
Towards a Practical Cluster Analysis
over Encrypted Data

Jung Hee Cheon, Duhyeong Kim(B), and Jai Hyun Park

Department of Mathematical Sciences,
Seoul National University, Seoul, South Korea
{jhcheon,doodoo1204,jhyunp}@snu.ac.kr

Abstract. Cluster analysis is one of the most significant unsupervised
machine learning methods, and it is being utilized in various fields asso-
ciated with privacy issues including bioinformatics, finance and image
processing. In this paper, we propose a practical solution for privacy-
preserving cluster analysis based on homomorphic encryption (HE). Our
work is the first HE solution for the mean-shift clustering algorithm. To
reduce the super-linear complexity of the original mean-shift algorithm,
we adopt a novel random sampling method called dust sampling app-
roach, which perfectly suits with HE and achieves the linear complexity.
We also substitute non-polynomial kernels by a new polynomial kernel
so that it can be efficiently computed in HE.

The HE implementation of our modified mean-shift clustering algo-
rithm based on the approximate HE scheme HEAAN shows prominent
performance in terms of speed and accuracy. It takes approx. 30 min with
99% accuracy over several public datasets with hundreds of data, and
even for the dataset with 262, 144 data, it takes 82 min only when SIMD
operations in HEAAN is applied. Our results outperform the previously
best known result (SAC 2018) by over 400 times.

Keywords: Clustering · Mean-shift · Homomorphic encryption ·
Privacy

1 Introduction

For a decade, machine learning has garnered much attention globally in various
fields due to its strong ability to resolve various real world problems. Since many
fields of frequently-used data such as financial and biomedical data including
personal or sensitive information, privacy-related issues are inevitable in the use
of machine learning in such fields. There have been several non-cryptographic
approaches for privacy-preserving machine learning including anonymization,
perturbation, randomization and condensation [34,44]; however, these methods
commonly accompany a potential loss of information which might degrade the
utility of data.

On the other hand, Homomorphic Encryption (HE), which allows computa-
tions over encrypted data without any decryption process, is theoretically one
c© Springer Nature Switzerland AG 2020
K. G. Paterson and D. Stebila (Eds.): SAC 2019, LNCS 11959, pp. 227–249, 2020.
https://doi.org/10.1007/978-3-030-38471-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38471-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-38471-5_10

228 J. H. Cheon et al.

of the most ideal cryptographic primitives for privacy protection without the
potential leakage of any information related to relevant data. There have been
a number of studies on privacy-preserving machine learning based on HE, par-
ticularly supervised machine learning tasks such as classification and regression;
including logistic regression [5,9,15,19,27,30,31,45] and (the prediction phase
of) deep neural networks [6,25].

cluster analysis is one of the most significant unsupervised machine learning
tasks, which aims to split a set of given data into several subgroups, called
clusters, in which such data in the same cluster are “similar” to each other.
As well as classification and regression, clustering is also widely used in various
fields that engage the use of private information, including bioinformatics, image
segmentation, finance, customer behavior analysis and forensics [20,22,36].

Contrary to classification and regression, there are only a few works [4,29]
on privacy-preserving clustering based on HE, and even only one of these works
provides a full HE solution, i.e., the whole procedure is done by HE operations
without any decryption process or a trusted third-party setting. The main rea-
son for the slow progress of the research on HE-based clustering is that there
are many HE-unfriendly operations such as division and comparison. Recently,
Cheon et al. [14] proposed efficient HE algorithms for division and comparison of
numbers which are encrypted word-wise, and this work surely has its significance
as it has initiated and called for active research on HE-based clustering.

1.1 This Work

In this paper, we propose a practical solution of privacy-preserving cluster
analysis based on HE. Our solution is the first HE algorithm for mean-shift
clustering, which is one of the representative algorithms for cluster analysis
(Fig. 1). For given n-dimensional points P1, P2, ... , Pp and a function called ker-
nel K : Rn × R

n → R≥0, the mean-shift clustering utilizes the gradient descent
algorithm which finds local maxima (called modes) of the kernel density estima-
tor F (x) = 1

p ·∑p
i=1 K(x, Pi), in which K(x, Pi) outputs a value close to 0 when

x and Pi are far from each other.

Core Ideas. The major challenges for the original mean-shift algorithm to be
applied on HE are (1) super-linear computational complexity O(p2) for each
mean-shift process and (2) non-polynomial operations in kernel which are hard
to be efficiently computed in HE. In order to overcome these challenges, we
suggest several novel techniques to modify the original mean-shift algorithm
into an HE-friendly form:

• Rather than mean-shifting every given point, we randomly sample several
points called dusts and the mean-shift process will only be conducted for the
dusts. As a result, the computational cost to seek the modes is reduced from
O(p2) to O(d·p) where d is the number of dusts, which is much smaller than p.

• After the mode-seeking phase, one should match given points to the closest
mode, which we call point-labeling. We suggest a carefully devised algorithm

Towards a Practical Cluster Analysis over Encrypted Data 229

Fig. 1. Illustration of the mean-shift algorithm

for labeling points with the modes, which only consists of polynomial opera-
tions so that it can be implemented by HE efficiently.

• We propose a new HE-friendly kernel K(x,y) = (1 − ||x − y||2)2Γ +1. The
most commonly used kernel functions in clustering are Gaussian kernel and
Epanechnikov kernel. However, the derivatives of those functions, which we
should compute for each mean-shift process, are either exponential or dis-
continuous. Our new kernel is a simple polynomial which only requires
log(degree) complexity to compute its derivative, and the cluster analysis
based on this HE-friendly kernel is very accurate in practice.

Practical Performance: Fast and Accurate. To the best of our knowl-
edge, the work in [29] has been a unique full HE solution to privacy-preserving
clustering so far. While their implementation takes as much as 619 h for 400
2-dimensional data, our algorithm takes only approx. 1.4 h for the same dataset,
which is over 400 times faster than the previous result. Using a multi-threading
option with 8 threads, its running time is even reduced to half an hour. The
fast and accurate performance of our algorithm implies that the research on
HE-based privacy-preserving clustering is approaching to a stage of practical
application.
Why Mean-shift Clustering? K-means clustering is another representative
algorithm for clustering, and many of the previous works on privacy-preserving
clustering used the K-means clustering algorithm. However, there are some crit-
ical drawbacks in K-means clustering in the perspective of HE applications.
Firstly, K-means clustering requires a user to pre-determine the exact number
of clusters. However, there is no way to determine the number of clusters when
the encrypted data are given only. Therefore, a data owner should additionally
provide the number of clusters, but determining the exact number of clusters

230 J. H. Cheon et al.

from a given dataset also requires a costly process even in an unencrypted state
[41]. Secondly, K-means clustering often does not work when the shape of clus-
ters is non-convex, but the shape of clusters is also non-predictable information
from encrypted data.

1.2 Related Works

In the case of HE-based privacy-preserving clustering, to the best of our knowl-
edge, there has been proposed only a single solution [29] which does not requires
any decryption process during the analysis. They transform the K-means clus-
tering algorithm into an HE algorithm based on the HE scheme TFHE [16,17],
which encrypts data bit-wisely. One of their core ideas is to modify the origi-
nal K-means clustering algorithm by substituting a homomorphic division of a
ciphertext, which is very expensive, with a simple constant division. As a result,
to run their modified algorithm with TFHE over 400 2-dimensional data, it takes
approx. 619 h (≈.26 days) on a virtual machine with an Intel i7-3770 processor
with 3.4 GHz without parallelization options. Before this work, there has been
an attempt [4] to perform K-means clustering based on HE with trusted third
party; however, the HE scheme they used [32] was proved to be insecure [46].

Contrary to HE, there have been a number of works [7,21,28,33,38–40,43] on
privacy-preserving clustering based on another cryptographic tool called Multi-
party Computation (MPC), which is a protocol between several parties to jointly
compute a function without revealing any information of their inputs. For more
details on MPC-based privacy-preserving clustering algorithms, we refer the
readers to a survey paper written by Meskine and Nait-Bahloul [35]. MPC is
normally known to be much faster than HE; however, MPC requires online
computation of data owners and it yields significantly large bandwidth. On the
other hand, HE computation can be totally done offline after encrypted data
are sent to a computing service provider. Since data owners do not need to par-
ticipate in the computation phase, HE-based solutions can be regarded to be
much more convenient and economic to data owners than MPC.

2 Backgrounds

2.1 Notations

We call each given datum of the clustering problem a point. Let n be the dimen-
sion of each point, and P = {P1, P2, ... , Pp} be the set of given points where p is
the number of elements in P . We denote the set of dusts, which will be defined
in Sect. 3, by D = {D1,D2, ... ,Dd} where d is the number of dusts. There are
several auxiliary parameters for our new algorithms in Sects. 2 and 3: ζ, t, Γ and
T denote the number of iterations for Inv, MinIdx, Kernel and Mode-seeking,
respectively. R denotes the real number field, and R≥0 is a subset of R which con-
sists of non-negative real numbers. The set Bn(1/2) denotes the n-dimensional
ball of the radius 1/2 with center 0. For an n-dimensional vector x ∈ R

n, the

Towards a Practical Cluster Analysis over Encrypted Data 231

L2-norm of x is denoted by ||x||. For a finite set X, x ← U(X) means that x is
sampled uniformly at random from X, and |X| denotes the number of elements
in X. For (row) vectors x ∈ R

n and y ∈ R
m, the concatenation of the two vec-

tors is denoted by (x||y) ∈ R
n+m. For a positive integer q, [·]q denotes a residue

modulo q in [−q/2, q/2).

2.2 Approximate Homomorphic Encryption HEAAN

For privacy-preserving clustering, we apply an HE scheme called HEAAN pro-
posed by Cheon et al. [12,13], which supports approximate computation of real
numbers in encrypted state. Efficiency of HEAAN in the real world has been
proved by showing its applications in various fields including machine learn-
ing [15,30,31] and cyber-physical systems [11]. After the solution [30] based on
HEAAN won the first place in privacy-preserving genome data analysis compe-
tition called IDash in 2017, all the solutions for the next-year competition which
aimed to develop a privacy-preserving solution for Genome-wide Association
Study (GWAS) computation were constructed based on HEAAN.

In detail, let ct be a HEAAN ciphertext of a plaintext vector m ∈ C
N/2.

Then, the decryption process with a secret key sk is done as

Decsk(ct) = m + e ≈ m

where e is a small error attached to the plaintext vector m. For formal def-
initions, let L be a level parameter and q� := 2� for 1 ≤ � ≤ L. Let
R := Z[X]/(XN + 1) for a power-of-two N and Rq be a modulo-q quotient
ring of R, i.e., Rq := R/qR. The distribution χkey := HW(h) over Rq outputs
a polynomial of {−1, 0, 1}-coefficients having h number of non-zero coefficients,
and χenc and χerr denote the discrete Gaussian distribution with some prefixed
standard deviation. Finally, [·]q denotes a component-wise modulo q operation
on each element of Rq. Note that whether those parameters N , L and h are satis-
fying a certain security level can be determined by Albrecht’s security estimator
[2,3].

A plaintext vector m ∈ C
n/2 is firstly encoded as a polynomial in R by

applying a (field) isomorphism τ from R[X]/(XN + 1) to C
N/2 called canonical

embedding. A naive approach is to transform the plaintext vector as τ−1(m) ∈
R[X]/(XN +1); however, the naive rounding-off can derive quite a large relative
error on the plaintext. In order to control the error, we round the plaintext
off after scaling up by p bits for some integer p, i.e., �2p · τ−1(m)�, so that
the relative error can be reduced. The full scheme description of HEAAN is as
following:

• KeyGen.
– Sample s ← χkey. Set the secret key as sk ← (1, s).
– Sample a ← U(RqL

) and e ← χerr. Set the public key as pk ← (b, a) ∈ R2
qL

where b ← [−a · s + e]qL
.

– Sample a′ ← U(Rq2
L
) and e′ ← χerr. Set the evaluation key as evk ←

(b′, a′) ∈ R2
q2

L
where b′ ← [−a′s + e′ + qL · s2]q2

L
.

232 J. H. Cheon et al.

• Encpk(m).
– For a plaintext m = (m0, ...,mN/2−1) in C

N/2 and a scaling factor p > 0,
compute a polynomial m ← �2p · τ−1(m)� ∈ R

– Sample v ← χenc and e0, e1 ← χerr. Output ct = [v · pk + (m+ e0, e1)]qL
.

• Decsk(ct).
– For a ciphertext ct = (c0, c1) ∈ R2

q�
, compute m′ = [c0 + c1 · s]q�

.

– Output a plaintext vector m′ = 2−p · τ(m′) ∈ C
N/2.

• Add(ct, ct′). For ct, ct′ ∈ R2
q�

, output ctadd ← [ct + ct′]q�
.

• Sub(ct, ct′). For ct, ct′ ∈ R2
q�

, output ctsub ← [ct − ct′]q�
.

• Multevk(ct, ct′). For ct = (c0, c1), ct′ = (c′
0, c

′
1) ∈ R2

q�
, let (d0, d1, d2) =

(c0c′
0, c0c

′
1 + c1c

′
0, c1c

′
1). Compute ct′mult ← [(d0, d1) + �q−1

L · d2 · evk�]q�
, and

output ctmult ← [�(1/p) · ct′mult�]q�−1 .

We omitted the parameters (N,L, h, p) as an input of the above algorithms
for convenience. Let ct1 and ct2 be ciphertexts of plaintext vectors m1 and m2.
Then, the homomorphic evaluation algorithms Add and Mult satisfy

Decsk(Add(ct1, ct2)) ≈ m1 + m2,

Decsk(Multevk(ct1, ct2)) ≈ m1 	 m2

where 	 denotes the Hadamard (component-wise) multiplication, i.e., addition
and multiplication can be internally done in a Single Instruction Multi Data
(SIMD) manner even in encrypted state. For more details of the scheme including
the correctness and security analysis, we refer the readers to [13].

In order to manage a plaintext vector of the form m ∈ C
K having length

K ≤ N/2 for some power-of-two divisor K of N/2, HEAAN encrypts m into a
ciphertext of an N/2-dimensional vector (m|| · · · ||m) ∈ C

N/2. This implies that
a ciphertext of m ∈ C

K can be understood as a ciphertext of (m|| · · · ||m) ∈ C
K′

for powers-of-two K and K ′ satisfying K ≤ K ′ ≤ N/2.

Bootstrapping of HEAAN. Since the output ciphertext of a homomor-
phic multiplication has a reduced modulus by the scaling factor p compared
to the input ciphertexts, the homomorphic operation should be stopped when
the ciphertext modulus becomes so small that no more modulus reduction can
be done. In other words, without some additional procedures, the HE scheme
only supports polynomial operations with a bounded degree pre-determined by
HEAAN parameters.

A bootstrapping algorithm, of which the concept was firstly proposed by Gen-
try [24], enables us to overcome the limitation on the depth of computation. The
bootstrapping algorithm gets a ciphertext with the lowest modulus ct ∈ R2

q1 as an
input, and outputs a refreshed ciphertext ct′ ∈ R2

qL′ where L′ is a pre-determined
parameter smaller than L. The important fact is that the bootstrapping preserves
the most significant bits of a plaintext, i.e., Decsk(ct) ≈ Decsk(ct′). In 2018, a
first bootstrapping algorithm for HEAAN was proposed by Cheon et al. [12],
and later it was improved by several works concurrently [8,10].

Towards a Practical Cluster Analysis over Encrypted Data 233

Even though the performance of bootstrapping has been improved by active
studies, the bootstrapping algorithm is still regarded as the most expensive part
of HE. In the case of HEAAN, the performance of bootstrapping depends on the
number of plaintext slots K; roughly the computational complexity is O(log K)
considering SIMD operations of HEAAN.

2.3 Non-polynomial Operations in HEAAN

Since HEAAN basically supports homomorphic addition and multiplication, per-
forming non-polynomial operations in HEAAN is clearly non-trivial. In this
section we introduce how to perform the division and a comparison-related oper-
ation called min-index in word-wise HE including HEAAN, which are required
for our mean-shift clustering algorithm. Note that the following methods are
essentially efficient polynomial approximations for the target operations.

Division. The Goldschmidt’s division algorithm [26] is an approximate algo-
rithm to compute the inversion of a positive real number in (0, 2), and has been
used in various cryptographic applications [14,18] to deal with inversion and divi-
sion operations through a polynomial evaluation. The algorithm approximates
the inversion of x ∈ (0, 2) by

1
x

=
∞∏

i=0

(
1 + (1 − x)2

i
)

≈
ζ−1∏

i=0

(
1 + (1 − x)2

i
)

where ζ is a parameter we choose considering the approximation error. If the
range of an input is (0,m) for large m > 0 which is known, then the Gold-
schmidt’s division algorithm can be easily generalized by simply scaling down
the input into the range (0, 2) and scaling up the output after the whole process.

Algorithm 1. Inv(x;m, ζ)
Input: 0 < x < m, ζ ∈ N

Output: an approximate value of 1/x
1: a0 ← 2 − (2/m) · x
2: b0 ← 1 − (2/m) · x
3: for i ← 0 to ζ − 1 do
4: bi+1 ← b2i
5: ai+1 ← ai · (1 + bi+1)
6: end for
7: return (2/m) · aζ

Min Index. In [14], Cheon et al. proposed the iterative algorithm MaxIdx to
compute the max-index of an array of positive numbers that can be homomor-
phically computed by HEAAN efficiently. More precisely, for an input vector
x = (x1, x2, .., xm) where xi ∈ (0, 1) are distinct numbers, the output of the

234 J. H. Cheon et al.

max-index algorithm is a vector
(
x2t

i /(
∑m

j=1 x2t

j)
)

1≤i≤m
for sufficiently large

t > 0, in which i-th component is close to 1 if xi is the maximal element and is
approximately 0 otherwise. If there are several maximal numbers, say x1, ..., x�

for 1 ≤ � ≤ m without loss of generality, the output vector is approximately
(1/�, 1/�, ..., 1/�, 0..., 0).

As a simple application of max-index, one can also compute the min-index
of an array of positive numbers in (0, 1) by running the MaxIdx algorithm for
input (1−x1, 1−x2, ..., 1−xm). The following algorithm describes the min-index
algorithm denoted by MinIdx.

Algorithm 2. MinIdx((xi)m
i=1; t, ζ)

Input: (x1, ..., xm) ∈ (0, 1)m where � ≥ 1 elements are minimal, t ∈ N

Output: (y1, ..., ym) where yi ≈ 1/� if xi is a minimal element and yi ≈ 0
otherwise;

1: sum ← 0
2: for i ← 1 to m do
3: yi ← 1 − xi

4: for j ← 1 to t do
5: yi ← yi · yi

6: end for
7: sum ← sum + yi

8: end for
9: inv ← Inv(sum;m, ζ)

10: for i ← 1 to m do
11: yi ← yi · inv // yi � (1 − xi)2

t

/
∑m

j=1(1 − xj)2
t

12: end for
13: return (y1, ..., ym)

2.4 Mean-Shift Clustering

The mean-shift clustering algorithm is a non-parametric clustering technique
which does not restrict the shape of the clusters and not require prior knowledge
of the number of clusters. The goal of the algorithm is to cluster the given points
by finding the local maxima (called modes) of a density function called Kernel
Density Estimator (KDE), and this process is essentially done by the gradient
descent algorithm. For given n-dimensional points P1, P2, ..., Pp and a function
K : Rn × R

n → R≥0 so-called kernel, the KDE map F : Rn → R
n is defined as

F (x) =
1
p

·
p∑

i=1

K(x, Pi).

The kernel K is defined by a profile k : R → R≥0 as K(x,y) = ck · k(||x − y||2)
for some constant c > 0. Through a simple computation, one can check that

Towards a Practical Cluster Analysis over Encrypted Data 235

∇F (x) is parallel to
∑p

i=1
k′(||x−Pi||2)·Pi∑p
i=1 k′(||x−Pi||2) − x where k′ is the derivative of k.

As a result, the mean-shift process is to update the point x with

x ← x +

(
p∑

i=1

k′(||x − Pi||2)∑p
j=1 k′(||x − Pj ||2) · Pi − x

)

=
p∑

i=1

k′(||x − Pi||2)∑p
j=1 k′(||x − Pj ||2) · Pi,

which is the weighted mean of given points. The most usual choices of the kernel
function are the Gaussian kernel KG(x,y) = ckG

· exp
(−||x − y||2/σ2

)
and the

Epanechnikov kernel KE(x,y) = ckE
· max(0, 1 − ||x − y||2/σ2) for x,y ∈ R

n

with an appropriate parameter σ > 0 and constants ckG
and ckE

. Algorithm 3 is
a full description of the original mean-shift clustering algorithm with Gaussian
kernel.

Algorithm 3. MS-clustering-original(P = {P1, ..., Pp}, T ;σ)
Input: P1, P2, · · · , Pp ∈ R

n, the number of iterations T ∈ N

Output: Label vector M of given points P1,, Pp

1: for i ← 1 to p do
2: Mi ← Pi

3: end for
4: for i ← 1 to T do
5: for j ← 1 to p do
6: sum ← 0
7: A ← 0d

8: for k ← 1 to p do
9: a ← exp(−||Pk − Mj ||2/σ2)

10: A ← A + a · Pk

11: sum ← sum + a
12: end for
13: Mj ← (1/sum) · A
14: end for
15: end for
16: return M = (M1, ...,Mp)

Freedman-Kisilev Mean-Shift. A decade ago, Freedman and Kisilev [23] pro-
posed a novel fast mean-shifting algorithm based on the random sampling. As the
first step, for the given set P = {P1, P2, ..., Pp} which consists of n-dimensional
points, they randomly choose a subset P ′ ⊂ P of the cardinality p′. Here the
cardinality p′ is indeed smaller than p but should not be too small so that the
subset P ′ approximately conserves the distribution of the points. For example, if
the random sampling factor p/p′ is too high, then Freedman-Kisilev mean-shift
algorithm shows a quite different result compared to that of the original mean-
shift algorithm. After the random sampling phase, the second step is to run the
original mean-shift algorithm only on the randomly chosen subset P ′ and obtain

236 J. H. Cheon et al.

the modes of KDE constructed by P ′, not P . Since only p′ points are used for
mean-shifting process, the computational complexity of this phase is O(p′2), not
O(p2). The last step so-called “map-backwards” is to find the closest point in
P ′

j ∈ P ′ for each point in Pi ∈ P and then output the mode mean-shifted from
P ′

j . The last step takes O(p′ · p) computational complexity, which is still smaller
than O(p2). Note that the map-backwards, the last step in Freedman-Kisilev
mean-shift algorithm, is not required in the original mean-shift algorithm, since
every point converges to some mode which takes a role of the label in the original
mean-shift algorithm.

2.5 Clustering Quality Evaluation Criteria

To evaluate the quality of our cluster analysis results, we bring two measures:
accuracy and silhouette coefficient. The accuracy is measured by comparing the
cluster analysis result and the given true label information. Let Li and C(Pi)
be the true label and the label obtained by cluster analysis of the point Pi,
respectively; then, the accuracy is calculated as

Accuracy =
|{1 ≤ i ≤ p : Li = C(Pi)}|

p
.

Note that the measure is valid only if the number of clusters of the given true
label is equal to that of the cluster analysis result.

The silhouette coefficient [37] is another measure which evaluates the quality
of cluster analysis, which does not require true label information to be given.
Let Q1,...,Qk be the clusters of the given dataset P obtained by cluster analysis.
For each point Pi which belongs to the cluster Qki

, we first define two functions
A and B as

A(Pi) =
1

|Qki
| − 1

·
∑

P�∈Qki
� �=i

dist(Pi, P�), B(Pi) = min
j �=i

1
|Qkj

| ·
∑

P�∈Qkj

dist(Pi, P�).

Then, the silhouette coefficient is defined as

SilhCoeff =
1
p

·
p∑

i=1

B(Pi) − A(Pi)
max(B(Pi), A(Pi))

which indicates how well the points are clustered. It is clear that −1 ≤
SilhCoeff ≤ 1, and the silhouette coefficient closer to 1 implies the better result
of clustering.

3 HE-Friendly Modified Mean-Shift Clustering

In this section, we introduce several modifications on the mean-shift algorithm
which can be efficiently performed by HE. One big drawback of the original

Towards a Practical Cluster Analysis over Encrypted Data 237

mean-shift algorithm to be implemented by HE is the evaluation of kernel func-
tions. They usually contain non-polynomial operations, but these operations can-
not be easily computed with HE algorithms. In order to overcome the problem,
we suggest a new HE-friendly kernel function in Sect. 3.1 which is computation-
ally efficient and shows a good performance.

Another big drawback of the original mean-shift algorithm to be implemented
by HE is its high computational cost. The usual mean-shift process classifies
data by seeking modes and mapping points to its corresponding mode at the
same time. This strategy eventually forces us to perform mean-shift process on
all data, so it is computationally inefficient to be implemented by HE which
possibly accompanies more than hundreds or thousands times of overhead. In
order to address this issue, we adopt a random sampling method called dust
sampling and separate the total mean-shift clustering process into two phases:
mode-seeking phase and point-labeling phase. One can check the details on these
two phases in Sects. 3.2 and 3.3 respectively, and the full description of our
modified mean-shift clustering algorithm is described in Sect. 3.4.

3.1 HE-Friendly Kernel

As described in Sect. 2.4, the most popular kernel functions for mean-shift algo-
rithm are Gaussian kernel and Epanechnikov kernel. However, the derivatives
of both kernel functions, which should be computed in the mean-shift cluster-
ing algorithm, are either exponential or discontinuous that cannot be directly
computed with HE.

In order to overcome those drawbacks, we propose a new HE-friendly kernel
function which is a polynomial. We aim to construct a kernel function that
vanishes rapidly as its input goes far from the origin. Moreover, we also consider
about reducing the number of multiplications during the computation of the
kernel. For each x ∈ [0, 1], our new profile k is calculated as following:

k(x) = (1 − x)2
Γ +1

. (1)

The degree was set 2Γ +1 to reduce the computational complexity of the deriva-
tive function k′, which should be computed for mean-shift. Using this profile, a
new HE-friendly kernel is defined as following: For x,y ∈ Bn(1/2), the kernel
function K based on the profile k is

K(x,y) = c · (
1 − ||x − y||2)2

Γ +1
(2)

for some constant c > 0. The following algorithm, denoted by Kernel, shows
a very simple computation of k′(||x − y||2) up to constant −1/(2Γ + 1). If one
chooses bigger Γ , the kernel function will decrease more rapidly, so the mean-
shift process will focus more on closer points. Conversely, if one chooses smaller
Γ , the kernel function will decrease more slowly so that the mean-shift process
references wider area.

Our new kernel function is composed of (Γ + 1) multiplications and one
constant addition, while Γ is relatively minute compared to the degree of the

238 J. H. Cheon et al.

Algorithm 4. Kernel(x,y;Γ)
Input: x,y ∈ Bn(1/2), Γ ∈ N

Output: HE-friendly kernel value between A and B
1: a ← 1 − ||x − y||2
2: for i ← 1 to Γ do
3: a ← a2

4: end for
5: return a

kernel polynomial (Γ = log(degree)). Thus, our new kernel function is very
HE-friendly. At the same time, it is non-negative and strictly decreasing, so
it satisfies the core conditions of a kernel function for mean-shift algorithm.
Moreover, its rapid decreasing property provides a high performance for mean-
shift algorithm. The performance of our new kernel function is experimentally
proved under various datasets (See Sect. 4). In an unencrypted state, the mean-
shift clustering with our kernel function shows almost same performance with
that with the Gaussian kernel function on same datasets described in Sect. 4.1.

3.2 Mode-Seeking Phase

The biggest drawback of the original mean-shift clustering algorithm is its high
time complexity. It requires super-linear operations in the number of data points.
Since HE consumes considerably long time to compute each operation, it is
strongly demanded to modify mean-shift algorithm for practical implementation
with HE.

In order to overcome those drawbacks, we use random sampling to reduce the
total number of operations for each mean-shift process. Instead of performing
mean-shift on every point, we perform the mean-shift process only on selected
points, which we shall call dusts. Each mean-shift process references all the data
so that dusts move to proper modes of the KDE map generated by given data.
After sufficiently many iterations, each dust converges to a mode, so we can seek
all modes if we selected enough number of dusts.

Advantage of the Dust Sampling Method. Our modification has a great
advantage on the number of operations. In the original mean-shift clustering
algorithm, every point shifts its position by referencing all of the other points.
Hence, it needs O(p2) operations for each loop where p is the number of given
points. However, in our approach, only selected dusts shift their positions, so we
can complete each mean-shift iteration with O(p · d) operations, where d is the
number of selected dusts. This decreases the total number of operations, because
we select relatively negligible number of dusts among numerous points.

Even though our approach requires less operations, its performance is accept-
able. Since we use the KDE map over all given points, the dusts converge to
modes exactly in the same way with the original mean-shift algorithm. Conse-
quently, we can seek all modes by selecting sufficiently many dusts.

Towards a Practical Cluster Analysis over Encrypted Data 239

How to Sample Dusts? There are many possible ways to set the initial position
of dusts. We consider two candidates of initialization strategy of the dusts. One
is to uniformly select dusts from the space (so that can form a grid), and the
other is to select dusts among the given points. The first strategy is tempting
because it guarantees high probability to seek all the modes. However, as the
dimension of the data set becomes higher, it requires too many number of dusts,
which directly increases the total time complexity. On the other hand, the second
strategy provides a stable performance with less number of dusts even if the
dimension and shape of the data vary. Moreover, it chooses more dusts from
the denser regions, so we can expect that it succeeds in detecting all centers of
clusters. Thus, we use the second strategy, selecting dusts among given points
as described in Algorithm 5.

Comparison to Freedman-Kisilev’s Method. At first glance, our approach
looks similar to that of Freedman and Kisilev [23]. Remark that they pick p′

random samples among the data, and run the mean-shift algorithm only on the
sampled points by referencing the KDE map generated by the sampled points.

Compared to Freedman-Kisilev mean-shift, the number of selected dusts d in
our mean-shift can be set smaller than the number of randomly sampled points
p′. While our sampling method uses the original KDE map, Freedman-Kisilev
algorithm uses the KDE map generated by the sampled points. As a consequence,
Freedman and Kisilev have to select substantially many samples to preserve the
original KDE structure, while we do not have such restriction on the number of
dusts.

Algorithm 5. Mode-seeking(P = {P1, ..., Pp}, d, T ;Γ, ζ)
Input: Points P1, P2, · · · , Pp ∈ Bn(1/2), the number of dusts d ∈ N, the number

of mean-shift iterations T ∈ N

Output: Mean-shifted dusts Di ∈ Bn(1/2) close to modes for 1 ≤ i ≤ d
1: for i ← 1 to d do
2: Di ← U(P) // selecting dusts among Pi’s
3: end for
4: for i ← 1 to T do
5: for j ← 1 to d do
6: sum ← 0
7: A ← 0d

8: for k ← 1 to p do
9: a ← Kernel(Pk,Dj ;Γ)

10: A ← A + a · Pk

11: sum ← sum + a
12: end for
13: Dj ← Inv(sum; p, ζ) · A // Dj ← ∑p

i=1
k′(||Dj−Pi||2)∑p

�=1 k′(||Dj−P�||2) · Pi

14: end for
15: end for
16: return D

240 J. H. Cheon et al.

The computational complexity of each mean-shift process in Freedman and
Kisilev’s algorithm is O(p′2) , while ours is O(d · p). If p′ is large enough so that
d·p < p′2, our mean-shift process might require even less computations. And even
if p′ has been set small enough so that p′2 < p · d, the computational complexity
of the map-backwards process in Freedman-Kisilev mean-shift O(p · p′) is still
larger than corresponding point-labeling process in our mean-shift O(p · d) since
p′ > d. More importantly, the less number of selected dusts in our approach has
a huge advantage on HE implementation. Bootstrapping is the most expensive
part in HE, so minimizing the cost of bootstrapping, by reducing the number of
bootstrappings or setting the number of plaintext slots as small as possible, is
very important to optimize HE implementations. Since the mean-shift clustering
algorithm requires very large amount of computations, we have to repeatedly
execute bootstrapping on d dusts in the case of our algorithm and p′ samples in
the case of Freedman-Kisilev. Since d < p′, the total bootstrapping procedure
takes much less time in our mean-shift algorithm than the Freedman-Kisilev
mean-shift algorithm.

3.3 Point-Labeling Phase

Let us move on to the second phase, point-labeling. After finding all the modes,
we should label each point by mapping it to its closest mode. A naive way to
label a point Pi is as followings:

Cnaive(Pi) = argmin1≤j≤ddist(Dj , Pi)

where each Di denotes the mean-shifted dust after the mode-seeking phase.
However, the argmin function is very hard to compute in HE, and furthermore
this naive approach would label the points in the same cluster with different
indices. For example, let two dusts D1 and D2 converge to a same mode M
after the mean-shift process, and P1 and P2 are unselected points of which the
closed dusts are D1 and D2 respectively. We expect P1 and P2 to be classified
as a same cluster because both points are close to the same mode M . However,
with the naive way of point-labeling above, Cnaive(P1) = 1 does not match with
Cnaive(P2) = 2 due to the slight difference between D1 and D2.

Fortunately, utilizing MinIdx algorithm in Sect. 2.3 resolves both problems
of the naive approach. Let us define a modified point-labeling function C ′ as

C ′(Pi) = MinIdx
(
(||Pi − Dk||2)1≤k≤d; t, ζ

)
.

Since MinIdx algorithm consists of polynomial operations, it can be eval-
uated by HE for sure. Moreover, with appropriate parameters t and ζ,
MinIdx((x1, ..., xm); t, ζ) outputs a vector close to

(
1
2 , 1

2 , 0, ..., 0
)

when x1 and x2

are (approximately) minimal among xi’s, rather than (1, 0, ..., 0) or (0, 1, ..., 0).
Therefore, in the same setting to above, we get C ′(P1) � C ′(P2) � (

1
2 , 1

2 , 0, ..., 0
)
.

However, C ′ cannot be a complete solution if we consider the case that a lot
of Di’s converge to a same mode. Let D1, ...,D� converged to the same mode M
after the mean-shifting process. Then for a point Pi that is close to the mode

Towards a Practical Cluster Analysis over Encrypted Data 241

Algorithm 6. Point-labeling(P = {P1, ..., Pp},D = {D1, ...,Dd};Γ, ζ, t)
Input: P1, .., Pp ∈ Bn(1/2), D1, ...,Dd ∈ Bn(1/2), Γ ∈ N

Output: Cluster index Ci ∈ [0, 1]d of each Pi for 1 ≤ i ≤ p
1: for i ← 1 to d do
2: NHBDi ← 0
3: for j ← 1 to d do
4: NBHDi ← NBHDi + Kernel(Di,Dj ;Γ)
5: end for
6: end for
7: NBHD ← (NBHDi)1≤i≤d // NBHDi =

∑d
j=1 Kernel(Di,Dj ;Γ)

8: for i ← 1 to p do
9: C ′

i ← MinIdx
(
(||Pi − Dk||2)1≤k≤d; t, ζ

)

10: Ci ← C ′
i 	 NBHD

11: end for
12: return C = (Ci)1≤i≤p

M , it holds that C ′(Pi) � (
1
� , 1

� , ..., 1
� , 0, ..., 0

)
. When � is sufficiently large, we

may not be able to distinguish between 1
� and an approximation error of MinIdx

attached to 0. We refine this problem by adopting a vector NBHD ∈ R
d of which

i-th component indicates the number of Dj ’s very close to Di:

NBHD =

(
d∑

k=1

Kernel(Dj ,Dk;Γ)

)

1≤j≤d

for proper parameter Γ ≥ 1, and we define our final point-labeling function C
as

C(Pi) = C ′(Pi) 	 NBHD.

Since Kernel(Dj ,Dk;Γ) outputs approximately 1 if Dj � Dk and 0 otherwise,
the j-th component NBHDi an approximate value of the number of dusts close to
Dj . Therefore, each component of C(Pi) is approximately 0 or 1 for 1 ≤ i ≤ p.
More precisely, for 1 ≤ j ≤ d, C(Pi)j � 1 if and only if Dj is one of the closest
dusts to Pi.

To sum up, with mean-shifted dusts D = {D1, ...,Dd}, we label each point
Pi by

C(Pi) = MinIdx
(
(||Pi − Dk||2)1≤k≤d; t, ζ

) 	
(

d∑

k=1

Kernel(Dj ,Dk; ζ)

)

1≤j≤d

.

Parameters t and ζ control the accuracy of MinIdx, and the parameter ζ control
the accuracy of counting the number of converged dusts in each mode. Note that
the return type of C is a d-dimensional vector, in which the i-th component Ci

denotes C(Pi).

Other Approaches of Point-Labeling. Another possible choice of the point-
labeling function is coordinate-of-dust function that simply returns the dust

242 J. H. Cheon et al.

closest to the input point, i.e., Ccoord(Pi) = Dargmin1≤j≤ddist(Dj ,Pi). However, the
minimum distance between Ccoord(Pi)’s cannot be bounded by any constant.
This limitation makes it unclear to determine whether two points Pi and Pj

satisfying Ccoord(Pi) � Ccoord(Pi) in some sense belong to the same cluster or
not. Since we are using several approximate algorithms including Mode-seeking,
this obscure situation occurs quite often. Therefore, Ccoord is not the best choice
for point labeling.

Freedman and Kisilev [23] uses another strategy called the map-backwards
strategy. In this strategy, we label points by referencing the initial position of
dusts instead of their final position. For example, we can compute the label of
each point Pi ∈ P by a vector-matrix multiplication as followings:

Cback(Pi) = MinIdx
(
(||Pi − D0

j ||2)1≤j≤d; t, ζ
) · (Kernel(Dj ,Dk))1≤j,k≤d

where D0
j is the initial position of each Dj ∈ D. Note that we treat the first term

as a 1 × d matrix and the second term as d × d matrix, and multiply them by
a matrix multiplication. As a result, the j-th entry of Cback(Pi) would designate
the set of dust-neighborhood of the dust closest to Pi at the initial state.

This strategy is also reasonable since the points close to the initial position
of each dust are generally expected to move close to the same mode through the
mean-shift process. We may regard this strategy as partitioning the points as
several regions through the initial position of dusts. However, the map-backwards
strategy shall be relatively inefficient compared to our point-labeling strategy in
the perspective of HE implementation. In the map-backwards strategy with only
small number of dusts, the sampled point in each partitioned regions might not
completely represent the region. Thus, the map-backwards strategy essentially
requires substantially many number of dusts. As we explained in Sect. 3.2, a less
number of dusts is better for HE implementation. Furthermore, a vector-matrix
multiplication in the map-backwards strategy is more expensive in HE compared
to a Hadamard multiplication of two vectors in our point-labeling strategy.

3.4 Our Modified Mean-Shift Clustering Algorithm

In summary, our modified mean-shift clustering procedure is done by two phases:
mode-seeking phase and point-labeling phase. In the first phase, we seek all the
modes which are candidates for the centers of clusters, and in the second phase,
we map each point to its closest mode with well-devised point-labeling function.
Algorithm 7 describes our HE-friendly modified mean-shift clustering algorithm:

Complexity Analysis. In the mode-seeking phase, the mean-shift process is
iterated for T times. For each iteration, we calculate the kernel value between
all pairs of points and dusts. Note that the computational complexity of Kernel
between two n-dimensional points is O(n), so each mean-shift iteration takes
O(n · d · p); hence, the computational cost of Mode-seeking is O(n · d · p · T).

The point-labeling phase consists of calculating vectors NBHD and C ′
i, and

Hadamard multiplications NBHD 	 C ′
i for 1 ≤ i ≤ p. In order to obtain NBHD,

Towards a Practical Cluster Analysis over Encrypted Data 243

Algorithm 7. Mean-shift-clustering(P = {P1, ..., Pp}, d, T ;Γ1, Γ2, ζ1, ζ2, t)
Input: P1, P2, · · · , Pp ∈ Bn(1/2), Γ1Γ2, d, T ∈ N

Output: A label vector of P1, P2, ..., Pp

1: D ← Mode-seeking(P, d, T ;Γ1, ζ1)
2: C ← Point-labeling(P,D;Γ2, ζ2, t)
3: return C = (C1, ..., Cp)

we calculate the kernel values between all pairs of dusts, so it takes O(n · d2)
computations. Also, to calculate C ′

i, we measure the distances from the given
point to dusts, so it requires O(n · d) computations. Note that the cost O(n) of
a Hadamard multiplication is negligible. As a result, the computational cost of
Point-labeling is O(n ·d ·p) because d is always strictly smaller than p. To sum
up, the cost of mode-seeking phase is O(n · d · p · T), and that of point-labeling
phase is O(n · d · p). Consequently, the computational cost of our algorithm is
O(n · d · p · T).

We can reduce the computational cost of Mean-shift-clustering by at
most N/2, since HEAAN supports N/2 parallel computations in a SIMD manner
where N is a HEAAN parameter. Fortunately, we can apply SIMD efficiently to
our algorithm. The most heaviest parts of our algorithm are mean-shift process
and MinIdx, both of which require O(n · p · d) computations. For mean-shift
process, we compute kernel values between all pairs of points and dusts. When
we have one ciphertext of

(P1 || P2 || · · · || Pp || P1 || P2 || · · · || Pp || · · · || P1 || P2 || · · · || Pp)

and another ciphertext of

(D1 || D1 || · · · || D1 || D2 || D2 || · · · || D2 || · · · || Dk || Dk || · · · || Dk)

with k = N
2np , then we can compute k · p = N

2n kernel computations simultane-
ously, and the computational cost of each kernel reduces to O(log n). As a result,
we can run Mode-seeking with O

(
n2·d·p·T
log n·N

)
computations in HEAAN. Similarly

we can reduce the number of computations for Point-labeling as well. Thereby
the total computational cost of our algorithm would be O

(
n2·d·p·T
log n·N

)
.

4 Experimental Results

4.1 Dataset Description

In order to monitor the performance, we implement our algorithm over four
datasets (Hepta, Tetra, TwoDiamonds, Lsun) with true labels which are publicly
accessible from fundamental clustering problems suite (FCPS) [42] and one large-
scale dataset (LargeScale) randomly generated by ourselves. LargeScale dataset
consists of four clusters following Gaussian distributions with small variance and
distinct centers. Table 1 describes the properties of each dataset (Fig. 2):

244 J. H. Cheon et al.

Table 1. Short descriptions of the datasets

Dataset Dimension # Data # Clusters Property

Hepta 3 212 7 Different densities

Tetra 3 400 4 Big and touching clusters

TwoDiamonds 2 800 2 Touching clusters

Lsun 2 400 3 Different shapes

LargeScale 4 262, 144 4 Numerous points

Fig. 2. A visualization of LargeScale dataset

4.2 Parameter Selection

Our implementation is based on the approximate HE library HEAAN [1,13].
We set HEAAN parameters (N, qL, h, χerr) to satisfy 128-bit security, where N
is the ring dimension, qL is the initial modulus of a ciphertext, h is a hamming
weight of a secret polynomial, and χerr is the error distribution. As mentioned in
Sect. 2.2, we used Albrecht’s security estimator [2,3] to estimate the bit security
of those HEAAN parameters. Note that since the modulus of the evaluation key
evk is q2L, the input on the security estimator is a tuple (N,Q = q2L, h, χerr). As a
result, we set HEAAN parameters N = 217 and log qL = 1480, and we followed
the default setting of HEAAN library [1] for error and secret distributions χerr,
χenc andχkey.

We flexibly chose the clustering parameters T , Γ1, Γ2, ζ1, ζ2 and t for
each dataset to optimize the implementation results. Let us denote the a tuple
of parameters by params = (T, Γ1, Γ2, ζ1, ζ2, t). In the case of Hepta dataset,
the best choice of parameters was params = (5, 6, 6, 4, 4, 6), while params =
(7, 6, 6, 5, 6, 6) was the best for Tetra dataset, params = (8, 5, 5, 5, 6, 5) was the
best for TwoDiamonds dataset, params = (5, 6, 5, 5, 8, 6) was the best for Lsun
dataset, and params = (5, 5, 5, 3, 3, 5) was the best for LargeScale dataset. We
set the number of dusts to be as small as possible (e.g., d = 8) to reduce the
cost of bootstrapping.

Towards a Practical Cluster Analysis over Encrypted Data 245

Table 2. Experimental results for various datasets with 8 threads

Dataset Comp. Time Memory Quality Evaluation

Accuracy SilhCoeff

Hepta 25 min 10.7 GB 212/212 0.702

(0.702)

Tetra 36 min 10.7 GB 400/400 0.504

(0.504)

TwoDiamonds 38 min 9.6 GB 792/800 0.478

(0.485)

Lsun 24 min 9.4 GB - 0.577

(0.443)

LargeScale 82 min 20.7 GB 262127/262144 0.781

(0.781)

4.3 Experimental Results

In this subsection, we present experimental results on our mean-shift clustering
algorithm based on HEAAN. All experiments were performed on C++11 stan-
dard and implemented on Linux with Intel Xeon CPU E5-2620 v4 at 2.10 GHz
processor.

In Table 2, we present the performance and quality of our algorithm on vari-
ous datasets. We use 8 threads for all experiments here. We describe the accuracy
value by presenting both the number of well-classified points and the total num-
ber of points. We present two silhouette coefficients; the one without bracket is
the silhouette coefficient of our clustering results, and the other one with bracket
is that of the true labels.

We complete the clustering on various datasets within a few dozens of min-
utes. In the case of FCPS datasets, their sizes are much smaller than the num-
ber of HEAAN plaintext slots we can manage. On the other hand, the size of
LargeScale dataset is big enough so that we can use full slots; therefore, we can
fully utilize SIMD of HEAAN for the LargeScale dataset. Consequently, the per-
formance of our algorithm for LargeScale dataset is quite nice in spite of its huge
size.

For all the five datasets, our algorithm achieves high accuracy. In the case of
Hepta, Tetra and LargeScale datasets, we succeed in labeling all data points by
its exact true label. For the TwoDiamonds dataset, we succeed in classifying 792
points out of 800 points properly. Even for the rest 8 points, the label vector of
each point is close to its true label.

In the case of the Lsun dataset, our algorithm results in four clusters while
there are only three clusters in the true labels. Thereby, it is impossible to
measure the accuracy by comparing with the true labels, so one may doubt that

246 J. H. Cheon et al.

our algorithm is inadequate to the Lsun dataset. However, it is also reasonable to
classify the Lsun dataset with 4 clusters. In fact, our result shows even a better
quality in aspect of the silhouette coefficient. The silhouette coefficient for our
clustering result is 0.577, and that for the true labels is 0.443.

We also checked the performance of our algorithm with several numbers of
threads for the Lsun dataset as described in Table 3. With a single thread, it
consumes 9.4 GB memory and takes 83 min. This result is much faster than
the result of the previous work in [29], which takes 25.79 days to complete a
clustering process for the same Lsun dataset. Obviously we can speed up the
performance by using much more number of threads. For example, the running
time can be reduced to 16 min with just small overhead of memory when we use
20 threads.

Table 3. Experimental results for various # threads with the Lsun dataset

1 Thread 8 Threads 20 Threads

Time Memory Time Memory Time Memory

83 min 9.4 GB 24 min 9.4 GB 16 min 10.0 GB

Comparison to Freedman-Kisilev’s Method. The experimental results of
Freedman-Kisilev mean-shift clustering on the Tetra dataset under various p′,
the number of sampled points (see Sect. 2.4), shows how marginal p′ may con-
taminate the performance. Note that our sampling method achieves 400/400
accuracy on the Tetra dataset with only 8 dusts. In contrast, when p′ is either
8 or 16, Freedman-Kisilev algorithm even fails to detect the correct modes from
the original data. It detects only three clusters while there actually exist four
clusters; it classifies two different clusters as a single cluster. Thus, the results on
when p′ is either 8 or 16 are not even comparable with the answer. This supports
the argument that the KDE map of Freedman-Kisilev mean-shift may not fully
represent the original KDE map unless p′ is sufficiently big.

When p′ is bigger than 16, Freedman-Kisilev algorithm succeed in detecting
four clusters as expected. However, the accuracy under each p′ = 32, 64, 128, 256
is 377/400, 368/400, 393/400, 399/400 respectively, while our sampling method
achieves 400/400 with only 8 dusts. This implies that the approximate KDE
map of Freedman-Kisilev mean-shift may indicate modes with possible errors.

As a consequence, Freedman and Kisilev have to select substantially many
samples that can preserve the original KDE structure in some sense, while we
do not have such restriction on the number of dusts.

Acknowledgement. This work was supported in part by the Institute for Infor-
mation & Communications Technology Promotion (IITP) Grant through the Korean

Towards a Practical Cluster Analysis over Encrypted Data 247

Government (MSIT), (Development of lattice-based post-quantum public-key crypto-
graphic schemes), under Grant 2017-0-00616, and in part by the National Research
Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) (No.
2017R1A5A1015626). We also thank anonymous reviewers of SAC’19 for very usual
comments.

References

1. HEAAN Library (2017). https://github.com/snucrypto/HEAAN
2. Albrecht, M.R.: A Sage Module for estimating the concrete security of Learning

with Errors instances (2017). https://bitbucket.org/malb/lwe-estimator
3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with

errors. J. Math. Cryptol. 9(3), 169–203 (2015)
4. Almutairi, N., Coenen, F., Dures, K.: K-means clustering using homomorphic

encryption and an updatable distance matrix: secure third party data clustering
with limited data owner interaction. In: Bellatreche, L., Chakravarthy, S. (eds.)
DaWaK 2017. LNCS, vol. 10440, pp. 274–285. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-64283-3 20

5. Bonte, C., Vercauteren, F.: Privacy-preserving logistic regression training. Cryp-
tology ePrint Archive, Report 2018/233 (2018). https://eprint.iacr.org/2018/233

6. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of
deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96878-0 17

7. Bunn, P., Ostrovsky, R.: Secure two-party k-means clustering. In: Proceedings of
the 14th ACM Conference on Computer and Communications Security, CCS 2007,
New York, NY, USA, pp. 486–497. ACM (2007)

8. Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate homo-
morphic encryption. Cryptology ePrint Archive, Report 2018/1043 (2018). http://
eprint.iacr.org/2018/1043. To appear EUROCRYPT 2019

9. Chen, H., et al.: Logistic regression over encrypted data from fully homomorphic
encryption. Cryptology ePrint Archive, Report 2018/462 (2018). https://eprint.
iacr.org/2018/462

10. Cheon, J.H., Han, K., Hhan, M.: Faster homomorphic discrete fourier transforms
and improved FHE bootstrapping. Cryptology ePrint Archive, Report 2018/1073
(2018). https://eprint.iacr.org/2018/1073. To appear IEEE Access

11. Cheon, J.H., et al.: Toward a secure drone system: flying with real-time homomor-
phic authenticated encryption. IEEE Access 6, 24325–24339 (2018)

12. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 14

13. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

14. Cheon, J.H., Kim, D., Kim, D., Lee, H.H., Lee, K.: Numerical methods for compar-
ison on homomorphically encrypted numbers. Cryptology ePrint Archive, Report
2019/417 (2019). https://eprint.iacr.org/2019/417, To appear ASIACRYPT 2019

https://github.com/snucrypto/HEAAN
https://bitbucket.org/malb/lwe-estimator
https://doi.org/10.1007/978-3-319-64283-3_20
https://doi.org/10.1007/978-3-319-64283-3_20
https://eprint.iacr.org/2018/233
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-96878-0_17
http://eprint.iacr.org/2018/1043
http://eprint.iacr.org/2018/1043
https://eprint.iacr.org/2018/462
https://eprint.iacr.org/2018/462
https://eprint.iacr.org/2018/1073
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://eprint.iacr.org/2019/417

248 J. H. Cheon et al.

15. Cheon, J.H., Kim, D., Kim, Y., Song, Y.: Ensemble method for privacy-preserving
logistic regression based on homomorphic encryption. IEEE Access 6, 46938–46948
(2018)

16. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

17. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 14

18. Cho, H., Wu, D.J., Berger, B.: Secure genome-wide association analysis using mul-
tiparty computation. Nat. Biotechnol. 36(6), 547 (2018)

19. Crawford, J.L., Gentry, C., Halevi, S., Platt, D., Shoup, V.: Doing real work with
FHE: the case of logistic regression (2018)

20. Dhillon, I.S., Marcotte, E.M., Roshan, U.: Diametrical clustering for identifying
anti-correlated gene clusters. Bioinformatics 19(13), 1612–1619 (2003)

21. Doganay, M.C., Pedersen, T.B., Saygin, Y., Savaş, E., Levi, A.: Distributed privacy
preserving k-means clustering with additive secret sharing. In: Proceedings of the
2008 International Workshop on Privacy and Anonymity in Information Society,
PAIS 2008, New York, NY, USA, pp. 3–11. ACM (2008)

22. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, Hoboken (2012)
23. Freedman, D., Kisilev, P.: Fast mean shift by compact density representation. In:

2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1818–
1825. IEEE (2009)

24. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). http://crypto.stanford.edu/craig

25. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
CryptoNets: applying neural networks to encrypted data with high throughput and
accuracy. In: International Conference on Machine Learning, pp. 201–210 (2016)

26. Goldschmidt, R.E.: Applications of division by convergence. Ph.D. thesis, Mas-
sachusetts Institute of Technology (1964)

27. Han, K., Hong, S., Cheon, J.H., Park, D.: Logistic regression on homomorphic
encrypted data at scale (2019)

28. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering
over arbitrarily partitioned data. In: Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining, KDD 2005,
New York, NY, USA, pp. 593–599. ACM (2005)

29. Jäschke, A., Armknecht, F.: Unsupervised machine learning on encrypted data.
In: Cid, C., Jacobson Jr., M. (eds.) SAC 2018. LNCS, vol. 11349, pp. 453–478.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-10970-7 21

30. Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model train-
ing based on the approximate homomorphic encryption. BMC Med. Genomics
11(4), 83 (2018)

31. Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X.: Secure logistic regression based
on homomorphic encryption: design and evaluation. JMIR Med. Inform. 6(2), e19
(2018)

32. Liu, D.: Practical fully homomorphic encryption without noise reduction. Cryptol-
ogy ePrint Archive, Report 2015/468 (2015). https://eprint.iacr.org/2015/468

https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14
http://crypto.stanford.edu/craig
https://doi.org/10.1007/978-3-030-10970-7_21
https://eprint.iacr.org/2015/468

Towards a Practical Cluster Analysis over Encrypted Data 249

33. Liu, X., et al.: Outsourcing two-party privacy preserving k-means clustering proto-
col in wireless sensor networks. In: 2015 11th International Conference on Mobile
Ad-Hoc and Sensor Networks (MSN), pp. 124–133. IEEE (2015)

34. Malik, M.B., Ghazi, M.A., Ali, R.: Privacy preserving data mining techniques:
current scenario and future prospects. In: 2012 Third International Conference on
Computer and Communication Technology (ICCCT), pp. 26–32. IEEE (2012)

35. Meskine, F., Nait-Bahloul, S.: Privacy preserving k-means clustering: a survey
research. Int. Arab J. Inf. Technol. 9, 03 (2012)

36. Pouget, F., Dacier, M., et al.: Honeypot-based forensics. In: AusCERT Asia Pacific
Information Technology Security Conference (2004)

37. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

38. Sakuma, J., Kobayashi, S.: Large-scale k-means clustering with user-centric privacy
preservation. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD
2008. LNCS (LNAI), vol. 5012, pp. 320–332. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-68125-0 29

39. Samet, S., Miri, A., Orozco-Barbosa, L.: Privacy preserving k-means clustering in
multi-party environment, January 2007

40. Su, C., Bao, F., Zhou, J., Takagi, T., Sakurai, K.: Privacy-preserving two-party
k-means clustering via secure approximation. In: Proceedings of the 21st Interna-
tional Conference on Advanced Information Networking and Applications Work-
shops - Volume 01, AINAW 2007, Washington, DC, USA, pp. 385–391. IEEE
Computer Society (2007)

41. Sugar, C.A., James, G.M.: Finding the number of clusters in a dataset: an
information-theoretic approach. J. Am. Stat. Assoc. 98(463), 750–763 (2003)

42. Ultsch, A.: Clustering with SOM: U*C. In: Proceedings of Workshop on Self-
Organizing Maps, Paris, France, pp. 75–82 (2005). https://www.uni-marburg.de/
fb12/arbeitsgruppen/datenbionik/data?language sync=1

43. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically parti-
tioned data. In: Proceedings of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD 2003, New York, NY, USA, pp.
206–215. ACM (2003)

44. Vinoth, K.J., Santhi, V.: A brief survey on privacy preserving techniques in data
mining. IOSR J. Comput. Eng. (IOSR-JCE) 18, 47–51 (2016)

45. Wang, S., et al.: HEALER: homomorphic computation of exact logistic regression
for secure rare disease variants analysis in GWAS. Bioinformatics 32(2), 211–218
(2016)

46. Wang, Y.: Notes on two fully homomorphic encryption schemes without bootstrap-
ping. IACR Cryptology ePrint Archive, 2015:519 (2015)

https://doi.org/10.1007/978-3-540-68125-0_29
https://doi.org/10.1007/978-3-540-68125-0_29
https://www.uni-marburg.de/fb12/arbeitsgruppen/datenbionik/data?language_sync=1
https://www.uni-marburg.de/fb12/arbeitsgruppen/datenbionik/data?language_sync=1

	Towards a Practical Cluster Analysis over Encrypted Data
	1 Introduction
	1.1 This Work
	1.2 Related Works

	2 Backgrounds
	2.1 Notations
	2.2 Approximate Homomorphic Encryption HEAAN
	2.3 Non-polynomial Operations in HEAAN
	2.4 Mean-Shift Clustering
	2.5 Clustering Quality Evaluation Criteria

	3 HE-Friendly Modified Mean-Shift Clustering
	3.1 HE-Friendly Kernel
	3.2 Mode-Seeking Phase
	3.3 Point-Labeling Phase
	3.4 Our Modified Mean-Shift Clustering Algorithm

	4 Experimental Results
	4.1 Dataset Description
	4.2 Parameter Selection
	4.3 Experimental Results

	References

