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Abstract The phyllosphere referred to the total aerial plant surfaces (above-ground
portions), as habitat for microorganisms. Microorganisms establish compositionally
complex communities on the leaf surface. The microbiome of phyllosphere is rich in
diversity of bacteria, fungi, actinomycetes, cyanobacteria, and viruses. The diversity,
dispersal, and community development on the leaf surface are based on the phys-
iochemistry, environment, and also the immunity of the host plant. A colonization
process is an important event where both the microbe and the host plant have been
benefited. Microbes commonly established either epiphytic or endophytic mode of
life cycle on phyllosphere environment, which helps the host plant and functional
communication with the surrounding environment. To the scientific advancement,
several molecular techniques like metagenomics and metaproteomics have been used
to study and understand the physiology and functional relationship of microbes to the
host and its environment. Based on the available information, this chapter describes
the basic understanding of microbiome in leaf structure and physiology, microbial
interactions, especially bacteria, fungi, and actinomycetes, and their adaptation in
the phyllosphere environment. Further, the detailed information related to the impor-
tance of the microbiome in phyllosphere to the host plant and their environment has
been analyzed. Besides, biopotentials of the phyllosphere microbiome have been
reviewed.
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5.1 Introduction

The term phyllosphere is referred to as “the aerial part of the plant or the parts of a
plant above the ground usually surface of leaves, considered as a habitat for microor-
ganisms.” This is a place where normally a variety of microorganism (bacteria, yeasts,
and fungi) colonizes. The global leaf area corresponds to both upper and lower sur-
faces, has approximately twice as great as the land surface area (Vorholt 2012). The
phyllosphere is the ambient region for microbes to colonize and establish its associ-
ation with plants usually epiphytes. Microbial communities in the phyllosphere are
highly complex and consist of many cultured and uncultured microorganisms (Miiller
and Ruppel 2014). It has a heterogeneous group of the microbial association at the
micrometer scale area due to its diverse microenvironments (habitats). The phyllo-
spheric microbes are adapted to the insensitive environmental conditions, specifically
microbial epiphytes are highly exposed to atmospheric temperature, light, UV radia-
tion, less water, and nutrient availability. These external factors affect the composition
and diversity of phyllospheric microbial communities (Vorholt 2012). However, the
type of plant and invading microbial populations (pathogens) are also influencing
the commensals and/or mutualistic relationship with their host plant (Lindow and
Brandl 2003). Less number of studies are available for the microbiology of phyllo-
sphere rather than plant root. Moreover, with increasing anthropogenic stresses, the
diversity and community structure of phyllosphere microflora have been continually
modified. In this chapter, we focused on the phyllospheric microbiome, structure and
diversity, epiphytic mechanism, molecular interactions, ecological significance, and
the microbial importance in biotechnology.

5.2 Basic Understanding of Leaf Structure

The leaf is a highly organized and multi-layered plant organ (Fig. 5.1), which consists
of the epidermis (upper and lower) covered by a waxy cuticle that provides a physical
barrier against abiotic and biotic stresses. The epidermis involves many regulatory
processes of leaf physiology including gas exchange, temperature regulation, pri-
mary production, secretion of secondary metabolites, and water mobilization. Also,
a specialized epidermal cell such as stomata, hydathodes (modified stomata), and tri-
chomes (outgrowth) are there in the epidermis. The stomata are surrounded by two
cupped hand cells called guard cells, which may open or close due to internal water
pressure. Inside the leaf, a layer of cells called the mesophyll, is present, usually two
layers, namely, palisade layer and the spongy layer. They contain chlorophyll and
photosynthesis occurs in these cells. The palisade cells are more column cells and
the spongy cells are more loosely packed between the palisade layer and the lower
epidermis, and it allows for gas exchange. The veins of the leaf contain the vascular
tissue, xylem and phloem are found in it. Veins run from tips of the roots and are
extended up to the edges of the leaves. The outer layer cells are called bundle sheath
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Fig. 5.1 Structural organization of a leaf

cells which circle the xylem and the phloem. The xylem transports water and phloem
transports sugar (food).

Glandular trichome of the epidermis releases a wide spectrum of leaf exudates,
such as polysaccharide salts, lipids, volatile compounds, and proteins, and its function
is associated with plant-microbe and plant—insect interactions (Hirano and Upper
1983). But, non-glandular trichome involves regulation of water tension, light absorp-
tion, and protect the leaf from UV radiation and heat as well as drought tolerance
(Hirano and Upper 1983).

5.3 Phyllosphere Habitat

The phyllosphere is a unique and dynamic habitat which constitutes irregular, and
sometimes relatively large microbial community inhabitant in the ecosystem (Whipps
etal. 2008). The total terrestrial phyllosphere area estimated is around 6.4 x 103 km?
(Morris and Kinkel 2002), and it exhibits numerous microhabitat which represents
a major source of microorganism. Variety of bacteria, filamentous fungi, and yeasts
are naturally colonized on the phyllosphere region and less frequently, protozoa and
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nematodes. These microorganisms exhibit commensalism and/or mutualism (sym-
bionts) or antagonism type of relationship on their host plants. The microbial asso-
ciation in phyllosphere has several advantages and importance to global processes
including biogeochemical cycles (carbon and nitrogen) and environmental impact.

5.3.1 Microbial Assembly on Leaf

The arrangement of leaf epidermal cells describes the leaf physiology and the
microenvironment which allow the abundance and distributions of microorganisms
on the leaf surface (Shiraishi et al. 2015; Esser et al. 2015). Simply, epiphytes make
biofilm-like growth, most preferably larger bacterial aggregates are on the trichomes,
veins, and epidermal cell groves (Brewer et al. 1991; Morris et al. 1997), where the
leaf exudates containing nutrient-rich region. The presence of outer cuticle and its
physiology help the microbes to colonize this site. Presence of aliphatic compounds
in the cuticle layer determines the physicochemical properties of the leaf surface and
renders the permeability and wettability, which facilitate the adherence of microor-
ganisms (Sadler et al. 2016). Water permeability of this site may play a vital role in
the survival and growth of the epiphytes. Moreover, leaching the nutrients along with
water makes the epiphytes to utilize and develop colonies on the phyllosphere (Burch
et al. 2014). The leaf surface with higher water and nutrient penetration is heavily
colonized by bacterial communities (Beattie 2011). In general, bacteria maintain
the cuticular permeability by secretion of biosurfactants, for example, Pseudomonas
syringae release syringafactin on the cuticle layer of the leaf which facilitate the
availability of sugar for persistent epiphytic growth (Van der Wal and Leveau 2011).
Similarly, fructose availability by Pantoea eucalypti 299R and Pantoea agglomer-
ans (Leveau and Lindow 2001). Figure 5.2 represents the phyllosphere microbial
assemblage, wherein the epiphytic microorganism exploits this microenvironment
for special distribution of microbes, survival as well as blooming (colonization).
At the same time, surface microorganisms change the phyllosphere chemistry, and
they render the heterogeneous oligotrophic mode of epiphytic life. Besides, microor-
ganism establishes special niches on the leaf surface with the interactive mode of
life (Agler et al. 2016) in this microhabitat microbial population can be constantly
maintained.

5.4 Microbial Diversity in the Phyllosphere

The phyllosphere consists of diverse numerous microbial communities including bac-
teria, filamentous fungi, yeasts, algae, and protozoans (Whipps et al. 2008; Verma
et al. 2013, 2015, 20164, b). The nature of various microorganisms (epiphytic and
endophytic) associated with phyllosphere is given in Fig. 5.3. Among the diverse
community of microbes, bacteria are the predominant community on leaves and its
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range is between 107 and 10'?> g~! of the leaf (Inacio et al. 2002). The conventional
culture-based method has been used for the identification of different microbial com-
munities of the leaves. Thompson et al. (1993) identified 78 bacterial species from
the sugar beet, and Legard et al. (1994) screened 88 bacterial species from 37 genera.
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However, the culture-dependent method based profiling of phyllosphere communi-
ties is likely to be incorrect and miscalculates diversity (Rasche et al. 2006). The
culture-independent approaches like 16S rDNA sequences of the whole microbial
mass of phyllosphere could give the complete and complex microbial community
structure of the environment. Molecular studies suggested that alpha-, beta- and
gammaproteobacteria and firmicutes are the dominant bacterial inhabitants of the
phyllosphere. Frequently, acidobacteria, actinobacteria, and cyanobacteria are also
occurring in the phyllosphere environment (Kadivar and Stapleton 2006). Lambais
et al. (2006) identified that 97% of the bacterial sequences of the phyllosphere have
been new and unidentified. Yang et al. (2001) reported large numbers of novel bac-
teria from the phyllosphere of crop plants. The number of studies confirmed the
diversity of yeast in the phyllosphere environment as an epiphyte.

The cultivable yeasts genera such as Cryptococcus, Sporobolomyces, and
Rhodotorula and its species have been largely inhabitant in the plant leaf (Thompson
et al. 1993; Glushakova and Chernov 2004). Moreover, the culture-dependent meth-
ods have been used to study the abundance of filamentous fungi, ranging from 107 to
108 CFU g~!. Genera such as Cladosporium, Alternaria, Penicillium, Acremonium,
Mucor, and Aspergillus are the frequent filamentous fungi colonizing as epiphytes
and endophytes (Arnold et al. 2000; Inacio et al. 2002; Rana et al. 2019a, b, c).

However, the culture-independent strategy is the best to investigate the diver-
sity and distribution of specific bacterial groups of interest (Miyamoto et al. 2004;
Sessitsch et al. 2006). Other than the 16S/18S rDNA sequences, multiplex terminal
restriction fragment length polymorphism (TRFLP) has been used to analyze several
phylogenetic groups or functional genes in the microenvironment (Singh et al. 2006).
Soils, water, air, tree buds, and plant debris from the previous crops are the sources for
microbes in phyllosphere (Manceau and Kasempour 2002). Those microorganisms
may be habited in phyllosphere either transient or residual epiphytes (Suslow 2002;
Zak 2002). The atmospheric microflora, rainfall, humidity, wind, etc. can directly
influence the transients of microorganisms to the phyllosphere (Lighthart 1997).
During the plant growth period, the epiphytic bacterial population will increase in
quantity (Inacio et al. 2002). The microorganisms on the seed or roots may be estab-
lished as epiphytes or endophytes (Wulff et al. 2003). Some epiphytes may be injected
into the internal space of the leaf and colonize as endophytes. The distribution pat-
tern of the phyllosphere microorganisms is not even, mostly bacteria colonize at
the epidermal wall junctions, specifically in the grooves and the veins or stomata or
at the base of trichomes (Melotto et al. 2008), also found in the cuticle layer, near
hydathodes and stomatal pits (Aung et al. 2018). The microbial load is higher at
the lower leaf surface perhaps the lower leaf surface contains thin cuticle, stomata,
and/or trichomes (Beattie and Lindow 1999). Mostly, all microorganisms that appear
in the phyllosphere are capable to colonize and grow (Whipps et al. 2008), and it
disperses throughout the surface by rain splash, bounce-off, wash-off, water move-
ment, or removal by insects or pest (Kinkel 1997; Yang et al. 2001; Lambais et al.
2006).



5 Phyllospheric Microbiomes: Diversity, Ecological ... 119

5.4.1 Bacterial Diversity in the Phyllosphere

Phyllosphere is a heterogeneous environment (Koskella 2013), bacteria are consid-
ered the most abundant inhabitants of the leaves, and its average number is being
around 10°~108 cells cm~? (Andrews and Harris 2000; Hirano and Upper 2000). But
the population of epiphytic bacteria differs depending on the plant species and its
surrounding environment. The variation is mainly due to the physical and nutritional
conditions of the phyllosphere. Commonly, the broad-leaf plants have the highest
number of bacteria than the grasses or waxy broad-leaf plants (Kinkel et al. 2000).

Generally, the phyllosphere contains four major phyla of bacteria such as the
Proteobacteria, Firmicutes, Bacteroides, and Actinobacteria (Kembel et al. 2014;
Durand et al. 2018). Methylotrophic bacteria are predominant in phyllosphere which
includes genera such as Methylobacterium, Methylophilus, Methylibium, Hyphomi-
crobium, Methylocella, Methylocapsa, and Methylocystis (Mizuno et al. 2013; Iguchi
et al. 2013; Kwak et al. 2014; Krishnamoorthy et al. 2018). Methylobacterium and
Sphingomonas are the predominant genera belonging to the class alphaproteobac-
teria reported in several plant phyllospheres (Delmotte et al. 2009; Kumar et al.
2019a). The bacterial community organization on phyllosphere is controlled by spe-
cific assemblage regulations (Buee et al. 2009; Reinhold-Hurek et al. 2015). Nor-
mally, soil type, plant genotype and species, immune system of the plant, age, climatic
condition, and the geographic region are the factors forcing the bacterial commu-
nity assembly (Leff et al. 2015; Zarraonaindia et al. 2015; Copeland et al. 2015).
Extensive studies are available for the soil and rhizosphere bacterial community
on phyllosphere bacterial colonization in Arabidopsis thaliana (Bodenhausen et al.
2013; Maignien et al. 2014; Bai et al. 2015; Muller et al. 2015) and maize (Peiffer
et al. 2013). Proteobacteria, Actinobacteria, and Bacteroidetes are the most abun-
dant phyla colonizing the leaf and root of A. thaliana (Delmotte et al. 2009; Redford
et al. 2010; Bodenhausen et al. 2013). Massilia, Flavobacterium, Pseudomonas,
and Rathayibacter are a prevalent bacterial genus in A. thaliana (Bodenhausen et al.
2013), Deinococcus thermus on tree phyllosphere (Redford et al. 2010), and Bacillus
and Pantoea dominate the lettuce (Rastogi et al. 2012).

Kembel et al. (2014) studied the bacterial communities on tropical tree leaves,
around 400 bacterial taxa the phyllosphere has been dominated with Actinobacteria,
Alpha-, Beta-, and Gammaproteobacteria, and Sphingobacteria. However, Archaea
is the profuse members of the plant-associated microbe, commonly Thaumarchaeota,
Crenarchaeota, and Euryarchaeota make the endophytic mode of life in plants (Miiller
et al. 2015). Durand et al. (2018) characterized the bacterial genera such as Methy-
lobacterium, Kineococcus, Sphingomonas, and Hymenobacter of the phylum Firmi-
cutes from the leaf surface. The phyllosphere of the grapevine contains Acinetobac-
ter, Bacillus, Citrobacter, Curtobacterium, Enterobacter, Erwinia, Frigoribacterium,
Methylobacterium, Pantoea, Pseudomonas, and Sphingomonas as dominant gen-
era (Kecskeméti et al. 2016). Steven et al. (2018) characterized Pseudomonas and
Enterobacteriaceae as predominant taxa from apple. Several studies revealed Pseu-
domonas as the most abundant genus of phyllosphere region (Aleklett et al. 2014;
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Kecskeméti et al. 2016; Steven et al. 2018). Seed coat associated bacteria that have
been reported in phyllosphere are mainly Actinobacteria, Bacteroidetes, Firmicutes,
and Proteobacteria (Johnston-Monje and Raizada 2011; Rodriguez-Escobar et al.
2018).

The most notable bacterial pathogen is Pseudomonas syringae, it causes diseases
in a wide range of economically important plant species (Mansfield et al. 2012;
Morris et al. 2013; Burch et al. 2014). Hamd Elmagzob et al. (2019) identified
taxa such as Rhizobiales, Clostridiales, Pseudomonadales, Burkholderiales, Bac-
teroidales, Enterobacteriales, Rhodocyclales, Sphingomonadales, Lactobacillales,
and Bacillales from the leaves of Cinnamomum camphora (L.) Presl. Several studies
reported diazotrophic bacteria on phyllosphere (Fiirnkranz et al. 2008; Rico et al.
2014). Diazotrophic bacteria can use atmospheric dinitrogen (N5) as nitrogen source
for its metabolic activities. Bacterial diazotrophic include Beijerinckia, Azotobac-
ter, Klebsiella, and Cyanobacteria (e.g., Nostoc, Scytonema, and Stigonema). Dia-
zotrophic nitrogen fixation has been reported in many species which contains an
enzyme nitrogenase (encoded by nif genes) (Rico et al. 2014). Recently, 16 s rRNA
gene-based high-throughput sequencing technology has been used for the diversity
analysis of phyllosphere, for example, the distribution of endophytic bacteria of C.
camphora (L.) Presl leaves has been analyzed by 16S rRNA gene metagenomics,
revealing Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Gemmatimon-
adetes, Acidobacteria, Planctomycetes, Chloroflexi, and Fusobacteria are the major
phyla of the polymicrobial community (Hamd Elmagzob et al. 2019).

5.4.2 Fungal Microbiota of Phyllosphere

Fungi are saprophytic and they may be associated with plants either epiphytic or endo-
phytic, and mostly they are known for their pathogenesis on plant system (Vofiskova
and Baldrian 2013; Yadav et al. 2019b, ¢, d). There are several reports revealed
that phyllosphere fungi have a profound role in the residing host. Both epiphytic
and endophytic fungi inhabiting the leaf are of high species diversity with diverse
metabolic functions (Yao et al. 2019), such as leaf litter decomposition and recy-
cling the carbon and nitrogen (Kannadan and Rudgers 2008; Guerreiro et al. 2018).
In general, endophytic fungi can help plant growth and also provide resistance to
biotic (pathogens) and abiotic (drought and salinity) stresses, (Arnold et al. 2007;
Purahong and Hyde 2011; Guerreiro et al. 2018; Yadav et al. 2018c). In culture-
dependent approaches, several fungal species have been isolated from small herbs
to larger woody plants. Indcio et al. (2010) reported that the density of yeast-like
fungi may vary from plant to plant and approximately 5 x 10* cells cm~2. Aureoba-
sidium pullulans are yeast-like fungi abundant in phyllosphere (Cordier et al. 2012;
Setati et al. 2012). Apart from yeast-like fungi, many filamentous fungi have been
reported from health as well as infected plant leaves. Through the culture-dependent
method, Ripa et al. (2019) isolated Aspergillus niger, Fusarium oxysporum, Peni-
cillium aurantiogriseum, Fusarium incarnatum, Alternaria alternata, Alternaria



5 Phyllospheric Microbiomes: Diversity, Ecological ... 121

tenuissima, Cladosporium cladosporioides, Talaromyces funiculosus, Aspergillus
flavus, Trichoderma aureoviride, Trichoderma harzianum, Penicillium janthinellum,
Fusarium proliferatum, Fusarium equiseti, and Aspergillus stellatus from wheat
plant.

Dhayanithy etal. (2019) isolated twenty endophytic fungi from the leaves and stem
of Catharanthus roseus, among them Colletotrichum, Alternaria, and Chaetomium
were the dominant genera. Many of them make endophytic association begin with
epiphytic initiation (Rodriguez et al. 2009; Porras-Alfaro and Bayman 2011), and
some endophytes later turned to pathogens. The olive tree phyllosphere is found to be
highly diverse having more than 149 genera and 68 families of fungi (Martins et al.
2016) in a Mediterranean ecosystem (Portugal), but Abdelfattah et al. (2015) reported
only 13 endophytic fungal taxa in the leaves and twigs of olive trees. There has
been a discrepancy to understand the phyllosphere fungi as endophytic or epiphytic,
occasionally it is uncertain, for the reason that some can reside both epiphytic and
endophytic modes of association. In general, phyllosphere endophytic fungi are the
epiphytic habitats and are penetrated into the plant tissues to form an endophytic
association (Kharwar et al. 2010; Porras-Alfaro and Bayman 2011). Though they are
phyllospheric, the soil has acted as a reserve for these potential endophytic inoculums
of the above-ground organs (Zarraonaindia et al. 2015). For example, Ascochyta sp.
and Fagus crenata B1 (Osono 2006), Colletotrichum gloeosporioides and Phomopsis
sp. (Rivera-Vargas et al. 2006; Twizeyimana et al. 2013), and Table 5.1 listed some
examples of phyllosphere fungal endophytes.

Osono (2008) reported that endophytic Colletotrichum gloeosporioides and C.
acutatum, and epiphytes Pestalotiopsis sp., Aureobasidium pullulans, Phoma sp.,
and Ramichloridium sp. are the phyllosphere fungi in the plant Camellia japonica.
However, the abundance and diversity of the fungi differ in plant species as well
as in different eco-climatic conditions. Moreover, seasonal and leaf age-dependent
variations also occur in the epiphytic and endophytic phyllosphere fungal assembly,
for example, Geniculosporium sp. is varied in leaf age, and Cladosporium cladospo-
rioides has been varied in both season and leaf age of the plant Camellia japonica
(Osona 2008). Phyllosphere fungi play an important function in mineral absorption
and mineral recycling process, specifically carbon, nitrogen, and phosphorus recy-
cling in the forest ecosystem. Therefore, the study about the phyllosphere fungi and
its physiology with host plant is important.

5.4.3 Actinomycetes Diversity in Phyllosphere

In addition to bacterial diversity, actinobacteria share a considerable interest in epi-
phytic and endophytic life forms in the phyllosphere. They are soil-inhabiting sapro-
phytic microbes and have been extensively studied for their therapeutic secondary
metabolites. This versatile group of gram-positive bacteria has adapted to diverse
environments including the phyllosphere of the plant (Singh et al. 2018). Some
actinobacteria form symbiotic association residing in plant tissues have generated
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Table 5.1 Phyllosphere fungal endophytes

N. Sivakumar et al.

Endophytic fungi

Host plant

Type

References

Aspergillus,
Phomopsis,
Wardomyces,
Penicillium

Euterpe oleracea
(palm)

Palm

Rodrigues (1994)

Ramularia spp.

Vitis riparia
(grapevine)

Wild

Kernaghan et al. (2007)

Absidia sp.,
Aspergillus sp.,
Cladosporium sp.,
Cunninghamella sp.,
Fusarium sp.,
Nigrospora sp.,
Paecilomyces sp.,
Penicillium sp.,
Rhizopus sp.,

Meyna spinosa Roxb.

Medicinal plant

Bhattacharyya et al.
(2017)

Penicillium
chrysogenum, and
Penicillium crustosum

Teucrium polium

Medicinal plant

El-Din Hassan (2017)

Alternaria alternata,
Setosphaeria sp.,
Cochliobolus sp.,
Alternaria sp. Phoma
herbarum, Davidiella
tassiana,
Botryosphaeria
dothidea, Ulocladium
alternariae, Phoma
macrostoma var.
incolorata, Phoma
exigua var. exigua,
Cladosporium
cladosporioides strain,
Botryosphaeria sp.,
Guignardia
mangiferae,
Pyrenophora
tritici-repentis,
Guignardia alliacea,
Rhizopus oryzae

Catharanthus roseus

Medicinal plant

Sreekanth et al. (2017)

(continued)

enormous significance to the host and its environment through their novel metabo-
lites. Diversity and distribution of endophytic actinobacteria have been largely doc-
umented, from medicinal plants, crop plants, and some other terrestrial plants (Qin
etal.2011; Masand et al. 2015; Dinesh et al. 2017; Nalini and Prakash 2017). Several
species of actinobacteria have been reported from plants such as Triticum aestivum,
Lupinus termis, Lobelia clavatum, Acacia auriculiformis, Aquilaria crassna, Oryza
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Table 5.1 (continued)
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Endophytic fungi

Host plant

Type

References

Ascomycetes:
Trichoderma,
Penicillium, Fusarium,
and Aspergillus.
Non-ascomycetes:
Mucor
(Mucoromycota) and
Schizophyllum
(Basidiomycota)

Stanhopea tigrina

Orchid

Salazar-Cerezo et al.
(2018)

Trichothecium sp.,
Epicoccum nigrum,
Alternaria alternaria,
Alternaria
arborescens,
Nigrospora sphaerica,
Epicoccum sp.,
Alternaria sp.
Nigrospora sp.,
Colletotrichum
gloeosporioides,
Fusarium oxysporum,
Trichothecium roseum

Vitis vinifera (Grape
fruit cells)

Fruit plant

Huang et al. (2018)

Aspergillus japonicus

Euphorbia indica L.

Wild plant

Ismail et al. (2018)

Alternaria spp.,
Trichophyton spp.,
Geotrichum spp.,
Candida spp.,
Aspergillus spp.,
Aureobasidium spp.,
Fusarium spp.,
Exserohilum spp.,
Curvularia spp.,
Coccidioides spp.,
Bipolaris spp.

Epipremnum aureum,
Azadirachta indica,
Piper betle,
Catharanthus roseus,
Ficus religiosa, Musa
acuminate, Ficus
Benghalensis, Ficus
racemosa, Calotropis
procera, Ocimum
tenuiflorum

Medicinal plant

Jariwala and Desai

(2018)

Nigrospora sphaerica,
Acremonium
falciforme, Allomyces
arbuscula, Penicillium
chrysogenum,
Acrophialophora sp,
Mycelia sterilia

Litsea cubeba

Medicinal plant

Deka and Jha (2018)

(continued)
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Table 5.1 (continued)
Endophytic fungi Host plant Type References

Colletotrichum Camellia sinensis Tea Win et al. (2019)
gloeosporioides f. sp.
camelliae and
Pleosporales sp.

Tremellales, Aegiceras Mangrove Yao et al. (2019)
Davidiellaceae, corniculatum

Basidiomycota, (Myrsinaceae),

Rhodotorula, Avicennia marina

Tremellales, Meria, (Verbenaceae),

Cryptococcus, Bruguiera

Cladosporium, gymnorrhiza,

Acaromycetes, Kandelia candel and

Erythrobasidium, etc. Rhizophora stylosa
(Rhizophoraceae), and
Excoecaria agallocha
(Euphorbiaceae)

sativa, Xylocarpus granatum, and Elaeagnus angustifolia from various environments
like arid, semiarid, and mangrove are Actinoplane missouriensis, Actinoallomurus
acacia, Actinoallomurus coprocola, Actinomadura glauciflava, Amycolatopsis toly-
pomycina, Actinoallomurus oryzae, Jishengella endophytica, Kribbella sp., Micro-
bispora mesophila, Microbispora sp., Micromonospora sp., Nocardioides sp., Nocar-
dia alba, Nonomuraea rubra, Micromonospora sp. Nonomuraea sp., Pseudonocar-
dia sp., Planotetraspora sp., Pseudonocardia endophytica, Pseudonocardia halo-
phobica, Streptomyces sp., and Streptomyces javensis (Coombs and Franco 2003;
Thamchaipenet et al. 2010; Chen et al. 2011; Xie et al. 2011; Yadav 2017; Yadav
and Yadav 2018). Reports revealed that the actinomycetes diversity in phyllosphere
is high in the tropical and temperate ecosystem (Strobel and Daisy 2003; Yadav
et al. 2018b; Yadav and Yadav 2019). Moreover, the physiology of the plant and the
environment determines the actinobacterial association in plants and allows them to
establish endophytic life (Du et al. 2013). Some important actinobacterial diversity
in various plant sources is discussed in the following (Table 5.2).

5.5 Mechanism of Microbial Interaction
with the Phyllosphere

The leaf physiology determines the microbial diversity and abundance on the phyl-
losphere. It establishes the microhabitat where the microorganisms adapt to their
physiology to survive in this habitat (Staley et al. 2014; Shiraishi et al. 2015). The
epiphytic microbes formed as colonial form, which gives protection to the microor-
ganisms from this harsh microhabitat (Lindow and Brandl 2003; Remus-Emsermann
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Table 5.2 Diversity of endophytic actinobacteria

Endophytic actinobacteria Host plant Habitat References

Microbispora sp., Triticum aestivum Arid Coombs and

Micromonospora sp., Franco (2003)

Nocardioides sp., Streptomyces

sp.,

Actinoplane missouriensis Lupinus termis Arid El-Tarabily
(2003)

Pseudonocardia endophytica Lobelia clavatum Arid Chen et al.
(2009)

Actinoallomurus acaciae, Acacia auriculiformis Arid Thamchaipenet

Streptomyces  sp., et al. (2010)

Actinoallomurus coprocola,

Amycolatopsis tolypomycina,

Kribbella sp., Microbispora

mesophila

Actinomadura glauciflava, Agquilaria crassna Mangrove | Nimnoi et al.

Pseudonocardia halophobica, (2010)

Nocardia alba, Nonomuraea

rubra, Streptomyces javensis

Actinoallomurus oryzae Oryza sativa Aquatic Indananda
etal. (2011)

Jishengella endophytica Xylocarpus granatum Mangrove | Xie et al.
(2011)

Micromonospora sp. Elaeagnus angustifolia Arid Chen et al.

Nonomuraea sp., (2011)

Pseudonocardia sp.,

Planotetraspora sp.

Streptomyces phytohabitans Curcuma phaeocaulis Arid Bian et al.
(2012)

Nonomuraea solani Solanum melongena Arid Wang et al.
(2013b)

Actinoplanes hulinensis, Glycine max Arid Jia et al.

Streptomyces harbinensi, (2013), Liu

Wangella harbinensis et al. (2013),
Shen et al.
(2013)

Micromonospora sonneratiae Sonneratia apetala Mangrove | Lietal. (2013)

Modestobacter roseus Salicornia europaea Saline Qin et al.
(2013)

Promicromonospora Eucalyptus microcarpa Arid Kaewkla and

endophytica Franco (2013)

Blastococcus endophyticus, Camptotheca acuminate Arid Zhu et al.

Plantactinospora endophytica (2013)

(continued)
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Endophytic actinobacteria Host plant Habitat References

Actinoplanes brasiliensis, Aloe arborescens Arid Heetal. (2014)

Couchioplanes caeruleus,

Gordonia otitidis, Micrococcus

aloeverae, Streptomyces

zhaozhouensis

Micromonospora Centella asiatica Mangrove | Ernawati et al.

schwarzwaldensis Streptomyces (2016)

sp., Wenchangensis

Glutamicibacter halophytocola, | Limonium sinense Saline Feng et al.

Kineococcus endophytica, (2017)

Streptomyces sp.,

Marmoricola endophyticus Thespesia populnea Mangrove | Jiang et al.
(2017)

Allostreptomyces Psammosilene tunicoides Arid Huang et al.

psammosilenae (2017)

Micromonospora terminaliae Terminalia mucronata Mangrove | Kaewkla et al.
(2017)

Nocardiopsis sp., Dracaena cochinchinensis Semiarid | Salam et al.

Pseudonocardia sp. (2017)

Streptomyces sp.,

Mangrovihabitans endophyticus | Bruguiera sexangula Mangrove | Liu et al.
(2017)

Actinoplanes sp., Agrococcus Avicennia marina, Mangrove | Jiang et al.

sp., Amnibacterium sp., Aegiceras corniculatum, (2018)

Brachybacterium sp., Kandelia obovota,

Brevibacterium sp., Citricoccus | Bruguiera gymnorrhiza,

sp., Curtobacterium sp., and Thespesia populnea

Dermacoccus sp.,

Glutamicibacter sp., Gordonia

sp., Isoptericola sp., Janibacter

sp., Kocuria sp., Leucobacter

sp., Mycobacterium sp.,

Micrococcus sp., Nocardioides

sp., Kineococcus sp.,

Kytococcus sp., Marmoricola

sp., Microbacterium sp.

Micromonospora, sp., Nocardia

sp., Nocardiopsis sp.,

Pseudokineococcus, sp.,

Sanguibacter sp., Streptomyces

sp., Verrucosispora sp.,

Glycomyces anabasis Anabasis aphylla Arid Zhang et al.

(2018)




5 Phyllospheric Microbiomes: Diversity, Ecological ... 127

et al. 2012). Commonly, bacteria develop larger sized colonial association on the
leaf surface, especially at veins as well as the groves of epidermal cells (Morris et al.
1997; Hirano and Upper 2000). The epidermal grooves are rich in nutrients specif-
ically sugar and water. This region is less waxy cuticle, usually the leaf surface is
fully coved with waxy cuticle which prevents the permeability and wettability of the
leaf surface and regulates the colonization of the microbes on phyllosphere (Lindow
and Brandl 2003; Burch et al. 2014).

The leaf surface water droplets diffuse the waxy cuticle and improve the per-
meability by which the compounds are diffused from the apoplast to phyllosphere
surface (Schreiber 2005). These leached compounds and water on the phyllosphere
are making the availability of nutrients to the microorganisms. Most commonly, the
flow of water from the stomata (transpiration) is increasing the permeability and
wettability of guard cells and its surface cuticles (Schonherr 2006). Hence, higher
permeation of the cuticle layer permits the microbes to colonize densely (Krimm
et al. 2005). Moreover, the surface bacteria are able to produce certain compounds
like biosurfactants (syringafactin produced by Pseudomonas syringae) (Krimm et al.
2005; Burch et al. 2014) which can modify the cuticle surfaces of the leaf and estab-
lish its association. This can facilitate water availability and alter sugar availabil-
ity that can improve living conditions for epiphytic bacterial growth (Lindow and
Brandl 2003; Van der Wal and Leveau 2011). Epiphytes such as Pseudomonas sp.,
Stenotrophomonas sp., and Achromobacter increase the water permeability of the
lipophilic cuticle present in Hedera and Prunus, which increases the availability of
the compounds at the phyllosphere which will improve the epiphytic fitness on the
leaf surface (Schreiber et al. 2005).

It has been experimentally proved in the bean phyllosphere containing fruc-
tose facilitates the growth of Erwinia herbicola and Pantoea agglomerans (Remus-
Emsermann et al. 2013; Tecon and Leveau 2016). However, irregular distribution of
fructose differentially promotes the P. eucalypti population on bean leaves (Mercier
and Lindow 2000; Leveau and Lindow 2001; Remus-Emsermann et al. 2011). These
studies suggested that the permeated carbon sources on the leaf surface are mer-
rily exploited by the epiphytic microorganisms for their growth and multiplication.
At the same time, the phyllosphere microbial population can influence the mod-
ulation of the physicochemical properties of the leaf with the help of both biotic
and abiotic surroundings (Bringel and Couée 2015; Ohshiro et al. 2016; Quan and
Liang 2017). Soil microbial community may also influence the determination of
phyllosphere microbial diversity. However, the microbes can construct the niches
in the phyllosphere microhabitat wherein it can sustain and establish its population
steadily (Agler et al. 2016; San Roman and Wagner 2018). Recent studies revealed
the special relationships between the bacterial species in the phyllosphere commu-
nity. Presence of sugars and nutrients in this environment significantly change the
individual bacterial cells within the microbial aggregates (Fig. 5.2) would spatially
be established with cell-to-cell interactions along with direct physical interactions
(Levy et al. 2018; Tecon et al. 2018). The community structure is organized based
on the driven factors such as dispersal, selection of microbes, diversification, and
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ecological drift. The fitness of the community is due to internal (strain types) and
external determinants (environment) of the phyllosphere (Schlechter et al. 2019).

In general, the internal factors of the community are based on the microbial
relationship within the aggregates. The microbes usually have either commensal
or antagonistic or mutualistic or cooperative association by which the community
structure can be established. Both cooperative and mutualistic microbial interac-
tions shape the community structure as well as to develop larger colonial association
containing the maximum microbial population. While commensals have weak inter-
active partners in the community, they are randomly distributed in the habitat. The
commensals should not influence the interactive association within the structured
community (Stubbendieck et al. 2016). Besides, antagonistic microbes have a nega-
tive interaction within the community, one can outcompete the other and the sensi-
tive microbes have been eliminated from the environment. The effect of cooperative
microbial interactions on the phyllosphere community structure establishment is not
demonstrated (Schlechter et al. 2019).

Bacteria can ascertain the cell-to-cell communication system and establish a larger
community structure with heterogeneous populations, usually with mutualistic and
cooperative partners. However, some kind of mutualistic relationship may occur
between rapid growing bacteria and pathogenic fungi, which leads to cause superficial
infection on the host plant which increases the nutrient accessibility of the bacteria to
rich its population (Suda et al. 2009; Zeilinger et al. 2016; Amine Hassani et al. 2018).
Inversely, fungal-fungal interactions seem to decrease the bacterial population, for
example, oomycete species Dioszegia sp. and Albugo sp. outcompete the bacterial
microbiota on A. thaliana leaf (Chou et al. 2000; Agler et al. 2016). Moreover,
competitive interactions of microbes involve negative effects on at least one species
of the habitat. Some competitive microbes produce certain toxic chemical substances
(antibiotics and siderophores) as secondary metabolites which pose a negative effect
on its competitor microbes. The best example of such interaction is a gram-negative
Pantoea agglomerans bacteria which inhibit the growth of Erwinia amylovora, a
phytopathogen of apple by antibiotic activity (Wright et al. 2001; Pusey et al. 2011).

Generally, the competition of microbes is mainly for their nutrition and space.
The phyllosphere is a nutrient-limited environment, wherein the competitive partner
has compromised their growth by either coexisting or excluded from the site (Saleem
et al. 2017). Besides, the phyllosphere is greatly colonized by both oligotrophic and
competitive microbes which play an important role in community structure formation
(Schlechter et al. 2019). However, the key factors of the phyllosphere community
assemblage are currently vague. Hence, more studies required to find the key factors
determining the phyllosphere community structure assemblage.

5.6 Factors Controlling Phyllosphere Microbiomes

Once microbes arrived at the phyllosphere, a variety of factors resolve whether
microbial cells are competent to colonize the leaf and become confined. Colony
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establishment depends on the leaf—atmosphere environmental interaction with the
residing microorganisms in the phyllosphere. At the beginning, the microbe reaches
the cuticle layer, a waxy surface that protects the leaf from the pathogens. In general,
cuticle restricts the microbial association due to the functions such as barrier, reduc-
ing water and solute lass, aqueous pollution, reflectance to minimize the temperature,
conferring water repellent, etc. (Beattie 2002; Whipps et al. 2008). The whole-cell
biosensor-based study revealed the available nutrients on the leaf surface facilitate
the growth of residing microbes at a limited level (Miller et al. 2001). This was
confirmed by the microscopic observation of leaf surfaces, at the low nutrient region
contains less dense microbial colonization than the nutrient-rich surface (Monier
and Lindow 2005). Naturally, nutrient enrichment may happen by pollen deposits
and honeydew at the phyllosphere surface (Lindow and Brandl 2003), besides plant
leaves release a large array of volatile organic substances into the margin layer around
leaves (Jackson et al. 2006). Nutrients that include CO,, acetone, terpenoids, aldehy-
des, alcohols, long-chain hydrocarbons, sesquiterpenoids, and nitrogen-containing
compounds (Whipps et al. 2008) are available nutrients for microbial growth. Some
of the compounds may act as growth inhibitor or toxic to microbial growth (Dingman
2000; Shepherd et al. 2005). Hence, microbes establish several adaptive mechanisms
for maintaining their growth in adverse conditions.

5.6.1 Microbial Adaptations in Phyllosphere Environment

Microbes like bacteria establishing colonies at the phyllosphere are limited by various
factors including both biotic and abiotic. Abiotic factors such as the available nutrient
(Delmotte et al. 2009), seasonal variation, rainfall, temperature, plant immunity, and
competitor microbes (Rastogi et al. 2013) are influencing surveillance of microbes in
the phyllosphere. Metaproteomic studies on the leaf surface communities have been
identified as microbes producing vitamins and siderophores which give adaptation to
the microbes at the environment. For example, phyllosphere of soybean, clover, and
Arabidopsis plants largely colonized by Sphingomonas and Methylobacterium pro-
vides vitamins and siderophores to the plant (Green 2006; Delmotte et al. 2009) and
it competes for other microbes. Methylobacterium spp. are involved in the assimila-
tion of methanol at the phyllosphere, a by-product of demethylated pectin during the
cell wall metabolism of the plant (Galbally and Kirstine 2002; Delmotte et al. 2009),
and it gives epiphytic fitness to the microbes. Proteome studies revealed that some
unique properties of rhizosphere bacteria have been found in the phyllosphere micro-
biota. For example, genes of methanol dehydrogenase and formaldehyde-activating
enzyme (of Rhizosphere Methylobacterium spp.) and nitrogen fixation (Rhizobium
sp.) are also reported in both phyllosphere and rhizosphere samples of rice (Knief
et al. 2012). Gourion et al. (2006) observed upregulation of methylotrophic proteins
such as MxaF and Fae and stress-related protein PhaA during epiphytic growth of
Methylobacterium extorquens.
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Phyllosphere colonization may occur in two different habitats, (1) the surface
(epiphytic) and (2) the apoplast or leaf interior (endophytic). During the epiphytic
life, many of the environmental factors regulate the growth such as solar radiation,
temperature, water availability, nutrient, humidity, etc., whereas the endophytes are
challenged with a plant defense mechanism. A bacteria colonizing at both habitats
may differentially express their genes, for example, P. syringae pv. syringae B728a
at epiphytic growth express the genes involved in motility, chemosensing, phosphate
mobilization, and utilization of tryptophan which is higher than in endophytic growth
(Yu et al. 2013). However, the secondary metabolite (syringomycin, syringopeptin)
production was higher in the endophytic stage. One such adaptation is the production
of pigments, bacteria such as Pseudomonas, Sphingomonas, and Methylobacterium
produce pigmentation by which they give protection against UV light (Lindow and
Brandl 2003). Presence of extracellular polysaccharide is another protective measure
of plant-bacteria against desiccation and osmotic stress (Monier and Lindow 2004).
Delmotte et al. (2009) found several stress-resistant proteins (PhyR and EcfG) from
the phyllosphere of soybean, clover, and Arabidopsis through metaproteogenomic
survey. Flagellin-like protein is high in pseudomonas at the epiphytic growth which
enables the bacteria to access the nutrition by the chemostatic model (Yu et al. 2013).

5.6.2 Plant Immunity/Responses to Control Microbial
Colonization

The plant has its immune system which plays an important role in determining micro-
bial assembly (Jacoby et al. 2017). Plants contain two layers of defense, the primary
immunity is named pattern-triggered immunity (PTI), it has a conserved molecule
named microbe/pathogen-associated molecular patterns (MAMPs/PAMPs). The PTI
is a localized immunity mediated at the plasma membrane containing pattern recog-
nition receptors (Monaghan and Zipfel 2012; Wang et al. 2019). The MAMP/PAMP
limits the growth of bacterial pathogens. For example, the flagellin-sensitive recep-
tor 2 (FLS2) is a pattern receptor which recognizes the P. syringae pathovar (pv.)
bacterial flagellin (fig22) (Chinchilla et al. 2006; Newman et al. 2013; Trd4 et al.
2015). However, the plant response to limits its defense against non-pathogenic
bacteria is still unknown. The effector’s protein-mediated destabilization of plant
immunity and immune escape is also reported (Jones and Dangl 2006; Cui et al.
2009). Plant immunity is targeted with specific proteins, which involves the self-
protection against the microbial association has been deactivated by the interaction
of microbial effector proteins and it makes protein—protein networks (Bogdanove
2002; Snelders et al. 2018). Besides, plants have evolved with intracellular recep-
tor molecules called nucleotide-binding leucine-rich repeat proteins (NLRs), which
either openly or ultimately recognize effector proteins to give the second layer of
plant immunity named effector-triggered immunity (ETT) (Jacob et al. 2013; Wu et al.
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2014). Both PTT and ETI generate more specific and diverse immunity against phyl-
losphere microflora. Beneficial or the synergistic microbes interact with signaling
pathways (MAMPs) of the plant to elevate the production of its immune response.
However, if pathogen could interact by using MAMPs, the immune output will be
higher and will restrict the colonial establishment of pathogens. Pathogens that live
in host tissues use hemibiotrophs and necrotrophs mode of life (Table 5.3). Some
chemicals of the plant tissues inhibit the microbial association either biotrophs (sali-
cylic acid) or necrotrophs (jasmonic acid) type and also the reactive O, species may
have an inhibitory effect on the pathogens (Lehmann et al. 2015). Plants use jasmonic
acid, methyl jasmonate, ethylene, flavonoid, 12-oxo-phytodienoic acid, and salicylic
acid-mediated signals for quenching pathogens on its surface (Table 5.4). Recently,
pathogens with biotrophy-necrotrophy switch have been identified in fungi such as
Colletotrichum sp, Phytophthora capsici, Moniliophthora roreri, and Macrophom-
ina phaseolina in which pathogen evokes a differential response of growth in host
tissues (Chowdhury et al. 2015). Some important research in the mode of immune
evoke by the pathogen has been listed in Tables 5.3 and 5.4.

Phyllosphere region is usually colonized by a variety of microorganisms. Natu-
rally, leaf epidermises are always contacted to external and internal environments
and are enriched with a diverse group of bacteria, yeast, fungi, and viruses. The
cuticle layer of the leaf surface plays a significant role during the contact with leaf

Table 5.3 Mode of life cycle of pathogen established against plant immunity

Organism Life cycle Host References
Fusarium graminearum Hemibiotrophic Wheat Ding et al. (2011)
Colletotrichum Biotrophic and Maize Vargas et al. (2012)
graminicola necrotrophic
Septoria tritici Hemibiotrophic Wheat Yang et al. (2013)
Phytophthora capsici Hemibiotrophic Tomato Jupe et al. (2013)
Colletotrichum sp. Hemibiotrophic Plants Gan et al (2013)
Moniliophthora roreri Hemibiotrophic and Cacao Meinhardt et al. (2014)
necrotrophic
Fusarium verticillioides Biotrophic Maize Lanubile et al. (2014)
Botrytis sp Necrotrophic Plants Van Kan et al. (2014)
Botrytis fabae Necrotrophic Faba bean | El-Komy (2014)
Sclerotinia sclerotiorum Biotrophic, Plants Kabbage et al. (2015)
hemibiotrophic, and
necrotrophic
Zymoseptoria tritici Hemibiotrophic Wheat Rudd et al. (2015)
Phytophthora infestans Hemibiotrophic Tomato Zuluaga et al. (2016)
Rhizoctonia solani Necrotrophic Wheat Foley et al. (2016)

Note “Hemibiotrophs” - an organism that is parasitic in living tissue for some time and then
continues to live in dead tissue. “Necrotrophs” - can kill the host cells and feed on the contents
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Table 5.4 Signaling pathway inhibits pathogenic microbes in phyllosphere

Molecules/signals Pathogen Host References

Flavonoid pathway Bacterial pathogens Melampsora Miranda et al. (2007)
medusae

Jasmonic acid, Phymatotrichopsis Medicago truncatula | Uppalapati et al.

ethylene, and the omnivora (2009)

flavonoid

Methyl jasmonate Macrophomina Medicago truncatula | Gaige et al. (2010)

and ethylene phaseolina

Jasmonic acid and Fusarium Wheat Sun et al. (2010)

ethylene graminearum

Jasmonate and Fusarium sp Wheat Gottwald et al.

ethylene (2012)

Ethylene and Pythium ultimum Apple Shin et al. (2014)

jasmonate

Methyl jasmonate, Fusarium oxysporum | Tomato Krol et al. (2015)

12-oxo-phytodienoic
acid, salicylic acid,
and flavonol

f.sp. lycopersici

microbiota (Vacher et al. 2016). Though some group of microorganism may not
multiply after it reaches on the surface, many continue to survive and multiply, until
they can attain maximum number (Schonherr 2006; Innerebner et al. 2011; Pusey
et al. 2011). To multiply, microorganisms require carbon, nitrogen, inorganic, and
organic energy sources. However, in the absence of such nutrients, phyllosphere is
still usually colonized by a large number of bacteria (105-107 CFU/g of the leaf) in
the presence of high relative humidity and free water at suitable environmental con-
ditions (Schonherr 2006; Baldwin et al. 2017). This is due to the release of nutrients
or leaf exudates which adequately supported the microbial growth. There are vari-
eties of molecules leached from the plant leaves such as sugar, amino acids, organic
acids, minerals, etc. (Beattie 2011; Remus-Emsermann et al. 2011; Meiners et al.
2017). These leaching materials may differ with plant species and the environmental
condition (Beattie 2011; Remus-Emsermann et al. 2011; Mendes et al. 2013).
Nutrients such as sugar photosynthates from the leaf interior may be diffused
through the cuticle reached the outer surface (Schreiber 2005), and are chiefly used
by phyllosphere bacteria. Moreover, water droplets on a leaf surface facilitate the
outward diffusion of these sugars (Van der Wal et al. 2013). Both non-pathogenic and
pathogenic microorganisms establish colonization on the leaf surface. To survive and
thrive, epiphytic microbes have several adaptive properties such as the production
of antibiotics, extracellular polymeric substances (EPS), biosurfactant for increas-
ing cuticle permeability, and availability of nutrients volatile organic compounds
(VOCs) to the leaf surface. However, in order to avoid the entry of pathogens, plants
develop defense reactions. The preliminary defense is activated by recognition of the
chemical compounds released during the contact with microbes (Boller and Felix
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2009). Pathogen-induced molecular patterns (PAMPs)-triggered immunity (PTI) is
a broad spectrum of defenses against the pathogen invades. However, effectors pro-
duced by the pathogens often interfere with PTI activation and are recognized by
specific proteins, which stimulate effector-triggered immunity (ETI) that induces a
hypersensitive response (Craig et al. 2009).

5.7 How to Study Phyllosphere Microbiome?

The diversity and community structure of phyllosphere microbes have been intensely
studied by culture-independent methods. However, this approach failed to isolate and
identify the complete microbiome of the environment. Therefore, scientist used the
culture-independent mass sequencing methods which have been carried out by high-
throughput molecular methods, especially PCR-amplified DNA-level conserved tax-
onomic markers such as 16S rRNA, 18S rRNA, and internal transcribed spacer (ITS)
sequences-based metagenome of phyllosphere total microbiome (Mao et al. 2012;
Santhanam et al. 2014; Williams and Marco 2014; Joetal. 2015; Copeland et al. 2015)
(Fig. 5.4). The first-generation molecular techniques such as Sanger sequencing,
denaturing gradient gel electrophoresis (DGGE), and terminal restriction fragment
length polymorphism have been used to describe the community structure varia-
tion in plant phenotype, and geographical location (Hunter et al. 2010; Vokou et al.
2012; Izhaki et al. 2013). Those techniques are low throughput and highly expensive
that can be used to detect the superficial microbial community of the environment
(Rastogi and Sani 2011).

Advancements in molecular techniques, next-generation DNA sequencing is the
potent method that significantly reduces the costs and allows to perform hundreds
of samples in a single attempt. These techniques open up new windows of omics,
specifically “environmental omics.” The 454 pyrosequencing is the first to be widely
executed to study in microbial community analysis. This method comprises rRNA or
ITS amplicon sequencing, whole-genome sequencing, shotgun metagenomics, and
transcriptional profiling (Delmotte et al. 2009; Rastogi et al. 2012). Recently, I1lu-
mina platform has been performed better and allows ultra-high-throughput sequenc-
ing of microbial communities with high-quality reads (Degnan and Ochman 2012).
Proteogenomic is another method used for the microbial community structure anal-
ysis (Delmotte et al. 2009), a combination of genomics and proteomics to a great
extent makes easy the structural and functional differences of microbiota in the
phyllosphere environments. Through those methods, microbial diversity of several
host plants such as Arabidopsis, Apple tree, Beech, grapevine, oak, poplar, Prunus,
rice, soybean, spinach, tomato wheat, etc. was documented. The metadata of the
metagenomic studies helps to understand the growth behavior, colonization ability,
genus-level community structure formation (or) association, low and high index of
diversity, and the host genotype effects on the self-defense as well as the cell wall
integrity have been reported.
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Fig. 5.4 Scope of metagenome in phyllosphere microbes and their functions

Whole microbiome analysis by environmental sequencing is popular today to
explain the plant’s phyllosphere containing complex microbial communities. There
are many methods for mapping the diversity of microbiome which could associate
with any of the living and nonliving objects. Also, the environmental sequencing
approach determines the whole microbiome of the plant and it illustrates the sig-
nificant association of microbes on its host under controlled conditions. Recently,
studies revealed that genome-wide association (GWA) is the best method which
shows potential merits for identifying the microbial communities associated with
different kinds of host-microbe interactions. The high-throughput environmental
sequencing approach has guided to the discoverer to find the complex microbial
ecosystem of leaves. Using this strategy, many studies revealed the microbial asso-
ciation in the phyllosphere of different plants such as mountain shrubs (Ruiz-Pérez
et al. 2016), seagrass (Fahimipour et al. 2017), subarctic grass (Uroz et al. 2016),
and equatorial forest canopies (Lambais et al. 2006). The studies revealed that plant
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leaves are colonized by a huge and diverse group of microorganisms, including bac-
teria, fungi, and viruses (Rastogi et al. 2013; Morella et al. 2018; Sapp et al. 2018;
Beilsmith et al. 2019). High-throughput molecular methods or culture-independent
molecular techniques have interpreted the phyllosphere microbial community today
(Table 5.5). Through this technique, Actinobacteria, Bacteroidetes, Firmicutes, and
Proteobacteria are common microbiome of plant leaves (Bulgarelli et al. 2013), and
it suggests that Pseudomonas, Sphingomonas, Methylobacterium, Bacillus, Mas-
silia, Arthrobacter, and Pantoea are predominant genera consistently firm in the
phyllosphere. Findings of the studies disclose the variation of microbial commu-
nity structure mainly based on the genotypic nature of the plant species and also its
geographical location. For example, Finkel et al. (2011) observed similar bacterial
communities from the different species of Tamarix (T. aphylla, T. nilotica, and T.
tetragina) grown in the same geographical location; however, differences in commu-
nity structure of microbiota have been strongly related to its geographical distances
(Rastogi et al. 2012).

Moreover, the high-throughput studies revealed the special functions/metabolism
of the microbes associated with leaf surfaces, specifically carbohydrate transport, leaf
litter decomposition, light-driven ATP pumps, methanol metabolism, C1 metabolism
(Ottesen et al. 2013; Shade et al. 2013), and the effect of ecological factors such
as climate change, temperature, seasonal variation, sporadic contact to soil, and/or
anthropogenic activities such as the use of agricultural chemicals and pesticides
(Ikeda et al. 2011; Shade et al. 2013; Karlsson et al. 2014; Copeland et al. 2015;
Glenn et al. 2015). To attain better perceptive of the phyllosphere ecosystem and
understand the functional relationship among plants, microbiota, and environment,
metaproteome and metagenomics have been used (Rastogi et al. 2012; Bélint et al.
2013; Dees et al. 2015).

5.8 Impact of Phyllosphere Microbiome on Ecosystem

Phyllosphere microflora significantly influences the ecological relationship of the
plants. The phyllosphere usually has bacteria, fungi, lichens, algae, and viruses that
have actively participated in the adaptation, growth, resistance, and infection of the
plant host (Walker et al. 2017; Verma et al. 2017; Yadav et al. 2018a). The phyllo-
sphere microbiota has not been completely studied with their ecological significance,
specifically plant and ecosystem level (Remus-Emsermann and Schlechter 2018).
From seed germination to plant reproduction, studies have revealed how the phyllo-
sphere microbiome affects the leaf functions and longevity, seed mass, apical growth,
flowering, and fruit development (Jones and Dangl 2006; Sawinski et al. 2013; Kem-
bel et al. 2014); however, the net interplay of the phyllosphere ecosystem in and
around the plant is scanty. Recent scientific advancements that simplify the phyllo-
sphere microbial life become understandable. The high-throughput genomics, such
as environmental genomics and metagenomics, have greatly expanded our perceptive
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Table 5.5 Studies on high-throughput molecular approaches to phyllosphere communities

Method Plant Study References
16S rRNA gene Soybean, clover, | Epiphytic fitness of Delmotte et al.
pyrosequencing Arabidopsis Sphingomonas and (2009)
Methylobacterium
Pine and other Phyllosphere bacteria Redford et al.
trees community composition (2010)
Spinach Genus-level communities Lopez-Velasco et al.
of Proteobacteria and (2011)
Firmicutes-associated
spinach leaves
Grape Bacterial communities on Leveau and Tech
the surface of leaves and (2011)
berries from grapevine
Lettuce A “core” community Rastogi et al. (2012)
composed of
Pseudomonas, Bacillus,
Massilia, Arthrobacter, and
Pantoea found in lettuce
foliage
Lettuce Variation in phyllosphere Williams et al.
microbiota composition. (2013)
Effect of E. coli O157:H7
inoculation on microbiota
composition
Rice Metagenomic analysis of Prasad Sahu and
rice phyllospheric bacterial | Kumar (2015)
communities in relation to
blast disease
Common bean, Seasonal community Copeland et al.
soybean, and succession of the (2015)
canola phyllosphere microbiome
Espeletia species | Microbial and functional Ruiz-Pérez et al.
diversity within the (2016)
phyllosphere.
16/18S rRNA gene Oak Fungal communities in the | Jumpponen and
pyrosequencing oak phyllosphere Jones (2009)
Tamarix aphylla, | Geographical locationisa | Finkel et al. (2011)
T nilotica, major determinant of

T. tetragina

phyllosphere bacterial
communities

Beech

Plant genotype-based
fungal communities on leaf
surfaces

Cordier et al. (2012)

Balsam poplar

Plant species-based fungal
community composition

Balint et al. (2013)

(continued)
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Table 5.5 (continued)
Method Plant Study References

Pine Rapid microbial Golebiewski et al.
community changes during | (2019)
initial stages of pine litter
decomposition

Metaproteogenomics | Soybean, clover, | Metabolic adaptations Delmotte et al.
Arabidopsis contribute to the epiphytic | (2009)

fitness of Sphingomonas
and Methylobacterium

Rice Several methylotrophic Knief et al. (2012)
enzymes and their role in
the carbon cycle by
Methylobacterium

Maize Functional genes that Methé et al. (2017)
distinguish maize
phyllosphere metagenomes
in drought and
well-watered conditions

and understanding on the functional life of phyllosphere microbial communities in
plant—environment and the impact on the ecosystem.

Environmental factors are drastically influencing the microbiome changes on
phyllosphere. This is common to epiphytic microorganisms, exposed with heavy
stress during the season cycle, the day/night cycle, and the growth, age, and anatom-
ical dynamics of the plant. For instance, at drought condition, the epiphytic microbial
community was notably increased on Holm oak (Rico et al. 2014). Similarly, at hot
condition, bacterial endophytic communities are altered in lower leaves of paddy,
but not in the epiphytes (Ren et al. 2014). However, the epiphytic fungal community
responded well in worming seasons (Coince et al. 2014; Bélint et al. 2015). Besides,
an increase of CO, at the phyllosphere region never affects the bacterial abundance
(Ren et al. 2014; Vacher et al. 2016), except a few fungal genera.

Microbes have flexible metabolic adaptations, which helps them to survive in the
phyllosphere microenvironment. During the metabolic functions, the plant releases
carbohydrates, polyols, amino acids, amines, isoprenoids, halogenated compounds,
or alcohols, as well as water and salts, which are the available nutrients for epi-
phytic microorganisms (Trouvelot et al. 2014). However, leaf surface commonly
exhibits desolate properties such as saline or alkaline pH which generates stress
in phyllosphere microbes (Finkel et al. 2012). Several alphaproteobacteria express
PhyR-based stress regulation and colonization on leaf surface (Iguchi et al. 2013).
Additionally, they develop multiple mode adaptation to survive in phyllosphere such
as tolerance, antimicrobial, and immunity compounds against a microbial competitor
(Trouvelotetal. 2014), synthesis of extracellular polysaccharides, and also synthesize
phytohormonal compounds.



138 N. Sivakumar et al.

Besides, biotic and abiotic factors induce molecular level regulations in plants to
synthesize a diverse range of phytohormones. Generally, the gaseous ethylene, jas-
monate, methyl jasmonate, salicylate, and methylsalicylate are induced by bacterial
pathogens (Bodenhausen et al. 2014; Horton et al. 2014). For example, many plant
defense mechanisms are induced by the interaction of the biotic component of the
ecosystem through signals like volatile and nonvolatile chemicals, and microbes can
degrade such chemicals resulting in reduced activity (Mason et al. 2014).

The phyllosphere microbiome acts as a vital role for leaf surface environment and
their surrounding ecosystem functions (Ortega et al. 2016). Phyllosphere microbes
have interacted with their environment through their metabolic functions (Fig. 5.5).
In general, plants release a variety of volatile organic compounds (VOCs) and its pre-
cursors on the surface of leaves (Schifer et al. 2010), and it could regulate the microor-
ganisms in response with the environment. Plants are the major VOCs emitter of the
biosphere (>1000 Tg/year) and can release compounds such as terpenes, monoter-
penes, flavones, methanol, methane, and halogenated methane (C1 compounds). The
epiphytic microbes on the surface of the plant, as well as the airborne bacteria, effec-
tively consumed the emitted VOCs through bacterial metabolism (Junker and Tholl
2013), and this effects of climate change would impact the diversity, species rich-
ness, and abundance in the phyllosphere community, and its capability on filtering
of plant-emitted volatile substances.

Methane (CHy) is the most important greenhouse gas (~1.8 ppm), and it has been
detected from the leaves, roots, and stems and is released to the atmosphere (Keppler
et al. 2006). Phyllosphere microbes especially methanogens use the plant-emitted
methane along with leaf exudates (Lenhart et al. 2015; Bringel and Couée 2015).
Phyllospheric microbes are often rich in methylotrophic bacteria and can utilize the
plant-emitted C1 compounds such as methanol, formaldehyde, and chloromethane

55 =
Signaling

©

22, - ~

| Exudates & Solutes
BT T )

Fig. 5.5 Environmental impact of phyllosphere microbes. Utilization of plant emitting volatile
organic compound (VOCs) and C1 compounds by phyllosphere microbes. (1) Free diffusion of
VOC:s to the atmosphere; (2) Capturing the VOCs by the surface microbes, act as filters; (3) Through
specialized metabolic activities microbes metabolize the VOCs; (4) Adaptive response of microbes
in the specialized environment. VOGs—Volatile organic gases
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(Knief et al. 2012; Jo et al. 2015). Studies proved that the C1 metabolic epiphytic
bacteria such as Methylobacterium extorquens, Methylobacterium radiotolerans,
and Methylocystis use methanol and acetate as their carbon and energy source
at the phyllosphere (Belova et al. 2011; Verginer et al. 2010; Iguchi et al. 2013;
Jo et al. 2015; Iguchi et al. 2015; Krishnamoorthy et al. 2018). The Methylobac-
terium extorquens contains the methanol-dehydrogenase-like protein XoxF which
is expressed during the colonization on Arabidopsis thaliana (Schmidt et al. 2010).
Besides, chloromethane metabolism (cmu pathway) in methylotrophs has been iden-
tified from the surface leaves of A. thaliana harbor (Nadalig et al. 2011; Krishnamoor-
thy et al. 2018). Table 5.6 shows the various phyllosphere methanogenic bacteria and
its metabolism.

Chloromethane (CH3Cl) is one of the abundant chlorinated organic compounds
in the atmosphere (currently ~550 ppt) and is to be responsible for the depletion
of stratospheric ozone over 16% (World Meteorological Organization 2014). The
fluorescence-based bacterial bioreporter study reported that phyllosphere microbes,
M. extorquens CM4 (Roselli et al. 2013) and Hyphomicrobium sp. (Nadalig et al.
2011), having the genes for chloromethane utilization (cmu), and also volatile
dimethylsulphide (DMS) and dimethylsulfoniopropionate (DMSP), considered as
global climate regulator (Schifer et al. 2010; Nevitt 2011). In the biosphere, a
small number of plants like salt marsh grasses Spartina and sugarcanes (Saccha-
rum sp.) are reported as producers of DMSP. Microbes that are associated with these
plants have adaptive metabolism by which it transforms or metabolizes the DMS and
DMSP (Ansede et al. 2001). Hence, the phyllosphere microbes are the major source
of carbon and sulfur biogeochemical cycles, in the ecosystem and climate regula-
tion through their active filtration or utilization of plant-related volatile compounds
(DeLeon-Rodriguez et al. 2013; Santl-Temkiv et al. 2013).

Microbial populations reside at phyllosphere as epiphytes or as endophytes, and
have close contact with the rhizosphere. A microbe can be established as an epi-
phytic and endophytic association has the metabolic plasticity required for them
to thrive. Many experimental evidences suggested that microorganisms commonly
associated with plants maybe vital for nutrient accessibility and decomposition of
biomass (Bernal et al. 2006; Ramirez Gémez 2011; Lizarazo-Medina and Gémez-
Vasquez 2015). The functional ecology of the plant influences the composition and
interaction of the phyllosphere microbes (Bodenhausen et al. 2013; Ruiz-Pérez
et al. 2016). Many of the phyllosphere microbial communities share the common
metabolic properties of the soil microbes. For example, the major phyllosphere bacte-
rial communities such as Bacillus, Burkholderia, Methylobacterium, Pseudomonas,
Sphingomonas, and Xanthomonas are the soil inhabitant, which have carbohydrate
metabolizing genes involved in utilization of starch, hemicellulose, pectin, and cellu-
lose, rich in humus materials (Rawat et al. 2012; Bodenhausen et al. 2013; Bulgarelli
et al. 2013). The nitrogen metabolism such as ammonification, denitrification, and
anammox, and the degradation of aromatic compounds are also reported in foliar
microbes (Usubillaga et al. 2001; Rawat et al. 2012; Ruiz-Pérez et al. 2016).

Tropospheric microbes (aerosols) play a vital function in global carbon cycles and
also metabolize the organic compounds. Some airborne Gammaproteobacteria have
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Table 5.6 Studies on Phyllospheric methylotrophic metabolism

N. Sivakumar et al.

Epiphyte Host plant Function References
Methanotrophs and Linden, pine and blue | Diversity of Doronina et al.
Methylobacteria spruce lilac, maple, Methanotrophs in (2004)
and apple woody plant tissues

within the winter

period
Methylobacterium Medicago truncatula | Methylotrophic Sy et al. (2005)
extorquens metabolism is

advantageous for
colonization under
competitive
conditions

Methylobacterium
extorquens

A proteomic study of
Methylobacterium
extorquens reveals a
response regulator
essential for

Gourion et al. (2006)

epiphytic growth
Methylobacterium - PhyR is involved in Gourion et al. (2008)
extorquens AM1 the general stress
response
Methylocystis heyeri | Peat Acetate utilization Belova et al. (2011)
H2(T) and M. metabolism as a
echinoides survival strategy
IMET10491(T)
Methylobacterium Strawberry Monitoring the plant | Verginer et al. (2010)

extorquens DSM
21961

epiphyte
Methylobacterium
extorquens DSM
21961

Methylobacterium
extorquens

Arabidopsis thaliana
or Medicago
truncatula

The influence of the
factor site, host plant
species, time and the
presence of other
phyllosphere bacteria
on Methylobacterium
community
composition and
population size

Knief et al. (2010)

Candida boidinii

Arabidopsis thaliana

Yeast methylotrophy
and autophagy in a
methanol-oscillating
environment on
growing leaves

Kawaguchi et al.
(2011)

(continued)
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Table 5.6 (continued)
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Epiphyte

Host plant

Function

References

Methylobacterium
sp. (NC4), (NC28)

Sugarcane, pigeon
pea, mustard, potato,
and radish

Epiphytic
pink-pigmented
methylotrophic
bacteria enhance
germination and
seedling growth of
wheat (Triticum
aestivum) by
producing
phytohormone

Meena et al. (2012)

Methylobacterium
sp. strain ORO1

Perilla plants

Dominant
colonization and
inheritance of
Methylobacterium

Sp.

Mizuno et al. (2013)

Methylosinus sp.
B4S

Stress resistance and
C1 metabolism
involved in plant
colonization of a
methanotroph Arch

Iguchi et al. (2013)

Methylobacterium
oryzae

Rice

plant-probiotic
methylotroph in the
phyllosphere

Kwak et al. (2014)

Methylobacterium
radiotolerans
VRIS-A4

Groundnut

Diversity of
culturable
methylotrophic
bacteria in different
genotypes of
groundnut and their
potential for plant
growth promotion

Krishnamoorthy
et al. (2018)

ice nucleation-active (INA) property and contains specific gene (ina) via deposition
of cloud droplets (Hill et al. 2014) on the leaf surface and mineralize the carbon com-
pounds (Vaitilingom et al. 2013). Reports confirmed the relationship of INA bacteria
and phyllosphere microbiota, combined activities of both phyllosphere microbiota
and cloud microbiota actively participating carbon cycle, and strong support for cli-
mate regulation (Bringel and Couée 2015). The above information suggested that the
phyllosphere microbiome not only supports the health of its host but is also benefi-
cial to the environment, specifically it regulates plant-derived greenhouse and other
gaseous pollutants.
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5.9 Biotechnological Potential of Phyllosphere Microbiota

The plant beneficial microbes are agriculturally important bioresources, and it can
stimulate the plant growth and enhance plant nutrient uptake through solubilization
and mobilization (of P, K, and Zn), nitrogen fixation, and siderophore production
(microbes-mediated bio-fortification of Fe in different crops). Beneficial microbes
can play an important role in increasing yields of the crop, remove contaminants,
inhibit pathogens, and produce novel substances. The growth stimulation by bene-
ficial microbes can be a consequence of biological nitrogen fixation, production of
plant growth regulators such as IAA, gibberellic acids, and cytokines, and biocontrol
of phytopathogens through the production of antibiotic, antifungal, or antibacte-
rial, Fe-chelating compounds, induction of acquired host resistance, enhancing the
bioavailability of minerals (Kour et al. 2019; Kumar et al. 2019b; Yadav et al. 2019a).

In this contest, the phyllosphere microbes may positively influence the growth
of host plant and produce some antagonistic compound against pathogens. Phyllo-
sphere endophytes with properties such as nitrogen fixation (Jones 1970; Freiberg
1998; Furnkranz et al. 2008), bioremediation of harmful chemicals/pollutants, and
biocontrol agents against important foliar plant pathogens (Beattie and Lindow 1995;
Balint-Kurti et al. 2010; De Marco et al. 2004) have been documented. Further, the
microbiome of phyllosphere is a reflection of environmental conditions; they can
contribute significantly to global food webs and nutrient linkages. Many beneficial
microbes such as Achromobacter, Bacillus, Beijerinckia, Burkholderia, Flexibac-
terium, Methylobacterium, Micrococcus, Micromonospora, Nocardioides, Pantoea,
Penicillium, Planomonospora, Pseudomonas, Streptomyces, and Xanthomonas have
been reported from the phyllosphere environment of different crop plants (Verma
et al. 2013a, b; Mukhtar et al. 2010; Meena et al. 2012; Dobrovol’skaya et al. 2017).
However, compared with most other microbial habitats, the investigation of phyllo-
sphere microbes is quite limited. Some of its important biotechnological potentials
are listed below.

5.9.1 Biocontrol Agents

Biocontrol is the measure to control pathogens and disease-causing pest including
nematodes weeds, insects, and mites by other beneficial microbes or harmless living
materials. In nature, plant diseases are caused by bacterial pathogens which provide a
substantial decline in the development of agricultural products. For sustainable agri-
culture, scientific approaches use the antagonistic properties of beneficial microbes
against the harmful pathogens instead of using toxic harmful chemicals as biolog-
ical control (Erwin and Ribeiro 1996; Sharma et al. 2012). Biological treatment is
a desirable strategy for controlling plant diseases (You et al. 2015) and there are an
increasing number of biocontrol agents (BCAs), such as Bacillus spp., Pseudomonas
spp., Trichoderma spp., etc. being commercialized for various crops (Trabelsi and
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Mhamdi 2013; Cha et al. 2016). Most of them habitat either on phyllosphere or soil
and can play a significant role in killing the number of plant pathogens on the surface
of the leaves by competitive principle.

Pathogenic microbial interactions in phyllosphere decrease the fitness of plants,
the productivity of crops, and question the safety of horticultural products for human
consumption. Phyllosphere actinomycetes have been reported to inhibit the growth
and colonization of plant pathogens (Lindow and Brandl 2003). For example, the
endophytic isolate Gordonia sp. has been reported to produce imidazole-2-yl amino
acids that have antifungal properties (Mikolasch et al. 2003) and an acidic polysaccha-
ride called Gordon as the main component in biofilms, which is considered essential
for pathogenicity against plant disease (Kondo et al. 2000). Various Streptomyces
sp. including S. griseus have been reported as producing various antifungal com-
pounds such as 1-H-pyrrole-2-carboxylic acid (PCA), cycloheximide, and strepto-
mycin which were successfully used to control fungal and bacterial diseases in plants
(Leben and Keitt 1954; Nguyen et al. 2015). Wiwiek et al. (2017) studied the rice
phyllosphere actinomycetes could be used as potential biocontrol agents against fun-
gal leaf blast disease. Wang and Ma (2011) reported that exogenous actinomycete
XN-1 has the potential to act as an antagonistic agent in controlling the occurrence
and development of cucumber leaf spot in the greenhouse. This also confirms that
phyllosphere microorganisms play an important role in combating the infection of
pathogens and have a promising future in developing biocontrol products. Table 5.7
shows the plant-associated bacteria and its biological activities.

Microbes with the production of compounds like indole acetic acid and N-acyl
homoserine lactone (AHL) assist the bacteria to colonize on plant surface (Lindow
and Brandl 2003). Sartori et al. (2015) studied the biocontrol potential of phyllo-
sphere microorganisms from maize against Exserohi lumturcicum, the causal agent
of leaf blight. Shrestha et al. (2016) investigated the prospects of biological control
of rice-associated Bacillus against sheath blight and panicle blight of rice caused by
Rhizoctonia solani and Burkholderia glumae, respectively. A variety of Bacillus iso-
lates were observed to inhibit the sclerotial germination of the fungus, which could be
attributed to the various antimicrobial secondary metabolites produced by the bacte-
ria. Various gram-negative bacteria also show plant protection activity. For example,
Pseudomonas graminis isolated from the apple phyllosphere showed control against
fire blight caused by Erwinia amylovora (Mikicinski et al. 2016), Pseudomonas pro-
tegens CS1 from the lemon phyllosphere are used as a biocontrol against citrus canker
(Michavila et al. 2017).

Further, microbial production of siderophores quenches the phytopathogens and
protects the host plant from their infection (Scavino and Pedraza 2013; Ahmed
and Holmstrom 2014; Harsonowati et al. 2017; Sabaté et al. 2018) as a biocontrol
agent. For example, the siderophore produced by Pseudomonas syringae pv. syringae
22d/93 shows biocontrol activity against Pseudomonas syringae pv. glycinea 1a/96,
a plant pathogen (Wensing et al. 2010). The siderophore pyochelin produced by
the endophyte control rice blast is caused by Pyricularia oryzae (Harsonowati et al.
2017). Plant-associated Pseudomonas spp. has been employed efficiently as com-
mercial biocontrol agents (Loper and Lindow 1987; Walsh et al. 2001). Cyanogenic
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Table 5.7 Plant-associated microbial compounds and bioactivity

N. Sivakumar et al.

Compound Source Bioactivity References
Blasticidin-S Streptomyces Control the rice blast caused Fukunaga
(VIID): griseochromogenes | by Pyricularia oryzae (1955)
1
Kasugamycin (IX) | Streptomyces Rice blast caused by Umezawa et al.
kasugaensis Pyricularia oryzae, leaf spot (1965)
in sugar beet and celery by
Cercospora spp., and scab in
pears and apples caused by
Venturia spp.
Methoxyphenone | Streptomyces Herbicides Ito et al. (1974)
griseolus
AM-toxin Alternaria mali phytotoxin Park et al.
(1977)
Milbemycin (XI): | S. hygroscopicus Insecticidal and acaricidal Mishima et al.

subsp.
aureolacrimosus

(1983)

Diabroticin A

Bacillus subtilis
and Bacillus cereus

Polar insecticide

Stierle et al.
(1990)

Spinosad (X):
spinosyn A and
spinosyn D

Saccharopolyspora
spinosa

Controls the caterpillar
(Helicoverpa zea Boddie,
Pieris rapae (L.), Keiferia
Iycopersicella (Walsingham),
thrips (Ceratitis capitata (L.),
Thrips palmi (Karny)) and
beetles (Leptinotarsa
decemlineata (Say))

Mertz and Yao
(1990)

AF-toxins

Alternaria fragariae

Maculosin is a cyclic
dipeptide—phytotoxin

Stierle et al.
(1990), Uneo
(1990)

Maculosin (XVI) Phoma lingam Phytotoxin Stierle et al.
(1990)

Efrapeptins Tolypocladium spp. | Pesticide and insecticide Krasnoff and
Gupta (1991),
Krasnoff et al.
(1991)

Abamectin Streptomyces Insecticide and acaricide Jansson and

avermitilis Dybas (1996)

Nodulisporic acid

Nodulisporium sp.

Insecticidal activity

Ondeyka, et al.
(1997)

Pyrizadocidin Streptomyces Herbicides Gerwick et al.

(VID) #620061 (1997)

Syringomycin E: Pseudomonas Fungicide-citrus green mold Bull et al.
syringae ESC 10/11 | Penicillium digitatum (1998)

(continued)
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Table 5.7 (continued)
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Compound Source Bioactivity References
Destruxin A and B | M. anisopliae Insecticide Strasser et al.
(2000)
Oosporein Beauveria Insecticide Strasser et al.
brongniartii (2000)
Beauvericin A and | Beauveria bassiana | Hexadepsipeptide—insecticide | Lane et al.
B and Paecilomyces (2000)

Spp

Borrelidin Streptomyces Antifungal activity against Worapong et al.
species- neau-D50 Phytophthora sojae (2001)

Bialaphos (V) Streptomyces Herbicide—weed control Tachibana
hygroscopicus and (2003)
Streptomyces
viridochromogenes

Tartrolone C Streptomyces sp. Insecticidal macrodiolide Lewer et al.
CP1130 (2003)

Coronatine Pseudomonas Insecticide—herbicide Block et al.
coronafacience (2005)

Macrolactin A: Bacillus sp. sunhua | Fungicide—Fusarium Han et al.

oxysporum and Streptomyces (2005)

scabies

Bt-Toxins Bacillus Bioinsecticides endotoxins Collier et al.
thuringiensis (2005)
Tabtoxin Pseudomonas Phytotoxic—Herbicide Hoagland et al.
syringae var. tabaci (2007)
Phyllostictine A Phyllosticta cirsii Mycoherbicide Zonno et al.
(2008)
Cinnacidin Nectria sp. Phytotoxic Irvine et al.
(XXII): DA60047 (2008)
Beauvericin A and | Beauveria bassiana | Hexadepsipeptide—insecticide | Miller et al.
B and Paecilomyces (2008)
Spp.
Herbimycin (VI) Streptomyces Benzaquinoid ansamycin Hahn et al.
hygroscopicus antibiotic with potential (2009)
AM3672 herbicidal a
Albucidin Streptomyces albus | Herbicides Hahn et al.
subsp. chlorinus (2009)
NRRL B-24108
Zinniol Alternaria Phytotoxic to Cirsium arvense | Berestetskii
cirsinoxia L. et al. (2010)
Ascaulitoxin Ascochyta caulina Phytotoxin Duke et al.
aglycone (2011)
Antibiotic 1233A | Cephalosporium Phytotoxin Duke and

(XXIV)

sp., Fusarium sp.,

Dayan (2011)

(continued)
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Table 5.7 (continued)

Compound Source Bioactivity References

AK-toxin (XV): Alternaria Phytotoxin Saxena (2014)
kikuchiana

Bipolaroxin Bipolaris Phytotoxic to Cynodon Saxena (2014)

(XVII) cynodontis dactylon

Bt-Toxins Bacillus Bioinsecticides endotoxins Radhakrishnan
thuringiensis et al. (2017)

Phaseolotoxin Pseudomonas  sp. Phytotoxins—herbicide Aguilera et al.

{1 (2017)

fluorescent Pseudomonas produces siderophores in the presence of a strong chelator
8-Hydroxyquinoline which inhibits pathogens such as Rhizoctonia solani and Scle-
rotium rolfsii (Kotasthane et al. 2017). Table 5.8 listed some important findings as
endophytes as biocontrol agents. Mostly, the biocontrol agents use either nonribo-
somal peptide synthetase (NRPS) gene and/or type 1 polyketide synthase gene for
respective compound production.

5.9.2 Plant Growth-Promoting Compounds

Plant growth is regulated by the growth hormones, available nutrient, good environ-
mental condition, and beneficial microbial interaction. Many of the microbes are the
prime producers of plant growth hormones, specifically plant-associated or phyllo-
sphere microbial communities produce IAA, gibberellic acids, and cytokines and
could fix nitrogen and mobilize nutrients (Dourado et al. 2015). There are many
bacteria and fungi which produce IAA, similar to those of plants (Sun et al. 2014;
Venkatachalam et al. 2016; Thapa et al. 2018. Microbes use plant tryptophan to pro-
duce TAA, which can effectively improve plant growth and enhance overall health
(Hayat et al. 2010; Yadav et al. 2015a, b). The genus Methylobacterium is among
the most commonly observed leaf epiphytes and represents an abundant and stable
member of the phyllosphere microbial community of a wide range of crop plants such
as sugarcane (S. officinarum L.), pigeon pea (Cajanus cajan L.), mustard (Brassica
campestris L.), potato (Solanum tuberosum L.), and radish (Raphanus sativus L.)
(Meena et al. 2012), and has produced variety of growth-promoting phytohormones.
The association of plant growth-promoting bacteria (PGPB), especially Methylobac-
terium sp., with plant hosts greatly benefits plant growth by production of phytohor-
mones like auxins and cytokinins, and increased activity of enzymes such as ure-
ase and 1-aminocyclopropane-1-carboxylate deaminase (ACCD), which promotes
growth and enhances the production of siderophores, thereby enhancing the uptake
of essential nutrients.

The benefits associated with plant—microbe interactions are also dependent on
the variety of inoculation methods such as soil, foliar, and combination of both soil



147

5 Phyllospheric Microbiomes: Diversity, Ecological ...

(panunuoo)

(T100) T8 19 BSOY

wn.iods{xo
wnisnyy puv “ds vuoydoyioag

QoY
"H ('ddaoq) snijofiyouos snyjuvppus

DULIZPOYILL],
puv ‘va120d{f ‘vjja129qID)
WNYI141012]]00) ‘uniLodsopn])

(6002) e 10 ony

D22 )j2129qID)

JeayM

pasod s£yovjsouo])

(6002) 'Te 12 BpRURH

pioanuppd vioyydoilyg

(0BOBD DUL04GOIY]) OBIRD)

2IDUADUL DULIIPOYILL]

(8002) "Te 30 elloN

(w004q $21211M)

psonLad vioyyydoruopy pue ‘(104
pod yov]q) vioarugod vioyydoilyg
‘(104 pod K3s04f) 112404 vaOYIYdONIUO P

ODIDI DULOLGOIY |

s1q14 DL12VYdSOL 130G
pup ‘vasod s yovisouo;)
‘sap10110ds020]8 winy21.13032110)

wmaind.ind WnaLajsoipuoy)
1UD]OS DIUOIIOZIYY
18fjo1 wn1o42)og

0JBWo) pue
‘orejod ‘Toqunond ‘A1reqmens ‘Ysipey
SLII ‘UuBdq ‘0008qO],

(8007) 'Te 10 ourdy pa42u1d s1k410g ‘DUISNIDS PIIIOIN oiddy ds putiapoyor]
$opron1onLo4

(S002) Te 19 MOP[OIM WNLIDSN,] pue snavyf snjjidiadsy AZIRIN D2 WNTUOWILDIY

(9661) ‘T8 19 Y[ pjoo11A DAPdOWSD] adein wininaafijoid wniosn,g

SQOUAIRJAY uagoyreq JSOH 1Aydopuyg

juage [onuodolq se 13unj onAydopud a1oydsofjAyd §°S IqeL



N. Sivakumar et al.

148

(S10T) T8 19 BIOPIA

yauLIqy] vjja1avydsool

Jueld

pj{ydopua prLppmuny

($107) ‘Te 19 NUBIAOSOD)

patou1d sukijog

pA2fiuiA SIA

2190y20.41ds winuoavyy) ‘sunpnjnd
WNIPISDGOUNY DINI]OLYIO D1IIOIUOIY

(e¢100) T8 10 Suepm

pjod1IA

d PUB ‘Sap101.10ds020]38 winyo1.11042110)
VLD IVLf WNYI11]0]2]]0)

WNIPINOD WNYI111012]]0)

DIDALIDS PIZAadng

sap1o1i0dsopn]d wniiodsopn])

(2100) T8 10 wnig

wniods{xo wnipsng

1 pasniqo] SIp

D]0ILLIDY
viodsosody ‘wn.iojoasvyd ayiiodpig
‘WIuv112Y 2Y1iodpi(] ‘SNAD}Y UOPOAD]]

‘Sap10110ds020]3 WNYd1.11012]]0))

(2102) "Te 1 o[y -zounN

patau1d suligog

1 pdafiura SIA

dds wmipomag

SAOUAIJY

uagoyreq

IS0

1Aydopuyg

(ponunuoo)  g's dqeL



5 Phyllospheric Microbiomes: Diversity, Ecological ... 149

and foliar inoculations (Lee et al. 2011). A study has been conducted to investigate
the inoculation of Erwinia herbicola on plant growth by IAA production. The test
results showed that about 65% of the E. herbicola strain recovered from the leaves
showed higher expression of the ipdC gene than in culture. The study indicated that
physical or chemical microclimates directly influence the differential expression of
ipdC (Brandl et al. 2001). Similarly, endophytic bacteria such as Bacillus pumilus
E2S2 (Luo et al. 2012), B. amyloliquefaciens NBRI-SN13 (Nautiyal et al. 2013), B.
atrophaeus EY6 and B. sphaericus B EY30, B. subtilis EY2, S. kloosii EY37, and
K. erythromyxa EY43 (Karlidag et al. 2011) also produce PGPs.

Endophytic Bacillus produces phytohormones such as abscisic acid, auxins,
brassinosteroids, cytokinins, ethylene, gibberellins, jasmonates, and strigolactones,
and increases nutrient (nitrogen and phosphorous) accessibility to the host (Reinhold-
Hurek and Hurek 2011; Brader et al. 2014; Santoyo et al. 2016; Shahzad et al. 2016;
Ek-Ramos et al. 2019). Zeiller et al. (2015) reported that C. botulinum 2301 sig-
nificantly produce PGPs in a field experiment of clover. A cold-tolerant bacterial
strain Exiguobacterium acetylicum 1P promotes wheat seedlings growth (Selvaku-
mar et al. 2010), Brevibacillus brevis improve the growth of cotton crop (Nehra
et al. 2016) and Bacillus spp. induce phosphate solubilization more efficiently when
present as endophytes in citrus (Giassi et al. 2016). The diazotrophic bacteria asso-
ciated with phyllosphere gives benefits to the plant by fixing atmospheric nitrogen,
solubilization of phosphorus (P), and utilization of available nutrients through its
organic end product-mediated solubilization of rock phosphates (Mohammadi 2012;
Kembel et al. 2014; Mwajita et al. 2013; Batool et al. 2016; Lambais et al. 2017).

5.9.3 Biopharmaceutical Importance

Biological activity of medicinal plants and their applications in various healing prop-
erties have been documented well. In recent years, microbes associated with plants
themselves proved with high therapeutic values particularly endophytes. Endophytic
microbes are known for their beneficial effects to the host, specifically phytohor-
mones, enzymes, and stress-resistant physiology, and its biotechnological potentials
(Parthasarathi et al. 2012; Singh and Dubey 2015; Gouda et al. 2016). Endophytes are
known to produce bioactive metabolites, which served as a potent drug for medical
and cosmetic industries (Shukla et al. 2014; Gouda et al. 2016). Secondary metabo-
lites produced by the endophytic bacteria, actinomycetes, and fungi have econom-
ically valuable compounds such as alkaloids, flavonoids, phenolic acids, quinones,
steroids, saponins, terpenoids, tetralones, xanthones, etc. (Strobel and Daisy 2003;
Joseph and Priya 2011; Godstime et al. 2014; Shukla et al. 2014; Gouda et al. 2016).
For example, endophytic microbes are well-known producers of taxol, a diterpene
alkaloid, and lignin such as cathartics, emetics, and cholagogue used for cancer treat-
ment (Konuklugil 1995; Zhang et al. 2009; Nair and Padmavathy 2014; Soliman
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Table 5.9 Pharmaceutical valuable products from phyllosphere microbes

N. Sivakumar et al.

Producer Compound Activity against References

Hypericum Hypericin, emodin, Salmonella sp. Joseph and Priya

perforatum, tyrosol (2011), Specian et al.

Diaporthe helianthi (2012)

Ganoderma Rapamycin, Bacillus subtilis Parthasarathi et al.

boninense cyclododecane, (2012), Ismail et al.
petalostemumol (2014)

Fusarium sp. Xularosides, Candida albicans Jalgaonwala et al.

Cryptosporiopsis munumbicins, (2011), Dutta et al.

quercina Saadamycin, (2014)
cryptocandin

Streptomyces sp.,
Kennedia nigricans

Munumbicins

Vibrio cholerae

Kumar et al. (2014)

Cryptosporiopsis Saadamycin Campylobacter Dutta et al. (2014)

quercina Jejuni

Streptomyces sp. Kakadumycin A, Shigella sp. Golinska et al.
hypericin (2015), Joseph and

Priya (2011)

Streptomyces
tsusimaensis

Valinomycin

Corona virus

Alvin et al. (2014)

Fusarium Kakadumycin, Listeria Golinska et al. (2015)
proliferatum beauvericin monocytogenes

Boesenbergia Munumbicins Escherichia coli Golinska et al.
rotunda Streptomyces (2015), Singh and
coelicolor Dubey (2015)
Grammothele lineata | Paclitaxel Anticancer Das et al. (2017),

Kasaei et al. (2017),
Soliman and Raizada
(2018)

and Raizada 2018). There are many novel metabolites with antibacterial, antifun-
gal, antiviral, anticancer, and antihelminthic activity isolated from plant-associated

microbes (Gouda et al. 2016; Kasaei et al. 2017) (Table 5.9).

5.9.4 Other Applications

Besides the use of phyllosphere microbes for enhanced growth as well as biocontrol
agent, some plant-associated bacteria helps the plant to improve phytoremediation of
toxins. For example, hydroxamate siderophores producing bacteria compact heavy
metal toxicity and improve the phytoremediation property in A. thaliana (Grobelak
and Hiller 2017). Some endophytes provide additional functions to the host plant like
drought tolerance, for example, endophytic B. subtilis strain B26 induces drought
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resistance to Brachypodium distachyon grass. The drought resistance mechanism is
due to a specific carbohydrate metabolism, the endophytic bacteria increases stress-
responsive raffinose-related family carbohydrates in the host (Gagné-Bourque et al.
2015). In another example, the endophytic association increases osmotic responses
of the host plant. Endophytic strains such as Arthrobacter sp. and Bacillus spp.
in pepper plant increase the proline accumulation, which gives osmotic tolerance
(Sziderics et al. 2007).

Further, endophytic bacterial inoculants provide abiotic stress tolerance mech-
anism to the host by its extracellular enzymes. For example, the endophytic asso-
ciation of various Bacillus spp. increases the superoxide dismutase, phenylalanine
lyase, catalase, and peroxidase enzymes activity in gladiolus plants under sodium
high concentration conditions (Damodaran et al. 2014). Little studies reported that
isolation of endophytic bacteria and their enzyme production potential vary when it
colonizes in the plant tissues. Moreover, Jalgaonwala et al. (2011) observed maxi-
mum proteolytic activity in Lactobacillus fermentum isolated from leaves of Vinca
rosea, which is considered greater to nonendophytic isolates. Similarly, endophytic
fungi isolated from Ocimum sanctum and Aloe vera has better enzymatic activity
(Yadav et al. 2015a, b). Besides these mechanisms, plant-associated microorganisms
improve nutrient acquisition by supplying minerals and other micro/macronutrients
from the soil (Singh et al. 2017; Singh and Singh 2017). Above all merits provide new
insights in the field of phyllosphere microbiome and its essentiality of interactions
to host plant growth and protection and also its significant role in the ecosystem.

5.9.5 Conclusion and Future Prospects

The phyllosphere is a unique environment colonized by a wide variety of microor-
ganisms including epiphytes and endophytes, beneficial and pathogenic, bacteria,
fungus, viruses, etc. Understanding the phyllosphere community structure, network-
ing, and physiology is a great challenge. However, extensive research on phyllosphere
microbiota gives great potential for the applications in economic plant productivity,
specifically agriculture and forestry, ecosystem cleaning, and health. Hitherto, both
in vitro and in vivo experiments are required to improve the understanding of micro-
bial aggregations in the phyllosphere and dynamic play in the ecosystem. Based on
the literature understanding, further and future studies should aim to (1) study the
community interplay within the closely related and distanced microbial interactions
and its stimulatory response on host plant and ecosystem, (2) to know the potentials
of beneficial microbes and their commercial value, (3) impact on climate change on
phyllosphere microbiome, and their contribution to climate change, (4) moreover,
documentation of host-specific, geographic-specific, and seasonal-specific microbial
interactions—guiding host—parasite and beneficial-pathogen interactions. Besides,
phyllosphere microbiome research assures to understand the current challenges high-
lighting the terrestrial ecosystem change and the impact of global warming, especially
the dominance of pathogenesis.
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