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Chapter 9
Sperm DNA Fragmentation and Male 
Infertility

Manesh Kumar Panner Selvam, Pallav Sengupta, and Ashok Agarwal

�Introduction

Worldwide concern regarding upsurge of male infertility contributing to almost 
50% of the overall infertility cases urges specific research interventions to address 
its potential causes [1]. Considerable advent of assisted reproductive technology 
(ART) could hardly mitigate stillbirth complications [2]. Proper approach to ame-
liorate male fertility should not be compensated with ART. Management of male 
infertility, which in most of the cases remains idiopathic, can be effective once its 
diagnosis is feasible. In order to do so, the etiology of male infertility from every 
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aspect should be considered and possible mechanisms be explored and conceptual-
ized. In this regard, understanding the molecular and genetic processes associated 
with sperm functions is of prime importance. The significance of sperm DNA integ-
rity in association with sperm function tests is regaining research priority, which has 
huge impact on reproductive outcomes. Sperm DNA fragmentation (SDF) owing to 
various exogenous and endogenous factors directly affects sperm functional and 
morphological characteristics, rendering them impotent in carrying out reproductive 
functions [3, 4]. SDF assays help in advancing clinical andrology by several steps 
by offering a potential diagnostic tool for male infertility. SDF testing, though not 
yet recommended for routine testing in the  evaluation of infertile men, is being 
acknowledged in the American Urological Association (AUA) and European 
Association of Urology (EAU) guidelines [5, 6].

This chapter elucidates the etiology of SDF with its contribution to male infertil-
ity, the mechanisms by which environmental, lifestyle, and endogenous factors 
mediate SDF, and the contemporary SDF assessments in the diagnosis of male 
infertility.

�Etiology of Sperm DNA Damage 

Sperm structure is precisely made for the successful transmission of the haploid 
genome to the secondary oocyte. The success of fusion and delivery of DNA con-
tent is directly related to the compaction of genetic material in an extremely limited 
volume of the nucleus. Mammalian sperm chromatin differs from somatic cells in 
structure and composition, which maintains genetic integrity during transport of the 
paternal genome into oocyte [7]. Protamination is a unique process that replaces 
histones with positively charged protamines during the nuclear chromatin conden-
sation process. Defect at any stage of this process may result in SDF during its 
transport and fertilization. Indeed, the extent of DNA damage/breaks varies from 
sperm to sperm even in fertile men [8]. Emerging evidences support the significance 
of chromatin organization during fertilization and embryo development [9–11]. 
However, in normal state, meiotic prophase passes through recombination check-
point that restricts progression to meiotic division-I till the DNA is completely 
repaired or the incompetent impaired spermatocytes are removed [12]. Ligation of 
DNA breaks is crucial for both conserving the primary DNA integrity and reassem-
bly of the DNA loop domain for the genome expression [13]. This reassembly 
includes delicate steps such as chromatin loosening through histone hyper-
acetylation by endogenous nuclease activity and ligation of DNA breaks by topoi-
somerase II [14]. Usually chromatin packaging around the new protamine cores and 
restoration of DNA integrity are accomplished during epididymal transit [15]. 
However, the presence of endogenous nicks in spermatozoa after epididymal transit 
may indicate an improper chromatin packaging at spermiogenesis and an incom-
plete maturation process. The differential susceptibility of chromosomes to sperm 
DNA fragmentation is determined based on its association with either of the DNA 
packaging molecules such as histones or protamines [16].
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Besides the defects in sperm chromatin compaction, numerous other intrinsic and 
extrinsic factors have been reported in the etiopathogenesis of SDF, including vari-
cocele, infection, advanced male age, heat stress, lifestyle factors, environmental 
toxins, and ionizing/non-ionizing radiations [17, 18]. Most of these etiologies are 
mediated by reactive oxygen species (ROS) leading to elevated SDF [19]. Abortive 
apoptosis [20] and defective maturation [21] correlate with the role of intrinsic fac-
tors in testicular SDF. Moreover, evidence show more DNA fragmentation in epi-
didymal and ejaculated sperm than testicular sperm, signifying the impact of extrinsic 
factors [22]. Presence of large amount of polyunsaturated fatty acids (PUFA) in the 
plasma membrane makes sperm susceptible to ROS-induced damage [23].

The close relationship between ROS and SDF is also evident from the etiopathol-
ogies of all grades of clinical varicocele. The imbalance between ROS (produced by 
testicular hypoxia, scrotal hyperthermia, reflux of metabolites, and endocrine dis-
ruption) and protective antioxidant system was demonstrated by the higher level of 
ROS and lipid peroxidation products in infertile men with varicocele than infertile 
men without varicocele [24]. Moreover, treatment of varicocele is effective in 
decreasing both ROS [25] and SDF [26].

Thus, it is apparent that sperm functions and morphology are impaired via multifari-
ous intrinsic and extrinsic factors. The abnormal spermatozoa together with these fac-
tors lead to increased ROS levels that afflict sperm DNA integrity and thereby results 
in infertility, impaired ART outcomes, and birth defects, as illustrated in Fig. 9.1.
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Fig. 9.1   Reactive oxygen species produced by intrinsic and extric factors and its impact on the 
sperm DNA to disrupt its integrity affecting the reproductive outcomes. (From Cleveland Clinic 
Foundation; with permission)
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�Molecular Changes associated with Sperm DNA 
Fragmentation 

Sperm DNA damage affects both the nuclear and mitochondrial genome, as well 
as the molecular machinery at the subcellular level [17, 27, 28]. SDF also causes 
alterations in the sperm ultrastructure, such as vacuolation in the nucleus, severe 
sperm morphological abnormalities  including teratozoospermia [29]. These 
changes adversely affect normal sperm functions such as hyperactivation, capaci-
tation, and acrosome reaction which are critical for the binding of spermatozoa 
with the oocyte during fertilization [30, 31]. Especially, the proteome of the sperm 
and seminal plasma are altered in the patients with high SDF [28, 32]. It has sig-
nificant impact on sperm protein expression and molecular processes associated 
with triacylglycerol metabolism, energy production, protein folding, response to 
unfolded proteins, and cellular detoxification [28]. Also, the postgenomic path-
ways associated with sperm metabolism, function, and protection against oxidative 
stress get affected in spermatozoa with high DNA fragmentation [28]. Elevated SDF 
also disrupts spermatogenesis by altering the expression of prolactin-induced pro-
tein and its precursor protein (pPIP). Most of the proteins associated with DNA 
binding (such as sperm protein associated with nucleus in the X chromosome and 
histone proteins), oxidative stress, and mitochondrial function are differentially 
expressed [33].

Seminal plasma proteome also reflects the pathology associated with SDF, and 
these are modulated depending upon the extent of sperm DNA damage [32]. 
Intasqui et al. also reported that the postgenomic pathways are altered in the semi-
nal plasma of normozoospermic men with low and high DNA fragmentation. 
Molecular pathways such as fatty acid binding and prostaglandin biosynthesis 
functions were reported to be enriched in DNA-damaged spermatozoa [34]. 
Cysteine-rich secretory protein LCCL domain-containing 1 (CRISPLD1), cyste-
ine-rich secretory protein LCCL domain-containing 2 (CRISPLD2), and retinoic 
acid receptor responder protein 1 were proposed as biomarkers for low SDF, 
whereas proteasome subunit alpha type-5 protein was considered to be potential 
seminal biomarker for high SDF [34]. The molecular changes in the seminal 
plasma of smokers with high SDF were mainly related to decreased acrosome 
integrity and mitochondrial activity. Furthermore, the seminal plasma of patients 
with high SDF portrays activation of the pathways associated with positive regu-
lation of prostaglandin secretion, protein kinase A signaling, cytokine mediated 
signaling, and acute inflammatory responses [35]. In infertile patients exhibiting 
high levels of ROS along with SDF, enzymes linked to DNA binding mechanism 
were altered in the seminal plasma [36].

Overall, the molecular protein signatures of both the spermatozoa and seminal 
plasma are altered in high SDF conditions. Differentially expressed proteins may 
serve as potential biomarkers in the sperm  pathology with compromised DNA 
integrity. 
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�Male Infertility Factors/Conditions Associated with SDF

Studies reporting the link between male factor infertility and SDF have diverse obser-
vations. Many studies have correlated SDF and male infertility with evidence of 
decreased sperm functions [37–39], while others have reported that high SDF can also 
be observed in sperm with normal motility and morphology [40–42]. An elevated level 
of SDF is also reported in men with abnormal semen parameters and normozoospermic 
partners of infertile couples [43]. However, SDF is a crucial factor to maintain male 
fertility and development of a healthy embryo. In a recent article by Agarwal et al., the 
role of female factors in the management of SDF for a better outcome in ART has been 
elucidated [44]. Authors discussed the complex interplay between the SDF and ovarian 
reserve on the clinical outcomes of ART; the presence of an intact oocyte repair machin-
ery in good quality oocytes has a pivotal role in reproductive outcomes including SDF 
which serves as a safety check to avoid passage of defective genetic information to 
offspring [44]. However, several male infertility factors are associated with SDF.

�Male Age

It has been reported that among the couples seeking treatment by ART, fathers are sig-
nificantly older compared with those not needing ART (36.6 vs. 33.5 years) [45]. Men 
with age of 40 years or older are also found to be at higher risk of sperm DNA damage 
[46]. But some of the studies have reported no correlation between paternal age and 
SDF [47, 48]. However, most of the studies have reported that with increasing male age, 
the incidence ROS generation [46] and diploidy/aneuploidy increases in sperm [48, 49].

�Diet, Lifestyle, and Modifiable Risk Factors

The correlation between oxidative DNA damage and the consumption of foods 
supplemented with antioxidant compounds, with better general and reproductive 
health, has been reported in diverse studies [50, 51]. Most of the reports indicate 
that increased intake of individual antioxidants or antioxidant-rich foods can reduce 
the basal level of sperm DNA damage [52, 53]. It is apparent that endogenous sperm 
DNA oxidation levels are modulated through diet or supplementation, but a number 
of variables such as type and dose of antioxidant, basal level of antioxidant plasma 
concentrations, and smoking or alcohol consumption can interfere with the effec-
tiveness of the outcome. Smoking [54] and alcohol consumption [55] trigger SDF 
separately as well as in combination [56]. The mechanism of smoking or alcohol-
mediated SDF is due to the excess generation of ROS that affects sperm quality and, 
ultimately, fertility potential of the spermatozoa. In chronic smokers, activation of 
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the checkpoint kinase 1 (Chk1) facilitates S and G2 checkpoint arrest, in response 
to DNA damage. The expression of Chk1 is associated with SDF and apoptosis, the 
reduction of which may lead to decreased sperm repair and increased sperm apop-
tosis, with a subsequent effect on semen quality [54]. Reports regarding SDF and 
alcohol consumption suggest that during intrinsic apoptotic cascade, hydrogen per-
oxide released from the sperm mitochondria can induce SDF in the nucleus [57]. 
Much later in the apoptotic process, the sperm DNA begins to fragment [58].

�Obesity

There has been an emerging concern over the past few decades on the impact of 
obesity on male fertility. Infertility has been linked to male overweight or obesity, 
and conventional semen parameter values alter in case of high body mass index 
(BMI) [59]. Male obesity is associated with an increased risk of sperm DNA dam-
age and lower sperm motility and thus poor sperm quality [59]. Numerous human 
and animal studies have determined that a relationship between obesity and reduced 
sperm DNA integrity exists, despite the use of a variety of different methodologies 
to measure sperm DNA integrity [60]. Obesity induces OS and disrupts endocrine 
balance in men that brings about a negative impact on sperm DNA integrity [61].

�Environmental Toxicants

Environmental and occupational exposure of heavy metals [62], pesticides [63], and 
other endocrine disrupting chemicals (EDCs) are involved in deteriorating the male 
reproductive health resulting in male infertility. Exposure to these EDCs also posi-
tively correlates with SDF [64]. Different agents that act on germ cells at various 
stages of development usually showed SDF when those germ cells arrive in the 
epididymis or in the ejaculate. Some of these treated samples were capable of suc-
cessful in vitro fertilization but with frequent embryo failure. Extensive DNA frag-
mentation probably cannot be repaired by the oocyte, and the spontaneous abortion 
rate approximately doubles in men with more than 30% of sperm showing DNA 
fragmentation [65]. DNA fragmentation is an excellent marker for exposure to 
potential reproductive toxicants and a diagnostic tool for potential male infertility.

�Chemo/Radiotherapy

In the last few decades, numerous reports have confirmed negative impact of ion-
izing and non-ionizing radiations on male infertility [18, 66]. Ionizing radiations 
from medical equipment and radiotherapy for cancer treatment positively correlate 
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with SDF and declining sperm quality [18]. Cancer treatments are well known to 
adversely affect male fertility. Reduction of sperm count arises from the cytotoxic 
effects of chemo- or radiotherapy upon the spermatogenic epithelium [67]. Studies 
have also confirmed that radiotherapy in testicular germ cell tumors is associated 
with an increase in SDF compared to chemotherapy alone [68]. Non-ionizing radia-
tions from cell phones, Wi-Fi, and other radioactive sources also have significant 
negative impacts on male fertility and sperm DNA integrity [66].

�Infections and Testicular Trauma

As discussed above, multiple pathological factors acting at both intratesticular and 
post-testicular levels may contribute to sperm DNA damage. Bacteriospermia is 
one of the pathological conditions that manifests as acute or chronic inflammation 
and increases leukocyte infiltration in the genital tract resulting in higher ROS pro-
duction [69]. Patients with leukocytospermia, Chlamydia and Mycoplasma infec-
tions, testicular cancer, and varicocele have also reported to have more SDF caused 
by excessive production of ROS [26, 70, 71]. However, SDF in patients with 
Chlamydia and Mycoplasma infections were reported to decrease after a course of 
antibiotics [70].

�Techniques Used for SDF Assessment

A variety of assays are used to assess sperm DNA damage. These are classified as 
direct and indirect tests, which either measure the maturity and integrity of sperm 
chromatin or DNA fragmentation (Table 9.1). Most commonly used SDF tests are 
sperm chromatin structure assay (SCSA), terminal deoxynucleotidyl transferase 
dUTP nick-end labeling (TUNEL), sperm chromatin dispersion (SCD), and the 
Comet assay. A cross-sectional survey across 19 countries by Majzoub et al. showed 
that 30.6% of SDF measurements are done using TUNEL and SCSA, 20.4% and 
6.1% using SCD and single-cell gel electrophoresis (Comet), respectively [72]. The 
test results of each assay are different and are not interchangeable.

�Sperm Chromatin Maturity Testing

�Aniline Blue Staining (AB)

Immature spermatozoa contain lysine-rich histones, and mature spermatozoa have 
arginine and cysteine abundant protamines. AB is an acidic dye that reacts with the 
lysine and stains the immature spermatozoa blue, whereas matured spermatozoa 
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remain unstained. Stained spermatozoa are visualized under simple bright field 
microscope. The integrity of the sperm chromatin is assessed based on the intensity 
of the stain [73].

�Chromomycin A3 (CMA3)

Protamination state of the spermatozoa determines its chromatin integrity status. 
The lesser the protamine content, the poorer the DNA packaging and the higher the 
sperm DNA damage. CMA3 binds to the sperm DNA deficient of protamine and 
stains light yellow [74]. The intensity of color is high in sperm with increased prot-
amination [75]. Fertilization rate in ICSI were reported to be significantly lower 
with DNA damage of >30% in semen samples determined by CMA3 assay [76].

�Sperm DNA Fragmentation Testing

�Sperm Chromatin Structure Assay (SCSA)

SCSA is an indirect SDF test and used to detect breaks in the single-stranded DNA 
(ssDNA) of sperm. Acridine orange (AO) dye binds with the ssDNA and emits red 
fluorescence, whereas AO bound to double-stranded DNA emits green fluorescence, 
and the signals are captured using a flow cytometer [77]. SCSA can be done on both 
fresh and frozen sperm, and a clinical reference value for DNA fragmentation index 
(DFI) of 30% was established for SCSA [78, 79].

�Sperm Chromatin Dispersion (SCD) Test

SCD is also known as halo assay and was first introduced by Fernández et al. [80, 
81]. The sperm cells embedded into the low-melting agarose-coated slides produce 
halos/chromatin dispersion when denatured with acid solution. Slides are stained 
with DAPI (4′,6-diamidino-2-phenylindole) and visualized under fluorescent 
microscope to differentiate the fragmented (small halos/non-dispersed) form from 
the highly condensed chromatin (large/distinct halos). This test is performed on 
both neat and washed sperm, and the size of the halos is directly proportional to the 
DNA damage [82].

�Comet Assay/Single-Cell Gel Electrophoresis (SCGE)

In this technique, DNA from the lysed sperm is subjected to agarose gel electropho-
resis. The intact DNA remains inside the head of the sperm, whereas the fragmented 
DNA migrates and appears as a tail [83]. Fluorescent dye SYBR Green I is used for 
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staining, and the fragmented DNA is visualized under fluorescent microscope. The 
length of the tail (fragmented DNA) is an indicator of the extent of DNA damage. 
SCGE assay is performed on fresh semen samples, and it requires a minimum of 
5000 spermatozoa. Thus, the SDF can be assessed easily in oligozoospermic sam-
ples using comet assay [84].

�Terminal Deoxynucleotidyl Transferase dUTP Nick-End Labeling 
(TUNEL)

TUNEL assay identifies both the single- and double-strand DNA breaks in the 
spermatozoa from neat, washed, and cryopreserved semen samples. It is becom-
ing a popular technique and gaining clinical importance among the other available 
assays used to measure SDF, for its rapid and easy procedure. DNA breaks are 
labeled with 2′-deoxyuridine 5′-triphosphates (dUTPs) coupled with fluorescein 
isothiocyanate (FITC). Incorporation of the dUTPs at 3′hydroxyl (OH) break 
ends of ssDNA and dsDNA is carried out by template-independent DNA poly-
merase known as terminal deoxynucleotidyl transferase (TdT). Further, propid-
ium iodide (PI) is used as a counter dye to stain the nucleus. Fluorescence signals 
emitted are directly proportional to the DNA breaks and can be determined either 
by fluorescence microscope or flow cytometer [85, 86]. Detection of DNA breaks 
using flow cytometer is highly sensitive and most accurate technique with high 
reproducibility [87].

We have established TUNEL protocol for the measurement of SDF using 
Accuri C6 benchtop flow cytometer for clinical laboratories [88]. Initially, a refer-
ence value of 19.25% was established to differentiate healthy donors from infer-
tile men [89]. Recently, benchtop flow cytometer was used to measure SDF in 
large cohort size of infertile patients (n = 261) and compared with proven fertile 
donors. The assay had a high positive predictive value (91.4%) and specificity 
(91.6%) with a reference value of 16.8% [90]. Apart from standardizing the 
threshold values for SDF, our center had also compared the SDF results for the 
same samples determined using Accuri C6 benchtop flow cytometer from another 
reference laboratory at Basel, Switzerland. The interlaboratory variation was sig-
nificantly less, and both the centers had a high correlation of r = 0.94 [91]. Based 
on the reports of the several conducted experiments, a standardized, simple, and 
easy protocol had been proposed for SDF testing using TUNEL technique in clini-
cal laboratories [85, 88, 89, 91].

�SDF Testing for Male Infertility

Damage in the paternal genome is one of the leading causes of fertilization fail-
ure. SDF testing is an emerging and advanced tool for evaluation of male infertil-
ity. The clinical practice guideline (CPG) proposed by Agarwal et al. provides an 
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evidence-based recommendations for the clinical utility of SDF testing in infertile 
men [86]. SDF testing for patients with clinical varicocele and borderline semen 
parameters can help the physicians for selecting these patients to restore impair-
ments caused by varicocele and achieve better fertility outcome [86]. Additional 
SDF testing of ejaculated sperm in oligozoospermic patients and men with high 
SDF can be benefited by the use of testicular sperm for ART procedures [22, 92, 
93]. Also, SDF testing is considered as a predictive tool to assess the outcomes of 
natural pregnancy and ART.  Strengths-Weaknesses-Opportunities-Threats 
(SWOT) analysis revealed that CPG can be implemented in the daily routine prac-
tice for the integration of SDF testing to increase the outcome of ART [94]. 
Table 9.2 describes the effect of SDF on outcome of natural pregnancy and other 
IVF techniques.

�Conclusion

In this chapter, we have provided a concise explanation of the underlying mecha-
nisms of SDF in context to its induction via multiple factors and association of the 
same with male infertility. We suggest that potential diagnosis of male infertility can 
be achieved through assessment of SDF to bring about effective management 
approach to male infertility leading to satisfactory rates of successful pregnancy 
outcomes.

Table 9.2  Sperm DNA fragmentation and reproductive outcomes

Impact of high SDF on reproductive outcomes Studies

Natural pregnancy
 � Very low conception rates 

Spanò et al. [95]

Intrauterine insemination
 � Low pregnancy rate (OR = 9.9) 
 � Pregnancy loss with SDF > 12% and DFI > 27% 

Muriel et al. [96]
Duran et al. [97]
Rilcheva et al. [98]

IVF/ICSI
 � Negatively correlated with SDF
 � Fair to poor predictive value of different SDF assays for 

prediction of pregnancy [100]

Cissen et al. [99]

Fertilization rate and embryo quality
 � SDF ≥ 22.3% had significantly lower fertilization rates with 

ICSI 
 � Negative impact on reduced cleavage and blastulation rate 

decreased blastocyst development 

Simon et al. [100]
Morris [101]
Virro and Evenson [102]
Mohammad et al. [103]

Live birth rate (LBR)
 � Negative association with LBR after IVF 
 � Increased LBR with low sperm DNA fragmentation 
High miscarriage rates and recurrent spontaneous abortion after 
IVF and ICSI

Simon et al. [104]
Osman et al. [105]
Robinson et al. [106]

Data from Panner Selvam and Agarwal [107]
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