
Spectrum Sample Calculation of Discrete,
Aperiodic and Finite Signals Using the Discrete

Time Fourier Transform (DTFT)

Julio Cesar Taboada-Echave(&), Modesto Medina-Melendrez,
and Leopoldo Noel Gaxiola-Sánchez

Division of Research and Postgraduate Studies, Tecnológico Nacional de
México, Instituto Tecnológico de Culiacán, Culiacán, SIN, Mexico

{m17170010,modestogmm}@itculiacan.edu.mx,

drgaxiolasanchez@gmail.com

Abstract. A method for the calculation of spectrum samples of discrete, ape-
riodic and finite signals based on the DTFT is proposed. This method is based
on a flexible discretization of the frequency variable that could produce
equidistant, sparse or unique spectrum samples. It is implemented in a GPU
platform as a Matrix-Vector product, being able to be applied on modern HPC
systems. As a result, a general use tool is developed for the frequency analysis
that achieves execution times in a linear relation with the length of the vector to
be processed and the number of samples required. Finally, it is shown that the
required execution time for the computation of equally spaced spectrum samples
is competitive to the achievements of other tools for frequency analysis based on
sequential execution.

Keywords: High performance computing � DTFT � Fourier analysis � GPU

1 Introduction

In digital signal processing, the transformation and analysis of information is funda-
mental. An alternative to this is the harmonic analysis also called Fourier analysis,
which can be performed with a set of tools that enable a different interpretation of
information by transforming it from time or space domain to frequency domain. Fre-
quency domain analysis is based on the premise that all signals can be represented by
the sum of different harmonic components, made up of sinuses and cosines. Tools for
Fourier analysis include the Fourier Series (CTFS) for analyzing continuous and
periodic signals; the Fourier Transform (CTFT) for continuous and aperiodic signals;
the Discrete Time Fourier Series (DTFS) for discrete and periodic signals; and the
Discrete Time Fourier Transform (DTFT) for discrete and aperiodic signals [1]. The
inconvenience of DTFT for the analysis of discrete and aperiodic signals is that the
resulting spectrum is a continuous function. The Fourier Discrete Transform (DFT),
whose definition is derived from the DTFS or the DTFT according to several authors
[2, 3], represents the first choice tool for the analysis of discrete, aperiodic and finite
signals. The Fast Fourier Transform (FFT) [4], besides the direct version of the DFT, is

© Springer Nature Switzerland AG 2019
M. Torres and J. Klapp (Eds.): ISUM 2019, CCIS 1151, pp. 18–26, 2019.
https://doi.org/10.1007/978-3-030-38043-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38043-4_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38043-4_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38043-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-38043-4_2

currently the most widely used algorithm for spectral analysis. The use of the DFT has
as a restriction that the spectrum samples that are obtained correspond to equidistant
elements forming a vector of equal length as the input sequence. To avoid such
restriction in the use of DFT, some authors propose pruning operations, who allows
removing samples not required [5–8], or filling with zeros (zero-padding), that allows
to increase the number of samples in the frequency domain. These operations allow the
application of techniques for the recovery of windows in the frequency or zoom
operations. For applications where the detection of single sample or sparse samples is
required, Goertzel’s algorithm represents a valid option [9]. Even though the previous
alternatives may overcome different requirements for frequency analysis, none of these
represents a versatile alternative for general use because all are based or are variants of
the FFT algorithm. This publication proposes a versatile method for frequency analysis
of discrete, aperiodic and finite signals, this is based on the computation of specific
DTFT samples and is implemented on a parallel processing unit. The direct imple-
mentation of the proposed method has an order of O(N2) to process a single dimension
signal or an order of O(N3) to process a two dimension signal. This order of complexity
makes the implementation prohibitive, unless a high performance platform is chosen
for parallel processing. At current time, Graphic Processing Units (GPU) had been used
successfully as parallel processing units, thus implementations of the direct version of
the DFT has been done based on GPU [6, 10] with good results, especially when the
sequence to be analyzed has a prime length size [11]. The proposed method is
implemented in a parallel structure based on GPU, where each of the processing
elements individually calculates a sample of the spectrum required by the user.

2 Calculation of the DTFT for Discrete, Aperiodic and Finite
Signals

This section shows the basis for the reinterpretation of the DTFT as the right tool for
the analysis of discrete, aperiodic and finite signals instead of the DFT.

A. Adaptation of DTFT.

The DTFT is positioned as the most suitable tool when Fourier analysis of discrete,
aperiodic and finite signals is required, and its definitions is given by

XðejxÞ ¼
X1

n¼�1
x½n�e�jxn ð1Þ

The disadvantage of the DTFT is that, despite processing a discrete and aperiodic
input, the frequency variable x is in the periodic continuous domain with a period of
2p. To adapt its implementation in modern computing systems, it is possible to dis-
cretize the continuous variable. In the case that the selected samples of the continuous
variable are equidistant and of an equal number than the length of the input sequence,
their implementation results equivalent to the DFT. It is important to note that each
discrete element of the continuous variable corresponds to a unique sample of the

Spectrum Sample Calculation of Discrete, Aperiodic and Finite Signals 19

spectrum. With these conditions in mind, a not necessarily invertible implementation
can be obtained to compute versatile DTFT samples.

For the definition of the DTFT sampling is necessary to introduce a selection vector
x[k] in substitution of the continuous variable x, thus, the synthesis equation can be
rewritten as

X½k� ¼
XN�1

n¼0

x½n�e�jx½k�n 0� k�K � 1 ð2Þ

where x[k] represents the vector with the K required discretized frequencies and
k represents its index. The vector x[n] of length N represents the input sequence of a
discrete and aperiodic signal, turning the equation into a finite summation.

B. Calculation of the DTFT as a matrix-vector product.

For the implementation of Eq. (2), it is convenient to arrange it in the form of a
Matrix-Vector product, as observed in Eq. (3). In this way, a direct implementation in a
parallel system is possible. The matrix consists of evaluations of the kernel transform,
where each k row is formed by evaluations of the kernel for the frequency defined by
x[k].

X½k� ¼
X½0�
X½1�
..
.

X½K � 1�

2
6664

3
7775 ¼

1 e�jx½0� � � � e�jx½0�ðN�1Þ

1 e�jx½1� � � � e�jx½1�ðN�1Þ

..

. ..
. � � � ..

.

1 e�jx½k�1� � � � e�jx½k�1�ðN�1Þ

2
6664

3
7775

X½0�
X½1�
..
.

X½N � 1�

2
6664

3
7775 ð3Þ

The implementation in a parallel system of Eq. (3) can divide the task of computing
a sample of the spectrum by each processing unit, individually. The computation of the
sample within the thread is done by an iterative process of adding multiplication
between the kernel transformed and the input sequence. The execution time of each
execution thread is directly related to the length N of the input sequence. As result,
2N complex operations are performed on each thread.

A convenient way for its implementation in high performance computing equip-
ment (HPC) is using GPU architectures, especially considering the multi-core char-
acteristics of modern GPUs. A valid approach is to calculate in each core of the GPU
one of the output samples, where each thread makes an iterative pass over all the input
elements multiplying them with the kernels and carrying out their addition. For the
calculation of the transform is necessary to determine the kernel values, which are
calculated individually within each thread using the mathematical functions library of
the GPU.

20 J. C. Taboada-Echave et al.

3 GPU Implementation

In order to perform the implementation in a parallel system, the Nvidia GPU platform
was chosen. Currently, multiple HPC systems rely their computing power in GPU units
[12], for instance, supercomputers based on Tesla units [13]. One of the advantages to
choose a GPU as a hardware accelerator platform is that GPUs are available even in
consumer grade computers, especially in high-performance computers. The GPU
devices that dominate the consumer market are Nvidia with its GeForce series and
ATI/AMD with its Radeon series [14]. The implementation of this proposal is made in
a GPU of the Nvidia GeForce series with the set of CUDA libraries. It is important to
consider that the final implementation can be developed indistinctly in CUDA C, or
with the set of open-source libraries OpenCL for its operation in GPU of the families
that support it like AMD/ATI or Intel. Based on the studies reported con the papers of
Fang [15] and Karimi [16] where they compare the performance of CUDA C against
OpenCL, CUDA C has been chosen.

A. Equipment description

A personal computer based on a Windows 10 Operating System, with a 1st gen-
eration Intel I7 950 processor, 24 GB RAM DDR3 was used for the test. Further, a
Nvidia GTX 780-DC2-3GD5 GPU board was included as the parallel processing unit.

B. Control Algorithm

The system execution control is ruled by a sequential routine in the CPU that
determines the number of processing units to be called in the GPU, as well as the GPU
preprocessing routine itself. The main control routine described in Fig. 1 is intended to
prepare the data for execution in the GPU system. In the case that complex data are
processed, the x[n] input array could be separated in its real and imaginary part, xr[n]
and xi[n] sequences respectively. In addition, the vector containing the required fre-
quency samples, stored in the vector x[k], must be passed as a parameter. The number

Fig. 1. Flowchart of the system.

Spectrum Sample Calculation of Discrete, Aperiodic and Finite Signals 21

of processing elements to be invoked in the GPU is calculated from the number of
elements in x[k].

In the GPU transformation routine, both the required elements of the kernel
transform and the DTFT calculation are achieved.

For performance optimization, the closest memory resources in the GPU are used.
The input sequence is first passed from the global memory to the shared memory. Data
that is kept constant or unique in each thread is sent to the local memory of each thread.
Once the data is processed and the results are obtained, they are stored on GPU’s global
memory and later copied to the CPU memory for their use.

C. Parallel Algorithm

For the calculation of the DTFT in the parallel processing unit based on GPU, K
processing threads are invoked where k represents the unique identificator (ID) of each
CUDA thread. These thread IDs are directly related to the index of the samples to be
calculated. The processing function receives as inputs the real and imaginary part of the
input sequence (xr[n], xi[n]), the vector x[k], the number of elements N in the input
sequence and the number of elements K in the discretized frequency vector. These
elements are illustrated in Fig. 2. It is important to mention that, for performance
reasons, the DTFT kernels are calculated in the GPU. In addition, both the input
sequence and the discretized frequency vector are previously stored in the shared
memory and in the local memory of the thread for the case of being required more than
once.

Fig. 2. Flowchart of the GPU thread.

22 J. C. Taboada-Echave et al.

4 Validation and Performance Analysis

In order to validate the tool, a set of tests was done. The main goal is to validate the
proposed characteristic of versatility. To determine the accuracy of the tool, a com-
parison between the obtained samples and those of the FFT has been done.

A. Validation of versatility

For the validation of the developed proposal’s versatility, tests were carryout
processing a synthetic signal composed of N = 64 input elements. For this signal were
calculated equally spaced samples of the whole period with K = N (Fig. 3), with
K = 2 N (Fig. 4) and with K = 2/N (Fig. 5). Equally samples on a spectrum’s window
from 3/4p to 5/4p with K = 32 were calculated and showed on Fig. 6. Non equally
spaced samples from 0 to p were calculated and showed on Fig. 7. And finally, specific
arbitrary samples were calculated and showed on Fig. 8. All the scenarios were
compared against the continuous DTFT witch was estimated with 12,000 samples of
the spectrum.

Fig. 3. Equidistant samples of the DTFT with K = N (equivalent to a DFT).

Fig. 4. Equidistant samples of the DTFT with K = 2 N (equivalent to a oversampled DFT).

Fig. 5. Equidistant samples of the DTFT with K = N/2 (equivalent to a subsampled DFT).

Spectrum Sample Calculation of Discrete, Aperiodic and Finite Signals 23

The results of Fig. 3 could be compared against a DFT where the number of
coefficients is equal to the length of the signal. Results in Fig. 4 could be compared
against an oversampled DFT who has to be filled with zeros to be calculated. Results in
Fig. 5 could be compared against a DFT where half of the coefficients were dropped
after the calculations. Results in Fig. 6 could be compared against a pruned over-
sampled DFT, which performs unnecessary operations with zeros. Results in Fig. 7 and
Fig. 8 couldn’t be compared against the DFT, because such tool cannot obtain non-
equally spaced spectrum samples. Thus, the disadvantage of the DFT is its lack of
versatility and in some cases the additional needed operations.

B. Execution Time

To determine the average time, 1000 executions of each instruction were carried
out in an iterative cycle within Matlab, registering the total time. For each execution of
different length, the register of the first execution was omitted to exclude the overhead
made by the Matlab. The additional overhead for the control of the Matlab iterative
cycle is not taken into account.

Fig. 6. Samples of the DTFT from 3/4p to 5/4p with K = 32 (equivalent to a pruned
oversampled DFT)

Fig. 7. Non-equally spaced samples of the DTFT from 0 to p

Fig. 8. Specific samples of the DTFT

24 J. C. Taboada-Echave et al.

In order to compare the performance of the proposal method between the sequential
version on CPU an parallel version on GPU, run-time tests are carried out by pro-
cessing vectors of different lengths. The comparison is initially done with the imple-
mentation of the same method implemented on CPU. It is important to point out that
the host to device transport overhead is omitted in both GPU implementations analysis
as the signal is transferred directly in the device’s global memory using the tools built
into Matlab. The results obtained are shown in the graphs of Fig. 9, the experiments
consist of processing sequences of lengths from 1 to 2048 on the DTFT. The results
show that for vector longer than 394 elements the parallel version shows a better
performance.

The run times are carried out in order to analyze the viability of the proposed
method. Even when the implementation is superior to the direct version on CPU in
terms of speed, this could be improved with a more efficient methods matrix multi-
plication algorithm as cuBLAS.

5 Conclusions

The objective of this paper is to introduce and validate the basis of a versatile method
for the Fourier analysis based on the DTFT of discrete, aperiodic and finite signals.
This method allows to obtain a tool in which all possible scenarios can be achieved.
The implementation takes great advantage from hardware accelerator available for
HPC. In this implementation, it can be seen that the tool presents enough performance
as to be used in the scenarios where the requirement of versatility is needed. Due to the
simplicity of the algorithm, it is possible to implement it in other parallel platforms,
including FPGA devices and other GPU devices like AMD and Intel.

Acknowledgment. The authors of this paper are grateful to the Tecnológico Nacional de
México, Campus Culiacán, especially to the Division of Postgraduate Studies and Research for
the facilities provided. I would also like to express my gratitude to the Consejo Nacional de
Ciencia y Tecnología (Conacyt) for the support given during the course of the master’s degree
studies.

Fig. 9. Run time for sequential and parallel version.

Spectrum Sample Calculation of Discrete, Aperiodic and Finite Signals 25

References

1. Oppenheim, A.V., Willsky, A.S.: Señales y Sistemas 2da. ed. Prentice Hall Hispanoamer-
icana, México (1997)

2. Opepnheim, A.V., Shafer, R.W.: Tratamiento de señales en tiempo discreto. Pearson
Educacion, Madrid (2011)

3. Proakis, J.G., Manolakis, D.G.: Digital Signal Processing. Principles, Algorithms, and
Applications. Prentice Hall, Upper Saddle River (1996)

4. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex fourier
series. Am. Math. Soc. 301, 297 (1965)

5. Alves, R.G., Osorio, P.L., Swamy, M.N.S.: General FFT pruning algorithm. In: Proceedings
of 43rd IEEE MidWest Symposium on Circuits and Systems, Lansing (2000)

6. Angulo Rios, J., Castro Palazuelos, D., Medina Melendrez, M., Santiesteban Cos, R.: A
GPU based implementation of input and output prunning of composite length FFT using
DIF DIT transform decomposition. In: Congreso Internacional de Ingenieria Electrome-
canica y de Sistemas CIEES, Ciudad de Mexico (2016)

7. Melendrez, M.M., Estrada, M.A., Castro, A.: Input and/or output pruning of composite
length FFTs using a DIF-DIT transform decomposition. IEEE Trans. Sig. Process. 57(10),
4124–4128 (2009)

8. Markel, J.D.: FFT prunning. IEEE Trans. Audio Electroacust. 4, 305–311 (1971)
9. Goertzel, G.: An algorithm for the evaluation of finite trigonometric series. Am. Math.

Monthly 65(1), 34–35 (1958)
10. Stokfiszewski, K., Yatsymirskyy, M., Puchala, D.: Effectiveness of fast fourier transform

implementations on GPU and CPU. In: International Conference on Computational
Problems of Electric Engineerings (CPEE), pp. 162–164 (2015)

11. Shu, L.: Parallel implementation of arbitrary-sized discrete fourier transform on FPGA. In:
2016 3rd International Conference on Advanced Computing and Communication Systems
(ICACCS), Coimbatore, India (2016)

12. Nvidia (2018). https://www.nvidia.com/en-us/high-performance-computing/. Accessed 17
Nov 2018

13. Oak Ridge National Laboratory (2018). https://www.ornl.gov/news/ornl-launches-summit-
supercomputer. Accessed 17 Nov 2018

14. Evangelho, J.: AMD Claims Radeon Is #1 Gaming Platform – Here’s Their Proof, Forbes,
23 April 2018. https://www.forbes.com/sites/jasonevangelho/2018/04/23/radeon-vs-geforce-
which-brand-is-truly-the-1-gaming-platform/#4cfb19276a95. Accessed 17 Dec 2018

15. Fang, J., Varbanescu, A.L., Sips, H.: A comprehensive performance comparison of CUDA
and OpenCL. In: 2011 International Conference on Parallel Processing, Taipei (2011)

16. Karimi, K., Dickson, N.G., Hamze, F.: A performance comparison of CUDA and OpenCL,
arXiv (2010)

26 J. C. Taboada-Echave et al.

https://www.nvidia.com/en-us/high-performance-computing/
https://www.ornl.gov/news/ornl-launches-summit-supercomputer
https://www.ornl.gov/news/ornl-launches-summit-supercomputer
https://www.forbes.com/sites/jasonevangelho/2018/04/23/radeon-vs-geforce-which-brand-is-truly-the-1-gaming-platform/#4cfb19276a95
https://www.forbes.com/sites/jasonevangelho/2018/04/23/radeon-vs-geforce-which-brand-is-truly-the-1-gaming-platform/#4cfb19276a95

	Spectrum Sample Calculation of Discrete, Aperiodic and Finite Signals Using the Discrete Time Fourier Transform (DTFT)
	Abstract
	1 Introduction
	2 Calculation of the DTFT for Discrete, Aperiodic and Finite Signals
	3 GPU Implementation
	4 Validation and Performance Analysis
	5 Conclusions
	Acknowledgment
	References

