
Chapter 18
Numerical Errors Associated
with Groundwater Models
and Improving the Reliability of Models
in Environmental Management Issues

K. V. Sruthi, Kim Hyun Su, Anupma Sharma and N. C. Ghosh

Abstract Improving numerical accuracy of the finite difference (FD) models of
groundwater transport is achieved here by removing the truncation error associ-
ated with advection–dispersion equation with first-order reaction and sink/source
(ADERS). This chapter presents theoretical and numerical truncation error associ-
ated with ADERS for the first time. The truncation errors associated with the FD
models of the ADERS are formulated from Taylor series analysis. The error expres-
sions are based on a general form of the corresponding FD equation. A temporally
and spatially weighted parametric approach is applied to differentiate among the
various FD models. The study revealed that all the FD models (explicit, Crank–
Nicolson, implicit) suffer from truncation errors and formulated an expression for
error from sink/source term for the first time. The effects of these truncation errors
on the solution of ADERS are demonstrated by comparison of numerical solution
from different FDmodels with the analytical solution. The results revealed that these
errors are not negligible and correcting the FD schemes for truncation error can result
in a more accurate solution in groundwater transport models which are applied for
environmental management as well as hydrological investigations.
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18.1 Introduction

Mathematical models play a major role in describing the contamination of ground-
water and soil water which are widely recognized as most critical environmental
problems of recent times. The emergence of this notion witnessed the develop-
ment of an increasing number of mathematical models (MODFLOW, MT3DMS,
FEFLOW, PHT3D) describing the flow and transport processes of groundwater.
These models are used as tools for decision making in the management of a water
resource system. They may also be used to predict future groundwater scenarios.
Therefore, groundwater models are now an important part of many hydrogeological
investigations.

An equation describing a groundwater transport model is a partial differential
equation (advection–dispersion equation, ADE). It can be solved mathematically
by analytical or numerical solutions. Analytical solutions are very difficult to apply
because they require specific parameters and boundaries that should be highly ide-
alized. Therefore, numerical models are used in groundwater modeling as it yields
approximate solutions to the governing equations through discretization of space and
time. One of the main types of numerical models that are accepted for solving the
groundwater transport equation is the finite difference method (FDM), an approach
to computational fluid dynamics (CFD) and very effective in groundwater modeling
(Anderson and Woessner 1992; Igboekwe et al. 2008). In this method, continuous
variable is replaced by discrete variables that are defined at grid blocks. Also, the
continuous differential equations which define the variable in the system are replaced
by a finite number of variables at different grids. Ultimately, FDM seems to be more
popular to solve ADE mainly due to the ease of implementation and its relative
simplicity (Ataie-Ashtiani et al. 1999a, b; Sheu et al. 2000).

In all of these applications, an understanding of model accuracy is essential. Sev-
eral approaches have been developed previously in order to improve the numerical
accuracy of the models. One factor affecting the accuracy of the FDM is the numer-
ical error, which occurs in all computational simulations. Numerical error can lead
to quantitative and even qualitative changes in simulation results, potentially affect-
ing the management of field sites (Simmons et al. 1999; Woods et al. 1998, 1999).
There are many types of numerical errors. For instance, if the chosen grid spacing
and time step length are too large, small errors may grow to dominate part of that
simulation, resulting in numerical instability (Ferziger and Perić 1999; Noye 1978).
This often leads to physically unreasonable results and problems with convergence.
Another kind of numerical error is the truncation error (Gresho and Sani 1998;
Noye and Hayman 1985). Approximating differential equations in the FDM by dis-
cretization introduces truncation error. Truncation error limits the use of numerical
finite difference approximations in order to solve the partial differential equations.
In case of ADE, numerical dispersion is the well-known consequence of truncation
error. It results in an artificial dispersion, velocity, reaction term often denoted as
numerical diffusion, numerical velocity, and numerical reaction coefficient. Numeri-
cal dispersion is insidious because it mimics the hydrodynamic dispersion (heuristic
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description of various physical processes) (Bear 1972) producing smooth results that
may seem plausible.

In previous studies, truncation errors for the FDM were first evaluated theoret-
ically and then spot-checked with numerical calculations (Lantz 1971). Chaudhari
(1971) applied an explicit-backward space FDM and showed that the addition of a
term to the dispersion coefficient could reduce the smearing of a front by generating
non-oscillatory numerical solutions. This study quantified the numerical dispersion
as a second-order error through the examination of the truncatedTaylor series approx-
imation of an explicit FD solution of one-dimensional ADE. Pinder and Gray (1977)
adopted Fourier analysis to examine the behavior of the numerical error in time for
FD schemes. Their work provided a valuable insight into the nature of numerical
dispersion. Unfortunately, it did not yield easily applicable criteria for the control of
numerical dispersion in real-world situations. Campbell et al. (1981) presented crite-
ria for the control of numerical dispersion in a solution using the FD formulation for
the time derivative. Several other schemes have been proposed in order to minimize
the effects of numerical dispersion through the application of dispersion coefficient
corrections in the transport equation (Bresler 1973; Chaudhari 1971; Lantz 1971;
Van Genuchten and Wierenga 1974). Several studies have also considered the effect
of numerical dispersion associated with the ADE during their simulations (May and
Noye 1984; Noye 1990; Van Genuchten and Gray 1978).

Typically, the above-mentioned studies have considered the effect of numerical
dispersion because it is the only truncation error in case of ADE (De Smedt and
Wierenga 1977; Dudley et al. 1991; Moldrup et al. 1992, 1994a, b; Notodarmojo
et al. 1991; Van Genuchten and Gray 1978). However, general transport equation
should include truncation errors from all physical process terms such as advection,
dispersion, reaction, and sink/source term. Ataie-Ashtiani et al. (1996) estimated
the truncation error from dispersion, advection, and reaction which were termed as
numerical dispersion, numerical velocity, and numerical reaction coefficient, respec-
tively. A correction method for the numerical truncation errors of an explicit cen-
tered in space scheme was proposed (Ataie-Ashtiani et al. 1996). Also, zero- and
first-order truncation errors in the ADE with reaction (ADER) were quantified for
all widely applied numerical models (Ataie-Ashtiani et al. 1999a, b). Further, these
studies were carried out in order to assess the effects of these truncation errors on
the numerical solution of a two-dimensional advection–dispersion equation with a
first-order reaction (Ataie-Ashtiani and Hosseini 2005a, b). For instance, the well-
known groundwater modeling software ‘MT3DMS’ which is widely being used by
the groundwater community (Zheng 1999), applied the standard FDM in order to
solve theADE, inwhich the FDMsuffers truncation error. Therefore, it is very impor-
tant to estimate the truncation error resulting from various physical process terms
in the ADE in order to avoid the numerical inaccuracy in groundwater transport
models based on FDM. However, the truncation errors arising due to the sink/source
term (zero-order production) in the ADER have not been considered in the previous
studies. In other words, no previous studies estimated the truncation error due to the
sink/source term in the ADERS.
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Therefore, we estimate the analytical expressions for all truncation errors resulting
especially from the sink/source term for the general FD form of the ADERS. The
numerical model section includes the development of different FD models by the
elimination of truncation error followed by results and discussion. The study covers
explicit, Crank–Nicolson, and implicit schemes to reveal that none of the widely
used FD scheme models have complete accuracy. This chapter also aims to provide
the user more than just a qualitative effect for the importance of truncation error for
all terms such as dispersion, advection, reaction, and sink/source. In addition, we
also present the numerical results after eliminating the truncation errors specifically
resulting from the sink/source term, which improves the results of the FD models
based on ADERS and can lead to a more accurate numerical solution.

18.2 Numerical Approach

In the field of geosciences, the partial differential equation describing one-
dimensional transport of a solute with sink/source term through a homogeneous
subsurface medium is

∂C

∂t
= D

∂2C

∂x2
−U

∂C

∂x
− kC + Q (18.1)

where C is the solute concentration [ML−3]; t is time [T]; x is the horizontal coordi-
nate [L];U is the Darcy flux [LT−1];D is the physical dispersion coefficient [L2T−1],
Q is the sink/source term.

A general form of the FD model using ω and α as the temporal and spatial
weighting parameters, respectively, can be expressed as
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where the superscript n refers to the time level; the subscript i refers to the node
point, �x is the spatial increment of grid [L] and �t is the temporal increment [T].
Here, uniform time and space increment is applied.

A Taylor series expansion of C about any grid point is used to determine the form
of the truncation errors (Chaudhari 1971; Lantz 1971). By neglecting the third- and
higher-order spatial derivatives, the following formulations are obtained
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18.2.1 Determine the Expression for Cn+1
i in Terms

of Spatial Derivative

In order to change Eq. (18.3) in terms of a spatial derivative, the following formu-
lations are applied. The second- and the higher-order temporal derivatives of C are
written in terms of spatial derivatives using the differentiated form of Eq. (18.1) as
the following
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In order to express Eq. (18.9) only in spatial terms, the temporal terms are elimi-
nated. For the elimination of temporal terms, Eq. (18.1) is substituted into Eq. (18.9)
as the following
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The higher-order derivatives are neglected. Here, Q is considered as a constant
value. Therefore, the spatial and temporal derivative terms of Q become zero.
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Similarly, the higher-order temporal derivative can be formulated as follows
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From Eqs. (18.11), (18.12), (18.13), and (18.14), the following general formula
could be generated, i.e. for m ≥ 2
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Therefore, Eq. (18.3) could be written as the following
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Similarly, the formula for Cn+1
i+1 and Cn+1

i−1 in terms of the spatial derivative could
be written as the following
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Substitution of all the Taylor series expansion for C about any grid point in the
finite discretized approximation of solute transport equation in order to estimate the
truncation error will result in the following equation. By inserting Eqs. (18.6), (18.7),
(18.16), (18.17), and (18.18) into Eq. (18.2), the final expression for ∂C

∂t would be
obtained in the following form
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18.2.2 Derivation of the Truncation Error Formula

By comparing the above Eq. (18.19) with the original governing Eq. (18.1), four
forms of truncation errors due to discretization are observed. It can be formulated as
follows

Second-order truncation error or numerical dispersion
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First-order truncation error or numerical water velocity
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Zero-order truncation error or numerical reaction coefficient
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Sink/Source term truncation error

Qnum = −kω�t Q + (−1 − kω�t)
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m=2

�tm−1

m! (−1)m−1km−1Q (18.23)

The truncation error due to the sink/source term (Qnum) is quantified in the above
Eq. (18.23). It is to be noted that no previous studies have attempted to quantify the
error due to the sink/source term.

18.2.3 Reformulation of the Truncation Error Corrected
Subsurface Transport Equation

In order to eliminate the truncation error due to the numerical dispersion, numerical
velocity, numerical reaction coefficient, and the source/sink truncation, the derived
formula for these terms will be subtracted from the physical dispersion, velocity,
reaction coefficient, and the sink/source term. The resulting terms are inserted in
Eq. (18.1)

∂C

∂t
= D ∗ ∂2C

∂x2
−U ∗ ∂C

∂x
− k ∗ C + Q∗ (18.24)

where D*, U*, k*, Q* denotes the truncation error corrected forms.

D∗ = D − Dnum (18.25)

U ∗ = U −Unum (18.26)

k∗ = k − knum (18.27)

Q∗ = Q − Qnum (18.28)

18.3 Results and Discussion

In order to study the effect of numerical error due to numerical truncation of Taylor
series expansion (numerical dispersion, numerical velocity, numerical reaction coef-
ficient, numerical sink/source term) on FD model such as explicit scheme, Crank–
Nicolson scheme, and implicit scheme, the study compared the numerical simulation
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results of truncation error corrected and non- corrected scheme with analytical solu-
tion. The analytical solution is adopted from van Genuchten and Alves (1982). The
analytical solution for solute transport equation for the following initial and boundary
condition

C(x, 0) = Ci t = 0 x > 0

C(0, t) = Co t > 0 x = 0

∂C

∂x
(∞, t) = 0

is given as
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)
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is incoming concentration [ML−3].
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v = U

(
1 + 4kD

U 2
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.

18.3.1 Comparison of Numerical Solution of Corrected
and Non-corrected Truncation Error for Different FD
Schemes with Analytical Solution

In order to compare the accuracy of truncation error corrected FD models, a numer-
ical problem is formulated. The numerical problem is composed of a semi-infinite
column, where U = 5 cm/h; D = 100 cm2/h; k = 0.1 h−1; source concentration =
100mg/L; incoming concentration= 1000.0mg/L. Here, a space increment of 20 cm
and temporal increment of 1.0 h are applied. And the study compared the numerical
solution with analytical solution at time of 20 h. Also, arbitrary units can be used for
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the numerical parameters. Figure 18.1 displays the comparison between the numer-
ical simulation results (truncation error corrected and non-corrected) and analytical
solution of numerical problem for different FD models. The results include the cor-
rection of all truncation error terms associated with advection—dispersion equation
with first-order reaction and zero-order production term. The comparison between
the results shows that none of the explicit schemes have the numerical accuracy
without truncation error correction (Fig. 18.1). The numerical results from Crank–
Nicolson method show that the centered scheme in space has negligible truncation
error compared to othermethods. The analytical solution and simulation results (trun-
cation error corrected and non-corrected) for Crank–Nicolson centered scheme well
matched each other. In Fig. 18.2, numerical results of implicit scheme reveal that
implicit upstream and centered scheme without truncation error correction deviates

Fig. 18.1 Comparison of corrected and non-corrected numerical solution with analytical solution
for explicit and Crank–Nicolson schemes with upstream and centered in space scheme

Fig. 18.2 Comparison of corrected and non-corrected numerical solution with analytical solution
for implicit FD model with upstream and centered in space scheme
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significantly from the analytical solution. The numerical results from truncation error
corrected implicit scheme well corresponded with analytical solution (Fig. 18.2).
From Figs. 18.1 and 18.2, it is absolutely clear that none of the FDmodels are free of
truncation error; but the Crank–Nicolson centered scheme yields numerical solution
which has negligible truncation error compared to other FD models.

18.3.2 Estimation of Relative Error in the Numerical Results
of Truncation Error Corrected and Non- Corrected
FD Models

The study estimated the relative error for truncation error corrected and non-corrected
numerical solution of different FDmodels.Our results revealed that numerical error is
decreased drastically by the removal of truncation error from FDmodels (Fig. 18.3).
The maximum error limit is reduced from 3 to 0.5% after truncation error correction
(Fig. 18.3). It is very significant to study the truncation error correction of FD model
because the groundwater model such as MT3D applies FD models to solve the
numerical problems. Application of truncation error correction term can reduce the
error from numerical results of these FD models. The present study could shed
light on the truncation error due to the advection term, dispersion, reaction term,
and sink/source term. Especially, the study estimated for the first time a numerical
formula for truncation error from sink/source term (Qnum).

Fig. 18.3 Comparison of estimated error in numerical solution for different FD model before and
after removal of truncation error
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The present study reveals the importance of the removal of truncation error due
to the different terms in ADERS. The study estimates the truncation error resulting
from sink/source term and its effect on numerical accuracy of different FD models.
It is revealed that numerical truncation error correction has a significant impact on
improving solution accuracy of the finite difference models. Also, the numerical
solution without error correction has shown a significant deviation from analytical
solution in the case of all finite difference models except Crank–Nicolson-centered
scheme. It showed a less deviation, even in the absence of truncation error correc-
tion. Here, the study estimates for the first time the truncation error term due to
sink/source part in advection–dispersion equation. None of the studies have quan-
tified the truncation error due to the sink/source term. Ultimately, the study reveals
that none of the finite difference models are free of truncation error and the numer-
ical accuracy is affected by several truncation errors which result from advection,
dispersion, reaction, and sink/source term.

18.4 Conclusions

This chapter explains the estimation of the truncation error associated with the FDM
models based onADERSby applying theTaylor series expansion. The study analyzes
the truncation error both theoretically and numerically. It reveals that modification
or subtraction of numerical truncation error term significantly increases the solu-
tion accuracy of the FD model which is being applied widely in popular subsurface
transport models such as MODFLOW, MT3DMS. Moreover, the study estimates
the truncation error due to the sink/source term in the ADERS for the first time.
The study compared the solution accuracy of the FD models with and without trun-
cation error correction. The results showed that none of the FD models were free
of truncation errors which ultimately lead to misinterpretation during hydrological
investigations by affecting the accuracy. Here, the least truncation error was exhib-
ited by Crank–Nicolson-centered scheme. Also, the study estimated the error in the
numerical solution (bothwith correction andwithout correction), and it was observed
that the maximum level of relative error reduced from 3 to 0.5% by eliminating the
truncation error. The comparative study of numerical solution of FDmodels revealed
that the truncation error correction can improve the solution accuracy of the FDmod-
els significantly. We suggest from this study that the application of truncation error
removal method is most significant to increase the solution accuracy in different FD
models, which is widely applied in the groundwater community.
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