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Abstract. Owing to the rapid development of the rail transportation, the health
monitoring of the track structure becomes a challenging problem. This article
presents a novel approach to carry out damage detection and localization of
fastening systems along the rail based on deep learning and vehicle-track cou-
pled dynamics analysis. A convolutional neural network (CNN) is designed to
learn optimal damage-sensitive features from the rail acceleration response
automatically and identify the damage location of fastening systems, leading to a
high detecting accuracy. The vehicle-track coupled dynamics model incorpo-
rating different damage level of fastening systems is adopted to generate labeled
dataset to train the proposed network. The advantage of this approach is that
CNN learns to extract the optimal damage-sensitive features from the raw
dynamical response data automatically without the need of computing and
selecting hand-crafted features manually. T-SNE is applied to manifest the super
feature extraction capability of CNN. Thereafter, the trained network is esti-
mated on the testing dataset to validate its generation capability. The results
reveal a good performance of the proposed method.
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1 Introduction

The health monitoring of larger-scale operating railway network has been an essential
challenging task for railway engineers and researchers, especially for the early-stage
damage detection for the key components of railway structures [1]. Vision-based
method is popular for structural damage detection. Image analysis [2] is applied to find
the clip missing position along the track. An object detection model through CNN [3] is
established to detect and localize the crack of the structure. The limitation of this sort of
method is to identify early-stage failure and invisible flaw of the structure, such as the
aging of the rubber pad and the invisible crack of fastening clip in the fastening system.
Since the change of the structural property has a direct impact on the dynamic response,
it’s reasonable to suppose the variation of response as a sign of the structural damage.
Therefore, Vibration-based damage detection can address the drawback of the
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Image-based method to a great extent, and intelligent diagnosis method based on
dynamic response is a hot topic in structural damage detection field in the recent years.

Generally, intelligent diagnosis method, in which artificial neural network (ANN),
and support vector machine (SVM) are the most widely applied, includes two main
process: feature extraction and damage identification. A neural network–based damage
detection method using the modal properties is presented [4]. Wavelet packet transform
is adopted to extract damage-sensitive feature from the dynamical response of a bridge,
ANN is then applied to achieve damage detection based on the extracted feature [5].
Although partial successes were obtained, its performance is influenced by the hand-
crafted features from the raw data greatly.

The main purpose of this article is to demonstrate the feasibility of application of
1-D CNN on the damage detection of railway system. In light of CNN’s capability to
extract optimal damage-sensitive feature [6, 7], a novel approach is proposed in this
study, aiming to identify the early-stage damage presence and location of the fastening
system along the rail effectively. Based on the dataset containing different health
conditions of the fastening system generated by the vehicle-track coupled model, a
customized CNN is designed and trained to carry out feature extraction and damage
location.

2 Dataset Generation Model

In this section, a vehicle-track vertical coupled dynamics model is established with a
combination of the vehicle subsystem, the track subsystem and the wheel-rail inter-
active model [8]. Specifically, dynamical parameters of a kind of high speed train and
ballasted track are adopted in this model. An explicit integration method [9] is
employed to compute the system response.

Since the fastening system is simplified as a spring in the dynamical model, stiff-
ness reduction in varying degree is regarded as the simulation of different health
condition of the fastening system. As shown in Fig. 1, ten consecutive fastenings of the
rail are selected randomly to make damage cases in multiple degrees. Excited by
various kinds of rail irregularities, the acceleration responses of the rail position cor-
responding to the fastenings can be collected as the dataset. Each case is sampled to
1500 data points. Concretely, the dynamic response considering stiffness reduction of 5
extents: 100%, 70%, 50%, 30%, 10% and the intact condition for each selected position
is calculated under the excitation of 44 different rail irregularities. The whole dataset
comprises of 11 categories, no.0 to no.9 representing damage location of the fastening
system on no.0 to no.9, and no.10 representing the intact condition. There are 44
samples for the intact case, while the number of other cases is 220 (44 excitations � 5
damage levels). The intact samples are duplicated 5 times to generate a category-
balanced dataset. Therefore, the generated dataset contains 2,420 samples (220 � 11
categories). After shuffling the dataset for each category, 1,694 samples (154 � 11) are
used as training dataset, 242 samples (22 � 11) are used as validation dataset, and the
rest 484 samples as testing dataset.
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The dataset is normalized to a distribution with a mean of 0 and a variance of 1 to
expedite the convergence of the network training process. Then, data augmentation is
implemented on the dataset to gain more data, which will be beneficial for the training
and generalization of the network.

3 Damage Detection Method

Compared to traditional artificial neural network, there are three main traits of CNN,
which are, local field, weight sharing and subsampling. Taking advantage of these
configuration, CNN not only gets a shift invariance property, leading to the model
robustness, but also has less trainable parameters, decreasing the risk of overfitting.
Stack of convolution and pool operation makes CNN to learn hierarchical feature from
the raw data.

In this section, a 1-D CNN is designed to extract optimal damage-sensitive feature
and identify the fastening system health condition. As illustrated in Fig. 2, the structure
of the designed CNN can be divided into two parts: convolution block for feature
extraction and FC block for classification. In the convolution block, the input time
series data is followed by a convolutional layer with nonlinear activation, then a max
pooling layer is added. The similar substructure is stacked twice to get a hierarchical
representation of the raw data. Specifically, the filter size of the convolutional layer and
the pooling size is set as 16 and 4, respectively. Batch Normalization layers [10] are
inserted after each convolutional layer to solve the so-called internal covariate shift
problem, thus accelerating the convergence of network training process. In the FC
block, the output of the last pooling layer is flattened to a 1-D vector. Three full
connected layers (FC) and a Softmax layer are then used to carry out feature trans-
formation and classification. Tricks called dropout are employed in the FC layers to
relieve the overfitting problem of the network. The training and testing process of the
CNN are implemented through Tensorflow [11] developed by Google.
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Fig. 1. Vehicle-track coupled dynamics model for dataset generation.
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Totally, there are 958,315 (958,867 trainable) parameters and 6 nonlinear layers
involved in the designed CNN. The configuration of the network is determined by trial
and error process to achieve a good performance. The parameters of the designed CNN
are updated through the Adam Stochastic optimization algorithm [12] to minimize the
loss function, namely cross-entropy which estimates the divergence between the dis-
tribution of the network output and the ground truth.

As depicted in Fig. 3, the proposed damage detection method can be divided into
two phases: training phase and testing phase. In the training phase, the loss is computed
by the constructed network with the input training data, and the training parameter
updating process is carried out w.r.t the calculated loss. In the testing phase, the trained
CNN can be used to predict the damage presence and location only with the dynamical
response signals as input. Furthermore, evaluation of the CNN performance can be
conducted by calculating the predicting accuracy through comparing the predicted
logits and the true label.
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Fig. 2. One-dimensional convolutional neural network architecture
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4 Results and Conclusion

In this section, t-SNE [13] is adopted for the visualization of the extracted features in
the last layer of CNN. Figure 4 shows the 2D and 3D features of the testing samples.
Clear inter-category distance can be found, which indicate excellent ability of CNN for
feature extraction.

The damage detection performance of the CNN is evaluated on the generated
testing dataset. Table 1 gives the confusion matrix of the designed network on the
testing dataset. It shows the identification results of all patterns specifically. Each
element in the matrix is the number of a certain real pattern to be identified. More
specifically, the elements in the diagonal are the number of cases classified accurately.
And the identification accuracy for each pattern are shown in the right side of the table.
Obviously, the result reveals a high detection accuracy of CNN. In conclusion, the
proposed method shows great potential for the automatic damage detection in the early
stage of the fasten system, reliving the labor of the workers.
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Fig. 3. Scheme of the proposed damage detection method
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Fig. 4. Visualization of the learned features: (a) 2D features and (b) 3D features
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Table 1. The detection accuracy on the test dataset.

Counting results Predicted damage location
0 1 2 3 4 5 6 7 8 9 10 Total %

Ground truth label 0 85 0 0 0 0 0 0 0 0 0 3 88 96.6
1 1 86 0 0 0 0 0 0 0 0 2 88 97.7
2 0 0 86 2 0 0 0 0 0 0 0 88 97.7
3 0 0 0 88 0 0 0 0 0 0 0 88 100
4 0 0 0 0 85 3 0 0 0 0 0 88 96.6
5 0 0 0 0 0 86 0 0 0 0 2 88 97.7
6 0 0 0 0 0 0 88 0 0 0 0 88 100
7 0 0 0 0 0 0 1 86 1 0 0 88 97.7
8 0 0 0 0 0 0 0 0 85 3 0 88 96.6
9 0 0 0 0 0 0 0 0 2 86 0 88 97.7
10 0 0 0 0 0 0 0 0 0 0 88 88 100
Total 86 86 86 90 85 89 89 86 88 89 95 968 Overall:97.5
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