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Foreword

The plant microbiomes play important role in plant growth, development, and soil
health. The plants and rhizospheric soil are the hotspots harboring microbes playing
critical roles in the maintenance of global nutrient balance and ecosystems. The
diverse groups of microbes are the key components of soil–plant systems, where
they are engaged in an intense network of rhizosphere/endophytic/phyllospheric
interactions. The rhizospheric, endophytic, and epiphytic microbes with plant
growth-promoting (PGP) attributes have emerged as an important and promising
tool for sustainable agriculture. PGP microbes promote plant growth directly or
indirectly, by releasing plant growth regulators; solubilization of phosphorus,
potassium, and zinc; biological nitrogen fixation or by producing siderophores,
ammonia, HCN, and other secondary metabolites which are antagonistic against
pathogenic microbes. These PGP microbes could be used as biofertilizers/
bioinoculants in place of chemical fertilizers for sustainable agriculture. The aim
of the present book is to collect and compile the current developments in the
understanding of the rhizospheric, endophytic, and epiphytic microbial diversity
associated with plants. The book encompasses current knowledge of plant micro-
biomes and their potential biotechnological applications for plant growth, crop
yield, and soil health for sustainable agriculture. The book will be highly useful to
the faculty, researchers, and students associated with microbiology, biotechnology,
agriculture, molecular biology, environmental biology, and related subjects.

The present book entitled Plant Microbiomes for Sustainable Agriculture is a
very timely publication providing state-of-the-art information in the area of micro-
bial biotechnology focusing on microbial biodiversity, plant–microbe interaction,
and their biotechnological application in plant growth and soil fertility for sustain-
able agriculture. The book volume comprises sixteen chapters. Chapter 1 by
Subrahmanyam as the lead author describes the biodiversity of rhizospheric
microbiomes and their biotechnological applications for plant growth promotion and
soil health for sustainable agriculture. Chapter 2 presented by Saleem et al. high-
lights the culturable endophytic fungal communities associated with cereal crops and
their role in plant growth promotion. Chapter 3 by Sujatha et al. describes the genetic
diversity of endophytic fungi having phosphate-solubilizing attributes and their
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ecological significances. Chapter 4 by Berde et al. highlights the opportunities and
challenges of endophytic fungi from medicinal plants and their secondary metabo-
lites for diverse applications. Sivakumar et al. describe the biodiversity of epiphytic
microbiomes and their ecological significance and biotechnological applications in
agriculture and environments in Chap. 5. Chapter 6 by Kumar and Singh deals with
the functional attributes of biofilms forming microbial communities, mechanisms of
biofilms formation, and role in agriculture. Nalini and Prakash highlight the recent
advancements in taxonomical progress in phylum Actinobacteria and biotechno-
logical applications of actinobacterial genera in agriculture in Chap. 7. In Chap. 8,
Ashok and his colleagues describe in detail the alleviation of abiotic stresses in
plants by epiphytic pink-pigmented methylotrophic bacteria. Pandey et al. highlight
the diversity, ecological significance, and biotechnological applications in agricul-
ture of the potassium-solubilizing microbe in Chap. 9. Etesami et al. explain the
mitigation of different abiotic stresses in plant by the use of ACC deaminase-
producing microbes in Chap. 10. The roles of halophilic microbes for plant growth
promotion and alleviation of saline stress in plants have been described by Enespa
et al. in Chap. 11. Chapter 12 by Gontia-Mishra deals with the microbial-mediated
drought tolerance in plants. Odoh et al. highlight the microbial consortium formu-
lation for use as biofertilizers and their applications under the natural as well as
abiotic stress condition in Chap. 13. Singh et al. discuss the current advancements
and future challenges in plant microbiome research in Chap. 14. The biotechno-
logical applications of microbes as bioinoculants and biopesticides have been
discussed in Chap. 15 by Misra et al. Finally, the conclusion and future visions on
plant microbiomes have been given by Ajar Nath Yadav in Chap. 16.

Overall, great efforts have been carried out by Dr. Ajar Nath Yadav, his editorial
team, and scientists from different countries to compile this book as a unique and
up-to-date source on plant microbiomes for the students, researchers, teachers, and
academician. I am sure the readers will find this book highly useful and interesting
during their pursuit on plant microbiomes.

Dr. H. S. Dhaliwal
Vice Chancellor

Eternal University
Baru Sahib, Himachal Pradesh, India
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Preface

The plant microbiomes (rhizospheric endophytic and epiphytic) play important role
in plant growth promotion and nutrient recycling. The microbes associated with
plant growth-promoting (PGP) attributes have emerged as an important and
promising tool for sustainable agriculture. PGP microbes promote plant growth
directly or indirectly, either by releasing plant growth regulators; solubilization of
phosphorus, potassium, and zinc; biological nitrogen fixation or by producing
siderophore, ammonia, HCN, and other secondary metabolites which are antago-
nistic against pathogenic microbes. The PGP microbes belonged to different
phylum of archaea (Euryarchaeota); bacteria (Acidobacteria, Actinobacteria,
Bacteroidetes, Deinococcus-Thermus, Firmicutes, and Proteobacteria); and fungi
(Ascomycota and Basidiomycota), which include different genera, namely,
Achromobacter, Arthrobacter, Aspergillus, Azospirillum, Azotobacter, Bacillus,
Erwinia, Gluconoacetobacter, Methylobacterium, Paenibacillus, Pantoea,
Penicillium, Piriformospora, Planomonospora, Pseudomonas, Rhizobium,
Serratia, and Streptomyces. These PGP microbes could be used as biofertilizers/
bioinoculants at place of chemical fertilizers for sustainable agriculture. The present
book on Plant Microbiomes for Sustainable Agriculture covers biodiversity of
plant-associated microbes and their role in plant growth promotion, mitigation of
abiotic stress and soil fertility for sustainable agriculture. This book will be
immensely useful to biological sciences, especially to microbiologists, microbial
biotechnologists, biochemists, researchers, and scientists of microbial and plant
biotechnology. We are thankful to the leading scientists who have extensive,
in-depth experience and expertise in plant–microbes interaction and microbial
biotechnology took the time and effort to develop these outstanding chapters. Each
chapter is written by internationally recognized researchers/scientists so the reader
is given an up-to-date and detailed account of our knowledge of the microbial
biotechnology and innumerable agricultural applications of plant microbiomes.
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Chapter 1
Diversity, Plant Growth Promoting
Attributes, and Agricultural Applications
of Rhizospheric Microbes

Gangavarapu Subrahmanyam, Amit Kumar, Sosanka Protim Sandilya,
Mahananda Chutia and Ajar Nath Yadav

Abstract Rhizosphere harbors potential microbiomes which play a pivotal role in
nutrient cycling, enhancing soil fertility, maintaining plant health and productivity.
Specific microbiomes that are assembled near roots are considered to be some of
the most complex ecosystems on the Earth. Heterogeneous microbial communities
of rhizospheric microbiomes considerably vary by soil type, land use pattern, plant
species, and host genotype. It is demonstrated that root exudates act as substrates
and signaling molecules which are required for establishing plant–rhizobacterial
interactions. The present chapter focused on the rhizosphere microbiomes of dif-
ferent agricultural crops, their functions, and possible biotechnological applications
for increasing crop production in a sustainable manner. Further, the plant growth-
promoting mechanisms of rhizobacteria were highlighted. Although much work has
been done on the biocontrol characteristics of rhizospheric bacteria, it has to be con-
sidered that soil type, plant species, and the pathogen affect altogether influence the
biocontrol efficiency of strain applied against a soil-borne pathogen.

Keywords Bacterial community · Biotechnological application ·Microbiome ·
Plant growth promotion · Rhizosphere

1.1 Introduction

Soil microorganisms play a pivotal role in nutrient cycling, regulating soil fertility,
maintaining plant health, and productivity (Wagg et al. 2014). Soil microbial com-
munities are exceedingly complex and consist of various organisms such as bacteria,
archaea, fungi, algae, and viruses. Most of these microorganisms largely utilize plant
root-derived nutrients such as root exudates and secondary metabolites (Huang et al.
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2014). Rhizosphere microorganisms are component of microbiomes that assemble
near plant roots. Rhizospheric microbiomes are considered to be some of the most
complex ecosystems on Earth. It is estimated that one gram of soil containsmore than
50,000 different microbial species, but majority of them are uncultivable in nature
(Roesch et al. 2007a, b). Beneficial free-living rhizospheric bacteria are generally
referred to as plant growth-promoting rhizobacteria—“PGPR”. Conceptually, “PG-
PR” represents beneficial portion of rhizospheric microbiome and can have positive
effect on both growth and development of plants by direct or indirect mechanisms.

Chemical compounds that are released by roots apparently modify physical and
chemical characteristics of the soil (Mukherjee et al. 2018) and subsequently regu-
lates the diversity and composition of soil microbial community in the rhizosphere
(Huang et al. 2014). Moreover, plants may also influence composition of rhizosphere
microbial communities by selectively stimulating microorganisms with beneficial
traits that are needed for both plant growth and health (Chaparro et al. 2014). For
example, Acidobacteria, Proteobacteria (mainly Alpha, Beta, and Deltaproteobac-
teria classes), Chloroflexi, and Actinobacteria are enriched in the rhizosphere of
Oryza sativa, whereas soybean selected a specific microbial community consists of
Bacteroidetes, Acidobacteria, Proteobacteria, and Actinobacteria (Lu et al. 2018;
Ding et al. 2019; Yadav et al. 2016b). These microbial populations are found to col-
onize in the root rhizosphere because of their functional traits and also beneficial to
plant nutrient absorption, growth, and disease suppression. In turn, the plant provides
root exudates to the microbes which are used as substrates and signaling molecules
(Mendes et al. 2013).

Studies revealed that root microbiomes considerably vary by soil type, habitat,
land use pattern, plant species, and host genotype (Bouffaud et al. 2014; Fitzpatrick
et al. 2018; Lu et al. 2018; Ding et al. 2019; Yadav et al. 2019f). In recent, the
relationship between rhizosphere microbial communities and plant genotypes is
well studied and the results may lead to increased plant productivity (Bouffaud
et al. 2014; Bulgarelli et al. 2015; Pérez-Jaramillo et al. 2017; Leff et al. 2017; Ding
et al. 2019). In this chapter, we summarize recent progress made in rhizosphere
microbiomes of agriculture crops. We also discuss the importance of rhizosphere
microbial communities particularly PGPR and their immense biotechnological
values for sustainable production and productivity of agriculture crops.

1.2 Rhizosphere and Root Exudates

The narrow zone of soil surrounding the plant roots and influenced by roots, root hair,
and plant-produced exudates is referred to as rhizosphere (Dessaux et al. 2009). There
are three distinct interacting systems which are reported in the plant rhizosphere,
viz., rhizoplane, rhizosphere, and the root itself. Rhizoplane is defined as the root
surface including the strongly adhering soil particles. Group of bacteria which are
inhabitants of rhizosphere and able to compete in colonizing the root system is known
as “rhizobacteria” while the total microbial component (prokaryotes, eukaryotes, and
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viruses) of rhizosphere is termed as rhizo-microbiome or rhizosphere microbiome.
The “rhizobacteria” termwas first time introduced byKloepper and Schroth (1978) to
refer the soil bacterial population that competitively colonize the roots and stimulate
plant growth, thereby reducing the incidence of diseases in a sustainable manner.

Specific microbiomes that are assembled near roots are proposed to be some of
the most complex ecosystems on the Earth (Raaijmakers et al. 2009). Most of these
microorganisms utilize diverse array of compounds/nutrients which are derived from
plant roots in the rhizosphere (Lu et al. 2018; Yadav et al. 2017b). The chemicals that
are released by roots in the soil are known as “root exudates.” It was suggested that
chemicals secreted by plant roots act as signaling molecules and recruit wide variety
of heterogeneous and metabolically active soil microbial populations (Ahemad and
Kibert 2014) (Table 1.1).

Most importantly, the exudation of chemical compounds by roots apparentlymod-
ifies the physical and chemical characteristics of the soil and subsequently regulates
the structure and composition of rhizosphere microbial community (Doornbos et al.
2012). Impact of root exudates onbacterial communities in the rhizospherewas exten-
sively reviewed by Doornbos et al. (2012). Further, it is estimated that around five
to twenty-one percent of caron (photosynthetically fixed carbon) gets transported to
the rhizosphere through the process of root exudation (Doornbos et al. 2012). There-
fore, the rhizosphere is redefined by Dessaux et al. (2009) as “any volume of soil
selectively influenced by plant roots, root hairs and plant-produced materials.”

Table 1.1 Different kinds of compounds in root exudates of plants

Chemical
nature

Compounds

Carbohydrates,
amino acids,
and derivatives

Chlorogenic acid, caffeic acid, cinnamic acid, canavanine, strigolactone
5-deoxystrigol, arabinogalactan proteins, arabinogalactan-like glycoprotein,
glucose, fructose, galactose, ribose, xylose, rhamnose, arabinose,
oligosaccharides, raffinose, maltose, α-Alanine, β-alanine, asparagines,
aspartate, cysteine, cystine, glutamate, glycine, isoleucine, leucine, lysine,
methionine, serine, threonine, proline, valine, tryptophan, ornithine, histidine,
arginine, homoserine, phenylalanine, γ-Aminobutyric acid and
α-Aminoadipic acid

Secondary
metabolites
and hormones

Benzoxazinoids, flavonoids, strigolactones, and related compounds that
mimic quorum-sensing signals

Vitamins Biotin, thiamine, pantothenate, riboflavin, and niacin

Enzymes Protease, amylase, acid and alkaline-phosphatase and invertase

Organic acids Malic acid, oxalic acid, fumaric acid, succinic acid, acetic acid, butyric acid,
valeric acid, glycolic acid, erythronic acid, piscidic acid, citric acid, formic
acid, aconitic acid, lactic acid, pyruvic acid, glutaric acid, malonic acid,
tetronic acid, and aldonic acid

Source Huang et al. (2014), Ahemad and Kibert (2014)
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The quality and quantity of the root exudates rely on type of plant species and
distinct developmental/physiological status of plants (Kang et al. 2010). Further-
more, root exudates significantly enhance the plant-beneficial microbial–symbiotic
interactions in the rhizosphere. These interactions, in turn, affect the rooting patterns,
supply of available nutrients, thereby modifying the quantity and/or quality of root
exudates. Microbial colonization in/on root tissues is known as root colonization,
similarly microbial colonization of the adjoining volume of soil under the influence
of the plant root system is defined as “rhizosphere colonization” (Ahemad and Kibert
2014). Compared with the bulk soil, microbial activity and biomass are relatively
enhanced in the rhizosphere as a result of root exudation (Ahemad and Kibert 2014;
Huang et al. 2014).

1.3 Rhizosphere Microbiome and Its Diversity

Most of the soils contain exceedingly high microbial diversity including bacteria,
fungi, algae, viruses, and protozoa. It was reported that one gram of soil contains
approximately 9 × 107 bacteria, 2 × 105 fungi, 4 × 106 actinomycetes, 5 × 103

protozoa, and 3 × 104 algae. The rhizosphere which is under influence of root exu-
dates can harbor up to 10−11 microbial cells and around 30,000 different prokaryotic
species per gramof root (Egamberdieva et al. 2008).Metagenomic analysis of tomato
rhizosphere revealed that approximately 3,050 different bacterial species (OTUs at
3% distance cutoff) were associated in the rhizosphere (Tian et al. 2015). The rhi-
zosphere microbiomes are very diverse and can actively interact with plants and
mediate distinct agro-ecological process. The rhizosphere microbiome is consider-
ably important in bridging the plant microbiomes and bulk soil and facilitates plant
growth promotion by providing nutrition (Pathak et al. 2016) . The rhizobacterial
microbiota also improves host plant’s health by protecting from phytopathogens and
promotes plant growth and fitness in different physiochemical stresses by producing
phytohormones (Fig. 1.1). It is imperative to elucidate the assembly, composition,
and variation among the microbial communities present in the rhizosphere for under-
standing the diversity and metabolic functions of the rhizosphere microbiome. This
information could be beneficial for sustainable management of plant health and the
underlying mechanisms that drive microbiome assembly.

It has been revealed that the rhizosphere, rhizoplane (root surface), endosphere
(root interior), and of host plants harbor a distinct microbiome (Edwards et al. 2015).
Diversity, distribution, and the composition of the core rhizospheric microbiomes
from several plant species such as Arabidopsis (Bulgarelli et al. 2012; Carvalhais
et al. 2013; Chaparro et al. 2014), and economically important crops, viz., maize
(Bouffaud et al. 2014), rice (Edwards et al. 2015; Malyan et al. 2016a, b; Lu et al.
2018; Moronta-Barrios et al. 2018; Ding et al. 2019), barley (Bulgarelli et al. 2015),
citrus (Xu et al. 2018), sugar beet (Chapelle et al. 2016), sunflower (Leff et al.
2017), tomato (Tian et al. 2015), French bean (Pérez-Jaramillo et al. 2017), soy-
bean (Mendes et al. 2011, 2014), wheat (Kour et al. 2019d; Verma et al. 2015a,
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Fig. 1.1 Amelioration of abiotic and biotic stresses in plants by phytohormones produced by
rhizospheric microbiome

b, 2016a, b; Yadav 2017a, 2019), and other tropical crop plants (Yadav 2017a, b;
Yadav et al. 2019a; Yadav and Yadav 2018) have been established. All these studies
have utilized 16S rRNA gene-based high-throughput sequencing analysis for under-
standing themicrobial community dynamics. Although differentmethodologies have
been suggested to explore soil microbial diversity and functions, culture-independent
molecular methods are appropriate choice for deciphering diversity of microbiomes
in high resolution (Fig. 1.2). Dominant microbial communities and their functions in
core rhizospheric microbiomes of different agricultural crops have been extensively
summarized in Table 1.2.

1.3.1 Diversity of Rhizospheric Microbiome in Wild Plants

Microorganisms represent the richest gamut of molecular and chemical diversity in
nature, as they comprise the simplest yet dynamic forms of life (Yadav et al. 2015).
Interest in the exploration of microbial diversity has been spurred by the fact that
microbes are essential for life as they perform numerous functions integral to the
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Fig. 1.2 Different methods for elucidation of rhizospheric microbiomes assembly and activity.
Molecularmethods are preferable choice to establishmicrobial communitieswith a higher resolution

sustenance of the biosphere, including nutrient cycling and environmental detoxifi-
cation, which involve process such as augmentation, supplementation, and recycling
of plant nutrients, so vital to sustainable agriculture (Kumar et al. 2019; Malyan et al.
2019; Rana et al. 2018; Yadav et al. 2017a, c, d). More recently, this largely unex-
plored reservoir of resources is the focus of investigations for innovative applications
useful to mankind (Rastegari et al. 2019; Yadav et al. 2019c, d, e).

The distribution and diversity of bacterial community compositions in the rhizo-
spheremicrobiomes of six different wild plant species (Bidens biternata of the Aster-
ales order,Ageratum conyzoides,Artemisia argyi,Euphorbia hirta,Viola japonica of
theMalpighiales order, and Erigeron annuus) were evaluated by Lei et al. (2019). All
the six different wild plant species were grown in the same experimental field. In this
study, high-throughput sequencing of 16S rRNA gene targeting the hypervariable
V3 and V4 regions was carried out with Illumina MiSeq platform. Comprehensive
details for composition and distribution of rhizospheric microbiomes of wild plants
have been shown in Fig. 1.2.

Approximately, 3000 OTUs for each rhizosphere sample were obtained. Rhizo-
sphere microbiomes in the six wild plant species were dominated by bacterial phyla
Proteobacteria (35%), Acidobacteria (12%), Actinobacteria (11%), Bacteroidetes
(10%), Planctomycetes (8%), Chloroflexi (6%), and Verrucomicrobia (6%) and the
details have been shown in Fig. 1.3a, b, c, d. Rhizobiales (8%) and Sphingomon-
adales (3.5%) orders of class Alphaproteobacteria (15%);Nitrosomonadales (4.28%
± 1.24%), and Burkholderiales (3%) orders of class Betaproteobacteria (9%);Myx-
ococcales (5.5%) order of class Deltaproteobacteria (8%); and Xanthomonadales
(4%) orders of class Gammaproteobacteria (7%) were found to be abundant in
phylum Proteobacteria (Fig. 1.3a). Abundant members of phylum Actinobacteria
were found to be Acidimicrobiales (4%). Similarly, Subgroup 4 (6%) and Subgroup
6 (4%) were abundant in Acidobacteria phylum.

The core rhizospheric microbiome of wild plant species showed a total of 1,109
operational taxonomic units (OTUs) affiliated to 113 bacterial genera accounting
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Fig. 1.3 The composition and relative abundance of major bacterial taxa in a typical rhizosphere
of six different wild plant species Adapted with permission from Lie et al. (2019)

for more than 70% of the total sequencing data analyzed. The predominant bacte-
rial genera of core OTUs are Variovorax, Acidibacter, Ferruginibacter, Bradyrhizo-
bium,Blastocatella, Variibacter, Sphingomonas, and unclassified bacteria (Fig. 1.3e).
The predominant bacterial orders were found to be composed of Xanthomonadales,
Rhodospirillales, Rhizobiales, Burkholderiales, Sphingomonadales, Myxococcales,
Nitrosomonadales of Proteobacteria; Acidimicrobiales of Actinobacteria; Subgroup
4 and Subgroup 6 of Acidobacteria.

Variations in microbial community compositions at the order level in the rhi-
zosphere of six different plant species were also demonstrated (Lei et al. 2019).
Predominant bacterial group in E. hirta rhizosphere is Proteobacteria, while the
same group is least represent in V. japonica microbiome. Highly enriched Rhizo-
biales order of Proteobacteria was found in V. japonica and A. argyi. Predominant
members ofMyxococcaleswere noticed in V. japonica rhizosphere. Abundant mem-
bers of Nitrosomonadales were observed in E. hirta. Similarly, higher abundance
of Burkholderiales and Sphingomonadales was noticed in E. annuus. Members of
Xanthomonadales were dominated in V. japonica rhizosphere.
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1.3.2 Diversity of Rhizospheric Microbiome in Agriculture
Crops

1.3.2.1 Rhizospheric Microbiome of Rice

The structure of microbial communities present in the rice rhizosphere is very com-
plex, dynamic, and diverse (Edwards et al. 2015; Lu et al. 2018; Moronta-Barrios
et al. 2018; Ding et al. 2019). Recently, microbiome inhabiting rice roots and rhi-
zosphere is extensively reviewed by Ding et al. (2019). A study taken by Edwards
et al. (2015) revealed that endosphere (inside the root compartment), rhizoplane
(surface of the root), and rhizosphere of rice had distinct microbiomes. Microbial
communities from the rice rhizosphere are established by amplification of the 16S
rRNA gene (variable regions V4-V5) followed by high-throughput sequencing using
the Illumina MiSeq platform (Edwards et al. 2015). Results indicate that rice endo-
sphere microbial communities had the lowest α-diversity, whereas rice rhizosphere
had higher α-diversity. Furthermore, the mean α-diversity was found to be relatively
high in the rhizosphere than in the bulk soil (Edwards et al. 2015).

The most dominant bacterial genera of rice rhizosphere is summarized in Fig. 1.4.
Bacterial community profiles and their relative abundance are shown in Fig. 1.5 (Lu

1%
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Pseudomonas Other
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Fig. 1.4 Dominant bacterial genera in the rhizosphere microbiome of rice Adapted fromMoronta-
Barrios et al. (2018)
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Fig. 1.5 Bacterial community profiling in the rhizospheric microbiomes ofHordeum vulgare (Bar-
ley), Triticum aestivum (Wheat),Oryza sativa Indica and Japonica (Rice) Adapted with permission
from Lu et al. (2018)

et al. 2018). Bacterial, archaeal, and fungal communities and their relative abundance
in the rice rhizosphere have been studied (Ding et al. 2019). Bacterial populations
were found to be abundant in the rice rhizosphere (Edwards et al. 2015). The abun-
dance of rhizosphere microbial populations such as bacterial, fungal, and archaeal
was twice those that of the bulk soil which is an indication of rhizospheric effect
(Ding et al. 2019).

Proteobacteria dominated the microbiome of rice rhizosphere accounting more
than 71%. Among Proteobacteria, the most abundant class was Gammaproteobacte-
ria followed by Betaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, and
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Epsilonproteobacteria (Moronta-Barrios et al. 2018). Representatives ofEpsilonpro-
teobacteria and Deltaproteobacteria classes were not detected in the rice endorhi-
zosphere. Phyla Verrucomicrobia and Bacteroidetes were abundant across the
samples. Representative members of Nitrospirae and Acidobacteria were found
only in rice-rhizospheric samples (Moronta-Barrios et al. 2018). Bacterial phyla
Proteobacteria, Firmicutes, Chloroflexi, Nitrospirae, Spirochaetes, Fibrobacteres,
Planctomycetes, Bacteroidetes, Proteobacteria, Actinobacteria, Verrucomicrobia,
Cyanobacteria, and Acidobacteria are the most commonly found bacterial mem-
bers of the rice rhizosphere (Edwards et al. 2015; Lu et al. 2018; Moronta-
Barrios et al. 2018; Ding et al. 2019). Similarly, the most common bacterial
genera of rice rhizosphere are as follows: Pseudomonas sp., Limnobacter, Devosia,
Opitutus, Flavobacterium, Shewanella, Caulobacter, Agrobacterium, Pseudomonas
veronii, Methylotenera mobilis, Microvirgula aerodenitrificans, Pedobacter, Rhod-
oferax, Variovorax, Mycoplana, Rheinheimera, Flavisolibacter, Fluviicola, Chry-
seobacterium, Asticcacaulis, Halothiobacillus, Pleomorphomonas, Sphingobium,
Thiobacillus, Bacillus sp., Flavobacterium gelidilacus, Methylophaga, and Acidovo-
rax (Moronta-Barrios et al. 2018). Further details on dominant microbial communi-
ties and their functions in rice-rhizospheric microbiomes have been summarized in
Table 1.2.

Methanogenic archaea, viz.,Methanobacterium, Methanosarcina, Methanocella,
and Methanosaeta were also reported in the rice rhizosphere (Malyan et al.
2016a; Edwards et al. 2015). Firmicutes, Bacteroidetes, Betaproteobacteria, and
Chloroflexiwere found to be differentially enriched in rice rhizosphere. TheBetapro-
teobacterial OTUs that are enriched in rice rhizosphere belong to mainlyComamon-
adaceae and Rhodocyclaceae families (Edwards et al. 2015). Total bacterial count
of rice rhizosphere is approximately 5 × 10 9 cells g dw−1 soil, whereas as archeal
members are found to be 2.5 × 10 8 cell g dwt−1 soil.

1.3.2.2 Rhizospheric Microbiome of Wheat and Barley

Rhizosphere community of wheat was analyzed by comparativemetatranscriptomics
approach (Hayden et al. 2018). The rhizosphere community of wheat was pre-
dominately bacteria. ClassesGammaproteobacteria, Alphaproteobacteria, and Acti-
nobacteria were dominant in the rhizosphere of wheat and barley. Bacterial families
such as Micrococcaceae, Enterobacteriaceae, and Pseudomonadaceae were abun-
dant in the rhizosphere microbiomes (Hayden et al. 2018). Predominant archaeal
members in the rhizosphere are affiliated to family Nitrososphaeraceae under phy-
lum Thaumarchaeota. Ascomycota is the dominant fungal phylum found in the rhi-
zosphere representing more than 72% of total fungal transcripts. Other fungal phyla
in the rhizosphere of wheat and barley were affiliated to Basidiomycota (>10%),
which includes the genus Rhizoctonia, and Glomeromycota (4%) form arbuscular
mycorrhizae. Interestingly, fungal families represent a smaller proportion of the total
microbial transcripts analyzed in the rhizosphere (Hayden et al. 2018). Rhizosphere
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community of barley was reported by Lu et al. (2018). Bacterial phyla Proteobac-
teria, Bacteroidetes, Acidobacteria, Planctomycetes, Nitrospirae, Actinobacteria,
Verrucomicrobia, Firmicutes, Cyanobacteria, Chloroflexi, and Gemmatimonadetes
were associated with barley rhizosphere. Further, fungi Ascomycota, Basidiomy-
cota, Zygomycota, and Unidentified fungi were distributed in the barley rhizosphere
(Hayden et al. 2018).

1.3.2.3 Rhizospheric Microbiome of Soybean

Shotgun metagenomics approach was used to study functional and taxonomic diver-
sities of microbial communities in the rhizosphere of soybean, Glycine max (L.)
(Mendes et al. 2014). Metagenomic libraries were dominated by bacteria (>95%)
followed by eukaryotes (3%) and archaea and virus (1%). Proteobacteria was found
to be the most abundant phylum in soybean rhizosphere and represented around 47%
distribution.Other dominant bacterial phyla in the rhizosphere of soybeanwere found
to be Actinobacteria (23%), Acidobacteria (5%), and Firmicutes (6%) (Mendes et al.
2014). In general, 28% of total sequences found in the soybean rhizosphere were
novel and were not affiliated to known bacterial taxa. Results indicate clear dif-
ferences in microbial community structure among rhizosphere and bulk soil. Over-
representation of the phyla Acidobacteria, Actinobacteria, Chloroflexi, Chlamydiae,
Cyanobacteria, Deferribacteres, Tenericutes, Chlorobi, Aquificae, and Verrucomi-
crobiawas found in rhizosphere and the results were significant at P < 0.01 (Mendes
et al. 2014). Similarly, abundance of classMollicutes,Bacilli,Clostridia,Epsilonpro-
teobacteria,Gammaproteobacteria, Thermomicrobia, andChlamydiaewas found in
the rhizosphere of Glycine max (L.).

1.3.2.4 Rhizospheric Microbiome of French Bean

Microbiome of French bean was elucidated by amplification of 16S rRNA (V3–
V4 region) followed by high-throughput sequencing performed at Illumina MiSeq
platform (Pérez-Jaramillo et al. 2017). Phylum Proteobacteria was the dominant
member, whereas lower abundance of Acidobacteria was noticed in wild bean rhi-
zosphere. The phyla Verrucomicrobia and Bacteroidetes were predominant in the
wild bean rhizosphere. Phylum Actinobacteria was found to be more abundant in
the modern bean rhizosphere and these results were statistically significant.

Significant increase in the relative abundance of bacterial families Sphingomon-
adaceae and Rhizobiaceae was observed in the rhizosphere as compared to the bulk
soil. Furthermore, it was noticed that there is a gradual decrease in the relative abun-
dance of the Chitinophagaceae and Cytophagaceae of the Bacteroidetes phylum
in the French bean rhizosphere. Gradual increases in relative abundance of fam-
ilies Streptomycetae and Nocardiodaceae of Actinobacteria and Rhizobiaceae of
Proteobacteria.
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1.3.2.5 Microbiome of Maize and Other Members of Poaceae Crops

Rhizospheric microbiome of Poaceae crops such as Zea mays L; Zea mays ssp.
Parviglumis; Sorghum bicolor cv. Arprim; Triticum aestivum L. cv. Fiorina was
established by Bouffaud et al. (2014). The dominant bacterial members of Micro-
biome of Poaceae crops were found to be Rhodospirillales such as Gluconacetobac-
ter, Rhodospirillum, Azospirillum, and Sphingomonadaceae of class Burkholderi-
ales; Actinomycetales such as Corynebacterium, Actinomyces, Propionibacterium,
and Kocuria; Acidovorax of Alphaproteobacteria; Xanthomonas, Francisella, Pan-
toea, Moraxella, Pseudomonas, and Photorhabdus of class Gammaproteobacte-
ria; Burkholderia, Hydrogenophaga, and Alcaligenes of class Betaproteobacteria;
Myxococcales such as Anaeromyxobacter of class Deltaproteobacteria; Mogibac-
terium, Bacillales (Firmicutes) such as Bacillus and Paenibacillus; Megasphaera
and Collinsella (Bouffaud et al. 2014).

1.4 Factors Influencing Rhizospheric Microbiome
in Agriculture Crops

The rhizosphere microbiomes participate in very important functions suitable for
plant growth promotion. The key functions mediated by rhizosphere microbiome
include abiotic stress tolerance, nutrient acquisition, and protection against plant
pathogen infection. Therefore, understanding the assembly of rhizosphere micro-
biome and their molecular mechanisms will provide us basic information. This infor-
mation will be useful to develop soil management practices, designing of healthy
rhizosphere microbiome, and introduction of biofertilizers and biological control
agents to develop sustainable agricultural strategies. Different factors that are influ-
encing structure, assembly, and function of rhizospheric microbiomes are depicted
in Fig. 1.6.

Rhizobacterial community composition in Phaseolus vulgaris was influenced by
specific root morphological traits and host plant genotype (Pérez-Jaramillo et al.
2017). Impact of host plant genotype on rhizospheremicrobial communitywasmedi-
ated by qualitative and quantitative composition of root exudates (Huang et al. 2014;
Ahemad and Kibert 2014). Host genotype had a tremendous effect on the composi-
tion of root-associated microbial communities in Hordeum vulgare (Bulgarelli et al.
2015). Bulgarelli et al. (2012) reported that host genotype and soil type define the
diversity of root-inhabiting bacterial communities in Arabidopsis thaliana. Plant cell
wall properties confer sufficient colonization (40%) of root-associated microbiota in
Arabidopsis thaliana (Bulgarelli et al. 2012).

Invading fungal pathogens and plant stress response induces a shift inmicrobiome
composition of sugar beet (Chapelle et al. 2016). Rhizosphere microbial community
structure varied according to the Poaceae genotype (Bouffaud et al. 2014). Evolu-
tionary divergence among host plants and type of plant species affects the assembly
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Fig. 1.6 Factors influencing assembly of microbiomes in agriculture crops. Microbial community
structures in the four different compartments (I–IV) such as bulk soil, rhizosphere, rhizoplane, and
root systems are distinct in nature

of the rhizosphere and endosphere andmicrobiome (Fitzpatrick et al. 2018). The root
microbiome is also associated with drought tolerance of host plants (Fitzpatrick et al.
2018, Kour et al. 2019). Different developmental stages of plant also influence rhi-
zosphere microbiome assemblages (Chaparro et al. 2014). Rhizosphere microbiome
of Oryza sativa is shaped by plant and soil-related conditions such as soil type,
geographic location, rice genotype, oxic–anoxic interface, agricultural management,
and growth stages (Ding et al. 2019). Selection of the microbial community in the
wheat rhizosphere depends on niche-based processes as a result of environmental
factors and the selection power of the plant (Mendes et al. 2014). Further, agricultural
management practices and growth stages of host plants exerted much influence on
the rice rhizosphere microbiome (Edwards et al. 2015).

1.5 Plant Growth-Promoting Mechanisms of Rhizospheric
Microbiome

Rhizobacteria plays a crucial role in growth promotion and immunity of the agri-
cultural crops. These plant growth promoters follow certain mechanisms during the
entire sequential process for nutrient mobilization, phytohormones for the growth
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and development, and chemical agents for defense-related issues of the crops (Suman
et al. 2016; Verma et al. 2017; Yadav et al. 2018a, b). According to Mahanty et al.
(2016), similar mechanisms are adopted by all bacterial genera during promotion of
plant growth, although they are phylogenetically of different origins. The mecha-
nisms behind the scene could mainly be divided into two types, direct mechanisms
and indirect mechanisms. Comprehensive details of plant growth-promoting mech-
anisms of rhizobacteria in different agricultural crops have been summarized in
Table 1.3.

1.5.1 Direct Mechanism

The direct mechanisms mainly involve the bacterial activities like phosphate solubi-
lization, nitrogen fixation, secretion of plant hormones, ACC deaminase activities,
and siderophore production.

1.5.1.1 Phosphate Solubilization

In spite of the large reservoir of phosphorus in soil, a very low amount of it is
available to the plants (Ahemad and Kibret 2014). This is because plants utilize
them in only two forms: (a) monobasic and (b) dibasic ions (Bhattacharyya and
Jha 2012). It has also been reported that due to rapid conversion of phosphorus
into insoluble complexes of different metal oxides most of the cultivable soils are
deficit of available phosphate (Sandilya et al. 2016). Phosphate fertilizers are mostly
applied to the agricultural soils in order to overcome the overall loss. But, continuous
use of these chemical fertilizers is harmful to the soil and the environment in vivo.
Hence, the importance of biofertilizers having plant growth-promoting traits was
raised worldwide.

Native rhizobacteria pays an immense attribute to solubilize the inorganic phos-
phate so as tomake it available for the utilization of various crops or plants (Widawati
2011). Certain bacterial genera, viz., Bacillus, Pseudomonas, Azospirillum, Achro-
mobacter, Acetobacter, Acinetobacter, Enterobacter, Klebsiella, and Serratia are
able to solubilize the inorganic form of phosphate to the available form (Kumar et al.
2012; Rana et al. 2019a, b). Besides, the role of bacterial organic acids for cation
uptake by the plants is also worth mentioning (Sandilya et al. 2016). Researchers
further stated that the bacterial genera belonging to the Proteobacteria and some
of the Firmicutes and Actinobacteria are the most capable of the abovementioned
conversion process.
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Table 1.3 Plant growth-promoting mechanisms of plant microbiomes

Rhizobacteria PGP traits Crops/Plant
rhizosphere

References

Bacillus sp.
Burkholderia sp.

Phosphate solubilizer Zea mays Oliveira et al.
(2009)

Pseudomonas
aeruginosa strain
MAJ PIA 03 Bacillus
firmus strain MAJ
PSB12

IAA, GA3, ACC deaminase
activity, HCN production,
NH3 production,
Siderophore production,
antagonist, and phosphate
solubilizer

Ricinus
communis

Sandilya et al.
(2016, 2017)

Rhodococcus sp.
EC35, Pseudomonas
sp. EAV, and
Arthrobacter
nicotinovorans
EAPAA

Phosphate solubilizer Zea mays Sofia et al. (2014)

Azospirillum
brasilense Az39,
Bradyrhizobium
japonicum E109

Phytostimulation Glycine max Cassan et al. (2009)

P. fluorescens Aur6,
Chryseobacterium
balustinum Aur9

Biocontrol agents Oryza sativa Lucas et al. (2009)

Bacillus, Azotobacter,
Pseudomonas, and
Acinetobacter

IAA, NH3, HCN,
Siderophore, phosphate
solubilizer, antagonistic
activity, nitrate reducer

Momordica
charantia

Singh et al. (2017)

Pseudomonas putida,
Gluconacetobacter
azotocaptans,
Azospirilum lipoferum

Phosphate solubilizer, plant
hormones, siderophore

Zea mays Mehnaz and
Lazarovits (2006)

Sphingobacterium
canadense

Phosphate solubilizer, plant
hormones, siderophore

Zea mays Mehnaz et al.
(2007)

Chryseobacterium
palustre,
Chryseobacterium
humi,
Sphingobacterium,
Bacillus,
Achromobacter

IAA, HCN, NH3,
siderophore, ACC
deaminase

Zea mays Marques et al.
(2010)

Pseudomonas
fluorescens strain Psd

Zinc solubilizer, nitrate
reducer

Triticum
aestivum

Sirohi et al. (2015)

Bacillus sp. strain
WG4

Antifungal metabolite
pyrrolo [1, 2-a] pyrazine-1,
4-dione,
hexahydro-3-(phenylmethyl)

Zingiber
officinale

Jimtha et al. (2016)

Bacillus sp. PSB10 IAA, siderophores, HCN,
ammonia

Cicer
arietinum

Wani and Khan
(2010)

(continued)
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Table 1.3 (continued)

Rhizobacteria PGP traits Crops/Plant
rhizosphere

References

Bradyrhizobium
sp. 750, Pseudomonas
sp., Ochrobactrum
cytisi

Heavy metal mobilization Lupinus luteus Mehnaz et al.
(2010)

Mesorhizobium sp.
strain MRC4

IAA, siderophores, HCN,
ammonia,
exo-polysaccharides

Cicer
arietinum

Ahemad and Khan
(2009, 2010a, b)

1.5.1.2 Nitrogen Fixation

Nitrogen being the most important limiting factors, its fixation in nature is an inter-
esting phenomena led by the plant growth-promoting rhizobacteria both in the sym-
biotic and non-symbiotic or free-living forms (Fagodiya et al. 2017a, b). It has been
believed that the free-living nitrogen fixers provide a very lower amount of avail-
able nitrogen to the plants in comparison to the symbiotic nitrogen fixers since time
immemorial (James and Olivares 1997). The nif genes found in the nitrogen-fixing
rhizobacteria complete the nitrogenase enzyme by the means of its structural and
regulatory proteins responsible for activation of the Fe protein, iron molybdenum,
cofactor biosynthesis, and electron donation in case of the former and synthesis and
function of the enzyme in the later (Glick 2012). Numerous PGPR genera capable
of converting nitrate into nitrite by the catalysis of the nitrate reductase enzyme have
also been reported. The most common among them are Azospirillum, Azotobacter,
Achromobacter, Bradyrhizobium, Beijerinckia, and Rhizobium (Kour et al. 2019b,
c; Yadav et al. 2019b).

1.5.1.3 Phytohormones and ACC Deaminase Enzyme Activity

Major plant hormones such as IAA and GA3 (Marques et al. 2010; Ahmed and
Hasnain 2010 and Khan et al. 2014) along with cytokinin secretion (Liu et al. 2013)
by the PGPR’s have often being reported by various authors. The IAA secreted by the
bacterial population associated with the roots of the agricultural crops could augment
the root surface area and length that could pave an easier route for absorption of the
soil nutrients by the plants (Ahemad and Khan 2012). Amino acid tryptophan being
a major precursor of IAA boosts the level of IAA biosynthesis. Almost five different
types of IAA pathways have been reported by Spaepen and Vanderleyden (2011).

The role of GA3 has also been explained by some authors in the context of plant
growth-promoting rhizobacteria. The most important among them are the induction
of seed germination and emergence and development of stem, leaf, flower, and fruits
(Bottoni et al. 2004). The most common bacterial strains Bacillus cereus, Sphin-
gomonas sp. LK11 were reported by them to enhance the growth and production
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of red pepper and tomato. Similarly, some other mechanisms of a plant body, viz.,
cytokinesis, sensitivity of vascular cambium, and their differentiation and root apical
dominance are being conducted by the hormone cytokinin. Root-associated bacte-
ria such as Azotobacter chroococcum, Bacillus megaterium, and B. subtilis were
accounted to produce cytokinin thereby enhancing plant growth. On the other hand,
synthesis of ethylene by the plant growth-promoting rhizobacteria induces ripening
of fruits, opening of flowers, and leaf abscission.

Plants growing under stress are able to withstand the adverse effects of the envi-
ronment with the due help of these phytohormones (de Garcia et al. 2006). Ethylenes
produced in such conditions are called as “stress ethylene” that adds to the existing
production of ethylene. However, excessive production of ethylene is a harmful phe-
nomena for the longer development of the roots and in order to check such level
of production, PGPR’s with the help of 1-aminocyclopropane-1-carboxylate (ACC)
deaminase plays a vital role in the early stages of growth which modulates the
level of ethylene by hydrolyzing ACC, a precursor of ethylene, in ammonia and
a-ketobutyrate (Glick et al. 1998; Marques et al. 2010). Bacteria synthesizing IAA
along with endogenous plant IAA could stimulate plant growth or accelerate the
amalgamation of the enzyme ACC synthase translating the compound S-adenosyl
methionine toACC being the immediate precursor of ethylene in higher plants (Glick
2012). Different kinds of phytohormones and their plant growth-promoting activity
in agriculture crops have been summarized in Table 1.4.

1.5.1.4 Siderophore Production

Iron being one of the most important nutrients for all forms of life is found to
occur as Fe3+ that could most likely form insoluble hydroxides and oxyhydroxides
making it nearly impossible for plants and microflora for easy access (Rajkumar
et al. 2010). In order to overcome such situations, bacteria secretes siderophores
which are iron chelating agents with lowmolecular mass. According to Glick (2012),
siderophores are mostly water soluble and could be divided into extracellular and
intracellular siderophores. Siderophore forming Fe3+-siderophore complex on the
bacterial membranes gets reduced to Fe2+. These ionic forms of iron are released
into the cell from the complex via another mechanism linking both the membrane
systems (inner and outer) which may finally lead to the destruction or recycling
of the left out siderophore (Rajkumar et al. 2010). Thus, the siderophores prove
to be excellent iron solubilizing agents from minerals and other inorganic sources.
Pseudomonads, the bacterial genera, are the best-known secretors of siderophores
playing an important role in the overall plant growth promotion activities (Sandilya
et al. 2017).
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Table 1.4 Phytohormones produced by microbiomes

Phytohormone
produced

Plant
growth-promoting
rhizobacteria

Agriculture crop References

Indole-3-acetic acid
(IAA)

Aeromonas veronii Oryza sativa Mehnaz et al. (2001)

Azospirillum
brasilense

Triticum aestivum L. Kaushik et al. (2000)

Enterobacter sp. Saccharum
officinarum

Mirza et al. (2001)

Enterobacter cloacae Oryza sativa Mehnaz et al. (2001)

Pseudomonas sp.
RJ10

Brassica napus Sheng and Xia
(2006)

Bacillus sp. RJ16 Brassica napus Sheng and Xia
(2006)

Enterobacter sp. Cicer arietinum L. Fierro-Coronado
et al. (2014)

Pseudomonas
sp, Bacillus sp.

Sulla carnosa Hidri et al. (2016)

Bacillus
licheniformis

Triticum aestivum L. Singh and Jha (2016)

Bacillus subtilis Acacia gerrardii
Benth

Hashem et al. (2016)

Pseudomonas sp. Zea mays Mishra et al. (2017)

Enterobacter sp.
C1D

Vigna radiata L. Subrahmanyam and
Archana (2011)

Proteus vulgaris
JBLS202

Arabidopsis thaliana Bhattacharyya et al.
(2015)

Cytokinin Pseudomonas
fluorescens

Glycine max L. De Salamone et al.
(2001)

Pseudomonas
fluorescens

Pinus sp. Bent et al. (2001)

Paenibacillus
polymyxa

Triticum aestivum L. Timmusk et al.
(1999)

Micrococcus luteus Zea mays Raza and Faisal
(2013)

Bacillus subtilis Platycladus
orientalis

Liu et al. (2013)

Arthrobacter sp.,
Bacillus sp.,
Azospirillum sp.

Glycine max L. Naz et al. (2009)

Proteus vulgaris
JBLS202

Arabidopsis thaliana Bhattacharyya et al.
(2015)

Gibberellin Bacillus sp. Alnus sp. Gutierrez-Manero
et al. (2001)

(continued)
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Table 1.4 (continued)

Phytohormone
produced

Plant
growth-promoting
rhizobacteria

Agriculture crop References

Aspergillus
fumigatus

Glycine max L. Khan et al. (2011)

Azospirillum
lipoferum

Triticum aestivum L. Creus et al. (2004)

Phoma glomerata,
Penicillium sp.

Cucumis sativus Waqas et al. (2012)

Proteus vulgaris
JBLS202

Arabidopsis thaliana Bhattacharyya et al.
(2015)

ACC deaminase Enterobacter cloacae Brassica napus Saleh and Glick
(2001)

Pseudomonas putida Vigna radiata L. Mayak et al. (1999)

Pseudomonas sp. Zea mays L. Shaharoona et al.
(2006)

Methylobacterium
fujisawaense

Brassica sp. Madhaiyan et al.
(2006)

Rhizobium
leguminosarum

Pisum sativum Ma et al. (2003)

Achromobacter
xylosoxidans,
Acidovorax facilis

Brassica juncea L.
Czern

Belimov et al. (2005)

Bacillus,
Microbacterium,
Methylophaga,
Agromyces

Oryza sativa Bal et al. (2013)

Enterobacter
sakazakii 8MR5,
Pseudomonas
sp. 4MKS8,
Klebsiella oxytoca
10MKR7

Zea mays L. Babalola et al. (2003)

Methylobacterium
fujisawaense

Brassica campestri Madhaiyan et al.
(2006)

Enterobacter sp.
C1D

Vigna radiata L. Subrahmanyam et al.
(2018)

1.5.2 Indirect Mechanisms

Plant growth-promoting rhizobacteria has been implemented in various crop fields
for their promising capability to work both as biocontrol agents and growth pro-
moters since last two decades. Bacteria secretes various metabolites and chemical
agents that makes them wonderful candidates for controlling different crop diseases
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most of them being originated from fungal sources. According to Bhattacharyya and
Jha (2012), PGPRs are able to synthesize different antifungal secondary metabolites
such as phenazines, HCN, pyrrolnitrin, 2, 4-diacetylphloroglucinol, viscosinamide,
tensin, and pyoluteorin. Availability of bacterial antagonist in the rhizosphere soil
may even adapt the plant for developing induced systemic resistance against broad-
spectrum bacterial, fungal, and viral pathogens (Lugtenberg and Kamilova 2009).
Cyanide is the most dangerous chemical known for its high toxic properties which
can well inhibit the pathogens sensitizing agricultural crops. HCN being the sec-
ondary metabolite secreted by the PGPRs does not have any pessimistic effect on
the host plants, and hence they are frequently used for controlling weeds (Zeller
et al. 2007). According to various reports, HCN-producing PGPRs are very helpful
in controlling dreaded phytopathogens such as Pythium ultimum, Fusarium oxys-
porum, and pathogenic Agrobacterium. The mode of action mechanisms involves
lysis of fungal cell walls (Maksimov et al. 2011), root colonization (Kamilova et al.
2005), reduction of stress ethylene level (Van Loon 2007), siderophore and antibiotic
production (Beneduzi et al. 2012).

Certain genera like Bacillus have been best studied for their ability to
secrete antimicrobial traits with higher rate of agricultural applicability (Compant
et al. 2005). The members of this group of bacteria hold a key role in biocontrol
aspects as they could reluctantly replicate at a very faster rate and are mostly resistant
to environmental stress (Shafi et al. 2017). They secrete bacillomycins, iturins, and
mycosubtilin very much effective against fungal pathogens, particularly Aspergillus
flavus (Gong et al. 2015). Similarly, Lee et al. (2015) reported almost 99.1% of
the antagonistic success in crops fields inoculated with Bacillus amyloliquefaciens
strainHK34againstPhytophthora cactorum inLycopersicumesculentum,Sclerotium
rolfsii, Capsicum annuum var. acuminatum, Colletotrichum gloeosporioides, and
Cucumis sativus.

Apart from that, other bacterial genera like Pseudomonas and Paenibacillus have
also been reported by various authors having antimicrobial properties in both in vitro
and in vivo conditions. Although laboratory results may not always be relied under
field conditions, PGPR has been reported to be effective in both the conditions in
different agricultural cropping systems. That is why they may be termed as mul-
tifunctional agents by controlling a wide spectrum range of phytopathogens and
a spectacular replacement for chemical fertilizers by enhancing plant growth and
overall yield per hectares of cultivated soil further playing a vital role in maintaining
ecological balance across the globe (Ahemad and Kibret 2014).

Although much work has been done on the biocontrol characteristics of rhizo-
spheric bacteria, it has to be considered that soil type, plant species, and pathogen
affect in rhizosphere competence and/or biocontrol efficiency of applied biocontrol
strain against a soil-borne pathogen.
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1.6 Biotechnological Applications of Rhizosphere
Microbiomes

In the recent past, sustainable technologies have gained lot of momentum to improve
quality and yield of agricultural crop production. Nevertheless, still there is uncer-
tainty about success of chemical-based formulations in plant protection manage-
ment. In general, pests and diseases are mainly controlled by chemical-based pes-
ticides which pose major health risks as well as adverse negative impacts in the
ecosystem and environment. In addition to this, indiscriminate use of chemical fer-
tilizers resulted in negative impacts on biodiversity and function of biogeochemical
cycles. Most importantly, agricultural practices require novel products according to
the demand of farmers and consumers. Therefore, alternativemanagement tools have
to be developed on the basis of biological solutions.

The plant rhizosphere hosts a considerable amount of microbiome. Plant growth-
promoting rhizobacteria (PGPR) is an integral component of rhizosphere micro-
biome and is competent to promote plant growth by direct and indirect mechanisms.
PGPR also promotes defense against diseases causing organisms using diverse plant-
beneficial functions. Therefore, it is anticipated that crop inoculation with suitable
PGPR could reduce the use of pesticides and fertilizers in agrosystems. Biotech-
nological applications of various PGPR inoculants for enhancing crop production
were summarized in Table 1.5. Since most of the research information on PGPR
comes from rhizosphere microbiome, one can further explore and exploit biotech-
nical prospects of rhizosphere microbiomes for sustainable agricultural production.
We have specially highlighted the production of extracellular lytic enzymes, bioac-
tive metabolites, and volatile organic compounds (VOCs) of rhizosphere bacteria in
this section and the details are given extensively in Table 1.6.

1.6.1 Production of Lytic Enzymes by Rhizospheric Bacteria

Rhizosphere bacteria can benefit plant growth indirectly through biocontrol
mechanisms which can inhibit the growth and colonization of phytopathogens.
This potential antagonism character of biocontrol agent might occur through dif-
ferent mechanisms which include production of extracellular lytic enzymes, sec-
ondary metabolites, siderophores, antibiotics, and induction of systemic responses
(Saraf et al. 2014, Jadhav and Sayyed 2016; Kour et al. 2019a; Yadav et al. 2016a,
2019f). One of the important mechanisms for biocontrol agent is the production
of lytic enzymes which are able to degrade the membrane constituents of phy-
topathogens, such as proteases (Felestrino et al. 2018), acylases, and lactonases
(Combes-Meynet et al. 2011). These hydrolytic enzymes degrade the structural
integrity of the pathogen cell wall. Their ability to inhibit phytopathogens makes
them to be the preferable choice in biological control process. The application of
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Table 1.5 Biotechnological applications of bio-inoculants for sustainable agriculture

SN Crop Organism/Biofertilizers Mode of action References

1 Canola and
lettuce

Rhizobium leguminosarum Early
development,
Growth
promotion

Sneha et al.
(2018), Abd
El-Lattief (2016)

2 Wheat, oat, barley
mustard, seasum,
rice, linseeds,
sunflower, castor,
maize, sorghum,
cotton, jute, sugar
beets, tobacco,
tea, coffee,
rubber, and
coconuts

A. chroococcum,
A.vinelandii, A.
beijerinckii, A. nigricans,
A. armeniacus, and A.
paspali.

Nitrogen fixation,
produce thiamine
and riboflavin,
indole acetic acid
(IAA),
gibberellins (GA)
and cytokinins
(CK), improves
the plant growth
by enhancing seed
germination and
advancing the root
architecture,
inhibiting
pathogenic
microorganisms
around the root
systems of crop
plants

Revillas et al.
(2000), Abd
El-Fattah et al.
(2013), Gholami
et al. (2009),
Mali and
Bodhankar
(2009), Wani
et al. (2013),
Bhardwaj et al.
(2014)

3 Chickpea lentil,
pea, alfalfa and
sugar beet
rhizosphere,
berseem, ground
nut and soybean
Cicerarietinum
and Tigonella
foenum-gracecum

Rhizobium inoculants Increase the grain
yields

Patil and
Medhane,
(1974), Rashid
et al. (2012),
Ramachandran
et al. (2011),
Hussain et al.
(2002),
Grossman et al.
(2011), Sharma
et al. (2011,
2012a, b),
Kumar et al.
(2013)

4 Tomato Pseudomonas putida Early
developments,
Growth
stimulation

Sneha et al.
(2018), Abd
El-Lattief (2016)

5 Wheat and maize Azospirillumbrasilense
and A. irakense

Growth of wheat
and maize plants
by secrete
gibberellins,
ethylene, and
auxins

Abd El-Lattief
(2016); Perrig
et al. (2007),
Bhardwaj et al.
(2014), Sneha
et al. (2018)

(continued)
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Table 1.5 (continued)

SN Crop Organism/Biofertilizers Mode of action References

6 Banana Pearl
millet

P. flourescens Enhance growth,
leaf nutrient
contents, and
yield

Sneha et al.
(2018), Abd
El-Lattief (2016)

7 Rice Cylindrospermum
musicola

Nitrogen fixation,
liberation of
growth-promoting
substances and
vitamins; increase
the root growth

Venkataraman
and Neelakantan
(1967)

8 Canola Azotobacter and
Azospirillum spp.

Growth and
productivity

Sneha et al.
(2018), Abd
El-Lattief (2016)

9 Maize crop. P. alcaligenes, Bacillus
polymyxa, and
Mycobacterium phlei

Improves the
uptake of N, P,
and K

Sneha et al.
(2018), Abd
El-Lattief (2016)

10 Chick pea. Pseudomonas,
Azotobacter, and
Azospirillum spp.

Stimulates growth
and increases the
yield

Sneha et al.
(2018), Abd
El-Lattief (2016)

11 Wheat R. leguminismarum and
Pseudomonas spp.

Enhances the
yield and
phosphorus
uptake

Sneha et al.
(2018) Abd
El-Lattief (2016)

12 Maize. P. putida, P. fluorescens, A.
brasilense, and
A.lipoferum

Enhances seed
germination,
seedling growth,
and yield

Sneha et al.
(2018), Abd
El-Lattief (2016)

13 Wheat, maize,
and rice

Azotobacter Azotobacter
Alcaligenes, Azospirillum,
Bacillus, Enterobacter,
Herbaspirillum,
Klebsiella, Pseudomonas,
and Rhizobium

Improves growth
and grain yield

Sridhar (2012),
James (2000)

14 Wheat maize, and
rice

Azospirillum Synthesis of
phytohormones
(indole-3-acetic
acid, IAA), and
regulation of plant
hormonal balance
by deamination of
the ethylene
precursor

Abd El-Lattief
(2016)

(continued)
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Table 1.5 (continued)

SN Crop Organism/Biofertilizers Mode of action References

15 Rice Alcaligenes, Azospirillum,
Bacillus, Herba spirillum,
Klebsiella, Pseudomonas,
and Rhizobium

N-fixation Sneha et al.
(2018)

16 Chickpea Co-inoculation
(Pseudomonas + Bacillus
strains + effective
Rhizobium spp.)

Stimulate
chickpea growth,
nodulation, and
nitrogen fixation

Sneha et al.
(2018)

17 Chickpea Co-inoculation (PSB +
Rhizobium + Trichoderma)

Increase sugar,
protein, starch
contents, nodule
weight and seed
nitrogen,
potassium,
phosphorus

Mohammadi
(2010, 2011)

18 Rice Green manure and
biofertilizer

Stimulated the
growth of plants
with more number
of tillers and
broader leaves,
increased leaf area

Shanmugam and
Veeraputhran
(2000)

these hydrolytic enzymes from rhizospheric origin is a viae solution as they are
totally natural and are eco-friendly in nature (Mishra et al. 2019).

Lytic enzymes produced by various microorganisms can hydrolyze polymeric
compounds like cellulose, hemicellulose, chitin, and protein of phytopathogens.
Extracellular hydrolytic enzymes like chitinases, lipases, proteases, and glucanases
are involved in the lysis of fungal cell wall (Neeraja et al. 2010). These enzymes
either disintegrate or digest the molecular components of cell wall of fungal phy-
topathogens. Therefore, this process would be considered as eco-friendly control of
soil-borne pathogens in agriculture crops. These enzymes further involve in nutrient
cycling by decomposition of organic matter and plant residues in the rhizosphere.
It is demonstrated that extracellular lytic enzymes produced by Myxobacteria sp.
have the ability to suppress fungal plant pathogens (Bull et al. 2002). In an another
study, glucanase-producing antagonistic bacteria Lysobacter sp. is capable of con-
trolling diseases of Pythium sp. and Bipolaris sp. (Palumbo 2005). These hydrolytic
enzymes rescue plants frombiotic stresses and directly contribute in the parasitization
of phytopathogens.

Hydrolytic enzymes of rhizospheric microbes were reviewed extensively by
Jadhav and Sayyed 2016. Many rhizobacterial microbial species are capable of pro-
ducing extracellular enzymes and effectively hydrolyze wide variety of polymeric
substances like cellulose, hemicellulose, proteins, and chitin of phytopathogens
(Jadhav and Sayyed 2016). Microbial strains like B. subtilis strains PCL1608
PCL1612, Streptomyces cyaneofuscatus B-49, Serratia marcescens strain ETR17,
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Table 1.7 Mode of action of different lytic enzymes produced by rhizobacteria

S.No Extracellular
lytic enzyme

Mode of action

1 Chitinase Degradation of chitin involves breakdown of chitin polymer into
monomer, random cleavage at internal sites of chitin micro-fibril or
progressive release of diacetylchitobiose in a stepwise manner without
releasing monosaccharide or oligosaccharides

2 Glucanase Glucanase can hydrolyze the substrate by sequentially cleaving glucose
residues from non-reducing end. The enzyme can also initiate cleaving
linkages at random sites along the polysaccharide chain, releasing
smaller oligosaccharides

3 Protease Protease can hydrolyze major proteins of phytopathogenes into small
peptide chains, subsequently release their constituent amino acids and
thereby destroy capacity of phytopathogen’s protein to act on plant
cells. Some of the proteases are capable of inactivating extracellular
enzymes produced by phytopathogenic fungi

4 Cellulase Cellulases hydrolyze the β-(1,4) glucosidic linkages in cellulose
polymer and play a significant role in recycling this polysaccharide in
the rhizosphere. Cellulose chains are composed of complex, rigid,
insoluble, crystalline microfibrils. Therefore, complete degradation of
cellulose involves a complex interaction between different cellulolytic
enzymes such as cellulose/endoglucanases,
exo-cellobiohydrolase/exo-glucanases, and β-glucosidases act
synergistically to convert cellulose into glucose molecules

Pseudomonas fluorescens, Serratia marcescens strain ETR17, and many other
antagonistic microbes have a potential to synthesize hydrolytic enzymes for the
biocontrol of fungal phytopathogens like P. ultimum, F. oxysporum, R. solani, and S.
rolfsii, (Cazorla et al. 2007; Kumar et al. 2012a, b; Purkayastha et al. 2018, El-Gamal
et al. 2016). The mode of actions of extracellular enzymes is given in Table 1.7.

Chitinolytic microorganisms are heavily colonized in plant rhizosphere among
which actinobacteria are themost abundantmembers (Yadav et al. 2018c).Actinobac-
teria such as Streptomyces flavotricini, Streptomyces kanamyceticu, Streptomyces
cyaneofuscatus, and Streptomyces rochei produce chitinases and inhibit the growth
of phytopathogen, viz, Verticillium dahlia in cotton rhizosphere (Xue et al. 2013).
Chitinase-producing Bacillus thuringiensis spp. colmeri can inhibit the growth of
plant pathogenic fungi, including Rhizoctonia solani, Penicillium chrysogenum, and
Physalospora piricola (Liu et al. 2010). Biocontrol agentBacillus subtilis inhibits the
growth of pathogenic fungiFusarium oxysporum through production of extracellular
chitinase (Gajbhiye et al. 2010). Chitinases produced by Brevibacillus laterosporus
effectively inhibit the growth of phytopathogenic fungi Fusarium equiseti (Prasanna
et al. 2013). Lysobacter enzymogenes showed to inhibit Pythium aphanidermatum
by producing extracellular protease and lipases (Folman et al. 2003)

Minimal use of chitinase-based fungicides in agriculture crops was associated
with the perception that their efficacy will be slowly reduced in the soil environment.
Nevertheless, Dahiya et al. (2006) extensively reviewed biotechnological prospects
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of chitinolytic enzymes and suggested that chitinases can be used as supplemen-
tary inputs along with other chemical-based fungicides to enhance their effective-
ness against phytopathogenic fungi and reduce the required amount of chemical
fungicides. In addition to this, it was shown that the application of mixed consor-
tia containing two different chitinolytic bacteria is more effective in controlling the
pathogen. Application of chitinase-producing Streptomyces sp. 385, Paenibacillus
sp. 300, and both together is more effective in controlling cucumber wilt caused
by F. oxysporum than individual strains applied (Singh et al. 1999). Similar kind
of observation was reported by El-Tarabily et al. (2000) wherein growth of fun-
gal pathogen Sclerotinia responsible for vegetable rot was effectively controlled by
combination of S marcescens, Streptomyces viridodiasticus, and Micromonospora
carbonacea strains. In recent, chitinase, protease, lipase, and cellulose-producing
Serratia marcescens strain ETR17 showed in vitro antagonism toward nine different
root and foliar pathogens of tea (Purkayastha et al. 2018).

Actinomycetes were considered to be strong biocontrol agents against fungal
pathogens. This is mainly due to production of different types of antifungal com-
pounds such as antibiotics and extracellular hydrolytic enzymes which includes
chitinases and glucanases (Xue et al. 2013; Yadav et al. 2018c). Streptomyces hal-
stedii, Streptomyces cavourensis SY224, and Streptomyces griseus are known to
produce potential antifungal extracellular chitinases, which makes them to be used
as biocontrol agents in crop protection strategies (Ki et al. 2012; Gherbawy et al.
2012). Lysobacter spp. was reported to be an effective biocontrol agent against soil-
borne pathogens through production of extracellular enzymes and other metabolites
(Folman et al. 2003). Lysobacter spp. was abundant in the soil which is suppressive to
root pathogen, viz., Rhizoctonia solani. Certain antagonistic strains showed in vitro
biocontrol activity against Xanthomonas campestris, R. solani, and other impor-
tant phytopathogens such as Aspergillus niger, Fusarium oxysporum, and Pythium
ultimum.

These natural microbial biofungicides will be used as integrated pest manage-
ment supplement for reduction of negative impact of chemical pesticides on the
environment and maintain the sustainable production of agriculture.

1.6.2 Production of Antibiotics

Rhizospheric bacteria produce distinct antimicrobial products to inhibit the growth
and colonization of plant pathogens to compete the nutrients present in the rhizo-
sphere. This has become a beneficial trait to the host plant as disease development is
significantly reduced by PGPR. Rhizosphere harbors diverse actinomycetes species
which have been further exploited for secondary metabolites (Yadav et al. 2018b;
Geetanjali and Jain 2016). Actinobacteria is known to producewide variety of natural
antimicrobial products (approximately 10,000 secondary metabolites) (Passari et al.
2015, 2017; Yadav et al. 2018a, b). Production of antibiotics by Actinobacteria was
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extensively reviewed by Yadav et al. (2018b, c). Application of secondary metabo-
lites producing rhizobacterial isolates against phytopathogens is increasing over the
past decade (Yilmaz et al. 2008). A variety of antimicrobial agents such as 2,4-
diacetylphloroglucinol (DAPG), pyoluteorin (PRN), phenazine, cyclic lipopeptides,
tensin, and pyrrolnitrin (PLT) have been screened and identified from Pseudomonas
sp., Arthrobacter sp., and Streptomyces sp., (Weller 2007; Gupta et al. 2015). Details
of antibiotics/secondary metabolites producing organisms and their application in
different crops have been summarized in Table 1.6.

Rhizospheric soil isolates Bacillus sp. S2 and Pseudomonas fluorescens S5
were found to exert good antimicrobial activity against multi-drug-resistant clini-
cal pathogens such as Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia
coli, and Staphylococcus aureus obtained from different samples (Dhore et al.
2014). ThirtyPseudomonas fluorescens strains isolated from rice rhizosphere against
pathogenic fungi Sarocladium oryzae, Dreschelaria oryzae, Magnaporthe grisea,
and Rhizoctonia solani. Among these, P. fluorescens Pf 003 effectively inhibited
(62–85%) the mycelial growth in all the pathogenic fungi in dual culture. The anti-
fungal compounds extracted with ethyl acetate from P. fluorescens at 5% completely
inhibited the pathogens (Reddy et al. 2007). Walia et al. (2013) isolated the bacteria
from the tomato rhizosphere for having broad-spectrum antifungal activity against
Sclerotinia sclerotiorum, Rhizoctonia solani, and Fusarium oxysporum.

DAPG, phenazines, PLT, and PRN are considered to be potent antibiotics
synthesized by Pseudomonas biocontrol agents affiliated to gammaproteobacteria
(Table 1.6). In recent, antibiotics-producing Pseudomonas spp. has got much atten-
tion in biocontrol research, and corresponding genes involved in the expression and
regulation of these metabolites are now fully understood (Weller 2007and there in
references). For the last 30 years, developments on biocontrol applications of Pseu-
domonas sp. against soil-borne pathogens have been summarized by Weller (2007).
P. fluorescens strain CHA0 was isolated from tobacco rhizosphere which is natu-
rally suppressive to black root rot of tobacco caused by Thielaviopsis basicola (Stutz
et al. 1986). P. fluorescensCHA0 produces siderophore (pseudobactin), PLT, DAPG,
PRN, HCN, salicylic acid, pyoverdine, indoleacetic acid, pyochelin, and other sec-
ondary metabolites (Voisard et al. 1994). Antagonistic bacterium P. fluorescens F113
isolated from sugar beet was applied in the field for suppression of damping-off of
sugar beet infection caused by a pathogen Pythium ultimum (Cronin et al. 1997a, b).

Antibiotics such as bacilysin- and iturin-producing Bacillus subtilisME488 sup-
pressed soil-borne pathogens in pepper and cucumber crops (Chung et al. 2008). Sec-
ondarymetabolites, viz., Pyrrolnitrin andprodigiosin-producingSerratiamarcescens
strain ETR17 Serratia marcescens strain ETR17 showed significant level of in vitro
antagonistic property against different root and foliar pathogens of tea (Purkayastha
et al. 2018). Antifungal lipopeptides such as surfactin-, fengycin-, and iturin-
producing B. subtilis strains PCL1608 and PCL1612 have shown biocontrol mecha-
nism toward soil-borne pathogen Fusarium oxysporum (Cazorla et al. 2007). Paeni-
bacillus sp. strain B2 isolated sorghum mycorrhizosphere showed production of
antibiotic polymyxin B1 and significantly inhibited the growth of fungal pathogens
(Selim et al. 2005). Antifungal peptides-producing Bacillus sp. KM 5 isolated from
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rice rhizosphere showed antagonist activity toward pathogenic fungi Gibberella
fujikuroi, Sclerotium rolfsii Saccardo, Fusarium udum, Helminthosporium oryzae,
and Rhizoctonia solani Nees (Majumdar et al. 2011).

1.6.3 Production of Volatile Organic Compounds (VOCs)

Volatile organic compounds are lipophilic low molecular weight (<300 g mol − 1)
compounds emitted from microbial metabolic pathways with high vapor pressure
and low boiling point. VOCs can act as signal molecules in rhizosphere over short
and long distances (Fincheira and Quiroz 2018). It is evidenced that VOCs released
from diverse rhizospheric microorganisms, e.g., Arthrobacter sp., Proteus sp.,
Bacillus sp., Fusarium sp., Pseudomonas sp., Alternaria sp. and Laccaria sp., can
promote plant growth on a specific “target”. Detailed description about chemical
nature of VOCs and their functions have been summarized in Table 1.6. Ryu
et al. (2003) reported for the first time about the mechanism mediated by volatile
organic compounds released by Bacillus subtilis GB03 which induced growth on
Arabidopsis thaliana. This study evidenced that VOCs can modulate stress, growth,
nutrition, and health processes in host plants. Some identified VOCs compounds,
such as acetoin, β-Caryophyllene 2,3-butanediol, Sesquiterpenes, 2-pentylfuran, and
dimethylhexadecylamine, have shown their ability to elicit plant growth at above and
below ground biomass (Fincheira and Quiroz 2018; Chung et al. 2016) (Table 1.6).

Few studies indicate that VOCs act as signals and chemical messengers to regulate
phytohormone synthesis, metabolic pathways, and nutrition levels. Effects of VOCs
for induction of resistance and tolerance in plants are documented, wherein com-
pounds such as 3-pentanol, dimethyl disulfide, 6-pentyl-α-pyrone, and acetoin were
reported. VOCs derived by rhizospheric bacteria showed antagonistic activity toward
plant pathogen Rhizoctonia solani and inhibit mycelial growth (Kai et al. 2007). Cer-
tain plant volatiles are proven to induce plant growth promotion through biochem-
ical signals, eliciting local defence reactions known as induced systemic resistance
(Chung et al. 2016; Kai et al. 2007). Long-chain VOCs signaling molecules, ace-
toin 2,3-butanediol, ethanethiol, isoprene, and acetic acid-butyl ester, and tridecane
are found to be involved in induced resistance in Arabidopsis (Lee et al. 2012a, b).
Yi et al. (2016) reported that 2,3-butanediol is produced by a Bacillus subtilis iso-
late involved in plant defense mechanisms. Root exudates of pepper inoculated with
the B. subtilis were used to challenge various phytopathogens. For example, growth
of Trichoderma sp (saprophytic fungus) and Ralstonia solanacearum (soil-borne
pathogen) was inhibited by VOCs. This indicates that VOCs triggered the secretion
of root exudates and subsequently acted as a plant defence inducer toward soil-borne
fungal and bacterial pathogens.

Volatile organic compounds such as dehydroaromadendrene, α-pinene,
tetrahydro-2,2,5,5-tetramethylfuran, (-)-trans-caryophyllene, and (+)-sativene-
producing Cladosporium cladosporioides strain CL-1 showed increased growth
parameters in Tobacco crop (Paul and Park 2013). In an another study, rhizospheric
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isolates such as Bacillus subtilis GB03, Bacillus amyloliquefaciens IN937, Pseu-
domonas fluorescens 89B-61, and Paenibacillus polymyxa E681 produced Brassi-
nosteroid a long-chain VOC and signaling molecules such as acetoin 2,3-butanediol,
ethanethiol, acetic acid-butyl ester, and isoprene. TheseVOCs are involved in induced
systemic resistance in Arabidopsis (Lee et al. 2012a, b). Fresh weight, shoot length,
chlorophyll concentration, and lateral root numbers of Sorghum were significantly
increased by dimethylhexadecylamine produced byArthrobacter agilisUMCV2. Salt
tolerance, increased shoot and root length, fresh weight, and leaf surface area were
increased in soybean by VOCs, 4-nitroguaiacol, and quinoline produced by Vaish-
nav et al. (2016). VOCs of fungal origin also showed increased growth parameters
in host plants like lettuce, Arabidopsis, and tobacco. Fusarium oxysporum MSA 35
showed production of β-Caryophyllene and increased freshweight of tobacco in field
experiment (Minerdi et al. 2011). Sesquiterpenes synthesized by ectomycorrhizal
fungi Laccaria bicolour increased the lateral root of Arabidopsis (Ditengou et al.
2015). In the same study, it was demonstrated that other ectomycorrhizal ascomycote,
Cenococcum geophilum, which cannot synthesize Sesquiterpenes does not promote
lateral root of Arabidopsis. These studies indicate that volatile organic compounds
emitted by microorganisms in the rhizosphere are cheaper, effective, efficient, and
eco-friendly alternatives for controlling phytopathogens.

Environmentally friendly biotechnological approaches offer the development of
PGPR inoculants and their potential application inmetal-contaminated systems. Plant
growth promotion by PGPR is a result from improved nutrient acquisition or phy-
tohormonal stimulation (Table 1.3). Different mechanisms involved in plant growth
promotion were shown in Fig. 1.6. PGPR inoculants were widely used in agriculture,
forestry, horticulture, and in environmental restoration/phytoremediation sectors.

1.7 Conclusion and Future Prospects

Although studies have focused on plant microbiome structure and its function under
natural and agricultural environments, there have been no significant coordinated
efforts to combine and translate research results into practical solutions for farmers.
According to Busby et al. (2017), integration of beneficial plant microbiome into
agricultural production is one of the ways to assist in achieving these goals. However,
this requires large-scale efforts from academic and industry researchers, farmers, and
policy-makers to understand and manage complex plant–microbiome interactions
under current challenges of the agriculture production.

For achieving this goal, five key research priorities have been identified by Busby
et al. (2017). Few research priorities include development of host–microbiome
model systems with associated microbial culture collections and reference genomes;
characterization and refinement of a model “plant genotype–environment stress–
microbiome–management interactions”; elucidation of the role coremicrobiome and
determine functional mechanisms of plant–microbiome interactions. These research
priorities may enable us to manipulate agricultural microbiomes and thereby to
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develop management strategies for increased production and productivity of global
agriculture in a sustainable manner. One of the challenges for future research work
includes protection and conservation of rhizosphere biodiversity and their potential
application in agricultural soils. Sustainable agriculture production may not be pos-
sible unless integration of plant germplasm and beneficial microbial species in the
current agricultural practices globally.

Exploitation and production of natural drug formulations from microbial species
have gained a significant leap during last three decades. Therapeutic applications of
anticancerous compounds extracted from actinobacteria have been well addressed
(Busi and Pattnaik 2018). The research priority is now shifted toward rhizosphere
microbial communities for developing new drugs through high-throughput screening
and fermentation techniques. Exploitation of bioprospecting potential of rhizosphere
microbiomes is an upcoming new avenue.
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Chapter 2
Culturable Endophytic Fungal
Communities Associated with Cereal
Crops and Their Role in Plant Growth
Promotion

Hira Saleem, Hareem Mohsin, Rabia Tanvir and Yasir Rehman

Abstract Manymicroorganisms are known to live in association with plants. Endo-
phytes are the microorganisms that live in the internal tissues of plants. Endo-
phytic fungi hold great importance for the roles that they play in association with
the host plants. Endophytes are known to promote the growth of the host plants
by various activities such as detoxification of toxic compounds, protection against
pathogens, and production of plant growth promoting hormones. Many biotechno-
logically important metabolites are also produced by endophytes such as anticancer
and antimicrobial compounds. There is a rich diversity of endophytes that needs to
be explored for biotechnological purposes. This chapter focuses on the endophytic
fungi of cereal crops and the roles they play.

Keywords Cereal crops · Endophytic · Fungal communities · Plant growth
promotion · Sustainable agriculture

2.1 Introduction

Plants play a vital role in the ecosystem. They are the producers that interact with dif-
ferent microbial communities and help in maintaining the biodiversity and stability
of the ecosystem. There can be two types of suchmicrobial communities with respect
to the location, i.e., epiphytic fungi and endophytic fungi (Lindow and Brandl 2003).
Epiphytic Fungi (epi; upon, phytic; plant) refers to the fungal communities propa-
gating or adhering to the plant surface. Common examples include Pestalotia and
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Botryosphaeria (Santamaría and Bayman 2005). Endophytic Fungi (endo; within,
phytic; plant) refers to the fungal communities which are present within the plant
tissues asymptomatically. Common examples include Colletotrichum, Xylaria, and
Guignardia (Schulz et al. 2002). Majority of these microbial communities comprise
of endophytic fungal species.

Plants majorly depend on different kinds of associations with microbial species,
especially the endophytic fungi, which play essential roles in plant growth, resistance
against diseases, and tolerance against environmental stresses (Yang et al. 2018). The
preliminary definition for the term endophytes was given by Hallmann et al. (1997)
who stated that these are the microbial communities present within the plant tissue
that cause no visible symptoms of any disease in the plant. However, this defini-
tion cannot be taken as the sole source to describe the endophytes (Hallmann et al.
1997; Lugtenberg et al. 2016). Mainly because there has been not much discussion
about the unculturable endophytic species in the plant microbiome. Secondly, the
latent plant pathogens are difficult to be recognized by culturable techniques and
thus cause problems if they are in association with the unculturable endophytic com-
munities. Due to these two major reasons, the endophytes, especially the endophytic
fungal communities, are a challenge to study (Card et al. 2015; Hardoim et al. 2015;
Lugtenberg et al. 2016).

The endophytes are most commonly associated with either roots or shoots of the
plant. Such a relationship is termed as a symbiotic relationship in which two organ-
isms are associated with each other. This can either be mutualism, commensalism,
or parasitism. Furthermore, one fungal association which is in a mutualistic relation
with one type of plant can be pathogenic to other types of plants (Bokati et al. 2016;
Johnson et al. 1997). The root associated fungal endophytes usually have a mutual-
istic relation. They play a vital role in the better uptake of water and minerals and
in return utilize carbohydrates from the host plant (Jumpponen 2001). In the case of
shoots, most of such association has been found in the foliar regions of the plants at
the point of contact of the leaves and the soil (Clement et al. 1997; Saikkonen et al.
2013). They play an important role in alleviating the stress, which can be abiotic or
biotic, experienced by the host plant, thus making the host fit for survival (Bokati
et al. 2016).

A research conducted by Bokati et al. (2016) demonstrated that not just the pres-
ence of fungal communities as endophytes is important, but the timing of their colo-
nization also plays a critical role (McGonigle et al. 1999). The earlier the colonization
and propagation of the endophytes, the better the absorption of nutrients and miner-
als from the soil with reduced effects of environmental stresses (Bokati et al. 2016).
Endophytic fungal species are also reported to be promising candidates for the con-
trol of diseases (Kusari et al. 2012). Reports also state that the rice blast disease
can be effectively controlled by the application of endophytic fungi (Atugala and
Deshappriya 2015). Endophyte application, therefore, can limit the long term use
of fertilizers and fungicides which are harmful to environment and human health
(Priyadarshani et al. 2018; Tian et al. 2004).

Cereal crops, also known as grain crops, are the most commonly consumed group
of plants all over the world. Approximately 50% of the total intake of food constitutes
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cereals and thus is considered as the staple food (Awika 2011). The word cereal is
derived from the Latin word “cerealis” which means “grain”. These crops belong
to the grass family Poaceae (Gramineae) characterized by thin and long stalks. The
grain usually comprises of three parts, i.e., endosperm (the part present around the
embryo which provides nutrition for growth), germ (the part which becomes a plant),
and the bran (hard outer covering of the grain) (Sarwar et al. 2013).

In the form of whole grain, it is a rich source of a number of nutrients such as
starch, fats, oils, vitamins, and proteins. But when processed and converted into a
refined form, bran and germ are removed and the endosperm is left which serves
as a rich source of carbohydrates in the human diet (Sarwar et al. 2013). To fulfill
the need of carbohydrates in our body, cereals are included in the daily diet. In
wheat, proteins comprise of about 7–22% and in rice, it is the second major nutrient.
Monosaccharides and disaccharides are also present but in a lesser quantity. Different
kinds of oils and triglycerides along with some other nutrients are also present.

A diversity of endophytes has been isolated from cereal crops as well and themost
extensively studied crops arewheat andmaize (Larran et al. 2007; Sapkota et al. 2015;
Yadav 2017). These endophytic species are reported to enhance the growth of the
aforementioned cereal crops in nutrient depleted areas (Bokati et al. 2016; Yadav
et al. 2019a). Research has been performed to assess the effect of abiotic factors on
the growth of the plants in association with fungal strains. Different factors such as
the intensity of light, availability of nutrients, and pH have been studied. Variations
in plant growth were observed in the presence of fungal endophytes; however, the
changes were specific for specific plant–fungal association. This indicated that the
influence of abiotic factors usually depends on the plant–symbiont association and
interaction (Kia et al. 2017).

This chapter describes the importance of endophytic fungal associationwith cereal
crops. These symbiotic fungal species play a significant role in enhancing the plant
growth along with providing resistance and tolerance against diseases and stress
factors. They have also proven themselves as promising candidates in a number of
biotechnological applications. Due to the production of a plethora of substances,
secondary metabolites, and enzymes, they have the potential to be used in various
industries such as medicine and agriculture.

2.2 Biodiversity of Endophytic Fungal Communities

Fungal endophytes, in association with the plants, are an indispensable element of
the plant microbiome. These endophytes are ubiquitously present in nature (Herrera
et al. 2013) and variation is found among these endophytes in different geographi-
cal locations (Weiss et al. 2011) such as Arctic tundra, mangroves, grasslands and
savannahs, tropical and temperate forests as well as hot deserts (Arnold and Lutzoni
2007). It has also been reported that there is a limited number of fungal endophytes
in places at higher latitudes but the number increases in the tropical regions. Plants
that are reported to possess these fungal communities include mosses, non-vascular
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plants, ferns, flowering plants, and conifers (Arnold 2007; Suman et al. 2016; Yadav
et al. 2018b).

The diversity of these species is also marked by the host specificity. Studies show
that there can be only one host plant or a particular range of host plants with which
the association can be made. Through this “host specificity”, fungal species are
restricted to a particular plant or a group of plants. Another important term is the
“host recurrence” which is defined by the frequency of occurrence of an endophyte
within a particular plant host, or a range of plant hosts, in a particular habitat. The
phenomenon of “host selectivity” is also there according to which the endophyte has
the capability to be in relationship with a number of plants but still the endophytic
species will show a preference toward one particular plant. Host selectivity is most
commonly termed as “host preference” by the mycologists (Cohen 2004; Dequn
2001; Huang et al. 2008; Rana et al. 2019a, b).

It has been reported by Dreyfuss and Chapela (1994) that approximately one
million endophytic species inhabit the plants. These endophytic species are said to
shape the diversity and structure of the plant microbial communities (Sanders 2004).
It has been reported that out of these one million species, only 80000–100000 have
been studied (Ainsworth 2008). Kumar and Hyde (2004) reported that in the tropical
and temperate forests, the plants contain a high number of fungal endophytes. Prior
studies have demonstrated that around as many as 17 endophytic fungal species can
be isolated from a single leaf of a plant. Such observations lead to the conclusion
that endophytes can be present in a large number in a single part of a plant (Gamboa
and Bayman 2001). Arnold et al. (2000) also reported a large number of unculturable
endophytes residing in plants of tropical forests.

2.3 Importance of Cereal Crops

Cereal crops are the staple foods which hold great importance in an individual’s diet.
The significance of these crops are listed below (Papageorgiou and Skendi 2018):

• These crops provide energy of 10000–15000 kJ/Kg. This is almost 10–20 times
more as compared to energy provided by citrus fruits.

• They provide almost 30% of the total calories in the daily diet. In Asia, the cereals
fulfill around 70–80% of the daily energy requirement of the people.

• It is a rich source of minerals which include magnesium, calcium, and potassium
in a combined form of sulfate and phosphates. In low quantities, zinc, manganese,
and copper are also present.

• Wheat products, which are rich in phytosterols, play an important role in
minimizing the chances of breast cancer as they stimulate estrogen production.

• There are fibers present in the cereals, both soluble and insoluble, such as cellulose,
pectin, and hemicellulose. They are efficient in making the peristaltic movements
more effective which ultimately prevents constipation.
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• There is extremely low sugar content which helps in lowering the blood sugar
level.

2.4 Relation of Endophytic Fungal Communities
and Cereal Crops

With the rising demands of the crops, their production needs to be increased as well.
However, there are certain limitations and challenges with the traditional methods
of crop production. The challenges include the application of herbicides, pesticides,
and fertilizers and the impact of these chemical formulations on the environment
and soil. Furthermore, the crop rotation system and increased cultivation of the crops
have led to a decrease in the nutrient supply from the soil, reduction of the soil fertility
and to some extent reduction in the crop yield (Kour et al. 2019b; Rees et al. 2013).
Due to these problems, the challenge remains on how to meet the rising demand of
cereal crops while maintaining the quality of the crops and avoiding any harm to the
environment.

To address these problems, scientists have been studying the symbiotic relation
of fungal communities which can enhance the productivity and sustainability of the
crops. These endophytic symbionts reside in the healthy tissues within the plants and
propagate within asymptomatically. They have been reported to act as “biological
trigger” which will switch on the response systems of the host plants more effec-
tively and rapidly as compared to the plants without any such symbiotic associations
(Bandara et al. 2006; Redman et al. 2002). Such symbiotic relations not only help
in enhancing the crop growth and yield but can also be used as biofertilizers thus
causing a reduction in the harmful effects on the environment caused by the use of
chemical fertilizers. These fungal communities also play a vital role in recycling
nutrients in the soil and in making the quality of soil better (Karthik et al. 2016;
Khan et al. 2013; Kumar et al. 2019; Ripa et al. 2019; Yadav 2019b).

2.5 Role and Importance of Endophytic Fungal
Communities

In recent years, the role of endophytic fungi has been extensively studied related to
plants and crops from all over the world (Vandenkoornhuyse et al. 2015). A number
of important roles have been found related to this symbiotic relation:
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• Increased supply and recycling of nutrients
• Protection of cereal crops and plants from abiotic and biotic stresses
• Enhancement in crop growth and yield
• Improving the biodiversity of plants in the ecosystem
• Plants’ protection against different predators and other plant pathogens.

2.6 Isolation of Endophytic Fungi

2.6.1 Prerequisites for Isolation of Endophytic Fungi

For the isolation of these endophytic fungal communities, some prerequisites are to
be taken into consideration. These are as follows:

• The plants at the sampling site should be healthy and free of any kind of disease.
But if the research is being conducted with respect to any kind of biotic stress, then
the site should be having plants that are infected and facing high malady pressure.

• There should be no previous study or research work done with the respective soil.
• Minimum exposure to the contaminants whether they are from the land, air, or
water pollution.

• The piece of land under study should be inhabiting plant species of the same kind.
• There should be the active growth stage of the plants.
• Sampling is to be done under normal conditions, not after a heavy rain or a cold
spell or any other infrequent weather condition, without any kind of disturbance.

During sampling, all other factors such as pH, salinity, type of soil, tempera-
ture, humidity, moisture content of soil, and nutrients in the soil should be recorded
(Murphy et al. 2018).

2.6.2 Method for Isolation

The protocol for isolation of endophytic fungi is followed as given by Strobel et al.
(1996).Modifications can be done according to the plant species or the type of fungal
community being targeted (Radji et al. 2011). Following are the common steps which
are carried out for the isolation purpose:

• Collection of plant samples which include leaves, roots, stem, or branches.
• Washing of plant samples under tap water for 10 min.
• Air-drying the samples.
• Cutting of sample into small pieces of approximately 1.0 cm in length with the
help of a sterile surgical blade.

• Surface sterilization by immersing the sample in 70% ethanol for 1 min.
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• Immersion of samples in 5.25% sodium hypochlorite solution for 5 min.
• Immersion of samples again in 70% ethanol for 30 s.
• Lastly, the immersion of samples in autoclaved distilled water for 3–5 s.
• Placement of the sterilized sample pieces on a plate of potato dextrose agar
(PDA) containing antibiotics such as chloramphenicol (50ug/ml) and streptomycin
(250ug/ml). The presence of antibiotics will not allow bacterial growth.

• Incubation of plates at 28°C for almost 10–14 days. The plates should be checked
within that time for the growth of fungal isolates.

• Transfer of pure cultures into agar plates of PDA and again incubation at 28°C for
almost 10–14 days.

Another method for isolation of endophytic fungi has been described by Huang
et al. (2001). Following steps are included:

• Removing the outer bark of the sample.
• Cutting of the outer bark into small pieces with a sterile surgical blade.
• Grinding the pieces in the form of a paste.
• Adding the paste in autoclaved PDA medium just when the medium reaches the
pouring temperature, i.e., 40–45 °C.

• Pouring the media in autoclave plates under aseptic conditions.
• Incubating the poured plates at 25 °C and keep checking the plates till the growth
of hyphal tips is observed.

• Removing the hyphal tips and sub-culturing in fresh PDA medium followed by
incubation at 25 °C for at least 14 days.

• Purification of cultures by transferring them into a newmedium plate by the hyphal
tip method.

– The hyphal tip method involves the observation of the hyphae under a dissecting
microscope at high magnification. The hyphae of interest are cut (a segment of
about 1 mm thick) with the help of a sterile surgical blade and then transferred
to the agar plate.

2.6.3 Characterization of Endophytes

After isolation of endophytic microorganisms, identification and characterization
come as the most important step. A number of methods have been adopted
by researchers for this purpose. Traditional techniques such as morphological
characterization, biochemical profiling, as well as sequencing of the PCR products
have been extensively used for the identification of molecular markers. Advanced
technologies are now being used which include terminal restriction fragment
length polymorphism (T-RFLP), denaturing gradient gel electrophoresis (DGGE),
and metagenomics. These methods have paved the way toward better and precise
characterization of the endophytic communities (Rodriguez et al. 2009; Yang
et al. 2018). Tao et al. (2008) characterized Bletillaochracea for endophytic
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diversity and phylogenetic relationship through the DGGE technique. Berg et al.
(2005) characterized the microbial communities associated with potato plant using
T-RFLP technique. Sessitsch et al. (2012) characterized the endophytic microbial
communities associated with the roots of rice plants through shotgun clone library
construction followed by Sanger sequencing.

2.6.4 Maintenance and Preservation of Endophytic Fungi

For keeping microorganisms and endophytes in a viable state for a longer time, dif-
ferent preservation strategies are used. The metabolic functioning and physiological
properties are maintained via these techniques. The simple techniques include the
sub-culturing method, storing the cultures under oil (Smith and Onions 1994), water
(Burdsall and Dorworth 1994), silica gel, or soil (Smith and Onions 1994). Other
methods include Lyophilization (Onions 1971) and cryopreservation (Smith 1998)
of the strains.

Following are the five major strategies used for preservation (Freire et al. 2016)

i. Continuous Sub-culturing: This technique was devised by Lacaz et al. (1991).
This technique involves continuous transferring of the cultures to new vials
having fresh sterilized PDA media followed by incubation at 25 °C.

ii. Use of Mineral Oil for Preservation: This method of preservation was intro-
duced by Braz et al. (2009). 20 ml glass tubes are filled with 2 ml PDA medium
and microbial strain is inoculated in the tube and incubated for 7 days. Follow-
ing the incubation, a thick layer of 10 ml mineral oil (autoclaved for 2 days
consecutively) is used for covering the culture tubes. The tubes are then covered
with stopper, sealed with aluminum foil, and stored at 25 °C.

iii. Use of Autoclaved Water for Preservation: This technique was introduced
by Diogo et al. (2005). 10 ml autoclaved distilled water (autoclaved for 2 days
consecutively) is filled in glass tubes (20 ml). Five small segments of the fungal
hyphae are taken from a 7-day old culture and transferred to the tubes. The tubes
are then covered with the stopper, sealed with aluminum foil, and stored at 28
°C at room temperature.

iv. Preservation at –20 °C: This technique was introduced by Girão et al. (2004).
Glass tubes of 20 ml are prepared having 8 ml of autoclaved distilled water,
0.5 ml dimethyl sulfoxide (DMSO), and 1 ml of glycerol (DMSO and glycerol
act as cryo-protectants). All the components are subjected to autoclaving for
2 days consecutively. Five small segments of the fungal hyphae are taken from
a 7-day old culture and transferred to the tubes. The tubes are then covered with
stopper, sealed with aluminum foil, and stored at –20 °C.

v. Preservation at –70 °C: For this strategy, 0.4 ml of autoclaved distilled water,
0.025ml of DMSO, 0.05ml of glycerol, and 10mg of polypropylene spheres are
put in a 1.5 ml eppendorf. Small segments of the fungal hyphae are taken from
a 7-day old culture and transferred to the tubes. The tubes are then covered with
stopper, sealed with aluminum foil, and stored at –70 °C (Freire et al. 2016).
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2.7 Specific Cereal Crops and Their Associated Endophytic
Fungal Communities

2.7.1 Triticum aestivum (Wheat) and Its Associated Fungal
Communities

Wheat is the major cereal crop being consumed globally. It has diverse endophytic
fungal communities associated with it via symbiosis. The fungal isolates Aspergillus
flavus, Cladosporium cladosporioides, Trichoderma harzianum, and Fusarium pro-
liferatum have been majorly reported with the wheat crop. It was reported by Ripa
et al. (2019) that these isolates were involved in producing plant growth promoting
hormones, majorly indole acetic acid and siderophores. Majority of these isolates
were able to resist the high salinity pressure of up to 7.5% and showed good growth
in PDA medium. Metal resistance against copper, nickel, and cadmium was also
observed which makes them promising candidates for the better growth of the crops
even at areas where there is heavy metal pollution (Ripa et al. 2019).

2.7.2 Oryza sativa (Rice) and Its Associated Fungal
Communities

Rice is the secondmajor cereal crop cultivated all over the world. A number of fungal
communities are associated with rice as well. Naik et al. (2009) conducted a research
in which it was concluded that the major endophytes associated with rice crops were
Penicilliumchrysogenum,Fusariumoxysporum, andCladosporiumcladosporioides.
These species were reported to act antagonistically against pathogenic compounds
by producing different bioactive compounds. These facts can be exploited for better
and enhanced crop production.

There are also reports that fungal species are also residing in the roots of the plant.
Most noteworthy is the presence ofAscomycota phylum inwhich themost prominent
members areAspergillus, Penicillium, Fusarium, and Trichoderma (Santos-Medellín
et al. 2017; Sharma et al. 2019). The species of Aspergillus and Penicillium are
reported for the production of different organic acids (Ding et al. 2019; Khan et al.
2014).

2.7.3 Zea mays (Maize) and Its Associated Fungal
Communities

Maize being an important cereal crop has a high content of vital nutrients (Ngachan
et al. 2011). Maize crop is reported to be in symbiotic relation with the endophytic
fungi mainly in the root area (Orole and Adejumo 2009; Potshangbam et al. 2017).
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It has been reported by Potshangbam et al. (2017) that major endophytic fungal
communities associatedwith the leaves ofmaize plantswereAcremonium,Fusarium,
and Penicillium. The root part of the maize plant inhabited a large number of fungal
communities including Fusarium, Trichoderma, Aspergillus, Alternaria alternate,
and Botryodiplodia. The study reported that Fusarium sp. is present in different
parts of the maize plant. These endophytes are also involved in the production of
different biologically important molecules that help the plant to grow better. Such
beneficial associations can be exploited to synthesize biofertilizers thus minimizing
the use of chemical fertilizers and the associated risks (Potshangbam et al. 2017;
Shweta et al. 2010).

2.7.4 Hordeum vulgare (Barley) and Its Associated Fungal
Communities

Barley being an important nutritional crop has a high content of minerals includ-
ing magnesium, manganese, and selenium. Furthermore, it is considered as a store-
house for dietary fibers which play a role in keeping the gut healthy (Pourkheirandish
and Komatsuda 2007). Barley plant is vulnerable to attack by several pests such as
Diuraphis noxia, Metopolophium dirhodum and Mayetiola destructor. The endo-
phytic fungiNeotyphodium is reported to be anti-herbivore and proves to be a biolog-
ically controlling agent against pest attack. This can also havemany biotechnological
interventions to stop the accumulation of harmful substances in plants by eliminating
the use of pesticides (Clement et al. 2005).

2.8 Role of Endophytic Fungi in Plant Growth Promotion

2.8.1 Growth Promotion Mechanisms

2.8.1.1 Phosphate Solubilization

Phosphate is one of the essential macronutrients needed for plant growth. Many
microbial species including fungi have the ability to solubilize phosphate lead-
ing to its mineralization (Yadav et al. 2015a, b, c). Among total population of
fungi, 0.1–0.5% constitute the phosphate solubilizing fungi in which the endophytic
fungi contributemajorly. Important endophytic P-solubilizing fungi belong to genera
Aspergillus, Penicillium, Curvularia, Fusarium, and Candida (Mehta et al. 2019).
Phosphate solubilization is highly dependent on the tendency of the microorgan-
isms to produce organic acids in the surrounding environment. These organic acids
form complexes with calcium, iron, and aluminum present in the soil to convert low
soluble phosphate into soluble one through chelation and exchange reactions. Low
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pH is required to make insoluble phosphate available to the plants in the form of
soluble phosphates. Organic acids such as citric acids, gluconic, and ketogluconic
acid lower the pH of the environment, thus providing the medium in which insolu-
ble metal part of the phosphate is exchanged with sodium or magnesium resulting
in soluble phosphate salt (Behera et al. 2017; Yadav et al. 2016). Organic acids
also increase the accessibility of phosphate for the plants by blocking phosphate
adsorption sites on soil particles or by forming complexes with cations on mineral
surfaces of soil (Rodrı́guez and Fraga 1999). On the other hand, insoluble part of
phosphate can be releasedwith the help of enzymes such as phytase and phosphatases
which are released by the microorganisms including endophytic fungi. Acid phos-
phatases (AcPase) are unique sets of enzymes mostly located in the cell wall of many
microorganisms. They hydrolyze phosphomonoesters at acidic pH by transferring a
phosphoryl group to alcohol in the presence of certain phosphate acceptors. Acid
phosphatases production by Serratia sp. is well documented and directly related to
plant growthpromotion (Behera et al. 2017).With the help of thismechanism, soil fer-
tility and plant growth are enhanced by the “phosphate solubilizingmicroorganisms”
(Adhikari and Pandey 2019). Spagnoletti et al. (2017) described the solubilization
of phosphate in the presence of iron, calcium, and aluminum by dark septate endo-
phytic fungi and reported that phosphate solubilization was maximum in calcium
phosphate ranging from 42.87± 5.37 to 51.33± 1.87 μgml−1. Microbial phosphate
solubilization is one of the major events that contribute to promotion of the plant
growth (Tarafdar and Gharu 2006).

2.8.1.2 Synthesis of Siderophores

Siderophores are iron binding compounds of low molecular weight (500–1000 Dal-
ton). These extracellular agents are synthesized by the many microorganisms includ-
ing bacteria and fungi present in iron deficient soil (Crowley 2006). These compounds
are helpful in chelating Fe(III) and its subsequent transport into cells for growth.
Microbial siderophores, therefore, help the plants to scavenge iron required for their
growth. Endophytic fungi Acremonium sclerotigenum from host tree Terminalia bel-
lerica produce siderophores that not only help in the uptake of iron by the plant but
also act as a biocontrol agent against many pathogens (Prathyusha et al. 2015; Wang
et al. 1993). Epichloe festucae, a foliar endophyte of perennial ryegrass, has the abil-
ity to produce extracellular fusarinine and intracellular ferricrocin that promote the
growth of the host plant by mobilizing iron (Kajula et al. 2010). Phialocephala for-
tinii, a dark septate fungi found in endophytic relationship with Pinus sylvestris,
Abies alba, Picea abies, and Carex curvula, have the ability to produce three differ-
ent types of siderophores such as ferricrocin, ferrirubin, and ferrichrome C in low
iron conditions (Bartholdy et al. 2001). As these microorganisms contribute to the
availability of iron to the host plant, these can also have the potential to serve as
biofertilizers (O’Sullivan and O’Gara 1992).

Moreover, siderophores can also serve as a type of biocontrol. In this pro-
cess, siderophores complement the lytic activity, antibiosis, and hormonal effect
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of endophytes to decrease the growth of other competing microorganisms and plant
pathogens in their vicinity (Neilands and Leong 1986).

2.8.1.3 Phytohormone Production

The roots of plants which are colonized by endophytic fungi such as Phoma glom-
erata, Porostereum spadiceum, Penicillium, and Aspergillus sp. produce many phy-
tohormones as compared to the plants which are not colonized (Joshi et al. 2018).
Thus, one of themajor contributions of the endophytic fungi is the production of plant
growthpromoting stimulators knownasphytohormoneswhich include abscisic acids,
ethylene, auxins, cytokinins, and gibberellins. Their classes, roles, and functions are
discussed in Table 2.1.

Table 2.1 PGR produced by endophytic fungi and their attributes towards plant growth promotion

PGRs Attributes
toward plant
growth

Endophytic fungi producing PGPR Reported studies

Auxins
(IAA)

Positive
effect on
root growth,
Cell
division

Phoma glomerata, Penicillium sp. Vessey (2003),
Gravel et al.
(2007), Waqas
et al. (2012)

Cytokinins Cell
division,
Inhibits
senescence

Fusarium sp. Li et al. (2012),
Waqas et al.
(2012), Shah
et al. (2019)

Gibberellins Cell
elongation,
Promote
Flowering

Porostereum spadiceum, Phoma glomerata,
Penicillium sp.

Waqas et al.
(2012),
Tanimoto
(2005),
Hamayun et al.
(2017)

Abscisic
acids

Abscission
of leaves
and fruits,
Dormancy
induction of
buds and
seeds

Aspergillus nidulans, Glomus intraradice. Forchetti et al.
(2007),
Herrera-Medina
et al. (2007),
Brader et al.
(2014), Xu et al.
(2018)

Ethylene Promotes
senescence,
epinasty,
Major role
in fruit
ripening

Piriformospora indica, Arabidopsis
thalian, Fusarium solani.

Camehl et al.
(2010),
Kavroulakis
et al. (2007)
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Among different types of auxin, indole-3-acetic acid (IAA) is a natural and most
common auxin and its beneficial effects on the growth of plant roots enable them to
absorb nutrients efficiently from the soil (Vessey 2003). It promotes the cell division
and root growth leading to the differentiation of root nodules and increase in the
surface area of roots. However, root tissues are sensitive to IAA concentration and
when its concentration exceeds beyond the required limit, the root elongation is
stopped (Gravel et al. 2007; Tanimoto 2005).

Auxin is responsible for cell elongation by increasing the turgor pressure due to
the presence of dissolved solute. Here is the acid-growth hypothesis which postulates
this mode of action of auxin.

• Production of IAA stimulates the H+ pumps present in the cell membrane.
• Once H+ pumps are activated, H+ ions are pumped into the cell wall decreasing
the pH.

• When the environment of the cell wall is acidified, it stimulates the pH dependent
enzymes which cause bond breakage between the microfibrils of cellulose present
in the cell wall.

• The cell wall expands due to nutrients and solutes which elongate the cell wall
and ultimately enlarge the size of the cell.

Endophytic Fungi can also tolerate stress of drought and salinity and can still
support the plant cells by the production of plant growth stimulators. Such stress
conditions can cause plants to wilt and start senescence and can even cause the death
of the plants (Iqbal and Ashraf 2013). Waqas et al. (2012) reported that endophytic
fungi such as Penicillium sp. and Phoma glomerata association result in tremendous
shoot growth, plant biomass, and chlorophyll ratio. These endophytes are involved
in the production of phytohormones such as gibberellins with class GA3. GA3 helps
in flowering of the plants as well as in cell elongation. Another study by Khan et al.
(2012) reported endophyte Paecilomyces variotii LHL 10 present in cucumber roots
that could produce a high amount of IAA and gibberellins.

2.8.1.4 Biological Nitrogen Fixation

Biological nitrogen fixation is one of the most important biological processes exhib-
ited by microorganisms. The association between the host plant and the nitrogen
fixing microorganisms is either symbiotic or asymbiotic. Many endophytes are also
involved in this process. Plant internal environment is high in carbon and low in
oxygen which is a favorable environment for the fixation of nitrogen by endophytes.
This again is beneficial for the host plant (Ladha and Reddy 2003; Patle et al. 2018).
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2.8.2 Endophytic Fungi as “Biocontrol” Agents

One of the major roles of endophytic fungal communities is as the biocontrolling
agents which play an essential role in protecting the host plant against its predators
and insects (Rana et al. 2018; Yadav et al. 2019d). It has been reported by Mirlohi
et al. (2004) that the plant roots in absence of any endophytic fungi get infected
with insects and pests while those which are in association with endophytic fungi are
not harmed by the predators. The fungal endophytes act as biocontrol agents by the
production of different fungal metabolites which include indole di-terpenes, ergot
alkaloids, peramine, and the lolines which are described as follows (Malinowski and
Belesky 2000):

• The class indole di-terpenes include lolitriol and paxilline. This class chiefly acts
as neurotoxins. Moreover, they are tremorgenic toward small insects and mice,
therefore, known for the anti-insect activity.

• Among the ergot alkaloids, the compound ergovaline is the most effective in
keeping the insects away especially the stem weevil.

• The remaining twogroups ofmetabolites, i.e., loline andperamine are less essential
but are known for their activities against the insects and pests (Mirlohi et al. 2004).

2.9 Biotechnological Significance of Endophytic Fungi

2.9.1 Production of Secondary Metabolites

Secondary metabolites are the compounds that are not supporting plant growth
directly but are involved in its protection. Approximately 80% of fungal endophytes
produce bioactive compounds with antimicrobial and herbicidal properties. They are
also a rich source for many other secondary metabolites such as antifungal, anti-
cancer, and antiparasitic compounds (Joshi et al. 2018; Krohn et al. 2002). Many
endophytic fungi have the ability to protect host plant against soil borne pathogens
such asAspergillus fumigatus, Botrytis cinerea, Blumeria graminis, Fusariumculmo-
rum,Globisporangiumultimum,Monilinia laxa,Moniliophthora perniciosa, Penicil-
lium expansum, Phytophthora sp, Plasmopara viticola, Puccinia polygoni-amphibii,
and Sclerotinia sclerotiorum and thus help plant to survive (Yadav 2018; Yadav
et al. 2019a, b, c). Reported mechanisms involve the mycoparasitism, antibiosis,
cell wall degradation, and induction of defense response (Zhang et al. 2014). Pir-
iformospora indica is a plant root endophytic fungi showing resistance against
phytopathogen Fusarium culmorum (Waller et al. 2005; Zheng et al. 2016).
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Apart from bioactivity against plant pathogens, the fungal endophytes, from the
plant Aquilaria sinensis(agarwood),have exhibited anticancer property against dif-
ferent human cancer cell lines such as HL-60, 293-T, and HepG2 (Cui et al. 2011).
Antimicrobial activity has been displayed by the endophytes fromDendrobium devo-
nianum and Dendrobium thyrsiflorum which have the ability to produce inhibitory
molecules against Candida albicans, Cryptococcus neoformans, Escherichia coli,
Staphylococcus aureus, Aspergillus fumigates, and Bacillus subtilis.Medicinal plant
Stryphnodendron adstringens harbors endophytic fungi that produce antimicrobial
agents active against Candida albicans and Cladosporium sphaerospermum. They
are also reported to inhibit the growth of the cancer cellsMCF-7 and TK-10(Carvalho
et al. 2012).

2.9.2 Resistance Against Heavy Metals

Heavy metals are harmful to plants as they produce oxidative stress. Plants have
many mechanisms to tolerate them (Idris et al. 2004). Some plants are metal tolerant
while some are hyperaccumulators. Hyperaccumulators such as Alyssum bertolonii,
Alnusfirma, Brassica napus, Nicotiana tabacum, Thlaspi caerulescens, T. goesin-
gense, and Solanum nigrum have certain endophytes associated with them that help
them tolerate metal stress. Endophytes such as Microsphaeropsis, Mucor, Phoma,
Alternaria, Peyronellaea, Steganosporium, and Aspergillus are known to help the
plant in metal resistance and detoxification (Bai et al. 2012; Yadav et al. 2018a).

2.9.3 Role in Phytoremediation

Endophytic fungi are also known to facilitate the host plant in phytoremediation by
protecting the plant from different contaminants present in the polluted contaminated
soil. Endophytic fungi Phomopsis liquidambari have ability to produce the enzyme
which can degrade phenolic acid allelochemicals such as 4-hydroxybenzoic acid
released by the decomposing foliage. These allelochemicals have negative impacts
on the plants as these slow down the growth of the plants and the bacterial population
present in the soil (Chen et al. 2011; Kour et al. 2019b; Rana et al. 2019b).
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2.9.4 Production of Extracellular Enzymes

Manyendophytic fungi species have the ability to produce enzymes that have biotech-
nological and industrial importance. Many extracellular enzymes such as cellulases,
chitinases, laccase, pectinases, xylanases, proteases, amylases, β-galactosidase, and
other catabolic enzymes are produced by endophytic fungi. Chitinases produced by
the endophytic fungiNeotyphodium sp. has the ability to break down the chitin which
is present in the phytopathogen cellwall.Another fungal endophyteSarocladiumzeae
isolated from maize produces hemicellulase which is an enzyme involved in bio-
conversion of lignocellulosic biomass into sugars which are then easily fermented
(Bischoff et al. 2009; Kour et al. 2019a; Zheng et al. 2016).

2.9.5 Biotransformation and Nutrient Recycling

Biotransformation is the conversion of one chemical compound to another one with
the help of a biological agent. Many endophytic fungi are also known to perform
this function. Different types of transformation reactions may activate or inactivate
a certain compound. Zikmundova et al. (2002) reported biotransformation of phy-
toanticipins 2-benzoxazolinone (BOA) to N-(2-hydroxyphenyl) malonamic acid by
endophytic fungi isolated from Aphelandra arborea (Malyan et al. 2019).

Nutrient recycling is one of the important mechanisms exhibited by endophytic
fungi. In this process, essential nutrients are balanced so that they become available
for the natural ecosystem. Phomopsis liquidambari is one such endophytic fungi that
have the ability to stimulate mineralization and facilitate the ammonium release in
the environment which provokes the nitrification process by bacteria present in the
soil (Chen et al. 2013; Yadav and Yadav 2018).

2.10 Ecological Significance of Endophytic Fungi in Plant
Protection

Endophytic fungi have a major role in the degradation of dead host plants and thus
help in the recycling of the nutrients in the environment (Boberg et al. 2011). Fungal
endophytes enable the plant to tolerate stress conditions such as drought, salin-
ity, and pH by Induced Systemic Resistance (ISR), bioremediation, and protection
(Yadav 2019a). Endophytic fungi produce metabolites against insects. One of the
anti-insect metabolites is anthraquinone metabolite called rugulosin discovered from
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the endophyte Abies balsamea and later from Picea scopiformis and Picea glauca.
The compound was found to reduce the growth rate of Choristoneura fumiferana,
Lambdina fiscellaria, and Zeiraphera canadensis (Joshi et al. 2018; Sumarah et al.
2008).

2.11 Conclusion and Future Prospects

It can be concluded that plant–fungal associations thrive under the principle of mutu-
alism where both the partners are getting benefit from each other. Such endophytes
play an important role in plant growth promotion as these provide resistance to plant
against different environmental stresses and toxic compounds, protect host plant
against several pathogens, and produce many plant growth promoting hormones.
Endophytic fungi are also significantly important as biotransformers of different
chemicals and help in the recycling of nutrients. These are also known to produce
many metabolites that have medicinal importance such as anticancer and antimicro-
bial compounds. The endophytes also find many industrial usages as they are known
for the production of many important enzymes and metabolites. Advance studies
in genetic engineering, metagenomics, metatranscriptomics, and proteomics could
be employed for better understanding of the molecular mechanisms behind these
abilities, and to exploit them further for different biotechnological processes.
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Chapter 3
Current Perspectives
on Phosphate-Solubilizing Endophytic
Fungi: Ecological Significances
and Biotechnological Applications

Edla Sujatha, Kuraganti Gunaswetha and Pallaval Veera Bramhachari

Abstract Phosphorus is one of the essential nutrients for optimum plant growth
after nitrogen. Their structural and chemical complexity greatly reduces their avail-
ability to the plants and is one of the major limiting macroelements to plant growth.
Phosphorus is present in both organic and inorganic forms. Though abundant amount
of phosphorus is present in the soil, its availability is reduced by various environmen-
tal factors that influence bio-geo-cycling of phosphorus. Current research is mainly
focused on the exploitation of endophytic fungi for solubilization of phosphorus in
an efficient way. Endophytic fungi including the genera Aspergillus, Penicillium,
Piriformospora, Trichoderma, Curvularia, and other class of endophytic symbionts
such as AM fungi are identified as potent Phosphate solubilizers. Endophytic fungi
promote plant growth by a variety of mechanisms such as solubilization of “P”-like
macronutrients by different reactions, able to produce bio-control agents, i.e., antibi-
otics and siderophores and plant protecting agents against pathogens, synthesis of
growth hormones such as gibberellins, cytokines, and auxins. Phosphate-solubilizing
endophytic fungi are promising and efficient organisms capable of increasing “P”
availability and the best alternative approach to chemical fertilizers.

Keywords Endophytic fungi · Biotechnological applications · Ecological
significance · Inorganic and organic phosphates solubilization

3.1 Introduction

Soil microorganisms greatly influence the nature of the soil and its health through
beneficial and harmful activities. Microorganisms present in the rhizosphere mediate
certain functions, for instance, decomposition, nutrient immobilization, mineraliza-
tion, nitrogen fixation, and release of nutrients. In addition to these, microorganisms
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also possess phosphate-solubilizing ability by converting insoluble phosphates to sol-
uble phosphorus (Pradhan and Sukla 2005) in soil and make them readily accessible
to plants.

The father of plant pathology de Bary proposed the term endophyte to refer any
organism that resides within plant tissue exclusive of any disease manifestations in
host plant (Nisa et al. 2015). All types of plants harbor a wide variety of microorgan-
isms, for instance, fungi, bacteria, and cyanobacteria that posses endophytic proper-
ties and play an imperative role in plant metabolism and physiology (Hardoim et al.
2015).During symbiotic association established between endophytes and host plants,
both the organisms get mutually benefited, the plant provides nutrients to colonizing
endophytes, while the endophytes accelerate biosynthetic pathways for metabolite
synthesis that have many applications in agronomy. For example, management of
plant growth and novel disease-resistant mechanisms against pathogens.

Endophytes can be isolated from exterior or interior part of sterilized plant tissues.
Significant biochemicalmolecules such as Terpenoids, isoflavonoids, flavonoids, and
phenolics are released from plant roots. They may attract the fungi from root region
to colonize within the plant as an endophyte. However, the endophytes are depicted
to be colonized in different plant tissues associated with the different ecosystems.
Fungi can be classified into diverse groups derived from their role and survival,
such as epiphytic, endophytic, pathogenic, and mycorrhizal fungi (Porras-Alfaro
and Bayman 2011). Some endophytic fungi can find their way to either vertical or
horizontal root region and penetrate to the deeper regions of plants.

Endophytic fungi colonize the tissues of host plant by particular route of transmis-
sion and this can be either vertical or horizontal method. Endophytic fungi transmit
from the mother plant to offspring via seeds (true endophytes). A study carried
out by Hodgson et al. (2014) in forbe species, common poppy, knapweed, corn-
flower, sheep’s sorrel, groundsel, and ribwort plantain, and two endophyte species,
Cladosporium sphaerospermum and Alternaria alternata primarily investigated the
vertical transmission of species. Horizontal transmission occurs by airborne spores
or through soil. Endophytes colonize forbes via leaves of the host through horizontal
transmission.

According to earlier fossil records, evolutionary tendency reveals an association
between a diverse group of plants and endophytic fungi. Plant endophyte communi-
cations resulted in plant growth promotion, uptake of micronutrients, and synthesis
of different types of secondary metabolites and bioactive compounds with poten-
tial applications in industry, medicine, and agriculture. Endophytic fungi provide
protection to plants against plant pathogens, reduce biotic and abiotic stresses, and
for the reason that these organisms are considered as eco-friendly bioresources.
Endophytic fungi may enhance plant growth by solubilization of potassium, phos-
phorus and zinc, produces phytohormones, viz., cytokines, gibberellic acids, indole
acetic acids, hydrolytic enzymes and Fe-chelating compounds, ammonia and hydro-
gen cyanide (Rai et al. 2014). Different classes of fungi, for instance, Mucoromy-
cota, Basidiomycota, Oomycota, and Ascomycota were depicted as plant growth
promoters and protect the plants under anomalous and abiotic stress conditions.
Natural products produced by endophytes were previously reported with potential
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anti-bacterial, anti-fungal, and anti-protozoal properties. Nonetheless, the secondary
metabolites produced by endophytes are proved to have remarkable anti-cancer, anti-
microbial, insecticidal properties, pharmaceutical sciences, and in other biotechno-
logical applications (Kusari et al. 2011; Aly et al. 2010; Uzma et al. 2018; Mishra
et al. 2017).

3.2 Diversity of Phosphate-Solubilizing Microorganisms

A great extent of microbial species exhibit phosphate-solubilizing ability, these
include archaebacteria, bacteria, actinomycetes, and fungi. These microbes reside
in the plant tissues exclusive of causing any harmful effects to the host. Generally,
they prevail in tissues of the host plantwith the symbiotic association. Thesemicrobes
were previously isolated from different types of plants, including Triticum (Yadav
et al. 2018a; Verma et al. 2015, 2016a, b), Oryza sativa (Piromyou et al. 2015),
Zea mays, Capsicum annuum L., Saccharum officinarum (Montanez et al. 2012;
Thanh and Diep 2014), mustard, citrus (Kasotia and Choudhary 2014), Solanum
tuberosum (Rado et al. 2015; Manter et al. 2010;), Glycine max (Mingma et al.
2014), Pisum sativum (Narula et al. 2013; Tariq et al. 2014), Phaseolus vulgaris
(Suyal et al. 2015), Helianthus (Forchetti et al. 2010; Ambrosini et al. 2012), and
Cicer arietinum (Saini et al. 2015). Fungal endophytes pertaining to diverse gen-
era including Acremonium, Aspergillus, Paecilomyces, Cryptococcus, Fusarium,
Curvularia, Rhodotorula, Cladosporium, Alternaria, Phaeomoniella, Chaetomium,
Colletotrichum, Berkleasmium, Rhizoctonia, Geomyces, Leptospora, Phyllosticta,
Microdochium, Neotyphodium, Ophiognomonia, Glomus, Penicillium, Rhizopus,
Trichoderma, Xylaria, and Wallemia have been isolated from various host plants
(Suman et al. 2016; Verma et al. 2017; Yadav et al. 2018a, b). Recently, a nematode
fungus Arthrobotrys oligospora was identified to solubilize rock phosphate Togo,
Tilemi rock phosphate, Kodjari phosphate rock. The fungi solubilized all three types
of rock phosphates. Given these, Duponnogs and group (2006) demonstrated the
phosphate solubilization ability in vivo conditions.

3.3 Biotechnological Applications of Natural Products
from Endophytic Fungi

Biotechnology has opened up numerous avenues for exploitation of endophytic
microorganisms inmedicine, agriculture, and industry fromdiverse ecological niches
and their applications in agriculture are aptly essential for plant growth, plant pro-
tection, and yield (Yadav et al. 2018a; Rana et al. 2019c). Because of their ability
to promote plant growth and adapt under extreme abiotic stresses, the endophytic
microorganisms have, in fact, captured the attention of the scientific community
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(Soni et al. 2018; Yadav et al. 2019b, c, d). With the exceptional capacity to produce
secondary metabolites, the endophytic fungi may perhaps unearth novel applications
in pharmaceuticals, industrial processes, and horticulture (Joseph and Priya 2011).
Endophytic bacterial and fungal organisms possess extensive applications as bio-
control agents, bio-inoculants, and bio-fortification of micronutrients (Yadav 2019;
Yadav et al. 2019a; Yadav and Yadav 2019).

The excessive usage of chemical phosphorus (P) fertilizers to increase agricultural
yield sequentially to meet the requirements of escalating global food demand poten-
tially causes soil and water pollution, eutrophication, depletion of soil fertility, and
deposition of toxic heavy metals such as arsenic (As), lead (Pb), and selenium (Se)
in the soil. Abundant soil microbes together with bacteria, fungi, actinomycetes, and
algae are efficient in solubilizing insoluble soil phosphate to convert into the soluble
P and making it available to plants. Strikingly, these microbes promote the growth
and yield of a wide variety of crops. Thus, it is essential to inoculate phosphate-
solubilizing microorganisms (PSM) via the seeds, to the crop and soil, which is a
potential strategy to improve the crop yield. Despite their immense significance in
the improvement of soil fertility, phosphorus-solubilizing microbes are yet to replace
conventional chemical fertilizers in commercial agriculture. Extensive studies are
obligatory to comprehend recent approaches in a diversity of phosphate-solubilizing
endophytes and their colonizing ability and application to enhance agronomic yield.

3.4 Endophytic Fungi as P-Solubilizers and Growth
Promoters

Phosphate-solubilizing fungi enhance plant growth by different mechanisms and
those are (Fig. 3.1): provide nutrients to plant by solubilization process, produce
biological control substances, i.e., antibiotics and siderophores, provide protection
against the plant pathogens, and stimulate growth hormones production (auxins,
gibberellins, and cytokines). In agriculture, phosphate-solubilizing fungi play a sig-
nificant role as bio-inoculants for improvement of plant growth (Khan et al. 2010;
Kour et al. 2019b, c; Rana et al. 2019a, b). The competent phosphate-solubilizing
fungiwere tested under in vitro conditions and selected for large-scale production and
eventually distributed to farmers. In addition to that, suitable carrier selection is also
paramount for the development of fungal inoculants such as peat, farmyard manure,
soil, cow dung, and cafe powder which are being used as suitable carriers. However,
a perfect carrier is designed to possess some unique qualities like good absorption
ability, sufficient level of moisture pH, aeration stability, pH buffering capacity, and
porousness. In addition to these characteristics, the carrier must be eco-friendly, non-
hazardous to microbes, plants, animal, and humans. In addition to this, it should be
easy to handle, mix, sterilizable, and store. Keeping in view of cost–benefit ratio, the
carriers ought to be cheaper and easily available. The carrier enhances the persistence
of phosphorus-solubilizing activity; fungal spores after mixing with a carrier can be
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Fig. 3.1 Mechanisms of plant growth acceleration by endophytic P-solubilizing fungi

stored for about 3 months at 30± 2 °C. Plethora of examples of commercially avail-
able inoculants, i.e., Penicillium radicum and Penicillium bilaiaewere demonstrated
in large-scale production and shown to possess “P” absorption ability. Various stages
involved in bulk scale production and application of P-solubilizing fungi are clearly
depicted (Fig. 3.2).

Various studies indicating the effect of a single culture and/or mixed culture of
phosphate-solubilizing fungus on different plant growth parameters observed the
effect ofmixed inoculation of P-solubilizing fungal strains (two strains ofA. awamori
and four ofP. citrinum) on growth and seed production of chickpea in pot experiment.
Notably, all the isolates were shown synergistic effect and resulted in noteworthy
stimulation of root and shoot lengths of legume, height of the plant, seed weight, and
number compared to the un-inoculated control.

Phosphorus is a vital nutrient and a part of structural compounds andmediates cat-
alytic reactions in plant metabolism. Phosphorus plays amajor role in capturing solar
energy and is converted into useful plant compound. Phosphorus is a key component
of DNA and RNA. Two phosphate-solubilizing fungi, i.e., Penicillium oxallicum P4
andAspergillus niger P85were isolated byYin et al. (2015) fromcalcium-rich soils of
China. A remarkable increase in plant fresh weight was observed in strain p24 when
rock phosphate was supplemented externally. A study carried out on Aspergillus
aculeatus P93 has also shown a significant increase in the availability of soluble
phosphorus of maize grown in non-amended soil (Yin et al. 2017).
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Fig. 3.2 Production and application of phosphate-solubilizing endophytic fungal inoculants

In a recent study, phosphate-solubilizing microorganisms depicted a synergistic
effect on plant growth parameters and leaf chlorophyll content (Senthil kumar et al.
2018). In addition to solubilizingphosphates, somemayproducepotential bio-control
agents against plant pathogens. PSM can produce anti-fungal compounds such as
flavonoids and phenolics, siderophores, antibiotics and hydrolytic compounds. All
of which inhibits growth of plant pathogens.

3.5 Phosphate Solubilization Mechanism by Endophytic
Fungi

Based on the availability of type of phosphates (organic or inorganic), endophytic
fungi employ suitable mechanism for solubilization of phosphates and endophytic
fungi are capable to synthesize organic acids, proteins, OH¯ ions, Ca+2 exopolysac-
charides, CO, siderophores, and enzymes, those may play a significant role in
phosphate solubilization (Fig. 3.3).
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Fig. 3.3 Production of metabolites by P-solubilizing fungi

3.5.1 Inorganic P-Solubilization

Various theories explained the key mechanism underlying the inorganic phosphate
solubilization. The principal mechanism is dissolving compounds such as hydroxyl
ions, siderophores, organic acids, carbonmonoxides, proteins, extracellular enzymes,
and exopolysaccharides (Sharma et al. 2013). Secretion of organic acids by endo-
phytic fungi into soil seems to be a most important mechanism for inorganic phos-
phate solubilization primarily organic acids such as glycolic, maleic, formic, lactic
acid, gluconic acid, oxalic, tartaric propionic, and succinic acids. The quantity of
organic acid varies with the endophytic fungal strain and also the type of organic
acid produced is greatly determined by source of insoluble phosphorus. According
toMendes et al. (2013), Aspergillus niger FS1 primarily secrete oxalic acid in higher
quantity in treatments with FePO4 and AlPO4, whereas gluconic acid was produced
in meager quantity in AlPO4. In contrast to this, Penicillium canescens FS23 pro-
duced citric and gluconic acids after treatment with Ca3 (PO4)2, AlPO4, and rock
phosphate. Organic matter present in soil is an excellent source of organic phospho-
rus. The total quantity of organic phosphorous present in soil is as high as 30–50%
of total phosphorus. Organic phosphorus in the soil is principally in the form of
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inositol phosphate (or) soil phytates. Organic phosphorus can be mineralized with
the involvement of enzymes such as phosphatases, phytases.

Many studies explained about p-solubilization based on an organic acid con-
cept. Several genes are involved in production of organic acids. Among all organic
acids, gluconic acid is more essential in P-solubilization produced by endophytic
fungi. The genetic basis of P-solubilization was studied by Kusari et al. (2012). He
observed upregulation of pyrroloquinoline quinine and glucose dehydrogenase genes
in solubilization of phosphorous. PQQ-dependent glucose dehydrogenase present on
cytoplasmic membrane stimulates oxidation of glucose to gluconic acid. Because of
production of gluconic acid, the pH of the soil further decreases which make the
following ions HO−2

4 and HPO−3
4 (soluble forms of phosphorus) more available. An

array of genes is involved in the production of organic acids.

3.5.2 Organic P-Solubilization

Mineralization of organic phosphate carried out by involvement of various enzymes,
i.e., phytases, phosphonatases, and phosphatases. Phosphatases dephosphorylation
or hydrolyze and phosphoanhydride and organic phospho-ester bonds of organic
matter. Among all phosphatases, predominant types of enzymes are phosphomo-
noesterases (Nannipieri et al. 2011). Based on pH optima they are classified as acid
and alkaline phosphatase (Behera et al. 2014). Several genes encoding for alkaline
and acid phosphatases with broad substrate specificity were cloned and character-
ized. However, a considerable amount of phosphatases was secreted by plant roots,
and it has been reported that microbial phosphates possess a stronger affinity for
substrate when compared to derived by plant phosphatases.

A large quantity of phosphorus is found in fruits and seeds for the reason that it is
important for the development of seeds. Phytin is a significant form of “P” in seeds.
Phytin is naturally degraded by phytases. This is themain source of inositol phosphate
and constitutes for more than fifty percent of organic phosphorus in the soil. Phytases
act upon phytate and make available free form of phosphorus. Noteworthy that the
phosphonatases and carbon-phosphorus lyases hydrolyze carbon-phosphorus bond
of organophosphates and release free phosphate (Rodriguez et al. 2006). Because
of scarcity, organo-phosphatases do not add much to the soluble form of phosphate
in the soil solution. A plethora of studies revealed that organic acids released by P-
solubilizing fungi are much superior to bacteria; therefore, endophytic fungi exhibit
greater P-solubilization activity. Motsara et al. (1995) revealed that solubilization of
rock phosphate was much higher under in vitro conditions by Rhizoctonia solani,
Penicillium, Fusarium oxysporum, and Aspergillus niger.
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3.6 Development of Phosphate-Solubilizing Endophytic
Fungal Inoculants

Phosphates-solubilizing endophytic fungal inoculants are used as major bio-
fertilizers. These bio-inoculants are more eco-friendly when compared to chemi-
cal fertilizers. Fungi are depicted as predominant P-solubilizing inoculants when
compared to other bacterial inoculants; hence, these strains hold much importance
in agriculture. Nonetheless, several fungal bio-fertilizers were already developed by
IARI as bio-inoculants which comprisesAspergillus awamori, A. niger, andP. digita-
tum, P.bilaii strains which were commercialized by Novozymes Biologicals Limited
(Canada). Interestingly, the strain P.radicum was recently developed by Bio-Care
Technology (Australia) by Gupta and Rodriguez Couto (2018). Similarly, in India,
P-bio-fertilizers were produced by Ambika Biotech and Agro Services (Madhya
Pradesh) (Pal et al. 2015).

For production of P-solubilizing fungal inoculums, huge amount of endophytic
fungal strains are required. There are broadly three phases in development of bio-
fertilizers. In the first phase, there is a selection and screening of potential phosphate
solubilizers followed by a selection of fungal inoculants. The screening process can
be carried but by the cultivation of fungi inmodified Pikovskaya’smedium. In second
phase, proper endophytic fungal bio-fertilizers can be developed and the third phase
includes checking the quality and persistence of P-solubilizing microorganisms and
distribution to farmers (Khan et al. 2010; Kumar et al. 2017). Notably, few potent
microorganisms are selected, screened, and cultivated in large scale for production
of bio-fertilizers under optimized conditions in a suitable fermentation broth. For
cultivation of fungi, lower pH (acidic condition) is more suitable at the same time
inhibits the bacterial contamination (Nelofer et al. 2016). Once an adequate amount
of growth is obtained, the biomass can be extracted and mixed with suitable pre-
sterilized carriermaterial, purified, packed under aseptic conditions, and stored under
appropriate conditions before commercialization. At every stage of bio-fertilizer
production, it is mandatory to assess the level of contamination as well as for the
amount of desired microorganisms.

Definite problems may also be associated with the commercial-scale synthesis
of bio-fertilizers, among those sometimes microorganisms unable to survive under
in vivo conditions. This may be due to the fact that the bio-inoculants are either
difficult to survive under unfavorable environmental conditions or outcompeted by
presented microflora (Walia et al. 2017). One of the important strategies to surmount
this problem is amalgamation of bio-fertilizers with suitable carriers.

Carriers being used in production of bio-fertilizers should possess definite char-
acteristics like it should be easily mixed with microbes to enhance the sustainability
and survival of microorganisms by maintaining optimum pH, an adequate level of
moisture and aeration, etc. Thus, the carrier material should possess an excellent
moisture absorption ability and pH buffering capacity, nonetheless, it should also be
non-toxic to microorganisms, and eco-friendly to plants, animals, and humans. In
addition to there, it is easy to sterilize, and easy to mix, handle, and store. In view of
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the cost–benefit ratio, the carrier should be effortlessly available and cheap. Nowa-
days, different types of carriers are being used for the production of bio-fertilizers.
Smith (1995) has classified the carriers into different categories, first category com-
prises different types of soils, peat and coal, waste cake powder farmyard manure,
plant debris and second group comprises barnyard compost, soya bean oil, shelled
nut oil, barnyard compost. The last group consists of inert materials like perlite, rock
phosphate, and calcium sulfate vermiculite. These carriers have also been used in
combinations. Wang et al. (2015) reported the utilization of different carriers for
developing a bio-fertilizer of A. niger and reported a mixture of wheat husk and
perlite to enhance the availability of “P” content.

Among soil microorganisms, AM fungi have been found to be a noteworthy
component of soil–plant systems (Schreiner andBethlenfalvay 2003). AnAMfungus
plays amajor role in nutrient andwater uptake by plants and provides other benefits to
host, such as tolerance under adverse environmental conditions and disease resistance
(Pal et al. 2014). Due to their obligatory symbiosis, it is highly difficult to produce
AM-based bio-fertilizers in in vitro conditions.

Mass scale production AMF is highly difficult because of its specific nutritional
requirements (Pal et al. 2015). The different strategies were reported by Berruti et al.
(2016) for the utilization of AMF as bio-fertilizers. According to first strategy AMF-
harboring rhizosphere, soil can be used as bio-inoculants; however, this method may
not be reliable and may perhaps result in colonization of weeds and pathogens. In
other strategies, AM spores that were isolated from root region can be used for this
AM fungal organism inoculated on a host trap plant in an inert medium. The trap
plant is highly susceptible for Arbuscular mycorrhizal fungal growth, and therefore it
is used for production of AM fungi for bulk scale. This is frequently used inoculums
for inculcation to crop plants in large scale. This consists of a set of some kind of
AM spores present in soil inoculants.

In this method, trap plant should be highly amicable for inoculation of desired
AM fungi and also should be ideal for large-scale production of propagates. In
addition to these, the trap plant should show intense root development within a short
period of time and resist to harsh environmental conditions, suitable for synthesis
of fungal propagules (Sadhana 2014). An important observation came from a study
of Selvakumar et al. (2016) that maize could be the suitable host trap plant when
compared to the Sudan grass for the propagation of Claroideoglomus etunicatum.
Other trap plants including Chloris gayana, Sorghum vulgare, Zea mays, Sorghum
bicolor var. sudanense, and Ipomea batatas are most common trap plants used for
mass scale culturing of Arbuscular mycorrhizal fungi (Sadhana 2014).

Bywet sieving and decantation, theAMfungi is regularly isolated fromsoil (Singh
et al. 2010) followed by microscopic observation of AM fungi. Mass multiplication
is carried out by collecting a large number of spores by pot culture method. Host
trap plant and AM fungi were cultured in natural solid medium containing clay,
peat, sand, perlite soil, and different types of composted plant debris. Tamil Nadu
Agricultural University designed a method, and according to this, a trench lined with
polythene sheet is being used as plant growth pot or tub. Fifty kg of vermiculite and
5 kg of sterilized soil are filled in trench up to 20 cm height. To this 1 kg of AM
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spores inoculated 2–5 cm below the surface of vermiculite. Sterilized seeds of trap
plant are sown in a trench along with an appropriate dosage of nitrogen source urea
and superphosphate. After the period of 60 days roots of trap, plants are cut, spores,
a mixture of vermiculite, hyphal fragments, and infected root pieces obtained were
used as AM fungal inoculants. Without using soil also some researchers developed
hydroponics and aeroponics for the cultivation of AM fungi in the presence of trap
plants. The major advantage of these methods is that there is a feasibility to produce
pure and clean AM spores (Ijdo et al. 2011).

3.7 Application of Phosphate-Solubilizing Endophytic
Fungal Bio-Inoculants

Treatments of seed surface with suitable bio-inoculants are the most common choice
of inoculation prior to seeding and reported to be the popularly used method (Walia
et al. 2013b). However, there are few techniques that are widely used for the inocula-
tion of endophytic microorganisms, viz., soil application, seed treatment, and foliar
spraying. In seed treatment process, carrier-coated fungal inoculums are immersed
with seeds in a liquid culture medium. In this method, a fungus adhered firmly to
the seed surface. Conversely, there are some constraints in this method. Amount of
viable fungi adhered on to the seed surface may not be adequate. The plant species
are under cultivation at commercial scale by vegetative propagation, and the endo-
phytic P-solubilizing bio-inoculants are usually applied to plant parts before planting
in the field (Panhwar et al. 2013; Kour et al. 2019a; Kumar et al. 2019; Yadav et al.
2019e). The shoots developed from such plants are deemed to be more amenable
for bacterization by endophytic microorganisms. Application of endophytes to the
soil is another method of bio-inoculants application (supplementation of soil with
endophytic bio-inoculants). These methods have many advantages which include the
following:

• A high number of P-solubilizing fungi may disseminate per unit area.
• Less number of interactions may occur between bio-inoculants and chemically
treated seeds.

• This method is more rapid in comparison with seed inoculation technique.
• These bio-inoculants are more tolerant to dry and desiccated conditions.

In view of above aspects, phosphate-solubilizing endophytic fungal inoculants can
be applied by two approaches.

1. Single culture of phosphate-solubilizing fungi can be used as inoculants as single
culture approach (SCA).

2. Two cultures can be used as bio-inoculants are called mixed culture approach
(MCA).
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3.8 Effect of Phosphate-Solubilizing Fungal Bio-Inoculants

Soil is a natural habit for wide variety of microbial communities. The interactions
occurring betweenmicrobial communities basically impact a physico-chemical prop-
erty of the soil, and soil fungi performs several imperative roles in the maintenance
of soil biochemistry directly or indirectly. Direct endophytic fungi accelerate plant
growth promotion through the production of phytohormones, mineralization of salts
and ions (Guleria et al. 2014) and in the indirectmechanism; it plays an important role
in bio-control agents against phytopathogenic microbe (Walia et al. 2013a). Mehta
et al. (2011) studied the growth enhancement of groundnut in association with endo-
phytic fungi. They studied two fungi, i.e., Aspergillus niger and Penicillium notatum
supplement of soils tri-calcium phosphate (TCP) under pot culture conditions and
reported that there is a remarkable improvement in dry weight and height of the plant.
When a mixed culture of fungal strains was employed as inoculants, a substantial
improvement was observed in plant height as 81% and plant dry weight as 105%
compared to controls (Prasanna et al. 2011; Mehta et al. 2011).

It is pertinent that a number of plants and weight of seeds enhanced remarkably
with single or multiple inoculations of fungal strains. Other studies carried out by
Priyadharsini and Muthukumar (2017) on pigeon pea revealed that when inoculated
with the fungi Curvularia geniculata has shown a significant impact on growth
parameters. C. geniculata inoculated seedlings of pigeon pea were taller (26.53%)
and showed increased shoot and root dry weight (16.67–33.33%) as compared to un-
inoculated control seedlings. In addition to P-solubilization, endophytic fungi also
play an imperative role in phytohormone production that can remarkably enhance
plant growth. Thus, the exploitation of phosphate-solubilizing fungi is considered
eco-friendly, profitable, and sustainable approach for enhancement of crop yield.

3.9 Application of RDNA Technology in Developing
Phosphate-Solubilizing Endophytic Fungi

Interaction of endophytic fungi with host plant is relatively an intricate process.
Set of genes are involved in such interaction including nitrogen, phosphorus, and
other nutrient exchanges between endophytic fungi and host plant tissues were stud-
ied; nonetheless, widespread research is desirable to better comprehend the genetic
aspects of such interactions. Comprehensive and enhanced knowledge is essential
for the involvement of genes and their regulation to undertake genetic manifesta-
tion of fungi, which consecutively can be employed for better phosphorus uptake
and improved plant growth. The molecular approaches signify a vital role in under-
standing the genetic aspects of host fungal interactions. Among several molecular
approaches, the cloning and gene sequencing methods are most promising and con-
sent to determine which techniques are time-consuming. Nucleic acid hybridizations
and probing techniques are required to possess sufficient knowledge of microbial
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community. However, other molecular methods such as amplified ribosomal DNA
restriction analysis or ribosomal intergenic spacer analysis can be employed for the
endophytic fungal colonizations.

3.10 Future Applications of Endophytic Fungal Phosphate
Solubilizers

In recent times, usage of phosphate fertilizers is highly expensive that cannot be
afforded by farmers, particularly in developing countries. Scientists thus have a great
responsibility toward society to find some innovative ways from biological sources to
make available “P” to crop plants, by an economically efficient alternative for chem-
ical fertilizers. Most of the soils are deficient in available phosphorus to plants and
chemical fertilizers are expensive.Due to this interest has been developed in the appli-
cation of rhizosphere microbes and endophytic fungi with phosphate-solubilizing
capacity as bio-inoculants to solubilize phosphate from poorly available sources in
soil. Although the potentiality increased for developing such inoculants, their vast
applications remain incomplete by intricacy in an understanding of microbial inoc-
ulants. These endophytic fungi not only enhance the phosphate availability to the
plants but also provide protection to the plants against plant pathogens and stimulate
plant growth. Themajor challenge associatedwith endophytic fungi is a commercial-
scale application, in fact, managing microbial communities to favor plant coloniza-
tion by beneficial endophyticmicroorganisms. The contribution of endophytic fungal
research may have environmental and economic impacts. Molecular-level research
in this aspect is necessary for a better understanding of host endophytic interaction.
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Endophytic Microbes from Medicinal
Plants and Their Secondary Metabolites
for Agricultural Significances
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Abstract Endophytes constitute an important component of microbial diversity
since 20 years, remarkable progress in the field revealed the significance of endo-
phytic microorganisms. Endophytic fungi are an unexplored group of organisms that
has huge potential for innovative pharmaceutical substances; they are established as
anticancer, antioxidants, antifungal, and anti-inflammatory. Likewise in recent years,
incredible progress was made in developing them as therapeutic molecules against
diverse ailments. In recent years, more studies are warranted in bioprospecting new
endophytic microorganisms and their applications. Bacterial and fungal endophytes
ubiquitously reside in internal tissue of living plants. Endophytic fungi distributed
out from tropical region to arctic region, possess vast potential in terms of secondary
metabolite production. It is pertinent to know that the various bioactive indispens-
able compounds evaluated by these endophytic fungi are host-specific. They are
very significant in augmenting the adaptability of the endophyte and its host plants
for instance biotic and abiotic stress tolerance. The ensuing effect is to produce
metabolites either primary or secondary that are obliging for fungi themselves, the
host plant in addition to the human race thereof. This chapter primarily emphasizes
on the ecology, colonization, biodiversity, secondary metabolites from endophytic
fungal cultures.
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4.1 Introduction

With the human population rising, a simultaneous boost in diseases along with an
increase in the incidence of reemerging diseases is noticed. The key origin of these
medical emergencies being drug resistance in pathogenic bacteria, while the solu-
tion lies in the discovery of newer drugs to combat resistant bacteria. Numerous
ecosystems were previously explored for the bioprospection of antibiotic producing
microorganisms counting with terrestrial, marine, freshwater ecosystems. Notably,
with the advent of endophyticmicroorganisms, a newniche is open for drug discovery
(Berde 2015).

Endophyte was commonly associated with fungi initially, but now also includes
bacteria as well. These microbes may perhaps exert beneficial or detrimental effects
on plants and their metabolism. The endophytic microbes dwell in different tis-
sue types within numerous plant species. The endophytic bacteria are ubiquitous
in nature. An endophyte completes its life cycle colonizing inter and intracellularly
contained by the healthy tissues of the host plant, with no visible symptoms of dis-
ease (Wilson 1995). And thus some endophytic microorganisms live in plant tissue
without causing considerable harm to the plant.

Plant-associated microbes have been discovered in the fossilized tissues of stems
and leaves (Taylor and Taylor 2000). The endophytic microorganisms are believed to
have devised genetic systems and acquired as well as donated characteristics (Stierle
et al. 1993). The growth, survival, and transmission of endophytic microorganisms
to other plants occur vertically or via vectors and are firmly dependant on the host
plants. When at least one stage of the life cycle of the endophyte is outside the host
plant, it is facultative endophytes. Many substances of medicinal importance found
in plants have also been extracted from their endophytes (Yadav 2017; Yadav et al.
2017; Yadav and Yadav 2018). Therefore, the attention is now on studies that are
focused on the isolation and application of endophytes from medicinal plants.

Endophytic microorganisms survive inside the host plant tissues and produce
novel metabolic compounds, having activity against various pathogens. Researchers
have discovered new therapeutic alternatives in the form of bioactive secondary
metabolites in endophytes such as antiviral, antibacterial, anticancer, and antidiabetic
compounds (Kumar et al. 2015). Recently endophytes are considered as an essen-
tial source of secondary metabolites and bioactive antimicrobial natural products.
The endophytic bacterial natural products, for example, munumbicins, ecomycins,
pseudomycins, and xiamycins are antibacterial, antimycotic, and antiplasmodial in
addition to antiviral in nature, respectively (Berde 2015).

Recent studies evidenced counts of natural products including compounds made
up of terpenoids, flavonoids, alkaloids, steroids, etc. Metabolites of endophytes have
been reported to hinder the growth of a number of microorganisms (Rana et al.
2019c; Yadav 2018). Microbial metabolites are considered as antifungal and antibac-
terial chemotherapeutic. In 2008, Moricca and Ragazzi reported that genes regulat-
ing the communication between an endophyte and a plant are strictly modulated by
the environment. Hostile environment induces the production of defense chemicals.
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Plants growing in extreme habitats ought to be screened for isolation of endophytes
and their metabolites. Plants present in various environmental conditions including
tropic, temperate, xerophytic, and aquatic, harbor the endophytic microorganisms.
The endophyte associated plants produce various metabolites that induce resistance.
It is notable that symbiotic plant triggers defense system more promptly than non
symbiotic plants following a pathogen encounter (Jalgaonwala et al. 2011).

In the plant–microbe relationship, the endophytes supply nutrients to the plant,
protect the plant from the invasion of pathogenic microorganisms, and in return, get
space to colonize. The various activities of endophytes such as nitrogen fixation,
solubilizing iron, and production of metabolites for plant protection enable the
endophyte to help in the associate plant growth (Marx 2004; Porras-Soriano
et al. 2009; Ryan et al. 2008; Rana et al. 2019a, b). The endophytes produce
excess substances of impending use to modern medicine, agriculture, and industry.
Endophytes were documented to produce a variety of biological activities such as
antibiotic, anti-inflammatory, antiviral, anticancer, and antioxidant (Kado 1992;
Kobayashi and Palumboo 2000; Yadav et al. 2019a, b, c).

4.2 Ecology of Endophytic Bacteria

The endophytic bacteria were perhaps isolated from monocotyledonous as well as
dicotyledonous plants, including woody tree species, for example, oak (Brooks et al.
1994) and pear (Whitesides and Spotts 1991), as well as herbaceous crop plants,
such as sugar beets (Jacobs et al. 1985) and maize (Gutierrez-Zamora and Martinez-
Romero 2001). Diversity linked with bacterial endophytes occurs in plant species
and also in colonizing bacterial taxa.

Plants can be colonized concurrently by a variety of endophytic bacteria. Plant
endophytic bacteria have been classified into 82 genera within Alphaproteobacte-
ria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria Firmicutes, and Bac-
teroidetes and most of them fit into Alphaproteobacteria, Betaproteobacteria, and
Gammaproteobacteria (Lodewyckx et al. 2002; Rosenblueth and Martínez-Romero
2006). While new endophytes are being continuously reported from different plant
species. Within a particular plant, in the different tissues, different bacterial and
fungal species can colonize. Thus, the plant itself forms a complex microecosys-
tem, providing niche/habitats for the endophytes as per their preferences (Kour et al.
2019b, c). These habitats are not only exemplified by plant external surfaces, where
epiphytic bacteria predominate, but also by internal tissues especially in xylem and
phloem, where many microorganisms penetrate and survive.

The distribution of endophytic bacteria in different parts of the plant was first
observed by Gardner et al. (1982). The endophytic bacteria present in the xylem fluid
of Florida citrus tree roots was identified by the authors. Among the 13 genera found,
themost dominant specieswerePseudomonas amounting to 40%whileEnterobacter
comprised of 18%. This stable biodiversity is considered to be the most important
condition in the establishment of any ecosystem.
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4.3 Colonization of Plant by Endophytes

In some cases, endophytic bacteria may be transferred through the seed. These endo-
phytic bacteria can stimulate plant growth and their progress in the host tissue. Endo-
phytic microorganisms having the ability to fix atmospheric nitrogen and solubilize
phosphate, as well as the ability to eliminate soil contaminants, play a crucial role in
increasing the soil fertility.

Even though bacteria are prokaryotes and fungi are eukaryotes, they share many
qualities of their relationship with plant hosts. In both the cases, colonization of
root tissues is internal as well as external. Mostly it is systemical. The mode of
colonization, however, differs in the two. Bacteria primarily colonize intercellularly
and aremostly found in the vascular tissues of host plants. This helps the endophyte in
its distribution. Asymptomatic colonization of the roots by fungi may be intercellular
or intracellular in nature.

4.4 Natural Products from Endophytic Bacteria
as Secondary Metabolites

Knowing the importance of endophytic microbial community, the endophytic micro-
bial composition of the medicinal plants should be studied, identity of the microor-
ganisms should be carried out, and the endophytic microbial preservation should be
given preference in research. Secondly, there is a need to bioprospect the endophytes
for other industrial applications also apart from antibiotics. The relationship between
the geographical distribution of plants and their endophytic composition, as well as
the plant–microbe relation needs to be established.

The endophytes colonize a particular niche, i.e., the plant tissue, which helps
them in their role as biocontrol agents similar to that of phytopathogens. There are
numerous reports about the role of the endophytic microorganisms in controlling
plant pathogens, insects, and nematodes, and also in accelerating seedling emer-
gence, enhancing growth of plants, and helping in plant establishment under adverse
conditions (Kour et al. 2019a; Suman et al. 2016). Disease development is prevented
due to the de novo production of varied new compounds and antifungal metabolites.

According to Lodewyckx et al. (2002), endophytes include bacterial genera that
was found in soil, such asPseudomonas, Burkholderia, andBacillus. Awide range of
diverse range of secondarymetabolic products including antibiotics, anticancer com-
pounds, volatile organic compounds, antifungal, antiviral, insecticidal, and immuno-
suppressant agents are obtained from these genera. Extensive number of biologically
active compounds have been isolated from endophytic microorganisms; however,
there still remains a largely untapped source of novel natural products.

Guo et al. 2000 reported cytonic acids that act on viruses namely
cytomegaloviruses. There are very few reports of antiviral from endophyte bacteria.
Sun et al. (2006) have worked on the endophyte B. amyloliquefaciens (ES-2) isolated
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from a herb Scutellaria baicalensis Georgi. The endophyte produces fengycins and
surfactins which have antibacterial and antifungal properties. Zhou et al. (2015) has
reported an endophytic fungi Aspergillus versicolor producing antiviral butyrolac-
tones. Settu et al. (2010) haveworked on the endophytes ofAndrographis paniculola.
Endophytes of these plants possess activity againstGram-positive andGram-negative
bacteria.Khaled et al. (2018) haveworked on endophytic fungi of Egyptianmedicinal
plants and have found these isolates to possess antiviral and antioxidant activities.

4.4.1 Endophytes as a Source of Antibiotics

Medicinal plants have been used in the treatment of numerous infections and diseases,
with their medicinal applications described in the Ayurveda. The compounds respon-
sible for these medical applications are present in the plants and are alo obtained
from the endopytic bacteria and fungi, endophytic in these plants. These natural
compounds offer a great diversity of chemical structures that can be researched and
applied for betterment of mankind (Berde 2015). Research on secondary metabolites
with antimicrobial activity is essential with the development of antibiotic resistance
in pathogens and the problem of emerging and reemerging diseases. The potential
endophytic microorganisms can be utilized to address these problems.

Numerous synthetic drugs have been developed based on the lead compounds
isolated from natural products. The classical example cited is that of the prototypical
taxane isolated by Wani et al. in 1971, from the bark of a yew tree Taxus brevifolia.
In 1996, Strobel et al. reported an endophytic fungus (Pestalotiopsis microspora)
found in Yew tree with ability to produce Taxol. Like fungal endophytic cultures,
endophytic bacteria also have potential of synthesizing novel natural products. Work
is being focussed in order to explore endophytic bacteria for new and unique natural
products of commercial importance. Endophytes thus are a source for antibacterial,
antifungal, antidiabetic, antioxidant, and immunosuppressive products. Ecomycins,
Pseudomycins, Munumbicins are some examples of the unique antibiotics obtained
from endophytes.

4.4.1.1 Diterpenes

A large number of compoundswith cytotoxic activity have been found to be produced
by endophytic fungi over the years. Paclitaxel or Taxol is an antitumor compound
reported from endophytes of number of plants.Pestalotiopsis microspora endophytic
fungal species isolated from Taxodium distichum (Li et al. 1996) and Taxus wallichi-
ana (Strobel et al. 1996) have been reported to produce paclitaxel. The endophytic
fungal isolate Penicillium raistrickiiendophytic in Taxus brevifoliawas found to pro-
duce paclitaxel as well as baccatin III (Stierle and Stierle 2000). Earlier, from the
same plant species, an endophytic fungi Taxomyces andreanae was reported, pro-
ducing paclitaxel and baccatin (Strobel et al. 1993). There are two more reports
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of Paclitaxel production by Pestalotiopsis species. Pestalotiopsis pausiceta associ-
ated with Cardiospermum helicacabum (Gangadevi et al. 2008) and Pestalotiopsis
terminaliae endophytic in the plant Terminalia arjuna (Gangadevi and Muthamary
2009a). Scientists have reported another endophytic fungus isolated from Terminalia
arjuna, identified as Chaetomella raphigera, also to produce paclitaxel (Gangadevi
and Muthamary 2009b). Production of paclitaxel was reported from an endophyte,
Bartalinia robillardoides, of the medicinal plant Aegle marmelos or Indian bael
(Gangadevi and Muthamary 2008).

4.4.1.2 Polyketides

Curvularia geniculate, an endophytic fungus, isolated fromCatunaregam tomentosa,
is reported to produce 5 hybrid peptide–polyketides, curvularides A–E. Curvularide
B showed antifungal activity against C. albicansin in addition to synergistic activity
with afluconazole drug.Anumber of polyketides havebeen reported fromendophytic
fungal strains, shown in Table 4.1.

4.4.1.3 Lignans

Podophyllotoxin is a lignin with antimitotic and tubulin polymerase inhibition
activity. Its derivatives namely, etoposide, teniposide, and etoposide phosphate,
are preferably used in the treatment of cancer. A number of endophytes have
been reported for podophyllotoxin production. Endophytic fungi Tramates hirsute
isolated from dried rhizomes of Podophyllum hexandrum produces podophyllotoxin
and its derivatives (Puri et al. 2006). Another report of fungal endophyte producing
podophyllotoxin from Podophyllum peltatum has been cited. The endophyte was
identified as Phialocephala fortinii (Eyberger et al. 2006). Fusarium oxysporum,
an endophyte isolated from Juniperus recurve, a medicinal plant found in the
Himalayas, was found to produce Podophyllotoxin (Kour et al. 2008). Podophyl-
lotoxin has also been isolated from an Alternaria species, an endophyte of the
plant Juniperus vulgaris(Lu et al. 2006) and Aspergillus fumigatus, endophyte of
Juniperus communis L. Horstmann (Kusari et al. 2009).

4.4.1.4 Terpenoids

Stierle and Stierle (2000) have reported the isolation of endophytic Penicillium
species from Taxus brevifolia (Yew). Of these endophytes, Penicillium brevicom-
pactum is reported to produce a terpenoid, mycophenolic acid. This compound is
antifungal, an immune suppressant drug and used in the treatment of Dengue.
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4.4.1.5 Terpenes

Many compounds belonging to this group have been isolated from endophytic fungal
cultures and have been tabulated below in Table 4.2.

4.4.2 Heterospirocyclic Compounds

Two heterospirocyclic compounds useful in the treatment of cancer have been
found to be produced by endophytic fungal cultures. Pseurotin A is antibacterial in
addition to being anticancer. It is produced by Penicillium raistrickii, an endophyte
of the plant Taxus brevifolia (Stierle and Stierle 2000) and Penicillium janczewskii
KM Zalessky, associated with the Prumnopitys andina (Schmeda-Hieschmann
et al. 2008). Tauramin is an anticancer compound produced by the endophytic fungi
Phyllosticta spinarum isolated from Platycladus orientilis (Wijeratne et al. 2008).

4.4.2.1 Antimicrobial Peptides

Antimicrobial Peptides (AMPs) are the new generation of native peptide molecules.
These are found in all living beings. They are being referred to as natural antibiotics.
The AMPs are reported to have a very wide activity against a large spectrum of
pathogenic microorganisms as well as protozoan and metazoan parasites (Liu et al.
2000; Vizioli and Salzet 2002). All of these components are main elements involved
directly in the innate immune response of their hosts. This activity comprises of
the expression of fluid phase proteins that recognize pathogen-associated molecular
patterns. The response of the antibiotic peptides is quick, highly efficient, and with
broad host activity range (Hoffmann and Reichhart 2002).

4.4.2.2 Antimicrobial Peptides from Endophytes

Endophytic bacteria compete with the pathogenic organisms and prevent them from
colonizing the plant tissues. Secondary metabolites produced by the endophytes pre-
vents the growthof pathogensmicroorganisms, thus playing a role in the plant defense
mechanisms. AMPS are molecules of choice for drug development due to specificity
for their targets with higher degree of interactions. Antibacterial cyclo-(Pro-Thr) and
cyclo-(Pro-Tyr) are produced by endophytic fungus Penicillium sp, endophytic fungi
found in mangrove plant Acrostichum aureurm. Both peptides demonstrated activity
against Staphylococcus aureus and Candida albicans.

Epichlicin, a novel cyclic peptide was reported from the endophytic fungus
Epichloe typhina, found in plant Phleum pretense L. The peptide was antagonistic
at low concentrations, against the Cladosporium phlei spores, the fungal pathogen
of the timothy plant (Seto et al. 2007).
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Leucinostatin A, an antitumor and antifungal peptide was isolated from extracts
of Acremonium sp. associated with Taxus baccata (Strobel et al. 1997). The endo-
phytic fungi, Penicillium raistrickii endophytic in Taxus brevifolia, produced the
peptide Cycloaspeptide A, and also other nitrogen containing compounds such as
Benzomalvin C (analgesic anti-inflammatory), Fiscalin B (mycotoxins), Oxaline
(anticancer), and Roquefortine C (anticancer) (Stierle and Stierle 2000). Noble et al.
(1991) reported the isolation of compoundEchinocandin from endophytic fungal cul-
tures Cryptosporiosis sp and Pezicula sp. endophytic in the plants Pinus sylvestris
and Fagus sylvatica.

4.4.2.3 Ecomycins

The endophytic bacterium, Pseudomonas viridiflava was reported to produce com-
pounds called as Ecomycins. The ecomycins, lipopeptides in nature, contain unusual
amino acids such as homoserine and β-hydroxy aspartic acid. Three lipopeptides pro-
duced byP. viridiflava strain EB273were identified and characterized (Harrison et al.
1991).

4.4.2.4 Pseudomycins

Pseudomycins are antifungal produced byPseudomonas syringae, a plant-associated
bacterium (Harrison et al. 1991). These antifungal peptides are lipopeptides con-
taining amino acids like L-chlorothreonine, D- and L-diaminobutyric acid, and L-
hydroxyl aspartic acid. Pseudomycin A shows activity against Candida albicans,
an oppurtunistic pathogen. Pseudomycins A–C contain hydroxyaspartic acid, argi-
nine, lysine, serine, and diaminobutyric acid. They are active against fungal plant
pathogens including C. albicans and C. neoformans.

4.4.2.5 Munumbicins

The munumbicins are made up of 4 bioactive substances having a broad activity
spectrum against fungal and bacterial plant pathogens aswell asPlasmodium species.
Castillo et al. (2002) have reported the production of munumbicins by Streptomyces
NRRL 30562, an endophytic bacterium of Kennedia nigriscans, a medicinal plant
native to Australia. The activity of these compounds was against Gram-positive
bacteria including the methicillin-resistant strain of S.aureus (MRSA, ATCC 33591)
and a vancomycin-resistant strain of E. faecalis (VREF, ATCC 51299). Munumbin B
is effective against multiple-drug-resistant (MDR) Mycobacteriumtuberculosis, an
acid-fast bacterium, while munumbicins C and D are effective against the malarial
parasite Plasmodium falciparum.
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4.4.2.6 Polyhydroxy Butyrate

Polyhydroxy butyrate (PHB) and poly-3-hydroxyalkanoate (PHA) are the most
widely produced microbial bioplastics. These are gaining attention due to their
commercial value. Many naturally occurring species of bacteria have the ability to
produce bioplastics, as proven by their genomic analysis studies (Kalia et al. 2003).
Herbaspirillum seropedicae, a diazotrophic endophyte, is found in a variety of higher
plants. Catalán et al. (2007) have shown thatH. seropedicae produces significant lev-
els of PHB, when grown on a range of carbon sources. Degradation of polymer in
the host system takes place over the time. Hence there is a possibility of the use of
these polymers in drug delivery in cases where slow release of compound is needed.

4.5 Conclusion and Future Perspectives

This chapter highlights the need for novel pharmaceutical solutions to fight emerging
and reemerging infections. Endophytic microorganisms are a promising source, as
these fungi and bacteria are constantly at war with pathogenic microbes to create an
ecological niche for themselves. They produce secondary metabolites as a source of
communication and defense. These need to be bioprospected in order to tackle the
medical problems being faced presently and will appear in the future too.
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Chapter 5
Phyllospheric Microbiomes: Diversity,
Ecological Significance,
and Biotechnological Applications
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Rajaram Shyamkumar and Kalimuthu Arjunekumar

Abstract The phyllosphere referred to the total aerial plant surfaces (above-ground
portions), as habitat for microorganisms. Microorganisms establish compositionally
complex communities on the leaf surface. The microbiome of phyllosphere is rich in
diversity of bacteria, fungi, actinomycetes, cyanobacteria, and viruses. The diversity,
dispersal, and community development on the leaf surface are based on the phys-
iochemistry, environment, and also the immunity of the host plant. A colonization
process is an important event where both the microbe and the host plant have been
benefited. Microbes commonly established either epiphytic or endophytic mode of
life cycle on phyllosphere environment, which helps the host plant and functional
communication with the surrounding environment. To the scientific advancement,
several molecular techniques likemetagenomics andmetaproteomics have been used
to study and understand the physiology and functional relationship of microbes to the
host and its environment. Based on the available information, this chapter describes
the basic understanding of microbiome in leaf structure and physiology, microbial
interactions, especially bacteria, fungi, and actinomycetes, and their adaptation in
the phyllosphere environment. Further, the detailed information related to the impor-
tance of the microbiome in phyllosphere to the host plant and their environment has
been analyzed. Besides, biopotentials of the phyllosphere microbiome have been
reviewed.
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5.1 Introduction

The term phyllosphere is referred to as “the aerial part of the plant or the parts of a
plant above the ground usually surface of leaves, considered as a habitat for microor-
ganisms.”This is a placewhere normally a variety ofmicroorganism (bacteria, yeasts,
and fungi) colonizes. The global leaf area corresponds to both upper and lower sur-
faces, has approximately twice as great as the land surface area (Vorholt 2012). The
phyllosphere is the ambient region for microbes to colonize and establish its associ-
ation with plants usually epiphytes. Microbial communities in the phyllosphere are
highly complex and consist ofmany cultured and unculturedmicroorganisms (Müller
and Ruppel 2014). It has a heterogeneous group of the microbial association at the
micrometer scale area due to its diverse microenvironments (habitats). The phyllo-
sphericmicrobes are adapted to the insensitive environmental conditions, specifically
microbial epiphytes are highly exposed to atmospheric temperature, light, UV radia-
tion, lesswater, and nutrient availability. These external factors affect the composition
and diversity of phyllospheric microbial communities (Vorholt 2012). However, the
type of plant and invading microbial populations (pathogens) are also influencing
the commensals and/or mutualistic relationship with their host plant (Lindow and
Brandl 2003). Less number of studies are available for the microbiology of phyllo-
sphere rather than plant root. Moreover, with increasing anthropogenic stresses, the
diversity and community structure of phyllosphere microflora have been continually
modified. In this chapter, we focused on the phyllospheric microbiome, structure and
diversity, epiphytic mechanism, molecular interactions, ecological significance, and
the microbial importance in biotechnology.

5.2 Basic Understanding of Leaf Structure

The leaf is a highly organized andmulti-layered plant organ (Fig. 5.1), which consists
of the epidermis (upper and lower) covered by a waxy cuticle that provides a physical
barrier against abiotic and biotic stresses. The epidermis involves many regulatory
processes of leaf physiology including gas exchange, temperature regulation, pri-
mary production, secretion of secondary metabolites, and water mobilization. Also,
a specialized epidermal cell such as stomata, hydathodes (modified stomata), and tri-
chomes (outgrowth) are there in the epidermis. The stomata are surrounded by two
cupped hand cells called guard cells, which may open or close due to internal water
pressure. Inside the leaf, a layer of cells called the mesophyll, is present, usually two
layers, namely, palisade layer and the spongy layer. They contain chlorophyll and
photosynthesis occurs in these cells. The palisade cells are more column cells and
the spongy cells are more loosely packed between the palisade layer and the lower
epidermis, and it allows for gas exchange. The veins of the leaf contain the vascular
tissue, xylem and phloem are found in it. Veins run from tips of the roots and are
extended up to the edges of the leaves. The outer layer cells are called bundle sheath
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Fig. 5.1 Structural organization of a leaf

cells which circle the xylem and the phloem. The xylem transports water and phloem
transports sugar (food).

Glandular trichome of the epidermis releases a wide spectrum of leaf exudates,
such as polysaccharide salts, lipids, volatile compounds, and proteins, and its function
is associated with plant–microbe and plant–insect interactions (Hirano and Upper
1983).But, non-glandular trichome involves regulation ofwater tension, light absorp-
tion, and protect the leaf from UV radiation and heat as well as drought tolerance
(Hirano and Upper 1983).

5.3 Phyllosphere Habitat

The phyllosphere is a unique and dynamic habitat which constitutes irregular, and
sometimes relatively largemicrobial community inhabitant in the ecosystem (Whipps
et al. 2008). The total terrestrial phyllosphere area estimated is around 6.4× 108 km2

(Morris and Kinkel 2002), and it exhibits numerous microhabitat which represents
a major source of microorganism. Variety of bacteria, filamentous fungi, and yeasts
are naturally colonized on the phyllosphere region and less frequently, protozoa and
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nematodes. These microorganisms exhibit commensalism and/or mutualism (sym-
bionts) or antagonism type of relationship on their host plants. The microbial asso-
ciation in phyllosphere has several advantages and importance to global processes
including biogeochemical cycles (carbon and nitrogen) and environmental impact.

5.3.1 Microbial Assembly on Leaf

The arrangement of leaf epidermal cells describes the leaf physiology and the
microenvironment which allow the abundance and distributions of microorganisms
on the leaf surface (Shiraishi et al. 2015; Esser et al. 2015). Simply, epiphytes make
biofilm-like growth, most preferably larger bacterial aggregates are on the trichomes,
veins, and epidermal cell groves (Brewer et al. 1991; Morris et al. 1997), where the
leaf exudates containing nutrient-rich region. The presence of outer cuticle and its
physiology help the microbes to colonize this site. Presence of aliphatic compounds
in the cuticle layer determines the physicochemical properties of the leaf surface and
renders the permeability and wettability, which facilitate the adherence of microor-
ganisms (Sadler et al. 2016). Water permeability of this site may play a vital role in
the survival and growth of the epiphytes. Moreover, leaching the nutrients along with
water makes the epiphytes to utilize and develop colonies on the phyllosphere (Burch
et al. 2014). The leaf surface with higher water and nutrient penetration is heavily
colonized by bacterial communities (Beattie 2011). In general, bacteria maintain
the cuticular permeability by secretion of biosurfactants, for example, Pseudomonas
syringae release syringafactin on the cuticle layer of the leaf which facilitate the
availability of sugar for persistent epiphytic growth (Van der Wal and Leveau 2011).
Similarly, fructose availability by Pantoea eucalypti 299R and Pantoea agglomer-
ans (Leveau and Lindow 2001). Figure 5.2 represents the phyllosphere microbial
assemblage, wherein the epiphytic microorganism exploits this microenvironment
for special distribution of microbes, survival as well as blooming (colonization).
At the same time, surface microorganisms change the phyllosphere chemistry, and
they render the heterogeneous oligotrophic mode of epiphytic life. Besides, microor-
ganism establishes special niches on the leaf surface with the interactive mode of
life (Agler et al. 2016) in this microhabitat microbial population can be constantly
maintained.

5.4 Microbial Diversity in the Phyllosphere

Thephyllosphere consists of diverse numerousmicrobial communities includingbac-
teria, filamentous fungi, yeasts, algae, and protozoans (Whipps et al. 2008; Verma
et al. 2013, 2015, 2016a, b). The nature of various microorganisms (epiphytic and
endophytic) associated with phyllosphere is given in Fig. 5.3. Among the diverse
community of microbes, bacteria are the predominant community on leaves and its
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Fig. 5.2 Structure of phyllosphere microbial assemblage. a stages for microbial community
structure development, b regulations for the microbial community structure in phyllosphere

Fig. 5.3 Epiphytic and
endophytic microbes in
phyllosphere

range is between 102 and 1012 g−1 of the leaf (Inacio et al. 2002). The conventional
culture-based method has been used for the identification of different microbial com-
munities of the leaves. Thompson et al. (1993) identified 78 bacterial species from
the sugar beet, and Legard et al. (1994) screened 88 bacterial species from 37 genera.
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However, the culture-dependent method based profiling of phyllosphere communi-
ties is likely to be incorrect and miscalculates diversity (Rasche et al. 2006). The
culture-independent approaches like 16S rDNA sequences of the whole microbial
mass of phyllosphere could give the complete and complex microbial community
structure of the environment. Molecular studies suggested that alpha-, beta- and
gammaproteobacteria and firmicutes are the dominant bacterial inhabitants of the
phyllosphere. Frequently, acidobacteria, actinobacteria, and cyanobacteria are also
occurring in the phyllosphere environment (Kadivar and Stapleton 2006). Lambais
et al. (2006) identified that 97% of the bacterial sequences of the phyllosphere have
been new and unidentified. Yang et al. (2001) reported large numbers of novel bac-
teria from the phyllosphere of crop plants. The number of studies confirmed the
diversity of yeast in the phyllosphere environment as an epiphyte.

The cultivable yeasts genera such as Cryptococcus, Sporobolomyces, and
Rhodotorula and its species have been largely inhabitant in the plant leaf (Thompson
et al. 1993; Glushakova and Chernov 2004). Moreover, the culture-dependent meth-
ods have been used to study the abundance of filamentous fungi, ranging from 102 to
108 CFU g−1. Genera such as Cladosporium, Alternaria, Penicillium, Acremonium,
Mucor, and Aspergillus are the frequent filamentous fungi colonizing as epiphytes
and endophytes (Arnold et al. 2000; Inacio et al. 2002; Rana et al. 2019a, b, c).

However, the culture-independent strategy is the best to investigate the diver-
sity and distribution of specific bacterial groups of interest (Miyamoto et al. 2004;
Sessitsch et al. 2006). Other than the 16S/18S rDNA sequences, multiplex terminal
restriction fragment length polymorphism (TRFLP) has been used to analyze several
phylogenetic groups or functional genes in themicroenvironment (Singh et al. 2006).
Soils, water, air, tree buds, and plant debris from the previous crops are the sources for
microbes in phyllosphere (Manceau and Kasempour 2002). Those microorganisms
may be habited in phyllosphere either transient or residual epiphytes (Suslow 2002;
Zak 2002). The atmospheric microflora, rainfall, humidity, wind, etc. can directly
influence the transients of microorganisms to the phyllosphere (Lighthart 1997).
During the plant growth period, the epiphytic bacterial population will increase in
quantity (Inacio et al. 2002). The microorganisms on the seed or roots may be estab-
lished as epiphytes or endophytes (Wulff et al. 2003). Some epiphytesmay be injected
into the internal space of the leaf and colonize as endophytes. The distribution pat-
tern of the phyllosphere microorganisms is not even, mostly bacteria colonize at
the epidermal wall junctions, specifically in the grooves and the veins or stomata or
at the base of trichomes (Melotto et al. 2008), also found in the cuticle layer, near
hydathodes and stomatal pits (Aung et al. 2018). The microbial load is higher at
the lower leaf surface perhaps the lower leaf surface contains thin cuticle, stomata,
and/or trichomes (Beattie and Lindow 1999). Mostly, all microorganisms that appear
in the phyllosphere are capable to colonize and grow (Whipps et al. 2008), and it
disperses throughout the surface by rain splash, bounce-off, wash-off, water move-
ment, or removal by insects or pest (Kinkel 1997; Yang et al. 2001; Lambais et al.
2006).
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5.4.1 Bacterial Diversity in the Phyllosphere

Phyllosphere is a heterogeneous environment (Koskella 2013), bacteria are consid-
ered the most abundant inhabitants of the leaves, and its average number is being
around 106–108 cells cm−2 (Andrews and Harris 2000; Hirano and Upper 2000). But
the population of epiphytic bacteria differs depending on the plant species and its
surrounding environment. The variation is mainly due to the physical and nutritional
conditions of the phyllosphere. Commonly, the broad-leaf plants have the highest
number of bacteria than the grasses or waxy broad-leaf plants (Kinkel et al. 2000).

Generally, the phyllosphere contains four major phyla of bacteria such as the
Proteobacteria, Firmicutes, Bacteroides, and Actinobacteria (Kembel et al. 2014;
Durand et al. 2018). Methylotrophic bacteria are predominant in phyllosphere which
includes genera such as Methylobacterium, Methylophilus, Methylibium, Hyphomi-
crobium,Methylocella,Methylocapsa, andMethylocystis (Mizuno et al. 2013; Iguchi
et al. 2013; Kwak et al. 2014; Krishnamoorthy et al. 2018). Methylobacterium and
Sphingomonas are the predominant genera belonging to the class alphaproteobac-
teria reported in several plant phyllospheres (Delmotte et al. 2009; Kumar et al.
2019a). The bacterial community organization on phyllosphere is controlled by spe-
cific assemblage regulations (Buee et al. 2009; Reinhold-Hurek et al. 2015). Nor-
mally, soil type, plant genotype and species, immune systemof the plant, age, climatic
condition, and the geographic region are the factors forcing the bacterial commu-
nity assembly (Leff et al. 2015; Zarraonaindia et al. 2015; Copeland et al. 2015).
Extensive studies are available for the soil and rhizosphere bacterial community
on phyllosphere bacterial colonization in Arabidopsis thaliana (Bodenhausen et al.
2013; Maignien et al. 2014; Bai et al. 2015; Muller et al. 2015) and maize (Peiffer
et al. 2013). Proteobacteria, Actinobacteria, and Bacteroidetes are the most abun-
dant phyla colonizing the leaf and root of A. thaliana (Delmotte et al. 2009; Redford
et al. 2010; Bodenhausen et al. 2013). Massilia, Flavobacterium, Pseudomonas,
and Rathayibacter are a prevalent bacterial genus in A. thaliana (Bodenhausen et al.
2013),Deinococcus thermus on tree phyllosphere (Redford et al. 2010), and Bacillus
and Pantoea dominate the lettuce (Rastogi et al. 2012).

Kembel et al. (2014) studied the bacterial communities on tropical tree leaves,
around 400 bacterial taxa the phyllosphere has been dominated with Actinobacteria,
Alpha-, Beta-, and Gammaproteobacteria, and Sphingobacteria. However, Archaea
is the profusemembers of the plant-associatedmicrobe, commonly Thaumarchaeota,
Crenarchaeota, andEuryarchaeotamake the endophyticmodeof life in plants (Müller
et al. 2015). Durand et al. (2018) characterized the bacterial genera such as Methy-
lobacterium, Kineococcus, Sphingomonas, andHymenobacter of the phylum Firmi-
cutes from the leaf surface. The phyllosphere of the grapevine contains Acinetobac-
ter, Bacillus, Citrobacter, Curtobacterium, Enterobacter, Erwinia, Frigoribacterium,
Methylobacterium, Pantoea, Pseudomonas, and Sphingomonas as dominant gen-
era (Kecskeméti et al. 2016). Steven et al. (2018) characterized Pseudomonas and
Enterobacteriaceae as predominant taxa from apple. Several studies revealed Pseu-
domonas as the most abundant genus of phyllosphere region (Aleklett et al. 2014;
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Kecskeméti et al. 2016; Steven et al. 2018). Seed coat associated bacteria that have
been reported in phyllosphere are mainly Actinobacteria, Bacteroidetes, Firmicutes,
and Proteobacteria (Johnston-Monje and Raizada 2011; Rodríguez-Escobar et al.
2018).

The most notable bacterial pathogen is Pseudomonas syringae, it causes diseases
in a wide range of economically important plant species (Mansfield et al. 2012;
Morris et al. 2013; Burch et al. 2014). Hamd Elmagzob et al. (2019) identified
taxa such as Rhizobiales, Clostridiales, Pseudomonadales, Burkholderiales, Bac-
teroidales, Enterobacteriales, Rhodocyclales, Sphingomonadales, Lactobacillales,
and Bacillales from the leaves of Cinnamomum camphora (L.) Presl. Several studies
reported diazotrophic bacteria on phyllosphere (Fürnkranz et al. 2008; Rico et al.
2014). Diazotrophic bacteria can use atmospheric dinitrogen (N2) as nitrogen source
for its metabolic activities. Bacterial diazotrophic include Beijerinckia, Azotobac-
ter, Klebsiella, and Cyanobacteria (e.g., Nostoc, Scytonema, and Stigonema). Dia-
zotrophic nitrogen fixation has been reported in many species which contains an
enzyme nitrogenase (encoded by nif genes) (Rico et al. 2014). Recently, 16 s rRNA
gene-based high-throughput sequencing technology has been used for the diversity
analysis of phyllosphere, for example, the distribution of endophytic bacteria of C.
camphora (L.) Presl leaves has been analyzed by 16S rRNA gene metagenomics,
revealing Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Gemmatimon-
adetes, Acidobacteria, Planctomycetes, Chloroflexi, and Fusobacteria are the major
phyla of the polymicrobial community (Hamd Elmagzob et al. 2019).

5.4.2 Fungal Microbiota of Phyllosphere

Fungi are saprophytic and theymaybe associatedwith plants either epiphytic or endo-
phytic, and mostly they are known for their pathogenesis on plant system (Voříšková
and Baldrian 2013; Yadav et al. 2019b, c, d). There are several reports revealed
that phyllosphere fungi have a profound role in the residing host. Both epiphytic
and endophytic fungi inhabiting the leaf are of high species diversity with diverse
metabolic functions (Yao et al. 2019), such as leaf litter decomposition and recy-
cling the carbon and nitrogen (Kannadan and Rudgers 2008; Guerreiro et al. 2018).
In general, endophytic fungi can help plant growth and also provide resistance to
biotic (pathogens) and abiotic (drought and salinity) stresses, (Arnold et al. 2007;
Purahong and Hyde 2011; Guerreiro et al. 2018; Yadav et al. 2018c). In culture-
dependent approaches, several fungal species have been isolated from small herbs
to larger woody plants. Inácio et al. (2010) reported that the density of yeast-like
fungi may vary from plant to plant and approximately 5 × 104 cells cm−2. Aureoba-
sidium pullulans are yeast-like fungi abundant in phyllosphere (Cordier et al. 2012;
Setati et al. 2012). Apart from yeast-like fungi, many filamentous fungi have been
reported from health as well as infected plant leaves. Through the culture-dependent
method, Ripa et al. (2019) isolated Aspergillus niger, Fusarium oxysporum, Peni-
cillium aurantiogriseum, Fusarium incarnatum, Alternaria alternata, Alternaria
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tenuissima, Cladosporium cladosporioides, Talaromyces funiculosus, Aspergillus
flavus, Trichoderma aureoviride, Trichoderma harzianum, Penicillium janthinellum,
Fusarium proliferatum, Fusarium equiseti, and Aspergillus stellatus from wheat
plant.

Dhayanithy et al. (2019) isolated twenty endophytic fungi from the leaves and stem
of Catharanthus roseus, among them Colletotrichum, Alternaria, and Chaetomium
were the dominant genera. Many of them make endophytic association begin with
epiphytic initiation (Rodriguez et al. 2009; Porras-Alfaro and Bayman 2011), and
some endophytes later turned to pathogens. The olive tree phyllosphere is found to be
highly diverse having more than 149 genera and 68 families of fungi (Martins et al.
2016) in aMediterranean ecosystem (Portugal), butAbdelfattah et al. (2015) reported
only 13 endophytic fungal taxa in the leaves and twigs of olive trees. There has
been a discrepancy to understand the phyllosphere fungi as endophytic or epiphytic,
occasionally it is uncertain, for the reason that some can reside both epiphytic and
endophytic modes of association. In general, phyllosphere endophytic fungi are the
epiphytic habitats and are penetrated into the plant tissues to form an endophytic
association (Kharwar et al. 2010; Porras-Alfaro and Bayman 2011). Though they are
phyllospheric, the soil has acted as a reserve for these potential endophytic inoculums
of the above-ground organs (Zarraonaindia et al. 2015). For example, Ascochyta sp.
andFagus crenataB1 (Osono 2006),Colletotrichumgloeosporioides andPhomopsis
sp. (Rivera-Vargas et al. 2006; Twizeyimana et al. 2013), and Table 5.1 listed some
examples of phyllosphere fungal endophytes.

Osono (2008) reported that endophytic Colletotrichum gloeosporioides and C.
acutatum, and epiphytes Pestalotiopsis sp., Aureobasidium pullulans, Phoma sp.,
and Ramichloridium sp. are the phyllosphere fungi in the plant Camellia japonica.
However, the abundance and diversity of the fungi differ in plant species as well
as in different eco-climatic conditions. Moreover, seasonal and leaf age-dependent
variations also occur in the epiphytic and endophytic phyllosphere fungal assembly,
for example,Geniculosporium sp. is varied in leaf age, and Cladosporium cladospo-
rioides has been varied in both season and leaf age of the plant Camellia japonica
(Osona 2008). Phyllosphere fungi play an important function in mineral absorption
and mineral recycling process, specifically carbon, nitrogen, and phosphorus recy-
cling in the forest ecosystem. Therefore, the study about the phyllosphere fungi and
its physiology with host plant is important.

5.4.3 Actinomycetes Diversity in Phyllosphere

In addition to bacterial diversity, actinobacteria share a considerable interest in epi-
phytic and endophytic life forms in the phyllosphere. They are soil-inhabiting sapro-
phytic microbes and have been extensively studied for their therapeutic secondary
metabolites. This versatile group of gram-positive bacteria has adapted to diverse
environments including the phyllosphere of the plant (Singh et al. 2018). Some
actinobacteria form symbiotic association residing in plant tissues have generated
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Table 5.1 Phyllosphere fungal endophytes

Endophytic fungi Host plant Type References

Aspergillus,
Phomopsis,
Wardomyces,
Penicillium

Euterpe oleracea
(palm)

Palm Rodrigues (1994)

Ramularia spp. Vitis riparia
(grapevine)

Wild Kernaghan et al. (2007)

Absidia sp.,
Aspergillus sp.,
Cladosporium sp.,
Cunninghamella sp.,
Fusarium sp.,
Nigrospora sp.,
Paecilomyces sp.,
Penicillium sp.,
Rhizopus sp.,

Meyna spinosa Roxb. Medicinal plant Bhattacharyya et al.
(2017)

Penicillium
chrysogenum, and
Penicillium crustosum

Teucrium polium Medicinal plant El-Din Hassan (2017)

Alternaria alternata,
Setosphaeria sp.,
Cochliobolus sp.,
Alternaria sp. Phoma
herbarum, Davidiella
tassiana,
Botryosphaeria
dothidea, Ulocladium
alternariae, Phoma
macrostoma var.
incolorata, Phoma
exigua var. exigua,
Cladosporium
cladosporioides strain,
Botryosphaeria sp.,
Guignardia
mangiferae,
Pyrenophora
tritici-repentis,
Guignardia alliacea,
Rhizopus oryzae

Catharanthus roseus Medicinal plant Sreekanth et al. (2017)

(continued)

enormous significance to the host and its environment through their novel metabo-
lites. Diversity and distribution of endophytic actinobacteria have been largely doc-
umented, from medicinal plants, crop plants, and some other terrestrial plants (Qin
et al. 2011;Masand et al. 2015; Dinesh et al. 2017; Nalini and Prakash 2017). Several
species of actinobacteria have been reported from plants such as Triticum aestivum,
Lupinus termis, Lobelia clavatum, Acacia auriculiformis, Aquilaria crassna, Oryza
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Table 5.1 (continued)

Endophytic fungi Host plant Type References

Ascomycetes:
Trichoderma,
Penicillium, Fusarium,
and Aspergillus.
Non-ascomycetes:
Mucor
(Mucoromycota) and
Schizophyllum
(Basidiomycota)

Stanhopea tigrina Orchid Salazar-Cerezo et al.
(2018)

Trichothecium sp.,
Epicoccum nigrum,
Alternaria alternaria,
Alternaria
arborescens,
Nigrospora sphaerica,
Epicoccum sp.,
Alternaria sp.
Nigrospora sp.,
Colletotrichum
gloeosporioides,
Fusarium oxysporum,
Trichothecium roseum

Vitis vinifera (Grape
fruit cells)

Fruit plant Huang et al. (2018)

Aspergillus japonicus Euphorbia indica L. Wild plant Ismail et al. (2018)

Alternaria spp.,
Trichophyton spp.,
Geotrichum spp.,
Candida spp.,
Aspergillus spp.,
Aureobasidium spp.,
Fusarium spp.,
Exserohilum spp.,
Curvularia spp.,
Coccidioides spp.,
Bipolaris spp.

Epipremnum aureum,
Azadirachta indica,
Piper betle,
Catharanthus roseus,
Ficus religiosa, Musa
acuminate, Ficus
Benghalensis, Ficus
racemosa, Calotropis
procera, Ocimum
tenuiflorum

Medicinal plant Jariwala and Desai
(2018)

Nigrospora sphaerica,
Acremonium
falciforme, Allomyces
arbuscula, Penicillium
chrysogenum,
Acrophialophora sp,
Mycelia sterilia

Litsea cubeba Medicinal plant Deka and Jha (2018)

(continued)
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Table 5.1 (continued)

Endophytic fungi Host plant Type References

Colletotrichum
gloeosporioides f. sp.
camelliae and
Pleosporales sp.

Camellia sinensis Tea Win et al. (2019)

Tremellales,
Davidiellaceae,
Basidiomycota,
Rhodotorula,
Tremellales, Meria,
Cryptococcus,
Cladosporium,
Acaromycetes,
Erythrobasidium, etc.

Aegiceras
corniculatum
(Myrsinaceae),
Avicennia marina
(Verbenaceae),
Bruguiera
gymnorrhiza,
Kandelia candel and
Rhizophora stylosa
(Rhizophoraceae), and
Excoecaria agallocha
(Euphorbiaceae)

Mangrove Yao et al. (2019)

sativa, Xylocarpus granatum, andElaeagnus angustifolia fromvarious environments
like arid, semiarid, and mangrove are Actinoplane missouriensis, Actinoallomurus
acacia, Actinoallomurus coprocola, Actinomadura glauciflava, Amycolatopsis toly-
pomycina, Actinoallomurus oryzae, Jishengella endophytica, Kribbella sp., Micro-
bisporamesophila,Microbispora sp.,Micromonospora sp., Nocardioides sp.,Nocar-
dia alba, Nonomuraea rubra, Micromonospora sp. Nonomuraea sp., Pseudonocar-
dia sp., Planotetraspora sp., Pseudonocardia endophytica, Pseudonocardia halo-
phobica, Streptomyces sp., and Streptomyces javensis (Coombs and Franco 2003;
Thamchaipenet et al. 2010; Chen et al. 2011; Xie et al. 2011; Yadav 2017; Yadav
and Yadav 2018). Reports revealed that the actinomycetes diversity in phyllosphere
is high in the tropical and temperate ecosystem (Strobel and Daisy 2003; Yadav
et al. 2018b; Yadav and Yadav 2019). Moreover, the physiology of the plant and the
environment determines the actinobacterial association in plants and allows them to
establish endophytic life (Du et al. 2013). Some important actinobacterial diversity
in various plant sources is discussed in the following (Table 5.2).

5.5 Mechanism of Microbial Interaction
with the Phyllosphere

The leaf physiology determines the microbial diversity and abundance on the phyl-
losphere. It establishes the microhabitat where the microorganisms adapt to their
physiology to survive in this habitat (Staley et al. 2014; Shiraishi et al. 2015). The
epiphytic microbes formed as colonial form, which gives protection to the microor-
ganisms from this harsh microhabitat (Lindow and Brandl 2003; Remus-Emsermann
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Table 5.2 Diversity of endophytic actinobacteria

Endophytic actinobacteria Host plant Habitat References

Microbispora sp.,
Micromonospora sp.,
Nocardioides sp., Streptomyces
sp.,

Triticum aestivum Arid Coombs and
Franco (2003)

Actinoplane missouriensis Lupinus termis Arid El-Tarabily
(2003)

Pseudonocardia endophytica Lobelia clavatum Arid Chen et al.
(2009)

Actinoallomurus acaciae,
Streptomyces sp.,
Actinoallomurus coprocola,
Amycolatopsis tolypomycina,
Kribbella sp., Microbispora
mesophila

Acacia auriculiformis Arid Thamchaipenet
et al. (2010)

Actinomadura glauciflava,
Pseudonocardia halophobica,
Nocardia alba, Nonomuraea
rubra, Streptomyces javensis

Aquilaria crassna Mangrove Nimnoi et al.
(2010)

Actinoallomurus oryzae Oryza sativa Aquatic Indananda
et al. (2011)

Jishengella endophytica Xylocarpus granatum Mangrove Xie et al.
(2011)

Micromonospora sp.
Nonomuraea sp.,
Pseudonocardia sp.,
Planotetraspora sp.

Elaeagnus angustifolia Arid Chen et al.
(2011)

Streptomyces phytohabitans Curcuma phaeocaulis Arid Bian et al.
(2012)

Nonomuraea solani Solanum melongena Arid Wang et al.
(2013b)

Actinoplanes hulinensis,
Streptomyces harbinensi,
Wangella harbinensis

Glycine max Arid Jia et al.
(2013), Liu
et al. (2013),
Shen et al.
(2013)

Micromonospora sonneratiae Sonneratia apetala Mangrove Li et al. (2013)

Modestobacter roseus Salicornia europaea Saline Qin et al.
(2013)

Promicromonospora
endophytica

Eucalyptus microcarpa Arid Kaewkla and
Franco (2013)

Blastococcus endophyticus,
Plantactinospora endophytica

Camptotheca acuminate Arid Zhu et al.
(2013)

(continued)
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Table 5.2 (continued)

Endophytic actinobacteria Host plant Habitat References

Actinoplanes brasiliensis,
Couchioplanes caeruleus,
Gordonia otitidis, Micrococcus
aloeverae, Streptomyces
zhaozhouensis

Aloe arborescens Arid He et al. (2014)

Micromonospora
schwarzwaldensis Streptomyces
sp., Wenchangensis

Centella asiatica Mangrove Ernawati et al.
(2016)

Glutamicibacter halophytocola,
Kineococcus endophytica,
Streptomyces sp.,

Limonium sinense Saline Feng et al.
(2017)

Marmoricola endophyticus Thespesia populnea Mangrove Jiang et al.
(2017)

Allostreptomyces
psammosilenae

Psammosilene tunicoides Arid Huang et al.
(2017)

Micromonospora terminaliae Terminalia mucronata Mangrove Kaewkla et al.
(2017)

Nocardiopsis sp.,
Pseudonocardia sp.
Streptomyces sp.,

Dracaena cochinchinensis Semiarid Salam et al.
(2017)

Mangrovihabitans endophyticus Bruguiera sexangula Mangrove Liu et al.
(2017)

Actinoplanes sp., Agrococcus
sp., Amnibacterium sp.,
Brachybacterium sp.,
Brevibacterium sp., Citricoccus
sp., Curtobacterium sp.,
Dermacoccus sp.,
Glutamicibacter sp., Gordonia
sp., Isoptericola sp., Janibacter
sp., Kocuria sp., Leucobacter
sp., Mycobacterium sp.,
Micrococcus sp., Nocardioides
sp., Kineococcus sp.,
Kytococcus sp., Marmoricola
sp., Microbacterium sp.
Micromonospora, sp., Nocardia
sp., Nocardiopsis sp.,
Pseudokineococcus, sp.,
Sanguibacter sp., Streptomyces
sp., Verrucosispora sp.,

Avicennia marina,
Aegiceras corniculatum,
Kandelia obovota,
Bruguiera gymnorrhiza,
and Thespesia populnea

Mangrove Jiang et al.
(2018)

Glycomyces anabasis Anabasis aphylla Arid Zhang et al.
(2018)
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et al. 2012). Commonly, bacteria develop larger sized colonial association on the
leaf surface, especially at veins as well as the groves of epidermal cells (Morris et al.
1997; Hirano and Upper 2000). The epidermal grooves are rich in nutrients specif-
ically sugar and water. This region is less waxy cuticle, usually the leaf surface is
fully coved with waxy cuticle which prevents the permeability and wettability of the
leaf surface and regulates the colonization of the microbes on phyllosphere (Lindow
and Brandl 2003; Burch et al. 2014).

The leaf surface water droplets diffuse the waxy cuticle and improve the per-
meability by which the compounds are diffused from the apoplast to phyllosphere
surface (Schreiber 2005). These leached compounds and water on the phyllosphere
are making the availability of nutrients to the microorganisms. Most commonly, the
flow of water from the stomata (transpiration) is increasing the permeability and
wettability of guard cells and its surface cuticles (Schönherr 2006). Hence, higher
permeation of the cuticle layer permits the microbes to colonize densely (Krimm
et al. 2005). Moreover, the surface bacteria are able to produce certain compounds
like biosurfactants (syringafactin produced by Pseudomonas syringae) (Krimm et al.
2005; Burch et al. 2014) which can modify the cuticle surfaces of the leaf and estab-
lish its association. This can facilitate water availability and alter sugar availabil-
ity that can improve living conditions for epiphytic bacterial growth (Lindow and
Brandl 2003; Van der Wal and Leveau 2011). Epiphytes such as Pseudomonas sp.,
Stenotrophomonas sp., and Achromobacter increase the water permeability of the
lipophilic cuticle present in Hedera and Prunus, which increases the availability of
the compounds at the phyllosphere which will improve the epiphytic fitness on the
leaf surface (Schreiber et al. 2005).

It has been experimentally proved in the bean phyllosphere containing fruc-
tose facilitates the growth of Erwinia herbicola and Pantoea agglomerans (Remus-
Emsermann et al. 2013; Tecon and Leveau 2016). However, irregular distribution of
fructose differentially promotes the P. eucalypti population on bean leaves (Mercier
and Lindow 2000; Leveau and Lindow 2001; Remus-Emsermann et al. 2011). These
studies suggested that the permeated carbon sources on the leaf surface are mer-
rily exploited by the epiphytic microorganisms for their growth and multiplication.
At the same time, the phyllosphere microbial population can influence the mod-
ulation of the physicochemical properties of the leaf with the help of both biotic
and abiotic surroundings (Bringel and Couée 2015; Ohshiro et al. 2016; Quan and
Liang 2017). Soil microbial community may also influence the determination of
phyllosphere microbial diversity. However, the microbes can construct the niches
in the phyllosphere microhabitat wherein it can sustain and establish its population
steadily (Agler et al. 2016; San Roman and Wagner 2018). Recent studies revealed
the special relationships between the bacterial species in the phyllosphere commu-
nity. Presence of sugars and nutrients in this environment significantly change the
individual bacterial cells within the microbial aggregates (Fig. 5.2) would spatially
be established with cell-to-cell interactions along with direct physical interactions
(Levy et al. 2018; Tecon et al. 2018). The community structure is organized based
on the driven factors such as dispersal, selection of microbes, diversification, and
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ecological drift. The fitness of the community is due to internal (strain types) and
external determinants (environment) of the phyllosphere (Schlechter et al. 2019).

In general, the internal factors of the community are based on the microbial
relationship within the aggregates. The microbes usually have either commensal
or antagonistic or mutualistic or cooperative association by which the community
structure can be established. Both cooperative and mutualistic microbial interac-
tions shape the community structure as well as to develop larger colonial association
containing the maximum microbial population. While commensals have weak inter-
active partners in the community, they are randomly distributed in the habitat. The
commensals should not influence the interactive association within the structured
community (Stubbendieck et al. 2016). Besides, antagonistic microbes have a nega-
tive interaction within the community, one can outcompete the other and the sensi-
tive microbes have been eliminated from the environment. The effect of cooperative
microbial interactions on the phyllosphere community structure establishment is not
demonstrated (Schlechter et al. 2019).

Bacteria can ascertain the cell-to-cell communication system and establish a larger
community structure with heterogeneous populations, usually with mutualistic and
cooperative partners. However, some kind of mutualistic relationship may occur
between rapid growingbacteria andpathogenic fungi,which leads to cause superficial
infection on the host plant which increases the nutrient accessibility of the bacteria to
rich its population (Suda et al. 2009; Zeilinger et al. 2016;AmineHassani et al. 2018).
Inversely, fungal–fungal interactions seem to decrease the bacterial population, for
example, oomycete species Dioszegia sp. and Albugo sp. outcompete the bacterial
microbiota on A. thaliana leaf (Chou et al. 2000; Agler et al. 2016). Moreover,
competitive interactions of microbes involve negative effects on at least one species
of the habitat. Some competitive microbes produce certain toxic chemical substances
(antibiotics and siderophores) as secondary metabolites which pose a negative effect
on its competitor microbes. The best example of such interaction is a gram-negative
Pantoea agglomerans bacteria which inhibit the growth of Erwinia amylovora, a
phytopathogen of apple by antibiotic activity (Wright et al. 2001; Pusey et al. 2011).

Generally, the competition of microbes is mainly for their nutrition and space.
The phyllosphere is a nutrient-limited environment, wherein the competitive partner
has compromised their growth by either coexisting or excluded from the site (Saleem
et al. 2017). Besides, the phyllosphere is greatly colonized by both oligotrophic and
competitivemicrobeswhich play an important role in community structure formation
(Schlechter et al. 2019). However, the key factors of the phyllosphere community
assemblage are currently vague. Hence, more studies required to find the key factors
determining the phyllosphere community structure assemblage.

5.6 Factors Controlling Phyllosphere Microbiomes

Once microbes arrived at the phyllosphere, a variety of factors resolve whether
microbial cells are competent to colonize the leaf and become confined. Colony
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establishment depends on the leaf–atmosphere environmental interaction with the
residing microorganisms in the phyllosphere. At the beginning, the microbe reaches
the cuticle layer, a waxy surface that protects the leaf from the pathogens. In general,
cuticle restricts the microbial association due to the functions such as barrier, reduc-
ingwater and solute lass, aqueous pollution, reflectance tominimize the temperature,
conferring water repellent, etc. (Beattie 2002; Whipps et al. 2008). The whole-cell
biosensor-based study revealed the available nutrients on the leaf surface facilitate
the growth of residing microbes at a limited level (Miller et al. 2001). This was
confirmed by the microscopic observation of leaf surfaces, at the low nutrient region
contains less dense microbial colonization than the nutrient-rich surface (Monier
and Lindow 2005). Naturally, nutrient enrichment may happen by pollen deposits
and honeydew at the phyllosphere surface (Lindow and Brandl 2003), besides plant
leaves release a large array of volatile organic substances into themargin layer around
leaves (Jackson et al. 2006). Nutrients that include CO2, acetone, terpenoids, aldehy-
des, alcohols, long-chain hydrocarbons, sesquiterpenoids, and nitrogen-containing
compounds (Whipps et al. 2008) are available nutrients for microbial growth. Some
of the compoundsmay act as growth inhibitor or toxic to microbial growth (Dingman
2000; Shepherd et al. 2005). Hence, microbes establish several adaptive mechanisms
for maintaining their growth in adverse conditions.

5.6.1 Microbial Adaptations in Phyllosphere Environment

Microbes like bacteria establishing colonies at the phyllosphere are limited by various
factors including both biotic and abiotic. Abiotic factors such as the available nutrient
(Delmotte et al. 2009), seasonal variation, rainfall, temperature, plant immunity, and
competitor microbes (Rastogi et al. 2013) are influencing surveillance of microbes in
the phyllosphere. Metaproteomic studies on the leaf surface communities have been
identified as microbes producing vitamins and siderophores which give adaptation to
the microbes at the environment. For example, phyllosphere of soybean, clover, and
Arabidopsis plants largely colonized by Sphingomonas and Methylobacterium pro-
vides vitamins and siderophores to the plant (Green 2006; Delmotte et al. 2009) and
it competes for other microbes.Methylobacterium spp. are involved in the assimila-
tion of methanol at the phyllosphere, a by-product of demethylated pectin during the
cell wall metabolism of the plant (Galbally and Kirstine 2002; Delmotte et al. 2009),
and it gives epiphytic fitness to the microbes. Proteome studies revealed that some
unique properties of rhizosphere bacteria have been found in the phyllosphere micro-
biota. For example, genes of methanol dehydrogenase and formaldehyde-activating
enzyme (of Rhizosphere Methylobacterium spp.) and nitrogen fixation (Rhizobium
sp.) are also reported in both phyllosphere and rhizosphere samples of rice (Knief
et al. 2012). Gourion et al. (2006) observed upregulation of methylotrophic proteins
such as MxaF and Fae and stress-related protein PhaA during epiphytic growth of
Methylobacterium extorquens.
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Phyllosphere colonization may occur in two different habitats, (1) the surface
(epiphytic) and (2) the apoplast or leaf interior (endophytic). During the epiphytic
life, many of the environmental factors regulate the growth such as solar radiation,
temperature, water availability, nutrient, humidity, etc., whereas the endophytes are
challenged with a plant defense mechanism. A bacteria colonizing at both habitats
may differentially express their genes, for example, P. syringae pv. syringae B728a
at epiphytic growth express the genes involved in motility, chemosensing, phosphate
mobilization, and utilization of tryptophanwhich is higher than in endophytic growth
(Yu et al. 2013). However, the secondary metabolite (syringomycin, syringopeptin)
production was higher in the endophytic stage. One such adaptation is the production
of pigments, bacteria such as Pseudomonas, Sphingomonas, and Methylobacterium
produce pigmentation by which they give protection against UV light (Lindow and
Brandl 2003). Presence of extracellular polysaccharide is another protective measure
of plant-bacteria against desiccation and osmotic stress (Monier and Lindow 2004).
Delmotte et al. (2009) found several stress-resistant proteins (PhyR and EcfG) from
the phyllosphere of soybean, clover, and Arabidopsis through metaproteogenomic
survey. Flagellin-like protein is high in pseudomonas at the epiphytic growth which
enables the bacteria to access the nutrition by the chemostatic model (Yu et al. 2013).

5.6.2 Plant Immunity/Responses to Control Microbial
Colonization

The plant has its immune systemwhich plays an important role in determiningmicro-
bial assembly (Jacoby et al. 2017). Plants contain two layers of defense, the primary
immunity is named pattern-triggered immunity (PTI), it has a conserved molecule
namedmicrobe/pathogen-associated molecular patterns (MAMPs/PAMPs). The PTI
is a localized immunity mediated at the plasma membrane containing pattern recog-
nition receptors (Monaghan and Zipfel 2012; Wang et al. 2019). The MAMP/PAMP
limits the growth of bacterial pathogens. For example, the flagellin-sensitive recep-
tor 2 (FLS2) is a pattern receptor which recognizes the P. syringae pathovar (pv.)
bacterial flagellin (flg22) (Chinchilla et al. 2006; Newman et al. 2013; Trdá et al.
2015). However, the plant response to limits its defense against non-pathogenic
bacteria is still unknown. The effector’s protein-mediated destabilization of plant
immunity and immune escape is also reported (Jones and Dangl 2006; Cui et al.
2009). Plant immunity is targeted with specific proteins, which involves the self-
protection against the microbial association has been deactivated by the interaction
of microbial effector proteins and it makes protein–protein networks (Bogdanove
2002; Snelders et al. 2018). Besides, plants have evolved with intracellular recep-
tor molecules called nucleotide-binding leucine-rich repeat proteins (NLRs), which
either openly or ultimately recognize effector proteins to give the second layer of
plant immunity named effector-triggered immunity (ETI) (Jacob et al. 2013;Wu et al.
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2014). Both PTI and ETI generate more specific and diverse immunity against phyl-
losphere microflora. Beneficial or the synergistic microbes interact with signaling
pathways (MAMPs) of the plant to elevate the production of its immune response.
However, if pathogen could interact by using MAMPs, the immune output will be
higher and will restrict the colonial establishment of pathogens. Pathogens that live
in host tissues use hemibiotrophs and necrotrophs mode of life (Table 5.3). Some
chemicals of the plant tissues inhibit the microbial association either biotrophs (sali-
cylic acid) or necrotrophs (jasmonic acid) type and also the reactive O2 species may
have an inhibitory effect on the pathogens (Lehmann et al. 2015). Plants use jasmonic
acid, methyl jasmonate, ethylene, flavonoid, 12-oxo-phytodienoic acid, and salicylic
acid-mediated signals for quenching pathogens on its surface (Table 5.4). Recently,
pathogens with biotrophy-necrotrophy switch have been identified in fungi such as
Colletotrichum sp, Phytophthora capsici, Moniliophthora roreri, and Macrophom-
ina phaseolina in which pathogen evokes a differential response of growth in host
tissues (Chowdhury et al. 2015). Some important research in the mode of immune
evoke by the pathogen has been listed in Tables 5.3 and 5.4.

Phyllosphere region is usually colonized by a variety of microorganisms. Natu-
rally, leaf epidermises are always contacted to external and internal environments
and are enriched with a diverse group of bacteria, yeast, fungi, and viruses. The
cuticle layer of the leaf surface plays a significant role during the contact with leaf

Table 5.3 Mode of life cycle of pathogen established against plant immunity

Organism Life cycle Host References

Fusarium graminearum Hemibiotrophic Wheat Ding et al. (2011)

Colletotrichum
graminicola

Biotrophic and
necrotrophic

Maize Vargas et al. (2012)

Septoria tritici Hemibiotrophic Wheat Yang et al. (2013)

Phytophthora capsici Hemibiotrophic Tomato Jupe et al. (2013)

Colletotrichum sp. Hemibiotrophic Plants Gan et al (2013)

Moniliophthora roreri Hemibiotrophic and
necrotrophic

Cacao Meinhardt et al. (2014)

Fusarium verticillioides Biotrophic Maize Lanubile et al. (2014)

Botrytis sp Necrotrophic Plants Van Kan et al. (2014)

Botrytis fabae Necrotrophic Faba bean El-Komy (2014)

Sclerotinia sclerotiorum Biotrophic,
hemibiotrophic, and
necrotrophic

Plants Kabbage et al. (2015)

Zymoseptoria tritici Hemibiotrophic Wheat Rudd et al. (2015)

Phytophthora infestans Hemibiotrophic Tomato Zuluaga et al. (2016)

Rhizoctonia solani Necrotrophic Wheat Foley et al. (2016)

Note “Hemibiotrophs” - an organism that is parasitic in living tissue for some time and then
continues to live in dead tissue. “Necrotrophs” - can kill the host cells and feed on the contents
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Table 5.4 Signaling pathway inhibits pathogenic microbes in phyllosphere

Molecules/signals Pathogen Host References

Flavonoid pathway Bacterial pathogens Melampsora
medusae

Miranda et al. (2007)

Jasmonic acid,
ethylene, and the
flavonoid

Phymatotrichopsis
omnivora

Medicago truncatula Uppalapati et al.
(2009)

Methyl jasmonate
and ethylene

Macrophomina
phaseolina

Medicago truncatula Gaige et al. (2010)

Jasmonic acid and
ethylene

Fusarium
graminearum

Wheat Sun et al. (2010)

Jasmonate and
ethylene

Fusarium sp Wheat Gottwald et al.
(2012)

Ethylene and
jasmonate

Pythium ultimum Apple Shin et al. (2014)

Methyl jasmonate,
12-oxo-phytodienoic
acid, salicylic acid,
and flavonol

Fusarium oxysporum
f.sp. lycopersici

Tomato Krol et al. (2015)

microbiota (Vacher et al. 2016). Though some group of microorganism may not
multiply after it reaches on the surface, many continue to survive and multiply, until
they can attain maximum number (Schönherr 2006; Innerebner et al. 2011; Pusey
et al. 2011). To multiply, microorganisms require carbon, nitrogen, inorganic, and
organic energy sources. However, in the absence of such nutrients, phyllosphere is
still usually colonized by a large number of bacteria (105–107 CFU/g of the leaf) in
the presence of high relative humidity and free water at suitable environmental con-
ditions (Schönherr 2006; Baldwin et al. 2017). This is due to the release of nutrients
or leaf exudates which adequately supported the microbial growth. There are vari-
eties of molecules leached from the plant leaves such as sugar, amino acids, organic
acids, minerals, etc. (Beattie 2011; Remus-Emsermann et al. 2011; Meiners et al.
2017). These leaching materials may differ with plant species and the environmental
condition (Beattie 2011; Remus-Emsermann et al. 2011; Mendes et al. 2013).

Nutrients such as sugar photosynthates from the leaf interior may be diffused
through the cuticle reached the outer surface (Schreiber 2005), and are chiefly used
by phyllosphere bacteria. Moreover, water droplets on a leaf surface facilitate the
outward diffusion of these sugars (Van derWal et al. 2013). Both non-pathogenic and
pathogenic microorganisms establish colonization on the leaf surface. To survive and
thrive, epiphytic microbes have several adaptive properties such as the production
of antibiotics, extracellular polymeric substances (EPS), biosurfactant for increas-
ing cuticle permeability, and availability of nutrients volatile organic compounds
(VOCs) to the leaf surface. However, in order to avoid the entry of pathogens, plants
develop defense reactions. The preliminary defense is activated by recognition of the
chemical compounds released during the contact with microbes (Boller and Felix
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2009). Pathogen-induced molecular patterns (PAMPs)-triggered immunity (PTI) is
a broad spectrum of defenses against the pathogen invades. However, effectors pro-
duced by the pathogens often interfere with PTI activation and are recognized by
specific proteins, which stimulate effector-triggered immunity (ETI) that induces a
hypersensitive response (Craig et al. 2009).

5.7 How to Study Phyllosphere Microbiome?

The diversity and community structure of phyllospheremicrobes have been intensely
studied by culture-independent methods. However, this approach failed to isolate and
identify the complete microbiome of the environment. Therefore, scientist used the
culture-independent mass sequencing methods which have been carried out by high-
throughput molecular methods, especially PCR-amplified DNA-level conserved tax-
onomic markers such as 16S rRNA, 18S rRNA, and internal transcribed spacer (ITS)
sequences-based metagenome of phyllosphere total microbiome (Mao et al. 2012;
Santhanamet al. 2014;Williams andMarco2014; Jo et al. 2015;Copeland et al. 2015)
(Fig. 5.4). The first-generation molecular techniques such as Sanger sequencing,
denaturing gradient gel electrophoresis (DGGE), and terminal restriction fragment
length polymorphism have been used to describe the community structure varia-
tion in plant phenotype, and geographical location (Hunter et al. 2010; Vokou et al.
2012; Izhaki et al. 2013). Those techniques are low throughput and highly expensive
that can be used to detect the superficial microbial community of the environment
(Rastogi and Sani 2011).

Advancements in molecular techniques, next-generation DNA sequencing is the
potent method that significantly reduces the costs and allows to perform hundreds
of samples in a single attempt. These techniques open up new windows of omics,
specifically “environmental omics.” The 454 pyrosequencing is the first to be widely
executed to study in microbial community analysis. This method comprises rRNA or
ITS amplicon sequencing, whole-genome sequencing, shotgun metagenomics, and
transcriptional profiling (Delmotte et al. 2009; Rastogi et al. 2012). Recently, Illu-
mina platform has been performed better and allows ultra-high-throughput sequenc-
ing of microbial communities with high-quality reads (Degnan and Ochman 2012).
Proteogenomic is another method used for the microbial community structure anal-
ysis (Delmotte et al. 2009), a combination of genomics and proteomics to a great
extent makes easy the structural and functional differences of microbiota in the
phyllosphere environments. Through those methods, microbial diversity of several
host plants such as Arabidopsis, Apple tree, Beech, grapevine, oak, poplar, Prunus,
rice, soybean, spinach, tomato wheat, etc. was documented. The metadata of the
metagenomic studies helps to understand the growth behavior, colonization ability,
genus-level community structure formation (or) association, low and high index of
diversity, and the host genotype effects on the self-defense as well as the cell wall
integrity have been reported.
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Fig. 5.4 Scope of metagenome in phyllosphere microbes and their functions

Whole microbiome analysis by environmental sequencing is popular today to
explain the plant’s phyllosphere containing complex microbial communities. There
are many methods for mapping the diversity of microbiome which could associate
with any of the living and nonliving objects. Also, the environmental sequencing
approach determines the whole microbiome of the plant and it illustrates the sig-
nificant association of microbes on its host under controlled conditions. Recently,
studies revealed that genome-wide association (GWA) is the best method which
shows potential merits for identifying the microbial communities associated with
different kinds of host–microbe interactions. The high-throughput environmental
sequencing approach has guided to the discoverer to find the complex microbial
ecosystem of leaves. Using this strategy, many studies revealed the microbial asso-
ciation in the phyllosphere of different plants such as mountain shrubs (Ruiz-Pérez
et al. 2016), seagrass (Fahimipour et al. 2017), subarctic grass (Uroz et al. 2016),
and equatorial forest canopies (Lambais et al. 2006). The studies revealed that plant
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leaves are colonized by a huge and diverse group of microorganisms, including bac-
teria, fungi, and viruses (Rastogi et al. 2013; Morella et al. 2018; Sapp et al. 2018;
Beilsmith et al. 2019). High-throughput molecular methods or culture-independent
molecular techniques have interpreted the phyllosphere microbial community today
(Table 5.5). Through this technique, Actinobacteria, Bacteroidetes, Firmicutes, and
Proteobacteria are common microbiome of plant leaves (Bulgarelli et al. 2013), and
it suggests that Pseudomonas, Sphingomonas, Methylobacterium, Bacillus, Mas-
silia, Arthrobacter, and Pantoea are predominant genera consistently firm in the
phyllosphere. Findings of the studies disclose the variation of microbial commu-
nity structure mainly based on the genotypic nature of the plant species and also its
geographical location. For example, Finkel et al. (2011) observed similar bacterial
communities from the different species of Tamarix (T. aphylla, T. nilotica, and T.
tetragina) grown in the same geographical location; however, differences in commu-
nity structure of microbiota have been strongly related to its geographical distances
(Rastogi et al. 2012).

Moreover, the high-throughput studies revealed the special functions/metabolism
of themicrobes associatedwith leaf surfaces, specifically carbohydrate transport, leaf
litter decomposition, light-drivenATP pumps, methanol metabolism, C1metabolism
(Ottesen et al. 2013; Shade et al. 2013), and the effect of ecological factors such
as climate change, temperature, seasonal variation, sporadic contact to soil, and/or
anthropogenic activities such as the use of agricultural chemicals and pesticides
(Ikeda et al. 2011; Shade et al. 2013; Karlsson et al. 2014; Copeland et al. 2015;
Glenn et al. 2015). To attain better perceptive of the phyllosphere ecosystem and
understand the functional relationship among plants, microbiota, and environment,
metaproteome and metagenomics have been used (Rastogi et al. 2012; Bálint et al.
2013; Dees et al. 2015).

5.8 Impact of Phyllosphere Microbiome on Ecosystem

Phyllosphere microflora significantly influences the ecological relationship of the
plants. The phyllosphere usually has bacteria, fungi, lichens, algae, and viruses that
have actively participated in the adaptation, growth, resistance, and infection of the
plant host (Walker et al. 2017; Verma et al. 2017; Yadav et al. 2018a). The phyllo-
spheremicrobiota has not been completely studied with their ecological significance,
specifically plant and ecosystem level (Remus-Emsermann and Schlechter 2018).
From seed germination to plant reproduction, studies have revealed how the phyllo-
spheremicrobiome affects the leaf functions and longevity, seedmass, apical growth,
flowering, and fruit development (Jones and Dangl 2006; Sawinski et al. 2013; Kem-
bel et al. 2014); however, the net interplay of the phyllosphere ecosystem in and
around the plant is scanty. Recent scientific advancements that simplify the phyllo-
sphere microbial life become understandable. The high-throughput genomics, such
as environmental genomics andmetagenomics, have greatly expanded our perceptive
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Table 5.5 Studies on high-throughput molecular approaches to phyllosphere communities

Method Plant Study References

16S rRNA gene
pyrosequencing

Soybean, clover,
Arabidopsis

Epiphytic fitness of
Sphingomonas and
Methylobacterium

Delmotte et al.
(2009)

Pine and other
trees

Phyllosphere bacteria
community composition

Redford et al.
(2010)

Spinach Genus-level communities
of Proteobacteria and
Firmicutes-associated
spinach leaves

Lopez-Velasco et al.
(2011)

Grape Bacterial communities on
the surface of leaves and
berries from grapevine

Leveau and Tech
(2011)

Lettuce A “core” community
composed of
Pseudomonas, Bacillus,
Massilia, Arthrobacter, and
Pantoea found in lettuce
foliage

Rastogi et al. (2012)

Lettuce Variation in phyllosphere
microbiota composition.
Effect of E. coli O157:H7
inoculation on microbiota
composition

Williams et al.
(2013)

Rice Metagenomic analysis of
rice phyllospheric bacterial
communities in relation to
blast disease

Prasad Sahu and
Kumar (2015)

Common bean,
soybean, and
canola

Seasonal community
succession of the
phyllosphere microbiome

Copeland et al.
(2015)

Espeletia species Microbial and functional
diversity within the
phyllosphere.

Ruiz-Pérez et al.
(2016)

16/18S rRNA gene
pyrosequencing

Oak Fungal communities in the
oak phyllosphere

Jumpponen and
Jones (2009)

Tamarix aphylla,
T nilotica,
T. tetragina

Geographical location is a
major determinant of
phyllosphere bacterial
communities

Finkel et al. (2011)

Beech Plant genotype-based
fungal communities on leaf
surfaces

Cordier et al. (2012)

Balsam poplar Plant species-based fungal
community composition

Balint et al. (2013)

(continued)
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Table 5.5 (continued)

Method Plant Study References

Pine Rapid microbial
community changes during
initial stages of pine litter
decomposition

Gołębiewski et al.
(2019)

Metaproteogenomics Soybean, clover,
Arabidopsis

Metabolic adaptations
contribute to the epiphytic
fitness of Sphingomonas
and Methylobacterium

Delmotte et al.
(2009)

Rice Several methylotrophic
enzymes and their role in
the carbon cycle by
Methylobacterium

Knief et al. (2012)

Maize Functional genes that
distinguish maize
phyllosphere metagenomes
in drought and
well-watered conditions

Methé et al. (2017)

and understanding on the functional life of phyllosphere microbial communities in
plant–environment and the impact on the ecosystem.

Environmental factors are drastically influencing the microbiome changes on
phyllosphere. This is common to epiphytic microorganisms, exposed with heavy
stress during the season cycle, the day/night cycle, and the growth, age, and anatom-
ical dynamics of the plant. For instance, at drought condition, the epiphytic microbial
community was notably increased on Holm oak (Rico et al. 2014). Similarly, at hot
condition, bacterial endophytic communities are altered in lower leaves of paddy,
but not in the epiphytes (Ren et al. 2014). However, the epiphytic fungal community
responded well in worming seasons (Coince et al. 2014; Bálint et al. 2015). Besides,
an increase of CO2 at the phyllosphere region never affects the bacterial abundance
(Ren et al. 2014; Vacher et al. 2016), except a few fungal genera.

Microbes have flexible metabolic adaptations, which helps them to survive in the
phyllosphere microenvironment. During the metabolic functions, the plant releases
carbohydrates, polyols, amino acids, amines, isoprenoids, halogenated compounds,
or alcohols, as well as water and salts, which are the available nutrients for epi-
phytic microorganisms (Trouvelot et al. 2014). However, leaf surface commonly
exhibits desolate properties such as saline or alkaline pH which generates stress
in phyllosphere microbes (Finkel et al. 2012). Several alphaproteobacteria express
PhyR-based stress regulation and colonization on leaf surface (Iguchi et al. 2013).
Additionally, they develop multiple mode adaptation to survive in phyllosphere such
as tolerance, antimicrobial, and immunity compounds against amicrobial competitor
(Trouvelot et al. 2014), synthesis of extracellular polysaccharides, and also synthesize
phytohormonal compounds.
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Besides, biotic and abiotic factors induce molecular level regulations in plants to
synthesize a diverse range of phytohormones. Generally, the gaseous ethylene, jas-
monate, methyl jasmonate, salicylate, and methylsalicylate are induced by bacterial
pathogens (Bodenhausen et al. 2014; Horton et al. 2014). For example, many plant
defense mechanisms are induced by the interaction of the biotic component of the
ecosystem through signals like volatile and nonvolatile chemicals, and microbes can
degrade such chemicals resulting in reduced activity (Mason et al. 2014).

The phyllosphere microbiome acts as a vital role for leaf surface environment and
their surrounding ecosystem functions (Ortega et al. 2016). Phyllosphere microbes
have interacted with their environment through their metabolic functions (Fig. 5.5).
In general, plants release a variety of volatile organic compounds (VOCs) and its pre-
cursors on the surface of leaves (Schäfer et al. 2010), and it could regulate themicroor-
ganisms in response with the environment. Plants are the major VOCs emitter of the
biosphere (>1000 Tg/year) and can release compounds such as terpenes, monoter-
penes, flavones, methanol, methane, and halogenated methane (C1 compounds). The
epiphytic microbes on the surface of the plant, as well as the airborne bacteria, effec-
tively consumed the emitted VOCs through bacterial metabolism (Junker and Tholl
2013), and this effects of climate change would impact the diversity, species rich-
ness, and abundance in the phyllosphere community, and its capability on filtering
of plant-emitted volatile substances.

Methane (CH4) is the most important greenhouse gas (~1.8 ppm), and it has been
detected from the leaves, roots, and stems and is released to the atmosphere (Keppler
et al. 2006). Phyllosphere microbes especially methanogens use the plant-emitted
methane along with leaf exudates (Lenhart et al. 2015; Bringel and Couée 2015).
Phyllospheric microbes are often rich in methylotrophic bacteria and can utilize the
plant-emitted C1 compounds such as methanol, formaldehyde, and chloromethane

Fig. 5.5 Environmental impact of phyllosphere microbes. Utilization of plant emitting volatile
organic compound (VOCs) and C1 compounds by phyllosphere microbes. (1) Free diffusion of
VOCs to the atmosphere; (2) Capturing the VOCs by the surfacemicrobes, act as filters; (3) Through
specialized metabolic activities microbes metabolize the VOCs; (4) Adaptive response of microbes
in the specialized environment. VOGs—Volatile organic gases
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(Knief et al. 2012; Jo et al. 2015). Studies proved that the C1 metabolic epiphytic
bacteria such as Methylobacterium extorquens, Methylobacterium radiotolerans,
and Methylocystis use methanol and acetate as their carbon and energy source
at the phyllosphere (Belova et al. 2011; Verginer et al. 2010; Iguchi et al. 2013;
Jo et al. 2015; Iguchi et al. 2015; Krishnamoorthy et al. 2018). The Methylobac-
terium extorquens contains the methanol-dehydrogenase-like protein XoxF which
is expressed during the colonization on Arabidopsis thaliana (Schmidt et al. 2010).
Besides, chloromethane metabolism (cmu pathway) in methylotrophs has been iden-
tified from the surface leaves ofA. thaliana harbor (Nadalig et al. 2011;Krishnamoor-
thy et al. 2018). Table 5.6 shows the various phyllosphere methanogenic bacteria and
its metabolism.

Chloromethane (CH3Cl) is one of the abundant chlorinated organic compounds
in the atmosphere (currently ∼550 ppt) and is to be responsible for the depletion
of stratospheric ozone over 16% (World Meteorological Organization 2014). The
fluorescence-based bacterial bioreporter study reported that phyllosphere microbes,
M. extorquens CM4 (Roselli et al. 2013) and Hyphomicrobium sp. (Nadalig et al.
2011), having the genes for chloromethane utilization (cmu), and also volatile
dimethylsulphide (DMS) and dimethylsulfoniopropionate (DMSP), considered as
global climate regulator (Schäfer et al. 2010; Nevitt 2011). In the biosphere, a
small number of plants like salt marsh grasses Spartina and sugarcanes (Saccha-
rum sp.) are reported as producers of DMSP. Microbes that are associated with these
plants have adaptive metabolism by which it transforms or metabolizes the DMS and
DMSP (Ansede et al. 2001). Hence, the phyllosphere microbes are the major source
of carbon and sulfur biogeochemical cycles, in the ecosystem and climate regula-
tion through their active filtration or utilization of plant-related volatile compounds
(DeLeon-Rodriguez et al. 2013; Šantl-Temkiv et al. 2013).

Microbial populations reside at phyllosphere as epiphytes or as endophytes, and
have close contact with the rhizosphere. A microbe can be established as an epi-
phytic and endophytic association has the metabolic plasticity required for them
to thrive. Many experimental evidences suggested that microorganisms commonly
associated with plants maybe vital for nutrient accessibility and decomposition of
biomass (Bernal et al. 2006; Ramírez Gómez 2011; Lizarazo-Medina and Gómez-
Vásquez 2015). The functional ecology of the plant influences the composition and
interaction of the phyllosphere microbes (Bodenhausen et al. 2013; Ruiz-Pérez
et al. 2016). Many of the phyllosphere microbial communities share the common
metabolic properties of the soilmicrobes. For example, themajor phyllosphere bacte-
rial communities such as Bacillus, Burkholderia, Methylobacterium, Pseudomonas,
Sphingomonas, and Xanthomonas are the soil inhabitant, which have carbohydrate
metabolizing genes involved in utilization of starch, hemicellulose, pectin, and cellu-
lose, rich in humus materials (Rawat et al. 2012; Bodenhausen et al. 2013; Bulgarelli
et al. 2013). The nitrogen metabolism such as ammonification, denitrification, and
anammox, and the degradation of aromatic compounds are also reported in foliar
microbes (Usubillaga et al. 2001; Rawat et al. 2012; Ruiz-Pérez et al. 2016).

Tropospheric microbes (aerosols) play a vital function in global carbon cycles and
also metabolize the organic compounds. Some airborne Gammaproteobacteria have
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Table 5.6 Studies on Phyllospheric methylotrophic metabolism

Epiphyte Host plant Function References

Methanotrophs and
Methylobacteria

Linden, pine and blue
spruce lilac, maple,
and apple

Diversity of
Methanotrophs in
woody plant tissues
within the winter
period

Doronina et al.
(2004)

Methylobacterium
extorquens

Medicago truncatula Methylotrophic
metabolism is
advantageous for
colonization under
competitive
conditions

Sy et al. (2005)

Methylobacterium
extorquens

– A proteomic study of
Methylobacterium
extorquens reveals a
response regulator
essential for
epiphytic growth

Gourion et al. (2006)

Methylobacterium
extorquens AM1

– PhyR is involved in
the general stress
response

Gourion et al. (2008)

Methylocystis heyeri
H2(T) and M.
echinoides
IMET10491(T)

Peat Acetate utilization
metabolism as a
survival strategy

Belova et al. (2011)

Methylobacterium
extorquens DSM
21961

Strawberry Monitoring the plant
epiphyte
Methylobacterium
extorquens DSM
21961

Verginer et al. (2010)

Methylobacterium
extorquens

Arabidopsis thaliana
or Medicago
truncatula

The influence of the
factor site, host plant
species, time and the
presence of other
phyllosphere bacteria
on Methylobacterium
community
composition and
population size

Knief et al. (2010)

Candida boidinii Arabidopsis thaliana Yeast methylotrophy
and autophagy in a
methanol-oscillating
environment on
growing leaves

Kawaguchi et al.
(2011)

(continued)
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Table 5.6 (continued)

Epiphyte Host plant Function References

Methylobacterium
sp. (NC4), (NC28)

Sugarcane, pigeon
pea, mustard, potato,
and radish

Epiphytic
pink-pigmented
methylotrophic
bacteria enhance
germination and
seedling growth of
wheat (Triticum
aestivum) by
producing
phytohormone

Meena et al. (2012)

Methylobacterium
sp. strain OR01

Perilla plants Dominant
colonization and
inheritance of
Methylobacterium
sp.

Mizuno et al. (2013)

Methylosinus sp.
B4S

– Stress resistance and
C1 metabolism
involved in plant
colonization of a
methanotroph Arch

Iguchi et al. (2013)

Methylobacterium
oryzae

Rice plant-probiotic
methylotroph in the
phyllosphere

Kwak et al. (2014)

Methylobacterium
radiotolerans
VRI8-A4

Groundnut Diversity of
culturable
methylotrophic
bacteria in different
genotypes of
groundnut and their
potential for plant
growth promotion

Krishnamoorthy
et al. (2018)

ice nucleation-active (INA) property and contains specific gene (ina) via deposition
of cloud droplets (Hill et al. 2014) on the leaf surface andmineralize the carbon com-
pounds (Vaïtilingom et al. 2013). Reports confirmed the relationship of INA bacteria
and phyllosphere microbiota, combined activities of both phyllosphere microbiota
and cloud microbiota actively participating carbon cycle, and strong support for cli-
mate regulation (Bringel and Couée 2015). The above information suggested that the
phyllosphere microbiome not only supports the health of its host but is also benefi-
cial to the environment, specifically it regulates plant-derived greenhouse and other
gaseous pollutants.
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5.9 Biotechnological Potential of Phyllosphere Microbiota

The plant beneficial microbes are agriculturally important bioresources, and it can
stimulate the plant growth and enhance plant nutrient uptake through solubilization
and mobilization (of P, K, and Zn), nitrogen fixation, and siderophore production
(microbes-mediated bio-fortification of Fe in different crops). Beneficial microbes
can play an important role in increasing yields of the crop, remove contaminants,
inhibit pathogens, and produce novel substances. The growth stimulation by bene-
ficial microbes can be a consequence of biological nitrogen fixation, production of
plant growth regulators such as IAA, gibberellic acids, and cytokines, and biocontrol
of phytopathogens through the production of antibiotic, antifungal, or antibacte-
rial, Fe-chelating compounds, induction of acquired host resistance, enhancing the
bioavailability of minerals (Kour et al. 2019; Kumar et al. 2019b; Yadav et al. 2019a).

In this contest, the phyllosphere microbes may positively influence the growth
of host plant and produce some antagonistic compound against pathogens. Phyllo-
sphere endophytes with properties such as nitrogen fixation (Jones 1970; Freiberg
1998; Furnkranz et al. 2008), bioremediation of harmful chemicals/pollutants, and
biocontrol agents against important foliar plant pathogens (Beattie and Lindow 1995;
Balint-Kurti et al. 2010; De Marco et al. 2004) have been documented. Further, the
microbiome of phyllosphere is a reflection of environmental conditions; they can
contribute significantly to global food webs and nutrient linkages. Many beneficial
microbes such as Achromobacter, Bacillus, Beijerinckia, Burkholderia, Flexibac-
terium, Methylobacterium, Micrococcus, Micromonospora, Nocardioides, Pantoea,
Penicillium, Planomonospora, Pseudomonas, Streptomyces, and Xanthomonas have
been reported from the phyllosphere environment of different crop plants (Verma
et al. 2013a, b; Mukhtar et al. 2010; Meena et al. 2012; Dobrovol’skaya et al. 2017).
However, compared with most other microbial habitats, the investigation of phyllo-
sphere microbes is quite limited. Some of its important biotechnological potentials
are listed below.

5.9.1 Biocontrol Agents

Biocontrol is the measure to control pathogens and disease-causing pest including
nematodes weeds, insects, and mites by other beneficial microbes or harmless living
materials. In nature, plant diseases are caused by bacterial pathogens which provide a
substantial decline in the development of agricultural products. For sustainable agri-
culture, scientific approaches use the antagonistic properties of beneficial microbes
against the harmful pathogens instead of using toxic harmful chemicals as biolog-
ical control (Erwin and Ribeiro 1996; Sharma et al. 2012). Biological treatment is
a desirable strategy for controlling plant diseases (You et al. 2015) and there are an
increasing number of biocontrol agents (BCAs), such as Bacillus spp., Pseudomonas
spp., Trichoderma spp., etc. being commercialized for various crops (Trabelsi and
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Mhamdi 2013; Cha et al. 2016). Most of them habitat either on phyllosphere or soil
and can play a significant role in killing the number of plant pathogens on the surface
of the leaves by competitive principle.

Pathogenic microbial interactions in phyllosphere decrease the fitness of plants,
the productivity of crops, and question the safety of horticultural products for human
consumption. Phyllosphere actinomycetes have been reported to inhibit the growth
and colonization of plant pathogens (Lindow and Brandl 2003). For example, the
endophytic isolate Gordonia sp. has been reported to produce imidazole-2-yl amino
acids that have antifungal properties (Mikolasch et al. 2003) and an acidic polysaccha-
ride called Gordon as the main component in biofilms, which is considered essential
for pathogenicity against plant disease (Kondo et al. 2000). Various Streptomyces
sp. including S. griseus have been reported as producing various antifungal com-
pounds such as 1-H-pyrrole-2-carboxylic acid (PCA), cycloheximide, and strepto-
mycin which were successfully used to control fungal and bacterial diseases in plants
(Leben and Keitt 1954; Nguyen et al. 2015). Wiwiek et al. (2017) studied the rice
phyllosphere actinomycetes could be used as potential biocontrol agents against fun-
gal leaf blast disease. Wang and Ma (2011) reported that exogenous actinomycete
XN-1 has the potential to act as an antagonistic agent in controlling the occurrence
and development of cucumber leaf spot in the greenhouse. This also confirms that
phyllosphere microorganisms play an important role in combating the infection of
pathogens and have a promising future in developing biocontrol products. Table 5.7
shows the plant-associated bacteria and its biological activities.

Microbes with the production of compounds like indole acetic acid and N-acyl
homoserine lactone (AHL) assist the bacteria to colonize on plant surface (Lindow
and Brandl 2003). Sartori et al. (2015) studied the biocontrol potential of phyllo-
sphere microorganisms from maize against Exserohi lumturcicum, the causal agent
of leaf blight. Shrestha et al. (2016) investigated the prospects of biological control
of rice-associated Bacillus against sheath blight and panicle blight of rice caused by
Rhizoctonia solani and Burkholderia glumae, respectively. A variety of Bacillus iso-
lates were observed to inhibit the sclerotial germination of the fungus, which could be
attributed to the various antimicrobial secondary metabolites produced by the bacte-
ria. Various gram-negative bacteria also show plant protection activity. For example,
Pseudomonas graminis isolated from the apple phyllosphere showed control against
fire blight caused by Erwinia amylovora (Mikiciński et al. 2016), Pseudomonas pro-
tegensCS1 from the lemon phyllosphere are used as a biocontrol against citrus canker
(Michavila et al. 2017).

Further, microbial production of siderophores quenches the phytopathogens and
protects the host plant from their infection (Scavino and Pedraza 2013; Ahmed
and Holmström 2014; Harsonowati et al. 2017; Sabaté et al. 2018) as a biocontrol
agent. For example, the siderophore produced byPseudomonas syringae pv. syringae
22d/93 shows biocontrol activity against Pseudomonas syringae pv. glycinea 1a/96,
a plant pathogen (Wensing et al. 2010). The siderophore pyochelin produced by
the endophyte control rice blast is caused by Pyricularia oryzae (Harsonowati et al.
2017). Plant-associated Pseudomonas spp. has been employed efficiently as com-
mercial biocontrol agents (Loper and Lindow 1987; Walsh et al. 2001). Cyanogenic
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Table 5.7 Plant-associated microbial compounds and bioactivity

Compound Source Bioactivity References

Blasticidin-S
(VIII):

Streptomyces
griseochromogenes
I

Control the rice blast caused
by Pyricularia oryzae

Fukunaga
(1955)

Kasugamycin (IX) Streptomyces
kasugaensis

Rice blast caused by
Pyricularia oryzae, leaf spot
in sugar beet and celery by
Cercospora spp., and scab in
pears and apples caused by
Venturia spp.

Umezawa et al.
(1965)

Methoxyphenone Streptomyces
griseolus

Herbicides Ito et al. (1974)

AM-toxin Alternaria mali phytotoxin Park et al.
(1977)

Milbemycin (XI): S. hygroscopicus
subsp.
aureolacrimosus

Insecticidal and acaricidal Mishima et al.
(1983)

Diabroticin A Bacillus subtilis
and Bacillus cereus

Polar insecticide Stierle et al.
(1990)

Spinosad (X):
spinosyn A and
spinosyn D

Saccharopolyspora
spinosa

Controls the caterpillar
(Helicoverpa zea Boddie,
Pieris rapae (L.), Keiferia
lycopersicella (Walsingham),
thrips (Ceratitis capitata (L.),
Thrips palmi (Karny)) and
beetles (Leptinotarsa
decemlineata (Say))

Mertz and Yao
(1990)

AF-toxins Alternaria fragariae Maculosin is a cyclic
dipeptide—phytotoxin

Stierle et al.
(1990), Uneo
(1990)

Maculosin (XVI) Phoma lingam Phytotoxin Stierle et al.
(1990)

Efrapeptins Tolypocladium spp. Pesticide and insecticide Krasnoff and
Gupta (1991),
Krasnoff et al.
(1991)

Abamectin Streptomyces
avermitilis

Insecticide and acaricide Jansson and
Dybas (1996)

Nodulisporic acid Nodulisporium sp. Insecticidal activity Ondeyka, et al.
(1997)

Pyrizadocidin
(VII)

Streptomyces
#620061

Herbicides Gerwick et al.
(1997)

Syringomycin E: Pseudomonas
syringae ESC 10/11

Fungicide-citrus green mold
Penicillium digitatum

Bull et al.
(1998)

(continued)
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Table 5.7 (continued)

Compound Source Bioactivity References

Destruxin A and B M. anisopliae Insecticide Strasser et al.
(2000)

Oosporein Beauveria
brongniartii

Insecticide Strasser et al.
(2000)

Beauvericin A and
B

Beauveria bassiana
and Paecilomyces
spp

Hexadepsipeptide—insecticide Lane et al.
(2000)

Borrelidin Streptomyces
species- neau-D50

Antifungal activity against
Phytophthora sojae

Worapong et al.
(2001)

Bialaphos (V) Streptomyces
hygroscopicus and
Streptomyces
viridochromogenes

Herbicide—weed control Tachibana
(2003)

Tartrolone C Streptomyces sp.
CP1130

Insecticidal macrodiolide Lewer et al.
(2003)

Coronatine Pseudomonas
coronafacience

Insecticide—herbicide Block et al.
(2005)

Macrolactin A: Bacillus sp. sunhua Fungicide—Fusarium
oxysporum and Streptomyces
scabies

Han et al.
(2005)

Bt-Toxins Bacillus
thuringiensis

Bioinsecticides endotoxins Collier et al.
(2005)

Tabtoxin Pseudomonas
syringae var. tabaci

Phytotoxic—Herbicide Hoagland et al.
(2007)

Phyllostictine A Phyllosticta cirsii Mycoherbicide Zonno et al.
(2008)

Cinnacidin
(XXII):

Nectria sp.
DA60047

Phytotoxic Irvine et al.
(2008)

Beauvericin A and
B

Beauveria bassiana
and Paecilomyces
spp.

Hexadepsipeptide—insecticide Miller et al.
(2008)

Herbimycin (VI) Streptomyces
hygroscopicus
AM3672

Benzaquinoid ansamycin
antibiotic with potential
herbicidal a

Hahn et al.
(2009)

Albucidin Streptomyces albus
subsp. chlorinus
NRRL B-24108

Herbicides Hahn et al.
(2009)

Zinniol Alternaria
cirsinoxia

Phytotoxic to Cirsium arvense
L.

Berestetskii
et al. (2010)

Ascaulitoxin
aglycone

Ascochyta caulina Phytotoxin Duke et al.
(2011)

Antibiotic 1233A
(XXIV)

Cephalosporium
sp., Fusarium sp.,

Phytotoxin Duke and
Dayan (2011)

(continued)
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Table 5.7 (continued)

Compound Source Bioactivity References

AK-toxin (XV): Alternaria
kikuchiana

Phytotoxin Saxena (2014)

Bipolaroxin
(XVIII)

Bipolaris
cynodontis

Phytotoxic to Cynodon
dactylon

Saxena (2014)

Bt-Toxins Bacillus
thuringiensis

Bioinsecticides endotoxins Radhakrishnan
et al. (2017)

Phaseolotoxin
(III)

Pseudomonas sp. Phytotoxins—herbicide Aguilera et al.
(2017)

fluorescent Pseudomonas produces siderophores in the presence of a strong chelator
8-Hydroxyquinoline which inhibits pathogens such as Rhizoctonia solani and Scle-
rotium rolfsii (Kotasthane et al. 2017). Table 5.8 listed some important findings as
endophytes as biocontrol agents. Mostly, the biocontrol agents use either nonribo-
somal peptide synthetase (NRPS) gene and/or type 1 polyketide synthase gene for
respective compound production.

5.9.2 Plant Growth-Promoting Compounds

Plant growth is regulated by the growth hormones, available nutrient, good environ-
mental condition, and beneficial microbial interaction. Many of the microbes are the
prime producers of plant growth hormones, specifically plant-associated or phyllo-
sphere microbial communities produce IAA, gibberellic acids, and cytokines and
could fix nitrogen and mobilize nutrients (Dourado et al. 2015). There are many
bacteria and fungi which produce IAA, similar to those of plants (Sun et al. 2014;
Venkatachalam et al. 2016; Thapa et al. 2018. Microbes use plant tryptophan to pro-
duce IAA, which can effectively improve plant growth and enhance overall health
(Hayat et al. 2010; Yadav et al. 2015a, b). The genus Methylobacterium is among
the most commonly observed leaf epiphytes and represents an abundant and stable
member of the phyllospheremicrobial community of awide range of crop plants such
as sugarcane (S. officinarum L.), pigeon pea (Cajanus cajan L.), mustard (Brassica
campestris L.), potato (Solanum tuberosum L.), and radish (Raphanus sativus L.)
(Meena et al. 2012), and has produced variety of growth-promoting phytohormones.
The association of plant growth-promoting bacteria (PGPB), especiallyMethylobac-
terium sp., with plant hosts greatly benefits plant growth by production of phytohor-
mones like auxins and cytokinins, and increased activity of enzymes such as ure-
ase and 1-aminocyclopropane-1-carboxylate deaminase (ACCD), which promotes
growth and enhances the production of siderophores, thereby enhancing the uptake
of essential nutrients.

The benefits associated with plant–microbe interactions are also dependent on
the variety of inoculation methods such as soil, foliar, and combination of both soil
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and foliar inoculations (Lee et al. 2011). A study has been conducted to investigate
the inoculation of Erwinia herbicola on plant growth by IAA production. The test
results showed that about 65% of the E. herbicola strain recovered from the leaves
showed higher expression of the ipdC gene than in culture. The study indicated that
physical or chemical microclimates directly influence the differential expression of
ipdC (Brandl et al. 2001). Similarly, endophytic bacteria such as Bacillus pumilus
E2S2 (Luo et al. 2012), B. amyloliquefaciens NBRI-SN13 (Nautiyal et al. 2013), B.
atrophaeus EY6 and B. sphaericus B EY30, B. subtilis EY2, S. kloosii EY37, and
K. erythromyxa EY43 (Karlidag et al. 2011) also produce PGPs.

Endophytic Bacillus produces phytohormones such as abscisic acid, auxins,
brassinosteroids, cytokinins, ethylene, gibberellins, jasmonates, and strigolactones,
and increases nutrient (nitrogen and phosphorous) accessibility to the host (Reinhold-
Hurek and Hurek 2011; Brader et al. 2014; Santoyo et al. 2016; Shahzad et al. 2016;
Ek-Ramos et al. 2019). Zeiller et al. (2015) reported that C. botulinum 2301 sig-
nificantly produce PGPs in a field experiment of clover. A cold-tolerant bacterial
strain Exiguobacterium acetylicum 1P promotes wheat seedlings growth (Selvaku-
mar et al. 2010), Brevibacillus brevis improve the growth of cotton crop (Nehra
et al. 2016) and Bacillus spp. induce phosphate solubilization more efficiently when
present as endophytes in citrus (Giassi et al. 2016). The diazotrophic bacteria asso-
ciated with phyllosphere gives benefits to the plant by fixing atmospheric nitrogen,
solubilization of phosphorus (P), and utilization of available nutrients through its
organic end product-mediated solubilization of rock phosphates (Mohammadi 2012;
Kembel et al. 2014; Mwajita et al. 2013; Batool et al. 2016; Lambais et al. 2017).

5.9.3 Biopharmaceutical Importance

Biological activity of medicinal plants and their applications in various healing prop-
erties have been documented well. In recent years, microbes associated with plants
themselves proved with high therapeutic values particularly endophytes. Endophytic
microbes are known for their beneficial effects to the host, specifically phytohor-
mones, enzymes, and stress-resistant physiology, and its biotechnological potentials
(Parthasarathi et al. 2012; Singh andDubey 2015; Gouda et al. 2016). Endophytes are
known to produce bioactive metabolites, which served as a potent drug for medical
and cosmetic industries (Shukla et al. 2014; Gouda et al. 2016). Secondary metabo-
lites produced by the endophytic bacteria, actinomycetes, and fungi have econom-
ically valuable compounds such as alkaloids, flavonoids, phenolic acids, quinones,
steroids, saponins, terpenoids, tetralones, xanthones, etc. (Strobel and Daisy 2003;
Joseph and Priya 2011; Godstime et al. 2014; Shukla et al. 2014; Gouda et al. 2016).
For example, endophytic microbes are well-known producers of taxol, a diterpene
alkaloid, and lignin such as cathartics, emetics, and cholagogue used for cancer treat-
ment (Konuklugil 1995; Zhang et al. 2009; Nair and Padmavathy 2014; Soliman
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Table 5.9 Pharmaceutical valuable products from phyllosphere microbes

Producer Compound Activity against References

Hypericum
perforatum,
Diaporthe helianthi

Hypericin, emodin,
tyrosol

Salmonella sp. Joseph and Priya
(2011), Specian et al.
(2012)

Ganoderma
boninense

Rapamycin,
cyclododecane,
petalostemumol

Bacillus subtilis Parthasarathi et al.
(2012), Ismail et al.
(2014)

Fusarium sp.
Cryptosporiopsis
quercina

Xularosides,
munumbicins,
Saadamycin,
cryptocandin

Candida albicans Jalgaonwala et al.
(2011), Dutta et al.
(2014)

Streptomyces sp.,
Kennedia nigricans

Munumbicins Vibrio cholerae Kumar et al. (2014)

Cryptosporiopsis
quercina

Saadamycin Campylobacter
jejuni

Dutta et al. (2014)

Streptomyces sp. Kakadumycin A,
hypericin

Shigella sp. Golinska et al.
(2015), Joseph and
Priya (2011)

Streptomyces
tsusimaensis

Valinomycin Corona virus Alvin et al. (2014)

Fusarium
proliferatum

Kakadumycin,
beauvericin

Listeria
monocytogenes

Golinska et al. (2015)

Boesenbergia
rotunda Streptomyces
coelicolor

Munumbicins Escherichia coli Golinska et al.
(2015), Singh and
Dubey (2015)

Grammothele lineata Paclitaxel Anticancer Das et al. (2017),
Kasaei et al. (2017),
Soliman and Raizada
(2018)

and Raizada 2018). There are many novel metabolites with antibacterial, antifun-
gal, antiviral, anticancer, and antihelminthic activity isolated from plant-associated
microbes (Gouda et al. 2016; Kasaei et al. 2017) (Table 5.9).

5.9.4 Other Applications

Besides the use of phyllosphere microbes for enhanced growth as well as biocontrol
agent, some plant-associated bacteria helps the plant to improve phytoremediation of
toxins. For example, hydroxamate siderophores producing bacteria compact heavy
metal toxicity and improve the phytoremediation property in A. thaliana (Grobelak
and Hiller 2017). Some endophytes provide additional functions to the host plant like
drought tolerance, for example, endophytic B. subtilis strain B26 induces drought
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resistance to Brachypodium distachyon grass. The drought resistance mechanism is
due to a specific carbohydrate metabolism, the endophytic bacteria increases stress-
responsive raffinose-related family carbohydrates in the host (Gagné-Bourque et al.
2015). In another example, the endophytic association increases osmotic responses
of the host plant. Endophytic strains such as Arthrobacter sp. and Bacillus spp.
in pepper plant increase the proline accumulation, which gives osmotic tolerance
(Sziderics et al. 2007).

Further, endophytic bacterial inoculants provide abiotic stress tolerance mech-
anism to the host by its extracellular enzymes. For example, the endophytic asso-
ciation of various Bacillus spp. increases the superoxide dismutase, phenylalanine
lyase, catalase, and peroxidase enzymes activity in gladiolus plants under sodium
high concentration conditions (Damodaran et al. 2014). Little studies reported that
isolation of endophytic bacteria and their enzyme production potential vary when it
colonizes in the plant tissues. Moreover, Jalgaonwala et al. (2011) observed maxi-
mum proteolytic activity in Lactobacillus fermentum isolated from leaves of Vinca
rosea, which is considered greater to nonendophytic isolates. Similarly, endophytic
fungi isolated from Ocimum sanctum and Aloe vera has better enzymatic activity
(Yadav et al. 2015a, b). Besides these mechanisms, plant-associated microorganisms
improve nutrient acquisition by supplying minerals and other micro/macronutrients
from the soil (Singh et al. 2017; Singh and Singh 2017). Above all merits provide new
insights in the field of phyllosphere microbiome and its essentiality of interactions
to host plant growth and protection and also its significant role in the ecosystem.

5.9.5 Conclusion and Future Prospects

The phyllosphere is a unique environment colonized by a wide variety of microor-
ganisms including epiphytes and endophytes, beneficial and pathogenic, bacteria,
fungus, viruses, etc. Understanding the phyllosphere community structure, network-
ing, and physiology is a great challenge.However, extensive research on phyllosphere
microbiota gives great potential for the applications in economic plant productivity,
specifically agriculture and forestry, ecosystem cleaning, and health. Hitherto, both
in vitro and in vivo experiments are required to improve the understanding of micro-
bial aggregations in the phyllosphere and dynamic play in the ecosystem. Based on
the literature understanding, further and future studies should aim to (1) study the
community interplay within the closely related and distanced microbial interactions
and its stimulatory response on host plant and ecosystem, (2) to know the potentials
of beneficial microbes and their commercial value, (3) impact on climate change on
phyllosphere microbiome, and their contribution to climate change, (4) moreover,
documentation of host-specific, geographic-specific, and seasonal-specificmicrobial
interactions—guiding host–parasite and beneficial–pathogen interactions. Besides,
phyllospheremicrobiome research assures to understand the current challenges high-
lighting the terrestrial ecosystemchange and the impact of globalwarming, especially
the dominance of pathogenesis.
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Chapter 6
Biofilms Forming Microbes: Diversity
and Potential Application
in Plant–Microbe Interaction and Plant
Growth

Ajay Kumar and Joginder Singh

Abstract Global climatic change and increasing worldwide population pose chal-
lenges for crop production. The promising sustainable solution is the integration
of beneficial plant–microbes integration with microbiome to improve agriculture
production. Microbial biofilms have a significant role in agriculture because they
increase soil fertility and promote plant growth. Bacterial quorum sensing (QS) reg-
ulated process is biofilm formation. The plant growth promoting bacteria (PGPB)
or Rhizobacteria (PGPR) has the ability to increase the crop yield. PGPR-based
formulations have been commercialized to enhance agricultural productivity.

Keywords Biofilm · Quorum sensing · Phytohormones · Biocontrol ·
Biofertilizers · Models

6.1 Introduction

Plant and its organs in natural conditions are surrounded by microbes. Several rhi-
zobacteria, mycorrhizal fungi, protozoa, actinomycetes, and algae are colonized
around the root of plants in rhizosphere. Colonizing microorganisms are dominated
by bacterial population. The role of plant growth promoting bacteria (PGPB) or
Rhizobacteria (PGPR), either by a direct or indirect mechanism in plant devel-
opment has been cited by many researchers (Timmusk et al. 2017). Plant growth
promoting bacteria (PGPB) or Rhizobacteria (PGPR) can stimulate the production
of phytohormones,1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme,
and secondary metabolites for the growth and development of the plant and root
system. An arbuscular mycorrhizal fungus (AMF) also triggers the root hair growth
in mycorrhizal plants (Yadav et al. 2015a, b, 2016; Zhang et al. 2019). Thus, the
colonization of bacteria and fungus promotes the lateral roots and hairs and reduces
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the growth of primary roots. Plant growth promoting bacteria (PGPB) or Rhizobac-
teria (PGPR) influences the growth of plant via nitrogen fixation to increase the crop
yield, siderophores production, phosphate solubilization, osmotic stress alleviation,
by effecting the auxin level in plant roots, and modify the root physiology by affect-
ing the gene transcription (Vacheron et al. 2013; Verma et al. 2016; Yadav 2017,
2019).

PGPR such as Bacillus amyloliquefaciens, Bacillus megaterium, and Bacillus
subtilis are able to produce phytohormones such as auxin (IAA) or promote growth
under phosphate limitation by excreting phytase (EC 3.1.3.8) in the presence of
phytate. The main hypothesis to explain colonization efficiency by bacterial and
fungal strains is influenced by the chemotaxis effect. The proposedmechanismof root
colonization by bacterial and fungal strains depends on the abilities (i) tomove toward
the place for root colonization, (ii) to use carbon and nitrogen sources present in the
soil, (ii) provided by root exudates to shape the root microbiome, (iii) to withstand
plant response reaction including reactive oxygen species (ROS), and (iv) to form a
biofilm or microcolonies formation at the root surface. Bacillus sp. Strains (Bacillus
subtilis, Bacillus licheniformis, Bacillus amyloliquefaciens, Bacillus cereus, etc.)
are able to produce a set of secondary metabolites such as surfactin, fengycin, and
iturin A, which belong to cyclic lipopeptides (CLPs) members and exhibit antifungal
activities and inhibit the growth of several plant pathogens (Al-Ali et al. 2018). The
impact of phyto stimulating PGPR on root architecture is shown in Fig. 6.1.

Fig. 6.1 Impact of phyto stimulating PGPRonRSA (root system architecture), nutrient acquisition,
and root functioning. Sources Vacheron et al. (2013)
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Fig. 6.2 Bacterial auto aggregation and biofilm development, and their relationship with plant
colonization. Sources Bogino et al. (2013)

6.2 Biofilm Formation by PGPR

It has been observed that most of the bacteria develop bacterial biofilm attached to
the surface. Biofilm is made up of protein, lipid, polysaccharide, and DNA in a self-
produced extracellular matrix and is found on various surfaces such as soil, potable
water system, and living tissues (Singh et al. 2017). It is a secreted extracellular
matrix that holds cells together which is common to all bacterial biofilms and pro-
vides robustness to biofilm architecture (Molina-Santiago et al. 2019). Several factors
such as environmental signals (Cyclic di-AMP act as extracellular signal), nutrient
limitation of growth (Iron limitation), quorum sensing (QS) signal molecules such
as acylated homoserine lactones(AHLs), exopolysaccharides (EPSs),bacterial sur-
face components particularly flagella, lipopolysaccharides (LPSs), and other factors
regulate the cell aggregation and biofilm formation in plant–bacterial associations
(Primo et al. 2019; Bogino et al. 2013). Biofilm formation by PGPR and colonization
with plant are demonstrated in Fig. 6. 2.

6.3 Biofilm Formation Steps by Bacteria

Biofilm formation is a complex and dynamic process (D’Acunto et al. 2017), formed
by several steps (i) adhesion of planktonic cell to support surface (ii) formation of
monolayer and cell proliferation (iii) microcolonies formation (iv) macrocolonies
formation (v) development of matured biofilm (vi) detachment or dispersal of bac-
terial cells. Figure 6.3, represents the stages of the biofilm process and Table 6.1,
shows some important microorganisms forming biofilms.
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Fig. 6.3 Stages in the biofilm formation process, including scanning electron microscopy imaging
of each stage. Source Hadla and Halabi (2018)

6.4 Factors Affecting Biofilm Formation

Several factors have been investigated which affects the biofilm formation such as
temperature of the surroundings, pH of the soil, nutrient availability, minerals, flow
of the fluid, plant defense compounds such as phenazine, surfactants such as cyclic
lipopeptides (CLPs), bacterial strains, EPS, flagella, gene expression, Quorum sens-
ing, surface characteristics (hydrophobicity, roughness, wettability), organic fouling,
and presence of other microbes (Velmourougane et al. 2017).

Mass transport characteristics have also influenced the biofilm’s density (Fysun
et al. 2019). The rate of nutrient transport to the biofilm is determined by the rates of
convective external mass transfer [kl(Cb − Cs)] and internal mass transfer (D f

dC
dZ )

be equal at biofilm surfaces (Beyenal and Lewandowski 2002) as shown in Eq. (1).

Ns = kl(Cb − Cs) = D f
dC

dZ
(1)

where Ns , the nutrient flux.

kl , the external mass transfer coefficient
Cb, the substrate concentration at bulk phase
Cs , the substrate concentration at surface of the biofilm
D f , the effective diffusivity in the biofilm.

Factors affecting biofilm formation are shown in Fig. 6.4.



6 Biofilms Forming Microbes: Diversity and Potential Application … 177

Table 6.1 Biofilm formation by agriculturally important microorganisms

Microbes Attributes References

Trichoderma–Azotobacter Improves soil nutrient
availability and plant growth

Velmourougane et al.
(2019a,b)

B. amyloliquifaciens, B.
licheniformis, B.
megaterium, B. pumilus, B.
subtilis,

Promotes plant growth and
development

Tiwari et al. (2019)

Anabaena–Azotobacter Enhanced the availability of
nitrogen, phosphorus, and
micronutrients in the soil

Kanchan et al. (2019)

Azotobacter chroococcum
(Az)—Trichoderma viride
(Tv)

Plant growth promotion and
biocontrol

Velmourougane et al. (2019a,
b)

Agrobacteriumtumefaciens Tumor formation Choi et al. (2018)

Azospirillum brasilense Fix atmospheric nitrogen and
synthesize phytohormones
such as indole-3-acetic acid
(IAA)

Jijón-Moreno et al. (2019)

Rhizobium leguminosarum Nitrogen fixation Shahid et al. (2019)

Pseudomonas sp Plant growth promotion
activity, such as synthesis of
phytohormones, phosphorus
solubilization, production of
ammonia, HCN, and
siderophore

Singh et al. (2019)

Pseudomonas
aeruginosa-Bradyrhizobium
sp.

Improving plant growth,
nutrient acquisition, and soil
health

Kumawat et al. (2019)

Gluconacetobacter
diazotrophicus

Plant growth and protect the
plants against abiotic stresses

Filgueiras et al. (2019)

Herbaspirillum huttiense,
Enterobacter asburiae, and
Staphylococcus sp.

Nitrogen fixation Andreozzi et al. 2019

Sinorhizobium meliloti Fix atmospheric nitrogen Primo et al. (2019)

Source Besset-Manzoni et al. (2018)

6.5 Mathematical Model of Biofilm Formation

A mathematical model of biofilm formation developed by Eberl et al. (2001) which
consists of a set of nonlinear density dependent reaction–diffusion equation which
is applicable for single species QS-regulated biofilm system.

∂C(t)

∂t
= Dc�C − k1CM

k2 + C
(2)
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Fig. 6.4 A complex interplay of factors results in biofilm formation, architecture, and hence
functionality. Source Whitehead and Verran (2015)

∂M(t)

∂t
= ∇.(DM(M)∇M) + M

(
k3C

k2 + C
− k4

)
(3)

DM(M) = δ
Ma

(1 − M)b
(4)

where DC, DM, k1, k2, k3, k4 are positive constant parameters and a > 1, b > 1.
M denotes biomass density, δ is biomass mobility coefficient, and C is the growth-
limiting substrate.

Sometimes the phenomenon of floating biofilm (Fig. 6.5) is observed when a
microbial aggregate does not attach to the surface. Fickian diffusion equation is
used to describe the phenomenon of dispersed cell diffusion within the biofilm and
bulk liquid. The growth is modeled by a hyperbolic partial differential equation and
diffusion of dispersed cells by a parabolic partial differential equation. The transport
of substrates from the bulk liquid to the biofilm is achieved by diffusion. The role of
signaling molecule such as Nitric oxide (NO) in the regulation of dispersal in biofilm
has been demonstrated by many researchers (D’Acunto et al. 2019; Zhu et al. 2019).
Biofilm formation

∂Xi

∂t
+ u

∂Xi

∂z
= ρi RMi (z, t, X, S, ψ) (5)
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Fig. 6.5 Phenomenon of biofilm growth. Source D’Acunto et al. (2019)

Substrate diffusion

∂Sj

∂t
− Dj

∂2Sj

∂z2
= RS, j (z, t, X, S) (6)

Dispersed cell diffusion

∂ψi

∂t
− Dj

∂2ψi

∂z2
= Rψ,i (z, t, X, S, ψ) (7)

Biofilm Growth

L = u(L(t).t) + σ (8)

where concentration of dispersed cells is defined by the variables ψ,i(z, t), Xi is
biomass concentration, Sj is substrate concentration, L is biofilm thickness, ρi is
biofilm density, D is diffusion coefficient, where DM,i denotes the diffusivity coeffi-
cient of planktonic species i. Rψ , i(z, t, X, S) is the species i conversion rate into the
planktonic state, u is superficial velocity, and σ is biomass flux between biofilm and
bulk solution.

6.6 Mechanism of Quorum Sensing

Quorum sensing (QS) is a bacterial communication mechanism which is achieved
through diffusible signal molecules that enables biofilm formation. Small amounts of
chemical signaling molecules (autoinducers) such as N-Acyl Homoserine Lactones
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(AHL) are produced and released by gram-negative bacterial cells (Emerenini et al.
2015) while oligopeptides are used by gram-positive bacteria (Roy et al. 2011). High
enough concentration of AHL, can bind to and activate a transcription activator,
or R protein in turn induces the expression of target gene (De Kievit and Iglewski
2000; Saraf et al. 2014). The regulation of a quorum sensing in bacteria systems are
represented in Fig. 6.6.

Quorum sensing (QS) in gram-negative organisms is shown in Fig. 6.7. As forma-
tion of biofilm is QS-regulated mechanism and therefore, the position in the biofilm,
thickness of biofilm, boundaries of the biofilm surface are directly related to the con-
centration of signal molecules (Pérez-Velázquez et al. 2016). Several mathematical
models for biofilm formation, maturation, and dissolution have been investigated by
researchers.

Fig. 6.6 Schematic representation of the triggering of a quorum sensing system (a) and the main
signaling molecules involved in Gram-positive and Gram-negative bacteria (b). Source Roy et al.
(2011)
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Fig. 6.7 Quorum sensing in gram-negative (a) and gram-positive organisms (b). SourceChoudhary
and Schmidt-Dannert (2010)

6.7 Applications of Biofilm

Different applications of biofilms have been investigated by investigators in plant–
microbe interaction and plant growth as represented in Fig. 6.8 (Velmourougane et al.
2017).

6.7.1 Biofertilizers

Some of the plant growth promoting bacteria (PGPB) or Rhizobacteria (PGPR) are
classified as biofertilizers and biocontrol agents or biopesticides. Biofertilizer is a
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Fig. 6.8 Overview of the significance of biofilms in agriculture. Source Velmourougane et al.
(2017)

group of beneficial bacteria such as Rhizobacteria enhancing the productivity of the
soil (Olanrewaju et al. 2019; Yadav et al. 2017a, 2019a; Yadav and Yadav 2019).
Microbial inoculants used in agricultural crops are shown in Fig. 6.9.

Microorganisms sre involved in the production of biofertilizer.
The following are the types of biofertilizer (Barman et al. 2019)

• Nitrogen-fixing biofertilizers (Rhizobium, Brady rhizobium, Azospirillum, Beijer-
inckia, Clostridium, and Azotobacter).

• Phosphorus-solubilizing biofertilizers (Bacillus, Penicillium, Pseudomonas, Xan-
thomonas Fusarium, and Aspergillus).

• Phosphate-mobilizing biofertilizer (Arbuscular Mycorrhiza, Ectomycorrhiza,
Orchid Mycorrhiza).

• Plant growth promoting biofertilizer Rhizobium, Pseudomonas, Azotobacter,
Azospirillum).
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Fig. 6.9 Schematic representation of some importance of microbial inoculant in agriculture and
the mechanism of actions. Source Alori and Babalola (2018)

6.7.2 Biocontrol Agents

Themain function of biocontrol agents (BCA) or biopesticides such asB. thuringien-
sis, B. popilliae, P. Fluorescens is suppressing or controlling plant disease by acting
as antifungal or antimicrobial agents (Alori and Babalola 2018; Glick 2012). Pseu-
domonas spp. produces metabolites that include 2,4-diacetylphloroglucinol (2,4-
DAPG) [C10H10O5, Molecular Weight: 210.18 g/mol], phenazine (PHZ) [C12H8N2,
Molecular Weight: 180.2 g/mol], pyrrolnitrin (PRN) [C10H6Cl2N2O2, Molecular
Weight: 257.07 g/mol], pyoluteorin (PLT) [C11H7Cl2NO3 MolecularWeight: 272.08
g/mol], hydrogen cyanide [HCN, Molecular Weight: 27.025 g/mol), and 2-hexyl-5-
propyl resorcinol (HPR) [C15H24O2, Molecular Weight: 236.35 g/mol]. It has been
observed that 2-hexyl-5-propyl resorcinol (HPR) pay a key role in biofilm formation
(Calderon et al. 2019). Structures of microbial metabolites and their interaction with
plants are shown in Fig. 6.10.

6.7.3 Plant Growth Promoters

Several factors such as abiotic factors and biotic factors influence the growth and
yield of the crop plants (Fig. 6.11). Abiotic factors of soil include moisture, pH, salt
concentration, nutrient, temperature, humidity, heavy metals, antibiotics, etc. Biotic
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Fig. 6.10 Structures of important metabolites which play a role in the interaction between plant
beneficial bacteria and plants. Source Pliego et al. (2011)

factors such as plant genotype and soil macro and microflora including soil bacteria,
viruses, and protozoans are contributed for the regulation of bacterial populations in
the rhizosphere (Ansari et al. 2017; Kumar et al. 2019a, b; Yadav 2018; Yadav et al.
2019b).
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Fig. 6.10 (continued)

6.7.3.1 Direct Mechanism of Plant Growth

Nitrogen Fixation

Biofilm formation enables free living nitrogen-fixing rhizobacteria such as Rhizo-
bium,Gluconacetobacter, Pseudomonas, and Azospirillum to fix nitrogen under aer-
obic conditions with the help of nif gene (Yadav et al. 2017a, b, c; Wang et al. 2017).
The rhizospheric nitrogen-fixing bacteria have the potential to increase the produc-
tivity of the agricultural crops such as rice, wheat, and corn (Suman et al. 2016;
Verma et al. 2017a, b).

The biological nitrogen fixation processes are shown in Fig. 6.12.

Phosphorus Solubilisation

Biofilm forming phosphate-solubilizing bacteria (PSB) such as Bacillus, Erwinia,
Pseudomonas, Burkholderia, and Rhizobium are solubilizing the inorganic phospho-
rus (Pi) released by root exudates (Taktek et al. 2017). Phosphorus solubilization by
bacteria is a complex mechanism (Fig. 6.13). Production of organic acid such as glu-
conic acid (GA) is considered as the primary mechanism of phosphate solubilization
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Fig. 6.11 Schematic diagram represents the plant growth promoting and nematicidal activity of
PGPR. Source Mhatre et al. (2018)

Fig. 6.12 Schematic overview of the nodulation process and biological nitrogen fixation. Source
Laranjo et al. (2014)
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Fig. 6.13 Potential mechanisms for the solubilization of insoluble Phosphate by phosphate-
solubilizing microorganisms (PSMs). PSF: phosphate-solubilizing fungi; PSB: phosphate-
solubilizing bacteria; PSA: phosphate-solubilizing actinomycete; VAM: vesicular-arbuscular myc-
orrhizae. Source Zhu et al. (2018)

by lowing the pH of surroundings (Liu et al. 2019; Prabhu et al. 2019; Yadav et al.
2015c).

Siderophores Production

Siderophores are ferric ion-specific chelating organic compounds that areproduced
under low iron stress conditions. Several microorganisms such as Pseudomonas,
Bacillus, and Beauveria spp, are reported to secrete siderophores (Verma et al. 2016;
Yadav et al. 2015a, b; Yadav et al. 2016). The primary function of siderophores is
to chelate the ferric iron [Fe(III)]. Siderophore iron complex is adsorbed by plants
to meet their iron demands. (Ahmed and Holmström 2014; Pedraza 2015; Rajkumar
et al. 2010). Figure 6.14 shows the role of siderophores producing bacteria (SPB) in
chelating the heavy metal.

Biocontrol Activity

Due to the microbial diseases and their harmful effects, about one third of the crop
yields are lost every year. Harmful activity of one organism is limited by the appli-
cation of other microorganisms during biocontrol (Kumar et al. 2019a, b; Rana
et al. 2019; Yadav et al. 2019b). P. fluorescens contains toxic producing genes from
B. thuringiensis (Bt) and is used as a biopesticide to limit the activity of black cut-
worms onmaize. Biocontrol activity aremediated by the synthesis of bacterial allelo-
chemicals (phenazines, pyoluteorin, 2, 4-diacetylphloroglucinol, etc.) including iron-
chelating siderophores, antibiotics (Streptomycin, Cephamycin C, Tetracyclines,
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Fig. 6.14 Role of SPB in phytoextraction of heavy metal contaminated soils. Source Rajkumar
et al. (2010)

Chloramphenicol, etc.),biocidal volatiles (Dimethyldisulfide, Furfural, Benzalde-
hyde, etc.) lytic enzymes (Glucanases, chitinases, pectinase, etc.), and detoxification
enzymes (Pandin et al. 2017; Compant et al. 2005). Plant growth promoting bacteria
(PGPB) produces hydrogen cyanide and antibiotics to control pathogens. Microbial
compounds used in biocontrol activities are tabulated in Table 6.2 and mechanisms
of interactions by plant growth promoting bacteria (PGPB) in the rhizosphere are
demonstrated in Fig. 6.15.

6.8 Commercialization of PGPR

Gram-positive bacteria such as Bacillus spp. are preferred as commercially available
PGPR because of inoculant stability and ease of storage of inoculant product. Other
potential PGPR stains such asAzospirillum, Pseudomonas do not produce spores and
hence difficult to formulate as a biocontrol agent. In the global market, United States,
China, India, Russia, and Australia are the main players for biocontrol product as the
prospects of PGPR for agricultural crop yield enhancement and disease production



6 Biofilms Forming Microbes: Diversity and Potential Application … 189

Table 6.2 Example of microbial compounds implicated in biocontrol and microbial cooperation

Source Besset-Manzoni et al. (2018)
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Fig. 6.15 Mechanisms used by plant growth promoting bacteria (PGPB) to enhance interactions
in the rhizosphere for higher grain yield and nutrient content. PGPB produce plant hormones,
siderophores, and organic acids and solubilize phosphate. They produce hydrogen cyanide and
antibiotics to control pathogens. Source Ramakrishna et al. (2019)

can never be ignored (Tabassum et al. 2017; Kour et al. 2019a, b, c). The biopes-
ticide formulation technology by industry is shown in Fig. 6.16 and PGPR-based
commercialized bioformulation in Table 6.3.
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Fig. 6.16 Generalized scheme of the biopesticide formulation by industry where PGPRs are pre-
served in an appropriate carrier molecule and packaged for commercial application at farmer’s
end. Several PGPR formulations are commercially available in the market by different commercial
producers and different Government institutions. Source Tabassum et al. (2017)

6.9 Conclusions and Future Prospects

Biofilm forming bacteria are growing on and around the plants and show the sig-
nificant plant–microbes interaction to enhance the yield of the agricultural crops.
Cell to cell communication and quorum sensing (QS) play a critical role in the for-
mation of biofilm. Biofilms can provide protection from plant responses and thus
promoting colonization. The Phyto microbiome offers enormous potentials for agri-
cultural benefits. For the enhancement of the crop yield, researchers are looking for
the development of mathematical model based customized inocula of PGPB/PGRP.
Thus, the sustainable use of microbial inoculants is a viable alternative for enhancing
crop production rather than the use of agrochemicals such as insecticides, pesticides,
and inorganic fertilizers. In the coming future, the microbial inoculant technology
will ensure sustainable crop production.
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Table 6.3 PGPR-based commercialized bioformulation

Product Name Composition Country Benefit/target
pathogen/disease

Applications

Bio-phospho Bacillus Subtilis India Phosphate
solubilization

Wheat, jowar, rice,
sorghum, maize,
sugarcane, cotton

Rhizobium bio
promotor

Rhizobium sp. India Nitrogen fixation Leguminous
plants

Symbion-P Bacillus
megaterium var.
phosphaticum

India Phosphate
solubilization

Wheat, rice, teff,
barley, maize, corn
(sweet and baby
corn), sorghum,
pearl millets

Azospirillum
Inoculant

Azospirillum India Nitrogen fixation Crops, cereals,
millets

Paddy
Azospirillum

Azospirillum India Nitrogen Fixation Paddy crops

Actinovate AG Streptomyces
lydicus strain
WYEC 108

USA Soil borne
diseases like
powdery mildew,
downy

Fruit and
vegetable crops

Symbion-K Frateuria aurantia India k-solubilizing Wheat, rice, teff,
Barley, maize,
corn (sweet and
baby corn),
sorghum, pearl
millets

Symbion-N Rhizobium,
Azospirillum,
Acetobactor, and
Azotobactor

India Nitrogen fixation Legumes and
pulses

TerraMax’s
MicroAZ-ST dry

Azospirillum
brasilense and
lipoferum

USA Nitrogen fixation Corn

NPK liquid Azotobacter
chroocomccum,
Pseudomonas

India Nitrogen-fixing,
P-solubilizing,
k-solubilizing

All crops
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Chapter 7
Actinobacteria: Diversity, Plant
Interactions and Biotechnology
Applications

Monnanda Somaiah Nalini and Harischandra Sripathy Prakash

Abstract Actinobacteria are Gram-positive members of the novel phylum and are
present in diverse ecosystems on the earth. Basically, they are saprophytes, thriving
in all soil types, litter and are one of the successful rhizocolonizers. Actinobacteria
are associated with plants as litter degrading, symbiotic, endophytic or as pathogenic
microorganisms. These associations often have benefited microbiologists, biotech-
nologists and chemists to introspect the potentials of strains and their secondary
metabolites for manifold applications. Mainly, soil actinobacteria are potential pro-
ducers of life-saving antibiotics or antimicrobial metabolites with myriad applica-
tions in medicine and agriculture. Actinobacteria of the soil and rhizosphere and
as endophytes often have excellent plant growth-enhancing traits and function as
antagonists in several important plant diseases of agriculturally prominent crops.
In biotechnology, they are preferred for the production of antibiotics, drug ana-
logues, engineered drugs, as sources of industrially important enzymes, and in the
biodegradation of harmful xenobiotics.

Keywords Actinobacteria · Diversity · Bacterial associations · Biodegradation ·
Antibiotics · Streptomyces

7.1 Introduction

The actinobacteria are a group of microorganisms with high Guanine to cytosine
(G + C, >55%) nucleotide content and constitute a major portion of the rhizosphere
and its soil. To date, their ubiquitous nature of occurrence is well supported by
their isolations from diverse habitats ranging from terrestrial to aquatic and hostile
environments such as hyperthermal, hyperacidic, hypersaline, caves, coal mine,
volcanic and unusual arid regions. The actinobacteria are placed in the novel phylum
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(Actinobacteria Phyl. nov.) comprising 16 orders, with many of them elevated to
the novel orders (Ord. nov.) (Ludwig et al. 2012) and are as follows:

Actinomycetales Actinopolysporales Ord. nov.

Bifidobacteriales Catenulisporales Ord. nov.

Corynebacteriales Ord. nov. Frankiales Ord. nov.

Glycomycetales Ord. nov. Jiangellales Ord. nov.

Kineosporales Ord. nov. Micrococcales Ord. nov.

Micromonosporales Ord. nov. Propionibacteriales Ord. nov.

Pseudonocardiales Ord. nov. Streptomycetales Ord. nov.

Streptosporangiales Ord. nov. Incertae sedis Ord. nov.

Soil is a complex substrate varying in composition, pH, and is known to har-
bour microorganisms. The presence of actinobacteria in soil was documented in
1903. Since then, the use of cultivation media with antibiotics for the selective iso-
lation and enumeration of actinomycete colonies was devised (Williams and Davies
1965). Actinobacteria are broadly classified as commonly occurring and cosmopoli-
tan generic group, the Streptomycetes and non-streptomycetes, also known as rare
actinomycetes. Streptomyces are primarily soil bacteria comprising 10% of the total
soil microbiome (Hayakawa et al. 1996a), are identified by profuse aerial mycelia
and spore chains and are recovered easily from a number of substrates and plant
litter. The chalky and powdery colonies are readily visible on humic acid–vitamin
agar (HV) plates (Hayakawa and Nonomura 1987), which otherwise restricts the
growth of filamentous bacteria. The rare actinobacteria grow on HV agar, but require
selective isolation techniques and enrichment methods such as the use of chemoat-
tractant, i.e., vanillin for the isolation ofCatenuloplanes andVirgosporangium; pollen
baiting for Actinoplanes; and rehydration/centrifugation for the isolation of motile
actinomycetes (Hayakawa 2008).

Actinobacteria exhibit diversity in plant microbiomes, with a reduction of
populations documented in the spermosphere and phyllosphere microbiomes
(Lopez-Velasco et al. 2013; Kembel et al. 2014; Yadav and Yadav 2019a). Never-
theless, in the rhizospheric soil and in plants, they occur widely in all tissues. As
endophytes, their diversity has been documented from crop plants (Coombs and
Franco 2003; Cao et al. 2005; Tian et al. 2007), native plants (Janso and Carter 2010;
Kim et al. 2012; Kaewkla and Franco 2013) and medicinal plants (Qin et al. 2009;
Zhao et al. 2011). Due to high species diversity, the identification of actinobacteria
is challenging as well as cumbersome. In the absence of accurate methods based
on morphology, the 16S rRNA as a phylogenetic marker has been reliable in
the identification of species. Recently, the multilocus sequence analysis (MLSA)
was applied as a molecular tool, for resolving the identification in members of
Streptomycetaceae (Labeda et al. 2017), whereas for studies on the actinobacterial
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communities of phyllosphere and rhizosphere microbiomes, a 16S rRNAmicroarray
technology known as PhyloChip (Mendes et al. 2011) has been designed.

Interest in actinomycete research was generated over the past decades due to
the identification and production of antibiotic compounds from soil Streptomyces
species. ~8,000 antibiotic compounds are described from streptomycetes alone
(Berdy 2005) and the number of compounds described for non-streptomycetes are
lesser but with anti-pathogenic and antagonistic potentials (Lazzarini et al. 2000;
El-Tarabily and Sivasithamparam 2006).

Actinobacteria are useful in improving crop yields through the enhancement of
plant growth traits. Rhizoactinobacterial and endophytic strains of Streptomyces,
Nocardia and Nonomuraea function as plant growth enhancers by producing the
growth regulator, Indole acetic acid (IAA), siderophores, enzymes, by phosphate sol-
ubilization or by increasing the nutrient levels (Nimnoi et al. 2014; Vurukonda et al.
2018; Verma et al. 2015; Yadav et al. 2015). Actinobacteria are useful in the degra-
dation of polyhydrocarbons and xenobiotic compounds. Strains of Rhodococcus are
extensively used in the biodegradation of harmful polyhydrocarbons, aromatic and
plasticizer compounds due to their ability to thrive in harsh environments (Yadav
et al. 2019f). The physiology and genomic diversity among Rhodococcus strains
make them amenable to genetic manipulation and greater understanding of the path-
ways for functional gene (s) involved in the biodegradation processes (Zampolli et al.
2019). Actinobacteria are known sources of industrially important enzymes such as
cellulases, pectinases, chitinases, xylanases and proteases (Kour et al. 2019a; Yadav
et al. 2016). These enzymes are used in detergent, leather, textiles, paper and pulp and
in food industries. High stability, extreme pH and temperature tolerance are some of
the criteria to be employed for industrial processes (Yadav et al. 2019c, d, e).

This chapter highlights the actinobacterial diversity associated with soil and rhi-
zosphere microbiomes, and in endophytic plant species, their interactions with plant
microbiomes, association with plants and few applications in biotechnology.

7.2 Actinobacterial Interactions with Plants

Microbial associations with plants can be described as by far the most reliable and
beneficial in providing increased plant growth, in terms of seedling vigour, nutrition
and productivity (Mendes et al. 2013). The ‘microbiome concept’, whichwas initially
coined to describe the microbial associations in the human gut (Qin et al. 2010), has
also been extended to microbial communities associated with plant species. They
are dependent on plants for specific functional traits to sequester the physiologi-
cally fixed carbon into direct surroundings. Currently, five types of microbiomes
are described, namely, spermosphere (Verona 1958), rhizosphere (Berendsen et al.
2012), phyllosphere (Vorholt 2012), endosphere (Hardoim et al. 2015) and mycor-
rhizosphere (Frey-Klett et al. 2007). Actinobacterial communities are known to exist
in all the microbiomes and their interactions are documented.
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7.2.1 Plant Microbiome and Actinobacteria

‘Plant microbiome’ is a term defined as ‘the collective genomes of microorganisms
living in association with plants’, which has in turn led to new inputs on the evolution
of plants (Rosenberg et al. 2009). For greater than 100 years, plant microbiome has
been considered as significant contributors in maintaining plant health and produc-
tivity. The development in research methodologies with inputs from molecular and
next-generation sequencing techniques and analytical tools (Jansson et al. 2012; Berg
et al. 2013) has led to achieve important goals in understanding the plant-associated
microbial communities in several plant species (Mendes et al. 2011; Bulgarelli et al.
2012) with high functional diversity.

‘Spermosphere’ is defined as the zone surrounding the seeds which interacts
with soil, microbial communities and the germinating seed and strictly is applica-
ble to the short timed germination process occurring in seeds (Schiltz et al. 2015).
The term was first coined by Verona (1958) to describe the interplay between the
soil, seed-borne microbiota and the germinating seeds. During the process, seeds
exude substances that either stimulate or inhibit microbial growth and have a direct
influence on plant health and growth parameters. Since the timing related to the
unfolding of events is of a short duration, the spermosphere remains the less studied
zone among the microbiomes. Spinach spermospheric microbial communities were
analysed by Pyrosequencing at the germination stage and the actinobacterial abun-
dancewas poorly represented by the generaCorynebacterium (0.08%), Sanguibacter
(0.08%) and Micrococcus (0.16%) (Lopez-Velasco et al. 2013).

‘Rhizosphere’ refers to the narrow contact zone between the roots and the soil
particles. It is also the first plant environment encountered by the soil microorgan-
isms (Dessaux et al. 2016), which in turn influences plant growth. Three zones are
contained in the rhizosphere: the endorhizosphere (root cortex and endodermis; the
rhizoplane (mid zone) and the ectorhizosphere (outer zone) extending from rhi-
zoplane to the bulk soil (McNear Jr. 2013). Root exudates, mainly photosynthate
secretions mainly serve as source of energy, influencing the soil microbial commu-
nities. Actinobacterial communities of rhizosphere primarily comprise of the soil
dweller, Streptomyces, the species of which composition tends to vary among crop
plants (Petrolini et al. 1996; Suarez-Moreno et al. 2019). The rhizosphere dwelling
actinobacteria enhance plant growth promotion (PGP) traits by the production of
siderophores, phosphate solubilization, nitrogen fixation (Berendsen et al. 2012) and
antifungal compounds (Turpaulta et al. 2007). The composition of spermosphere
and rhizosphere microbiomes of wild and modern bean accessions cultivated in an
agricultural and a native soil from Colombia was characterized by metagenomics
and cultivation-dependent approaches (Perez-Jaramillo 2019). Results indicated an
increase in the abundance of actinobacteria in the rhizosphere of plants grown from
cultivated bean accessions from native to agricultural fields.

‘Phyllosphere’ is one of the most diverse habitats on earth and a niche for the
interaction of epiphytic and endophytic microorganisms. The phyllosphere spans
109 sq. km across the dorsal as well as the ventral leaf surfaces and has an estimate of
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1026 bacterial cells (Vorholt 2012). It encompasses four regions of the above-ground
parts: caulosphere, anthosphere, carposphere and phylloplane. The phyllosphere
organisms compete for the availability of nutrients and contribute to the diverse
architecture and density of the habitat. The actinobacterial diversity is estimated
to be lesser than that of proteobacteria and firmicutes. The actinobacteria of the
phyllosphere in spinach plants represent <1% of the total bacterial communities
(Lopez-Velasco et al. 2013). The relationship between plant functional traits and
bacterial communities of the phyllosphere was studied in the leaves of 57 tree
species in a neotropical forest in Panama (Kembel et al. 2014). The host leaves
harboured 400 bacterial taxa of which, the actinobacteria comprised 5.5% of the
core microbiome taxa among the dominant phyla.

‘Endosphere’ is a termapplied to the internal tissues of plants, forming a niche. It is
applicable in various ways depending on the purpose for colonization. The microbes
called endophytes as well as pathogens dwell within the endosphere, but perform
different functions related to either symbioses, mutualism or pathogenic. The route
of entry into the endosphere is facilitated by wounds created due to abrasion, via
stomata or by the action of cell wall degrading enzymes. Microorganisms interact
in the endosphere of plants parts, viz., the roots, root nodules, stem, leaves, floral
parts and the fruits (Suman et al. 2016; Verma et al. 2017b; Yadav et al. 2018a, b).
Actinobacterial endophytes are dominant colonizers of roots in many agricultural
crops or native and medicinal species (Sardi et al. 1992; Coombs and Franco 2003;
Janso and Carter 2010; Kaewkla and Franco 2013) and include Streptomyces as well
as non-streptomycetes. Preferential colonization of Streptomyces lydicusWYEC108
in pea root nodules was demonstrated (Tokala et al. 2002).

Mycorhizosphere represents the zone of soil encasing the plant roots (rhizo-
sphere) and the extraradical fungal hyphae protruding from the mycorrhizae. The
mycorrhizosphere is the zone surrounded by both the root and themycorrhizal fungus
(Rambelli 1973). The actinobacteria interact with the microbiome for specific pro-
duction of secondary metabolites, enzymes, plant hormones and growth inhibitors.

7.2.2 Associations of Actinobacteria with Plants

Plant and microbial interactions have often postulated to be old involving beneficial,
symbiotic, harmful, mutualistic or free-living types. Actinobacteria form all these
associations with plant species (Fig. 7.1). The events leading from the entry to estab-
lishment in plants is documented formany host–microbial systems. Such phenomena
are well established for fungal and bacterial symbionts, pathogens and saprobes. The
following are the associations exhibited by actinobacteria with plant species.
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Fig. 7.1 Actinobacterial associations with plants

7.2.2.1 Saprophytic

Actinomycetes reside in the soil types of various habitats and are therefore sapro-
phytic in nature assisting in the decomposition of various substrates into organic
matter, which is utilized by other organisms in the food web, thereby balancing
the nutrient cycle. One such substrate is the plant litter which serves as principal
source of nitrogen (N) and carbon (C) in the soil and has significant development
in the terrestrial ecosystem (Sauvadet et al. 2016). In the aquatic habitats such as
streams, litter accumulated by leaf fall constitutes one of the chief sources of energy.
Microorganisms, both bacteria and fungi are bestowed with the ability to degrade
plant remains by secrete cell wall degrading enzymes to breakdown large molecules
such as cellulose, lignin and chitin into smaller compounds, which are in turn utilized
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by saprophytes in the food web (Sinsabaugh and Lenskins 1990). Microbial degra-
dation of litter is the resultant co-effort of fungi and bacteria, with the biochemical
and physiological processes of the latter are well established (Das et al. 2007).

The assessment of actinobacterial diversity on the decaying senescent leaves of
sugar maple and white oak in a forested stream, along northeastern Ohio (Das et al.
2007) resulted in the lesser diversity of actinobacteria than fungi by Denaturing
Gradient Gel electrophoresis technique (DGGE). A study to determine the impact
of C cycling on the quality of litter and the bacterial communities of soil in Oak
(Quercus wutaishanica) secondary forest region in Fuxian Observatory in China
was conducted (Zeng et al. 2017). The annual litter accumulation over a two year
period due to leaf fall was estimated at 200 gm−2 per year. The actinobacteria formed
10–21% of the dominant groups in the primary soil types, which enhanced due to
the decomposition of litter. Litter degrading actinobacterial populations are docu-
mented from fallen leaves as well as from streams. Actinobacteria such as Strepto-
myces,Micromonospora, Actinomadura andPseudonocardia degrade lignocellulose
in plant litter (McCarthy 1987). Fallen leaves from pine litter layers are sources for
the isolation of numerous Streptomyces andMicrobispora (Matsukuma et al. 1994).
High frequency of Microbispora and Actinokineospora spp. were isolated from the
fallen leaves of bamboo and loosestrife and other plants (Matsumoto et al. 1998;
Otoguro et al. 2001).

7.2.2.2 Symbiotic

The term ‘Symbiosis’ was originally coined by de Bary in 1879 to describe a long-
term interaction between two biological species meaning ‘living together’. One of
the remarkable examples for the plant–microbe symbiotic relationship is that of legu-
minous plant roots and the bacterium of the genus Rhizobium in the fixation of nitro-
gen. Today, a number of genera, Azorhizobium, Bradyrhizobium, Mesorhizobium,
Sinorhizobium and Ensifer, collectively referred to as ‘rhizobia’ are documented as
nitrogen fixers (Hardoim et al. 2015). In non-leguminous plants, nitrogen fixation is
achieved by theGram-positive actinobacterium,Frankia. It is known to establish root
nodules in 23 species of non-legumes, called ‘actinorhizal plants’ of dicotyledonous
families. Thephylogenetically relatedgroups of actinorhizal plants areFagales (Betu-
laceae, Casuarinaceae, Myricaceae), Cucurbitales (Datiscaceae, Coriariaceae) and
Rosales (Rosaceae, Elaeagnaceae, Rhamnaceae) (Berry et al. 2011). Actinorhizal
plant species are able to colonize in nutrient-poor sites and are ecologically important.
Non-Frankia actinobacterial strains of Micromonosporaceae and Thermomonospo-
raceae isolated from the surface-sterilized roots of Casuarina equisetifolia was able
to fix nitrogen, as analysed by the amplification of nifH genes (Valdes et al. 2005).
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7.2.2.3 Pathogenic

Plant-associated actinobacteria cause diseases in plant species and are termed
pathogenic. Several species of Streptomyces infect potato as pathogens and are com-
mon agents of potato scab, i.e., Streptomyces acidiscabies, Streptomyces europaeis-
cabei, Streptomyces scabies and Streptomyces turgidiscabies (Bignell et al. 2010).
Clavibacter is a Gram-positive actinobacteria withmany subspecies and is the causal
agent of bacterial spot of tomato, disease of alfalfa (C. michiganensis subsp. insid-
iosus), maize (C. michiganensis subsp. nebraskensis) and wheat (C. michiganensis
subsp. tessellarius). The ratoon stunting of sugarcane is caused by Leifsonia xyli
subsp. xyli (Young et al. 2006), while Rathayibacter tritici incites gumming disease
in several grasses (Evtushenko and Dorofeeva 2012). Besides crop plants, garden
species, beet, American holly and poinsettia are affected.

7.2.2.4 Endophytic

Endophytes are microorganisms residing inside healthy plant tissues without causing
any ‘overt, negative effects’ on hosts (Bacon and White 2000). In plants, endophytic
associations include those of fungi, actinobacteria, bacteria, yeasts, etc. Actinobacte-
ria form endophytic associations in host plants. In 1886, Frankiawas first isolated as
the actinobacterial endophyte from the non-legume root nodules. The first description
of an actinobacterial association from the leaves of grass was the new genus Acti-
nosynnema (Hasegawa et al. 1978). Endophytic actinobacteria are described from
several plants: crop plants (Coombs and Franco 2003; Cao et al. 2004, 2005; Tian
et al. 2007), native plants (Janso and Carter 2010; Kim et al. 2012) and medici-
nal plants (Castillo et al. 2002, 2006; Akshatha et al. 2016). Native tree species do
have actinobacterial associations with streptomycetes as major strains (Kaewkla and
Franco 2013), while rare actinobacteria were also isolated from fewer tree species
(Caruso et al. 2000; Himaman et al. 2016). They are distributed in all plant parts with
high diversity in the root tissues than stems and leaves. Root endophytic strains, of
Streptomyces spp. have excellent antagonistic potentials or as biocontrol agents to
several plant pathogens.

7.3 Actinobacterial Diversity: Predictions or Reality?

Of all the microorganisms associated with plant species, the diversity estimate for the
total number of fungal species has been documented to be 6,11,000 (Mora et al. 2011),
which is much lower than the earlier predicted conservative estimate of 22,70,000
(Hawksworth 2001), solely based on the traditional taxonomical approaches. On a
global basis, the actual number of fungal species is underestimated. Conventional
techniques employed in the identification of actinobacteria have often resulted in
the misidentification of closely related species. Advanced methods using molecular
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data with next generation technologies have emerged as a reliable tool in the accurate
identification of closely related species and in enumerating diversity. Pyrosequencing
and Illumina platform technologies have provided reliable methods to enumerate the
number of species inmicrobial communities of several ecosystems (Buee et al. 2009).
Recently, a high-density 16S rRNA microarray technology known as PhyloChip
(Mendes et al. 2011) was designed to detect the abundance and diversity of bacterial
communities in the rhizosphere and phyllosphere microbiome.

7.3.1 Diversity in Soil and Rhizosphere

Soil contains a complex mixture of microorganisms, both pathogenic and beneficial
to plants. The diversity of microbes in soil as well as the rhizosphere has been
underestimated. The estimate of microbial presence in soil has not been accurately
measured and has often resulted in ambiguity. Studies indicate actinobacteria as
important components in the rhizosphere and are known to influence plant growth
and protect roots against the invasion of plant pathogens. Actinobacterial species
diversity estimates predicted ca. 10,000 species per gram of boreal forest soil (Yadav
2019; Torsvik et al. 2002). Using improvised computational estimates, bacterial
counts were recorded to be greater than one million per gram of soil (Gans et al.
2005). Different types of soil samples consisting of forest, greenhouse, mountain and
waterfalls from the Western Ghats of India were enumerated for the actinobacteria
isolated using actinomycete isolation agar (AIA) supplemented with the antibiotics,
ketoconozole (30 mg/l) and nalidixic acid (100 mg/l). 12 species of Streptomyces
were documented (Ganesan et al. 2017).

Themost common actinobacteria distributed in soil are the Streptomycetes, which
account for the total actinomycete populations, but in order to isolate rare genera,
selective media and enrichment methods have been designed (Hayakawa 2008). Pre-
treatment methods such as physical and chemical, enrichment by rehydration and
centrifugation allowed the delineation of streptomycetes and favoured the isolation
of rare taxa such as the non-motile as well as the motile actinomycete genera. Acti-
nomycetes are known to utilize humic acid as the sole source of carbon and nitro-
gen, which facilitated the growth of actinomycete colonies of the genera Strepto-
myces, Micromonospora, Microbispora, Streptosporangium, Nocardia, Dactylospo-
rangium, Microtetraspora and Thermomonospora on agar medium, while restricting
the development of true bacteria (Kumar et al. 2019b; Yadav et al. 2017a, b, d). The
recovery ofMicrotetraspora a rare genus, and four-spored actinomycetes, with LSV-
SV agar enriched with Kraft lignin as the source of carbon and nitrogen was reported
(Hayakawa et al. 1996b). The distribution of actinobacteria in soil types were doc-
umented along a vertical gradient through test borings (Takahashi et al. 1990). Top
layers contained actinobacteria at 107 g−1, second layer (0.5–5.0 m) and still below
(1.0 m) had reduced actinomycete populations.

Fort-five and 93 strains of actinobacteria representing streptomycetes and non-
streptomyceteswere isolated from the rhizospheres of carrot (El-Tarabilly et al. 1997)
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and cucumber (El-Tarabilly 2006). Actinobacterial strains were isolated from the rhi-
zospheric soils of Vitis vinifera across fourMoroccan sites (Loqman et al. 2009). The
total count ranged from 16–65 × 106 cfu/g of dry soil. The rhizospheric soil adhered
to the roots of seven traditional medicinal plant species from the Panxi plateau, China
was analysed for the diversity of actinobacteria (Zhao et al. 2012). 196 strains were
grouped into eight suborders and 13 families. In three species, streptomycetes were
dominant, while in four species, rare actinobacteria were isolated, each plant species
contained unique strains. Soils sampled from ten crop plants at a depth of 5–15 cm
contained 156 actinomycete isolates (Kaur et al. 2013). 382 actinobacteria were iso-
lated from 27 rhizospheric soil samples of eucalyptus plantation (Himaman et al.
2016). The total actinomycete counts in two different media of isolation ranged from
9.4 × 104 to 3.4 × 106 and 1.0 × 105 to 2.16 × 106 cfu g−1 of dry soil on Starch
casein agar and HV agar, respectively. The rhizospheric strains comprised mainly of
non-streptomycetes.Micromonosporawasmost frequently isolated from endophytic
and rhizospheric samples.

Oak rhizosphere and the surrounding soil had contrasting bacterial diversity, as
studied by Pyrosequencing technology (Uroz et al. 2010). Differences in the distri-
bution of bacterial communities of soil and rhizosphere in Arabidopsis thalianawere
observed (Lunderberg et al. 2012). Using 454 pyrosequencing of the bacterial com-
munities associated with leaves and roots of A. thaliana, Bodenhausen et al. (2013)
observed abundant distribution of actinobacteria in the samples along with other bac-
terial communities. Therefore, owing to the contradictions arising in the estimations
of actinobacteria from soil and its rhizosphere, the next-generation sequencing tech-
niques have become handy in accurately predicting the actinobacterial populations
in several rhizospheric soils of plant species. PhyloChip, a high-density 16S r RNA
genemicroarray technology, could detect the diversity and abundance of the bacterial
communities in the rhizosphere (Mendes et al. 2011), and the results were consistent
in estimating the actinobacterial communities in oat rhizosphere (De Angleis et al.
2009). Actinobacteria accounted for 11% of total bacterial populations in two distant
potato fields and three cultivars in Netherlands (Weinert et al. 2011), while a study in
the rhizosphere of beet seedlings, actinobacteria was recorded as the second largest
taxa (Mendes et al. 2011).

Composite soil samples ofwheat rhizosphere, from Idar region ofGujarat, resulted
in the isolation of Streptomyces spp. (Jog et al. 2012) with plant growth-promoting
ability. Rhizospheric soils sampled from South African plant species indicated the
diversity of Streptomyces spp. (Adegboye et al. 2012). Soils from the rhizosphere
of legume and Japanese grass species analysed for the actinobacteria contained
84% Streptomycetes, while rare actinomycetes were less (Matsumoto and Taka-
hashi 2017). The rhizosphere is a potential site for the existence of actinobacteria,
wherein the filamentous bacteria are found at a count of 106 cells per mm3.

Plantation soils are a niche for microorganisms and do play a major role in the
decomposition and degradation of complex organic residues formed from the crop
residues and shade trees. Actinobacterial populations are present in the plantation
soils and help in degrading the organicmatter by producing the extracellular enzymes.
Coffee plantation soils are well suited for the isolation of actinomycetes as they are
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rich in humus and fallen litter. In a study conducted to isolate soil actinomycetes
from Coffee plantation of Chikmagalur region, Western Ghats, India, Sameera et al.
(2018a) documented the presence of 24 species of actinobacteria across altitudinal
gradients and two soil profiles. The physico-chemical parameters of the soil and total
actinomycete counts correlated with the soil profiles. The actinobacteria consisted of
54.2% Streptomyces spp. and 45.8% of non-streptomycetes, comprising three novel
orders.

7.3.2 Diversity in Crop Plants

Actinobacteria are associatedwith roots ofmany crop plant species, although they are
major components of the rhizosphere. Their presence around the roots is necessary to
evade the invasionof root pathogens. 28healthyplant species cultivated inNorthwest-
ern Italy were subjected to actinobacterial isolations from the surface-sterilized roots
(Sardi et al. 1992). Of the 499 isolates, 482 strains were Streptomyces, two strains
were Streptoverticillium and four strains were Nocardia, while one strain each of
Micromonospora and Streptosporangium were obtained. Streptomycete populations
in the roots of 156 plant species were studied along the seven-year sampling period
in Italy (Petrolini et al. 1996). 81% of the strains belonged to Streptomyces, other
rare actinobacteria belonged to Micromonospora (215 strains), Streptosporangium
(12),Streptoverticillium (2),Saccharomonospora andNocardia (70) species.Healthy
wheat plants (Triticum aestivum L.), growing in the major regions of southern Aus-
tralia were analysed for the actinobacteria. The surface-sterilized fragments yielded
88% of Streptomyces and 12% ofMicrobispora, Micromonospora and Nocardioides
(Coombs and Franco 2003). Since the actinobacteria are soil-inhabiting populations,
the diversity was assessed in the surface-sterilized roots of banana plants from a
plantation in China (Cao et al. 2005). Of the 131 isolates, 99 comprised of Strep-
tomyces, followed by morphologically distinct genera Streptoverticillium (28) and
Streptosporangium. The diversity of actinobacterial community in the internal por-
tions of rice (Oryza sativa cv. Qilisimiano) stems and root tissues was determined
from South China (Tian et al. 2007). 191 strains were morphologically distinguished
into 33 groups by the 16S rDNA genes as Streptomyces and Nocardioides. The gene
clones from the library distinguished strains from roots as belonging to nine gen-
era; Streptomyces (24%), Micromonospora (6.6%), Actinoplanes (6.6%), Frankia
(4.4%), Dactylosporangium (4.4%), Amycolatopsis (4.4%), Corynebacterium and
Rhodococcus each with 2%. An uncultured actinobacteriumwas also detected. More
diversity of actinobacteria was obtained from roots than stem portions.

619 actinobacteria were isolated from the roots of field-grown tomato cultivars
in south China during 2014 (Tan et al. 2006). The isolates were grouped into Strep-
tomyces aureochromogenes (30.3%), Hygroscopicus and Viridis groups in healthy
tomato roots, whileCinereus and Flavus groups were characterized from the roots of
Ralstonia wilt tomato cultivars. Healthy tomato plant roots collected from southern
Australia were analysed for the actinobacteria, and Streptomyces spp. were the most
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commonly isolated ones, and rare members included Microbispora and Nonomu-
raea spp. (Inderiati and Franco 2008). Ten plants comprising the crop and medicinal
species were used for the isolation of actinobacteria from plant parts. 50% comprised
of the root isolates, while the stem and leaf isolates were 29% and 21%, respectively
(Kaur et al. 2013).

The wattle tree (Acacia auriculiformis A. Cunn. ex Benth.) grown for its associa-
tion with rhizobacteria is used to improve the soil fertility and is native to Australia.
The diversity of actinobacteria in the leaves and roots was determined from four sites
in theUniversity campuses of Thailand (Bunyoo et al. 2009). The four sites differed in
the actinobacterial diversity, with Streptomyces from two sites, and rare genera such
as Actinoallomurus, Amycolatopsis, Microbispora and Kribbella with two species
each from three sites. 23 root samples were collected from the eucalyptus plantation
in Thailand for endophytic actinobacterial analysis (Himaman et al. 2016). Over-
all, 95 endophytic root isolates were characterized as strains and included genera
of rare actinobacteria, namely,Micromonospora (28.9%), Nocardia, Actinomadura,
Actinoallomurus, Cryptosporangium and Amycolatopsis.

There is strong evidence that the endophytic populations have originated mainly
from the rhizosphere. The rhizospheric populations of actinobacteria consist mainly
of Streptomyces spp. and are abundant and diverse. Several species of crop plants
have developed associations with these groups ofmicroorganisms that have immense
applications in agriculture and biotechnology.

7.3.3 Diversity in Medicinal Plants

Actinobacteria occur as abundant microbiota in the plants of medicinal value, as
isolated from various plants across biodiverse regions. They are often referred as
‘endophytes’ and reside in the intercellular spaces of plant parts. Diverse actinobac-
terial species have yielded array of metabolites with wide applications in agriculture,
pharmacy and biotechnology.

Taechowisan et al. (2003) obtained 330 actinomycetes from seven medicinal
species from Chiang Mai, Thailand with Streptomyces (n = 277) as the dominant
isolates followed byMicrobispora (n = 14), Nocardia (n = 8) andMicrobispora sp.
(n = 4). Plant species (300) sampled from the Amazonian rainforest sites yielded 14
endophytes, 12 belonged to Streptomyces, one each ofMicromonospora and Amyco-
latopsis spp. (Bascom-Slack et al. 2009). Three Indian medicinal species, Aloe vera,
Ocimumsanctum andMenthaarvensiswere selected for the actinobacterial isolations
from the roots, stems and leaves. Of the 40 isolates, Streptomyces spp., were domi-
nant genera and the rest were represented by Saccharopolyspora, Micromonospora
and Actinopolyspora spp. (Gangwar et al. 2011).

The Sichuan Province of China has a subtropical climate and medicinal species
have been used from 3000 years for human health. 13 native medicinal species were
subjected to the isolation and study of actinobacterial diversity in the plant parts
(Yuan et al. 2008). The actinobacteria were classified into two genera: Streptomyces
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and Micromonospora, of which the former showed high species diversity. The Chi-
nese tropical rainforest is a unique region comprising the transition vegetation and
is a home to 3,000 endemic plant species. At Xishuangbanna, medicinal plants were
studied for the presence of diverse actinobacterial populations in the plant parts. One
plant species,Maytennus austroyunnanensis,was selected for the actinobacterial iso-
lations (Qin et al. 2012) due to the importance of maytansinoids. Culture-dependent
and -independent methods were applied for the actinobacterial isolations and to
study their diversity in plant parts. A total of 312 strains were detected of which,
roots comprised of major isolates (40.4%) than the stems (27%) and leaves (32.6%).
The actinobacteria were distributed in eight suborders. Streptomyces were the most
frequently isolated genus with 15 species, and rare ones belonged to 20 genera.

The roots of four medicinal plant species collected from the Chinese Herbal Plant
Base, Hebei, were evaluated for the presence of actinobacteria, which comprised of
Streptomyces spp. and two species of Glycomyces (Zhang et al. 2012). Four medic-
inal plant species from the Western Ghats, namely, Rauwolfia densiflora, Leucas
ciliata, Cajanus lineata and Gomphostemma heyneanum, were evaluated for the
presence of actinobacteria from the stem and leaves (Akshatha et al. 2016). 68% of
the strains belonged to Streptomyces and the rare ones includedPromicromonospora,
Arthrobacter, Patulibacter, Rhodococcus and Nocardia spp. The diversity of actino-
mycetes mentioned in the above paragraph indicates that morphological, physiologi-
cal and biochemical characteristics were undertaken by Taechowisan et al. (2003) to
identify the actinomycetes to the generic level, while in all other studies the identifi-
cation to the species level was accomplished by the sequencing of 16S rRNA gene.
A combination of techniques involving the crumbling of sterilized plant fragments,
desiccation with calcium carbonate and enzymatic hydrolysis coupled with differen-
tial centrifugation were standardized for the actinobacterial species from 90 tropical
rainforest plants in Southwest China (Qin et al. 2009), which facilitated the isolation
of rare actinobacteria.

7.3.4 Diversity in Native Tropical Species

The Papua New Guinea along with the adjoining areas of Archipelago is home
to a number of tropical plant species and is one of the biodiverse regions on the
earth. A range of plant parts and habit were sampled for the isolation and iden-
tification of 123 actinobacterial strains from 113 plant species (Janso and Carter
2010). The use of different isolation techniques as well as the enrichment procedures
resulted in the isolation of rare genera, viz., Lentzea, Lechevalieria, Kitasatospora
and Planotetraspora.Molecular characterization of the isolates resulted in resolving
the diverse actinobacterial taxa into six families: Streptomycetaceae (27%), Strep-
tosporangiaceae (40%), Thermomonosporaceae (16%), Micromonosporaceae (8%),
Pseudonocardiaceae (8%) and Actinosynnemaceae (2%). The non-streptomycetes
comprised of 74%of the total actinobacterial strains. The diversity of endophytic acti-
nobacteria from the surface-sterilized root samples of eleven native herbaceous plants
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from Korean Provinces was assessed (Kim et al. 2012). 61 strains identified com-
prised of Streptomyces (45.9%), Micromonospora (18.8%), Rhodococcus (6.6%),
Microbispora (4.9%),Micrococcus (4.9%), and other strains included Arthrobacter,
Dietzia, Kitasatospora, Herbiconiux, Mycobacterium, Nocardia, Rathayibacter and
Tsukamurella.

The tropical neem tree (Azadirachta indicaA. Juss.) yielded diverse actinobacteria
(Verma et al. 2009a, b) from the stems (23.6%), roots (54.5%) and leaves (21.8%).
Streptomyces was the dominant genus (49.09%), while rare actinobacterial gen-
era identified were Streptosporangium (14.5%), Streptoverticillium (5.5%), Micro-
bispora (10.9%), Nocardia (3.6%) and Saccharomonospora (5.5%). Kaewkla and
Franco (2013) reported diverse Streptomyces spp. (72%) from four Australian native
trees such as native pine tree (Callitris preissii), red gum (Eucalyptus camaldulensis),
grey box tree (Eucalyptusmicrocarpa) and apricot tree (Pittosporum phillyraeoides).
The native pine tree and grey box tree contained 33.7% and 33.1% of the isolates,
while the apricot and red gum tree isolates comprised of 26.4 and 6.4%, respectively.
Rare actinobacteria:Polymorphospora, Gordonia, Actinomycetospora and two novel
genera Williamsia and Flindersia were isolated. Of the four native trees, the apri-
cot tree yielded 12 Streptomyces spp. and four genera, Amycolatopsis, Actinopoly-
morpha, Polymorphospora and Nocardiopsis, which were not recovered from other
trees.

7.4 Applications of Actinobacteria in Biotechnology

7.4.1 Antibiotics in Medicine and Agriculture

Actinobacteria are pioneers in their ability to produce wide range of antibiotic com-
pounds, which have immense benefits in medicine and agriculture. Since the dis-
covery of Streptomycin from the soil isolate, Streptomyces griseus, soil-derived
Streptomyces spp. are the most sought microorganisms in the industrial screening
programmes. ~8,000 antibiotics are described from Streptomyces spp., followed by
rare actinomycetes (Berdy 2005).

7.4.1.1 Antibiotics from Soil-Derived Actinobacteria

Soil-derived actinobacteria, especially Streptomyces, deserve a special mention as
the single largest producer (80%) of life-saving antibiotic drugs. They are typi-
cally soil bacteria, with plenty of spores readily recognized for the volatile, earthly
odour, geosmin. Though the first antibiotic was discovered in the fermentation prod-
uct of Streptomyces griseus, over the subsequent decades there has been a phe-
nomenal search for the discovery of newer antibiotics owing to the emergence of
multidrug-resistant Gram-negative bacterial strains. The mercurial period from 1945
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to 1950s is remarkable for the discovery of antibiotics from actinobacterial gen-
era Actinomyces, Streptomyces, Micromonospora, Nocardia, etc. Streptomyces spp.
produce a range of antibiotics with diverse chemical structures and the basic clas-
sification deals with two broader classes (Benedict 1953): pigmented antibiotics
(Aureomycin, Trichomycin, Griseolutin, Actinorhodine, Rhodocidin, etc.), non-
pigmented antibiotics (Antimycin, Nigericin, Cardicine, Nocardamin, Flavomycin,
etc.), non-pigmented organic bases (Streptomycin, Streptolin A & B, Neomycin,
Flavomycin, Viomycin, Achromycin, etc.) and miscellaneous group (Streptocin,
Chromin, Ascosin, Cacaomycetin, etc.).

The selectivity of antibiotic molecules to inhibit growth of the test organism is
based on their inhibition against target structures or functions related to cell wall
biosynthesis, translation, RNA transcription, DNA synthesis and replication (Lo
Grasso et al. 2016). Recent studies on the genes and or gene clusters involved in
biosynthesis of antibiotics and their regulation have opened up newer mechanisms to
incorporate tailoring steps for operating the genes of interest for a particular antibiotic
synthesis.Media composition, alteration of fermentation conditions and other genetic
factors are required to produce antibiotics. Since many of the antibiotic-producing
actinomycetes resist the geneticmanipulation, transferring the antibiotic synthesizing
genes to a heterologous expression system represents a successful strategy. Shuttle
vectors harbouring the gene(s) of interest expressed in model organisms such as S.
coelicolor, S. avermitilis and S. lividans have been reported (Yadav et al. 2019a;
Alduina et al. 2003, 2005; Giardina et al. 2010).

Therapeutic drugs from actinobacteria have wide implications as targets against
cancer, immunomodulators. Drug discovery is based on high-throughput platforms to
screen thousands of fermentation products ofmicrobes to deliver a newmedicinewith
high market value. Actinobacteria have yielded drugs with potential value in clini-
cal trials (Table 7.1). Rare actinobacteria, namely, Micromonospora, Actinoplanes,
Actinomadura and Streptosporangium produce antibiotic classes such asmacrolides,
polysaccharides, aminocyclitols (Lancini and Lorenzetti 1993). The years 1966–
1998 have provided literature on the antibiotics belonging to macrolides, quinones,
diterpenes, anthracyclines and ansa-macrolactams in these rare genera (Lazzarini
et al. 2000).

7.4.1.2 Antibiotics from Endophytic Actinobacteria

Antibiotics are important drugs preferred for health care due to their potent therapeu-
tic applications for the clinical use (Farnet and Zazopoulos 2005). Plant-associated
endophytic actinomycetes produce wide range of antibiotics (Matsumoto and Taka-
hashi 2017). Streptomyces andMicromonospora are the potential producers of antibi-
otics. Munumbicins, the novel peptide antibiotics are produced by the endophytic
Streptomyces spp., from the ethnomedicinal plants of the Upper Amazon and North-
ern Territory of Australia and were effective against Gram-positive bacteria Bacil-
lus anthracis and Mycobacterium tuberculosis (Castillo et al. 2002, 2006). Strep-
tomyces sp. 30566 produced Kakadumycins active against B. anthracis (MIC 0.2
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to 0.3 μg ml−1) (Castillo et al. 2003). The antimycotic Coronamycin produced by
Streptomyces NRRL 30562 at 2 μg ml−1 (MIC) is effective against pythiaceous
fungi and the human pathogen Cryptococcus neoformans (MIC 4 μg ml−1) (Ezra
et al. 2004). It was tested against agriculturally important plant pathogens along with
S. griseoviridis formulation (Mycostop) and considered as a potential agricultural
agent. Maklamicin, an antibacterial polyketide fromMicromonospora isolated from
Maklam Phueak (Abrus pulchellus) has shown activity against Gram-positive bacte-
ria at 0.2–13μgml−1 (Igarashi et al. 2011). The peptide antibiotic coronamycin from
Streptomyces sp. (MSU-2110) showed cytotoxic potentials by inhibiting the HMEC
andBT20cell lines (IC50 5–10μgml−1) (Ezra et al. 2004).A trehalose-derived antibi-
otic and a novel inhibitor of metastasis, Brartemicin is produced byMicromonospora
sp., isolated from Artemisia vulgaris, the Brazilian medicinal plant (Igarashi et al.
2009). The compound indicated anti-invasive property in murine colon carcinoma
cells (IC50 0.39 μM) without toxicity (Table 7.2).

7.4.2 Anti-pathogenic Potentials of Actinobacteria

Actinobacterial metabolites either produced by soil or endophytic organisms have
strong antimicrobial potentials. 70% of these novel metabolites are produced by
actinomycetes (Miyadoh 1993). Of all actinobacteria, Streptomyces spp., have con-
tributed phenomenally for the production of the life-saving drugs such as the novel
antibiotics, enzyme inhibitors, antiviral, antitumor targets and immunomodulators.
Rare actinobacteria have contributed to antibiotic database as target drugs. A num-
ber of papers have published the anti-pathogenic potentials of soil, rhizospheric and
endophytic actinobacteria,which is related to their antagonistic potentials (Table 7.3).
Some of the mechanisms of antagonistic nature of these organisms and their metabo-
lites include antibiosis, hyperparasitism and secretion of cell wall degrading enzymes
resulting in hyphal lysis (El-Tarabily and Sivasithamparam 2006).

7.4.2.1 Anti-pathogenic Potentials of Soil and Rhizospheric
Actinobacteria

The actinomycetes, of the genus Streptomyces, are saprophytic bacteria that decom-
pose organic matter, such as lignocellulose, starch and chitin, in soil. Actinomycetes
are important in the rhizosphere, where they influence plant growth and protect plant
roots against the invasion of root pathogenic fungi (Crawford et al. 1993). A num-
ber of diseases of crop plants are caused by the root invading pathogens, panicle
and sheath blight and grapevine trunk diseases (Loqman et al. 2009; Harikrishnan
et al. 2014; Suarez-Moreno et al. 2019). The potential biocontrol agents from acti-
nobacteria are summarized in Table 7.3. The anti-pathogenic activity against root rot
pathogens is by hyperparasitism and well documented in the strains A. philippinen-
sis, M. carbonacea against cavity spot disease of carrots (El-Tarabily et al. 1997) and
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by the action of cell wall degrading enzymes in the hyphal lysis of plant pathogens
such as glucanases and chitinases (El-Tarabily 2006; El-Tarabily et al. 2009).

In a previous study (El-Tarabily et al. 1996), 352 out of 817 streptomycete and non-
streptomycete actinomycete isolates produced inhibitory compounds active against
Pythium coloratum in vitro using the dual culture agar method. 45 inhibitory iso-
lates were identified as Streptomyces spp., Streptoverticillium spp., Actinoplanes
spp.,Micromonospora spp., Actinomadura spp.,Microbispora spp. and Streptospo-
rangium spp. These isolates were chosen for further in vitro and in vivo studies. Non-
streptomycete actinobacteria are excellent antagonists of several plant pathogens
(El-Tarabily and Sivasithamparam 2006).

7.4.2.2 Anti-pathogenic Potential of Endophytic Actinobacteria

Some actinomycetes form associations with plants and colonize the internal tissues.
Streptomyces scabies and Frankia species can penetrate host plant tissues and form
pathogenic or endophytic associations between plants and actinomycetes, respec-
tively (Hasegawa et al. 2006). Until reports of Sardi et al. (1992), work on endophytic
actinomycetes other than Streptomyces were rare. Streptomyces spp., Microbispora
spp. and Streptosporangium spp. were isolated from roots of different plant species
in Italy and Brazil that showed antagonistic activities against Gram-positive bacteria
and fungi (Sardi et al. 1992; Coombs and Franco 2003) and as biocontrol agents
(Verma et al. 2011). The use of actinomycetes as biological control agents of soil-
borne root disease of several crop plants is of interest. The endophytic presence of
Streptomyces spp. may play important roles in plant development and health.

7.4.3 Actinobacteria as Plant Growth Promoters

Sustainable agriculture is a key player for boosting the food productivity. The increas-
ing demand for food production with the use of conventional methods by the applica-
tion of fungicides, herbicides, insecticides and chemical fertilizers adversely affects
human health (Kour et al. 2019c; Rana et al. 2019a, b;Verma et al. 2017a).As an alter-
native, environment-friendly approach using beneficial microorganisms to improve
plant traits for high yields is an efficient strategy (Glick 2012). Soil is a habitat for
the multiplication of various microorganisms. The concentration of actinobacteria
is greater in the soil attached to the roots, i.e., the rhizosphere and is facilitated by
the secretion of amino acids, sugars and micromolecules from the root exudates
(Badri et al. 2009). Therefore, actinobacteria are capable of promoting plant growth
by a number of ways involving the uptake of nitrogen, phosphorus and iron (Kour
et al. 2019b; Kumar et al. 2019b; Yadav et al. 2019b, f; Yadav and Saxena 2018).
Plant rhizosphere contains growth-promoting rhizobacteria termed PGPR. The most
abundant rhizosphere colonizing actinobacteria are the Streptomyces spp. with high
species diversity. Rare actinobacteria are documented from these plant species. They



226 M. S. Nalini and H. S. Prakash

are the important components of rhizospheric soils of crop plants, medicinal plants
and trees.

Actinobacteria augment plant growth by direct or indirect mechanisms involv-
ing the (1) fixation of nitrogen, (2) phosphate solubilization, (3) sequestering of
iron, (4) production of growth regulators and (5) ethylene. The genera Strepto-
myces, Frankia, Nocardia, Kitasatospora and Thermobifida are IAA producers
(Rana et al. 2019c; Yadav 2018; Yadav et al. 2017c; Yadav and Yadav 2018;
Franco-Correa andChavarro-Anzola 2016). Rhizosphere soil samples collected from
three-month-old wheat plants contained 15 morphologically distinct actinobacteria
(Jog et al. 2012), while three strains: S. rochei, S. carpinensis and thermolilacinus
with PGP traits were tested positive for the production of Indole acetic acid (IAA,
2.6–19.22 mg l−1), siderophores (1.3–34.17 mg l−1) and high phosphate solubi-
lization (911.6 mg l−1). Rice rhizosphere actinobacterial strain Streptomyces A20
showed PGP traits by solubilizing phosphate (79.5 mg l−1), siderophore production,
IAA production (4.0 mg l−1) and extracellular enzymes cellulases and proteases
(Suarez-Moreno et al. 2019). Streptomyces violaceolatus, from the coffee plantation
soils, produced 109.24 mg ml−1 of IAA and enhanced seedling growth parameters
in bean and sorghum as evaluated by the roll towel method (Sameera et al. 2018b).
Streptomyces spp. isolated from the rhizospheres of plant species including crop
plants was able to promote PGP traits.

One of the strategies to enhance plant growth is by adopting co-inoculation of the
nodule-inducing species with the actinobacterial strains. Under greenhouse trials,
co-inoculation of soybean (Glycine max) with Bradyrhizobium japonicum and the
actinobacterial strainsNocardia alba,Nonomuraea rubra and Actinomadura glauci-
flava increased acetylene reduction activity ~1.7 to 2.7-fold with increased levels of
potassium, N, calcium, iron, magnesium and zinc in the plants (Nimnoi et al. 2014).
The association of actinomycetes is known to confer advantages to host plants with
the production of IAA, siderophores and nutrient uptake.

Streptomycetes have demonstrated their ability as plant growth enhancers and
as biocontrol agents and their products have high commercial value in controlling
several plant–pathogenic diseases of agricultural species (Vurukonda et al. 2018).
Some of the commercial products are registered as microbial pesticides in Euro-
pean Union, Canada, South Korea, USA in the targeted soil-borne, powder/downy
mildews, sheath blight, grey molds, leaf spots of fruits and vegetables, bacterial rots,
cankers, basal rots, fire blight etc.

7.4.4 Production of Industrially Important Enzymes

Actinomycetes are abundant taxa in the soil and act as decomposers of complex
organic matter helpful for the nutrient cycling in the terrestrial and the aquatic
ecosystems. Over the past few decades, considerable interest has been generated
in the enzymatic degradation of complex polymers or substrates by microorganisms.
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Their abundance, renewable and as inexpensive nature often ensures them as poten-
tial candidates in the industrial applications, viz., in food processing, oxychemicals
production, and in textiles for the biopolishing of fabrics, and pulp and paper industry
(Kasana et al. 2008).

Lignocellulolytic enzymes, oneof thepotent enzymesproducedbyactinomycetes,
and exploited widely in various lignocelluloses based industries. They are hydrolytic
enzymes capable of degrading tough lignocellulose in the plant biomass. Hydrolysis
of lignocellulosic biomass by lignocellulolytic enzymes is used in the production
of bioethanol and biomethane, textile industry, pulp and paper making, detergents
industry, animal feed and food. Hemicellulases are used in biobleaching, deink-
ing of paper waste, clarification of fruit juices, upgradation of feed, fodder and
fibres, and saccharification of hemicelluloses to xylose sugars. Actinobacterial cel-
lulases are inducible extracellular enzymes produced on wide variety of substrates.
Jeffery et al. (2007) isolated a Streptomyces griseus strain from Malaysian soil that
produced cellulase with carboxymethyl cellulose property (4.5 mg ml−1). Strepto-
myces spp., Cellulomonas fimi, Microbispora bispora and Thermobifida fusca are
cellulase producing actinomycetes (Saini et al. 2015). Proteases have applications
in the bioremediation and degradation of gelatinous wastes generated by food and
pharmaceutical industries. Streptomyces spp., isolated from Indian soil has protease
producing property (Jain et al. 2009). Industrial production of enzymes on large
scale is associated mainly with substrate. The use of agriculture residues as low-cost
substrates for the production of industrial enzymes is a significant way to reduce
production cost.

Xylan is the abundant source of noncellulosic polysaccharide present in hard-
woods and annual plants, and comprises 20–35% of the total dry weight in tropical
plant biomass (Elegir et al. 1994). Xylanase degrades β-1, 4 xylan, by cleaving
the β-1, 4 glycosidic linkages randomly, and the products are xylose and xylo-
oligosaccharides like xylobiose (Ninawe et al. 2008). Xylanases are important indus-
trially, which is used in papermanufacturing to bleach paper pulp, increase the bright-
ness of pulp and to improve the digestibility of animal feed and for clarification of
fruit juices. Microorganisms are the rich sources of xylanases and are produced by
diverse species of actinobacteria. Streptomyces sp. strain B-12-2 and Streptomyces
cyaneus SN32 secrete high amounts of extracellular xylanases (Elegir et al. 1994;
Ninawe et al. 2008).

7.4.5 Biodegradation Potentials of Actinobacteria

7.4.5.1 Pesticides

Pesticides are the chemicals employed to kill pests and are known to persist in
soils over time. They are pollutants and accumulate in the body parts of plants,
animals and humans. Soil microbes are known for their efficiency to degrade pesti-
cidal compounds. Actinobacteria are dominant colonizers of soil types. The process
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of breakdown of chemical pesticides such as Carbofuran by soil actinobacteria has
been documented (Jayabarath et al. 2010). Streptomyces abnosinicus, Streptomyces
atratus, Streptoverticillium album, Nocardia farcinia, Nocardia vaccine, Nocardia
amarae and Micromonospora chalcea have shown the ability to resist carbofuran
under culture conditions (Kumar et al. 2019a). A soil Streptomyces sp. has shown
the ability to degradeChlorpyrifos, the insecticide into a less toxic form by hydrolysis
(Briceno et al. 2012).

7.4.5.2 Hydrocarbons

The actinobacterial genus Rhodococcus is bestowed with the ability to degrade a
wide range of organic and xenobiotic compounds, which poses severe health haz-
ards. Besides, it is able to produce metabolites of biotechnological significance such
as carotenoids, wax esters, oils, biosurfactants and bioflocculation agents (Yadav
and Yadav 2019b; Jones and Goodfellow 2010). Progress related to the biosynthetic
pathway and functional genomics have led to its immense applications in biotechnol-
ogy. Hydrocarbons are released into the environment by the anthropogenic activities
and by natural sources. Rhodococcus strains, Rhodococcus jostii, Rhodococcus opa-
cus, Rhodococcus ruber, are able to oxidize n-alkanes due to the presence of the
enzyme, alkane 1-monooxygenase (Tiancsics et al. 2014), alkane hydroxylases and
cytochrome for the oxidation of xenobiotics. Some species are able to degrade highly
classified aromatic hydrocarbons exemplified by benzene, toluene, ethylene and o-
xylene (BTEX). Rhodococcus sp. strain DK17 has the ability to degrade Toluene
and o-Xylene (Kim et al. 2002, 2010), whereas R. jostii RHA1 efficiently assimi-
lates ethylbenzene, isopropyl benzene and biphenyl (Seto et al. 1995). Genetic anal-
ysis of this strain has identified 203 oxygenases, 86 dioxygenases, 88 flavoprotein
monooxygenes and 50 hydroxylases in the conversion of steroids and aromatic com-
pounds (McLeod et al. 2006). Phenols are degraded by Rhodococcus strains due
to the presence of phenol hydroxylase. R. erythropolis UPV-1 efficiently degrades
Polyaromatic hydrocarbons (PAH), phenol and a mixture of cresols (Irvine et al.
2000). PAH degradation is by the action of intercellular dioxygenases. Naphthalene
is degraded by R. opacus R7 via this mechanism followed by the oxidation into
salicylate and gentisate (Di Gennaro et al. 2010).

7.4.5.3 Plasticizer Compounds

Plasticizer compounds are released into nature by the industrial processes,whichhave
deleterious effects. Rhodococcus strains efficiently degrade toxicants such as phtha-
lates and terephthalates via the protocatechuate ortho-cleavage pathway (Patrauchan
et al. 2005). Another noted synthetic polymer generated as plastic wastes is polyethy-
lene and has a complex degradation process involving the oxidation of hydrocar-
bon chains into aliphatic fragments and subsequently requires specific microbial
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strains for their mineralization in nature (Koutny et al. 2006). R. ruber C208 effi-
ciently degrades polyethylene. R. strain AD45 consumes Polyisoprene, the synthetic
rubber used in seedlings by oxidation to epoxide and conjugation with glutathione
and by dehydrogenation steps (Van Hylckama Vlieg et al. 2000). Gene coding for
latex clearing protein (lcp) was identified in Rhodococcus rhodochrous strain RPK1
(Watcharakul et al. 2016) (Table 7.4).

7.4.6 Bioemulsifiers

Microorganisms produce bioemulsifiers during their growth phase. They contain sur-
face active agents such as proteins and find applications in the form of biofilms as
well are used as biomediators (Doshi et al. 2010). Biosurfactants have a hydrophilic
moiety, comprising an acid, peptide cations, or anions, mono-, di- or polysaccharides
and a hydrophobic moiety of unsaturated or saturated hydrocarbon chains or fatty
acids (Lang 2002). These structures confer the ability to lower surface and interfa-
cial tension of liquids and to form micelles and microemulsions between two dif-
ferent phases. These compounds are divided into two classes: low-molecular-weight
compounds termed biosurfactants, such as lipopeptides, glycolipids, proteins and
high-molecular-weight polymers of polysaccharides, lipopolysaccharide proteins or
lipoproteins that are collectively called bioemulsans or bioemulsifiers (Banat et al.
2010). Many microorganisms are producers of bioemulsifiers. The hydrocarbon-
degrading actinobacterial strains, R. ruber and R. erythropoliswere earlier identified
to produce bioemulsifiers (Bicca et al. 1999). Actinopolyspora sp. A18 isolated from
garden soil exhibited emulsification activity and a partially purified glycopeptide
(68% protein, 5% lipids, 22.2% non-reducing sugars) bioemulsifier was identified
(Doshi et al. 2010). Five strains of Streptomyces isolated from the hydrocarbon-
contaminated soil of Baghdad, Iraq showed biosurfactant properties, and strain SS20
produced maximum bioemulsifier property (E24% = 100%), and stability of 75%
for two weeks (Hayder et al. 2014).

7.4.7 Conclusion and Future Prospects

Actinobacteria are ubiquitous in soil types, plant litter, plant rhizospheres and are
associated with plant microbiomes as microbial communities. With plants, they
form diverging modes of lifestyles ranging from saprophytic to endophytic associa-
tions. Actinobacterial diversity among crops, medicinal and native plant species have
focused them as soil or rhizospheric and as endophytic colonizers. Actinobacteria
comprising both streptomycetes and non-streptomycetes are producers of antibiotics
and antimicrobial metabolites of high therapeutic applications. They are also used
often as potential biocontrol agents in several crop diseases and as plant growth
promoters. Besides, actinobacteria are known producers of important extracellular
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enzymes which find applications in the industrial processes. They are also degraders
of harmful substances known to be environmental and health hazardous.New insights
in the actinobacterial genomics have deciphered the mystery behind antibiotic pro-
duction, engineered drugs for clinical applications and their efficiency in biodegra-
dation. A thorough understanding of these strategies combined with metagenomic
approaches may unravel the true potentials of many more actinobacterial taxa for
future applications.
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Chapter 8
Phylogenetic Diversity of Epiphytic
Pink-Pigmented Methylotrophic Bacteria
and Role in Alleviation of Abiotic Stress
in Plants

Ganapathy Ashok, Guruvu Nambirajan, Krishnan Baskaran,
Chandran Viswanathan and Xavier Alexander

Abstract Plant and methylotrophic bacterial interactions that improve plant growth
and plant fitness are becoming a topic of very important considerable interest.Methy-
lotropic bacteria are distributed in various diverse environments/colonize different
habitats and utilize reduced one-carbon compounds as source of energy and play
an important role in the biogeochemical cycle. Methylotrophic bacteria colonize in
different parts of the plants like endophytes, epiphytes and in roots of plant rhi-
zosphere. Pink-pigmented facultative methylotrophic (PPFM) bacteria present in
the phyllosphere enhance plant growth by producing phytohormones such as IAA,
Zeatin, Cytokinins, ACC deaminase and diverse secondary metabolites to over-
come abiotic stress. Biological interactions ofMethylotrophic bacteria enhance plant
growth indirectly by increasing the nutrients uptake and beneficial in reduction of
greenhouse effects to the environments. Pink-pigmented facultative methylotrophic
bacteria colonize in phyllosphere of plants as epiphytes and utilize methanol as a
sole carbon source of energy. In plant colonization, the occurrence and distribution
of Methylotrophic bacteria may be influenced by various factors like plant geno-
type, geographical conditions or by interactions with associated microorganisms
and phytohormones production which may result and lead to increased plant fitness.
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8.1 Introduction

Prolonged biological and chemical research have expanded our agricultural knowl-
edge. Chemical fertilizer contains themost important elements ofmodern agriculture
that provide the required nutrients, which are not present in the soil or other organic
sources for crop improvement. The utilization and overexploitation of chemical fer-
tilizers have an ‘ecological footprint’. It reduces productivity and disturbs nutrients
level in the soil, which further leads to a deterioration in quality of the soil and causes
various plant diseases. The excessive use of chemical fertilizers in the field depletes
non-renewable resources and dangerous to soil fertility and environments (Dubey
et al. 2012). In general, the association of Methylobacterium spp. and host plants
may be or epiphytic or endophytic in nature (Kumar et al. 2019b; Jourand et al.
2004; Omer et al. 2004b; Lacava et al. 2004). M. nodulans and M. radiotolerans
interact with host plants and fix nitrogen fixation and nodule formation (Sy et al.
2001; Menna et al. 2006), whereas some Methylobacterium species are involved in
the production of phytohormones (Meena et al. 2006) or interact with plant pathogens
(Lacava et al. 2004), promoting plant growth (Madhaiyan et al. 2006b; Tani et al.
2012) and higher rate of photosynthetic activity (Cervantes et al. 2004).

Methylobacterium spp. are in connection with more than 70 plant species that
actively colonize in different parts of the plants like branches, roots and leaves. Sev-
eral studies have reported earlier thatMethylobacterium spp. are identified as endo-
phytes of various plants, such as citrus fruits, pine, cotton, eucalyptus, strawberries,
peanuts, hemp, Catharanthus roseus, mangroves and tobacco.

Methylobacterium spp. are well known to be not phytopathogenic bacteria and
reported that few Methylobacterium spp. produce enzyme pectinase and cellulose,
which may cause systemic resistance during plant colonization of methylotrophs
strains. In addition to phytohormone production, Methylobacterium spp. are capable
of producing valuable biotechnological potential product like bioplastic, which are
biodegradable and ecofriendly in nature. Polyhydroxyalkanoate (PHA) and polyhy-
droxybutyric acid (PHB) are biopolymers that are genetically modified strains like
M. extorquens to increase higher amount of PHB and PHA production by utilizing
methanol as substrate (Hofer et al. 2011).

Methylotropic bacteria colonize in different parts of the host plant as endophytes,
epiphytes in the phyllosphere and produce diverse secondary metabolites as bio-
control agents to defense against phytopathogens. This chapter mainly deals with
Methylobacterium spp. diversity, biotechnological importance of pink-pigmented
facultative methylotrophic (PPFM) bacteria and various potential applications in
agriculture as biofertilizers, co-inoculants and its role in biogeochemical cycle. This
chapter also covers diversity of methylotrophs, genomics, metabolic potential of
pink-pigmented facultative methylotrophic bacteria in the plant phyllosphere and
role in alleviation of abiotic stress to the host plants.
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8.2 Diversity and Metabolism of Methyotrophs

Methylotrophs are classified and subdivided into three subgroups on the basis of
their metabolic activity like carbon-substrate utilization: (1) Obligate methylotrophs
utilize single carbon compounds as sole source of energy (2) Restricted faculta-
tive methylotrophs utilize a limited range of complex carbon compounds apart
from C1 compounds and (3) methylotrophs utilize and grow in medium with com-
plex carbon compounds are called less-restricted facultative (Jenkins et al. 1987).
Three distinct genera such as Methylophilus (Jenkins et al. 1987), Methylobacillus
(Urakami and Komagata 1986; Yordy and Weaver 1977), and Methylovorus (Gov-
orukhina and Trotsenko 1991) of betaproteobacteria are classified and considered as
restricted facultative methylotrophs, whereas genusMethylobacterium is considered
and well known as less-restricted facultative methylotrophs in the Alphaproteobacte-
ria. Recently, Taubert et al. (2016) identified and reported an additional active group
of the methylotrophic community. A common one-carbon (C1) substrate for many
methylotrophic bacteria is methanol, whereas subgroups of these bacteria have the
ability to use methane, methanesulfonate, other methylated sulphur species, methy-
lated amines and the halogenated hydrocarbons chloromethane, bromomethane and
dichloromethane, either in addition to methanol or exclusively methane, methane-
sulfonate, other methylated sulphur species, methylated amines and the halogenated
hydrocarbons chloromethane, bromomethane, and dichloromethane as sole source or
in addition with methanol as source of energy. The association of Methylobacterium
spp. and host plants may be or epiphytic, phlylosphere, rhizosphere or endophytic
in nature and produce phtohormones, nitrogen fixation, abiotic stress tolerance and
maintain biogeochemical cycles (Kumar et al. 2019b) (Figs. 8.1 and 8.2).

8.3 Methylotrophic Community in the Phyllosphere

The distribution and diversity of phyllosphere microorganisms are influenced by
various factors like nutrient availability, stress resistance, motility, growth, bacte-
rial traits and metabolic activity (Bulgarelli et al. 2013; Yadav 2018; Yadav et al.
2017c, 2019). In addition, climate, plant genotype and geography are the major
driving forces for methylotrophic bacterial population in the phyllosphere region
of plants (Redford et al. 2010; Siefert et al. 2014 and Knief et al. 2010). Knief
et al. (2010) reported efficient methylotrophic bacterial colonization, competitive-
ness and survival are closely linked to bacterial phylogeny and metabolic diver-
sity of microorganisms of Arabidopsis thaliana in the phyllosphere. Knief et al.
(2010) studied and reported that Methylobacterium community composition had
strong effects and it varies based on culture-independent metagenome sequencing
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Fig. 8.1 Diverse role of methylotrophic bacteria application

analysis of leaves from Medicago truncatula, Arabidopsis thaliana and surround-
ing plant species at different locations. In Medicago truncatula, efficient coloniza-
tion of phyllosphere Methylotrophs was observed due to the advantage of utiliz-
ing methanol as a source of energy and as a solitary carbon substrate (Sy et al.
2005). The association and interactions of different methylotrophic species like
M. mesophilicum, M. radiotolerans andM. fujisawaense reported as strong coloniz-
ers with plant species were observed (Mizuno et al. 2013). In phyllosphere, methy-
lotrophic microbes are present in huge numbers and under competitive conditions
or during plant colonization, methylotrophic bacteria use plant-derived methanol as
a substrate for energy and used for efficient colonization in the phyllosphere region
(Abanda-Nkpwatt et al. 2006; Fall and Benson 1996; Sy et al. 2005). Colonization
pattern of plant root and leaf surfaces was observed by using of green-fluorescent-
marked strain ofMethylobacterium suomiense (Poonguzhali et al. 2008) (Fig. 8.3).

8.4 Epiphytic PPFMMethylotrophs in the Phyllosphere

Epiphytic Pink-Pigmented Facultative Methylotrophs (PPFMs) are phylogenetically
diverse and belong to the genusMethylobacterium. PPFMs utilize one-carbon com-
pounds such asmethanol, formate, formaldehyde and other multicarbon substrates as
a sole source of energy. Pink-Pigmented Facultative Methylotrophs (PPFMs) belong
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Fig. 8.2 Distribution role of methylotrops associated with different parts of the plants

to Proteobacteria, order Rhizobiales and Methylobacteriaceae family (Green and
Bousifield 1982). PPFM is found in diverse habitats ubiquitous in nature including
phyllosphere, rhizosphere, dust, freshwater, sediments and Lakes (Corpe and Rheem
1989;Green andBousifield 1982).Methylobacterium spp. are generally distributed as
epiphytes representing a significant bacterial population on plant leaves and in phyl-
losphere region of numerous plants (Hirano and Upper 1991; Holland and Polacco
1994). The colonization ofMethylobacterium in amucilaginous layer of plant tissues
is the first step in colonization ofmicrobes in the plant phyllosphere region (Andreote
et al. 2006; Rossetto et al. 2011; Verma et al. 2017; Yadav et al. 2018c). The presence
of methanol dehydrogenase (mxaF) gene in the genome of Pink-Pigmented Faculta-
tive Methylotrophic bacteria oxidizes methanol as an energy source (Anthony et al.
1994). In phyllosphere region of some plants, methane and methanol are emitted in
the aerial part and serve as a habitat for distribution of methylotrophic bacterial pop-
ulation were reported earlier (Corpe and Basile 1982). Pink-Pigmented Facultative
Methylotrophs were isolated using methanol-based mineral medium using methanol
as an exclusive carbon and energy source (Corpe 1985).
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Fig. 8.3 Colonization of methylotrophic bacteria using green-fluorescent-marked strain ofMethy-
lobacterium suomiense

8.5 Genomics of PPFM Bacteria

The genotype of PPFM bacteria or interactions of associated microorganisms influ-
ence bacterial colonization and distribution in the host plant either directly or
indirectly (Dourado et al. 2012).

8.6 Genetic Diversity of Methylotrophs

In general,Methylotrophic bacteria appears pink-pigmented in colours due to biosyn-
thetic potential of carotenoids in the bacterium (VanDien et al. 2003). Methylotrophs
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are rod shaped aerobic in nature and able to grow inmedium containingmethanol and
methylamine as carbon(C1) source for its metabolic activity (Toyama et al. 1998).
The most significant characteristic feature of this group is the ability to oxidize and
utilizemethanol as a substrate by using the enzymemethanol dehydrogenase enzyme
(MDH). PPFMs strains were isolated through leaf impression technique from phyl-
losphere of three different crops, which were further confirmed based on genomic
DNA isolation of the isolates and PCR amplification of partial mxaF gene (550 bp
sized partial mxaF gene). In metabolism of methylotrophic bacteria, the enzyme
methanol dehydrogenase (MDH), the mxaF gene encode for encodes the large sub-
unit, which helps to understand Methylobacterium niche-specific plant association
(Dourado et al. 2012).

The enzyme methanol dehydrogenase (MDH) oxidizes methanol into formalde-
hydemetabolism, which starts in the periplasm ofmethylotrophic bacterium (Zang et
a 2003). The mxaF andmxaI genes encodes for large, small subunits and cytochrome
C primary electron acceptor for methanol dehydrogenase are encoded bymxaG gene
(Mcdonald andMurrell 1997).Methanol dehydrogenase enzyme ismainly composed
of two small (8.5 kDa) and two large (66 kDa) subunits. The large subunit (MxaF)
is important for the functional activity of methanol dehydrogenase (Skovran et al.
2011). Random amplified polymorphic DNA (RAPD) is a unique molecular finger-
printing technique which was commonly used to distinguish between closely related
bacterial strains at species level (Mazurier et al. 1992; Williams et al. 1990).

Van Aken et al. (2004) investigated and reported metabolic and genetic diver-
sity of PPFM bacteria in the phyllosphere region of maize, cotton and sunflower
to understand the PPFMs diversity within a particular plant species and different
plant species using RAPD molecular fingerprinting and profiling carbon-substrate
utilization pattern. Vuilleumier et al. (2009) reported variations in the numbers of
insertion elements (IS) and in the organization of the genes have been identified in
two different Methylobacterium (AM1 and DM4) strains associated with methanol
metabolism. Methylobacterium bacterial strains have been sequenced and reported
M. extorquens PA1 as an as a competitive colonizer of the phyllosphere region of
Arabidopsis thaliana plants (Knief et al. 2010).

8.7 Methylotrophic as Plant Growth Promoters

Methylotrophs promote plant growth through beneficial interactions with plants by
producing phytohormones and indirectly by increasing the availability of nutrients
(Lidstram and chistordava 2002; Koenig et al. 2002). Methylotrophs colonize in var-
ious parts of the plant and produce phytohormones like auxins, cytokinin and zeatin.
Plant growth substance promotes growth of both shoot and root system (Verma et al.
2013, 2014, 2015, 2016; Yadav et al. 2016). Doronina et al. (2001) reported aerobic
methylotrophic bacteria produce auxins range from 20mg/ml in the culture medium.
Inmethylotrophic bacteria, biosynthesis of IAAwas initiated from tryptophan as pre-
cursor and addition of tryphtophan enhances the synthesis of IAA (Schneider and
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Wightman 1974). The biosynthesis of IAA through IPA pathway, which involves the
transfer of amino group from tryphtophan to IPS, which is catalyzed by aromatic
aminotransferases and then to IAA in methylotrophic bacteria. The enzyme amino-
transferase activity was observed and identified in several methylotrophic bacteria
(Ivanova et al. 2001).

The genes responsible for enzymes such as amine oxidase, aldehyde dehydro-
gense, N-acyl transferase and amidase were related to auxins biosynthesis and iden-
tified in methylotrophic bacteria (Kwak 2014; Madhaiyan et al. 2006c; Tani et al.
2012). Schauer and Kutschera (2011) reported a novel Methylobacterium funariae
produced phytohormone like auxin and cytokinin were isolated from phyllosphere
region of common mosses. In phyllosphere region, inoculation with Methylobac-
terium produced phytohormone IAA, which indirectly alter IAA concentrations in
the plant and stimulate the plant growth (Lee et al. 2006). Pink-pigmented faculta-
tive bacteria were widely distributed and colonize in the phyllosphere of medicinal,
agricultural crops and wild plants in Ukraine region (Romanovskaya et al. 1998).
Lee et al. (2004) reported phytohormone IAA from methylotrophic isolates such
as Methylotrophic extorquens and Methylotrophic fujisawaense isolated from the
phyllosphere region of rice.

8.7.1 Production of Phytohormones by PPFM

Anitha (2010) reported Pink Pigmented Facultative Methylotrophic bacteria
(PPFMs) was isolated from phyllosphere of soybean and groundnut producing phy-
tohormone IAA and enhance plant growth. Keerthi et al. (2015) reported PPFM
were used as biofertilizers in green grams isolated from phyllosphere environment.
Tani et al. (2015) reported methylotrophic sp. producing both IAA and cytokinin
associated with red pepper. Cytokinins are plant growth hormones, which regulate
many physiological processes in plants such as to stimulate plant cell division, acti-
vate dormant buds, remove apical domination and induce seed germination. Ivanova
et al. (2000) reportedM. mosophilicum isolated from phyllosphere of rye grass lium
perennewere able to synthesize cytokinins using biotest with theAmaranthus canda-
tus L. seedlings. Holland (1997) reported application of exogenous methanol to the
host plant, which stimulates the growth of PPFM bacteria by producing phytohor-
mone cytokinins. In addition to the cytokinin PPFM bacteria isolated from different
crops like soybean, barley,maize andArabidopsis plant contain phytohormone zeatin
and zeatin rhiboside (Long et al. 1996). The presence of phytohormone cytokinins
and zeatin in the culture liquids of methylotropic bacteria is confirmed through chro-
motagraphic and enzyme immuno assay analysis (Ivanova et al. 2000). Epiphytic
pink-pigmented methylotrophic bacteria produce cytokinin, stimulate germination
and growth of wheat (Triticum aestivum) seedling was reported Meena et al. (2012).
Phytohormone production bymethylotrophic bacteria associatedwith different crops
(Table 8.1).
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Table 8.1 Phytohormone production by methylotrophic bacteria associated with different crops

Crop plants Crop associated
Methylotrophs

Biofertilizer/Phytohormones
production

References

Groundnut Pink-pigmented
facultative
methylotroph

IAA production Anitha (2010)

Green Gram Pink-pigmented
facultative
methylotroph

Biofertilizer Keerthi et al.
(2015)

Soybean Pink-pigmented
facultative
methylotroph

IAA production Anitha 2010)

Red Pepper Methylobacterium sp. IAA and cytokinin
production

Tani et al. (2015)

Rice Methylobacterium
extorquens,
Methylobacterium
fujisawaense

IAA production Lee et al. (2004)

Wheat Methylobacterium sp. Cytokinin production Meena et al.
(2012)

8.8 PPFM as Biofertilizers

The spraying of PPFM on plants with 20% methanol leads to twofold increase in
the PPFM population and increase in soybean plants, when compared to control
plants (Nishio et al. 1977; Kumar et al. 2019a; Yadav et al. 2018a, b). Jayajyothi
et al. (2014) reported foliar spray of pink-pigmented methylotrophic bacteria and
Pseudomonas strains, in addition with biofertilizer enhance the microbial population
and increase the nutrient uptake to the plants. Abd El Gawad et al. (2015) studied
and reported enhanced growth, antioxidant activities and increased yield in snap
bean crops based in field experiments in different seasons using PPFM bacterial
isolates. Foliar spray or irrigation of PPFM bacteria along with methanol, ethanol or
even both showed improvement in plant growth of cotton, sugarcane and strawberry
plants (Madhaiyan et al. 2005; Yavarpanah et al. 2015). Ivanova et al. (2001) reported
application of methanol spray on leaf surfaces to promote the growth of plants by
producing phytohormones like cytokinin and auxin by PPFM bacteria. Madhaiyan
et al. (2006a, b) investigated and reported higher yields of sugarcane (Saccharum
officinarum L.), cotton (Gossypium hirsutum L.) were observed through foliar spray
of PPFM along with methanol, which increases phytohormone production. Chauhan
et al. (2010) also reported that the application of fertilizers with PPFM as foliar
spray leads to higher crop yields. ICAR (2013) advocated application of PPFMs as
biofertilizers can protect crops from drought stress conditions.
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8.9 PPFM in the Nitrogen Metabolism

Nitrogen is considered as one of the essential nutrients required for plant growth,
but the availability of nitrogen from the atmosphere was limited for the metabolism
of plants (Kour et al. 2019a, b). In nitrogen fixation, the conversion of atmospheric
nitrogen into ammonia takes place for the nutrient availability to the plants. The
nitrogenase enzyme was involved in the biological reduction of nitrogen to ammonia
whichwas carried out by a few prokaryotic organisms (Menna et al. 2006). PPFM are
involved in the nitrogen metabolism of colonized plants indirectly. Soybean plants
have several urease isoenzymes: the Eu1 urease located in beans, the Eu4 urease
located in all plant tissues and the Eu2 and Eu3 ureases, which are necessary for
the normal urease activity of soybean plants. In the soybean plants with the mutant
eu3-e1/eu3-e1 gene, urea was accumulated in the plant tissues because of impaired
urease activity. The colonization of such plants by PPFM did not restore their urease
activity. At the same time, the colonization of the double eu1-sun/eu1-sun, eu4/eu4
soybean mutants by PPFM led to the restoration of their urease activity to a level of
20–40% of that of the wildtype plants, due to the PPFM urease (Holland and Polacco
1992).

8.10 PPFM as Bio-inoculants and Co-inoculants

Meena et al. (2012) reported application of methylotrophs as bio-inoculants for seed
coating or as seed inoculation enhances seed germination.Methylotrophs are capable
of promoting plant growth with different groups of bacteria as co-inoculants, which
results in higher yield in pot and crop field conditions Poonguzhali et al. (2008).
Meena et al. (2012) suggested development of bio-inoculants and co-inoculation
of methylotrophic bacteria results in increased production of cytokinins and higher
crop yield. Meenakshi and Savalgi (2009) reported co-inoculation of methylotrophs
with B. japonicum as foliar spray consequences raise in number of nodules, when
compared to seeds with single B. japonicum as control. In addition, foliar spray of
bio-inoculants withmethylotrophs leads to increase in chlorophyll content to the host
plants. Nalayani et al. 2014 reported foliar application of different types of microbial
consortia strains Pseudomonas, Bacillus and Azospirillum with PPFM results in
higher yield of cotton plants.

8.11 PPFM in Abiotic Stress Tolerance

The phyllosphere methylobacteria are highly resistant to UV dehydration, freezing
on hygroscopic carriers and ionizing radiation and elevated temperatures. The phyl-
losphere epiphytic methylotrophic PPFM may remain viable after UV irradiation
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with higher doses that are lethal to bacterial strains like Pseudomonas, Enterococci
andMethanotrophs (Romanovskaya et al. 1998; Yadav et al. 2017a, b, d; Yadav and
Saxena 2018). Plants can regulate phytohormones production during unfavourable
conditions and in stressed environments to overcome from biotic or abiotic stresses
(Salamone et al. 2005). Ethylene is a plant growth hormone essential for plants,
which is produced during various physiological changes in plants and endogenously
by plants (Khalid et al. 2006). Saleem et al. (2007) reported earlier ethylene as a plant
growth regulator and identified as a stress-related hormone. Saleem et al. (2007) also
reported the production of ethylene during unfavourable conditions or stress condi-
tions, the invivo accumulation of ethylene is drastically increased, which negatively
alters the overall growth of plant. The overall increased concentration of ethylene
may lead to reduced performance of the crop.

Ethylene is a stress associated hormone related to auxin biosynthetic pathway
and an increased level of ethylene in plants leads to deleterious effects like plant
growth, accelerating abscission, ageing, inhibiting root elongation and senescence. In
ethylene biosynthetic pathway, aminocyclopropane-1-carboxylic acid (ACC) is the
precursor of the ethylene hormone converted from S-adenosylmethionine (SAM)
and to ethylene by ACC synthase (ACS) and ACC oxidase (ACO), enzymes that
are transcriptionally regulated separately by both biotic and abiotic factors. ICAR
et al. (2013) reported the beneficial application of Methylobacterium (PPFMs)
as biofertilizer helps the crops to protect and overcome crops drought stress
and during high-temperature conditions. PPFMs synthesize phytohormones,
1-aminocyclopropane-1-carboxylate (ACC) to overcome abiotic stress conditions
by utilizing methanol produced from plant leaves as a source of carbon and energy
(ICAR 2013).

Plant growth-promoting methylotrophic bacteria produce the enzyme
1-aminocyclopropane-1-carboxylate (ACC) deaminase, which indirectly stim-
ulate growth by decreasing ethylene concentrations in plants (Glick 1995).
Chinnadurai et al. (2009) revealed that phyllosphere methylobacteria distributed in
the rice leaves produce the enzyme ACC deaminase, which control the ethylene
concentrations level in the rice plant. In earlier investigations, Methylobacterium
strains were identified and reported to have ACC deaminase activity and tested for
their potential in plant growth-promoting traits in various crops. Methylobacterium
spp. are not phytopathogenic in nature which help in plant growth promotion
by decreasing environmental stress, immobilizing heavy metals, degrading toxic
organic compounds and even inhibiting plant pathogens. Methylobacterium spp
able to synthesize polymer degrading pectinase and cellulase, suggesting that they
can indirectly induce systemic resistance during plant colonization.
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8.12 Conclusion and Future Prospects

PPFMs isolates and other methylotrophs improve plant growth by controlling or by
inhibiting phytopathogens. PPFMs inhibit several phytopathogens including Fusar-
ium oxysporum, Sclerotium rolfsii, Colletotrichum capsici, Xanthomonas campestris
and Cercospora capsici and serve as biocontrol agents. Methylotrophs are widely
used as bio-inoculants as a foliar spray on plants and serve as an alternative to chem-
ical fertilizers to enhance crop yield. The application of methylotrophs as foliar
spray regulates plant growth directly or indirectly. Methylotrophs regulate and play
a key role in biogeochemical cycle of soil ecosystem, making the soil more suitable
for higher crop yield. In addition, several characteristic features of methylotrophs
like nitrogen fixation, phytohormone production, nodulation and nutrient acquisi-
tion as a promising substitute for synthetic or chemical fertilizers. In conclusion,
methylotrophic bacteria serve as an alternative of biological control, plant growth
promotion by nitrogen fixation, phosphate solubilization, phytohormone production
and ACC deaminase production, along with balanced carbon cycling. Beneficial
methylotrophic can be used for effective organic farming in sustainable agriculture
in the future.
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Chapter 9
Potassium Solubilizing Microbes:
Diversity, Ecological Significances
and Biotechnological Applications

Dheeraj Pandey, Harbans Kaur Kehri, Ifra Zoomi, Uma Singh,
Kanhaiya L. Chaudhri and Ovaid Akhtar

Abstract Potassium (K) is seventh abundant element on earth and considered as
third most significant macronutrient after nitrogen and phosphorus for plants. K
plays an important role in metabolism, activation of enzyme, osmoregulation, bal-
ancing of charge and preventing unnecessary water loss, and regulating the stomatal
movement in plants. The deficiency of K results in poor growth and development
which intensely related to crop yield and resistance to disease. In soils, the fixation of
K is comparatively fast; however, its release is a slow process. Many potassium solu-
bilizing microbes (KSMs), such as fungi, bacteria and some arbuscular mycorrhizal
(AM) fungi assist in mobilization of K from soil/mineral to plants. Microbes secrete
various organic acids, which release K from the minerals and make it bioavailable
to the plants. Fixation of K in soil, its uptake by the plant and leaching reduce the
availability of K content in the soils. Application of microbial inoculants improve the
growth and yield by converting the K in available form. KSMs work as biofertilizer
in agriculture; improve the productivity, nutrient availability and reduce the use of
agrochemicals in an economic, eco-friendly and sustainable manner. Future studies
should focus on isolation and inoculation of indigenous K solubilizers to the plants
from different environmental conditions such as cold, drought, nutrient-deficient
soils, etc., to improve the availability of K for plants.

Keywords Potassium (K) · Potassium fertilizers · Potassium solubilizing microbes
(KSMs) · AM fungi · Quality nutrient · Biofertilizer · H+-ATPase · K cycling

9.1 Introduction

Potassium (K), with atomic number 19, is situated in alkali metal group with density
0.862 grams per cubic centimetre. It is a soft and silvery-white metal which rapidly
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reacts with oxygen and forms dull-white potassium peroxides. K has single valence
electron which is easily ionized as K+. In 1807, Sir Humphry Davy was first isolated
K from plant ashes (caustic potash) by electrolysis method (Thomas et al. 2008).
K is seventh abundant element on earth which comprises 2.4% of the earth crust
(NCBI Pubchem, 2019) and never found as elemental form in nature because of its
very reactive nature. K comprises with different compounds to form ores such as
langbeinite (K2Mg2 (SO4)3), carnallite (KCl·MgCl2·6H2O), polyhalite (K2Ca2Mg
(SO4)4·2H2O) and sylvite (KCl). There are many substitutes of K such as Potassium
chloride (KCl) utilized as fertilizers, Potassium hydroxide (KOH) utilized in soaps,
detergents anddrain cleaners, Potassiumcarbonate (KHCO3), also knownaspearl ash
and Potassium nitrate (KNO3) or saltpeter/saltpetre or nitre, utilized in fertilizers etc.
K is thirdmost significant macronutrient after nitrogen and phosphorus, which is also
considered as the “quality nutrient”. K is indispensable macronutrient for plant and is
required in large quantity after N and P for proper growth and development. It plays
a key role in metabolism and activates important enzymes, osmotic regulation and
charge balance in plants. The deficiency of K results in poor growth and development
which intensely related to crop yield and resistance to disease (Ahmad et al. 2016;
White and Karley 2010; Armengaud et al. 2010).

K exists in soils in different forms of minerals such as mica, orthoclase and also
found in seawater. The rock trapped K are nonexchangeable, whereas exchangeable
K in ionic form (K+) held in soil colloids, which is available to the plant. In present
scenario where agricultural lands are decreasing rapidly and instance agriculture is
in practice that requires important chemical fertilizers including K fertilizers (Zhang
et al. 2013). These chemical fertilizers not only increase cost input but also making
the soil barren day by day. Because of the limited resources, increasing world popu-
lation, urbanization and salinization are alarming for challenge of quality feeding in
upcoming future.

About 98% of the total K present in soil is unavailable (Mengel and Kirkby
2001). Available K is also slowly solubilizing (Ahmad et al. 2016) by soil microbes
such as bacteria, actinomycetes, fungi, AM fungi, etc., and these microbes have
developed different modes for energy and nutrients. Some of them inhabit in
rhizospheric soil of growing plants. This plant–microbe interaction provides a solu-
tion for sustainable agriculture and helps to increase agricultural productivity in
sustainable manner. There are many bacteria (K solubilizing bacteria) and fungi (K
solubilizing fungi) solubilize K with their enzymatic activities. The microbes make
the K available to plants. Bacteria release acids for the solubilization of K minerals,
and these microbes become very important in plant rhizosphere. Such bacteria also
act as plant growth promoter and in plant pathogens protection (Zoomi et al. 2017).
Some soil fungi, e.g. Aspergillus sp., Fomitopsis meliae, etc. (Anjanadevi et al. 2016;
Kasana et al. 2017) are capable to solubilize K and make them available. In the rhi-
zosphere, AM fungi symbiosis with plant roots becomes very beneficial for their
growth and development (Pandey et al. 2019). These microbes solubilize different
minerals such as phosphorus (P), nitrogen (N), K, etc. There are a number of studies
about the role of AM fungi in K uptake (Garcia and Zimmermann 2014; Perner et al.
2007; Veresoglou et al. 2011). AM fungi solubilize K, store and transport to plant
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Fig. 9.1 Potassium (K) as a plant nutrient, importance and role of potassium solubilizing microbes
(KSMs) in its mineral cycling

(Fig. 9.1). AM fungi accumulate K in different fungal structures like hyphae, vesicles
and spores (Johansson and Campbell 1988). Vast applications of chemical fertilizers
adversely affect not only the environment and soil but also our economy. There is a
need to promote sustainable agriculture and application of beneficial native microbes
in modern agriculture.

9.2 Potassium in Soils

9.2.1 Potassium Availability

Insoluble K constitutes about 90–98% in soil. Its concentration varies from 0.04 to
3.0% of total lithospheric K minerals (Mengel and Kirkby 2001; Sparks and Huang
1985). Type of soil and mineral constituents greatly influence the process of release
and fixation of K (Braunschweigh 1980). So far to fulfil the requirements of crops,
farmers applied synthetic K fertilizers but most of this is fixed with other elements
and become inaccessible to crops (Prajapati et al. 2013). Hence, K fertilizer is applied
on regular basis, but K unavailability to plants is continued for upcoming crops (Kang
et al. 2002). So that unavailable K increases in large amount in soil. This condition
interfereswith soil physiology and ecology. To overcome this problem, there is a need
for enhancement of K cycling soil microbes. K deficiency occurs in agricultural land
of 75% of the paddy soils of China, 66% of the wheat belt of Southern Australia



266 D. Pandey et al.

and 21% Indian soils (Hasan 2002; Meena et al. 2014a, 2016). In the year 2009–
10, Indian farmers applied 42.38 lakh tonnes of muriate of potash fertilizer, and the
demand by 2020 would be 9.52 metric tonnes (Kinekar 2011; Pathak et al. 2010).

9.2.2 Fixation of Potassium in Soil

Minerals found in the soil can also fix K and considerably affects the K availability.
K fixation in soil comprises the adsorption of K+ onto weathered sheet of montmo-
rillonite, illite and vermiculite (silicate). Additionally, fixation of K in soils depends
on the clay mineral, wetness, opposite ions, pH of the soil and K concentration in
soil solution (Schneider et al. 2013). It has also been observed by Oborn et al. (2005)
that fixation of K is comparatively fast; however, its release is a slow process. It has
been reported by several author that organic acids play a crucial role in the release of
fixed K from the clay minerals. Hence, management of the soil pH may be a mean
of improving the release of K.

9.3 Role of Potassium

9.3.1 Function of Potassium as a Nutrient

K is very important macronutrient for plants (Hafsi et al. 2014). In plants, it is very
important for physiological and biochemical functions (Zhang andKong 2014). K+ is
absorbed fromdissolved soil solution, clay and organic colloids by roots; translocated
inside the plants through the xylem and phloem; and then converted into complex
compounds (Zandonadi et al. 2010). K is highly mobile macronutrient and has very
significant role in regulation of water status in plant cells. K+ prevents unnecessary
water loss and regulates the activity of stomatal cells. It promotes water absorp-
tion, maintains osmotic pressor and turgor in cells, and regulates stomatal movement
(Meena et al. 2016). K is an important part for the development of chlorophyll and
process of photosynthesis such as reduction of CO2 into carbohydrate (White and
Karley 2010). K does not play structural role but help in production of carbohydrate
and its translocation in different sites of growth, development and storage and asso-
ciated with sugar and starch accumulation (Cakmak 2005); however, it plays impor-
tant roles in cellular organization and membrane permeability, which are important
aspects for keeping the appropriate protoplasm hydration. K is transported through
K+ channels, maintains membrane transport and helps in the regulation of 60 dif-
ferent stress enzymes (Meena et al. 2016). K activates necessary enzymes essential
for the ATP production as a source of energy, and it is also important in activation
of essential enzymes of protein metabolism, amino acid synthesis, progress of cell
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division and growth-related enzymes of plants, which is also associated with disease
resistance against bacteria and fungi.

9.3.2 Potassium Deficiency

Deficiency of K is associated with decrease in crop and food production called
hidden hunger. In initial phase, deficiency does not show any specific symptoms.
In scarce condition, the K is relocated from older leaves to new growing leaves.
Hence, the deficiency symptoms of K appear in older leaves, beginning from tip
to base. Leaves start yellowing and eventually develop necrosis at the border of the
leaves.Kdeficiency reduces the strength, slowsdown the photosynthesis, shortens the
internodes, slows down the photosynthate transport and reduces the resistance toward
the diseases in plants (Meena et al. 2016) (Fig. 9.1). Blackening of potato tubers and
margin of older leaves in cotton, maize, legumes and tobacco is due to K deficiency
(Ashley et al. 2005). The accessibility of K in the soil influences root morphology
(Thaler and Pages 1998). K-efficient rice had developed better roots as compared to
the rice grown under deficient K condition (Yang et al. 2003). Hordeum maritimum
and Catapodium rigidum increase their root length and root surface for uptake of
more K (Hafsi et al. 2011). Lateral root number and growth was reduced in barley
(Drew 1975) and Arabidopsis thaliana (Shin and Schachtman 2004) when raised
under low K condition. K deficiency stress affects the dry mass partitioning in root
and shoot. This may vary with species and culture conditions (Andrews et al. 1999).
There are many studies regarding root shoot dry weight which reported increment
in dry weight in Brassica oleracea (Singh and Blanke 2000), H. maritimum (Hafsi
et al. 2011) and Triticum aestivum (Andrews et al. 1999).

9.4 Mechanism of K+ Uptake and Regulation in Plant

In plants, there are various K transport mechanisms, which have important role in
K absorption and its relocation (Véry and Sentenac 2003). K absorption is done by
H+-ATPase pump and different K+ transporter proteins channels of cellular mem-
brane (Hafsi et al. 2014). Absorption of K+ nutrient is connected with net K+ influx
and low pH (Minjian et al. 2007; Chen and Gabelman 2000). Chen et al. (2008)
identified 71 K+ transporters and channels. K+ and Na+ transport system named
high-affinity K+ transporter 1 (HKT1) was reported in Triticum aestivum and cloned
for the first time by Schachtman and Schroeder (1994). TheHKT1was also identified
in Eucalyptus camaldulensis by Fairbairn et al. (2000). High-affinity K+ transporter
5 (AtHAK5) and K+ channel arabidopsis K+ transporter 1 (AtAKT1) are two K+

transporter system identified in Arabidopsis (Gierth et al. 2005; Pyo et al. 2010).
In plant, K+ channel is Shaker-type efflux channel, outward-rectifying K+ channel
(SKOR) type which is associated with K+ transporter from root to xylem. Lack of
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this SKORK+ channel affects the plant shoot biomass production. SKOR mutant
Arabidopsis thaliana showed fifty percent decrease in shoot K+; however, root K+

content was not changed (Gaymard et al. 1998). Another Shaker-type efflux channel
AKT2 is also found in phloem which is associated with recirculation of K+ (Chérel
et al. 2002; Gajdanowicz et al. 2011). KAT1 and KAT2 are inward-directed channels
in guard cell that facilitate K+ uptake (Schachtman et al. 1992; Pilot et al. 2001) while
GORK is outward-directed K+ channel associated with releasing K+ from guard cell
during stomatal movement regulation (Hosy et al. 2003). Many studies at the level of
transcriptome and genetic analysis in rice have observed several genes of transporter
families, which have significant roles in responses to K+ deficit (Ma et al. 2012). Ma
et al. (2012) identified three families of OsHAK genes in an up-regulation to increase
K+ uptake by increasing genes expression encoding K+ transporters during K+ defi-
ciency. Buschmann et al. (2000) also identified TaAKT1 gene in Triticum aestivum
in K deficient condition. Transcription level K regulating factors are also identified,
which bind to transport promoter and activate the expression genes such as DDF2,
JLO, bHLH121 and TFII-A involved in upregulating with HAK5 promoter (Hong
et al. 2013). Du et al. (2019) investigated the role of transcription factor MYB59 in
Arabidopsis, which regulates NRT1.5/NPF7.3 transporter in K deficit conditions.

9.5 Microbes-Mediated Potassium Solubilization

Different groups of soil microflora are reported which solubilize inaccessible fixed
form of K to soluble and make them available to the plants. The potent K solubilizers
microbial inoculants enhanced the plant growth and development, which increases
the crop yields in eco-friendly way (Meena et al. 2016). Muentz (1890) was first
reported the microbial role in rock K solubilization. In present scenario, there are
manymicrobes discovered with K solubilizing potency, andmany researches are still
going on for their application at large scale. Many potassium solubilizing microbes
(KSMs) are discovered till date. Several fungi, bacteria, actinomycetes and someAM
fungi (especially rhizosphericmicrobes) assist inmobilization ofK from soil/mineral
to plants (Gundala et al. 2013; Verma et al. 2015, 2016a, b). KSMmay differ in num-
ber and species from soil to soil. Some microbes reported for solubilizing K from
silicate mineral (Sheng et al. 2002) such as B. mucilaginosus sub spp. siliceous can
solubilize K from aluminosilicates and feldspar (Aleksandrov et al. 1967; Groudev
1987; Gundala et al. 2013). Various bacterial genera such as Bacillus, Enterobacter,
Acidithiobacillus, Pseudomonas, Burkholderia, Paenibacillus, Cladosporium and
Arthrobacter are reported for K solubilizing (Muralikannan 1996; Wu et al. 2005;
Sheng 2005; Liu et al. 2012; Singh et al. 2010;Meena et al. 2016). Bacillus mucilagi-
nosus strain CS1 is reported as solubilizer of silicate from both rhizospheric and
non-rhizospheric soil (Lin et al. 2002; Liu 2001). Mikhailouskaya and Tcherhysh
(2005) also isolated the above bacteria from K and silicate-amended soil. AM fungi
can increase the solubility of K by the mechanism in which they secrete different
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organic acids and protons. K solubilization and uptake depends on the soil envi-
ronment as well as nature of plant and other growth conditions (Clark and Zeto
2000). Aspergillus terreus and Aspergillus niger were reported for K solubilization
from feldspar and potassium aluminium silicate sources (Prajapati and Modi 2012).
Sangeeth et al. (2012) reported the role of Penicillium sp. in K solubilization from
rocks and minerals. KSMs enhanced germination rate, seedling vigour, plant growth
and their production (Sangeeth et al. 2012). Similar results were also obtained from
some horticultural plants, vegetables and cereals with KSMs (Singh et al. 2010;
Prajapati et al. 2013). Under the field test, Xie (1998) concluded that KSMs appli-
cation in maize, wheat, sudan grass and forage crop significantly reduced the need
of chemical fertilizers.

9.6 Diversity of Potassium Solubilizing Microorganisms

The various groups ofKSMs including fungi and bacteria have been recoveredminer-
als rocks, soils, industrial area and rhizosphere of a number of plants. These microor-
ganisms have central role in ecosystem functioning and could be utilized as a bioinoc-
ulants (Kour et al. 2019a, b, c; Yadav et al. 2019a). These beneficial microorganisms
have been cultured from rhizosphere of cotton (Sheng and He 2006), potato–soybean
cropping sequence (Biswas 2011), rice (Muralikannan 1996), common bean (Kumar
et al. 2012), peanut and sesame (Youssef et al. 2010), black pepper (Sangeeth et al.
2012), sugarcane (Rosa- Magri et al. 2012) rhizospheric soil of different other plants
(Zhao et al. 2008; Zhang and Kong 2014;Meena et al. 2014b; Kumar et al. 2015) and
from diverse extreme environments (Yadav et al. 2015a, b, c; Yadav et al. 2016). Diep
and Hieu (2013) isolated 20 KSB strains from soils/weathered rocks. The microor-
ganisms were also isolated from ceramic industry soil (Prajapati and Modi 2012)
and mica core (Gundala et al. 2013). Leaungvutiviroj et al. (2010) isolated these
organisms from rhizospheric soil in Thailand and were capable to release K. Based
on the above data, it could be concluded that most of the KSMs belong to the bacteria
domain.

9.6.1 Bacteria

KSB has been isolated from various habitats including plant microbiomes (Yadav
2017a, b; Yadav et al. 2017b) as well as microbiomes of extreme habitats (Yadav
2019a, b; Yadav and Yadav 2018). Raj (2004) isolated Bacillus sp. from the granite
crusher yard, Hu et al. (2006) isolated Bacillus mucilaginosus from Tianmu moun-
tain, Prajapati and Modi (2012) isolated Enterobacter hormaechei from ceramic
industry soil, Syed and Patel (2014) isolatedPseudomonas spp. andBacillus sp. from
loamy sand soil, and Diep and Hieu (2013) isolated Bacillus megaterium and Bacil-
lus coagulans from soils/weathered rocks. Potassium solubilizing bacteria (KSB)
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reported to improve the morphogenesis in plants (Lian et al. 2002; Singh et al.
2010). Several bacterial genera such as Bacillus, Enterobacter, Pseudomonas and
Azotobacter were also reported to provide benefit to the plant (Kloepper et al. 1991;
Han and Lee 2005; Singh et al. 2010). Sangeeth et al. (2012) reported to enhanced
K uptake and biomass in inoculated black pepper. Similarly, Valencia orange trees
inoculated with Bacillus circulans considerably enhanced K uptake, fruit biomass
and yield (Shaaban et al. 2012). Yield of tomato plant was reported to improve when
inoculated with Pseudomonas sp. (Lynn et al. 2013). Maize plant inoculated with
B. megaterium, B. mucilaginosus and A. chroococcum improved K uptake along
with nitrogen and phosphorus and growth of the plant (Wu et al. 2005). Furthermore,
KSB also shows resistance towards various stresses such as chilling drought stress
(Cakmak 2005; Ramarethinam andChandra 2006). KSB belongs to different phylum
including actinobacteria, firmicutes, proteobacteria and bacteroidetes (Kumar et al.
2019; Rana et al. 2019c; Yadav et al. 2017a, 2019e; Yadav and Saxena 2018).

9.6.2 Fungi

Fungi play paramount role in the release of mineral such as phosphates, silicate
(Banfield et al. 1999) and carbonate (Verrecchia and Dumont 1996). Additionally,
numerous studies have also been concluded the roles of fungi in releasing the K
from minerals (Wallander and Wickman 1999; Yuan et al. 2000, 2004; Glowa et al.
2003; Yadav 2018; Yadav et al. 2019b, c, d). According to Lopes-Assad et al. (2010),
filamentous saprophytic fungi of the genera Aspergillus, Penicillium and Fusarium
are well-recognized K solubilizers. Several fungi, e.g. Aspergillus fumigatus (Lian
et al. 2008), Aspergillus niger (Prajapati andModi 2012), Penicillium spp. (Sangeeth
et al. 2012),Aspergillus spp. andAspergillus terreus (Prajapati et al. 2013), have been
reported to mobilize organic and inorganic K and enhance the release of K from
minerals and rock. Potassium solubilizing fungi (KSF) enhanced the biomass, yield
and nutrient uptake in plants (Badr et al. 2006). Utilization of these beneficial fungi
can be an emerging aspect concerning the sustainable development in the preparation
of biofertilizer (Priyadharsini andMuthukumar 2016;Raghavendra et al. 2016;Yadav
and Sidhu 2016).

Arbuscular mycorrhizal (AM) fungi belonging to the phylum Glomeromycota
(Kehri, et al. 2018a) form mutualistic symbiotic association with roots of the plants
and are ubiquitous in distribution (natural and agroecosystems) (Kehri et al. 2018b;
Akhtar et al. 2019). These fungi provide several benefits to the plant including nutri-
tion and increased the tolerance of plant towards various stresses. AM symbiosis can
positively affect the plant growth by solubilizing fixed form of minerals (Verma et al.
2017a, b; Yadav et al. 2018a, b, c, d). AM fungi produce structures such as vesicles,
spores, intra- and intercellular hyphae, auxiliary cells and extraradical mycelium
(Kehri et al. 2018a). Particle-induced X-ray emission (PIXE) experiments including
the Rhizophagus intraradices suggested that AM fungi accumulated K in hyphae,
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vesicles and spores (Olsson et al. 2008, 2011). Moreover, Casieri et al. (2013) iden-
tified four sequences in Rhizophagus irregularis in which three sequence coding for
Shaker-like channels and one for KT/KUP/HAK transporter are reported to involve
in K+ transport from an ETS library.

9.7 Mechanism of Potassium Solubilization

There are various mechanisms used by KSB to release the K from the minerals.
These bacteria produced low molecular weight organic acids which decrease the
pH (Goldstein 1994) and produce the chelated compounds that form complexes
with K, thereby enhancing the availability to the plant (Uroz et al. 2009; Keshavarz
et al. 2013; Parmar and Sindhu 2013). The production of different types of organic
acids is the foremost mechanism used by the bacteria to release the K from the
minerals and make it bioavailable to the plant (Sheng et al. 2003). There are various
types of organic acids produced by the bacteria such as propionic acid, lactic acid,
2-ketogluconic acid, citric acid, tartaric acid, acetic acid, oxalic acid, glycolic acid,
succinic acid, malonic acid and fumaric acid (Table 9.1) (Wu et al. 2005; Sheng and
He 2006). The production of organic acids decreases the pH (acidification) of soil
thereby solubilizing K (Keshavarz et al. 2013; Parmar and Sindhu 2013). Römheld
and Kirkby (2010) also reported that the bacterial-mediated acidification stimulates
the productionof chelates that ultimately enhance the cropgrowth andproductivity. In
addition to this, KSBalso known to solubilize theKby the production of siderophores
and lipo-chitooligosaccharides (Calvaruso et al. 2006).

Fungi adopt several mechanisms to solubilize K from minerals, thereby making
it bioavailable to the plant. The known and the potential mechanisms used by fungi
to solubilize the K comprise the production of organic acids (gluconic, oxalic and
citric acid), protons and chelating agents such as siderophores and organic ligands.
Lian et al. (2008) have been reported that Cladosporium, Aspergillus and Penicil-
lium spp. excrete large quantity of citric, gluconic and oxalic acids that solubilize the
silicates, mica and feldspar. Lian et al. (2007) also reported that Aspergillus fumiga-
tus improved K solubilization when inoculated onto minerals containing K. Besides
this, fungi also apply direct biophysical forces that can break the K mineral, thereby
reducing the particle sizes (Xiaoxi et al. 2012). Fungi decrease soil pH and enhance
the K solubilization in the soil. Lopes-Assad et al. (2006) studied the K solubilizing
capacity of two strains of Aspergillus niger (CCT4355 and CCT911) and found that
the studied fungi significantly decreased the pH of the soil. Similar to this finding,
Rosa-Magri et al. (2012) found that the acids released by Torulaspora globosa sol-
ubilized the alkaline ultramafic rock and solubilized K in the medium within two
weeks. Some of the PSF has been listed in Table 9.1.

There are very few reports on themechanisms ofAM fungi for K solubilizing. AM
fungi do so by redox redaction, acidification, complexation and metal accumulation
(Burgstaller and Schinner 1993; Adeleke et al. 2010). Most of these mechanisms are
related to production of various low molecular weight organic acids (oxalate, malate
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Table 9.1 Mechanism of potassium solubilizing microorganisms

Microorganisms Mechanisms References

Bacteria

Sphingomonas, Burkholderia Acidification, complexation Uroz et al. (2007)

Pseudomonas spp. Tartaric, citric acids Krishnamurthy (1989)

Bacillus circulans GY92 Lipo-chitooligosaccharides
production

Lian et al. (2001)

Bacillus glathei Siderophores, organic ligands Calvaruso et al. (2006)

E. hormaechei Organic acids Prajapati et al. (2013)

Pseudomonas spp. Organic acids Sheng and Huang (2002)

Pseudomonas aeruginosa Acetate, citrate, oxalate Sheng et al. (2003), Badr
et al. (2006)

Paenibacillus mucilaginosus Tartaric, citric, oxalic acids Liu et al. (2012), Hu et al.
(2006)

Bacillus mucilaginosus Organic acids Han and Supanjani (2006)

Fungi

Penicillium frequentans,
Cladosporium

Oxalic, citric, gluconic acids Argelis et al. (1993)

Aspergillus niger, Penicillium
sp.

Citric, glycolic, succinic
acids

Sperberg (1958)

Aspergillus fumigatus,
Aspergillus candidus

Oxalic, tartaric, citric, oxalic
acids

Banik and Dey (1982)

Aspergillus fumigatus Acidification Lian et al. (2007)

AM fungi

Arbuscular mycorrhiza Released protons (H+) or
CO2 and many different
types of organic acids or
compounds

Meena et al. (2014b)

and citrate) and ligands (Burgstaller and Schinner 1993; Jain and Sharma 2004). AM
fungi can increase the solubility of K from minerals by discharging protons, H+ or
CO2. Some of the mechanism of AM fungi has been listed in Table 9.1.

9.8 Role of Potassium Solubilizers in Sustainable
Agriculture

Fixation of K in soil, its uptake by the plant and leaching reduced the availability
of K in the soils (Sheng and Huang 2002). Application of microbial inoculants
improved the growth and yield by releasing fix form of K from the soil (Rana et al.
2019a, b). It has been reported that crops inoculated with K solubilizers enhanced
the productivity of crops (Yadav et al. 2017c, d; Yadav and Yadav 2019) (Table 9.2)
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Table 9.2 Effect of potassium solubilizing microorganisms on the crops

Microbes Crops Effect on crops References

Bacillus sp. Wheat Increased yield and
disease resistances

Kloepper et al.
(1991)

Paenibacillus
glucanolyticus

Black pepper Enhanced potassium
uptake and dry
weight

Sangeeth et al. (2012)

Bacillus
mucilaginosus
KCTC 3870

Eggplant Increased P and K
uptake

Han and Lee (2005)

Pseudomonas putida
and P. fluorescens

Lettuce/tomato Increased root and
shoot growth

Hall et al. (1996),
Glick et al. (1997)

Pseudomonas putida Tea Theaflavin,
thearubigin, highly
polymerized
substances, total
liquor colour, were
improved

Bagyalakshmi et al.
(2012)

Bacillus circulans Valencia orange trees Inoculation
significantly
improved leaf K
content, fruit weight
and yield

Shaaban et al. (2012)

Azotobacter and
silicate bacteria

Cotton Yield Ciobanu (1961)

Bacillus pasteurii Peanut/sesame Significant increase
in K availability

Youssef et al. (2010)

Aspergillus and
Bacillus

Sorghum Increased dry matter
yield and uptake

Badr et al. (2006)

Bacillus edaphicus Cotton rape Growth, uptake Sheng (2005)

Azospirillum
chroococcum

Wheat Increased crop
productivity and
nutrient uptake

Kapulnik et al. (1985,
1987), Kloepper
et al. (1989, 1991)

Enterobacter
hormaechei,
Aspergillus terreus

Okra Increased root, shoot
growth and K uptake
in Okra

Prajapati et al. (2013)

AM fungi Switch grass Increased plant
height, root and shoot
weight, root length
and P, N contents

Clark et al. (1999)

Bacillus spp. Chilly Increased the uptake Supanjani et al.
(2006)

Frateuria aurantia Brinjal Improved the growth
and yield

Ramarethinam and
Chandra (2005)

(continued)
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Table 9.2 (continued)

Microbes Crops Effect on crops References

Bacillus spp. Rice Improved the yield Muralikannan (1996)

Bacillus spp. Rice Improved the yield Raj (2004)

Bacillus
mucilaginosus,
Azotobacter
chroococcum

Maize-wheat Improved growth and
yield

Singh et al. (2010)

Bacillus
mucilaginosus
MCRCp1

Groundnut Improved the growth
and yield

Sugumaran and
Janarthanam (2007)

Bacillus
mucilaginous

Sorghum Increased the uptake Basak and Biswas
(2009)

A. brasilense, A.
chorococcum,
Burkholderia
cepacia,
Rhizophagus clarus
and R. fasciculatus

Lycopersicon
esculentum

Increased the uptake
in shoot

Pulido et al. (2003)

Bacillus
mucilaginosus, B.
subtilis and
phosphate solubilizer
(Bacillus
megaterium)

Maize (Zea mays) Co-inoculation
increased the
availability and
uptake of P and K in
maize. The shoot and
root growth enhanced
significantly grown
on P- and K-limited
soils

Abou-el-Seoud and
Abdel-Megeed
(2012)

Glomus mosseae and
Glomus intraradices

Zea mays Enhanced K uptake
in plant

Wu et al. (2005)

Glomus etunicatum
and Glomus mosseae

Corn and wheat Enhanced the uptake
of K, Mg and Ca and
alleviated the
negative effects of
soil compaction

Miransari et al.
(2009a, b)

Glomus intraradices Lycopersicon
esculentum

Enhanced the
acquisition of K, Mg
and Ca.

Cimen et al. (2010)

Lin et al. (2002) reported considerable increase in the uptake of K and P in B.
mucilaginosus inoculated. Similar to this, Basak and Biswas (2009) and Meena
et al. (2015) reported that the inoculation of bacteria improved the biomass over
non-inoculated plants. Ramarethinam and Chandra (2006) reported that Frateuria
aurantia improved the crop yield. Additionally, these microorganisms also produce
vitamins, amino acids, auxins and gibberellic acids that improve the performance
of the plant (Ponmurugan and Gopi 2006). Ai-min et al. (2013) reported that the
enhancement of K also enhanced the enzymatic activities. In the same year, Prajapati
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et al. (2013) stated that inoculation of okra with Enterobacter hormaechei improved
the root and shoot length by K mobilizing.

Pindi and Satyanarayana (2012) concluded from their experiment that these
microorganisms could be used with other microorganisms such as Rhizobium,
Azospirillum, Azotobacter, PSM, etc. The plant growth was also reported to increase
by the co-inoculation of beneficial microorganisms. Singh et al. (2010) reported
that maize and wheat plants inoculated with Bacillus mucilaginosus, Azotobacter
chroococcum and Rhizobium show maximum K mobilization from waste mica and
sequentially translocate it to the plant, thereby improving the growth (Singh et al.
2010). A field study was conducted by Han et al. (2006) on cucumber and pepper
inoculated with Bacillus mucilaginosus, and the authors reported that inoculation of
B. mucilaginosus mobilized the K from minerals. Thus, application of KSMs as a
biofertilizer in agriculture improves the productivity, nutrient availability and reduces
the use of agrochemicals in an economic, eco-friendly and sustainablemanner (Sheng
et al. 2003; Sindhu et al. 2010).

AM fungi play a pivotal role in uptake of mineral nutrient (especially K) and its
subsequent translocation to the plants (Perner et al. 2007; Baslam et al. 2013). In the
year 1999, Clark et al. reported that, under AM fungi conditions, the acquisition of
K+ was enhanced more in switchgrass grown in acid soil as compared to calcium
and magnesium. Similar to this, Kaldorf et al. (1999) reported the acquisition of K+

in Zea mays roots inoculated with the Glomus Br1 isolate. Furthermore, Glomus
mosseae andGlomus intraradices enhanced K uptake by Zea mays (Wu et al. 2005).
Miransari et al. (2009a, b) studied the influence of Glomus etunicatum and Glomus
mosseae on nutrient uptake and concluded that AM fungi enhanced the uptake of
K, Mg and Ca and alleviated the negative effects of soil compaction on corn and
wheat. Study conducted on tomato (Lycopersicon esculentum L.) by Cimen et al.
(2010) reported that inoculation of Glomus intraradices enhanced the acquisition of
K, Mg and Ca. Similar study was conducted and reported that the fungus improved
the uptake of K, Ca and Mg in tomato plant (Meena et al. 2015b; Singh et al.
2015). Moreover, Zaefarian et al. (2011) studied the single and combined effects of
Glomus intraradices, Glomus etunicatum, Glomus mosseae, Glomus fasciculatum
and Gigaspora hartiga on the uptake of N, K, Fe, Zn, Cu, etc. The role of AM fungi
in K nutrition to the plant has been extensively reviewed by Garcia and Zimmermann
(2014).

9.9 Conclusion and Future Perspectives

K+ plays a key role in the metabolism of plant and triggers enzymes, osmotic regu-
lation and charge balance in plants. The deficiency of K results in poor growth and
developmentwhich intensely related to crop yield. Application ofK as a fertilizer and
less awareness of the farmers about K aggravates the situation. Therefore, utilization
of naturally present K in the soil (fix form or not bioavailable form) is important for
sustainable agriculture. Soil microorganisms (bacteria, fungi and AM fungi) are the
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integral component of soil and play a key role in K solubilization from the minerals.
These microorganisms have various mechanism to solubilize the unavailable K and
make it available to the plants. Results from various studies specified that soil inocu-
lated with KSMs had positively influence the availability of K to the soil and plants.
Additionally, KSMs also increase the availability of other nutrients (Ca, Mg, P) to
the plants and also release siderophores, growth hormones and ammonia (NH3+).
Application of biological agents such as bacteria, fungi and AM fungi could offer
an earlier and never-ending source of K for plant uptake. Therefore, there is a need
to design experiments including different types of soil and microbial inoculants to
find the best combination. There is also a need to commercialize the KSMs as an
inoculum and make them available to the farmers. Future studies should also require
focusing on the factors affecting availability of K and isolation of indigenous K
solubilizers and inoculation of indigenous K solubilizers to the different environ-
mental conditions such as cold, drought and nutrient-deficient soils.
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Chapter 10
Alleviation of Stress-Induced
Ethylene-Mediated Negative Impact
on Crop Plants by Bacterial ACC
Deaminase: Perspectives
and Applications in Stressed Agriculture
Management

Hassan Etesami, Fatemeh Noori, Ali Ebadi and Narges Reiahi Samani

Abstract The environmental stresses such as heavy metal toxicity, salinity, water
deficit, flooding, extreme temperatures, nutrient deficiency, and pathogenicity, which
are considered to be the most important limiting factors for agricultural produc-
tion, are rising all over the world. The occurrence and magnitude of environmental
(abiotic and biotic) stresses might augment in the near future because of global cli-
mate change. These stresses lead to a significant reduction in yield and growth of
stressed plants. It is well known that a sizable portion of the damage that occurs
in stress-sensitive crop varieties as a consequence of abiotic and biotic stresses is
due to the deleterious action of “stress ethylene” and not necessarily from the direct
effects of the stress. In order to reduce the negative effects of “stress ethylene”
on growth and yield of stressed plants, application of ecologically compatible and
environmentally friendly methods is needed. An alternative approach to reducing
stress-induced ethylene production in growing plants in stress-affected soils involves
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employing 1-aminocyclopropane-1-carboxylate (ACC) deaminase-generating bac-
terial endophytes. These bacteria may promote stressed plant’s growth as a conse-
quence of expressing the enzyme1-aminocyclopropane-1-carboxylate (ACC) deami-
nasewhich cleaves 1-aminocyclopropane-1-carboxylate (ACC) (prerequisite of ethy-
lene production) toα-ketobutyrate and ammonia and therebydiminishes ethylene lev-
els in stressed host plants. In this review, the role of bacterial endophytes equipped
with the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase in mitigat-
ing stress-induced ethylene-mediated negative impact on stressed plants under var-
ious environmental stresses (heavy metal toxicity, salinity, water deficit (drought),
flooding, extreme temperatures, and nutrient deficiency) is described. In addition,
some suggestions that are needed for future research in this context are also presented.

Keywords Bacterial endophytes · Bio-fertilizer · Environmental stress · Drought
stress · Heavy metal stress · Salinity stress · Stress ethylene

10.1 Introduction

Food security is one of the most important issues in the world that cannot ever be
overlooked by any society. The excessive increase in environmental degradation (due
to inappropriate agricultural operations) and the pressure of human population are
unpleasant consequences thatwill soon cause global food production to be inadequate
for all people in the world. In this context, the global population, which currently
has seven billion people, is projected to augment to 10 billion over the next fifty
years (Etesami and Maheshwari 2018; Glick 2014), thus necessitating 70% more
food production (FAO 2008). To fulfill the food supply requirements for the pro-
jected population by the next 50 years, we must culture a significant expansion of the
existing land (increased crop yield through intensification) and significantly increase
(an estimated fifty percent) grain yield of major crop plants such as Oryza sativa L.,
Triticum aestivum L., and Zea mays L. (Godfray et al. 2010). But the excessive use
of agricultural arable land and marginal areas (areas where stress factors can be more
prevalent) is problematic and may be resulted in degradation of the land (Alexan-
dratos and Bruinsma 2012; Glick 2014; Zahir et al. 2008). On the other hand, non-
biotic stresses such as increased carbon dioxide, UV, extreme temperatures, water
deficit, flooding, salinity, heavy metals toxicity, nutrient deficiency, severe winds,
etc., are the most limiting factors to plant productivity in the world (Etesami 2018;
Etesami and Maheshwari 2018) and result in reduced land available for cultivation
(Etesami and Maheshwari 2018; Shahbaz and Ashraf 2013). In addition, climate
change has affected the frequency and severity of these stresses, mainly drought and
high temperatures stresses, and increased the proportion of agricultural land affected
from multiple stresses (Ahuja et al. 2010), resulting in a significant decline in yield
in main cereals (Carmen and Roberto 2011) and augmenting the productivity and
sustainability of the agricultural production systems (Hussain et al. 2015). Across
the globe, it is estimated that roughly 70% reduction in crop yields results from direct
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non-biological stresses (Acquaah 2009). Therefore, due to the urgency of feeding
the world’s growing human population under different environmental stressful con-
ditions, research on soil and crop productivity (i.e., enhancing tolerance of plants to
a wide range of stress factors) to optimize plant growth and secure our future food
and feed supply is now in the top priority (Etesami and Maheshwari 2018; Etesami
and Beattie 2017).

To attenuate the effects of the biological and non-biological stresses and to aug-
ment crop productivity, fitting cropmanagementmodifications are necessary.Numer-
ous management system modifications, such as crop rotation, intercropping, row
skipping (diminishing planting density by omitting rows), mulching, sheltered crop-
ping (i.e., crops grown under glass, plastic or nets), plant genetic engineering, and
bio-fertilization, could be employed to augment crop productivity and decrease the
undesirable effects caused by environmental stresses on plant growth (Davies et al.
2011; Wang et al. 2003; Dimkpa et al. 2009). In recent years, sizable attention
has been directed toward genetically engineering stress-sensitive crop varieties to be
more tolerant to a variety of abiotic stresses and biotic ones (i.e., pathogens including
viruses, bacteria, and fungi) (Ahanger et al. 2017). The evolvement of stress-tolerant
crop varieties via genetic engineering and plant breeding is absolutely necessary but
a long drawn and expensive process. In addition, owing to many hindrances (i.e.,
proprietary rights and international trade accords on genetically changed crops and
restrictions in technology of DNA recombinant in some parts of the world), genetic
modification of all plant species is not possible. In addition, it is not sensible to try
to engineer crop plants versus all of the biological and non-biological stresses that
they might meet within the environment.

There has been a supreme interest in sustainable agriculture with an underscore
on the application of useful soil microorganisms. Microbial inoculation to palliate
biological and non-biological stresses in plants could be a more economical envi-
ronmental amiable option which could be attainable in a shorter time frame (Saleem
et al. 2007; Etesami and Maheshwari 2018; Etesami and Beattie 2017; Lugtenberg
et al. 2002) and helped to achieve sustainable agricultural goals faster (Etesami and
Maheshwari 2018). By both extracellular and intracellular microorganisms, plants
are colonized in their natural environment (Gray andSmith 2005).Due to the presence
of root exudates, a large population of microorganisms is found around plant roots
whose populations aremore than the population of non-rhizosphericmicroorganisms.
Plant-associated microorganisms can either attach to the outer surface of the plant,
such as the roots (rhizosphere microorganisms) or leaves (phyllosphere microorgan-
isms), or they can be located within the plant and form an endophytic relationship
(endophytic microorganisms). Among the microorganisms associated with the roots
of plants, bacteria have a significant population density. Interactions between plant-
associated bacteria and plant roots can be classified as useful, harmful or neutral to
the plant (Glick 2014). The bacteria that have mutually beneficial effects with plants
can augment plant growth and health either directly through various mechanisms
such as N2 fixation, solubilization of insoluble inorganic phosphates, mineralization
of organic phosphates, facilitating the micro- and macronutrient uptake via phyto-
hormone production (e.g., auxin, cytokinin, and gibberellins) or by production of
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some metabolites (i.e., siderophores, organic acids, etc.), and changing the internal
level of plant growth-regulating substances, or indirectly by augmenting the natural
resistance of the host against pathogens (Etesami and Maheshwari 2018; Etesami
and Beattie 2017; Glick 2012; Hayat et al. 2012; Kloepper et al. 1989; Glick 1995;
Patten and Glick 2002; Persello-Cartieaux et al. 2003; Kohler et al. 2006).

The role of these bacteria in plant nutrient management, plant growth promo-
tion, and plant disease control is well known and well established (Etesami and
Maheshwari 2018; Compant et al. 2005). In addition to these beneficial effects,
the plant growth-promoting bacteria (PGPB) can also impart some degree of tol-
erance to stress-sensitive crop varieties toward environmental stresses. The term
IST (Induced Systemic Tolerance) has been offered for PGPB-induced physical and
chemical variations that lead to augmented tolerance to non-biological stress (Yang
et al. 2009). In the last ten years, PGPB possessing by distinctive genera including
Methylobacterium, Azospirillum, Achromobacter, Rhizobium, Bacillus, Variovorax,
Pseudomonas,Pantoea,Paenibacillus,Burkholderia,Klebsiella sp.,Kosakonia cow-
anii, Microbacterium, and Enterobacter have been reported to provide tolerance
to host plants under distinctive biological and non-biological stress environments
(Grover et al. 2011; Etesami and Alikhani 2016, 2018; Etesami and Maheshwari
2018; Noori et al. 2018; Yadav et al. 2015a; Yadav et al. 2016; Yadav et al. 2015b).
Preceding studies suggest that application of PGPBhas become an encouraging alter-
native to relieve plant stress and the role of these bacteria in managing biological and
non-biological stresses is gaining importance. The subject of PGPB elicited toler-
ance to biotic and non-biological stresses has been reviewed (Etesami 2018; Etesami
and Beattie 2017; Etesami and Maheshwari 2018; Glick 2014; Sharma et al. 2013;
Kaushal and Wani 2016; Yang et al. 2009; Etesami and Alikhani 2016; Compant
et al. 2005; Glick 2012; Vurukonda et al. 2016; Dodd and Pérez-Alfocea 2012; Yao
et al. 2010).

To barricade the trauma and ensure survival, crop plants bring out a convoluted
and unanimous molecular and cellular responses in response to various biological
and non-biological stresses (Fahad et al. 2015). Phytohormones have a vital function
in mediating plant’s responses to these stresses, by which the plant may try to outlive
the stressed conditions (Skirycz and Inzé 2010). One of the phytohormones entan-
gled in stress response is ethylene, which is also considered as a stress hormone
in addition to its roles in regulating plant growth and development and in bring-
ing about multifarious physiological alterations in plants at molecular level (Abeles
et al. 2012). Under abiotic and biological stress conditions (i.e., nutrient deficiency,
salinity, water deficit, waterlogging/flooding, heavy metal toxicity, and pathogenic-
ity), the internal production of ethylene and its direct precursor ACC are quickened
considerably which unfavorably affects the root growth, and they finally result in
decreasing the growth of the stress-sensitive crop varieties in a general sense (i.e.,
suppression of root elongation, nodulation and auxin transport, induction of hyper-
trophies, increase in speed of aging, and promotion of senescence and abscission)
(Sun et al. 2006; Abeles 1992; Morgan and Drew 1997).
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A number of PGPB are equipped with a pivotal enzyme, ACC (1-
Aminocyclopropane-1-Carboxylic Acid) deaminase, which regulates ethylene gen-
eration via metabolizing ACC (an instantaneous precursor of ethylene production in
higher plants) into alpha-ketobutyrate (C4H6O3) and ammonia (NH3) (Yadav 2017a;
Yadav et al. 2017a, b). Inoculation of crop plants with theACCdeaminase-generating
PGPB could be beneficial in supporting growth and enlargement of stress-sensitive
crop varieties under stressful conditions by diminishing stress-mediated ethylene
generation (Glick 2014; Etesami and Maheshwari 2018; Etesami 2018; Etesami and
Beattie 2018). The ability to produce this enzyme has been reported in a variety of
rhizosphere and endophytic bacterial genera (Glick 2014). One of the leading draw-
backs in the large-scale employment of PGPB including ACC deaminase-producing
microorganisms is that these bacteria may not always outlive rough environmental
conditions such as extremes of pH and temperature, high concentrations of environ-
mental contaminants, salinity, drought, and the presence of othermicroorganisms that
either consume or outcompete these bacteria. A feasible solution to this problemmay
lie in the application of EPGPB (endophytic plant growth-promoting bacteria) (Sturz
and Nowak 2000). Bacteria that are isolated from plant tissues after their surface dis-
infection and show no symptoms of disease on the plant are known as endophytic
bacteria. It seems that the contribution of endophytic bacteria to the production of
1-aminocyclopropane-1-carboxylate deaminase and the abatement of stress ethylene
production relative to the contribution of rhizosphere bacteria is much wider (Ete-
sami and Maheshwari 2018). The internal tissues of plants provide a more uniform
and safer environment for bacteria than plant surfaces. Considering the important
role of 1-aminocyclopropane-1-carboxylate deaminase-producing bacteria in reduc-
ing stresses caused by ethylene, aim of this review is to describe the role of bacterial
endophytes equipped with the enzyme 1-aminocyclopropane-1-carboxylate (ACC)
deaminase in lessening of impact of biological and abiotic stresses onto plants. In
addition, some suggestions needed for future research in this field are also presented.

10.2 Abiotic and Biotic Stresses

Apart from physiological and environmental factors such as availability of macro-
andmicronutrients (i.e., N, P, K, S,Mg, Ca, Fe,Mn, Cu, Zn, etc.), physical and chem-
ical characteristics of soil (EC, soil texture, organic matter, pH, etc.), plant genotype
and growth conditions, the growth of stress-sensitive crop varieties in the field may
be repressed via a large number of both biological and non-biological stresses. These
stresses include temperature extremes (high and low temperatures), high light, water-
logging, global scarcity ofwater resources (water deficit), the presence of toxicmetals
(i.e., Cd,Ni, Co,As, etc.), and environmental organic contaminants (i.e., phenols, col-
orants, alcohols, aldehydes, DDT andmetabolites, Dieldrin, PCP, PAHs, RDX, TNT,
etc.), radiation, wounding, insect predation, increased salinization of soil and water,
mechanical stress, nutritional stress, and damage done to stress-sensitive crop vari-
eties by living organisms, such as bacteria, viruses, fungi, parasites, harmful insects,
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weeds, and cultivated or native plants (Abeles et al. 2012; Stearns and Glick 2003;
Morgan and Drew 1997). These stress factors cause widespread crop losses through-
out the world. In the plant grown under the stressed conditions, immense amounts
of ROS (reactive oxygen species) are generated that can bring about peroxidation,
leading to detriment to cell membranes, protein oxidation, enzyme deterrence, and
strand fracture in nucleic acids (Allen 1995).

One of the principal concerns bringing about some of the distinctive ecologi-
cal and environmental problems is heavy metal pollution of agricultural soils. Due
to industrial applications, use of metal-contaminated fertilizers, types of pesticides
(i.e., insecticides, herbicides, rodenticides, bactericides, fungicides, and larvicides),
and sewage sludge in agricultural land, toxic metals and metalloids accumulate in
the environment (Etesami 2018). Some heavy metals such as Fe, Mn, Zn, Cu, etc.,
are essential or beneficial micronutrients needed by plants for growth and develop-
ment. But, when present in superfluous, they may act as toxicants and repress the
plants growth (Etesami 2018). In addition, high metal amounts in the soil have also
been indicated to bring about augmented ethylene synthesis (Rodecap et al. 1981;
Safronova et al. 2006) and inhibition of root and shoot development and interfere
with numerous biochemical and physiological processes such as CO2 fixation, res-
piration, photosynthesis, sugar translocation, N and protein metabolism, and micro-
and macronutrients absorption (Zhang et al. 2009; Prasad and Strzalka 2013).

Organic pollutants (i.e., DDT, lindane, polychlorinated biphenyls, dioxins, etc.)
in the soil environment, if present above permissible limits, hinder plant growth via
many mechanisms such as unusual growth of stress-sensitive crop varieties (Adam
and Duncan 1999). This irregular growth of the plant root system might be partly
owing to hastened ethylene generation (stress ethylene) in plants grown in soil envi-
ronment treated with organic contaminants (Coupland and Jackson 1991; De Prado
et al. 1999; Jackson 1997).

During periods of flooding/waterlogging, which occur several times in a grow-
ing season and may last for periods of from one or two days to several weeks, the
root environment (rhizosphere) speedily becomes anaerobic bringing about an inau-
guration in the expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase,
leading to the cumulation of 1-aminocyclopropane-1-carboxylate (ACC) in tissues of
root (Cattelan et al. 1999; Olson et al. 1995; Jackson 1997; Else and Jackson 1998;
Bradford and Yang 1980; Else et al. 1995). The amassed 1-aminocyclopropane-
1-carboxylate (ACC) is transported to the shoots (stem + leaf) where there is an
aerobic environment and the ACC may be converted to ethylene via the enzyme
1-aminocyclopropane-1-carboxylate (ACC) oxidase, which has need for oxygen for
catalyzing this reaction. Lower diffusion of ethylene in water leads to cumulation of
ethylene in waterlogged and/or flooded plants and soil (Steffens et al. 2012). Cumu-
lation of stress ethylene can also bring about epinasty, leaf chlorosis, necrosis, and
diminished fruit yield (Grichko and Glick 2001a, b).

Drought affects, in essence, all climatic regions of the world, particularly in arid
and semi-arid areas, andmore than one-half of the earth is vulnerable to drought every
year (Wilhite 2000; Kogan 1997; Grichko et al. 2000; Kour et al. 2019a; Verma et al.
2017b). Drought stress (water deficit), as one of the major non-biological stresses,
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restricts the growth and productivity of crops (i.e., diminution in germination rates,
inhibition of photosynthesis, loss of membrane integrity, decline in leaf water poten-
tial and stomatal opening, decrease in leaf size, decrease in water uptake (osmotic
stress), suppressed root growth, diminished seed number, size and viability, delayed
flowering and fruiting, and increased generation of ROS) (Xu et al. 2016; Bray 1997;
Ingram and Bartels 1996; Shinozaki and Yamaguchi-Shinozaki 1998; Kramer and
Boyer 1995; Greenberg et al. 2008). Like many other environmental factors, water
deficit stress also induces augmented ethylene production in tissues of stress-sensitive
crop varieties which inhibiting root growth and development, shoot/leaf expansion,
and photosynthesis (Mattoo 2017; Sharp 2002) and causes membrane leakage, even-
tually brings about senescence in stress-sensitive crop varieties (Hipkins andHillman
1986).

In fact, plants are sensitive to variations in temperature, and react both to seasonal
variations and more so to quotidian alterations in the season. The heat stress with
regard to the aspect known as global warming is a critical intimidation to world
agriculture (Moeder et al. 2002; Robertson et al. 2000). A vacillation in temperature
results in hormonal unbalances in stress-sensitive crop varieties and thus their growth
is considerably affected (Cheikh and Jones 1994). Following temperature stress (high
and chilling temperatures), the ethylene level is swiftly augmented both in tissues
of stress-sensitive crop varieties and microbial species in the rhizosphere of stressed
plant (Strzelczyk et al. 1994; Arshad and Frankenberger Jr 2012; Shi et al. 2012).

Microbial pathogens are a leading and serious intimidation to food production and
ecosystem stability throughout the world (Etesami and Alikhani 2018). Mostly, like
abiotic stresses, plant ethylene production is augmented with severity of pathogenic
infection (Bashan 1994; Elad 1988). Among abiotic and biotic stresses, salinity stress
is one of the most damaging abiotic stresses (Etesami and Beattie 2017), barricading
the attainment of sustainable agriculture (Paul 2013; Greenway and Munns 1980;
Zhu 2002; Roy et al. 2014). Soil salinity in arid regions is frequently an impor-
tant delimiting factor for cultivating agricultural crops because salinity converts
arable land into non-arable land and diminishes crop productivity and quality (Shah-
baz and Ashraf 2013; Yamaguchi and Blumwald 2005). Soil salinization reduces
1–2% of the area that could be used for agriculture every year. Approximately seven
percent of the world’s land and 20% of the total arable land throughout the world
are negatively influenced by salinity (Munns 2005) with a resultant monetary loss of
twelve billion US$ in agricultural production (Shabala 2013). Additionally, the salin-
ized areas are augmenting at a rate of ten percent annually, specifically on agricultural
land where growth of stress-sensitive crop varieties is contingent upon irrigation, for
various reasons, such as weathering of native rocks, low precipitation, high surface
evaporation, irrigation with saline water, and poor cultural practices. It has been
calculated approximately that more than fifty percent of the arable land would be
salinized by the year 2050 (Jamil et al. 2011).

Salinity stress has been reported to limit growth and development of stress-
sensitive crop varieties (i.e., by ion toxicity stress, osmotic stress, oxidative stress, and
nutrient deficiency), which brings about variations in physiology, morphology, and
biochemical characteristics of stressed plants, probably all occurring simultaneously
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(Tao et al. 2015; Chinnusamy et al. 2006; Munns 2002, 2005; Gorham et al. 1985;
Ruiz et al. 1997; Arbona et al. 2005; Zhu 2001). Almost all of the most consequen-
tial crop plants are salinity-sensitive plants (glycophytes) and are and so susceptible
to salt stress (Munns and Tester 2008; Cheeseman 2015). Intermediate levels of
environmental salinity (e.g., 100 mM NaCl) are adequate to bring about dramatic
decrements in the yield of most crop plants (Frommer et al. 1999; Munns and Tester
2008). It is well known that shortage of nutrients such as N, P, K, Ca, and Fe, which
occurs in salt-affected soil, promotes the expressions of many genes connected to
ethylene biosynthesis and signaling in the roots and enhances plant sensitivity to
ethylene (Blumwald 2000; Cuartero and Fernández-Muñoz 1998; Feng and Barker
1992; O’Donnell et al. 1996; Zheng et al. 2013; Rai and Sharma 2006; He et al. 1992;
Borch et al. 1999; Rabhi et al. 2007; Yousfi et al. 2007; García et al. 2015; García et al.
2010; Achard et al. 2006; Dong et al. 2011; Xu et al. 2008). According to the stud-
ies mentioned above, during periods of all environmental stresses, stressed plants in
response to these stresses produce high levels of endogenous ethylene, called “stress
ethylene”, which increases sensitivity of the plants to various environmental stresses
and finally leads to abnormal growth of the plants (inhibitory effect on root growth).

10.3 Ethylene as a Stress Hormone

Stress-sensitive crop varieties employ many strategies in answer to environmental
stresses (i.e., variation in developmental and morphological motif and in physiolog-
ical and biochemical processes) that eventually augment the stressed plant’s growth
and productivity in stressful agricultural lands (Tuteja 2007; Saud et al. 2014). By
accumulating organic solutes such as sugars, polyols (sugar alcohols), betaines and
proteinogenic amino (i.e., proline, C5H9NO2), protecting cellular machinery, main-
taining ionic homeostasis, cleansing free radicals or reactive oxygen species (ROS),
expressing certain proteins and upregulating their genes and inducing phytohor-
mones, plant increase your tolerance to the environmental stresses (Parida and Das
2005; Tuteja 2007; Munns and Tester 2008).

It is known that phytohormones are involved in regulating the interaction between
stress-sensitive crop varieties and environments (i.e., plant responses to environmen-
tal stresses) throughout the life cycles of plants (Bartoli et al. 2013; Baxter et al.
2013; Skirycz and Inzé 2010). Phytohormones are thought to be the most influential
internal substances that are crucial in adjusting physiological responses that ulti-
mately result in adjustment to an undesirable environment (Khan and Khan 2013).
Ethylene, known as a stress hormone, is an important growth phytohormone syn-
thesized by almost all plants and serves as a key modulator between a wide range
of plant responses to environmental stresses and normal growth (Abeles 1992). This
phytohormone plays multifarious roles in regulating growth and development of
stress-sensitive crop varieties (Abeles 1992). Production of ethylene occurs in all
higher plants via a methionine (C5H11NO2S) relying on pathway. Ethylene in plant
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is synthesized via 3 enzymatic reaction steps: methionine (C5H11NO2S) is con-
verted to S-adenosyl-methionine (S-AdoMet) by S-AdoMet synthetase; then the
direct substrate of ethylene 1-aminocyclopropane-1-carboxylate (ACC) is gener-
ated from S-AdoMet by ACC synthase; and ultimately ethylene (carbon dioxide
and hydrogen cyanide) is produced via the oxidation of 1-aminocyclopropane-1-
carboxylate (ACC) by 1-aminocyclopropane-1-carboxylate (ACC) oxidase (Lin et al.
2009). Concentrations of ethylene and its direct precursor 1-aminocyclopropane-1-
carboxylate (ACC) could be plainlymediated by stresses in numerous stress-sensitive
crop varieties (Morgan and Drew 1997; Ellouzi et al. 2014; Ma et al. 2012). Apart
from its positive effects (at levels of as low as 10 μg L−1) on plant growth (i.e.,
role in root initiation, nodule formation, root extension, seed germination, xylem
formation, biosynthesis of other phytohormones, and ripening as well as in stress
signaling) (Mattoo 2017; Abeles 1992; Arshad and Frankenberger 1990), overpro-
duction of ethylene (at levels of as high as 25 μg L−1) in plant roots in answer to
both biological and non-biological processes represses root elongation, nodulation
and auxin transport, brings about hypertrophies, speeds aging, advances senescence
and abscission, and leads to untypical root growth, which imparts an ostensible dent
on plant growth and outreach (Abeles 1992; Pech 2002; Arshad and Frankenberger
1990; Frankenberger Jr and Muhammad 1995; Prayitno et al. 2006; Sun et al. 2006).
This implies that no extra ethylene is mandatory for the process of stress adjust-
ment in the early stage of plant self-adjustment (Tao et al. 2015; Peng et al. 2014),
and if the ethylene concentration (increase in 1-aminocyclopropane-1-carboxylate
content and 1-aminocyclopropane-1-carboxylate oxidase activity) augments above
a threshold level, it becomes deleterious for plant growth and hinders growth and
development of stress-sensitive crop varieties, which is disadvantageous for plants
to outlive under sever stressful conditions (Kukreja et al. 2005; Glick 2014; Tittabutr
et al. 2013; Albacete et al. 2009; Ghanem et al. 2008; Tao et al. 2015). Since higher
amounts of ethylene (“stress ethylene”) have prohibitive impacts on root growth and
may lead to abnormal growth of the plants, it is crucial to govern the generation
of ethylene in the close environs of stressed plant’s roots (rhizosphere) for regular
growth and development of stress-sensitive crop varieties (Saleem et al. 2007).

Stress tolerance in plants depends mainly on the capability of root to diminish
the endogenous ethylene level. It is well known that bacteria equipped with
the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase can diminish
the negative effects of this hormone (stress ethylene) via diminishing the level
of ACC (precursor of ethylene production). Undoubtedly, the production of
1-aminocyclopropane-1-carboxylate (ACC) deaminase by the bacteria is a major
mechanism in promoting plant growth under environmental stresses. In addition to
reducing “stress ethylene” level in plants, it is well known that the bacteria equipped
with the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase may also
provide other many benefits to stress-sensitive crop varieties (Glick 1995; Holguin
and Patten 1999; Etesami and Maheshwari 2018). These characteristics make the
choice of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing PGPB
more trustworthy than any other alternative.
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10.4 Amelioration of “Stress Ethylene” Using Bacterial
ACC Deaminase

As described previously, the surplus production of ethylene in answer to bio-
logical and non-biological stresses brings about holding back root growth and
accordingly growth of the stress-sensitive crop varieties as a whole. Through
certain specific enzymes, the bacteria stimulate some physiological changes in
stress-sensitive crop varieties at molecular level. Amid these enzymes, bacterial
1-aminocyclopropane-1-carboxylate (ACC) deaminase plays a well-understood
role in regulating the plant hormone ethylene and thus, growth and evolvement of
stress-sensitive crop varieties are modulated (Glick 2014). It has been well known
that ACC deaminase-generating PGPB can regulate and palliate the stress-induced
ethylene-mediated negative effect on plants by metabolizing 1-aminocyclopropane-
1-carboxylate (ACC); a precursor of plant produced ethylene. Compared to ethylene
synthesis inhibitors such as AVG (aminoethoxyvinylglycine), AOA (aminooxyacetic
acid), and 1-MCP (1-methylcyclopropene), which are costly, less workable, or
potentially causing damage to the environment, the use of bacteria equipped with the
enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase is more economical,
environmental amicable, and workable in a stressed natural soil and plant system.

The enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase
(Enzyme Commission number: 4.1.99.4), which catalyzes the break-
ing of 1-aminocyclopropane-1-carboxylate to NH3 and alpha-ketobutyrate
(CH3CH2CCO2H), was first found in forty years ago (in 1978) (Honma and
Shimomura 1978). The 1-aminocyclopropane-1-carboxylate (ACC) activity has
been known to be associated with a large number of assorted soil microbial
community (free-living soil microorganisms), plant-associated bacteria (both Gram-
negative bacteria and Gram-positive bacteria), including symbionts like rhizobia
(diazotrophic bacteria fixing molecular nitrogen inside the root nodules of legumes),
general rhizospheric and endophytic PGPB (Agrobacterium, Burkholderia, Enter-
obacter, Methylobacterium, Azospirillum, Alcaligenes, Ralstonia, Rhodococcus,
Rhizobium, Pseudomonas, Sinorhizobium, Variovorax, and Bacillus), some plant
pathogens, Eukarya, and fungi (Arshad et al. 2007; Etesami and Maheshwari 2018;
Etesami and Beattie 2018; Glick 2014; Nascimento et al. 2014; Babalola et al. 2003;
Wang et al. 2000; Belimov et al. 2001; Ghosh et al. 2003; Honma and Shimomura
1978; El-Tarabily 2008; Minami et al. 1998; Viterbo et al. 2010; Singh and Kashyap
2012; Verma et al. 2016a, b; Verma et al. 2015; Yadav et al. 2016).

The 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme is encoded
by a single gene, denominated acdS. It was found that the genes might be come into
horizontally (laterally) instead of vertically (Hontzeas et al. 2005). As a matter of
fact, there are some proofs that 1-aminocyclopropane-1-carboxylate (ACC) deam-
inase genes may not constantly be an integral part of the chromosomal DNA of a
microorganism, but rather exist on large comparatively steady plasmids (Glick et al.
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2007b). On top of that, on the foundation of sequence similarity, the presence of puta-
tive 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in the genomes
of several plants (Arabidopsis, Populus, and Lycopersicon esculentum Mill.) was
exhibited (McDonnell et al. 2009; Plett et al. 2009; Singh et al. 2015).

The actionmechanismof 1-aminocyclopropane-1-carboxylate (ACC) deaminase-
producing bacteria to reduce “stress ethylene” level is based on a model previ-
ously tendered by Glick et al. (1998). A diagrammatic delineation of this model
is shown in Fig. 10.1. It is well known that the population of microorganisms is
high in the rhizosphere region due to specific conditions different from the non-
rhizosphere region. In this area, because of root exudates, the bacteria including the
ACC deaminase-generating bacteria attach to the surface of the seed (spermosphere)
or root (rhizoplane bacteria) of the plant and some of these bacteria enter the root
(bacterial endophytes). Plant growth-promoting bacteria attached to the root of the
plant by various mechanisms lead to increased plant root growth. As the root of
plant increases, the amount of root exudates also augments. Root exudates contain
easily degradable compounds, including organic acids, amino acids, and other small
molecules. L-tryptophan (L-Trp) is one of the amino acids found in root secretions.
This amino acid is a precursor to the production of auxin. Some bacteria having
auxin-producing genes (i.e., ipdC and iaaM gene) can convert this amino acid to
indole-3-acetic acid (IAA). Part of this bacterial IAA is absorbed by the plant. This
bacterial IAA together with the plant IAA (IAA produced inside the plant by the
plant itself) can lead to the proliferation and elongation of plant cells. These IAAs
can also promote the synthesis of the enzyme 1-aminocyclopropane-1-carboxylate
(ACC) synthase. The enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase
catalyzes the formation of ACC.

The synthesized 1-aminocyclopropane-1-carboxylate (ACC) exits the plant along
with root exudates, and the bacteria equippedwith the enzyme1-aminocyclopropane-
1-carboxylate (ACC) deaminase in the rhizosphere/rhizoplane can use some of
the ACC as a nitrogen source by breaking it down into NH3 and C4H6O3 (α-
ketobutyrate). As a result of the uptake and consumption of 1-aminocyclopropane-1-
carboxylate (ACC) bybacteria equippedwith the enzymeACCdeaminase, its content
is reduced outside the stress-affected plant. Additionally, in order to establish a bal-
ance between the amount of ACC produced inside the plant and the ACC removed
from the plant, the plant discharges a greater amount of the stress-induced ACC
produced inside the plant into the rhizosphere of host plant. On the other hand, more
ACC excretion from the plant provides the carbon and nitrogen requirement of the
1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing microorganisms,
which results in a greater activity and population of these microorganisms around the
plant root. The end result is ACCdepletion inside the plant and consequently ethylene
depletion within the plant. Decreased ethylene levels, in turn, leads to increased plant
root system and consequently plant growth (Glick et al. 1998). Thus, the net outcome
of the interaction of ACC deaminase-generating microorganisms with plant cells is
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Fig. 10.1 A diagrammatic representation of how plant growth-promoting bacteria (PGPB) hav-
ing 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity can alleviate the stress-induced
ethylene-mediated negative impact on stressed plants. Stressed plants often respond to stressful con-
ditions by producing what is known as “stress ethylene”. In the pathway of ethylene biosynthesis,
S-AdoMet (S-adenosylmethionine) is converted by ACC synthase to ACC, the immediate precursor
of ethylene, and ACC is also converted to ethylene by ACC oxidase. Following the beginning of the
stress, a small peak of ethylene is produced after a short time. This small peak of ethylene uses up
the existent pool of ACC within plant tissues and likely activates the synthesis of defensive genes
within the plant. Afterward, a second much larger peak of ethylene, which is generally detrimental
to plant growth, is typically observed following the synthesis of additional ACC within the plant.
Due to enhancing transcription of ACC synthase genes, the second peak of ethylene, which mostly
is triggered by environmental cues, occurs and acts as a signal to initiate the inhibitory processes
to plant growth and survival. The ACC deaminase-producing bacteria can sequester and degrade
the stressed plant’s ACC (to ammonia and α-ketobutyrate) to supply nitrogen and energy, which
reduce the deleterious effect of ethylene and subsequently ameliorate plant stress and promote plant
growth. It is expected that ACC deaminase-producing bacteria decrease themagnitude of the second
ethylene peak. It has been reported that IAA can also activate the transcription of ACC synthase
and ultimately result in the production of relatively high concentrations of ACC and subsequently
inhibitory levels of ethylene. However, it was found that with PGPB that both secrete IAA and
synthesize ACC deaminase, plant ethylene levels do not become elevated to the same extent as
when plants interact with bacteria that secrete IAA but do not synthesize ACC deaminase. In gen-
eral, when plant ethylene levels increase, the ethylene that is produced feedback inhibits IAA signal
transduction thereby limiting the extent that IAA can activate ACC synthase transcription. For more
details, see Glick (2014). Abbreviations: L-Trp, Tryptophan; IAA, Indole-3-acetic acid

that the bacteria act as a sink for 1-aminocyclopropane-1-carboxylic acid (Glick et al.
2007a; Glick 2014).

Since the hormone ethylene has been known to be needed for the inspiration in
plants of systemic resistance triggered by PGPB (Van Loon et al. 1997), the query
arises whether inoculating stress-sensitive crop varieties with ethylene-diminishing
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bacteria (bacteria equipped with the enzyme 1-aminocyclopropane-1-carboxylate
deaminase) might barricade this induction. But, practically, “diminishing ethylene
levels by bacterial ACC deaminase does not seem to be irreconcilable with the
instigation of systemic resistance. Indeed, some bacterial strains possessing ACC
deaminase also incite systemic resistance” (van Loon and Glick 2004). In a general
manner, the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase exists
in bacteria at a low level until it is incited, and the inspiration of the enzyme
1-aminocyclopropane-1-carboxylate (ACC) deaminase activity is a comparatively
slow and intricate process. Shortly following an abiotic or biotic stress, the pool of
1-aminocyclopropane-1-carboxylate (ACC) in the plant is low as is the level of the
enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase in the collaborated
bacterium. Following the proportionately rapid inspiration of a low level of 1-
aminocyclopropane-1-carboxylate (ACC) oxidase in the plant, it is likely that there
is augmented flux via this enzyme causing the first small peak of ethylene which is of
adequate magnitude to trigger a protective/defensive reaction in the plant (Fig. 10.1).
With time, bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase is moti-
vated (by the augmenting amounts of 1-aminocyclopropane-1-carboxylate (ACC)
that ensue from the inspiration of 1-aminocyclopropane-1-carboxylate (ACC) syn-
thase in the plant) so that the dimensions of the second, detrimental, ethylene peak
is diminished expressively (Fig. 10.1). The second ethylene peak may be diminished
dramatically, but it is not ever entirely abrogated since 1-aminocyclopropane-1-
carboxylate (ACC) oxidase has a much higher affinity for 1-aminocyclopropane-
1-carboxylate (ACC) than does 1-aminocyclopropane-1-carboxylate (ACC) deam-
inase. Therefore, when bacteria equipped with the enzyme 1-aminocyclopropane-
1-carboxylate (ACC) deaminase are present, ethylene levels are eventually
contingent upon the ratio of 1-aminocyclopropane-1-carboxylate (ACC) oxidase
to 1-aminocyclopropane-1-carboxylate (ACC) deaminase. For PGPB to be able
to diminish plant ethylene levels, level of the 1-aminocyclopropane-1-carboxylate
(ACC) deaminase should be at least one hundred- to one thousand-fold greater than
level of the 1-aminocyclopropane-1-carboxylate (ACC) oxidase (Glick et al. 1998).

In previous studies (Prayitno et al. 2006; Morgan and Gausman 1966), ethylene
stress-induced inhibition of IAA transport and signal transduction has been reported.
Whereas bacteria equipped with the enzyme 1-aminocyclopropane-1-carboxylate
(ACC) diminish the ethylene amount in roots of stress-sensitive crop varieties, this
assuages the ethylene repression of auxin (i.e., indole-3-acetic acid) response fac-
tor generation, and indirectly augments growth of development of stress-sensitive
crop varieties (Fig. 10.1) (Dharmasiri and Estelle 2004). Therefore, IAA-producing
bacteria, despite activating of the transcription of ACC synthase, cannot ultimately
bring about the generation of comparatively high concentrations of ACC and after-
ward repressive levels of ethylene. In general, by diminishing ethylene deterrence of
assorted plant processes, and permitting IAA motivation of cell rapid multiplication
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and extensionwithout the damaging impacts of augmenting 1-aminocyclopropane-1-
carboxylate (ACC) synthase and plant ethylene levels, plant growth-promoting bac-
teria equipped with the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deam-
inase assist forward the growth and development of stress-sensitive crop varieties
(Glick 2014).

The role of bacteria equipped with the enzyme 1-aminocyclopropane-1-
carboxylate (ACC) deaminase in diminishing stress-induced ethylene-mediated
negative impact on plants is well known and well established (Glick et al. 2007b;
Glick 2014). According to antecedent studies (Noori et al. 2018; Ali et al. 2014;
Zhao et al. 2015; Zhang et al. 2011; Qin et al. 2014; Nascimento et al. 2012;
Palaniyandi et al. 2014; Karthikeyan et al. 2012; Sgroy et al. 2009; Sziderics et al.
2007; Saravanakumar and Samiyappan 2007; Win et al. 2018; Afridi et al. 2019;
Yoolong et al. 2019; Barnawal et al. 2016; Gamalero et al. 2017), stress-sensitive
crop varieties inoculated with various bacterial strains equipped with the enzyme
1-aminocyclopropane-1-carboxylate (ACC) deaminase could cope with the stressful
conditions by lowering ethylene level (Table 10.1). There are some reports that
endophytic and rhizosphere ACC deaminase-producing bacteria (i.e., Burkholderia
sp., and Pseudomonas fluorescens) have antagonistic impacts toward pathogenic
microorganisms such as Fusarium oxysporum (Yuquan et al. 1999; Donate-Correa
et al. 2005), Pythium ultimum (Wang et al. 2000), Fusarium proliferatum (Donate-
Correa et al. 2005), Rhizoctonia solani (Pandey et al. 2005; Rasche et al. 2006b),
Sclerotinia sclerotiorum (Pandey et al. 2005), Erwinia carotovora sp. atrospetica
(Eca) (Rasche et al. 2006a), and Ralstonia solanacearum (Rasche et al. 2006b).
The results of the research revealed that bacteria equipped with the enzyme
1-aminocyclopropane-1-carboxylate (ACC) deaminase were more effective in
biocontrol of these pathogens than those without this enzyme. It is also very likely
that bacteria equipped with the enzyme 1-aminocyclopropane-1-carboxylate (ACC)
deaminase, besides straightly antagonizing pathogenic microorganisms, play a
potential role in motivating disease tolerance in stress-sensitive crop varieties
(augmented the plant’s resistance against pathogen attack) (Saleem et al. 2007;
Belimov et al. 2007). But, doing more research in this area is needed for further
understanding of this mechanism in the future (Saleem et al. 2007).

It was found that diminished salinity-induced ethylene by bacteria could diminish
the detrimental impact of salinity onto growth of stress-sensitive crop varieties
(Glick 2014). Previous researches have revealed that plants treated with PGPB
equipped with the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase
(i.e., Achromobacter piechaudii, Enterobacter sp., Pseudomonas spp., Mesorhi-
zobium, Kocuria rhizophila, Cronobacter sakazakii, Leclercia adecarboxylata,
Streptomyces venezuelae, Brachybacterium paraconglomeratum, Brevibacterium
epidermidis, Variovorax paradoxus, Bacillus mojavensis, Serratia sp., Klebsiella
sp., Kosakonia cowanii, and P. fluorescens) were better able to thrive through the
salt stress while manifesting a normal pattern of growth (Mayak et al. 2004a, b;
Saravanakumar and Samiyappan 2007; Cheng et al. 2007; Nadeem et al. 2006;
Noori et al. 2018; Sarkar et al. 2018; Win et al. 2018; Chaudhary and Sindhu 2017;
Afridi et al. 2019; Orozco-Mosqueda et al. 2019; Kang et al. 2019; Yoolong et al.
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Table 10.1 Alleviation of the stress-induced ethylene-mediated negative impact on plants by 1-
aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophytic bacteria

Bacterial strains Experimental plant Type of stress Reference

Pseudomonas
fluorescens YsS6 and
P. migulae 8R6

Tomato Salinity Ali et al. (2014)

Bacillus endophyticus Salicornia europaea Salinity Zhao et al. (2015)

Bacillus sp. and
Acinetobacter sp.

Commelina communis Heavy metal Zhang et al. (2011)

Bacillus flexus and
Streptomyces pactum

Limonium sinense Salinity Qin et al. (2014)

Streptomyces sp.
PGPA39

Tomato Salinity Palaniyandi et al.
(2014)

Achromobacter
xylosoxidans AUM54

Catharanthus roseus Salinity Karthikeyan et al.
(2012)

Bacillus licheniformis
Ps14

Prosopis
strombulifera

Salinity Sgroy et al. (2009)

Bacillus sp. TW4 Sweet pepper Osmotic stress Sziderics et al. (2007)

P. fluorescens Arachis hypogea Salinity Saravanakumar and
Samiyappan (2007)

Pseudomonas spp.
OFT2

Tomato Salinity Win et al. (2018)

Kocuria rhizophila
and Cronobacter
sakazakii

Wheat Salinity Afridi et al. (2019)

Streptomyces
venezuelae ATCC
10712

Rice Salinity Yoolon et al. (2019)

Brachybacterium
paraconglomeratum

Chlorophytum
borivilianum

Salinity Barnawal et al. (2016)

Pseudomonas migulae
8R6

Catharanthus roseus Flavescence dorée
Yellows disease

Gamalero et al. (2017)

Paenibacillus and
Bacillus

Wheat Pathogenic fungi Zhao et al. (2015)

2019; Barnawal et al. 2016; Siddikee et al. 2015; Habib et al. 2016; Singh and Jha
2016). These bacteria reduced the production of ethylene by stressed plants.

Under drought stress, PGPB equipped with the enzyme 1-aminocyclopropane-
1-carboxylate (ACC) deaminase (i.e., Variovorax paradoxus 5C-2, Achromobacter
piechaudii ARV8, and Paenibacillus polymyxa) also diminished the production of
ethylene by stressed plant (Mayak et al. 2004c; Dodd et al. 2004; Arshad et al. 2008;
Timmusk and Wagner 1999; Glick et al. 2007a; Kumar et al. 2019; Yadav 2017a, b;
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Yadav et al. 2019b). According to previous studies, lower 1-aminocyclopropane-1-
carboxylate (ACC) content was observed in plants inoculated with ACC deaminase-
producingPGPBand in plants genetically engineered to expressACCdeaminase than
in non-inoculated plants and non-engineered plants under flooded conditions, indicat-
ing that the enzymehad a significant role inACCdepletion (Grichko andGlick 2001a,
b). Plants inoculated with bacteria equipped with the enzyme 1-aminocyclopropane-
1-carboxylate (ACC) deaminase (i.e., Pseudomonas putida, Enterobacter cloacae,
and P. putida) showed remarkable tolerance to flooding stress implying that bacte-
rial 1-aminocyclopropane-1-carboxylate (ACC) deaminase diminished the negative
impacts of stress-mediated ethylene (Saleem et al. 2007; Grichko and Glick 2001a;
Farwell et al. 2006; Rana et al. 2019; Verma et al. 2017a, b).

ACC deaminase-producing bacteria could also mediate heavy metal (i.e., nickel,
Ni; lead, Pb; zinc, Zn; copper, Cu; cadmium, Cd; cobalt, Co; and arsenic, As) stress-
induced ethylene negative effect in various plants (Arshad et al. 2007; Etesami 2018;
Farwell et al. 2006; Safronova et al. 2006; Dell’Amico et al. 2005; Reed and Glick
2005; Belimov et al. 2001). It has studied the significance of PGPB equipped with
the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase in augmenting
the growth of stress-sensitive crop varieties in the presence of organic contami-
nants (Saleem et al. 2007; Arshad et al. 2007; Greenberg et al. 2006; Saleh et al.
2004; Huang et al. 2004; Reed and Glick 2005; Yadav et al. 2018a, b, c). The ACC
deaminase-producing bacteria (i.e.,Burkholderia phytofirmans andP. putida) helped
stressed plants in maintaining normal growth under low and high temperature stress
by diminishing “stress ethylene” concentration similar to that under other abiotic and
biotic stresses (Bensalim et al. 1998; Barka et al. 2006; Cheng et al. 2007; Kour et al.
2019a, b, c; Yadav et al. 2019a). The results obtained from these few studies indi-
cate that the bacteria equipped with the enzyme 1-aminocyclopropane-1-carboxylate
(ACC) deaminase were able to diminish the stress induced in temperature extremes-
affected plants. According to studies mentioned above, it can be concluded that use
of the bacterial endophytes with 1-aminocyclopropane-1-carboxylate (ACC) deami-
nase trait can be a useful strategy to recuperate growth and yield of the stressed plant.
It seems that these bacteria may be good candidates for bio-fertilizer formulation in
stress-based agriculture.

10.5 Conclusions and Future Perspectives

One of themost prominent restrictions to crop production in the world is both biolog-
ical and non-biological stress conditions dominating in the agricultural land, which
are also intensifyingwith climate change. Under normal conditions, when the plant is
not exposed to any stress, the plant produces a small amount of ethylene,which is nec-
essary for the growth and development of the plant, although the amount of ethylene
required during fruit ripening is much higher (Abeles 1992). But plants under either
biological or non-biological stresses produce augmented levels of ethylene, known
as “stress ethylene”, which is capable of inhibiting overall plant growth. To mitigate



10 Alleviation of Stress-Induced Ethylene-Mediated Negative Impact … 303

negative effects of high levels of “stress ethylene” on plants and to augment crop pro-
ductivity, fitting crop management techniques is indispensable. In this context, one
of the suggested ways to reduce the negative effects of stress resulting from ethylene
production is genetic modification of stress-sensitive crop varieties, but this method,
although successful in some cases, is a long and costly process. On the other hand,
making a plant resistant to all the stresses that are present in the environment is not
an easy task. Bacteria’s ability to increase plant resistance to environmental stresses
and consequently to plant growth in stress conditions has been well established. In
addition, due to their manifold PGP properties, these bacteria are able to reduce most
of the stresses imposed on the plant. Because of this bacterial characteristic, it is no
longer necessary genetically engineer all stress-sensitive crop varieties to be tolerant
to a large number of biological and non-biological stresses. In the present storyline,
the use of plant-associated PGPB containing 1-aminocyclopropane-1-carboxylate
(ACC) deaminase activity along with other innovations to alleviate ethylene-induced
stresses in stress-sensitive crop varieties could be amore cost-efficient environmental
amicable option, which could be attainable in a shorter time frame and ensure sus-
tainable agriculture. One of the limitations of using such bacteria (ACC deaminase-
producing PGPB) to diminish the effect of stress imposed on plant under natural
conditions (i.e., field conditions) is the reduction in their ability and survival under
natural conditions (i.e., high concentrations of heavy metals, high salinity and tem-
perature, water deficit, competition with other native microorganisms for water and
nutrients, and adverse soil physical and chemical conditions). A possible solution
to this problem may lie in the utilization of ACC deaminase-producing bacterial
endophytes (Sturz and Nowak 2000).

Since the ability of PGPB including ACC deaminase-producing bacteria to aug-
ment plant tolerance to environmental stresses is impacted by environmental stressful
conditions (Etesami and Beattie 2018) (i.e., loss in ACC deaminase activity by bac-
teria with increasing salinity) (Upadhyay et al. 2009), it is suggested testing the
production ability of ACC deaminase of isolated bacteria in the presence of various
stresses such as salinity, water deficit, heavy metals, etc. In other words, the use
of ACC deaminase-producing PGPB that are picked out established upon both high
stress tolerance and efficiency in expressing PGP characteristics would outstandingly
advance our ability to grow crops in stressed agricultural environments.

In most of the previous studies, the effect of 1-aminocyclopropane-1-carboxylate
deaminase-containing bacteria on alleviating a stress has been evaluated. Since most
of the environmental stresses, for instance, water deficit, salinity, heavy metals, and
imbalanced nutrition, exist in most agricultural land concurrently, it is recommended
that the efficacy of ACC deaminase-producing PGPB be investigated concurrently in
the presence of these stresses to pick out and introduce the best 1-aminocyclopropane-
1-carboxylate deaminase-containing bacteria.

Relative to 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing
rhizobacteria, somebeneficial aspects of 1-aminocyclopropane-1-carboxylate (ACC)
deaminase-containing bacterial endophytes, i.e., their function in alleviating salin-
ity, water deficit, excess of water, biocontrol, temperature and imbalanced nutrition
stresses, nodulation in legumes and field appraisal and use of potential of these



304 H. Etesami et al.

bacteria as bio-fertilizers in stressed soil have not been thoroughly exploited. On a
commercial scale, application of these bacteria in stressed agriculture might prove
effective and could be a sound step in the direction of producing and conserving
sustainable crop plants.
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Chapter 11
Halophilic Microbes from Plant Growing
Under the Hypersaline Habitats
and Their Application for Plant Growth
and Mitigation of Salt Stress

Enespa, Jai Prakash and Prem Chandra

Abstract Salinity of the agriculture soil is the serious issue all over the world, and it
is also an important environmental factor for reduction of growth and yield of agricul-
tural crops. The density of more salt available in soil may alter the physiological and
metabolic activities in the agricultural crops and reduce the growth and production
of crops both qualitative and quantitative ways. For combating against soil salinity,
many transgenic salt-tolerant crops have been developed but far too little is success.
For solution, in the soils the use of plant growth-promoting rhizobacteria (PGPR)
can reduce soil salinity, load of chemical fertilizers, and pesticide in the agricul-
tural field, and improve soil health, seed germination, crop growth, and productivity
under saline condition PGPR accepted as potential microbes that can tolerate vari-
ous atmospheric circumstances like more temperature, pH, and saline soils. In the
saline environment, many halophilic/halotolerant bacteria and plants/halophytes are
observed/adapted and perform a significant role in saline soil ecosystem. Innumer-
able microfloral communities and halophytes contain salt-tolerant gene, and they
perform as an essential protagonist in subsistence for extreme environmental con-
dition especially salt. It can be concluded that PGPR can be used as a supportable,
manageable, sustainable, and economical tool for salinity tolerance and productivity
of crops/plants.
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11.1 Introduction

The population of human will be expected to reach 9.8 billion until 2050 (Maga-
llon and Dinneny 2019). In addition, the demand for food also be increased with
the enhancing population, but this demand cannot be fulfilled without soil fertility,
beneficial microorganisms, and essential nutrients of the soil (Poeplau et al. 2019;
Chandra and Enespa 2017). Currently, many chemical fertilizers and pesticides are
used in the soil for production of food; however, these ingredients can be increased
for crop growth and productivity (Chandra and Enespa 2017), but simultaneously
it increases soil salinity and also reduces soil fertility and beneficial microorgan-
isms present in the soils (Rashid et al. 2016; Yang et al. 2019). The salinity in soil
ecosystem is a major agrochemical/abiotic stress problem mainly in the semi-barren
and waterless areas (Gu et al. 2016). Approximately, 65% of crop’s productivity is
adversely affected by saline soil (Machado and Serralheiro 2017).

A significant role is played by microorganisms in the improvement of produc-
tive soil and crop production and yield. In addition, some ions (e.g., sodium (Na+)
and potassium (K+)) also affect the growth of plant and microorganisms and ulti-
mately increase the soil salinity (Yan et al. 2015). Besides these, the climate changes
such as drought, shortage of water, low rainfall, and abrupt changes in temperature
also increase the soil salinity (Chandra and Enespa 2016). Reactive oxygen species
(ROS), hydrogen peroxide (H2O2), superoxide (O2), hydroxyl radicals (OH−), lipid
peroxidation, and the integrity of the membrane are other parameters of soil salinity
which are produced by the cellular response (Choudhury et al. 2017; Chakraborty
et al. 2018; Singh et al. 2018). In the presence of soil salinity, organic matter, essen-
tial nutrients, and beneficial microorganisms are reduced and ultimately it negatively
affects the crop’s productivity (Egamberdieva et al. 2017). Soil salinity reduces the
root and shoots growth and finally decreases the crop’s productivity (Glick 2014). For
the management of soil salinity, plants used various types of mechanisms (Schmidt
et al. 2018). Among all mechanisms, osmolyte is a common mechanism used by
the plant. Osmolytes provide protection to the plant cell organelles and also build
up compatible solutes (Chakraborty et al. 2018; El-Esawi et al. 2019). Besides, the
formation of free radicals stabilizes DNA, stress protein, and prolines during salt
stress condition are other factors for survival and growth of the plant (Teh et al.
2016; Chandra and Enespa 2016). Moreover, antioxidant enzymes such as peroxi-
dases (POX), superoxide dismutase (SOD), and catalase (CAT) also protect against
salinity and toxicity (Joseph and Jini 2010; Caverzan et al. 2016).

However, these mechanisms are not good for a long time in the reduction of
soil salinity; currently, it needs a viable method for reduction of soil salinity and
improves the soil fertility and increases microbial population, plant growth, and yield
at high saline condition (Ladeiro 2012; Shrivastava and Kumar 2015). Microorgan-
isms play a significant role in the improvement of soil fertility, crop’s growth, and
yield (Yan et al. 2015; Biswas and Paul 2017). Among all microbial group, plant
growth-promoting rhizobacteria (PGPR) is an eco-friendly method for plant growth
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and sustainable agriculture by various ways such as the production of phytohor-
mones, solubilization of minerals such as potassium, zinc, phosphate, and chelation
of iron under saline condition (Verma et al. 2015; Yadav et al. 2015a, b, c; Habib
et al. 2016; Ilangumaran and Smith 2017; Numan et al. 2018). This chapter describes
the role of PGPR in the improvement of soil fertility and reduction of soil salinity
and crop’s yield under saline condition. In addition, how halotolerant microbes and
plants survive under saline condition has been also explained.

11.2 Halophiles, Classification, and Hypersaline
Environments

Those microorganisms can propagate and maintain their spore cycle at more saline
concentrations (≥150 g L−1/15%) known as halophile (Ollivier et al. 1994; Oren
2008). The halophile is categorized into three dissimilar groups on the beginning
of different salt concentrations: 1) less (1–6% NaCl), temperate (7–15%), and more
salt concentrated halophile (15–30%) (de Lourdes Moreno et al. 2013; Chandra and
Singh 2014; Yadav et al. 2019a, 2015d). Different concentrations of salt occur in the
soil, and these are found at various depths in the soil habitats. According to Or et al.
(2007), salt concentration and their variability are foundmuchmore thanwater. In the
saline environment, different plants are growing known as halotolerant (halophytes)
at different concentrations of salts and recorded well adaptability and perform a key
character in the biogeochemical cycles (Nabti et al. 2015; Etesami and Beattie 2018).
Microbes play a major character in enhancement of herb adaptation at various saline
habitats (Bringel and Couée 2015; Bang et al. 2018; Yadav et al. 2019a). However, a
limited microbial diversity is found in the extreme soil habitats/hypersaline environ-
ments due to various environmental factors and high salt concentrations (Ulukanli
and Digrak 2002; Chandra and Singh 2016; Yadav and Saxena 2018). Besides soil
salinity, the saline environment is mainly found in the aquatic water such as lakes,
river, pond, and sea (Sánchez-Porro et al. 2003). From saline environments, the food
or food-based products, plants, and animals contain salts (Maturrano et al. 2006;
Ventosa et al. 2015).

11.3 Halophilic/Halotolerant Microbial Diversity in Soil

Soil salinity affects the structure, composition of microbial species, and also bacteri-
ological populations present in the rhizospheric regions of crops. These communities
have different groups, which show modified structural and physiological properties
under hypersaline condition (Bever et al. 2012; Mendes et al. 2013). However, bac-
terial communities are dominant as compared to other microbial communities (e.g.,
virus, fungi, protozoa, and algae), and it is found in the rhizospheric region of the
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plant under saline condition (Mukhtar et al. 2017;Yamamoto et al. 2018;Chandra and
Enespa 2019b). Besides rhizosphere, bacterial communities are also recorded endo-
phytic region, in salt lakes, river water, and root nodules (Albaggar 2014; Leite et al.
2017). But in the saline soil, bacterial communities do not define a similar group of
phylogeny but signify a assemblagewhich has progressed in altered types ofmicroor-
ganisms that belong to the genera Actinopolyspora, Bacillus, Halomonas Micrococ-
cus, Marinococcus, Pseudomonas, Salinicoccus, and Vibriowhich are mainly found
in the hypersaline region (Ventosa et al. 1998; Soto-Padilla et al. 2014; Chandra et al.
2014; Verma et al. 2017b; Yadav et al. 2018a, b, d). These genera belong to both
Gram-positive and Gram-negative bacteria showing rod-, comma-, and cocci-shaped
cell. However, Gram-negative bacteria appear to be dominant in saline environments
(Ventosa et al. 1998; Canfora et al. 2014). In Gram-negative bacteria, root-nodulating
bacteria showing root-colonizing property are considered to be a halotolerant group
(Zahran 1997). These bacteria have capable of nitrogen fixation and improve soil
fertility at high concentration. A halotolerant bacterium Swaminathania salitolerans
gen. nov., sp. nov. was isolated from the rhizosphere, roots, and stems of mangrove-
associated wild rice (Loganathan and Nair 2004). Another bacteria belonging to the
genus of Azospirillum, Bacillus, Enterobacter, and Azotobacter were isolated from
the different agricultural under saline soils (Alamri and Mostafa 2009; Fendrihan
et al. 2017). The popular nitrogen-fixing bacterium Rhizobium is linked with marsh
grass Spartina alterniflora as a halotolerant plant has also been isolated and identified
from hypersaline condition (Bedre et al. 2016).

Besides, another nitrogen-fixing bacterium Bacilluswas screened from salty soils
of Egypt, and it showed acetylene reduction activity at 5% NaCl concentration
(Zahran et al. 1995). The genus Azotobacter is the free-living nitrogen-fixing bac-
terium showing a significant role in different environmental conditions such as soil,
water, and sediments at the high salt concentration (Akhter et al. 2012; Sahoo et al.
2014). Azotobacter strain isolated from agricultural crops showed high nitrogen-
fixing ability at 30% NaCl. The nitrogen fixation efficiency of a bacterium A. vinel-
landii was decreased from nonsaline to saline condition as reported by Sahoo et al.
(2014). Azospirillum halopraeferens was isolated and enhanced the growth of man-
grove plant by root colonization irrigated with seawater (Bashan et al. 2000). A little
information is available on the halotolerant microbial diversity isolated from saline
soils as compared with hypersaline aquatic locales (Oren 2008; Yang et al. 2016).

11.4 Effect of Soil Salinity in the Soil Environment

The salinity soil is considered mainly as a major problem in the ecosystem because
these problems increase continuously, disturbing biotic and abiotic soil constituents
(Vandegehuchte et al. 2010; Bünemann et al. 2018). It also affects natural circum-
stances in the barren and semi-barren regions of an ecosystem. Excess of saline soils
affects seriously on the micro- and macro-floral structure and on space where it lives
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(Getu 2009). Excess salt in the soils known as sodic soils contains sodium and chlo-
ride ions in the earthen constituent part (Bianco and Defez 2010). Due to insufficient
discharge and drainage of irrigation water, salts accumulated in the soil (Cuevas et al.
2019). However, the chlorides, bicarbonates of calcium, sulfates, carbonates, magne-
sium, sodium, and potassium salts are present in the irrigation water (Warrence et al.
2002). The soil structure growth and the production of crops adversely are affected
by salt concentration (Ondrasek et al. 2011; Shrivastava and Kumar 2015). On the
bases of soil and groundwater practices generally, the salinity is of three types: tran-
sient, groundwater associated, and irrigation salinities (Greene et al. 2016; Chandra
et al. 2020). Salinity affects both soil system and living organisms that are known as
most severe abiotic environmental stress (Gupta and Huang 2014). The immediate
consequences of soil are found for biological activity or conservation occurs within
the pore space or on the surfaces of the particles that forms the pores (Indoria et al.
2017; Totsche et al. 2018). High salinity leads to negative effects on soil structure
which is well known.

Soil dispersion and clay platelets to swell and aggregate are caused by elevated
sodium concentrations (Warrence et al. 2002). Thus, in the binding of clay particles,
the forces involved are dislocated under the stimulus of sodium ions. Clay particles
to plug soil pores are caused due to the dispersion of soil (Arora and Dagar 2019).
Therefore, the permeability of soil for water and air is reduced and forms apparent
crusting (Kooistra and Tovey 1994; Greene and Hairsine 2004).

It is documented that the presence of water in the soil leads to the swelling of the
soil particles with high smectite clay content, and the hydration of some minerals
as a result of the reduction of the cross-sectional area of soil pores is documented
(Mahrous et al. 2018). Under high sodium or low salt concentrations, this process
is completed and it causes the mobilization of fine particles and diffusion within
the pores (Mahrous et al. 2018; Chandra et al. 2020). The water and air will be
obstructed within the soil structure and particles by the particles stored in the small
pores (Schjønning et al. 2002).

11.5 Mechanisms for Adaptation of Microorganisms
in the Hypersaline Environment

Phylogenetically, the microbial life is very diverse at high concentrations, and the
salinity environments are occupied by halophilic and halotolerant microflora of all
domains of life, such as archaea, bacteria, and eukarya (Oren 2008; Ma et al. 2010).
Using this mechanisms these halophile microorganisms to tolerate the high salt con-
centrations, and in various cases to acclimatize their structure to alterations in high
salinity in their environments, are miscellaneous as well (Oren 2008).

The basic mechanisms for adaptation of microorganisms in the hypersaline
environment are given below:
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• Biological membranes of the microorganism are absorptive to water containing
salt. Consequently, the movement of water inside and outside of microbial cells
is possessed by changes in ionic activity between cytoplasm and external medium
(Murínová and Dercová 2014; Watson 2015).

• The bacterial cell maintains high osmotic pressure under saline condition;
therefore, it is another strategy for adaptation mechanism (Weinisch et al. 2018).

• Thehigh concentrations of inorganic salts inside themicrobial cell are accumulated
and achieved the osmotic balance. The sodium ions are left out from cells in all
three domains of life, and inside the cell the salt strategy is based on KCl rather
than NaCl as a main salt of intracellular organism (Oren 2002).

• Di-myoinositol-1, 1-phosphate, cyclic 2,3-diphosphoglycerate,α-diglycerol phos-
phate, mannosylglycerate, and mannosylglyceramide are compatible solutes
which are very strong water structure formers and are excepted from the hydra-
tion shell of proteins, thus alleviating the hydration shell and decreasing the water
activity coefficients (Gunde-Cimerman et al. 2018).

• Inmany extremophiles, such low-molecularweight compounds are accumulated to
increase the concentrations of salts but also as a reply to other ecological alterations
such as temperature stress.

• Di-myoinositol-1, 1-phosphate, cyclic 2, 3-diphosphoglycerate, α-diglycerol
phosphate, mannosylglycerate, and mannosylglyceramide are the examples of
organic compatible solutes in thermophiles and in psychrophiles (da Costa and
Santos 2009).

• Mostly, at low salt concentration, the microorganisms are endured and also accu-
mulate salts inside the cell in the form of solutes from outsidemedium (Shrivastava
and Kumar 2015).

11.5.1 Mechanism of Salt Tolerance

The microbial population in the rhizosphere decreases severely due to increase in pH
and salinity (Ibekwe et al. 2010). In hypersaline atmosphere the microbes inhabits
using “compatible solute strategy” having capability to strong osmotic pressure to
resist the salt stress (Pikuta et al. 2007; Chandra and Singh 2017). Choline, betaine,
proline, glutamic acid, and other amino acids are the compatible solutes stored by
various halophilic bacteria at high concentrations without interfering with cellular
processes (Poolman and Glaasker 1998).
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11.5.2 Characteristics and Function of Compatible Solutes

The HPLC and NMR methods are followed for the determination and production
of compatible solutes in various archaea and bacteria (Roberts 2005a, b). The com-
pounds in limited numbers comprise the bacteria such as sugars (trehalose), polyols
(glycerol and glucosyl glycerol), free amino acids (proline and glutamate), offshoots
thereof (proline, betaine, and ectoine), quaternary amines and their sulfoniumanalogs
(glycine betaine, carnitine, and dimethylsulfoniopropionate), sulfate esters (choline-
O-sulfate), and N-acetylated diamino acids and small peptides (N-acetylornithine
and N-acetylglutaminylglutamine amide) (Kempf and Bremer 1998). Generally,
the compatible solutes do not carry a net charge at physiological pH due to their
high molecular solubility (Galinski 1993). The vital cellular functions such as DNA
replication, DNA–protein interactions, and the cellular metabolic machinery with-
out disturbing the solutes can reach high intracellular concentrations in disparity to
mineral salts (Wang and Levin 2009; Long et al. 2018). Compatible solutes such
as glycine, betaine, and proline increase the cytoplasmic volume and water con-
tent freely of the cells at high osmolality, and their accumulation uninterruptedly
permitted proliferation of cells under unfavorable conditions (Kohler et al. 2015).

Various halotolerant nitrogen-fixing bacteria accumulate electrolytes such as K+

glutamate, as enzymes, ribosomes, and transport proteins of these bacteria require
high level of potassium for stability and activity using salt in strategymechanism (Da
Costa et al. 1998a, b). But within the cell physiology, organic solute accumulations
are more compatible (Ventosa et al. 1998; Wood et al. 2001). The organic solutes
have two mechanisms under saline conditions for their mode of actions: firstly to
increase the intracellular osmotic strength and secondly to stabilization; the cellu-
lar macromolecules are proposed (Yancey et al. 1982; Csonka 1989; Chandra and
Enespa 2019a). After adding these solutes in bacterial culture, the drastic stimu-
lation in growth rate is observed in cells in high osmolality media (Gouffi et al.
1998). Higher internal concentrations of solutes accumulated in the alleviation of
osmolality (Patchett et al. 1992). The glucose is oxidized in Entner–Doudoroff path-
way modifications by the mostly halotolerant organisms (Fig. 11.1), the synthesis of
compatible solutes after formation of pyruvate, and its further oxidation by pyruvate
oxidoreductase in tricarboxylic acid cycle (TCA) (Kindzierski et al. 2017).

In salt-tolerant bacteria, the accumulation of organic solutes has been found
to require genetic initiation (Roberts 2005a, b). In response to osmotic stress in
Bacillus sp., intracellular proline to increase rapidly has been observed and the cor-
responding genes were detected, respectively, proB, proA, and proC encoding γ-
glutamyl kinase (γ-GK), γ-glutamyl-phosphate reductase (γ-GPR), and pyrroline-
5-carboxylate (P5C) reductase (Pérez-Arellano et al. 2010). L-aspartokinase (Ask),
L-2,4-diaminobutyric acid transaminase (EctB), L-2,4-diaminobutyric acid acetyl-
transferase (EctA), and L-ectoine synthase (EctC) encoding the structural gene and
detected for biosynthesis of major harmonious solute like ectoine in Halobacillus
dabanensis (Reshetnikov et al. 2006; Czech et al. 2019). Choline or choline-O-sulfate
oxidized enzymatically into glycine betaine due to involvement of four genes betI,
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Fig. 11.1 Synthesis of compatible solutes: Proline, ectoine, and glutamine under stress conditions
(Figure adopted by Saum and Müller 2008)

betC, betB, and betA well characterized at molecular level and organized into one
operon (Osteras et al. 1998; Stöveken et al. 2011). Various halotolerant nitrogen-
fixing bacteria are also observed in the cell for the maintaining of the balance of
Na+ and K+ ions (Hanin et al. 2016; Thomas and Apte 1984). A cytoplasmic KCL
concentration is maintained by bacteria similar to that of the surrounding medium in
order to attain an osmotic equilibrium (Kraegeloh et al. 2005). The Na+/H+ antiporter
performance is a major character in homeostasis of pH and Na+ in cells that inter-
change Na+ for H+ (Suárez et al. 2008). The genes that are proved to be involved in
halotolerance in nitrogen-fixing bacteria either through knockout studies or through
overexpression studies are framed in Table 11.1.

11.5.3 Exchange of Solutes/Ions

Many solutes/ions are present in the soils and perform an important character in
the existence of microorganisms in the presence of soil salinity (Shrivastava and
Kumar 2015). However, more solutes or ions containing soils can decrease microbial
population in the rhizospheric region of plants (Aung et al. 2018). Several microbes
reside in hypersaline environment condition proficient passionate osmotic pressure,
and thus use compatible solute strategy or salt-in strategy to resist salt stress (Oren
2011). Choline, betaine, proline, glutamic acid, and other amino acids compatible
solutes accumulated in most of the bacteria at high salinity without interfering with
cellular procedures (Wood et al. 2001).
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Table 11.1 Genes conferring salt tolerance response in selected nitrogen-fixing bacteria

Strains Products Genes References

Rahnella aquatilis
HX2

1-aminocyclopropane-1-
carboxylic acid
deaminase

acdS gene Peng et al. (2019)

Sinorhizobium meliloti
B401

Na+/H+ antiporter AtNHX1 gene Stritzler et al.
(2018)

Azospirillum lipoferum
FK1

Proline and glycine
betaine levels

PAL, PPO, CHS,
CHI, REB2A, and
IFS

El-Esawi et al.
(2019)

Klebsiella sp. SBP-8 K+/Na+ transporters AcdS gene Singh et al. (2015)

Pseudomonas
aeruginosa

Na+/H+ antiporter nhaP Inaba et al. (2001)

Sinorhizobium meliloti (p) pp Gpp synthetase relA Wei et al. (2004)

Glycine betaine/proline bet genes Mandon et al.
(2003)

Betaine transporter betS gene

Transcription cleavage
factor

greA

Potassium-uptake
protein

Kup Nogales et al.
(2002)

Rhizobium tropici Histidine kinase
Na+/H+ antiporter

ntrY, ndvA and
ndvB (synthetic
gene), nhaA,
nhaB, nhaC

Wai Liew et al.
(2007)

Azotobacter vinelandii Glucosyl glycerol
biosynthesis

ggpPS Klähn et al. (2009)

Enterobacter cloacae Na+/H+ antiporter nhaA Lentes et al. (2014)

Synechocystis sp. Na+/H+ antiporter nhaS1, nhaS2,
nhaS3, nhaS4, and
nhaS5

Mitschke et al.
(2011)

Aphanothece
halophytica

Na+/H+ antiporter napA Laloknam et al.
(2006)

Bacillus subtilis γ-glutamyl kinase proA, proBproC Zhao et al. (2011)

11.5.4 Mechanism of Salt-Dependent Lipid Changes

The lipid content present in the microbial plasma membrane shows special charac-
ter for the survival of stress environmental condition. The phospholipids of Pseu-
domonas halosaccharolytica contain glucosyl phosphatidylglycerol, phosphatidyl-
glycerol, diphosphatidylglycerol, and phosphatidylethanolamine which are respon-
sible for growth under high saline condition (Li et al. 2016), and this result indicates
increase of phosphatidylglycerol and reduction in phosphatidylethanolamine (Hira-
matsu et al. 1980). Later, Hara and Masui (1985) observed that pulse-chase labeling
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of lipids with several radioactive originators showed that the rate of synthesis of
phosphatidylethanolamine was inhibited by an increase in salt concentration, but the
rate of phosphatidylglycerol synthesis was unaffected. The deficiency of motivation
of phosphatidylglycerol creation by salt does not settle with compositional data.
The radiolabeling experimentations were performed with nongrowing, starved cells,
whereas the compositions of lipids were resolute directly on cells collected from
culture media (Hara and Masui 1985). The inhibition of phosphatidylethanolamine
creation leads to an upsurge in phosphatidylglycerol comfortable in the microbial
cell because of the bifurcated phospholipid biosynthetic pathway going inside the
cell (Sohlenkamp and Geiger 2016). A similar type of study was performed by Ohno
et al. (1979); the little amount of NaCl did not affect the growing bacteria due to
the presence of glucosyl phosphatidylglycerol. However, survival mechanisms of
halophilic bacteria due to membrane lipid composition cannot judge very easily; this
is a very difficult process (Oren 2008). The lots of chemicals, labor, and time may be
taken to well understand the interaction between bacterial lipid membrane and salt
medium (Pichler and Emmerstorfer-Augustin 2018).

11.5.5 Salt-Tolerant Genes of Bacteria

Many microorganisms contain salt-tolerant gene and perform an important character
in survival for extreme environmental condition especially salt (Holmberg andBülow
1998). The bacterial spores of Bacillus thuringiensis israelensis, B. sphaericus, and
B. subtilis contain osmotolerant protein, i.e., small acid-soluble spore protein (SASP)
coded by an ssp gene and this gene can survive at the high salt concentration (Cucchi
and Rivas 1995). Cucchi and Rivas (1995) reported a sspE gene from B. subtilis
and is introduced into another host bacterium B. thuringiensis israelensis strain 4Q2
and observed 65–650 times higher level of salt-tolerant property as compared to
natural B. thuringiensis israelensis. In addition, this bacterium does not cause any
side effects in living organisms as well as environments. Some other genes such as
ectA (diaminobutyric acid acetyltransferase), ectB (diaminobutyric acid aminotrans-
ferase), and ectC (ectoine synthase) genes are reported in B. halodurans and showed
in the survival of stress tolerance (Reshetnikov et al. 2011).

There are two genes, namely, GspM and EchM have recognized from a metage-
nomic collection organized fromwater sample of pond (Kapardar et al. 2010). GspM
gene displays comparison with stress proteins, and another gene EchM showed sim-
ilarity with enoyl-CoA hydratases and both genes were identified to be responsible
for halotolerant at high concentration and have latent solicitation in generating halo-
tolerant recombinant bacteria or transgenic crops (Kapardar et al. 2010). The two
genes were further isolated from Rhizobium sp. BL3 and showed hyper-salt-tolerant
ability (Payakapong et al. 2006). Hence, many microbes from rhizosphere can be
exploited to isolate novel gene for salt tolerance and their potential application in the
plant genetic engineering or plant growth under saline environment condition.
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11.5.6 Salt-Tolerant Genes of Yeast

The two genes HAL1 and HAL3 were isolated and showed overexpressed gene from
yeast (Saccharomyces cerevisiae) and also increased the halotolerant capability by
a decreasing intracellular Na+ and enhanced internal K+ concentration during salt
stress (Ferrando et al. 1995; Locascio et al. 2019). Further, the gene HAL1 has
been introduced into tomato crop by Agrobacterium tumefaciens-mediated transfor-
mation which improves salt tolerance of the transgenic tomato and enhances the
growth and productivity (Gisbert et al. 2000). An enzyme mitogen-activated protein
kinase (MAPK) coded by a gene HOG1 shows an important role in the osmoregu-
latory pathway in S. cerevisiae (O’Rourke and Herskowitz 1998). This gene is also
responsible for salt tolerance in Torulopsis versatilis (Wang et al. 2014). A delightful
mutant strain Torulopsis versatilis T5 showing salt-tolerant ability was fashioned
from wild-type T. versatilis (T) consuming genome trundling and further isolated
two genes T5HOG1 and THOG1, demonstrating upturn of salt tolerance in T. versa-
tilis (Cao et al. 2011). Moreover, overexpression of T5HOG1 and THOG1 enhanced
the acceptance of salt in S. cerevisiae (Cao et al. 2011).

11.5.7 Salt-Tolerant Genes of Plants

A wide range of cruel ecological circumstances such as salinity, heat, cold, drought,
and insect attack are normally exposed in plants. Plants have established altered
methods being in sessile nature to survive grow and develop under speedily altering
environmental conditions (Hayat et al. 2012). For these mechanisms, plants regulate
genes for transcription which are known as transcriptomics under stress conditions
(Shu et al. 2018). The genes for regulation of transcription play different roles under
stressful environmental conditions. However, during the reproductive and seedling
stages, plants have more sessile to stress and the stress response studies express
novel genes or proteins with imperative roles in plant anxiety reworking during these
growth stages (Verma et al. 2016a, b). However, the word salinity acceptance comes
from one or more genes that reduce the uptake of the salt content from the soil and
the conveyance of salt through the plant (Munns 2005, 1993).

Salinity tolerance is a very complex process that is recycled by plants to regulate
(up-regulation or down-regulation) the manufacture of specific gene products in the
form of RNA or proteins (Gupta and Huang 2014). This process has been accepted at
different stages of central dogma technologies like from initiation of RNA process-
ing, post-transcriptional modification, and initiation translation to post-translational
modification of proteins in living organisms especially plants (Zhao et al. 2017).
Understanding the transcription or translation of plants delivers thorough knowl-
edge about the gene expression at the mRNA level. The summary of transcriptional
or translational level is widely used for isolation and identification of candidate genes
involved in stress responses (Xiao et al. 2017).
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Transcriptome profiling is the screening processes which down-regulated or up-
regulated the transcription processes that are enormous evidence about salt-tolerant
genes till now. Further, a genomic method gives an important role in cloning, encod-
ing, screening, and identifying these genes (Lodish et al. 2000). Under salt stress
condition, the expression of gene is altered by transcript issues and those up- or
down-regulated the expression of the gene in plants or microorganisms by these are
most important switches (Lodish et al. 2000).

A gene bZIP was identified and showed up-regulation gene expression in wheat
crop under insistent salt stress disorder and gene expression of down-regulation in
salt-tolerant variety of wheat crop (Hayano-Kanashiro et al. 2009). The osmotic
regulating and ROS-scavenging genes mostly are salt tolerance genes and also up-
regulated in salinity toleant species (Amirbakhtiar et al. 2019). According to study,
more than 10 genes showed up-regulated genes in halophytes plant species Spartina
alterniflora under saline condition. Under saline condition, more than 10 genes
showed up-regulated genes in Spartina alterniflora halophytes plant species, and
most of the genes were found to osmotic regulation process among them (Bedre
et al. 2016).

11.6 Mechanisms of Plant Growth Promotion of Halophilic
Bacteria

11.6.1 Nitrogen Fixation Under Salt Stress Condition

At global level in arid and semi-arid regions, salinity is a serious issue for agriculture.
Growth promotion and photosynthesis rate at various stages of plants affected by
salinity stress (Magallon and Dinneny 2019). The production of salt-sensitive crops
such as legumes is affected by salt stress particularly since these plants depend on
nitrogen requirement for symbioticN2 fixation (Hussain et al. 2010;Kour et al. 2019b,
c, d). The crop productivity mainly depends on the deprived mutual association of
nodulation in bacteria and ultimately decreases in nitrogen fixation capacity (Mengel
et al. 2001). Vicia faba, Phaseolus vulgaris, andGlycine max legume plants are more
salt-tolerant species than another leguminous plant Pisum sativum (Mengel et al.
2001). V. faba crop fixed more nitrogen under saline condition due to the presence of
rhizobia inside the root nodules and it has been seen (Mengel et al. 2001). Prosopis,
Acacia, and Medicago sativa are the other salt-tolerant leguminous plants but these
are less halotolerant than the leguminous plants (Joseph et al. 2015). Rhizobium sp.
performs a very significant character in symbiosis with plants and nodulation process
but, in the presence of salt, inhibits the initial process of rhizobium–legume symbiosis
(Maróti and Kondorosi 2014). However, in several reports, the effect of salt stress
on nodulation and nitrogen fixation of legumes have been observed (Maróti and
Kondorosi 2014). In the presence of salt, the capability of N2-fixation reduces and is
documented to a decrease in the respiration of the nodules and minimize in cytosolic
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production protein, especially leghaemoglobin by nodulation (Zahran 1999). Saline
stress negatively affected on N2 fixation by legumes is related to the salt-induced
decline directly in dry weight and nitrogen content in plant shoot (Delgado et al.
1994).

Glycine betaine is the osmoprotective substances which perform an imperative
character in the maintenance of nitrogenase activity in bacteroides under salinity
stress (Normand et al. 2015). The halotolerant Rhizobium sp. enhanced the growth,
nodulation, and fixed N2 content in Acacia ampliceps plant containing 200 mM
NaCl concentration in the sand culture medium (Egamberdieva et al. 2013) and one
more halotolerant Rhizobium sp. designed N2 fixing symbiosis more effective with
soybean than other salt-sensitive strain of bacteria (Egamberdieva et al. 2013). Fur-
ther, the isolated rhizobial strains from Acacia nilotica showed tolerance to 850 mM
NaCl concentration formed effective N2-fixing nodules on Acacia trees grown at
150 mM NaCl (Zahran 1999). The salt-tolerant Rhizobium strains produce nodula-
tion in legumes and form effective N2 fixing symbiosis capability in the soil under
moderate halophile environment observed in the result (Zahran 1999). Therefore,
the booster of salt-tolerant rhizobia strains in the rhizosphere of leguminous crop
can enhance the N2 fixation ability under saline condition. However, host tolerance
legume to NaCl is a very key element in influencing the achievement of harmonious
Rhizobium strains to form symbiosis successfully under the halophilic environment
(Egamberdieva et al. 2013).

11.6.2 Phytohormone Production Under Saline Condition

Phytohormones are natural organic compounds which enhance the growth and pro-
ductivity of cultivars at very less concentrations. These phytohormones support the
distinction and improvement of plant growth by the regulation of various progres-
sions. Generally, the phytohormones at plants root locality are the microbial origin
recommended for a functional reply in the host crop (Verma et al. 2016a, b; Enespa
andChandra 2019). Indole-3 acetic acid (IAA), gibberellic acid, abscisic acid (ABA),
cytokinins, and other plant growth regulators produced by NaCl-tolerant rhizobac-
teria outwardly maintain the rooting with augmented number of roots, increase root
length, shoot length, and number of root tips, and finally lead to increase in the uptake
of nutrients and thus progress plant fitness under saline environmental circumstances
(Verma et al. 2016a, b). Bacillus and Pseudomonas strains belong to IAA produc-
tion that improved the growth of soybean crop at 100 mM NaCl concentration by
the increasing antioxidant activity and decreasing the lipid peroxidation (Kumari
et al. 2015). Furthermore, an isolated bacterium produced osmotolerant IAA dis-
played to increase the sprouting of rice seeds in salinity stress are reported (Jha and
Subramanian 2013).
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11.6.3 ACC Deaminase Production Under Saline Condition

A volatile phytohormone known as ethylene has capacity for growth promotion of
plant at very less quantity like nodulations and improvement of various asexual plant
parts, rooting, cuttings, and also twisted in the transduction of a signal for the appre-
ciation of saline stress ecosystem (Saravanakumar and Samiyappan 2007). However,
a large amount of ethylene is produced under abiotic environmental ecosystem and
in the presence of this substrate can inhibit the root growth, shoot growth, and pro-
ductivity of plants (Morgan and Drew 1997). Some chemical substrates such as
aminoethoxyvinylglycine and cobalt ions act as an inhibitor of ethylene synthesis
(Arora et al. 2017).

However, these chemical substrates are too much expensive and also can harm
plants and environment. Halotolerant rhizobacteria showing plant growth-promoting
characters contain aminocyclopropane-1-carboxylate (ACC) deaminase which splits
ACC into ammonia and α-ketobutyrate, thereby reducing the near of ethylene in
stressed plants (Habib et al. 2016). In the presence of ACC deaminase-producing
bacteria, plant 1-aminocyclopropane-1-carboxylate is sequestrated and ruined by
the cells of bacteria to fund energy and nitrogen, enhancing the plant growth under
saline ecosystem (Tiwari et al. 2018).

The rhizospheric bacteria which belong to Gram-positive andGram-negative gen-
era such as Arthrobacter, Bacillus, Brevibacterium, Corynebacterium, Exiguobac-
terium, Halomonas, Micrococcus, Oceanimonas, Planococcus, and Zhihengliuella
have been widely reported for ACC deaminase activity under saline conditions and
have recognized as a potential role in enhancement of growth under saline ecosys-
tem through ACC deaminase activity (Siddikee et al. 2015; Yadav et al. 2019c, d,
e). Pseudomonas simiae strain AU5 is the mutant bacterium overproduced ACC
deaminase documented to alleviate salt stress in mung bean plants as compared to
wild strain P. simiae AU5 and observed decrease the concentration of ethylene and
salt-induced membrane (bacteria and plants) damage (Kumari et al. 2016).

11.6.4 Under Salt Condition Phosphate Solubilization

Phosphorus (P) is an indispensable mineral after nitrogen for the growth of plant
promotion as it and essential of dissimilar biomolecules such as nucleic acids,
nucleotides, phospholipids, and phosphoproteins (Sharma et al. 2013). In the pres-
ence of salinity, uptake of P in plants is reduced and deficiency of P is appeared in the
form of symptoms such as dark bluish-green in color with leaves and stem becoming
purplish, etc. (Sharma et al. 2013). Mostly, insoluble forms of phosphorus in soils,
i.e., organic and inorganic phosphate, have less mobilization in the soils (Sharma
et al. 2013). Insoluble organic and inorganic phosphate conversion can be possible
due to species of rhizobacteria and also helps in the translocation of P from soil to
roots. For the solubilization of insoluble phosphates, many rhizobacteria show one of
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the several mechanisms such as reactions of ion-exchange, chelation, acidification,
and the production organic acids of low molecular weight such as gluconic acids
(Kalayu 2019; Rana et al. 2019a, b; Verma et al. 2017a). The halotolerant rhizobac-
teria to be vital for the mobilization of plant nutrients in several types and reduced
the acceptability of inorganic fertilizers (Jiang et al. 2019).

However, phosphate solubilization is a common process in the rhizosphere by
rhizobacteria that upsurge the mineral accessibility to crop (Jiang et al. 2019). An
important role played by the rhizospheric bacteria to the regulation of P from less
available forms and are essential for sustaining P is voluntarily available pools. Upad-
hyay et al. (2011) reported rhizobacterial strains to have well-organized solubilizing
ability of phosphate even up to high saline (6% NaCl concentration) condition and
enhanced plant growth under similar condition. For example, Pseudomonas inoc-
ulated in the rhizosphere of Zea mays crop showed salt tolerance under 6% NaCl
stress condition and increased the crop growth at same salt condition (Bano and
Fatima 2009). Additionally, Herbaspirillum seropedicae and Burkholderia sp. are
the phosphate dissolving bacteria; treated plants recorded 1.5–21% dry weight as a
compared to control plant under saline condition. Afterward, the better germination
of root and shoot growth as compared with control plant after being exposed to NaCl
inoculated Azospirillum in lettuce seeds (Carrozzi et al. 2012). P. simiae solubilizes
phosphate by producing acid phosphatase activity along with volatile compounds
that enhanced plant storage protein and uptake of P in soybean plants under 100 mM
NaCl saline ecosystem (Vaishnav et al. 2015).

11.6.5 Antioxidative Response Under Salt Condition

The compounds inhibit oxidation reaction known as an antioxidant, and this is a
chemical/biochemical process that can produce free radicals (Lü et al. 2010). The
oxidative stress is caused by the abiotic environmental factor like drought and saline
soil and resulted in the formation of reactive oxygen species (ROS) such as singlet
oxygen (O2), hydrogen peroxide (H2O2), and hydroxyl radical (−OH) that dam-
age cellular membranes, proteins, and DNA (Nita and Grzybowski 2016). When
the level of ROS increases, this causes oxidative damage to biomolecules such as
lipoproteins and at last leads to the death of plants (Sharma et al. 2012). However,
some major antioxidative enzymes such as superoxide dismutase (SOD), peroxidase
(POX), and catalase (CAT) are produced by rhizospheric bacteria such as Strep-
tococcus. Proteamaculans, and Rhizobium leguminosarum, and non-antioxidant
enzymes/compounds like ascorbic acid, tocopherols, and glutathione contribute in
ROS-scavenging mechanism (Sharma et al. 2012). Mycorrhizal-inoculated lettuce
plants showed higher superoxide dismutase (SOD) activity and protect the plant in
the presence of antioxidant under drought stress condition (Ruiz-Lozano 2003).

Salt resistance plants have been associated to more effective antioxidant schemes,
and a salt-tolerant bacterium P. simiae strain AU enriched antioxidants (peroxidase
and catalase) and gene expression in soybean plants when treated with 100mMNaCl
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stress disorder (Vaishnav et al. 2016; Chandra and Enespa 2019c). Drought stress
effects in maize plants are alleviated by Pseudomonas spp. drought-tolerant rhi-
zobacteria due to decrease in the antioxidant enzyme activity (Afridi et al. 2019). The
catalase and peroxidase activity boosted the non-inoculated crops during saline soil,
whereas Azospirillum brasilense inoculated plants showed lower enzyme activity
and expressively ameliorated the deleterious effects of salinity (Omar et al. 2009).

11.6.6 Siderophore Production Under Salt Condition

In the chelation of micronutrients, siderophore plays an imperative character such as
iron even under limiting conditions and with the redox activity it serves as a cofactor
of many enzymes (Ahmed and Holmström 2014; Chandra and Enespa 2016). Sev-
eral studies are reported on Bacillus to be a good siderophore producer (Kesaulya
et al. 2018). Production of siderophores in the rhizosphere by bacteria also helps in
dissolving of other ingredients, for example, P, zinc, potassium, and the availability
of various ionic ingredients to the plant through chelation of iron from precipitated
form (Sharma et al. 2013; Ahmed and Holmström 2014). In the soils, a huge amount
of iron is existent, but in an extremely unsolvable ferric hydroxide form, hence the
performances of iron as a limiting factor for promotion of plants growth even in ironic
soil. However, ferrous (Fe++) iron is oxidized into ferric (Fe+++) form by oxidation
process (Kesaulya et al. 2018). Under the biological ecosystem, the ferric ions are
inexplicable which forms its achievement by microorganisms, a considerable chal-
lenge in the soils (Colombo et al. 2014). Siderophores play important roles in the
development of plant growth by rhizospheric microorganisms (Ahmed and Holm-
ström 2014). Plants and bacteria mediate competition using existence of siderophore
that results in exclusions of fungal pathogens and other microbial competitors in the
rhizosphere by a reduction in the availability of iron for their survival (Ahmed and
Holmström 2014).

11.6.7 Halophilic Microbes as Biocontrol Agents

The production of crop yield potentially increased, and its diseases controlled biolog-
ically from rhizosphericmicroflora. Inhibition of phytopathogens using rhizobacteria
compromises a more sustainable method to control infection as compared to harm-
ful chemical-based methods (Compant et al. 2010; Etesami and Alikhani 2018).
Under the saline condition, a halophilic microbe plays an important role in maintain-
ing morphology, physiology, and reduction in soil salinity and also increases plant
susceptibility against phytopathogens (Table 11.2) (Etesami and Beattie 2018).

Halophilic microbes use to hostage the injurious properties of plant pathogens
through different mechanisms. Halophilic microbes produce one or more antimicro-
bial metabolites that act as antifungal, antibacterial, antiviral, antioxidant, cytotoxic,
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Table 11.2 Plant growth promotion of plants by halotolerant rhizobacterial inoculation

Microbes Host Plants Effect of host plants
under saline condition

Salt
concentration

References

Bacillus pumilus
ST2

Oryza sativa Controlling
caspase-like activity,
programmed cell
death, antioxidative
activity

25 mM NaCl Jha et al.
(2011)

B. pumilus
STR2,
Exiguobacterium
oxidotolerens
STR36

Bacopa
monnieri
L.

High proline
content/lipid
peroxidation

4 g NaCl/Kg of
soil

Bharti et al.
(2013)

Burkholderia
phytofirmans
PsJN,
Enterobacter sp.
FD 17

Zea Mays Decreasing xylem Na+

concentration/maintain
nutrient balance within
the plants

25 mM NaCl Akhtar et al.
(2015)

B. pumilus
STR2,
Halomonas
desiderata STR8

Zea mays Preventing major
shifts indigenous
microbial community

50 mM NaCl Bharti et al.
(2015)

P. simiae strain
AU-M4

Glycine Max
L.

Inoculated reduced
Na+ and enhanced K+

uptake

100 mM NaCl Vaishnav
et al. (2015)

Acinetobacter
sp. ACMS25,
Bacillus sp.
PVMX4

Phyllanthus
amarus

Improved
antioxidative defense
system

160 mM NaCl Joe et al.
(2016)

P. fluorescens
002

Zea Mays Improved root growth
and root formation
under salt stress

150 mM NaCl Zerrouk
et al. (2016)

Azotobacter
chroococcum
AZ6

Zea mays Improved chlorophyll
a and total content,
reduced proline and
amino-acid content

20 mM NaCl Silini et al.
(2016)

Bacillus
aquimaris DY-3

Zea mays L Chlorophyll content,
leaf relative water
content, accumulation
of proline, soluble
sugar and total
phenolic compound,
and activities of
superoxide dismutase,
catalase, peroxidase,
and ascorbate
peroxidase were
enhanced

1% NaCl Li and Jiang
(2017)

(continued)
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Table 11.2 (continued)

Microbes Host Plants Effect of host plants
under saline condition

Salt
concentration

References

Bacillus sp.,
Actinomycetes
sp., Rhizobium
sp.,
Oceanospirillum
sp.

Paddy crop Improve rice
germination, energy or
germination capacity

3–12 g/L NaCl Shi-Ying
et al. (2018)

Bacillus subtilis
(BERA 71)

Chickpea
crop

Enhanced plant
biomass and the
synthesis of
photosynthetic
pigments and reduced
the levels of reactive
oxygen species (ROS)
and lipid peroxidation
in plants under
conditions of stress.

200 mM NaCl Abd_Allah
et al. (2018)

Pseudomonas
PS01

Arabidopsis
thaliana

Improve the
germination rate,
transcriptional levels
of genes

150 mM NaCl Chu et al.
(2019)

Enterobacter
aerogenes LJL-5
and
Pseudomonas
aeruginosa
LJL-13

alfalfa plants Increased the shoot
height, fresh and dry
weights, yield and
crude protein content

150 mM NaCl Liu et al.
(2019)

phytotoxic, and/or antitumor mediators (Olanrewaju et al. 2017). Bacillus and Pseu-
domonas bacterial genera secreted this type of metabolites. Halophilic microbes are
also able to produce enzymes such as lipase, cellulase, β-1, 3-glucanase, chitinase,
and protease which can degrade cell wall and fungal growth (Husson et al. 2017;
Vaddepalli et al. 2017). Halophilic microbes compete for nutritive ingredients or
for sites binding on roots of plants, and this type of antagonism reduces the growth
of phytopathogen or mandatory destroyed proliferation of plant–pathogen (Olanre-
waju et al. 2017). Halophilic microbes such as Alcaligenes, Aeromonas, Bacillus,
Rhizobium, and Pseudomonas can produce hydrogen cyanide production, and the
presence of this chemical substance may control phytopathogens (El-Rahman et al.
2019; Suman et al. 2016; Verma et al. 2018; Yadav et al. 2018c).

Halophilic microbes activate induced systemic resistance and enhance immu-
nity against phytopathogens (Olanrewaju et al. 2017). Halophilic microbes disrupt
signaling pathways of phytopathogens by quorum quenching approach. For interfer-
ence of signal pathways to minimize pathogen virulence, some specific degrading
enzymes, such as lactonase, are responsible (Olanrewaju et al. 2017). Halophilic
microbes synthesized siderophore and inhibited the proliferation phytopathogens



11 Halophilic Microbes from Plant Growing … 335

due to decrease in the iron availability to phytopathogens (Ahmed and Holmström
2014). The halophilic microbes provide biocontrol of phytopathogens by the produc-
tion of antibiotics and antifungal metabolic substances. Fusarium sambucinum, F.
roseum var. sambucinum, F. oxysporum, F.moniliforme, F. graminearum, Penicillium
citrinum, Aspergillus flavus, and Botrytis cinerea are phytopathogenic fungi that are
controlled by halophilic rhizospheric bacteria B. subtilis, B. cereus, B. pumilus, B.
licheniformis, C. alkalitolerans, Halomonas elongate, and Halobacillus halophilus,
Halobacillus faecis, Salinicoccus roseus (Ahmed and Holmström 2014; Olanrewaju
et al. 2017; El-Rahman et al. 2019).

11.7 Role of Halophilic Microbes in Sustainable
Agriculture

Chemical fertilizers and pesticides are commonly used by the farmers for improve-
ment of soil fertility, growth, and productivity of crops under salt-based and non-
salt-based ecosystem (Ju et al. 2018). But their regular use causes an adverse effect
on living organism and soils (Bernardes et al. 2015). Apart from these, chemical
fertilizers remediate in the crop which feed by the organisms and ultimately reach
to top consumers and cause numerous diseases (Gonçalves et al. 2014). However,
many transgenic salt-tolerant crops have been developed but far too little is suc-
cessful (Bharti et al. 2016). An alternative method is available which could replace
chemical fertilizers and pesticides and also improve soil health, seed germination,
crop growth, and productivity by rhizospheric bacteria (Vejan et al. 2016). These
rhizospheric bacteria enhance the growth and improvement of plants either straight
or circuitously by colonizing the plant root (Vejan et al. 2016; Kour et al. 2019b;
Yadav et al. 2019b).

The uninterrupted character of PGPRs involves the fixation of nitrogen (N2) secre-
tion of metabolites, for instance, the indole-acetic acid (IAA) production, ammonia,
solubilization of phosphate, siderophore, and zinc (Ahemad and Kibret 2014; Chan-
dra and Enespa 2016). Indirect growth promotion can be observed in the prevention
and reduction of phytopathogens in plants through biocontrol mechanism. In this
mechanism, PGPRs produce some lytic enzymes for fungal pathogens (cellulase,
β-1, 3 glucanase, chitinase, and 1-aminocyclopropane-1-carboxylate (ACC) deami-
nase), reduction of iron (Fe) from the soil/rhizosphere and hydrogen cyanide (HCN),
salicylic acid, antibiotics, or antifungal compounds (Odoh 2017; Chandra andEnespa
2019a, b, c). Besides, PGPRs also accepted as capable rhizobacteria that can tolerant
environmental stresses such as high salt, high temperature, and pH (Ahemad and
Kibret 2014).

The plant growth-promoting rhizobacteria enhance nutrient availability that
includes nitrogen fixation and phosphate-solubilizing microorganisms. In indirect
means, it reduces the deleterious effect of plant pathogens on crop yield (Ahemad
and Kibret 2014). It shows antagonism against phytopathogenic microorganisms by



336 Enespa et al.

producing siderophore (Vejan et al. 2016). PGPR have been developed and used as
biofertilizers. Biofertilizers containing these PGPRs are economical, environment-
friendly, and potentially renewable source of necessary enriched plant nutrients that
makes it an excellent substitute of harmful fertilizers and chemical (Vejan et al. 2016).

The mechanism-based action can be differentiated into three dissimilar groups,
i.e, (1) Biofertilizer, containing PGPR having N2 fixation and P solubilization capa-
bility, (2) biopesticide, containing PGPR that inhibits the growth of phytopathogenic
microorganisms, and (3) phytostimulator, containing PGPR that have ability to pro-
duce phytohormones (Vejan et al. 2016). Various agronomically imperative PGPR
include the species, such as Alcaligenes sp., Caulobacter, Serratia, Erwinia, Bacil-
lus, Enterobacter,Phyllobacterium sp., andBacillus thuringiensis,Hyphomicrobium,
Azotobacter,Azospirillum, andAcetobacter (Sharma et al. 2013; Ahemad andKibret
2014; Vejan et al. 2016; Kour et al. 2019a; Verma et al. 2016a, b). The PGPR used
as bio-pesticides and biofertilizers for supportable farming have augmented enor-
mously all over the world. The useful properties of PGPR on the improvement and
the production of crops have been studied and reported by worldwide on a wide
variety of crops such as pulses, vegetables, cereals, and oilseed crops (Gouda et al.
2018). Numerous PGPRs belonging to genera Pseudomonas, Bacillus, Azospiril-
lum, and Enterobacter have been screened from the rhizospheric habitat of various
economically important crops and were reported for their synergistic effect on plant
growth promotion (Egamberdiyeva et al. 2001).

11.8 Conclusions and Future Prospects

Halophilic microbes are isolated from saline soils or rhizosphere of halophytic plants
and shows plant growth-promoting characters directly like the production of IAA,
solubilization of phosphate, production of siderophore, fixation of N2, deaminase
ACC activity, or indirect ways by controlling phytopathogens under saline condi-
tion. However, the habitats of halophilic microbes may be rhizosphere, endophytic,
or phyllosphere, and these microbes can augment the biomass and productivity of
crops using the halophytic and halotolerant crops. The inoculation of halotolerant
microbes in the rhizosphere of crops is a viable strategy for eco-friendly approach
and supportable improvement of crop in salt-related farming, which consist of cul-
tivation of crops in dry and semidry regions. Several possibilities of study would
move us earlier to accepting these approaches for salt-related cultivation. Knowl-
edge of plant–microbe interactions facilitates policies for the protection of crops and
saline soil remediation, and this type of interactions is also observed in the area for
ecological appreciative of microbes, which promotes halophyte to adaptability in
salinity-rich environment.
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Chapter 12
Microbe-Mediated Drought Tolerance
in Plants: Current Developments
and Future Challenges

Iti Gontia-Mishra, Swapnil Sapre, Reena Deshmukh, Sumana Sikdar
and Sharad Tiwari

Abstract Drought is a conspicuous stress-causing deleterious effect on plant growth
and productivity. In order to compensate the yield loss due to drought, efficient
and sustainable strategies are required for its management. Drought stress tolerance
is complex trait involving clusters of genes; hence, genetic engineering to gener-
ate drought-resistant varieties is a challenging task. In this context, the application
of plant growth-promoting microbes (PGPM) to mitigate drought stress is gaining
attention as an attractive and cost-effective alternative strategy. PGPM have envis-
aged a plethora of mechanisms to overcome drought stress in plants which encom-
passes ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, production
of exopolysaccharide (EPS) and volatile organic compounds (VOCs), osmolyte
and antioxidant production, enhanced uptake of mineral nutrients, phytohormones
production, and modulation. These mechanisms either individually or collectively
bestow the PGPRs to combat drought stress in plants. The association of arbuscular
mycorrhizal fungi (AMF) with the roots of crop plants can significantly promote
water and nutrient uptake by host plants and induce tolerance to drought stress. The
inoculation of PGPM in crop plants is also capable of modulating host transcriptome
for induced drought tolerance. Further, efforts are needed to develop proficientmicro-
bial consortia for enhancing plant growth under drought stress. Thus, the application
of PGPM/AMF represents a promising approach to increase nutrient availability and
expedite the development of sustainable agriculture.
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12.1 Introduction

Plants being sessile are subjected to a wide array of environmental stresses such as
salinity, drought, heavy metals, waterlogging, chilling, and high temperature. Fur-
thermore, climate change is influencing the austerity of abiotic stresses, particularly
high temperature and drought. Intense drought is mostly associated with the global
climate change which is having a major impact of crop productivity (Etesami and
Maheshwari 2018). It is being projected that drought will affect more than 50% of
the arable lands worldwide by the year 2050 (Vurukonda et al. 2016). Among these
stresses, drought is a conspicuous stress-causing deleterious effect on plant growth
and productivity. This stress adversely affects many physiological and biochemical
processes of plants such as phytosynthesis, respiration, transpiration, carbohydrates
metabolism and nutrient uptake, translocation, and assimilation (Khan et al. 2018). In
order to compensate the yield loss due to drought, efficient and sustainable strategies
are required for its management. From past years, mainly two strategies are mostly
focused to combat the drought stress in plants such as traditional breeding methods
and genetic engineering of crop for drought-resistant (Naveed et al. 2014). Themajor
constraint for application of these techniques is time taking, tedious, and expensive.
Furthermore, the acceptance of a transgenic crop is uncertain in the market regard-
ing the consumer response to genetically modified plant products which varies from
country to country (Ullah et al. 2019a).

In addition to several ethical issues, genetic engineering of all crops is not feasible
(Etesami and Maheshwari 2018). Besides, drought stress tolerance is complex trait
involving clusters of genes; hence, genetic engineering to generate drought-resistant
varieties is a challenging task (Nautiyal et al. 2013; Saikia et al. 2018). Another sus-
tainable strategy to limit drought stress is soil resource management by application
of mulching, crop residues, crop cover, non-crop mulch material (plastic foil, geo-
textile), etc. These methods tend to reduce runoff and evaporation from soil surfaces.
Besides, use of crop residue as mulch can increase the soil organic matter which
in turn increases the soil water storage capacity and its availability to crops during
drought conditions (Bodner et al. 2015).

In this context, the use of plant growth-promoting microbes (PGPM) to miti-
gate drought stress is gaining attention as an attractive and cost-effective alternative
strategy. There are various studies which suggest the beneficial role of plant growth-
promoting rhizobacteria (PGPR), actinomycetes, and mycorrhiza in boosting plant
growth and endurance toward drought stress (Gontia-Mishra et al. 2016; Saikia et al.
2018; Zade et al. 2019). This chapter summarizes the present understanding toward
drought stress and their physiological and molecular responses in plants. The later
section of the chapter highlights the imperative mechanisms of PGPM for mitiga-
tion of drought stress in plants. In the present chapter, we have also attempted to
comprehend the perceptive use of PGPM to alleviate the drought stress in crop plant
by fine-tuning the metabolic, signaling, and molecular pathways, thereby enhancing
crop productivity.
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12.2 Impact of Drought on Crop Plants

Similar to other abiotic stresses, drought is also multidimensional in its effects and
has various deleterious impacts on plant. The plants respond to drought stress at
physiological, biochemical, and molecular levels, from seed germination to maturity
and senescence (Tiwari et al. 2017). Nonetheless, adaptability of plants to drought is
determined by the severity and time of exposure to stress, plant species as well as the
developmental stages (Kaur and Asthir 2017). Under water scarcity, plant exhibits
various events to acclimatize such as morphological (reduced biomass and altered
root structure), physiological (reduced photosynthesis and altered transpiration and
stomatal activity), and biochemical changes (accumulation of osmolytes, increased
oxidative enzyme activity) (Conesa et al. 2016).

Excessive loss ofwater in drought condition leads to closed stomata and controlled
gas exchange and desiccation which lead to complete metabolism and cellular struc-
ture disruption; this gradually ends in interruption in enzymatic reactions (Jaleel et al.
2007). Aboveground parts of plant are more susceptible to drought stress than their
counterparts. During water-deficit conditions, plants respond by shrinking leaf area,
spiraling, and in some cases by shedding their leaves. Leaf size reduction is an impor-
tant strategy to drought stress as it can directly influence the rate of transpiration.
However, reduction in leaf size leads to marked decline in the photosynthetic activity
of plants. Drought stress in plants is noted by declined leaf water potential, stomatal
closure, and marked reduction in cell growth (Farooq et al. 2009). The first plant
organs to feel and react to water deficiency are the roots. Under moderate drought
stress, the root length is increased which is attributed to the plants need to utilize
the groundwater (Forni et al. 2017), but severe drought conditions can retard root
growth. Characteristics related to root traits like biomass, root length, root density,
and depths of roots have been identified as the major drought avoidance traits under
drought environment (Kashiwagi et al. 2006). A decrease in growth is the most obvi-
ous plant response to water stress, which results from decrease in water uptake by
roots.

Plant growth and morphology are proportional to enlargement, division, and
differentiation of cell. Drought is also reported to inhibit mitotic division of cells
along with elongation and expansion which results in growth retardation of plants
(Hussain et al. 2008). Various physiological changes occur in plants to overcome
drought stress as the early response of plant to stress can make the plant to survive.
The basic mechanism to show drought response is to decrease the osmotic potential
of plant cells; as a result, the turgor potential gets maintained for routine metabolic
processes (Levitt 1980). Drought stress leads to an imbalance between antioxidant
defenses and the amount of Reactive Oxygen Species (ROS) resulting in oxidative
stress. ROS are required to trigger the signaling but eventually at high concentration
can cause impairment of plant organelles especially chloroplasts (Smirnoff 1993).
Later on, ROS can initiate lipid peroxidation and degradation of vital proteins, lipids,
and nucleic acids (Kaushal and Wani 2016).
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Plants under drought stress starts synthesis of new metabolites for their proper
functioning. Plants can accumulate biomolecules such as dehydrins (DHNs), heat
shock proteins (HSPs), late embryogenesis abundant (LEA) proteins (Lipiec et al.
2013), osmolytes like proline, trehalose, and sugars (Ilhan et al. 2015), glycine, and
betaine (Chen and Murata 2011). Changes in membrane fluidity, fatty acid, and
protein composition of membranes help to maintain the cellular integrity of plants
under drought stress (Bohnert et al. 1995). The osmolytes like ectoine, glycine, and
betaine interplay in protein solubilization, and the uncharged solutes like mannitol,
trehalose, and pinitol play an important role as scavengers of ROS (Ashraf and Foolad
2007). Plants have envisaged several enzymatic mechanisms including superoxide
dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reduc-
tase (GR) and non-enzymatic components such as cysteine, glutathione, and ascorbic
acid, to aid them fight against the oxidative damage caused by ROS (Kaushal and
Wani 2016).

Nitric oxide also protects plants under water-deficit condition from oxidative
stress. Most of these processes are regulated through a complex network governed
by abscisic acid (ABA), ion transport system, and various transcription factors.Water
stress in the root tips results in release of a stress-signaling hormone ABA, which
is transported from root zone to the aerial parts of plants. It is directly involved in
regulation of stomatal aperture closure. Various reports argued that early interaction
of drought signals is mediated by transmembrane protein like histidine kinase which
functions like osmosensor (Posas et al. 1996; Urao et al. 1999). Other membrane
proteins like aquaporins also involved in regulation of cell volume and turgor home-
ostasis. In addition, some genes are also identified which regulates the synthesis
of osmolytes in the cytoplasm in order to maintain the osmotic potential at water
stress condition. Other mechanism involved in sensing of drought stress is changed
in the fluidity of membrane lipids (Knight and Knight 2001). Phospholipase C and
D along with phosphatidyl-4,5-phosphate 5-kinase are found to be involved in this
mechanism which leads to control ion and water channels (Mikami et al. 1998).

12.3 PGPM with Special Context to Drought Stress
Management

Almost every parts of the plant are colonized bymicrobes, but the rhizosphere (soil in
the proximity of roots) represents the main source of bacteria with plant-beneficial
activities. The microbial community residing in the rhizosphere is comparatively
different than its surroundings due to the presence of root exudates (Vejan et al.
2016). These bacteria largely utilize root exudates a source of nutrients for their
growth and survival, hence termed as PGPR (Kolepper and Schroth 1978; Verma
et al. 2015a, b; Yadav et al. 2015). They interact with the plant roots and influence
plant growth and yield as well as enhance soil fertility. Besides PGPR, association of
arbuscular mycorrhizal fungi (AMF) with the roots of crop plants can significantly
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promote water and nutrient uptake by host plants and induce tolerance to drought
stress (Xu et al. 2018; Hashem et al. 2019; Yadav et al. 2019b, c, d).Many researchers
have advocated the positive impact of PGPR andAMF to promote plant growth under
drought stress; hence, it is an effective developing technology (Compant et al. 2010;
Carmen et al. 2016; Wu et al. 2019; Verma et al. 2017; Yadav et al. 2018a, b).
Crop plants in association with PGPRs persuade morphological and biochemical
adjustments leading to increased tolerance to drought by eliciting induced systemic
tolerance (IST) (Naveed et al. 2014).

It is determined that PGPRcan intercede the drought stress in host plant by increas-
ing accumulation of osmolytes (compatible solutes like proline, glycine betaine,
polyamines, sugars like trehalose and polyols), improved uptake of nutrients and
modulating the activities of antioxidant enzymes (Barnawal et al. 2019; Kour et al.
2019c; d). Phytohormones are known to control signaling of many abiotic and biotic
stresses in plants. It is an established fact that phytohormone synthesis and signaling
have a great significance in response to extreme environmental conditions (Tiwari
et al. 2017; Kour et al. 2019b; Yadav et al. 2019a). Interestingly, this approach is
adopted by PGPR to induce drought tolerance in host plant by regulating the level
of phytohormones, like ABA, salicylic acid (SA), and ethylene, therefore directly
affecting plant signaling networks and altering drought-responsive genes (Lu et al.
2018). Similarly, inoculation of AMF in host plants can accelerate plant growth
and yield under drought stress by increased water and nutrient uptake, modulating
stress-responsive genes and cell membrane fatty acid composition and degree of
unsaturation (Xu et al. 2018; Wu et al. 2019). The use of various PGPR and AMF
for alleviation of drought stress and their positive impact on host plants is presented
in Tables 12.1 and 12.2.

12.4 Ways Out by Which PGPM Handle Drought Stress

PGPMhave envisaged a plethora ofmechanisms to overcome drought stress in plants
which encompasses ACC (1-aminocyclopropane-1-carboxylate) deaminase activity,
production of exopolysaccharide (EPS) and volatile organic compounds (VOCs),
osmolyte production, uptake of mineral nutrients (N, P, and K), phytohormones pro-
duction/modulation [auxin/indole acetic acid (IAA), cytokinins, abscisic acid (ABA),
salicylic acid (SA) and jasmonic acid (JA)], and eliciting the activity antioxidant
enzymes in host plants. These mechanisms either individually or collectively bestow
the PGPRs to combat drought stress in plants.

12.4.1 ACC Deaminase Activity

Ethylene is a crucial plant hormone which controls a number of plant processes rang-
ing from seed germination, fruit ripening, abscission of leaves, and plant senescence
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Table 12.2 The role of AMF in mitigating drought stress in plants

Crop/plant Effect of AMF inoculation on plant References

Strawberry AMF inoculation plants had greater water-use efficiency
under the regulated deficit irrigation (RDI) regime in
comparison to non-mycorrhizal inoculated plants

Boyer et al.
(2015)

Phaseolus
vulgaris

AMF inoculation and methyl jasmonate prevented inhibition
of root hydraulic conductivity under drought conditions, by
causing reduction in root salicylic acid contents

Sanchez-Romera
et al. (2016)

Zea mays AMF symbiosis induced an improvement in physiological
parameters in drought-sensitive plants including efficiency
of photosystem II, membrane stability, accumulation of
soluble sugars and plant biomass production. In addition, the
drought-responsive genes were down-regulated by the AMF
inoculation

Quiroga et al.
(2017)

Sorghum
bicolor

AMF inoculation alleviated plant growth retardation and
prolonged plant lifespan under drought. The improved
biomass and the specific leaf area were noted in inoculated
plants under drought stress conditions

Sun et al. (2017)

Poncirus
trifoliate

AMF inoculation significantly increased leaf sucrose,
glucose, and fructose concentration under drought stress,
accompanied with a significant increase of leaf sucrose
phosphate synthase, neutral invertase, and net activity of
sucrose-metabolized enzymes

Wu et al. (2017)

Damask
rose

AMF colonization can enhance growth, flower quality, and
adaptation of rose plants under drought stress levels,
particularly at high level of drought stress via improving
their water relations and photosynthetic status

Abdel-Salam
et al. (2018)

Poncirus
trifoliate

AMF inoculates seedlings showed significantly higher root
density, length, and diameter and root IAA level under
stress. Mycorrhization caused the up-regulation in IAA
biosynthesis. The inoculation also down-regulated the
transcript level of root auxin efflux under drought stress

Liu et al. (2018)

Zea mays AMF association modifies root hydraulic responses to
drought. AMF plants showed increased hydrostatic root
hydraulic conductivity and osmotic root hydraulic
conductivity

Quiroga et al.
(2018)

Sorghum
bicolor

AMF inoculation improved their transpiration efficiency and
increased the nitrogen and phosphorus content of sorghum,
especially under water was limiting conditions

Symanczik et al.
(2018)

Glycyrrhiza
uralensis

The inoculation of AMF to the plants demonstrated
improved growth and physiological status such as stomatal
conductance, photosynthesis rate, and water-use efficiency
compared with non-AM plants. The AMF association also
up-regulated the expression of an aquaporin gene PIP and
decreased root abscisic acid concentrations

Xie et al. (2018)

Leymus
chinensis
and
Hemarthria
altissima

AMF inoculation to plants enhanced plant biomass,
photosynthetic rate, stomatal conductance, intrinsic
water-use efficiency, and SOD activity of the L.chinensis
and reduced levels of malondialdehyde. The inoculation also
demonstrated increased shoot growth in H.altissima

Li et al. (2019a)
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(Sapre et al. 2019). It is also produced in plant in response to several environmental
stresses including drought stress (Gontia-Mishra et al. 2014). Consequently, the ethy-
lene generated under stressful condition is often termed as “stress ethylene” (Glick
2014). The ethylene produced during stress can subsequently induce the defoliation,
retarded root, and stem growth along with the expression of genes leading to plant
senescence, leading to inferior crop performance (Vejan et al. 2016). Interestingly,
it is noted that ACC works as precursor for ethylene biosynthesis (Shaharoona et al.
2006). Among the different suggested strategies for improvement in plant growth
under drought stress, the most plausible one is alteration in the endogenous levels of
ethylene caused by the PGPR (Kumar et al. 2019a, b).

Furthermore, many PGPR possessing the enzyme ACC deaminase catalyze the
conversion of ACC to ammonia and α-ketobutyrate, which indirectly decrease the
ethylene concentration in plants under drought stress (Glick et al. 1998). By facil-
itating the development of longer roots, these PGPR may enhance the survival of
seedlings, which help in combating the effect of stress ethylene. The root elongation
plants under drought stress can allow a better access to water and uptake of nutrients.
Ethylene is also known to compromise the nodule formation and nitrogen fixation in
legume (Sapre et al. 2019). Rhizobium with ACC deaminase activity can diminish
the deleterious effect of ethylene under drought stress by increasing the nodulation
and nitrogen fixation in its symbiotic legume partner (Belimov et al. 2009). In this
regard, numerous researchers have documented the application of ACC deaminase-
producingPGPR in ameliorating drought stress in crop plant such as chickpea (Tiwari
et al. 2016), mung bean (Sarma and Saikia 2014), wheat (Gontia-Mishra et al. 2016;
Barnawal et al. 2017), rice (Tiwari et al. 2017), foxtail millet (Niu et al. 2018), and
other tropical crop plants (Kumar et al. 2019a, b; Kour et al. 2019a; Yadav et al.
2017a; b; Yadav and Yadav 2018).

12.4.2 EPS Production

PGPR have the unique ability to produce exopolysaccharide (EPS)/extracellular
polymeric substances. The biofilm formation and EPS production by PGPR are
important mechanisms to tolerate drought stress in the environment. The EPS has
multifarious function in bacterial cells ranging from quorum-sensing signals, devel-
opment, survival, and host colonization (Nocelli et al. 2016). The EPS largely con-
stitutes of high-molecular-weight macromolecules like polysaccharide along with
smaller proportions of protein, lipids, and uronic acid (Naseem et al. 2018). The
EPS-producing PGPR can better clamp and colonize the root surface under adverse
conditions (Ali et al. 2014).

It can protect PGPR and its host plant under drought stress by enhancing water
retention than the surrounding environment (Hepper 1975; Vurukonda et al. 2016).
The EPS secreted by PGPR into the soil can be absorbed by soil particle due to their
different anionic functional groups (e.g., sulfhydryl, carboxyl, hydroxyl, sulfonate,
amine, and amide) and increase the water-holding capacity of soil and improve
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physicochemical properties of soil under prolong desiccation conditions (Sandhya
et al. 2009). Hence, plants inoculated with EPS-producing PGPR can maintain the
higher water potential, boost root-adhering soil/root tissue ratio, and accelerate the
uptake of nutrients by plant, thereby enhancing plant growth and yield under drought
stress (Selvakumar et al. 2012; Rolli et al. 2014; Kaushal 2019). Many researchers
have suggested the use of EPS-producing rhizobacteria in alleviating drought stress
in important crop plants such asmaize (Vardharajula et al. 2011), sunflower (Sandhya
et al. 2009), wheat (Timmusk et al. 2014), and foxtail millet (Niu et al. 2018).

12.4.3 Production of VOCs

Unlike plants, soil bacteria produce a range of volatile compounds, which have
specific function in their life cycles as well as interplay with other microbes and
plants (Sharifi and Ryu 2018). The bacterial VOCs are chemically characterized as
alkenes, ketones, and alcohols. PGPR can stimulate plant growth by synthesizing
and releasing volatile compounds, which is now known as an essential mechanism
of plant–microorganism interactions (Froni et al. 2017). The role of these VOCs is
largely associated as activator against plant pathogens, leading to induced systemic
resistance in plants (Ruzzi andAroca 2015). Remarkably, it is noted that besides their
role in biotic stress tolerance, these compounds can actively alleviate several abiotic
stresses including drought (Timmusk et al. 2014). TheVOCs produced by PGPRs can
promote plant growth by increasing photosynthesis, carbon assimilation, enhancing
mineral uptake, altering root structure, and intensive phytohormone signaling under
abiotic stress conditions (Sharifi and Ryu 2018).

It was demonstrated that a PGPR Pseudomonas chlororaphis releases character-
ized as 2R, 3R-butanediol, can induce drought tolerance inArabidopsis thaliana (Cho
et al. 2008). Moreover, few studies suggest the role of VOCs (produced by PGPR)
in modulation of the transcript levels in plants, resulting in enhanced biosynthesis of
choline and glycine betaine which in turn to shielded A. thaliana plants from drought
stress (Cho et al. 2008; Zhang et al. 2010). It was noted that VOCs produced by soil
bacteria such as acetic acid can stimulate the formation of biofilms/EPS, which can
indirectly influence drought stress in plants (Chen et al. 2015). Another study of bac-
terial inoculation with Bacillus thuringiensis in wheat seedlings under drought stress
markedly decreased the stress-induced volatile compounds emitted by plants and
increased plant biomass and photosynthesis (Timmusk et al. 2014). VOCs producing
PGPR are potential for application as bio-stimulants to improve plant health under
drought stress. The mechanism of PGPR-induced VOCs in ameliorating drought
stress in crop plants is limited and requires to be explored extensively.
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12.4.4 Phytohormones Production

The production of phytohormones in plants is essential because of their physiological
effects on its growth. The phytohormones such as auxins, cytokinins, gibberellins
and ethylene, and abscisic acid (ABA) have a particular function in the regulation
of plant growth and development (Vurukonda et al. 2016). PGPR have been widely
known to produce these phytohormones which can help in promoting plant growth
under stressed conditions by stimulating cell growth and division (Kaushal 2019).
One of the important aspects of the bacterial–plant interaction that has received
worldwide attention is the bacterial production of IAA/auxins. Production of IAA,
a plant hormone that does not any apparent function as a hormone in bacterial cells,
may have evolved in bacteria because of its significance in the bacterium–plant
relationship (Patten and Glick 2002). A positive correlation is noted between the
in vitro production of auxins by PGPR strains and their growth promotion effects
(Jha et al. 2012). The auxin-producing PGPR can influence root proliferation and
formation of lateral and adventitious roots, which results in an increased mineral and
water uptake by the plants rotoscoping them against drought stress (Gontia-Mishra
et al. 2016). Besides, some of the PGPR have known to modulate the expression
of auxin-responsive genes in host–plant roots (Lakshmanan et al. 2013) resulting
in stress tolerance in plants. Several authors have suggested the IAA production by
PGPR as a mechanism to drought tolerance enhancement in crop plants such as
maize, wheat, mung bean, etc. (Naveed et al. 2014; Sarma and Saikia 2014; García
et al. 2017).

Gibberellins have a crucial function in plant growth such as stem elongation, ger-
mination, flowering, and senescence (Kaushal 2019). In contrast, cytokinins play a
vital role in regulation of cell division and nutrient allocation, and maintain pho-
tosynthetic activity under drought stress (Ullah et al. 2019b). The application of
cytokinin-producing PGPR, Bacillus subtilis in Platycladus orientalis, conferred
drought stress tolerance by increasing shoot growth (Liu et al. 2013). Similarly,maize
and soybean plants inoculated with gibberellin-producing PGPRs (Pseudomonas
putida and Azospirillum lipoferum) registered improved plant growth under drought
stress (Cohen et al. 2009; Kang et al. 2014). Consequently, there are evidences from
many studies which advocate that PGPM have the ability to positively alter phyto-
hormone levels of plant, leading to drought stress tolerance (Saakre et al. 2017; Ali
et al. 2018).

12.4.5 Osmolytes Production and Alteration in Antioxidant
Enzyme Activities

Water-deficit conditions result in altered osmotic balance in plants; hence, the water-
absorbing capacity of plants get reduced and plant tries to change various physio-
logical and biochemical processes for adaptation under stressed environment. Under



368 I. Gontia-Mishra et al.

these conditions, plants tend to produce a wide range of osmolytes or commonly
known as osmoprotectants. Some cellular events like protein and membrane stabi-
lization are supported by osmoprotectants (Nahar et al. 2016). Due to their diverse
chemical properties, osmolytes also protect plant cells fromoxidative stress by attack-
ing on ROS (Zhu 2002). There are several osmoregulators like proteins, sugars, and
free amino acids reported to play a key role in balancing osmotic pressure in plant
cells (Hasegawa et al. 2000). It is reported in various studies that microbes residing
in soil also produce and secrete osmolytes when encounter to drought stress. These
osmolytes function as produced by plants. Maize inoculated with Pseudomonas fluo-
rescence growing under drought has potential for accumulating proline and resulted
in increased water content and plant biomass (Ansary et al. 2012). Soil microbes also
reported to alter the amount of osmoprotectants and antioxidant enzyme in plants
(Kaushal 2019).

Plants in response to drought also generate various types of ROS oxidative dam-
age by reacting with importing biomolecules like protein and lipids of cell. To protect
from this oxidative damage, cell has developed antioxidant defense system which
includes enzymatic as well as non-enzymatic pathway (Miller et al. 2010). Inocula-
tion of plants with beneficial microbes suppresses the activity of antioxidant enzyme
activity to alleviate the drought stress. Various species of Pseudomonas and Bacillus
inoculatedwithmaize are reported to reduce the activity of antioxidant enzymeswhen
compared to un-inoculated plants under drought (Sandhya et al. 2010; Vardharajula
et al. 2011).

12.4.6 Nutrient Availability

Water deficit can reduce the uptake of nutrients in the soil due to poor soil struc-
ture. PGPR and AMF have the capability to increase the accessibility of nutrient in
the rhizosphere either by fixing nutrients (N2) or by solubilizing insoluble minerals
such as P, K, and Zn into the soluble form (Vejan et al. 2016). The explanation for
enhanced nutrient status inAMF inoculation in plant has increased absorption surface
of extraradical hyphae for extensive acquisition of nutrients from soil. The extrarad-
ical hyphae of AMF have a deep network into the soil readily absorption of nutrients
which in turn is transported to arbuscules in cortical cells and are finally released
into the apoplast to ameliorate nutrient deficiency caused by stress (Zhao et al. 2015;
Kaushal 2019). Several reports suggest that PGPR inoculation can improve uptake
of nutrients especially P under drought stress (Sandhya et al. 2010; Timmusk et al.
2014). In addition, there are evidences of increased mobility of nutrients (P, N, K,
Ca, and Zn) in plants inoculated with AMF during drought stress (Gholamhoseini
et al. 2013; Zhao et al. 2015; Abdel-Salam et al. 2018).
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12.5 Modulation of Host Transcriptome by PGPR
Inoculation

The PGPRs have been efficiently utilized in crops to alleviate disease stress. Never-
theless, they can also be used as potential targets for inducing drought tolerance in
crop species. Physiological studies in fewcrop species suggest an efficient application
of PGPRs to reduce drought stress (Khan et al. 2018; Niu et al. 2018) (Fig. 12.1).
Drought stress is a complex trait which influences various cross-linked signaling
between biotic and abiotic stresses. Hence, the beneficial effects of PGPRs in biotic
stress can indirectly induce tolerance to drought stress. Thismode of genetic improve-
ment comprises understanding the PGPR-induced biochemical differential regula-
tion. These biochemical changes are governed by differential expression of genes
involved in induced systemic response (ISR), which are ultimately triggered through
salicylic acid (SA)-signaling pathway (Zhang et al. 2002). The PGPR inoculation
greatly modifies the transcriptome of the plant species, regulating expression of sev-
eral genes (Rekha et al. 2018).Microarrays andRNA-seq studies have been employed
in certain crop species to understand the molecular mechanism of PGPR-induced
drought tolerance.

PGPRs often colonize the root surface and may induce production of several phy-
tochemicals that regulate phytohormone signaling like auxins and ABA (Srivastava

Fig. 12.1 Comparative account of effect of drought stress on plants without PGPM inoculation
and with PGPR and AMF inoculation. The PGPR and AMF have envisaged diverse mechanisms
for alleviation of drought stress in plants
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et al. 2012). Systemic acquired resistance (SAR) is strongly regulated by phytohor-
mones and their in planta levels. The inoculation of PGPR Pseudomonas sp. in rice
plants induced the expression of LEA (late embryogenesis abundant) genes, which
encodes IAA amido synthetases resulting in drought stress tolerance (Yasmin et al.
2017). Similarly, the inoculation of A. thaliana with PGPR Paenibacillus polymyxa
induced drought tolerance through enhanced transcription of Early Responsive to
Dehydration 15 (ERD15) gene (Timmusk andWagner 1999). The drought alleviation
by PGPR is mediated primarily through differential regulation of ABA-responsive
pathway. The ABA-responsive signaling pathway transcription factor genes bZIP1,
COC1, and Hsp20 proteins were overexpressed in susceptible rice cultivar upon
PGPR Pseudomonas fluorescens inoculation, conferring drought tolerance (Saakre
et al. 2017).

DHNs are a class of proteins of group 2 LEA proteins and proportionately related
to their active accumulation during water stress tolerance. Microarray studies of bar-
ley seedlings overexpressing DHNs genes were drought-tolerant (Rodriguez et al.
2005). Plants expressing drought-tolerant CaDHN gene were highly expressed in
pepper plant inoculated with PGPR Bacillus licheniformis (Lim and Kim 2013).
DHN genes are interacting members of the SA-induced SAR response (Jing et al.
2016), commonly observed in PGPR-associated stress alleviation. The inoculation
of water-stressed A. thaliana roots with Pseudomonas chlororaphis O6 induced an
overexpression of LEA and dehydrin genes to over 100-folds (Cho et al. 2013). Tre-
halose is a nonreducing disaccharide, which is actively synthesized in bacteroids of
Rhizobium sp. (Streeter 1985). It is an osmoprotectant and plays an essential role as
a signaling molecule (Paul et al. 2008) during water stress management. The trans-
formed Rhizobium etli and Azospirillum brasilense mutant with an overexpressing
trehalose-6-phosphate synthase gene inoculated to Phaseolus vulgaris and maize,
respectively, resulted in the enhanced expression of drought tolerance genes (Suárez
et al. 2008; Rodríguez-Salazar et al. 2009).

To identify the transcriptional regulation of plants with drought stress in the
presence of PGPRs, few transcriptomic studies have been undertaken. The PGPR
inoculation improves drought stress tolerance by repressing the enhanced expres-
sion of abiotic stress response genes, viz., ABA and ethylene. The transcriptome
study of sugarcane plants colonizing Gluconacetobacter diazotrophicus identified a
reverse regulation of drought stress genes to that of stressed non-inoculated roots. The
DREB1A/CBF3, DREB1B/CBF1, and NCED3 homologs were down-regulated in
water-stressed plants treated withG. diazotrophicus. Although the auxin metabolism
and ABA pathway were equally enriched in both the inoculated and non-inoculated
plants, cytokinin hormone pathwayup-regulationwas observed only in the inoculated
plants. However, the auxin, ABA, and ethylene-mediated stress-responsive signaling
were mainly down-regulated (Vargas et al. 2014). Similar results have been demon-
strated through transcriptome analysis of maize plants inoculated with Pseudomonas
putida strain FBKV2 displayed drought stress alleviation, by Ali et al. (2018).
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The expressions of ABA and ethylene signaling pathway genes were down-
regulated, including down-regulation of bZIP transcription factor (TFs), and 1-
aminocyclopropane-1-carboxylate synthase2 and ethylene-responsive TFs, respec-
tively. The transcriptome of A. thaliana treated with PGPR P. chlororaphis O6 iden-
tified remarkable up-regulation of calmodulin and calcium-binding proteins. These
genes play important role in cell-to-cell communication. The stress-responsive down-
regulated genes in PGPR inoculation also include class of MYB and AP2 domain
transcription factors (Cho et al. 2013). This clearly presents that plant growth-
promoting bacteria reduce the drought stress by reducing the expression of stress-
inducedmolecules, keeping optimumenvironment to plants. It is evident from several
studies that PGPRs prime the stress-responsive pathway and following subjection of
plants to drought stress reduces the production or biosynthesis of stress molecules.

12.6 Concluding Remarks and Future Prospects

Agricultural productivity is largely dependent on climatic conditions. Climate change
is expected to reduce water accessibility for agriculture in coming years. Drought
has the noxious effects on growth and development of plant. Hence, it is the need
of the hour to search for the effectual solution to overcome the problem of drought
stress in plants. Moreover, drought is a complex trait, so developing transgenic plants
resistant to drought stress is also a challenging task. Under such stressful conditions,
the interaction of plant and beneficial microorganisms is of great importance. The
application of drought-tolerant PGPMhas gained abundant attention as an alternative
and eco-friendly option to mitigate drought stress in crop plants. Another effective
option to combat drought stress in plant is the exogenous application of PGPM in
combination with either the plant growth regulators (SA, JA, Trinexapacethyl, and
ABA), polyamine-like putrescine, biochar (organic carbon), silicon nanoparticles, or
seaweed extracts (Ali et al. 2017; Khan et al. 2019; Hashem et al. 2019).

In the current scenario, research must be concentrated to increase the number and
diversity of effective and competitive drought-tolerant PGPM from drought-stricken
agricultural ecosystems. The drought-tolerant PGPM could be useful to design new
bio-inoculants/biofertilizers, especially for arid regions. Additionally, the perfor-
mance of potential PGPR strains should be essentially assessed under field condi-
tions, as plants usually face cyclic drought conditions rather than continuous drought.
Further efforts are needed to develop proficient microbial consortia for enhancing
plant growth under drought stress. Regardless of several findings, on the adaptation
of plants under drought stress and their association with PGPM for mitigation of
stress, substantial efforts are required to explore the underlying molecular mecha-
nisms of interplay between plant and PGPM in soil to hasten the process of stress
amelioration in crops. Thus, it could be concluded that the use of PGPM represents
a promising approach to increase nutrient availability and expedite the development
of sustainable agriculture under drought stress.
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Chapter 13
Microbial Consortium as Biofertilizers
for Crops Growing Under the Extreme
Habitats

Chuks Kenneth Odoh, Kabari Sam, Nenibarini Zabbey,
Chibuzor Nwadibe Eze, Amechi S. Nwankwegu, Charity Laku
and Boniface Barinem Dumpe

Abstract Biofertilizers are typicallymicrobial formulations in organic carriermate-
rials that improve soil health and crop growth and development. Of late the use of
biofertilizers has gained much acceptance and research interest especially in the
developed countries due to ecological impacts associated with the use of synthetic
inorganic fertilizers in farming. Microbial formulations could be organism-specific
or a consortium of organisms. Microbial consortium biofertilizers, the main focus
of this chapter, have been reported as contributing significantly to plant adaptation
to various abiotic stressors in “extreme” habitats. Many soil microorganisms are
endowed with an array of capabilities ranging from production of growth-enhancing
substances to the release of substances which ameliorate the effects of various abi-
otic stress conditions such as drought, salinity, pH stress, heat stress, pollutants, and
nutrient deficiency. Besides exploring the MC biofertilizer operations and mecha-
nisms (neutral and niche), it also relies on a network of intraspecific and interspecific
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interactions for sustainable growth and development of crops in challenged environ-
ments. Among these organisms are plant growth-promoting rhizobacteria (PGPR),
arbuscular mycorrhizal fungi (AMF), mycorrhizal-helping bacteria (MHB), and a
host of others that work together in consortium biofertilizer formulations.

Keywords Biofertilizers ·Microbial consortium · Extreme habitat · Plant
growth-promoting rhizobacteria (PGPR)

13.1 Introduction

The role of soil microorganisms in sustainable agriculture has gained prominence
over the last decades. Soil microorganisms and their activities have contributed to all
spheres of biotechnological advances such as molecular understudy of litter decom-
position (Tamayo-Vélez and Nelson 2018), ecosystem processes and planetary earth
systems (Lladó et al. 2017), and sustainable development-driven studies (Timmis
et al. 2017). Among practitioners, policy-makers, academia, and international orga-
nizations, there has been increased calls for research to unravel more benefits of soil
microbes particularly in food and agriculture (Compant et al. 2010; Clark et al. 2009;
Odoh et al. 2019a), environmental remediation (Sam et al. 2017; Zabbey et al. 2017;
Eze et al. 2018), and industrial applications (Odoh 2017; Zuroff and Curtis 2012).

Sustainable agriculture is a unique modern farming practice that promotes soil
health, wholesome agricultural yield, and reduced pollution of cultivable soils. In
addition, it is a strategic agrobiotechnology approach where the present societal
food demands are met without compromising future generation’s food security.

As the quest to feed the ever-growing human populations (7.7 billion) gets global
momentum and the push to curb food insecurity intensifies (Glick 2012), there has
been an un-quenching desire for increased yield per unit area production capacity.
This is paramount so as to meet the growing demand for food, while also subvert-
ing pressures arising from the natural ecosystem (Pindi and Satyanarayana 2012;
Chatzipavlidis et al. 2013). According to Food and Agriculture Organization (FAO)
2010 report, 60% increase in agricultural commodities demand is expected by 2030.
More fascinating is the fact that more than 85% of this estimated yield will be ema-
nating from developing countries whose economic growth is mainly dependent on
agriculture (Mia and Shamsuddin 2010).

Microorganisms constitute one of the most diverse biological communities in the
soil ecosystem. The interactions and activities of soil microbes aid increase in food
production, earth geochemical stability, climatic, and biogeochemical cycles (Tringe
et al. 2005; Hansel, et al. 2008). According to Odoh et al. (2019a), they live in com-
plex biological settings within which exist interactions and influence of living and
nonliving parameters. Advanced studies have, however, demonstrated the applica-
bility of engineered species in medicine such as antibiotic resistance genes (Cycon
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et al. 2019) and microbial pigments in food industry (Sen et al. 2019) through under-
standing their behavioral pattern, complexity and mechanisms of actions (Kumar
2016; Ahmad et al. 2011).

In agriculture (Table 13.1), microbial consortium (MC) involves the symbiotic
interactions of two or more microbial groups (Clark et al. 2009), for improved crop
growth. Association of microbial groups enhances turnover of soil organic matters
and mobilizes nutrients for plants growth and fixation of nitrogen (N) in leguminous
crops (Nuti andGiovannetti 2015). As a result of the intrinsic advantages,MCaccept-
ability and applicability by practitioners have increased unlike the use of a single
strain, as demonstrated by Sarkar et al. (2011) who exploited metabolic versatility of
microbial community for the treatment of organic wastes. In the bulk soil, MC lives
in close interaction in the plant root canopy as phyllosphere bacillus, endophytes,
and as members of a complex microbiota (Hacquard et al. 2015), thus justifying their
seldom existence as a single strain. In spite of the individualistic characterization of
the single cells, MC often responds to environmental stress as a unique organism.
This is because they have more chances than any single strain among the population
to adapt and take advantage of their internal beneficial interactions (Nuti and Giovan-
netti 2015). On regular intervals, their activities consist of a continuous shift between
viable and culturable, and viable but non-culturable cells of the diverse components
of the total population. Also, via unique chemical signaling mechanism (“quorum
sensing”), MC detects and responds to cell population density and nutrient gradient
through gene regulation. This mechanism thus helps in expressing appealing bio-
chemical properties that enable their stability, functionality, robustness, and capacity
to perform complex biochemical tasks.

With the increase in the global use of chemical fertilizer often beyond crop and
soil’s requirement thresholds (Sun et al. 2015; Liu et al. 2017), researchers and agri-
culturists are finding ways to limit the intense applications of agrochemicals and to
significantly reduce their impacts on the soil ecosystem. Consequently, integration
of natural biotechnological advantages of soil microbes in crop production systems
would undoubtedly mitigate plants growth challenges, while also brightening the
global desire for sustainable agriculture (Manindra et al. 2013; Odoh 2017). The
process of co-metabolism is another interactive advantage of MC over single inocu-
lum. This usually manifests when a specific microbial group gratuitously produces
a specific metabolite which often serves as a potential limiting nutrient for another
population within the consortium. This essentially helps to ensure complete mineral-
ization of by-products which could constitute environmental nuisance to both plants
and microbiota while optimizing soil arable functions.
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Table 13.1 Microbial alleviation of extreme conditions associated with crop growth

Organisms Stress
conditions

Crop Outcome Mode and
tolerant
strategies

References

Rhizobium etli Drought Phaseolus
vulgaris

Reduces the
sensitivity of
drought in
plant and
nodule dry
weight,
nitrogen
content, and
nodule
functionality

Overexpressing
this oxidase in
bacteroides

Talbi et al.
(2012)

Azospirillum
brasilense

Drought Glycine max Improves
plant traits
that can help
tolerance of
water
deficiency

Indole-3-acetic
acid synthesis
and nitrogen
fixation

Hungria
et al. (2015)

Azospirillum
brasilense

Salinity Zea mays Enhance plant
growth
promotion and
reduction in
proline
content

Alteration of
the selectivity
of Na+, K+,
and Ca++ ions

Fukami
et al. (2017)
Fukami
et al. (2018)

Achromobacter
piechaudii

Heavy metal
and salt
stress

Populus
Species
Lycopersicon
esculentum

Increase shoot
and root
growth and
enhance root
hair formation

IAA
biosynthesis
and
overexpression
of abiotic stress
response gene

Fahad et al.
(2015)
Carmen and
Roberto
(2011)

Sinorhizobium
arboris

Heat stress Acacia
Senegal
Cajanus cajan

Maintain basal
metabolic
activity under
adverse heat
conditions

Enzymatic
activity
(Esterase,
Chitinase, and
glucanase
production)

Leena et al.
(2001)
Kumar
et al. (2010)

Bacillus
megaterium
B. subtilis
Bacillus
thuringiensis

Drought, pH,
temperature

Triticum
aestivum L
Cicer
arietinum

Enhanced leaf
relative water
content
(RWC),
greater
biomass of
shoot and root,
and higher
accumulation
of protein,
sugar, and
phenolic
compounds

Production of
phytohormones

Khan et al.
(2019)

(continued)
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Table 13.1 (continued)

Organisms Stress
conditions

Crop Outcome Mode and
tolerant
strategies

References

Pantoea
agglomerans

Heavy
metals

Avena sativa Ameliorate
heavy metals
stress on plant
development

Pishchik
et al. (2009)

Brevibacillus
Brevis

Heat stress Cotton crop Enhance
development
of various
plant growth
parameters

Production of
plant growth
promoters such
as IAA, ARA,
antifungal
activity, and
ammonia
synthesis

Nehra, et al.
(2016)

Curvularia
protuberata

Heat and
drought

Dichanthelium
lanuginosum

Colonization of
roots

de Zelicourt
et al. (2013)

Pseudomonas
aeruginosa

Zn toxicity Triticum
aestivum

Improved
biomass, N and
P uptake, and
total soluble
protein

Islam et al.
(2014)

Pseudomonas
koreensis AGB-1

Cd, AS, Cu,
Pb toxicity

Miscanthus
sinensis

ACC
deaminase,
IAA
production

Babu et al.
(2015)

Photobacterium
spp.

Hg toxicity Phragmites
australis

IAA, mercury
reductase
activity

Mathew
et al. (2015)

Bacillus
thuringiensis
AZP2

Drought Triticum
aestivum

Production of
volatile organic
compounds

Timmusk
et al. (2014)

Burkholderia sp.,
Streptomyces
platensis

Nutrient
deficiency

Zea mays Oliveira
et al. (2009)

Phyllobacterium Strawberries Aid in
phosphate
solubilization,
plants
protection
against
pathogens

Potassium and
phosphate
solubilization

Flores-Felix
et al. (2015)

Rhizobium lettuce Increase
plants biomass
due to
enhanced
nutrient
uptake

Indole acetic
acid synthesis

Flores-Felix
et al. (2013)

Penicillium
janthinellum LK5

Solanum
lycopersicum

Gibberellin
synthesis

Khan et al.
(2015)

(continued)
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Table 13.1 (continued)

Organisms Stress
conditions

Crop Outcome Mode and
tolerant
strategies

References

Chryseobacterium Solanum
lycopersicum

Increase soil
microbial
biomass
vis-à-vis soil
nutrient.

Siderophore
production

Radzki
et al. (2013)

Rhizobium and
Root-associated
plant
growth-promoting
rhizobacteria
(PGPR)

Salinity Oryza sativa Expression of
salt
stress-related
RAB18 plant
gene

Jha et al.
(2014)

Pseudomonas
koreensis strain
AK-1

Salt Glycine max Reduction in
Na + level and
increase in K
+ level

Kasotia
et al. (2015)

Rhizofungal flora Hydrocarbon
pollution

Zea mays and
Sorghum
bicolor

Enhanced
germination,
shoot growth

Eze et al.
(2014)

Rhizobacteria Chromium
toxicity

Vigna
unguiculata
and Arachis
hypogea

General
growth
performance

Eze et al.
(2018)

PGPR and AMF Hydrocarbon
pollution and
saline–alkali
soil

Avena sativa Improves the
soil quality
and
degradation of
total
petroleum
hydrocarbon

Augment the
activities of
essential
enzymes, e.g.,
urease, sucrase,
and
dehydrogenase

Xun et al.
(2015)

AMF Drought Leymus
chinensis,
Hemarthria
altissima

Enhanced
plant biomass
photosynthetic
rate, stomatal
conductance

Enhance
antioxidant
enzyme
activities

Li et al.
(2019)

13.2 Microbial Consortium: Interactions, Operations,
and Mechanism

Bacteria account for over 95% of the total microbial activities in the soil. It is
primarily supported by their fast proliferation and ability to utilize wide range of
nutrients (Odoh et al. 2019a). In the rhizosphere, rhizobacterial concentration in
the soil is estimated to be 1012 CFU/g, while the rhizobacterial flora of the bulk soil
is 108–109 CFU/g (Compant et al. 2010; Foster 1988). During stress conditions,
these rhizobacterial population structures get altered, thus affecting activities of
the general soil ecosystem. These bacteria constantly interact with fungi and other
associated organisms, thereby gaining adaptive capacity for complex mechanisms.
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Arbuscular mycorrhizal fungi (AMF) also have developed aptitude to fix nitrogen,
obtain iron using siderophores, and increase bioavailability of phosphorus via
solubilization by its organic acid (Hardoim et al. 2015; Yadav et al. 2019a, b, c).
According to Kim et al. (2008), MC biotechnology involves the use of more than
two microbial species that are exposed to same environmental conditions be it
nutrients, temperature, pH, or oxygen.

Ecological research has unveiled fascinating groups of microorganisms that live
in close interactions. In the rhizosphere, diverse microbial populations acquire their
nutrient via the root exudates (Philippot et al. 2013), which aid in regulating rhizo-
spheric biotic and abiotic functions such as propagation, space competition, and soil
physicochemical properties (Igiehon and Babalola 2018). This compound is made
up of monosaccharides (glucose), disaccharides (sucrose), polysaccharides (arginine
and benzoic acids), higher molecular-weight compounds (fatty acids, nucleotides,
tannins), and vitamins (Rasmann and Turlings 2016). Technically, MC aggregation
is driven by biofilm-mediated process, a biologically active body formed on/in sur-
faces in contact with water consisting of organic and inorganic minerals andmicroor-
ganisms held together by matrix of organic polymers often produced and secreted
by the microorganisms themselves (Nwankwegu and Onwosi 2017). Igiehon and
Babalola (2018) suggest that these exudates play a huge role in facilitating symbiotic
interactions particularly those involving rhizobacteria and arbuscular mycorrhizal
fungi (AMF). This MC communicates and utilizes pheromone, a unique signaling
molecule, for effective selection of partners, monitoring and maintaining integrity of
their population densities (Sivasakthi et al. 2014). In addition, these signaling/sensing
molecules coordinate microbial activities, which are essential for accomplishment
of complex exploration of biological processes (Bernstein and Carlson 2012; Hays
et al. 2015).

Harnessing this biotechnology advances in agriculture is of essence. This is
because it improves crop growth and food production. Recent omics studies have
thrown light on microorganisms in their natural habit, e.g., (rhizosphere), leading
to the understanding of plant–microbial cooperation. In addition to providing clar-
ity on the complexity of microbial structures in their natural environment, multi-
omics research also reveals weakness of genetically engineered pure cultures or
single strain in biotechnological applications (Jagmann and Philipp 2014; Igiehon
and Babalola 2018; Kumar et al. 2019b; Rana et al. 2019; Yadav 2017b; Yadav
et al. 2019d). There are two mechanisms that explain microbial coexistence in soil,
namely, neutral/equalizing and niche/stabilizing mechanisms.

13.2.1 Neutral or Equalizing Mechanism

Neutralization theory also called equalizing mechanism involves minimizing dif-
ferences among varying species in a growing population while considering other
demographic parameters (Zhang et al. 2009; Ale et al. 2019). It is a mathematical
tool and model program, which captures epiphenomena and broad-scale patterns of
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ecological communities. This theory predicts that changes in species composition are
related to geographic distance between samples as a result of dispersal limitation. It
also suggests that species abundance follows a zero-sum multinomial (ZSM) distri-
bution (McGill et al. 2006), a unique species abundance distribution (Hubbell 2001;
Fisher and Mehta 2014). This theory suggests that microbial community structure
comes solely from stochastic processes and dispersal limitation, ensuring equalizing
biodiversity of all species and a uniform population growth rate at an identical eco-
logical zone. Integral microbial biodiversity characterizations such as birth, death,
colonization, immigration, speciation, and dispersal limitations are linked to neutral
mechanism.

According to Rosindell et al. (2011), organisms at the same trophic level are
equivalent with respect to fitness in a specific environment; as illustrated in the Vel-
lend’s processes of microbial community assembly (Nemergut et al. 2013). Through
heritable genetic barcodes, community compositions are tracked in a repeatedly sub-
culture samples. In a study carried out by Cira et al. (2018), they revealed a transition
between neutral and selective regimes, with a crossover point that is dependent on
the fraction of immigrants and the magnitude of fitness differences. During exclusive
competition, this intrinsic mechanism regulates activities via reduction of compet-
itive speeds resulting in decrease in population growth usually at rare conditions.
Zhang et al. (2009) observed a discrepancy between stabilizing (niche mechanism)
and equalizing (neutral mechanisms) and identified that the former presumes neg-
ative frequency dependence in population growth of species while the latter does
not. Their result, however, justifies Zhou and Zhang (2008), who earlier opined that
neutral theory presupposes that all species are functionally equivalent with diversity
having a little or no effect on the ecosystem.

13.2.2 Niche or Stabilizing Mechanisms

This mechanism suggests increasing importance of deterministic processes. Fun-
damentally, it explains the ecological traits differentiation among species within a
community. Ale et al. (2019) argued that the niche-based mechanism characterized
a robust and progressive activity, which deals with disconfirming data by generating
new testable predictions. It is regarded as a negative intraspecific interaction relative
to negative interspecific interactions in the soil ecosystem. Niche theories predict that
a change in species composition is related to changes in environmental variables, and
that species abundance follows a log-normal distribution (Leibold andMcPeek2006).
Unlike in neutral theory where only random processes, such as birth, death, colo-
nization, immigration, speciation, and dispersal limitations (Vanwonterghem et al.
2014), are considered, niche stabilizing mechanism utilizes environmental condition
(abiotic and biotic factors), habitat heterogeneity, species interactions, and species
relative abundances in shaping bacterial community structure (Dumbrell et al. 2010;
Gilbert et al. 2012).
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Literature in microbial ecology support the eminent contributions of niche-based
and neutral processes in microbial community assembly (Burke et al. 2011; Logares
et al. 2013). Worthy of note is that stabilizing mechanisms result in negative
frequency-dependent selection where each species enjoys an advantage in popula-
tion growth at rare condition. This bio-technique is paramount for long-term stable
coexistence among species through resource partitioning, frequency-dependent
predation (Chase et al. 2011), and fluctuations in population density and envi-
ronmental factors (Letten et al. 2017). Aside from niche partitioning primarily
regulating the composition and diversity of natural arbuscular mycorrhizal (AM),
stochastic-neutral processes (Dumbrell et al. 2010) also influence them. Liao et al.
(2016) suggest that habitat specialists (niche process) were significantly strongly
shaped by environment selection, whereas habitat generalists (neutral process) were
strongly assembled via neutral bioprocesses. They identified salinity, dissolved
oxygen, water transparency, total phosphorus, ammonium nitrogen, temperature,
and total nitrogen as the significant habitat specialists, whereas habitat generalists
are driven by natural processes. The theory also suggest that organisms do not just
come to existence all at once, rather through typically assemble and sequential
species colonization events (Jiang and Patel 2008; Nemergut et al. 2013; Verbruggen
et al. 2012). This ultimately gives rise to ecological succession.

13.3 Microbial Consortium as Biofertilizer

Belowground microbial interactions in soil ecology are dynamic and complex. It
is a determinant of the increase in yield and productivity of the aboveground crop
parts (Philippot et al. 2013). This occurs through a process called biofertilization—a
phenomenon where microbial inoculants are seeded on plant surfaces, seeds, and/or
soil to colonize root rhizosphere. This condition enhances growth through the supply
and availability of primary nutrients to the plant (Odoh et al. 2019a; Odoh 2017).
Biofertilizer (Table 13.2) is a culture of bacteria, fungi, and algae either alone or
in combination that is packed in carrier materials to enhance plant growth. Several
support materials preferably of organic origin (notably chitosan, gelatin, sawdust,
k-carrageenan, zeolite, activated carbon, etc.) are stable bio-carriers used to immobi-
lize these biofertilizers while substantially eliminating environmental perturbations
(Nwankwegu andOnwosi 2017). In a comparative research evaluatingmicrobial con-
sortia versus single-strain inoculants, Bradáčová et al. (2019) suggest that microbial
consortia increase the efficiency of crop production, particularly under challenging
environmental conditions. Microbial fertilizer plays a critical role in atmospheric
nitrogen fixation and mineralization of organic compounds. In arable agricultural
application, it is considered an essential component for long-term soil fertility and
sustainability. Nuti and Giovannetti (2015) in their view suggested that biofertiliz-
ers act by nourishing and fortifying the host plant, and inducing general pathogenic
resistance, irrespective of its origin and nature.
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Table 13.2 Biofertilizer and their formulating microbial strain

Product name Organismal
consortium

Target crops Manufacturers

Amnite A 100® Azotobacter,
Bacillus, Rhizobium,
Cheatonium,
Pseudomonas

Cucumber, lettuce
tomato, pepper

Cleveland biotech,
United Kingdom
(UK)

Armour-Zen® Chitosan. An elicitor
against Botrytis
cinerea (gray mold),
Sclerotinia
scherofiorum (white
rot)

Grapevine,
ornamentals

Borty-Zen 2010 Ltd.,
New Zealand

Bioativo® PGPR consortia,
organic matters

Bean, maize,
sugarcane,
rice, carrot, cotton

Embrafos Ltd., Brazil

BactofilA10® A. brasilense, A.
vinelandii,
B. megaterium, P.
fluorescens

Cereals Agro bio Hungary
kft, Hungary

Biomix®, Biozink®,
Biodine®

Azotobacter, P.
fluorescens,
phosphobacteria

Wide range of plant
varieties, e.g., field
crops

GreenMax Agrotech,
India

Ceres® P. fluorescens Horticultural crop Biovitis, France

Complete® plus B. pumilus, B subtilis,
B. licheniformis,

Nursery trees and
field crop

Plant Health Care,
United States of
America (USA)

FZB 24® fl B. amyloliquefaciens
sp, planetarium

Vegetables AbiTEP GmbH,
Germany

Gmax PGPR PGPR consortia Field crops GreenMax Agrotech,
India

Galtrol® Agrobacterium
radiobacter strain 84

Ornamentals, Fruits,
Nuts

AgBioChem, USA

Hyper Coating
Seeds®

Rhizobium and
legume seed

Legume Tokachi Federation
of Agricultural
Cooperatives
(TFAC), Japan

Inomix®
biostimulant

B. polymyxa
(LAB/BP/01),
B. subtilis
(LAB/BS/F1)

Cereals LAB (Labiotech),
Spain

Mycostop® Streptomycin
griseoviridis

Ornamentals, Tree
Seedlings

Kemira Agro Oy,
Finland

(continued)
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Table 13.2 (continued)

Product name Organismal
consortium

Target crops Manufacturers

Micosat F® cereal B. subtilis BR62,
Paenibacillus durus
PD74, Streptomyces
sp ST60

Tomato, soybean CCS Aosta Srl, Italy

Mamezo® Rhizobium-based
formulation in peat

Legumes TFAC, Japan

Nodulator® Bradyrhizobium
japonicum

Cereals and
horticultural plants

Lallen and plant care
BASF Inc. Canada

Nitrofix® Azospirillum sp Wheat, barley, carrot,
maize, cabbage

Labiafam S.A, Cuba

Processing Seeds® Rhizobium Legumes TFAC, Japan

Modified from Odoh et al. (2019a)

Due to excessive application of chemical fertilizers, leaching and runoff of essen-
tial minerals “phosphorus (P) and nitrogen (N)” occur leading to loss of soil nutri-
ent. With the overwhelming importance of biofertilization in modern agriculture,
research has focused on halting the overdependence on synthetic fertilizers coupled
with the rising depletion of soil functionality (Bhardwaj et al. 2014). Chatzipavlidis
et al. (2013) is of the view that biofertilizing system requires adequate preparation
of the inoculants, selection of carrier, and designing of accurate delivery system.
This bioprocess, however, requires optimization to support increased yield and eco-
nomic viability of small andmarginal farmers.MC, apart from being able tomobilize
nutritionally important elements from non-usable form through biological process
(Mazid et al. 2012), secretes fascinating bioactive ligands (Myc and Nod factors)
using a transduction pathway (Roberts et al. 2013) for the release of Ca2+ in the
cytosol (Sieberer et al. 2009).

13.3.1 Nitrogen Fixation as a Form of Biofertilizer

Nitrogen (N) is one of the major limiting nutrients constantly required for crop
growth. It is a common and essential element occurring in all organisms. As a pre-
cursor of amino acid and a major constituent of protein and nucleic acid (DNA and
RNA), it constitutes 3% of body mass index and fourth most important plants dry
mass. Besides circulating the atmosphere, lithosphere, and biosphere through biogeo-
chemical cycle, it serves as a nourishing nutrient andmineral for agricultural services.
In plants, this element is fixed through nitrogen fixation. Here, atmospheric nitrogen
gets converted into ammonia (NH3) and/or nitrogenous compound. The conversion
of dinitrogen (N2) into NH3 also called biological nitrogen fixation is important as it
enables broad utilization by a number of microorganisms. During this process, soil
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free-living symbiotic diazotrophs, e.g., Azotobacter, rhizobium, and spirilla, as well
as cyanobacteria (blue-green algae such as species of Aphanizomenon, Anabaena,
Nostoc, etc. in aquatic ecosystems) produce a highly complex oxygen labile enzyme
called nitrogenase (Verma et al. 2015; Franche et al. 2009; Simone et al. 2018). This
enzyme aids the reduction of nitrogen (N2) to ammonia (NH3).

A combination of recent nitrogenase engineering biotechnology using advances
in synthetic biology to broaden understanding of the enzyme biosynthesis and bio-
chemistry by plant scientists has been innovated (Burén and Rubio 2018). This tech-
nology enables the engineering of plants to express their own specific nitrogenase
enzymes, thus overcoming negative natural pressures (increased use and availability
of reactive nitrogen) and apparent economic benefits and opportunities it presents.
During biological process of nitrogen fixation, a two-form (symbiotic and nonsym-
biotic) process occurs owing to their associated plants and group of microorganisms.
It has, however, been established that nonsymbiotic processes fix less amount of
nitrogen when compared to the rhizobia association with root nodule (symbiotic)
(Sippel et al. 2018). Considering the overarching importance of this event and the
role played by nitrogen in agriculture cum food production, PGPR have intrinsically
developed capacity in augmenting this process through diverse strategies that would
improvise and support availability of the nitrogen nutrient (Odoh et al. 2019a). Else-
where, nitrogen fixation as a biofertilizer has been documented and demonstrated
with a major contribution of PGPR and AMF as seen in the suppression of major
biotic and abiotic stresses and threat (Majeed et al. 2018).

13.4 Plants–Microbial Interactions

Soil is the loose material of the earth’s surface consisting of a mixture of organic
matter, minerals, gases, liquids, and organisms that jointly support life. It is the
natural component of the earth crust with proven biological, chemical, and physical
properties. One of its rich nutritional components essential for plant crop growth
is “soil organic matter” (SOM). It consists largely of residue of plants and animals
usually at various stages of decomposition. These substances help in sustaining soil
fauna and floras. Soil microorganism contributes over “8%” of the total SOM, while
the nonliving remains, and humic substances in the soil account for about 60% of
SOM (Varanini and Pinton 2001; Liste 2003; Htwe et al. 2019). SOM besides being
an important portion of soil with pool of nutrient supporting the propagation of soil
organisms and plants, it is also vital for cation exchange and sorption of contaminants
(Eze et al. 2018). Its roles in erosion control, water, and air circulation as well as
soil aggregation have also been documented (Guo et al. 2019a). However, with the
dominance of SOM in soil due to plant derivatives, it thus supports the premise that
accumulation of organic matter in soil profile (horizon A) occurs most where the
number of plant roots is greatest.

Owing to the inability to physically understudy soil–plant–microbialmechanisms,
omics molecular tool has revealed levels of interaction in the soil ecosystem. This
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advanced technique has helped to identify and quantify themicrobial diversity associ-
ated with specific plants while giving clarity to their immense interactions to which
plants are exposed. Schirawski and Perlin (2018) disclosed that plants constantly
relate with microorganisms via a diverse number of mechanisms necessary for their
survival. Through this association, plant benefits directly or by indirect effects of the
associated microbes which composition around the root zones includes rhizobacte-
ria and mycorrhizal fungi (Nadeem et al. 2014; Hamilton et al. 2016; Yadav et al.
2015a, b). Since multidimensional interactions occur in all plant organs, total micro-
biomes’ evaluation could help provide evidence of plants’ part specificity and its
identifiable organism for agrobiology. Notably, plant root, apart from serving as a
host for organisms, releases compounds and also serves as nutrient upon their death.
These molecules induce more resistance to abiotic or biotic stress and defend species
against malignant microbes.

Due to the rich microbial diversity and low nutrient composition in the soil, com-
petition for dominance, adaptation to stress, and capacity to enhance crop growth
are prevalent (Ngumbi and Kloepper 2016). Consequently, beneficial microorgan-
isms interact with plant roots, thus supporting plant health via a myriad of mecha-
nisms, e.g., biocontrol, biofertilization, and biostimulation (Glick 2014; Rashid et al.
2016; Odoh et al. 2019a; Yadav et al. 2016, c). Fungal network, according to Fabbro
and Prati (2014), also gives protection to plants root zones against various phy-
topathogens, while helping in phosphorus acquisition and water availability during
drought (Barnawal et al. 2014).

13.4.1 Forms of Interactions Among Microbial Consortium

13.4.1.1 Bacterial–Bacterial Interaction

Plant growth-promoting rhizobacteria (PGPR) includes all rhizobacteria capable of
directly or indirectly enhancing crop growth. Example of these organisms includes
Alcaligenes, Pseudomonas, Azospirillum, Bacillus, Klebsiella, Azotobacter, Enter-
obacter, Burkholderia, Arthrobacter, and Serratia—they facilitate crop development
through anumber ofmechanisms (Saharan andNehra 2011; Jambon et al. 2018;Odoh
et al. 2019a). Bacteria–bacteria associations in plants are often exploited to enhance
efficiency of pollutants sequestration (Eze et al. 2018; Odoh et al. 2019a). Owing to
high nutrient availability in the rhizosphere, unlike in the rhizoplane (surface of the
roots) and phyllosphere (surface of leaves), there tend to be heightened microbial
and biochemical activity in the rhizoenvironment (Venturi and Keel 2016). PGPR
also exhibit special role by hindering plant infections, increasing nutrient absorp-
tion, root and shoot formation, and improving seed germination and tolerance to
environmental stress (Lugtenberg and Kamilova 2009; Odoh 2015). These functions
are dependent on the recruitment of rhizospheric and rhizoplane microbes by plants
from the bulk soil. Bulgarelli et al. (2012) noted that PGPR recruitment is depen-
dent on the community structure of the bulk soil. Lundberg et al. (2012) opined that
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different plant genotypes select different rhizospheric communities, thus implying
that genetic variation across plant species drives differential recruitment of beneficial
microbes. These employed bacterial consortiums engage in fascinating roles such
as nitrogen fixation, solubilization of phosphates, phytohormones production, and
plant development (Ma et al. 2009; Odoh 2017; Htwe et al. 2019).

During cell–cell interaction in bacteria, members of associated community con-
verse via signaling chemical process. Notable among these sensing mechanisms
is quorum sensing. Quorum sensing is a microbial communication and regulation
of gene expression mediated by small diffusible molecules called autoinducers or
quorum-sensing molecules (QSM) (Barriuso 2015). It is described as a regulatory
response for transcription of specific genes in response to the detected compound
(Venturi and Keel 2016). As a self-regulatory innate mechanism, the accumulation
of quorum-sensing molecules occurs throughout microbial growth. When microbial
concentration reaches a threshold, regulatory response control by gene expression is
initiated to control cell density and population outburst (Albuquerque and Casade-
vall 2012). This cell-to-cell communication signal is always specific and coordinate
pathogenic activities by helping bacteria acclimatize to the disadvantages in the
environment when activated (Qian et al. 2019). The QS signals in bacteria consist of
acyl-homoserine lactone, autoinducing peptide, and autoinducer-2. They also reg-
ulate biochemical processes such as motility, biofilm formation, sporulation, and
antibiotic production and play significant role in the secretion of virulence factors
(Barriuso 2015; Fleitas-Martínez et al. 2019). Through this efficient cell–cell inter-
action, energetically cost-effective activities are only undertaken when bacteria pop-
ulation size is high enough to successfully accomplish a specific task (Clinton and
Rumbaugh 2016).

In addition, volatile organic compounds (VOCs) and nodulation (Nod) factors
of rhizobia have also been identified with properties aiding bacterial interactions
(Jambon et al. 2018; Hung et al. 2015). VOCs aid long-distance interactions between
microbes, microbes and plants, control symbiotic associations, and the distribution
of saprophytic, mycorrhizal, and pathogenic organisms (Hung et al. 2015; Tyc et al.
2017; Brilli et al. 2019). Through this bio-technique, plant health is guaranteed as
they act as biocide against plant pathogenic bacteria and fungi. Furthermore, bacterial
VOCs promote plant growth through the use of acetoin, a chemical compound that
induces systemic resistance and interference with plant gene expression (Bennett
et al. 2012). However, responses to flavonoids and strigolactones from plant roots are
recognized as host plant symbiosis and signaling molecules (Venturi and Keel 2016).
Unlike the Myc factors produced by a specific mycorrhizal fungus, Nod factors by
nodulation rhizobia and VOC are cell signaling secondary compounds found in root
exudates aiding specificity of rhizobial interactions with their host plant (Oldroyd
2013).
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13.4.1.2 Bacteria–Fungi Interaction

Historical ecological studies have revealed that bacteria and fungi often cohabit and
share common ancestral origin where assemblage and dynamic co-evolving commu-
nities occur. Due to long years of microbiological research that distinguish bacteri-
ology and mycology as two separate disciplines, many scientists and literatures have
overlooked in reality, the coexistence of these organisms in the same ecosystem. This,
however, has hampered the understanding of the interactions and biochemical pro-
cesses exerted by the combination of their mutual partnership. Deveau et al. (2018)
disclosed that bacteria–fungi interaction (BFI) is intrinsically modulated by behav-
ioral properties of either or both of the interacting partners. Usually, during their
coexistence, there exist intimate biophysical and metabolic associations leading to
the development of bacterial–fungi interdependency. BFI research has in the last
decade metamorphosed into interdisciplinary studies integrating molecular biology,
genomics, chemical and microbial ecology, biophysics, and ecological modeling.
Through the characterization of BFI, understanding of microbiomes (e.g., arabidop-
sis root microbiome) has been unraveled (Bergelson et al. 2019). This is primarily
through the applicationofmolecular toolswhere descriptionof biomes and ecological
habitat highlight the diversity of the microbes (Thompson et al. 2017). Considering
the physical complexities that exist between bacteria and fungi and their applicability
in agriculture and ecological studies, Frey-klett et al. (2011) suggested a transit from
disordered poly-microbial communities to highly specific symbiotic associations of
fungal hyphae and bacterial cells.

Arbuscular mycorrhizal fungi (AMF) and bacteria (PGPR) association have been
reported to promote crop growth (Pathak et al. 2017). Besides this association hav-
ing positive influence on crop yield, it also enhances soil nutritional status and soil
microbial biodata. According to Pathak et al. (2017) and Franco et al. (2011), PGPR
and AMF are major bio-inoculants with potential for halting dependence on agro-
chemicals, thus aiding in sustainable agricultural practices when serving as biofer-
tilizer and biocontrol agents. PGPR are classified according to host and intra- and
extracellular plant growth-promoting rhizobacteria, and boost plants through direct
(growth-promoting hormones) and indirect (antimicrobial substances) mechanisms
(Deshwal and Kumar 2013; Zheng et al. 2018). As aid to the process of mycorrhiza-
tion, mycorrhizal-helping bacteria (MHB) and PGPR symbiotically interact with
mycorrhizal fungi and mycorrhizal roots for nutrient uptake. Studies have revealed
that rhizospheric AMF and PGPR elicit systemic host immune responses for plant
resistance (Zamioudis and Pieterse 2012; Singh 2018). Experimental evidence has
shown that co-inoculants of AMF and PGPR offer synergistic advantage to crop
especially in nutrient-limited agricultural soil (Gouda et al. 2018).Bacillus sp.,Pseu-
domonas sp. (PGPR), and AMF interaction proffer viability (Philippot et al. 2013)
and show significant improvement in various field applications when used singly or
in combined application (Pathak et al. 2017).
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13.5 Microbial Consortium as Biofertilizers in Extreme
Habitat

Microbial association and adaptation in extreme environments involve progressions
characterized by genetic variations and distributions in the population through nat-
ural selection or drift. Changes in microbial community composition due to any
implication aid shift in the behavioral occupation of organisms inhabiting an ecolog-
ical niche. These implicating conditions are either newly introduced species, fluc-
tuating environmental conditions or low fitness genotype variants within the host’s
microbiota (Yadav 2017a; Yadav et al. 2017). In ecological biotic or abiotic variation,
tendency of adjustments of microbial physiology and metabolic homeostasis occurs.
Liu et al. (2016) in their submission suggest that rapid adaptation of microbes occurs
through genetic fluctuations at the level of individual bacterial cells. They further
illustrated that intra-genomic recombination processes and epigenetic switches are
precise phenomena in phase variation. Furthermore, integration of beneficial plant–
microbes and microbiome interactions through agricultural microbial biotechnology
has proven to be a sustainable solution for species adaptation and crop production in
extreme habitat (Timmusk et al. 2017). In understanding this section, we focused and
laid much emphasis on habitat under abiotic stress (heat, pH, salinity, and drought)
and key environmental disturbances such as heavy metal and crude oil pollutants.

13.5.1 Heat Stress

Heat stress implies increase or decrease in a temperature more than the critical edge,
at a particular time. Usually, this condition is adequate enough to cause irretrievable
damage to plant growth and development (Ripa et al. 2019). Temperature stress also
leads to soil fertility loss, microbial diversity, loss of nutrient resources, and a series
of morphological, physiological, biochemical, and molecular changes with adverse
effects on plant growth (Hayat et al. 2013; Chodak et al. 2015). Documented evidence
has shown that temperature-related stress either high or low severely restricts crop
production and most importantly, with the upset in the global earth temperature and
upsurge in human activities. In the tropics, this abiotic stress has hindered agricul-
tural developments particularly in climate-impacted community leading to weather
change and alteration of farming seasons. Besides crop productivity being tempered
by change in the plant metabolism during high temperature stress, there also occur
cellular changes such as reactive oxygen species (ROS) (Hasanuzzaman et al. 2013).
According to Akter and Islam (2017), heat stress significantly reduces seed germina-
tion and seedling growth, cell turgidity, and plant water-use efficiency. They further
explained its role in the disturbance of cellular functions, enhancement of leaf senes-
cence, deactivation of photosynthetic enzymes, and generation of oxidative damages
to the chloroplasts.
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In contrast, cold and frost (low temperatures) cause decreased kinetics of
biomolecules leading to reduced cell membrane fluidity and a decreased rate of
enzymatic reactions. It results in cell division, impairment of water transport, photo-
synthesis default, alteration of crop development, and growth in arctic environment
(cold). This condition leads to the formation of ice crystals in soil due to reduc-
tion in water uptake by roots resulting in cellular dehydration. As a response to this
stress condition, plants over the years have developed strategies to induce accumula-
tion of several osmolytes and hydrophilic proteins such as dehydrins. According to
Kosová et al. (2018), heat and cold temperature stress exacerbate imbalance between
photosynthetic electron transport processes and carbon assimilation processes, thus
resulting in enhanced photo-inhibition and thermal energy dissipation.

Different researches have reported the ability of some beneficial heat- and cold-
tolerant bacteria to induce stability in plants (Chang et al. 2007; Chakraborty et al.
2018; Lamaoui et al. 2018; Yadav et al. 2015a, b). This microbial-tolerant synthe-
sis often depends on the plant genus, stress type, microbial species, and the plants’
microbial relationship. An example of this is seen in phyllosphere bacteria with ice-
nucleating activity that damage plant in temperate region. This can be harnessed for
onward application as foliar spray to suppress the ice nucleation effect in temperate
region (Selvakumar et al. 2012). Consequently, these abiotic effects even at mildest
state affect the smooth growth and development of plant at all states. With several
independent researches, it has also been demonstrated that increase or decrease in
temperature has the propensity of reducing crop yields by over 50% (Lamaoui et al.
2018). Through advances in biotechnology such as genomics and information tech-
nology,mitigation of these abiotic stresses through the use of agronomicmanagement
practices would be sound if integrated with tolerantMC, so as to aid the development
of crop varieties while boosting harvest amidst rising stress (Fig. 13.1).

13.5.2 Drought Stress

One of the documented stresses that affect crop health and growth is drought. It is an
abiotic condition where plants experience deficit supply of their water needs. When
rate of transpiration exceeds rate of root water uptake, drought is said to occur—
this leads to reduction in the cells’ relative water content and development (Utsumi
et al. 2019). Research on drought tolerance has become an important field of study
owing to rising global climatic state. This, however, has cut the interest of most
agriculturists and scientists to probe drought challenge and its related consequences
on crop breeding (De Oliveira et al. 2017). The impact of this drought condition has
necessitated the exploration of belowground microbial potentials and interactions to
proffer ways of curtailing the rising menace (Igiehon and Babalola 2018). Charac-
terized by cellular water deficiency, drought is a severe condition where plants get
dehydrated and ultimately die off (plant dieback) due to limited water supply. This
could lead to shedding leaves, breaking branches, weak root formation, and color
alteration. According to Odoh et al. (2019b), this plant dieback occurs as a result
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Fig. 13.1 Schematic representations of extreme conditions upturned by activities of microbial
consortium

of drought, pathogens, parasite, soil acidity, and soil pollution. In general, drought
stress reduces cell size, membrane integrity, produce reactive oxygen species, and
promotion of leaves senescence, thus leading to decreased crop production (Tiwari
et al. 2016). However, seed germination, seedling development, and morphological
and molecular changes are all related developmental challenges impeded by crop
exposure to drought (Nezhadahmadi et al. 2013; Varshney et al. 2018; Utsumi et al.
2019; Kour et al. 2019a, b; Rana et al. 2019; Verma et al. 2016, 2017; Yadav and
Yadav 2018).

With the recent advances in omics studies, plant–microbial processes and species
have showcased promising character in ameliorating agrobiotechnology-related
stress (drought). At the transcriptomic level, bacterium Paenibacillus polymyxa B2
enhances drought tolerance in Arabidopsis thaliana. When PGPR (A. thaliana) is
inoculated, it expresses genes for the overexpressionof drought toleranceunlikewhen
compared to the uninoculated plants (Glick et al. 2012; Alavilli et al. 2017). Lim and
Kim (2013) in their studies using 2-D polyacrylamide gel electrophoresis and differ-
ential display polymerase chain reaction identified drought stress gene expressed in
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plants amended with Bacillus licheniformis in affected soils. Also through quantita-
tive polymerase chain reaction (qPCR)Bacillus amyloliquefaciens 5113 andAzospir-
illum brasilense have shown priming effects on the expression of drought-responsive
genes. Some of the genes usually expressed for drought abiotic stress include ascor-
bate peroxidase (APX1), S-adenosyl-methionine synthetase (SAMS1), heat shock
protein (HSP17), and enzyme-enhancing drought stress in wheat leaves (Kasim et al.
2013). PGPR produce phytohormones or induce plants to synthesize molecules such
as indole acetic acid, cytokinins, gibberellins, and abscisic acid (Hayat et al. 2010;
Spaepen et al. 2008; Odoh et al. 2019a). These molecules trigger adaptation of plant
in stress habitat through varying mechanisms (Spaepen and Vanderleyden 2011),
thus influencing changes such as increase in root growth, length, surface area, and
formation of lateral roots and root hairs for the acquisition of water (Egamberdieva
and Kucharova 2009; Paul and Lade 2014; Manaf and Zayed 2015).

Duringflooding stress, anaerobiosis occurs due to excessive accumulationofwater
in the root; this leads to induced fermentation processes in the root region. It also
results in enhanced accumulation of organic acids resulting in acidity of the cell cyto-
plasm affecting cellular enzymes (Kosová et al. 2018). Also using cellular organelles
(nucleus, nucleolus, mitochondria, endoplasmic reticulum, plasma membrane, cell
wall), a novel protein biosynthesiswas found in nuclear proteome of soybean root tips
(Yin and Komatsu 2016), suggesting expression of adaptive capacity in stress-driven
environment.

13.5.3 Salt Stress

Salinity stress is a major abiotic factor commonly seen in most agricultural soil. It
causes inhibition and impairment of crop growth and development via water stress
and cytotoxicity by excessive uptake of ions (Isayenkov and Maathuis 2019). Salt
stress has been reported to be detrimental on nitrogenase—an enzyme responsible
for the fixation of nitrogen. Some of these ions causing salinity are responsible
for changes in the ratio of ion homeostasis of plant system. This, however, leads
to undue uptake of Na+ and Cl−, and reduction in K+ and Ca2+ transport in the
growing plant (Giri et al. 2007; Paul and Lade 2014). One of the significant effects
of salt stress is low water budding; this leads to inability of plant to take up nutrients
and water from the soil due to osmotic pressure. Álvarez-Aragón et al. (2016) in
their studies revealed that overaccumulation of Na+ and K+ might be responsible for
triggering growth reduction in NaCl-treated Arabidopsis plants. In their work, they
demonstrated how stomatal regulation and/or systemic stress responses occur owing
to salt concentrations. Typically, salinity stress is accompanied by oxidative stress
caused by reactive oxygen species (ROS) (Isayenkov 2012). During soil salinity,
electrically charged ions accumulate due to insufficient water distribution, hindering
germination and uptake of nutrients. During this condition, growth responses in plant
occur either as ion-independent growth reduction or by cytotoxic ion build-up. In the
former, crop growth takes place within minutes to days—causing stomatal closure
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and inhibition of cell expansion (Rajendran et al. 2009; Isayenkov and Maathuis
2019), while the latter takes days or even weeks for development leading to slow
metabolic processes, premature senescence, and cell death (Munns and Tester 2008;
Roy et al. 2014).

However, harnessing PGPR potentials could directly and indirectly influence the
promotion of plant growth under increased salinity concentration. Studies by Kasim
et al. (2016) have it that when PGPR and endophytic microbes are inoculated,
they mitigate effects of soil salt on plants using various mechanisms. In a related
experiment, Bacilio et al. (2016) in their work revealed that plants inoculated with
salt-tolerant bacteria (Pseudomonas stutzeri) reduce in high extent the negative
impact of soil salinity on crop growth. Rhizobacteria sp. with capacity at reducing
salt toxicity in several plants through the reduction of Na+ concentration and increas-
ing the K+ and Ca2+ are reported (Bano and Fatima 2009; Hamdia et al. 2004; Kohler
et al. 2009). This is achieved principally by altering host physiology, reducing foliar
accumulation of ions (Na+ and Cl−) and improving the nutritional condition ofmacro
(P and K), andmicronutrients (Zn, Fe, Cu, andMn) (Bano and Fatima 2009). In plant
roots, endophytic fungiPiriformospora indica and AMFshowability in ameliorating
ions toxicity by inducing host defense against salt stress (Ansari et al. 2013).

Cell homeostasis is the ability of a living cell to maintain internal ions concentra-
tion or remain nearly constant even in environmental stresses (Rombola-Caldentey
2019; Chérel et al. 2019). Under this ionic homeostasis stress, beneficial rhizobac-
teria are harnessed, e.g., Pseudomonas (Fu et al. 2010), Azospirillum (Ashraf et al.
2004), and Bacillus subtilis GB03 with Arabidopsis (Zhang et al. 2008) to maintain
intracellular ionic homeostasis balance in crops such as eggplant and maize. These
PGPRs have shown capacity to trigger all round physiological functions and devel-
opment through the accumulation of osmolytes and several low-molecular-weight
compounds such as methylated tertiary N compounds and amino acids (Guo et al.
2019). Primarily, these osmolytes operate through the modulation of osmotic pres-
sure in the cytoplasm and cell membrane, thus stabilizing plant growth when water,
salt, and/or temperatures seem unfavorable (Tiwari et al. 2010; Sze and Chanroj
2018; Chérel et al. 2019).

13.5.4 Soil Reaction (Acidity and Alkalinity)

Soil pH is an important abiotic condition that determines the growth, survival, and
productivity of any given plant. In considering physicochemical properties, pH is a
fundamental determinant of soil health. Some of the most important bioprocesses
and microbial activities include nutrient solubility and availability to the host plant
(Gentili et al. 2018).Many plant genetic traits, such as height, lateral spread, biomass,
flower size and number, pollen production, etc., are influenced by soil pH (Jiang et al.
2013). Elsewhere, studies have shown that most micronutrients are more available
to plants in acid soils compared to neutral–alkaline soils (Lončarić et al. 2008). In
alkaline soils also, availability of most macronutrients increase with concomitant
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reduction of phosphorus, thus generally affecting crop growth. However, as these
micronutrient accumulations increase along with other nonessential elements, they
become poisonous to plants.

Alien invasive plants have usually been documented to have tolerance to envi-
ronmental stress, including pH (Dassonville et al. 2008; Hao et al. 2017). They are
species that upon introduction spread outside their natural habitat and threaten bio-
logical diversity. Unlike the cultivated or native plants whose optimum performing
pH mostly ranges from 5.5 to 6.5 (Köpp et al. 2011), they propagate at extreme con-
ditions. This characteristic allows them to adapt to a great variety of soil types and
thus spread vigorously, while also colonizing environments not suitable for native
species (Sǎrǎteanu et al. 2010). In a study done by Gentili et al. (2018) on the effects
of pH on germination, growth-related traits, reproduction, pollen production, and
allergenicity of Ambrosia artemisiifolia, they reported that soil pH greatly affects the
growth and development of A. artemisiifolia and may have contributed in limiting
the distribution and growth of the plant. Despite the impact of this abiotic stress
on plants, there has been relatively rare studies of its role in modern agro practices
(Caplan and Yeakley 2006; Zeng and Clark 2013).

Some important plants’ biosynthetic molecules and compounds such as proline,
glycine betaine, and soluble sugars have proven to possess the capacity of ame-
liorating these abiotic stresses (Ranganayakulu et al. 2013; Goswami et al. 2015).
Using PGPRs Zea mays exposed to pH stress showed increment in proline produc-
tion upon inoculation with Rhizobium sp. and Pseudomonas sp. (Bano and Fatima
2009; Grover et al. 2011). Endomycorrhizal fungi have also shown capacity in induc-
ing biosynthesis of glycine betaine and proline accumulation in plants subjected to
abiotic stress (e.g., salt and pH) when compared to non-inoculated plants (Al-Garni
2006; Manaf and Zayed 2015). Different microorganisms have the ability to sup-
port accumulation of soluble sugar (trehalose) in plants. These organisms such as
endomycorrhizal fungi, symbiotic bacteria such as Rhizobium spp., and free-living
PGPRs suppress plant abiotic stresses (Grover et al. 2011Suárez et al. 2008). Through
genetic engineering, PGPRs could be designed for the overproduction of trehalose as
biofertilizer, just as Rhizobium etli are used to overcome drought stress (Suárez et al.
2008). Similarly, genetically engineered Azospirillum brasilensewhen inoculated on
maize plants overproduce trehalose which induce more resistance to varying abiotic
conditions (Rodríguez-Salazar et al. 2009).

13.5.5 Heavy Metals and Hydrocarbon Stress

Heavy metals and crude oil hydrocarbon are both environmental pollutants with
deleterious effects on crop food production. They are classified as environmental
pollutants of major global concern due to inherent challenges associated with natural
resource mining (Odoh et al. 2019b; Kumar et al. 2019a). Basically, hydrocarbon
pollutants exist in the environment as total petroleum hydrocarbons (TPHs) and
this according to Nwankwegu et al. (2018) are hydrocarbon derivatives/congeners,



402 C. K. Odoh et al.

which bioaccumulate and bio-concentrate in food chain through soil ecosystem.
Their presence in the ecosystem is attributed to industrialization, urbanization, and
civilization (Odoh et al. 2017; Sam et al. 2017). In the developing economy, illegal
activities such as artisanal refining and exploration are the basic routes of entering
the soil ecosystem. It also has been traced to practices such as excessive fertilizer
application, indiscriminate disposal of sewage, power plants/fossil fuel, municipal
waste, and pesticides/insecticide usage among others. Examples of some heavymetal
species commonly found in the soil are copper (Cu), zinc (Zn), nickel (Ni), lead (Pb),
cadmium (Cd), cobalt (Co),mercury (Hg), chromium (Cr), and arsenic (As). Because
they are nondegradable, they consistently bioaccumulate in the environment (Walker
et al. 2003; Eze et al. 2018), thus impairìng food production and posing health threat
to man and animals. In agriculture, these heavy metal pollutants lead to decrease in
crop yields and further economic loss.

In hydrocarbon stress, soil toxicity occurs leading to distorted microbial popula-
tion. It causes severe ecological damage, loss of biodiversity structure, and climatic
impact. In Nigeria Niger Delta region, hydrocarbon spills have left footprints with
devastating impact on farming activities. This significantly alters the health indices
in the region with huge ecological imbalance (Ite et al. 2013). Across the tropics,
crude oil exploration has threatened food security leading to loss in soil fertility status
owing to technical failures, sabotage and artisanal activities (Zabbey et al. 2017; Sam
et al. 2017; Odoh et al. 2019b). Ajai (2010) stated that hydrocarbon stress has a direct
impact on the total environment especially the food chain and other life-supporting
entities.

In the rhizosphere, bacteria, fungi, protozoa, and algae coexist and exert multi-
functional strategies in the utilization of mineral and organic wastes. These organ-
isms mostly plant growth-promoting rhizobacteria (PGPR), phosphorus solubilizing
bacteria, mycorrhizal-helping bacteria (MHB), and arbuscular mycorrhizal fungi
(AMF) play a critical role through bioremediation and phytoremediation technol-
ogy (Ahemad 2015; Stambulaka et al. 2018; Yadav and Yadav 2019a, b). These
microorganisms alleviate the pollutants’ noxious effects on plants through secretion
of acids, proteins, phytoantibiotics, and other chemical molecules (Denton 2007;
Wei et al. 2017; Pettit et al. 2019). Microorganisms, namely, bacteria, fungi, proto-
zoa, and algae coexist in the soil especially within the rhizosphere region and serve
as effective metal sequestering and growth-promoting bio-inoculants for plants in
metal-stressed soils (Rajkumar and Freitas 2008; Stambulaka et al. 2018).

13.5.6 Osmotic Stress

Reactive oxygen species (ROS) are a bioproduct ofmetabolic activities and pathways
localized in different cellular compartments (Apel and Hirt 2004). They are a group
of very reactive, short-lived chemicals often produced during metabolic processes or
after an oxidative reaction. Examples of ROS include superoxide (·O2−), hydroxyl
radical (·OH), hydrogen peroxide (H2O2), and singlet oxygen (1O2) (Iqbal 2018).
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These chemical molecules have the capacity to impair a number of physiological
developments such as proliferation, differentiation, senescence, and apoptosis when
found in minimal concentrations (Lai et al. 2007; Iqbal et al. 2016; Iqbal 2018).
This occurs owing to their involvement in oxidative damage on proteins, DNA, and
lipids (Carmen and Roberto 2011). Studies have shown that accumulation of ROS
occurs most during stress condition unlike in normal growth conditions. This is a
result of the disparity in the production and the number of scavenging molecules
of ROS. According to Apel and Hirt (2004), ROS-scavenged molecules are antiox-
idative defense components that act to restore the physiological growth conditions.
Intrinsically, this antioxidant defense system is synthesized in aerobic cells to offset
the damaging effects of ROS (Ishizawa et al. 2017; Utami et al. 2018).

In plants, enzymatic and non-enzymatic components such as superoxide dismu-
tase (SOD), catalases (CAT), ascorbate peroxidase (APX), and low-molecular-mass
antioxidants play a key role in mopping up different types of ROS (Akram et al.
2017; Utami et al. 2018). Also, in the chloroplast and other cellular compartments,
ascorbic acid and glutathione, which are found in high concentrations, play cru-
cial roles in plant defense against oxidative stress (Miller et al. 2010). A combi-
nation and synergistic role of MC containing fungi and bacteria can be explored
to improve plant growth and ecophysiological responses in extreme conditions.
Here, the interactive effects of phytohormones-producing endophytic fungal and
bacterial symbionts in plant growth and stress tolerance are harnessed. According
to Bilalet al. (2018), phytohormones-producing endophytic Paecilomyces formosus
LHL10 and Sphingomonas sp. modulated the stress state through reduced hydrogen
peroxide, lipid peroxidation, and antioxidant enzymes (catalase and superoxide dis-
mutase) when compared to the non-inoculated plants. Inoculation of PGPR strains
has been attributed to the reduction of osmotic-related conditions in lettuce plants
(Kohler et al. 2010). Apart from plant inoculated with Pseudomonas mendocina
having the capacity to alleviate salt-related stress, it also reduces oxidative damage
(reduced chlorosis, necrosis, and drying) in plants, thus enhancing activity related to
antioxidant enzymes such as SOD, APX, GR, and POX (Bianco and Defez 2009).
P. entomophila, P. stutzeri, P. putida, P. syringae, and P. montelli are some of the
promising MC with significant capacity in osmotic and oxidative activity, drought,
and salinity stress (Sandhya et al. 2010; Carmen and Roberto 2011).

13.5.7 Nutrient Deficiency

One of the fundamental targets of crop especially when exposed to harsh environ-
mental condition is to survive its present threat. It does this through the activa-
tion of tolerant traits and adaptations using a number of mechanisms. It has been
established that nutritional status of plants greatly affects their ability to adapt to
adverse environmental conditions especially abiotic stress. A plethora of literature
have reported exacerbated adverse effects of abiotic stresses on plants cultivated in
nutrient-deficient agricultural soil (Munns andTester 2008;García-Martí et al. 2019),
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which are alleviated by exogenous addition of macronutrients (Khoshgoftarmanesh
et al. 2010; Turan et al. 2016; Meena et al. 2017). In a study investigating N defi-
ciency and compensation with focus on its uptake, utilization, and the physiological
characteristics in rice, Xiong et al. (2018) reported double-cropping super hybrid late
rice and N compensation at young panicle differentiation stage after N deficiency
at tillering stage. This according to their submission resulted in yield compensation
in plants. Its deficiency in plants owing to rise in soil salinity has been reported to
be detrimental (Carstensen et al. 2018). P deficiency has also been shown to limit
plant productivity. Recent advances have shown that P deficiency affects electron
transport to photosystem I (PSI), but the underlying mechanisms are still unknown
(Mehra et al. 2018; Carstensen et al. 2018). Invariably, P reduction in saline soils
has been linked to ionic strength effects which reduce the activity of phosphate and
the tight control of P concentrations by sorption processes, and by low solubility of
Ca-P minerals (Carmen and Roberto et al. 2011). With the concentration of these
essential minerals (nitrogen and phosphorus), usually very low and insufficient for
optimum crop growth, some PGPR have shown promising effects in augmenting
this process by making the scarce nutrient readily available to plants (Odoh et al.
2019a). They exhibit this property by taking up several P forms, while the remaining
part is adsorbed in the forms of HPO4-2 or H2PO4-1. PGPR play a leading role in
mobilizing these nutrients through their participation in biogeochemical cycle (nitro-
gen and phosphorus cycle) where rhizobia species directly solubilize and mineralize
inorganic phosphorus and facilitate the mobility of the organic forms (Richardson
and Simpson 2011).

The conversion of some phosphate compounds, e.g., tricalcium phosphate, dical-
cium phosphate, hydroxyapatite, and rock phosphate, is predominantly carried out by
phosphate-solubilizing bacteria (PSB) such as Arthrobacter, Pseudomonas, Alcali-
genes, Bacillus, Burkholderia, Serratia, Enterobacter, Acinetobacter, Azospirillum,
Azotobacter, Flavobacterium, Rhizobium, and Erwinia (Zaidi et al. 2009, Odoh et al.
2019a). They exert this by the secretion of organic acids, e.g., carboxylic acid, formic
acid, propionic acid, lactic acid, glycolytic acid, succinic, and fumaric acid. These
acids, however, lower the pH of the rhizosphere, thus causing the release of the
bound forms of phosphate like Ca3 (PO4)2 in the calcareous soils (Kaur et al. 2016).
Phosphate-solubilizing bacteria (PSB) also contribute to themineralization of insolu-
ble organic phosphate via the excretion of enzymes such as phytases, C-P lyases, and
phosphatases (Weyens et al. 2010, Daur et al. 2018). Medicago sativa L, Zea mays,
Glycine max, and a number of plants have been reported with increased yield through
the inoculated PSB either singly or in combination with a number of rhizobacteria
(Daur et al. 2018; Tagele et al. 2019).

13.6 Production and Commercialization Biofertilizer

With recent advances in agrobiotechnology, a wider coverage, application, produc-
tion, and commercialization of MC biofertilizers holds promises. This is, however,
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welcoming as the world over is driving toward smart and sustainable agriculture.
Consortium of PGPR is currently the most sought-after strain with multifunctional
potentials. Their formulation and application in agriculture are currently advocated
to reduce the overreliance on synthetic fertilizers and other agrochemicals. Backer
et al. (2018) in their latest studies agree that members of phytomicrobiome (PGPR)
offer huge potential in sustainable crop production, thus necessitating the need for
more studies to unravel their potentials and challenges. Although the use of MC as
an inoculant has been on for centuries, it has mainly focused on legumes and cere-
als in the past years (Sessitsch and Mitter 2015). As the world human population
continuously gets on the rise in geometric fashion, there is an increasing need to
meet the growing food demand through development of new agro technologies such
as species engineering and screening for biomolecules production to enhance crop
growth. PGPR, for instance, is designed to improve nitrogen fixation, ACC deami-
nase activity, auxin synthesis, and calcium phosphate solubilization when inoculated
(Backer et al. 2018). In situ research approach should be adopted in carrying out
research using PGPRMC to ascertain the most suitable strain and appropriate biotic
condition needed for their growth, while paying attention on the soil quality and
season of optimum performance (Odoh et al. 2019a).

For effective long shelf-life microbial inoculant to be developed and commercial-
ized, field trial and conditions must be properly ascertained and approved. This is
vital to curtail the release of strain in the environment. Here, PGPR are inoculated
in plant material without an appropriate carrier or in quantities that do not allow for
efficient rhizosphere colonization under field conditions (Backer et al. 2018). This is
primarily due to competition with resident soil micro- and macro-fauna. Also, in the
case of soils cultivated with value, they are often fumigated with broad-spectrum bio-
cidal fumigants that alter the bio-community structure of the soil (Dangi et al. 2017).
This fumigation system (short-term) is carefully done not to upset soil microbes
and their interactions which help in nutrient acquisition and mobilization. In design-
ing microbial consortia, their role specificity (e.g., bioremediation and plant growth
potential) must be clearly defined (Macouzet 2016; Baez-Rogelio et al. 2017), as
their bioprocess when inoculated will be based on the specific soil conditions. Com-
bining effects of bioremediation and related abiotic condition ameliorations along
with plant growth promotion would be essential in addressing some of the global
agricultural problems. This, however, must be accompanied with training of staff,
farmers, and associate users on efficient application of the bio-inoculants bearing in
mind their soil specificity, environmental condition, and complexity or constraints for
optimum impact (Bashan 2016; Parnell et al. 2016; Itelima et al. 2018). To develop a
MC inoculant (Table 13.2), the following basic steps must be followed (Backer et al.
2018):

• Isolation of the bacterial strain.
• Screening in laboratory and controlled growth environment.
• Field assessment for a range of crops, geographic locations, planting dates, and
soil types.

• Evaluation of the possible combinations of strains.
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• Consideration of the management practices (e.g., agrochemical use and rotation).
• Refinement of the product.
• Experiments confirming absence of eco-toxicological effects.
• Product delivery formulation—e.g., peat, granular, liquid, or wettable powder.
• Registration and regulatory approval of the product.
• Product available on the market.

13.7 Regulation of MC Biofertilizer

In the developed economy, there are strict regulations and guidelines moderating the
use and application of microbial-based nutrient (bio-inoculant). The first point of call
of this product after its due formulation and successful testing is registration where
the productmustmeet specific regulatory requirements. Prior to this, the productmust
be established in a carrier such as alginate (Bashan 2016) or biochar (Głodowska
et al. 2016) through which the cells or inoculants are adhered to seeds using sticking
agent at the time of sowing. In the case of liquid inoculants, they are spread on seeds
prior to sowing or dripped into the seed furrow at the time of sowing. Importantly
also are the storage and product lifespan so as to ensure microbial viability, survival,
and/or bioactivity of the strain. There should also be clarity on acute versus chronic
application of the biomolecule. In most cases, acute application occurs in a limited
number of times during a growing season; it can also be on a target stage of crop
development, or in response to environmental and abiotic conditions (drought), while
in chronic application, the product could be applied at regular time sprays interval
or as a slow-release seed treatment (Backer et al. 2018). With ambiguity on a clear-
cut regulatory definition of plant biostimulants (MC), there has been complexity in
the regulatory procedure and registration cum commercialization of these products
across Europe andAmerica. This, however, necessitates the need for unified standard,
characterization and regulation of MC, genetically modified species (GMO), and
other biostimulants across the globe especially in Africa and Asia which have huge
agricultural potentials and high uneducated local engage in agropractices.

13.8 Prospects and Challenges of Biofertilizer Application

MChas recently been gaining public acceptance and recommendation for applicabil-
ity in agrifood production. Even though its prominence has been in Asia, America,
and Europe, there is still laxity of its growth in other regions especially in Africa.
This is because of a number of factors ranging from lack of awareness, skilled man-
power, and infrastructures to supportive regulatory framework. These identifiable
constraints have militated against sustainable agricultural practices in the regions,
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therebymissing the benefits accruing to biofertilizer application “yield increase, bio-
logical nitrogen fixation, cost saving, nutrient uptake” unlike in someAsian countries
(e.g., India, Thailand, and China).

13.8.1 Policy Definition and Enforcement

For any nation to produce, commercialize, and use her formulated MC biofertilizer
successfully, she must have instituted a sound regulatory framework. This is neces-
sary to curtail excesses that could emanate from application of engineered species
into her environment. In Europe, United States, Canada, Argentina, Brazil, and India,
for instance, there seems to be an existing policy and guideline governing applica-
tion of biological products (biofertilizer, biostimulants, and biocontrol). There have
also been discussions on science-based standards and policies that will clearly state
the definitions and regulations of these bioproducts in India, European Union, Latin
America, and USA. According to International Biocontrol Management Associa-
tion (IBMA), these products are currently regulated by state governments in USA,
thus necessitating discussions by the US Environmental Protection Agency (EPA), to
establish unified federal regulations. The food and agricultural organization (FOA)
should initiate and enforce these policies among existing member states so that they
can harness the gains associated with MC. Also, governments in the developing
regions in Africa should improve research in the agricultural sector as biofertilizers’
application is still at the infant stage. This is primarily derailed by lack of awareness,
human capacity, and infrastructure, thus not tapped the potentials of biofertilizers. A
regional and national policy regulatory framework that will boost establishment of
indigenous manufacturing firms bearing in mind the regions’ specificity in terms of
her inherent bioagents (microbes and plants), climatic conditions, soil quality, and
complexity is also encouraged.

13.8.2 Global Action on Sustainable Agriculture

With the rising environmental stresses which have become unprecedented in recent
time and impediment to agricultural productivity across the globe, a clear-cut global
action is necessary to curtail possible monumental impact (food insecurity). In the
2014, the food and agricultural organization (FAO) and the world health organiza-
tion jointly released the International Code of Conduct on Pesticide Management
following series of death recorded from users of agrochemicals across the globe.
In India, death associated with chemical pesticides used by farmers has continued
to rise following flouting of the global norm and best practices, and also due to ill-
informed users (farmers). These agrochemicals which aremostly classified as Class 1
are consistently released into the market by merchants and giant multinationals with
no recourse to the harmful effects they have on the end users. These practices flout
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international regulations guiding a number of these products (e.g., monocrotophos
and oxydemetonmethyl).

In Nigeria also, there is an upsurge in the use of agrochemicals in the last decades.
The situation is indeed worrisome as citizens whose knowledge on the hazardous
effects and impacts of these products (minimal concentration) have embraced in
totality the use of agrochemicals (pesticides and herbicides) in every farming exer-
cise. The government push to diversify the economy through agriculture has also
worsened the situation owing to the sporadic campaign on the quest to rejuvenate the
agricultural sector. Available statistics has shown that over 25% of the globally pro-
duced pesticides are used in Nigeria with 99% of the death associated with pesticide
occurring in developing countries (Ojo 2016). These are linked to factors such as
lack of education, non-use of safety procedures, use of cheaper but lethal chemicals,
poor legislation and enforcement, and improper handling.

Also, in China, its water body (Lake Taihu) has been polluted by years of continu-
ous seepage of runoff pesticides, herbicides, and fertilizers from nearby agricultural
farms. Despite the prohibition of organochlorine pesticides by Chinese government
in 1983, traces of HCH and DDT residues are still easily detected in its sediments
(Feng et al. 2003). These happenings across the globe, however, pose serious threat
not just to human health but to our ecosystem and biodiversity structures. It there-
fore calls for a global framework most importantly from FOA and WHO alongside
regional and national governments to prohibit classified chemicals and properly reg-
ulate hazardous products, while also sensitizing the public especially in developing
countries on the advantages of microbial-based formulated bioproducts and the need
to hold onto green technology. This move will ultimately help in preventing and con-
trolling the associated environmental problems such as air, water (eutrophication and
fertilizer seepage), and soil pollutions linked to synthetic agrochemicals application.

13.8.3 Clarity of the Benefit of MC

It has become clear that the benefit associated with MC application is so enormous.
This in comparison with single strain has recorded positive milestone in areas such as
food production in industries, use in agricultural application, medicine, and environ-
mental remediation. Through metabolic modeling and reconstruction of individual
strains, a formidable and complex community of model microbial agents are formed
for optimum performance and production of needed biochemical agents and biomass
(Faust 2018). More metabolic research needs to be done on plants and microbial
species for more understanding of genetic characters and genes needed to perform
complex functions. There is need for farmers and practitioners in agricultural sectors
to be abreast of this biotechnology owing to the growing abiotic conditions and alter-
ation of climatic conditions. Proteomics and transcriptomic approaches and genetic
engineering of species provide suitable alternatives to these challenges.
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13.8.4 Lack of Skilled Manpower and Innovative Research

The thin line between successful utilization of biofertilizer in some Asian countries,
Europe, America, and Africa is technical knowhow. The developed regions have
sound research-based biotechnological approach for the formulation of bioproducts,
increased awareness on their usage while fighting for corresponding decline on the
use of chemical fertilizers. Developing countries in Africa are yet to pay adequate
attention on the advantages of biofertilizer in agricultural system. This is evident
in the skeletal application of biofertilizers by very few farmers across the region.
This is in contrast to what is obtainable in Brazil, where almost all the crop protein
produced is through BNF; in east and southern Africa, not up to 1% use any form of
bio-inoculant. Most often these imported biofertilizers are formulated in conformity
or tailored to the countries of origin’s standard bearing in mind their local conditions
(e.g., climatic conditions, storage condition). These parameters play a huge role in
determining their shelf life and viability. With improved manpower development
through training, and increased awareness, research, and innovations, locally influ-
encing conditions will become a considerable factor when producing biofertilizer
that will be indigenous to a particular region (African climatic conditions). It will
also help limit loss of viability observed in some biofertilizers in the market across
Africa (Jefwa et al. 2014) where storage conditions and handling play a major role.
Through adequate training, knowledge gap usually witnessed in developing econ-
omy could be upturned as their trained agriculturists and scientists will see the need
to localize their products for the overarching need of the populace. However, with
the lack of far-reaching research to develop formulations that could cater for the
spatial crop responses, Africa will not be able to benefit from the full potential of
biofertilizers. It will also help improve qualitative product delivery in countries such
as India, where significant government support has boosted biofertilizers production.

13.9 Conclusion and Future Prospects

Many arable lands are in urgent need of natural and eco-friendly alternatives to syn-
thetic fertilizers for crop production and also to help cushion the shock emanating
from abiotic stresses on crops growing in extreme habitats. Microbial consortium
biofertilizers have been developed as dependable solution to this mayhem, and some
parts of the developed world are already harnessing the benefits of the green technol-
ogy. However, as appealing and promising as this agrotechnology can be, it is still
replete with challenges especially in the undeveloped world where illiteracy and lack
of skilled manpower impede proper implementation of its use in crop production.
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G (2019) Microbial consortia versus single-strain inoculants: an advantage in PGPM-assisted
tomato production? Agronomy 9:105

Brilli F, Loreto F, Baccelli I (2019) Exploiting plant volatile organic compounds (VOCs) in agricul-
ture to improve sustainable defense strategies and productivity of crops. Front Plant Sci 10:264.
https://doi.org/10.3389/fpls.2019.00264

Bulgarelli D, Rott M, Schlaeppi K, Loren V, van Themaat E, Ahmadinejad N, Assenza F, Rauf P,
Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-
Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial
microbiota. Nature 488:91–95. https://doi.org/10.1038/nature11336

Burén S, Rubio LM (2018) State of the art in eukaryotic nitrogenase engineering. FEMSMicrobiol
Lett 365(2), fnx274. https://doi.org/10.1093/femsle/fnx274

Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T (2011) Bacterial community assembly
based on functional genes rather than species. Proc Natl Acad Sci U S A. 108:14288–14293

Caplan JS, Yeakley JA (2006) Rubus armeniacus (Himalayan blackberry) occurrence and growth
in relation to soil and light conditions in western Oregon. Northwest Sci 80:9–17

CarmenB, RobertoD (2011) Soil bacteria support and protect plants against abiotic stressesA. Shan
er (Ed.), Abiotic Stress in Plants mechanisms and Adaptations, Pub. InTech, pp 143–170

Carstensen A, Herdean A, Schmidt SB, Sharma A, Spetea C, Pribil M, Husted S (2018) The
impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiol
177:271–284

Chakraborty A, Ellefson E, Li C, Gittins D, Brooks JM, Bernard BB, Hubert CRJ (2018) Ther-
mophilic endospores associatedwithmigrated thermogenic hydrocarbons in deepGulf ofMexico
marine sediments. ISME J 12:1895–1906. https://doi.org/10.1038/s41396-018-0108-y

Chang WS, van de Mortel M, Nielsen L, de Guzman GN, Li X, Halverson LJ (2007) Alginate pro-
duction by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm
architecture and stress tolerance under water-limiting conditions. J Bacteriol 189:8290–8299

Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic
processes across scales. Philos T Roy Soc B 366:2351–2363

https://doi.org/10.3934/microbiol.2015.1.37
https://doi.org/10.5936/csbj.201210017
https://doi.org/10.1186/1475-2859-13-66
https://doi.org/10.1093/jxb/erp140
https://doi.org/10.3389/fpls.2018.01273
https://doi.org/10.3389/fpls.2019.00264
https://doi.org/10.1038/nature11336
https://doi.org/10.1093/femsle/fnx274
https://doi.org/10.1038/s41396-018-0108-y


412 C. K. Odoh et al.

Chatzipavlidis I, Kefalogianni I, Venieraki A, HolzapfelW (2013) Status and trends of the conserva-
tion and sustainable use of microorganisms in agroindustrial processes. Commission on Genetic
Resources for Food and Agriculture, Background Study Paper No, p 64

Chérel I, Gaillard I (2019) The complex fine-tuning of K+ fluxes in plants in relation to osmotic
and ionic abiotic stresses. Int J Mol Sci 20:715

Chodak M, Golebiewski M, Morawska-Ploskonka J, Kuduk K, Niklinska M (2015) Soil chemical
properties affect the reaction of forest soil bacteria to drought and rewetting stress. AnnMicrobiol
65(3):1627–1637

Cira NJ, Pearce MT, Quake SR (2018) Neutral and selective dynamics in a 22 synthetic microbial
community. Proc Natl Acad Sci U S A 115, E9842-E9848, 23 https://doi.org/10.1073/pnas.
1808118115

Clark DP, Dunlap PV, Madigan MT, Martinko JM (2009) Brock. Biology of Microorganisms. San
Francisco: Pearson. p 485

Clinton A, Rumbaugh KP (2016) Interspecies and interkingdom signaling via quorum signals. Isr
J Chem 56:265–272. https://doi.org/10.1002/ijch.201400132

Compant S, Clément C, Sessitsch A (2010) Plant growth promoting bacteria in the rhizo and
endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization.
Soil Biol Biochem 42:669–678

Cycon M, Mrozik A, Piotrowska-Seget Z (2019) Antibiotics in the soil environment degradation
and their impact on microbial activity and diversity. Front Microbiol 10:338. https://doi.org/10.
3389/fmicb.2019.00338

Dangi S, Tirado-Corbalá R, Gerik J, Hanson B (2017) Effect of longterm continuous fumigation
on soil microbial communities. Agronomy 7:37. https://doi.org/10.3390/agronomy7020037

Dassonville N, Vanderhoeven S, Vanparys V, Hayez M, Gruber W, Meerts P (2008) Impacts of
alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe.
Oecologia 157:131–140. https://doi.org/10.1007/s00442-008-1054-6

Daur I, Saad MM, Eida AA, Ahmad S, Shah ZH, Ihsan MZ, Muhammad Y, Sohrab SS and Hirt H
(2018) Boosting Alfalfa (Medicago sativa L.) Production with Rhizobacteria fromVarious Plants
in Saudi Arabia. Front Microbiol 9:477. https://doi.org/10.3389/fmicb.2018.00477

De Oliveira EJ, Morgante CV, De Tarso AS, De Melo Chaves AR, Antonio RP, Cruz JL et al
(2017) Evaluation of cassava germplasm for drought tolerance under field conditions. Euphytica
213:188. https://doi.org/10.1007/s10681-017-1972-7

de Zelicourt A, Al-Yousif M, Hirt H (2013) Rhizosphere microbes as essential partners for plant
stress tolerance. Mol Plant 6:242–245. https://doi.org/10.1093/mp/sst028

Denton B (2007) Advances in phytoremediation of heavy metals using plant growth promoting
bacteria and fungi. MMG 445 Basic Biotechnol 3:1–5

Deshwal VK, Kumar P (2013) Production of Plant growth promoting substance by Pseudomonads.
J Academia Indust Res 2(4):221–225

Deveau A, Bonito G, Uehling J, Paoletti M, BeckerM, Bindschedler S, Hacquard S, Hervé V, Labbé
J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van
Elsas JD, Wick LY (2018) Bacterial-fungal interactions: ecology, mechanisms and challenges.
FEMS Microbiol Rev 42:335–352

Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Relative roles of niche and
neutral processes in structuring a soil microbial community. ISME J 4:337–345

Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat
growth in saline soils. Biol Fert Soil. https://doi.org/10.1007/s00374-009-0366-y

Eze CN, Odoh CK, Eze EA, Enemuor SC, Orjiakor IP, Okobo UJ (2018) Chromium (III) and its
effects on soil microbial activities and phytoremediation potentials of Arachis hypogea and Vigna
unguiculata. Afr J Biotechnol 17(38):1207–1214. https://doi.org/10.5897/ajb2018.16566

EzeCN,UgwuCC,EzeEA,EzeUS (2014)Evaluation of germination, shoot growth and rhizofungal
flora of Zea mays and Sorghum bicolor in soil contaminated with varying levels of Bonny light
crude oil. Int J Curr Microbiol App Sci 3(1):253–263

https://doi.org/10.1073/pnas.1808118115
https://doi.org/10.1002/ijch.201400132
https://doi.org/10.3389/fmicb.2019.00338
https://doi.org/10.3390/agronomy7020037
https://doi.org/10.1007/s00442-008-1054-6
https://doi.org/10.3389/fmicb.2018.00477
https://doi.org/10.1007/s10681-017-1972-7
https://doi.org/10.1093/mp/sst028
https://doi.org/10.1007/s00374-009-0366-y
https://doi.org/10.5897/ajb2018.16566


13 Microbial Consortium as Biofertilizers for Crops Growing … 413

Fabbro CD, Prati D (2014) Early responses of wild plant see-dlings to arbuscular mycorrhizal fungi
and pathogens. Basic Appl Ecol 15:534–542

Fahad S, Hussain S, BanoA, Saud S, Hassan S, ShanD, Khan FA, Khan F, ChenY,WuC, Tabassum
MA (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic
stresses: consequences for changing environment. Environ Sci Pollut Res Int 22:4907–4921

FAO (2010) Current status and options for biotechnologies in food processing and in food safety in
developing countries. In: Proceedins of the FAO international technical conference Guadalajara,
Mexico, pp 1–37

Faust K (2018) Microbial consortium design benefits from metabolic modeling. Trends in
Biotechnol. https://doi.org/10.1016/j.tibtech.2018.11.004

Feng K, Yu BY, Ge DM, Wong MH, Wang XC, Cao ZH (2003) Organo-chlorine pesticide (DDT
and HCH) residues in the Taihu Lake region and its movement in soil-water system. I. Field
survey of DDT and HCH residues in ecosystem of the region. Chemosphere 50:683–687

Fisher CK, Mehta P (2014) The transition between the niche and neutral regimes in ecology. Proc
Natl Acad Sci USA 111:13111–13116

Fleitas-Martínez O, Rigueiras PO, Pires ÁS, PortoWF, Silva ON, de la Fuente-Nunez C, Franco OL
(2019) Interference with quorum-sensing signal biosynthesis as a promising therapeutic strategy
against multidrug-resistant pathogens. Front Cell InfectMicrobiol 8:444. https://doi.org/10.3389/
fcimb.2018.00444

Flores-Félix JD, Menéndez E, Rivera LP, Marcos-García M, Martínez-Hidalgo P, Mateos PF,
Martínez-Molina E, Velázquez MDLE, García-Fraile P, Rivas R (2013) Use of Rhizobium legu-
minosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr
Soil Sci 176:876–882

Flores-Felix JD, Silva LR, Rivera LP (2015) Plants probiotics as a tool to produce highly functional
fruits: the case of Phyllobacterium and vitamin C in strawberries. PLoS ONE

Foster RC (1988) Microenvironments of soil organisms. Biol Fertility Soils 6:189–203. https://doi.
org/10.1007/bf00260816

Franche C, Lindstrom K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous
and non-leguminous plants. Plant Soil 321:35–59. https://doi.org/10.1007/s11104-008-9833-8

Franco JA, Bañón S, Vicente MJ, Miralles J, Martínez-Sánchez JJ (2011) Root development in
horticultural plants grown under abiotic stress conditions-a review. J Hortic Sci Biotechnol
86:543–556. https://doi.org/10.1080/14620316.2011.11512802

Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal
interactions: hyphens between agricultural, clinical, environmental, and food microbiologists.
Microbiol Mol Biol Rev 75:583–609

Fu QL, Liu C, Ding NF, Lin YC, Guo B (2010) Ameliorative effects of inoculation with the
plant growth-promoting rhizobacterium Pseudomonassp. DW1 on growth of eggplant (Solanum
melongena L.) seedlings under salt stress. Agr Water Manag 97(12):1994–2000. https://doi.org/
10.1016/j.agwat.2010.02.003

Fukami J,Cerezini P,HungriaM(2018)Azospirillum: benefits that go far beyondbiological nitrogen
fixation. AMB Express 8(1):73. https://doi.org/10.1186/s13568-018-0608-1

Fukami J, Ollero FJ, Megías M, Hungria M (2017) Phytohormones and induction of plant-stress
tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and
metabolites promote maize growth. AMB Express 7(1):153

García-MartíM, PiñeroMC, García-Sanchez F,Mestre TC, López-DelacalleM,Martínez V, Rivero
RM (2019) Amelioration of the oxidative stress generated by simple or combined abiotic stress
through the K+ and Ca2+ supplementation in tomato plants. Antioxidants 8:81

Gentili R, Ambrosini R,Montagnani C, Caronni S, Citterio S (2018) Effect of soil pH on the growth,
reproductive investment and pollen allergenicity of ambrosia artemisiifolia L. Front Plant Sci
9:1335. https://doi.org/10.3389/fpls.2018.01335

Gilbert JA, Steele JA, Caporaso JG, Steinbrück L, Reeder J, Temperton B, Huse S, McHardy AC,
Knight R, Joint I, Somerfield P, Fulrman JA, Field D (2012) Defining seasonal marine microbial
community dynamics. ISME J 6(2):298–308. https://doi.org/10.1038/ismej.2011.107

https://doi.org/10.1016/j.tibtech.2018.11.004
https://doi.org/10.3389/fcimb.2018.00444
https://doi.org/10.1007/bf00260816
https://doi.org/10.1007/s11104-008-9833-8
https://doi.org/10.1080/14620316.2011.11512802
https://doi.org/10.1016/j.agwat.2010.02.003
https://doi.org/10.1186/s13568-018-0608-1
https://doi.org/10.3389/fpls.2018.01335
https://doi.org/10.1038/ismej.2011.107


414 C. K. Odoh et al.

Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by
arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in
root and shoot tissues. Microb Ecol 54:753–760. https://doi.org/10.1007/s00248-007-9239-9

GlickBR (2012) PlantGrowth promoting bacteria:mechanisms and applications. ScientificaArticle
ID 963401, 15 p, https://doi.org/10.6064/2012/963401

Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the
world. Microbiol Res 169:30–39

GłodowskaM,HuskB, Schwinghamer T, SmithD (2016) Biochar is a growth-promoting alternative
to peat moss for the inoculation of corn with a pseudomonad. Agron Sustain Dev 36:1–10. https://
doi.org/10.1007/s13593-016-0356-z

Goswami D, Thakker JN, Dhandhukia PC (2015) Simultaneous detection and quantification of
indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by Rhizobacteria from
l-tryptophan (Trp) using HPTLC. J Microbiol Methods 110:7–14

Gouda S, Kerry RG,DasG, Paramithiotis S, ShinHS, Patra JK (2018) Revitalization of plant growth
promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

Grover M, Ali V, Sandhya SKZ, Venkateswarlu B (2011) Role of microorganisms in adaptation of
agricultural crops to abiotic stressesWorld. J Microbiol Biotechnol 27:1231–1240

Guo J, Dong X, Han G, Wang B (2019) Salt-Enhanced Reproductive Development of Suaeda salsa
L. Coincided With Ion Transporter Gene Upregulation in Flowers and Increased Pollen K +
Content. Front Plant Sci 10:333 https://doi.org/10.3389/fpls.2019.00333

Guo Z, Zhang L, Yang W, Hua L, Cai C (2019b) Aggregate stability under long-term fertilization
practices: the case of eroded ultisols of South Central China. Sustainability 11:1169

Hacquard S, Garrido-Oter R, Gonzalez A, Spaepen S, Ackermann G, Lebeis S, McHardy AC,
Dangl JL, Knight R, Ley R, Schulze-Lefert P (2015) Microbiota and host nutrition across plant
and animal kingdoms. Cell Host Microbe 17(5):603–616

Hamdia MAES, Shaddad MAK, Doaa MM (2004) Mechanisms of salt tolerance and interac-
tive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress
conditions. Plant Growth Regul 44:165–174

Hamilton CE, Bever JD, Labb´e J, Yang XH, Yin HF (2016) Mitigating climate change through
managing constructed-microbial communities in agriculture. Agr Ecosyst Environ 216:304–308

Hansel CM, Fendorf S, Jardine PM, Francis CA (2008) Changes in bacterial and archaeal commu-
nity structure and functional diversity along a geochemically variable soil profile. Appl Environ
Microbiol 74(5):1620–1633

Hao JH, Lv SS, Bhattacharya S, Fu JG (2017) Germination response of four alien congeneric Ama-
ranthus species to environmental factors. PLoS ONE 12:e0170297. https://doi.org/10.1371/
journal.pone.0170297

HardoimPR, vanOverbeekLS,BergG, PirttiläAM,Compant S, CampisanoA,DöringM, Sessitsch
A (2015) The hiddenworld within plants: Ecological and evolutionary considerations for defining
functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320. https://doi.org/10.
1128/MMBR.00050-14

Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological,
biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci
14:9643–9684

Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant
growth promotion: a review. Ann Microbiol 60:579–598

Hayat R, Khalid R, Ehsan M, Ahmed I, Yokotaand A, Ali S (2013) Molecular characterization of
soil bacteria for improving crop yield in Pakistan. Pak J Bot 45:1045–1055

Hays SG, Patrick WG, Ziesack M, Oxman N, Silver PA (2015) Better together: engineering and
application of microbial symbioses. Curr Opin Biotechnol 36:40–49. https://doi.org/10.1016/j.
copbio.2015.08.008

Htwe AZ, Moh SM, Soe KM, Moe K, Yamakawa T (2019) Effects of Biofertilizer Produced
from Bradyrhizobium and Streptomyces griseoflavus on Plant Growth, Nodulation, Nitrogen
Fixation, Nutrient Uptake, and Seed Yield ofMung Bean, Cowpea, and Soybean. Agronomy 9:77

https://doi.org/10.1007/s00248-007-9239-9
https://doi.org/10.6064/2012/963401
https://doi.org/10.1007/s13593-016-0356-z
https://doi.org/10.3389/fpls.2019.00333
https://doi.org/10.1371/journal.pone.0170297
https://doi.org/10.1128/MMBR.00050-14
https://doi.org/10.1016/j.copbio.2015.08.008


13 Microbial Consortium as Biofertilizers for Crops Growing … 415

Hubbell SP (2001) The Unified neutral theory of biodiversity and biogeography. Monographs in
Population Biology. Vol 32. Princeton University Press: Princeton, USA

Hung R, Lee S, Bennett JW (2015) Fungal volatile organic compounds and their role in ecosystems.
Appl Microbiol Biotechnol 99:3395–3405. https://doi.org/10.1007/s00253-015-6494-4

Hungria M, Nogueira MA, Araujo RS (2015) Soybean seed co-inoculation with Bradyrhizobium
spp. and Azospirillum brasilense: a new biotechnological tool to improve yield and sustainability.
Am J Plant Sci. 6:811–817. https://doi.org/10.4236/ajps.2015.66087

Igiehon NO, Babalola OO (2018) Below-ground-above-ground plant-microbial interactions:
focusing on soybean, rhizobacteria and mycorrhizal fungi. Open Microbiol J 12:261–279.
https://doi.org/10.2174/1874285801812010261

Iqbal MJ (2018) Role of osmolytes and antioxidant enzymes for drought tolerance in wheat. Global
Wheat Production, Shah Fahad, Abdul Basir and Muhammad Adnan, IntechOpen. https://doi.
org/10.5772/intechopen.75926

Iqbal MJ, Maqsood Y, Abdin ZU, Manzoor A, Hassan M, Jamil A (2016) SSR markers associated
with Proline in drought tolerant wheat germplasm. Appl Biochem Biotech 178:1042–1052

Isayenkov SV (2012) Physiological and molecular aspects of salt stress in plants. Cytol Genet
46:302–318. https://doi.org/10.3103/s0095452712050040

Isayenkov SV, Maathuis FJM (2019) Plant salinity stress: many unanswered questions remain.
Front Plant Sci 10:80. https://doi.org/10.3389/fpls.2019.00080

Ishizawa H, Kuroda M, Morikawa M, Ike M (2017) Differential oxidative and antioxidative
response of duckweed Lemna minor toward plant growth promoting/inhibiting bacteria. Plant
Phys Biochem 118:667–673. https://doi.org/10.1016/j.plaphy.2017.08.006

Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, Rizvi H (2014) Influence of Pseudomonas
aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ
Saf 104:285–293. https://doi.org/10.1016/j.ecoenv.2014.03.008

Ite AE, Ibok UJ, Ite MU, Petters SW (2013) Petroleum exploration and production: past and
present environmental issues in the Nigeria’s Niger Delta. Am J Environ Prot 1(7):8–90

Itelima JU, Bang WJ, Onyimba IA, Oj E (2018) A review: biofertilizer; a key player in enhancing
soil fertility and crop productivity. J Microbiol Biotechnol Rep 2:22–28

Jagmann N, Philipp B (2014) Reprint of design of synthetic microbial communities for biotechno-
logical production processes. J Biotechnol 192:293–301. https://doi.org/10.1016/j.jbiotec.2014.
11.005

Jambon I, Thijs S, Weyens N, Vangronsveld J (2018) Harnessing plant-bacteria-fungi interactions
to improve plant growth and degradation of organic pollutants. J Plant Interact 13:119–130

Jefwa JM, Pypers P, Jemo M, Thuita M, Mutegi E, Laditi MA, Faye A, Kavoo A, Munyahali
W, Herrmann L, Atieno M, Okalebo JR, Yusuf A, Ibrahim A, Ndung’u-Magiroi KW, Asrat A,
Muletta D, Ncho C, Kamaa M, Lesueur D (2014) Do Commercial Biological and Chemical
Products Increase Crop Yields and Economic Returns Under Smallholder Farmer Conditions?,
In Challenges and opportunities for agricultural intensification of the humid highland systems of
subSaharan Africa, B., Vanlauwe, P., van Asten, and G., Blomme, (eds.), Springer International
Publishing, Switzerland, 81–96

JhaM,SanjeetC, Sonia S (2013)Microbial consortium for sustainable rice production.Agroecology
and Sustainable Food Systems 37(3):340–362

Jha Y, Sablok G, Subbarao N, Sudhakar R, Fazil MHUT, Subramanian RB et al (2014) Bacterial-
induced expression of RAB18 protein in Orzya sativa salinity stress and insights into molecular
interaction with GTP ligand. J Mol Recognit 27:521–527. https://doi.org/10.1002/jmr.2371

Jiang L, Patel SN (2008) Community assembly in the presence of dis-turbance: a microcosm
experiment. Ecology 89:1931–1940

Jiang S, Zhang D, Wang L, Pan J, Liu Y, Kong X, Zhou Y, Li D (2013) A maize calcium-dependent
protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought
stress tolerance in transgenic Arabidopsis. Plant Phys Biochem 71:112–120

Kasim W, Osman M, Omar M, Abd El-Daim I, Bejai S, Meijer J (2013) Control of drought stress
in wheat using plant-growth promoting rhizobacteria. J Plant Growth Regul 32:122–130

https://doi.org/10.1007/s00253-015-6494-4
https://doi.org/10.4236/ajps.2015.66087
https://doi.org/10.2174/1874285801812010261
https://doi.org/10.5772/intechopen.75926
https://doi.org/10.3103/s0095452712050040
https://doi.org/10.3389/fpls.2019.00080
https://doi.org/10.1016/j.plaphy.2017.08.006
https://doi.org/10.1016/j.ecoenv.2014.03.008
https://doi.org/10.1016/j.jbiotec.2014.11.005
https://doi.org/10.1002/jmr.2371


416 C. K. Odoh et al.

Kasim WA, Gaafar RM, Abou-Ali RM, Omar MN, Hewait HM (2016) Effect of biofilm forming
plant growth promoting rhizobacteria on salinity tolerance in barley.AnnAgric Sci 61(2):217–227

Kasotia A, Varma A, Choudhary DK (2015) Pseudomonas-mediated mitigation of salt stress and
growth promotion in Glycine max. Agric Res 4:31–41. https://doi.org/10.1007/s40003-014-
0139-1

Kaur H, Kaur J, Gera R (2016) Plant growth promoting rhizobacteria: A boon to agriculture. Int
J Cell Sci Biotech 5:17–22

Khan AL, Waqas M, Hussain J, Al-Harrasi A, Hamayun M, Lee IJ (2015) Phytohormones
enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum
lycopersicum: an examples of Penicillium janthinellum LK5 and comparison with exogenous
GA 3. J Hazard Mate. 295:70–78. https://doi.org/10.1016/j.jhazmat.2015.04.008

Khan N, Bano A, Babar MA (2019) Metabolic and physiological changes induced by plant growth
regulators and plant growth promoting rhizobacteria and their impact on drought tolerance
in Cicer arietinum L. PLoS ONE 14(3):e0213040. https://doi.org/10.1371/journal.pone.0213040

Khoshgoftarmanesh AH, Schulin R, Claney RL, Daneshbakhsh B Afyuni M (2010) Micronutrient
efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A review.
Agron Sustain Dev 30, 83–107

Kim HJ, Boedicker JQ, Choi JW, Ismagilov RF (2008) Defined spatial structure stabilizes a
synthetic multispecies bacterial community. Proc Natl Acad Sci USA 105:18188–18193. https://
doi.org/10.1073/pnas.0807935105

Kohler J, Caravaca F, Roldàn A (2010) An AM fungus and a PGPR intensify the adverse effects
of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. SoilBiol Bioch
42:429–434

Kohler J, Hernandez JA, Caravaca F, Roldan A (2009) Induction of antioxidant enzymes is involved
in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance
of lettuce to severe salt stress. Environ Exp Bot 65:245–252

Köpp MM, Passos LP, da Silva VR, da Silva Lédo FJ, Meirelles Coimbra JL, Costa de Oliveira
A (2011) Effects of nutrient solution pH on growth parameters of alfalfa (Medicago sativa L.)
genotypes. Commun Sci 2:135–141

Kosová K, Vítámvás P, Urban MO, Prášil IT, Renaut J (2018) Plant abiotic stress proteomics: the
major factors determining alterations in cellular proteome. Front Plant Sci 9:122. https://doi.org/
10.3389/fpls.2018.00122

Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A, Sayyed RZ, Hesham AE-L, Dhaliwal
HS, Saxena AK (2019a) Drought-Tolerant Phosphorus-Solubilizing Microbes: Biodiversity
and Biotechnological Applications for Alleviation of Drought Stress in Plants. In: Sayyed
RZ, Arora NK, Reddy MS (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress
Management: Volume 1: Rhizobacteria in Abiotic Stress Management. Springer Singapore,
Singapore, pp 255–308. https://doi.org/10.1007/978-981-13-6536-2_13

Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019b) Agriculturally
and industrially important fungi: current developments and potential biotechnological applica-
tions. In: YadavAN, Singh S,Mishra S, Gupta A (eds) Recent Advancement inWhite Biotechnol-
ogy through Fungi, Volume 2: Perspective for Value-Added Products and Environments. Springer
International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

Kumar A (2016) Role of microbes in food and industrial microbiology. J Food Ind Microbiol
2:e101. https://doi.org/10.4172/2572-4134.1000e101

Kumar A, Chaturvedi AK, Yadav K, Arunkumar KP, Malyan SK, Raja P, Kumar R, Khan SA,
Yadav KK, Rana KL, Kour D, Yadav N, Yadav AN (2019a) Fungal Phytoremediation of Heavy
Metal-Contaminated Resources: Current Scenario and Future Prospects. In: Yadav AN, Singh
S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through Fungi: Volume
3: Perspective for Sustainable Environments. Springer International Publishing, Cham, pp
437–461. https://doi.org/10.1007/978-3-030-25506-0_18

https://doi.org/10.1007/s40003-014-0139-1
https://doi.org/10.1016/j.jhazmat.2015.04.008
https://doi.org/10.1371/journal.pone.0213040
https://doi.org/10.1073/pnas.0807935105
https://doi.org/10.3389/fpls.2018.00122
https://doi.org/10.1007/978-981-13-6536-2_13
https://doi.org/10.1007/978-3-030-14846-1_1
https://doi.org/10.4172/2572-4134.1000e101
https://doi.org/10.1007/978-3-030-25506-0_18


13 Microbial Consortium as Biofertilizers for Crops Growing … 417

Kumar H, Bajpai VK, Dubey RC (2010) Wiltdisease management and enhancement of growthand
yield of Cajanus cajan (L) var. Manak bybacterial combinations amended with chemicalfertilizer.
Crop Prot 29:591–598

Kumar M, Kour D, Yadav AN, Saxena R, Rai PK, Jyoti A, Tomar RS (2019b) Biodiversity of
methylotrophic microbial communities and their potential role in mitigation of abiotic stresses
in plants. Biologia 74:287–308. https://doi.org/10.2478/s11756-019-00190-6

Lai QX, Bao ZY, Zhu ZJ, Qian QQ, Mao BZ (2007) Effects of osmotic stress on antioxidant
enzymes activities in leaf discs of PSAG12-IPT modified Gerbera. J Zhejiang Univ Sci B.
8(7):458–464. https://doi.org/10.1631/jzus.2007.b0458

Lamaoui M, Jemo M, Datla R, Bekkaoui F (2018) Heat and drought stresses in crops and
approaches for their mitigation. Front Chem 6:26. https://doi.org/10.3389/fchem.2018.00026

Leena AR, Annelie ME, Janet J, Kristina L (2001) Effect of heat stress on cell activity and cell
morphology of the tropical rhizobium. Sinorhizobium arboris, FEMS Microbiology Ecology
34(3):267–278. https://doi.org/10.1111/j.1574-6941.2001.tb00777.x

Leibold MA, McPeek MA (2006) Coexistence of the niche and neutral perspectives in community
ecology. Ecology 87:1399–1410

Letten AD, Ke PJ, Fukami T (2017) Linking modern coexistence theory and contemporary niche
theory. Ecol Monogr 87:161–177

Li J, Meng B, Chai H, Yang X, SongW, Li S, Lu A, Zhang T, SunW (2019) ArbuscularMycorrhizal
Fungi Alleviate Drought Stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) Grasses
via Altering Antioxidant Enzyme Activities and Photosynthesis. Front Plant Sci 10:499. https://
doi.org/10.3389/fpls.2019.00499

Liao J, Cao, X, Zhao, L, Wang, J, Gao, Z, Wang MC, Huang Y (2016) The importance of neutral
and niche processes for bacterial community assembly differs between habitat generalists and
specialists. FEMS Microbiol Ecol 92: fiw174. https://doi.org/10.1093/femsec/fiw174

Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus
licheniformis K11 in pepper. Plant Pathol J 29(2):201–208

Liste, HH (2003) Soil plant microbe interactions and their implications for agriculture and
environment (Doctoral dissertation, Habilitation thesis, Humboldt University, Berlin)

Liu W, Zhang Y, Jiang S, Deng Y, Christie P, Murray PJ (2016) Arbuscular mycorrhizal fungi in
soil and roots respond differently to phosphorus inputs in an intensively managed calcareous
agricultural soil. Science 6:24902

Liu Z, Rong Q, Zhou W, Liang G (2017) Effects of inorganic and organic amendment on soil
chemical properties, enzyme activities, microbial community and soil quality in yellow clayey
soil. PLoS ONE 12(3):e0172767. https://doi.org/10.1371/journal.pone.0172767

Lladó S, López-mondéjar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement in
ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81:1–27

Logares R, Lindstr ¨om ES, Langenheder S, et al. (2013) Biogeography of bacterial communities
exposed to progressive long term environmental change. ISME J 7:937–48
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Chapter 14
Global Scenario of Plant–Microbiome
for Sustainable Agriculture: Current
Advancements and Future Challenges

Simranjeet Singh, Vijay Kumar, Satyender Singh, Daljeet Singh Dhanjal,
Shivika Datta and Joginder Singh

Abstract Phyto-microbiome are the microorganisms (fungi and bacteria) associ-
ated with all major plant components such as flowers, stems, roots, leaves, and fruits.
They form symbiotic association with the plant, inhabit the intra- and intercellular
positions without harming the host and frequently profit the host plant. They indicate
the complex connections within the host plants involving the symbiotic, mutualistic
relationship, and rarely the parasitism relationship. They are omnipresent and are
known to improve the nutrient enrichment and growth of the plant. They not only
produce root exudates but also release signal molecules which regulate various bio-
chemical and genetic activities. They provide the immunity to plants from pests and
insects and enhance the ability of plants to tolerate the impacts of abiotic and biotic
stress and also produce bioactive compounds and phytohormones of biotechnolog-
ical interest. In this book chapter, we will review the advent role of microbiome in
plant growth and development. Efforts have been made to summarize the utiliza-
tion of various hormones to mitigate the effects of various environmental stresses
on cultivated plant communities. The final sections of the book chapter describe the
applications of phyto-microbiome in twenty-first century and the clear out cut to
commercialize of a phyto-microbiome-based technology.
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14.1 Introduction

Soil is considered to be the reservoir for various microbes and organisms like ants,
moles, and nematode (Dhanjal et al. 2017). Recent advances in sequencing tech-
niques and elevation in number of microbial libraries have expanded the aura of
the tree of life, as it is dominated by microbes (Anand et al. 2019). The horizontal
gene transfer and mutation events have evolved wide array of variation among the
microbial community. This significantly increases the diversity within species and
endows them their functional characteristic (Bengtsson-Palme et al. 2017a). Here,
soil plays the major role in recycling the nutrients (phosphorus and nitrogen) and
imparting protection against abiotic and biotic stress (Dhanjal et al. 2018). Although
the agricultural activities have increased the yield of crop, simultaneously it has
also deteriorated the biological and physical properties of the soil (Gomiero 2017).
Even usage of fertilizer aids in maintaining the soil fertility, but on tillage microbial
communities get disrupted (Dong et al. 2012). The degradation of soil due to anthro-
pogenic activities has emerged as a global concern and sustainable agriculture has
become the need of the time for sustaining the life of humans on this earth. Thus,
to sustain the life, plant–microbiome plays significant role in improving soil quality
and plant growth, and providing resistance from stress (Rashid et al. 2016; Kumar
et al. 2019a).

Plant–microbiome is essential as they contain distinct properties like production
of secondary metabolites as well as phytohormone and nitrogen fixation and many
more. Therefore, it represents themicrobial communitywhich is directly or indirectly
associated with plants. Hence, they have been generally characterized into epiphytic,
endophytic, and rhizosphere microbiome (Igiehon and Babalola 2018a; Kour et al.
2019; Kumar et al. 2019b; Rana et al. 2019a; Rana et al. 2019b). The soil contains
both types of microbes, i.e., pathogenic and nonpathogenic in nature (Finkel et al.
2017). Nonpathogenic involves the symbiotic and neutral microbes which plays
variety of roles in diverse fields like biodegradation, biofuel production, biocontrol,
biotransformation, seed production, phytoremediation, and many more (Dwibedi
and Saxena 2019). These potentials of microbes prompt us to understand the hyper-
diversity of these unexplored plantmicrobial communities, not only for sustaining the
ecosystem but also to preserve these biodiverse microbial communities beneficial for
mankind (Braga et al. 2016). Hence, untapping and deep understanding of these plant
microbes as whole have become important to explore the positive interactions for
sustainable agriculture, especially during microbiome-dependent cropping approach
(Busby et al. 2017). In this chapter, we will discuss the challenges and efforts put
forward to advance our knowledge about different properties of microbes and how
these properties affect plants. Further, we will also discuss about the soil microbiome
improving the crop production.
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Fig. 14.1 Compartmentalization of plant microbiome

14.2 Composition and Function of Plant Microbiome

Plants are surrounded by a variety of microbes and vary according to their location
like anthosphere, carposphere, phyllosphere, rhizosphere, and spermosphere (Shade
et al. 2017) (Fig. 14.1). Here, we categorized the bacteria into three broad categories
as follows.

14.3 Plant Microflora Below the Ground

Root microflora generally get horizontally transferred as they are predominantly
present in soil (Lareen et al. 2016). Most dominating microbes belong to the family
of Acidobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Proteobacteria,
and Verrucomicrobia (Mendes et al. 2013; Kour et al. 2019; Suman et al. 2016;
Verma et al. 2017b). There is a possibility of vertical transmission through seeds.
Seeds also serve as reservoir for microbes, which allows them to multiply in the
roots during plant development (Shahzad et al. 2018). Root system of plant pro-
vides distinctive niche to soil microbes residing in the rhizosphere (roots and certain
portion above the ground) (Raaijmakers et al. 2009). Recently, Donn with his col-
leagues reported about the changes in bacterial community surrounding the roots of
wheat and found 10-fold increase in population of actinobacteria, copiotrophs, olig-
otrophs, and pseudomonads at rhizosphere. Moreover, they also reported that over
time, variation takes place in rhizoplane and rhizosphere community but there is no
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variation in soil microbial population (Donn et al. 2015). Similar results were also
seen for Brachypodium distachyon rhizosphere which reported about the predom-
inance of species of Burkholderiales, Sphingobacteriales, and Xanthomonadales
family (Kawasaki et al. 2016). There have been reports which claimed that root
exudates like amino acids, fatty acids, organic acids, plant growth regulators, phe-
nolics, putrescine, sterols, sugars, and vitamins also affect microbes present in the
rhizosphere, proclaimed as rhizosphere effect (Hunter et al. 2014). For example, sec-
ondary metabolite benzoxazinoids (BXs) synthesized by the roots of maize amends
the composition of root-associated microbes, out of which members of Actinobac-
teria and Proteobacteria family were highly affected (Neal et al. 2012; Kudjordjie
et al. 2019). Moreover, other researchers are investigating the mechanisms respon-
sible for the assembly of microbial community and effects of substrate and root
exudation on microbial community. Hence, this confirms that composition of rhizo-
sphere microbes gets influenced by plants species and root exudates (Jacoby et al.
2017; Yadav et al. 2015a; Yadav et al. 2015b).

Various bacterial endophytes have colonized the roots of plants internally (Santoyo
et al. 2016). These bacterial endophytes enter the root tissues via passive processes or
root abrasion and active mechanisms (Santos et al. 2018). The transmission and colo-
nization of these bacterial endophytes inside the plant depend on various factors like
ability of endophytes to colonize plant and distribution of plant resources (Kandel
et al. 2017). Various microbes have gained access to root tissues, for instance, Aci-
dobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Gemmatimon-
adetes, Planctomycetes, Proteobacteria, and Verrucomicrobia are the bacterial taxa
which have gained access to grapevine roots (Morgan et al. 2017; Verma et al. 2016;
Yadav et al. 2016). On the other hand, members of Bradyrhizobiaceae, Comamon-
adaceae, Rhizobiaceae, and Streptomycetaceae family are the one predominantly
found in rice roots (Edwards et al. 2015).

14.4 Plant Microflora Above the Ground

Floral parts, leaves, and vegetative parts present above the ground provides dis-
tinctive environment for epiphyte and endophyte microbes (Frank et al. 2017). The
endophytes predominantly translocate themselves through xylem to different parts of
plants, which can either be fruit, leaves, or stem (Hardoim et al. 2015).With respect to
location on the plant, aboveground microbes distribute themselves with other mem-
bers of endophytic community (Nair andPadmavathy 2014). It has been observed that
phyllosphere microbes obtained from the soil get influenced by external stimuli and
later shows the profound effect (Carvalho and Castillo 2018). Subsequently, various
microbes have been found in the phyllosphere and endosphere up to species level
(Schlaeppi and Bulgarelli 2015). For example, on analyzing the carposphere and
phyllosphere microbes of grapevine uncovered the presence of Acinetobacter, Bacil-
lus, Citrobacter, Curtobacterium, Enterobacter, Erwinia, Frigoribacterium, Methy-
lobacterium, Pantoea, and Pseudomonas species (Kecskeméti et al. 2016; Verma
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et al. 2017a; Verma et al. 2017b; Yadav et al. 2019; Yadav et al. 2018a; Yadav et al.
2018b; Yadav et al. 2018c). On the other hand, endophyte analysis of grape berries
uncovered that Bacillus, Burkholderia, Dyella, Mesorhizobium, Propionibacterium,
Pseudomonas, and Ralstonia species are the dominant (Campisano et al. 2014).

There is a study conducted on 300 different varieties of maize to analyze the leaf
microbiome that revealed the predominance ofmethylobacteria and sphingomonads
taxa (Wagner et al. 2019), whereas in apple flowers there is predominance of Enter-
obacteriaceae and Pseudomonas species (Steven et al. 2018). Various other studies
conducted on almond, apple, grapefruit, pumpkin flower, and pumpkin also revealed
the abundance ofPseudomonas species (Aleklett et al. 2014). Lately, seed-associated
microbes have highlighted the abundance of Actinobacteria, Bacteroidetes, Firmi-
cutes, and Proteobacteria (Qiao et al. 2017). Usually, microbes found on above-
ground have originated from air, seed, and soil and adapted themselves to sustain
their life on or inside the tissue of plant, where various factors like environmental
condition, soil, andmanagement influencemicrobial composition (Raaijmakers et al.
2009). Compartment-specific assembly with the host illustrates the strong relation-
ship among the abovegroundmicrobes and plant on the basis of functionality, but still
there is a need to understand this association deeply (Garcia and Kao-Kniffin 2018).
Aboveground microbes and endophytes are recognized for their ability to alleviate
stress tolerance, increase disease resistance, and promote plant growth (Kumar and
Verma 2018).

14.5 Satellite and Core Microflora

Core microflora or core plant–microbiome (CPM) refers to those microbes that
closely linked with particular type of plant and are independent of soil and envi-
ronmental conditions (Lakshmanan et al. 2014). Bradyrhizobium, Microvirga, and
Sphingobium were found to be the core microbiome of Solanum tuberosum (potato)
(Pfeiffer et al. 2016). Another study revealed that Hyphomicrobiaceae, Micrococ-
caceae, and Pseudomonadaceae sps. are the core microbes found in grapevine
(Zarraonaindia et al. 2015). The CPM contains those microbial taxa that are essen-
tial for plant and have established themselves in plant during the course of evolution
(Jacoby et al. 2017). The enhancement of microbial taxa through evolutionary selec-
tion process contains the genes responsible for survival and holobiont of the plant
(Rosenberg and Zilber-Rosenberg 2018).

Distinctively, the microbial taxa found in less affluence and fewer locations are
referred to as satellite taxa. They are described based on their habitat, geography
of habitat, and their regional population. These taxa are perceived as the regulators
of important mechanisms in an ecosystem (Banerjee et al. 2018). Few researchers
found that microbial taxa having the scarce population play a crucial role in obstruct-
ing the entrance of undesirable microbial taxa in soil. Parallelly, the scarce bacterial
population produces different antifungal chemicals which guard the plants against
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soil-induced infectious organisms (Ciancio et al. 2016). Various researches demon-
strate that forfeiture of scarce microbial population compromises with plants’ effi-
ciency (Garcia and Kao-Kniffin 2018). Researchers also found that microbial taxa
regulate vital mechanisms that can be unequal to their population number (Pineda
et al. 2017). Numerous ecological factors should be taken into account to compre-
hend mechanisms of plant–microbiome taken in response to certain environmental
tensions (Braga et al. 2016).

14.6 Factors Affecting Plant Microbiota

The microbial organization in plant’s tissues is linked with various organic and inor-
ganic constituents. These constituents can be type, pH, salinity, structure, moisture,
organic matter, and exudates of soil, respectively (Jacoby et al. 2017; Yadav et al.
2015c; Yadav and Yadav 2018). These constituents above are important for parts
of the plants which are present beneath the ground level. Other constituents such as
infectious agents, environmental conditions, and human activities affect themicrobial
community of above- and belowground plant parts (Mendes et al. 2013). Using high-
throughput approaches like a shotgun and 16S rRNA sequencing, Bulgarelli with his
colleagues examined the root microbial community of various barley species and
concluded that root exudates and innate immune system determine the organization
of root microbiota (Bulgarelli et al. 2015). Various host-influence factors such as
growth stage, age, and wellness of plants affect organization of plant microbiota
by the formulation of root exudates and plant signaling processes (like induced and
acquired systemic resistance, respectively) (Ortíz-Castro et al. 2009).

14.7 Function and Role of Plant Microbiome

Plant–microbiome consists of all neutral, beneficial as well as pathogenic microbes.
There are few plant growth-promoting (PGP) bacteria which promote the growth
of plant by synthesizing different phytohormones such as gibberellin, cytokinin,
and auxin (Egamberdieva et al. 2017; Yadav 2017a, b; Yadav 2019; Yadav et al.
2017a). However, few PGPB produce ACC deaminase (1-aminocyclopropane-1-
carboxylate deaminase) which regulate the level of ethylene (stress hormone) in
plant (Glick 2014). Literature survey revealed that Arthrobacter spp., Bacillus spp.,
and Pseudomonas spp. are the ACC deaminase producer, which enables them to
enhance the growth of plant (Souza et al. 2015). On analyzing the root microflora
of soybean and wheat, it showed the dominance of Pantoea spp., Paraburkholderia
spp., and Pseudomonas spp. These species promote the plant growth because of
the properties like phytohormones (ACC deaminase, indole acetic acid), nitrogen
fixation, and phosphate solubilization mechanism to enhance the stress tolerance



14 Global Scenario of Plant–Microbiome for Sustainable Agriculture … 431

Fig. 14.2 Schematic overview of function and impact of plant–microbiome on the host plant

and improve nutrient uptake (Rascovan et al. 2016). Schematic representation of the
function performed by microbiome is illustrated in Fig. 14.2.

On the other hand, there are few bacteria which show disease symptoms because
of the production of phytohormones and phytotoxic compounds (Olanrewaju et al.
2017). For instance, Pseudomonas syringae is a plant pathogen which affects various
plants like green bean, olive, tobacco, and tomato (Hirano and Upper 2000). Erwinia
amylovora, another pathogenic bacterium, causes fire blight disease in ornamen-
tal plants. Ralstonia solanacearum, Xylella fastidiosa, and Xanthomonas sps. are
the bacterial species that are associated with various diseases of banana and potato
(Vrancken et al. 2013). There are certain factors which determines the severity as
well as outcome of disease like biotic factors (like plant microflora), favorable envi-
ronmental factor, host susceptibility, and population size of pathogens (Lareen et al.
2016). Both aboveground plant microflora and belowground microflora have been
found to increase the resistance in host via commensal interactions of pathogen or
due to modification in plant defense system (Igiehon and Babalola 2018b).

The plant microbiota uses diverse biocontrol mechanism like antibiotic pro-
duction, siderophore production, lytic enzyme production, and pathogen-inhibiting
volatile compound production to prevent the disease and pathogenic invasion (Com-
pant et al. 2005). Few plants modulate the hormone level and induce resistance in
plant to protect them from plant pathogens. Therefore, agricultural lands containing
disease-suppressing microbes build pressure on pathogens and make it the disease-
suppressive soil (Gómez Expósito et al. 2017). Particularly, Bacillus, Burkholderia,
Enterobacter, Paenibacillus, Pantoea, Paraburkholderia, Pseudomonas, and Strep-
tomyces have been found to play the main role in pathogen suppression (Yadav et al.
2017b). Carrión and his colleagues revealed that Paraburkholderia graminis PHS1
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produces cysteine desulfurase and dimethyl sulfoxide reductase (sulfurous volatile
compounds), which provide suppressive ability against fungal root pathogens (Car-
rión et al. 2018). On the other hand, Durán and his colleagues highlighted the role
of endospheric bacteria belonging to Enterobacter and Serratia family, which have
the biocontrol activity against Gaeumannomyces graminis (Durán et al. 2017).

14.8 Advancements in Plant–Microbiome Research (PMR)

Prediction about the advances in plant–microbiome research is quite difficult (Thijs
et al. 2016). But following are the three points which help us in shaping the future
of both applied and basic studies of soil microbiome.

14.8.1 Upgradation of Culturing Techniques

The advent of molecular techniques has rapidly increased the genomic data of
uncultured microbial taxa persisting in the soil, for which closely related strains
are currently unknown (Warinner et al. 2017). There is an exponential increase in
data because of culture-independent approach like single-cell genomics or by the
assembling of individual genome obtained via metagenome analysis (Blainey 2013).
Although we have the genomic information of all the microbes present in the soil,
still we lack to understanding about their functionality. Therefore, categorizing them
in ecological taxa considering their genomic data is risky (Peršoh 2015). Addition-
ally, the slow-growing microbe is another challenge. Therefore, approaches which
use genomic data to intercept the information about ideal cultivation and isolation
of uncultured microbes will unquestionably be helpful for the field to me in forward
direction (Streit and Schmitz 2004).

14.8.2 Role of Viruses in Soil Microbiome

Approximately, 107–109 virus particles are found in one gram of soil, and this
number is less than the number of viruses found in the aquatic ecosystem (Jacquet
et al. 2010). Apparently, these viruses found in soil are highly diverse and remained
unexplored (Williamson et al. 2017). Marine studies have revealed that phages play
chief role in nutrient dynamics, as they maintain the nutrient dynamics by killing the
20–40% microbial population present in the water column (Sime-Ngando 2014).
Various researches have demonstrated soil to be the reservoir for phages which
specifically targets bacteria like Rhizobium spp. and Xanthomonas spp., still the
effect of these viruses on activity and composition of soil remains comprehended
(Buttimer et al. 2017). According to statistics, > 90% of viruses found in soil mainly
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get absorbed by clay as well as other soil surfaces, which leaves very low number of
viruses in soil. Additionally, it is also uncertain that these viruses are capable enough
to infect the plant–microbiome (Andika et al. 2016). Due to advancement in viral
metagenomic field and development of new techniques, there is an enumeration in
viral population, and it has prompted us to explore new viral community as well as
study the effect of these viruses on microbial processes and populations (Jacquet
et al. 2010). Basically, it clear to develop a holistic understanding of how these
microbes (directly or indirectly) interact with each other instead of studying the
individual microbial group (Tshikantwa et al. 2018).

14.8.3 Importance of Horizontal Gene Transfer

There are three main mechanisms of horizontal gene transfer, i.e., conjugation, trans-
duction, and transformation, by which microbes their gene from one generation to
another (VonWintersdorff et al. 2016). Genes contains the sequence of various differ-
ent traits like arsenic detoxification, antibiotic resistance, and xenobiotic degradation.
Therefore, mobile genes may cause evolution of new phenotypic characteristic and
may generate close relation with dissimilar genomes (Janssen et al. 2005). However,
horizontal gene transfer can impose dilemma during the attempt of linking particu-
lar gene to targeted phylogenetic lineages. This definite control of horizontal gene
transfer, its frequency in soil microbial communities, and their effect on the soil
population are the topics which nurtures this expedition and motivate us to work in
this direction (Andrews et al. 2018).

14.9 Use of Plant–Microbiome as a Biocontrol Agent

Worldwide, plant diseases have been held responsible for farmers’ losses. FAO stated
that 25% of crop loss occurs due to plant diseases and pests. Therefore, there is need
for control plant disease (Savary et al. 2012). To achieve this, specific plants which
are resistant to various diseases are bred along with different cultivation techniques
like use of pathogen-free seeds, crop rotation, or by using biological and chemical
agents (Cheng and Cheng 2015). All these plant protection methods influence the
microbiome of plant; hence, information gathered from plant protection strategies
should be taken into consideration during cultivation (Berg et al. 2014). In various
cases, the onset of disease takes place due to imbalance of plant–microbiome and
obstructs the desired objective of whole microbiome. Hence, analyzing metabolic
pathway and plant–microbiome of the host plant unlock newopportunities to advance
biocontrol approaches (Thijs et al. 2016).
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Overall, better understanding unfolds the information about the diverse microbes
which aid in plant growth and produce antagonistic chemicals against phy-
topathogens (Bargaz et al. 2018). Mosses are known to have unique microbial diver-
sity and harbor microbes with exceptional antagonist potential because of their ecol-
ogy (Bragina et al. 2012). Moreover, medicinal plants are also to be known to nurture
diversemicrobes as their secondarymetabolites determine the composition of micro-
biome (Berg et al. 2015). Because of large diversity among microbes, it is believed
that endophytes, especially seed endophytes, can emerge as the unique biocontrol
agent (Ryan et al. 2008). Till now, largely bacteria as well as fungi have been used
for biocontrol purposes (Whipps 2001). Recently, Archaea have been exploited to
become the member of plant–microbiome but its biocontrol potential is still under
evaluation (Müller et al. 2015).

As stated above, microbes linked with plant develops a network which gets influ-
ence during pathogen invasion. Therefore, these networks will enable us to develop
new model and enhance disease management of the plant–soil microbes (Hassani
et al. 2018). Even researchers have developed a framework to decipher these micro-
biome networks and showed the benefit of these frameworks to test their hypothesis
for targeted microbes responsible for particular plant disease. They proposed four
types of network analysis: (a) first type involves the general analysis of network to
discover the aspiring taxa to maintain the existing microbial community; (b) second
type involves the analysis majorly focusing on host as well as plant response; (c)
third type involves the identification of pathogenic taxa which are directly or indi-
rectly associated with prior known taxa of pathogens; and (d) last type involves the
identification of those taxa which are associated with disease (Poudel et al. 2016).

Now, most of the biocontrol agents are screened through in vitro antagonisms
effective against particular pathogen. As this screening allows the identification of
potent biocontrol agent, still intense debate is going on about this screening approach
(Larran et al. 2016). The chief reason is that biocontrol and plant growth-promoting
(PGPR) microbes during in vivo evaluation show no antagonisms, whereas in the
case of in vitro studies it shows modest result (Beneduzi et al. 2012). Different
high-throughput techniques have been developed for plant assays but were found to
be ineffective as includes artificial characters (Rasheed et al. 2017). For instance,
rapeseed treated with Paenibacillus showed plant growth in natural soil, whereas no
negative effect was observed in sterile soil under gnotobiotic conditions. Therefore,
there is need for testing the potential of biocontrol and plant growth-promoting
strains in soil as well as evaluation of their effect on soil type and plant species also
be done (Bashan et al. 2014). Another research study showed the presence of similar
genera of Pseudomonas in lettuce rhizosphere in three different soil samples from
the field. This confirms that soil types do not play any role in biocontrol activity and
rhizo-competence (Schreiter et al. 2018).

Additionally, targeted enhanced diversity is also being exploited as biomarker for
screening purpose by researchers. These applicability and development in biological
control is attaining attention globally (Atanasov et al. 2015), whereas previously only
one microbe was used in biocontrol strategies, which explains about inconsistency.
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But recent advancements have enabled us to develop microbiome-dependent bio-
control strategy (Ab Rahman et al. 2018). In 1999, Emmert and Handelsman stated
Gram-positive bacteria to be potential candidate in biocontrol practices. On assess-
ing the registered products for biocontrol and along with those that are in pipeline,
almost all the products are bacillus based (Emmert and Handelsman 1999). There
is technical reason for using Bacillus sps. as the base product in contrast to other
Gram-negative bacteria, as form spores under unfavorable condition for survival.
This spore formation increases their shelf-life (Berg et al. 2017). On examining the
plant-associated microbes which harbor large number of bacterial species, it make us
realize that we are seeing the very small portion of taxonomic diversity for biocontrol
purpose (Chowdhury et al. 2017).

Moreover, the researchers have reported that 2% mean population is occupied by
Bacillus species from the total bacterial community in the soil (Li et al. 2017). As
an exception, another researcher published a paper in which they stated that 37% of
Bacillus and Paenibacillus species are found in arid soil (Köberl et al. 2013). Still,
the debate is going on comprehending the role of Bacillus on the plant and against its
pathogen, or does it trigger the plant growth hormones or induce resistance as they are
involved in plant–microbe interaction. It is already known that Bacillus and Paeni-
bacillus strains synthesize various antibiotics and secondary metabolites (Mhlongo
et al. 2018). As per studies, strains and spores of both Bacillus and Paenibacillus
are predominantly found in the environment and this might be reason for reducing
number of plant-associated microbial community. Hence, more emphasis is given
on increasing the microbial diversity within products during biocontrol activity. This
prompts to develop new strategies to explore the antagonistic potential of microbes
associated with plants (Yadav et al. 2017c).

Nowadays, antibiotic resistance is becoming the global concern and making our
treatment ineffective as a result people is suffering from disability, prolonged ill-
ness, and at last death (Laxminarayan et al. 2013). Regrettably, strategies used in
agriculture like use of antibiotics in livestock are increasing the resistance level.
These livestock aid in transferring the resistance in plant production system, which
causes the enrichment of resistant bacteria in the rhizosphere (Founou et al. 2016),
even though many microbes have developed resistance and are highly prevalent in
the environment. Therefore, risk management studies to suppress the emergence
of resistant microbes have become our first priority (Larsson et al. 2018). Though
the different biocontrol products have shown lower persistence on soil and plant,
usage of spore-forming bacteria will change the whole scenario (Paul et al. 2019).
Additionally, soil microbes are found to be bacterial antagonists in nature. In partic-
ular, Paenibacillus have been found to contain not only the antibiotic synthesis gene
but also contain antibiotic gene, justifying about their antagonistic ability within
the microbiome (Cycoń et al. 2019). Therefore, further investigation is required to
understand the mobilization of resistant gene through different ways of horizontal
gene transfer (Bengtsson-Palme et al. 2017b).
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14.10 Studies Related to Plant Microbiomes

Even though plant–microbiome is a broad topic, microbial group associated with
plant is an active research area. The major reason is the exponential increase in
publications in recent year on this topic as well as research targeting the niche of
specific plant and how interaction takes place among particular microbial community
(Naylor and Coleman-Derr 2018). Additionally, it has been observed that microbial
assembly varies according to environmental conditions andplant species. This creates
curiosity to learnmore about howmicrobes are acquired by plant, either themicrobes
are subsequently passed to next generation or recruited from the environment (Yu
and Hochholdinger 2018).

In spite of the role of the microbes in promoting the plant growth and nutrient
cycle, we still require to gain more insight about microbial interaction which makes
up the plant microbiome. This will allow us to comprehend the functioning of plant
microbiome to changing agricultural practices and environmental conditions (Garcia
and Kao-Kniffin 2018).

Various studies are being conducted to extend the link the shift in environ-
mental condition with microbiome response (Purahong et al. 2018). For instance,
the researcher conducted on the grape vineyard using culture-independent method
revealed the presence of dynamic microbial community on different stages of plant
lifecycle, enlightening the effect of agrochemicals on the plant (Morgan et al. 2017).
Numerous studies have associatedmicrobiomewith physiology of plant, as microbes
found in plant–microbiome in desert aid in providing the resistance to plant to sur-
vive in unfavorable conditions (Vurukonda et al. 2016). In 2012, Marasco and his
colleague proposed that plant microbiomes are essential to develop resistance against
drought stresses (Marasco et al. 2012). Another effective interaction was reported
by another research group, where the described role of microbiome determines the
composition of plant root exudates. These examples highlight the role of soil micro-
biome not only in plants but also in their evolutionary mechanism, regulated by
host–microbe interaction (Lareen et al. 2016).

14.11 Conclusion and Future Prospects

The microbial communities possessing beneficial traits act as a powerful tool to ele-
vate the sustainable agriculture by reducing the usage of fertilizes and combatting
plant diseases to enhance the crop yield. The potential of microbiome is to elicit the
plant growth, generate stress resistance, and improve plant health. Various micro-
bial inoculants have been developed to achieve field success by either designing
smart microbial consortia or engineering the microbiota with beneficial characteris-
tics. In order to upsurge the crop yield and support the enhanced technologies, new
plant breeding practices and suitable formulations are required. To achieve these
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goals, there is need to gather insight about the plant–microbiome interaction, micro-
bial community of soil, and their stability during environmental changes. As single
microbes are the key regulators within microbial community, therefore comprehen-
sive investigation on these microbes along with microbial community of soil can
assist us in expanding the horizon of this field. Moreover, the knowledge gained
will enable us to completely comprehend the impact of these microbes on disease
resistance, nutrient cycles, and yield of the crop. Furthermore, it will prompt us to
explore novel strategies for microbiome engineering to move toward the sustainable
agriculture.

References

AbRahman SF, Singh E, Pieterse CM, Schenk PM (2018) Emerging microbial biocontrol strategies
for plant pathogens. Plant Sci 267:102–111

Aleklett K, Hart M, Shade A (2014) The microbial ecology of flowers: an emerging frontier in
phyllosphere research. Botany 92(4):253–266

Anand P, Chopra RS, Dhanjal DS, Chopra C (2019) Isolation and characterization of micro-
bial diversity of soil of Dhanbad coal mines using molecular approach. Res J Pharm Technol
12(3):1137–1140

Andika IB, Kondo H, Sun L (2016) Interplays between soil-borne plant viruses and RNA silencing-
mediated antiviral defense in roots. Front Microbiol 7:1458
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Chapter 15
Current Aspects and Applications
of Biofertilizers for Sustainable
Agriculture

Modhurima Misra, Ashish Sachan and Shashwati Ghosh Sachan

Abstract There has been a sharp increase in theworld’s population over the past few
decades which can be threatening in terms of the food security of the people. Thus, to
cater to the huge demand of food, agricultural production should be increased within
a short span of time and with limited worldwide agricultural land resources. This
situation has driven the farmers all over the world to rely heavily on the commer-
cially available chemical fertilizers for enhanced agricultural productivity. Though
there has been a significant rise in the production of crops, these fertilizers have
proved to be detrimental for our ecosystem as well as animal and human health. The
deteriorative effects of the large chemical inputs in the agricultural systems have not
only challenged the sustainability of crop production but also the maintenance of the
environment quality. Using biofertilizers is a natural, low-cost, environment-friendly
way out to this problem. Biofertilizers comprise living microorganisms capable of
supplying sufficient nutrients to the plants, while maintaining high yield. The present
chapter aims at describing in brief the requirement of biofertilizers in the first place,
as well as their choice over the conventional synthetic ones, the different types, their
roles in agriculture, their production andmode of action andmost importantly advan-
tages and demerits. The inputs from various literature mentioned herein will help in
understanding the immense importance of their usage in modern-day farming with
a cleaner ecosystem.
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15.1 Introduction

In the recent years, environmental pollution has become a matter of concern world-
wide, with various industries and agricultural systems being the two most significant
contributors. The components of agriculture which affect the environment are the
different chemicals used for better production of crops that includes fertilizers, pesti-
cides, insecticides, etc. Even though these can cause rapid production of crops (Santos
et al. 2012) and put an end to the scarcity of food, their retention in the ecosystem,
once introduced, can have deleterious effects on civilization in the long run. These are
industrially manipulated compounds, having known quantities of different elements
like nitrogen, phosphorus, sulphur, potassium, etc. Groundwater, contaminated from
leaching of nitrates can cause a severe disease called Blue Baby Syndrome (Kno-
beloch et al. 2000). In this regard, safer, eco-friendly approaches are being sought
after as potential alternatives to synthetic fertilizers. Thus, keeping these problems in
mind, biofertilizers have been developed, which are often regarded as one of the best
gifts to modern agricultural science. These have been proved to be quite successful in
increasing the crop yield without disturbing the ecological balance. Europe and Latin
America have started using biofertilizers significantly, due to the strict regulations
on their consumption of chemical fertilizers (Raja 2013).

Numerous definitions of biofertilizers are available which can be attributed to
the improved understanding of these compounds from time to time. Biofertilizers
contain various microbes which mobilize nutritional elements through their regular
metabolic activities (Vessey 2003), thereby enhancing their accessibility and uptake
by the host plants. Mazid et al. (2011) defined them as “substances which contain
living microorganisms that colonize the rhizosphere or the interior of the plants and
promote growth by increasing the supply or availability of primary nutrients to the
target crops, when applied to soils, seeds or plant surfaces”. They are renewable,
“eco-friendly” agro input of organic origin and consist of microorganisms which can
be nitrogen fixers, phosphate solubilizers, sulphur oxidizers or organicmatter decom-
posers (Vessey 2003). The application of microbial inoculum dates long back and
started with small scale compost production that showed potential as a biofertilizer
(Khosro and Yousef 2012).

The commercialization of biofertilizer dates back to 1895whenNobbe andHilther
launched the product “Nitragin” (Yimer andAbena 2019).As of today, othermicroor-
ganisms like Azotobacter, Blue-green algae are being used as potential biofertilizers.
With the passage of time, these biofertilizers have become an indispensable part of
modern-day organic farming, an environmentally sustainable form of agriculture that
emphasizes protection and preservation of natural resources along with preventing
the use of chemical fertilizers and pesticides (Barman et al. 2017).
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15.2 Biofertilizers—A Natural Gift for Sustainable
Agriculture

Indiscriminate use of chemical fertilizers for crop production can have hazardous
effects on our environment which is of great concern in the context of sustainable
agriculture as well as environmental remediation. These synthetic molecules, apart
from being costly, contaminate the air, water and soil as well as cause eutrophication
of surface water bodies (Youssef and Eissa 2014). These agrochemicals are capable
of increasing the crop yield to a certain level and their excessive use can have long-
lasting effects and negatively affect human health. Their overuse can lead to the
decrease in soil fertility by increasing the salt content (Aggani 2013) and may have
a role to play in greenhouse effect, depletion of ozone layer and acidification of soil
and water (Kumar et al. 2018) (Fig. 15.1). They make the plants more susceptible to
infections by weakening their roots.

In this regard, the exploitation of various microorganisms in augmenting nutri-
ents to the host plants has gained significant importance as they have shown great
potential as a substitute for the chemical fertilizers. The important benefits of these
biofertilizers can be listed as follows:

Fig. 15.1 Major functions of bacterial biofertilizers
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• Being cost effective and ecosystem friendly (Khosro and Yousef 2012).
• They enrich the soil environment by accumulating various micro- and macronu-
trients through nitrogen fixation, phosphate solubilization and decomposition of
organic matter (Sinha et al. 2010).

• They increase crop productivity by releasing different growth-regulating sub-
stances and synthesis of phytohormones.

• They help to increase the biodiversity of the soil where they are applied by inviting
the localization of different beneficial bacteria and fungi.

• Biofertilizers form a part of nutrient cyclingwhen applied as seed or soil inoculants
(Singh et al. 2011).

• These beneficial microorganisms make the host plants more resistant towards
environmental stress, like drought, salinity, etc., (Bhardwaj et al. 2014).

• The microbes are vital constituents of the Integrated Nutrient Management (INM)
system by continuously and slowly releasingmetabolic intermediates (Adesemoye
and Kloepper 2009).

15.3 Types of Biofertilizers

Both rhizospheric and endophytic microbial communities can significantly deter-
mine crop vigor in agricultural systems through interactions with the host plants.
The microorganisms which are important for agriculture can be distinguished
as plant growth-promoting rhizobacteria (PGPRs), nitrogen-fixing cyanobacteria,
phosphate-solubilizing microorganisms (PSMs), potassium-solubilizing microor-
ganisms (KSMs), siderophore and phytohormone producing organisms, mycor-
rhiza, plant disease-suppressive bacteria, stress-tolerant endophytes and biodegrad-
ing microbes (Singh et al. 2011). The rhizosphere can have up to 1011 microbial
cells per gram of root (Egamberdieva et al. 2008) and above 30,000 prokaryotic
species (Mendes et al. 2013) that may automatically increase the crop productivity
by enhancing the soil physicochemical properties, biodiversity of soil microbiome,
plant growth and development (Sahoo et al. 2014). Figure 15.2 gives a brief idea
about the major groups of biofertilizers (Table 15.1).

15.3.1 Nitrogen-Fixing Microorganisms

Nitrogen is considered to be one of the fundamental elements for plant development.
The crops are dependent on bioavailable form of nitrogen for their growth, which is
quite limited in nature. The process by which atmospheric nitrogen gets converted
to organic forms like ammonia and nitrate, for ready utilization by the plants, is
known as biological nitrogen fixation (BNF) (Gothwal et al. 2007). The different
microorganisms capable of fixing atmospheric nitrogen can be grouped under three
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Fig. 15.2 Major groups of biofertilizers

categories—symbiotic, free living and associative (Gupta 2004). Symbiotic associ-
ations account for majority of BNF in nature. Nitrogen-fixing biofertilizers are crop
specific in nature (Choudhury and Kennedy 2004; Yadav 2017a, b). Some of the
important bacteria and algae which play a crucial part in this process are discussed
below (Table 15.2).

15.3.1.1 Rhizobium

It is a symbiotic bacterium that colonizes the roots of the leguminous plants forming
tumourous out growths known as root nodules, which helps in ammonia production.
It fixes atmospheric nitrogen even in symbiotic association with a non-legume called
Parasponia sp (Mahdi et al. 2010). They utilize the photosynthetic products of the
plants as their carbon source and in return fix atmospheric nitrogen for their benefac-
tor. The morphological and physiological characteristics of Rhizobium at free-living
condition are different from those of the bacteroid form in nodules (Kumar et al.
2018). These are considered to be the most proficient biofertilizer for legumes as
far as the amount of nitrogen fixed is concerned (Jehangir et al. 2017; Yadav et al.
2019a, b, c). The nodulation and nitrogen fixation by the bacterium is attributed to
the nod, nif and fix genes.
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Table 15.1 Major groups of biofertilizers with their types and examples

Major groups Microorganisms Examples

N2—Fixers Free living Azotobacter sp., Beijerinkia sp., Clostridium sp.,
Klebsiella sp., Anabaena sp., Nostoc sp.

Symbiotic Rhizobium sp., Frankia sp., Anabaena azollae

Associative
Symbiotic

Azospirillum sp., Anabaena sp.

P—Solubilizers Bacteria Bacillus sp., Pseudomonas sp., Rhizobium sp.,
Burkholderia sp., Microccocus sp., Achromobacter
sp., Agrobacterium sp., Aereobacter sp.,
Flavobacterium sp., Erwinia sp.

Fungi Penicillium sp., Aspergillus awamori, Aspergillus
niger.

P—Mobilizers Arbuscular
mycorrhiza

Glomus sp., Gigaspora sp., Acaulospora sp.,
Scutellospora sp., Sclerocystis sp.

Ectomycorrhiza Laccaria sp., Pisolithus sp., Boletus sp., Amanita sp.

Ericoid
mycorrhizae

Pezizella ericae

Orchid
mycorrhiza

Rhizoctonia solani

K—Solubilizers Bacteria Bacillus mucilaginosus, Bacillus edaphicus, Bacillus
circulans, Acidithiobacillus ferrooxidans,
Paenibacillus spp

Fungi Aspergillus sp

K—Mobilizers Bacteria Bacillus Spp

S—Oxidising Bacteria Thiobacillus sp

Zn—Solubilizers Bacteria Bacillus subtilis, Thiobacillus thioxidans

Yeast Saccharomyces sp

Phytohormone
producers

Bacteria Galactomyces sp., Pseudomonas sp., Azospirillum sp.,
Bacillus sp., Arthrobacter sp., Acinetobacter sp.

Fungi Gibberella fujikuroi

Endophytic
microorganisms

Bacteria Azoarcus sp., Gluconoacetobacter diazotrophicus,
Herbaspirillum seropedicae, Serratia marcesens

Fungi Trichoderma stromaticum, T. evansi, T. amazonicum,
T. taxi,
T. martiale, T. theobromicola

Plant
Growth-Promoting
Rhizobacteria
(PGPR)

Bacteria Bacillus spp., Pseudomonas fluorescence,
Azospirillum sp., Azotobacter sp., Burkholderia sp.,
Enterobacter sp., Klebsiella sp.

Source Modified from Barman et al. (2017)
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Table 15.2 A comparative study of the different N2 fixers

N2 fixers Type Family Important species N2

fixed
(Kg
N/Ha)

Recommended
crops

Rhizobium Symbiotic Rhizobiaceae R. meliloti
R.
leguminosarium
R. ciceri
R. etli
R. tropici
R fredii

50–100 Pulse legumes
like chickpea,
red-gram, pea,
lentil, black
gram, etc.,
oil-seed
legumes like
soybean,
groundnut and
forage legumes
like berseem
and lucerne

Azotobacter Free living Azotobacteriaceae A. chroococcum,
A. vinelandii,
A. beijerinckii,
A. insignis
A.
macrocytogenes

20 Rice, wheat,
barley, oat,
sunflowers,
maize, line,
beetroot,
tobacco, tea,
coffee and
coconuts

Cyanobacteria
(BGA)

Symbiotic,
Free living and
Symbiotic-Associative

– Nostoc sp.,
Anabaena sp.,
Gloetrichia sp.,
Tolypothrix sp.,
Aulosira sp.,
Aphanotheca sp.

20–30 Submerged
rice, barley,
oats, tomato,
radish, cotton,
chilli,
sugarcane,
maize, lettuce

Azolla Symbiotic-Associative Salviniaceae A.caroliniana,
A. microphylla,
A. filiculoides
A. Mexicana

30–50 Submerged
rice with
maximum
temperature

Azospirillum Symbiotic-Associative Spirilaceae A.lipoferum,
A.brasilensehave
A.amazonense,
A.halopraeferens,
A.brasilense,
A. trakense

20–40 Maize,
sugarcane,
sorghum, pearl
millet

Source Compiled from Kumar et al. (2017) and Kumar et al. (2018)

15.3.1.2 Azotobacter

It is saccharophilic, aerobic, heterotrophic in nature and commonly an inhabitant
of the neutral to alkaline soils. The most common species found in arable soils
is A.chroococcum (Wani et al. 2013). It produces abundant slime helping in soil
aggregation. Azotobacter sp is a potential nitrogen fixer in rice crops (Sahoo et al.
2014). Besides fixing atmospheric nitrogen, this bacterium is known to produce
some antifungal substancewhich lessens the seedlingmortality (Subba Rao 2001), as
well as some growth-promoting substances (Mahdi et al. 2010), phytohormones like
indole acetic acid, gibberellin, cytokinin (El-Fattah et al. 2013) and group B vitamins
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like thiamine and riboflavin (Revillas et al. 2000), antibiotics, exo-polysaccharides
and pigments (Jimenez et al. 2011).

15.3.1.3 Cyanobacteria

Cyanobacteria or Blue-Green Algae (BGA) are photosynthetic prokaryotes found in
snow and hot springs. Besides fixing atmospheric nitrogen, they induce growth of
plants by producing auxins and gibberellins. It has been reported that the production
of rice increased from 15% to 38% with the supplementation of BGA inoculants
(Kumar et al. 2018). In India, free-living and symbiotic cyanobacteria have been
applied in the cultivation of rice (Thajuddin and Subramanian 2005).

15.3.1.4 Azolla-Anabaena Symbiosis

BGA fixes nitrogen by forming symbiotic association with different organisms like
fungi, ferns, flowering plants, etc. The most common association forms between
Azolla and Anabaena azollae—a blue-green alga. Azolla, a free-floating aquatic
fern, finds extensive use in the cultivation of rice as a substitute for synthetic nitrogen
fertilizers (Yao et al. 2018). Moreover, they have a role in maintaining the soil quality
by enhancing the fertility of the soil. It quickly decomposes in the soil (Kannaiyan
1990) and can also be supplied as a green manure before planting of rice saplings
(Mahdi et al. 2010). Other advantages include supplementation of significant amount
of elements like phosphorus, potassium, sulphur, zinc, iron, molybdenum and other
micronutrients. The most common species found in India is A. pinnata (Mahdi et al.
2010).

15.3.1.5 Azospirillum

It isGram-negative and heterotrophic in nature. Itmainly forms associative symbiosis
with plants which use the C4-dicarboxylic acid pathway or Hatch and Slack pathway
for photosynthesis as it grows and fixes nitrogen on salts of malic acid and aspartic
acid (Mishra and Dash 2014; Arun 2007). These are non-nodule forming and not
only colonize around the roots of the host plants but also reside inside the root tissues
(Mahdi et al. 2010; Verma et al. 2016a, b, 2015; Yadav et al. 2016). Currently, it is
used as a pre-sowing seed treatment (Kumar et al. 2018). Mostly, A. lipoferum and
A. brasilense have proved to be the successful inoculants worldwide. These are also
noted for phytohormones and/or siderophores production and phosphate solubiliza-
tion (Puente et al. 2004). Other advantages with Azospirillium sp inoculation include
disease resistance, biocontrol activity (Bashan and De-bashan 2010) and unwanted
stress (drought, salinity, toxic compounds) tolerance (Creus et al. 1997).
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15.3.2 Phosphate Solubilizing Microorganisms

The plants are unable to utilize the inorganic form of phosphorus present in the soil
as they are only capable of absorbing its two soluble forms—monobasic and dibasic.
Regular usage of phosphate fertilizers is disadvantageous to the environment, and
often it is too expensive for the farmers of the developing nations. The phosphate
solubilizing microorganisms (PSMs) consist of different bacteria and fungi which
are capable of fulfilling about 20–25% phosphorus necessity of the plants which also
helps to lessen the manufacturing costs of phosphate fertilizers (Chang and Yang
2009; Verma et al. 2017b, 2015, 2018c). Phosphate solubilizing bacteria (PSBs)
make up to about 1–50%, while phosphate solubilizing fungi (PSFs) are only 0.1–
0.5% among the P-solubilizers (Chen et al. 2006). Recently, actinomycetes are also
being experimented upon as potential phosphate solubilizing organisms as they can
tolerate extreme environments like drought, antibiotics and phytohormones. Ham-
dali et al. 2008 had stated that approximately 20% of actinomycetes can solubilize
phosphorus. These PSMs employ different mechanisms for phosphate solubilization
like chelation, lowering of soil pH, mineralization, etc.

15.3.2.1 Phosphate Solubilizing Bacteria

Phosphate solubilizing bacteria consist of both aerobic and anaerobic strains.Bacillus
megaterium is a Gram positive, rod, also known as “Phosphobacterium”, has been
reported to increase inorganic phosphorus (P) solubilization (Lach et al. 1990) as
well as zinc, potassium, iron and manganese solubilizing potential (Amalraj et al.
2012). It helps the plants to avail the phosphorus up to the extent of 10–15 kg/ha and
also causes proliferation of roots by releasing growth-promoting hormones. A novel
strain, Micrococcus sp NII-0909 has been found to exhibit phosphate solubilizing
capability as well as siderophores production (Dastager et al. 2010).

15.3.2.2 Phosphate Solubilizing Fungi

The important phosphate solubilizing fungi include Aspergillus sp and Pencillium
sp. It has been reported that Aspergillus niger improved the quantity of dry biomass
of chickpea plants by 22–33% with respect to the non-inoculated control (Kapri and
Tewari 2010). Apart from these species, symbiotic nitrogenous rhizobia (Khan et al.
2009) and nematofungus Arthrobotrys oligospora (Khan et al. 2009; Thakur et al.
2014) have also shown phosphate solubilizing activity.
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15.3.3 Phosphate Mobilizing Biofertilizers

These are microorganisms which scavenge phosphorus from a phosphorus enriched
environment and channelize it to the plants. They can even solubilize organic phos-
phorus with the help of hyphal enzymes like phosphatase (Ezawa et al. 1995). Arbus-
cular mycorrhizal fungi (AMF) are significant contributors of phosphate mobiliza-
tion. The potential of these fungi can be fully realized when the soil is deficient
in phosphorus (Ghorbanian et al. 2012). This group of fungi remains symbiotically
associated with the root of the plants in the rhizosphere and enhance phosphorus
uptake by the extensive external fine absorbing hyphae that can exploit a larger soil
volume (Jakobsen et al. 1992). These in turn receives the carbon requirements from
the host plants. Studies by Yao et al. (2001), reveal that the AMF not only mobi-
lize soil phosphates when its availability is low but also provide a greater surface
area which permits increased contact with the phosphates with respect to the non-
mycorrhizal root systems. The supply of phosphorus to the host plants depends upon
the amounts of external mycelium produced by the fungi. Transfer of nutrients from
the fungus to the plant mostly occurs at the arbuscular interface (Karandashov et al.
2004). The kinetics of nutrient uptake by the mycorrhizal roots are quite different
from that of the non-mycorrhizal ones (Cress et al. 1979). Colonization of the roots
by AMF thus helps in enhanced growth of the plants in low fertility soils or in
soils with uneven distribution of nutrients. The PMBs are generally considered as
broad-spectrum fertilizers (Itelima et al. 2018).

15.3.4 Potassium-Solubilizing Microorganisms

Only 1–2% potassium is available for uptake by the plants, though soil contains
sufficient quantity of it. It is one of the fundamental elements for the plants and
occurs primarily as silicate minerals in the soil which are inaccessible to plants. The
microorganisms solubilize the silicates with the help of organic acids thus making
them readily available to plants (Itelima et al. 2018). Different bacteria, fungi and
actinomycetes have been reported for solubilizing soil potassium. Bacteria solubilize
potassium by producing various organic and inorganic acids, acidolysis, chelation
and exchange reactions (Archana et al. 2013; Meena et al. 2015; Verma et al. 2017a,
b).

15.3.5 Potassium Mobilizing Biofertilizers

Anexample of potassiummobilizing biofertilizers (KMB) isBacillus spwhichmobi-
lizes inaccessible forms of potassium in the soil and makes them accessible to the
plants. Some established phosphate solubilizers like Bacillus sp and Aspergillus sp
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are known to mobilize potassium as well, along with solubilizing phosphate (Itelima
et al. 2018). These microbes thus perform dual function.

15.3.6 Plant Growth-Promoting Rhizobacteria

These microorganisms reside in the rhizospheric soil and exhibit beneficial effects
on crop productivity. They help to maintain the plant health and development in a
holistic way. Directly they aid in the uptake of macro- and micronutrients as well as
by modulating the levels of different phytohormones. Indirectly, they improve plant
health by eliminating the harmful effects of plant pathogens (Kumar et al. 2018;
Yadav et al. 2018a, b) (Fig. 15.3). Plant growth-promoting rhizobacteria (PGPR) not
only promotes plant growth but also enhances the yield through different mecha-
nisms. Several research works in the past as well as in the present have been devoted
to the better understanding of the diverse nature, dynamics, significance and role of
these PGPR in agriculture. Using PGPR species as biofertilizers has some definite
economic and ecological advantages; still their administration should be carefully
monitored as theybehave as opportunistic pathogens in nosocomial infections (Tomar
et al. 2016) (Table 15.3).

FUNCTIONS 

OF

PGPRs

DIRECT FUNCTIONS

Mobilization of Nutrients
• N2 Fixation
• P Solubilization

Synthesis of Compounds 
• Phytohormones 
• Siderophores 

INDIRECT FUNCTIONS

Stress Resistance

Biocontrol 

Fig. 15.3 Schematic representation of different functions of PGPRs



456 M. Misra et al.

Table 15.3 Commercial biofertilizer products of plant growth-promoting rhizobacteria

Product Company Bacterial strains

Cell-Tech® Novozymes rhizobia

Nitragin Gold® Novozymes rhizobia

TagTeam® Novozymes rhizobia + Penicillium bilaii

Accomplish® Loveland Products, Inc. PGPR + enzymes + organic
acids + chelators

Nodulator® BASF Canada Inc. Bradyrhizobium japonicum

Nodulator® N/T BASF Canada Inc. Bacillus subtilis MBI 600 +
Bradyrhizobium
japonicum

Nodulator® PRO BASF Canada Inc. Bacillus subtilis +
Bradyrhizobium japonicum

Nodulator® XL BASF Canada Inc. Rhizobium leguminosarum
biovar viceae 1435

Bioboots® Brett-Young Seeds Delftia acidovorans

Bioboots® (soybean) Brett-Young Seeds Delftia acidovorans +
Bradyrhizobium sp.

EVL coating® EVL Inc. PGPR consortia

Nitrofix® Labiofam S. A. Azospirillum sp.

Bioativo® Instituto de Fosfato Biológico
(IFB) Ltda.

PGPR consortia

VitaSoil® Symborg PGPR consortia

Azotobacterin® JSC “Industrial Innovations” Azospirillum brasilense B-4485

Mamezo®) Tokachi Federation of
Agricultural Cooperatives
(TFAC)

rhizobia (in peat)

R-Processing Seeds® Tokachi Federation of
Agricultural Cooperatives
(TFAC)

rhizobia (coated legume seeds)

Hyper Coating Seeds ® Tokachi Federation of
Agricultural Cooperatives
(TFAC)

rhizobia (coated grass legume
seeds)

Life® Biomax PGPR consortia

Biomix® Biomax PGPR consortia

Biodine® Biomax PGPR consortia

Biozink® Biomax PGPR consortia

Source García-Fraile et al. (2015)
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15.3.7 Vesicular-Arbuscular Mycorrhizae

In agricultural soils, the fungi which are most commonly encountered are vesicular-
arbuscular mycorrhizae (VAM) which play a significant role in sustainable agricul-
ture. These are usually intracellular, endosymbiotic fungi belonging to the genera
Glomus, Gigaspora, and Sclerocysts (Kumar et al. 2017; Rana et al. 2019a, b). This
inoculant is generally recommended to different fruit plants, like banana, papaya,
pineapple, etc., and ornamental plants. Besides, VAM has also been reported to
decrease metal toxicity like aluminium. Their major roles are as follows:

• Helps in improved uptake of elements like potassium, zinc, iron, copper, etc.
• They secrete different organic acids which support enhanced availability of both
macro- and micronutrients by the plants.

• These fungi increase the conduction of water by the roots of the plants even when
the level of water is low in the soil (Bhattacharjee and Dey 2014).

• The mesh of hyphae helps in arresting the soil particles to form bigger aggregates
as well as better carbon uptake by the plants. They also maintain the soil quality
by synthesizing specific protein known as ‘Glomulin’ (Mahdi et al. 2010).

• Plants supplied with VAM exhibit elevated phytohormone (IAA, cytokinin)
synthesis, thus indirectly helping if plant growth and development.

• VAM-inoculation causes a significant rise in phenolic and phytoalexin activity
which renders the plant more resistance towards stress (Bhattacharjee and Dey
2014) (Fig. 15.4).

15.3.8 Endophytic Microorganisms

Thesemicroorganisms stimulate the development of non-leguminous crops and cause
their nutritional enrichment through nitrogen fixation, phosphate solubilization and
production of siderophore (Szilagyi-Zecchin et al. 2014) (Fig. 15.5). Besides they
are also involved in the production of phytostimulators (phytohormones), cofactor
pyrroloquinoline quinone (PQQ) and volatile acetoin (Tomar et al. 2016). They also
help in combating stress by secreting stressmodulators. Some species ofTrichoderma
make the plants resistant towards diseases and other abiotic stresses (Bae et al. 2009).
These endophytic organisms are known to avoid any sort of competition with their
rhizospheric counterparts (Yadav 2019; Yadav et al. 2017a, b, c; Yadav and Yadav
2019).

15.3.9 Sulphur Oxidizing Biofertilizers (SOBs)

These microorganisms oxidize sulphur to sulphates so that the plants can utilize it.
Thiobacillus sp is one of the sulphur oxidizing biofertilizers (Itelima et al. 2018).
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plants 

Fig. 15.4 Schematic representation of various functions of VAM

15.3.10 Zinc Solubilizing Microorganism

A wide array of microorganisms is there which help the host plants in the uptake
of various micronutrients like zinc, iron, copper, etc. More than half (50%) of the
Indian soils are deficient in zinc (Katyal and Rattan 1993). This is compensated by
adding soluble zinc sulphate (ZnSO4) from external sources of which only 1–4% is
utilized by the crop and the rest 75% gets converted to different mineral fractions, not
absorbed by the plants. Two mechanisms have been proposed for zinc fixation—one
is applicable in acidic soils and is related with cation exchange and other occurs by
chemisorptions of zinc on calcium carbonate with simultaneous complexation by
organic ligands under alkaline conditions (Kumar et al. 2018). Bacillus sp has been
conjugated with cheap, insoluble zinc compounds like zinc oxide, zinc carbonate
and zinc sulphide in place of costly zinc sulphate and successfully applied for zinc
solubilization (Mahdi et al. 2010; Yadav and Saxena 2018) (Kumar et al. 2019; Yadav
et al. 2019d).
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Fig. 15.5 Important functions of endophytic microorganisms

15.3.11 Siderophores Producers

Iron is quite abundantly available in nature; still its accessibility is limited. Iron is
accumulated in the form of oxides and oxyhydroxides which make it more difficult
for organisms to avail it. Microorganisms acquire Fe3+ by active transport through
siderophores. These siderophores are low molecular weight compounds secreted by
the microbes which act as iron scavengers. These compounds lessen plant stress
due to high concentrations of heavy metals in soil. Plants can assimilate iron from
bacterial siderophores by special mechanisms like ligand exchange, chelation or
direct acquirement of iron siderophore complexes (Colo et al. 2014).

15.3.12 Phytohormone Producing Microorganisms

Phytohormones are organic compounds which are in charge of the overall devel-
opment of the plant. They are synthesized in two ways—either endogenously by
plant tissues or exogenously by PGPRs. The microorganisms inhabiting the soil
and responsible for the production of phytohormones are Galactomyces sp., Pseu-
domonas sp., Azospirillum sp. and Bacillus sp. (Waqas et al. 2014; Lei and Ya-qing
2015; Rana et al. 2019c; Yadav et al. 2018a, b, c).
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Microbial auxins help in the elongation of root as well as increase in its surface
area, thus helping in better utilization of the soil resources. PGPR secreted auxins
play a crucial role in plant–microbe interactions and phytostimulation (Spaepen and
Vanderleyden 2011). Themost common funguswhich synthesizes almost 20 types of
gibberellins is Gibberella fujikuroi. Recent studies by Ullah and his coworkers con-
firmed that Photorhabdus temperate—an entomopathogenic bacterium can produce
unlike forms of gibberellic acid (Ullah et al. 2014). Another important plant hormone
which helps in cellular differentiation, auxillary bud development, etc., is cytokinin
and its most common microbial sources are Azotobacter chroococcum, Azotobac-
ter beijerinckii, Paenibacillus polymyxa, Pseudomonas putida and Pseudomonas
fluorescens (Kudoyarova et al. 2014; Arkhipova et al. 2007).

ACC-deaminase, the enzyme responsible for maintaining the ethylene levels in
plants can also be synthesized by the PGPRs. It has been found to make the plants
more tolerant towards high concentration of salts (Zahir et al. 2008, 2009) and provide
resistance against radiation, poly-aromatic hydrocarbons, insect predation, wound-
ing, etc. (Glick 2012). Rhizobacterial inoculants, synthesizing the hormone, induce
plant shoot growth, root elongation, increase in nodulations in Rhizobium and pro-
mote mycorrhizal colonization (Glick 2012). Several rhizobacteria, like Acineto-
bacter sp., Azospirillum sp., Agrobacterium sp., Achromobacte sp., Ralstonia sp.,
Enterobacter sp., Bacillus sp., Rhizobium sp., Serratia sp., Pseudomonas sp., etc.,
have been reported for ACC-deaminase activity (Kang et al. 2010). Recently, Pseu-
domonas stutzeri A1501 capable of synthesizing ACC-deaminase has been reported
to assist the cultivation of rice in the presence of salts and heavy metals (Han et al.
2015).

15.4 Production, Storage and Quality Control
of Biofertilizers

Several parameters should be kept in mind during the production of biofertilizers,
such as growth summary of the microbe(s) used, their types, optimum conditions of
the microorganism(s), formulation of inoculums, etc. The formulation of inoculum
method of administration and maintenance of the products plays an important role in
the overall success of biofertilizer production. Biofertilizers can be amended with a
carrier molecule (solid biofertilizer) or it can be produced in the form of liquid inocu-
lants (liquid biofertilizers), both having their advantages and demerits. According to
Somasegaran and Springer (1994), few things should be kept in mind while choosing
the carrier molecule like

• It must be cheap and readily available when required
• The material should be such that bacterial nutrients can be added easily
• It should support easy sterilization by autoclaving or gamma irradiation
• Can be processed easily and there should not be any lump forming substances
• It should be non-toxic to the microorganisms and the plants,
• Moisture absorption capacity should be high for the material to be a good carrier.
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• Water retention capacity of 50% or above should be preferable.
• It must stick to the seeds properly.
• The pH buffering capacity must be high.
• High organic matter content in the material is usually preferred.

The solid biofertilizers are associated with carriers to enhance the effectiveness
and water ration capacity. Integration of microorganisms into carrier materials helps
in easy handling as well as long term storage (Khosro and Yousef 2012). These are
cost effective and easy to produce. Common carrier molecules used are saw dust,
talcum dust, clay, peat, vermiculite, bentonite, diatomaceous earth, manure, rice or
wheat bran, zeolite, rock phosphate pellets, charcoal, compost, etc. Though it is dif-
ficult to find a substance having all the characteristics of a suitable carrier, researches
are still going on to develop one satisfying most of the criteria. Polymer-based carri-
ers are close to the suitable ones. Usually, these are alginate beads, which immobilize
the bacteria in their matrix, gradually releasing them in the soil environment after
application. Azospirillum brasilense (> 1011 cfu/g inoculant) has been successfully
encapsulated using alginate beads with a diameter in the micro range (100–200 µm)
and this biofertilizer enhanced the production of wheat and tomato (Bashan et al.
2002).

In India, mostly carrier-based biofertilizers are manufactured and the microor-
ganisms used usually have a shelf life of only 6 months (Rana et al. 2013). They
are susceptible to UV and not thermostable beyond 30°C. At the time of production,
the microbial density is only 108 cfu/ml, which reduces with time and the count is
practically negligible at the end. This is one of the main reasons these biofertilizers
could not be of much use and failed to draw the farmers, while another problem is
that these are prone to contamination.

To overcome these problems, liquid biofertilizers were developed and marketed,
which is quite a breakthrough in the history of biofertilizer production and truly a
novel, innovative approach. These are specific microbial formulation supplied with
certain additional chemicals or special cell protectants that stimulate the formation
of resting spores or cysts for better shelf life and tolerance towards different abiotic
stress. Some of the commonly used cell protectants are glycerol, molasses and sugars
like glucose, maltose, sucrose, trehalose, etc. (Brar et al. 2012).

The microbes used in the preparation of liquid biofertilizers usually have a shelf
life of 2 years. They are thermostable (can tolerate temperature as high as 55 °C),
tolerant to UV radiations and contamination free. The count is around 109 cfu/ml,
which remain constant up to 24 months. So, application of 1 ml of liquid biofertilizer
is equivalent to that of 1 kg of 5 months old carrier-based counterparts (1000 times)
(Mahdi et al. 2010). These are easy to handle and apply in the fields by the farmers.
They are applied in various ways. Using hand sprayers, power sprayers or fertigation
tanks are quite common. It can also be used basal manure and mixed along with farm
yard manure. However, these biofertilizers are costly which hinders its widespread
usage (Mahdi et al. 2010).

These bacterial products can be stored in water-in-oil emulsions. They are gener-
ally administered to the crops through irrigation systems (VanderGheynst et al. 2006).
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The packets of formulated biofertilizers should provide certain pertinent informa-
tion for the marketing of the products. They are (i) product name, (ii) the particular
microorganism or consortia used in its formulation, (iii) specific crops to which it is
applicable and is appropriate, (iv) the manufacture and expiry dates and (v) relevant
instructions and directions for its administration.

Quality control of the entire production process is extremely important. Quality
of the bioproduct determines the success and its acceptance by the farmers. The key
steps in the production process that require quality control are (i) the fermentation,
(ii) preparation of carrier, (iii) preparing a mixture of bacterial broth and the carrier,
(iv) packaging and (v) storage. The carrier must be sterilized and aseptic conditions
should be maintained at each step to avoid any contamination. Finally, the product
should be stored specific temperature and humidity to ensure the viability of the
microorganism during the expected lifespan of the biofertilizer. The final product
should be checked for several parameters at different environments to explore its
efficiency and limitations in order to guarantee its quality (Fig. 15.6).

15.5 Application of Biofertilizers

The application of solid and liquid biofertilizers in the field is different and is based
on their formulations. In ideal situations, the farmer should be able to apply it with his
own setup, such that no additional infrastructure is required. Liquid formulations can
be applied to the soil using irrigation systems or with the help of different sprayers.
For peach orchards and plants, like citrus, mango, vines, guava, apple, etc., spraying
is usually recommended. Spreader centrifuges can be used to spread powdered or
encapsulated products over the fields. In other cases, the seeds may be coated with
the inoculants. The solid ones may be applied and mentioned below.

15.5.1 Seed Treatment

It is the most extensively used method. For every 5 kg of seeds, 100 gm fertilizer is
applied. The amount of seed to be sown in a field is the determining factor behind
the quantity of fertilizer required to apply per acre of agricultural land. A mixture
of the biofertilizer and water in the ratio of 1:2 is prepared to form slurry which is
poured in the container along with the seeds before its application. The combination
is subjected to a gentle mixing using an adhesive like gum acacia, jaggery solution,
etc. such that the seeds are uniformly coatedwith the biofertilizer (Kumar et al. 2017).
The seeds are then spread on a clean sheet or cloth, dried under the shade for about
30 min to avoid direct sunlight and then sown immediately. For crops like pulses,
oilseeds and fodder this method is usually suggested (García-Fraile et al. 2015).
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Fig. 15.6 Production of solid biofertilizers
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15.5.2 Seedling Root Dip

A diluted formulation of about 1 part of biofertilizer in 10 parts of water is required
for this type of treatment. This method is generally recommended for transplanted
crops. For rice, a bed is made in the field and filled with water mixed with the specific
biofertilizers. The roots of seedlings are dipped into this solution for 8–10 h and then
transplanted. Thismethod is suggested for cropswhich are replanted at seedling stage
like paddy, tomato, potato, cabbage, onion, brinjal, chilly, etc. It can also be applied
for treating ornamental plants like rose, jasmine, dahlia, marigold, chrysanthemum
and many more (García-Fraile et al. 2015).

15.5.3 Soil or Main Field Treatment

The recommended biofertilizers (4 packets) are mixed with specific quantity of com-
post or dried, powdered manure from the farmyard (20 kg) and kept overnight. This
mixture is then applied in the soil at the time of sowing of seeds or just before
transplanting (Rana et al. 2013).

15.5.4 Set Treatment

For this type of treatment, biofertilizer and water are mixed in the ratio of 1:50.
The explants are dipped into the solution containing the biofertilizer for 30 min
with subsequent drying under the shade and planting in the field. This technique is
generally applicable for crops like sugarcane, banana, grapes and strawberries (Rana
et al. 2013). In amore direct approach, the biofertilizer is usuallymixedwith different
carriers, like soil, compost, manure, rice husks, etc., in the ratio of 1:25 (1 kg per
25 kg of carrier) and applied in the soil.

15.6 Precautions in Using Biofertilizers

One should be cautious of the following factors while applying biofertilizers (Itelima
et al. 2018).

• It should be never mixed with nitrogen fertilizers.
• Biofertilizers should not be administered along with any fungicides.
• The seeds soaked in liquid formulations, if required may be dried under the shade.
Exposure of the biofertilizer to direct sunlight must be avoided.

• The optimum temperature for storing the biofertilizers is generally room temper-
ature.
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15.7 Constraints Regarding Utilization of Different
Biofertilizers

Though the biofertilizer technology is a low cost, eco-friendly one, there are several
restraints that have limited the widespread application or implementation of this
technology. The restrictions may be:

15.7.1 Production Constraints

Though there is demand of biofertilizers over the conventional synthetic ones,
the progress in the field of biofertilizer production is quite limited because of the
following reasons:

Unavailability of appropriate and efficient strains—The biofertilizers are crop as
well as soil specific in nature but the availability of region-specific strains is often a
problem (Itelima et al. 2018).

Unavailability of suitable carrier—The search for a proper carrier molecule for the
solid biofertilizers is still on which will maintain the microbe throughout its shelf
life. Peat is a good option but in India poor quality peat is available which is low in
carbon content (Kumar et al. 2017).

Unavailability of infrastructure—the lack of proper set-up, equipments, etc. limits
its production.

Mutation during fermentation—Biofertilizers comprises microbes which are very
much prone to mutation during the process of fermentation, which ultimately
increases the production cost as well as makes it difficult for quality control.

15.7.2 Market Level Constraints

One of the important problems that hinder the use of these biofertilizers is lack of
proper marketing strategies, retail outlets or commercial network for the producers
(Mahdi et al. 2010).

Lack of awareness of farmers—Inspite of the considerable efforts in recent years
to raise awareness regarding the use of biofertilizers, most of the farmers are not well
versed in their application. They are not properly instructed about the benefits and
often they are skeptical to accept any new development. The farmers are often seen
using the chemical ones knowing very well about their hazardous effects.

Lack of quality assurance—corruption in marketing sector leads to the sale of
inferior quality biofertilizers which results in loss of faith among farmers.
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Seasonal and unassured demand—less demand of these fertilizers with simul-
taneous cropping operations has led to their occasional production which is not a
continuous one.

15.7.3 Resource Constraint

Limited resource generation for biofertilizer production—it is a low investment
industry and the private sectors dealing with this rely on demand based productions
as the shelf life of these bioproducts is short. Sufficient funds are not available for a
steady production.

15.7.4 Field Level Constraints

Soil and climatic factors—extreme environmental conditions like unfavorable pH,
high temperature, drought, high nitrate level, and deficiency of important elements
like phosphorus, copper, cobalt, molybdenum or presence of toxic compounds in
the soil affect the growth of the microbes and crop response (Bhattacharjee and Dey
2014).

Native microbial population—Antagonistic microorganism already residing in soil
may be dominating in nature and they may restrict the effective establishment of the
microbial inoculants by outcompeting them (Mahdi et al. 2010).

15.8 Rejuvenation Strategies for Biofertilizers

The following strategies can be used for invigorating the sustainable agricultural
practices:

• Identification and selection of suitable locations, crops, soil and specific strains
for nitrogen and phosphorus fixation and zinc solubilization for different climatic
conditions.

• Application of biotechnological methods for strain improvement
• Observing the activity of the different microbial cultures during storage to
circumvent natural mutants.

• Development of suitable substitute formulations like liquid inoculants or granu-
lar formulations for all bio-inoculants, standardization of the media preparation,
inoculation technique etc., for the new formulations.

• Employing experts like microbiologists in production units to supervise the
production of the biofertilizers.

• Development of cold storage facilities in production units.
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• Providing technical guidance on the production of biofertilizers as well as quality
control of the products and rendering advice and projects to manufacturers.

• Providing organizational training to the extension workers and farmers for the
widespread acceptance of the technology.

• Circulating information through mass media, publications and bulletins to make
the users and consumers aware of these bioproducts (Gupta 2004).

15.9 Tripartite Relationship Among Different Biofertilizers

Knowledge regarding the synchronized administration of phosphate solubilizers and
diazotrophs to the plants in presence of AMF is inadequate and there lies the scope of
further research. However, it is seen that when there is dearth of both the essential ele-
ments—phosphorous and nitrogen,AMFaid in assimilating phosphates, thus helping
in the growth of the plants. Elevated phosphorous content supports the diazotrophs in
plants which further boosts up the nitrogenase activity. This helps in improving the
rate of nitrogen fixation, which ultimately assists in the growth of roots and devel-
opment of mycorrhiza. This is the exquisiteness of intergeneric interaction which
makes further research all the more interesting.

15.10 Conclusion and Future Prospects

With the ever-growing population, there seems no end to the demand for food but
with the availability of the chemical fertilizers, it was thought that the problem could
be tackled. But the abundance in crop productivity came with a huge price, as in due
course of time, these compounds started to affect our ecosystem in a negativeway. On
one hand, when one could be rest assured that the availability of food is ensured but
at the same time, alleviation of the hazardous effects of the chemical fertilizers from
the environment surfaced as a huge concern. These problems necessitated the search
for safer alternatives. Amidst all these confusion, biofertilizers were developed and
these seemed to be a viable option to put an end to the problem. They are able to
enhance the productivity of crops without harming the environment thus playing
a significant role in sustainable agriculture. Moreover, these compounds have the
potential to minimize the ecological damages, to some extent, that have already been
caused by the excessive use of the chemical fertilizers. Even if they cannot fully
compensate for the chemical fertilizers, they can still be used as a supplement with
the synthetic ones. This will help to reduce the total amount of chemical fertilizers to
be used. Thus, the biofertilizer industry, in spite of having some limitations, does not
fail to garner interest among recent researchers. Human population is getting more
aware of the benefits of these biofertilizers with the passage of time and people all
over the world are interested in consuming food grown with organic fertilizers rather
than crops grown with chemical fertilizers.



468 M. Misra et al.

References

Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use
efficiency. Appl Microbiol Biotechnol 85:1–12

Aggani SL (2013) Development of bio-fertilizers and its future perspective. Sch Acad J Pharm
4:327–332

Amalraj ELD, Maiyappan S, Peter AJ (2012) In vivo and in vitro studies of Bacillus megaterium
var. phosphaticum on nutrient mobilization, antagonism and plant growth promoting traits. J
Ecobiotechnol 1:35–42

Archana D, NandishM, Savalagi V, Alagawadi A (2013) Characterization of potassium solubilizing
bacteria (KSB) from rhizosphere soil. Bioinfolet—A Quarterly J Life Sci 10:248–257

Arkhipova TN, Prinsen E, Veselov SU (2007) Cytokinin producing bacteria enhance plant growth
in drying soil. Plant Soil 292:305–315

Arun KS (2007) Bio-fertilizers for sustainable agriculture. Sixth edition, Agribios publishers, India,
Mechanism of P-solubilization

Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL, Bailey BA (2009) The beneficial
endophyte Trichoderma hamatum isolate DS 219b promotes growth and delays the onset of the
drought response in Theobroma cacao. J Exp Bot 60:3279–3295

Barman M, Paul S, Choudhury AG, Roy P, Sen J (2017) Biofertilizer as Prospective Input for
Sustainable Agriculture in India. Int J Curr Microbiol App Sci 11:1177–1186

BashanY, de-Bashan LE (2010) How the plant growth-promoting bacteriumAzospirillum promotes
plant growth. A Critical Assess. Adv Agron 108:77–136

Bashan Y, Hernandez JP, Leyva LA (2002) Alginate microbeads as inoculant carriers for plant
growth-promoting bacteria. Biol Fert Soils 35:359–368

Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in
sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb
Cell Fact 13:66–76

Bhattacharjee R, Dey U (2014) Bio-fertilizer: a way towards organic agriculture: a review. Afr J
Microbiol Res 8:2332–2342

Brar SK, Sarma SJ, Chaabouni E (2012) Shelf-life of Biofertilizers: an accord between formulations
and genetics. J Biofertil Biopestici 3:5–6

Chang CH, Yang SS (2009) Thermo-tolerant phosphate-solubilizing microbes for multi-functional
biofertilizer preparation. Bioresour Technol 100:1648–1658

ChenYP, Rekha PD,ArunshenAB, LaiWA,YoungCC (2006) Phosphate solubilizing bacteria from
subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

Choudhury MA, Kennedy IR (2004) Prospect and potentials for system of biological nitrogen
fixation in sustainable rice production. Biol Fert Soils 39:219–227

Colo J, HajnaL-Jafari TI, Duric S (2014) Plant growth promotion rhizobacteria in onion production.
Pol J Microbiol 6:83–88

CressWA, Throneberry GO, Lindsey DL (1979) Kinetics of phosphorus absorption by mycorrhizal
and nonmycorrhizal tomato roots. Plant Physiol 64:484–487

Creus C, Sueldo R, Barassi C (1997) Shoot growth and water status in Azospirillum inoculated
wheat seedlings grown under osmotic and salt stresses. Plant Physiol Biochem 35:939–944

Dastager SG, Deepa CK, Pandey A (2010) Isolation and characterization of novel plant growth
promoting Micrococcus sp NII-0909 and its interaction with cowpea. Plant Physiol Biochem
48:987–992

Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High
incidence of plant growth stimulating bacteria associated with the rhizosphere of wheat grown
on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

El-Fattah DAA, Eweda WE, Zayed MS, Hassanein MK (2013) Effect of carrier materials, ster-
ilization method, and storage temperature on survival and biological activities of Azotobacter
chroococcum inoculant. Ann Agric Sci 58:111–118



15 Current Aspects and Applications of Biofertilizers for Sustainable Agriculture 469

Ezawa T, Saito M, Yoshida T (1995) Comparison of phosphatase localization in the intraradical
hyphae of arbuscular mycorrhizal fungi, Glomus spp. and Gigaspora spp. Plant Soil 176:57–63

García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and
forestry. Bioengineering 2:183–205

Ghorbanian D, Harutyunyan S, Mazaheri D, Rasoli V, Moheb IA (2012) Influence of Arbuscu-
lar mycorrhizal fungi and different levels of phosphorus on the growth of corn in water stress
conditions. Afr J Agric Res 7:2575–2580

Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 12:1–
15

Gothwal RK, NigamVK,MohanMK, Sasmal D, Ghosh P (2007) Screening of nitrogen fixers from
rhizospheric bacterial isolates associated with important desert plants. Appl Ecol Environ Res
6:101–109

Gupta AK (2004) The complete technology book on biofertilizers and organic farming. National
Institute of Industrial Research Publishing, India

Hamdali H, Bouizgarne B, HafidI M, LebrihI A, Virolle MJ, Ouhdouch Y (2008) Screening for
rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Appl Soil Ecol
38:12–19

Han Y, Wang R, Yang Z (2015) 1-Aminocyclopropane-1-Carboxylate Deaminase from Pseu-
domonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals. J
Microbiol Biotechnol 25:1119–1128

Itelima JU, Bang WJ, Onyimba IA (2018) A review: biofertilizer; a key player in enhancing soil
fertility and crop productivity. J Microbiol Biotechnol Rep 2:22–28

Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal
fungi associated with Trifolium subterrraneum L. I. Spread of hyphae and phosphorus inflow into
roots. New Phytol 120:371–380

Jehangir IA, Mir MA, Bhat MA, Ahangar MA (2017) Biofertilizers an approach to sustainability
in agriculture: a review. Int J Pure App Biosci 5:327–334

Jiménez DJ, Montaña JS, Martínez MM (2011) Characterization of free nitrogen fixing bacteria of
the genusAzotobacter in organic vegetable-grownColombian soils. Braz JMicrobiol 42:846–858

Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to
control stress responses of plant roots. Plant Biotechnol Rep 4:179–183

Kannaiyan S (1990) Blue green algal biofertilizers. In: Kannaiyan S (ed) The biotechnology of
biofertilizers for rice crops. Narosa Publishing House, New Delhi, India, p 212

KapriA,Tewari L (2010) Phosphate solubilization potential and phosphatase activity of rhizospheric
Trichoderma spp. Braz J Microbiol 41:787–879

Karandashov V, Nagy R, Wegmuller S, Amrhein N, Bucher M (2004) Evolutionary conservation
of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA
101:6285–6290

Katyal JC, Rattan RK (1993) Distribution of zinc in Indian soils. Fertilizer News 38:15–26
Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria:
occurrence, mechanisms and their role in crop production. ARPN J Agric Biol Sci 1:48–58

KhosroM,Yousef S (2012)Bacterial bio-fertilizers for sustainable crop production: a review.ARPN
J Agric Biol Sci 7:307–316

Knobeloch L, Salna B, HoganA, Postle J, AndersonH (2000) Blue babies and nitrate- contaminated
well water. Environ Health Perspect 108:675–678

Kudoyarova GR, Melentiev AI, Martynenko EV (2014) Cytokinin producing bacteria stimulate
amino acid deposition by wheat roots. Plant Physiol Biochem 83:285–291

Kumar M, Kour D, Yadav AN, Saxena R, Rai PK, Jyoti A, Tomar RS (2019) Biodiversity of
methylotrophic microbial communities and their potential role in mitigation of abiotic stresses
in plants. Biologia 74:287–308. https://doi.org/10.2478/s11756-019-00190-6

Kumar R, Kumawat N, Sahu YK (2017) Role of biofertilizers in agriculture. Pop Kheti 5:63–66
Kumar SM, Reddy GC, Phogat M, Korav S (2018) Role of bio-fertilizers towards sustainable
agricultural development: a review. J Pharmacogn Phytochem 7:1915–1921

https://doi.org/10.2478/s11756-019-00190-6


470 M. Misra et al.

Lach DA, Sharma VK, Vary PS (1990) Isolation and characterization of a unique division mutant
of Bacillus megaterium. J Gen Microbiol 136:545–553

Lei Z, Ya-qing Z (2015) Effects of phosphate solubilization and phytohormone production of
Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. J Integr Agric
14:1588–1597

Mahdi SS, Hassan GI, Samoon SA, Rather HA, Dar SA, Zehra B (2010) Bio fertilizers in organic
agriculture. J Phytol 2:42–54

Mazid M, Khan TA, Mohammad F (2011) Potential of NO and H2O2 as signaling molecules in
tolerance to abiotic stress in plants. J Ind Res Tech 1:56–68

Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015) Potassium
solubilizing rhizobacteria (KSR): Isolation, identification, and K-release dynamics from waste
mica. Ecol Eng 81:340–347

Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of
plant beneficial plant pathogenic and human pathogenic microorganisms. FEMS Microbiol Rev
37:634–663

Mishra P, Dash D (2014) Rejuvenation of biofertilizer for sustainable agriculture and economic
development. Consilience: J Sustain Dev 11:41–61

Puente M, Li C, Bashan Y (2004) Microbial populations and activities in the rhizoplane of rock-
weathering desert plants. II. Growth promotion of cactus seedlings. Plant Biol 6:643–650

Raja N (2013) Biopesticides and Biofertilizers: Ecofriendly sources for sustainable agriculture. J
Biofertil Biopestici 4:1–2

Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, Rastegari AA, Singh K, Saxena AK
(2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applica-
tions. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent Advancement in White Biotech-
nology through Fungi, vol 1. Diversity and Enzymes Perspectives. Springer, Switzerland, pp
1–62

Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena
AK (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological
applications. In: Singh BP (ed) advances in endophytic fungal research: present status and future
challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-
3-030-03589-1_6

Rana KL, Kour D, Yadav AN (2019b) Endophytic microbiomes: biodiversity, ecological signifi-
cance and biotechnological applications. Res J Biotechnol 14:142–162

Rana R, Ramesh KP (2013) Biofertilizers and their role in agriculture. Pop Kheti 1:56–61
Revillas JJ, Rodelas B, Pozo C, Martinez-Toledo MV, Gonzalez LJ (2000) Production of B-Group
vitamins by two Azotobacter strains with phenolic compounds as sole carbon source under
diazotrophic and adiazotrophic conditions. J Appl Microbiol 89:486–493

SahooRK,AnsariMW,PradhanM,Dangar TK,Mohanty S, TutejaN (2014) Phenotypic andmolec-
ular characterisation of native Azospirillum strains from rice fields to improve crop productivity.
Protoplasma 251:943–953

Santos VB, Araújo ASF, Leite LFC, Nunes LAPL, Melo WJ (2012) Soil microbial biomass
and organic matter fractions during transition from conventional to organic farming systems.
Geoderma 170:227–231

Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for
sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

Sinha RK, Valani D, Chauhan K, Agarwal S (2010) Embarking on a second green revolution for
sustainable agriculture by vermiculture biotechnology using earthworms: Reviving the dreams
of Sir Charles Darwin. J Agric Biotech Sustain Dev 7:113–118

SomasegaranP, SpringerH (1994)Carriermaterials used in bio-fertilizermaking.Nature publisher’s
2:6

Spaepen S,Vanderleyden J (2011)Auxin and plant-microbe interactions. Cold SpringHarb Perspect
Biol 3:1–13

https://doi.org/10.1007/978-3-030-03589-1_6


15 Current Aspects and Applications of Biofertilizers for Sustainable Agriculture 471

SubbaRoaNS (2001)An appraisal of biofertilizers in India. In:Kannaiyan S (ed) The biotechnology
of biofertilizers for rice crops. Narosa Publishing House, New Delhi, India, pp 1–5

Szilagyi-Zecchin VJ, Ikeda AC, Hungria M, Adamoski D, Kava-Cordeiro V, Glienke C, Galli-
Terasawa LV (2014) Identification and characterization of endophytic bacteria from corn (Zea
mays L.) roots with biotechnological potential in agriculture. AMB Express 4:1–9

Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in
biotechnology. Curr Sci 89:47–57

Thakur D, Kaushal R, Shyam V (2014) Phosphate solubilising microorganisms: role in phosphorus
nutrition of crop plants a Review. Agric Rev 35:159–171

Tomer S, Suyal DC, Goel R (2016) Biofertilizers: A Timely Approach for Sustainable Agriculture.
In: ChoudharyDK,VarmaA, TutejaN (eds) Plant-microbe interaction: an approach to sustainable
agriculture. Springer Nature, Singapore, pp 375–395

Ullah I, Khan AR, Jung BK, Khan AL, Lee IJ, Shin JH (2014) Gibberellins synthesized by the
entomopathogenic bacterium, Photorhabdus temperataM1021 as one of the factors of rice plant
growth promotion. J Plant Interact 9:775–782

VanderGheynst JS, ScherH,GuoHY (2006)Design of formulations for improved biological control
agent viability and sequestration during storage. Ind Biotechnol 2:213–219

Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016a) Molecular diversity
and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum
aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol
56:44–58

Verma P, Yadav AN, KhannamKS,Mishra S, Kumar S, Saxena AK, Suman A (2016b) Appraisal of
diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular
zone of India. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2016.01.042

Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015) Assessment
of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with
wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899

VermaP,YadavAN,KhannamKS,SaxenaAK,SumanA(2017a)Potassium-SolubilizingMicrobes:
Diversity, Distribution, and Role in Plant Growth Promotion. In: Panpatte DG, Jhala YK, Vyas
RV, Shelat HN (eds) Microorganisms for Green Revolution: Volume 1: Microbes for Sustainable
Crop Production. Springer Singapore, Singapore, pp 125–149. https://doi.org/10.1007/978-981-
10-6241-4_7

Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017b) Beneficial Plant-Microbes Inter-
actions: Biodiversity of Microbes from Diverse Extreme Environments and Its Impact for
Crop Improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-Microbe Interactions in
Agro-Ecological Perspectives: Volume 2: Microbial Interactions and Agro-Ecological Impacts.
Springer Singapore, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586
Wani SA, Chand S, Ali T (2013) Potential Use of Azotobacter chroococcum in Crop Production:
An Overview. Curr Agric Res J 1:35–38

WaqasM,KhanAL,Kang SM,KimYH, Lee IJ (2014) Phytohormone producing fungal endophytes
and hardwood-derived biochar interact to ameliorate heavy metal stress in soybeans. Biol Fert
Soils 50:1155–1167

Yadav AN (2017a) Agriculturally important microbiomes: biodiversity and multifarious PGP
attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed
J Sci Tech Res 1:1–4

Yadav AN (2017b) Beneficial role of extremophilic microbes for plant health and soil fertility. J
Agric Sci 1:1–4

Yadav AN (2019) Endophytic fungi for plant growth promotion and adaptation under abiotic stress
conditions. Acta Sci Agric 3:91–93

Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan V, Dhaliwal HS, Saxena
AK (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for
sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57

https://doi.org/10.1016/j.sjbs.2016.01.042
https://doi.org/10.1007/978-981-10-6241-4_7
https://doi.org/10.1007/978-981-10-6593-4_22


472 M. Misra et al.

Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in Crops: Diversity,
distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop
Improvement through Microbial Biotechnology. Elsevier, USA, pp 305–332

Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology
through Fungi Volume 1: diversity and enzymes perspectives. Springer International Publishing,
Cham

Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting
psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol
54:142–150

YadavAN,SaxenaAK (2018)Biodiversity and biotechnological applications of halophilicmicrobes
for sustainable agriculture. J Appl Biol Biotechnol 6:48–55

Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK, Kaushik R, Saxena AK (2015) Haloar-
chaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep
5:12293

Yadav AN, Singh S, Mishra S, Gupta A (2019b) Recent advancement in white biotechnology
through Fungi. Volume 2: Perspective for Value-Added Products and Environments. Springer
International Publishing, Cham

YadavAN, Singh S,Mishra S, Gupta A (2019c) recent advancement inwhite biotechnology through
Fungi. Volume 3: Perspective for Sustainable Environments. Springer International Publishing,
Cham

Yadav AN, Verma P, Kour D, Rana KL, Kumar V, Singh B, Chauahan VS, Sugitha T, Saxena
AK, Dhaliwal HS (2017b) Plant microbiomes and its beneficial multifunctional plant growth
promoting attributes. Int J Environ Sci Nat Resour 3:1–8 https://doi.org/10.19080/ijesnr.2017.03.
555601

Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP, Saxena AK, Dhaliwal HS (2018b)
Actinobacteria from Rhizosphere: Molecular Diversity, Distributions and Potential Biotechno-
logical Applications. In: Singh B, Gupta V, Passari A (eds) New and Future Developments in
Microbial Biotechnology and Bioengineering. USA, pp 13–41. https://doi.org/10.1016/b978-0-
444-63994-3.00002-3

Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK (2018c) Psychrotrophic Microbiomes:
Molecular Diversity and Beneficial Role in Plant Growth Promotion and Soil Health. In: Panpatte
DG, Jhala YK, Shelat HN, Vyas RV (eds) Microorganisms for Green Revolution-Volume 2:
Microbes for Sustainable Agro-ecosystem. Springer, Singapore, pp 197–240. https://doi.org/10.
1007/978-981-10-7146-1_11

Yadav AN, Verma P, Singh B, Chauhan VS, Suman A, Saxena AK (2017b) Plant growth promoting
bacteria: biodiversity and multifunctional attributes for sustainable agriculture. Adv Biotechnol
Microbiol 5:1–16

Yadav AN, Yadav N, Sachan SG, Saxena AK (2019b) Biodiversity of psychrotrophic microbes and
their biotechnological applications. J Appl Biol Biotechnol 7:99–108

Yadav N, Yadav AN (2019) Actinobacteria for sustainable agriculture. J Appl Biotechnol Bioeng
6:38–41

Yao Q, Li X, Feng G, Christie P (2001) Mobilization of sparingly soluble inorganic phosphates by
external mycelium of an arbuscular mycorrhizal fungus. Plant Soil 230:279–285

Yao YB, Zhanga B, Yuhua T, Miao Z, Ke ZB, Bowen Z (2018) Azolla biofertilizer for improving
low nitrogen use efficiency in an intensive rice cropping system. Field Crop Res 216:158–164

Yimer D, Abena T (2019) Components, mechanisms of action, success under greenhouse and field
condition, market availability, formulation and inoculants development on biofertilizer. Biomed
J Sci and Tech Res 12:9366–9371

Youssef MMA, Eissa MFM (2014) Biofertilizers and their role in management of plant parasitic
nematodes: a review. J Biotechnol Pharm Res 5:1–6

Zahir ZA, Ghani U, Naveed M (2009) Comparative effectiveness of Pseudomonas and Serratia
sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.)
under salt-stressed conditions. Arch Microbiol 191:415–424

https://doi.org/10.19080/ijesnr.2017.03.555601
https://doi.org/10.1016/b978-0-444-63994-3.00002-3
https://doi.org/10.1007/978-981-10-7146-1_11


15 Current Aspects and Applications of Biofertilizers for Sustainable Agriculture 473

Zahir ZA, Munir A, Asghar HN (2008) Effectiveness of rhizobacteria containing ACC-deaminase
for growth promotion of pea (Pisum sativum) under drought conditions. J Microbiol Biotechnol
18:958–963



Chapter 16
Plant Microbiomes for Sustainable
Agriculture: Current Research
and Future Challenges

Ajar Nath Yadav

Abstract The plant microbiomes play important role in plant growth promotion
and soil fertility for sustainable agriculture. Plant and soil are valuable natural
resource harbouring hotspots of microbes. The soil microbiomes play critical roles
in the maintenance of global nutrient balance and ecosystem function. The microbes
associated with plant as rhizospheric, endophytic and epiphytic with plant growth-
promoting (PGP) attributes have emerged as an important and promising tool for
sustainable agriculture. PGP microbes promote plant growth directly or indirectly,
either by releasing plant growth regulators; solubilization of phosphorus, potas-
sium and zinc; biological nitrogen fixation or by producing siderophore, ammonia,
HCN and other secondary metabolites which are antagonistic against pathogenic
microbes. The PGPmicrobes belonged to genera such as Achromobacter, Arthrobac-
ter, Aspergillus, Azospirillum, Azotobacter, Bacillus, Burkholderia, Gluconoace-
tobacter, Methylobacterium, Paenibacillus, Pantoea, Penicillium, Piriformospora,
Planomonospora, Pseudomonas, Rhizobium, Serratia and Streptomyces. These PGP
microbes could be used as biofertilizers/bio-inoculants at place of chemical fertiliz-
ers for sustainable agriculture. This chapter exclusively concluded the horizon cov-
ered book content of plant microbiomes for sustainable agriculture. The concluding
remark envisioned the future beneficial role of plant microbiomes in plant growth
promotion and soil fertility.

Keywords Endophytic · Epiphytic ·Microbial diversity · Plant microbiomes ·
Rhizospheric · Sustainable agriculture
This book contains current knowledge about plant microbiomes. The diverse groups
of microbes are the key components of soil–plant systems, where they are engaged
in an intense network of rhizosphere/endophytic/phyllosphere interactions. The rhi-
zospheric, endophytic and epiphytic microbes with plant growth-promoting (PGP)
attributes have emerged as an important and promising tool for sustainable agri-
culture. PGP microbes promote plant growth directly or indirectly, by releasing
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plant growth regulators; solubilization of phosphorus, potassium and zinc; biologi-
cal nitrogen fixation or by producing siderophores, ammonia, HCN and other sec-
ondary metabolites which are antagonistic against pathogenic microbes. These PGP
microbes could be used as biofertilizers/bio-inoculants in place of chemical fertiliz-
ers for sustainable agriculture. The aim of the present book is to collect and compile
the current developments in the understanding of the rhizospheric, endophytic and
epiphytic microbial diversity associated with plants. The book encompasses current
knowledge of plant microbiomes and their potential biotechnological applications
for plant growth, crop yield and soil health for sustainable agriculture. The book
will be highly useful to the faculty, researchers and students associated with micro-
biology, biotechnology, agriculture, molecular biology, environmental biology and
related subjects.

Rhizosphere harbours potential microbiomes which play a pivotal role in nutrient
cycling, enhancing soil fertility, maintaining plant health and productivity. Specific
microbiomes that are assembled near roots are considered to be some of the most
complex ecosystems on the Earth. Heterogeneous microbial communities of rhizo-
spheric microbiomes considerably vary by soil type, land use pattern, plant species
and host genotype. It is demonstrated that root exudates act as substrates and sig-
nalling molecules which are required for establishing plant–rhizobacterial interac-
tions (Kour et al. 2019b;Mendes et al. 2013). These research priorities may enable us
to manipulate agricultural microbiomes and thereby to develop management strate-
gies for increased production and productivity of global agriculture in a sustainable
manner. One of the challenges for future research work includes protection and con-
servation of rhizosphere biodiversity and their potential application in agricultural
soils. Figure 16.1 represents the isolation, characterization and application of plant
microbiomes for sustainable agriculture.

Endophytes are the microorganisms that live in the internal tissues of plants.
Endophytic microbes hold great importance for the roles that they play in asso-
ciation with the host plants. Endophytes are known to promote the growth of the
host plants by various activities such as detoxification of toxic compounds, protec-
tion against pathogens and production of plant growth-promoting hormones (Rana
et al. 2019b; Suman et al. 2016). Many biotechnologically important metabolites are
also produced by the endophytes such as anticancer and antimicrobial compounds.
There is a rich diversity of endophytes that needs to be explored for biotechnologi-
cal purposes. Such endophytes play an important role in plant growth promotion as
these provide resistance to plant against different environmental stresses and toxic
compounds, protect host plants against several pathogens, and produce many plant
growth-promoting hormones. Endophytic microbes are also significantly important
as biotransformers of different chemicals and help in recycling of nutrients. The
endophytes also find many industrial usages as they are known for the production of
many important enzymes and metabolites (Yadav et al. 2019a, b, c).

Endophytes constitute an important component of microbial diversity since
20 years, remarkable progress in the field revealed the significance of endophytic
microorganisms. Endophytic microbes are unexplored group of organisms that has
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Fig. 16.1 A schematic representation of the isolation, characterization, identification and potential
application of culturable and un-culturable microbiomes of crops. Adapted with permission from
Verma et al. (2017)
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huge potential for innovative pharmaceutical substances; they are established as anti-
cancer, antioxidants, antifungal and antiinflammatory. Likewise in recent years, an
incredible progress was made in developing them as therapeutic molecules against
diverse ailments. In recent years more studies are warranted in bioprospecting new
endophytic microorganisms and their applications. Bacterial and fungal endophytes
are ubiquitous reside in the internal tissue of living plants. Endophytic fungi dis-
tributed out from tropical region to arctic region possess vast potential in terms
of secondary metabolite production. It is pertinent to know that the various bioac-
tive indispensable compounds evaluated by these endophytic fungi are host-specific.
They are very significant to augmenting the adaptability of the endophyte and its
host plants, for instance, biotic and abiotic stress tolerance (Rana et al. 2019a; Yadav
2018).

The phyllosphere referred to the total aerial plant surfaces (above-ground por-
tions), as habitat for microorganisms. Microorganisms establish compositionally
complex communities on the leaf surface. The microbiome of phyllosphere is rich in
diversity of bacteria, fungi, actinomycetes, cyanobacteria and viruses (Kumar et al.
2019; Müller et al. 2016). Microbes commonly established either epiphytic or endo-
phytic mode of life cycle on phyllosphere environment, which helps the host plant
and functional communication with the surrounding environment. The phyllosphere
is a unique environment colonized by a wide variety of microorganisms including
epiphytes, beneficial and pathogenic, bacteria, fungi and viruses (Bargabus et al.
2002). Understanding the phyllosphere community structure, networking and phys-
iology is a great challenge. However, extensive research on phyllosphere microbiota
gives great potential for the applications in economic plant productivity specifically,
agriculture and forestry, ecosystem cleaning and health.

Climate variability has been and continues to be, the principal source of fluc-
tuations in global food production in developing countries Oseni and Masarirambi
(2011). The important risks of increasingwarming of globe are variable and untimely
rainfall events, unstable winter seasons, more disease occurrences and crop failures
(Adger et al. 2005). Extreme environments represent unique ecosystems which har-
bour novel biodiversity. Microbial communities associated with plant growing in
most diverse conditions, including extremes of temperature, salinity, water defi-
ciency and pH. In order to survive under such extreme conditions, these organisms
referred to as extremophiles, have developed adaptive features,which permits them to
grow optimally under one ormore environmental extremes, while polyextremophiles
grow optimally under multiple conditions. These extremophiles can grow optimally
in some of the earth’s most hostile environments of temperature (−2°–20 °C—psy-
chrophiles; 60°–115 °C—thermophiles), salinity (2–5M NaCl—halophiles) and pH
(<4 acidophiles and >9—alkaliphiles) (Yadav et al. 2015c).Microbes associatedwith
crops are able to promote the plant growth. Several microbes have been reported that
they can promote plant growth either directly or indirectly. Microbes have been
shown to promote plant growth directly, e.g. by fixation of atmospheric nitrogen,
solubilization of minerals such as phosphorus, potassium and zinc; production of
siderophores and plant growth hormones such cytokinin, auxin and gibberellins.
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Several bacteria support plant growth indirectly, via production of antagonistic sub-
stances by inducing resistance against plant pathogens (Glick et al. 1999; Tilak et al.
2005).

Salinity of the agriculture soil is the serious issue all over the world and it is also
an important environmental factor for reduction of growth and yield of agricultural
crops. The density of more salt available in soil may alter the physiological and
metabolic activities in the agricultural crops and reduces the growth and production
of crops both qualitative and quantitative ways. For combating against soil salinity,
many transgenic salt-tolerant crops have been developed but far too little is a success.
For solution, In the soils, the use of plant growth-promoting rhizobacteria (PGPR)
can be reduced soil salinity, load of chemical fertilizers and pesticide in the agricul-
tural field and improve soil health, seed germination, crop growth and productivity
under saline condition PGPR accepted as potential microbes that can tolerant vari-
ous atmospheric circumstances like more temperature, pH, and saline soils (Yadav
and Saxena 2018). Halophilic microbes are isolated from saline soils or rhizosphere
of halophytic plants and show plant growth-promoting characters directly like the
production of IAA, solubilization of phosphate, production of siderophore, fixation
of N2, deaminase ACC activity or indirectly ways by controlling of phytopathogens
under saline condition (Verma et al. 2017). Knowledge of plant–microbe interactions
facilitates policies for the protection of crops and saline soil remediation and this type
of interaction also observed in the area for ecological appreciative of microbes and
which promotes halophyte to adaptability in salinity rich environment.

Drought is a conspicuous stress causing deleterious effect on plant growth and
productivity. In order to compensate the yield loss due to drought, efficient and
sustainable strategies are required for its management. Drought stress tolerance is
a complex trait involving clusters of genes; hence, genetic engineering to gener-
ate drought-resistant varieties is a challenging task. In this context, the application
of plant growth-promoting microbes (PGPM) to mitigate drought stress is gaining
attention as an attractive and cost-effective alternative strategy (Kour et al. 2019a, b,
c).

Microorganisms capable of coping with low temperatures are widespread in these
natural environments where they often represent the dominant flora and they should,
therefore, be regarded as the most successful colonizers of our planet. Psychrophilic
microorganisms are adapted to thrive well at low temperatures close to the freezing
point of water (Yadav et al. 2015a, b, 2016). Microbial activity of psychrophiles has
even been reported at subzero temperatures. In general, psychrophilic microorgan-
isms exhibit higher growth yield andmicrobial activity at low temperatures compared
to temperatures close to the maximum temperature of growth and have more often
been put forth as an explanation to successful microbial adaptation to the natural cold
environment. Prospecting the cold habitats has led to the isolation of a great diver-
sity of psychrotrophic microorganisms. The cold-adapted microbes have potential
biotechnological applications in agriculture, medicine and industry. The bacterial
diversity from the cold environment could serve as a database for selection of bio-
inoculants with PGP ability and could be used for improving the growth and yield of
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crops grown at high altitudes with prevailing low temperatures (Yadav et al. 2018;
2019d).

Biofertilizers are typically microbial formulations in organic carrier materials that
improve soil health and crop growth and development. Of late the use of biofertil-
izers has gained much acceptance and research interest especially in the developed
countries due to ecological impacts associated with the use of synthetic inorganic
fertilizers in farming. Microbial formulations could be organism-specific or a con-
sortium of organisms. Many soil microorganisms are endowed with an array of
capabilities ranging from production of growth-enhancing substances to the release
of substances which ameliorate the effects of various abiotic stress conditions such
as drought, salinity, pH stress, heat stress, pollutants and nutrient deficiency.

There has been a sharp increase in theworld’s population over the past fewdecades
which can be threatening in terms of the food security of the people. Thus, to cater
to the huge demand of food, agricultural production should be increased within a
short span of time and with limited worldwide agricultural land resources. This sit-
uation has driven the farmers all over the world to rely heavily on the commercially
available chemical fertilizers for enhanced agricultural productivity. Though there
has been a significant rise in the production of crops, these fertilizers have proved
to be detrimental for our ecosystem as well as animal and human health. The dete-
riorative effects of the large chemical inputs in the agricultural systems have not
only challenged the sustainability of crop production but also the maintenance of the
environment quality. Using biofertilizers is a natural, low-cost, environment-friendly
way out to this problem. Biofertilizers comprise living microorganisms capable of
supplying sufficient nutrients to the plants, while maintaining high yield. With the
ever-growing population, there seems no end to the demand of food but with the
availability of the chemical fertilizers, it was thought that the problem could be
tackled.

This book will be useful not only to the researchers, but also to each and every
stakeholder that contributes toward evergreen agriculture. The enriched efforts of
contributors and editorial team have resulted in a volume, which systematically
describes to different issues, and applications of plant microbiomes in sustainable
agriculture and environments. Needless to mention, that maybe, such volumes will
be needed to place the biofertilizers and biopesticides technology in the field to its
potential, but this particular book stands on its merit for the information and contents,
which will be useful to all.
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