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Preface

In 2019, the First International Workshop on Multiscale Multimodal Medical Imaging
(MMMI 2019), a workshop held in conjunction with International Conference on
Medical Image Computing and Computer-Assisted Intervention (MICCAI 2019), took
place in Shenzhen, China. It was organized by the Massachusetts General Hospital and
Harvard Medical School, the University of Southern California, and Peking University.

In the field of medical imaging, the use of more than one imaging modality (i.e.
multimodal) or analyzing images at a different scale (i.e. multiscale) on the same target
has become a growing field, as more advanced techniques and devices have become
available. Various analyzes using multiscale/multimodal medical imaging and
computer-aided detection systems have been developed, with the premise that addi-
tional modalities/scales can encompass abundant information which is different and
complementary to each other. Facing the growing amount of data available from
multiscale/multimodal medical imaging facilities, a variety of new methods for the
image analysis have been developed so far. The MMMI workshop aims to move
forward the state of the art in multiscale/multimodal medical imaging, including both
algorithm development, implementation of methodology, and experimental studies.
The workshop also aims to facilitate more interactions between researchers in the field
of medical image analysis and the field of machine learning, especially in machine
learning methods for data fusion and multisource learning.

The MMMI workshop took place at the InterContinental Hotel Shenzhen in
Shenzhen, China, on October 13, 2019. It attracted more than 50 registered attendees
from international communities of computer scientists, imaging physics, radiologists,
and clinical physicians, who presented works covering a wide range of medical
imaging modalities and applications. Novel techniques and insights for
multiscale/multimodal medical images analysis, as well as empirical studies involving
the application of multiscale/multimodal imaging for clinical use were presented.
MMMI 2019 received a total of 18 submissions, which were reviewed by
29 independent reviewers. All submissions underwent a double-blind peer-review
process, with each submission being reviewed by at least two independent reviewers
and one Program Committee member. Based on the review scores and comments, 13
papers were accepted for presentation at the workshop and for inclusion in this
Springer LNCS volume.



We greatly appreciate all the author’s contributions to this workshop. We would like
to thank all the Program Committee members for handling the submissions with
professional judgements and constructive comments. We also thank our sponsors for
the financial supports of the Best Paper Awards and Student Paper Awards.

October 2019 Quanzheng Li
Richard Leahy

Bin Dong
Xiang Li
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Multi-modal Image Prediction via Spatial
Hybrid U-Net

Akib Zaman1(&), Lu Zhang1, Jingwen Yan2, and Dajiang Zhu1

1 The University of Texas at Arlington, Arlington, USA
akbzmn@gmail.com

2 Indiana University-Purdue University Indianapolis, Indianapolis, USA

Abstract. Cortical folding patterns and white matter connectivity together
compose the structural organization of human brain. Gray matter and gyrification
describe the geometric characteristic of cortical surface and the wiring of white
matter represents the structural pathway inside the brain. Many studies suggest
that there exists a close relationship between gray matter and white matter.
However, given the widely existing variability and complexity of brain struc-
tures, it is still largely unknown to what extent white matter wiring can influence
gray matter and folding patterns. As an attempt to discover the potential rela-
tionship between gray matter and white matter, in this work we developed a novel
spatial hybrid U-Net framework for multi-modal image prediction: we are aiming
to predict T1-weighted Magnetic Resonance Imaging (MRI) based on Diffusion
Tensor Imaging (DTI) data. Specifically, when predicting local intensity for T1
data, we constructed a hybrid model to integrate both local tensor information
and the FA (Fractional Anisotropy) measure from remote brain regions con-
nected by DTI derived fibers. To alleviate computation effort and reduce memory
consumption, we proposed a multi-stage 2D training scheme instead of using 3D
convolution neural network. Our results showed 80% accuracy for prediction and
the reconstructed cortical surface using predicted T1 data is highly consistent to
the original T1 derived surface. We envision that the proposed method can not
only lay down a foundation for multi-modality inference, but also bring new
insights to understand brain structure as well.

Keywords: Brain structure � Multi-modality � U-Net

1 Introduction

Human brains display significant inter-individual variation in cortical structures. Fold-
ing pattern of the cerebral cortex (gray matter - GM) and white matter (WM) connec-
tivity are two aspects of brain structure. These two characteristics together compose the
structural organization of human brain. That is, gray matter and gyrification depict the
geometric shape of cortical surface, e.g., gyri and sulci, and white matter wiring pro-
vides the white matter pathway inside the cortex. Many studies suggest that there exists
a close relationship between gray matter and white matter, such as a universal scaling
law between GM andWM [1]. There are two divergent ideas in the field: axonal pushing
and pulling [2] theory. A recent study further proved that during cortical gyrification,
gyral regions with higher concentrations of growing axonal fibers tend to form 3-hinge
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gyri [3]. All the above studies suggest that there exists a close relationship between gray
matter and white matter. However, given the existing variability and complexity of brain
structures, it is still largely unknown to what extent white matter wiring can influence
gray matter and folding patterns.

Fortunately, the advancement of MRI and DTI provides non-invasive ways to
examine cortical folding patterns and white matter related measures (e.g. FA maps and
DTI derived fibers). As an attempt to discover the potential relationship between gray
matter and white matter, we developed a novel spatial hybrid U-Net framework for
multi-modal image prediction: we aim to predict T1-weighted MRI based on DTI data.
The motivation is that if white matter influences cortical folding (gray matter) via either
pulling/pushing or their combined effects, we should be able to infer gray matter with
the information of white matter. Specifically, when predicting local intensity for T1-
weighted image data, we constructed a hybrid model to integrate both local tensor
information and the FA measures from remote brain regions connected by DTI derived
fibers. The reason for integrating local and remote white matter knowledge as a hybrid
model is to examine if structural connectivity will also contribute to local gray matter
properties. To alleviate computation effort and reduce memory consumption, we pro-
posed a multi-stage 2D training scheme instead of using 3D convolution neural net-
work (CNN). Using Human Connectome Project [4] data set as a test bed, our results
showed 80% accuracy for T1-weighted image prediction with DTI data. Here, the
accuracy is defined as the ratio of predicted intensity to the original one. We also
examined the reconstructed cortical surfaces with the predicted T1 data and it displayed
high similarity to the surfaces generated from the original T1 image.

2 Method

2.1 Data Acquisition and Pre-processing

The data used in this work is acquired from the WU-Minn Human Connectome Project
(HCP) consortium S1200 Release. We use T1-weighted MRI and DTI. For T1,
TR = 2.4 s, TE = 2.14 ms, voxel size is 0.7 mm isotropic. For DTI, TR = 5.520 s,
TE = 89.5 ms, slice thickness is 1.25 mm. The diffusion weighted data consists of 3
shells of b = 1000, 2000, and 3000 s/mm2 with an approximately equal number of
acquisitions on each shell within each run. In this work, we only used 90 b = 1000
volumes and 1 b = 0 volume.

The data acquired is then pre-processed through a series of steps using the FMRIB
Software Library (FSL) [5, 6]. Finally, the T1-weighted images are registered to their
respective DTI b = 0 images using FMRIB’s Linear Image Registration Tool. [7, 8]
This step allows us to register the DTI and FA images in the same space as the T1 image.

2.2 Extracting Features from Data

To alleviate computation effort and reduce memory consumption, we proposed a multi-
stage 2D training scheme instead of using 3D CNN. That is, each data sample for our
model training and prediction is generated based on a single 2D slice. Figure 1
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demonstrates the construction of our input. The features contained in each sample
comprise two parts: the first part comes from local structural information which includes
the gradients of ninety b = 1000 volumes and one b = 0 volume. The second part of the
input represents the remote structural information. For example, for each voxel con-
sidered, we can compute its connected voxels (the colored voxels in Fig. 1) in remote
regions by examining if there are fibers passing through both of them. For the connected
voxels, we acquire their FA measures and concatenate them with the local information
as the entire input. Because of computation constrains, we considered 6 remote regions
for each slice. Different features are treated as different channels. Totally we have 97
channels for each 2D slice. The motivation to integrate both local and remote structural
information together for model training and prediction is to examine if the remote brain
regions can influence the local brain structures via WM structural connectivity.

2.3 Transfer Learning Using a Spatial Hybrid U-Net Model

The deep neural network architecture adopted in this work is similar to the U-Net
model [9]. This model can be divided into two major parts with 5 blocks on the left
(down-sampling) and 5 blocks on the right (up-sampling) of a central block. The first
block of the model represents the input layer. This is a collection of 2D image slices
from the 3D volume we generated from the DTI and FA images. This is followed by
four blocks of similar structure (down sampling) - two 3 � 3 2D convolutions with a
rectified linear unit (ReLU), followed by a 2 � 2 max pooling operation. Batch nor-
malization and a dropout of 25% is used after each max pooling layer. Before we begin
the up-sampling blocks, we apply two 3 � 3 convolutions with ReLU followed by
batch normalization and a dropout of 50% nodes. The four blocks of the up-sampling

Fig. 1. Combining DTI and FA slices as features

Multi-modal Image Prediction via Spatial Hybrid U-Net 3



part consist of a concatenate operation to merge the layers in the same spatial order.
This is the key feature of the U-Net architecture.

This is followed by two similar 3 � 3 2D convolution operations and batch nor-
malization. The final up sampling block is passed through a 1 � 1 2D convolution with
a single filter to regress the output. Note that even though the input of the proposed
model is based on 2D slices, it contains the 3rd dimension of 97 channels which
integrate both local and spatially remote structural information. Therefore, we named it
as spatial hybrid U-Net. Figure 2 visualizes the overall structure we used in this
adaptation of the U-Net.

2.4 Training and Prediction Procedure

In this work, we proposed a multi-stage training strategy: the entire training process is
divided into three stages corresponding to three image directions. First, we train the
model from the sagittal plane. For this, we use the image slices pre-processed with the
sagittal direction and feed into our spatial hybrid U-net model. These image slices are
from 15 subjects (subject 1 to 15) and each slice is treated as an independent training
sample. This part of the training helps us achieve a baseline for the weight initializa-
tion, which will be used to train the model with images from other planes. The images
from the axial plane are taken from a different set of 15 subjects (subject 16 to 30) and
the model is continued to be trained from the axial direction. Finally, we train the
model from the coronal direction using coronal slices from another set of 15 subjects
(subject 31 to 45). The reason that we did not conduct the training using three direc-
tions simultaneously is that there exists significant difference of the training perfor-
mance for different directions. Essentially, we trained the model from a direction with

Fig. 2. Spatial hybrid U-Net architecture. Each color of block represents a different type of
combination of operations. The input and output boxes are 2D slices images. One block from
each type has been enlarged to show the operations that it contains.
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the best prediction performance and used that as pre-knowledge to train the next one.
This is similar to transfer learning that transfers the knowledge gained from one plane
to a different plane. Figure 3 shows the overview of our training process.

The optimizer used to train the model is the stochastic gradient-based Adam
optimizer. It updates the model parameters with the rule:

Xtþ 1 ¼ Xt � c:
cmt
affiffiffiffiffiffi

cmt
b

q
þ v

ð1Þ

The Adam optimizer computes network weights and biases Xtþ 1 for step t + 1
using adaptive momentum estimation technique, which enables it to compute param-
eters using variable learning rate (c) instead of a fixed constant learning rate. This
enables the optimizer to calculate gradient steps more precisely enabling it to converge
faster. It uses first and second exponential decay rates ba and bb to compute first and

second momentum estimates cmt
a and cmt

b . These values are used to compute new
weights and biases for the network at t + 1 step. The parameter m is a regularization
parameter used to avoid division by zero cases.

We use Mean Squared Error to penalize the difference in the predicted value. The
loss is calculated by the following formula:

f Xtð Þ ¼ 1
N

XN

i¼1

ti � pið Þ2 ð2Þ

Here, ti and pi are true and predicted values of the deep neural network and N is a
normalizing constant defined by the number of subjects (number of training samples).

3 Results

3.1 Predicting T1-Weighted Images from DTI and FA Images

Given the 90 gradients extracted from 90 b = 1000 s/mm2 DWI volumes (local
information) as well as FA measures of voxels connected (remote information) for each
voxel (Sect. 2.2), we conducted T1 prediction model training with spatial hybrid U-Net

Fig. 3. Overview of training process
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frame-work proposed in Sects. 2.3 and 2.4. In this work, we perform the prediction (50
subjects) from all three directions and the final result is averaged. We randomly select 5
subjects and show their original T1 data as well as prediction results in Fig. 4. We can
see that both overall structures and detailed spatial patterns of GM/WM are highly
consistent between our prediction results and the original T1 data. The related quan-
titative results are shown in Sect. 3.3.

3.2 Predicting Cortical Surfaces with Predicted T1-Weighted Images

For the 50 predicted T1 images using our DTI prediction model, we conducted the
cortical surface reconstruction as regular T1 images. Each sub-figure in Fig. 5 shows
the reconstructed cortical surfaces using the original T1 image (top) and our predicted
one (bottom). By visual examination we can see that the overall folding patterns are
highly consistent between the original T1 derived cortical surfaces and the ones based
on DTI prediction results. The color encodes the prediction error and the regions with
red represent high prediction error. An interesting observation is that the temporal lobe
(red circles) and dorsal regions (red arrows) tend to have higher prediction error
compared to other brain regions. This might be due to the more complex structure of
the corresponding regions. Importantly, we can accurately predict T1 image and
generate cortical surface only using DTI data, which was considered a different
imaging modality.

Fig. 4. Comparison of predicted T1-weighted image and original T1 data. We used 45 subjects
for prediction model training (15 subjects for each stage). Here, we randomly select 5 subjects
and show their prediction results (right) with the original T1 data (left) as well

6 A. Zaman et al.



3.3 Comparison with Model Without FA Slices in the Training Data

In our paper, we used Mean Absolute Error (MAE) to measure the quality of predicted
T1-weighted images. MAE is a measure of difference between two continuous vari-
ables. The Mean Absolute Error is given by:

MAE ¼
Pn

i¼1 ai � bij j
n

ð3Þ

where ai and bi are the original T1 data and predicted T1 data, respectively.
Our comparison results can be seen in Table 1. 5 predicted subjects were randomly

chosen and compared with their original registered T1-weighted image. It is evident
that including remote features (FA) has a positive effect on the prediction model.

3.4 Comparison with k-Nearest Neighbor (kNN) Regression

We compared the results of our model with kNN Regression (n = 5) and it is evident
from the results that our proposed model performs better. The MAE values have been
compared to show the performance improvement that our model achieves (Table 2).

Fig. 5. Examples of cortical surface reconstruction using original and predicted T1 images
(Color figure online)

Table 1. Comparison of our proposed DTI + FA method with only DTI method (MAE values)

Subject 1 2 3 4 5 Average

DTI + FA method 0.073 0.072 0.074 0.057 0.073 0.0714
Only DTI method 0.081 0.079 0.082 0.069 0.084 0.0790

Multi-modal Image Prediction via Spatial Hybrid U-Net 7



3.5 Reproducibility

We examined the robustness of our model by using the same training procedure for 9
subjects (3 from each plane) and 15 subjects (5 from each plane). The results were
satisfactory, as can be seen from Fig. 6 above. Using higher number of subjects yields
higher accuracy, as expected. However, our model proves to be robust in terms of the
T1-weighted predictions even with very few subjects used for training.

4 Conclusion

In this work, we developed a novel spatial hybrid U-Net model to predict T1 image
from DTI data. During this process, we used both the local structural information and
also FA measures from remote regions connected by DTI derived fibers. We also
proposed a multi-stage training scheme to achieve a more reliable prediction perfor-
mance. Our results showed 80% accuracy for prediction and the reconstructed cortical
surface using predicted T1 data is highly consistent to the original T1 derived surface.
We envision that the proposed method can not only lay down a foundation for multi-
modality inference, but also bring new insights to understand brain structure as well.

Fig. 6. Prediction using 9 subjects (left) and 15 subjects (right)

Table 2. Comparison of our proposed model with kNN regression (MAE values)

Subject 1 2 3 4 5 Average

kNN 0.120 0.112 0.115 0.109 0.130 0.1172
Proposed 0.073 0.054 0.057 0.063 0.068 0.0630

8 A. Zaman et al.
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Abstract. In the field of computer-aided diagnosis (CAD) and treatment
evaluation system on hepatic disease diagnosis, the automatic segmentation of
the liver from CT volume is the most basic step. It is a difficult task because the
shape of liver could be changed by liver tumor, and the intensity of liver is
similar to that of other adjacent tissues. In this paper, we proposed a framework
based on the U-net architecture, called dense pyramid network to segment the
liver from CT images automatically. The main contribution of our network is
that, multiple feature maps from the previous level of hierarchy are combined as
the input of each layer in the encoding part. This removes the loss of context
information between different layers. The model is trained on practical enhanced
CT scans, which are gained from People’s Liberation Army General Hospital
(PLA). Experimental results demonstrate that our model can effectively improve
the segmentation performance of liver, no matter the different shapes between
livers. In the experiment, the Dice score of liver segmentation in the arterial
phase, venous phase, and delay phase by dense pyramid network was about
95.97%, 96.22%, and 96.16%, respectively, which shows that our model is more
suitable for multi-phase liver segmentation.

Keywords: Deep learning � Liver segmentation � U-Net � Dense pyramid
network

1 Introduction

Liver cancer is a common malignant tumor in the world. In 2013, the incidence and
mortality of liver cancer in China were higher than the global average [1, 2], the early
diagnosis and treatment of liver cancer has always been received highly attention.

© Springer Nature Switzerland AG 2020
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In medical imaging technology, CT has become an important reference because of its
high spatial resolution, high robustness and short acquisition time [3–5]. Currently,
multi-phase CT images are widely used to diagnose hepatic disease, but when clinical
experts diagnose the type of liver cancer, they usually need roll back and forth in
different phases, even zoom in and out the CT images; besides manual annotation on
thousands of CT slices is time-consuming [6], therefore, Accurate liver automatic
segmentation to determine the size of the liver and the need for tumor location is an
urgent problem. Accurate liver segmentation on CT images is a challenging task
because the intensity is similar between the liver and other organs around it, and the
size and contour of the liver can be affected by liver tumors or other diseases. To
segment the liver issue based on contrast-enhanced CT images, the traditional image
segmentation algorithm is to extract image features based on the distribution of HU
values of CT images, such as level set [7, 8] based methods and graph cut [9, 10] based
methods. However, the disadvantage is that the parameters of the model need to be
initialized according to the doctor’s prior knowledge, which is greatly influenced by
subjective factors.

In recent years, deep learning has become popular in the field of medical imaging.
Litjens [11, 12] et al. summarized the application of deep learning methods in the field
of medical image processing. The U-net architecture proposed by Ronneberger [13]
et al. apparently becomes a main method on medical images segmentation, and makes
an impressive improvement by its elegant structure of skip connections. It consists of
an end-to-end contraction path and expansion path, which follows a basic encoder-
decoder architecture, the contraction path is consecutive of convolution layer and max-
pooling layer, which extract more features pass to the next layer. Downsampling is
performed by a convolution-pooling operation during the encoding process to obtain a
low-resolution feature map; the expansion path is to upsample the feature map to
recover the size of segmentation map, and Skip-connection brings feature maps in the
encoder to the decoder of the same level so that the segmentation mask can be syn-
thesized. It has the following shortcomings: the context information of higher resolu-
tion layers can’t be propagated to the deep convolutional layer; when the number of
layers is increased, the gradient return path is longer, which is not conducive to the
convergence of the model.

In our work, we proposed a framework based on U-net, called dense pyramidal
feature network to segment multi-phase CT images of liver tissue automatically, which
can reduce users’ bias and segmentation time, meanwhile, it’s the foundation for liver
tumor segmentation and surgical planning.

2 Method

An overview of our proposed dense pyramid architecture is shown in Fig. 1. Firstly,
the enhanced CT images are pre-processed using HU clip, then the images are fed into
our segmentation network, which is inspired by the experience of U-net. We will
introduce the dataset we used in our work, then the detailed dense pyramid architecture
will be given.
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2.1 Dataset

The model is trained and tested on practical abdominal enhanced DICOM images
chosen from People’s Liberation Army General Hospital (PLA), the database is
composed of 15 males and 5 females, and each CT volume include three phases:
arterial phase, venous phase, delay phase, among them, there are 16 CT volumes
contain hepatic tumors or other related illness.

2.2 Dense Pyramid Network

Our model is trained based on dense pyramid network, which is optimized on the
U-net, and the schematic is shown in Fig. 1.

Compared with traditional fully convolutional neural network, which is shown in
Fig. 2, the dense pyramid network is composed of end-to-end network architecture,
multi-scale pyramid features and dense connection structure. The end-to-end archi-
tecture is a basic encoder-decoder architecture, and the loss function is weighted by
cross entropy [14], which is defined as:

loss ¼ � 1
N

XN

i¼1
wi bPi logPi þ 1� bPi

� �
log 1� Pið Þ

h i
ð1Þ

Where Pi denotes the probability of pixel i belonging to the foreground, bPi rep-
resents the ground truth, and wi is the weighted factor. The multi-scale pyramid fea-
tures is shown in Fig. 1, it gains different feature maps by max-pooling layers, finally,
the dense connection, multiple feature maps from the previous level of hierarchy are
combined as the input of each layer in the encoding part, this removes the loss of
context information between different layers.

The model is implemented with Tensorflow library. We train the network from
scratch with a Gaussian random initializer (l = 0, r = 0.01). The Adam optimizer with
an initial learning rate of 0.0001 is used for parameters updating. By considering the
sizes of background and liver, we set the weights of the cross entropy loss to be 1 and
16 respectively. The followings are the specific experimental steps of this study:

Firstly, before using the CT images, we replaced the privacy information of the
patients which is included in the DICOM header file, secondly, we manually annotated
the enhanced CT images on the direction of Transverse plane which are guided by
experts, then, the Hounsfield unit values of each CT image are ranged in [−75, 175],
finally, this study used a 4-fold cross-validation method to obtain liver segmentation
results, and connected domain analysis was performed on the segmentation results, and
the largest connected domain was retained as the final liver segmentation result.

2.3 Evaluation Metrics

The liver segmentation result is measured according to commonly used Dice score
[15], which is defined as:

DICE A;Bð Þ ¼ 2 A
T
Bj j

Aj j þ Bj j ð2Þ
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We refer to foreground in the ground truth as A, and the predicted foreground as B,
and the higher the Dice score is, the better the liver segmentation result is.

Fig. 1. Overview of the proposed dense pyramid network

Fig. 2. The U-Net framework
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3 Result and Discussion

We evaluate the performance of our proposed dense pyramid network as well as U-net,
the quantitative evaluation results are illustrated in Fig. 3. We notice that the Dice
scores improve in arterial phase, venous phase and delay phase, which demonstrate that
the dense pyramid network is better than U-net.
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Fig. 3. The results of U-Net and DPFN in liver segmentation

Fig. 4. Results of liver segmentation. The first row represents the original CT images, second
row represents ground truth, and third row represents results of liver segmentation with dense
pyramid network (the liver is labelled in red). The first three columns are in order of ART, VN,
and DL phase respectively. The last three columns are in the same order. (Color figure online)
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In Fig. 4, we show some representative segmentation examples obtained with the
dense pyramid network. According to the results, we conclude that the dense pyramid
network we proposed can detect the most liver region, and adapt to different liver forms
no matter the shapes of the livers among different CT volumes are various.

Besides, the enhanced CT images we used are composed of arterial phase, venous
phase and delay phase, and different phases have different characteristics on image,
which are shown in Fig. 5, we can achieve an effective segmentation result of multiple
phases of liver images using only one segmentation network.

4 Conclusion and Future Work

In this paper, we design and proposed a model, called dense pyramid network to
segment liver from abdominal enhanced CT scans automatically. Within our model,
multiple feature maps from the previous level of hierarchy are combined as the input of
each layer in the encoding part to combine the detail texture and the contour infor-
mation, which can solve the multi-scale problem in image segmentation to some extent,
and improve the performance of liver segmentation of CT scans. In the future, we
would like to design some efficient algorithm to achieve the segmentation of the liver
tumor on the basis of liver segmentation, so as to achieve the purpose of computer-
aided diagnosis and evaluation of treatment plans.
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Abstract. Deep learning models, such as the fully convolutional net-
work (FCN), have been widely used in 3D biomedical segmentation and
achieved state-of-the-art performance. Multiple modalities are often used
for disease diagnosis and quantification. Two approaches are widely used
in the literature to fuse multiple modalities in the segmentation networks:
early-fusion (which stacks multiple modalities as different input chan-
nels) and late-fusion (which fuses the segmentation results from different
modalities at the very end). These fusion methods easily suffer from the
cross-modal interference caused by the input modalities which have wide
variations. To address the problem, we propose a novel deep learning
architecture, namely OctopusNet, to better leverage and fuse the infor-
mation contained in multi-modalities. The proposed framework employs
a separate encoder for each modality for feature extraction and exploits a
hyper-fusion decoder to fuse the extracted features while avoiding feature
explosion. We evaluate the proposed OctopusNet on two publicly avail-
able datasets, i.e. ISLES-2018 and MRBrainS-2013. The experimental
results show that our framework outperforms the commonly-used feature
fusion approaches and yields the state-of-the-art segmentation accuracy.

Keywords: Medical image segmentation · Deep learning ·
Multi-modal images

1 Introduction

Recent years have witnessed the rapid development of deep learning technique.
Deep learning models have been widely used for medical image segmentation and
achieved impressive performance [1–3]. Compared with natural images, medi-
cal images, e.g. computed tomography (CT) and magnetic resonance imaging
(MRI), often have a lot of scanning protocols in its toolbox and each protocol
may reveal a different property (often complementary to other protocols) of the
underlying tissue. For examples, to assess ischemic stroke lesion, three modali-
ties using perfusion imaging are commonly captured, i.e. cerebral blood volume

This work was done when Yu Chen was an intern at YouTu Lab.

c© Springer Nature Switzerland AG 2020
Q. Li et al. (Eds.): MMMI 2019, LNCS 11977, pp. 17–25, 2020.
https://doi.org/10.1007/978-3-030-37969-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37969-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-37969-8_3


18 Y. Chen et al.

Fig. 1. Different fusion approaches, including early-fusion (a), late-fusion (b) and the
architecture of our OctopusNet (c).(Color figure online)

(CBV), cerebral blood flow (CBF), and time to peak of the residue function
(Tmax). Those modal images may contain different clinical interpretation.

To exploit the multi-modal medical data, two fusion approaches are widely-
used by current deep learning networks, i.e. stacking multiple modalities as dif-
ferent input channels (early-fusion, Fig. 1(a)) [1,2,4] and fusing the outputs of
networks from different modalities (late-fusion, Fig. 1(b)) [3,5]. Neither fusion
approach is optimal in using the complementary information from multiple input
modalities. Take the perfusion CT for ischemic stroke lesion segmentation as
an example. As shown in Fig. 1(c), four modalities, i.e. CBV, CBF and MTT,
and Tmax, are captured. It can be observed from the four modalities that the
lesion area in CBV and CBF is darker compared to the normal area, while it is
lighter in the modalities of MTT and Tmax. Consequently, the information in
different modalities may be wrongly fused if we simply adopt the early-fusion
approach. On the other hand, although the late fusion approach adopts the sep-
arate encoder-decoder for each modality, the whole network is computational
expensive and difficult to converge.
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In this paper, we propose a novel segmentation network, namely Octopus-
Net, which effectively leverages the information contained in multi-modal med-
ical images. Instead of fusing multi-modal images at the input stage, we exploit
an individual encoder for each modality and fuse the feature maps generated
by middle stages of the network, which specifically extracts features from each
modality and explicitly considers the correlations between different modalities.
As the modalities are separately encoded, the proposed OctopusNet adopts a
novel feature fusion module, namely a hyper-fusion decoder, to merge the fea-
ture maps and avoid feature explosion. Extensive comparison experiments are
conducted on multi-modal datasets. The results demonstrate the outstanding
segmentation performance of the proposed OctopusNet.

2 OctopusNet

In this section, we introduce the detailed information of our OctopusNet. The
framework of our OctopusNet is shown in Fig. 1(c). The colored cubes refer to
the feature maps generated at different stages of the framework. Our OctopusNet
addresses the problem of cross-modal interference, occurred in early-fusion, by
extracting features from the modalities using separate modal encoders, which can
be any CNN architecture, e.g. VGG [6], ResNet [7] or DenseNet [8]. As shown
in Fig. 1(c), the feature maps generated at different stages of modal encoders
are concatenated and fed to the hyper-fusion decoder. The proposed decoder
uses hyper-fusion modules to fuse the feature maps from different modalities
and avoid the problem of feature explosion. Compared to the late-fusion app-
roach with four separate decoders, the hyper-fusion decoder more effectively
fuses cross-modal information and reduces the computational cost. The decoder
upsamples the high-level low-resolution feature maps back to the original reso-
lution in the same way as [9], and yields the segmentation result.

2.1 Modal Encoder

As aforementioned, the modal encoder can be chosen from any widely-used net-
work architectures, e.g. DenseNet. In our experiments, DenseNet-161 usually
yields better segmentation accuracy compared to that of VGG and ResNet. There-
fore, we take DenseNet-161 as an example to illustrate the pipeline of extract-
ing feature maps from different modalities. The detailed information of network
architecture of DenseNet-161 can be found in [8]. The colored cubes in each
modal encoder in Fig. 1(c) are the feature maps generated by different stages
of DenseNet-161, which correspond to the ones from Dense Block (1) - (4). To
better leverage the explicit information contained in different modalities, all the
extracted feature maps are concatenated together and fed to the hyper-fusion
decoder for feature fusion and distilling.

2.2 Hyper-fusion Decoder

We propose a novel hyper-fusion decoder to decode and upsample the high-level
low-resolution feature maps back to the original resolution of input and yield the
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segmentation result. As shown in Fig. 1(c), the decoder adopts a hyper-fusion
module for feature distilling, deep supervision for better training convergence,
and concatenates the fused feature maps (purple cubes) to the upsampled ones
(yellow cubes) to produce segmentation result.

Hyper-fusion Module. As the network goes deeper, the number of feature
maps increases. Consequently, the concatenation of multi-modal feature maps
easily causes a problem of feature explosion. For example, assuming there are
N modalities as input, the number of concatenated feature maps generated by
Dense Block (4) of modal encoders is 2208×N , which requires high cost of com-
putation and memory consumption. The hyper-fusion module (1)–(4) in Fig. 1(c)
is a 1× 1 convolution, which has the same number of channels to that of feature
maps from Dense Block (1)–(4). Therefore, the N concatenated feature maps can
be accordingly fused and compacted to single ones using hyper-fusion modules
(the purple cubes in Fig. 1(c)).

Deep Supervision. The proposed OctopusNet is an end-to-end framework,
which means the multiple modal encoders and hyper-fusion decoder are simulta-
neously trained and updated. However, the networks adopted for modal encoders
are usually extremely deep, resulting in a difficulty for training convergence only
using a single supervision signal at the very end of a long pipeline. Hence, we
added a weak supervision signal to the deepest node of OctopusNet, i.e. the
elongated purple cube at the bottom. Assuming DenseNet-161 is adopted as the
modal encoder, the size of bottom purple cube is 2208× 7× 7. In this situation,
a 1 × 1 convolution is used to transform the cube to 1 × 7 × 7 and the original
supervision signal is resized from 224 × 224 to 7 × 7 to be as weak supervision.

3 Experiments

We evaluate the performance of the proposed OctopusNet on publicly available
datasets from two challenges, namely ISLES-20181 and MRBrainS-20132, and
compare with the early-fusion and late-fusion approaches. Though our result is
competitive to the top-performance of the ISLES-2018 challenge, the purpose of
the experiments is not to win the challenges. Our main purpose is to demonstrate
the effectiveness of the proposed fusion approach and compare with other widely
used alternative strategies. Our approach is complementary to, and can be easily
integrated into, other FCN based multi-modal segmentation approaches.

3.1 Datasets

ISLES-2018. Ischemic stroke lesions segmentation (ISLES) is a competition
consecutively held since 2015 [10]. In ISLES-2018, the challenge organizer
released a new dataset, which is composed of six modalities, including diffusion
weighted imaging (DWI) MRI, computed tomography (CT) and four perfusion
1 http://www.isles-challenge.org/.
2 http://mrbrains13.isi.uu.nl/index.php.
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scans, i.e. mean transit time (MTT), time to peak of the residue function (Tmax),
cerebral blood flow (CBF) and cerebral blood volume (CBV). The ISLES-2018
competition provides 94 sets of multi-modal data for training and 62 sets for
test. As the ground truth of the test set is not available, participants need to
submit their prediction to the online system for performance evaluation.

The dataset has two main challenging issues. First, the appearances of lesion
areas among different modalities are widely varied. The lesion area in MTT and
Tmax is brighter than the normal area, while it is dark in the modalities of CBF
and CBV, as shown in Fig. 1(c). Second, the ISLES-2018 data does not have a
uniform size. Though each slice has a fixed size of 256 × 256 pixels, the number
of slices contained in a volume varies from 2 to 22. Most ISLES-2018 volumes
only have two slices, which presents a difficulty to adapt a 3D segmentation
framework to the dataset.

MRBrainS-2013. The MRBrainS-2013 dataset contains five sets of multi-
modal brain images, in which the brain tissues, i.e. gray matter, white mat-
ter and cerebrospinal fluid, are fully annotated. Three registered modalities,
i.e. T1-weighted scan (T1), T1-weighted inversion recovery scan (T1 IR) and
T2-weighted fluid attenuated inversion recovery scan (T2 FLAIR) are provided.
The volumes of the dataset are in an uniform size of 240 × 240 × 48 voxels.

Implementation Details. The proposed OctopusNet may have different archi-
tectures regarding to the input data. As most ISLES-2018 data has a couple of
slices, we develop a 2.5D OctopusNet instead of 3D. Three consecutive slices
from a volume are extracted and fed to 2D modal encoders as inputs. The first
and last slices of the volume are duplicated for padding. In this setting, modal
encoders can be pretrained on the ImageNet dataset for better training conver-
gence. Our OctopusNet is implemented using PyTorch. The initial learning rate
is set to 0.7 and divided by 10 after every 35 epochs. The network is optimized by
stochastic gradient descent (SGD). The used datasets have different number of
modalities. Consequently, the proposed OctopusNet involves different numbers
of modal encoders for the ISLES-2018 and MRBrainS-2013.

Take the ISLES-2018 as an example. As the ISLES-2018 test set does not
provide the DWI modality, five original modalities, i.e. CT, MTT, Tmax, CBF
and CBV, are adopted as input for OctopusNet. Furthermore, the lesion area
is not clearly visible in the modalities of CT, CBF and CBV. Hence, these
three modalities are enhanced by histogram equalization. Finally, five original
modalities and three enhanced modalities are fed to the OctopusNet3. The input
size of each modal encoder is 256 × 256 × 3.

3.2 Performance Analysis

We perform a five-fold cross validation on the ISLES-2018 and MRBrainS-2013
training set to evaluate the performance of our OctopusNet. All the experiments

3 This network has an octopus shape with a body (the decoder) and eight arms (the
encoders). This is where the name, OctopusNet, comes from.
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Table 1. Dice coefficient (%) of lesion areas of ISLES-2018 (average of five-fold cross
validation).

VGG-16 [6] ResNet-50 [7] DenseNet-161 [8]

Single modality (Tmax) 44.97 44.03 45.83

Early-fusion 53.38 53.99 53.82

Late-fusion 53.73 55.39 53.86

Octopus-fusion 55.71 57.33 57.72

Octopus-fusion + deep supervision - - 57.90

are repeated three times to reduce the influence caused by random nature of
network training. Hence, the results reported in the paper are the the aver-
age results of three repeated experiments. For the convenience of comparison,
the frameworks using baseline fusion approaches (early- and late-fusion) in our
experiments are in the same setting to that of OctopusNet, e.g. the input format
of different modalities. Henceforth, the fusion approach adopted in our Octopus-
Net is named as Octopus-fusion. The Dice coefficient, which measures the spatial
overlap index between the segmentation results and ground truths, is adopted
as the metric to evaluate the segmentation accuracy.

Results on ISLES-2018. As aforementioned, the modal encoder can be chosen
from widely used deep learning networks. To evaluate the generalization capabil-
ity of Octopus-fusion, several network architectures, e.g. VGG-16 [6], ResNet-50
[7] and Dense-Net-161 [8], are adopted as the modal encoder and trained with
different fusion approaches on the ISLES-2018 dataset. The results are listed
in Table 1. To evaluate the improvement produced by the usage of multi-modal
images, we also report segmentation accuracy using a single modality. Due to the
space limit, Table 1 only lists the result of the best single modality (i.e., Tmax).
Due to the lack of information contained in extra modalities, the frameworks
using single modality only yield Dice coefficients around 44%, which are about
9% lower than that of multi-modal frameworks. For the early-fusion approach,
Table 1 shows that the accuracies of all three backbone networks are quite similar
with the deep networks (i.e., DenseNet-161 and ResNet-50) slightly outperform-
ing the shallow network of VGG-16.

For the late-fusion approach, as it involves multiple encoder-decoder architec-
tures for different modalities, the explicit information contained in multi-modal
data can be better extracted. Hence, accuracy of the late-fusion approach sur-
passes that of early-fusion with the same modal encoders. However, DenseNet-161
only gains marginal improvement, i.e. 0.04%, by switching from early-fusion to
late-fusion. The reason for that is the network depth of DenseNet-161 is extremely
deep, which makes it difficult to simultaneously well train multiple fully convo-
lutional DenseNet-161 branches in the late-fusion approach. Compared to the
results of early- and late-fusion, our Octopus-fusion approach significantly boosts
the accuracy of modal encoders. The best lesion segmentation result is achieved by
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Table 2. Dice coefficients (%) yielded by different fusion approaches for each brain
tissue of MRBrainS-2013 (average of five-fold cross validation).

CSF Gray matter White matter Ave. Dice

Single modality (T1) 78.46 81.37 85.69 81.84

Single modality (T1 IR) 75.95 77.51 81.92 78.46

Single modality (T2 FLAIR) 74.00 75.63 77.32 75.65

Early-fusion 79.05 80.58 83.56 81.07

Late-fusion 79.16 81.41 84.71 81.76

Octopus-fusion 80.59 82.12 86.05 82.92

the Octopus-fusion DenseNet-161, i.e. a Dice of 57.72%. By adding the deep super-
vision signal, the segmentation accuracy is further increased to 57.90%, which is
2.51% higher than that of the best-performance among benchmarking algorithms
(late-fusion with ResNet-50).

ISLES-2018 Challenge. We participated the ISLES-2018 competition. The
proposed OctopusNet using DenseNet-161 achieved an average Dice of 48%,
which ranked the third-place of ISLES-2018 challenge4. We notice that, for all
participating teams, there is a gap between validation and test accuracy. One
possible reason is that the test set contains more small lesions, where are diffi-
cult to segment accurately for all algorithms. Additionally, the top approaches
reported that they used extra modalities, e.g. 4D perfusion CT (ranked 1st with
Dice of 51%) and synthesized DWI (ranked 2nd with Dice of 49%), which were
not adopted by our OctopusNet.

Results on MRBrainS-2013. We also conduct experiments on MRBrainS-
2013 to compare the performances of different fusion approaches for the task of
brain tissue segmentation. The three original modalities of MRBrainS-2013 are
directly employed as input for the proposed OctopusNet. The best-performer on
ISLES-2018, i.e. DenseNet-161, is adopted as the backbone of modal encoder.
The input size of each modal encoder is 240 × 240 × 3. The Dice coefficients
for different tissues, including CSF, gray matter and white matter, produced by
different fusion approaches are listed in Table 2. The average Dice (Ave. Dice) is
calculated by averaging the Dice coefficients of three tissues.

The framework using single modality is also evaluated for comparison. It is
interesting to see that, for the gray matter and white matter, the best single
modality (T1) produces even higher segmentation accuracy than early-fusion. The
reason for that may be the physicians mark the annotation of the gray and white
matter primarily using the T1 scans, while the T1 IR and T2 FLAIR scans usu-
ally provide additional information for the annotation of outer border of CSF
and white matter lesion, respectively. Therefore, most information contained in
the extra modalities, i.e. T1 IR and T2 FLAIR, may be seen as noises for the

4 https://www.smir.ch/ISLES/Start2018.

https://www.smir.ch/ISLES/Start2018
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brain tissue segmentation. The late-fusion approach yields similar average seg-
mentation accuracy to using T1 only (81.76% vs. 81.84%). The reason for that
may be the post-fusion approach performs information fusion too late; Therefore,
it can not fully utilize the complementary information among multiple modali-
ties. Oppositely, by using the proposed Octopus-fusion, the average segmentation
accuracy increases to 82.92% and improvement is observed for all tissues, which
illustrates that our Octopus-fusion can effectively extract useful information from
each modality and prevent the cross-modal interference caused by irrelevant infor-
mation. An additional observation is that CSF consistently benefits from multi-
modality fusion using any fusion strategy, which is concordant to the annotation
process of physicians. Again, Octopus-fusion achieves the largest boost in segmen-
tation accuracy of CSF, i.e., +2.13%.

4 Conclusion

In this paper, we presented a novel deep learning network architecture, namely
OctopusNet, for multi-modal medical image segmentation. The proposed Octo-
pusNet adopted a separate modal encoder for each modality to explicitly extract
features and a hyper-fusion decoder to fuse the features, avoiding the problem
of feature explosion. The proposed OctopusNet was evaluated on two publicly
available datasets. The experimental results demonstrated that our OctopusNet
was a general network architecture, which can provide excellent performance for
various segmentation tasks of multi-modal medical data.
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Abstract. It has been shown that deep neural networks are powerful and
flexible models that can be applied on fMRI data with superb representation
ability over traditional methods. However, a new challenge of neural network
architecture design has also attracted attention: due to the high dimension of
fMRI volume images, the manual process of network model design is very time-
consuming and error prone. To tackle this problem, we proposed a Particle
Swarm Optimization (PSO) based neural architecture search (NAS) framework
for a deep belief network (DBN) that models volumetric fMRI data, named
NAS-DBN. The core idea is that the particle swarm in our NAS framework can
temporally evolve and finally converge to a feasible optimal solution. Experi-
mental results showed that the proposed NAS-DBN framework can find robust
architecture with minimal testing loss. Furthermore, we compared functional
brain networks derived by NAS-DBN with general linear model (GLM), and the
results demonstrated that the NAS-DBN is effective in modeling volumetric
fMRI data.

Keywords: Neural Architecture Search (NAS) � Particle swarm optimization
(PSO) � Deep Belief Network � Task fMRI

1 Introduction

Understanding the organizational architecture of functional brain networks has raised
intense interest since the inception of neuroscience [1]. In recent years, deep learning
has attracted much attention in the field of machine learning and data mining, and it has
been demonstrated to be a powerful tool for modeling brain networks based on fMRI
data, compared to traditional shallow methods such as general linear model (GLM) [2],
and independent component analysis (ICA) [3], and sparse dictionary learning
(SDL) [4]. Although deep learning has enjoyed remarkable progresses over the past
few years, most current neural network architectures were developed manually by
researchers, which typically is a very time-consuming and error prone process, since all
hyper-parameters of neural networks were decided by expert experiences. Fortunately,
Neural Architecture Search (NAS), aiming to automatically search for optimal network
architecture, is recently considered as a feasible and promising solution to the
abovementioned problem. During recent years, several novel NAS methods, e.g., either
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based on reinforcement learning or evolutionary computation, have been developed
and applied in a variety of deep learning tasks [5]. However, due to the high dimension
and complexity of volumetric fMRI data, there is still few NAS applications in the field
of brain imaging using fMRI.

To fill the above gap, in this work, we firstly propose a novel multi-layer volumetric
deep belief network (DBN) and designed a group-wise scheme that aggregated multiple
subjects’ fMRI volume data for effective training of the DBN, with the purpose of
discovering meaningful functional brain networks (FBN) in task-based fMRI data.
Secondly, and more importantly, aiming to find out the optimal network architecture of
DBN in modeling fMRI volumes, we developed a novel NAS framework based on
particle swarm optimization (PSO). The key idea is that the particle swarm in the NAS
framework will temporally evolve and finally converge to a feasible optimal solution.
To quantitatively evaluate the performance of the NAS-DBN framework, a series of
experiments have been conducted and the results showed the effectiveness of our
design. Furthermore, we used the DBN with optimal architecture to extract FBNs from
task-based fMRI data of Human Connectome Project (HCP) and compared the results
with GLM-derived brain networks. Our results demonstrated that the NAS-DBN is a
promising tool for deriving meaningful and interpretable FBNs from fMRI data.

2 Materials and Methods

2.1 Overview

Figure 1 summarizes our PSO-based NAS framework (Fig. 1(A)) and DBN structure
(Fig. 1(B)) for modeling FBNs. The particle swarm consists of 30 particles, each of
which represents a subnet with different initial architecture (Fig. 1(A)). We investigated

Fig. 1. Illustration of proposed NAS-DBN framework for deriving functional brain networks
from task-based fMRI data
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two main hyper-parameters including the number of layer and the number of neurons in
each layer. These two parameters are used to construct a mapping between a particle
position and a solution of network architecture design. The testing loss of DBN is
regarded as the fitness function of PSO, which will be minimized in the searching
process. The particle swarm can evolve and converge to an optimal solution. Then we
applied this optimal architecture of DBN to model FBNs from task-based fMRI data
(Fig. 1(B)), and the weights of network are visualized and quantified as FBNs (Fig. 1
(C)), which will be further compared with GLM-derived network maps.

2.2 Dataset and Preprocessing

In this paper, fMRI data from the Human Connectome Project (HCP) 900 Subjects
Release was adopted as training dataset. The stimuli were projected onto a com-
puter screen behind the subject’s head within the imaging chamber, and 4 out of 7
categories of behavioral tasks are used, including Emotion, Gambling, Language, and
Social. The fMRI preprocessing pipelines were implemented by FSL FEAT (FMRIB’s
Expert Analysis Tool) and Nilearn [6], including spatial resampling to the MNI152
template, frequency filtering, detrending, normalization and masking. The details of
acquisition parameters and information of each task can be found in the literature [4].

2.3 PSO Based NAS Framework

Particle Swarm Optimization (PSO) is a swarm based evolutionary computation
algorithm that is originally proposed by Kennedy and Eberhart in 1995 [7]. Due to its
numerous advantages, such as less parameter requirements, simple formula, easy to
implement, PSO has become a popular tool for solving various complex optimization
problems. In this work, we adopted and designed a PSO based NAS framework to
search for the optimal network architecture of DBN. We designed a two-dimensional
encoding method to map network architecture of DBN to a particle position. The
dimensions of the particle represent the number of layer and the number of neurons in
each layer with the range of (2, 10) and (20, 200), respectively. In order to reduce
computational cost, we assume the number of neurons in each layer is equal. As shown
in Fig. 1(A), 30 particles are initialized in the solution space with initial velocities and
positions. A particle position represents a solution of network architecture design, and
the velocity of particle determines the particle’s next motion, which is affected by three
factors: current motion, personal best position and global best position. The whole
swarm is attracted by the global best and is exploring in the solution space, and at the
same time each particle is exploiting its nearby space because of attraction of personal
best. The process of exploring and exploiting also has a randomness, making PSO a
stochastic and intellectual searching algorithm, thus the whole swarm can quickly
converge to a feasible optimal solution compared to other exhaustive search algorithms.

The evolutionary process of particle swarm mainly consists of two steps: evaluation
and updating. First, after initialization, all particles are evaluated by a fitness function
which is defined by the testing loss of DBN. To avoid potential overfitting in NAS
process, testing loss is adopted instead of training loss as an evaluation index of the
model. After training, the trained model is applied to predict testing data (not used in
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training) and the Mean Squared Error (MSE) between input and output is calculated as
testing loss, also the fitness value of corresponding particle. The split ratio of training
and testing set was set as 0.2. Notably, the input data was normalized to a Gaussian
distribution for effective training. Then the personal best solution of each particle and
the global best solution of whole swarm are recorded. Second, all particles’ velocities
and positions are updated by the following equations:

vtþ 1
id ¼ w � vtid þ c1 � r1 ptid � xtid

� �þ c2 � r2 ptgd � xtid
� �

ð1Þ

xtþ 1
id ¼ xtid þ vtþ 1

id ð2Þ

Equations (1) and (2) are for velocity and position updating, respectively, where xtid
and xtþ 1

id are the current and next positions, respectively; vtid and vtþ 1
id are the current

and next velocities, respectively. The subscripts t, i, and d denote current iteration,
subnet, and coding dimension, respectively; w is the inertia weight that reflects the
inertia of particle motion; c1 and c2 are learning rate that affect the ratio of learning
towards personal best and global best, making the searching process intelligent; r1 and
r2 are two uniform random numbers selected from the interval [0, 1], which give the
searching process a certain randomness. The second and third parts of the right side of
Eq. (1) reflect that current particle’s next motion is affected by personal best position
ðptidÞ and global best position ðptgdÞ, as well as its previous motion. In addition, a
uniform mutation strategy with variable mutation probability was introduced to
increase the diversity of particle swarm. At the beginning of iteration, greater mutation
probability makes the algorithm to have better exploration ability, and smaller mutation
probability makes the algorithm to have better exploiting ability in the last stage of
iteration. Therefore, the mutation probability was set to a linearly changing value from
0.2 to 0.05 with the increase of iteration number. Notably, we perform convergence
check after initialization and updating, since some of particles might be divergent in the
training process. These non-convergent subnets will be replaced by re-initiated subnets,
and they will also be checked until they converge.

2.4 DBN Model of Volumetric FMRI Data

DBN, constructed by blocks of Restricted Boltzmann Machines (RBM), is widely used
for deep generative models and has been proven to be a powerful tool for modeling
fMRI data. Here, a group-wise volumetric scheme of DBN is proposed to model fMRI
volumes. Considering the large inter-subject variability among human brains, arbitrary
selection of a single individual may not effectively represent the population, thus a
group-wise learning scheme is needed to reduce inter-subject variability by jointly
registering the fMRI volumes to a common reference template corresponding to the
group average. Since that the inter-subject variability is relatively more associated with
the volatile time courses in different imaging sessions, it appears that taking volumes as
input possibly works better than time series in terms of modeling the FBNs from fMRI
data in this work. Accordingly, a volume from the fMRI data was taken as a feature,
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each time frame was taken as a sample, and a group-wise temporal concatenation was
applied to all HCP subjects.

In particular, to reduce the possibility of overfitting and to improve generalization, a
sparse weight regularization was designed and added in the DBN model. In each
iteration, the weight is updated with the estimated gradient and an extra term of weight
regularization derivative. In this paper, L1 weight penalty served as the regulation term
while calculating the derivative of the sum of the absolute values of the weights. The
sparse weight regularization works by causing many of the weights to become zero
while allowing a few of the weights to grow large. In the context of fMRI data, L1
regularization can denoise the FBNs and improve interpretability by suppressing
useless weights and allowing important model parameters to become larger, which is
considered as an important methodology/technical contribution. In this work, L1 reg-
ularization was empirically set as 0.00001.

With respect to interpreting a trained DBN in the fMRI context, each row of weight
vector was mapped back into the original 3D brain image space, which was the inverse
operation of masking in preprocessing steps and was interpreted as an FBN. After the
DBN is trained layer-wisely on a large-scale task fMRI dataset, each weight showed the
extent of each voxel contributed to a latent variable. For deeper layers, the linear
combination approach was used to interpret the connection. With this approach, as an
example, W3 �W2 �W1 was visualized for the first hidden layer as FBNs (Fig. 1(C)).

2.5 Implementations

The NAS-DBN is inherently much more computationally expensive, compared to DBN
models for temporal fMRI time series. Considering HCP 4D images and one single
layer of RBM, there are around 20K trainable parameters for temporal fMRI time series
DBN, but 20 million for volumetric fMRI DBN. Moreover, the population size and
iteration size will put significant computational burden on the NAS process. To deal
with this problem, in this paper, the TensorFlow, which is a popular deep learning
framework and provides great convenience coding with GPUs, was adopted with high
efficiency GPU computation to fill the gap. Based on TensorFlow, we designed and
implemented a fast and flexible DBN model. Limited by computing resources, all
subnets will be trained one by one and processed collectively. The code was run on a
deep learning server with GeForce GTX 1080 TI of GPU and 32 Gb of RAM.

3 Results

3.1 Comparisons Between NAS-DBN and DBN

To quantitatively evaluate the effectiveness of our NAS-DBN framework, we ran 10
times of the searching process independently, and analyzed the statistical results. We
used 4 shuffled HCP tasks data as input of NAS. After NAS, we used the same optimal
architecture of DBN to model each task data independently. As shown in Fig. 2, the
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optimal results show high consistence and robustness in the optimal number of layer
and the optimal number of neurons. In most runs (8 out of 10), the result of the optimal
number of layer is 3, except only two results are 2 and 4 respectively. The optimal
number of neurons is 80, and all results are in a range from 71 to 112. These statistical
experiments demonstrated that our NAS framework can generate reliable results of
architecture design. Furthermore, we compared the testing loss of DBNs with optimal
architecture and manually selected architectures. Figure 3 shows comparison of testing
loss of 4 DBNs with the same number of neurons. Figure 4 shows comparison of
testing loss of 4 DBNs with the same layers. DBN (3,80) denotes that there are 3
hidden layers and 80 neurons in this DBN structure. It can be seen that DBN with the
optimal architecture from NAS has the lowest testing loss of 0.0213 compared to other
manually designed DBNs, demonstrating the effectiveness of NAS framework.

3.2 Comparison of NAS-DBN with GLM

To explore the representation of task-based fMRI data, four task-specific DBNs were
trained on fMRI data of 4 HCP tasks independently using the same hyperparameters.
To quantitatively evaluate the performance of DBN in modeling tfMRI data, a com-
parison study between NAS-DBN results and the widely known GLM activation

Fig. 2. Statistical results of 10 independent experiments in the optimal number of layers and
optimal number of neurons.

Fig. 3. Testing loss of DBNs with same
neurons.

Fig. 4. Testing loss of DBNs with the same
layers

Neural Architecture Search for Optimizing (DBN) Models of fMRI Data 31



results is investigated in this section. For fare comparison, all the functional networks
derived by these two methods are thresholded at Z > 2.3 after transformation into “Z-
scores” across spatial volumes. The spatial overlap rate is defined to measure the
similarity of two FBNs in accordance with previous literature studies. Here, the spatial
similarity is defined by the overlap rate (OR) between two functional networks
N 1ð Þand N 2ð Þ as follows, where n is the volume size:

OR N 1ð Þ;N 2ð Þ
� �

¼
Pn

i¼1 N 1ð Þ
i \N 2ð Þ

i

���
���

Pn
i¼1 N 1ð Þ

i [N 2ð Þ
i

���
���

ð3Þ

With the similarity measure defined above, the similarities OR NDBN ;NGLMð Þ
between the NAS-DBN derived functional networks NDBN and the GLM derived
functional networks NGLM were quantitatively measured. For each of GLM template,
we found the most similar FBN derived by NAS-DBN with high OR in all 4 HCP
tasks. Notably, we developed in-house GLM codes and obtained our own templates
derived by group-wise fMRI data, which are quite similar to the widely known GLM
templates [8].

Figure 5 shows the comparison of FBNs derived by NAS-DBN and GLM tem-
plates in 4 tasks. We selected one specific stimulus for each task and the corresponding
GLM templates were all found in NAS-DBN FBNs of these tasks. For emotion task,
we can see fear stimulus activated GLM template, and the most similar FBN from
NAS-DBN, which is the 12th network out of 80 networks. Comparing this brain
network with the benchmark GLM template, the overlap rate is as high as 0.502, and
thus it is easy to recognize the close match between them. Since our NAS-DBN is an
unsupervised architecture, there are other similar FBNs that can be detected in all 4
tasks. For instance, we found a similar fear activation network in emotion task, and the
overlap rate between this network and GLM template is 0.327. For other three tasks,
including gambling, language, and social, we also found 2 most similar FBNs com-
pared to GLM templates.

Furthermore, we detected several resting state networks (RSNs) though our NAS-
DBN model including the default mode network (in emotion and social tasks), visual
network (in gambling and social tasks), auditory network (in gambling and language
tasks), and frontoparietal network (in emotion task), demonstrating that our NAS-DBN
model can derive not only task activated networks but also resting state networks. As
shown in Fig. 6, 4 RSNs were found and visualized in our DBN-derived FBNs in
different tasks. Here, we used the RSN templates from Nilearn [6] as benchmark.
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4 Conclusion

We proposed a novel PSO based NAS-DBN framework for searching optimal archi-
tecture of DBN in modeling FBNs from volumetric fMRI data. Four HCP fMRI
datasets were used to validate our NAS-DBN. Based on evolutionary computation, 30
subnets in our framework learn experience of each other, and the whole swarm can
evolve and finally converge to a feasible optimal architecture of DBN. We selected
testing loss as fitness function of NAS, instead of training loss, to avoid potential
overfitting in NAS process. The statistical experiment of NAS showed high consistence
and robustness of our architecture design. Furthermore, a comparison between GLM
and DBN validated that the functional networks learned by NAS-DBN are meaningful
and can be well interpreted. We also showed that our DBN model is capable of
deriving both task specific functional networks and resting state networks. The
promising results by NAS-DBN model showed the importance of optimizing neural
network structures in deep learning.

Fig. 5. Comparison between GLM templates and similar FBNs derived by NAS-DBN in
emotion, gambling, language, and social tasks. Each network is visualized with 7 axial slices.

Fig. 6. Comparison between RSN templates and similar FBNs derived by NAS-DBN in
different tasks. Each network is visualized with 3 most informative orthogonal slices.
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Abstract. It is known that cervical cancer has been a great threaten
to the health of women worldwide. Regular examination through images
obtained by colposcopes can facilitate early detection and treatment.
However, it is challenging for computer-aided methods to perform diag-
nosis with the cervical images correctly. To this end, we develop a novel
deep neural network based method for cervical image classification in this
paper. The proposed method first generates a sequence of feature maps
through lateral connection and feature fusion so as to fully exploit the
multi-scale information included in a main network. Then compatibility
scores are computed between the multiple feature maps and the global
feature outputted by the main network, with which attention maps can
be obtained. The attention maps are able to extract salient features from
images via focusing on the crucial regions of the cervixes, which can be a
guidance for clinical diagnosis. We test the proposed method on CIFAR
datasets and a cervical dataset collected from the Peking University First
Hospital and results show that the proposed method achieves excellent
performances and outperforms the related approaches.

Keywords: Cervical image classification · Deep neural networks ·
Attention

1 Introduction

Cervical cancer is one of the most common gynecological malignancies, and its
incidence is only lower than that of breast cancer in female reproductive system
tumors [2]. Therefore, it is necessary to conduct a gynecological examination
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with the help of colposcopy equipments such that early detection, diagnosis and
treatment of cervical cancer can be achieved. However, due to the inferior quality
of images obtained and variance in cervical morphology, it is challenging to diag-
nose cervical cancer correctly with images obtained by colposcopy equipments.

Recently, developing effective algorithms for medical image processing has
become one of the most important research directions in the field of machine
learning. Utilizing machine learning methods to analyze and process cervical
images can provide a valuable reference for clinicians to diagnose and prevent
diseases. However, classifying colposcopy images with machine learning algo-
rithms remains a challenging problem.

Existing classification of colposcopy images is heavily dependent on the expe-
rience of doctors. Examining large numbers of colposcopy images manually is
tedious and time-consuming, and the examination results depend heavily on
individual experience. By contrast, automatic classification methods can bring
more stable results, which can be a huge clinical demand. There have been a few
works for cervical image classification currently. However, these works mainly
use traditional machine learning methods and lots of human prior information
is required, which is difficult to generalize [6]. Recently, deep learning has been
widely applied in the area of medical image analysis, such as image classification
[9], segmentation [5] and image restoration [1]. Particularly, a few deep learning
methods have also been used for colposcopy images processing [10,13]. Never-
theless, these methods are often just an application of existing algorithms to the
related problems and innovation on theory or methodology is lacked.

Attention mechanisms were first widely applied to natural language process-
ing [12,14]. The mechanism of attention is to learn a context vector to weight
the input so as to highlight the salient features while suppress the unrelated
counterparts. In this way, the prediction can be more targeted. Recently, there
are a few attention based algorithms proposed for medical image classification
[15]. However, these methods often need bounding box labels or the context
information is obtained through region proposal and hard-cropping [4].

To resolve the above issues, we propose a feature pyramid based attention
method for cervical image classification in this paper. The method can learn
salient feature of images through fusing information at different scales of a
deep network in an end-to-end way and do not require any bounding box labels
or region proposal. Experiments on CIFAR datasets and a real cervical image
dataset show that the proposed method can achieve excellent performances.

To summarize, the highlights of this paper can be listed as follows.

(1) A novel deep neural network with attention mechanism is proposed for
cervical image classification.

(2) To fully utilize the multi-scale information included in the deep network, we
construct a feature pyramid through lateral connections and feature fusion.
With the obtained feature maps, attention maps are learned at different
scales to extract salient features. Particularly, the attention construction
methodology can be applied to any other deep networks.
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(3) The proposed method achieves excellent performances on a real cervical
image dataset, and thus is promising for practical cervical image classifica-
tion tasks.

The remainder of the paper is organized as follows. Section 2 details the
proposed method; Then we test the proposed method on CIFAR datasets and
a real cervical image dataset and present the experimental results in Sect. 3;
Finally, a conclusion is drawn in Sect. 4.

2 The Proposed Method

In this section, we detail the construction of the proposed method. The frame-
work of the proposed method is illustrated in Fig. 1.

Fig. 1. The framework of the proposed method.

2.1 Feature Pyramid Construction

Similar to [8], we first construct a feature pyramid to exploit the information
contained at different layers of a network. The VGG-16 network [11] is employed
as the main network here. Particularly, each of the first two max-pooling layers of
the original architecture is moved after each of the two corresponding additional
convolutional layers introduced at the end of the pipeline as [4].

As Fig. 1 shows, we input a single-scale image to the main network and obtain
a sequence of feature maps with various sizes. There are often many different
layers outputting feature maps with the same sizes and we say these layers are
in the same stage of the network. To construct the feature pyramid, only the last
feature map in each stage is chosen. Specifically, the outputs of the 7-th, 10-th
and 13-th layers of the VGG-16 network are selected to construct the feature
pyramid and denoted as C1, C2 and C3 respectively. Note that the spatial size
of C1 is the same as that of the input image and the spatial sizes of C2 and C3

are 1
2 and 1

4 of that of the input image respectively.
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As Fig. 1 shows, the coarser feature maps at the higher layers are upsampled
with a factor of 2 (bilinear interpolation for simplicity). Then they are merged
with the corresponding feature maps with the same sizes from the main network
by element-wise addition. The process is iterated until the feature map with the
finest resolution is applied. Specifically, we start the iteration by simply taking
the feature map C3 as the coarsest resolution map P3. Then, P3 is upsampled
and merged with the feature map C2. The resulting feature map is denoted
as P2. The finest merged feature map P1 is obtained in the similar way. The
final feature maps P1, P2 and P3 are of the same spatial sizes as those of the
feature maps C1, C2 and C3 respectively. It should be noted that, different from
the feature construction process in [8], feature map smoothing operation is not
applied to P1, P2 and P3 since we do not observe any benefit in experiments.

2.2 Attention Modules Construction

We denote the feature vectors in each merged feature map Pi, i = 1, 2, 3 by
V = {v1

i ,v
2
i , · · · ,vn

i }. Here, vj
i is the vector located at the i-th spatial position

of Pi and n is the total number of vectors. We define the global feature vector g as
the output of the main network which is just before the last fully-connected layer
producing the prediction score. Assume that there is a compatibility function
F which tasks two vectors with equal dimension as inputs and outputs a scalar
compatibility score. We utilize the following function in this paper:

f j
i = 〈w,vj

i + g〉, i = 1, 2, 3 and j = 1, 2, · · · , n (1)

where w is the weight that can be learned and f j
i is the compatibility score

corresponding to vj
i . The weight can be interpreted as learning a set of features

that are most related to the objects in an image.
For each merged feature map Pi, i = 1, 2, 3, the corresponding set of compat-

ibility scores are computed as F(P̂i,g) = {f1
i , f

2
i , · · · , fn

i }, where P̂i is obtained
by performing a linear transform to Pi. The transform maps the vector vj

i to
the dimension of g. Then, the compatibility scores are normalized as follows:

aji =
ef

j
i

∑n
j=1 e

fj
i

, i = 1, 2, 3 and j = 1, 2, · · · , n (2)

The normalized compatibility scores Ai = {a1i , a2i , · · · , ani } are utilized to
compute a vector representing the semantical features of feature map Pi:

gi =
n∑

j=1

ajiv
j
i , i = 1, 2, 3 and j = 1, 2, · · · , n (3)

gi can be taken as a descriptor of the input and A is interpreted as “attention”.
Then the descriptors g1, g2 and g3 together with the global descriptor g are

concatenated to form the final descriptor of the input image as

ga = [g1,g2,g3,g] (4)
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The final image descriptor ga is normalized and input to a fully-connected layer
to obtain the class predictions for the input image.

As [4] shows that it is beneficial to identify the salient regions in an image
and amplify the corresponding influence when making decisions. Compared with
the method in [4], the proposed method is able to make full use of the multi-
scale intermediate feature maps to extract more salient features from images.
Moreover, it is beneficial to include the global feature g for final prediction since
it contains meaningful high-level information of the input image.

3 Experiments and Analysis

In this section, we evaluate the performance of the proposed method on three
datasets: the CIFAR-10 dataset, CIFAR-100 dataset [7] and a cervical image
dataset collected from the Peking University First Hospital. In addition, we
compare it with other related methods, including standard VGG-16 network
[11] and the attention method in [4]. The experiments are performed on a server
with a GTX 1080Ti GPU. The proposed algorithm is trained with 300 epochs
in total and a mini-batch size of 12. The initial learning rate is 0.1 and dropped
by 0.1 times every 25 epochs. The SGD algorithm is utilized for optimization
and cross-entropy is employed as the loss function.

Table 1. The classification results on the CIFAR-10 and CIFAR-100 datasets.

Method CIFAR-10 CIFAR-100

VGG-16 [11] 0.9223 0.6938

[4] 0.9578 0.7802

Ours 0.9590 0.7903

3.1 The CIFAR-10 and CIFAR-10 Datasets

The two CIFAR datasets [7] are popular for testing deep learning methods and
both consist of 60, 000 images of size 32×32. Particularly, the CIFAR-10 dataset
includes 10 classes, and the CIFAR-100 dataset includes 100 classes. There are
50, 000 training and 10, 000 testing images for both of them. We keep the same
experimental settings as [4] on the two datasets. The results of the VGG-16 are
taken from [4] and the approach in [4] is implemented by ourself. The classifi-
cation results on the two datasets are listed in Table 1. As can be seen that the
proposed method achieves the best performance on the two CIFAR datasets.

3.2 The Cervical Image Dataset

The cervical image dataset is provided by the Peking University First Hospital
and contains cervical images of 1, 700 patients. Each image is of size 696 × 570.
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Note that each patient in the dataset contains multiple images of three types
which are generated by processing the cervix with saline, acetic acid and iodine.

According to the type of lesions of cervical cancer, the data can be divided
into classes of high-grade squamous intraepithelial lesion (HSIL), low-grade squa-
mous intra-epithelial lesion (LSIL), normal colposcopic findings (NCF), squa-
mous cell carcinoma (SCC), squamous intra-epithelial lesion (SIL), thinprep
cytology test (TCT) abnormalities, hemorrhage, neoplasms, vaginal wall lesions.
Among them, the latter four types can be easily recognized by the clinicians
and the SIL cases are rare in practice. Therefore, we ignore these types and only
process the remaining four types. The numbers of patients in these four classes
are 260, 132, 853 and 50 respectively. In particular, we can simply classify HSIL
and SCC as malignant lesions and LSIL and NCF as benign lesions. Then it
becomes a 2-class classification problem. For targeted treatment, it is necessary
to determine the precise type of each image. In this case, it becomes a 4-class
classification problem. The examples of the four categories are shown in Fig. 2.

Fig. 2. Examples of the four categories of cervical images. The categories from left to
right are HSIL, SCC, LSIL and NCF.

Image Preprocessing and Augmentation. We exclude images of cervix pro-
cessed with acetic acid and iodine since their amount is limited. Furthermore, we
remove images with blurred content and occlusions and ensure that the number
of images per patient is odd (for the convenience of majority-voting for final
results). Unrelated objects in images, such as instruments, skin, hair, will impair
the performance of the algorithms. Therefore, we adopt the approach in [3] to
segment the cervical region to avoid interference. Then we extract image patches
containing the cervical region and resize them to a size of 128 × 128.

The dataset is randomly split regarding individuals into three independent
subsets for training, validation and testing with a proportion of 7:1:2. Data
augmentation is performed on the training subset. For the 2-class classification
problem, we obtain the mirror image of each original image and perform rotation
transform with random angles (less than 20◦) clockwise or counterclockwise to
images from the class of malignant for 5 times. In this way, we can obtain a
balanced training subset. Similarly, for the 4-class classification problem, we
obtain the mirror images first and perform rotation transform to images from
the classes of HSIL, LSIL and SCC for 2, 5 and 15 times respectively.

The classification results are presented in Table 2. From the results we can
see that the proposed method achieves the best classification accuracy on both
the 2-class and 4-class cervical image classification tasks. Compared with the
VGG-16, the method in [4] can learn salient features from images with attention
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Table 2. The classification results on the cervical dataset.

Method Accuracy Sensitivity Spectivity Accuracy

2-class 4-class

VGG-16 [11] 0.7683 0.5263 0.8100 0.6589

[4] 0.7799 0.8571 0.7778 0.6705

Ours 0.7838 0.6667 0.7925 0.6783

mechanism and thus perform better. Furthermore, the proposed method utilizes
multi-scale features to learn more meaningful attention maps and integrate the
global feature for prediction. As a result, it achieves better results than the
method in [4]. Particularly, for the 4-class problem, the class of NCF is easier to
be identified due to the fact that it has more training data and the patterns of
the images from this class differ a lot from other classes.

Fig. 3. The attention maps of the proposed method. The left figure presents the atten-
tion maps and the right figure present the corresponding original images.

To diagnose the type of lesion, clinicians will focus on the specific regions with
lesions. Therefore, it is crucial to locate the lesions correctly. Attention mimics
the visual mechanism of humans by enforcing the algorithms to focus on regions
that are most related to the task. In this way, it can prevent the algorithms
being interfered by unrelated factors. The intermediate attention maps of the
proposed method are demonstrated in Fig. 3 and we can see that the proposed
algorithm is able to focus on regions that are valuable for diagnosis.

4 Conclusions

In this paper, we propose a novel feature pyramid based attention method for cer-
vical image classification. The method first constructs a feature pyramid by fully
utilizing the multi-scale intermediate feature maps of a main network through
lateral connections and feature fusion. Then the compatibility scores between the
merged feature maps and the global feature are computed. Weighting merged
feature maps with the compatibility scores, multi-scale attention features are
extracted. Finally, the multi-scales attention features together with the global
feature are concatenated and input into a fully-connected layer for final predic-
tion. Experimental results on CIFAR datasets and cervical images collected from
the Peking University First Hospital show that the proposed method achieves
excellent classification performances.
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Abstract. In this paper, a novel network based on gated recurrent unit
(GRU) is proposed for separating single-scan dual-tracer PET mixed
images. Compared to conventional methods, this method can separate
dual-tracer that are simultaneously injected or even labeled with the
same marker, and do not require arterial blood input function. The pro-
posed 4-layer network denoises the time activity curves (TACs) extracted
from the dynamic dual-tracer reconstruction images with noise by pre-
training the parameters in the first and second layer, and then uses TAC
time information for dual-tracer separation. During the training stage,
we optimize the network by minimizing the mean square error (MSE)
objective function of the separated predicted value and ground truth.
Monte Carlo is used to simulate the PET sampling environment with the
mixed dual-tracer 62Cu-ATSM+62Cu-PTSM and 18F-FDG+11C-MET.
Calculating the bias and variance to quantitatively analyze the results,
we demonstrate that this method is more robust and better separation
than the similar methods.

Keywords: PET · Dual-tracer separation · GRU

1 Introduction

Dynamic dual-tracer positron emission tomography (PET) imaging is becoming
more and more important as it uses the additional information provided by
the two tracers to obtain a more complete tumor status [4], which can reduce
the possibility of tumor misjudgment and guide us to choose a more effective
treatment plan. It can also greatly reduce the scanning time, the number of scans
and the suffering of patients.
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Fig. 1. Schematic diagram of dual-tracer separation network based on pre-trained GRU

The biggest challenge with dual-tracer separation is the difficulty in distin-
guishing photons for each tracer. Huang et al. [5] recognized that the static
distribution of multiple tracers with different half-lives can be recovered from
dynamic PET images based on the radioactive decay rate of the different tracers.
This work laid the basic direction for the rapid separation of PET multi-tracers
using dynamic imaging technology. Rust et al. [9] studied dual-tracer images of
tumor hypoxia and blood flow using 62Cu-ATSM and 62Cu-PTSM. The method
uses a dynamic single-scan with interlaced injections and treats the time overlap
as the sum of effects of two tracers. The dual-tracer separation technique with
instant Gammas proposed by Andreyev et al. [1] solves the separation problem
from the physical level. High energy gamma rays from one of the tracers assist
in signal separation.

Due to the need for alternating injections of tracers and the sampling of the
arterial blood input function, traditional separation methods are invasive and
require relatively long scan time. A recent work by Ruan et al. [8] using a data-
driven stacked auto encoder (SAE) provides a new idea for solving this problem.
The disadvantage is that the network is low in robustness.

Since the dynamic activity images of the dual-tracer contain time informa-
tion, the separation of them can be analogized to speech separation. Inspired by
the time-domain speech separation network [7], this paper proposes a GRU-based
dual-tracer separation method, which separates mixed time signals end-to-end.
Special gates can control the retention and forgetting of time information, mak-
ing the separation more accurate. The PET dynamic reconstruction images with
timing information are converted into TACs by pixels as inputs to the network.
When training the network, the clean TACs are pre-trained firstly, which makes
the network more robust to noise to some extent. The Monte Carlo simulation
experiments of different phantoms and tracer pairs are used to verify the accu-
racy to identify tumors and robustness of the network compared with SAE.
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Fig. 2. (a) Zubal thorax phantom.(b) Hoffman brain phantom. Red line: lateral dis-
placement profiles. (Color figure online)

2 Methodology

2.1 Measuring Principle of Dual-Tracer Single Acquisition

Simultaneously injecting the dual-tracer and scanning with PET for a period of
time, a series of sinogram Y dual

(t) can be obtained. For sinogram, the sampling
process can be expressed as follows:

Y dual
(t) = GXdual

(t) + e (1)

Xdual
(t) = XI

(t) + XII
(t) (2)

Combining the sinogram with system matrix G can reconstruct images, e is
the noise caused by the sampling process and reconstruction algorithm. Xdual

(t)

mean a series of mixed reconstruction images, which can also be represented as
a superposition of tracers I and II. For the mixed reconstruction images over
J temporal frames, N TAC curves Xdual = [xdual

1 , . . . , xdual
i , . . . , xdual

N ] (xdual
i =

[xdual
i1 , . . . , xdual

ij , . . . , xdual
iJ ]T ) can be obtained after removing the background.

And xdual
ij = xI

ij + xII
ij denotes the mixed value of the jth frame of TAC i.

2.2 Dual-Tracer Separation Algorithm

The network consists of two parts as shown in Fig. 1. Part I: Input mixed noise
TACs to train the first GRU layer and the second linear layer to output clean
TACs; Part II: Input the trained clean TACs into the third GRU layer and the
fourth linear layer to obtain the separated TACs. The formula of GRU and linear
layer is as follows:

rj = σ(Wr · [hj−1, xj ]) (3)
zj = σ(Wz · [hj−1, xj ]) (4)

h̃j = tanh(Wh̃ · [rj ∗ hj−1, xj ]) (5)

hj = (1 − zj) ∗ hj−1 + zj ∗ h̃j (6)
yj = Wy · hj (7)
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In the above formula, hj−1 is the output state of the j−1th frame, xj is the input
of the jth frame, and yj is the output of the jth frame. rj and zj denote reset
gate and update gate, respectively, for controlling the retention and forgetting of
time information. At the beginning of training, we randomly initialize the output
state h0. During training, the parameters of the first and second layers are pre-
trained, and then the third and fourth layers are added for overall training.

Fig. 3. Reconstruction quality analysis of each ROI. (a) Bias of 62Cu-ATSM, (b) Vari-
ance of 62Cu-ATSM, (c) Bias of 62Cu-PTSM, (d) Variance of 62Cu-PTSM.

Loss Function. The input data needs to minimize the loss function to get the
optimal solution. The loss function of the GRU-based network proposed in this
paper consists of two parts. The first part is the MSE of the true value x̂dual

i and
mixed predicted value xdual

i to ensure that the outputs of second layer network
are clean mixed TACs. The second part is the MSE of ground truth x̂I

i , x̂
II
i and

network-separated TACs xI
i , x

II
i . α is hyperparameter. The loss function formula

is as follows:

Loss = α‖x̂dual
i − xdual

i ‖22 + ‖x̂I
i − xI

i ‖
2

2 + ‖x̂II
i − xII

i ‖22 (8)
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Fig. 4. Predicted activity images and ground truth of 62Cu-ATSM+62Cu-PTSM with
20min sampling time and 5×107 counting rate. From top to bottom: ground truth and
predicted results, from left to right: the 5th, 10th and 15th frames. (a) 62Cu-ATSM.
(b) 62Cu-PTSM.

3 Experiments and Results

3.1 Data and Simulation Experiments on Phantom

In this paper, two different 64 pixels × 64 pixels phantoms are used to simu-
late the true physiological environment called Hoffman brain and Zubal thorax.
As shown in Fig. 2, each phantom has three regions of interest, corresponding
to different active concentrations of the tracer. Two tracer pairs: 62Cu-ATSM
+62Cu-PTSM (for detecting hypoxia and blood flow) and 18F-FDG +11C-MET
(for detecting tumors) were filled into the above two phantoms.

During the simulation, parallel compartment model is used to simulate the
dynamic spatial distribution of a single radiotracer. The blood input function of
each tracer and the kinetic parameters of the compartment models are referred to
the previous paper [2,3,6,9]. Adding the 18-frame noise-free PET single-tracer
images to form a mixed dynamic dual-tracer ground truth, which is used as
inputs for Monte Carlo simulation. Based on the characteristics of tracers, we
designed a variety of different sampling times, sampling modes and counting
rates. See Table 1 for details. Using Monte Carlo (GATE) to simulate the real
PET sampling process, we obtain dynamic sinograms which change with time.
Because the network is difficult to deal with the sinogram directly, we use the
ADMM algorithm for images reconstruction to get TACs.

All simulations were based on the geometry of the BIOGRAPH
SENSATION16-HR scanner (Siemens Medical Solutions, USA), which consists
of 24, 336 LSO crystals arranged in 3 rings with a diameter of 82.4 cm. The field
of view is 58.5 cm on the horizontal axis and 16.2 cm in the axial direction.

3.2 Network Detail

The GRU-based network has four hidden layers, each with 32, 1, 32, 2 hidden
units, respectively. After removing the background of the images, we extract
the noisy TACs by pixels to input the network. The first GRU layer and the
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Table 1. Dual-tracer simulation modes and parameters.

Dual tracer Sampling time Sampling interval Counting rate Dataset

ATSM+PTSM 40min 10× 30 s, 5× 240 s, 3× 300 s 5× 106 training

1× 107

5× 107

30min 10× 30 s, 2× 150 s, 6× 200 s 5× 106

1× 107

5× 107

20min 14× 50 s, 2× 100 s, 2× 150 s 5× 106 testing

1× 107

5× 107

FDG+MET 20min 14× 50 s, 2× 100 s, 2× 150 s 5× 106 testing

1× 107 training

5× 107

10× 30 s, 6× 100 s, 2× 150 s 5× 106 testing

1× 107 training

5× 107

10× 40 s, 5× 70 s, 3× 150 s 5× 106 testing

1× 107 training

5× 107

second linear layer are pre-trained to ensure clean TAC outputs. The separated
two TACs are then output through the third GRU layer and the fourth linear
layer. The primary penalty parameter α in formula (8), learning rate and the
batch-size are set to 0.5, 0.002 and 32, respectively. The network optimizer is
“Adam”. The comparison SAE network has four hidden layers, each with 85, 70,
60 and 36 relu units. Other hyper-parameters are consistent with the proposed
network to ensure the best network performance.

3.3 Result

We use bias and variance to measure the effect of dual-tracer separation. The
formula is as follows:

bias =
1
N

N∑

i=1

|xi − x̂i|
x̂i

(9)

variance =
1
N

N∑

i=1

(
xi − xN

x̂i

)2

(10)

Where x̂i is the ground truth of the ith pixel of a ROI and xi means the predicted
value of the ith pixel in the ROI. N and xN represent the total number of pixels
and the average predicted value in one ROI, respectively.
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Fig. 5. Predicted activity images and ground truth of 18F-FDG+11C-MET with 10 ×
40s, 5×70s, 3×150s sampling interval and 5×107 counting rate. From top to bottom:
ground truth and predicted results, from left to right: the 5th, 10th and 15th frames.
(a) 18F-FDG, (b) 11C-MET, (c) Profiles of 15th 18F-FDG image, (d) Profiles of
15th11C-MET image.

62Cu-ATSM+62Cu-PTSM. Figure 3 shows that the higher the counting rate,
the bias and variance of the separation results are only slightly reduced, which
means the network is robust to the counting rate. And comparing with SAE,
the proposed network has smoother bias and variance. Since the half-life of Cu
is 9.7 min, the tracer concentration first increases and then decreases from the
first frame to the 18th frame, and the corresponding bias is just the opposite.
By the 12th frame, the concentration is the largest and the bias is reduced to
the minimum. Figure 4 shows the results of the tracer separation, and it can be
seen that the image boundaries are clear.
18F-FDG+11C-MET. Table 2 shows that the separation results of two tracers
are very good. Because the half-lives of C and F are 20.4 min and 110 min,
respectively, during the 20-minute sampling period, the bias of two tracers has
been decreasing. Figure 5 indicates that comparing with FDG, MET is more
clearly engraved on the tumor area, and can be used clinically to assist FDG
tracer to achieve rapid sampling diagnosis of tumor. The boundary between the
tumor and normal tissue is very clear, and the separation results of the network
are very good.
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Table 2. The bias and variance of dual-tracer (18F-FDG +11C-MET) separation
results (the 4th, 8th, 12th, 16th frames) with 10 × 40 s, 5 × 70 s, 3 × 150 s sampling
interval and 5×106 counting rate. Besides, the best results are shown in bold numbers.

FDG

Bias ROI1 0.12988 0.13299 0.10979 0.04407

ROI2 0.04566 0.04062 0.02929 0.02105

ROI3 0.08563 0.05276 0.03053 0.0182

Variance (×10−4) ROI1 0.31623 0.70030 0.56002 0.24675

ROI2 1.10529 2.79649 1.68313 0.68719

ROI3 2.12170 5.55187 2.58368 0.97379

MET

Bias ROI1 0.02058 0.03340 0.03266 0.01952

ROI2 0.01052 0.01633 0.01712 0.02710

ROI3 0.11763 0.06729 0.02648 0.02494

Variance (×10−4) ROI1 0.14207 0.23012 0.03793 0.00560

ROI2 0.32096 0.61241 0.09451 0.00946

ROI3 0.79734 1.46765 0.17941 0.01262

References

1. Andreyev, A., Celler, A.: Dual-isotope PET using positron-gamma emitters. Phys.
Med. Biol. 56(14), 4539 (2011)

2. Cheng, X., et al.: Direct parametric image reconstruction in reduced parameter
space for rapid multi-tracer PET imaging. IEEE Trans. Med. Imaging 34(7), 1498–
1512 (2015)

3. Feng, D., Wong, K.P., Wu, C.M., Siu, W.C.: A technique for extracting physiological
parameters and the required input function simultaneously from PET image mea-
surements: theory and simulation study. IEEE Trans. Inf Technol. Biomed. 1(4),
243–254 (1997)

4. Guo, J., et al.: 18F-Alfatide II and 18F-FDG dual-tracer dynamic PET for para-
metric, early prediction of tumor response to therapy. J. Nucl. Med. 55(1), 154–160
(2014)

5. Huang, S., Carson, A., Hoffman, E., Phelps, D.: An investigation of a double-tracer
technique for positron computerized tomography. J. Nucl. Med. 23, 816–822 (1982)

6. Kadrmas, D.J., Rust, T.C.: Feasibility of rapid multitracer PET tumor imaging.
IEEE Trans. Nucl. Sci. 52(5), 1341–1347 (2005)

7. Luo, Y., Mesgarani, N.: TasNet: time-domain audio separation network for real-
time, single-channel speech separation. In: 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 696–700. IEEE (2018)

8. Ruan, D., Liu, H.: Separation of a mixture of simultaneous dual-tracer PET signals:
a data-driven approach. IEEE Trans. Nucl. Sci. 64(9), 2588–2597 (2017)

9. Rust, T., Kadrmas, D.: Rapid dual-tracer PTSM+ ATSM PET imaging of tumour
blood flow and hypoxia: a simulation study. Phys. Med. Biol. 51(1), 61 (2005)



PGU-net+: Progressive Growing
of U-net+ for Automated Cervical

Nuclei Segmentation

Jie Zhao1, Lei Dai2, Mo Zhang2, Fei Yu2, Meng Li2, Hongfeng Li1,
Wenjia Wang2, and Li Zhang1(B)

1 Center for Data Science in Health and Medicine,
Peking University, Beijing 100871, China

zhangli pku@pku.edu.cn
2 Center for Data Science, Peking University, Beijing 100871, China

Abstract. Automated cervical nucleus segmentation based on deep
learning can effectively improve the quantitative analysis of cervical can-
cer. However, accurate nuclei segmentation is still challenging. The classic
U-net has not achieved satisfactory results on this task, because it mixes
the information of different scales that affect each other, which limits the
segmentation accuracy of the model. To solve this problem, we propose a
progressive growing U-net (PGU-net+) model, which uses two paradigms
to extract image features at different scales in a more independent way.
First, we add residual modules between different scales of U-net, which
enforces the model to learn the approximate shape of the annotation in
the coarser scale, and to learn the residual between the annotation and
the approximate shape in the finer scale. Second, we start to train the
model with the coarsest part and then progressively add finer part to the
training until the full model is included. When we train a finer part, we
will reduce the learning rate of the previous coarser part, which further
ensures that the model independently extracts information from differ-
ent scales. We conduct several comparative experiments on the Herlev
dataset. The experimental results show that the PGU-net+ has superior
accuracy than the previous state-of-the-art methods on cervical nuclei
segmentation.

Keywords: Cervical nuclei segmentation · Pap smear test ·
Multi-scale · Progressive growing · Residual module

1 Introduction

Pap smear is an important test for early screening of precancerous lesions and
malignant tumors in gynecology. Accurate segmentation of cervical cancer cells,
especially the segmentation of the nuclei, is significant to quantitatively analyze
the cervical cancer. Traditional cervical segmentation methods based on image
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representation are widely used, such as Wavelet [1], support vector machines [2],
template fitting [3], adaptive thresholding [4], genetic algorithms [5] and graph-
cuts [6]. Such methods are based on low-level hand-crafted features that usually
represent the texture features of the image rather than high-level semantic fea-
tures. Since the cervical cells of different disease stages undergo global (semantic)
changes, if these methods are unable to effectively extract the semantic infor-
mation of the images, their segmentation accuracy will not satisfy the actual
clinical requirements.

The method of deep learning pixel-based object segmentation or detection
can simultaneously take into account the characteristic information of different
cell structures. The structure of a neural network adjusts the sizes of the receptive
fields to adapt to different sizes of targets. Continuous feature extraction through
multiple iterations can greatly promote the accuracy of segmentation results.
Traditional convolutional neural network U-net [7] realizes multi-scale informa-
tion extraction through skip connection. The multi-scale information may have
much redundancy and repetition. The use of fixed-size receptive fields for dif-
ferent scale targets is limited to multi-scale learning. Many studies have begun
to focus on multi-scale information extraction methods for different target sizes
and shapes, such as increasing the receptive field, adding dilated convolution,
and merging feature information of different convolution layers, thus improving
the classification accuracy of each pixel and generalization of detail features.
[8] proposed multi-scale convolutional networks and segmentation methods for
cervical nucleus and cytoplasm based on graph partitioning. Song et al. uses a
multi-scale deep convolutional neural network to extract diverse feature informa-
tion and segment overlapping cervical cells [9]. The dilated convolution model,
which combines multi-scale context information while maintains the receptive
field of the original network without losing the resolution of the image space. It
has good effects in image classification, target detection and semantic segmen-
tation [10,11]. However, the dilated rate of the dilated convolution is difficult to
design. The artificially designed dilated convolution cannot take into account the
characteristic information embodied by the targets of different sizes and shapes.
At the same time, learning the feature information of different scales is powerless
for the neural network.

To address the aforementioned problems, we propose a novel model - the
progressive growing of U-net with residual modules (PGU-net+). Based on the
classic U-net, we propose two improvements in the network architecture. First,
we added residual modules between different stages (i.e. scales) of the classic
U-net. In the first stage with the lowest resolution, we downsample the image
and the annotation and train the coarsest part of the model, which learns an
approximate shape of the segmentation. We then pass this approximate shape
through a residual connection to the next stage with higher resolution, which
only learns the residuals of the approximate shape and the annotation (images
and annotations will be resampled accordingly in all stages). Thus at each stage,
we enforce the model to learn the information related to the current scale.
We name this architecture as U-net+. Experiments show that U-net+ can effec-
tively improve the segmentation accuracies.
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Stage1

Stage2

Stage3

Stage4

Input 256×256

Input 128×128

Input 64×64

Input 32×32

Fig. 1. Flowchart of the experimental procedure. We first use the low-resolution (32×
32) image as the input of Stage1, and perform the convolution operation through the
solid arrow to get the feature map of each layer (blue boxes). Then we progressively
increase the resolution of the input image (the second stage is 64× 64, the third stage
is 128× 128, and the fourth stage is 256× 256) and the network is deepened to obtain
output results of different sizes. During the stage1 to stage4 process, the middle-layer
parameters of the previous stage are continuously transferred (by the dashed arrow).
(Color figure online)

Second, we adopt a network training paradigm in [12], called progressive
growing. We start to train the model with the coarsest part with downsampled
images and annotations, and then progressively add finer part to the training
until the full model is included. When training a finer part, we will reduce the
learning rate of the previous coarser part, which further encourages the model
to extract information from different scales independently. In addition, such
paradigm significantly reduces the computational consumption than training
the entire model simultaneously. Figure 1 shows the flow chart of this method
comprises four stages.

2 Method

Classical U-net comprises two major parts: contracting path and expansive path.
In the contracting path of deep neural networks, a series of convolution opera-
tions can extract feature information to generate coarser feature maps. In the
expansive path, corresponding decoding stages progressively recover the resolu-
tion of feature maps from coarse to fine.

2.1 Residual Module

In order to avoid information loss, we introduce a residual module (as shown in
Fig. 2) between adjacent scales. The low-resolution feature map of the previous
layer is added directly to the high-resolution feature map of the next layer at
the pixel level to form residual module. The module is defined as follows:

y(p) = F (X(p),W2(p)) + G(X(p),W2(p)) (1)
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Here X(p) represents the input feature map, W1(p), W2(p) denote the weight of
the convolution kernel, y(p) represents the output feature map, and the function
F (x,w) is the convolution of the expansive path and the maximum pooling oper-
ation. G(x,w) represents the residual module. This kind of structure can extract
more abundant multi-scale information without increasing the parameters and
calculation cost. At each stage, the current network pays more attention to the
residual information of adjacent scales to ensure good performance.

x

Conv(1×1)

Conv(3×3)

Conv(3×3)

Max pool

Conv(3×3)

Max pool
F(x) G(x)

Fig. 2. Residual module.

2.2 (Progressive Growing) PG Method

Traditional convolution kernels or deformable convolution kernels simultaneously
learn target information of all scales, which can easily lead to a large number of
repetitive or redundant features. If the network is deepened and widened, it will
result in high computational and memory cost. Our proposed PGU-net+ model
extracts multi-scale feature by introducing a progressive growing [12] training
approach. As shown in Fig. 1, we set up 4 training phases. In the first phase, we
input a low-resolution image (32× 32) to a small U-net network to get the same
size of low-resolution output. Then we gradually increase the resolution of the
input image to 64×64, 128×128 and 256×256, and continuously add convolution
layers to the network to form deeper U-net structures. This type of training
allows the network to learn large-scale image coarse structure information first,
and then focus on more detailed features at a later stage, rather than learn
information of all the scale at the same time. At each stage, the model receives
input images of different sizes, so that multi-scale information of target regions
of different sizes can be learned step by step. This method makes the model
converge faster and have better generalization ability and stability without extra
parameters and calculations. Figure 3 shows the U-net structure in the final stage
with the residual module added to each expansive path.

We introduce residual module in the extended path of the U-net structure,
and adopt a progressive growing training method. At each stage, the model
iteratively learns the residual information of adjacent scales. All existing layers
in networks remain trainable throughout the training process. When new lay-
ers are added to the networks, we adjust smaller learning rate to well-trained,
smaller-resolution layers with transferred parameters to avoid sudden shocks on
existing networks. By migrating low-resolution image features, the learning of
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Fig. 3. The U-net structure in the final stage. By migrating the third stage intermediate
layer and adding a layer of upsampling and downsampling operations to form the final
model structure. In the expansive path, the residual information of the adjacent scale
is specially learned, and the input image and the output result size are both 256×256.

high-resolution images is easier, and the convergence process is faster. The task
division of multi-scale learning is further clarified, and the extracted multi-scale
information is more accurate and rich.

3 Experiment and Result

3.1 Data Description

In response to our proposed PGU-net+ structure, this experiment validates our
method on the Herlev dataset. The dataset contains 917 images of cervical can-
cer cells, with each image containing four parts: background, cytoplasm, nucleus
and unknown area. Here, we manually determine the unknown area as the back-
ground. Considering the difference between large and small nuclei, large and
small nuclei are segmented as two types during model training, and all images
are normalized to zero mean with unit variance intensity and are resized to a
size of 256 × 256.

3.2 Implementation Details

We train the model on a single NVIDIA GPU-TITAN. In the first stage, a
32 × 32 raw data is used as input for a small U-net. In the expansive path, the
low-resolution feature map is directly doubled and then added to the adjacent
high-resolution output to form a residual module, so that the network focuses
on learning the residual information of different scales. In the second stage, the
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original image of 64× 64 size is used as a U-net input with 2 downsampling and
upsampling. In the expansive path, the low resolution feature map is also doubled
and added to the adjacent one. And so on into the third and fourth stages. After
training 40 epochs at each stage, the next stage is entered. During the parameter
transferring process, the learning rate of the trained low-resolution convolutional
layer is set to 1e-6, and the newly added convolutional layer learning rate is set to
1e-4 to maintain large-scale feature information and avoid the impact of model
changes on existing parameters. We use RMSprop optimization to adaptively
adjust the model weights, and the activation function uses RELU.

Fig. 4. Examples of the segmentation results. (a) Pap smear images, (b) Manual
annotations, (c) Segmentation results of U-net, (d) Segmentation results of U-net+,
(e) Segmentation results of PGU-net, (f) Segmentation results of PGU-net+.

Table 1. Four sets of experimental results (classical U-net, U-net+, PGU-net, and
pgU-net+).

Methods U-net U-Net+ PGU-net PGU-net+

ZSI 0.879± 0.14 0.907± 0.10 0.911± 0.10 0.926± 0.09

Precision 0.857± 0.19 0.878± 0.14 0.890± 0.12 0.901± 0.13

Recall 0.941± 0.08 0.960± 0.07 0.950± 0.11 0.968± 0.04

3.3 Experimental Results

We conduct four sets of experiments. The first group uses a traditional U-net
structure to perform nuclear segmentation on 256 × 256 images, including four
layers of downsampling and upsampling operations. The second group (short for
U-net+) adds a residual module to the expansive path of the traditional U-net
structure, making it easier for the training process to grasp features at different
scales. The third group (short for PGU-net) applies the progressive growing
training method to the traditional U-net structure, continuously increasing the
resolution of the input image from 32 to 256 and slowly migrating the low-
resolution layer parameters trained in the previous stage. The fourth group adds
residual modules in the traditional U-net structure and introduces a progressive
growing training mode. The superiority of our proposed PGU-net+ is verified
by comparing the four sets of experiments.
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By comparing experiments on the Herlev dataset, a total of four set of seg-
mentation results for the dataset are summarized. As shown in Table 1, we give
three indicators of ZSI, precision and recall. It shows that the U-net network
structure with residual module (PGU-net+ model and U-net+ model) is supe-
rior to the classic U-net neural network (PGU-net model and U-net model). The
progressive growing U-net network structure (PGU-net+ model and PGU-net
model) is superior to the classic U-net neural network (U-net+ model and U-net
model). The progressive growing with the residual module U-net structure we
proposed achieves the best segmentation results. The results of the two groups
of cell segmentation experiments are shown in Fig. 4. It can be seen that the
PGU-net+ has better segmentation results for cells of different sizes and shapes.
We also compare other studies for this dataset. Table 2 shows the superiority
of our model in the three indicators of ZSI, precision and recall under a single
model. Our proposed PGU-net+ structure has a segmentation accuracy of 0.925
on the Herlev dataset, and the parameter amount (13M) and computation are
much smaller than other models.

Table 2. Comparison of the state-of-the-art methods and proposed method

Method ZSI Precision Recall

Unsupervised [13] 0.89± 0.15 0.88± 0.15 0.93± 0.15

FCM [14] 0.80± 0.24 0.85± 0.21 0.83± 0.25

SP-CNN [15] 0.90 0.89 0.91

DenseUnet [16] 0.91± 0.12 0.893± 0.14 0.956± 0.08

Our Method 0.925± 0.09 0.901± 0.13 0.968± 0.04

4 Conclusion

In this work, we propose to add the residual module in the expansive path of the
classic U-net structure, and adopt the progressive growing training mode. Four
models (PGU-net+, U-net+,PGU-net and U-net) are used to test on the Herlev
dataset. The experimental results show that our model is effective to extract
multi-scale information, making the task of extracting multi-scale information
more explicit. Furthermore, this residual module can be easily inserted into other
higher-order and more complex neural network structures, and the progressive
growing training method can also be optimized to solve different scale target
detection and target segmentation problems in other fields.
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Abstract. Different patterns of retinal arterioles and venules in the fun-
dus images form an important metric to measure the disease severity.
Therefore, an accurate classification of arterioles and venules is greatly
necessary. In this work, we propose a novel network, named as the dual
Deeply-Supervised Network (dual DSN), to classify arterioles and venules
on retinal fundus images. We employ the U-shape network (U-Net) as
the backbone of our proposed model. Our proposed dual DSN produces
an auxiliary output of the network at every scale, which generates a loss
by comparing to the manual annotation. The losses in the encoding path
of dual DSN regularize the low-level features, while those in the decoding
path of dual DSN regularize the high-level features. In sum, such losses in
dual DSN form dual supervision to the backbone U-Net and capture the
multi-level features of the input image, which improves the classification
of retinal arterioles and venules. The experimental results demonstrate
that the proposed dual DSN outperforms the previous state-of-the-art
methods on DRIVE dataset with an accuracy of 95.0%.

Keywords: Deep learning · Convolution neural network · Dual
supervision · Skip connection

1 Introduction

The changes of retinal vasculature contain substantial diagnostic information for
many vascular and systematic diseases. Specifically, diseases may affect arterioles
and venules differently. For example, in hypertensive patients, the width of arte-
rioles usually shrinks faster than that of venules, while in diabetic patients, we
usually observe the expansion of venules first. Therefore, accurate classification
of retinal arterioles and venules in retinal fundus images has a great potential
to improve the early diagnosis and treatment of these diseases.
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Arteriovenous classification methods can be divided into three types: feature-
based methods, graph-based methods, and deep learning based methods. For the
feature-based methods, multiple image features are extracted to distinguish the
arterioles and the venules. Kondermann et al. [4] proposed to use vessel intensity
and central light reflex to identify the arterioles, because of the high hemoglobin
levels in arterial blood. Xu et al. [9] proposed to use first-order and second-order
texture features to capture the discriminating characteristics of arterioles and
venules. For the graph-based methods, Hu et al. [3] proposed to use a graph-
based meta-heuristic algorithm to separate the arterioles trees from the venules
trees and Estrada et al. [2] proposed to use the underlying vessel topology to
form a graph model which optimizes the separation of arteriole and venule trees.

For the deep learning based methods, a number of supervised learn-
ing approaches are reported for the arteriovenous classification. For example,
Albadawi et al. [1] reported using fully convolutional network to segment the
retinal vessels. Welikala et al. [8] presented a two-stage method. Retinal vessel
centerlines are first obtained and centerlines are then classified as arterioles or
venules by a 6-layer neural network. Although the aforementioned methods have
achieved high accuracy, segmentation errors often occur in identifying small ves-
sel segments. One possible explanation is that these deep learning based methods
cannot effectively extract the low-level and high-level features simultaneously.

To solve this issue, we propose to use dual Deeply-Supervised Network (dual
DSN) to classify arterioles and venules on retinal fundus images. We adapt
U-Net [5] as our network backbone which contains an encoding path to extract
low-level features and a decoding path to extract high-level features. We then
add supervision to regularize the information extraction on every scale of the
network. More specifically, the proposed model aggregates each feature map of
the network into an auxiliary output, an auxiliary loss is then computed based on
the difference between the auxiliary output and the manual annotation. The aux-
iliary losses in the encoding path ensure to obtain optimal low-level features and
those in the decoding path guarantee to extract optimal high-level features. We
name such mechanism as dual supervision. The highest classification accuracy
proves that our proposed dual DSN outperforms the previous state-of-the-art
methods on DRIVE dataset [7]. The experimental results demonstrate that the
dual supervision with losses on all scales is most effective to classify the arterioles
and the venules on retinal fundus images.

2 Methods

2.1 Dual Supervision

U-Net [5] is a fully convolution network with encoder-decoder structure that
widely used in semantic segmentation tasks. During the training of the U-Net,
low-level features extracted by the encoder are connected to high-level features
extracted by the decoder via skip connections. However, plain skip connections
may confound the features from different levels and decrease the accuracy of the
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dual Deep-Supervision
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Fig. 1. The overall architecture of dual DSN.

model. To solve this issue, UNet++ [13] proposed to combine the multi-level fea-
tures via densely nested connections with deep supervision, arguing that a deeply
supervised structure is preferable to deal with multi-level feature extraction.

Motivated by such observation, we propose a dual Deeply-Supervised
Network (dual DSN) by adding separate supervision on the every feature map
of the encoder module and the decoder module simultaneously. The supervision
applied on each feature map is defined by the following procedures.

Assuming the feature maps in the encoder-decoder structure with skip con-
nections are:

Ei,Dj .i = 1, 2, · · ·,m, j = 1, 2, · · ·, n. (1)

where Ei represents the ith feature map in downsampling stages from the encoder
(from top to bottom), Dj represents the jth feature map in upsampling stages
from the decoder (from bottom to top). For each feature map above, we use k
bottleneck convolutions with kernel size 1∗1 to create an auxiliary output, while
k is the number of the categories of the muiti-class task. We get m+n auxiliary
outputs each with k channels for all the feature maps of all the scales in this
way, which are defined as:

W = {Ei,k,Dj,k.i = 1, 2, · · ·,m; j = 1, 2, · · ·, n}. (2)

A bilinear interpolation is used to expand the sizes of the auxiliary outputs in
W to the original image size if necessary. We then employ the softmax operation
on each auxiliary output in W , and Cross-Entropy loss is computed between
each auxiliary output and the manual annotation Q. To emphasize the effect of
the last layer of the decoder (also the final output outputfinal), we introduce an
additional loss at this layer, Llast. In sum, there are m + n + 1 loss functions
in total, which form the final objective function of the proposed method:

L =
m∑

i=1

CE(Ei,k, Q) +
n∑

j=1

CE(Dj,k, Q) + Llast. (3)
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Fig. 2. Left: original image. Right: ananotated image.

CE represents Cross-Entropy loss, Llast = CE(outputfinal, Q) represents the
Cross-Entropy loss of the last layer (final output). The U-Net only minimizes
Llast, while the proposed model minimizes additional m+ n losses to regularize
the feature extraction process throughout the entire network. Dual supervision is
the main difference compared with UNet++ and can avoid vanishing gradients.

2.2 Network Architecture

The proposed network for classification of arterioles and venules is based on the
U-Net. In the encoder module, three convolution layers followed by three pooling
operations are applied. In each convolution layer, two 3×3 convolutions followed
by a batch normalization and a rectified linear unit (ReLU). As the classification
of arterioles and venules in pixel-level is a densely predicted task, we replace
maximum pooling operations with a concatenation of convolutions and average
pooling operation for more fine details. In the decoder module, the network
includes three upsampling operations. Each upsampling operation is followed
by two convolutions. The proposed model has 8 convolutional layers in total.
We compute auxiliary losses after each convolutional block of the network, by
adding an extra loss on the final layer, there are 9 auxiliary outputs and 9 losses
in total. The overall architecture of the proposed network is shown in Fig. 1

3 Experiments and Results

3.1 Data

Data Description: We conduct experiment on a public dataset, the DRIVE
dataset. The dataset contains 40 color retinal fundus images with the annota-
tions of arterioles, venules, intersections of arterioles and venules, uncertain and
background in pixel-level by doctors. An example of retinal fundus images and
annotations is shown in Fig. 2. The image size is 584*565. We use a randomly
selected subset of 30 images for training and the rest 10 images for testing.

Data Augmentation: We use data augmentation to enlarge the 30 training
images to reduce overfitting. The images are firstly randomly cropped to a size
of 512*512, and random scaling in [0.5, 1.5], horizontal and vertical flipping,
width and height shiftting, and random clipping are then applied to augment
the dataset. Finally, the size of training dataset is expended to 2,490 images. We
use the first of 80% augmented data for training, the last 20% for validation, the
rest 10 images of the original 40 images for testing.
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Pre-processing: We use median adjust strategy as shown in [9], and then the
images are normalized to [0, 1] by dividing 255. A case-level five-fold cross vali-
dation is performed within the training dataset.

As shown in Fig. 2, five labels are provided by the annotations which red
for arterioles, blue for venules, green for intersections, black for background and
white for uncertain pixels. In the experiment, we remove uncertain pixels for
simplicity. Furthermore, the intersections have textural characteristics from both
arterioles or venules, we set a very small class weight (1e−6) to the intersections
to avoid ambiguity during training, and they are actually classified as arterioles
or venules in our model, this is in line with reality. With the processing above,
our model is actually training a three-class classification of every pixel in the
entire retina fundus image, it assigns every pixel in the entire retina fundus
image as arteriole, venule or background.

3.2 Prevent Overfitting

Though we have increased the size of the training set 83 times though data
augmentation, to prevent overfitting for training such a small dataset, we reduce
the parameters of the model by using as few convolutions filters as possible.
We use 32,32,64,96,128 convolution filters (from top to bottom) in the encoder
stage, and 128,64,32 (from bottom to top) convolution filters in the decoder
stage, respectively. The proposed model has 0.9 million parameters in total. We
use dropout and add batch normalization after each convolution layer in the
neural network.

3.3 Training and Experimental Results

The proposed model is trained by standard backpropagation and stochastic gra-
dient descent (SGD) with momentum 0.9. The initial learning rate is 1e−4. We
train the model with the batch size of 4 on two NVIDA 1080ti GPUs for 1200
epochs, and thus 597,600 iterations.

We take the evaluation strategy as described in Xu et al. [11], since they also
classify the categories of all the pixels in the entire blood vessels, not only the
categories of centerline pixels. Evaluation strategy in Xu et al. [11] is a two-stage
strategy. First, vessel segmentation result is evaluated, in this stage arterioles

Table 1. Vessel segmentation results compared with others.

Methods Year Se Sp Acc AUC

Wang et al. [6] 2015 0.817 0.973 0.977 0.948

Xu et al. [10] 2016 0.786 0.955 0.933 0.959

Zhang et al. [12] 2016 0.774 0.973 0.948 0.964

Xu et al. [11] 2018 0.944 0.955 0.954 0.987

dual DSN 2019 0.805 0.989 0.969 0.988
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Table 2. Different supervision settings.

Model Accuracy Description

U-Net 92.7% Evaluated on the whole detected vessels

Encoder-Supervised U-Net 94.0% Evaluated on the whole detected vessels

Decoder-Supervised U-Net 94.4% Evaluated on the whole detected vessels

dual DSN 95.0% Evaluated on the whole detected
vessels

Fig. 3. Classification results compared with U-Net. From left to right: original image,
annotated image, result using U-Net, result using dual DSN. (best in room)

Fig. 4. Classification examples. Top: original image. Middle: annotated image.
Bottom: classification result using dual DSN. Red represents arterioles and blue repre-
sents venules. Uncertain pixels (white) are not classified, and the intersections (green)
are classified as arterioles or venules due to a small class weight. (best in room) (Color
figure online)

and venules are all considered as vessels. Second, accuracy of classification of
arterioles and venules is evaluated on all the vessel pixels that have been classified
correct, thus evaluated on detected vessels. We refer readers to Xu et al. [11] for
more details.

For the first-stage evaluation, sensitivity (Se), specificity (Sp), overall accu-
racy (Acc), and Area under the ROC curve (AUC) are used to evaluate the
performance of the vessel segmentation:

Se =
TP

TP + FN
,Sp =

TN

TN + FP
,Acc =

TP + TN

TP + FP + TN + FN
(4)

where the positive class resperents for the vessels (regardless of arterioles or
venules), the negative class resperents for the background. Vessel segmentation
results compared with others are show in Table 1.
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Table 3. Results compared with others.

Methods Year Accuracy Description

Hu et al. [3] 2013 84% Evaluated on all vessel centerline locations

Estrada et al. [2] 2015 93.5% Evaluated on known vessel centerline
locations

Welikala et al. [8] 2017 91.97% Evaluated on known vessel centerline
locations

Xu et al. [9] 2017 92.3% Evaluated on the correctly detected vessels

AlBadaWa et al. [1] 2018 93.5% Evaluated on known vessel centerline
locations

Xu et al. [11] 2018 90.0% Evaluated on the whole detected vessels

dual DSN 2019 95.0% Evaluated on the whole detected
vessels

Compared with Xu et al. [11], our proposed dual DSN achieves comparable
results in Sp, Acc and AUC. The Se of dual DSN is 0.805, which is comparable
with other high performance methods except Xu et al. [11], which is 0.944 and
much higher than other methods. The reason is that Xu et al. [11] uses class
weight in their loss function, which using 10 for arteriole, 5 for venule, and 1 for
background. For fair comparison, we also conduct experiment that using class
weight which 10 for arteriole, 5 for venule, and 1 for background. We found that
Se varies from 0.805 to 0.939 while other indicators almost unchanged, more tiny
vessels are segmented from the background. But the vessels predicted are much
wider than the normal vessels. Using class weight more than 1 will cause false
positive vessels, this false positive phenomenon is not truthfulness and will cause
more misclassification of arterioles and venules, so we don’t use class weight.

For the second-stage evaluation, Accuracy is used to evaluate the perfor-
mance of the model on classifying arterioles and venules on the detected vessels:

FPRat =
FPat

TPat + FPat
, FPRve =

FPve

TPve + FPve
, Accuracy = 1− FPRat + FPRve

2
(5)

where the subscripts at and we refer to arterioles and venules, respectively. TP
stands for true positive and FP stands for false positive. Since the first-stage eval-
uation just evaluates the performance of the vessel segmentation of the model,
the results of the accuracy what follows in the paper refer to the Accuracy in
the second-stage if there is not special instruction.

To evaluate the effectiveness of the dual supervision, we investigate the per-
formance of a model with supervision on the encoder module alone (Encoder-
Supervised U-Net) and on the decoder module alone (Decoder-Supervised
U-Net) by experiments, results can be seen in Table 2. Performance of Encoder-
Supervised U-Net or Decoder-Supervised U-Net are not as good as dual
DSN. Supervision on both the encoder module and the decoder module, dual
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supervision forms at this time, achieves the best results, and achieves an accu-
racy gain more than 2% compared with U-Net. From the visualization of the
predicted image in Fig. 3, we can see that dual DSN predicts more fine-grained
and more connectivity results.

Since the loss function in our proposed model is the sum of 9 loss functions, to
improve the effect of the model, we conduct experiment that sets a small weight
for the first loss function and raise the weight gradually with the deepening of
the network. But this imbalanced weight will degrade the effect of the model.
We will explore the adaptive weight for each loss function in future work.

Accuracy compared with others are shown in Table 3, our proposed model
outperforms Xu et al. [11], which has the same evaluation strategy, with an accu-
racy gain of 5%, and also outperforms other methods which evaluated only on
the centerline locations. Figure 4 shows an example of the classification results.

4 Conclusion

In this work, we present a novel deep-learning model for automated classifi-
cation of arterioles and venules. We adapt U-shape network structure as our
network backbone, and add dual supervision on the network. The experimental
results show that the proposed dual DSN outperforms the previous state-of-the-
art methods. The arteriovenous classification results produced by dual DSN are
not only with more fine-grained details, but are also more generally realistic.
In future work, we will explore the effect of dual supervision on other pixel-
level classification tasks and further study the theoretical explanation of dual
supervision.
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Abstract. Precise segmentation of the liver is critical for computer-
aided diagnosis such as pre-evaluation of the liver for living donor-based
transplantation surgery. This task is challenging due to the weak bound-
aries of organs, countless anatomical variations, and the complexity of
the background. Computed tomography (CT) scanning and magnetic
resonance imaging (MRI) images have different parameters and set-
tings. Thus, images acquired from different modalities differ from one
another making liver segmentation challenging task. We propose an
efficient liver segmentation with the combination of holistically-nested
edge detection (HED) and Mask- region-convolutional neural network
(R-CNN) to address these challenges. The proposed HED-Mask R-CNN
approach is based on effective identification of edge map from multi-
modal images. The proposed system firstly applies a preprocessing step
of image enhancement to get the ‘primal sketches’ of the abdomen. Then
the HED network is applied to enhanced CT and MRI modality images
to get better edge map. Finally, the Mask R-CNN is used to segment the
liver from edge map images. We used a dataset of 20 CT patients and
9 MR patient from the CHAOS challenge. The system is trained on CT
and MRI images separately and then converted to 2D slices. We signifi-
cantly improved the segmentation accuracy of CT and MRI images on a
database with Dice value of 0.94 for CT, 0.89 for T2-weighted MRI and
0.91 for T1-weighted MRI.

Keywords: Liver segmentation · Holistically-nested edge detection ·
Mask-RCNN · Multimodal segmentation

1 Introduction

The liver is the largest digestive gland and detoxification organ in the human
body. A CT and MRI are used to detect any injury or bleeding in the abdomen.
This is a painless and accurate way to detect an internal trauma which helps in
saving patients’ lives. Automatic medical image segmentation approaches that
are introduced in the last two decades have been the most successful methods for
c© Springer Nature Switzerland AG 2020
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medical image analysis. The feasibility of a CNN to be generalized to perform
liver segmentation across various imaging strategies and modalities is used in
[9]. Patrick et al. [2] presented a method to automatically segment liver and
lesions in CT and MRI abdomen images using cascaded fully convolutional neural
networks (CFCNs) enabling the segmentation of large-scale medical trials and
quantitative image analysis. Liu et al. [5] proposed liver sequence CT image
segmentation solution GIU-Net, which consolidates an improved U-Net and a
graph cutting algorithm, to take care of the low contrast between a liver and its
surrounding organs issue. The problem of the large difference among individual
livers in CT image was also addressed in [5].

The principal approach to image segmentation is to detect image discontinu-
ities, edges are one of those. Canny edge detection is the most popular technique
for edge detection but has limitations that different scales not directly connected,
also exhibit spatial shift and inconsistency [10].

HED was proposed by Xie et al. [10] to address these limitations. The original
HED network was intended for edge discovery purposes in normal pictures, which
catches fine and coarse geometrical structures (e.g. contours, spots, lines, and
edges), while we are keen in capturing ‘primal structure’ in abdomen images.

We chose holistically-nested edge detection because it addresses the challeng-
ing ambiguity in edge and object boundary detection significantly. We proposed
a unique method that can perform segmentation of liver on various modalities
in detecting features and instance segmentation with a holistically nested edge
(HED)-Mask R-CNN. We investigate a deep learning methodology that jointly
detect the edges and then segments the liver. The network is trained on a subset
of the CHAOS challenge and evaluated on other subset data of CHAOS challenge
for both CT and MRI modalities.

Our contributions in the present work are,

– use of enhancement method to get ‘primal sketches’ of abdomen images
– utilize holistically-nested edge Mask RCNN (HED-Mask R-CNN) to get edge

map
– applying the Mask R-CNN to segment liver from edge map images.
– lastly, we demonstrate the generalization and adaptability of HED-Mask

R-CNN to different modalities

The remainder of the paper is described in following subsections. The Sect. 2
deals with joint network approach, Sect. 3 include the experiment and results,
Sect. 4 presents a discussion of the proposed method and finally, Sect. 5 draws
the conclusions of this work.

2 Joint Network Approach

The segmentation process of liver consists of joint deep learning pipeline: pre-
processing, edge map detection (Fully convolutional network (FCN) with deep
supervision) [10], feature extractor with fine-tuning layers [3], as depicted in
Fig. 1.
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Fig. 1. Joint network architecture for automated semantic liver segmentation. (a) Orig-
inal image (b) Enhanced image (c) HED network (d) The original image multiplied by
the obtained edge map (e) Mask R-CNN. (f) Segmented liver output.

2.1 Pre-processing

Each DICOM slice is converted to PNG image and then pre-processing is car-
ried out. Image noise, spatial resolution, and slice thickness affect CT and MRI
images. An image enhancement technique is firstly applied, to get the organ
sketches in abdomen images. We applied a separate enhancement technique
to CT and MRI images because of their different resolutions. The CT images
have been enhanced by modified sigmoid adaptive histogram equalization algo-
rithm [7]. An adaptive histogram equalization (CLAHE) and sigmoid function
are applied to preserve the mean brightness of the input CT images. We apply
unsharp contrast enhancement filter to allow better differentiation of abnormal
liver tissue in the case of MRI images. The abdomen organ features are enhanced
prominently by this method. Fig. 2(a) and (c) shows original images of CT and
MRI respectively and Fig. 2(b) and (d) shows the enhanced images.

2.2 Holistically-Nested Edge Detection Approach

Deep supervision used in HED that accounts for low-level predictions resulting in
better edge map, is one of the reasons to consider HED in our method. We thus
chose HED that automatically learns rich and important hierarchical representa-
tions from MRI/CT images to resolve the challenging ambiguity in edge and object
boundary detection. It incorporates multi-scale and multi-level learning of deep
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Fig. 2. (a) and (c) CT and MRI original images, (b) and (d) corresponding enhanced
images

image features utilizing auxiliary cost functions at each convolutional layer. This
network architecture is with 5 stages, including strides of 1, 2, 4, 8 and 16, can
capture the inherent scales of organ contours [6]. Consequently, HED-based pro-
found system models have been effectively utilized in medical image analysis for
brain tumor segmentation [12], prostate segmentation [1], pancreas localization,
and segmentation [6], retinal blood vessel segmentation [11].

The network structure is initialized based on an ImageNet pre-trained
VGGNet model. The enhanced images are fed as an input to HED to get refined
edge map. Organ edge/interior map predictions can be obtained at each side-
output layer. The refined edge maps produced as side output are considered as
an input to our next network. Superior output for each modality is chosen. A
side output 6 is chosen for CT images whereas side output 0 for MRI images.
Figure 3 shows the CT/MRI edge maps chosen to train the next CNN network
for segmentation.

Fig. 3. CT and MR images with associated edge map images of training data
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2.3 Segmentation with Mask R-CNN

2.3.1 Data Preparation

We use popular geometric augmentation techniques, flipping, and sharpening
in this work. Elastic deformation distorts images locally by moving individual
pixels around following a distortions field with strength sigma. We applied elastic
distortion with alpha in range 0.5 to 3.5 and a smoothness parameter of 0.4.

2.3.2 Mask R-CNN

One of the most successful deep learning network for image segmentation is
Mask R-CNN [3]. Therefore we chose this model to segment the liver from both
modalities. Enhanced image multiplied with obtained edge map from HED is
used as input for Mask R-CNN to understand the 3D structure. Prior knowl-
edge of edge map gives advantage in segmenting objects with a large variety in
appearance and lack of texture to strong textures. We have used an end-to-end
pre-trained Mask R-CNN model with a Resnet-101-FPN backbone in this study.
This model has been pre-trained on Imagenet dataset. It predicts the masks of
detected regions and classifies them into one of the classes given at the time of
training. We choose an existing open-source implementation [8] using Tensorflow
deep learning framework.

The inputs for HED FCN are gray-scale images of size 512 × 512 and their
outputs are images of size 512 × 512 × 3. The model is implemented in Keras1

with the TensorFlow2 backend.

2.3.3 Training Strategy

Even though Mask R-CNN is profound enough and is equipped for learning
appropriate parameters for liver segmentation, it is inclined to over-fitting issues.
We utilize an effective technique such as Adam optimizer [4] to alleviate this issue
and boosting the training.

The multi-task loss function of Mask R-CNN combines the loss of classifica-
tion, localization and segmentation mask.

L = Lcls + Lbox + Lmask (1)

where Lcls is classification loss, Lbox is bounding box regression loss and Lmask

is mask loss. Dice coefficient performs better at class imbalanced problems. So
we modified the Lmask loss with Dice coefficient loss instead of binary cross-
entropy loss. We observed that validation loss is converging smoothly with Dice
coefficient loss.

The segmentation from the CNN may contain some artifact which is not
liver. To relieve this issue, some basic post-preparing was performed.

1 https://keras.io/.
2 https://www.tensorflow.org/.

https://keras.io/
https://www.tensorflow.org/
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3 Experiment and Results

Results of the automated liver segmentation are exhibited in Fig. 4. Comparison
of ground truth with the segmented liver is highly promising for obtaining high-
performance metrics. The whole setup was implemented in Linux environment
using NVIDIA GTX 1080 8 GB GPU on a system with 16 GB RAM and having
Intel Core-i5 7th generation @3.20 GHz processor.

Fig. 4. CT and MR images with their respective ground truth and predicted output.

3.1 Datasets

The network training is run on a subset of the publicly available CHAOS
challenge3 containing data sets from two different modalities. The training is
applied to 2183 axial CT slices (16 patients), 452 (4 patients) are used for vali-
dation. For MRI T2-weighted we applied training on 469 axial (7 patients) images
and 80 (2 patients) images are used for validation. In the case of T1-weighted
in-phase images, we use 316 axial (15 patients) images for training and 105 (5
patients) images for testing.

3.2 Evaluation

For each image, detections made by the model are compared to the ground truth
label to evaluate the model performance given in the challenge for that image.
We want to demonstrate the robustness, generalization, and scalability of our
3 https://chaos.grand-challenge.org/.

https://chaos.grand-challenge.org/
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proposed method in this work. Table 1 provides the comparison between Mask
R-CNN and HED-Mask R-CNN. Comparison with ground truth and segmented
liver give rise to the assertion that our approach is highly promising for obtaining
high-performance metrics. Dice coefficient of 0.9 above for both CT and MRI
images shows that our method works well.

Table 1. Comparison of liver segmentation on CT and MRI scans

Quantitative comparison among Mask R-CNN and HED-Mask R-CNN

CT Segmentation Dice MRI Segmentation Dice

Mask R-CNN(N=491) 0.90 Mask R-CNN (N = 105 T1-weighted) 0.80

HED-Mask R-CNN(N = 491) 0.94± 0.03 HED-Mask R-CNN (N = 105 T1-weighted) 0.91± 0.06

N = number of slices

4 Discussion

We propose a combination of HED (deep version) and Mask R-CNN network
to improve the liver segmentation performance of CT/MRI imaging modality.
We enhance the CT/MRI images which are shown in Fig. 2 to demonstrate the
proficiency of the proposed joint deep network. It is seen from the Fig. 2(b) and
(d) that the edge information and contrast of the liver are enhanced than the
original images. The enhanced images of CT/MRI are fed to the HED deep
network to extract the edge map as shown in Fig. 3.

The segmented liver output of CT/MRI using the proposed joint network is
shown in Fig. 4. The Fig. 4(a) depicts the segmented liver of CT images, Fig. 4(b)
depicts the segmented liver of T1-in phase and Fig. 4(c) depicts the segmented
liver of T2 MRI images. The segmentation results of our proposed joint deep
network are compared with the ground truth extracted by the medical experts.
It is observed that our proposed networks perform well in segmentation. The
comparison of Dice value for Mask R-CNN and proposed HED-Mask R-CNN is
tabulated in Table 1. It is observed from Table 1 the CT images without HED
network obtained the Dice coefficient of 0.90 and with HED the Dice coefficient
of 0.94. Similarly, for MRI images the Dice coefficient without and with HED
network are 0.80 and 0.91 respectively. It is seen from Table 1 that HED network
with the combination of Mask R-CNN increases the segmentation accuracy of
the proposed network.

The post-processing using graph cut method requires initial segmentation
image with larger liver area and controlling parameters needs to be determined
by multiple experiments in GIU-Net [5]. Whereas we present a framework, which
is capable of a segmenting the liver with no post-processing strategy. Also gener-
alized CNN [9] relied on retrospective data to train and validate the multimodal
CNN, in contrast our method takes the current data to train the model. Thus,
the proposed joint deep networks outperform well for both CT and MRI modal-
ities of images.
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5 Conclusions

We demonstrate our strategy for liver segmentation in multimodal CT and MRI
images using HED-Mask R-CNN method in this work. The novelty of our work
is in the use of edge map with Mask R-CNN with automatic features learn-
ing instead of just applying CNN for object segmentation. Importantly, the
above framework obviates the need for liver segmentation significantly increas-
ing robustness and accuracy as compared to stand-alone segmentation methods.
Our method yields Dice 0.94 for CT and 0.91 for MRI images. Our results on 491
CT slices and 105 slices demonstrate an impressive improvement over indepen-
dent CNN based strategies and may give significant clinical estimations for liver
segmentation. We intend to apply our technique to segment liver from additional
imaging modalities and all organs segmentation as well.
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Abstract. Amplitude-integrated EEG (aEEG) has been widely used
in neonatal seizure monitoring due to its convenience and broad appli-
cability. However, due to the long length of aEEG signals, detecting
seizures in aEEG signals is still a challenging and time-consuming task
for experienced clinicians. In this paper, we propose an ensemble learning
algorithm to tackle with this problem, aiming to assist clinicians to iden-
tify seizures more efficiently and effectively. Firstly, we employ wavelet
denoising method to improve the signal-noise rate (SNR) of aEEG signal.
Then, to reduce the high dimensionality of aEEG signals while retaining
the essential information, we extract global and local features from aEEG
signals based on visual features and entropy. Thereafter, we process our
data with a feature augmentation algorithm to obtain an extended data
set. Finally, an ensemble algorithm is utilized to perform seizure detec-
tion. We conduct experiments on real clinical data collected from Peking
University First Hospital. Experimental results show that the proposed
algorithm achieves excellent performance in seizure detection.

Keywords: Seizure detection · aEEG signal · Ensemble learning

1 Introduction

Neonatal seizure is one of the most critical symptoms of neonatal nervous sys-
tem and one of the most common clinical manifestations of neonatal neuro-
logical abnormalities. The immature brain tissue of the newborn is susceptible
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to injury, and frequent seizures may cause convulsive brain damage. Therefore,
timely detection of neonatal seizures and treatment can reduce the occurrence
of convulsive brain injury and improve the neurodevelopmental prognosis.

Electroencephalogram (EEG) is the gold standard for the diagnosis of neona-
tal seizures [11]. Traditional EEG requires that large number of electrodes be
placed on the patients’ scalp, which is difficult to perform for newborns. In addi-
tion, due to the large number of electrodes and lots of information collected, it
is easy to adulterate some artifacts while collecting EEG signals. Therefore, the
interpretation of conventional EEG requires a large amount of training.

The amplitude of EEG changes during convulsions, and can appear as a
transient increase in the upper and lower boundaries on aEEG. In clinical work,
it is recommended that neonatal doctors mark the aEEG fragments they believe
to be suspicious as “onset” for confirmation in the corresponding original EEG. A
number of studies showed that aEEG has comparable sensitivity and specificity
with EEG but is much more practical in diagnosis [8]. Thus, we focus on aEEG
signals for seizure detection.

Machine learning has been widely studied and applied in medical signal pro-
cessing. There have been multiple studies on the topic of EEG classification [3].
However, aEEG classification has just developed recently and only a few meth-
ods have been proposed for seizure detection [16]. Although existing machine
learning methods have achieved high accuracies in some tasks, these methods
mainly rely on human interactions in the data preprocessing stage which limits
their implementation in actual clinical workflow.

Classifying aEEG signals under a clinically implementable scenario remains
a great challenge. Firstly, aEEG signals are often much longer than EEG signals.
Labeling every seizure onset in an aEEG signal is time-consuming due to its long
length. Therefore, we have to deal with very long signals with only global (or
weak) labels. Secondly, different from EEG signals, aEEG signals do not have
fixed length. As a result, automatically extracting features from aEEG signals
with deep learning methods is difficult. Thirdly, aEEG signals have only one
channel, which means that they can be easier disturbed by the environment
than the EEG signals.

To resolve the above issues, in this paper, we propose a novel method to
extract features from aEEG signals and employ an ensemble algorithm to classify
aEEG signals. Our algorithm is able to deal with aEEE signals with variable
lengths and small size. Experimental results show that the proposed algorithm
can achieve a promising performance in the task of aEEG signal classification
for seizure detection. The highlights of this paper are listed as follows:

(1) We propose using the fuzzy entropy to select the top and negative instances
to effectively represent an aEEG signal and introduce feature augmentation
to expand data set.

(2) The proposed algorithm, i.e. feature selections followed by ensemble learn-
ing, achieves excellent classification performance and provides a good bal-
ance between the specificity and sensitivity.
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The remainder of the paper is organized as follows. Section 2 introduces
the collected data. The seizure classification algorithm is described in detail
in Sect. 3. Evaluations of the proposed algorithm on the real clinical aEEG data
are presented in Sect. 4. Finally, we draw conclusions in Sect. 5.

2 Data Acquisition and Introduction

The aEEG data used in this paper were collected from the neonatal ward of
Peking University First Hospital, with 216 newborns with neonatal seizures and
310 newborns with normal aEEG results. aEEG was undertaken by bedside of
the newborn and trained nurses in the neonatal ward were responsible for aEEG
recording operation and observing clinical seizures during the examination. The
aEEG reports were issued by neonatal physician with aEEG experience over 5
years, who were not informed about the condition of the patients and were not
involved in the clinical diagnosis and treatment in order to ensure the objectivity
of the reports. Figure 1 demonstrates the characteristics of aEEG recorded.

Fig. 1. Characteristics of aEEG. (a) Normal background pattern; (b) Discontinuous
background pattern; (c) Burst suppression background pattern.

3 Seizure Detection Algorithm

In this section, we describe the proposed algorithm in detail. The flowchart of
the algorithm is shown in Fig. 2.

Fig. 2. The flowchart of the proposed algorithm.
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3.1 Feature Selection

Feature extraction plays an important role in machine learning tasks. Here, we
extract two types of features from the aEEG signals, i.e., global features and
local features. The global features include 4 basic features and total histogram.
Basic features include minimum, maximum, skewness and kurtosis of the whole
aEEG signal. Total histogram is calculated with the algorithm in [6]. As for the
local features, a sliding window with the length of 3 min is applied to the aEEG
signal to capture sudden changes. The overlap between two successive windows
is set to 1.5 min. Then, local features are calculate in each window.

Here, we employ several entropies to extract the features of an aEEG signal.
These include auto permutation entropy (APE) [13], sample entropy [2], approx-
imate entropy [12], fuzzy entropy [15]. Besides, we introduce spectral entropy to
add spectral information into our feature. We also compute the lower and upper
border of an aEEG window. The lower border and upper border are defined as
the mean of five points near the maximum and minimum values of an aEEG
window’s envelope, respectively. Together with the entropy features, the desired
local features of an aEEG signal are obtained. Furthermore, with the window
selection that will be described later in this paper, we get 22 windows for every
signal. Thus, there are 236 columns for each local feature in total.

3.2 Top Instance and Negative Evidence for Windows Selection

Generally speaking, seizures can happen at any time in an aEEG signal, and the
length of the signal can be very long. Thus, detecting seizures in an aEEG by
going through every second of the whole signal is nearly impossible. However,
cutting off the entire signal into shorter ones with the same length (for instance,
3 h) may degrade the performance of classifiers.

Here we perform the following operations: (1) if an aEEG signal exceeds 3 h,
then we assume that there must be at least one seizure during the last 3 h. So we
truncate the aEEG signal and keep the last 3 h. (2) if an aEEG signal is less than
3 h, then we pad the upper and lower boundaries of aEEG by the corresponding
upper and lower boundaries’ mean values with random number in the range of
[0, 1]. After truncating and padding, we observe that our AUC score improves
by 3% compared to the original aEEG series.

Inspired by the top and negative sampling [7], we introduce a new window
selection algorithm to tackle the problem caused by the variable aEEG lengths
in seizure detection tasks.

We further demonstrate the top and negative windows of aEEG signals men-
tioned above in Fig. 3. The upper curve is the original aEEG data and the lower
curve is the aEEG signal with selected windows. We use the red curve to denote
the top seizure-like windows chosen by our algorithm, the green curve to denote
the negative windows and the red arrow to denote the seizure onset pointed by
doctors. As the figure shows, top windows appear in those places where there are
abrupt changes, which exactly corresponds to the most probable seizure onsets.
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Fig. 3. aEEG signals with selected windows. The upper curve is the original signal and
the lower curve is the signal after window selection. Red area indicates the top windows,
green area indicates the negative evidences, and the red arrow indicates where seizure
happens confirmed by clinicians. (Color figure online)

We calculate certain entropies of the signal within each window and sort the
windows according to their corresponding entropy values. Then, only the first
k windows and last k windows are retained for further feature extraction. After
many trails, we find optimal k = 11 and the best entropy is fuzzy entropy. Clas-
sification results with different window selection entropy are shown in Table. 1.

Table 1. Classification results with different window selection entropy

Method Accuracy Specificity Sensitivity AUC

Approximate entropy 77.38% 77.91% 75.27% 75.27%

Sample entropy 77.24% 77.51% 75.10% 75.10%

Shannon entropy 76.83% 76.95% 74.63% 74.41%

Fuzzy entropy 79.73% 79.96% 79.01% 78.34%

Permutation entropy 78.25% 78.55% 76.29% 76.29%

3.3 Feature Augmentation

Data augmentation is a powerful method in supervised learning. Here, we apply
interpolation and extrapolation to augment our train set and measure on our
test set as: (1) Interpolation: for each data point x, find k nearest neighbors with
the same label and interpolate by xnew = (x−xk)∗λ+xk; (2) Extrapolation: for
each data point x, find k nearest neighbors with the same label and extrapolate
by xnew = (xk − x) ∗ λ + x. Here, k and λ are trainable parameters and we
set k = 9 and λ = 0.73. Experimental results show that extrapolation performs
better than interpolation and improves the AUC score by 0.6%.
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3.4 Classification Algorithms

When merging features, we apply min-max normalization to data to improve
the speed and accuracy. Then, with the extracted features, we adopt several
algorithms, i.e., support vector machine (SVM) [1], logistic regression (LR) [10],
adaptive boosting (AdaBoost) [14], Xgboost [5], random forest (RF) [4] and
gradient boosting trees (GBDT) [9], as classifiers to classify the aEEG signals.

3.5 Ensemble Algorithm

Ensemble learning algorithm combining multiple machine learning algorithms
together commonly leads to better performance than any of the individual clas-
sifier. Therefore, we find the best single classifier and use bagging strategy to
form an ensemble learning algorithm for aEEG signal classification. Experimen-
tal results demonstrate that the ensemble algorithm can indeed further improve
the classification accuracy.

4 Experiments and Analysis

In this section, we conduct experiments on the real data set described in Sect. 2
using the algorithm proposed in the previous section.

Prior to feature extraction, the aEEG signals are denoised with a band-pass
filter to cut-off frequencies lower than 0.3 Hz and higher than 30 Hz to remove
artifacts and a four-order wavelet is utilized to further improve the quality of the
signals. In the experiments, we randomly divide the entire data set into three
subsets, i.e., training, validation and testing sets. Specifically, we first randomly
divide the entire data set into two parts with proportions of 80% and 20%,
respectively. The 20% portion (105 samples) is used for testing. Then, 50 samples
is further taken from the 80% portion for validation. Thus, the remaining 421
samples are used for training. We repeat the procedure 15 times and calculate
the mean classification accuracy. All the experiments are carried out on a Dell
laptop with Python 3.6 and MATLAB 7.0.

Fig. 4. Feature importance
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4.1 Feature Evaluation

Figure 4 demonstrates the importance of features. We observe that the spectral
entropy is of the most importance. Features like basic feature, lower border and
approximate entropy are not as important as expected. As for the fuzzy entropy,
it may be more significant in local context for window chosen in a single signal
rather than sample comparison. The reason is that different patients may have a
very different background signal level but possess a similar fuzzy entropy score.

4.2 Comparison of Classification Algorithms

Commonly, in medical image processing, positive means ill and negative means
normal. We use following metrics for model evaluation and comparison: (1)
Accuracy = TP+TN

TP+TN+FP+FN ∗ 100; (2) Sensitivity = TP
TP+FN ∗ 100; (3)

Specificity = TN
TN+FP ∗ 100; (4) Receiver operating characteristic curve (ROC).

Here, TP indicates true positive, TN indicates true negative, FP indicates false
positive and FN indicates false negative.

Table 2. Classification results with various classifiers.

Model Accuracy Specificity Sensitivity AUC

SVM 73.28% 73.46% 71.01% 71.01%

LR 74.08% 76.45% 78.26% 60.68%

Adaboost 76.79% 76.77% 75.46% 75.46%

Xgboost 78.12% 78.77% 78.70% 75.91%

Random Forest 74.53% 76.45% 76.54% 74.57%

GBDT 79.23% 79.27% 77.67% 77.67%

Ensemble 79.73% 79.96% 79.01% 78.34%

With the extracted features for aEEG signals, we compare the performance
achieved with the six classification algorithms. Results are shown in Table 2.
From Table 2 we conclude that the proposed feature extraction algorithm is effec-
tive for extracting semantic features from aEEG signals. Note that the ensemble
algorithm made up of bagging of GBDTs obtains the best results in all categories.
Table 3 shows that our work is better than the past researches and improves the
accuracy by about 3%.

Table 3. Classification results compared with other researches.

Model Accuracy Specificity Sensitivity AUC

Wang [6] 76.31% 76.59% 74.59% 74.91%

Yang [16] 76.23% 76.30% 74.86% 74.86%

Our work 79.73% 79.96% 79.01% 78.34%
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5 Conclusions

aEEG can be effective for screening newborns with high risk factors of neonatal
seizures. In this paper, we propose a novel algorithm to extract features from
aEEG signals and performed seizure classification using an ensemble method.
Firstly, we utilize a method based on visual features and entropy to extract the
global and local features from aEEG signals. Then, we expand our data with
feature augmentation method. Finally, a bagging of GBDT models is employed
to perform seizure detection. Experimental results on a real aEEG data set
show that the ensemble algorithm can achieve a promising performance with the
classification accuracy of 79.73%, the specificity score of 79.96%, the sensitivity
score of 79.96% and the AUC score of 78.34%.
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Abstract. The removal of speckle noise in ultrasound images has been
the focus of a number of researches. Meanwhile, deep convolutional neu-
ral networks (DCNN) has been proved effective for various computer
vision tasks, including image classification, segmentation and denoising.
In this paper, we apply deep convolutional neural network to remove
speckle noise in ultrasound images. Besides, a new hybrid loss function
is specially designed for speckle noise removal, which can result in faster
and more stable convergence during training. Experiments on synthetic
and real Ultrasound images show that the proposed model outperforms
other speckle reduction methods.

Keywords: Ultrasound images · Speckle noise removal · Deep neural
networks

1 Introduction

In recent years, Ultrasound diagnostic technology has been widely used to assist
in the diagnosis of diseases in the abdomen, thyroid, breast, uterus and other
places due to its safety, low cost and real-time imaging. However, Ultrasound
images are corrupted with inherent speckle noises that show a granular appear-
ance, which impairs the information of images and makes it unclear for human
to distinguish the vital tissue or image features in diagnosis [9]. Besides, speckle
noise can also enhance the difficulty of other ultrasound image processing tasks
such as classification [3] and segmentation [1]. Therefore, speckle noise removal
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becomes an important step for analyzing and processing medical ultrasound
images.

Many researchers focused on the mathematical model of speckle noise in
ultrasound images. It is widely recognized that the distribution of speckle noise
is signal related. [14] suggests that (1) is the most suitable for ultrasound speckle
noise.

x̃ = x +
√

x ∗ n, (1)

Here, x ∈ S = (0,M ]m×n is the original image, x̃ is the noisy image, and n is
Gaussian noise N(0, σ2).

Various methods have been proposed for the removal of ultrasound speckle
noise such as local statistics [6,11,12], anisotropic diffusion methods [10,20],
nonlocal mean approaches [2,4] and variational approaches [7,17]. Lee filter [12],
Frost filter [6], and Kuan filter [11] are the most classic methods to despeckle
images. But they are more likely to get smooth images without preserving the
edge and other features. Variational approaches [7,17] are one of the most pop-
ular branches in ultrasound despeckling. These methods transfer the denoising
task into a convex optimization problem:

rCVX(x̃) = argmin
x

[λD(x, x̃) + P (x)], (2)

where D(x, x̃) is the data fidelity term that measures the similarity between the
denoised image and the noisy image. P (x) is the prior term that measures the
reality of the denoised image and λ controls their relative importance. Iterative
optimization algorithms, most typically alternative direction method of multi-
pliers (ADMM), are then applied to solve the optimization problem. Non local
mean methods [2] are also popularly used because they can remove speckle noise
while preserving the texture details. Block-matching 3D Filtering (BM3D) [5] is
the most widely used approach for Gaussian denoising.

In recent years, deep learning approaches have been introduced for image
denoising, such as DnCNN [21], WIN [13], ELU-CNN [18], Cascaded CNN
[19]. Different deep learning methods vary in their network architectures and
choices of loss functions, which can make different achievements. Neural net-
work approaches can achieve the state-of-the-art results in denoising for natural
images, CT images and MRI images, all with Gaussian noise or Gaussian mixed
noise. In this work, we introduce a new convolutional neural network and a
new hybrid loss function for ultrasound noise removal, which outperforms other
ultrasound denoising methods.

The remainder of this paper is organized as follows. Section 2 describes the
proposed method for ultrasound image denoising; Sect. 3 contains experimental
results on both synthetic and real ultrasound images. Section 4 concludes the
our work.

2 The Proposed Method

In this section, we first illustrate the architecture of the proposed US-Net (Neu-
ral network for Ultrasound) model that is designed especially for Ultrasound
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removal. Then, we propose a new hybrid loss and show that the new loss suits
well for ultrasound despeckling task.

2.1 Model

Inspired by the CNN-based model that successfully improved the results of Gaus-
sian noise removal, we propose a new model named US-Net to solve the Ultra-
sound denoising problem. The network structure of US-Net is shown in Fig. 1.

Fig. 1. Proposed USNet

Our model includes 6 convolutional layer blocks, 6 symmetric deconvolu-
tional layer blocks and 2 single convolutional and deconvolutional layers. The
convolutional block composed of convolution, batch normalization [8] and ReLU
layers. And the symmetric deconvolution block consists of deconvolution, BN and
ReLU layers. Convolution blocks are used for feature extraction. Deconvolution
was first used as the neural network layer in the field of semantic segmentation
[16]. It can recover more details of image contents as the replacement of up-
sampling layer, which repeats the adjacent pixel blocks and as tends to smooth
the images. Skip connections are added from a convolutional block to its sym-
metric deconvolutional block which is schematically represented in Fig. 1. By
horizontal connections. In this way we can add more fine-grained details that
may be lost during forward propagation to the deconvolutional layer and thus
get fine outputs with less information loss.

2.2 Loss Function

Mean square error (MSE), defined as (3), is the most frequently used loss function
for CNN-based image denoising models [19,21–23] due to its

LMSE =
1

2N

N∑

i=1

‖F (x̃i) − xi‖2, (3)
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convex and differentiable properties that are significant for optimization prob-
lems. But it is widely noticed that MSE is not always consistent with human
visual system (HVS) [24] and the formula of MSE loss works under the assump-
tion of white Gaussian noise instead of speckle noise. Thus we propose a new
hybrid loss which is defined as

Ltrain = αLUS + (1 − α)LSSIM (4)

Here, LUS is the new loss designed for ultrasound speckle noise and
LSSIM (x̃i, xi) =

∑
(1 − SSIM(F (x̃i), xi)) is the error summation of SSIM

[24] with respect to the denoised image and original image. These two parts
are designed to control the contents and structure of the denoised image respec-
tively, and α is the weight value to balance their relative importance.

LUS is especially designed for speckle noise removal.
According to the ultrasound speckle noise model (1), we have:

√
x̃i =

√
xi +

√
xini

=
√

xi

√
(1 +

ni

xi
)

=
√

xi(1 +
niui

2
+ o(niui))

=
√

xi +
ni

2
+ o(ni)

=
√

xi +
ni

2
+ o(σ)

(5)

This inspires us to use

LUS(x̃i, xi) =
1

2N

N∑

i=1

‖
√

F (x̃i) − √
xi‖2 (6)

where F denotes the denoising neural network function which maps the noisy
image x̃i to the denoised image F (x̃i).

Besides, to test the convergence and stability, we ran an comparative experi-
ment in which the same network is trained with Ltrain and MSE loss respectively.
Figure 2 shows the training val loss of different losses. The network trained with
Ltrain loss converges in a more stable and faster way than the one trained with
MSE.

2.3 Training Setup

We implement our proposed network with Adam optimization. The convolution
kernels was 3 × 3 with a feature map of 64 channels. Zero padding was used to
keep the same size. The learning rate starts from 10−3 and reduces to 10−4 after
30 epoch. The mini-batch size is set as 8. The network were trained in Keras
based on Tensorflow backend on a GTX1080Ti GPU.
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Fig. 2. Val loss values of Ltrain and MSE loss on the same network

3 Experimental Results

In this section, we present the results of our proposed US-Net model on both
synthetic and real Ultrasound images. In order to demonstrate the effectiveness
of the proposed method for speckle noise removal, we compare it with the follow-
ing seven approaches: Lee filter [12], Frost filter [6], Kuan filter [11], anisotropic
diffusion method [20], non local mean filter [2], BM3D [5] and DnCNN [21].
DnCNN is the only one except our method using neural network in our compar-
isons, which achieves state-of-the-art performance for Gaussian denoising. The
peak signal to noise ratio (PSNR) and structural similarity index (SSIM) [?] are
calculated to evaluate the denoising performance of different methods.

3.1 Results on Synthetic Images

Followed by [21], we used the Berkeley segmentation dataset (BSD500) [15] for
training and Set12 dataset for testing. Data augmentation (rotation or flip) and
random cropping were used for all the images so that their size is 180 × 180
pixel. Different variance of Gaussian noise in (1) were added for comparison. The
numerical results are listed in Table 1. It can be seen that the proposed US-Net
yields the highest PSNR and SSIM on different noise levels. The visual results
of the denoised images are shown in Fig. 3. We can observe that our proposed
model keeps sharp edges and fine details and outperforms other approaches.

3.2 Results on Real Ultrasound Images

We used the thyroid Ultrasound dataset from Peking University Hospital for
training and testing, during which the images were cropped into 9124 patches
with 180×180 sizes. Experiments are carried out on two different noise variances.
The numerical results are shown in Table 2. We can notice that the PSNR and
SSIM of our proposed method also get the best results. And visual results are
illustrated in Fig. 4.
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Table 1. Numerical results of different methods on Set12 test dataset

Method PSNR (dB)/SSIM

σ = 0.1 σ = 0.3 σ = 0.8

Lee [4] 26.14/0.841 26.11/0.837 26.04/0.832

Frost [5] 23.9/0.747 23.90/0.746 23.89/0.745

Kuan [6] 18.66/0.591 18.67/0.591 18.66/0.590

AD [7] 38.67/0.988 35.04/0.944 32.93/0.911

NLM [9] 40.27/0.967 37.11/0.953 34.95/0.943

BM3D [12] 24.55/0.742 24.55/0.742 24.53/0.742

DnCNN [13] 45.68/0.993 39.38/0.979 37.5/0.972

US-Net (proposed) 46.30/0.995 39.45/0.980 37.53/0.974

Fig. 3. Denoising results on Set12 dataset with noise level 0.3 by different methods.
(a)original image (b) Noisy (38.15 dB) (c) Lee (25.92 dB) (d) Frost (23.63 dB) (e) Kuan
(17.87 dB) (f) AD (36.85 dB) (g) NLM (38.86 dB) (h) BM3D (25.07 dB) (i) DnCNN
(38.64 dB) (j) US-Net (40.85 dB)

Table 2. Numerical results of different methods on 1724 thyroid Ultrasound images

Method PSNR(dB)/SSIM

σ = 0.3 σ = 0.8 σ = 1.5

Lee [4] 34.33/0.933 33.77/0.925 32.56/0.904

Frost [5] 29.88/0.807 29.79/0.815 29.62/0.813

Kuan [6] 23.33/0.688 23.36/0.691 23.37/0.69

AD [7] 39.54/0.977 32.20/0.879 27.64/0.729

NLM [9] 40.88/0.981 34.61/0.928 31.75/0.871

BM3D [12] 28.55/0.737 28.52/0.736 28.47/0.735

DnCNN [13] 40.83/0.980 37.88/0.969 34.01/0.938

US-Net (proposed) 41.73/0.987 37.47/0.969 34.12/0.940
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Fig. 4. Results on Ultrasound dataset with noise level 0.3 by different methods. (a)
original image (b) Noisy (44.43 dB) (c) Lee (37.18 dB) (d) Frost (28.21 dB) (e) Kuan
(26.12 dB) (f) AD (41.25 dB) (g) NLM (44.39 dB) (h) BM3D (29.98 dB) (i) DnCNN
(40.83 dB) (j) US-Net (45.79 dB)

4 Conclusion

In this paper, we proposed a new deep convolutional neural network model for
ultrasound image denoising. We also designed a new hybrid loss to make the
training process faster and more stable for speckle noise removal. Experimental
results on synthetic and real ultrasound images show that the our proposed
model has promising performance and state-of-the-art results.
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Abstract. Current surgical skill assessment mainly relies on evaluations
by senior surgeons, a tedious process influenced by subjectivity. The con-
tradiction between a growing number of surgical techniques and the duty-
hour limits for residents leads to an increasing need for effective surgical
skill assessment. In this paper, we explore an automatic surgical skill
assessment method by tracking and analyzing the surgery trajectories in
a new dataset of endoscopic cadaveric trans-nasal sinus surgery videos.
The tracking is performed by combining the deep convolutional neural
network based segmentation and the dense optical flow algorithm. Then
the heat maps and motion metrics of the tip trajectories are extracted
and analyzed. The proposed method has been tested in 10 endoscopic
videos of sinus surgery performed by 4 expert and 5 novice surgeons,
showing the potential for the automatic surgical skill assessment.

Keywords: Instrument segmentation · Surgical skill assessment ·
Sinus surgery

1 Introduction

The current mainstream surgical training paradigm, which is an apprenticeship
model proposed by Dr. Halsted, has been used for more than a century [3]. Res-
idents assist or perform surgeries under the supervision of senior surgeons, who
also rate the residents’ surgical skill [13]. This method suffers from subjectivity
and is time-consuming. To standardize the evaluation process, rating criteria
such as Objective Structured Assessment of Technical Skill (OSATS) has been
proposed, but these rating methods are still tedious and have a certain degree
of subjectivity [1]. In addition, due to the advent of new surgical techniques
and regulations, residents need to acquire more skills but their training time is
restricted by mandated duty-hour limits [13]. Therefore, more automated and
efficient surgical skill assessment methods are needed.
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Motion tracking is a significant component of the skill assessment systems
[13]. Commonly used tracking systems, including optical, acoustic, electromag-
netic and RFID systems [2], may change the surgery experience and constrain
the surgeons’ movements [13]. In addition, they are generally expensive, bulky
and may not be sterilizable [13]. Surgical robotic systems provide rich motion
data, including kinematic, dynamic, visual and haptic information, that have
been applied for skill assessment [6,9]. Recently, simulation-based training sys-
tems have been studied for objective assessment [8]. However, these systems still
have many differences from the real surgery environment.

As an alternative approach, video-based tracking is cost-efficient, noninva-
sive and widely applicable. Early studies used color or shape markers, but this
method suffers from occlusion, may require modification to the instruments and
thus can interfere with the surgical workflow [2]. To avoid these challenges,
detection and tracking without visual markers has become popular [2]. How-
ever, marker-less methods need to address many challenging conditions in the
surgery scene, including co-axial illumination conditions, occlusion by tissue or
instruments and blur from motion [2]. Furthermore, most existing skill assess-
ment methods are based on 3D information [6,9], but calculating 3D information
from the stereoscopic video is difficult. Features to be matched in the endoscopic
video are very limited. In some cases, only monocular vision is available [2], mak-
ing the problem even more complex.

Considering that many classic surgical skill assessments are conducted by
watching videos, our hypothesis is that 2D data contain information of surgical
skill comparable to 3D data. However, there are few studies of surgical skill
assessment based only on video data. Jin et al. [7] tracked instrument tips in
real laparoscopic surgery videos using deep learning and then analyzed metrics
for skill assessment. Oropesa et al. [12] analyzed motion metrics based on the
3D trajectories calculated from endoscopic videos in a box trainer setup.

In this study, we build a dataset including 10 endoscopic sinus surgery videos
and conduct the first video-based study of endoscopic sinus surgery, showing the
potential for cost-effective and standard objective assessment. We compare three
advanced neural networks for instrument segmentation and track the instrument
tip based on the segmentations by integrating the dense optical flow algorithm
[5] and a geometric method. Metrics based on 2D tracking are compared with
metrics extracted from 3D ground truth collected by tracking systems.

2 Methods

To analyze the movements of instruments, we extracted 2D trajectories of the
instrument tip from monocular frames by combining image segmentation and
tracking techniques. We chose this strategy because there is no significant marker
or sharp corner on the tip (Fig. 1), it is not suitable to use keypoint detector or
object detector to localize the tip.
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2.1 Deep Neural Networks for Instrument Segmentation

We implemented segmentation with three convolutional neural network based
models, DeepLabV3, TernausNet16 and the baseline model FCN8s [4,10,14].
We used the ResNet-50 pretrained on ImageNet for feature extraction in
DeepLabV3. The atrous rates of the atrous spatial pyramid pooling module
were 2 and 4. We used VGG-16 pretrained on ImageNet to extract feature in
both TernausNet16 and FCN8s.

After comparison, we adopted the mean squared error loss instead of the
cross-entropy loss. The dropout layer with keep probability of 0.5 was embedded
after the output layer of ResNet-50 and VGG-16. For data augmentation, we
randomly flipped and rotated the training images, and randomly jittered their
brightness, hue, and contrast. We trained the network with 20 epochs through
Adam optimizer using an initial learning rate of 0.001 with a decay rate of 0.5
and step of 5 epoch. See Sect. 3.1 for details of training and test dataset.

2.2 Tracking

To analyze the movements of the instrument and endoscope, we generated the
segmentations of all frames in the videos and implemented instrument tip track-
ing by combining a geometric method with dense optical flow algorithm using
the following steps:

1. Post-processing: In our dataset (Sect. 3.1) there is at most one instrument in
each frame. Therefore, the instrument is the largest blob with an area greater
than a threshold determined empirically.

2. Detect the tip based on a geometric method (Fig. 2): Intuitively, the tip is the
farthest point from the center point of the instrument contour point along
the edge of the endoscope video. To guarantee the accuracy of detection, only
the contour points near the line connecting the center of edge and center of
the classified region are considered.

3. Track instrument using dense optical flow algorithm: The optical flow of each
pixel in the frame is calculated through the Gunner Farneback algorithm [5].
The optical flow vector of the instrument is then calculated as the average
optical flow within the segmented instrument region.

4. Estimate tip position: Using a small region around the tip detected in the
last frame as a template, we calculate the cross-correlations between the tem-
plate and two potential positions calculated in step 2 and 3. The tip position
will then be the weighted sum of these two candidates based on the cross-
correlations.

5. Remove sudden change on the trajectory: A 11th-order low-pass Butterworth
filter with the cutoff frequency of 0.2 was applied to smooth the trajectories.

In addition, we estimated the velocity of background based on dense optical
flow. We calculated the average magnitude of the optical flow vectors in the
background region. Because the tissue may deform when contacting the instru-
ment, the pixels with a distance of 20 pixels to the instrument region are not
considered in background flow estimation.
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Fig. 1. Example frames in the dataset. Fig. 2. Schematic dia-
gram of the geometric
method.

2.3 Metrics for Surgical Skill Assessment

We plotted the heat map of each instrument tip trajectory and calculated the
distances between the centers of heat maps and the centers of endoscope videos.
From both 2D and 3D trajectories, we extracted the total operative time, path
length, average speed and acceleration of instrument. In addition, economy of
area was calculated as the maximum area covered by the instrument in the video
divided by the 2D path length, and economy of volume was the maximum volume
covered by the instrument in the space divided by the 3D path length. These
two metrics (introduced by [12]) reveal usage efficiency of the working space.

3 Experimental Setup and Results

3.1 Dataset

Ten endoscopic sinus surgeries conducted by 4 senior surgeons and 5 residents
on the left and right sides of 5 cadavers were recorded at Harborview Medical
Center using a Stryker 1088 HD camera system and the Karl Storz Hopkins
Ø4mm 0° endoscope with a frame rate of 29.97 and a resolution of 320 × 240.
Simultaneously, the location of the instrument and endoscope were recorded
by the Medtronic Stealth Station S7 surgical navigation system. In one of 5
operations by expert surgeon, the video #4, the video data was truncated after
maxillary antrostomy and does not include ethmoidectomy, as the others do.

We extracted a total of 3871 frames from 10 videos (Fig. 1) and manually
labeled the bounding polygons of instruments. The dataset is separated into a
training set of 2375 frames which corresponds to 7 videos and a test set of 1496
frames which corresponds to the remaining 3 videos. The challenging conditions
of this dataset include specular reflections, low resolution, and occlusions by
anatomy.

3.2 Segmentation and Tracking Results

The segmentation performance is evaluated by mean Dice coefficient, mean
Intersection over Union (IoU) and training time (Table 1). DeepLabv3 surpasses
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FCN-8s and TernausNet-16 with a mean Dice of 0.935 and mean IoU of 0.901.
Moreover, while achieving the best performance, the training time for DeepLabv3
is more than four times less than FCN-8s and two times less than TernausNet-16.

Figure 3 shows the heat maps of the trajectories and Fig. 5b is the boxplot
of the distances between the centers of heat maps and the centers of endoscope
videos. Figure 4a presents the average speed of background in each video.

Table 1. Segmentation results

Network Mean Dice Mean IoU Training time (ms)

FCN-8s 0.909 0.869 81.2

TernausNet-16 0.903 0.862 40.5

DeepLabv3 0.935 0.901 17.1

Fig. 3. Heat maps of surgery trajectories (endoscope screen coordinates). Brighter
points correspond to a higher frequency of the instrument tip location within endoscopic
view during surgery. Maps in the top row are from senior surgeons and maps in the
bottom row are from residents.

3.3 Evaluation of Motion Metrics

Figures 5 and 4 present the extracted metrics. T-test has been applied to deter-
mine if there is a significant difference between the senior surgeons and residents
based on each metric (Table 2). Two 2D metrics, path length and economy of
area, have a p-value less than 0.05, while all 3D metrics have p-value greater
than 0.05. However, all metrics cannot be well distinguished using multiple test-
ing correction methods including Bonferroni correction and correction via false
discovery rate (FDR) calculated using the Benjamini-Hochberg procedure [11].
Considering the dataset with five samples in each group may be too small, we
performed a statistical power analysis on each metric to determine the minimum
sample size required assuming the validity of the sample variance and effect size
(Table 2).
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Table 2. T-test results of each metric.

Metrics t-statistic p-value Sample size
w/90% power

Total operative time −2.115 0.067 7

2D metrics

Distance of heat map center to video center −2.001 0.080 7

Path length −3.381 0.010 5

Average speed 0.721 0.491 43

Average acceleration −0.907 0.391 28

Economy of area 3.060 0.016 5

3D metrics

Path length −0.724 0.489 90

Average speed 1.761 0.116 10

Average acceleration 1.629 0.142 7

Economy of volume 0.638 0.541 83

Fig. 4. (a) Average background speed in video; (b) average endoscope speed in 3D
space; (c) instrument path length in video; (d) instrument path length in 3D space.

4 Discussion

While our metrics did not reveal a statistically significant difference between
experienced and novice surgeons according to the Bonferroni correction results,
several interesting observations can be made about the measurements arising
from our new dataset. Figures 3 and 5b indicate that the expert surgeons gen-
erally maintain the instrument tip in a smaller region closer to the center of the
endoscope video.

The complexity of the 10 cadaver surgeries were not strictly the same, so we
can’t make a conclusion in terms of the total operative time and path length.
However, if we compare Fig. 4c and d (video # 4 is not considered), video #
1 (a highly experienced surgeon) has longer 3D path length than other videos
except video # 6, while has the shortest 2D path length. Additionally, according
to Fig. 4a, the average background speed in video # 1 is much higher than other
videos. This indicates that the surgeon performed the operation effectively and
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Fig. 5. (a) Total operative time; (b–f) 2D metrics: distance of heat map center to
video center, path length, average speed, average acceleration, economy of area; (g–j)
3D metrics: path length, average speed, average acceleration, economy of volume.

moves the endoscope faster, and at the same time maintained a smaller relative
distance between instrument and endoscope.

The 2D average speed and acceleration of the instrument do not present
significant differences between the two groups. This can be explained by two
causes of fast movement. Experts usually move the endoscope faster and this
restricts the instrument speed to reach a very small value. For novices, it is
challenging to keep the instrument stable in the endoscope video. According to
power analysis, more samples are needed for more meaningful analysis.

One limitation of this work is that it does not quantitatively evaluate the 2D
instrument tracking results. In the future, we will implement camera calibration
and project the 3D ground truth back to the 2D space for verification. Another
potential solution is to conduct 3D reconstruction based on the shape of the
instrument and the calibration results, then compare the reconstruction results
with the ground truth.

5 Conclusion

In summary, we introduce a new endoscopic sinus surgery dataset, propose and
test a video-based surgical skill assessment method on the dataset, serving as
the foundation toward automatic objective skill analysis. However, in the future
study, more data is needed to improve the statistical power. Moreover, the final
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goal of our system is to provide instructions that help improve skills beyond sta-
tistical dexterity analysis. We anticipate this will require integration of surgery
movement information and anatomy information (e.g. CT scans) to understand
the intent and quality of a movement.
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Abstract. Normalization layers are essential in a Deep Convolutional
Neural Network (DCNN). Various normalization methods have been pro-
posed. The statistics used to normalize the feature maps can be computed
at batch, channel, or instance level. However, in most of existing methods,
the normalization for each layer is fixed. Batch-Instance Normalization
(BIN) is one of the first proposed methods that combines two different
normalization methods and achieve diverse normalization for different
layers. However, two potential issues exist in BIN: first, the Clip function
is not differentiable at input values of 0 and 1; second, the combined fea-
ture map is not with a normalized distribution which is harmful for signal
propagation in DCNN. In this paper, an Instance-Layer Normalization
(ILN) layer is proposed by using the Sigmoid function for the feature
map combination, and cascading group normalization. The performance
of ILN is validated on image segmentation of the Right Ventricle (RV)
and Left Ventricle (LV) using U-Net as the network architecture. The
results show that the proposed ILN outperforms previous traditional and
popular normalization methods with noticeable accuracy improvements
for most validations, supporting the effectiveness of the proposed ILN.

Keywords: Instance-Layer Normalization · Deep Convolutional
Neural Network · U-Net · Biomedical image segmentation

1 Introduction

Biomedical image segmentation is a fundamental step in medical image analysis,
i.e., 3D shape instantiation for organs [17] and prosthesis [14,15]. Most current
popular methods are based on Deep Convolutional Neural Network (DCNN)
which train multiple non-linear modules for feature extraction and pixel classifi-
cation with both higher automation and performance. One fundamental compo-
nent in DCNN is the normalization layer. Initially, one of the main motivations
for normalization was to alleviate the internal covariate shift where layers’ input
distribution changes [4]. However, recent work considers the use of normaliza-
tion layer is beneficial, because it increases the robustness of the networks to
fluctuation associated with random initialization [2], or it achieves smoother
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optimization landscape [9]. In this paper, we keep this motivation question open
and focus on normalization strategies.

For a feature map with dimension of (N,H,W,C), where N is the batch size,
H is the feature height, W is the feature width, C is the feature channel, Batch
Normalization (BN) [3,4] was the first proposed normalization method which
calculated the mean and variance of a feature map along the (N,H,W) dimen-
sion, then re-scaled and re-translated the normalized feature map with additional
trainable parameters to preserve the DCNN representation ability. Instance Nor-
malization (IN) [10] which calculated the mean and variance along the (H,W)
dimension was proposed for fast stylization. Layer Normalization (LN) [1] which
calculated the mean and variance along the (H,W,C) dimension was proposed
for recurrent networks. Group Normalization (GN) [12] calculated the mean and
variance along the (H,W) and multiple-channels dimension and was validated on
image classification and instance segmentation. A review of these four normaliza-
tion methods for training U-Net for medical image segmentation could be found
in [16]. Weight normalization [8,13] based on re-parameterization on weights was
used in recurrent models and reinforcement learning. Batch Kalman normaliza-
tion estimated the mean and variance considering all preceding layers [11].

Recently, Nam et al. proposed Batch-Instance Normalization [5] (BIN), which
combined BN and IN with a trainable parameter. However, two risks potentially
exist: (1) the trainable parameter was restricted in the range of [0, 1] with Clip
function which is not differentiable at input values of 0 and 1; (2) the combined
feature map was no longer with a normalized distribution, which is harmful
for signal propagation in DCNN. In this paper, Instance-Layer Normalization
(ILN) is proposed to combine IN and LN: (1) Sigmoid is used to solve the non-
differentiable characteristic of Clip function at input values of 0 and 1; (2) an
additional GN16 - GN with a group number of 16 is added after the combined
feature map to ensure a normalized distribution of the combined feature map. A
widely-applied and popular network architecture - U-Net [7] is used as the net-
work to validate the proposed ILN on the Right Ventricle (RV) and Left Ventricle
(LV) image segmentation. The proposed ILN outperforms existing normalization
methods with noticeable accuracy improvements in most validations in terms of
the Dice Similarity Coefficient (DSC).

2 Methodology

2.1 Instance-Layer Normalization

Instance Normalization. With a feature map F of dimension (N,H,W,C),
IN calculates the mean and variance of F as:

μn,c =
1

H × W

H∑

h=1

W∑

w=1

fn,h,w,c; δ2n,c =
1

H × W

H∑

h=1

W∑

w=1

(fn,h,w,c − μn,c)2 (1)
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Then, the feature map is normalized as F̂
I
:

f̂ I
n,h,w,c =

fn,h,w,c − μn,c√
δ2n,c + ε

(2)

where ε is a small value added for division stability. For the same feature map
F, LN calculates the mean and variance as:

μn =
1

H × W × C

H∑

h=1

W∑

w=1

C∑

c=1

fn,h,w,c; δ
2
n =

1

H × W × C

H∑

h=1

W∑

w=1

C∑

c=1

(fn,h,w,c − μn)2

(3)

where F is normalized in a similar way of Eq. (2) to F̂
L
. A trainable parameter

ρ is added to combine F̂
I

and F̂
L
. In the original BIN [5], ρ was clipped to be

in the range of [0, 1] with a Clip function, as shown in Fig. 1.

Fig. 1. The curves of Clip and Sigmoid function.

However, Clip function is not differentiable at input values of 0 and 1. In
this paper, Sigmoid function Sigmoid(x) = 1/(e−x + 1) which is differentiable
everywhere is applied to solve this potential issue:

F̂
IL

= Sigmoid(ρ) · F̂I
+ (1 − Sigmoid(ρ)) · F̂L

(4)

An additional potential issue in the original BIN is that the combined F̂
IL

is no
longer with a mean of 0 and a variance of 1, this non-normalized distribution
may be harmful for signal propagation in DCNN. In this paper, we solve this
issue with applying an additional GN16 on the combined F̂

IL
:

μn,g =
1

H × W × M

H∑

h=1

W∑

w=1

g·M∑

m=(g−1)·M+1

f̂ IL
n,h,w,m,M = C//16 (5)

δ2n,g =
1

H × W × M

H∑

h=1

W∑

w=1

g·M∑

m=(g−1)·M+1

(f̂ IL
n,h,w,m − μn,g)2,M = C//16 (6)
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where M is the channel number in each feature group, // is exact division,

g ∈ [1, 16]. The feature map is normalized in a similar way of Eq. (2) as F̂
ILN

.
Following BN [4], additional parameters γ and β are added to preserve the DCNN
representation ability f ′ILN

n,h,w,c = γcf̂
ILN
n,h,w,c + βc.

2.2 Experimental Setup

Network Architecture. A widely adopted network architecture in medical image
segmentation, called U-Net [7], was used as the fundamental network frame-
work with four max-pooling layers. The start feature channel number is 16. The
normalization layer was added between the convolutional and Relu layer. Cross-
entropy was used as the loss function. Momentum Stochastic Gradient Descent
(SGD) was used as the optimizer with the momentum set as 0.9. Weights were
initialized with a truncated normal distribution with the stddev as 2/(32 × C),
where C is the channel number. Biases were initialized as 0.1. ρ was initialized
as 0.5.

Data Collections. 6082 RV images [17], scanned with a 1.5T Magnetic Resonance
Imaging (MRI) machine (Sonata, Siemens, Erlangen, Germany), with slice gap
of 10 mm, pixel spacing of 1.5∼2 mm, image size of 256 × 256, from 37 subjects
mixed with Hypertrophic Cardiomyopathy (HCM) patients and asymptomatic
subjects, from the atrioventricular ring to the apex were used for the validation.
The ground truth was labeled by one expert with Analyze (AnalyzeDirect, Inc,
Overland Park, KS, USA). [−30◦ : 10◦ : 30◦] rotations were applied to augment
the training images. 12, 12, 13 subjects for each group were split randomly for
three-fold cross validation. 805 LV images [6], from SunnyBrook MRI dataset,
with subject number of 45, image size of 256 × 256, were used for the validation
as well. [−60◦ : 2◦ : 60◦] rotations were applied to augment the training images.
15 subjects for each group were split randomly for three-fold cross validation.

Implementation. As the proposed ILN needs to manipulate intermediate feature
maps, the U-Net framework was implemented with low-level Tensorflow func-
tions - tf.nn. In this paper, to ensure a fair comparison, all normalization meth-
ods were re-implemented into the same framework as the ILN implementation
instead of using the available high-level Tensorflow Application Programming
Interface (API) exists for some normalization methods in Tensorflow library,
such as those used in [16].

Experiments. Following [16] and [18], two epochs were trained for each exper-
iment with dividing the learning rate by 5 at the second epoch. Five initial
learning rates (1.5, 1.0, 0.5, 0.1, 0.05) were tested for each experiment and the
best value was selected to be shown. DSC was used as the evaluation metric.

3 Result

To prove the advantage of using the Sigmoid function over the Clip function
(in original BIN [5]), three comparison experiments were set up: (1) using Clip
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function with one trainable parameter Clip(ρ)10 for IN feature map while the
parameter for LN feature map is 1 − Clip(ρ)10; (2) using Sigmoid function with
one trainable parameter Sigmoid(ρ) for IN feature map while the parameter
for LN feature map is 1 − Sigmoid(ρ); (3) using Softmax function with two
trainable parameters Softmax(ρ1, ρ2) for IN and LN feature map respectively.
Comparison results are shown in Sect. 3.1.

To prove the advantage of adding GN16 after the combined feature map,
two comparison experiments with or without GN16 are conducted. Results are
shown in Sect. 3.2. Eight randomly-selected segmentation examples are shown
in Sect. 3.3 for intuitive illustrations. As GN16 performed similarly to IN [16],
no normalization, IN, LN, GN4 are chosen as the baseline to validate the per-
formance of the proposed ILN, as presented in details in Sect. 3.4. The training
curves of ρ at eight randomly-selected layers are shown in Sect. 3.5. In this paper,
RV-1 refers to the cross validation that uses the first group of RV data as testing
while uses the second and third group of RV data as training. Similar fashions
were applied as the notations of the experiments on the RV-2, RV-3, LV-1, LV-2,
and LV-3.

3.1 Sigmoid vs. Clip vs. Softmax Function

The mean ± std segmentation DSCs of using Clip, Sigmoid and Softmax function
to combine the IN and LN feature map are shown in Table 1. We can see that
Sigmoid function achieves the highest DSC for most cross validations, except
RV-1 experiment, which proves the effectiveness of the proposed method in this
paper - replacing the Clip function in original BIN [5] with Sigmoid function.

Table 1. Mean± std segmentation DSCs of using Clip, Sigmoid and Softmax function
to combine the feature map of IN and LN, highest DSCs are in bold.

Method RV-1 RV-2 RV-3 LV-1 LV-2 LV-3

Clip 0.702±0.295 0.707± 0.299 0.666± 0.319 0.900± 0.099 0.864± 0.184 0.804± 0.246

Sigmoid 0.692± 0.304 0.724±0.284 0.675±0.301 0.903±0.118 0.888±0.135 0.828±0.189

Softmax 0.688± 0.290 0.720± 0.279 0.664± 0.323 0.895± 0.151 0.866± 0.153 0.827± 0.228

3.2 With or Without GN16

The mean ± std segmentation DSCs of adding or not adding GN16 after the
combined feature map of IN and LN are shown in Table 2. We can see that, the
method with adding GN16 achieves the highest DSC for most cross validations,
except LV-3 experiment. This result proves the effectiveness of adding GN16
after the combined feature map and also proves the importance of maintaining
the normalized distribution of feature maps.
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Table 2. Mean± std segmentation DSCs of adding or not adding GN16 after the
combined feature map of IN and LN, highest DSCs are in bold.

Method RV-1 RV-2 RV-3 LV-1 LV-2 LV-3

No 0.692± 0.304 0.724± 0.284 0.675± 0.301 0.903± 0.118 0.888± 0.135 0.828±0.189

Yes 0.714±0.290 0.737±0.267 0.680±0.305 0.919±0.098 0.893±0.127 0.827± 0.211

3.3 Segmentation Examples

Eight segmentation examples were selected randomly from the RV and LV data
to show the segmentation details in Fig. 2. For most cases, both the RV and
LV are segmented properly. However, for cases near the RV apex, i.e., the forth
figure in the first row, the segmentation quality is worse. This might be due to
the tissue adhesion and the small size of RV.

Fig. 2. Eight examples were selected randomly from the RV and LV segmentation
results, where red indicates the ground truth, green indicates the segmentation result,
and yellow indicates the true positives of the prediction. (Color figure online)

3.4 Comparison to Other Methods

The mean ± std segmentation DSCs of using no normalization, IN, LN, GN4,
and the proposed ILN with the U-Net framework are shown in Table 3. We
can see that, except the LV-3 experiment, the proposed ILN outperforms all
other traditional methods with considerable accuracy improvements. This result
proves the effectiveness of the proposed ILN in medical image segmentation.

3.5 Training Curves of ρ

The ρ training curves of eight layers were selected randomly from LV-1 experi-
ment to be shown in Fig. 3. We can see that ρ was trained to be different values
and the proposed ILN achieved diverse normalization at different layers. As the
ground truth of ρ is not known and it is impossible to judge the curve correctness,
a comparison regarding the ρ training curves of ILN and BIN is not illustrated.
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Table 3. Mean± std segmentation DSCs of using no normalization, IN, LN, GN4, and
the proposed ILN with the U-Net framework, highest DSCs are in bold.

Method RV-1 RV-2 RV-3 LV-1 LV-2 LV-3

None 0.688± 0.296 0.678± 0.318 0.661± 0.323 0.899± 0.134 0.872± 0.167 0.784± 0.280

IN 0.709± 0.266 0.715± 0.278 0.655± 0.327 0.905± 0.114 0.876± 0.131 0.836±0.207

LN 0.702± 0.287 0.718± 0.270 0.662± 0.309 0.898± 0.120 0.858± 0.187 0.793± 0.262

GN4 0.679± 0.303 0.701± 0.291 0.671± 0.309 0.908± 0.113 0.841± 0.196 0.800± 0.255

ILN 0.714±0.290 0.737±0.267 0.680±0.305 0.919±0.098 0.893±0.127 0.827± 0.211

Fig. 3. The training curves of eight ρ selected randomly from the 22 layers in U-Net.

The CPU used is Intel Xeon(R) E5-1650 v4@3.60 GHz×12. The GPU used
is Nvidia Titan XP. Comparing ILN to IN, the parameter number increases 22,
as one parameter is added to each layer. The training time for 200 iterations
increases from 34.8 s to 36.5 s due to the additional GN16 calculation.

4 Discussion

The proposed ILN strategy is generic and flexible. The three components, IN,
LN and GN16 could be replaced with other normalization methods. The pro-
posed ILN framework is validated on medical image segmentation with a U-Net
framework. We believe that it could also be useful for other tasks, which needs
further validation and exploration. The proposed ILN failed to achieve the high-
est DSC for the LV-3 experiment. It may due to that the combination of IN, LN
and GN16 is not suitable for this experiment. In the future, the proposed ILN
framework would be extended to combining more normalization methods.

5 Conclusion

To improve the accuracy of biomedical image segmentation based on U-net, the
ILN was proposed to combine the feature map of IN and LN with an additional
trainable parameter and Sigmoid function, then add GN16 after the combined
feature map. Although, various normalization methods have been proposed, the
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noticeable accuracy improvements of the proposed ILN - almost 2% DSC proves
the importance of carefully tuning the normalization strategy when training
DCNNs.

References

1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. Stat 1050, 21 (2016)
2. Bjorck, N., Gomes, C.P., Selman, B., Weinberger, K.Q.: Understanding batch nor-

malization. In: NeurIPS, pp. 7705–7716 (2018)
3. Ioffe, S.: Batch renormalization: towards reducing minibatch dependence in batch-

normalized models. In: NeurIPS, pp. 1945–1953 (2017)
4. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by

reducing internal covariate shift. In: ICML, pp. 448–456 (2015)
5. Nam, H., Kim, H.E.: Batch-instance normalization for adaptively style-invariant

neural networks. In: NeurIPS, pp. 2563–2572 (2018)
6. Radau, P., Lu, Y., Connelly, K., Paul, G., Dick, A., Wright, G.: Evaluation frame-

work for algorithms segmenting short axis cardiac MRI. MIDAS J. Card. MR Left
Ventricle Segmentation Challenge 49 (2009). https://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=8759179%20[12]

7. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

8. Salimans, T., Kingma, D.P.: Weight normalization: a simple reparameterization to
accelerate training of deep neural networks. In: NeurIPS, pp. 901–909 (2016)

9. Santurkar, S., Tsipras, D., Ilyas, A., Madry, A.: How does batch normalization
help optimization? In: NeurIPS, pp. 2488–2498 (2018)

10. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

11. Wang, G., Peng, J., Luo, P., Wang, X., Lin, L.: Batch kalman normaliza-
tion: Towards training deep neural networks with micro-batches. arXiv preprint
arXiv:1802.03133 (2018)

12. Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C.,
Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3–19. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01261-8 1

13. Xu, Y., Wang, X.: Understanding weight normalized deep neural networks with
rectified linear units. In: NeurIPS, pp. 130–139 (2018)

14. Zhou, X.Y., Lin, J., Riga, C., Yang, G.Z., Lee, S.L.: Real-time 3D shape instan-
tiation from single fluoroscopy projection for fenestrated stent graft deployment.
IEEE RAL 3(2), 1314–1321 (2018)

15. Zhou, X.Y., Riga, C., Lee, S.L., Yang, G.Z.: Towards automatic 3D shape instan-
tiation for deployed stent grafts: 2D multiple-class and class-imbalance marker
segmentation with equally-weighted focal U-Net. In: 2018 IEEE/RSJ IROS, pp.
1261–1267 (2018)

16. Zhou, X.Y., Yang, G.Z.: Normalization in training U-Net for 2D biomedical seman-
tic segmentation. IEEE RAL 4(2), 1792–1799 (2019)

17. Zhou, X.Y., Yang, G.Z., Lee, S.L.: A real-time and registration-free framework for
dynamic shape instantiation. MedIA 44, 86–97 (2018)

18. Zhou, X.Y., Zheng, J.Q., Yang, G.Z.: Atrous convolutional neural network (ACNN)
for biomedical semantic segmentation with dimensionally lossless feature maps.
arXiv preprint arXiv:1901.09203 (2019)

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8759179%20[12]
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8759179%20[12]
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1607.08022
http://arxiv.org/abs/1802.03133
https://doi.org/10.1007/978-3-030-01261-8_1
http://arxiv.org/abs/1901.09203


Author Index

Bly, Randall A. 93

Chen, Jiawei 17
Chen, Yongliang 10
Chen, Yu 17
Chen, Yunmei 43

Dai, Lei 51
Deepika, G. 68
Dong, Bin 76
Dong, Qinglin 26

Feng, Danlei 85

Ge, Bao 26
Ge, Fangfei 26

Hannaford, Blake 93
He, Danmei 59
Hou, Xinlin 76

Jeevakala, S. 68
Jia, Jia 59

Leng, Jianfeng 10
Li, Hongfeng 35, 51, 76, 85
Li, Meng 51, 59
Li, Peichao 101
Li, Quanzheng 35, 59, 76, 85
Li, Yuexiang 17
Lin, Shan 93
Liu, Huafeng 43
Liu, Lili 76
Liu, Tianming 26

Moe, Kris S. 93
Mulay, Supriti 68

Pan, Yini 76

Qiang, Ning 26
Qin, Fangbo 93

Ram, Keerthi 68

She, Haicheng 59
Sivaprakasam, Mohanasankar 68

Tong, Junyi 43

Wang, Binhua 10
Wang, Wenjia 51
Wang, Zhao-Yang 101
Wei, Dong 17
Wu, Weichen 85

Xu, Hongli 10
Xue, Wanguo 10

Yan, Jingwen 1
Yang, Guang-Zhong 101
Yang, Li 35
Yu, Fei 51

Zaman, Akib 1
Zhang, Li 35, 51, 59
Zhang, Lu 1
Zhang, Mo 51
Zhang, Yan 59
Zhang, Yao 10
Zhao, Jian 35
Zhao, Jie 35, 51, 59
Zheng, Yefeng 17
Zhong, Cheng 10
Zhou, Jinqiong 59
Zhou, Xiao-Yun 101
Zhu, Dajiang 1


	Preface
	Organization
	Contents
	Multi-modal Image Prediction via Spatial Hybrid U-Net
	Abstract
	1 Introduction
	2 Method
	2.1 Data Acquisition and Pre-processing
	2.2 Extracting Features from Data
	2.3 Transfer Learning Using a Spatial Hybrid U-Net Model
	2.4 Training and Prediction Procedure

	3 Results
	3.1 Predicting T1-Weighted Images from DTI and FA Images
	3.2 Predicting Cortical Surfaces with Predicted T1-Weighted Images
	3.3 Comparison with Model Without FA Slices in the Training Data
	3.4 Comparison with k-Nearest Neighbor (kNN) Regression
	3.5 Reproducibility

	4 Conclusion
	References

	Automatic Segmentation of Liver CT Image Based on Dense Pyramid Network
	Abstract
	1 Introduction
	2 Method
	2.1 Dataset
	2.2 Dense Pyramid Network
	2.3 Evaluation Metrics

	3 Result and Discussion
	4 Conclusion and Future Work
	References

	OctopusNet: A Deep Learning Segmentation Network for Multi-modal Medical Images
	1 Introduction
	2 OctopusNet
	2.1 Modal Encoder
	2.2 Hyper-fusion Decoder

	3 Experiments
	3.1 Datasets
	3.2 Performance Analysis

	4 Conclusion
	References

	Neural Architecture Search for Optimizing Deep Belief Network Models of fMRI Data
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Overview
	2.2 Dataset and Preprocessing
	2.3 PSO Based NAS Framework
	2.4 DBN Model of Volumetric FMRI Data
	2.5 Implementations

	3 Results
	3.1 Comparisons Between NAS-DBN and DBN
	3.2 Comparison of NAS-DBN with GLM

	4 Conclusion
	Acknowledgement
	References

	Feature Pyramid Based Attention for Cervical Image Classification
	1 Introduction
	2 The Proposed Method
	2.1 Feature Pyramid Construction
	2.2 Attention Modules Construction

	3 Experiments and Analysis
	3.1 The CIFAR-10 and CIFAR-10 Datasets
	3.2 The Cervical Image Dataset

	4 Conclusions
	References

	Single-Scan Dual-Tracer Separation Network Based on Pre-trained GRU
	1 Introduction
	2 Methodology
	2.1 Measuring Principle of Dual-Tracer Single Acquisition
	2.2 Dual-Tracer Separation Algorithm

	3 Experiments and Results
	3.1 Data and Simulation Experiments on Phantom
	3.2 Network Detail
	3.3 Result

	References

	PGU-net+: Progressive Growing of U-net+ for Automated Cervical Nuclei Segmentation
	1 Introduction
	2 Method
	2.1 Residual Module
	2.2 (Progressive Growing) PG Method

	3 Experiment and Result
	3.1 Data Description
	3.2 Implementation Details
	3.3 Experimental Results

	4 Conclusion
	References

	Automated Classification of Arterioles and Venules for Retina Fundus Images Using Dual Deeply-Supervised Network
	1 Introduction
	2 Methods
	2.1 Dual Supervision
	2.2 Network Architecture

	3 Experiments and Results
	3.1 Data
	3.2 Prevent Overfitting
	3.3 Training and Experimental Results

	4 Conclusion
	References

	Liver Segmentation from Multimodal Images Using HED-Mask R-CNN
	1 Introduction
	2 Joint Network Approach
	2.1 Pre-processing
	2.2 Holistically-Nested Edge Detection Approach
	2.3 Segmentation with Mask R-CNN

	3 Experiment and Results
	3.1 Datasets
	3.2 Evaluation

	4 Discussion
	5 Conclusions
	References

	aEEG Signal Analysis with Ensemble Learning for Newborn Seizure Detection
	1 Introduction
	2 Data Acquisition and Introduction
	3 Seizure Detection Algorithm
	3.1 Feature Selection
	3.2 Top Instance and Negative Evidence for Windows Selection
	3.3 Feature Augmentation
	3.4 Classification Algorithms
	3.5 Ensemble Algorithm

	4 Experiments and Analysis
	4.1 Feature Evaluation
	4.2 Comparison of Classification Algorithms

	5 Conclusions
	References

	Speckle Noise Removal in Ultrasound Images Using a Deep Convolutional Neural Network and a Specially Designed Loss Function
	1 Introduction
	2 The Proposed Method
	2.1 Model
	2.2 Loss Function
	2.3 Training Setup

	3 Experimental Results
	3.1 Results on Synthetic Images
	3.2 Results on Real Ultrasound Images

	4 Conclusion
	References

	Automatic Sinus Surgery Skill Assessment Based on Instrument Segmentation and Tracking in Endoscopic Video
	1 Introduction
	2 Methods
	2.1 Deep Neural Networks for Instrument Segmentation
	2.2 Tracking
	2.3 Metrics for Surgical Skill Assessment

	3 Experimental Setup and Results
	3.1 Dataset
	3.2 Segmentation and Tracking Results
	3.3 Evaluation of Motion Metrics

	4 Discussion
	5 Conclusion
	References

	U-Net Training with Instance-Layer Normalization
	1 Introduction
	2 Methodology
	2.1 Instance-Layer Normalization
	2.2 Experimental Setup

	3 Result
	3.1 Sigmoid vs. Clip vs. Softmax Function
	3.2 With or Without GN16
	3.3 Segmentation Examples
	3.4 Comparison to Other Methods
	3.5 Training Curves of 

	4 Discussion
	5 Conclusion
	References

	Author Index



