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Abstract. While the decision-making and planning framework ROS
Hybrid Behaviour Planner (RHBP) has been used in a wide variety of
projects, newer features have not yet been tested in complex scenar-
ios. One of those features allows creating multiple independent levels
of decision-making by encapsulating a separate behaviour network into
behaviours. Another one is an extension for implicit coordination through
self-organisation. This paper discusses our system that was developed for
the multi-agent contest 2018 using RHBP, while especially making use
of newer features wherever possible. Our team TUBDAI achieved the
shared top spot in the contest, showing that RHBP and in particular the
new features can be used successfully in a complex scenario and mea-
sures up to the multi-agent frameworks, other teams have used. Espe-
cially, when a last-minute change to the contest environment required
us to integrate substantial strategy changes in last-minute, it turned out
that RHBP fostered adaptiveness during our development.

Keywords: Artificial Intelligence · Autonomous systems · Multi-agent
programming · Decision-making · Planning · Self-organisation

1 Introduction

The multi-agent programming contest (MAPC) provides a testbed for evalu-
ating multi-agent research results in an applied and competitive setting since
many years. Participating in the contest has long tradition at Technische Uni-
versität Berlin (TUB) (e.g. [4–6]). The motivation for participation in the contest
was always twofold. First, to use it as a platform to evaluate our multi-agent
frameworks in complex multi-agent problems of the contest. Secondly, to use the
competition setting as a platform for introducing our research to new users like
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students, which apply our frameworks either in their thesis projects or project
courses. In 2017, we have introduced the framework ROS Hybrid Behaviour
Planner (RHBP) [11] for the realisation of our contest team [10], which has its
roots in the robotics domain.

In particular, RHBP is applied for the implementation of the individual task-
level decision-making and planning of the agents as well as the coordination
amongst the agents. RHBP is targeting the multi-robot domain and is based
on the Robot Operating System (ROS) [17] framework that provides means
for deployment, decentralised execution, and communication. The RHBP com-
bines the advantages of reactive opportunistic decision-making and goal-oriented
proactive planning in a modular hybrid architecture. Decision-making is based
on behaviour networks [14] that allow for dynamic state transitions and the def-
inition of goals, while the deliberative part is realised on the foundation of the
Planning Domain Description Language (PDDL) [15] and the particular planner
Metric-FF [7].

The reason for evaluating RHBP in a simulated comparable abstract multi-
agent scenario instead to real robot applications is that real robot applications
require to address a huge overhead of other domain-specific challenges, such as
hardware failures, very uncertain environments, and difficulties in basic robotic
capabilities like object detection and localisation [8]. Due to the reason that
RHBP is a generic framework for decision-making, planning and coordination
of multi-robot systems the evaluation in the MAPC, which focuses on task-level
agent control, allows us to concentrate on these research aspects.

Since 2016 the contest scenario has been using the discrete and distributed
last-mile delivery simulation (MASSim) [2] on top of geographic map data from
different real cities (OpenStreetMap data). The simulation allows competition
of several teams consisting of independent agents. Delivery jobs are randomly
generated and split into three categories: Mission jobs are compulsorily assigned,
auction jobs are assigned by prior auction and regular jobs are open to everyone.
Jobs are monetarily rewarded on fulfilment and can only be accomplished once.
Moreover, jobs consist of several items which can be purchased at shops (2016–
2017) or gathered in resource nodes (2017–2018), as well as stored in warehouses.
Furthermore, the 2018 edition of the contest scenario was extended with the
obligation of building wells to generate score points required to win matches.
Building wells required money that is earned by completing delivery jobs or
selling resource items in a shop. The well-building extension in 2018 fosters more
interaction and direct competition between the teams aside from increasing the
overall search space for finding the most optimal solution. Moreover, the number
of used agents per team was increased from 28 to 34 agents.

In the 2018 participation, the goal of our team was to evaluate more recent
features of RHBP that have not been tested before in a complex application.
Team TUBDAI focuses on two features in particular. First, so-called Network-
Behaviours that allow creating multiple independent levels of decision-making by
encapsulating a separate behaviour network into behaviours of the behaviour net-
work model of RHBP. Secondly, the extension so data for implicit coordination
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through self-organisation [9]. The extension so data incorporates the concept of
a virtual gradient space as a common data structure and communication mean
for various self-organisation patterns. Additionally, the so data package already
contains several abstract implementations of self-organisation patterns, while the
particular integration with RHBP is enabled through the package rhbp selforga,
which contains special sensor and behaviour components.

The participants of the 2018 edition of the contest consisted of five interna-
tional teams, with two independent participations from TUB, namely TUBDAI
and Dumping to Gather. Both teams from TUB are applying a RHBP-based
implementation as a follow-up of the introduction of RHBP in the 2017 contest
[10]. However, both teams did only share the starting point with general com-
ponents developed in the year before, like the protocol proxy mac ros bridge
and the integration of the routing library GraphHopper. Despite these general
components, both teams developed their solution completely from scratch, which
resulted in two very different general strategies. Both teams have been supported
by the technical supervision of the first author of this article. Nevertheless, strate-
gic decisions or implementations were never communicated or shared between
both teams. The resulting implementations are both highly decentralised with all
agents taking operational decisions autonomously using RHBP behaviour mod-
els. Only the evaluation of published delivery jobs is done in centralised com-
ponents in both cases. Moreover, both teams apply an own contract-net based
implementation for the coordination of the assembly and delivery for fulfilling
the jobs.

The remainder of the paper is structured as follows. In the Sect. 2, we analyse
and summarise the particular challenges of the MAPC 2018 for our team. Next,
Sect. 3 outlines and describes our general team strategy, whereas Sects. 4 and 5
provide details about our implemented architecture and coordination approach.
Subsequently, Sect. 6 describes the behaviour model we have implemented for the
autonomous decision-making of our agents making use of our RHBP framework.
In Sect. 7 we describe and discuss our contest results based on statistics and
observations we made in the individual matches. Finally, Sect. 8 concludes this
work with a summary of the contributions as well as emphasising future steps
we plan to address.

2 MAPC 2018 Challenges

The complex contest scenario offers a comprehensive environment to design,
implement and evaluate a multi-agent system. This results in some unique chal-
lenges which are covered in this section.

In the last two years, cooperation between agents became a bigger focus of the
contest. While in preceding scenarios, it was possible to develop viable solutions
without cooperation between agents by letting each agent independently work on
parts of the problem, now there are key actions that require cooperation between
multiple agents [1]. In this year, jobs only use items which need to be assembled
first, requiring the implementation of complex cooperation and communication
between agents.
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Some environmental parameters are generated randomly, which results in
much variation between simulations, thus making it harder to develop a solution
that can work well with different configurations. The number of possible finished
products to build can vary quite substantially between simulations. Strategies
like proactively assembling and hoarding items work best with a few finished
products, while a higher number of finished products makes just-in-time gath-
ering, assembly and delivery more efficient. The maps differ in size and street
layout, therefore changing the necessary effort for discovery as well as the effec-
tiveness of different agent roles. These and other differences in the unknown
contest configuration make it harder for teams to develop solutions that work
well in all cases.

Following [12] the characteristics of multi-agent systems are having incom-
plete information or capabilities, no global system control, decentralised data,
and asynchronous computation. In that spirit, a primary goal of participating in
a multi-agent contest should be to develop a decentralised solution. Nevertheless,
some previous submissions had shared data structures between agents and used
a central planner, which decided on actions for all agents. The individual agents
were then only responsible for making sure that enough battery is available to
perform those predefined actions. The benefit of such systems is that they are
easier to implement, as not much effort has to be put into agent communication
and coordination. Furthermore, the effectiveness of such systems can be observed
for example with last year’s winning submission by BusyBeaver [16]. However,
our goal was to decentralise as many decisions as possible, letting each agent
autonomously decide what to do next, except on those few cases where this
is impossible (e.g. job execution). Moreover, this decentralised approach allows
that each agent could potentially be run on a different machine.

Another challenge is the large number of possible options for strategy deci-
sions. The diversity in facilities and actions allow for many different strategies.
It would take a massive development effort to make use of all available facilities
and actions, so it is necessary to evaluate options and implement only the most
promising ones.

During each simulation, a team has to compete against another team on
the same map, which results in unique challenges. Regular job rewards are only
awarded to the team, who can perform the job faster, therefore making job deliv-
ery speed a major design goal. The competitive setting also requires weighting
actions of increasing one’s own score with actions to decrease the opponents’
score. Also, because of the broad spectrum of available strategies, it is harder to
design a system, that performs well against varying opposing strategies.

One limitation imposed by the contest is that actions have to be submitted
at latest four seconds after a step percept is published. Due to the limited time-
frame, it is hard to find the optimal solution and a compromise has to be found
between an ideal decision-making process and one, that can be finished quickly.
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3 Strategy

The main strategy of the TUBDAI implementation is a stockpile with feedback
strategy. Here, it is the goal to gather resources, assemble items in advance,
and fulfil jobs that can be performed with the available item stock. First, the
agents explore the environment until a resource node for each base item is dis-
covered. Then all agents start to gather resources to achieve a stock of base items
depending on the assigned priority for further assembly. Agent groups are formed
dynamically to assemble items once the agent capacity is exceeded. The jobs are
then prioritised according to a calculated reward. The reward is given by a ratio
of required work and revenue. If a job reaches the defined reward threshold and all
items of the job are currently in stock, the job is executed. Furthermore, urgent
item demands such as induced by mission jobs, which would result in fines if not
fulfilled, are also considered on demand based on feedback from other higher-
level components like the job planner by dynamically adjusting the priorities of
the respective items. The feedback allows reacting and changing the priorities of
finished products and base items, which results in better adaptability to changes
on demand, while still maintaining the efficiency of a general stockpile strategy.
The advantage of this stockpile with feedback strategy is a fast job performance,
enabling decentralised decision-making by individual agents to avoid a single
point of failure, while also enabling on-demand execution based on the priority
feedback. A disadvantage is that assembled finished products may not match
any job and cannot be used, hence potentially wasting time resources.

Even though we aimed for a decentralised solution, the rating of jobs is cen-
tralised in one agent for simplification because there is no difference in between
the job perception amongst the agents and the cost-benefit analysis is as well
agent independent. The distribution of task from the decomposed jobs is then
realised using a contract net protocol [19] involving all agents in a decentralised
and distributed fashion. All other components are completely decentralised, too.
Each agent has its own RHBP-based decision-making and planning component.

For the execution of jobs, an algorithm involving a chain of decisions has been
developed. At the end of the chain, the scenario-specific job planner inspects
which items currently provide high money returns. This information is con-
verted into a finished product prioritisation. This prioritisation is then used by
the next link in the decision chain, the assembly decision. The agents always
decide autonomously which items should be assembled next and share their
decision with the others. This decision is mainly based on what is needed for job
execution as well as on the available items, and the finished products that are
already assembled. In turn, this decision creates a prioritisation of base items
that are most needed for assembly. These prioritisations are then used by the
gathering algorithm to decide which base item to gather. An important point
is that the taken decisions are exchanged amongst the agents to avoid conflicts
and unwanted parallel work.

One advantage of the stockpiling strategy is that it creates job idle time,
respectively agents available for dismantling, building, and exploration because
not all agents are always striving for fulfilling the currently available jobs. Par-
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ticularly, this additional freedom for individual context-specific decisions of the
agents is fostering the adaptation and reaction to varying opponent strategies.

The exploration of the environment is implemented with the so data library
of RHBP in a decentralised and self-organised manner. The framework exten-
sion of RHBP containing so data has been introduced in [9] and enables implicit
coordination through various self-organisation patterns. Self-organisation pat-
terns are reusable design patterns abstracted from specific self-organisation algo-
rithms, respectively self-organisation mechanisms [3]. The patterns are classified
in movement patterns, decision patterns, and basic functionality patterns.

Basic Functionality Patterns are represented by gradients. Gradients are sub-
ject to spreading, aggregation and evaporation. The exchanged gradient mes-
sages (SoMessages) contain the position where they were emitted, as well as
other information and metadata, necessary for advanced patterns to base their
calculations on. Movement Patterns are used to control movement of the agents
to allow for implementation of behaviours like foraging, chemotaxis, and explo-
ration. Decision patterns allow agents to make collective decisions. The frame-
work provides samples of these behaviours including Quorum Sensing, Morpho-
genesis and Gossip.

In our MAPC implementation, each agent emits its own location with SoMes-
sages, so others do not explore these points as well, while selecting a target
location close-by that has not been visited for the longest time. The exchanged
SoMessages are filtered in a decentralised manner in each agent by the SoBuffer
module instance of the so data library, which provides the base for the calculation
of a discrete heat map. Likewise, the heat map is used to select the appropriate
exploration target locations, while the initial exploration phase is stopped after
resource nodes for all available base items have been discovered. Later during the
match, one drone agent is also exclusively patrolling the map border to discover
opponent wells, which would be difficult to discover accidentally during normal
job operation.

The general idea behind the well-building is to build wells at locations that
are difficult to discover or difficult to reach by the agents of the other team to
neglect the requirement of an explicit well defence strategy. The introduction
of well building in MAPC 2018 further emphasised the role differences between
the agents. Particularly, some locations are only reachable by drones (e.g. some
parks, rivers) because there are no close-by roads to allow other agent roles
approaching these locations. These locations make great spots for wells as only
drones can reach them, so the opponent would need to use drones for dismantling.
This strategy has the advantage that not all opponent agents are able to attack
our wells as well as that drones in general are very inefficient for dismantling
purposes, although this is at the same time a trade-off for the well building
because our drones are also inefficient in building up wells. Nevertheless, the
strategy has the potential to confuse the opponent because it either needs special
consideration or advanced adaptation capabilities.

Dismantling opponent wells keeps the opponent from gaining score points and
it allows to gain additional money for further construction of one’s own wells.
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After an opposing well is discovered, the dismantling behaviour is executed by
all agents that are not busy building wells themselves. In particular the agents
are prioritising the closest near-by wells for dismantling. The dismantling itself
is not further coordinated amongst the agents thus combined or split attacks by
groups of agents emerge from the situation.

4 Architecture

The agent architecture of TUBDAI is based on the 2017 approach but replaces
big parts of the ROS-topic-based communication in the perception with custom
information provider modules, which are feeding the information more directly
into RHBP sensors. The information providers avoid some communication over-
head coming from ROS communication to increase the efficiency of the imple-
mentation. Furthermore, the TUBDAI implementation shares information dis-
tributively with the self-organisation library so data of RHBP.

Figure 1 shows the general architecture as well as how the individual compo-
nents communicate. The MASSim contest server is running the actual contest
simulation and sending the percepts to all agents as well as receiving chosen
actions using an XML-based protocol. Each mac ros bridge receives percepts
for one agent, converts them into ROS messages and publishes them into the
ROS runtime environment, respectively communication space. Additionally, the
bridge takes action messages from the agent and converts them back into an
XML format to be passed to the contest server. Each agent in the simulation
requires a dedicated mac ros bridge and one RHBP Agent. RHBP Agent is a
ROS node and is responsible for receiving environment information from the
mac ros bridge, deciding for the best action and communicating the decision to
the bridge. Hence, a RHBP Agent follows the sense-think-act paradigm within
the ROS runtime environment. Each RHBP Agent consists of several compo-
nents, including RHBP components like Behaviours, Sensors, Effects, Condi-
tions and Goals. Additionally, we make use of the DecisionPattern from the
self-organisation extensions. Particularly, we also use the pattern not only in the
way the framework intended it but extensively for all kinds of decisions that
do not necessarily involve self-organisation. Basically, this pattern allows to eas-
ily share further calculated sensor information between behaviour objects and
decision objects. Thus, a certain calculation can be used twice, first, for the
task-level decision with RHBP, secondly, for the particular implementation of a
behaviour. The design pattern that was used to implement DecisionPattern was
found to be very useful in many situations and therefore was reused for other
components. The DecisionPattern is not visualised in the architecture diagram,
it is used within the particular behaviour implementations or condition objects.

Providers are responsible for most interaction between RHBP Agent and
other components like mac ros bridge and the graphhopper node. They subscribe
to messages from the mac ros bridge, pre-process them and keep them ready for
various components to use. This reduces the number of subscribers, and also
improves performance by eliminating duplicate code execution that would be
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necessary if each component would subscribe individually. Providers can also
send actions to the mac ros bridge and interact with the graphhopper node.

The GraphHopper node is responsible for calculating distances between given
locations. This allows other components to estimate the steps required to achieve
their goals.

The manager component of RHBP retrieves the status of all RHBP com-
ponents and is responsible for the task-level decision-making that leads to the
execution of a behaviour at the end. The chosen behaviour then emits an action
through the Action Provider to the mac ros bridge, which sends it to the MAS-
Sim server.

Conditions  

Percept (XML)

MASSim Server

Action (XML)

Percept
(ROS messages)

mac_ros_bridge

Distance response
GraphHopper Node

Distance request
Distance Provider

Provider

Action
(ROS messages) Action Provider

Sensor

Behaviour Manager

RHBP
Framework

RHBP
Agent

ROS
Runtime

Environment

SoMessages

virtual gradient space
(so_data)

SoMessages
SoMessages

Goal

Fig. 1. Component communication diagram showing how information flows between
components. The architecture is simplified to only show components that interact with
others.

5 Coordination

In this section we are providing more details about our different approaches for
coordination within our implementation. First, we explain the explicit coordina-
tion with a contract net that is used to coordinate the job fulfilment. Secondly,
we discuss details of the implicit coordination for the self-organised exploration
and information gathering about opponent well locations.
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5.1 Contract Net

A Contract Net with Confirmation Protocol (CNCP) [18] is used to coordi-
nate assembly and job coordination explicitly. This light-weight flexible and fast
protocol provides scalability, robustness against errors, adaptivity and few com-
munication bottlenecks [13]. For both of these tasks, one agent initiates the
coordination by starting an auction, not to be confused by the auction jobs of
the simulation, and requests help from other agents. Next, other agents that are
able to help send bids. Our implementation is limited to one coordination taking
place at a time. If another agent has already initiated coordination, the agent
has to wait until the current coordination cycle is complete before starting its
coordination.

Assembly
Contractor 1

Assembly
Manager

TaskRequest

decide on 
participationTaskBid

Find
best

assembly
combination

TaskAssignment

confirm if
participation 
is still possible

Task
Acknowledgement

wait for
 bids

Assembly
Contractor 2

decide on 
participation

confirm if
participation 
is still possible

TaskBid

TaskAssignment

TaskAcknowledgement

wait for
 acknowledgements

Task
execution

Task
execution

Task
execution

Task
execution

TaskProgress

TaskStop

Fig. 2. Interaction diagram of assembly with one initiating manager and two partici-
pating contractors.

When an agent has filled up its stock, it initiates the assembly process by
starting the assembly manager (see Fig. 2). The manager requests all other agents
to send bids to help with assembly. If another agent wants to coordinate, it first
has to wait until the current coordination cycle is finished. Other agents then
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respond with their bid which includes their location, role, and the items they
can offer. Once the manager decides for a combination, it sends assignments to
all chosen agents. The agents then return an acknowledgement and the assembly
can start. Participating agents coordinate assembly by sending a TaskProgress
message. At any time, agents can interrupt assembly by sending a StopTask
message, which forces all participating agents to stop their task. This could
happen, when one agent receives a job task, which has a higher priority than
assembly tasks.

The job coordination strategy works similar to assembly coordination strat-
egy. It is initiated when a job component decides for a job to execute. The
JobManager then sends out an initial request. Each agent that doesn’t have an
active task checks if they can help with the task and respond with the items they
can offer. The manager then looks for a combination of agents that can perform
the job and sends out an assignment to all of them. The agents confirm by send-
ing an acknowledgement back and the task is started. Similar to the assembly
CNP, the task can be stopped at any time by emitting the StopTask message.

5.2 Self-organisation

The self-organisation extension for RHBP allows agents to share information
about their environment in a virtual gradient space, which can then be used for
implicit coordination [9].

In our implementation agents publish self-organisation messages whenever
they move around to let all other agents know which parts of the map they
have visited. The receiving agents then aggregate these messages from all agents
in a distributed fashion. This allows them to decide which locations require
further exploration, which is especially relevant in the initial exploration phase
to detect all necessary resource nodes in the beginning of each simulation. This
self-organisation exploration algorithm is enhanced further by using two other
types of messages. Agents publish the location they plan to go to, so other agents
are able to avoid it. This allows for the prevention of exploring certain locations
twice at the same time. Moreover, agents publish a message when a location is
not reachable, so other agents do not try to go there.

In detail, we are creating a heat map from self-organisation messages of
specific frames, indicating either how often each spot has been subject to said
frames or the last SoMessage that has been recorded at each position. The heat
map is realised using a grid of numbers instead of a vector-based system. This
reduces the accuracy but greatly simplifies later calculations. Initially, the deci-
sion pattern creates a two-dimensional array filled with zeros, which represents
the map. Whenever a SoMessage arrives, that matches one of the desired frames,
the map is updated. The location of the SoMessage is converted to a mask. The
mask is then applied to the map. MapDecision has two modes, oldest visited and
seen count Depending on the mode, the mask is applied to the existing map to
result in a heat map indicating how often a location has been visited, or when
each location has been visited last.
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The other way self-organisation is used for coordination is for agents to check
if an opponent well has successfully been dismantled. Whenever an agent locates
an opponent’s well, it informs all other agents about it through SoMessages.
Agents combine this information with location information sent by other agents.
If at some point, the well is not seen anymore, even when an agent is in range of
the well, the agent can be sure, that the well has been successfully dismantled.

6 RHBP Behaviour Model

A RHBP behaviour model allows to describe the relationships between
behaviours, goals, and sensors through conditions and effects. These models pro-
vide the foundation for the autonomous decision-making executed in the manager
component of RHBP.

In contrast to the last-years participation of TUB using RHBP with a sin-
gle behaviour model layer for decision-making, our implementation partitions
the model into various nested behaviour models. This became possible through
the recently introduced NetworkBehaviour feature. NetworkBehaviours are fre-
quently used for structuring and controlling the major responsibilities of the
agents on the highest decision-making level. Such partitioning fosters a separa-
tion of concerns, reuse of code, and a reduction of the decision-space through
grouping of certain behaviour options. NetworkBehaviours are a special type of
behaviours that directly inherit from the behaviour base class of RHBP. In con-
trast to normal behaviour implementations in RHBP, the NetworkBehaviours
are not directly executing any actions that have an influence on the environ-
ment. Instead, NetworkBehaviours are triggering a nested decision-making and
planning process to select suitable behaviours from their encapsulated behaviour
model to achieve the targeted effects.

In particular, NetworkBehaviours are modelled for controlling resource explo-
ration, discovering opponent wells, dismantling opponent wells, building wells,
gathering base items, assembling finished item products, and delivering jobs. All
NetworkBehaviour implementations are inheriting from an abstract scenario-
specific NetworkBehaviour implementation GoAndDoNetworkBehaviour that
incorporates battery management and travelling on the simulated map, which
is a basic capability of all higher-level tasks in the MAPC scenario. The high-
level decision-making behaviour model is visualised in Fig. 3. It shows the high-
level first class entities and their relationships, this in turn describes the agent
behaviour declaratively. Here, it has to mentioned that all further implicit depen-
dencies are automatically determined by the system. Hence, there is no direct
relationship between behaviours and goals in the shown model.

Considering the fact that this model covers only the highest-level of decision-
making with additional nested models within each of the shown NetworkBe-
haviours a comparison with the model of the previous participation in 2017,
please see [10], indicates that the complexity of the 2018 TUBDAI implemen-
tation is considerably larger. Overall, we see that the structure of TUBDAI is
more fine-grained, e.g. we have distinct NetworkBehaviours for assembly, deliv-
ery, and gathering. Likewise, the entire number of behaviour and goal instances
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is considerably larger but this is partly because of redundant charging goals and
behaviours in each NetworkBehaviour. In detail, the old TUBDAI model con-
tained only 5 behaviours and 2 goals, whereas TUBDAI 2018 has 3 goals and 7
NetworkBehaviours each again containing 2 goals and 4–5 behaviours.

Disjunction(has_task_assigned)

task_fulfillment

Sensor

Activator

ConditionBehaviour

Precondition

Effect

Goal

Aggregation

Negated Precondition has_well_task build_well_network

deliver_job_network

assembly_network

gathering_network

find_opponent_well_network

dismantle_network

exploration_network

gathering

has_build_well_task_assigned

has_deliver_task

has_deliver_job_task_assigned

has_assemble_task

has_assemble_task_assigned

BooleanActivator

BooleanActivator

BooleanActivator

Disjunctionat_resource

reachable_opponent_well_known

in_facility

opponent_wells

BooleanActivator

BooleanActivator

exploration_phase_finished

explored_resources

ThresholdActivator

can_fit_more_base_items
ThresholdActivator

agent_load

dismantling

item_load_factoritem_load_factor

ThresholdActivator

Disjunction

is_explorer_agent agent_role

BooleanActivator

Fig. 3. High-level decision-making behaviour model for agent task execution of TUB-
DAI 2018. All listed behaviours are NetworkBehaviours containing nested behaviour
models. Each NetworkBehaviour contains 2 goals and 4–5 behaviours.

During the realisation of the TUBDAI implementation we discovered a new
general implementation pattern for lower-level decisions in sensor, condition,
behaviour, and goal implementations. The new implementation pattern is taken
from the self-organisation extension of RHBP, which offers a component called
DecisionPattern that can be used by certain behaviours and sensors to share low-
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level decisions between the decision-making layer of RHBP and the actual imple-
mentation of the behaviour. This implementation pattern is further generalised
and not anymore applied only for self-organisation related low-level decisions.
Instead, the DecisionPattern works as an aggregate that takes a low-level deci-
sion like selecting the closest charging station, which is then shared amongst the
sensors and conditions of behaviours and goals as well as the actual behaviour
implementation. This pattern was found to be useful for sharing information
between behaviours and sensors of one agent.

7 Evaluation

Four other teams participated in the 2018 contest: SMART JaCaMo (Pontif́ıcia
Universidade Católica do Rio Grande do Sul (PUCRS)), Dumping to Gather
(TUB), Jason-DTU (Technical University of Denmark) and Akuanduba-UDESC
(Santa Catarina State University (UDESC)). Three of these teams were defeated,
only one team was able to win against our submission. Table 1 shows main stats
that were achieved by each team against TUBDAI. The last column shows an
average of these stats for all matches of TUBDAI.

Table 1. Comparison of the performance of all teams in the matches with TUBDAI
vs overall average performance of TUBDAI.

Team Jason-DTU Akuanduba-
UDESC

Dumping to
Gather

SMART -
JaCaMo

TUBDAI
(avg)

Ranking 3 5 4 1 2

Match points 0 0 0 9 6.75

Tournament points 21 0 9 33 27

Successful jobs 83 0 35 163 79

Opponent jobs 71 127 94 24 70.25

Score after 3 matches 2236 0 2206 2923 45628.75

Opponent score 57619 71928 42935 10033 1841

No actions 15.92% 97.95% 10.40% 8.33% 8.88%

Opponent no action 8.07% 2.51% 6.40% 18.53% 33.15%

Goto actions 58695 993 70730 73039 75648.25

Goto failure rate 30.92% 41.29% 43.27% 0.00% 0.70%

Dismantle actions 0 0 3354 1780 1471

Retrieve & delivered 1078 0 94 2000 0

Build actions 402 0 1336 1371 3604.75

Successful assembly 712 688 293 1350 378

Agent upgrades 0 0 0 14 0

In the following subsections we will briefly summarise the most important
observations we made during the matches against each opponent, before we
finally discuss our performance and results in more detail. If the reader wants
to replicate our observations the source code of all teams, the simulation server,
and replays from all matches are available on the official contest homepage1.
1 https://multiagentcontest.org/2018/.

https://multiagentcontest.org/2018/
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7.1 Jason-DTU

Jason-DTU won the second place in the previous edition of the contest and also
exhibited a good performing and successful solution in this year’s contest.

To finish jobs, Jason-DTU makes excessive use of storages and specialised
task groups. Particularly, they use certain road agents for item gathering as well
as specialised agent teams for taking care of assembly and delivery. When there
is enough massium available, trucks move to the edge of the map and build wells
there.

While the team had an aggressive dismantling strategy against other teams,
during the match against TUBDAI, the team did not perform any dismantle
action. As shown in Table 1, the team had a 30.92% failure rate of the goto
action. This likely results from road agents trying to dismantle wells, but not
being able to reach them as they were built at off-road locations.

Their job strategy was very effective, due to the centralised workshop and
storage being used as intermediary item holder reduced the coordination efforts.
As items are stockpiled, the jobs can be performed quickly while also keeping the
agent’s efficiency on a high level. This led to a slightly better job performance
of 83 jobs executed, compared to 79 jobs on average in three simulations for
TUBDAI.

7.2 Akuanduba-UDESC

The second opponent in the contest was Akuanduba-UDESC. Due to an error
in their system, the team could not send actions in time. This resulted in almost
no actions by their agents.

Due to the inaction of this team’s agents, their strategy cannot be analysed.
However, it allows to evaluate our submission in a very special case. Due to the
fact, that effectively no opponent was present, no dismantling was needed. This
allowed the agents to shift more resources to job execution.

While the average job execution rate of our team against all other teams was
63 jobs, during the matches against Akuanduba-UDESC, the job execution rate
was 127 job (see Table 1). This shows that our agents adapted well to a situation
without opponent wells by shifting priorities accordingly.

7.3 Dumping to Gather

Dumping to Gather, the other team from TUB, started with the same basis for
their project including the mac ros bridge and RHBP as framework. However,
they followed the different on-demand strategy for job execution. When a job
was announced, they coordinated agent teams who were then responsible for the
whole chain of actions including gathering, assembly and delivery.

Their approach to build wells was to use multiple agents of all roles at the
same time. This allowed them to build up wells almost instantly but had the
drawback of multiple agents having to use many steps for moving to the desti-
nation location. Wells were built next to each other in a line. We assume this
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was done to reduce the number of movement steps that had to be taken between
building two wells. However, this has the disadvantage that dismantling agents
usually immediately after dismantling one well find the next one. This allowed
our team to dismantle their wells relatively quickly.

Dismantling was done using both air and road agents. This allowed Dumping
to Gather to attack our wells that were placed in off-road locations using drones.
However, other agents were not prepared to handle off-road locations and got
stuck in an error loop, trying to reach the wells. This led to a goto action failure
rate of 43.27% (see Table 1).

7.4 SMART JaCaMo

The team SMART JaCaMo was a very strong opponent in multiple regards.
First, the team’s agents seem to have been divided into different responsibilities,
six trucks were used to only build wells, two drones were only used for exploration
and dismantling and the rest performing jobs.

Secondly, the team was able to perform 163 jobs, which was substantially
more than any other team (see Table 1). The agents who were tasked with job
execution, gathered items, assembled them together and delivered them accord-
ing to the available jobs. They also made use of storing items in storages in order
to improve efficiency.

Thirdly, when enough massium was available, a number of truck-agents were
responsible for building wells. The locations seemed to have been chosen ran-
domly somewhere close to the edge of the map.

Finally, dismantling was done by two drones. Their skill was upgraded at
simulation start, so they can perform dismantling actions efficiently. Afterwards
they were only responsible for finding wells and dismantling them. As drones are
able to go to off-road locations, this defeated our strategy pretty well. Due to
the road-agents not dismantling at all, they also did not suffer from failed goto
actions like other teams.

7.5 Discussion

All in all, the last-minute changes of the well-building strategy paid off because
this has been a unique strategy, which was not expected by the opponents.
Here, this particular strategy becomes especially attractive, as the original well-
building strategy has been changed three days before the contest and the RHBP-
based architecture supported a quick integration of the new strategy, which did
not require comprehensive code changes. Originally, it was the plan to build
wells with trucks at the edges of the map area. Unfortunately, this turned out
to be less efficient with the final contest maps published three days before the
contest. Instead, we shifted to the strategy that making use of so-called off-road
locations on the map in order to neglect an explicit well defence strategy. Off-
road locations are locations that are not connected to the street network and
thus only reachable by drones.
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The conducted last-minute changes comprise shifted role responsibilities like
only drones building wells; a changed exploration that is not focusing anymore
on the map borders; less priority on the job fulfilment because the mandatory
and rare drones are often busy with well-building; and a higher priority on
dismantling to efficiently use the increased job idle time for non-drone agents.

The encapsulation of code within behaviours and aggregation in NetworkBe-
haviours made these changes very intuitive and robust. By duplicating certain
NetworkBehaviours and switching around preconditions and effects, most of the
strategy was adapted, requiring only small code changes within the behaviours.
In our opinion this would have been potentially much more difficult to achieve
with a traditional sequential programming approach.

The runtime adaptiveness of RHBP could be observed at the match against
Akuanduba-UDESC. While many resources were usually used for dismantling
opponent wells, there was no dismantling required against Akuanduba-UDESC
because of their timeout issues, which resulted in almost 100% inactivity of their
agents. This freed up resources for other tasks for our agents. The agents were
able to adapt to this unexpected situation and increased their job performance
from an average of 63 jobs to 127 jobs. This shows that TUBDAI agents adapted
well to a situation without opponent wells by shifting priorities accordingly.

Moreover, the simulation configuration used in the contest was very different
from the sample configurations that have been published together with the server
source code for the contest preparation. The biggest difference was that it was
very easy to gain money for building wells within the contest. While in the sample
configurations (which we assumed to be similar to the contest configuration)
most jobs offered rewards of less than 500, the jobs in the contest had much
higher rewards, , i.e. jobs exceeding 10,000 in reward, whereas building wells
stayed on the same price level. In consequence, building wells became easier, and
the strategy of building and defending more critical. Nevertheless, the TUBDAI
implementation has shown that it was able to adapt and handle this unexpected
setup successfully.

In the end, TUBDAI only lost the final match against SMART JaCaMo.
The reason was that they efficiently dismantled our non-defended off-road con-
structed wells exclusively with two of their drones, which have been only respon-
sible for discovering and dismantling of our wells. Moreover, their skill was
upgraded directly at simulation start, so they dismantled more efficiently. Fur-
thermore, due to the road-agents not dismantling at all, team SMART JaCaMo
did not suffer from failed goto actions like other teams. A question that might
come up at this point is why our RHBP-based approach was not able to adapt
automatically to this situation. The reason is that RHBP is only having the
opportunity of adaptation if alternative behaviour implementations are avail-
able, which was not the case for the TUBDAI implementation.

Nevertheless, a detailed analysis of the replays and the published code of
SMART JaCaMo showed that their unique strategy was also not a result of
their adaptive strategy or implementation, but rather a result of their last-
minute changes in implementation the human team has made after analysing
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the matches before the very last match of the competition between TUBDAI
and SMART JaCaMo. We could prove this by playing about 30 simulations
with the a priori published simulation sample configurations and the not modi-
fied SMART JaCaMo code in which SMART JaCaMo was not able to win any
simulation against our team. In detail, the SMART JaCaMo team added a sec-
ond drone for exploration, implemented immediate skill upgrade after simulation
start, disabled dismantling in trucks, enabled dismantling for exploration drones,
and created a second drone exploration algorithm, that targets locations that
are typically used by our agents to build wells. All these changes were made in
short time-frame while we were competing against the other three teams. The
changes seemed to be very robust and side-effect free, which is impressive for
such a substantial last-minute change. Nevertheless, it has to be stated that the
SMART JaCaMo approach did not follow the rules of the competition because
teams are encouraged to refrain from code changes during the contest that are
not pure bug fixes of their own strategy. This fact also leads to an official correc-
tion of the final placement by the steering committee of the competition resulting
in a shared top spot between TUBDAI and team SMART JaCaMo2.

8 Conclusion

In the presented article we described our successful solution for the MAPC 2018
that allowed us to win the shared top spot of the competition. Our solution
enabled us to address the described challenges of the contest. The required coor-
dination is achieved by a combination of explicit coordination based on a contract
net protocol, and implicit coordination on the foundation of the RHBP self-
organisation extension. Here, both coordination approaches are also supporting
a decentralised solution. Adapting to varying environments and situations was
possible through the application of our framework RHBP that fosters a sepa-
ration of concerns of agent capabilities, which are then used for autonomous
decision-making. Moreover, this autonomous decision-making enabled our sys-
tem to quickly react on different opponent behaviours. The given computational
constraints and requirement to handle an increased number of agents in com-
parison to the previous year have also been addressed successfully.

All in all, we could show that a multi-agent system developed on the foun-
dation of our RHBP framework is able to compete with other multi-agent
approaches even though it is actually targeting the different application domain
of multi-robot system. Particularly, using RHBP showed to be advantageous
especially in terms of adaptation capabilities during development as well as in
runtime of the system. Furthermore, our focus in 2018 on testing in practise the
recently introduced RHBP features for creating behaviour model hierarchies by
nesting and encapsulating behaviours and goals within other behaviours as well
as realising implicit coordination through sharing and filtering information with
the support of our self-organisation extension turned out to be beneficial.

2 https://multiagentcontest.org/2019/01/23/results.html.

https://multiagentcontest.org/2019/01/23/results.html
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For the future, we would like to further explore the challenge of selecting the
most appropriate high-level strategy like on-demand job completion or stockpil-
ing in such a complex scenario. So far the high-level strategy, even though suc-
cessful in our case, is the result of human considerations and engineering. Future
work could explore if we are able to select autonomously the most appropri-
ate high-level strategy, especially by applying RHBP, from several implemented
strategies depending on the opponent’s behaviour.

1 Team Overview: Short Answers

1.1 Participants and Their Background

What was your motivation to participate in the contest?
The motivation was to further evaluate the decision-making and planning
framework ROS Hybrid Behaviour Planner (RHBP). While the framework
has been used in a wide variety of projects (also in MAPC 2017), newer fea-
tures have not been tested in complex scenarios. One of those features allows
to create multiple independent levels of decision making by encapsulating a
separate behaviour network into a behaviour. Another one is an extension
for implicit coordination on the foundation of self-organisation.

What is the history of your group? (course project, thesis, . . . )
Researchers of the DAI-Labor started to participate in the contest in 2007.
Since then they have contributed to every edition of the contest and have won
four of them using successive generations of the JIAC multi-agent framework.
The TUBDAI 2018 team originates from a Master’s Thesis student and its
supervising PhD student. The applied framework RHBP is developed in one
Ph.D. thesis and several independent Bachelor and Master’s theses.

What is your field of research? Which work therein is related?
Our field of research is multi-agent systems applied in the robotics domain.

1.2 Development

How much time did you invest in the contest for
programming vs. other tasks (for example organization)?
creating vs. optimizing your agents?
We invested approximately 600 h without time for framework development
and the communication proxy (mac ros bridge). The mac ros bridge maps
the xml-based socket communication of the MASSim simulation server to
ROS communication means (which was also partly reused from MAPC 2017).
Furthermore, 400 h of the invested time budget are spend on programming
tasks while 200 h are used for optimising our approach.

How many lines of code did you produce for your final agent team?
The scenario specific code contains approximately 7000 LOC.



138 C.-E. Hrabia et al.

How many people were involved and to which degree?
Christopher-Eyk Hrabia (Ph.D. Student at Technische Universität Berlin)
provided the general supervision, was especially responsible for the consul-
tation about scientific approaches as well as giving technical support for the
RHBP framework and its application.
Michael Franz Ettlinger (M.Sc. Student at Technische Universität Berlin)
was responsible for the scenario specific implementation and execution of the
contest.
Axel Hessler (Post-Doc at Technische Universität Berlin) was responsible for
the infrastructure and overall administration.

When did you start working on your agents?
The major work started mid May 2018, communication infrastructure (e.g.
mac ros bridge) was already done mid of April 2018.

1.3 System Details

How do your agents work together? (coordination, information shar-
ing, . . . )
Information sharing for implicit coordination (exploration, opponent well
states) as well as explicit coordination (jobs) through a contract-net pro-
tocol implementation.

What are critical components of your team?
The most critical component is the job planning component which coordi-
nates the job tasks amongst the agents.

Can your agents change their behaviour during runtime? If so, what
triggers the changes?
Yes. The agents select the most appropriate behaviour based on the current
perception and the results of the hybrid planning decision-making component
of RHBP.

Did you have to make changes to the team (e.g. fix critical bugs)
during the contest?
No.

How do you organize your agents? Do you use e.g. hierarchies? Is your
organization implicit or explicit?
No hierarchy. We partly use implicit (self-organised) and partly explicit
(contract-net protocol) coordination, see above.

Is most of your agents’ behaviour emergent on an individual or team
level?
All behaviour if it was possible emerge from individual level, which results
from the autonomously taken decision by each individual agent.

If your agents perform some planning, how many steps do they plan
ahead?
They plan one task ahead. A task can technically have unlimited amount of
steps but practically has no more than 40 simulation steps.
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If you have a perceive-think-act cycle, how is it synchronized with the
server?
Our perceive-think-act cycle is performed as quick as possible as soon as the
server delivers the percept of the current simulation step. Through enough
calculation power it was made sure that the actions are always delivered in
time.

How did you go about debugging your system?
We applied three different debugging techniques. First, RHBP offers exten-
sions visualisation and monitoring of behaviours and their internal states.
Secondly, agents can be started in development environment and analysed
with a normal Python debugger. Thirdly, we used custom log messages to
analyse the runtime behaviour without interference.

Which operating system did you use, and is your team portable to
other operating systems?
We used Ubuntu 16.04, our solution is portable to all other Linux distribu-
tions that have ROS support. Execution on Windows is also possible through
the Windows Subsystem for Linux (WSL) using a Ubuntu-binding.

What hardware did you use to run your agent team? (RAM, CPU,
disk space, multiple computers, any other notable requirements)
Intel(R) Core(TM) i7-4930K @ 3.40 GHz CPU (6 cores with hyper-
threading), 32 GB RAM and a Samsung SSD 840. It is the same machine
that was used already by our team in MAPC 2017.

1.4 Scenario and Strategy

What is the main strategy of your agent team?
Our strategy has three main tiers. Stockpiling items as well as assembled
items. Building wells at positions that are only accessible for special agents
(drones). Attacking opponent wells aggressively.

How do your agents decide which jobs to complete?
If all required items are on stock the jobs are completed.

Do you have different strategies for the different roles?
Yes, only drones build wells and one drone is responsible for well exploration
at the map border.

Do your agents form ad-hoc teams to complete a task?
Yes, the sub-tasks of a job are coordinated ad-hoc with a contract-net pro-
tocol implementation. Here, all agents participate in the auctions that are
used for the task assignment.

How do your agents decide when and where to build wells?
Random places that can’t be reached by other agents (off-road). We use the
Graphhopper back-end to determine which map locations are not accessible
by road agents.

If your agents accumulated a lot of currency, why did they not spend
it immediately?
Our strategy requires drones to execute the well building, due to the fact that
drones are comparable inefficient in building it is possible that we accumulate
currency if the drones are not able to build fast enough.
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1.5 And the Moral of It Is ...

What did you learn from participating in the contest?
What are the strong and weak points of your team?

The strategy decisions proved to be a viable solution for the contest. The
stockpile with feedback strategy worked good enough to produce the required
money (massium) for wells, while providing enough idle agent time for other
tasks. If the contest would have been about massium alone (like last year)
the strategy in its current implementation would likely preform worse. In
such a scenario the use of storages could massively improve the massium
output but would reduce the availability of agents for well building tasks.
The off-road well locations strategy was not expected by any opponent and
therefore performed well. The main drawback of the strategy was that if it
is expected, it is easy to counter. This was observable in the match against
SMART JaCaMo, who were able to adapt their strategy in a few hours to beat
our team. The only assumption that turned out wrong was that we expected
opponents to try to defend their wells once they were built. RHBP proved to
be a great framework to use for the project. After an initial learning period,
RHBP bore out to be robust and allowed agents to adapt well to changes
at run time. The implementation was robust and performed well during the
contest. The assembly coordination strategy worked well but resulted in many
empty coordination cycles. If this would have been implemented using a client
initiating contract net protocol, its performance as well as simplicity would
likely have increased.

How viable were your chosen programming language, methodology,
tools, and algorithms?
One goal of this project was to use RHBP and its new features and extensions,
evaluate them and offer improvement suggestions. RHBP was used quite suc-
cessfully and allowed to create a fast, adaptive and flexible solution for the
contest. It also allowed quick and robust changes to the strategy as discussed
in the evaluation. The run-time adaptiveness of RHBP could be observed
at the match against Akuanduba-UDESC. While many resources were usu-
ally used for dismantling opponent wells, there was no dismantling required
against Akuanduba-UDESC, which freed up resources for other tasks.

Did you encounter new problems during the contest?
We have been able to find several bugs and performance bottle necks in our
SoBuffer library, which is used for communicating and handling messages for
self-organisation.

Did playing against other agent teams bring about new insights on
your own agents?
We did not gain major insights, we could only prove the runtime adaptation
capabilities in situations we have not especially considered before.

What would you improve if you wanted to participate in the same
contest a week from now (or next year)?
We would less emphasis on job completion and would add a well defence
strategy.
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Which aspect of your team cost you the most time?
Implementing the job coordination and execution.

Why did your team perform as it did? Why did the other teams
perform better/worse than you did?
Because other teams didn’t expect off-road well locations and our solution
adapted robustly to different situations in the games.

1.6 The Future of the MAPC

What can be improved regarding the contest for next year?
Due to incidents in this years contest, we propose to make handing in code
before contest obligatory. Furthermore, we think code changes should not be
allowed, which also solves the problem of fair schedules. Maybe it could also
be a good approach to run everything on the same virtual machines or docker
containers, which are running in the organisers department to avoid prob-
lems with connection performance or too much deviating hardware require-
ments. Furthermore, we encourage to focus more on decentralisation and
autonomous agent development. while avoiding the focus on optimisation
problems.

What kind of scenario would you like to play next? What kind of
features should the new scenario have? We would suggest to have a
scenario that requires less optimisation of a scenario specific problem, high-
lighting more features of intelligent agents such as being adaptive, able to
learn, robust, ...

Should the teams be allowed to make changes to their agents during
the contest (even based on opponent agent behaviour observed in
earlier matches)? If yes, should only some changes be legal and
which ones (e.g. bugfixes), and how to decide a change’s classifica-
tion? If no, should we ensure that no changes are made and how?
Changes should not be allowed because having modifications during the con-
test defeats the purpose of finding a great strategy as well as autonomous
decision making when developers make decisions based on their observations.
Even more, we propose to enforce a code submission before the contest
starts. Bugfixes could potentially be allowed but would have to go through a
peer-reviewed pull request. For organisational reasons the review of the pull
request could also be done after the contest.

Do you have ideas to reduce the impact of unforeseen strategies (e.g.,
playing a second leg after some time)?
As long as the strategies are done on the foundation of the provided API
not exploiting bugs everything should be allowed. Even more, unforeseen
strategies should be encouraged.
If the organisers want to prevent this (which we don’t think they should),
they could request a detailed strategy description to make sure they agree
that the strategy is “expected” and not “unforeseen”.
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5. Heßler, A., Hirsch, B., Küster, T.: Herding cows with JIAC V. Ann. Math. Artif.
Intell. 1–15 (2010). https://doi.org/10.1007/s10472-010-9178-x

6. Heßler, A., Konnerth, T., Napierala, P., Wiemann, B.: Multi-agent programming
contest 2012: TUB team description. In: Köster, M., Schlesinger, F., Dix, J.
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