
Multi GPU Implementation to Accelerate
the CFD Simulation of a 3D Turbo-Machinery
Benchmark Using the RapidCFD Library

Daniel Molinero1(&), Sergio Galván1, Jesús Pacheco1,
and Nicolás Herrera2

1 Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mexico
molherd@gmail.com

2 Instituto Tecnológico de Morelia, 58120 Morelia, Mexico

Abstract. Recently, several research groups have demonstrated significant
speedups of scientific computations using General Purpose Graphics Processor
Units (GPGPU) as massively-parallel “co-processors” to the Central Processing
Unit (CPU). However, the tremendous computational power of GPGPUs has
come with a high price since their implementation to Computational Fluids
Dynamics (CFD) solvers is still a challenge. To achieve this implementation, the
RapidCFD library was developed from the Open Field Operation and Manip-
ulation (OpenFOAM) CFD software to let that the multi-GPGPU were able of
running almost the entire simulation in parallel. The parallel performance, as
fixed-size speed-up, efficiency and parallel fraction, according to the Amdahl’s
law, were compared in two massively parallel multi-GPGPU architectures using
Nvidia Tesla C1060 and M2090 units. The simulations were executed on a 3D
turbo-machinery benchmark which consist of a structured grid domain of 1
million cells. The results obtained from the implementation of the new library on
different software and hardware layouts show that by transferring directly all the
computations executed by the linear system solvers to the GPGPU, is possible to
make a typical CFD simulation until 9 times faster. Additionally a grid con-
vergence analysis and pressure recovery measurements were executed over
scaled computational domains. Thus, it is expected to obtain an affordable low
computational cost when the domain be scaled in order to achieve a high flow
resolution.

Keywords: GPGPU � CFD � Draft tube

1 Introduction

Computational Fluids Dynamics has a history of seeking and requiring ever higher
computational performance because it uses numerical methods and algorithms to solve
and analyze problems that involve fluid flow. In the High Performance Computing
(HPC), the parallelism is being considered the future of computing since the efforts in
the microprocessor development are concentrated on adding cores rather than
increasing single-thread performance.

© Springer Nature Switzerland AG 2019
M. Torres and J. Klapp (Eds.): ISUM 2019, CCIS 1151, pp. 173–187, 2019.
https://doi.org/10.1007/978-3-030-38043-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38043-4_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38043-4_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38043-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-38043-4_15

Using parallel computing techniques, GPGPUs have emerged as a major paradigm
for solving complex computational problems because the GPGPU’s design features
result in computational power and memory bandwidth which exceeds the features of
the fastest multi-core CPUs by almost an order of magnitude. Indeed, they are now an
equivalent to a small HPC cluster and even just a single GPGPU is faster than a
multicore CPU [1].

While GPGPUs are specialized to perform large amounts of arithmetic and have a
large theoretical performance advantage over CPUs for many problems of interest to
the CFD community, there are a number of barriers to their adoption in real world CFD
codes and their implementation is still a challenge [2–4].

However, in order to GPGPUs take advantage of this large theoretical performance
over CPUs their adoption requires a CFD parallelizable code and an intermediate low-
level interface that can transfer data between the CPU and GPGPU and perform the
required computation on the GPGPU. Nvidia’s Compute Unified Device Architecture
(CUDA) is one such interface. Thus, to complete this implementation, a CFD code
compatible with CUDA Nvidia Language is needed [5].

The OpenFOAM code is an option since it provides a flexible simulation platform
by mimicking the form of Partial Differential Equations (PDE) and it runs in parallel
using automatic/manual domain decomposition. Furthermore, the best attractive char-
acteristic of this CFD tool is that as open-source code it is free of charge, what makes it
a true competitor to both commercial tools and in-house research codes being of
interest to the international community researchers of CFD.

In recent years several libraries have been implemented to accelerate OpenFOAM
through GPGPUs (e.g. Cufflink, ofgpu, speed IT) without modifying the original code
and applied as a simple plug-in, these implementations have been very attractive.
However some discordances and contradicting performance have been reported [6].

The aim of this paper is to estimate a plausible GPGPU acceleration for a new
application library. RapidCFD is an open-source OpenFOAM implementation capable
of running almost entire simulations on Nvidia GPGPUs. Introducing parallelism for
multi-GPGPUs, this implementation should leads to a very promising performance
improvement in certain CFD applications, such as the possibility of its implementation
to solve scaled problems.

The simulations were run on a 3D turbo-machinery well-known benchmark with a
structured grid of one million cells. In order to evaluate the parallel performance of the
RapidCFD library, several parameters as fixed-size speed-up, efficiency and parallel
fraction were compared in two massively parallel multi-GPGPU architecture using
Nvidia Tesla C1060 and M2090 units.

The results suggest that the more the domain is decomposed the more speedup and
parallelism fall, at least for this fixed-size problem. It seems that, porting too many
parts of computational domain to multi-GPGPUs lead to significant des-acceleration in
computation. For all that, when the domain have to be scaled, using different grid size,
looking for achieving a high flow resolution, it is expected an efficient program exe-
cution which should result in an affordable low computational cost.

174 D. Molinero et al.

2 Methodology

2.1 Benchmark Description

The benchmark studied is the numerical model of the Hölleforsen Kaplan draft tube
1:11 which was previously used in three European Research Community on Flow
Turbulence and Combustion (ERCOFTAC) workshops [7–9]. Allocated after the
runner, the draft tube is part of a hydraulic turbine and its function is to convert the
kinetic energy of the fluid leaving the runner into pressure energy with a minimum of
losses. In reference [10] was validated and verified the numerical model to obtain
reliable numerical data during the computation process. Figure 1 presents the com-
putational model of the turbine T-99 used as benchmark.

2.2 Acceleration Method

Using the same boundary conditions as [10], the numerical model was represented by
the Navier-Stokes PDE and solved in steady state using OpenFOAM and RapidCFD.

For accelerating the time required to solve the case in CFD a hybrid parallel
environment was established in two different hardware architectures:

• CPU parallelization with Message Passing Interface (MPI) library
• Multi-GPGPU parallelization with MPI and CUDA.

To port the solvers to the CPUs, OpenFOAM v1706 uses MPI which provide
parallel multi-processor functionality. A decomposition of the computational domain is
essential for the parallelization since every processor contributes to the solution of the
simulation by solving a part of the computational domain. Besides, it scales well on
homogeneous systems but do not fully utilize potential per-node performance on
hybrid systems.

Equally, to port OpenFOAM solvers to multi-GPGPUs a new open-source
implementation was used. According to [11, 12], RapidCFD can be capable of running
almost the entire simulation on Nvidia GPGPUs which can lead in certain applications
to a very promising performance improvements.

Fig. 1. Multi-block and structured mesh of the T-99 draft tube used as benchmark.

Multi GPU Implementation to Accelerate the CFD Simulation 175

Table 1 shows the hardware architectures used in this research. Both work stations
(WS) have two CPU with eight and six cores (twelve threads). However the massive
parallelization should occur in one thousand CUDA cores distributed in two and four
GPGPUs.

Table 1. Workstation specifications.

Workstation WSPAC Workstation WSGAL

CPU

2 x Intel Xeon E5504, 2.0 GHz 2 x Intel Xeon L5639, 2.13 GHz
4 cores per processor/4 threads 6 cores per processor/12 threads
12 GB Memory DDR3, 1060 Hz 24 GB Memory DDR3, 1060 Hz

GPGPU

4 x Nvidia Tesla C1060 2 x Nvidia Tesla M2090
240 CUDA cores, 1.296 GHz 512 CUDA cores, 1.3 GHz
4 GB Memory GDDR3, 800 MHz 6 GB Memory GDDR5, 1.85 GHz

To get better scaling results using multi-GPGPUs [13] recommends that one CPU
core needs to be devoted to each active GPGPU. RapidCFD enables the use of one
CPU core (or thread depending on architecture) with one GPGPU enhancing better
performance. When only CPUs were used, the domain was proportionally decomposed
according to the number of cores/threads available in the WSs. However when using
GPGPUs, the domain was decomposed according to the number of GPGPUs.

2.3 Numerical Considerations

The computational domain was solved with double floating precision using the
application solver simpleFoam recommended for incompressible flow and setting
ddtSchemes (time discretization) as steadyState, which means the time derivatives are
not solved. Since the general transport equation used in the Finite Volume Method
(FVM) is second order, it is necessary that the order of discretization be at least second
order accurate in space. Consequently, gradSchemes (gradient terms), divSchemes
(convective terms), laplacianSchemes (laplacian terms), interpolationSchemes (point-
to-point interpolations) and snGradSchemes (component of gradient normal to a cell
face) used second order discretization schemes.

The linear solver used for the pressure p discretized equation was PCG (Precon-
ditioned Conjugate Gradient) and for the velocity U the Preconditioned Bi-conjugate
Gradient (PBiCG) was used. There are a range of options for preconditioning of
matrices in the conjugate gradient solvers. In this work diagonal preconditioning
(diagonal) was selected. The term linear solver refers to the method of number-
crunching to solve the set of linear equations, as opposed to application solver which
describes the set of equations and algorithms to solve a particular problem [14].

The sparse matrix solvers are iterative, i.e. they are based on reducing the equation
residual over a succession of solutions. The residual is an error measure in the solution
so that the smaller it is, the more accurate the solution. For this reason the solver
tolerance for each time step was settled to 10e-12 for all equations.

176 D. Molinero et al.

The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm was
used to couple the p-U equation system. This algorithm is an iterative procedure for
solving equations of velocity and pressure and is based on evaluating some initial
solutions and then correcting them to reach a target residual, in this case 10e-03 [14].

The computational domain was decomposed using the decomposePar utility with
the scoth decomposition method which does not require geometric input from the user
and attempts to minimize the number of processor boundaries.

In many studies, the goal of fluid simulations on supercomputers that use many
GPGPUs is typically to study turbulence, not complex geometries [15]. However, this
study involves both of them and the viscous effect of the fluid flow. Thus, the k-
e standard turbulence model was used in all the simulations since the experimental data
given by [7–9] provide information at inlet related to the turbulent kinetic energy k and
turbulent eddy dissipation rate e. The PBiCG linear solver was used to solve the
turbulent scalar quantities k and e.

2.4 Study Cases

Using the same previously detailed setup, each simulation was run nine times using
different hardware architecture as is shown in Table 2. In each WS one homogeneous
and one heterogeneous parallel system were tested. In the homogeneous system only
the parallelization of eight and twelve domains on CPU cores was evaluated. In the
heterogeneous system (CPU+GPGPU) two and four domains were assigned to the
GPGPU cores.

3 Results

The first part of this section details the CFD convergence solution for the one million
cells benchmark. In the second part, the acceleration metrics for each WS are analyzed.
In the third section, a grid convergence analysis and a comparison of the CFD against
the experimental result are developed.

Table 2. Domain decomposition.

Workstation WSPAC Workstation WSGAL
Configuration Cores Domains Configuration Cores Domains

1 cpu 1 1 1 cpu 1 1
2 cpu 2 2 2 cpu 2 2
4 cpu 4 4 4 cpu 4 4
6 cpu 6 6 6 cpu 6 6
8 cpu 8 8 8 cpu 8 8
1 cpu + 1 gpu 240 1 10 cpu 10 10
2 cpu + 2 gpu 480 2 12 cpu 12 12
3 cpu + 3 gpu 720 3 1 cpu + 1 gpu 512 1
4 cpu + 4 gpu 960 4 2 cpu + 2 gpu 1024 2

Multi GPU Implementation to Accelerate the CFD Simulation 177

3.1 CFD Solution Convergence

In all cases studied in this first two sections, the same setup (boundary conditions and
discretization schemes) was used for the computational model in which the residuals
reached the convergence criteria of 10e-03 for momentum and continuity equations as
follows: using OpenFOAM v1706 with CPUs 557 iterations were necessary (Fig. 2),
and 599 iterations when the RapidCFD library linked the GPGPUs (Fig. 3).

Fig. 2. Residuals of momentum and continuity equations in OpenFOAM v1706 using only
CPUs.

Fig. 3. Residuals of momentum and continuity equations in OpenFOAM using RapidCFD
library and GPGPUs.

178 D. Molinero et al.

This difference in the number of iterations required to reach convergence could be
related to RapidCFD was developed from OpenFOAM 2.3.1 and some upgrades
regarding algorithms and discretization schemes have been included since then in
OpenFOAM v1706.

Independently of the domain decomposition, the number of iterations required to
reach the convergence criteria was the same. Surprisingly, just the time required to
reach the convergence criteria was different. This difference between both libraries will
be analyzed in further research towards a better solution of the numerical model.

3.2 Acceleration Metrics

A set of metrics quantified the performance of the architectures which found the
solution to the matrix obtained from the discretization of the governing equations of
fluid flow and mass transfer.

Figures 4 and 5 presents the results for the computational time registered for the
WSPAC and WSGAL through the execution time and the wall clock time. The exe-
cution time measures only the time during which the processor is actively working on a
certain task and the wall clock time is the time elapsed between the start of the process
till end it. If wall clock time is smaller than execution time, the program was executed
perfectly in parallel. If wall clock time is greater than execution time, the system will be
waiting e.g. for disk, network or other devices between iterations. As can be observed,
WSGAL is faster in both execution time and wall clock time mainly due to GPGPUs in
it have more computing power per unit (512 CUDA cores vs. 240 CUDA cores) and
also faster RAM (GDDR5 1.85 MHz vs. GDDR3 800 MHz). This has direct impact in
the metrics measured further.

Fig. 4. Time comparison in the WSPAC.

Multi GPU Implementation to Accelerate the CFD Simulation 179

Speed up is one of the most important actions in parallel computing and it actually
measure how much faster a parallel algorithm runs with respect to the best sequential
one. In our research, the speed up was compared through (1) [2]. For a problem of size
n, the expression for speedup is:

Sp ¼ Ts n; 1ð Þ=T n;Nð Þ ð1Þ

Where Ts(n;1) is the time of the best sequential algorithm and T(n;N) is the time of
the parallel algorithm with N processors, both solving the same problem.

Figure 6 shows the speed up given by (1) using the wall clock time per iteration
obtained from the CFD simulations of the draft tube flow field. With both machines, the
GPGPUs were significantly faster. However, only using the WSGAL this metric
reached up to a maximum of 9.32. WSPAC has a suddenly decline when a third
GPGPU is used. This denotes that the GPGPU is a massively parallel device that needs
an important quantity of threads to be filled with a huge number of cell elements for an
efficient program execution.

Reference [16] reports until 4.29 times of speed up simulating Magneto Hydro
Dynamics flow under strong magnetic field in fusion liquid metal blanket with struc-
tured or unstructured meshes. Also [17] developed the simulation of blood flow in a
cardiac system reaching until 6 times of speed up. In many cases, obtaining a speedup
of 5 or 10 is more than adequate, especially if the effort involved in developing the
parallel program was not very large [18].

Amdahl’s law [2] states that for a fixed size problem the expected overall speedup
is given by:

Sp ¼ 1= 1� cð Þþ c=N½ � ð2Þ

Fig. 5. Time comparison in the WSGAL.

180 D. Molinero et al.

Where c is the fraction of a program that is parallel, (1 − c) is the fraction that runs
sequential and N is the number of processors. But if the computer has a large number of
processors, N � ∞, then the maximum speedup is limited by the sequential part of the
algorithm (1 − c).

Figure 7 compares the fraction of parallelism c achieved by the hardware in both
machines according to (2). The higher parallelism achieved was 0.92 and depends on
the number of cores used (CPU and GPGPU). Then, we may consider this problem as
strong scaling because using more cores it is possible to achieve a better fraction of
parallelism and performance when the size of the problem is fixed.

Fig. 6. Speedup for the T-99 draft tube model benchmark.

Fig. 7. Fraction of parallelism reached by the benchmark.

Multi GPU Implementation to Accelerate the CFD Simulation 181

As shown in Figs. 6 and 7, using around 500 CUDA cores, the speedup and
parallelism are quite similar in both machines; however, the more the domain is
decomposed the more speedup and parallelism fall in the WSPAC. When both
machines work close to 1000 CUDA cores, the speedup in WSPAC is 6.32 while in
WSGAL speedup continues growing up to 9.32. This reflected that parallel program-
ming, especially using GPGPU acceleration, is much suitable for processing large
number of calculations [16], since each time the domain is decomposed, the number of
unknowns per subdomain that the GPGPU should process decreases.

In addition to the speedup, efficiency evaluation is necessary for studying the
implementation of the new library in different hardware resources. The efficiency
E tells how well the processors are being used according the following expression:

E ¼ Sp=N ð3Þ

As shown in Fig. 8, the maximum efficiency value 1, which will mean an optimal
usage of the computational resources, is difficult to maintain. In fact, as the number of
cores increases, the efficiency tends to fall. This is a consequence of the difficulty to
reach a perfect linear speedup in spite of its growing, however speedup is usually
advertised for parallel computers [19].

Thus, the results obtained in this study show an important difference in paral-
lelization between machines no matter if CPUs or GPGPUs were used. The GPGPU’s
memory and the combination of core types played a key role on multi-GPGPU
implementations.

It is worth to mention that the GPGPUs deployed in this work have compute
capability 1.3 (Nvidia Tesla C1060) and 2.0 (Nvidia Tesla M2090), the first ones to
support double precision and ECC memory, also that RapidCFD was developed for

Fig. 8. Efficiency measurement for the benchmark workload.

182 D. Molinero et al.

Nvidia compute capability 3.0 and above, which make them almost archaic and useless
compared with newer Kepler, Maxwell, Pascal and Volta architectures from Nvidia
with thousands of CUDA cores, so some changes were made at compilation time in
CUDA 6.5 in order to get the library running in Ubuntu 16.04 with the available
GPGPUs. Even so the results obtained are quite stoning since in some cases a speedup
near 10 was reached compared to CPUs. This give a chance in the research and
learning for coupling CFD and GPGPUs using old second hand and cheaper GPGPUs.

3.3 Accuracy of the CFD Simulations

Theoretically, a greater number of cells enhance accuracy of the results and conver-
gence of the solution. Since so far only a fixed problem size has been used for the
analysis, two studies were developed to estimate the largest problem size to be solved
in order to reach an acceptable accuracy level and flow resolution in CFD. In both
studies five computational domains were solved, from coarsest to finest grid size: 0.5,
1, 2, 3 and 4 million cells.

The first study was developed to validate the CFD solution. The wall pressure
recovery coefficient obtained by the different grid size was compared against the avail-
able experimental data. Detailed velocity and pressure measurements made in [20] were
used to set the boundary conditions and to validate the computational results. Figure 9
presents the upper and lower centerline wall of the draft tube along which the static
pressure recovery (Cpwall) was experimental and computationally measured using (5).

Cpwall ¼ Pout � Pin=0:5qU2
in ð5Þ

Where Pout is the static wall pressure in different points along the wall centerline
(0.0−1.0), Pin is the static wall pressure at CsIa (0.00), q is the density and Uin is the
mean velocity at CsIa.

Figure 10 presents the approximation of the CFD solution over the entire com-
putational domain as its grid size is increased. The pressure recovery factor indicates
the degree of conversion of kinetic energy into static pressure where a higher value
means higher efficiency for the draft tube. The exact value of the pressure recovery
factor depends on the whole field solution and can be seen as an integral property of the
solution.

Fig. 9. Test measurement sections of the draft tube [9].

Multi GPU Implementation to Accelerate the CFD Simulation 183

The second study was developed to verify the CFD solution. As described by [21],
the values of performance variables, as Cpwall, can be extrapolated based on initial
values obtained through CFD from the solution of scaled grid size using Richardson
extrapolation methods. Extrapolation values can be calculated by means of two
approaches, first and second order, which depends on the method used in numerical
methods to solve the problem studied, as mentioned before the FVM is a second order
scheme, therefore a second order approach was be used.

In Fig. 11 for upper center line and Fig. 12 for lower line, results of the conver-
gence analysis can be observed. First u(1) and second u(2) order extrapolations values
of the total Cpwall are shown along with values obtained from CFD solutions, u, and
punctual experimental values, u(E). In the graphics, a indicates the refinement level,
the smaller the value, the finer the grid size, where a cero value corresponds to a
continuous. For the Cpwall, only the finest three grids are inside the asymptotic range of
convergence. Thus, the grid that uses 2 M cells seems to be within the range that would
minimize the CFD computations.

Fig. 10. Comparison of the pressure recovery at the lower and upper centerline of the draft tube
with different grid sizes.

Fig. 11. Plots of the Cp: First u(1) and second u(2) order extrapolations, CFD solutions u and
experimental values u(E) for grid convergence analysis un the upper center line.

184 D. Molinero et al.

The error of the CFD and extrapolated values of Cpwall against experimental ones is
presented in Table 3.

In conclusion, both studies are an example of accuracy in the quantitative results as
the grid size grows up, which indicates that a mesh refinement will lead to a better
solution, even without implement more robust turbulence models or accurate dis-
cretization schemes.

Further work will be focused on computational cost required to reach an acceptable
accuracy and flow resolution, in terms of time and memory consumption in GPGPUs
when it is given a fixed time and limited memory.

4 Conclusions

In this study, it has been investigated the acceleration of a turbo machinery numerical
model adapting GPGPUs to the OpenFOAM CFD code. A major benefit of using this
free CFD software instead of any commercial one has been that the full source code is

Fig. 12. Plots of the Cp: First u(1) and second u(2) order extrapolations, CFD solutions u and
experimental values u(E) for grid convergence analysis in the lower center line.

Table 3. Error calculation against experimental values of Cpwall.

Error %
Source Upper wall Lower wall
0.5 M cells 14.36 12.28
1 M cells 10.21 8.34
2 M cells 9.25 7.51
3 M cells 6.83 5.12
4 M cells 5.62 4.01
1st Order 8.67 8.88
2nd Order 0.69 1.73

Multi GPU Implementation to Accelerate the CFD Simulation 185

open and available. This makes possible the development of new libraries as
RapidCFD, which are out of reach in the CFD commercial software.

In consequence, the principal contribution of this work has been the implementa-
tion of two different GPGPUs to CFD computations through the new RapidCFD
library, which have proved to accelerate the computational solution, even when their
main characteristics are not the best compared to available hardware nowadays,
demonstrating the advantage of using CUDA built in applications as the one deployed.
The results obtained are very promising because they suggest that porting larger parts
of CFD simulations to GPGPUs lead to significant acceleration in computation and
could apply the CFD technology in very complexes industrial flows as the creation of a
micro-turbine testing laboratory.

The parallelism efficiency was reduced significantly and a sub-linear speed up was
presented in all the tested cases. This means that an alternative parallel model or
changes in the benchmark domain decomposition could be needed.

Since the GPGPU is a massively parallel device, it should be necessary to know if
the same number and distribution of cores will make better the performance computing
of this benchmark with higher grid sizes.

Finally, another perspective of this work could be the change of CFD set-up using
different turbulence models or discretization schemes in order to review not only
computational cost but also the influence of the numerical concepts on the GPGPU
accuracy.

References

1. Niemeyer, K.E., Sung, C.-J.: Recent progress and challenges in exploiting graphics
processors in computational fluid dynamics. J. Supercomput. 67(2), 528–564 (2014)

2. Navarro, C., Hitschfeld-Kahler, N., Mateu, L.: A survey on parallel computing and its
applications in data-parallel problems using GPU architectures. Commun. Comput. Phys.
15(2), 285–329 (2014)

3. Posey, S., See, S., Wang, M.: GPU progress and directions in applied CFD. In: Eleventh
International Conference on CFD in the Minerals and Process Industries, Melbourne,
Australia (2015)

4. AlOnazi, A.: Design and optimization of OpenFOAM-based CFD applications for modern
hybrid and heterogeneous HPC platforms. Master thesis, King Abdullah University of
Science and Technology, Thuwal, Kingdom of Saudi Arabia (2014)

5. NVIDIA Corporation, Cuda C Programming Guide v6.5 (2014)
6. Aissa, M.: GPU-accelerated CFD simulations for turbomachinery design optimization.

Doctoral thesis, Delft University of Technology (2017)
7. Gebart, B., Gustavsson, L., Karlsson, R.: Proceedings of Turbine 99 Workshop on Draft

Tube Flow in Porjus, Sweden, Luleä University of Technology (2000)
8. Engström, T., Gustavsson, L., Karlsson, R.: Turbine-99 workshop 2 on draft tube flow. In:

Proceedings of 21st IAHR Symposium on Hydraulic Machinery and Systems, Lausanne,
Switzerland (2005)

9. Cervantes, M., Engstöm, T., Gustavsson, L.: Proceedings of the Third IAHR/ERCOFTAC
Workshop on Draft Tube Flows, Luleå University of Technology, Porjus, Sweden (2005)

186 D. Molinero et al.

10. Galván, S., Reggio, M., Guibault, F.: Assessment study of k-e turbulence models and near-
wall modeling for steady state swirling flow analysis in draft tube using fluent. Eng. Appl.
Comput. Fluid Mech. 5(4), 459–478 (2011)

11. Jasiński, D.: Adapting OpenFOAM for massively parallel GPU architecture. In: The 3rd
OpenFOAM User Conference, Stuttgart, Germany (2015)

12. simFlow CFD software, Atizar/RapidCFD-dev, GitHub, Inc. https://github.com/Atizar/
RapidCFD-dev

13. Afzal, A., Ansari, Z., Faizabadi, A.R., Ramis, M.K.: Parallelization strategies for
computational fluid dynamics software: state of the art review. Arch. Comput. Methods
Eng. 24(2), 337–363 (2017)

14. OpenCFD Limited, OpenFOAM. The Open Source CFD Tool Box. User Guide v1706
(2017)

15. Khajeh-Saeed, A., Perot, J.B.: Computational fluid dynamics simulations using many
graphics processors. Comput. Sci. Eng. 14, 10–19 (2012)

16. He, Q., Hongli, C., Jingchao, F.: Acceleration of the OpenFOAM-based MHD solver using
graphics processing units. Fusion Eng. Des. 101, 88–93 (2015)

17. Malecha, Z., et al.: GPU-based simulation of 3D blood flow in abdominal aorta using
OpenFOAM. Arch. Mech. 63(2), 137–161 (2011)

18. Pacheco, P.: An Introduction to Parallel Programming. Elsevier, Amsterdam (2011)
19. McCool, M., Robison, A.D., Reinders, J.: Structured Parallel Programming: Patterns for

Efficient Computation. Morgan Kaufmann Publishers, Waltham (2012)
20. Andersson, U.: Test case T- some news results and updates since workshop 1. In:

Proceedings of Turbine 99-WS2, the Second ERCOFTAC Workshop on Draft Tubeflow,
Alvkarleby, Sweden (2001)

21. Herrera, N., Galván, S., Camacho, J., Solorio, G., Aguilar, A.: Automatic shape optimization
of a conical duct diffuser using a distributed computing algorithm. J. Braz. Soc. Mech. Sci.
Eng. 39(11), 4367–4378 (2017)

Multi GPU Implementation to Accelerate the CFD Simulation 187

https://github.com/Atizar/RapidCFD-dev
https://github.com/Atizar/RapidCFD-dev

	Multi GPU Implementation to Accelerate the CFD Simulation of a 3D Turbo-Machinery Benchmark Using the RapidCFD Library
	Abstract
	1 Introduction
	2 Methodology
	2.1 Benchmark Description
	2.2 Acceleration Method
	2.3 Numerical Considerations
	2.4 Study Cases

	3 Results
	3.1 CFD Solution Convergence
	3.2 Acceleration Metrics
	3.3 Accuracy of the CFD Simulations

	4 Conclusions
	References

