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Abstract This paper is an announcement for our longer paper in preparation. Tra-
ditional kernel based methods utilize either a fixed kernel or a combination of ju-
diciously chosen kernels from a fixed dictionary. In contrast, we construct a data-
dependent kernel utilizing the components of the eigen-decompositions of different
kernels constructed using ideas from diffusion geometry, and use a regularization
technique with this kernel with adaptively chosen parameters. In this paper, we il-
lustrate our method using the two moons dataset, where we obtain a zero test error
using only a minimal number of training samples.

1 Introduction

The problem of learning from labeled and unlabeled data (semi-supervised learning)
has attracted considerable attention in recent years. A variety of machine learning
algorithms use Tikhonov single penalty or multiple penalty schemes for regulariz-
ing with different approaches to data analysis. Many of these are kernel based algo-
rithms that provide regularization in Reproducing Kernel Hilbert Spaces (RKHS).
The problem of finding a suitable kernel for learning a real-valued function by regu-
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larization is considered, in particular, in the papers [16], [17] (see also the references
therein), where different approaches were proposed. All the methods mentioned in
these papers deal with some set of kernels that appear as a result of parametrization
of classical kernels or linear combination of some functions. Such approaches lead
to the problem of multiple kernel learning. In this way, the kernel choice problem
is somehow shifted to the problem of a description of a dictionary of predefined
kernels, on which multiple kernel learning is performed.

In the present paper we propose an approach to construct a kernel directly from
observed data rather than choosing one from a given kernel dictionary in advance.
The approach uses ideas from diffusion geometry (see, e.g. [1, 2, 3, 5, 11]), where
the eigenvectors of the graph Laplacian associated to the unlabeled data are used
to mimic the geometry of the underlying manifold that is usually unknown. The
literature on this subject is too large to be cited extensively. The special issue [7]
of Applied and Computational Harmonic Analysis is devoted to an early review of
this subject. Most relevant to the current paper are the papers [5], [6], where the
graph Laplacian associated with the data has been used to form additional penalty
terms in a multi-parameter regularization functional of Tikhonov type. In contrast
to [5], [6], we use eigenvectors and eigenfunctions of the corresponding family of
graph Laplacians (rather than a combination of these graph Laplacians) to construct
a data-dependent kernel that directly generates an RKHS.

In Section 2, we summarize some known theoretical facts relevant to our paper.
Our numerical algorithm is described in Section 3. In Section 4, we present the
experimental results with the two moons data set.

2 Background

The subject of diffusion geometry seeks to understand the geometry of the data
{xi}n

i=1 ⊂R
D drawn randomly from an unknown probability distribution μ , where D

is typically a large ambient dimension. It is assumed that the support of μ is a smooth
sub-manifold of RD having a small manifold dimension d. The theory works with
eigenfunctions of the Laplace-Beltrami operator of this manifold. However, since
the manifold is unknown, one needs to approximate the Laplace-Beltrami operator.
One way to do this is using a graph Laplacian as follows.

For ε > 0 and x,y ∈ R
D, let

W ε(x,y) := exp
(
−‖x− y‖2

4ε

)
. (1)

We consider the points {xi}n
i=1 as vertices of an undirected graph with the edge

weight between xi and x j given by W ε(xi,x j), thereby defining a weighted adjacancy
matrix, denoted by Wε . We define Dε to be the diagonal matrix with the i-th entry on

the diagonal given by
n

∑
j=1

W ε(xi,x j). The graph Laplacian is defined by the matrix

114



Data based construction of kernels for classification

Lε =
1
n
{Dε −Wε} . (2)

We note that the eigenvalues of Lε are all real and non-negative, and therefore, can
be ordered as

0 = λ ε
1 < λ ε

2 ≤ ·· · ≤ λ ε
n . (3)

It is convenient to consider the eigenvector corresponding to λ ε
k to be a function on

{x j}n
j=1 rather than a vector in R

n, and denote it by φ ε
k , thus,

λ ε
k φ ε

k (xi) =
n

∑
j=1

Lε
i, jφ ε

k (x j) =
1
n

(
φ ε

k (xi)
n

∑
j=1

W ε(xi,x j)−
n

∑
j=1

W ε(xi,x j)φ ε
k (x j)

)
,

(4)
i = 1, . . . ,n.

Since the function W ε is defined on the entire ambient space, one can extend the
function φ ε

k to the entire ambient space using (4) in an obvious way (the Nyström
extension). Denoting this extended function by Φε

k , we have (cf. (4), [19])

Φε
k (x) =

∑n
j=1 W ε(x,x j)φ ε

k (x j)

∑n
j=1 W ε(x,x j)−nλ ε

k
, (5)

for all x ∈ R
D for which the denominator is not equal to 0. The condition that the

denominator of (5) is not equal to 0 for any x can be verified easily for any given
ε . The violation of this condition for a particular k can be seen as a sign that for a
given amount n of data the approximations of the eigenvalue λk of the corresponding
Laplace-Beltrami operator by eigenvalues λ ε

k cannot be guaranteed with a reason-
able accuracy.

The convergence of the extended eigenfunctions Φε
k , restricted to a smooth man-

ifold X , to the actual eigenfunctions of the Laplace-Beltrami operator on X is de-
scribed in [4, Theorem 2.1].

3 Numerical algorithms for semi-supervised learning

The approximation theory utilizing the eigen-decomposition of the Laplace-
Beltrami operator is well developed, even in greater generality than this setting,
in [12, 10, 13, 14, 9]. In practice, the correct choice of ε in the approximate con-
struction of these eigenvalues and eigenfunctions is a delicate matter that affects
greatly the performance of the kernel based methods based on these quantities.
Some heuristic rules for choosing ε have been proposed in [11, 8]. These rules are
not applicable universally; they need to be chosen according to the data set and the
application under consideration.

In contrast to the traditional literature, where a fixed value of ε is used for all
the eigenvalues and eigenfunctions, we propose in this paper the construction of a
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Algorithm 1 Algorithm for kernel ridge regression with the constructed kernel (7)

Given data {xi}n
i=1 ∈ X , {xi,yi}m

i=1 are the labeled examples; y = {y}m
i=1.

Introduce the grid for parameter α: αk = pk,k = 1,2, . . . ,N
Calculate Gram matrix K̂m consisting of the sub-matrix {Kn(xi,x j)}m

i, j=1 defined by (7) in
labeled points
for k=1:N do

Calculate Cαk as
Cαk = (αkI + K̂m)

−1y,

Find the αmin such that ‖K̂mCαk − y‖ is minimized.
end for
The decision-making function is

f ∗n (x) =
m

∑
i=1

(Cαmin )iKn(x,xi).

kernel of the form

Kn(x, t) = ∑
k
(nλ

ε jk
k )−1Φ

ε jk
k (x)Φ

ε jk
k (t); (6)

i.e., we select the eigenvalues and the corresponding eigenfunctions from different
kernels of the form W ε to construct our kernel. We note again that in contrast to
the traditional method of combining different kernels from a fixed dictionary, we
are constructing a single kernel using eigenvectors and eigenfunctions of different
kernels from a dictionary.

Table 1 Results
of testing for two
moons dataset

n: m Error
50 2 0%
50 4 0%
50 6 0%
30 2 17%
30 4 8%
30 6 0%
10 2 38%
10 4 10%
10 6 2%

Our rule for selecting the ε jk ’s is based on the well-known
quasi-optimality criterion [18] that is one of the simplest and old-
est, but still a quite efficient strategy for choosing a regularization
parameter. According to that strategy, one selects a suitable value
of ε (i.e. the regularization parameter) from a sequence of ad-
missible values {ε j}, which usually form a geometric sequence,
i.e. ε j = ε0q j, j = 1,2, . . . ,M; q < 1. We propose to employ the
quasi-optimality criterion in the context of the approximation of
the eigenvalues of the Laplace-Beltrami operator. Then by anal-
ogy to [18] for each particular k we calculate the sequence of ap-
proximate eigenvalues λ ε j

k , j = 1,2, . . . ,M, and select ε jk ∈ {ε j}
such that the differences |λ ε j

k −λ ε j−1
k | attain their minimal value

at j = jk.
Since the size of the grid of ε j is difficult to be estimated be-

forehand and, at the same time, has a strong influence on the
performance of the method, we propose the following strategy
for the selection of the grid size M. We note that the summation
in formula (6) has to be done for indices k for which the corre-

sponding eigenvalue λk = λ
ε jk
k is non-zero. It is also known that the first eigenvalue
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λ ε j
1 = 0. To prevent the other λ ε j

k from becoming too close to zero with the decreas-
ing of ε j, we propose to stop continuation of the sequence ε j as soon as the value
of λ εM

2 becomes sufficiently small. So, the maximum grid size M is the smallest
integer for which λ εM

2 < λ (thr)
2 , where λ (thr)

2 is some estimated threshold. Taking the
abovementioned into account, we also replace the formula for the kernel calculation
(6) by the kernel

Kn(x, t) = 1+ (
n

∑
k=2

nλ
ε jk
k )−1Φ

ε jk
k (x)Φ

ε jk
k (t) (7)

Algorithm 1 described above uses the constructed kernel (7) in kernel ridge re-
gression from labeled data. The regression is performed in combination with a dis-
crepancy based principle for choosing the regularization parameter α . More details
can be found in [15].

4 Experimental results

In this section we consider classification of the two moons dataset that can be seen as
the case D = 2, d = 1. The software and data were borrowed from bit.ly/2D3uUCk.
For the two  moons  dataset  we  take {xi} n

i=1 with n = 50,30,10 and subsets
{xi}m

i=1 ⊂ {xi}n
i=1 with m = 2,4,6 labeled points. The goal of semi-supervised data

{xi}n
i=1 \ {xi}m

i=1.

Fig. 1 Classification of “two moons” dataset with extrapolation region. The values of parameters
are m=2, ε0 = 1, q=0.9, λ (thr)

2 = 10−6.
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For every dataset (defined by the pair (n, m)) we performed 10 trials with randomly
chosen labeled examples.

As follows from the experiments, the accuracy of the classification is improving
with the growth of the number of unlabeled points. In particular, for n ≥ 50, to
label all points without error, it is enough to take only one labeled point for each
of two classes (m = 2). At the same time, if the set of unlabeled points is not big
enough, then for increasing the accuracy of prediction we should take more labeled
points. The result of the classification for the two moons dataset with m = 2 as
well as the corresponding plot of selected ε are shown in Figures 1 and 2. The big
crosses correspond to the labeled data and other points are colored according

λ (thr)
2 = 10−6.

The application of the proposed method to other classification problems includ-
ing automatic gender identification can be found in [15].
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Fig. 2 Plot of adaptively chosen ε for two-moon dataset. The values of parameters are m=2, ε0 = 1,
q=0.9, λ (thr)

2 = 10−6.
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