642-21702-9_18

644 A. Inoue and K. Minematsu

28. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9 3

29. Matsuda, S., Moriai, S.: Lightweight cryptography for the cloud: exploit the power
of bitslice implementation. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS,
vol. 7428, pp. 408–425. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33027-8 24

30. Minematsu, K.: Improved security analysis of XEX and LRW modes. In: Biham, E.,
Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 96–113. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74462-7 8

31. Minematsu, K.: Parallelizable rate-1 authenticated encryption from pseudorandom
functions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 275–292. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 16

32. Minematsu, K.: AES-OTR v3. Submission to CAESAR competition (2016)
33. Minematsu, K., Matsushima, T.: Generalization and extension of XEX* mode.

IEICE Trans. 92-A(2), 517–524 (2009). http://search.ieice.org/bin/summary.php?
id=e92-a 2 517&category=A&year=2009&lang=E&abst=

34. Naito, Y.: Improved XKX-based AEAD scheme: removing the birthday terms.
In: Lange, T., Dunkelman, O. (eds.) LATINCRYPT 2017. LNCS, vol. 11368, pp.
228–246. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25283-0 13

35. Naito, Y.: Tweakable blockciphers for efficient authenticated encryptions with
beyond the birthday-bound security. IACR Trans. Symmetric Cryptol. 2017(2),
1–26 (2017)

36. Naito, Y., Matsui, M., Sugawara, T., Suzuki, D.: SAEB: a lightweight blockcipher-
based AEAD mode of operation. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(2), 192–217 (2018). https://doi.org/10.13154/tches.v2018.i2.192-217

37. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446
(2018). https://doi.org/10.17487/RFC8446, https://rfc-editor.org/rfc/rfc8446.txt

38. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements
to modes OCB and PMAC. In: Advances in Cryptology - ASIACRYPT 2004,
10th International Conference on the Theory and Application of Cryptology and
Information Security, Jeju Island, Korea, 5–9 December 2004, pp. 16–31 (2004).
https://doi.org/10.1007/978-3-540-30539-2 2

39. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: CCS 2001, Proceedings of the
8th ACM Conference on Computer and Communications Security, Philadelphia,
Pennsylvania, USA, 6–8 November 2001, pp. 196–205 (2001). https://doi.org/10.
1145/501983.502011

40. T. Dierks, E.R.: The Transport Layer Security (TLS) Protocol Version 1.2. IETF,
RFC 5246 (2008)

41. Ueno, R., Homma, N., Iida, T., Minematsu, K.: High throughput/gate FN-based
hardware architectures for AES-OTR. In: 2019 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1–4 (2019)

https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/978-3-642-33027-8_24
https://doi.org/10.1007/978-3-642-33027-8_24
https://doi.org/10.1007/978-3-540-74462-7_8
https://doi.org/10.1007/978-3-642-55220-5_16
https://doi.org/10.1007/978-3-642-55220-5_16
http://search.ieice.org/bin/summary.php?id=e92-a_2_517&category=A&year=2009&lang=E&abst=
http://search.ieice.org/bin/summary.php?id=e92-a_2_517&category=A&year=2009&lang=E&abst=
https://doi.org/10.1007/978-3-030-25283-0_13
https://doi.org/10.13154/tches.v2018.i2.192-217
https://doi.org/10.17487/RFC8446
https://rfc-editor.org/rfc/rfc8446.txt
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1145/501983.502011
https://doi.org/10.1145/501983.502011

	Parallelizable Authenticated Encryption with Small State Size
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 (Tweakable) Blockcipher
	2.3 Authenticated Encryption
	2.4 Computation on Galois Field

	3 Review of OCB and OTR
	3.1 OCB
	3.2 OTR

	4 Our Proposals
	4.1 Overview
	4.2 OCB-hc
	4.3 Security of OCB-hc
	4.4 OTR-hc
	4.5 Security of OTR-hc

	5 Extensions
	5.1 Arbitrary Tag Length
	5.2 OCB-hc with AD
	5.3 Security of OCB-hc-AD

	6 Discussion on the Security Bounds of Proposals
	7 Conclusion
	A Proof of Security of Phash-hc
	B Proof of the Security of OCB-hc-AD
	References

