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Abstract The rapid population growth and industrialization have led to widespread 
use of pesticides, drugs, personal care products, and dyes, some of which are so- 
called emerging contaminants (ECs). These compounds have obviously brought 
great benefits in controlling diseases and for increasing agricultural and industrial 
production, but their indiscriminate use has caused problems to human health and 
the environment. They can be found in surface water and groundwater at concentra-
tions from ng L−1 to mg L−1, which may seem negligible. However, some 
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 contaminants can accumulate or transform in other more toxic products in the 
human body and induce such problems as antibiotic resistance. Unfortunately, since 
there is no regulation for some emerging contaminants, they are not monitored in 
the environment or cannot be detected with conventional analytical techniques.

The purpose of this chapter is to present the state-of-the-art methodology for 
detecting the emerging contaminants, e.g., pesticides and pharmaceutical products. 
The chapter will be divided into subtopics – pesticides, pollutants, and pharmaceuti-
cal waste – with adverse environment effects also commented upon. The analytical 
methodologies for detection will be highlighted, with emphasis on recent advances 
in sensors and biosensors that may offer low-cost, sensitive, selective, and accurate 
analysis.

Keywords Sensors · Biosensors · Pesticides · Pollutants · Pharmaceutical waste · 
Emerging contaminants

3.1  Introduction

Contamination in the environment is generally linked with global warming, being 
mainly caused by extensive industrialization, high population density, and highly 
urbanized areas (Akpor and Muchie 2011). Negative consequences to human and 
animals’ health arise from improper discarding of pharmaceutical waste, endocrine 
disrupting compounds, personal care products, and household care products. They 
may include hormones, glucocorticoids, analgesics – ibuprofen, estriol, additives in 
drugs, etc. – and cosmetics containing siloxanes and parabens. Figure 3.1 shows a 
flowchart depicting sources and fate of the so-called emerging contaminants (ECs) 
(Gogoi et al. 2018). Unfortunately, since there is no regulation for emerging contami-
nants, they are not monitored in the environment (Noguera-oviedo and Aga 2016). 
Hence, pesticides are detected in groundwater and drinking water, even though there 
is a growing effort of environmental protection companies to replace these products 
with environmentally friendly substitutes (Aamand et al. 2015). Furthermore, exist-
ing treatments of wastewater or drinking water are not efficient to remove estrogens, 
androgens, or detergent compounds (Adeel et al. 2017; Kot- wasik et al. 2007).

Potential health problems have been usually associated with excessive amounts 
of emerging contaminants in drinking water, as illustrated in Fig.  3.2, including 
breast and prostate cancer. The effects of prolonged hormone exposure in aquatic 
ecosystems, even at low levels (<0.001  mg L−1), can lead to adverse effects on 
aquatic organisms (Jennifer et al. 2017; Kot-wasik et al. 2007) such as estrogens 
which may affect fish physiology and reproductive maturity in domestic and wild 
animals. Estrogens and steroid precursors affect roots, flowering, and germination 
of plants (Adeel et al. 2017). The awareness about environmental issues is crucial to 
forge environmentally friendly technologies according to the rules of sustainable 
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growth (in other words, green chemistry plus green technology). In this context, 
also relevant are the analytical methodologies to detect trace concentrations of a 
broad spectrum of pollutants (Kot-wasik et al. 2007).

This chapter reviews the state of the art of groups of emerging contaminants (pes-
ticides, polluters, and pharmaceutical chemicals) and their negative impacts on the 
environment. In addition, a brief description of standard analytical methodologies is 
provided, with emphasis on biosensors and sensors to detect emerging contaminants.

3.2  Side Effects of Pesticides

Pesticides are used in agriculture to prevent and control the spread of weeds, bacte-
ria, insects, and rodents. Their use has increased agricultural productivity, helping 
to secure nearly one-third of the global crop production (Samsidar et al. 2018). In 

Fig. 3.1 Schematic design with the potential sources of emerging pollutants in the environment. 
(Reproduced from Ref. (Rasheed et al. 2019) with permission from Elsevier, 2018)
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addition, pesticides are useful for controlling vegetation growth, in pet care prod-
ucts, and preventing disease vectors from spreading. More than 1000 pesticides are 
commercialized, and this number keeps increasing owing to the emergence of resis-
tant pests (Rejczak and Tuzimski 2015). Unfortunately, most of these compounds 
are toxic, and their indiscriminate use yields major risks to human health, especially 
for agricultural workers and people living close to farms. Also, exposure to pesti-
cides can cause long-term health effects such as cancer, Parkinson’s, Alzheimer’s, 
multiple sclerosis, and cardiovascular diseases (Mostafalou and Abdollahi 2013).

Pesticides are classified based on the target pests and their origin – chemical or 
biological (Rawtani et al. 2018) – as shown in Fig. 3.3. Biopesticides are derived 
from natural sources, including animals, plants, bacteria, and minerals. Chemical 
pesticides have been synthesized to kill different types of pests and are classified as 
insecticides, herbicides, fungicides, rodenticides, and nematicides (Samsidar et al. 
2018). Organophosphates, carbonates, and organochlorines are among the most 
known chemical pesticides. Compounds such as dichlorodiphenyltrichloroethane 
(DDT), atrazine, malathion, and parathion have been related to adverse effects on 
the environment, which include destruction of the habitat of different species 
(Rawtani et al. 2018).

Fig. 3.2 Schematic design on side effects of emerging contaminants. (Reproduced from Ref. 
(Rasheed et al. 2019) with permission from Elsevier, 2018)
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3.2.1  Analysis of Pesticides

Many countries have established regulations to control the level of pesticides in the 
environment, especially in water, raw vegetables, and fruits (Samsidar et al. 2018; 
Yan et al. 2018). In order to enforce these regulations, there is an increasing demand 
for sensitive and accurate analytical tools to detect low concentrations of pesticides. 
Analytical methods have been based on conventional techniques – high- performance 
liquid chromatography (LC) (Picó et al. 2004; Thurman et al. 2001), capillary elec-
trophorese (CE) (Hsu and Whang 2009), and gas chromatography (GC) (Guan et al. 
2010). These techniques can be used in combination with several detectors depend-
ing on the pesticide and sample analyzed (Rejczak and Tuzimski 2015). For instance, 
nonvolatile pesticides have been detected using LC coupled to UV detectors, fluo-
rescence detectors, diode-array detectors (DAD), and mass spectrometry (MS). 
Polar and easily vaporizable compounds are normally detected using GC coupled to 
detectors such as flame photometric detector (FPD), flame ionization detector 
(FID), and nitrogen phosphorus detectors (NPD) (Rejczak and Tuzimski 2015).

A crucial step toward the efficient detection of pesticides in complex matrices, 
e.g., soil, natural waters, and food, is a sample pretreatment to remove potential 
interferents that may impair an accurate analysis. Efforts have been made to develop 
procedures for sample extraction and purification, including liquid-liquid extraction 
(LLE), solid-phase extraction (SPE), matrix solid-phase dispersion (MSPD), solid- 
phase microextraction (SPME), stir bar sorptive extraction (SBSE), and quick, easy, 
cheap, effective, rugged, and safe (QuEChERS) extraction (Rejczak and Tuzimski 
2015). In addition to removing impurities, many of these methodologies allow one 
to concentrate the analytes, which is more suitable to detect trace concentrations. 
An alternative to pretreatment methods is to employ molecularly imprinted poly-
mers (MIPS), which are 3-D polymeric matrices with complementary cavities 

Fig. 3.3 Classification of pesticides. (Figure based on Rawtani et al. (2018))
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designed for a template molecule (Sarafraz-yazdi and Razavi 2015). They are suit-
able for this protocol owing to their high selectivity, relatively low cost, stability, 
and easy preparation. MIPs have been used as sorbents for SPE, MSPD, and SPME 
methods for selective extraction of pesticides from food (Djozan et al. 2009) and 
human serum (Zhang et al. 2019a). Magnetic MIPs have also been used (Karimian 
et al. 2017), and these hybrid materials show high selectivity, with their magnetism 
effect allowing an effect of sample separation without requiring additional filtration 
or centrifugation steps.

Combining sample pretreatment approaches and analytical characteristics from 
more conventional techniques has made it possible to detect single molecules and 
mixtures of pesticides, as illustrated in Table 3.1. It should be mentioned, however, 
that many experimental methods require sophisticated equipment and trained opera-
tors and usually are time-consuming, limiting their application for real-time and 
on-site detection.

Table 3.1 Analytical methods for detecting pesticides residues

Analyte
Detection 
technique

Extraction 
method Sample LODs References

Organophosphates LC-MS/
MS

Liquid-liquid 
extraction

Fruits and 
berry juice

3 × 10−4 mg 
L−1 – 
3 × 10−2 mg 
L−1

Timofeeva 
et al. (2017)

Organochlorine GC-EDC Solid-phase 
extraction

Water 1.7 ng L−1 Moawed and 
Radwan 
(2017)

Pyrethroids GC-ECD Solid-phase 
microextraction

Fruits and 
vegetables

0.1–0.5 ng 
L−1

Zhang et al. 
(2017)

Organophosphates LC-DAD – Water 32.8 ng 
L−1 – 
104.5 ng L−1

Mahajan and 
Chatterjee 
(2018)

Carbamates LC- MS/
MS

Solid-phase 
extraction

Water 0.5–6.9 ng 
L−1

Shi et al. 
(2014)

Multiclass 
pesticides

GC-FID Liquid-liquid 
extraction

Water 0.34–5 μg L−1 Farajzadeh 
et al. (2015)

Diazinon LC-UV Magnetic 
molecular 
imprinted 
polymers

Water 2.19 mg L−1 Karimian 
et al. (2017)

Ametryn LC-UV Magnetic 
molecular 
imprinted 
polymers

Tomato, 
capsicum, 
and 
strawberry

25 nmol L−1 Khan et al. 
(2018)

LC-MS/MS high-performance liquid chromatography mass spectroscopy, GC-ECD gas 
chromatography- electron capture detector, LC-DAD high-performance liquid chromatography 
with diode-array detection, GC-FID gas chromatography-flame ionization detector, LC-UV high- 
performance liquid chromatography with UV detection, LOD limit of detection
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3.2.2  Sensors and Biosensors for Pesticide Detection

The growing need for analytical methods for a rapid, selective, and accurate detec-
tion of pesticides has motivated the development of relatively low-cost sensors and 
biosensors. These devices normally contain nanomaterials: carbon nanotubes (Kaur 
et al. 2019), graphene derivatives (Hashemi et al. 2019), quantum dots (Wang et al. 
2019b), and metal nanoparticles (Jiang et al. 2018). Transduction methods for these 
sensors include electrochemistry (Velusamy et  al. 2019), fluorescence (Wu et  al. 
2019), surface-enhanced Raman scattering (SERS) (Jiang et al. 2018), and surface 
plasmon resonance (SPR) (Cakir et al. 2019). A large enhancement in SERS signal 
may arise from plasmonic nanostructures, then permitting detection of analytes at 
very low concentrations. For example, a SERS sensor containing Ag-coated Au 
nanoparticles (Au@Ag NPs) detected insecticide residues in peach simultaneously 
(Yaseen et al. 2019). Figure 3.4 shows the results for Au@Ag NPs with 26 nm Au 
core size and 6 nm Ag shell yielded to enhance Raman signals for pesticides, in 
which the limits of detection were 0.1 mg kg−1 for thiacloprid and 0.01 mg kg−1 for 
profenofos and oxamyl.

Biosensors have been preferred for detecting pesticides due to their selectivity 
provided by biological components acting as recognition units, viz., enzymes, anti-
bodies, nucleic acids, microorganisms, biological tissues, and organelles. They can 
be used in combination with a physical transducer to generate intense signals due to 
changes in concentration of a specific analyte (Madrid et al. 2017). The selectivity 
of biosensors may allow for analyte detection even in complex matrices (Saini et al. 
2017). Enzymes are utilized in electrochemical biosensors to detect pesticides since 
many products of enzymatic reactions show electroactive responses. Enzymes are 

Fig. 3.4 Schematic design for a surface-enhanced Raman scattering (SERS) sensor for detecting 
thiacloprid, profenofos, and oxamyl in peach. (Reproduced with permission from Yaseen et al. 
2019)
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usually more stable and less expensive than other common biomolecules such as 
antibodies (Fabiana Arduini et al. 2016). The detection protocols using enzymatic 
biosensors involve monitoring changes in pesticide concentration by means of 
either enzymatic reactions or enzyme-inhibition mechanisms.

Many catalytic biosensors contain organophosphorus hydrolase (OPH), which 
catalyzes the hydrolysis of organophosphorus compounds, including parathion and 
methyl parathion, by breaking P-O, P-S, and P-CN bonds (Sassolas et al. 2012). The 
hydrogen ions and alcohols generated as enzymatic products can be monitored by 
electrochemical and optical techniques (Sassolas et al. 2012). Wearable potentio-
metric tattoo biosensors have been built with OPH immobilized onto screen-printed 
transducers to detect diisopropyl fluorophosphate (DFP) (Mishra et  al. 2018). 
Figure 3.5 shows the principle of detection for these biosensors made with elec-
trodes printed onto a temporary tattoo paper after being modified with a pH- sensitive 
polyaniline (PANI) film. This PANI film helps to monitor hydrogen ion released 
from the enzymatic hydrolysis of DFP. This biosensor was also efficient to detect 
other organophosphates. Catalytic biosensors, nonetheless, have drawbacks that 
restrict their widespread use, including a limited number of enzymes available for 
catalyzing the hydrolysis of pesticides. For example, OPH-based biosensors detect 
only some organophosphorus compounds, since large molecules with more com-
plex structures do not interact effectively with active enzymatic sites (Mulyasuryani 
and Prasetyawan 2015).

Biosensors based on enzymatic inhibition mechanisms, where the analyte is 
quantified through its ability to inhibit enzyme function, are more sensitive for 
detecting pesticides than catalytic biosensors. Figure 3.6 shows the operation prin-
ciple in which the enzymatic activity can be monitored. After addition of the inhibi-
tor, the catalytic activity decreases and so does the analytical signal (Amine et al. 
2015). The properties and operation parameters for these biosensors depend on the 
enzyme-inhibitor interaction, which is classified as reversible or irreversible. When 
the interaction is irreversible, covalent bonds are formed between the inhibitor and 
the active site of the enzyme leading to permanent loss of enzymatic activity (Aziz 
Amine et al. 2006). For biosensors based on reversible inhibition, on the other hand, 

Fig. 3.5 Illustration of tattoo biosensors for detecting nerve agents. (Reproduced with permission 
from Mishra et al. 2018)
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the enzymatic activity can be restored by washing them with water or buffer solu-
tions, which allows one to perform multiple measurements with a single device 
(Amine et al. 2015).

The activity of cholinesterase is inhibited irreversibly by organophosphorus and 
carbamate pesticides (Fabiana Arduini et  al. 2010; Pundir and Chauhan 2012). 
These enzymes are found in insects and vertebrates, being responsible for catalyz-
ing the hydrolysis of the acetylcholine neurotransmitter, a crucial step in the trans-
mission of nerve impulses. Two types of cholinesterase are known, which are mainly 
distinguished by their substrate specificity: acetylcholinesterase (AChE), which has 
a higher catalytic activity toward acetyl esters, e.g., acetylcholine, and butyrylcho-
linesterase (BChE), which preferentially hydrolyzes butyrylcholine (Saini et  al. 
2017). The reaction products can be monitored using potentiometry or optical 
 methods with pH-sensitive indicators (Sassolas et al. 2012). A simpler methodology 
involves artificial substrates such as acetylthiocholine and butyrylthiocholine, 
whose hydrolysis product – thiocholine – can be detected electrochemically at rela-
tively low potentials. Bi-enzymatic and tri-enzymatic biosensors have also been 
developed, in which enzymes such as choline oxidase and peroxidase can be used to 
produce electrochemically detectable species (Andreescu and Marty 2006).

Paper-based biosensors relying on enzymatic inhibition have been reported for 
low-cost, user-friendly determination of pesticides. Arduini et al. (2019) developed 
paper-based biosensors using butyrylcholinesterase, alkaline phosphatase, and 
tyrosinase on screen-printed electrodes modified with carbon black and Prussian 

Fig. 3.6 Reversible and irreversible inhibition detection using biosensors based on enzyme inhibi-
tion mechanism. (Reproduced with permission from Amine et al. 2015)
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blue nanoparticles to improve sensitivity. Paraoxon, 2,4-dichlorophenoxyacetic 
acid, and atrazine were detected in standard solutions and river water samples using 
amperometry. A relevant limitation of biosensors based on enzymatic inhibition is 
the low selectivity for several enzymes, and this may impair pesticide detection in 
complex matrices of environmental interest owing to the presence of other, competi-
tive inhibitors. Therefore, most of these sensors are used for screening purposes and 
not for detecting specific molecules (Jiang et al. 2008).

Immunosensors and aptasensors are useful to detect pesticides, since antibodies 
and aptamers are able to recognize analytes. For immunosensors, the interaction 
between antibodies (Ab) and antigens (Ag) is affected by the concentration of a 
specific analyte (Jiang et al. 2008). In addition to their use for detecting biomarkers 
of various diseases, immunosensors serve to detect pesticides and other compounds 
through advances in biotechnology where antibodies are generated which are spe-
cific for several molecules (Fernández-Benavides et  al. 2019; Jiao et  al. 2018). 
Aptasensors are promising for performing selective, fast, and sensitive detection of 
pesticides at low concentrations. They can be used in sensors as recognition ele-
ments as short oligonucleotides of RNA or DNA synthetized using the selection 
evolution of ligands by exponential enrichment (SELEX) technique (Liu et  al. 
2019). With SELEX, molecules can be obtained which possess high binding affinity 
and selectivity against a target analyte without using animals or cell cultures. In 
addition to the advantages in the production process, aptamers are more stable than 
antibodies and enzymes, allowing the use of aptasensors under harsh conditions. 
Aptasensors exploiting electrochemical techniques (Fu et al. 2019; Xu et al. 2019) 
and fluorescence (Cheng et al. 2018) have been used to detect pesticides.

3.3  Pollutants and Side Effects

The rapid population growth and industrialization have led to discarding a huge 
number of contaminants into the environment, which is why the twenty-first century 
was coined the Century of the Environment (Azam et al. 2016). Most pollutants are 
hazardous and poisonous, as the case of volatile organic compounds (VOCs) (Liu 
et al. 2018; Malik et al. 2018), heavy metals (Kamilari et al. 2018), toxic inorganic 
gases (Joshi et al. 2018), dyes (Nguyen and Saleh 2016), food preservatives, and 
personal care products. They pose severe threats for human beings and the environ-
ment. VOCs, for instance, can easily evaporate from household products such as 
paints, cleansers, and furnishings, causing short- and long-term adverse effects 
(Spinelle et al. 2017). Real-time monitoring of VOCs is now required for several 
types of industries, including cosmetics, medical diagnosis, food, and beverages, 
and long-term exposure can cause damage to the liver, kidney, and central nervous 
system (Jung et al. 2012).

The International Agency for Research on Cancer (IARC) has stated that online 
monitoring of formaldehyde should be performed in indoor environments because 
formaldehyde has been linked to cancers in the nasal cavity, mouth, throat, skin, and 
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digestive tract (Mandayo and Castaño 2013). A major concern is water contamina-
tion in community services, particularly with heavy metals (Tchounwou et  al. 
2012). Metals such as Hg, Pb, As, and Cd are known as bioaccumulative com-
pounds in the human body, resulting in multi-organ disruption (Jaishankar et  al. 
2014; Karri et al. 2016). Another class of pollutants includes additives and dyes in 
foods and textile industries (Sorouraddin et al. 2015). A synthetic diazo colorant, 
allura red, used in beverages, ice cream, and bakery products, is known for its car-
cinogenic effect, also being the main cause of hyperactivity in children. In addition 
to those linked to air and water quality systems (Scotter 2015), there are pollutants 
such as brominated flame retardants (Darnerud 2003) and textile dyes used for dye-
ing and finishing operations. Table 3.2 shows a list of air and water pollutants and 
adverse effects on mankind and animals.

3.3.1  Analytical Techniques for Pollutant Detection

Quantitative and qualitative measurements of pollutants are necessary to control air 
and water pollution. However, these measurements are not straightforward, espe-
cially owing to the presence of interferents (Qin et al. 2013). Moreover, managing 
pollution requires detection of pollutants at low concentrations (Gauquie et  al. 
2015), which depend on mainly on:

• Pollutant state (liquid, gaseous, aerosols, or particulate matter)
• Sample preparation and concentration level
• Measurement period (short or long term)
• Measurement site (in lab or on-site)
• Temperature and humidity effect and control
• Cross-sensitivity with other analytes
• Reliability and stability check with commercial sensor

For monitoring air quality, there are methods to detect hazardous analytes in the 
environment, as illustrated in Table 3.3. However, stability and selectivity are still a 
challenge for current sensor technologies. Optical and electrochemical sensors can 
offer high sensitivity, but bulky dimensions and high-power consumption do not 
allow them to be widely applied for health-care or mobile applications.

There are also analytical techniques to detect pollutants such as heavy metals, 
VOCs, food dyes, and brominated flame retardants, as depicted in Table 3.4.

3.3.2  Sensors and Biosensors to Detect Pollutants

The need to detect pollutants in air, soil, and water has sparked research into analyti-
cal techniques (Goradel et al. 2017) to replace conventional chromatography that 
requires expensive, time-consuming sample preparation. Cost-effective, robust, and 
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portable biosensing and gas sensing devices have been proposed (Materón et  al. 
2019) with the majority of biosensors incorporating nanomaterials to enhance sen-
sitivity and selectivity (Hernandez-Vargas et al 2018). Electrochemical biosensors, 
in particular, can detect biological analytes at low concentrations with various tech-
niques, including potentiometric, amperometric, voltammetric, and conductometric 
measurements (Hernandez-Vargas et  al. 2018; Justino et  al. 2017). Air pollution 
caused by hazardous gases from textile and automobile industries has become a 
serious issue. The major gases that cause air pollution are carbon monoxide and 
nitrogen oxides, and their main source is fossil fuel combustion (Joshi et al. 2018). 

Table 3.2 Examples of air and water pollutants – sources and effects (Kaur and Nagpal 2017; 
Muralikrishna 2017)

No Pollutants Sources Effects

1 Carbon 
monoxide (CO)

Incomplete combustion of fuels in 
road transport. Wood stoves, 
cigarette smoke, and forest fire

Interfering with the blood’s ability 
to carry oxygen, slowing reflexes, 
and causing drowsiness, headaches, 
and stress on heart in high 
concentrations – CO can cause death

2 Sulfur dioxide 
(SO2)

Burning fossil fuels (gasoline, oil, 
natural gas)
Released from petroleum 
refineries, paper mills, chemical, 
and coal-burning power plants

It is easily dissolved in water and 
forms acids, contributing to acid rain 
in lakes and forests. Metals and 
stones can be also damaged by acid 
rain

3 Nitrogen oxides 
(NOx)

Burning fuels in motor vehicles, 
power plants, industries, and 
residences that burn fuels

Make the body vulnerable to 
respiratory infections, lung disease, 
and possibly cancer

4 Volatile organic 
compounds

Emitted as gases (fumes) by 
burning fuels, cleaning supplies, 
paints, and solvents

Smog formation and can cause 
serious health problems. They may 
also harm plants

5 Heavy metals 
(lead, mercury, 
cadmium, etc.)

Waste incineration
Production of nonferrous metals, 
iron, steel, and cement

Cause organ and neurological 
damage in humans and animals. It 
can also slow down growth rate in 
plants

6 Organic 
pollutants
Oil and grease 
pesticides/
weedicides
Plastics
Detergents

Automobile and machine waste, 
tanker spills, and offshore oil 
leakage
Chemicals used for better yield 
from agricultural, industrial, and 
household waste

Disruption of marine life, aesthetic 
damage
Toxic effects (harmful for aquatic 
life)
Possible genetic defects and cancer
Kill fish, eutrophication aesthetics

7 Textile dyes Natural or synthetic coloring 
substance which is used in textile 
industries

They are dangerous and have toxic 
and carcinogenic effects

8 Brominated 
flame retardants 
(BFRs)

Flame retardants containing 
brominated organic compounds 
that are applied to combustible 
materials, such as plastics, wood, 
paper, electronics, and textiles to 
meet fire safety regulations

Severe pneumonia by respiratory 
syncytial virus (RSV) infection to 
birds and animals. Toxic (acute and 
chronic) and ecotoxic effects of 
some BFRs have been observed
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Volatile organic compounds (VOCs) are produced by construction materials and 
paint industries, which may even cause headache and skin trouble for people mov-
ing into a new apartment (Campos and Sarkis 2018). For example, formaldehyde is 
produced in industries in the manufacture of resins, as a disinfectant, or as a preser-
vative in consumer products; it is a dangerous indoor pollutant as it can harm all 
kinds of organisms (Chung et al. 2013; Lawal et al. 2017). The allowed concentra-
tion of formaldehyde is only 0.1 ppm in Netherlands and Germany (Chmielewski 
2011). Also, the US Environmental Protection Agency (US EPA) has imposed strict 
regulations on the concentrations of environmental contaminants in air and water. In 
this section we will discuss the sensors and biosensors for detecting heavy metals, 
hazardous gases and VOCs, food dyes, and brominated flame retardants.

• Heavy Metal Detection

Due to increasing industrial activity, heavy metals such as Hg, AS, Pb, and Cd 
have been entering into the environment which are highly toxic and carcinogenic 

Table 3.3 Air quality sensors and detection principle (Aswal and Gupta 2006)

Type of 
sensors Sensor Detection principle

Solid-state 
sensors

Chemiresistive A change in conductivity of semiconductor is 
measured when it interacts with the analyte gas

Chemical field-effect 
transistors (ChemFET)

Current-voltage (I-V) curves of a field-effect 
transistor (FET) are sensitive to a gas when it 
interacts with gate

Calorimetric The concentration of a combustible gas is measured 
by detecting the temperature rise resulting from the 
oxidation process on a catalytic element

Potentiometric The signal is measured as the potential difference 
between the working electrode and the reference 
electrode. The working electrode’s potential must 
depend on the concentration of the analyte in the gas 
phase

Amperometric Diffusion limited current of an ionic conductor is 
proportional to the gas concentration

Mass- 
sensitive 
sensors

Acoustic Change in frequency of surface acoustic waves 
(SAW) excited on a quartz or piezoelectric substrate 
upon absorption of gas in a suitable sorption layer 
(e.g., metals, polymers)

Microelectromechanical 
systems (MEMs) based

Change in mechanical bending of micro- or 
nanocantilevers upon adsorption of gas

Optical 
sensors

Surface plasmon resonance 
(SPR)

Change in SPR signals is proportional to the 
refractive index close to the sensor surface and is 
therefore related to the amount of bound gas 
molecules

Optodes The change of optical properties measured can base 
on absorbance, reflectance, luminescence, light 
polarization, Raman, and others
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Table 3.4 Detection techniques and detection principles for heavy metals, food dyes, VOCs, and 
brominated flame retardants (Holbrook et al. 2012; Hori et al. 2013; Zhu et al. 2017).

Type of 
analytes Detection method Detection principle

Heavy metal 
ions

Inductively coupled plasma 
(ICP) by mass spectrometry 
(MS)

The ICP is used to ionize the sample, while 
the mass spectrometer is used to separate and 
quantify those ions. Calibrating the 
instrument with known standards allows for 
an unknown sample to be quantified

Cold vapor atomic absorption 
(CV-AA)

This analysis detects mercury by measuring 
the absorption of light by mercury in an 
elemental gaseous state

Optical Optical sensors can be described as small 
devices that respond to the presence of heavy 
metals by generating an optical signal 
proportional to the type and concentration of 
the heavy metal

Electrochemical The working principle of such sensors is 
based on having a transducing element 
covered with recognition element, which can 
be either a biological or a chemical element

Microelectromechanical 
systems (MEMs) based 
microspectrometers

Microspectrometer is a tool designed to 
measure the spectrum of microscopic areas or 
microscopic samples to measure the 
transmittance, absorbance, reflectance, 
polarization, and fluorescence of sample 
areas smaller than a micron

Volatile 
organic 
compounds

Electrochemical (amperometric) 
sensors

In these sensors, analyte particles diffuse 
through a membrane and the internal 
electrolyte toward the surface of working 
electrode suitably polarized with respect to a 
reference electrode

Chemiresistive Change in conductivity on exposure to 
analyte gas

Nondispersive infrared sensors 
(NDIR)

Sensor consists in arranging a source of 
infrared radiation along an optical line with a 
detector. When an analyzed gas appears in a 
measurement chamber, it absorbs radiation of 
a particular wavelength and decreases in 
radiation which is converted into electrical 
signal.

Food dyes Paper chromatography 
(extraction techniques)

The principle involved is partition 
chromatography, wherein the substances are 
distributed or partitioned between liquid 
phases

Ultraviolet-visible (UV- VIS) 
spectrophotometer

Principle of UV-visible spectrophotometer is 
mainly based on Beer’s law and Lambert’s 
law

(continued)
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even at a trace level. They are not biodegradable and will therefore remain for 
decades once released in the environment and appear at detectable levels in food 
resources (Tangahu et al. 2011). The sensitive conventional methods to detect heavy 
metals include atomic absorption spectroscopy and atomic emission spectroscopy. 
These methods require laborious preparation and pretreatment procedures and pro-
fessional personnel (Chinna et al. 2018).

Electrochemical, optical, and field-effect transistor (FET)-based sensors have 
been developed using nanostructures and nanomaterials (Fig. 3.7). Luo et al. (Luo 
et  al. 2009) used silicon nanowires (SiNWs) in FET sensors for detecting toxic 
heavy metal cations with a LOD of 10−7 mol L−1 for Hg2+ and 10−4 mol L−1 for Cd2+. 
The chemical gating effect and strong chelation between thiol groups with posi-
tively charged cations is the main reason for the high sensing behavior, and sensors 
could also be recycled with nearly the same sensitivity as before. Figure 3.7a shows 
the measuring setup, while Fig. 3.7b shows the I-V behavior of the SiNW before 
and after thiol modification. The ohmic contacts are formed between electrodes and 
SiNW, and the modification induces slight decreases in the conductance of 
SiNW. Figure 3.7c indicates the current change by varying Cd2+ concentration in 
solution. Compared to distilled water (pH = 4), the change in current was increased 
by 10%. When Cd2+ ion of 10−4 mol L−1 was introduced and as Cd2+ concentration 
further increased to 1 × 10−3, 3×10−3, 1×10−2, 2×10−2, and 4 × 10−2 mol L−1, the 
 current increased by 28.1%, 40.2%, 56.6%, 66.7%, and 67.4%, respectively. 
Similarly, the current changed with the Hg2+ concentration, as illustrated in Fig. 3.7d.

Optical sensors to detect heavy metals can exploit various principles, including 
colorimetry, surface plasmon resonance (SPR), and surface-enhanced Raman scat-
tering (SERS) (Meyer et al. 2011; Prabowo et al. 2018; Jiangcai Wang et al. 2017). 
SERS sensors have been used for chemical and biological sensing and medical 
diagnostics, but few reports exist of detection of heavy metals. SERS is the molecu-
lar spectroscopy which provides spectral fingerprints of target analytes. It is unable 
to detect heavy metals directly, so the plasmonic nanostructures are functionalized 
with organic ligands that bind specifically to heavy metal ions. Jinglian Li et al. 
(2011) developed SERS sensors for As3+ detection in aqueous media with  glutathione 
(GSH)/4-mercaptopyridine (4-MPY)-modified silver nanoparticles (AgNPs). 
Figure 3.8a shows increased SERS signal with addition of As3+ ions owing to the 
As-O linkage established when the distance among AgNPs was shortened with a 
moderate amount of GSH and 4-MPY.  The sensor achieved a limit of detection 

Table 3.4 (continued)

Type of 
analytes Detection method Detection principle

Brominated 
flame 
retardants

Gas chromatography/mass 
spectrometry (GC/MS)

The GC works on the principle that a mixture 
will separate into individual substances when 
heated. The heated gases are carried through 
a column with an inert gas (such as helium). 
As the separated substances emerge from the 
column opening, they flow into the MS

3 Analytical Detection of Pesticides, Pollutants, and Pharmaceutical Waste…



102

(LOD) of 0.76 ppb with selectivity over various metal ions (Fig. 3.8b). However, 
long-term stability and repeatability of the SERS-based sensors are still a major 
concern.

• Chemical Sensors for Detection of Toxic Pollutants

Chemical sensors are a crucial part of modern life with applications in environ-
mental monitoring, domestic safety, public security, and food quality assessment 
among others (Swager and Mirica 2019). They are increasingly being integrated 
into mass-market applications, for instance, in air quality control in buildings and 
motor vehicles and in traditional areas of toxic and explosive gas detection. The 
market for gas sensors is growing with new applications driving innovation, for 

Fig. 3.7 Sensors for detecting heavy metals (a) Sensing setup system; (b) I-V characteristics of a 
SiNW before (dotted line) and after thiol modification; (c) current changing with increasing Cd2+ 
concentration; (d) current variation with increasing Hg2+ concentrations. (Reproduced with per-
mission from (Luo et al. 2009), Copyright 2009, American Institute of Physics)

Fig. 3.8 (a) Representation of glutathione (GSH) and 4-MPY-modified AgNPs; (b) SERS sensor 
for selective As3+ detection using silver nanoparticles. (Reproduced with permission from Jinglian 
Li et al. (2011). Copyright 2011, American Chemical Society)
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instance, the analysis of gases from the gut and breath for noninvasive diagnosis of 
diseases (Bogue 2017). Chemiresistive sensors comprise an important part of the 
gas sensor market, against a host of competing technologies, due to their low cost, 
high sensitivity, fast response, and relative simplicity (Liu et al. 2012). The materi-
als used in these sensors are typically wide-bandgap semiconducting metal oxides, 
such as tin oxide, tungsten oxide, indium oxide, or zinc oxide (Domènech-gil et al. 
2017; Joshi et al. 2016; Jinwei Li et al. 2015b; Sayago et al. 2019). They function as 
gas sensors because adsorbed gaseous species form surface states in the metal oxide 
by exchange of electrons with the bulk material. The concentration of the surface 
states is proportional to the partial pressure of the gas impinging on the metal oxide, 
and hence the conductivity of the material changes in response to changes in gas 
concentration. These chemically induced changes can then be transduced into elec-
trical signals by means of simple conductivity measurements.

Metal oxides are the most common and even commercially available sensors; 
however, they rely on high temperature modulation to achieve high sensitivity and 
selectivity which decreases the sensor lifetime and makes the system more complex 
(Zhou et al. 2014b). In order to obtain room temperature sensing, 2D materials have 
been investigated owing to their high surface to volume ratio, but the speed of recov-
ery is still a limitation. Liu et al. (2018) demonstrated new AC phase sensing of 
graphene FETs for chemical vapors with fast recovery, with a new concept illus-
trated in Fig. 3.9. To get rid of the effects of trap states and defects, those authors 
used the reversible and stable phase change as the sensing parameter instead of the 
vulnerable DC resistance (see Fig. 3.9a). The phase lag between channel resistance 
and the gate voltage was detected with the AC voltage applied on the gate electrode, 
as shown in Fig. 3.9b. The recovery speed is ten times faster than with DC resistance 
signals. Figure  3.9c illustrates the key difference between AC and DC measure-
ments where AC measurements are more sensitive to weak adsorption of vapor 
molecules, while DC measurement results are sensitive to a strong adsorption- 
desorption process. Malik et al. (2018) employed Au-TiO2@g-CN nanohybrids to 
detect volatile organic amines (VOAs), such as triethylamine (TEA), using a 
 two- step method (hydrothermal and nanocasting). The average times for response 
and recovery of the Au-TiO2@m-CN sensor toward TEA gas are 9–16 and 6–12 s 
for 1–50 ppm range.

• Detection of Food Dyes

Manufacturing industries use large amounts of cost-effective artificial ingredi-
ents for improving their consumer characteristics and appearance (Leo et al. 2017; 
Lipskikh et al. 2018; Nambiar et al. 2018; Zhu et al. 2017). Monitoring the quality 
of food dyes in drinks has therefore become of paramount importance. Brilliant 
Blue (E133), Tartrazine (E102), Sunset Yellow (E110), and Amaranth (E123) 
(molecular structure and commercial name and details in Table 3.5) are synthetic 
dyes added to nonalcoholic beverages. The Brazilian Agency for Public Surveillance 
(ANVISA) has issued legal provision in 2002 to regulate the use of food dyes, since 
their high consumption could induce skin allergies and bronchial asthma. 
The  maximum level allowed is 0.01 g/100 mL for Sunset Yellow, Tartrazine, and 
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Brilliant Blue in nonalcoholic beverages, while the value for Amaranth is 
0.005 g/100 mL.

The analytical techniques to determine concentrations of food colorants include 
thin-layer chromatography (TLC), spectrophotometry in the visible region, high- 
performance liquid chromatography, and capillary electrophoresis. Reverse phase 
LC and ion-pair high-performance liquid chromatography (LC IP) are the most 
used in drinks. For instance, sulfonated azo dyes used in 330 commercial samples 
of orange and grape carbonated soft drinks were determined using ion-pair LC com-
bined with photodiode array and thin-layer chromatography (TLC) (Andrade et al. 
2014). A liquid chromatography diode-array detector (LC-DAD) was utilized to 
distinguish natural and synthetic colorants in dairy samples such as milk shakes, 
yogurts, and ice creams (Gallego and Valca 2003). Second-order derivative linear 
sweep voltammetry was used to detect tartrazine where glassy carbon electrodes 
were coated with a TiO2-reduced graphene oxide composite (He et al. 2018).

Fig. 3.9 (a) Schematic of gas sensing performance using the phase lag detection method with fast 
recovery compared to the DC resistance method. (b) Schematic of phase lag φAB,g between VAB and 
Vg on a CVD graphene FET sensor under the exposure to chemical vapor. (c) Vapor adsorption 
process and desorption on the graphene surface illustrating that the AC sensing scheme is more 
effective to detect weakly adsorbed gases away from the graphene surface, while the DC sensing 
scheme is more effective to detect molecules close to the surface. (Reproduced with permission 
from (Liu et al. 2018) Copyright 2018, Elsevier)
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• Detection of Brominated Flame Retardants

Brominated flame retardants (BFRs) such as polybrominated diphenyl ethers 
(PBDEs) and hexabromocyclododecane (HBCD) are mainly used in plastics and 
electronic equipment to prevent combustion. Exposure to PBDEs may lead to endo-
crine disruption and neurodevelopmental toxicity in humans and hepatotoxicity, 
endocrine disruption, gene expression, and impaired reproductive physiology in 
animals. They have been banned in Europe, North America, and Australia (Mcgrath 
et al. 2017). Most BFRs are detected with gas chromatography/mass spectrometry 
(Geng et al. 2017).

3.4  Pharmaceutical and Personal Care Products (PPCPs)

Pharmaceutical (human and veterinary therapeutic drugs) and personal care prod-
ucts (PPCPs) comprise a well-known group of emerging contaminants (Boxall 
2004; Boxall et al. 2012; Jennifer et al. 2017). Some of this pollution comes from 
human excretion of contraceptives and other medicines (e.g., acetaminophen, ace-
tylsalicylic acid, ibuprofen, naproxen, and carbamazepine), which are eventually 
found in water (Boxall 2004). These drugs are absorbed, metabolized, and excreted 

Table 3.5 Food colorants and their structures and commercial names. European Community (EC) 
number, and food (F) and drug (D) number (Oplatowska-stachowiak and Elliott 2015)

Molecular structure Commercial name EC number FD&C number

Tartrazine E102 Yellow #5

Brilliant Blue FCF E133 Blue #1

Sunset Yellow FCF E110 Yellow #6

Amaranth E123 Red #2
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to the sewage system, with some metabolized products being even more toxic than 
the non-metabolized drugs. Furthermore, many of the water treatment systems are 
not capable of removing the drugs and may transform the products into more toxic 
ones (Boxall 2004; Boxall et al. 2012; Jennifer et al. 2017; Kümmerer 2009; Vieno 
and Sillanpää 2014). The main sources of environmental pollution from pharmaceu-
tical products are:

• Effluents from manufacturing and hospital waste
• Excretion by animals treated with antibiotics or other drugs
• Human excretion of pharmaceutical and personal care products (Richardson and 

Bowron 1985; Rzymski et al. 2017)

The traditional methods to treat water include adsorption, solvent extraction, 
reduction, flocculation, coagulation, chemical or biological oxidation, ultrasound, 
and membrane filtration (Fan et  al. 2018; Jing Wang et  al. 2019a). The reported 
concentrations of pharmaceutical products are low, between ng L−1 (groundwater) 
and μg L−1 (wastewater), but many drugs can have cumulative effects and bring 
health problems, such as cancer (Boxall 2004; Christou et al. 2018).

3.4.1  Current Analysis of Pharmaceutical Products

The large number of recent reports of emerging pollutants in the environment may 
give the impression that this is a new problem. However, this is not new, and such 
pollution was simply ignored in the past owing to the lack of analytical methods 
with sufficient sensitivity to detect trace amounts (Buchberger 2011). Indeed, 
already in 1977 Hignite and Azarnoff found clofibric acid (used to lower plasma 
triglycerides and cholesterol concentrations in humans) and salicylic acid at low 
ppb levels in sewage treatment plant effluents (Hignite and Azarnoff 1977). Kolpin 
et al. (2002) detected 95 pharmaceutical contaminants such as hormones and other 
organic wastewater contaminants (OWCs) in water resources in the USA in 1999 
and 2000 (Kolpin et al. 2002). Ternes reported the discovered drugs in the aquatic 
environment at concentrations up to approximately 1 μg l−1 in the UK (Ternes 1998). 
Pharmaceutical and chemotherapeutic drugs were found in the sewage, sewage 
effluents, river, and potable water (Richardson and Bowron 1985). Unfortunately, 
some drug residues could survive the various water treatment processes and remain 
at low concentrations <μg L−1 (Richardson and Bowron 1985; Ternes 1998).

In a review about ecotoxicity of hospital waste effluents, Orias and Perrodin 
(2013) listed a variety of toxic substances (Jean et  al. 2012; Orias and Perrodin 
2013), and human and veterinary pharmaceutical substances were found in surface 
water, groundwater, tap/drinking water, and soil (Beek et  al. 2016). The anti- 
inflammatory drug diclofenac was found in higher-than-expected concentrations in 
50 countries (aus der Beek et al. 2016). Also relevant are the effects of cocktails of 
drugs released in the environment after human consumption or/and incomplete 
removal at the waste treatment plant, which increase ecotoxicity (Vasquez et  al. 
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2014) that is increasing over the years owing to their availability in town pharmacies 
(Parrella et al. 2014), (Besse et al. 2012). Ferrando-Climent and co-workers found 
tamoxifen and ciprofloxacin in the river upstream the sewage discharge (Ferrando- 
Climent et al. 2014), and Miller et al. (2018) discussed bioaccumulation of pharma-
ceuticals and its metabolite products in aquatic fauna, including anticancer drugs 
(Miller et al. 2018).

The increasing environmental contamination with pharmaceutical products 
requires alternative analytical techniques (Webb et al. 2003) to liquid (LC) and gas 
chromatography (GC) coupled to mass spectrometry (MS) (Fatta et al. 2007; Miller 
et  al. 2018). Other methodologies to detect emerging pollutants are given in 
Table 3.6, including titrimetric measurements, UV-vis spectroscopy, near-infrared 
spectroscopy (NIRS), fluorometry, phosphorimetry, and nuclear and magnetic reso-
nance spectroscopy (NMR) (Turci et al. 2003).

3.4.2  Sensors and Biosensors to Detect Pharmaceutical 
and Personal Care Products (PPCPs)

Pharmaceutical products and derivatives are among the most demanding contami-
nants to detect in the environment. Highly frequent are the antibiotics introduced 
into the ecosystem via excretion from humans and animals (Khor et  al. 2011). 
Antibiotics have been found in water resources, effluent from industries, sludge, 
manure, soil, plants, and organisms, the most common being b-lactams, sulfon-
amides, monobactams, carbapenems, aminoglycosides, glycopeptides, lincomycin, 
macrolides, polypeptides, polyenes, rifamycin, tetracyclines, chloramphenicol, qui-
nolones, and fluoroquinolones (Gothwal and Shashidhar 2014). Negative effects 
from antibiotics include reduction of the growth, photosynthesis, content of photo-
synthetic pigments, chlorophylls, and carotenoids in plants. Moreover, 
 fluoroquinolones inhibit DNA synthesis in eukaryotic cells, and b-lactams affect the 
plastid division in lower plants (Gothwal and Shashidhar 2014). In humans, fluoro-
quinolones may cause side effects such as nausea, dyspepsia, vomiting, dizziness, 
insomnia, and headache (Norrby 1991). The most serious problem, though, is the 
potential resistance development in human and animal pathogens (Norrby 1991; 
Larsson 2014).

Detection of pharmaceutical products has also been performed with electro-
chemical techniques that may offer low cost, robustness, easy miniaturization, low 
detection limits, small analyte volume, and real-time monitoring (Wang et al. 2008). 
Electroanalytical methods may also be combined with standard techniques to 
improve sensitivity (Brett 2001). They employ enzymes, antibodies, nucleic acids, 
or whole cells immobilized onto amperometric or potentiometric electrode trans-
ducers, without requiring sample pretreatment (Joseph Wang 2002). Biosensors 
with a chemically selective layer (Stradiotto et al. 2003) may encompass immuno-
sensors, such as the one to detect the fluoroquinolone antibiotic enrofloxacin in milk 
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Table 3.6 Methods to detect pharmaceutical products in the environment

Drug determined Technique LOD Real sample References

Acetaminophen UPLC-MS/MS 3.5 ng L−1 Wastewater Hong et al. (2015)
Amoxicillin LC-ESI-MS/

MS
9.49 ng L−1 Hospital Wastewater Gros et al. (2013)

Amoxicillin LC-ESI-MS/
MS

2.65 ng L−1 Urban Wastewater 
Effluent 

Gros et al. (2013)

Amoxicillin LC-ESI-MS/
MS

3.32 ng L−1 Urban Wastewater 
Influent 

Gros et al. (2013)

Amoxicillin LC-ESI-MS/
MS

1.32 ng L−1 River Water Gros et al. (2013)

Caffeine UPLC-MS/MS 3.4 ng L−1 Wastewater Hong et al. (2015)
Cefalexin LC-ESI-MS/

MS
4.32 ng L−1 Hospital Wastewater Gros et al. (2013)

Cefalexin LC-ESI-MS/
MS

1.43 ng L−1 Urban Wastewater 
Effluent 

Gros et al. (2013)

Cefalexin LC-ESI-MS/
MS

3.40 ng L−1 Urban Wastewater 
Influent 

Gros et al. (2013)

Cefalexin LC-ESI-MS/
MS

0.77 ng L−1 River Water Gros et al. (2013)

Clindamycin LC-ESI-MS/
MS

4.89 ng L−1 Hospital Wastewater Gros et al. (2013)

Clindamycin LC-ESI-MS/
MS

1.48 ng L−1 Urban Wastewater 
Effluent 

Gros et al. (2013)

Clindamycin LC-ESI-MS/
MS

3.13 ng L−1 Urban Wastewater 
Influent 

Gros et al. (2013)

Clindamycin LC-ESI-MS/
MS

0.48 ng L−1 River Water Gros et al. (2013)

Chloramphenicol LC-MS 0.03–
0.83 ng g−1

Mussels Fedeniuk et al. (2015)

Ciprofloxacin U-LC-Q- 
Extractive 
Orbitrap

12.6 ng L−1 River water Lidia et al. (2015)

Diclofenac UPLC-MS/MS 8.6 ng L−1 Wastewater Hong et al. (2015)
Doxycycline LC-ESI-MS/

MS
33.65 ng 
L−1

Hospital Wastewater Gros et al. (2013)

Doxycycline LC-ESI-MS/
MS

77.49 ng 
L−1

Urban Wastewater 
Effluent 

Gros et al. (2013)

Doxycycline LC-ESI-MS/
MS

59.79 ng 
L−1

Urban Wastewater 
Influent 

Gros et al. (2013)

Doxycycline LC-ESI-MS/
MS

11.23 ng 
L−1

River Water Gros et al. (2013)

Diclofenac U-LC-Q- 
Extractive 
Orbitrap

5.0 ng L−1 River water Lidia et al. (2015)

Erythromycin UPLC-MS/MS 0.22–
0.26 ng g−1

Fish Liu et al. (2014a)

(continued)
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Table 3.6 (continued)

Drug determined Technique LOD Real sample References

FQs LC-FLD 0.3 ng g−1 Fish liver and 
muscle, sediment

He et al. (2012)

FQs LC-MS 0.5–3.9 ng 
g−1

Frog legs, fishes Turnipseed et al. (2012)

FQs LC-MS/MS 0.06–0.9 ug 
kg−1

Mollusks Li et al. (2012a)

FQs LC-MS/MS 0.31–
38.4 ng g−1

Plants Sabourin et al. (2012)

FQs LC-MS/MS 0.08–
0.25 ng g−1

Fish Liu et al. (2015)

FQs UPLC-MS/MS Nd Fish Zhao et al. (2015a)
Ketoprofen UPLC-MS/MS 5.0 ng L−1 Wastewater Hong et al. (2015)
Metronidazole LC-ESI-MS/

MS
6.49 ng L−1 Ho spital 

Wastewater 
Gros et al. (2013)

Metronidazole LC-ESI-MS/
MS

1.80 ng L−1 Urban Wastewater 
Effluent 

Gros et al. (2013)

Metronidazole LC-ESI-MS/
MS

4.45 ng L−1 Urban Wastewater 
Influent 

Gros et al. (2013)

Metronidazole LC-ESI-MS/
MS

0.43 ng L−1 River Water Gros et al. (2013)

Naproxen U-LC-Q- 
Extractive 
Orbitrap

3.7 ng l−1 River water Lidia et al. (2015)

Oxacillin UPLC-MS/MS 5.5 ng L−1 Wastewater Hong et al. (2015)
Oxytetracycline LC-MS 2.6–4.4 μg 

kg−1

Plants Lidia et al. (2015)

Penicillin G LC-ESI-MS/
MS

2.55 ng L−1 Hospital Wastewater  Gros et al. (2013)

Penicillin G LC-ESI-MS/
MS

3.48 ng L−1 Urban Wastewater 
Effluent 

Gros et al. (2013)

Penicillin G LC-ESI-MS/
MS

8.62 ng L−1 Urban Wastewater 
Influent 

Gros et al. (2013)

Penicillin G LC-ESI-MS/
MS

4.00 ng L−1 River Water Gros et al. (2013)

Penicillin V LC-ESI-MS/
MS

11.31 ng 
L−1

Hospital Wastewater Gros et al. (2013)

Penicillin V LC-ESI-MS/
MS

7.04 ng L−1 Urban Wastewater 
Effluent 

Gros et al. (2013)

Penicillin V LC-ESI-MS/
MS

22.82 ng 
L−1

Urban Wastewater 
Influent 

Gros et al. (2013)

Penicillin V LC-ESI-MS/
MS

5.37 ng L−1 River Water Gros et al. (2013)

(continued)
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Table 3.6 (continued)

Drug determined Technique LOD Real sample References

PCs LC-UV/VIS 11.0–
20.4 ug 
kg−1

Fish Evaggelopoulou and 
Samanidou (2013)

Piroxicam U-LC-Q- 
Extractive 
Orbitrap

3.9 ng L−1 River Water Lidia et al. (2015)

QLs LC-MS/MS Nd Fish, crustacean Na et al. (2013)
QLS LC-MS/MS 0.81–

4.60 ug 
kg−1

Crustacean Na et al. (2013)

Roxithromycin UPLC-MS/MS 0.25–
0.35 ng g−1

Fish Liu et al. (2014b)

SAs LC-MS/MS 0.01–0.1 ng 
L−1

Aquatic plants Li et al. (2012b)

SAs LC-MS/MS 0.01–1 μg 
kg−1

Fish, sediment Gao et al. (2012)

SAs LC-MS/MS Nd Plants Tanoue et al. (2012)
Sulfadiazine U-LC-Q- 

Extractive 
Orbitrap

2.3 ng L−1 River Water Lidia et al. (2015)

Sulfadiazine LC-MS/MS 5 ng L−1 Plants Michelini et al. (2012)
Sulfadiazine LC-FLD Nd Plants Li et al. (2013)
Sufamethoxazole LC-MS 9.28–

16.07 g g−1

Plants Holling et al. (2012)

Tetracycline LC-ESI-MS/
MS

24.30 ng 
L−1

Hospital Wastewater  Gros et al. (2013)

Tetracycline LC-ESI-MS/
MS

13.42 ng 
L−1

Urban Wastewater 
Effluent 

Gros et al. (2013)

Tetracycline LC-ESI-MS/
MS

16.25 ng 
L−1

Urban Wastewater 
Influent 

Gros et al. (2013)

Tetracycline LC-ESI-MS/
MS

4.72 ng L−1 River Water Gros et al. (2013)

Triclosan UPLC-MS/MS 16 ng L−1 Wastewater Hong et al. (2015)
Tylosin LC-ESI-MS/

MS
11.97 ng 
L−1

Hospital Wastewater Gros et al. (2013)

Tylosin LC-ESI-MS/
MS

28.11 ng 
L−1

Urban Wastewater 
Effluent 

Gros et al. (2013)

Tylosin LC-ESI-MS/
MS

34.00 ng 
L−1

Urban Wastewater 
Influent 

Gros et al. (2013)

Tylosin LC-ESI-MS/
MS

2.37 ng L−1 River Water Gros et al. (2013)

Vancomycin LC-MS/MS 8.8 ng L−1 Wastewater Hong et al. (2015)
Warfarin UPLC-MS/MS 14 ng L−1 Wastewater Hong et al. (2015)

nd no data, FLD fluorescence detection, LC high-performance liquid chromatography, ESI electro-
spray ionization, UPLC ultra-performance liquid chromatography, LC-MS/MS liquid chromatog-
raphy mass spectroscopy
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and waters (Khor et al. 2011). An immunosensor prepared in a microfluidic device 
modified with antibodies was used to detect ibuprofen in water from various sources 
with a limit of detection at 0.25 pg mL−1 (Nagaraj et al. 2014), where the principle 
of detection was impedance spectroscopy. Aptasensors have been used to detect the 
hormone progesterone (P4) in a concentration range from 10 ng mL−1 to 60 ng mL−1 
with a detection limit of 0.90 ng mL−1 (Jiménez et  al. 2014). This impedimetric 
aptasensor was fabricated by immobilizing an aptamer on gold electrodes, as 
depicted in Fig. 3.10.

Illicit drugs have also been found in sewage and wastewater (Mccall et al. 2015). 
Huerta-fontela et al. determined cocaine and metabolites in wastewater at concen-
trations from 4 ng L−1 to 4.7 μg L−1 and from 9 ng L−1 to 7.5 μg L−1, respectively, 
while concentrations of amphetamine type stimulatory drugs ranged from 2 to 
688 ng L−1 (Huerta-fontela et al. 2008). Drugs found in tap water included ecstasy, 
caffeine, paraxanthine, fentanyl, and methadone (Boleda et  al. 2011). Fentanyl 
exemplifies the risk because it causes death owing to overdoses (Ciccarone 2017). 
Goodchild and co-workers (2019) developed a sensor to detect fentanyl made with 
screen-printed carbon electrodes (SPCE) modified with the ionic liquid (RTIL) 
1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide [C4C1PYrr]
[NTF2] using cycling square voltammetry (Goodchild et al. 2019). Data for this sen-
sor, whose limit of detection was 5 μmol L−1, are illustrated in Fig. 3.11:

Table 3.7 shows other examples of sensors and biosensors used for pharmaceuti-
cal detection in the environment. The presence of emerging pollutants in the envi-
ronment, mainly in potable water, is already a worrying reality in many countries. 
Novel sensors and biosensors need to be developed to detect pollutants, pesticides, 
and pharmaceutical products in the environment.

As mentioned above, there is no doubt that electroanalytical techniques are an 
outstanding alternative to monitor contaminants due to low-cost and excellent 
detection limits.

Fig. 3.10 Design of the impedimetric aptasensor to detect progesterone (P4). (Reproduced with 
permission from (Jiménez et al. 2014). Copyright 2019, American Chemical Society)
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3.5  Final Remarks

The problem of emergent contaminants has been ignored for an extended time 
because many environmental entities consider lower concentrations to be harmless. 
Consequently, these low concentrations lead to serious health problems in humans 
and animals, due to many products that are accumulated or can cause compounds to 
be more toxic when metabolized by the body.

Undoubtedly, the emergent contaminants are a significant problem that should be 
resolved by new regulations about the environmental quality that support green 
chemistry and the development of devices to monitor these product toxics in the 
environment – followed by more toxicity studies and rigorous control of products 
that will be brought to market.

As mentioned in this chapter, the electrochemical techniques have been postu-
lated as a tool for detection of pollutants, pharmaceutical products, and pesticides 
with a low price, simplicity, and selectivity, rather low detection limits and multiple 

Fig. 3.11 Fentanyl sensor based in screen-printed modified with the room temperature ionic liq-
uid (RTIL). (Reproduced with permission from (Goodchild et al. 2019). Copyright 2019, American 
Chemical Society)

E. M. Materon et al.



113

Table 3.7 Electrochemical methods to detect pharmaceutical products in the environment

Drug determined Technique LOD Real sample References

17b-Estradiol Electrochemical 
impedance

5.0 × 10−9 μmolL−1 Water sample Ke et al. 
(2014)

Acetaminophen Differential 
pulse 
voltammetry

4.4 μg L−1 River water Berto et al. 
(2018)

Amiloride 
hydrochloride

Square wave 
voltammetry

0.09 μmolL−1 Tap water Moraes and 
Salamanca- 
neto (2017)

Amlodipine besylate Square wave 
voltammetry

0.30 μmolL−1 Tap water Moraes and 
Salamanca- 
neto (2017)

Ampicillin Differential 
pulse 
voltammetry

1.09 × 10−9 molL−1 Milk Wang (2015)

Ampicillin Differential 
pulse 
voltammetry

4.0 × 10−9 molL−1 Milk Wang et al. 
(2016)

Ampicillin Square wave 
voltammetry

2.8 × 10−10 molL−1 Lake water Yang et al. 
(2017)

Ascorbic acid Cyclic 
voltammetry

1 μmolL−1 Lemon juice Emran et al. 
(2018)

Atenolol Square wave 
voltammetry

0.06 μmolL−1 Tap water Moraes and 
Salamanca- 
neto (2017)

Bisphenol-A Square wave 
voltammetry

0.6 × 10−9 mol L−1 Tap water Liu et al. 
(n.d.)

Bisphenol-A Square wave 
voltammetry

0.19 × 10−9 molL−1 Tap water Yu et al. 
(2016)

Bisphenol-A Differential 
pulse 
voltammetry

2.1 × 10−11 molL−1 Environmental 
water

Derikvand 
et al. (2016)

Bisphenol-A Differential 
pulse 
voltammetry

5.0 × 10−6 molL−1 milk Zhou et al. 
(2014a)

Cefalexin Differential 
pulse 
voltammetry

0.01 μmolL−1 River water Feier et al. 
(2017)

Cefalexin Cyclic 
voltammetry, 
electrochemical 
impedance 
spectroscopy

3.2 nmolL−1 River water Feier et al. 
(2019)

Cefalexin Differential 
pulse 
voltammetry, 
amperometry

1.0 × 10−7 molL−1 Spike river 
water

Feier et al. 
(2017)

(continued)
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Table 3.7 (continued)

Drug determined Technique LOD Real sample References

Chloramphenicol Electrochemical 
impedance 
spectroscopy

1.8 × 10−6 molL−1 Buffer solution Pilehvar et al. 
(2014)

Chloramphenicol Square wave 
voltammetry

1.0 × 10−12 mol L−1 Fish Chen et al. 
(2015)

Chloramphenicol Square wave 
voltammetry

4.6 × 10−10 mol L−1 Milk Yan et al. 
(2016)

Chloramphenicol Cyclic 
voltammetry

1.0 × 10−5 mol L−1 Milk Munawar 
et al. (2017)

Chloramphenicol Differential 
pulse 
voltammetry

1.0 × 10−10 mol L−1 Milk and 
honey spiked 
samples

Yang and 
Zhao (2015)

Chloramphenicol 
(CAP)

Square wave 
voltammetry and 
cyclic 
voltammetry

2.0 × 10−7 mol L−1 Milk powder, 
bee pollen 
samples spiked 
with CAP

Sun et al. 
(2017)

Ciprofloxacin Differential 
pulse 
voltammetry

0.005 μmolL−1 Wastewater 
effluent

Gayen and 
Chaplin 
(2015)

Ciprofloxacin Electrochemical 
impedance 
spectroscopy, 
cyclic 
voltammetry

0.5 ng L−1 Milk Li et al. 
(2018)

Clenbuterol Electrochemical 
impedance 
spectroscopy

1.3 × 10−12 molL−1 Pork Chen et al. 
(2016)

Clonazepam Differential 
pulse adsorptive 
cathodic 
stripping 
voltammetry

0.65 μgL−1 Natural rivers Nunes et al. 
(2017)

Dexamethasone Square wave 
voltammetry

2.8 10−8 molL−1 Wastewater Oliveira et al. 
(2015)

Diazepam Differential 
pulse adsorptive 
cathodic 
stripping 
voltammetry

0.27 μgL−1 Natural rivers Nunes et al. 
(2017)

Diclofenac Square wave 
voltammetry

1.8 × 10−7 mol L−1 Wastewater Oliveira et al. 
(2015)

Dopamine Flow injection 
analysis system 
coupled to 
multiple pulse

0.011 μmolL−1 Waste river 
samples

Wong et al. 
(2018)

Flutamide Square wave 
voltammetry

0.21 μmolL−1 Water Švorc et al. 
(2017)

(continued)
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Table 3.7 (continued)

Drug determined Technique LOD Real sample References

Flutamide Cyclic 
voltammetry

0.016 μmolL−1 Tap water Kubendhiran 
et al. (2018)

Hydrazine Amperometry 0.23 μmol L−1 Natural lake 
and tap water

Deroco et al. 
(2018)

Hydrochlorothiazide Square wave 
voltammetry

0.08 μmolL−1 Tap water Moraes and 
Salamanca- 
neto (2017)

Hydroquinone Square wave 
voltammetry

0.05 μmolL−1 Water samples Soltani et al. 
(2016)

Hydroquinone Flow injection 
amperometry

0.1 μmolL−1 Water samples Upan et al. 
(2015)

Ibuprofen Differential 
pulse 
voltammetry

2.0 × 10−10 molL−1 Wastewater Roushani and 
Shahdost-fard 
(2016)

Kanamycin Differential 
pulse 
voltammetry

8.7 × 10−13 molL−1 Food Xiong et al. 
(2012)

Square wave 
voltammetry

1.4 × 10−10 molL−1 Milk Zhou et al. 
(2015)

Differential 
pulse 
voltammetry

7.6 × 10−12 molL−1 Milk Sheng et al. 
(2017)

Differential 
pulse 
voltammetry

0.87 × 10−6 molL−1 Milk Qin et al. 
(2015)

Kanamycin Differential 
pulse 
voltammetry

5.8 × 10−9 molL−1 Milk Sun et al. 
(2013)

Square wave 
voltammetry

1.0 × 10−9 molL−1 Milk Xu et al. 
(2015)

Differential 
wave 
voltammetry

9.5 × 10−12 molL−1 Milk Xu et al. 
(2014)

Kanamycin Cyclic 
voltammetry, 
electrochemical 
impedance 
spectroscopy

0.11 ng mL−1 Spiked milk 
samples

Sharma et al. 
(2017)

Levofloxacin Differential 
pulse 
voltammetry

3.61 ng mL−1 Milk Huang et al. 
(2016)

Metronidazole Cyclic 
voltammetry

1.8 × 10−11 molL−1 Tablets, fish 
samples

Li et al. 
(2015a)

(continued)
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Table 3.7 (continued)

Drug determined Technique LOD Real sample References

Metronidazole Differential 
pulse adsorption 
square 
voltammetry

1.6 × 10−8 molL−1 Milk, honey 
spiked samples

Chen et al. 
(2013)

Metronidazole Linear sweep 
voltammetry

2.8 × 10−8 molL−1 Lake water Emran et al. 
(2018)

Ofloxacin Differential 
pulse 
voltammetry

0.4 ng mL−1 Water, plant 
sewage

Pilehvar et al. 
(2016)

Oxacillin Differential 
pulse 
voltammetry, 
amperometry

1.0 × 10−5 molL−1 Spike river 
water

Feiera et al. 
(2017)

Oxytetracycline Square wave 
voltammetry

2.2 × 10−10 molL−1 Milk Rapini and 
Marrazza 
(2017)

Paracetamol Square wave 
voltammetry

0.01 μmolL−1 Water samples Kumar et al. 
(2019)

Paracetamol Differential 
pulse 
voltammetry

1.3 × 10−8 molL−1

8.0 × 10−9 molL−1

Natural water 
from creek

Raymundo- 
Pereira et al. 
(2017)

Penicillin G 
(beta-lactams)

Amperometry 1.0 × 10−10 molL−1 River 
wastewater

Merola et al. 
(2014)

Piroxicam Square wave 
voltammetry

0.16 μmolL−1 Tap water Augusto et al. 
(2018)

Ractopamine Electrochemical 
impedance 
spectroscopy

1.0 × 10−10 molL−1 Pork Chen et al. 
(2016)

Streptomycin Differential 
pulse 
voltammetry

14.1 × 10−6 molL−1 Rat serum, 
milk

Danesh et al. 
(2015)

Streptomycin Differential 
pulse 
voltammetry

5 × 10−10 molL−1 Porcine, 
kidney, honey 
(spiked 
samples)

Wen et al. 
(2017)

Sulfadimethoxine Square wave 
voltammetry

7.0 × 10−9 molL−1 Lake water Yang et al. 
(2017)

Sulfaguanidine Impedance 
spectroscopy, 
differential pulse 
voltammetry

0.20 pg mL−1 Honey samples El et al. 
(2018)

Sulfamethoxazole Square wave 
voltammetry

0.024 μmolL−1 Surface water 
samples

Zhao et al. 
(2015b)

Sulfamethoxazole Electrochemical 
impedance

1.0 × 10−12 molL−1 Seawater Ait-lahcen 
et al. (2016)

(continued)
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designs that allow miniaturization. These techniques also have the possibility of 
being coupled with conventional measurement methods improving their 
sensitivity.
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Table 3.7 (continued)

Drug determined Technique LOD Real sample References

Sulfamethoxazole Square wave 
voltammetry

0.024 μmolL−1 Lake water Zhao et al. 
(2015b)

Sulfamethoxazole Electrochemical 
impedance 
spectroscopy

1.0 × 10−12 molL−1 Spiked 
seawater

Ait-lahcen 
et al. (2016)

Sulfanilamide Amperometry 0.016 μ molL−1 Pork He and Chen 
(2016)

Sulfathiazole Amperometry 0.001 μg mL−1 Milk Bueno et al. 
(2014)

Sulfonamides Cyclic 
voltammetry

0.12 ng mL−1 Water samples Zhang et al. 
(2019b)

Tetracycline Cyclic 
voltammetry

0.035 μgL−1 Water samples Alawad et al. 
(2019)

Tetracycline Voltammetry 0.22 fM Honey Bougrini 
et al. (2016)

Tetracycline Differential 
pulse 
voltammetry

5.6 × 10−12 molL−1 Milk Guo et al. 
(2015)

Tetracycline Differential 
pulse 
voltammetry

4.5 × 10−11 molL−1 Milk Mohammad, 
et al. (2016)

Tetracycline Linear sweep 
voltammetry

2.2 × 10−16 molL−1 Honey Bougrini 
et al. (2016)

Tetracycline Adsorptive 
stripping 
differential pulse 
voltammetry

3.6 × 10−7 mol L−1 River water Wong et al. 
(2015)

Theophylline Differential 
pulse 
voltammetry

1.2 × 10−9 molL−1 Tea Gan et al. 
(2017)

Timolol maleate Pulse adsorptive 
anodic stripping 
voltammetry

7.1 × 10−10 mol L−1 Tap water Mohammed 
et al. (2018)

Triclosan Cyclic 
voltammetry

0.23 pg mL−1 Water samples Motia et al. 
(2019)
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