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Abstract. The paper investigates the potential of improving vehicle ride
comfort based on introducing control design coupling between front- and rear-
axle active suspensions. The considered linear quadratic regulator (LQR) cost
function includes conflicting criteria related to ride comfort, vehicle handling,
and suspension stroke. A covariance analysis related to standard deviations of
cost function criteria with respect to stochastic road profile input is carried out
for half-car models with two and four degrees of freedom. The presented results
show that the control-design coupling can considerably improve the ride com-
fort in terms of reduced sprung mass pitch or heave acceleration with a relatively
small sacrifice of vehicle handling and suspension stroke. The performance
improvement is explained by the fact that the rear suspension controller uses
state information from the front axle (and vice versa), which may be considered
as a kind of preview action.

Keywords: Active suspension � Half-car model � Optimal control � Control
coupling

1 Introduction

Half-car model introduces several effects which are not present in the basic quarter-car
model, such as wheel-base filtering and sprung mass pitch dynamics. When designing
an active suspension control system, decoupled controllers targeted to each axle are
typically considered (see e.g. [1]). Such design relies on decoupling the half-car model
into two separate quarter-car models based on satisfying specific mechanical- and
control-design conditions, where the latter defines the ratio of pitch and heave accel-
eration penalization [2]. In this paper, it is investigated if further ride comfort
improvement can be achieved through coupling the control actions of front and rear
suspensions, i.e. by separating the tuning of heave and pitch acceleration penalizations.

The remaining part of the paper is organized in three sections. Section 2 contains
details on the vehicle models and related controls, and introduces mechanical and
control decoupling conditions. Section 3 details the methodology for evaluation of
performance metrics based on standard deviations of system outputs (so-called
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covariance analysis). The covariance analysis results are discussed in the same section,
with emphasis on improvements obtained by front/rear axle control coupling. Con-
cluding remarks are given in Sect. 4.

2 Active Suspension Modeling and Control

Two typical representations of half-car model are depicted in Fig. 1, and they include a
two degree of freedom (DOF) model (Fig. 1a) and a four DOF model (Fig. 1b) [1]. The
chosen state variables are front and rear suspension deflections and front and rear
sprung mass velocities for the 2DOF model, and additional two state variables per axle
corresponding to the tire deflections for the 4DOF model. The 2DOF model is
described in the state-space form as [1]:
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where x is the state vector, A, B, and G are the system, control input, and disturbance
input matrices, respectively, u is the control input vector corresponding to front and
rear active suspension actuator forces, and w is the ground velocity vector. The model
parameters used throughout this paper are given at the end of Appendix.

Note that the matrix B contains two elements (b22 and b41) which mechanically
couple rear actuator force and front suspension dynamics, and vice versa, thus meaning
that the control action at the rear axle affects front suspension states, and vice versa. In
order to mechanically decouple front and rear suspension dynamics, these two terms
have to be equal to zero, which gives the mechanical decoupling condition [1, 2]:

Jp ¼ Mslf lr; ð2Þ

where Jp is the pitch moment of inertia,Ms is the sprung mass, and lf and lr are distances
between the center of gravity (CoG) and the front and rear axle, respectively (Fig. 1a).
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Fig. 1. Half-car model with two degrees-of-freedom (2DOF) (a) and four degrees of freedom
(4DOF) (b)
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The mechanical decoupling condition is rarely fully satisfied, but the ratio Jp/(Mslflr) is
close to 1 for most of vehicles. According to the vehicle data available in CarSim, this
ratio is between 0.73 and 0.89 for all vehicle types considered therein. Thus, it is
reasonable to assume that the mechanical decoupling condition is satisfied, which is
confirmed by the analysis presented in Sect. 3 (along results presented in Fig. 2). Note
that the decoupling condition (2) holds for the 4DOF model, as well [1, 2].

The active suspension is considered to be controlled by a linear quadratic regulator
(LQR). The LQR-design cost function for 4DOF model includes penalization of root-

mean-square (RMS) sprung mass heave €zð Þ and pitch €h
� �

accelerations, RMS front

and rear tire deflections (ztf and ztr), and RMS front and rear suspension deflections (zsf
and zsr) [1]:
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In the case of 2DOF model, the penalization terms corresponding to tire deflection
are omitted: r3f ¼ r3r ¼ 0. Penalization coefficients of front and rear suspension
deflection may be fixed (e.g. r4f ¼ r4r ¼ 1), while the ones related to front and rear tire
deflections may be set to be proportional to those of corresponding suspension
deflections (e.g. r3f ¼ 10 r4f ¼ 10). In this way we eliminate the solutions which do
not result in practical designs, in a similar fashion as done in the quarter-car model [3]
(see Appendix).

The cost function Eq. (3) can be rewritten into the LQ matrix form:

J ¼ E xTQxþ uTRu
� �

; ð4Þ

where the state vector equals zsf _zf zsr _zr
	 
T

and ztf _zusf zsf _zf ztr _zusrzsr _zr
	 
T

for the 2DOF
and 4DOF models, respectively, while the matrices Q (for 2DOF model) and R (for
both models) read:
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The optimal state-feedback control law that minimizes the cost function Eq. (4) is
defined for the 2DOF model as:

Uf Ur½ �T¼ �Kx ¼ k11 k12 k13 k14
k21 k22 k23 k24

� �
zsf _zf zsr _zr½ �T ; ð6Þ

The control decoupling condition follows from setting the cross-diagonal terms of
control input penalization matrix R to zero, and it is given by [2]:
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r2 ¼
J2p

M2
s lf lr

r1: ð7Þ

The same control decoupling condition is valid for 4DOF model, as well [1, 2].
Equation (7) when related to Eq. (3) implies the loss of a control degree of freedom, i.e.
the pitch and heave criteria become coupled when the ratio r2/r1 is set to Jp

2/(Ms
2lflr).

Note that in case when the mechanical decoupling condition (2) is satisfied, the control
design decoupling condition (7) reduces to r2 = lflrr1.

3 Performance Analysis of Control-Design Coupling

Performance analysis of the considered active suspension control system is based on
covariance analysis [4], which results in normalized RMS values of state variables with
respect to zero-mean Gaussian white noise ground velocity w, which is a typical
approximation of stochastic road profile [3]. Assuming that the active suspension
closed-loop system is stable, standard deviations of state variables can be numerically
obtained by solving variance equation, which is similar to Lyapunov equation [4]:

AclXþXAT
cl þGQwG

T ¼ 0; ð8Þ

where Acl is the closed-loop system matrix Acl = A − BK, X is the state covariance
matrix, and Qw is the power spectral density matrix of ground velocity. The term
GQwG

T should take into account the time delay between front and rear ground velocity
inputs because of introduced control coupling. This is an extension of the decoupled
control approach considered in [1], where the time delay is not taken into account. For
the considered 2D case, the ground velocity input is represented by [5]:

w ¼ wf

wr

� �
¼ w tð Þ

w t � twbð Þ
� �

ð9Þ

where twb = (lf + lr)/vx is time delay between axles, with vx denoting the vehicle lon-
gitudinal velocity. Such white noise input is represented by its power spectral density
matrix [5, Chap. 29]:

Qw ¼ 2
p

Z1

0

Rw sð Þ cos Xð Þsds ¼ 2
p
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0

qw
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where d is Dirac function. Qw is now 2 � 2 matrix with power spectral densities of
ground velocities. If we partition the matrix G from Eq. (1) such that
G ¼ G4�1

1 G4�1
2

	 

, i.e. such that each axle has its own input matrix, and insert it into

GQwG
T of Eq. (8), while taking into account Eq. (10) we get [5, chap. 29]:
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Qwn ¼ GQwG
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where eAtwb is matrix exponential of Atwb. If we set qw = 2pAV, where A is the road
roughness coefficient [1], insert Qwn given by Eq. (11) into Eq. (8), and divide the
obtained results with square root of qw we get normalized RMS values of state vari-
ables. The normalized RMS values of output variables can be obtained from Y =
CclXCcl

T , where Ccl = C − DK is the closed-loop output matrix, and C and D are the
matrices of model output equation (y = Cx + Du). The reason for why the covariance
equation cannot be normalized before being solved lies in Eq. (11), where vx is
implicitly present through twb = (lf + lr)/vx.

Figure 2 shows the performance plot of 2DOF model, obtained by varying the
mechanical decoupling ratio Jp/(Mslflr) between 0.5 and 1.5, with the control-design
decoupling condition (7) satisfied, i.e. r2 = r1Jp

2/(Ms
2lflr) held, and suspension stroke

penalization coefficients in Eq. (3) set to r4f ¼ 1 and r4r = lf/lr (it can be readily shown
that this particular choice of ratio r4f =r4r ensures same front and rear suspension
strokes), and varying penalization of heave acceleration r1. It can be observed from the
plot that by increasing the pitch inertia Jp (higher mechanical coupling ratio), the RMS
heave acceleration is somewhat increased while the RMS pitch acceleration (shown in
color) is somewhat decreased for the same value of suspension stroke. This trend is
more pronounced for the case of lower heave acceleration penalization coefficient r1.

r1

increase

Fig. 2. Performance plot of 2DOF model for varying mechanical coupling ratio and heave
penalization (r1), with fixed suspension stroke penalization (r4f ¼ 1 and r4r ¼ lf =lr) and satisfied
control decoupling condition (r2 = r1Jp

2/(Ms
2lflr)).
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Note that the front and rear suspension strokes are condensed in Fig. 2 into the mean
suspension stroke, in order to present the results in a compact manner, with no loss of
generality since the front and rear suspension stroke are equally penalized.

If the system is mechanically decoupled (Jp/(Mslflr) = 1), the front suspension
actuator force will not affect the rear suspension states, and vice versa. If along with the
mechanical decoupling condition, the control decoupling condition is satisfied, i.e. r2/
r1 = lflr (1.875 for the particular vehicle data listed in Appendix), the state controller
gain matrix K and the matrix R are equal to:

K ¼ 812:4 987:3625 0 0
0 0 677 822:8

� �
; R ¼ 10�5 � 0:1515 0

0 0:1818

� �

This means that the front actuator (Uf) does not use rear suspension states ðzsr _zrÞ, as
feedback gains corresponding to the rear suspension states, i.e. cross-coupling gains,
are equal to zero. The same conclusion holds for rear actuator and front suspension
states.

The control coupling is reflected in appearance of non-zero cross-coupling terms in
the state controller gain matrix K, where there are two characteristic cases. The first
case is defined by the inequality r2/r1 > lflr, which results in the following matrices
K and R (given for r2/r1 = 10):

K ¼ 559:9 790:94 252:5 196:42
252:5 196:42 424:5 626:38

� �
; R ¼ 10�4 � 0:0771 �0:0744

�0:0744 0:1074

� �

The second case, in which the ratio r2/r1 < lflr, here r2/r1 = 0.1, results in:

K ¼ 103 � 1:6109 1:3367 �0:7985 �0:3493
�0:7985 �0:3493 1:4755 1:1721

� �
;

R ¼ 10�6 � 0:8953 0:7438
0:7438 0:9256

� �

The above LQR parameter results for the two characteristic cases point out that
positive cross-diagonal elements of matrix R cause negative LQR cross-gains (ele-
ments k13, k14 and k21, k22), and negative cross-diagonal elements of matrix R cause
positive LQR cross-gains. In both cases this means that, even for mechanically
decoupled suspension model, the rear suspension controller gets information from front
axle, which could be viewed as some sort of preview. Also, in the case when cross-
gains are positive, front and rear suspension forces will be in the same direction with
respect to same state variable, thus attempting to reduce pitch motion (note that in this
case r2 > r1 holds), but from this we cannot determine at what cost.

Figure 3 shows the obtained performance plot of 2DOF model from Fig. 1a, which
indicates the trade-off between ride comfort and suspension stroke. For the case of
control-design decoupling (i.e. when the condition (7) is satisfied), the pitch acceler-
ation has the same trend as heave acceleration (see dark orange line in Fig. 3 and cf. the
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results from Fig. 2 for the decoupled case), and it decreases as the suspension stroke
increases. Thus, there are two conflicting criteria: heave/pitch acceleration and sus-
pension stroke.

In the control-design coupling case, the weighting factors r1 and r2 can be set
independently, thus resulting in one control degree-of-freedom more and 3D perfor-
mance plot in Fig. 3 (the three performance criteria become conflicting to each other),
compared to the control decoupling case represented by 2D plot. One may increase r2
while keeping r1 constant to come below the decoupled-case performance line, i.e. to
reduce pitch acceleration without significantly affecting heave acceleration and sus-
pension strokes. More specifically, when considering point Ec in comparison with the
decoupled-case point E, the RMS pitch acceleration is reduced by 86% with no change
in RMS heave acceleration and with RMS mean suspension stroke increase of 1% (note
that front suspension stroke is increased by 4% and rear suspension stroke decreased by
3%). It should be noted that while the pitch acceleration can be reduced without
significant increase of suspension strokes, the heave acceleration cannot be reduced
without affecting the suspension stroke.

Figure 4 shows the trade-off between ride comfort, vehicle handling and suspen-
sion stroke for the 4DOF model. Here, the ratio of tire deflection and suspension stroke

r1 increase

r2 increase

E

Ec

Fig. 3. Performance plot for control design coupling case of mechanically decoupled 2DOF
model (Jp/(Mslflr) = 1), obtained for fixed suspension stroke penalizations r4f ¼ 1; r4r ¼ lf =lr

� �
and varying heave (r1) and pitch (r2) penalizations.
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penalizations is set to r3/r4 = 10, as this results in a good trade-off between tire
deflection and suspension stroke (see [3] and Appendix), and both front and rear states
are equally penalized (r3f = r3r = r3, r4f = r4r = r4 = 1). The front and rear RMS tire
deflections and RMS suspension deflections are represented by their mean values,
similarly as in the case of 2DOF model. The control decoupling case (magenta line; r2/
r1 = lflr) results in qualitatively similar trade-off between heave/pitch acceleration and
suspension stroke as observed in the 2DOF model case (cf. Figure 3 and note that the
RMS values of suspension and tire deflection are related to each other for fixed ratio r3/
r4 selected).
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Fig. 4. Performance plot for control-design coupling case of mechanically decoupled 4DOF
model (Jp/(Mslflr) = 1), obtained for fixed tire deflection penalizations r3f ¼ r3r ¼ 10
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and fixed

suspension deflection penalization ðr4f ¼ r4r ¼ 1Þ, and varying heave (r1) and pitch (r2)
penalization.
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However, when control-design coupling is exploited ðr2=r1 6¼ lf lrÞ, pitch acceler-
ation or heave acceleration can be additionally decreased with mostly minor sacrifices
in tire deflection and/or suspension stroke (generally, there are four conflicting criteria,
i.e. three in the particular case of fixed ratio r3/r4). For instance, when considering
points E1 and E1c in Fig. 4, the RMS pitch acceleration is reduced by 26% at the cost of
RMS mean suspension stroke increase of 2% and RMS mean tire deflection increase of
6%, without impact on heave acceleration.

Furthermore, when considering points E2 and E2c in Fig. 4, the RMS heave
acceleration can be reduced by 21% with unchanged level of RMS pitch acceleration,
and with only 3% increase in RMS mean tire deflection and less than 9% increase in
RMS mean suspension stroke. The control coupling benefits are generally lower than
for the 2DOF model, as a consequence of introduction of unsprung mass dynamics and
tire deflection criteria.

4 Conclusion

The benchmark performance of half-car model equipped with LQR-controlled active
suspension, expressed in terms of trade-off of normalized RMS heave and pitch
accelerations, tire deflections and suspension strokes, has been evaluated in the cases of
front/rear axle mechanical coupling and control-design coupling. The control-design
coupling, in which the heave and pitch accelerations penalizations can be set sepa-
rately, results in improvements of ride comfort without significant deterioration of
handling and suspension stroke criteria when compared to the decoupled case. Unlike
in the decoupled case, the rear-axle suspension controller acts on the front-axle state
measurements (and vice versa), thus providing a kind of preview action that improves
the performance. However, from the implementation point of view, exploiting
front/rear axle control coupling may result in more complex design of realistic control
system (including observers) and eventually less robust behavior when compared to
decoupled, quarter car model-based controllers.

Apart from designing and analyzing more realistic control system, the future work
can be directed to expanding the knowledge gained from the presented analysis on a
full-car model, which has additional degree of freedom related to roll dynamics, and/or
on the case of added road preview control. Furthermore, adaptive control schemes
could be derived, which would, for instance, emphasize either heave suppression or
pitch suppression depending on the driving conditions or driver’s preferences.
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Appendix

Applying the covariance analysis to the quarter-car model (a half of the model shown
in Fig. 1b) and the cost function (cf. Eq. (3)):

J ¼ E r0€z
2 þ r1z

2
t þ r2z

2
s

� �
; ð12Þ

gives the performance plot shown in Fig. 5, which indicates the trade-off between the
three conflicting criteria in a similar (but more illustrative way) than the carpet plots
given in [1]. Although the three criteria are conflicting, it can be observed from the plot
in Fig. 5 that there exists an area bounded roughly by lines corresponding to r1 = 0.01
and (r1/r2)max = 1000 in which both RMS tire deflection and RMS suspension
deflection monotonically fall with increasing sprung mass acceleration. Thus, this
practical design area can be associated with tire deflection penalization (r1) being
stronger than suspension deflection penalization (r2). Satisfying trade-off between RMS
tire deflection and suspension deflection is obtained for r1/r2 = 10 (cf. intersections
between equally colored solid and dashed lines in Fig. 5), which is used as design
setting related to 4DOF model in the main body of this paper (r3/r4 = 10, therein).

The half-car model parameters used in the main body of this paper are [1]: Jp= 2475
kgm2, Ms = 1100 kg, lf ¼ 1:25 m, lr = 1.75 m, musf ¼ musr ¼ 40 kg; ktf ¼ ktr ¼
160000 N=m; btf ¼ btr ¼ 0 Ns=m. The quarter-car model parameters used to obtain the
plot in Fig. 5 are [3]: ms = 400 kg, mus= 40 kg, kt ¼ 160000 N=m, bt ¼ 0 Ns=m.

Fig. 5. Performance plot of quarter-car model obtained with sprung mass penalization r0 set to
1, and varying tire deflection penalization (r1) and suspension stroke penalization (r2).
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