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Abstract Salinity of the agriculture soil is the serious issue all over the world, and it
is also an important environmental factor for reduction of growth and yield of agricul-
tural crops. The density of more salt available in soil may alter the physiological and
metabolic activities in the agricultural crops and reduce the growth and production
of crops both qualitative and quantitative ways. For combating against soil salinity,
many transgenic salt-tolerant crops have been developed but far too little is success.
For solution, in the soils the use of plant growth-promoting rhizobacteria (PGPR)
can reduce soil salinity, load of chemical fertilizers, and pesticide in the agricul-
tural field, and improve soil health, seed germination, crop growth, and productivity
under saline condition PGPR accepted as potential microbes that can tolerate vari-
ous atmospheric circumstances like more temperature, pH, and saline soils. In the
saline environment, many halophilic/halotolerant bacteria and plants/halophytes are
observed/adapted and perform a significant role in saline soil ecosystem. Innumer-
able microfloral communities and halophytes contain salt-tolerant gene, and they
perform as an essential protagonist in subsistence for extreme environmental con-
dition especially salt. It can be concluded that PGPR can be used as a supportable,
manageable, sustainable, and economical tool for salinity tolerance and productivity
of crops/plants.
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11.1 Introduction

The population of human will be expected to reach 9.8 billion until 2050 (Maga-
llon and Dinneny 2019). In addition, the demand for food also be increased with
the enhancing population, but this demand cannot be fulfilled without soil fertility,
beneficial microorganisms, and essential nutrients of the soil (Poeplau et al. 2019;
Chandra and Enespa 2017). Currently, many chemical fertilizers and pesticides are
used in the soil for production of food; however, these ingredients can be increased
for crop growth and productivity (Chandra and Enespa 2017), but simultaneously
it increases soil salinity and also reduces soil fertility and beneficial microorgan-
isms present in the soils (Rashid et al. 2016; Yang et al. 2019). The salinity in soil
ecosystem is a major agrochemical/abiotic stress problem mainly in the semi-barren
and waterless areas (Gu et al. 2016). Approximately, 65% of crop’s productivity is
adversely affected by saline soil (Machado and Serralheiro 2017).

A significant role is played by microorganisms in the improvement of produc-
tive soil and crop production and yield. In addition, some ions (e.g., sodium (Na*)
and potassium (K*)) also affect the growth of plant and microorganisms and ulti-
mately increase the soil salinity (Yan et al. 2015). Besides these, the climate changes
such as drought, shortage of water, low rainfall, and abrupt changes in temperature
also increase the soil salinity (Chandra and Enespa 2016). Reactive oxygen species
(ROS), hydrogen peroxide (H,0O,), superoxide (O;), hydroxyl radicals (OH-), lipid
peroxidation, and the integrity of the membrane are other parameters of soil salinity
which are produced by the cellular response (Choudhury et al. 2017; Chakraborty
et al. 2018; Singh et al. 2018). In the presence of soil salinity, organic matter, essen-
tial nutrients, and beneficial microorganisms are reduced and ultimately it negatively
affects the crop’s productivity (Egamberdieva et al. 2017). Soil salinity reduces the
root and shoots growth and finally decreases the crop’s productivity (Glick 2014). For
the management of soil salinity, plants used various types of mechanisms (Schmidt
et al. 2018). Among all mechanisms, osmolyte is a common mechanism used by
the plant. Osmolytes provide protection to the plant cell organelles and also build
up compatible solutes (Chakraborty et al. 2018; El-Esawi et al. 2019). Besides, the
formation of free radicals stabilizes DNA, stress protein, and prolines during salt
stress condition are other factors for survival and growth of the plant (Teh et al.
2016; Chandra and Enespa 2016). Moreover, antioxidant enzymes such as peroxi-
dases (POX), superoxide dismutase (SOD), and catalase (CAT) also protect against
salinity and toxicity (Joseph and Jini 2010; Caverzan et al. 2016).

However, these mechanisms are not good for a long time in the reduction of
soil salinity; currently, it needs a viable method for reduction of soil salinity and
improves the soil fertility and increases microbial population, plant growth, and yield
at high saline condition (Ladeiro 2012; Shrivastava and Kumar 2015). Microorgan-
isms play a significant role in the improvement of soil fertility, crop’s growth, and
yield (Yan et al. 2015; Biswas and Paul 2017). Among all microbial group, plant
growth-promoting rhizobacteria (PGPR) is an eco-friendly method for plant growth
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and sustainable agriculture by various ways such as the production of phytohor-
mones, solubilization of minerals such as potassium, zinc, phosphate, and chelation
of iron under saline condition (Verma et al. 2015; Yadav et al. 2015a, b, c; Habib
etal. 2016; Ilangumaran and Smith 2017; Numan et al. 2018). This chapter describes
the role of PGPR in the improvement of soil fertility and reduction of soil salinity
and crop’s yield under saline condition. In addition, how halotolerant microbes and
plants survive under saline condition has been also explained.

11.2 Halophiles, Classification, and Hypersaline
Environments

Those microorganisms can propagate and maintain their spore cycle at more saline
concentrations (>150 g L~'/15%) known as halophile (Ollivier et al. 1994; Oren
2008). The halophile is categorized into three dissimilar groups on the beginning
of different salt concentrations: 1) less (1-6% NaCl), temperate (7-15%), and more
salt concentrated halophile (15-30%) (de Lourdes Moreno et al. 2013; Chandra and
Singh 2014; Yadav et al. 2019a, 2015d). Different concentrations of salt occur in the
soil, and these are found at various depths in the soil habitats. According to Or et al.
(2007), salt concentration and their variability are found much more than water. In the
saline environment, different plants are growing known as halotolerant (halophytes)
at different concentrations of salts and recorded well adaptability and perform a key
character in the biogeochemical cycles (Nabti et al. 2015; Etesami and Beattie 2018).
Microbes play a major character in enhancement of herb adaptation at various saline
habitats (Bringel and Couée 2015; Bang et al. 2018; Yadav et al. 2019a). However, a
limited microbial diversity is found in the extreme soil habitats/hypersaline environ-
ments due to various environmental factors and high salt concentrations (Ulukanli
and Digrak 2002; Chandra and Singh 2016; Yadav and Saxena 2018). Besides soil
salinity, the saline environment is mainly found in the aquatic water such as lakes,
river, pond, and sea (Sdnchez-Porro et al. 2003). From saline environments, the food
or food-based products, plants, and animals contain salts (Maturrano et al. 2006;
Ventosa et al. 2015).

11.3 Halophilic/Halotolerant Microbial Diversity in Soil

Soil salinity affects the structure, composition of microbial species, and also bacteri-
ological populations present in the rhizospheric regions of crops. These communities
have different groups, which show modified structural and physiological properties
under hypersaline condition (Bever et al. 2012; Mendes et al. 2013). However, bac-
terial communities are dominant as compared to other microbial communities (e.g.,
virus, fungi, protozoa, and algae), and it is found in the rhizospheric region of the
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plant under saline condition (Mukhtar et al. 2017; Yamamoto et al. 2018; Chandra and
Enespa 2019b). Besides rhizosphere, bacterial communities are also recorded endo-
phytic region, in salt lakes, river water, and root nodules (Albaggar 2014; Leite et al.
2017). But in the saline soil, bacterial communities do not define a similar group of
phylogeny but signify a assemblage which has progressed in altered types of microor-
ganisms that belong to the genera Actinopolyspora, Bacillus, Halomonas Micrococ-
cus, Marinococcus, Pseudomonas, Salinicoccus, and Vibrio which are mainly found
in the hypersaline region (Ventosa et al. 1998; Soto-Padilla et al. 2014; Chandra et al.
2014; Verma et al. 2017b; Yadav et al. 2018a, b, d). These genera belong to both
Gram-positive and Gram-negative bacteria showing rod-, comma-, and cocci-shaped
cell. However, Gram-negative bacteria appear to be dominant in saline environments
(Ventosa et al. 1998; Canfora et al. 2014). In Gram-negative bacteria, root-nodulating
bacteria showing root-colonizing property are considered to be a halotolerant group
(Zahran 1997). These bacteria have capable of nitrogen fixation and improve soil
fertility at high concentration. A halotolerant bacterium Swaminathania salitolerans
gen. nov., sp. nov. was isolated from the rhizosphere, roots, and stems of mangrove-
associated wild rice (Loganathan and Nair 2004). Another bacteria belonging to the
genus of Azospirillum, Bacillus, Enterobacter, and Azotobacter were isolated from
the different agricultural under saline soils (Alamri and Mostafa 2009; Fendrihan
et al. 2017). The popular nitrogen-fixing bacterium Rhizobium is linked with marsh
grass Spartina alterniflora as a halotolerant plant has also been isolated and identified
from hypersaline condition (Bedre et al. 2016).

Besides, another nitrogen-fixing bacterium Bacillus was screened from salty soils
of Egypt, and it showed acetylene reduction activity at 5% NaCl concentration
(Zahran et al. 1995). The genus Azotobacter is the free-living nitrogen-fixing bac-
terium showing a significant role in different environmental conditions such as soil,
water, and sediments at the high salt concentration (Akhter et al. 2012; Sahoo et al.
2014). Azotobacter strain isolated from agricultural crops showed high nitrogen-
fixing ability at 30% NaCl. The nitrogen fixation efficiency of a bacterium A. vinel-
landii was decreased from nonsaline to saline condition as reported by Sahoo et al.
(2014). Azospirillum halopraeferens was isolated and enhanced the growth of man-
grove plant by root colonization irrigated with seawater (Bashan et al. 2000). A little
information is available on the halotolerant microbial diversity isolated from saline
soils as compared with hypersaline aquatic locales (Oren 2008; Yang et al. 2016).

11.4 Effect of Soil Salinity in the Soil Environment

The salinity soil is considered mainly as a major problem in the ecosystem because
these problems increase continuously, disturbing biotic and abiotic soil constituents
(Vandegehuchte et al. 2010; Biinemann et al. 2018). It also affects natural circum-
stances in the barren and semi-barren regions of an ecosystem. Excess of saline soils
affects seriously on the micro- and macro-floral structure and on space where it lives
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(Getu 2009). Excess salt in the soils known as sodic soils contains sodium and chlo-
ride ions in the earthen constituent part (Bianco and Defez 2010). Due to insufficient
discharge and drainage of irrigation water, salts accumulated in the soil (Cuevas et al.
2019). However, the chlorides, bicarbonates of calcium, sulfates, carbonates, magne-
sium, sodium, and potassium salts are present in the irrigation water (Warrence et al.
2002). The soil structure growth and the production of crops adversely are affected
by salt concentration (Ondrasek et al. 2011; Shrivastava and Kumar 2015). On the
bases of soil and groundwater practices generally, the salinity is of three types: tran-
sient, groundwater associated, and irrigation salinities (Greene et al. 2016; Chandra
et al. 2020). Salinity affects both soil system and living organisms that are known as
most severe abiotic environmental stress (Gupta and Huang 2014). The immediate
consequences of soil are found for biological activity or conservation occurs within
the pore space or on the surfaces of the particles that forms the pores (Indoria et al.
2017; Totsche et al. 2018). High salinity leads to negative effects on soil structure
which is well known.

Soil dispersion and clay platelets to swell and aggregate are caused by elevated
sodium concentrations (Warrence et al. 2002). Thus, in the binding of clay particles,
the forces involved are dislocated under the stimulus of sodium ions. Clay particles
to plug soil pores are caused due to the dispersion of soil (Arora and Dagar 2019).
Therefore, the permeability of soil for water and air is reduced and forms apparent
crusting (Kooistra and Tovey 1994; Greene and Hairsine 2004).

It is documented that the presence of water in the soil leads to the swelling of the
soil particles with high smectite clay content, and the hydration of some minerals
as a result of the reduction of the cross-sectional area of soil pores is documented
(Mahrous et al. 2018). Under high sodium or low salt concentrations, this process
is completed and it causes the mobilization of fine particles and diffusion within
the pores (Mahrous et al. 2018; Chandra et al. 2020). The water and air will be
obstructed within the soil structure and particles by the particles stored in the small
pores (Schjgnning et al. 2002).

11.5 Mechanisms for Adaptation of Microorganisms
in the Hypersaline Environment

Phylogenetically, the microbial life is very diverse at high concentrations, and the
salinity environments are occupied by halophilic and halotolerant microflora of all
domains of life, such as archaea, bacteria, and eukarya (Oren 2008; Ma et al. 2010).
Using this mechanisms these halophile microorganisms to tolerate the high salt con-
centrations, and in various cases to acclimatize their structure to alterations in high
salinity in their environments, are miscellaneous as well (Oren 2008).

The basic mechanisms for adaptation of microorganisms in the hypersaline
environment are given below:
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e Biological membranes of the microorganism are absorptive to water containing
salt. Consequently, the movement of water inside and outside of microbial cells
is possessed by changes in ionic activity between cytoplasm and external medium
(Murinova and Dercova 2014; Watson 2015).

e The bacterial cell maintains high osmotic pressure under saline condition;
therefore, it is another strategy for adaptation mechanism (Weinisch et al. 2018).

e The high concentrations of inorganic salts inside the microbial cell are accumulated
and achieved the osmotic balance. The sodium ions are left out from cells in all
three domains of life, and inside the cell the salt strategy is based on KCl rather
than NaCl as a main salt of intracellular organism (Oren 2002).

e Di-myoinositol-1, 1-phosphate, cyclic 2,3-diphosphoglycerate, a-diglycerol phos-
phate, mannosylglycerate, and mannosylglyceramide are compatible solutes
which are very strong water structure formers and are excepted from the hydra-
tion shell of proteins, thus alleviating the hydration shell and decreasing the water
activity coefficients (Gunde-Cimerman et al. 2018).

e Inmany extremophiles, such low-molecular weight compounds are accumulated to
increase the concentrations of salts but also as areply to other ecological alterations
such as temperature stress.

e Di-myoinositol-1, 1-phosphate, cyclic 2, 3-diphosphoglycerate, a-diglycerol
phosphate, mannosylglycerate, and mannosylglyceramide are the examples of
organic compatible solutes in thermophiles and in psychrophiles (da Costa and
Santos 2009).

e Mostly, at low salt concentration, the microorganisms are endured and also accu-
mulate salts inside the cell in the form of solutes from outside medium (Shrivastava
and Kumar 2015).

11.5.1 Mechanism of Salt Tolerance

The microbial population in the rhizosphere decreases severely due to increase in pH
and salinity (Ibekwe et al. 2010). In hypersaline atmosphere the microbes inhabits
using “compatible solute strategy” having capability to strong osmotic pressure to
resist the salt stress (Pikuta et al. 2007; Chandra and Singh 2017). Choline, betaine,
proline, glutamic acid, and other amino acids are the compatible solutes stored by
various halophilic bacteria at high concentrations without interfering with cellular
processes (Poolman and Glaasker 1998).
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11.5.2 Characteristics and Function of Compatible Solutes

The HPLC and NMR methods are followed for the determination and production
of compatible solutes in various archaea and bacteria (Roberts 2005a, b). The com-
pounds in limited numbers comprise the bacteria such as sugars (trehalose), polyols
(glycerol and glucosyl glycerol), free amino acids (proline and glutamate), offshoots
thereof (proline, betaine, and ectoine), quaternary amines and their sulfonium analogs
(glycine betaine, carnitine, and dimethylsulfoniopropionate), sulfate esters (choline-
O-sulfate), and N-acetylated diamino acids and small peptides (N-acetylornithine
and N-acetylglutaminylglutamine amide) (Kempf and Bremer 1998). Generally,
the compatible solutes do not carry a net charge at physiological pH due to their
high molecular solubility (Galinski 1993). The vital cellular functions such as DNA
replication, DNA—protein interactions, and the cellular metabolic machinery with-
out disturbing the solutes can reach high intracellular concentrations in disparity to
mineral salts (Wang and Levin 2009; Long et al. 2018). Compatible solutes such
as glycine, betaine, and proline increase the cytoplasmic volume and water con-
tent freely of the cells at high osmolality, and their accumulation uninterruptedly
permitted proliferation of cells under unfavorable conditions (Kohler et al. 2015).

Various halotolerant nitrogen-fixing bacteria accumulate electrolytes such as K*
glutamate, as enzymes, ribosomes, and transport proteins of these bacteria require
high level of potassium for stability and activity using salt in strategy mechanism (Da
Costa et al. 1998a, b). But within the cell physiology, organic solute accumulations
are more compatible (Ventosa et al. 1998; Wood et al. 2001). The organic solutes
have two mechanisms under saline conditions for their mode of actions: firstly to
increase the intracellular osmotic strength and secondly to stabilization; the cellu-
lar macromolecules are proposed (Yancey et al. 1982; Csonka 1989; Chandra and
Enespa 2019a). After adding these solutes in bacterial culture, the drastic stimu-
lation in growth rate is observed in cells in high osmolality media (Gouffi et al.
1998). Higher internal concentrations of solutes accumulated in the alleviation of
osmolality (Patchett et al. 1992). The glucose is oxidized in Entner—Doudoroff path-
way modifications by the mostly halotolerant organisms (Fig. 11.1), the synthesis of
compatible solutes after formation of pyruvate, and its further oxidation by pyruvate
oxidoreductase in tricarboxylic acid cycle (TCA) (Kindzierski et al. 2017).

In salt-tolerant bacteria, the accumulation of organic solutes has been found
to require genetic initiation (Roberts 2005a, b). In response to osmotic stress in
Bacillus sp., intracellular proline to increase rapidly has been observed and the cor-
responding genes were detected, respectively, proB, proA, and proC encoding y-
glutamyl kinase (y-GK), y-glutamyl-phosphate reductase (y-GPR), and pyrroline-
5-carboxylate (P5SC) reductase (Pérez-Arellano et al. 2010). L-aspartokinase (Ask),
L-2,4-diaminobutyric acid transaminase (EctB), L-2,4-diaminobutyric acid acetyl-
transferase (EctA), and L-ectoine synthase (EctC) encoding the structural gene and
detected for biosynthesis of major harmonious solute like ectoine in Halobacillus
dabanensis (Reshetnikov et al. 2006; Czech et al. 2019). Choline or choline-O-sulfate
oxidized enzymatically into glycine betaine due to involvement of four genes betl,
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betC, betB, and betA well characterized at molecular level and organized into one
operon (Osteras et al. 1998; Stoveken et al. 2011). Various halotolerant nitrogen-
fixing bacteria are also observed in the cell for the maintaining of the balance of
Na* and K* ions (Hanin et al. 2016; Thomas and Apte 1984). A cytoplasmic KCL
concentration is maintained by bacteria similar to that of the surrounding medium in
order to attain an osmotic equilibrium (Kraegeloh et al. 2005). The Na*/H* antiporter
performance is a major character in homeostasis of pH and Na* in cells that inter-
change Na* for H* (Sudrez et al. 2008). The genes that are proved to be involved in
halotolerance in nitrogen-fixing bacteria either through knockout studies or through
overexpression studies are framed in Table 11.1.

11.5.3 Exchange of Solutes/Ions

Many solutes/ions are present in the soils and perform an important character in
the existence of microorganisms in the presence of soil salinity (Shrivastava and
Kumar 2015). However, more solutes or ions containing soils can decrease microbial
population in the rhizospheric region of plants (Aung et al. 2018). Several microbes
reside in hypersaline environment condition proficient passionate osmotic pressure,
and thus use compatible solute strategy or salt-in strategy to resist salt stress (Oren
2011). Choline, betaine, proline, glutamic acid, and other amino acids compatible
solutes accumulated in most of the bacteria at high salinity without interfering with
cellular procedures (Wood et al. 2001).
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Table 11.1 Genes conferring salt tolerance response in selected nitrogen-fixing bacteria

Strains

Products

Genes

References

Rahnella aquatilis
HX2

1-aminocyclopropane-1-
carboxylic acid
deaminase

acdS gene

Peng et al. (2019)

Sinorhizobium meliloti

Na*/H* antiporter

AtNHX1 gene

Stritzler et al.

B401 (2018)
Azospirillum lipoferum | Proline and glycine PAL, PPO, CHS, El-Esawi et al.
FK1 betaine levels CHI, REB2A, and | (2019)

IFS

Klebsiella sp. SBP-8 K*/Na* transporters AcdS gene Singh et al. (2015)
Pseudomonas Na*/H* antiporter nhaP Inaba et al. (2001)
aeruginosa
Sinorhizobium meliloti | (p) pp Gpp synthetase relA Wei et al. (2004)
Glycine betaine/proline | bet genes Mandon et al.
(2003)
Betaine transporter betS gene
Transcription cleavage greA
factor
Potassium-uptake Kup Nogales et al.
protein (2002)
Rhizobium tropici Histidine kinase ntrY, ndvA and Wai Liew et al.
Na*/H* antiporter ndvB (synthetic (2007)
gene), nhaA,
nhaB, nhaC
Azotobacter vinelandii | Glucosyl glycerol ggpPS Klihn et al. (2009)
biosynthesis
Enterobacter cloacae Na*/H* antiporter nhaA Lentes et al. (2014)

Synechocystis sp.

Na*/H* antiporter

nhaS1, nhaS2,
nhaS3, nhaS4, and
nhaS5

Mitschke et al.
(2011)

Aphanothece
halophytica

Na*/H* antiporter

napA

Laloknam et al.
(2006)

Bacillus subtilis

y-glutamyl kinase

proA, proBproC

Zhao et al. (2011)

11.5.4 Mechanism of Salt-Dependent Lipid Changes

The lipid content present in the microbial plasma membrane shows special charac-
ter for the survival of stress environmental condition. The phospholipids of Pseu-
domonas halosaccharolytica contain glucosyl phosphatidylglycerol, phosphatidyl-
glycerol, diphosphatidylglycerol, and phosphatidylethanolamine which are respon-
sible for growth under high saline condition (Li et al. 2016), and this result indicates
increase of phosphatidylglycerol and reduction in phosphatidylethanolamine (Hira-
matsu et al. 1980). Later, Hara and Masui (1985) observed that pulse-chase labeling
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of lipids with several radioactive originators showed that the rate of synthesis of
phosphatidylethanolamine was inhibited by an increase in salt concentration, but the
rate of phosphatidylglycerol synthesis was unaffected. The deficiency of motivation
of phosphatidylglycerol creation by salt does not settle with compositional data.
The radiolabeling experimentations were performed with nongrowing, starved cells,
whereas the compositions of lipids were resolute directly on cells collected from
culture media (Hara and Masui 1985). The inhibition of phosphatidylethanolamine
creation leads to an upsurge in phosphatidylglycerol comfortable in the microbial
cell because of the bifurcated phospholipid biosynthetic pathway going inside the
cell (Sohlenkamp and Geiger 2016). A similar type of study was performed by Ohno
et al. (1979); the little amount of NaCl did not affect the growing bacteria due to
the presence of glucosyl phosphatidylglycerol. However, survival mechanisms of
halophilic bacteria due to membrane lipid composition cannot judge very easily; this
is a very difficult process (Oren 2008). The lots of chemicals, labor, and time may be
taken to well understand the interaction between bacterial lipid membrane and salt
medium (Pichler and Emmerstorfer-Augustin 2018).

11.5.5 Salt-Tolerant Genes of Bacteria

Many microorganisms contain salt-tolerant gene and perform an important character
in survival for extreme environmental condition especially salt (Holmberg and Biilow
1998). The bacterial spores of Bacillus thuringiensis israelensis, B. sphaericus, and
B. subtilis contain osmotolerant protein, i.e., small acid-soluble spore protein (SASP)
coded by an ssp gene and this gene can survive at the high salt concentration (Cucchi
and Rivas 1995). Cucchi and Rivas (1995) reported a sspE gene from B. subtilis
and is introduced into another host bacterium B. thuringiensis israelensis strain 4Q2
and observed 65-650 times higher level of salt-tolerant property as compared to
natural B. thuringiensis israelensis. In addition, this bacterium does not cause any
side effects in living organisms as well as environments. Some other genes such as
ectA (diaminobutyric acid acetyltransferase), ectB (diaminobutyric acid aminotrans-
ferase), and ectC (ectoine synthase) genes are reported in B. halodurans and showed
in the survival of stress tolerance (Reshetnikov et al. 2011).

There are two genes, namely, GspM and EchM have recognized from a metage-
nomic collection organized from water sample of pond (Kapardar et al. 2010). GspM
gene displays comparison with stress proteins, and another gene EchM showed sim-
ilarity with enoyl-CoA hydratases and both genes were identified to be responsible
for halotolerant at high concentration and have latent solicitation in generating halo-
tolerant recombinant bacteria or transgenic crops (Kapardar et al. 2010). The two
genes were further isolated from Rhizobium sp. BL3 and showed hyper-salt-tolerant
ability (Payakapong et al. 2006). Hence, many microbes from rhizosphere can be
exploited to isolate novel gene for salt tolerance and their potential application in the
plant genetic engineering or plant growth under saline environment condition.
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11.5.6 Salt-Tolerant Genes of Yeast

The two genes HAL1 and HAL3 were isolated and showed overexpressed gene from
yeast (Saccharomyces cerevisiae) and also increased the halotolerant capability by
a decreasing intracellular Na* and enhanced internal K* concentration during salt
stress (Ferrando et al. 1995; Locascio et al. 2019). Further, the gene HALI has
been introduced into tomato crop by Agrobacterium tumefaciens-mediated transfor-
mation which improves salt tolerance of the transgenic tomato and enhances the
growth and productivity (Gisbert et al. 2000). An enzyme mitogen-activated protein
kinase (MAPK) coded by a gene HOG1 shows an important role in the osmoregu-
latory pathway in S. cerevisiae (O’Rourke and Herskowitz 1998). This gene is also
responsible for salt tolerance in Torulopsis versatilis (Wang et al. 2014). A delightful
mutant strain Torulopsis versatilis TS showing salt-tolerant ability was fashioned
from wild-type T. versatilis (T) consuming genome trundling and further isolated
two genes TSHOGI1 and THOGI1, demonstrating upturn of salt tolerance in 7. versa-
tilis (Cao et al. 2011). Moreover, overexpression of TSHOG1 and THOG!1 enhanced
the acceptance of salt in S. cerevisiae (Cao et al. 2011).

11.5.7 Salt-Tolerant Genes of Plants

A wide range of cruel ecological circumstances such as salinity, heat, cold, drought,
and insect attack are normally exposed in plants. Plants have established altered
methods being in sessile nature to survive grow and develop under speedily altering
environmental conditions (Hayat et al. 2012). For these mechanisms, plants regulate
genes for transcription which are known as transcriptomics under stress conditions
(Shu et al. 2018). The genes for regulation of transcription play different roles under
stressful environmental conditions. However, during the reproductive and seedling
stages, plants have more sessile to stress and the stress response studies express
novel genes or proteins with imperative roles in plant anxiety reworking during these
growth stages (Verma et al. 2016a, b). However, the word salinity acceptance comes
from one or more genes that reduce the uptake of the salt content from the soil and
the conveyance of salt through the plant (Munns 2005, 1993).

Salinity tolerance is a very complex process that is recycled by plants to regulate
(up-regulation or down-regulation) the manufacture of specific gene products in the
form of RNA or proteins (Gupta and Huang 2014). This process has been accepted at
different stages of central dogma technologies like from initiation of RNA process-
ing, post-transcriptional modification, and initiation translation to post-translational
modification of proteins in living organisms especially plants (Zhao et al. 2017).
Understanding the transcription or translation of plants delivers thorough knowl-
edge about the gene expression at the mRINA level. The summary of transcriptional
or translational level is widely used for isolation and identification of candidate genes
involved in stress responses (Xiao et al. 2017).
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Transcriptome profiling is the screening processes which down-regulated or up-
regulated the transcription processes that are enormous evidence about salt-tolerant
genes till now. Further, a genomic method gives an important role in cloning, encod-
ing, screening, and identifying these genes (Lodish et al. 2000). Under salt stress
condition, the expression of gene is altered by transcript issues and those up- or
down-regulated the expression of the gene in plants or microorganisms by these are
most important switches (Lodish et al. 2000).

A gene bZIP was identified and showed up-regulation gene expression in wheat
crop under insistent salt stress disorder and gene expression of down-regulation in
salt-tolerant variety of wheat crop (Hayano-Kanashiro et al. 2009). The osmotic
regulating and ROS-scavenging genes mostly are salt tolerance genes and also up-
regulated in salinity toleant species (Amirbakhtiar et al. 2019). According to study,
more than 10 genes showed up-regulated genes in halophytes plant species Spartina
alterniflora under saline condition. Under saline condition, more than 10 genes
showed up-regulated genes in Spartina alterniflora halophytes plant species, and
most of the genes were found to osmotic regulation process among them (Bedre
et al. 2016).

11.6 Mechanisms of Plant Growth Promotion of Halophilic
Bacteria

11.6.1 Nitrogen Fixation Under Salt Stress Condition

At global level in arid and semi-arid regions, salinity is a serious issue for agriculture.
Growth promotion and photosynthesis rate at various stages of plants affected by
salinity stress (Magallon and Dinneny 2019). The production of salt-sensitive crops
such as legumes is affected by salt stress particularly since these plants depend on
nitrogen requirement for symbiotic N, fixation (Hussain et al. 2010; Kour etal. 2019b,
¢, d). The crop productivity mainly depends on the deprived mutual association of
nodulation in bacteria and ultimately decreases in nitrogen fixation capacity (Mengel
etal. 2001). Vicia faba, Phaseolus vulgaris, and Glycine max legume plants are more
salt-tolerant species than another leguminous plant Pisum sativum (Mengel et al.
2001). V. faba crop fixed more nitrogen under saline condition due to the presence of
rhizobia inside the root nodules and it has been seen (Mengel et al. 2001). Prosopis,
Acacia, and Medicago sativa are the other salt-tolerant leguminous plants but these
are less halotolerant than the leguminous plants (Joseph et al. 2015). Rhizobium sp.
performs a very significant character in symbiosis with plants and nodulation process
but, in the presence of salt, inhibits the initial process of thizobium-legume symbiosis
(Maréti and Kondorosi 2014). However, in several reports, the effect of salt stress
on nodulation and nitrogen fixation of legumes have been observed (Maréti and
Kondorosi 2014). In the presence of salt, the capability of N,-fixation reduces and is
documented to a decrease in the respiration of the nodules and minimize in cytosolic
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production protein, especially leghaemoglobin by nodulation (Zahran 1999). Saline
stress negatively affected on N, fixation by legumes is related to the salt-induced
decline directly in dry weight and nitrogen content in plant shoot (Delgado et al.
1994).

Glycine betaine is the osmoprotective substances which perform an imperative
character in the maintenance of nitrogenase activity in bacteroides under salinity
stress (Normand et al. 2015). The halotolerant Rhizobium sp. enhanced the growth,
nodulation, and fixed N, content in Acacia ampliceps plant containing 200 mM
NaCl concentration in the sand culture medium (Egamberdieva et al. 2013) and one
more halotolerant Rhizobium sp. designed N fixing symbiosis more effective with
soybean than other salt-sensitive strain of bacteria (Egamberdieva et al. 2013). Fur-
ther, the isolated rhizobial strains from Acacia nilotica showed tolerance to 850 mM
NaCl concentration formed effective N,-fixing nodules on Acacia trees grown at
150 mM NaCl (Zahran 1999). The salt-tolerant Rhizobium strains produce nodula-
tion in legumes and form effective N, fixing symbiosis capability in the soil under
moderate halophile environment observed in the result (Zahran 1999). Therefore,
the booster of salt-tolerant rhizobia strains in the rhizosphere of leguminous crop
can enhance the N fixation ability under saline condition. However, host tolerance
legume to NaCl is a very key element in influencing the achievement of harmonious
Rhizobium strains to form symbiosis successfully under the halophilic environment
(Egamberdieva et al. 2013).

11.6.2 Phytohormone Production Under Saline Condition

Phytohormones are natural organic compounds which enhance the growth and pro-
ductivity of cultivars at very less concentrations. These phytohormones support the
distinction and improvement of plant growth by the regulation of various progres-
sions. Generally, the phytohormones at plants root locality are the microbial origin
recommended for a functional reply in the host crop (Verma et al. 2016a, b; Enespa
and Chandra 2019). Indole-3 acetic acid (IAA), gibberellic acid, abscisic acid (ABA),
cytokinins, and other plant growth regulators produced by NaCl-tolerant rhizobac-
teria outwardly maintain the rooting with augmented number of roots, increase root
length, shoot length, and number of root tips, and finally lead to increase in the uptake
of nutrients and thus progress plant fitness under saline environmental circumstances
(Verma et al. 2016a, b). Bacillus and Pseudomonas strains belong to IAA produc-
tion that improved the growth of soybean crop at 100 mM NaCl concentration by
the increasing antioxidant activity and decreasing the lipid peroxidation (Kumari
et al. 2015). Furthermore, an isolated bacterium produced osmotolerant IAA dis-
played to increase the sprouting of rice seeds in salinity stress are reported (Jha and
Subramanian 2013).
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11.6.3 ACC Deaminase Production Under Saline Condition

A volatile phytohormone known as ethylene has capacity for growth promotion of
plant at very less quantity like nodulations and improvement of various asexual plant
parts, rooting, cuttings, and also twisted in the transduction of a signal for the appre-
ciation of saline stress ecosystem (Saravanakumar and Samiyappan 2007). However,
a large amount of ethylene is produced under abiotic environmental ecosystem and
in the presence of this substrate can inhibit the root growth, shoot growth, and pro-
ductivity of plants (Morgan and Drew 1997). Some chemical substrates such as
aminoethoxyvinylglycine and cobalt ions act as an inhibitor of ethylene synthesis
(Arora et al. 2017).

However, these chemical substrates are too much expensive and also can harm
plants and environment. Halotolerant rhizobacteria showing plant growth-promoting
characters contain aminocyclopropane- 1 -carboxylate (ACC) deaminase which splits
ACC into ammonia and a-ketobutyrate, thereby reducing the near of ethylene in
stressed plants (Habib et al. 2016). In the presence of ACC deaminase-producing
bacteria, plant 1-aminocyclopropane-1-carboxylate is sequestrated and ruined by
the cells of bacteria to fund energy and nitrogen, enhancing the plant growth under
saline ecosystem (Tiwari et al. 2018).

The rhizospheric bacteria which belong to Gram-positive and Gram-negative gen-
era such as Arthrobacter, Bacillus, Brevibacterium, Corynebacterium, Exiguobac-
terium, Halomonas, Micrococcus, Oceanimonas, Planococcus, and Zhihengliuella
have been widely reported for ACC deaminase activity under saline conditions and
have recognized as a potential role in enhancement of growth under saline ecosys-
tem through ACC deaminase activity (Siddikee et al. 2015; Yadav et al. 2019c, d,
e). Pseudomonas simiae strain AUS is the mutant bacterium overproduced ACC
deaminase documented to alleviate salt stress in mung bean plants as compared to
wild strain P. simiae AUS5 and observed decrease the concentration of ethylene and
salt-induced membrane (bacteria and plants) damage (Kumari et al. 2016).

11.6.4 Under Salt Condition Phosphate Solubilization

Phosphorus (P) is an indispensable mineral after nitrogen for the growth of plant
promotion as it and essential of dissimilar biomolecules such as nucleic acids,
nucleotides, phospholipids, and phosphoproteins (Sharma et al. 2013). In the pres-
ence of salinity, uptake of P in plants is reduced and deficiency of P is appeared in the
form of symptoms such as dark bluish-green in color with leaves and stem becoming
purplish, etc. (Sharma et al. 2013). Mostly, insoluble forms of phosphorus in soils,
i.e., organic and inorganic phosphate, have less mobilization in the soils (Sharma
et al. 2013). Insoluble organic and inorganic phosphate conversion can be possible
due to species of rhizobacteria and also helps in the translocation of P from soil to
roots. For the solubilization of insoluble phosphates, many rhizobacteria show one of
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the several mechanisms such as reactions of ion-exchange, chelation, acidification,
and the production organic acids of low molecular weight such as gluconic acids
(Kalayu 2019; Rana et al. 2019a, b; Verma et al. 2017a). The halotolerant rhizobac-
teria to be vital for the mobilization of plant nutrients in several types and reduced
the acceptability of inorganic fertilizers (Jiang et al. 2019).

However, phosphate solubilization is a common process in the rhizosphere by
rhizobacteria that upsurge the mineral accessibility to crop (Jiang et al. 2019). An
important role played by the rhizospheric bacteria to the regulation of P from less
available forms and are essential for sustaining P is voluntarily available pools. Upad-
hyay et al. (2011) reported rhizobacterial strains to have well-organized solubilizing
ability of phosphate even up to high saline (6% NaCl concentration) condition and
enhanced plant growth under similar condition. For example, Pseudomonas inoc-
ulated in the rhizosphere of Zea mays crop showed salt tolerance under 6% NaCl
stress condition and increased the crop growth at same salt condition (Bano and
Fatima 2009). Additionally, Herbaspirillum seropedicae and Burkholderia sp. are
the phosphate dissolving bacteria; treated plants recorded 1.5-21% dry weight as a
compared to control plant under saline condition. Afterward, the better germination
of root and shoot growth as compared with control plant after being exposed to NaCl
inoculated Azospirillum in lettuce seeds (Carrozzi et al. 2012). P. simiae solubilizes
phosphate by producing acid phosphatase activity along with volatile compounds
that enhanced plant storage protein and uptake of P in soybean plants under 100 mM
NaCl saline ecosystem (Vaishnav et al. 2015).

11.6.5 Antioxidative Response Under Salt Condition

The compounds inhibit oxidation reaction known as an antioxidant, and this is a
chemical/biochemical process that can produce free radicals (Lii et al. 2010). The
oxidative stress is caused by the abiotic environmental factor like drought and saline
soil and resulted in the formation of reactive oxygen species (ROS) such as singlet
oxygen (O,), hydrogen peroxide (H,0;), and hydroxyl radical (TOH) that dam-
age cellular membranes, proteins, and DNA (Nita and Grzybowski 2016). When
the level of ROS increases, this causes oxidative damage to biomolecules such as
lipoproteins and at last leads to the death of plants (Sharma et al. 2012). However,
some major antioxidative enzymes such as superoxide dismutase (SOD), peroxidase
(POX), and catalase (CAT) are produced by rhizospheric bacteria such as Strep-
tococcus. Proteamaculans, and Rhizobium leguminosarum, and non-antioxidant
enzymes/compounds like ascorbic acid, tocopherols, and glutathione contribute in
ROS-scavenging mechanism (Sharma et al. 2012). Mycorrhizal-inoculated lettuce
plants showed higher superoxide dismutase (SOD) activity and protect the plant in
the presence of antioxidant under drought stress condition (Ruiz-Lozano 2003).
Salt resistance plants have been associated to more effective antioxidant schemes,
and a salt-tolerant bacterium P. simiae strain AU enriched antioxidants (peroxidase
and catalase) and gene expression in soybean plants when treated with 100 mM NaCl
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stress disorder (Vaishnav et al. 2016; Chandra and Enespa 2019c). Drought stress
effects in maize plants are alleviated by Pseudomonas spp. drought-tolerant rhi-
zobacteria due to decrease in the antioxidant enzyme activity (Afridi et al. 2019). The
catalase and peroxidase activity boosted the non-inoculated crops during saline soil,
whereas Azospirillum brasilense inoculated plants showed lower enzyme activity
and expressively ameliorated the deleterious effects of salinity (Omar et al. 2009).

11.6.6 Siderophore Production Under Salt Condition

In the chelation of micronutrients, siderophore plays an imperative character such as
iron even under limiting conditions and with the redox activity it serves as a cofactor
of many enzymes (Ahmed and Holmstrom 2014; Chandra and Enespa 2016). Sev-
eral studies are reported on Bacillus to be a good siderophore producer (Kesaulya
et al. 2018). Production of siderophores in the rhizosphere by bacteria also helps in
dissolving of other ingredients, for example, P, zinc, potassium, and the availability
of various ionic ingredients to the plant through chelation of iron from precipitated
form (Sharma et al. 2013; Ahmed and Holmstrom 2014). In the soils, a huge amount
of iron is existent, but in an extremely unsolvable ferric hydroxide form, hence the
performances of iron as a limiting factor for promotion of plants growth even in ironic
soil. However, ferrous (Fe**) iron is oxidized into ferric (Fe™**) form by oxidation
process (Kesaulya et al. 2018). Under the biological ecosystem, the ferric ions are
inexplicable which forms its achievement by microorganisms, a considerable chal-
lenge in the soils (Colombo et al. 2014). Siderophores play important roles in the
development of plant growth by rhizospheric microorganisms (Ahmed and Holm-
strom 2014). Plants and bacteria mediate competition using existence of siderophore
that results in exclusions of fungal pathogens and other microbial competitors in the
rhizosphere by a reduction in the availability of iron for their survival (Ahmed and
Holmstrom 2014).

11.6.7 Halophilic Microbes as Biocontrol Agents

The production of crop yield potentially increased, and its diseases controlled biolog-
ically from rhizospheric microflora. Inhibition of phytopathogens using rhizobacteria
compromises a more sustainable method to control infection as compared to harm-
ful chemical-based methods (Compant et al. 2010; Etesami and Alikhani 2018).
Under the saline condition, a halophilic microbe plays an important role in maintain-
ing morphology, physiology, and reduction in soil salinity and also increases plant
susceptibility against phytopathogens (Table 11.2) (Etesami and Beattie 2018).
Halophilic microbes use to hostage the injurious properties of plant pathogens
through different mechanisms. Halophilic microbes produce one or more antimicro-
bial metabolites that act as antifungal, antibacterial, antiviral, antioxidant, cytotoxic,
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Table 11.2 Plant growth promotion of plants by halotolerant rhizobacterial inoculation
Microbes Host Plants Effect of host plants Salt References
under saline condition | concentration
Bacillus pumilus | Oryza sativa Controlling 25 mM NaCl Jha et al.
ST2 caspase-like activity, (2011)
programmed cell
death, antioxidative
activity
B. pumilus Bacopa High proline 4 g NaCl/Kg of | Bharti et al.
STR2, monnieri content/lipid soil (2013)
Exiguobacterium | L. peroxidation
oxidotolerens
STR36
Burkholderia Zea Mays Decreasing xylem Na* | 25 mM NaCl Akhtar et al.
phytofirmans concentration/maintain (2015)
PsIN, nutrient balance within
Enterobacter sp. the plants
FD 17
B. pumilus Zea mays Preventing major 50 mM NaCl Bharti et al.
STR2, shifts indigenous (2015)
Halomonas microbial community
desiderata STRS8
P. simiae strain Glycine Max | Inoculated reduced 100 mM NaCl | Vaishnav
AU-M4 L. Na*' and enhanced K* et al. (2015)
uptake
Acinetobacter Phyllanthus Improved 160 mM NaCl | Joeetal.
sp. ACMS25, amarus antioxidative defense (2016)
Bacillus sp. system
PVMX4
P. fluorescens Zea Mays Improved root growth | 150 mM NaCl | Zerrouk
002 and root formation etal. (2016)
under salt stress
Azotobacter Zea mays Improved chlorophyll | 20 mM NaCl Silini et al.
chroococcum a and total content, (2016)
AZ6 reduced proline and
amino-acid content
Bacillus Zea mays L Chlorophyll content, 1% NaCl Li and Jiang
aquimaris DY-3 leaf relative water (2017)

content, accumulation
of proline, soluble
sugar and total
phenolic compound,
and activities of
superoxide dismutase,
catalase, peroxidase,
and ascorbate
peroxidase were
enhanced

(continued)
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Table 11.2 (continued)

Microbes Host Plants Effect of host plants Salt References
under saline condition | concentration

Bacillus sp., Paddy crop Improve rice 3-12 g/L NaCl | Shi-Ying
Actinomycetes germination, energy or et al. (2018)
sp., Rhizobium germination capacity
sp.,
Oceanospirillum
Sp.
Bacillus subtilis | Chickpea Enhanced plant 200 mM NaCl | Abd_Allah
(BERA 71) crop biomass and the et al. (2018)
synthesis of
photosynthetic

pigments and reduced
the levels of reactive
oxygen species (ROS)
and lipid peroxidation
in plants under
conditions of stress.

Pseudomonas Arabidopsis Improve the 150 mM NaCl | Chu et al.
PSO1 thaliana germination rate, (2019)
transcriptional levels
of genes
Enterobacter alfalfa plants Increased the shoot 150 mM NaCl Liu et al.
aerogenes LJL-5 height, fresh and dry (2019)
and weights, yield and
Pseudomonas crude protein content
aeruginosa
LJL-13

phytotoxic, and/or antitumor mediators (Olanrewaju et al. 2017). Bacillus and Pseu-
domonas bacterial genera secreted this type of metabolites. Halophilic microbes are
also able to produce enzymes such as lipase, cellulase, -1, 3-glucanase, chitinase,
and protease which can degrade cell wall and fungal growth (Husson et al. 2017;
Vaddepalli et al. 2017). Halophilic microbes compete for nutritive ingredients or
for sites binding on roots of plants, and this type of antagonism reduces the growth
of phytopathogen or mandatory destroyed proliferation of plant—pathogen (Olanre-
waju et al. 2017). Halophilic microbes such as Alcaligenes, Aeromonas, Bacillus,
Rhizobium, and Pseudomonas can produce hydrogen cyanide production, and the
presence of this chemical substance may control phytopathogens (El-Rahman et al.
2019; Suman et al. 2016; Verma et al. 2018; Yadav et al. 2018c).

Halophilic microbes activate induced systemic resistance and enhance immu-
nity against phytopathogens (Olanrewaju et al. 2017). Halophilic microbes disrupt
signaling pathways of phytopathogens by quorum quenching approach. For interfer-
ence of signal pathways to minimize pathogen virulence, some specific degrading
enzymes, such as lactonase, are responsible (Olanrewaju et al. 2017). Halophilic
microbes synthesized siderophore and inhibited the proliferation phytopathogens
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due to decrease in the iron availability to phytopathogens (Ahmed and Holmstrém
2014). The halophilic microbes provide biocontrol of phytopathogens by the produc-
tion of antibiotics and antifungal metabolic substances. Fusarium sambucinum, F.
roseum var. sambucinum, F. oxysporum, F. moniliforme, F. graminearum, Penicillium
citrinum, Aspergillus flavus, and Botrytis cinerea are phytopathogenic fungi that are
controlled by halophilic rhizospheric bacteria B. subtilis, B. cereus, B. pumilus, B.
licheniformis, C. alkalitolerans, Halomonas elongate, and Halobacillus halophilus,
Halobacillus faecis, Salinicoccus roseus (Ahmed and Holmstrom 2014; Olanrewaju
et al. 2017; El-Rahman et al. 2019).

11.7 Role of Halophilic Microbes in Sustainable
Agriculture

Chemical fertilizers and pesticides are commonly used by the farmers for improve-
ment of soil fertility, growth, and productivity of crops under salt-based and non-
salt-based ecosystem (Ju et al. 2018). But their regular use causes an adverse effect
on living organism and soils (Bernardes et al. 2015). Apart from these, chemical
fertilizers remediate in the crop which feed by the organisms and ultimately reach
to top consumers and cause numerous diseases (Gongalves et al. 2014). However,
many transgenic salt-tolerant crops have been developed but far too little is suc-
cessful (Bharti et al. 2016). An alternative method is available which could replace
chemical fertilizers and pesticides and also improve soil health, seed germination,
crop growth, and productivity by rhizospheric bacteria (Vejan et al. 2016). These
rhizospheric bacteria enhance the growth and improvement of plants either straight
or circuitously by colonizing the plant root (Vejan et al. 2016; Kour et al. 2019bj;
Yadav et al. 2019b).

The uninterrupted character of PGPRs involves the fixation of nitrogen (N, ) secre-
tion of metabolites, for instance, the indole-acetic acid (IAA) production, ammonia,
solubilization of phosphate, siderophore, and zinc (Ahemad and Kibret 2014; Chan-
dra and Enespa 2016). Indirect growth promotion can be observed in the prevention
and reduction of phytopathogens in plants through biocontrol mechanism. In this
mechanism, PGPRs produce some lytic enzymes for fungal pathogens (cellulase,
B-1, 3 glucanase, chitinase, and 1-aminocyclopropane-1-carboxylate (ACC) deami-
nase), reduction of iron (Fe) from the soil/rhizosphere and hydrogen cyanide (HCN),
salicylic acid, antibiotics, or antifungal compounds (Odoh 2017; Chandra and Enespa
2019a, b, c). Besides, PGPRs also accepted as capable rhizobacteria that can tolerant
environmental stresses such as high salt, high temperature, and pH (Ahemad and
Kibret 2014).

The plant growth-promoting rhizobacteria enhance nutrient availability that
includes nitrogen fixation and phosphate-solubilizing microorganisms. In indirect
means, it reduces the deleterious effect of plant pathogens on crop yield (Ahemad
and Kibret 2014). It shows antagonism against phytopathogenic microorganisms by
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producing siderophore (Vejan et al. 2016). PGPR have been developed and used as
biofertilizers. Biofertilizers containing these PGPRs are economical, environment-
friendly, and potentially renewable source of necessary enriched plant nutrients that
makes it an excellent substitute of harmful fertilizers and chemical (Vejan et al. 2016).

The mechanism-based action can be differentiated into three dissimilar groups,
i.e, (1) Biofertilizer, containing PGPR having N fixation and P solubilization capa-
bility, (2) biopesticide, containing PGPR that inhibits the growth of phytopathogenic
microorganisms, and (3) phytostimulator, containing PGPR that have ability to pro-
duce phytohormones (Vejan et al. 2016). Various agronomically imperative PGPR
include the species, such as Alcaligenes sp., Caulobacter, Serratia, Erwinia, Bacil-
lus, Enterobacter, Phyllobacterium sp., and Bacillus thuringiensis, Hyphomicrobium,
Azotobacter, Azospirillum, and Acetobacter (Sharma et al. 2013; Ahemad and Kibret
2014; Vejan et al. 2016; Kour et al. 2019a; Verma et al. 2016a, b). The PGPR used
as bio-pesticides and biofertilizers for supportable farming have augmented enor-
mously all over the world. The useful properties of PGPR on the improvement and
the production of crops have been studied and reported by worldwide on a wide
variety of crops such as pulses, vegetables, cereals, and oilseed crops (Gouda et al.
2018). Numerous PGPRs belonging to genera Pseudomonas, Bacillus, Azospiril-
lum, and Enterobacter have been screened from the rhizospheric habitat of various
economically important crops and were reported for their synergistic effect on plant
growth promotion (Egamberdiyeva et al. 2001).

11.8 Conclusions and Future Prospects

Halophilic microbes are isolated from saline soils or rhizosphere of halophytic plants
and shows plant growth-promoting characters directly like the production of TAA,
solubilization of phosphate, production of siderophore, fixation of N,, deaminase
ACC activity, or indirect ways by controlling phytopathogens under saline condi-
tion. However, the habitats of halophilic microbes may be rhizosphere, endophytic,
or phyllosphere, and these microbes can augment the biomass and productivity of
crops using the halophytic and halotolerant crops. The inoculation of halotolerant
microbes in the rhizosphere of crops is a viable strategy for eco-friendly approach
and supportable improvement of crop in salt-related farming, which consist of cul-
tivation of crops in dry and semidry regions. Several possibilities of study would
move us earlier to accepting these approaches for salt-related cultivation. Knowl-
edge of plant—microbe interactions facilitates policies for the protection of crops and
saline soil remediation, and this type of interactions is also observed in the area for
ecological appreciative of microbes, which promotes halophyte to adaptability in
salinity-rich environment.
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