
The Multi-Agent 
Programming Contest 2018

Ch
al

le
ng

es
LN

AI
 1

19
57

Tobias Ahlbrecht
Jürgen Dix
Niklas Fiekas (Eds.)

Agents Teaming Up in an Urban Environment



Lecture Notes in Artificial Intelligence 11957

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244


Tobias Ahlbrecht • Jürgen Dix •

Niklas Fiekas (Eds.)

The Multi-Agent
Programming Contest 2018
Agents Teaming Up in an Urban Environment

123



Editors
Tobias Ahlbrecht
TU Clausthal
Clausthal-Zellerfeld, Germany

Jürgen Dix
TU Clausthal
Clausthal-Zellerfeld, Germany

Niklas Fiekas
TU Clausthal
Clausthal-Zellerfeld, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-37958-2 ISBN 978-3-030-37959-9 (eBook)
https://doi.org/10.1007/978-3-030-37959-9

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2019, corrected publication 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4652-901X
https://orcid.org/0000-0002-8528-1440
https://orcid.org/0000-0002-8369-4890
https://doi.org/10.1007/978-3-030-37959-9


Preface

In this volume, we present the 13th edition of the annual Multi-Agent Programming
Contest and its participants.

The 2018 scenario and all its changes from previous competitions are described in
the first contribution, together with a brief description and analysis of the five partic-
ipating teams and a closer look at the matches. This is followed by a contribution from
each team, where they introduce the methods and tools they employed to create their
agent team and where they analyze their performance and the contest from their point
of view.

A single-blind review has been conducted for each paper by at least two reviewers.
Each team was able to pass the review process successfully.

October 2019 Tobias Ahlbrecht
Jürgen Dix

Niklas Fiekas
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The Contest



The Multi-Agent Programming Contest
2018 - A Third Time in the City

Tobias Ahlbrecht(B) , Jürgen Dix , and Niklas Fiekas

Department of Informatics, Clausthal University of Technology,
Clausthal-Zellerfeld, Germany

{tobias.ahlbrecht,dix,niklas.fiekas}@tu-clausthal.de
http://cig.in.tu-clausthal.de

Abstract. We present the thirteenth edition of the annual Multi-Agent
Programming Contest, a community-serving competition that attracts
participants from all over the world. Participants have to design a pro-
gram that controls entities in a specifically designed scenario. This chal-
lenge is interesting in itself and also well-suited to be used in educational
environments. Usage of multi-agent technology is encouraged and allows
for comparison of different multi-agent systems and also conventional
approaches. This time, five teams competed using strictly agent-based
as well as traditional programming approaches.

Keywords: Multi-agent systems · Programming · Competition

1 Introduction

In this introductory article, we (1) briefly elaborate the motivation behind our
Contest1 and its 13-year history, (2) explain the current scenario and how it
evolved to its third iteration, (3) introduce the five teams that took part this
time, (4) analyze key matches to draw conclusions about the participants, the
current scenario, and the contest as a whole, and (5) evaluate each team’s per-
formance from our point of view.

The Multi-Agent Programming Contest (MAPC) has been organised (almost)
annually since 2005. It was established by Jürgen Dix and Mehdi Dastani with a
lot of help from Peter Novák, who fully joined the effort later. The competition
was held in 2018 for the 13th time.

The goal of the Contest is to encourage and support research in the field
of multi-agent system engineering by (1) identifying key problems and chal-
lenges, (2) developing suitable benchmarks, (3) comparing agent programming
languages and platforms, and (4) compiling test cases which require and enforce

1 https://multiagentcontest.org.

The original version of this chapter was revised: In chapter 3.3 the paragraph on
TUBDAI’s work was revised. The correction to this chapter is available at https://
doi.org/10.1007/978-3-030-37959-9 7

c© Springer Nature Switzerland AG 2019
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coordinated action that can serve as milestones for testing multi-agent program-
ming languages, platforms and tools. Moreover, we aim to support educational
efforts in the design and implementation of multi-agent systems: our scenario is
ready to use and provides a concrete problem for agent systems to solve.

The scenario is basically a game that an autonomous program has to play.
The state of the environment is handled by our server, to which each agent
is connected remotely. At the beginning of each simulation step, the current
environment state is sent to each agent. Then, the agents have 4 s to reason about
it and decide which action to execute next. The server gathers all actions and
executes them to generate the next environment state. This process is repeated
for a predefined number of steps.

1.1 Related Work

For a detailed account on the history of the contest as well as the underlying
simulation platform and previous iterations of the contest, we refer to [1,4,5,7–
10,13,14,21], especially the contests of 2016 [2] and 2017 [3], which were using
the same base scenario as the current contest. A quick non-technical overview
appeared in [6].

While there have been many contests organized in the last decade, targetting
agent systems or AI in general, there is no other competition with the same focus
as the Multi-Agent Programming Contest.

Starting in 2001, the Trading Agent Competition [25] was held, featuring a
market game for agents to play. From 2003, it featured a supply-chain manage-
ment scenario until 2009. In 2012, it was superseded by the Power Trading Agent
Competition [20], which specializes on agents trading in the energy market. It is
overall more focussed on the performance of single agents and good strategies.

Another competition using agents is the well-known Agent Simulation part
of the RoboCup Rescue Simulation League, where agents have to work in the
aftermath of an earthquake. Participants have to use the competition’s Agent
Development Framework.

There are also a number of Planning Competitions2, e.g. the RoboCup Logis-
tics League3, which address the planning aspect of multi-agent systems.

And of course, there are a lot of competitions based on even more game-lie
scenarios. Some require the autonomous program to deal with existing games,
like the Student StarCraft AI tournament4 or the Mario AI Championship [19],
and some use games which are purpose-built for each competition, like Battle-
Code5. The difficulty in most of these games of course lies in the “real time”
aspect. Additionally, the interesting part is whether the program can play the
game as well or even better as a human player. In the case of BattleCode on the
other hand, other restrictions are placed on the agents, like e.g. the amount of
communication or the number of byte-code instructions that can be executed.
2 http://ipc.icaps-conference.org/.
3 http://www.robocup-logistics.org/sim-comp.
4 http://sscaitournament.com/.
5 https://www.battlecode.org.

http://ipc.icaps-conference.org/
http://www.robocup-logistics.org/sim-comp
http://sscaitournament.com/
https://www.battlecode.org
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To conclude, our Contest has a number of notable distinctions.

– We do not require a specific programming language or approach.
– We do not focus on solutions or good strategies for a particular problem

domain.
– We focus on desirable qualities of multi-agent systems, like communication

and cooperation.

2 MAPC 2016 to 2018: Evolution of the City Scenario

In the “City scenario”6, agents have to traverse realistic street graphs of different
cities and complete random assignments. These assignments reward currency,
which has to be spent to build (water) wells, which will generate score points
for the building team until they are dismantled.

An example of the visualization is given in Fig. 1. Agents are represented as
vehicle symbols while facilities are depicted as pins. Facilities are fixed locations
on the map where agents can perform specific actions.

Fig. 1. Visualisation of the City scenario c© OpenStreetMap (www.openstreetmap.
org/copyright)

6 The complete documentation can be found at https://github.com/agentcontest/
massim/tree/858fb9f75ae5d4036cc6a9ffe439f4052d0414ff/docs.

www.openstreetmap.org/copyright
www.openstreetmap.org/copyright
https://github.com/agentcontest/massim/tree/858fb9f75ae5d4036cc6a9ffe439f4052d0414ff/docs
https://github.com/agentcontest/massim/tree/858fb9f75ae5d4036cc6a9ffe439f4052d0414ff/docs
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2.1 Items

An item is characterised by its name, volume and associated value. The most
basic items (also called resources) can be obtained for free at resource nodes.
Then, there are a number of items that can only be gained by assembling them
from other items. These assembled items require (i) the agents performing the
assembling process to carry at least certain amounts of specific items, and (ii)
particular agent roles to participate in the assembling.

All items together can be viewed as an item graph, where each item type is
a node and a directed edge between two items means that one is required to
assemble the other.

2.2 Jobs

To earn currency, an agent team has to buy items from shops and coordinate to
assemble these to more complex items. Those assembled items then have to be
delivered to specific storage locations to complete a job. That is, a job describes
a set of items that have to be delivered to a particular location. Jobs also have
a deadline and, of course, a reward that depends mostly on the items that are
required for the job.

Most of the jobs, the regular jobs, are posted for both agent teams at the
same time, so that only the team that delivers the required items first will get
the reward. auction jobs on the other hand start with an auction phase. During
this time, agents can place bids for the job. In each step, both teams learn the
current lowest bid. At the end of this phase, the team that placed the lowest
bid will be awarded the job. The team will also only receive the amount it bid
once it completes the job. If the team then does not manage to complete the
job within the time limit, it has to pay a fine. While auction jobs are rather less
valuable due to both teams competing for the lowest reward, it is more safe as
the team it is assigned to does not have to fear that the other team completes
the job faster. Finally, missions were introduced to compare teams working on
the same job at the same time. A mission is basically like an auction job, but
without the auction phase, so that each team is instantly assigned one instance
of this job.

2.3 Agents and Roles

Agents control 4 different vehicle types in the simulation: drones, motorcycles,
cars and trucks. They differ by

– speed (how many “units” they can travel in one step),
– vision (how far the agent can “see”, in meters),
– load (how much they can carry), and
– battery (how often they can move before they have to recharge).

Additionally, drones are the only agents that can fly. All other agents are
bound to the street graph. The current values for each role’s attributes are
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summarised in Table 1. If two values are given, the first one is the start value
while the second one describes the maximum value for that attribute. This is
due to the upgrade system, that allows agents to spend their rewards to improve
themselves rather than build facilities that increase their score.

Table 1. Agent roles

Name Agents Speed Vision Load Battery Skill

Drone 4 5/7 600/1000 15/25 20/40 1/3

Motorcycle 8 4/6 500/900 30/70 30/60 6/10

Car 10 3/5 400/800 50/150 40/80 8/12

Truck 12 2/3 300/700 100/300 50/100 10/15

We see that there are only 4 drone agents, while the number of agents
increases, as their speed and vision decrease, while load, battery and skill
increase. In the 2018 Contest, items were configured to have a random volume
between 5 and 10. Thus, drones could carry between 2 and 5 items, while trucks
could handle many more.

2.4 Percepts

Percepts are sent as XML messages to each agent at the beginning of each step,
encoding the current world state. When a simulation starts or an agent first
connects into a running simulation, general information about that simulation
is perceived, like the characteristics of the agent’s role, the items that exist in
the simulation (and possibly how to assemble them), the upgrades that can be
bought and their costs and the types of wells that can be built (see Sect. 2.5).

The perceptions that are sent each turn include an agent’s location, current
battery charge or how much load capacity is used. Agents also learn about the
result of their last action and which items they are currently carrying. In addi-
tion, the location of other agents and the current state of all (visible) facilities
is transmitted. Finally, each agent receives a list of all jobs that are currently
active.

2.5 Actions and Facilities

After an agent has received percepts, the server expects an answer including the
agent’s next action within 4 s. The server gathers all actions and processes them
in random order, updating the world state, before the next step begins. Facilities
are mostly fixed locations on the map, where agents can or have to perform
different actions to reach their goals. Agents can choose from the following set
of actions.
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goto: Allows an agent to move to a specified location. If the location cannot
be reached by the agent in one step due to its distance, the internal routing
algorithm is used to determine a complete route to the location and the
agent moves to the first point of that route (i.e. as far as its speed allows).
Locations can be the names of facilities or raw coordinates. Using this action
consumes exactly 1 energy point.

charge: This action can only be used at charging stations to charge the
agent’s battery back up.

recharge: This action also restores some charge of the agent. It can be used
everywhere, but is way less effective than charging at a charging station.
It is intended to be used when an agent failed consider visiting charging
station in its plan. Only 1 battery point is restored and only if the action
is successful, which is only in about 30% of attempts.

give/receive: Two agents can use this pair of actions to transfer items among
them. Both agents have to be in the same7 location.

store/retrieve: These actions can be used at storage facilities, to temporarily
store items.

assemble: This action is used to initiate the assembling process. The agent
using this action has to specify the item that is to be created. Additionally,
all assembling agents have to be at a workshop facility.

assist assemble: All agents who want to help one agent assemble an item have
to use this action and specify the agent they want to assist. All of these
agents have to be at the same location. The assembling process then takes
all required items from the agents and gives the requested item to the agent
that initiated the process.

deliver job: This is the action to deliver items towards completion of a job.
The agent has to specify the particular job and be at the correct storage
for that job. The action automatically deposits all items of that agent that
are still missing for the job.

bid for job: To bid for an auction job, agents can use this action. It requires
the job and the amount of currency (i.e. the reward) that should be bid.

dump: This action can be used at dump facilities to destroy items.
gather: Gathering at resource nodes is the only way to acquire base items. An

internal counter in each node determines after how many actions an item is
given out, so that using multiple agents for gathering is more effective. Also,
both teams gathering at the same time at the same node will manipulate the
same counter, while only the lucky agent putting it over the threshold will
actually get the item. To make it more challenging and encourage exploration
of the map, resource nodes are only visible if an agent is in close proximity.

build/dismantle: The wells can be created and removed with these actions.
Agents have to get rewards from completing jobs and use them as a resource
to build wells. Wells can be built at any location where no other facility
exists yet. They start off with a base integrity level after one agent has used

7 To be in the same location in this scenario is defined as sharing the same coordinates
up to the x-th digit after the decimal place.
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the build action. Further build actions are then required to finish the well.
A finished well will generate a certain amount of score points per step for as
long as it exists. As resource nodes, wells are also hidden (from the opposing
team) until an agent is in close proximity, since agents can also use the
dismantle action to reduce a well’s integrity until it reaches 0 and the well
finally vanishes. We introduced wells mainly to increase interaction between
the teams.

trade: Items can also be sold at shops using this action. This is only a way to
avoid completing jobs in the beginning, as shop prices are intentionally kept
unfavourable.

2.6 Winning

As mentioned above, the agents’ goal for the 2018 contest was split into two
tiers. On the one hand, agents had to earn resources from completing jobs by
gathering and assembling items. On the other hand, the agents had to make use
of these resources and build and defend wells to accumulate score points. The
team with the highest score wins the game and earns three tournament points.
In case of a draw, both teams would have earned 1 point (though this did not
occur).

2.7 Evolution of the Scenario

The same base scenario was already played in 2016 and 2017, from where it
slowly evolved to its current form.

Starting in 2016, the main goal was to earn as many rewards as possible
from completing jobs. The well mechanic was only added in 2017 to increase
interaction between the teams and make the current state of the simulation
more visible. Due to the newly added wells, the skill attribute was introduced,
determining the efficiency of build, dismantle and also gather actions, with
drones being least efficient and generally giving a role higher skill the slower it
is. Drones got an especially low skill value as they can build wells all over the
map. Also, the upgrade system was newly introduced for the 2018 Contest.

The availability of items also changed each year. In the first City scenario, all
items (even assembled ones) could be bought in shops, while assembling them
from other items was much cheaper. Unfortunately, all teams just opted for the
easy solution of buying all items, which meant that no team benefitted from
the assembling feature. Thus, in the next Contest, only base items/resources
could still be bought in shops to force teams to use the cooperative assembling
mechanic. Resource nodes were also established in the second iteration of the
contest as an alternative to buying base items from shops. As we had seen many
idle agents in the previous year, this change would reward more proactive agents.
In the latest scenario instance, resource nodes have then become the only way to
get base items at all, since different shop prices did not prove to be an interesting
factor anymore. Also, having two different goal components - the jobs and wells
- meant we had to streamline the scenario where possible. For 2016 and 2017,
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items required specific tools to be assembled and each tool could only be used by
a specific agent role. For 2018, tools were removed and items now require specific
agent roles to be present in the assembling process. This was again changed to
simplify the overall process.

Only in 2017, charging stations could be subject to a blackout, which effec-
tively disabled them for a number of steps. Since this did not generate a notable
impact, this feature was removed again in 2018.

A traditional change in the Contest is always to increase the number of agents
for each new iteration. We started with 16 agents (4 of each type) in 2016 and
continued with 28 agents (4 more per role, except for drones) in 2017. In 2018,
another 6 agents were added (2 cars and 4 trucks), totaling 34 agents.

3 The Tournament

The 2018 Contest took place on September 24th and 25th, after a short quali-
fication phase where all five teams had to demonstrate that they could reliably
receive messages from and send messages to one of our servers. Fortunately, no
team got disqualified. In the tournament, each team had to face off against each
other team in a match consisting of three simulations each.

3.1 Simulation Setup

Each match between two teams consisted of three separate simulations. We used
again three different sets of parameters to configure these simulations, so that
the teams had to compete in three different settings. A simulation consisted of
1000 steps. Each team started with 5000 massium, so that one or two wells could
be immediately built.

The first simulation was always played on a street map of (a part of) Copen-
hagen. The item graph contained 5 base items that could be assembled to more
complex items (which could be required themselves for even more complex
items). With a chance of 30%, a new job was generated in each step. 5% of
these jobs were auctions and only 0.03% were missions (since the focus should
shift to the wells and their placement). These first simulations also provided
the jobs with the smallest rewards out of all three types of simulations. Facility
parameters were set up identically for all simulations. Resource nodes were con-
figured to be the second most common of facilities, so as to diminish the effect of
luck in finding specific nodes. Charging stations were actually the most common
type of facility. They should be considered by the agents, without being overly
restrictive on their possible routes. All simulations were configured to generate
two available types of wells. One that generated 1 score point per step, and one
that generated 2 points, but was more expensive upfront.

In the second simulation, played on a map of Berlin, rewards were increased
slightly, so that more wells could be built. In addition, the item graph only
contained 4 base items, reducing the complexity of completing jobs. The area
of the map was bigger than in the first simulation. All in all, completing jobs
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should have been easier, while locating wells of the opposing team might have
become more challenging.

We continued the trend with the third simulation, played on a map of São
Paulo8. The area that was played on was again larger than before. The item
graph was reduced to 3 base items and the rewards were significantly increased,
so that most jobs allowed a team to build multiple wells at once.

3.2 Participants and Results

Five teams participated in the Multi-Agent Programming Contest 2018, as listed
in Table 2 in alphabetical order. All of the teams had an academic background.
Two came from Brazil, another two from Germany and one from Denmark.
Besides, each team had at least one member (or supervisor) who had taken part
in at least one previous Contest.

Table 2. Participants of the 2018 Contest.

Team Affiliation Platform/language

Akuanduba-UDESC Universidade Federal de
Santa Catarina

JaCaMo

Dumping to Gather Technical University of Berlin ROS Hybrid Behaviour
Planner

Jason-DTU Technical University of
Denmark

Jason + CArtAgO

SMART JaCaMo Pontif́ıcia Universidade
Católica do Rio Grande do
Sul, University of Liverpool,
Universidade Federal de
Santa Catarina

JaCaMo

TUBDAI Technical University of Berlin ROS Hybrid Behaviour
Planner

The results of this year’s Contest are listed in Table 3. The team
SMART JaCaMo achieved the highest score with 33 points, closely followed by
TUBDAI with 27 points. Due to an unclarity regarding the Contest rules, the
steering committee decided to not award a first place this time, so both teams
were placed second. Jason-DTU made a close third place with 21 points, fol-
lowed by Dumping to Gather with 9 points. Unfortunately, Akuanduba-UDESC
encountered severe problems during the contest and was not able to win against
their opponents.

8 Coincidentally, all games were played in the biggest cities of the contestants’ home
countries.
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Table 3. Results.

Place Team Points Simulations won

2 SMART JaCaMo 33 11

2 TUBDAI 27 9

3 Jason-DTU 21 7

4 Dumping to Gather 9 3

5 Akuanduba-UDESC 0 –

3.3 The Teams and Their Agents

In this section, we will take a look at each individual team, what kind of frame-
works and techniques they used and how much effort they invested.

SMART JaCaMo: The biggest team in the Contest, SMART JaCaMo [22],
consists of 8 persons: Tabajara Krausburg, Débora C. Engelmann, Vitor
Peres, Giovani P. Farias, Juliana Damasio and Rafael H. Bordini from Pon-
tif́ıcia Universidade Católica do Rio Grande do Sul, Rafael C. Cardoso from
University of Liverpool and Jomi F. Hübner from Universidade Federal de
Santa Catarina. The Brazilian team invested approximately 120 h combined
for programming and all other tasks, building on their contest entry from
2017 - they competed for the third time in the Contest. The team’s agents
were implemented in JaCaMo [11], a framework that combines Jason [12] for
agent programming, CArtAgO [23] for programming environment artifacts
(e.g. for coordination) and Moise [18] to add an organisational layer to the
MAS.
The team doubled their previous code base to ca. 6100 lines, half of which
makes up the agent program(s). The other half falls upon configuration files
and plain Java code.
The team started development for this year’s Contest in April 2018. Decom-
posing jobs and allocating the tasks is solved with the Contract Net Protocol.
Coordination is achieved via Moise schemes. Interestingly, agents synchro-
nise with the server through a personal artefact, that filters percepts for the
agent and is responsible for holding the agent’s planned actions and relaying
them to the server.

TUBDAI: The TUBDAI team [16] consists of only 2 people: Christopher-Eyk
Hrabia and Michael Ettlinger from Technische Universität Berlin, Germany.
Approximately 600 h were spent to create the around 7000 lines big agent
program using the ROS Hybrid Behaviour Planner, a planning and decision
making component for the Robot Operating System (ROS), developed at the
DAI-Labor of TU Berlin.
TUBDAI started work in May of 2018. The Contract Net Protocol is again
used for coordination. The agent’s main strategy is to only let drones build
wells in locations that cannot be reached by other roles. The other teams
expected this relatively simple strategy not to be used for various reasons
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and thus mostly did not have any countermeasures prepared in advance,
which contributed to its success.

Jason-DTU: The Jason-DTU team [24] from Technical University of Den-
mark started quite late: they only had 3 weeks until the Contest. The 5
members of Jason-DTU are Jørgen Villadsen, Mads Okholm Bjørn, Andreas
Halkjær From, Thomas Søren Henney and John Bruntse Larsen. Their final
agent program comprises around 6200 lines of code, some of it being recy-
cled from their previous participation. As SMART JaCaMo, the team also
programmed their agents using the Jason platform. Interestingly their agent
code only makes up roughly a tenth of the complete program (compared to
about 50% for SMART JaCaMo).
The Jason-DTU strategy begins by dividing the agents into 4 mostly fixed
groups for resource acquisition, well dismantling, map exploration and item
assembling. Completing enough jobs makes some agent switch to well build-
ing, while discovering opponent wells makes dismantling agents stop explor-
ing and follow their original purpose. Having found a resource node for
each resource type makes map exploring agents take other tasks instead and
resource gatherers stop switch to dismantling wells once their main storage
unit is almost full.

Dumping to Gather: The Dumping to Gather team [17], also from TU Berlin,
used the ROS Hybrid Behaviour Planner as well. The team consists of 3
people: Christopher Eyk-Hrabia, Marc Schmidt and Marie Weintraud and
originates from a course given at TU Berlin. As most others, the team started
work in April. About 340 h were spent creating the 8600 lines strong agent
program.
For each job in the simulation, one agent is appointed coordinator and (once
again) uses the Contract Net Protocol to distribute the tasks resulting from
the job. Drones are used for exploring the map. Auctions are also ignored
by this team and jobs are just completed as they come, without analysing if
one job might be better than another.

Akuanduba-UDESC: The second Brazilian team, Akuanduba-UDESC [15],
consists of 5 people: Guilherme Rafael Deschamps, Tiago Funk, Vilson
Junior, Giovanni Jakubiak de Albuquerque and Tiago Luiz Schmitz, all of
them from Universidade Federal de Santa Catarina. As the SMART JaCaMo
team, they used the JaCaMo platform to create an agent program compris-
ing about 4000 lines, 3000 thereof making up the Jason agent code. The team
invested roughly 500 h for the Contest, of which 300 were used for program-
ming. Making use of special JaCaMo features, the agents were distributed
among 3 different machines.
The Akuanduba-UDESC agents use a CArtAgO artefact for task delegation.
Drones are used to explore the map. Items are gathered and assembled proac-
tively and jobs completed if enough items of the required types are available.
Only trucks are used for gathering base items.

The teams’ comparison is again summarised in Table 4.
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Table 4. Team comparison.

SMART JaCaMo TUBDAI Jason-DTU Dumping to
Gather

Akuanduba

Team size 8 2 5 3 5

Platform JaCaMo RHBP Jason
+ CArtAgO

RHBP JaCaMo

Started April May September April April

Time spent 120 h 600 h (3weeks) 340 h 500 h

Codebase 3100 Jason + 1200
config + 1700 Java

7000 650 Jason +
5650 Java

8600 3000 Jason
+ 1000 Java

Well Building. The agents of SMART JaCaMo build wells at the beginning of
the simulation and when they have completed a job or destroyed an opponent’s
well. Wells are built at the map’s borders and if no agent is in that area or
no agent is currently unoccupied, it might happen that wells are not built even
though the team would be able to. The TUBDAI agents always build wells using
their drones in places that other roles cannot reach. As drones are rather slow at
building, the team sometimes earns money faster than it can use it for building
wells. Jason-DTU let only their trucks build wells, as SMART JaCaMo also at
the map’s boundaries. As they designated specific agents for well building, when
they encountered a bug (which they did), no other agent could take over the
responsibility and the agents had to be restarted to be able to build wells again.
The agents of Dumping to Gather , in contrast to the other teams, prioritise
completing jobs over building wells, so that currency accumulates until there are
agents not occupied by any job. Looking at any simulation, we see that these
agents build their wells in straight lines along the map’s boundaries. Akuanduba-
UDESC only plans to build two wells and invests the currency in upgrades
instead.

Problems. SMART JaCaMo claims, their agents had problems with the
amount of information on the third and largest map, which they solved with
more rigorous filtering. TUBDAI says, one of their advantages was their sur-
prising strategy and if it would have been anticipated more, they would have
been less successful. According to Jason-DTU , their agents were efficiently col-
lecting items, but their static group structure could do with improvements. Also,
their agents did get stuck more or less often, generating useless or empty chains
of actions. As mentioned above, this was particularly impactful when it affected
the designated well building agent. The Dumping to Gather team encountered
a problem in simulations where relatively many wells could be built as they
did not anticipate such configurations. Thus, their agents could have built even
more wells in certain simulations. Also, the potential locations for the wells were
chosen without regard for the distance to any agent of the team. The main prob-
lem for Akuanduba-UDESC was their well building strategy. Additionally, their
agents were best only on a certain type of map.
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Most of the teams say that implementing the job completion capabilities took
the most development time.

Unleveraged Potential. The SMART JaCaMo team did not implement bid-
ding for auctions, which could have opened the door for even more lucrative
jobs. Also, their agents only ever used one single storage facility per simulation,
which could be optimised to adapt to specific situations.

The TUBDAI team would like to focus less on job completion, which is
understandable, given that their drone agents often cannot build as fast as the
other agents completed jobs. Instead, TUBDAI would need to improve their well
defense capabilities, which they mostly did not need this time.

As mentioned above, Jason-DTU would need to fix some bugs first and
make their agent grouping more dynamic. They would also like to improve their
well placement strategy and build far away from opponent agents and prioritise
locations where wells have not been discovered before.

Akuanduba-UDESC would improve their well building strategy first and fore-
most. Then, optimising their agent’s recharge strategy so it works better on
bigger maps would be next.

3.4 Errors and Stability

For each action there is an associated set of potential errors that may occur and
are reported back to the agent. The failure counts over all simulations are given
in Table 5.

For example, the error code failed wrong facility occurs when an agent
tries to use a facility-bound action without being at one of those facilities. Only
Akuanduba-UDESC and Jason-DTU encountered this error and only very few
times. All in all, we see that Akuanduba-UDESC faced the most errors, fol-
lowed by Jason-DTU . For Akuanduba-UDESC , about half of the errors were
failed no route, indicating a general planning problem. For most of the teams,
a lot of these errors were also accumulated in the simulation against TUB-
DAI , were their wells were not reachable by most agents. About a fourth of
the errors for Jason-DTU were also failed no route. Half of their errors were
just failed, which occurs when the recharge action fails (by design) in about
70% of cases. This indicates less of a technical problem than the decision to
try the recharge action very often. Another frequent error for Jason-DTU was
failed counterpart, which can be the result of give/receive actions and
assist assemble, if the interaction with the other agent somehow failed (e.g.
because the other agent is not there yet). Jason-DTU was the only team to see
failed unknown job (12 times), which is returned if an agent tries to deliver to
or bid on a job that does not exist.
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Table 5. Reasons for failed actions

Reason Akuanduba-UDESC Dumping to

Gather

Jason-DTU TUBDAI SMART JaCaMo

failed wrong facility 24 – 39 – –

failed unknown job – – 12 – –

failed job status 425 37 164 26 –

failed no route 70073 30928 23598 2136 151

failed capacity 18524 152 2833 2 –

failed resources 2123 – 2 145 628

failed tools 14677 16049 7693 4411 164

useless – 182 29 55 –

failed location 690 7658 1333 833 1093

successful partial 4353 3512 2616 1963 2238

failed counterpart 4742 10558 18206 7861 362

failed 4195 19909 56711 18838 27009

failed item amount 29164 6071 3118 1776 55

Total 148990 95056 116354 38046 31700

Dumping to Gather encountered failed no route most often, as well, fol-
lowed by failed. It was also the only team to never get the failed resources
result, which only occurs if an agent attempts to build a well without having the
necessary funds.

TUBDAI and SMART JaCaMo had comparably few failed no route
results, probably due to TUBDAI being responsible for the other teams getting
the error and SMART JaCaMo being able to cope with that. SMART JaCaMo
was the only team to never get the failed capacity result, which occurs when
items are to be transferred between agents or an agent and a storage and the
target does not have enough free space. TUBDAI also only got this error 2
times, which is negligible, indicating very accurate resource management for
both teams.

failed item amount and failed tools mainly happen when not enough
items or not all roles required for the assembling process are present.
SMART JaCaMo saw these errors way less than the other teams, pointing to
very good coordination among the team’s agents.

4 Interesting Simulation

In this section, we will take a closer look at one of the simulations and analyse
the agents’ behaviour from a bird’s-eye view.
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4.1 Jason-DTU vs. SMART JaCaMo Simulation 2 of 3

Jason-DTU won against SMART JaCaMo one out of 3 simulations9. This was
the only matchup that did not end with one team winning all 3 simulations,
so we would like to get an idea of why Jason-DTU was able to win one of the
simulations. Charts for massium (the reward obtained from completing jobs)
and accumulated score are given in Figs. 2 and 3 respectively.
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Fig. 2. Jason-DTU (red) vs. SMART JaCaMo (blue/dashed) sim 2 - massium (Color
figure online)

From the score chart, we see that Jason-DTU is clearly behind
SMART JaCaMo for a long time. Only in step 800, Jason-DTU pushes ahead
and SMART JaCaMo cannot keep up for the rest of the simulation. While
SMART JaCaMo starts out with much better growth, the curve flattens out,
whereas the curve of Jason-DTU starts out rather flat and begins to grow
faster around step 500. Looking at total massium earned, Jason-DTU lies far
ahead of its opponent with 322000 compared to only 188000. Thus, Jason-DTU
could build far more wells in this simulation. Though, SMART JaCaMo was
the team that had the most massium shortly after step 600 and almost spent
it completely around step 800. Comparing the characteristics, we also see that
SMART JaCaMo seems to have phases where massium is spent, while the curve
of Jason-DTU is wildly oscillating, meaning that massium is spent almost as
soon as it is earned. Back to step 600, the score of SMART JaCaMo is already

9 The replay can be viewed at https://multiagentcontest.org/2018/replays/?2018-09-
24-14-05-06-Contest-2018-2of3.

https://multiagentcontest.org/2018/replays/?2018-09-24-14-05-06-Contest-2018-2of3
https://multiagentcontest.org/2018/replays/?2018-09-24-14-05-06-Contest-2018-2of3
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Fig. 3. Jason-DTU (red) vs. SMART JaCaMo (blue/dashed) sim 2 - score (Color
figure online)

6000 while Jason-DTU is still below 3000. While SMART JaCaMo is earning 7
points per step, Jason-DTU is already at 18 though. In step 660, after having
discovered the spot where SMART JaCaMo built a number of wells, Jason-DTU
manages to completely dismantle all of its opponent’s wells. SMART JaCaMo
then spends a share of its fortune on building wells in the exact same location,
while Jason-DTU still has wells at various locations at the map’s border. Around
step 850, SMART JaCaMo has selected a new spot to build wells and goes up to 8
score points per step, while not bothering Jason-DTU much, who got to 22 score
points per step in the meantime. The new spot does not last long as Jason-DTU
almost immediately begins to dismantle the wells. This may go unnoticed (or
ignored) by SMART JaCaMo - the agents build even more wells in the location
that is currently being attacked by Jason-DTU , who is sending more and more
agents to dismantle until no well is left standing. Meanwhile, SMART JaCaMo
is mostly ignoring the wells of their opponent. Having dismantled one of these, a
large group of agents passes by another two Jason-DTU wells without reacting
to them. Now, Jason-DTU has surpassed SMART JaCaMo, who is again at 0
points per step and makes no further attempt at building wells for the remainder
of the simulation.

5 Conclusion and Outlook

We have once again seen an exciting Contest. Unfortunately, we only had 5
participating teams, one of which was struggling to play and even connected
passive agents later, only to progress the simulations faster. Nonetheless, we have
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seen a mix of advantageous strategies and good multi-agent system engineering.
For the first time in years, we had only agent-based approaches competing, 2
using RHBP and 3 using Jason plus add-ons (CArtAgO and/or Moise).

5.1 Suggestions by the Teams

We also asked the teams for feedback regarding the scenario and the Contest in
general. They proposed, for example, to improve the qualification phase and put
more (scenario-specific) requirements on the teams besides just sending actions
in time, which, admittedly, is easy to achieve without even having a real agent
team ready.

Scenario-wise, more interaction among the agent teams is desired. We already
tried to go in this direction with the well-building aspect this year and continue
on this road. Also, there is a request for more decentralisation. We see a need here
as well, though it is very difficult to design a scenario that rewards a decentralised
way of thinking - unless we restrict the amount of information that agents can
share, which would also mean we would have to make sure that agents can only
communicate through our infrastructure.

Generally, the teams wish for a scenario that represents “modern” challenges,
while they would also like a scenario with less need for scenario-specific optimi-
sation (i.e. the acquisition and assembling of items in the current scenario).

Another proposal is to provide the same conditions for all participants in
terms of hardware and/or connection speed. Again, this would make organising
the Contest a lot harder (at least in the beginning), though we are on the lookout
for possible technical solutions (virtual machines, container platforms, etc.).

5.2 Contest Rules

To establish more clear-cut rules, we asked whether the teams think it should
be allowed to make changes to an agent team during the contest. This is of
course controversial, as a team that plays later has the chance to make changes
to react on observed opponent behaviour, which a team that plays first does not
have. Opinions here are unfortunately not aligned at all. Some teams think, all
changes should be allowed, while others suggest the agents should be submitted
before the contest, so that no changes are possible at all. Of course, this is also
disadvantageous for the Contest as a whole, as it creates a lot of work for the
organisers and might lead to simulations, where an unforeseen bug occurs in one
of the agent teams (for example a simple typo), and leads to at least one less
interesting simulation. Somewhat more balanced opinions suggest to allow only
bugfix changes and either let each team’s conscience decide what makes a bugfix
and what does not, or let each change get approved first, e.g. by the organizers.

5.3 Plans for the Future

As usual, we plan to use a completely new scenario next time, after having
established and scaled up this one two times already. While the current scenario
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was quite complex and interesting to solve, it was lacking a certain visibility.
Looking at a simulation, the bigger picture remains mostly hidden. Only the
money/score numbers give some kind of indication. The new well facilities were
a first step in this direction, providing some more easily measurable features. On
the other hand, the complexity of the scenario required a lot of work upfront,
before the participants could see any results. We would like our next scenario
to allow for simple solutions that can play it, while leaving a lot of room for
advanced solutions to get even better results. The third feature, one we want
to bring back again, is interaction among the teams. While in the first two
iterations interaction was possible but not promoted, we already saw a little
more interaction this time with teams struggling to defend their wells against
their opponents. Judging from the questionnaires, the participants would still
like to see more direct interaction, e.g. like in the earlier Mars scenario, where
some agents could effectively disable agents from the opposing team.

Acknowledgement. We would like to thank Alfred Hofmann from Springer for his
continuous support for more than 10 years now, and for endowing the price of 500 Euros
in Springer books.
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Abstract. On 2018 we participated of a Multi-Agent Programming
Contest, as Akuanduba UDESC team. We matched upon Agents in the
City scenario, with our agents aiming to earn money, fulfilling jobs and
missions and also get points through the wells. To accomplish these
goals we used a task-oriented architecture with a priorities queue to
manage tasks, focusing on developing agents that can choose correctly
which tasks they need to perform and change the tasks state to coordi-
nate themselves. We did not reach a good position on the contest, mainly
because of a poor strategy for the wells building, but we have saw that
all those things we focused on our development returned good results
(i.e. the priorities queue and the tasks manager worked successfully).

1 Introduction

The Multi-Agent Programming Contest (MAPC) [1] is a competition in which
participants must identify and develop solutions for the proposed problems,
showing suitable benchmarks and gathering test cases. In each round of the
contest, two teams compete simultaneously with 34 agents each, divided as cars,
motorcycles, drones and trucks. The teams dispute on getting points and earning
money. The points acquisition occurs by the water wells, which consume money
to be built by the agents, and after built generate points for each step. Each
round is composed by 1000 steps, strategy used to systematize the progress of the
simulation. To earn money the agents deliver missions and jobs, that consume
basic items (that can be gathered) and assembled items (that can not be gath-
ered). The money is utilized to upgrade the agents and the water wells building.
In this paper, we will present: (i) the architecture and strategies utilized by the
team Akuanduba UDESC in MAPC 2018, (ii) the results of the contest (Sect. 8)
and (iii) the appraisal of the team.
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We used a task-oriented BDI architecture (Sect. 4) on our program. Our
task treating routine uses a priority queue [6]. The scheduler runs once per
step and chooses the task with the highest priority. A task can also be set as
waiting, resumed and concluded (Sect. 5). The creation of tasks is based on a
process described on Sect. 6, where we explain our tasks planning. Our exceptions
treatment is described in the Sect. 7. The source code for our team used in MAPC
2018 is available for download at: https://github.com/TiagoFunkUdescCeavi/
Akuanduba MAPC 2019.

We used a task-oriented architecture because it can work on multi-agent
environment, where a lot of tasks spawn all the time and the agents need to
choose upon them. The main difference between Akuanduba UDESC (Sect. 3)
and the other teams (Sect. 2) is the priority queue.

2 Related Works

This section introduces the architectures used by some teams of the 2017 edition
of MAPC. It considered the teams programming language, agents coordination
and agents communication. According to Table 1 it is possible to analyze how
the teams adopted centralized and/or decentralized coordination on the tasks
coordination. The tasks were coordinated by teams and had the following con-
figuration: (i) BusyBeaver [7] - the leader centered the tasks; (ii) Jason-DTU [9]
- a temporary leader organized the tasks and distributed them among the agents
of the groups; (iii) lampe [3] - the mother entity managed all the tasks and (iv)
TUBDAI [4] - each agent was responsible by the creation of tasks. Moreover,
was analyzed how they developed the communication tasks. The teams Busy-
Beaver and Jason-DTU utilized the interpreter Jason, while lampe built their
own infrastructure of communication infrastructure and TUBDAI used ROS.

Table 1. Architecture comparison

Team BusyBeaver Jason-DTU lampe TUBDAI

Centralized x x x x

Decentralized - x - x

Creation of tasks Fixed Leader Temporary Leader Own Framework Autonomous

Communication Jason Jason Mother Ship ROS

Language Python Jason C++ Python

3 Akuanduba-UDESC 2018

Our team used a tasks-oriented architecture with priority queue [6] to sequence
the agents actions logically. The tasks priorities are represented by numeric val-
ues, and the task with the highest value is the one with the highest priority. The
Table 2 describes all the tasks with their priorities.

https://github.com/TiagoFunkUdescCeavi/Akuanduba_MAPC_2019
https://github.com/TiagoFunkUdescCeavi/Akuanduba_MAPC_2019
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Table 2. Task priorities

Task Priority Task Priority

recharge 10 dismantle 9.7

buildWell 9 exploration 9

mission 9 dropAll 8.9

upgradecapacity 8.5 help 8.2

craft 8 gather 8

job 5 fastgathering 4

The roles obligated the agents to fulfill one or more tasks. The artifact
CArtAgO [8] manages the distribution of roles. The artifact is in charge to mak-
ing public which role the agents assumed.

4 Infrastructure and Environment

We used a programming language called Jason to develop the agents. The com-
munication with the server of the environment used EISMassim. The coordina-
tion between agents was made in CArtAgO [8]. We utilized JADE [2] to trade
messages between agents, once they were not all running on the same machine.
The agents interactions (as can be seen on the Fig. 1) was divided into agent-
agent, agent-artifact and artifact-massim.

The communication artifact of the environment was the artifact EISAccess
(Fig. 1). It provided an abstraction of game environment, allowing the agent
to send actions and receive perceptions from the competition environment. In
this abstraction, its observable properties are all those perceptions which the
remote server sends to the agent (i.e. jobs state, location and storages state).
The artifact has only one operation action. The operation receives the action
which the agent wants to execute on environment, as a parameter.

Fig. 1. Communication infrastructure

Coordination was made by CoordinationArtifact, that manage the agents
roles. The agents manifest themselves informing the artifact their intention to
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assume a role. Once linked to a role the agent cannot assume any other role,
and when the agent finishes its task it can ask for being unbinded with the
paper to the artifact. An example of roles linking is to catch a specific item from
a resourceNode. Once an item is taken on the resourceNode, the agent gets
linked to take that item and deliver on an storage for all the simulation. The
artifact gets in charge to manage the roles for the agents and keep the integrity,
ensuring that the tasks will have agents enough to be fulfilled.

The CoordinationArtifact has observable properties. All the roles that
have allocated agents are observable properties into the CoordinationArtifact.
An observable property is only added if the agent calls on the artifact the action
which makes the link between agent and job, and this link will be represented as
an observable property on the artifact while the agent does not call the unbind-
ing operation. Other available actions are mission, gather and craft, which
are, respectively: (i) a special job, (ii) searching items on resourceNodes and
(iii) items assembling using other items. Special jobs reward money like a job,
otherwise it decreases the money of the team on the same value of the reward.
The operations of CoordinationArtifact link tasks with agents and remove
those links.

The linking operation works for jobs and missions. Once the agents receive
the signal of new task added, they verify if themselves fulfill the requisites to
complete the task and will try to compromise. The operation of the artifact will
verify if the task is already being performed. If it does not, the artifact adds the
task to the agent, and the agent receives a signal telling him to perform the
task. All other agents which try to complete the same task after it is already
being done will be simply ignored by the artifact (they will not receive any
signal). On the Fig. 2 there is a sequence diagram with the steps sequence for
jobs case.

EISAcess Agent CoordinationArtifact

job(JOBNAME,DESTINATION,REWARD,INITIALSTEP,FINALSTEP,JOBITEMS)

addIntentionToDoJob(NAME,JOBNAME)

dojob(JOBNAME)

If agents   
fulfill the   
requisites.

If agent has  
been chosen.

Fig. 2. Messages trading for addition of task job

The link-removal operation works searching for the task which the agent
wants to unbind itself and once the task is found, it is removed from the list.
While the link exists, there is an observable property with this information.
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The gather and craft works similar, but the link is made when the simula-
tion begin and stands until it ends, because the agent will keep performing this
task (there are no gather and craft link-removal operations). The last opera-
tion of the artifact is related to tasks-linking. It removes all links that are kept
when simulation ends.

The agents that assume the craft task were chosen by a mathematical model.
12 agents are responsible for the craft. The number was chosen after tests - 12
was a number of agents able to keep the storage full. The 12 agents were
divided for each item that already existed, providing more agents to the items
which were the most used. This quantity is computed by the formula 1, where
di is the dependence value of the item and qi is the quantity.

qi =

⎡
⎢⎢⎢⎢⎢

12 × di∑
i∈I

di

⎤
⎥⎥⎥⎥⎥

(1)

The most utilized items are defined by a dependence rule. We can use, as
example, an item α, with its dependence represented by a numeric value con-
sisting of how many items depend of α to be assembled. If its value is 0 alpha
has not dependents. Otherwise, if its value is 1, there is one item which depends
of α to be assembled, and so on.

The last operation of the artifact was informDronePositionAndCorners, that
tells the agents which will explore the environment for which part of map they
should go to reduce the distance between all quadrants. The exploration consists
of going through the map searching for the resourceNodes and wells. We split
the map on 4 quadrants of the same size and analyzed each one by a drone
agent. When all drone agents report their positions to the artifact, it solves a
binary linear programming problem that minimize the total distance verified by
the 4 drones, respecting 1 drone per quadrant [5]. The model of the problem is
described on 2, where: “A” is the agents set; “C” is the quadrants set; “Δ(a,c)”
is the distance between agent “a” and quadrant “c” . The result of the equation
returns a signal for the agent, telling which quadrant it should occupy.

Minimize
∑

(a,c)∈(A×C)

i(a,c)Δ(a, c)

s.t.
∑

(a,c)∈(A)

i(a,c) = 1, c ∈ C

∑
(a,c)∈(C)

i(a,c) = 1, a ∈ A (2)

The ARTGreyZone artifact was the builder of the threshold zone. It is defined
as the total area of the maps minus the area of the biggest convex polygon
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(BCP) made by those installations which agents found on the beginning of the
simulation. Threshold zone is used for wells building. This strategy was chosen
to build the wells as far as possible of other installations, reducing the chances
of any agent passing near the well.

ARTGreyZone managed add installation coordinates operation, that saves
the latitude and longitude of the installation into a list. The artifact has also a
cleaning memory operation that excludes the polygon.

The artifact has a polygon calculate action, which is described in the algo-
rithm 1. Initially, the most extreme points between all the points informed by the
agents are computed. The algorithm begins by searching for the most northerly
point (the one that has the highest latitude coordinate). Once chosen, the point
is excluded from the points list. The procedure is repeated for the most western,
southern and eastern points. The search is focused in extreme points because: as
bigger the approximation area, more points will be inside the polygon, reducing
the iterations that will be necessary to relax the found solution. With the 4
most extreme points already chosen, the north-west, west-south, south-east and
east-north points are linked by line segments to create the first approximation
of BCP.

For each one of others p points in the list it is necessary to compare them
with the central point of the polygon related to all its e edges. This comparison
consists of calculating one determinant between the initial and final points of the
e edge and the p point and calculating one determinant between the initial and
final points of the e edge and the central point. Because the alignment calculation
between point and straight line returns a value different than zero when there is
not an alignment, the calculated value indicates on which side of the straight line
is the point. So, if the signal of the straight line and central point determinant is
different of the point and straight line determinant, it means that the points are
on different sides of the straight line. When it happens, the current p point is
added to the polygon. The addition works by removing the e edge and creating
two new edges: one between the initial point of the e edge and the p point, and
other between the final point of e edge and the central point.

For the agents messages trading, we used the framework JADE [2]. The
message send is made by the Jason internal function .send. This function sends
messages between agents, and because we used JADE infrastructure, the Jason
language grants internally that the message will be sent for the right agent, even
if it is on another machine.

The messages that we used were called achieve and tell. The achieve calls
an action on the agent which received the message just like if it had received an
order to execute a determined plan. The tell represents the addition of a belief
on the receiver agent. The receiver agent decides what to do with this belief. In
this our context, the agent executes a plan.

As an example of the .send using, we will describe how agents coordinate
to build an item on the craft task. The a agent (Fig. 3) sends a message
help(WORKSHOP,PID) - of type achieve - with WORKSHOP being the workshop
where agents will meet to craft and PID is the identifier value of the help order,
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Algorithm 1. Biggest convex polygon building
1: function buildPolygon(listOfPoints)
2: {(xn, yn), (xo, yo), (xs, ys), (xl, yl)} ← searchCardinalPoints(listOfPoints)
3: polygon ← buildInitialPolygon({(xn, yn), (xo, yo), (xs, ys), (xl, yl)})
4: xc ← (xn + xs)/2
5: yc ← (yo + yl)/2
6: for all (xp, yp) ∈ (listOfPoints) − {(xn, yn), (xo, yo), (xs, ys), (xl, yl)} do
7: for all (x1, y1, x2, y2) ∈ polygon do

8: dC ←
∣
∣
∣
∣
∣
∣

xc yc 1
x1 y1 1
x2 y2 1

∣
∣
∣
∣
∣
∣

9: dP ←
∣
∣
∣
∣
∣
∣

xp yp 1
x1 y1 1
x2 y2 1

∣
∣
∣
∣
∣
∣

10: dC ← dC / |dC|
11: dP ← dP / |dP |
12: if dP �= dC then
13: removeEdge(x1, y1, x2, y2)
14: addEdge(x1, y1, xp, yp)
15: addEdge(xp, yp, x2, y2)
16: end if
17: end for
18: end for
19: end function

utilized to keep integrity and avoid agents to answer wrong orders. Once help
message get received, b agent will calculate the cost to perform the task and
help a agent. This calculation is done taking on account the distance between its
current position and the position of the WORKSHOP. Once the calculation gets
finished, b sends a message helper(PID,COST) - of type tell - to a agent, with
PID being the identifier of the task and COST the calculated cost to perform
the task.

Agent a, after receiving helper messages from at least 2 agents, chooses the
one who reported the lowest cost and all other agents who answered the help
message will be disposed of the task. The chosen agent receives from agent a a
message confirmeHepl(WORKSHOP,WHONEED) - of type achieve - with WORK-
SHOP being the destiny of the task and WHONEED the name of the agent who
needs help. b agent, once receiving the message, will add a new task on its own
beliefs base with the information of the task. When a already made its choice
it automatically dispose any agent that its cost it. Disposed agents receive a
message dismissHelp and get unbinded of this help task.

5 Tasks Manager

AKUANDUBA UDESC architecture of the agent used a tasks manager, that
determined which task would have execution time on each step. Tasks manager
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Agent a Agent b

!help( WORKSHOP, PID )

helper( PID, COST )

!confirmehelp( WORKSHOP, WHONEED)

!dismisshelp

Verify agent's 
COST

[If COST is the 
lowest one]

[If COST is not
the lowest one]

Fig. 3. Help messages

behaviour is represented in Fig. 4. Working by cycles, the process begins choosing
the most priority task on that step. Once a task gets chosen, it is necessary to
verify if there was tasks preemption. If a preemption occurred, the last valid
state of the current task get saved to be resumed exactly where it got stopped,
in the future. Saving the last valid state is named rollback. After the validation,
a step of the chosen task is performed. If the step is successfully performed it
gets consumed on the task. If there are no more steps to be consumed, then the
task is finished.

1.1 whatToDo

Changed behaviour?

1.2 checkRollback

Yes

1.3 Do

No

Successfully executed?

1.4 consumeStep

Yes

1.5 removeTask

No

Are there no steps to
accomplish the task?

Yes

No

Fig. 4. Tasks manager

Tasks utilized by the tasks manager are represented as a belief
task(LABEL,PRIORITY,ACTIONS,EXECUTEDACTIONS), with LABEL being the
name of the task, PRIORITY being the priority of the tasks (task priorities values
can be seen on the Table 2), ACTIONS being a list containing the actions neces-
sary to perform the task and EXECUTEDACTIONS being the actions that the agent
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have already executed. The first term of the list is the last step executed by the
agent. When a new task is presented to the agent, it is added to its beliefs base.
When a new task choice is made by the manager, this task can be chosen if it
has the highest priority.

The lastAction(LA) is a server property that indicates which was the last
action the agent tried to execute on server. The lastActionResult(LAR) indi-
cates if the last action executed by the agent on server was successful or it failed.
If failed, it indicates the type of failure. The doing(D) is a belief which indicates
the name of the task which the agent compromised itself and is performing at
the moment. The lastDoing(LD) is a belief developed by the agent, to know
which the task was performed on the previous step. The goto is an action that
can be performed by the server and it exists to allow the agent to move by the
environment. When goto is executed, the agent receives a list with pairs of coor-
dinates that represents the path that the agent needs to follow to arrive on its
destiny.

The step is an observable property of the server that indicates the current
step of the execution and it is updated by the server whenever a new step
begins. The tasks manager plan is called by the observable property step and
it is composed of 3 plans: consumeStep, whatToDo and do.

The consumeStep is the first stage of the plan, because the result of the exe-
cuted action on the previous step is required. This plan consumes the executed
action of the task if its execution according to the lastActionResult belief was
successfully. The task belief performed on the last step gets updated, remov-
ing the first element of the ACTIONS list and adding it to the first position of
EXECUTEDACTIONS list. If this action result returns failure, the agent needs to try
again on future.

The second stage of the tasks manager plan is whatToDo, which verifies if
there is anything to the agent perform. If there are tasks, the one with the
highest priority gets chosen, inserting into doing belief the LABEL of the task. If
the agent has not a new task to perform, it keeps idle.

When the whatToDo plan is getting finished, the plan checkRollBack is
called. The checkRollBack plan verifies if there was any preemption through
the doing and lastDoing beliefs. When a preemption happens, the last valid
state gets restored by the rollback plan, recuperating it for the current steps
sequence of the task. Saving the last state of the tasks is important to ensure
that the agent will be on the right place when it is called again.

The do plan executes the next action in the ACTIONS list of the chosen task.
The execution is performed sending an action to the server.

6 Tasks Planning

The list of actions needed to complete the task is settled into the task itself,
when it is created. Each task that the agent can do (recharge battery, perform
job, gather items in resourceNodes, etc.) has a basic actions sequence that
the agent needs to perform to complete the task. In the same kind of task, the
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actions can change how many times it needs to be performed. Arguments of the
action also can change (i.e. the gather task can tell the agent to collect the item
1, or the task can tell it to collect the item 3 - it depends on the argument of
the action).

Using the tasks manager results in obtaining the tasks execution plan before
starting its execution. To respect this characteristic, our agents build “on the
fly” the plans to the tasks they want to realize.

The gather task consists by pick up items in the resourceNodes and take
them to the chosen storage. The task can be divided into three parts: (i) go to
the resourceNode, (ii) collect items until the charge capacity is filled and (iii)
discharge the items in the central storage. To create a collect plan is necessary
to tell which one is the item, where it can be found and where it needs to be
left. Each item has a weight, thus it is also necessary to calculate how many
elements the agent can carry. When the plan gets ready a new task is generated.
Just like there is a plan to prepare the gather task, there is also a plan for each
task (Table 2) that the agent can assume.

7 Exceptions

An exceptions control system was added to the agents to avoid them staying
blocked if an action failed. The exceptions act upon situations that cannot be
predicted when it will occur. All the treated errors happen when the agent tries
to perform an action on the environment, but it is not a valid action or it has
invalid arguments.

The first exception occurs when an agent tries to perform the store action
and it is linked with the task download items (dropAll). Is needed to inform
the quantity of items that the agent is carrying and wants to deliver to
performs the action store. If this number is informed wrong, the exception
failed item amount occurs. The action that is executed, to correct the agent
failure, is to remove the dropAll task, because the agent have already fulfilled
its objective.

The next exception occurs when the agent executes the action dismantle.
If the agent tries to dismantle a well where actually there is not any well, the
exception failed location occurs. If this exception happened, the agent which
tried the dismantle understands that there is not a well anymore. Predictive
modeling can failure because the well can already have suffered the dismantle
action by other agents.

The third exception may occur when an agent tries to increase its charge
capacity by the action failed resources while in the plan upgradecapacity.
The upgradecapacity is a task which the agent performs to increase its charge
capacity and costs money of the team to execute. The exception happens when
the team has not enough money to pay for the upgrade. The action that corrects
this error is not performing the upgradecapacity.

The last exception happens when the agent tries to carry more items than
its charge capacity allows. The tasks planning can not predict this exception,



A Task-Oriented Architecture with Priority Queue for BDI Agents 35

because it can occurs when the agent carries items on its compartment and then
begin trying to take others, bursting the capacity, causing the failed capacity.
The solution we found is the agent perform dropAll to empty its lading and
restart charging items.

8 Results

Regarding the results of the competition, we lost the 4 matches but the tech-
nologies and techniques we used sensed a satisfactory performance. Our team
acquired a lot of money by delivering jobs, but because as strategy error the
money did not get converted to wells, finishing the matches with much money
and few points. On the next paragraphs, we will make an appraisal about each
relevant topic which was developed into the source code.

The agents that were designated to search for items on resourceNodes1

fulfilled their task, maintaining the storage fully stocked during the match.
During the craft task, which consists of items building using basic items and
needs two agents in cooperation, also fulfilled their task: all items were produced
and the storage was kept full for all the time. The jobs delivery were partially
succeeded, because it could delivered more jobs during the simulation. Finally,
the wells building and destruction were inefficient, with a low quantity of agents
allocated to these tasks. Because of that our team got much money, but did not
spend it for the wells building.

Using the tasks manager with the tasks planner was an efficient strategy to
add behaviours. The code was structured in order that the main file of the agent
has the manager and imports other files, each one treating a new behaviour.
Structuring the code this way allowed us including, removing and changing
agents functionalities “on the fly”, creating some functionalities variations.

Table 3. Comparison between 2017 edition participant teams architectures and ours.

Team BusyBeaver Jason-DTU Lampe TUBDAI Akuanduba
UDESC

Centralized x x x x X

Decentralized - x - x X

Creation of tasks Fixed Leader Temporary Leader Mother Ship Autonomous Autonomous
respecting
the roles

Communication Jason Jason Mother Ship ROS JADE

priority queue - X - - X

Predictive Modeling - - X - X

Tasks Manager - - X - X

Language Python Jason C++ Python Jason

1 These items comprise the logistics chain base.
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The use of a distributed system on three machines did not presented any
disadvantages, from a technical point of view. However we had problems with
the server communication because of network instability and the agents did not
get to return to the match successfully.

On the Table 3 there is a comparison between some teams that enjoyed the
competition in the previous year and the Akuanduba UDESC team. We utilized
a centralized tasks coordination and a priority queue just like the Jason-DTU
team. We also used tasks planning and tasks manager like the lampe team.

A Team Overview: Short Answers

A.1 Participants and Their Background

What was your motivation to participate in the contest?
Our professor Schmitz had already joined MAPC before and he wished to
introduce the contest into our university. He chosen some students to partic-
ipate with him allowing us to have a different programming experience.

What is the history of your group? (course project, thesis, . . . )
Our group is composed by members of a researching project coordinated by
professor Schmitz. Until 2017, the project focused on how to use multi-agent
systems to coordinate autonomous aerial vehicles to analyse the Auto Vale
do Itajáı hydrography. Starting in 2018, we began focusing to MAPC contest
and studying the multi-agent language Jason and the framework JaCaMo.

What is your field of research? Which work therein is related?
The professor Schmitz has masters and doctorate in multi-agents area and
the students began studying multi-agents in early 2018.

A.2 Development

How much time did you invest in the contest for programming vs.
other tasks (for example organization)?
We utilized approximately 300 h for the programming, and near by 200 h
focusing on other tasks.

creating vs. optimizing your agents?
We spent approximately 150 h for the agents creation. The optimizing task
demanded more work, requiring approximately 350 h.

How many lines of code did you produce for your final agent team?
3093 lines on Jason
1062 lines on Java

How many people were involved and to which degree?
4 undergraduate students and 1 doctor.

When did you start working on your agents?
April, 2018.
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A.3 System Details

How do your agents work together? (coordination, information shar-
ing, . . . )
Our agents were developed on Jason language and JaCaMo framework. The
agents communicate themselves and coordinate through messages trading,
sending help requests to fulfill tasks. Regarding the agents tasks attribution
we utilized a CArtAgO artifact to perform a centralized distribution.

What are critical components of your team?
All the agents have a tasks manager, which maintains the integrity of the
tasks the agents need to perform.

Can your agents change their behavior during runtime? If so, what
triggers the changes?
After started, there is not any change on agents behaviour.

Did you have to make changes to the team (e.g. fix critical bugs)
during the contest?
No, we did not made any change.

How do you organize your agents? Do you use e.g. hierarchies? Is your
organization implicit or explicit?
We made a separation by roles. A drone agent, for example, accomplish a
specific kind of task. There are also some agents who have special jobs, like
performing a calculation or deciding who will fulfill a task.

Is most of your agents’ behavior emergent on an individual or team
level?
The recharge behavior of the agents is on an individual level, because it
ignores every call while it is going to recharge. All other tasks were planned
on team level.

If your agents perform some planning, how many steps do they plan
ahead?
Once the agent receives a task it plans through a steps list how the task will
be accomplished. The quantity of steps they plan ahead depends of each task.
For the agents who have more than one task, each task has its own priority.
So, the agent is only reactive by choosing which task it will perform, selecting
the one with the highest priority.

If you have a perceive-think-act cycle, how is it synchronized with the
server?
The artifact EISAccess receives information of the server. Whenever the agent
realizes change in the step observable property, the thinking cycle gets trig-
gered.

How did you go about debugging your system?
We used console messages.

Which operating system did you use, and is your team portable to
other operating systems?
We used Windows. Since JaCaMo framework is made upon Java, the system
is portable to other operating systems without changes.

What hardware did you use to run your agent team? (RAM, CPU,
disk space, multiple computers, any other notable requirements)
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We used three computers, each one with 16 GB RAM, and processor Intel
Core i7-4770 CPU @ 3.40 GHz 3.40 GHz. Each computer was running a part
of the agents, and only one was running the CArtAgO environment.

A.4 Scenario and Strategy

What is the main strategy of your agent team?
At the beginning, drone agents scan the map to find out the positions of all
the installations (that still can not be seen in map). Meanwhile, other agents
begin searching for basic items (items which do not need to be crafted).
When items quantity is high enough, the agents begin the composed items
crafting (items that can not be gathered in resourceNodes). The agents are
responsible by the jobs. Once they realize that all the required items for one
job are available on the central storage an agent complete this job. About
the wells: an agent was in charge of searching for and destroying enemy wells,
while two agents was building new wells.

How do your agents decide which jobs to complete?
Once the agents receive a job, they verify to find out if all the items required
by the job are available on the central storage. If so, the job is performed,
otherwise it is ignored by the agents.

Do you have different strategies for the different roles?
Yes, the drones are responsible to initially make a map sweep. A part of
the trucks has obligations with the basic items, and a motorcycle has aim
to destroy wells. The remaining agents divide themselves into items builders,
builder helpers and job delieverers.

Do your agents form ad-hoc teams to complete a task?
We separated our agents by agent types performing determined tasks. For
example, drones (and only drones) wwew performing the map sweep, trucks
(and only trucks) were collecting basic items.

How do your agents decide when and where to build wells?
We catched all the points containing installations and the most distant points
of the center were used to create the biggest convex polygon. From them we
calculated the threshold zone, composed by the map totality less the region
of the biggest convex polygon. We used This area to build two wells.

If your agents accumulated a lot of currency, why did they not spend
it immediately?
Because our strategy was composed by building only two wells so the most
part of the money was spent only on upgrades.

A.5 And the Moral of it is ...

What did you learn from participating in the contest?
We learnt the framework JaCaMo, the multi-agents oriented paradigm and
mainly analyse and develop a multi-agents system with a strong coordination
between agents.
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What are the strong and weak points of your team?
Our agents were efficient producing items and delivering jobs, but we failed
on creating wells task. The strong points of our team were that we had an
efficient allocation of tasks to the members of the team. The weak points
was that we had minimal knowledge on the utilized language and about the
operation of the contest. Communication among the failed sometimes. We
also experienced resistance and troubles by using the Version Control System
(VCS).

How viable were your chosen programming language, methodology,
tools, and algorithms?
The JaCaMo framework was chosen exactly because it embraces the devel-
opment of multi-agents systems. Using the ojalgo library helped us on the
optimization tasks. The set of utilized features (JaCaMo, ojalgo, Eclipse)
was suitable for the system development.

Did you encounter new problems during the contest?
Yes, our agents were optimized for a specific map and failed for others utilized
on the contest. We had also troubles with network instability.

Did playing against other agent teams bring about new insights on
your own agents?
Yes, we noticed our bad exploitation of money for producing wells.

What would you improve if you wanted to participate in the same
contest a week from now (or next year)?
We would add into our strategy the creation of more wells and optimize our
agents battery recharge algorithm for the biggest maps.

Which aspect of your team cost you the most time?
Developing the tasks manager. Once it was concluded all the others tasks had
a similar time spent (among them).

Why did your team perform as it did? Why did the other teams
perform better/worse than you did?
Our wells build strategy failed and the other teams reached a better position
than ours because they had a more consistent strategy. On the other hand,
our strategy was focused on obtaining a lot of items and money. On this point
we had an efficient performance.

A.6 The Future of the MAPC

What can be improved regarding the contest for next year?
Optimize the map interface to turn easier viewing the data of each element.
For example, the implementation of a field where one may type the name of
an agent and automatically selected it.

What kind of scenario would you like to play next? What kind of
features should the new scenario have?
We have no idea.

Should the teams be allowed to make changes to their agents dur-
ing the contest (even based on opponent agent behavior observed
in earlier matches)? If yes, should only some changes be legal and
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which ones (e.g. bugfixes), and how to decide a change’s classifica-
tion? If no, should we ensure that no changes are made and how?
We are not in favor of changing the agents after the contest beginning, includ-
ing bugs.

Do you have ideas to reduce the impact of unforeseen strategies (e.g.,
playing a second leg after some time)?
If an unforeseen strategy causes a loss in the match, then the responsible
team loses the match.
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Abstract. We provide a brief description of the Jason-DTU system,
including the overall system design and the tools that we used in the
Multi-Agent Programming Contest. We also provide a detailed evalua-
tion of our system. The strengths of our system include dynamic assign-
ment of agents to groups, enabling flexible use of agents according to
the current situation. Our team performed overall very well and we won
some matches by either a fairly big margin or closely.

1 Introduction

In the present paper we provide a brief description of the Jason-DTU system
that we used in the Multi-Agent Programming Contest (MAPC).

For MAPC 2017 we developed our multi-agent system using two frameworks,
namely Jason [1], a Java-based interpreter for an extended version of AgentS-
peak; and CArtAgO [2], a common artifact infrastructure for agents open envi-
ronments, cf. [9]:

– Jason implements the operational semantics of AgentSpeak, and provides a
platform for the development of multi-agent systems, including several cus-
tomizable features. The extended version of AgentSpeak is a logic based
agent-oriented programming language with Prolog-like syntax, allowing for
succinct agent logic.

– CArtAgO is a general purpose framework/infrastructure that facilitates the
programming of virtual environments for multi-agent systems. The frame-
work is based on the Agents & Artifacts meta-model, introducing high-level
metaphors taken from human cooperative working environments such as
agents, artifacts and workspaces. Artifacts are resources and tools, which can
be dynamically constructed, used and manipulated by agents to realize their
individual or collective goals.

c© Springer Nature Switzerland AG 2019
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For MAPC 2018 we again developed our multi-agent system using the Jason
and CArtAgO frameworks. In particular CArtAgO provided an implementation
of the contract net protocol that we could use to assign missions to agents. We
employ an item reservation system so that agents can reserve items before they
retrieve them. We also employ dynamic groups with designated responsibilities,
which allow agents to coordinate in a flexible manner suitable to the situation at
hand. Our team proved to be reliable, scoring well in most matches and winning
some matches by either a fairly big margin or closely. In addition we identify
key weaknesses in our system that we discovered during the contest, where we
ended at an overall third place.

The name of our team is Jason-DTU. We participated in the contest in 2009
and 2010 as the Jason-DTU team [3,4], in 2011 and 2012 as the Python-DTU
team [5,6], in 2013 and 2014 as the GOAL-DTU team [7], in 2015/2016 as the
Python-DTU team [8] and in 2017 as the Jason-DTU team [9].

The members of the team are as follows:

– Jørgen Villadsen, PhD
– Mads Okholm Bjørn, MSc student
– Andreas Halkjær From, MSc student
– Thomas Søren Henney, MSc student
– John Bruntse Larsen, PhD student

We are affiliated with DTU Compute (short for Department of Applied Math-
ematics and Computer Science, Technical University of Denmark (DTU) and
located in the greater Copenhagen area).

The main contact is associate professor Jørgen Villadsen, DTU Compute
(email: jovi@dtu.dk). We invested approximately 300 man hours until the tour-
nament started. Further details about the previous DTU teams are available
here:

https://people.compute.dtu.dk/jovi/MAS/

2 System Analysis and Design

The main strategy of the team is as follows. At the beginning of each round we
locate the storage and workshop facilities that are closest to each other. These
are then used for the rest of the match as the designated storage facility and
workshop.

Groups. We partition the agents into specific groups. Some of these groups are
fixed for the duration of the match, and some are adjusted dynamically based
on the current situation. There are six different groups:

Scouts. Initially responsible for discovering the locations of resource nodes. Most
scouts are then moved into other groups except a single drone, which is used
to hopefully locate enemy wells. This group initially consists of all drones and
four motorcycles.

https://people.compute.dtu.dk/jovi/MAS/
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Deliverers. Their only responsibility is to deliver jobs. This group initially
consists of two motorcycles, two cars, and one truck. Three drones are added
after scouting ends.

Builders. Responsible for building wells. This group is managed dynamically
so that more agents are added to it when enough massium has been acquired
to build the desired well type. Agents are then removed from it and put back
in their original group after the well is constructed.

Destroyers. These agents, initially three trucks, are responsible for discovering
and destroying enemy wells. Destroyers may be turned into builders.

Gatherers. These agents gather the resource that is currently most in demand
and store it in the storage facility for use by other agents. Gatherers may be
turned into builders. This group initially consists of every agent not allocated
to the other groups. If at some point we have enough items for the rest of the
match, gatherers will be turned into destroyers.

Assemblers. There are two types of assemblers: Primary assemblers and assis-
tants. The primary assemblers consist of three trucks. These trucks take
resources from the storage facility and carry them to the workshop where
the assistants are waiting. There are always three assistants; one of each
other role. The primary assembler then uses the items it is carrying to assem-
ble compound items and the assistants assist it in doing so. This way, all
the required roles are always present for assembly (as all roles are always
present).

Scouting. When the match begins, the primary assemblers move to the stor-
age facility to wait for resources and the assistants move to the workshop. The
scouts, in fact all agents, share a view of what parts of the map have been
explored. Scouts keep moving to the nearest unexplored part of the city until
one of each type of resource node has been located. Three drone scouts then
turn into deliverers and the other types of scouts turn into gatherers.

Assembling. When the scouting phase is complete, the agents start accumulating
resources in the storage facility, and the assemblers start the assembly process.
The goal is to always have some of each type of item available, so that we can
theoretically deliver any job. To accomplish this goal, the primary assemblers
consider all assembled items that we still do not have in storage and pick one. To
avoid picking the same item, assemblers share an index that is then incremented.
If the required items for that item are not present in the storage and some of
them require assembly, we set out to assemble these lower-tier items first instead.
The number of items to assemble depends on the volume of the required items
compared to the capacity of the primary assembler as well as how much we
have in stock. Items are always built from immediate components as this is
most likely more efficient in terms of capacity; that is, we ensure that primary
assemblers always carry only direct dependencies. When primary assemblers
want to assemble an item, they request this publicly. In every round, the assistant
assemblers assist the first primary assembler that requests help. Because the
primary assemblers also spend time driving back and forth between the storage
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and the workshop, this simple mechanism seems to work well in practice, and
starvation is not a problem.

It is important to clarify what we mean when we say an item is present in
the storage. To avoid that assemblers/deliverers steal items from each other,
so that items they expected to be there have been snatched when they arrive,
we employ a reservation system. When an assembler commits to assembling a
number of items, it reserves the required components in the storage. Then, when
other agents consider what is in storage, reserved items are subtracted from the
actual stock. Because the reservations are implemented as a counter for each
type of item, agents “unreserve” the items again when they retrieve them.

This reservation system has the added benefit of making gatherers more
efficient: When choosing which resource to gather next, they take reservations
into account so that the most needed items are gathered first. They then pick
the nearest known resource node to gather from and gather until capacity before
delivering at the storage.

Delivery. When a job comes in, we check the storage to see if the required items
are all present. If they are not, the job is ignored. If they are, the items are
reserved and available deliverers bid internally on how much of the job they can
deliver and how fast. Being able to deliver all of the job is prioritized over doing
it quickly, but speed is used to break ties. The winning agents then commit to
picking up the items at the storage and delivering them to the required facility.
When done, they return to the facility and re-deposit any undelivered items in
case the delivery was unsuccessful.

Well Building. We now turn to the behaviour of the well builders. The desired
type of well is calculated based on what we can afford and the integrity and
efficiency of the available types. Then when we have enough massium to build
a well, we look through all gatherers and destroyers that are trucks and not
currently in the process of building a well and see which one is closest to the
map periphery. This agent becomes a well builder which means that it will plot
a route to the nearest point on the periphery, fully build a well there, and return
to its current task. We use trucks to build wells because they can do it quickly.
We never rebuild wells if they are being destroyed. Several drawbacks of this well
strategy were discovered during the competition and will be discussed below.

Well Destruction. The well destroyers continuously explore random parts of the
periphery of the map, possibly by travelling across it. When the location of an
enemy well is discovered (by anyone) this is broadcast to all well destroyers who
then collectively go there to destroy that well. In the event that a well has already
been targeted, the destruction of the newly discovered well is delayed until the
current target is gone, no matter how many destroyers are actually free or how
far away the wells are. This weakness is discussed under item Sect. 3.2.
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End Game. Finally we turn to what we call the end game. Once we have filled
the main storage to 85% of its capacity (more on this cutoff under item Sect. 3.2),
we estimate that it will contain enough resources to last the rest of the game.
At this point we turn all gatherers into destroyers to be able to destroy as many
enemy wells as possible as quickly as possible. The fact that destroying enemy
wells earns you massium makes this even more worthwhile. The destroyers are
still temporarily turned into well builders when required.

2.1 Remarks

We do not use any existing MAS methodology like Prometheus, O-MaSE, or
Tropos.

Everything runs on a single machine.
We do not coordinate everything through a single agent, but some decisions

are centrally coordinated. An example is what jobs to solve, which is decided
by a single agent based on current stock, and then available deliverers decide
among each other who should deliver which items based on an auction system.
Once this is decided, the agents move completely autonomously, picking their
own route, planning charging on the way etc.

Gatherers choose independently which resource to gather next, but the deci-
sion is based on centralized information of how much of each type is in stock.

Destroyers also coordinate what well to destroy next.
In general, big decisions such as job selection and major pieces of information

such as current stock are centrally coordinated and shared, but each agent enacts
its own role, whether gathering or building a well, without coordinating with
others.

The communication and coordination strategy in the agent team is deter-
mined by the fact that information is shared by the agents running in the same
Java process on different threads.

Coordination of which primary assembler to assist is thus implemented as a
flag that is updated accordingly in each simulation step by the first to ask for
help. This could, and maybe should, also have been done using message passing
in AgentSpeak.

Decisions on who to deliver which parts of a job are implemented using the
contract net protocol provided by CArtAgO. This is implemented through an
artifact that accepts bids and notifies the bidders on whether they won or not.

The key agent features autonomy, proactiveness and reactiveness are imple-
mented as follows:

Autonomy. Each agent runs in its own Java thread with its own AgentSpeak
loop. As such, each agent has its completely own beliefs, desires and goals
that it acts on. Decisions are based on these beliefs and goals which can
be changed by percepts or by announcements by the other agents, but the
decisions are made autonomously.
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Proactiveness. Our job solving strategy is decidedly proactive: We try to build
up a storage of all kinds of items such that we can solve any type of job when
it arrives. On the agent level, agents will automatically incorporate charging
stops into a planned route, if that route otherwise leaves them with too little
charge on arrival. This (mostly) prevents the unfortunate situation of getting
stuck by running out of battery. The feature is implemented in AgentSpeak
as a condition on the route planning goal achievement.

Reactiveness. Agent actions may fail randomly so it is important to be able
to handle that. We do this by making sure to repeat an action if the server
responded with such a failure. This is also done using conditions in AgentS-
peak where e.g. an action is repeated until the latest action result is the
desired one.

2.2 Software Architecture

The system is implemented in Jason with CArtAgO for communication and
coordination. Actions are written in Java and the agent loops are written in
AgentSpeak that call the Java operations.

We developed on Linux and macOS using IntelliJ IDEA. The system was
deployed on a Windows machine during the competition.

We use CArtAgO to provide common artifact infrastructure to the agents,
as well as the runtime platform provided by Jason.

2.3 Main Algorithms

Since we did not get the locations of the resource nodes in the map initially, the
first order of business was to locate at least one of each type of resource node.
To keep track of which parts of the map we had already discovered, we split
the map into a discrete grid of small squares, where each square has either been
searched or not. The grid is kept up to date by marking all squares within an
agents vision as searched each time we receive an update to an agents position.
About half of the map is searched by non-scouting agents focused on other
tasks, doing their job. The rest of the map is explored by scouts, following a
greedy search algorithm. The greedy search algorithm simply finds the closest
unexplored square to the scout agent, and sends the agent in that direction.
Because we only update our explored map when we receive an update from the
server and not when we send out a scout, if agents with the same speed happen
to move to the same point, they cannot stop moving exactly on top of each other.
In rare cases this leads to less efficient scouting.

3 Evaluation

We estimate that around half of the code could be recycled from last year. This
includes almost all of the perception handling and processing as well as initial
agent and artifact setup. Of course new percepts have been added this year
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and some changed, but the overall framework could be recycled from last year.
Incidentally, delayed percept handling was actually one of our major problems
as discussed below and we are still unsure when this error was introduced but it
was probably due to our inexperience with Jason.

This year’s focus on resource nodes over shops, addition of wells, as well as
our own switch of strategy meant that a lot of the agent code could not be
recycled.

3.1 Strengths of Our Agent Team

One of the core strengths of our solution is the versatility of the agents. While
a few of our agents are bound to one role, namely assemblers, scouts, and initial
destroyers, all others are dynamically allocated to the tasks they are needed
for and to which they are best suited. For instance, no agents are idle at the
beginning of a simulation while some resource node types are still undiscovered.
Instead, all would-be gatherers take on the roles of scouts in order to efficiently
discover most of the map before beginning to gather. Simultaneously, if the
starting capital is sufficient to build any type of well, an appropriate number of
gatherers take on the role of well builders. At the start of most simulations this
means that our team starts producing points almost immediately. Furthermore,
because agents are scattered around the map initially, we should discover all
types of resource nodes within very few rounds. Depending on the size of the
map, it is also very likely that we find the nodes closest to our desired workshop.
All throughout the simulation, no specific set of agents is the well building team
– gatherers and destroyers are assigned to build wells dynamically once we have
sufficient money for building a new well. Builders are prioritized primarily by
their skill and secondarily by their euclidean distance to the periphery of the
map.

Another great example of agent versatility is the realization during a simula-
tion that adequate resources have been collected, allowing gatherers to become
destroyers and thus destroying enemy wells much faster and limiting the point
production of the opponent. In all 7 simulations that our team won, this played
a crucial role during the final stages. When nearly every agent scouts, assuming
that agents scout relatively evenly due to the randomness of their paths, enemy
wells are discovered within few rounds, and since so many agents are able to
assist in destruction, the wells do not stand for many rounds and sometimes are
not even completed. This part of the strategy could be refined more, which we
discuss in the next section.

Since the majority of our agents are gatherers for most of the game, we
ensure that we can gather resources evenly according to the amount of base
items required for all higher tier items. Because we know locations of at least
one of each type of resource node, and we collect from the ones closest to our
selected workshop, an even distribution of gathered resources enables us to build
higher tier items within few rounds, which in turn allows us to complete jobs
shortly after the first batch of resources arrives. We assemble higher tier items in
advance to be able to solve as many types of jobs as possible as soon as possible.
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Finally, we decided that spending money on upgrades was not worth the
cost compared to the relatively insignificant boosts to agents that they provide.
While this decision was based on the figures from the example simulations, the
prices during the contest were similar and thus not worthwhile. This means that
we are able to afford more wells, in turn providing us more points.

3.2 Weaknesses of Our Agent Team

End Game Cutoff. During the competition it became apparent that converting
gatherers to destroyers during the end game was a good strategy, especially since
you gain massium by destroying an enemy well. For instance, we could not have
won against SMART JaCaMo on the Berlin map without this strategy. In that
simulation, we reached the cutoff already one third into the simulation because
resource nodes were located so relatively close to the storage. This gave us a
long end-game where we managed to destroy more wells than would be possible
with only the three original destroyers. When the simulation ended, the main
storage was still 35% full. In the other simulations, it was typically even more full
because the cutoff was reached later. As such, we gathered a lot more resources
than we managed to utilize; a waste of effort. One solution to this would be a
smaller cutoff, so that we would switch to the end game earlier but picking too
small a value could make us run out of resources and thus unable to complete
jobs. A better strategy would be to switch dynamically between gathering and
destroying when the storage is respectively under- and overstocked.

Well Destruction. The match against TUBDAI exposed a major flaw in our
strategy for destroying wells: We only use trucks to do so. What the other team
had discovered was that every competition map has places that only drones can
access. Only building on these spots is slower since drones are not efficient well
builders, but it also makes the wells take longer to destroy as drones are not
efficient destroyers either. Since we have no drone destroyers, we could never
destroy TUBDAI’s wells and thus they won every round against us. Even worse,
if we managed to spot one of their wells, our destroyers would be rendered
useless by trying over and over to find a route to the well. This latter problem
is expanded upon below.

Another flaw in our well destruction strategy has to do with over central-
ization: We prioritize one well at a time for destruction, meaning that some
destroyers may move far away from an enemy well to destroy a different one
before then realizing that they have to move back again.

Well Building. The competition revealed several problems with our strategy
for building wells. Firstly, it does not at all take the enemy team into account
when choosing a position for the well. This meant that we might build a well
right in vision of an enemy agent and have it destroyed immediately. In the
worst case we might build a well right by a facility that they used. Furthermore,
while our strategy of building in the periphery meant that wells might not be
easily discovered by accident, it meant that they could easily be scouted by an
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agent with this specific purpose. Several of the other teams did this peripheral
scouting, putting us at a disadvantage.

We chose to use trucks to build wells because they can do so quickly, but only
once they have arrived at the location of the future well. Since trucks are the
vehicles with the lowest speed, it is possibly better to pick another vehicle that
can arrive faster but then spend a little longer building. Doing this also makes
it easier for the enemy to destroy the well before it is fully built, because the
integrity increases at a lower rate, but if they have discovered it, it will probably
be destroyed either way.

When it comes to protecting wells, we do not do anything besides trying
to hide them as described. It might be worth rebuilding them when they have
been damaged by the enemy team. On the other hand, to do this persistently
requires actively monitoring them, either constantly or periodically, to notice
that they have been hurt. We deemed that the agents required for this were
better allocated elsewhere. There is a compromise, however, which is probably
worth doing given the time, namely to rebuild wells if you happen to notice that
they are being destroyed.

Charging. We had a problem with charging on the competition maps. The logic
for charging was inherited from last year and said that if an agent could not
reach its target with 35% charge left, then it should charge at the nearest charg-
ing station before going to its destination. The nearest station might be in the
opposite direction but this was apparently not a problem last year. We changed
this logic to be that, considering only the reachable charging stations, the agent
should go to the one nearest its destination. Unfortunately we still had problems
with agents stranding on the Copenhagen map or going into charging loops in
São Paulo when picking a destination too far away.

Delayed Responses. A major technical weakness has been a delayed response
to percepts which we are still unsure of the origin of, but in all likelihood we
have introduced the error somehow. No matter what, the problem means that
agents will generally try to execute actions too many times because they do not
immediately perceive them as successful and therefore try again. For example,
the agents will try to deliver jobs twice because, despite explicitly waiting for
all percepts to be processed before continuing, they think the previous delivery
failed randomly. More problematically, agents might try to retrieve a number of
items twice from storage leaving no room for the rest of the items. We mitigated
this by only retrying retrieves after all other items had been retrieved, at which
point the inventory of the agent had most likely been updated. This problem
made our agents less effective than they could be as every type of agent lost a
few steps occasionally due to the delayed percepts.

Route Finding. We had another technical problem that related to route finding
and GraphHopper. This problem manifested itself this year where agents could
not always move to named destinations but for resource nodes or exploration
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move to a set of coordinates instead. We use GraphHopper to, given an arbi-
trary point on the map, find the nearest point reachable by road. Occasionally
GraphHopper would refuse to do this and despite inserted bounds the code would
loop indefinitely. When this happened, the agent looking for a route would be
rendered useless. This happened especially to destroyers as they constantly find
random places to go to. The problem meant further that we might not build
wells when we wanted to, since the task was likely given to a destroyer that was
inactive. When the problem became too serious, it could be fixed by restarting
the client, at the expense of having to re-explore the map and forgetting about
any current jobs and item reservations. After a restart, the agents would then
immediately build wells for all the accumulated massium. Furthermore, restart-
ing made logic for tasks such as assembly more complicated as agents then had
to either take the leftover items from before the restart into account or start by
emptying their inventory in the main storage.

Primary Storage Choice. Our strategy of always picking the storage and work-
shop pair closest to each other was designed so that primary assemblers would
not have to move too far back and forth, spending all their time on that instead
of assembling. This simple strategy turned out to be too naive for some configu-
rations of the maps. In unlucky cases, we would pick a pair that might have the
smallest distance between them but were far away from any resource nodes or
other delivery points. This likely wasted more time because gatherers would have
to move further and there are more of these. A more complex criterion should
be used for selecting the storage and workshop to use, preferably something that
takes the placement of resource nodes into account. Doing this, however, requires
postponing the choice to after scouting is done, but may turn out to be a net
benefit in the end.

Jobs. Our attitude towards jobs is that there are plenty of them, so it does
not matter to forgo one because another will arrive. As such, we only pursue
jobs that we already have the items to complete. With the parameters in the
competition this seems to be an overall good strategy, but if the items needed
for jobs are not uniformly distributed but say one item is needed a lot more than
the rest, we do not discover this. As such, what items we choose to assemble and
store should probably be influenced by the job postings.

A real problem with the strategy is that we treat missions in the same way:
we do not bother with them if we do not have the required items when they are
posted. But you get a fine for not completing a mission, so this is probably too
careless a strategy. We have ideas about how to both anticipate this problem
and resolve it when it arrives. First, since we already have a reservation system,
it might be wise to reserve a number of items purely for mission jobs, so that
these can always be solved immediately when they arrive. Dropping another job
because the items are reserved for a mission probably does not matter since the
mission both pays in itself and we avoid the fine. Missing more jobs because of
reserved items might matter though, especially since it can mean getting wells
built later and thus netting fewer points in the long run, so this is a trade-off.
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A second option is to reserve the items only when the mission job comes in and
hope that they can be assembled in time to solve it. Furthermore, we might void
other reservations to prioritize the mission. None of this was implemented due
to time constraints.

Finally on the subject of jobs we turn to auction jobs. We handled these last
year but in the update to the new version of the scenario and our new strategy
the support was lost. As such, we completely ignore auction jobs which is both
an advantage to the opponent team if they bid on one and a disadvantage for
us in terms of solving more jobs. An obvious improvement to our agent team is
to implement bidding on and solving auction jobs again.

Rigidness. Looking at these weaknesses we now turn to a common theme in
some of them. Inspired by last year’s winner we decided to divide the agents
into predefined groups, each responsible for one class of things like gathering
resources or assembling items. As outlined previously, some groups are dynami-
cally managed. However, this division has still become too sharp. Agents cannot
break out of their group unless explicitly asked to, as in the case of well building,
and this rigidness causes situations to arise that seem silly to an observer. For
instance, when a gatherer spots an enemy well it should just start destroying it,
as it can be done in quite few steps. Instead, it just carries on, leaving the nearest
destroyer to handle it, even though this destroyer might be on the other side of
the map. Similarly, deliverers are a fixed category when there should probably
be fewer of them in the beginning to prioritize gathering and more in the end
to deliver more jobs. We have seen how the end game cutoff is too rigid and
the distinction between gatherers and destroyers should instead be a lot more
dynamic, responding to the number of items in storage compared to the demand.
If we were to do things over, we would keep the overall groups but allow much
more fluidity in assignments.

3.3 On the Choice of Programming Language and Frameworks

Our lack of experience with Jason meant that we had to spend some time learn-
ing the language that might have been better spent on testing and improving
the strategy. Similarly, being able to recycle code from last year was both an
advantage because it meant we had to write less code, but getting to know the
code took some time, and, as detailed above, we encountered problems that we
could not figure out how to solve.

However, Jason allowed us to easily assign agents to the groups outlined pre-
viously, write code for each of these in AgentSpeak and have the right agents
perform the right actions independently of each other. This was a great ben-
efit during development as each of us could work on a different type of agent
independently, while still relying on common infrastructure, and then merge the
work without any serious conflicts. The declarative nature of AgentSpeak also
made a lot of the agent behaviour fairly easy to express and quite reliable.
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The contract net protocol provided by CArtAgO worked really well for easily
picking the best deliverers for a job. Each agent makes an estimate for how much
of the job they can deliver and how fast, places a bid and is then told whether
they win or not and act accordingly. Making this estimate is tricky, but the
protocol itself worked without issues.

3.4 Matches

In the following we evaluate the performance of our agents in each of the four
played matches. AppendixA contains visualizations of key figures for each sim-
ulation such as wells owned, jobs completed, etc.

Match 1: Akuanduba-UDESC vs. Jason-DTU. Our opponents had issues
during this match, and so did we. Many were small bugs that had to be hot-
fixed during the matches. For this reason, we were not able to start building
wells, gathering resources, or completing jobs until quite far into the first simu-
lation. Additionally, we had never tested on as large maps as the São Paulo map,
which meant that in the third simulation, most of our agents stopped performing
actions, and we were not able to fix this until after step 600 of the simulation.
In general, this first match was less interesting than the later ones since both
teams had issues, but once we had solved ours, we won every simulation by a
fairly big margin.

Match 2: Jason-DTU vs. Smart JaCaMo. An interesting thing about this
match was that both teams had very similar strategies. In general, the idea for
both teams was to gather resources to one centralized storage facility and build
items at a designated workshop.

In the first simulation, both teams completed jobs at an almost identical
pace. Initially, we were able to create the most wells, but Smart JaCaMo started
finding and destroying them soon after – at the same time as they built many
wells of their own. For the remainder of the simulation, we were only able to
destroy some of their wells, while they continued to find ours, meaning that while
we were generating points, it was always at a slower pace than our opponents.
When we reached 85% capacity in our designated storage facility, we were still
unable to destroy their wells faster than they could build them. While the scores
of each team were almost identical up to step 400, Smart JaCaMo ended up with
roughly double the score.

Our team won the second round after only being ahead in the last 10% of
the simulation. There were several reasons for the success of our agents. Firstly,
we gathered resources incredibly quickly. This was presumably the result of
advantageous resource node locations, and it meant that we stopped gathering
resources before step 400. As a result, every time Smart JaCaMo could build
wells, we destroyed them fairly quickly with our large number of destroyers.
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Simultaneously, they were unable to destroy many of our wells, so once the
amount started rising steadily, we generated score at an exponential pace. The
final key to victory was the fact that our opponents almost stopped completing
jobs around step 600, meaning that while we kept earning massium, their only
source of income was destruction of our wells.

The final round on São Paulo was an easy win for our opponents. Much like
in the first match, dealing with the large map meant that we were unable to
build wells and complete jobs until very late in the simulation. We still gathered
resources and in fact once again almost filled our storage facility, but since we
did not really complete jobs until a very late stage, this was mostly in vain.

Seeing as we had very similar strategies, this matchup was very interesting.
Smart JaCaMo ended up winning the entire tournament, and we were in fact
the only team to win a round against them.

Match 3: Dumping to Gather vs. Jason-DTU. This match was probably
the most equal match we had. Both teams were doing great and in the end it
came down to subtle differences in strategy.

In the first two rounds we successfully completed 3 to 5 times more jobs
than Dumping to Gather, and therefore we acquired more massium. We used
this extra massium to build wells, but while we built more wells our wells had
a significantly shorter lifespan than Dumping to Gather’s. They were far more
effective at tracking down and destroying our wells than we were with theirs.
So much so that even with us earning 3–5 times as much massium we still only
won by 14% and 30% respectively. Furthermore, in round 2 we reached the 85%
capacity in our storage facility. As soon as this happened there was a rapid
decline in Dumping to Gather’s amount of wells, which caused their score to
almost stagnate, securing us the otherwise very close round.

The last round was a somewhat different story. Here, we completed jobs at
a similar rate as Dumping to Gather and built roughly the same number of
wells as them. Because of the much larger map none of our wells were found or
destroyed before 600 steps have elapsed. This gave us a nice head start in points
that Dumping to Gather could not catch up to, even though their wells doubled
within the last 200 steps.

Match 4: Jason-DTU vs. TUBDAI. This match showed the most interest-
ing strategy. TUBDAI’s strategy was to build wells with their drones in places
inaccessible to vehicles other than drones, which made our destroyers’ job way
more difficult and in fact impossible since they were all trucks. TUBDAI also
had a very efficient strategy to find and destroy our wells; we always build our
wells on the perimeter of the map in the hopes of these being less likely to be
discovered, but TUBDAI had one drone assigned to constantly flying around
the perimeter to find wells as they had presumably foreseen this strategy of
well placement, which was also utilized by most teams. The combination of our
inability to destroy their wells and them destroying our wells within 50 steps of
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completion made for a big loss for us. In all 3 rounds they had an exponential
growth in score, while we only had small upticks.

We did however seem to be more effective than them in completing jobs
(specifically in rounds 2 and 3), which displays the strength of our implemen-
tation with regards to job execution. Also, we were able to score points in all
rounds.

4 Conclusion

We have provided a brief description of the multi-agent system that the Jason-
DTU team developed for the Multi-Agent Programming Contest 2018. We reused
the framework that we made in Jason as part of our 2017 system with the
agents modified to suit the new scenario. Using Jason and CArtAgO we could
take advantage of the contract net protocol to coordinate our agents, and the
declarative nature of AgentSpeak made the agent behavior easy to express and
to make reliable. To facilitate coordination we implemented groups that agents
dynamically could enter and leave depending on the current situation, a reserva-
tion system for which agents could reserve required resources before retrieving
them, and strategic phases for directing the team in decentralized manner.

The strengths of our system include the flexible use of agents, as agents are
not locked to a specific purpose for the entirety of a match simulation but can
change group accordingly to the current situation and phase of the strategy,
allowing agents to be responsive to changes in the environment.

We have also identified key weaknesses in our agent system, in particular
regarding which agents we allowed to be used for destroying wells. In our match
against TUBDAI the opposing team built wells at locations only accessible to
drones which we did not use for destroying wells. Our team was efficient at clear-
ing missions and building wells but ultimately could not deal with the opposing
strategy.

Overall our team performed very well though and we won some matches by
either a fairly big margin or closely, ending up at a third place in the contest.

Acknowledgements. Thanks to Oliver Fleckenstein and Helge Hatteland for insights
based on the Jason-DTU team last year.

A Team Overview: Short Answers

A.1 Participants and Their Background

What was your motivation to participate in the contest? To work on
implementing a multi-agent system capable of competing in a realistic, albeit
simulated, scenario.

What is the history of your group? (course project, thesis, . . . ) The
group is a mix of computer scientists and students working on a special course.
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What is your field of research? Which work therein is related? We
are from the Department of Applied Mathematics and Computer Science at
the Technical University of Denmark (DTU). We are part of AlgoLoG, the
Algorithms, Logic and Graphs section, which is responsible for the Artificial
Intelligence and Algorithms study line of the MSc in Computer Science and
Engineering programme.

A.2 Development

How much time did you invest in the contest for programming vs.
other tasks (for example organization)? Most of the time went into
programming and debugging. The desired strategy was settled quickly and
we had little time for testing in the end.

creating vs. optimizing your agents? We estimate an 80–20% split between
creating and optimizing.

How many lines of code did you produce for your final agent team?
5645 lines of Java code and 657 lines of AgentSpeak. We note that some of
the code was reused from last year.

How many people were involved and to which degree? Five people were
involved with three of them doing most of the work and all of the implemen-
tation.

When did you start working on your agents? We started working on the
implementation of our agents September 3, 2018 having started a week earlier
to get the new scenario running.

A.3 System Details

How do your agents work together? (coordination, information shar-
ing, . . . ) Designated responsibilities and information sharing. Occasional
centrally determined designation of other responsibilities.

What are critical components of your team? Agents are split into 4 pri-
mary and mostly static groups: resource gatherers, well destroyers, scouts,
and item assemblers.

Can your agents change their behavior during runtime? If so, what
triggers the changes? Accumulating enough massium triggers a resource
gatherer or destroyer agent to become a well builder instead. Discovering an
enemy well makes destroyer agents target the well instead of scouting. When
the main storage is 85% full, resource gatherers become destroyer agents
instead. When one of each type of resource node is found, initial scouts take
on other responsibilities.

Did you have to make changes to the team (e.g. fix critical bugs)
during the contest? Yes, our code did not work at all for the beginning
of the first match because the simulation was named differently than during
testing causing a parsing error.
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How do you organize your agents? Do you use e.g. hierarchies? Is your
organization implicit or explicit? They are organized in explicit groups
and may be occasionally moved from one group to another and back again.
The groups are not subordinated to each other.

Is most of your agents’ behavior emergent on an individual or team
level? The behavior of the agents is primarily designed rather than emergent,
both at an individual and team level.

If your agents perform some planning, how many steps do they plan
ahead? No planning is performed.

If you have a perceive-think-act cycle, how is it synchronized with
the server? After an agent performs an action it waits for a step event. We
collect every percept in each round and only then announce the step so the
agents start thinking and acting based on the new percepts.

How did you go about debugging your system? Debugging was done very
primitively using print statements.

Which operating system did you use, and is your team portable
to other operating systems? We used macOS and Linux (Ubuntu and
Fedora) during development and ran the system on Windows for the compe-
tition.

What hardware did you use to run your agent team? (RAM, CPU,
disk space, multiple computers, any other notable requirements) For
the contest we used a single computer with the 10-core Intel Core i9-7900X,
Corsair DDR4 PC2666 128GB RAM and Samsung 960 PRO 2TB M.2 PCIe
SSD. We could have used a much less powerful computer if necessary.

A.4 Scenario and Strategy

What is the main strategy of your agent team? Designate different respon-
sibilities to each group of agents, then collect needed resources, build and store
items, and deliver jobs in a parallel, pipeline fashion with intermittent well
building.

How do your agents decide which jobs to complete? If we currently have
the needed items in storage, we reserve them and attempt the job.

Do you have different strategies for the different roles? Indirectly, as
we impose our own groups with distinct responsibilities on subsets of the
agents. We assign agents to subsets depending on their roles. Some subsets
are managed dynamically.

Do your agents form ad-hoc teams to complete a task? No. The group
of well builders is managed in an ad-hoc fashion but there is no in-group
coordination. Item assemblers are always present to assist in assembly and
thus do not require any coordination.

How do your agents decide when and where to build wells? When
enough massium is available to build any type of well, we pick the type that
we deem most effective and designate a free resource gatherer or destroyer
truck to build it at the nearest peripheral point.
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If your agents accumulated a lot of currency, why did they not spend
it immediately? The route-finding logic for the well builders was prone to
loop, rendering an agent useless but this was not detected by the other agents,
so no one else was designated to build the well instead. After restarting the
system, we would immediately build a lot of wells.

A.5 Discussion

What did you learn from participating in the contest? How to implement
a multi-agent system in Jason. The importance of testing on different maps
with various configurations because it is easy to make assumptions that end
up not holding.

What are the strong and weak points of your team? Once we get going
we are efficient at collecting needed resources and building up a storage of
various items. Our team structure is relatively static making us less efficient
in some cases. Some of our logic causes endless iterations of useless series of
actions or no action at all, causing several agents to be stuck.

How viable were your chosen programming language, methodology,
tools, and algorithms? Working with Jason and CArtAgO had benefits
with regards to implementing decentralized decision making and reusing logic
for different agent groups. However, our limited experience with these tools
caused us to use them less efficiently than we would have liked. Our general
methodology seems to provide consistently good results unless the opponent
is able to specifically target our well building strategy.

Did you encounter new problems during the contest? Yes, we encoun-
tered a parsing problem right at the beginning and problems with our route
finding going into infinite loops requiring us to restart those agents. We also
experienced problems when no resource nodes could be perceived initially.
Some faults in agent logic were exposed on the São Paulo map.

Did playing against other agent teams bring about new insights on
your own agents? Yes, in particular it revealed situations where more flu-
idity in assigned responsibility would be beneficial. It also exposed our agents’
obliviousness to the positions of agents from the other team in many cases.

What would you improve if you wanted to participate in the same
contest a week from now (or next year)? Fix the bug where some
percepts were sometimes delayed a round making us less efficient. We would
make the responsibilities less rigid, for instance by dynamically switching
resource gatherers into well destroyers and vice versa depending on demand.
Not build wells near enemy agents and not build them in spots where they
were repeatedly detected, like when an enemy drone scouts the periphery
where we built all our wells. Allow other roles than trucks to build and destroy
wells.

Which aspect of your team cost you the most time? Implementing the
various strategies for the different responsibility groups.
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Why did your team perform as it did? Why did the other teams
perform better/worse than you did? Our ability to start generating
points almost immediately and our group distribution of agents was efficient.
Destroying wells during the endgame caused us to dominate some otherwise
very close games. One team was able to counter our well building strategy
by scouting the periphery of the maps all the time and almost immediately
destroying our wells.

A.6 The Future of the MAPC

What can be improved regarding the contest for next year? We would
like the map to be simpler, so that less time can be spent dealing with naviga-
tion. All reachable locations should be reachable by all roles unless explicitly
specified.

What kind of scenario would you like to play next? What kind of
features should the new scenario have? We suggest making the efficiency
of well nodes depend on the location, for example making hard to reach places
only support low efficiency well nodes. That way there can be a trade-off
between making hard to destroy but inefficient well nodes vs easy to destroy
but efficient well nodes.

Should the teams be allowed to make changes to their agents dur-
ing the contest (even based on opponent agent behavior observed
in earlier matches)? If yes, should only some changes be legal and
which ones (e.g. bugfixes), and how to decide a change’s classifica-
tion? If no, should we ensure that no changes are made and how?
We think bug fixes should be allowed as getting everything tested and working
up-front can be difficult. Classification is inherently difficult, but we believe at
least that changes based on the other team’s behaviour should not be allowed.
Strict guidelines should be made, although they are hard to uphold, and in
the end the team’s conscience has to guide their decisions on changes.

Do you have ideas to reduce the impact of unforeseen strategies (e.g.,
playing a second leg after some time)? It did seem like a shame that you
could gain a big advantage this year by placing wells where only drones could
reach them. A less intricate map design would diminish the impact of such
strategies. The disadvantage with a second leg however is that the results will
likely depend a lot on who has more time available to prepare for it (Figs. 1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12).
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(a) Score (b) Massium

(c) Wells owned (d) Jobs successfully completed

(e) Items stored (f) Job deliveries failed

Fig. 1. Simulation 1 – Akuanduba-UDESC vs. Jason-DTU



60 J. Villadsen et al.

(a) Score (b) Massium

(c) Wells owned (d) Jobs successfully completed

(e) Items stored (f) Job deliveries failed

Fig. 2. Simulation 2 – Akuanduba-UDESC vs. Jason-DTU
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(a) Score (b) Massium

(c) Wells owned (d) Jobs successfully completed

(e) Items stored (f) Job deliveries failed

Fig. 3. Simulation 3 – Akuanduba-UDESC vs. Jason-DTU
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(a) Score (b) Massium

(c) Wells owned (d) Jobs successfully completed

(e) Items stored (f) Job deliveries failed

Fig. 4. Simulation 1 – Jason-DTU vs. Smart JaCaMo
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(a) Score (b) Massium

(c) Wells owned (d) Jobs successfully completed

(e) Items stored (f) Job deliveries failed

Fig. 5. Simulation 2 – Jason-DTU vs. Smart JaCaMo
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(a) Score (b) Massium

(c) Wells owned (d) Jobs successfully completed

(e) Items stored (f) Job deliveries failed

Fig. 6. Simulation 3 – Jason-DTU vs. Smart JaCaMo
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(a) Score (b) Massium

(c) Wells owned (d) Jobs successfully completed

(e) Items stored (f) Job deliveries failed

Fig. 7. Simulation 1 – Dumping to Gather vs. Jason-DTU
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(a) Score (b) Massium

(c) Wells owned (d) Jobs successfully completed

(e) Items stored (f) Job deliveries failed

Fig. 8. Simulation 2 – Dumping to Gather vs. Jason-DTU
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(a) Score (b) Massium

(c) Wells owned (d) Jobs successfully completed

(e) Items stored (f) Job deliveries failed

Fig. 9. Simulation 3 – Dumping to Gather vs. Jason-DTU
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(a) Score (b) Massium

(c) Wells owned (d) Jobs successfully completed

(e) Items stored (f) Job deliveries failed

Fig. 10. Simulation 1 – Jason-DTU vs. TUBDAI
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(a) Score (b) Massium

(c) Wells owned (d) Jobs successfully completed

(e) Items stored (f) Job deliveries failed

Fig. 11. Simulation 2 – Jason-DTU vs. TUBDAI
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(a) Score (b) Massium

(c) Wells owned (d) Jobs successfully completed

(e) Items stored (f) Job deliveries failed

Fig. 12. Simulation 3 – Jason-DTU vs. TUBDAI
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Abstract. The Multi-Agent Programming Contest in 2018 expanded
upon the Agents in the City scenario used in the 2016 and 2017 editions of
the contest. In this scenario two teams compete to score points by build-
ing and attacking wells using realistic city maps from OpenStreetMap.
Wells are the main addition to the new version of the scenario; they
cost money to build and generate score overtime but can be dismantled
by agents from the other team. This, along with other additions, made
it a significantly more complex scenario than before. In this paper, we
describe the strategies used by our team, highlighting our adaptations
and new additions from our participation in the previous years. We have
fully explored the use of all three programming dimensions (agent, envi-
ronment, and organisation) available in JaCaMo, the multi-agent system
development platform that we used to implement our team. Our agents
were able to dynamically switch between organisational roles, allowing
them to promptly respond to changes in the environment and different
opponent strategies. We were the highest-scoring team in the contest and
our multi-agent system turned out to be stable and robust in solving the
difficult problems posed by the contest scenario.
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1 Introduction

The Multi-Agent Programming Contest (MAPC) started in 2005 as an annual
international event. It was created by Dix and Mehdi Dastani [2]. Year after
year, there is an ongoing effort promoted by the contest organisers to make
challenging competition in complex scenarios. This year was the third edition of
the “Agents in the City” scenario introduced in 2016 [1]. That scenario consists
of two teams playing against each other in a map of real city. Each team has a
number of vehicle agents (drones, cars, trucks, and motorcycles) moving through
the streets of the map. The contest goal is to build and keep as many wells as
possible to score more points. In order to build wells, a team needs to complete
jobs assembling and delivering items.

Some of the main changes in relation to MAPC 2017 are as follows. The
number of agents per team increased from 28 to 34 agents. Regarding the auction
jobs, a new rule was added whereby the auction time (and the job ending step)
are increased by one every time a team posts a new bid at the last step of
the auction phase. Agents can buy upgrades on speed, load (carrying capacity),
battery, vision, and skill. A team can build wells for generating scores; now
scores are used to determine the winner of a round. Items are not bought, base
items can be gathered with gather actions and compound item are assembled in
workshops. This year’s competition scenario has three city maps: Copenhagen,
Berlin, and São Paulo. The maps were released 3 days before the contest began.

Our team has been participating in the MAPC [10,11] since 2016. We have
adapted our code from previous years using the JaCaMo programming plat-
form [5]. This year, we further explored other aspects of Jason and Moise.
The source code for our MAPC 2018 team is available for download at https://
github.com/smart-pucrs/mapc2018-pucrs.

This paper is structured as follows: Sect. 2 introduces the JaCaMo platform
and some important architectural elements that we used to develop our strate-
gies. Section 3 we explain some of the specialist behaviour built into our agents.
Section 4 provides a detailed description of our strategy. In Sect. 5 we analyse our
team against the main opponents, and in Sect. 6 we answer the questions posed
by the contest organisers. Finally, we make final remarks and discuss future work
in Sect. 7.

2 Software Architecture

Our team was developed using the JaCaMo1 multi-agent programming frame-
work [5], which combines three different technologies, each focused on a different
level of abstraction: agents, environment, and organisation. We used JaCaMo
in the past two contests that our team participated [10,11], but in this edition
of the contest we made better use of organisation concepts, such as roles and
groups, which had not been used previously.

1 http://jacamo.sourceforge.net/.

https://github.com/smart-pucrs/mapc2018-pucrs
https://github.com/smart-pucrs/mapc2018-pucrs
http://jacamo.sourceforge.net/
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2.1 Jason

Jason [6] is an agent-oriented programming language that implements and
extends AgentSpeak(L) [15]. Agents in Jason are based on the Belief Desire
Intention (BDI) model [7,16], representing the information, motivational, and
deliberative states of the agent.

A Jason agent is an entity composed of a set of beliefs (the agent’s knowledge
about the world), a set of goals (tasks that the agent wants to achieve), a set of
intentions (what the agent is committed to doing), and a set of plans (courses of
action that are triggered by events). Events include changes in the agent’s belief
base, and the addition or removal of goals.

Modules. We first started using Jason modules in our 2017 team [10]. Modules
provide a mechanism to separate units of code, encouraging code reusability and
maintaining the agent’s mental state organised [12]. These modules may contain
beliefs, goals, and plans, all of which are prefixed with the namespace of the
module (e.g., to call the buy well plan from outside of the build module, we
use +!build::buy well). The beliefs that come from the environment are kept
on the default module loaded by Jason. This approach allows us to manage the
agent’s beliefs of particular modules, for example, when advancing to the next
simulation round we need to remove/reset all beliefs in some of the modules.

We also used modules to help agents decide when they are allowed to change
their intentions. In our code, a goal within a module represents the agent’s
commitment to a particular behaviour. For instance, consider an agent that is
committed to building a well. It takes several simulation steps to finish building
a well; at each step, the agent performs an action build that increases the
well integrity. This procedure is repeated until the well’s maximum integrity is
reached. In a step before the well is completely built, the agent receives a new
perception from the environment indicating that the team has enough massium
(monetary unit used in the simulation) to build a new well. This agent is able to
detect that it is already committed to a goal from the build module and should
not change its intention to build a new well whilst it has not finished the previous
one.

Meta-events. Jason meta-events are events related to goal states; each goal
state transition triggers a meta-event in Jason. The general idea comes from
goal lifecycles as put forward in [8], where each goal type is represented by a
state-machine indicating the possible state transitions for goals of that type. A
meta-event carries the current state of the goal in its annotation. The possible
states of a goal in a Jason agent are: failed, finished, resumed, started, and
suspended. For instance, an agent is executing a plan to go to some place, and
then its battery gets nearly depleted. The agent suspends its current goal and
starts a new intention to charge its battery. In this example, a meta-event is
generated for the goal to move somewhere as it transitions from state started
to state suspended, and such meta-event can trigger the adoption of new goals
or the resumption of previous ones.
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2.2 CArtAgO

CArtAgO [17] is based on the A&A (Agents and Artifacts) model [14]. In this
model, the environment is represented as workspaces where agents and artefacts
(entities that provide services to the agents) are situated. An agent that uses
the focus action to focus on an artefact receives its observable properties as
perceptions and is able to perform operations (i.e., actions) made available by
that artefact.

Interaction with the Environment. In the MAPC, the environment is imple-
mented by the server, so we do not program it directly. Instead, JSON messages
are exchanged between the server and the clients (teams) via standard TCP
socket communication. Although it is possible to create a direct communication
with the server using their protocol, there is a standard environment interface
available called EISMASSim [4] that works in the client side and abstracts much
of the parsing and connecting procedures that would otherwise be necessary.

Our agents still need a way of interacting with the server to receive percep-
tions and to send actions in each simulation step. We do so through a dedicated
environment interaction artefact for each agent, called EISArtifact [10,11].
This artefact keeps the observable properties updated with the newest values
from each simulation step, but also filters out any perceptions that our agents
do not use (such as dumps, or route), to avoid overloading the belief base of the
agent.

Besides these features, the EISArtifact of each agent is also responsible
for translating (by instantiating the Translator class) EISMASSim perceptions
to Jason literals that are then added as observable properties, and translating
Jason action literals to EISMASim actions. The environment artefact also sup-
ports on-the-fly routing (by instantiating the MapHelper class) via the use of the
GraphHopper API2. This is the same route planner that is used by the server;
we also use it locally so we do not have to spend an action to calculate extra
routes to be able to reason about them.

Sharing Team Information. Although most of the information is decen-
tralised, via each agent’s environment artefact, there are some situations where
the agents may want to share some information with the rest of the team. For
example, the locations of enemy wells are not commonly known, and enemy
wells are only discovered once they are within an agent’s vision radius. An agent
sends the information that it wants to share with the team to the TeamArtifact,
which is focused by all agents in the team.

Besides the position of enemy wells, our agents also use this artefact to share
the location of resource nodes, which are not initially known when the simulation
starts. The team keeps several data structures (these data structures still have to
be manually updated by each agent) that are used to aid in decision making, most

2 https://www.graphhopper.com/.

https://www.graphhopper.com/
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notably: desired bases is a priority list for base items (resources) that are most
often needed in the manufacturing of assembled items; and desired compounds is
a priority list for assembled items that are most often required for job deliveries.
These two priority lists are further discussed in Sect. 4.8.

Task Allocation Artefacts. As in [10,11], we continue to use the Contract
Net Protocol (CNP) [18], a decentralised task allocation protocol, for allocating
job tasks to our agents. As before, our implementation is based on the CNP arte-
fact available in CArtAgO’s source code. The main difference from our previous
implementation is that this year we also use CNP to allocate delivery tasks,
where multiple agents can contribute to the partial delivery of a job.

2.3 Moise

Moise [13] is a language for the specification of Multi-Agent System (MAS)
organisations, with support for organisation-based reasoning at the agent level.
The specification is done via an XML file containing three different specifica-
tions: structural, functional, and normative. In this edition of the MAPC, we
made explicit use of the first two specifications, and implicitly used organisation
obedient agents at the normative level.

In the structural specification we have defined all possible roles within the
organisation, but groups are created dynamically at runtime. As for the func-
tional specification, our team dynamically instantiates a coordination scheme
(an structured set of goals) to aid in the manufacturing of assembled items (i.e.,
complex items that require different types of resources and/or other items and/or
multiple types of vehicles).

Roles, Groups, and Schemes. Moise allows agents to be part of an organ-
isation by playing specific roles and, by doing so, they become responsible for
some particular goals in the overall process. One of the great advantages of using
a Moise organisation is that it becomes very easy to make agents change roles
to adapt their behaviour accordingly. Our team had the following roles available:

Gatherer: gathers base items from resource nodes.
Builder: builds wells and, if free, helps others roles to assemble items.
Super Builder: focuses only in building wells.
Explorer: explores the map searching for resource nodes and opponent wells.
Drone Explorer: used by each of the four drones to search for resource nodes

and opposing wells within a quadrant of the map.
Super Explorer: focus on searching and attacking opposing wells, upgrading

the skill whenever possible.
Delivery: delivers partial/full jobs by collecting stocked items from storage and

delivering them to the job’s target storage.
Assembler: assembles items.
Assistant: gives assistance to the assembler agent by providing items and/or

the vehicle’s tool.
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Attacker: dismantles wells that belong to the opponent team.

These roles are part of a general group called JaCaMo Team. Also, we define
two types of groups. The first one informs the agents which role that each team-
mate has adopted. The second group is created at runtime for assembling items,
agents that won the tasks for assembling the compounded item adopt the role
of assistant or assembler. Only one agent can commit to being assembler for a
specific task, the others will be assistants. We created a scheme to coordinate
agents during complex jobs that require items to be assembled. Figure 1 shows
the scheme for the assembly of items. A scheme has a set of associated missions
and each mission has a set of goals. We had three missions: mretrieve with a
goal to retrieve items; massemble with a goal to assemble and a goal to deliver
items; and massist with a goal to assist in assemble and a goal to stop assisting.
This is a key feature of our team, so we cover some aspects of how the agents
are allocated to missions and choose their roles in Sect. 4.

Item manufactured

retrieve items prepare

prepare assist

assist assemble assemble stop assist delivery

Parallel

Sequential

prepare assemble

mretrieve

massist massistmassemble massemble

Fig. 1. Assembling scheme.

3 Programming Agent Behaviour

Here we describe the various types of behaviour that our agents display in the
simulation. We use the term “behaviour” to denote a particular course of actions
for simple tasks (in general, a behaviour does not depend on sophisticated rea-
soning about the environment).
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3.1 Exploring

Our exploration process is composed of two phases, and we choose only drone
agents to be responsible for this task. First, we divide the map into four quad-
rants; each of the four drones is responsible for exploring only one quadrant.
As an example of how the quadrant exploration takes place, let us consider the
fourth quadrant of a map. We draw concentric rectangles (see shaded area in
Fig. 2) from the centre of the quadrant. The exploration starts from the inner
rectangle and moves on to the outer ones. Considering the drone’s vision skill
we are able to calculate how many turns are necessary to explore the entire
quadrant (i.e., how many such rectangles will be used). To do so, we only have
to move the drone along the diagonal, using its vision skill range.

Fig. 2. Exploration model for the fourth quadrant on the map of São Paulo.

After traversing the entire quadrant, only two drones stay for the second
phase, in which they must traverse the entire map. In this exploration, they
only go through the map boundaries. Beginning from the southeast and north-
west edges of the map, one goes in clockwise direction and the other goes in
anticlockwise direction. The remaining two drones move on to support assem-
bling items instead.

3.2 Build

Right after receiving the map perceptions, our builder agents perform an eval-
uation of the available well types to rank them according to some criteria. Our
evaluation takes into account the well’s prices (massium cost) and the number
of scores per step that a well type generates (i.e., its efficiency). That rank
is stored in the agent’s belief base, lowest values indicating better cost-benefit
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ratios. When enough massium is available to build wells, builders always choose
the best cost-benefit well type it can afford at that moment. Then it sends action
buy followed by action build. It continues executing the build action until the
well reaches its maximum integrity.

3.3 Attack

Our attacking behaviour is rather simple: it consist in attacking the adversarial
well until its integrity reaches zero (i.e., the well is destroyed). Before starting
an attack, the attacker must go to the well location in order to send the action
dismantle. Which well an agent will choose to attack depends on our strat-
egy, which is explained in Sect. 4.7. It is important to note that our attacking
behaviour does not allow our agents to attack wells built by our own team.

3.4 Defence

We did not implement any defence behaviour into our agents. We followed that
approach because we do not know when a well would be attacked, and letting an
agent protect our wells could result in wasted simulation steps. Also, protecting a
well could result in losing one agent for the rest of the match (if a defending and a
attacking agent have the same skill level, they could be stuck defending/attacking
a well until the match ends).

3.5 Gather

Agents that use the gather behaviour are responsible for collecting resources,
that is, base items that are required to assemble more complex ones. These
resources can be gathered by executing the gather action in a resource node
facility. The gathering behaviour specifies that an agent gathers the resource
until its load (carrying capacity) is full.

3.6 Assemble

To assemble an item, an agent has to execute the assemble action in a workshop
facility, and unless that agent covers all of the prerequisites (is carrying all neces-
sary base and assembled items, and is the only type of vehicle required to build
the item), it will also need the help of other agents that can contribute by exe-
cuting the assist assemble action. The assemble behaviour includes these two
actions, which are only executed when the organisation’s coordination scheme
determines, to ensure that all participating agents are in the same location and
executing their actions in the same simulation step.

Moreover, this behaviour includes a plan for handling failures. Since all agents
have a random 1% chance to fail any action, if an agent fails an assemble (or
assist assemble) action, then the item will not be successfully assembled. The
failure handling plan ensures that the agent tries it again in the next simulation
step.
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3.7 Delivery

An agent that needs to deliver items to complete a job (either partially or
entirely) starts by moving to the storage facility that contains the items that
it has committed itself to deliver for that job. Should the agent be carrying
any other items not related to the job, it will first store them away. This could
occur for two reasons: (i) the agent was gathering items; or (ii) the agent was
delivering a job that was performed first by the other team. After retrieving all
necessary items, the agent moves to the specific storage that was requested in
the job description and then performs the deliver job action.

4 Team Strategies

Here we describe the strategy that our agents adopted in the contest. A strategy
is a set of rules that guide the decision-making process of our team in one
particular aspect of the scenario. Usually, a strategy makes use of one or more
of the types of behaviour presented in the previous section.

It is important that the reader bears in mind that our agents keep changing
intentions and roles continuously, in order to respond to changes in the environ-
ment. However, not every change is allowed. Some roles specify to agents what
other roles they are allowed to adopt and under which circumstances (defined
by the behaviour modules). For instance, a builder is not allowed to change to
any role if it is executing plans from the build behaviour module (i.e., building a
well). After doing everything needed, the agents always tend to return to their
original roles (i.e., the ones determined before the match started). That intuition
guides how all our strategies are designed.

4.1 Reasoning Engine

In order to properly develop agent behaviour and strategies, we need to first
define how they reason about their perceptions of the environment. This is a key
part of our team of agents; without it, we would be stuck in solving bugs when
adding any new behaviour or strategy. Here, we will go deeply into the three
fundamental parts of each reasoning cycle carried out by agents.

Reconsidering Intentions. Any BDI agent should be able to reason about the
environment and change its current intention, if needed. However, sometimes it
is not trivial to implement such feature. In our team, we use Jason internal
actions to drop agent’s desires and intentions. When a new intention appears
(e.g., due to environment changes) the past intentions that aim to send an action
to the contest server should be dropped. To enable this, we drop every desire
and intention that has a goal of sending an action to the server. After all those
intentions are dropped, the agent starts to reason about which new action should
be sent to the server.
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There is a little problem related to this reconsideration: when a new intention
appears but the past one has already sent an action to the server. In this case,
before dropping the old intention, we need to wait for the agent’s belief base
update following perception the environment. If the agent does not do so, the new
intention will start to reason about outdated beliefs, and will potentially choose
a bad action to send to the server. Moreover, old intentions continue consuming
agent’s computing resources and may affect other coordination artefacts (e.g.,
TeamArtifact). Consider the example of an agent at storage0 that has just
stored an item. Its current intention decides to go gather; so it chooses an action
goto and send it to the server. However, this agent is selected to assist another
agent and it must retrieve an item at storage0. This new intention wants every
other intention to be dropped and it will select an action to retrieve the desired
item. At the next step, the agent is not at storage0 because the old intention
has sent a goto action, consequently, the action for retrieving an item will fail.
This is why an intention can only start reasoning at the current step before an
action has been sent or after a new step perception.

Access Tokens for Intentions. Changing intentions is not as simple as it
seems. Some intentions should not be immediately dropped by any other inten-
tion; they should finish a set of particular actions before being dropped. Consider
again the previous example of an agent aiming to store an item at storage0. It
has just sent its action to store the item and is about to update the TeamArtifact
with this information. However, a enemy well is discovered by some teammate
and it starts the process of reconsidering its intentions. If the old intention (the
one that has just stored the item) is dropped, the TeamArtifact will not be
updated with the new stock quantity. On the other hand, if it is not dropped, it
will end up sending another action to the server in the next step. Here, we were
caught on a difficult situation; how can an agent decide the appropriate time to
drop an intention?

To solve this problem, we use a strategy based on access token. Each intention
will receive a token, and every time a new intention emerges trying to send an
action to the server, it may revoke all valid tokens. In this case, only the new
intention will be able to send actions. The old intentions will continue performing
their goals; however, when trying to send an action to the server, they will
perceive that their access token has been revoked. In the light of this information,
all intentions that possess invalid tokens will eventually drop themselves without
sending any further action to the server until then. This was our apparently
successful attempt to solve such a difficult problem.

Waiting for Help Requests. The contest domain requires collaborative action
(e.g., to assemble items); in order to cope with that, agents need to coordinate
their actions at a given simulation step in order to work towards the same goal.
When in need of help (e.g., an assembler agent requiring assistance), agents will
send “requests for help” and when receiving one such request, an agent might
need to change the action it has selected to execute. This raises an interesting
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problem: given a particular step, until when an agent should wait for a help
request before sending its chosen action to the server3.

For that purpose, our agents choose an action based on the environment
changes at the current step. However, it does not send its action, it only keeps
a belief stating which action it is. Then, it informs the other agents that its
action has been chosen. When all agents choose their actions and no assistance is
required, they send their actions to the server. If a help request arrives, an agent
can change its action commitment in order to help another agent. It chooses its
new action based on the request and immediately sends it to the server. It does
not wait for a new help request because it is already committed to help some
other agent at that particular step. Note that, as the last agent has picked an
action (the one that requested help), all agents are free to send their actions.

However, an agent could take a long time to come up to a conclusion; whether
help is required or not. In this sense, we draw a line on how much time agents
should wait for that request. The agents wait for one second before sending its
action to the server. After that deadline, no agent will help another at that
particular step, they must wait for the next one. With this approach we can
minimise useless actions being performed in the environment in case the agent’s
commitment to goals has changed.

4.2 Battery Management

Each movement (goto) action that a vehicle performs costs a certain amount
of battery, as defined by the match parameters. An agent has two options for
recharging its battery: using the recharge action or going to one of the charging
station facilities in the map and executing the charge action. The former can
be used anywhere in the map to try to recharge the vehicle’s battery by using
its solar panels, but it is not reliable since it has a chance of failure, and even
if it succeeds, only recharges a small amount of battery. The latter requires the
vehicle to be in a charging station facility, but it is much more reliable and will
recharge the battery rapidly (each charging station has its own recharge rate
that represents the amount of battery restored in one step).

Our agents take a preemptive approach to decide when to visit charging
stations to recharge their battery. Whenever an agent has a goal to move to a
different position (either a facility or a specific coordinate), it checks if it has
enough battery to arrive in its destination and go to the charging station that
is closest to that goal. If that is not possible, then the agent calculates a path
between its current position and its goal that would allow this condition to be
true, visiting as many charging stations as necessary. A more detailed algorithm
is presented in our team description of the MAPC 2016 [11].

In the MAPC 2017 [10], our agents sent the recharge action whenever they
were idle, but in the current edition (MAPC 2018) our agents would rarely find
themselves idle. This, along with the changes to the recharge action (increased

3 We assume agents cannot simply override their sent actions because once the server
has received all expected actions it advances to the next step.
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chance of failure and lower amount of battery recovered), resulted in more visits
to charging stations. The recharge action was only used when our agents were
idle or if they had zero battery.

Pruning the List of Charging Stations. Agents make constant use of the
list of charging stations that are available in the map. For example, they use it to
decide which charging stations to visit (this happens every time an agent decides
to move to some coordinates), or to estimate their bid for a task in a contract net
(this also happens very frequently). This results in multiple calls to the internal
action used to obtain which charging station is close to certain coordinates (e.g.,
the agent’s current position, the position of the agent’s destination, etc.), and
each call would need to calculate, from the list of all possible charging stations,
the route length from those coordinates to each charging station. Thus, in maps
that have a large number of charging stations (i.e., more than 30), calculating
which one is closest proved to be computationally expensive when dealing with
all of the 34 agents available in MAPC 2018.

To solve this problem, in the start of a simulation round we removed all
charging stations that were close to each other. We had to determine what
“close” meant, and it is important to note that this was a quick fix made during
the contest to ensure that our team could work in large maps, such as the
one in the third round of the contest (the São Paulo map had more than 50
charging stations). In our solution, close refers to at least ten steps (this number
was obtained from testing in the contest maps with 50+ charging stations),
considering the default movement speed of a truck vehicle. For example, in a
map with 50 charging stations, we loop through each charging station (Ci),
calculate which charging station is closest (C ′

i) to Ci, calculate the route length
from Ci to C ′

i, and remove C ′
i if the route length is at least 10 steps away from Ci.

In contrast, previous editions had a much lower number of agents and facilities
(28 agents and approximately 10 charging stations in the third round of MAPC
2017).

4.3 Centre Facilities

Our assemble and delivery strategy mainly depends on the place we chose to
store our items. We did not have enough time to develop an algorithm that
takes into account many storage to decide where is the best location to retrieve
and store items. Therefore, we decided to use a centralised storage to store all
items (i.e., base and compound items). However, just choosing the closest storage
to the centre of the map was not sufficient because our agents may spend many
steps in locomotion from one place to another; in this sense, a centre workshop
should be chosen as well.

We choose those facilities based on the route from the map central coordinates
to the storage plus workshop distance. The lowest route indicates which storage
and workshop should be chosen as central facilities. Once those were chosen, our
agents always use them to complete their tasks.
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4.4 Gathering

In contrast to most other types of facilities which have their position known at
the start of the simulation, the location of resource nodes is not initially known.
An agent receives the location of a resource node if there are any nodes inside
its vision radius. When a new resource node is discovered it is added to the
team artefact so that all agents in the team have access to its parameters (the
coordinates and the item’s name).

Because a team has 34 agents, it is usually the case that when the simulation
of a round starts there are at least some resource nodes known from the initial
position of the agents. However, this is not always true, as in our tests we found
some configurations with no initial resource nodes. If there are no initial resource
nodes available, the gatherers move to a random known facility to aid in the
exploration, and then check if any resource nodes have been discovered.

If there are resource nodes available, then an agent selects the most requested
base item in the desired base-item list and goes to the closest resource node that
has that base item (there can be multiple resource nodes with the same item).
The most requested base item is defined as the base item that is used the most
in the assembly of the items required by jobs. After the agent finishes gathering
the item, it then unloads it on the agreed centre storage.

An agent can choose a particular resource to gather in two different situations:
after the agent has stored the resource it gathered and the desired base-item list
changed, or when a new resource node is detected. In both cases the resource
node selection strategy remains the same.

4.5 Upgrades

All of our agents have the ability to upgrade. However, the decision to upgrade
depends on the strategy adopted by the team as a whole, since they share the
same massium quantity. The upgrades available to the agents are: speed, load,
skill, vision, and battery. To decide whether an agent should perform an upgrade,
it first checks if it has not reached the maximum skill value of its MAPC role
(each MAPC role has its own maximum value for each skill) and if the team has
enough massium. If an upgrade is needed, the agent goes to the nearest shop
and performs the upgrade action stating which upgrade it desires.

4.6 Building Wells

The main purpose of the game is to build wells, but this is not always possible
due to lack of massium. When building a well is not possible, the agents that
have this duty walk around the map. The reason for this strategy is twofold: (i)
it helps to discover adversarial wells; (ii) it spreads the agents throughout the
map, and as a consequence our wells are geographically well spread (i.e., they
are built on very different positions of the map).

When the agents perceive that they have enough massium to build a well,
they move forward to the closest map boundary. We always build wells on the
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edges of the map because it demands more steps for the opponent team’s agents
to get to that location. The first agent to reach a boundary of the map will
be able to build the well. This agent will choose a well type according to the
available massium and our ranking list of well types. This list is designed taking
into account the cost and the efficiency of each type of well. Without massium,
the agents go back to walking around the map.

Sometimes, it can happen that there exists already a building on the position
that an agent wants to build a well. When this happens, the agent plans a route
to the farthest facility and sends only one goto action towards it. If the next
position also has a building in it, the agent repeats the procedure until it finds
a free location to build a well.

4.7 Attacking

When a new adversarial well is discovered, by any agent, it is added to the team
artefact. In this sense, all agents will know exactly the location of that well.
Agents are not attackers by design, they become attackers when some situation
is perceived in the environment (e.g., an adversarial well is discovered). Some
roles allow their agents to become attackers as long as they are not performing
an important task (e.g., building a well).

Agents choose the closest well to go to destroy among the ones listed in the
team artefact. However, they can reconsider an attack in the light of new wells
being discovered, as long as they are still in route (i.e., have the desire to go to
some well). They always choose the closest one. Once a well is destroyed, this
well is removed from the team artefact and, if there is no other well to attack,
the agents return to their previous role and activities.

To attack a well when few agents are allowed to attack (for more details see
Sect. 5.3) upgrades play an important role. An upgrade demands massium, but it
helps to improve attack behaviour. We only need this strategy when the number
of attacker are constrained to few agents, so our attack power is limited.

4.8 Items Management

We delegate to the initiator the responsibility to evaluate whether it is necessary
to gather base items or to assemble compound items. Now, we describe all aspects
that we have used to reason about items.

Stock Management. We use a single centralised storage facility to store the
items collected/assembled during the simulation. Base items can be collected
in the environment whereas compound items need to be assembled from other
items. Both item types (base and compound) are stored at the same facility and
logically maintained in two priority lists in the TeamArtifact. We update items
per job; every time a new job is announced the desired stock quantity is updated
according to the maximum amount of item required by all jobs seen so far. That
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way, we try to keep in stock a greater quantity of the items that are more likely
to be required in future jobs.

Perhaps this is better explained with an example. Consider a simulation in
which we have three types of compounded items, say type 1CI, 2CI, and 3CI. The
first job announced requires two 1CI; at this moment we register in the quantity
list of compounded items (QLCI) the tuple (2, 0, 0). The next job requires one
1CI, one 2CI, then the QLCI is updated to (2, 1, 0). A job that requires five 3CI
is announced, so the QLCI is updated to (2, 1, 5). In this sense, we are prepared
to deliver the worst case of jobs we have seen so far.

Once we have evaluated the desired quantities, each agent selects a base item
to gather based on a probability. The probability depends on its stored quantity
and the desired stock quantity for this item. So, base items with lower stock
quantity compared to its desired stock quantity will have a higher chance to be
gathered (the same principle is used to define which compounded item should
be assembled).

Assembling Allocation. As we use a centralised storage, allocation process is
easier to evaluate. Indeed, our main goal is to transport a number of items from
one place to another. For this purpose we use the CNP [18]. Every time a new
base item is stored or a compounded item is removed from stock, the initiator
evaluates if the stock amount of required items is enough; if it is not, the initiator
reasons about what compounded items are needed at the moment and if the
base items are available. This is done by comparing the real stock quantities of
compounded items with the desired amount. If a particular compound item is
far from its desired quantity, it receives higher priority in assembling.

The agents that are able to participate in this process must play the role of
gatherer or explorer drone; each of them will provide a bid to the initiator
indicating how suitable they are for the tasks. The explorer drone is neces-
sary because most compound items require drones to be assembled; and the
gatherer role usually has the remaining types of agents. Each bid contains the
agent available load, type, and route length (in steps) to the centre storage, to
the centre workshop, and back to the centre storage. With that information,
the initiator can infer how many compound items can be assembled and how
much volume can be transported. After that, for each compound item (sorted
in a priority list), the initiator checks if the available agents can assemble it. If
so, it decomposes the compound item in tasks (for the base items quantities)
and sorts the agents according to their route lengths to the facilities. After that,
it selects a subset of agents that are capable of transporting the total volume
of base items and allocate to them the tasks to assemble the compound item.
If the item cannot be assembled, it takes the next item in the priority list. In
this process, the initiator also indicates which agent is responsible for sending
the assemble action. The final duty of the initiator in this process is to update
the stock amount, so that it will not use allocated items for future allocation
processes.
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Note that, if the allocation process fails for any reason, we pick the next item
in the priority list and repeat the process. If no item could be assembled at the
moment (e.g., base items are missing), we only start the process again when a
new base item is stored, meaning our storage state has changed.

Assembling Compound Items. All agents that have won at least one task
contract are notified and start to work on accomplishing them. To do so, they
must commit to missions in the assembling scheme (see Sect. 2.3 and Fig. 1).
Each agent chosen by the initiator to perform the action assemble for a par-
ticular compound item will create a Moise group to assemble that item and
will adopt the assembler role in this temporary group. It also creates a scheme
for coordinating the assembly process. The agents that will help to assemble
the compound item adopt the assistant role. The assembler must be commit-
ted to the missions to retrieve items and assemble item. The assistant role will
be committed to the mission to retrieve items and assist the assembler. It is
important to note that finishing the mission to retrieve items is the synchroni-
sation point among the agents because all of them will be at the workshop and
can start sending the respective actions to assemble the compound item. After
assembling the item, the assembler agent delivers it to the destination storage.
The remaining agents go back to their previous roles and activities.

Full Storage. During a match, a storage could get full of items due to (i)
the number of required items in our stock; (ii) the adversary team’s strategy.
This situation could brake our team because we use a central storage (chosen
at the beginning of the simulation), and once this storage is full the agents will
not be able to assemble more items and even deliver jobs (e.g., new jobs may
require compound items that are out of stock). To be ready for this cumbersome
situation, we prepared a contingency strategy in which the initiator chooses the
second nearest storage to the centre of the map, and the agents start to use only
that storage. All items stored in the previous storage are ignored by our agents,
and a new stock is built.

4.9 Delivering Jobs

Jobs are essential to earn money in order to build wells, although completing
them is a difficult challenge. To deliver a job we need to gather base items to
assemble compound items that are job requirements. In this sense, we only accept
jobs if we have already fulfilled their requirements (i.e, the required items are
already stored in the centre storage). We delegate to the initiator the responsi-
bility to evaluate and allocate all types of job (we only consider priced jobs and
missions).

Job Allocation. The allocation of jobs is simpler than the assembling alloca-
tion. As we also have to transport items from one storage to another, the initiator
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only opens one CNP for each job delivery. Agents that play the roles gatherer
or explorer will be notified about the CNP. Their bids are evaluated considering
their route to the centre storage (to retrieve required items) and to the desti-
nation storage (to deliver items). Moreover, they also should take into account
the detour to charging stations and the time to fully charge their batteries, if
necessary. An accepted job will be decomposed into several tasks according to
the number of items required by it. After receiving the bids, the initiator starts
allocating tasks to the agents. First, it orders the bid list according to the route
length to the facilities. Then it evaluates how many steps are needed, in worst
case, to transport the items from one storage to another. Based on the total load
of the required items, it starts summing up the agent’s free load on the ordered
list until the free load be greater than the total load of items required for that
job. The agent with largest route length in this set poses the step constraint.
Note that, we can have more than one slowest agent (i.e., largest route length).
As we want to use as few agents as possible, the initiator orders the bid list of
the selected agents according to their free load choosing the agents of larger load
to accomplish the job.

The difference between priced jobs and missions is as follows. In the former,
every time a new priced job is announced, the initiator checks if the required
items are available and starts the allocation process. For the missions, if the
mission is infeasible, the initiator keeps the mission in mind and tries to allocate
it every time a new compound item is added to the centre stock. If the mission
deadline is too short (e.g., 30 steps to conclude) the initiator does not try to
allocate it anymore. Although we did have strategies for auction jobs, we were
not able to fully implement them as part of the team due to lack of time.

Now that we have detailed our task allocation process, we introduce a run-
ning example of how Jason meta-events (Sect. 2.1) could be applied to solve the
problem of selecting which type of allocation process to do first when various are
enabled. Assume that during a step we have a mission opened and not allocated
yet, a regular job is announced, and an agent stored a base item in the stor-
age in the previous step. All tasks are allocated to the agents by the initiator.
This agent is responsible for starting the allocation processes in three distinct
moments, taking into account the following priority order: (i) when there are
enough items in stock to complete a mission; (ii) when there are enough items
in stock to deliver a priced job (regular job); (iii) when there are enough base
items in stock to assemble a compound item. Since all conditions are satisfied in
our hypothetical step above, three intentions are created in our initiator agent,
which must allocate one process at a time in order not to allocate the same agent
to conflicting jobs (e.g., an agent receives tasks for delivering a regular job and
assembling a compound item at the same time).

We explain how the initiator selects an allocation process to execute based
on Listing 1.1. Three intentions are generated and thus three meta-events are
created announcing state started (∧ symbol in line 1); note that all meta-
events are processed before checking the context of any other plan. If there is
no intention trying to execute the allocation process or if the intention has the
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1 ^!pick_task(G)[priority(MyP),state(started)]

2 : not task_priority(_) | (task_priority(P) & MyP < P)

3 <- -+task_priority(MyP).

4 +!pick_task(G)[priority(MyP)]

5 : not requesting_help & (not task_priority(_) |

6 (task_priority(P) & MyP <= P))

7 <- +requesting_help;

8 !G;

9 -task_priority(_);

10 -requesting_help.

11 +!pick_task(G)[priority(P)]

12 <- .wait({-requesting_help});

13 !pick_task(G)[priority(P)].

Listing 1.1. Example of the use of Jason meta-events.

highest priority (lower value in line 2), then we update the belief (using the −+
operator) with the new highest priority (line 3). The intention with the highest
priority adds a belief indicating the beginning of the allocation process and
executes the intended goal. Once the goal has finished (by success or failure),
it removes the beliefs indicating the highest priority and allocation execution
(lines 7–10). If the intention does not have the highest priority, then it gets
to state suspended until belief requesting help is removed. After that, it is
allowed to enter state started and starts over the procedure (back to line 1).
This procedure ensures that only one task allocation process will be executed at
time.

Delivery Failures. The agents that have tasks assigned to them change their
roles to delivery agent and go to the centre storage to retrieve the items they
are responsible for. After that, they go straight to the destination storage to
deliver the items. Once this is done, delivery agents are free to return to their
previous role and regular activities. However, in some situations (e.g., the job
deadline has passed, or the other team has delivered the job first) our job delivery
fails. For those situations we have two possibilities: (i) the agent has made a
partial delivery; and (ii) the agent is on its way to the storage. For (i), the agent
does not try to get the delivered items back, it leaves them in the storage. For
(ii), the agent returns to the centre storage and stores all items it is carrying.
After one of the two cases, the agent is free to change back roles.

4.10 Changing the Round

A match in the MAPC is formed by three rounds, each round with its own map
and parameters. The round transition is seamless from the server perspective,
meaning that there is no downtime between rounds, and as soon as one round
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ends the next one begins. Although it is possible to disconnect the team at the
end of a round and then reconnect again at the start of a new round, we wanted
our agents to be able to autonomously adapt to a round change.

Our environment artefact automatically updates all environment perceptions.
However, there are many beliefs and intentions that would otherwise carry over
to a new round. Our agents do not want to simply erase everything, since there
are artefacts, organisation, and parameter belief’s that they need regardless of
which round it is. Thus, at the end of each round, an agent will abolish4 all
beliefs, except the ones from the default namespace, which is where the beliefs
that we want to keep cross-rounds are kept.

At the end of the round, agents drop all their current desires, which in turn
removes all the current intentions. On a new round, agents set the map param-
eters according to the percepts sent by the server at the start of that round.

5 Match Analysis

In this section we analyse our performance against teams that had the highest
score in the contest: Jason-DTU (third place), Dumping to Gather (fourth place),
and TUBDAI (second place). Our team tied for second place with TUBDAI.
Table 1 shows the overall score in each map for these matches. The number on
the right-hand side is our score. For example, consider the match against Jason-
DTU in Copenhagen. The score for Jason-DTU was 3644 and we got 6800.
Each match had three rounds and each round had a different map (Copenhagen,
Berlin, and São Paulo)5.

Table 1. Overall scores by map; our scores are on the right-hand side; bold font
indicates the winner of the round.

Rival Team Copenhagen Berlin São Paulo

Jason-DTU 3644 : 6800 9142 : 7079 770 : 41324

Dumping to Gather 2303 : 4581 9163 : 62413 4367 : 29543

TUBDAI 515 : 2337 1808 : 5098 600 : 2598

In Fig. 3, we show the score earned by all teams for each map averaged across
all matches in the contest. TUBDAI did a little better than our team in the first
map (the smallest map). Our team has the best average by far in Berlin and São
Paulo, the largest and most difficult maps in MAPC 2018.

4 This is an agent internal action provided by Jason to remove all beliefs that match
the action’s argument.

5 The reader can see all the matches replays at https://multiagentcontest.org/2018/.

https://multiagentcontest.org/2018/
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Fig. 3. Score earned in each map round averaged across all matches.

5.1 SMART JaCaMo x Jason-DTU

Our first match was against the Jason-DTU team. We lost the second round (map
of Berlin) to them; this was also the only round we lost in the 2018 contest. In
the first round, we won with a difference in score of 3156 points. Jason-DTU
used similar strategies to ours. They attacked our wells, completed jobs, and
built wells on map boundaries. The most different aspect between the two teams
related to the exploration. Their explorers (drones) conducted a triangle format
search on each map boundary instead of following a straight line from one corner
to another.

We were winning the second round until step 879. We lost this round because
our builders were prioritising dismantling wells instead of building new ones.
For instance, at step 345 we had enough massium to build new wells, but we did
not do it. We fixed this bug and our builders started to prioritise the construction
of wells, and only attacked wells when there was not enough massium to build
new wells.

We had another bug in the third round, in the map of São Paulo. This was a
very large map with many charging stations in it. Our agents were very slow due
to the evaluation of routes. To evaluate a route we take into account the available
charging stations in the map. We fixed this by limiting the number of charging
stations we considered in the evaluation (for further details see Sect. 4.2).

5.2 SMART JaCaMo x Dumping to Gather

We won all three rounds against Dumping to Gather. The first round was rela-
tively close compared to the last two. In the first round the score difference was
much lower due to the small map size and lower number of facilities. This map
resulted in wells that could easily be discovered and attacked without impacting
the other activities of the agents, such as building and completing jobs.
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In the last two rounds, our team ended up with 64 and 124 wells (respectively)
when compared to their 7 and 2 wells. This suggests two things: they were not
able to win as much money to build wells due to the large number of facilities,
and they were not able to explore large maps properly to detect and attack
enemy wells. We believe this was a consequence of their team not being able to
cope very well with large maps that had many facilities.

5.3 SMART JaCaMo x TUBDAI

Our last match was against TUBDAI, and it was the final match to decide the
winner of 2018 MAPC. We needed to defeat TUBDAI in all three rounds to be
declared the winner; if we lost one round then both teams would tie for 1st place.

It was a tough match because TUBDAI used a completely different “app-
roach” than other participants in the contest. It consisted in building wells in
places that only drones would be able to access. The GraphHopper API was used
by the MAPC server to calculate routes and, due to its limitations, a valid route
for ground vehicles (all except drones) meant that there must be a route, not
necessarily a street route since all agents can indeed move over field and water,
between the current position and the goal position of the vehicle. The point is,
some routes were invalid only for ground vehicles at a few particular locations
in all maps. This was an undocumented feature of the contest and we believe it
was poor sportsmanship of that team to try and exploit teams that were not
aware of this flaw or, as in our case, knew about it but made the ethical decision
to play correctly in accordance with the purpose of the competition rather than
using such a trick as an easy way to win the competition without having to build
intelligent agents that are able to solve the hard problem that was effectively
posed to contestants.

Note, for example, that if all teams decided to take advantage of such undoc-
umented feature or flaw (which of course most contestants realised), only drones
would be used to build and attack wells, while other types of agents would be
limited to contributing to jobs. This would go against, for example, exploiting
the heterogeneity of the roles in the proposed scenario, and more generally would
mean the whole problem created by the organisers of the competition would be
seriously compromised, in the sense that the produced solutions would have little
use for solving similar problems in real applications.

By observing TUBDAI strategy in their previous matches, we took advantage
of our role-based implementation approach and adapted our strategy to counter
attack it. In previous matches, our drones were prioritised for exploration and
item delivery for jobs; since each team only has four drones, it is a scarce resource.
Our adaptation for this match was to switch priorities so that no matter what the
drones were doing, they would prioritise exploration and attacking wells instead.
They also upgrade the skill attribute to be able to increase their attack power.
The other agents remained the same, except that they only decided to attack a
well if there was a valid route to it.

However, even prioritising drones to attack wells we still had disadvantages
in facing TUBDAI. We built our wells in the normal map coordinates, therefore
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accessible to any vehicle. Consequently, any TUBDAI agent could attack them
(drones, motorcycle, cars, and trucks). Conversely, all of ours agents, except
drones, were not able to attack TUBDAI wells.

We had a stable implementation and only had to reconnect once in the final
match, due to latency problems. The movement of our builders throughout the
map allowed us to build our wells spread out; this cost TUBDAI agents many
steps for attacking our wells. Our team was dynamic and the positions where we
built wells was unpredictable. We believe this was a key feature in our victory in
all three rounds.

In the end, despite having the highest score after all matches, a decision was
made that our team should be tied in second place alongside TUBDAI. After
the contest, TUBDAI formally requested to the MAPC organisers to reevaluate
the results of our match. They stated we should not have configured our drones
to prioritise attacking wells, because “drastic code changes” were not allowed
in between matches during the contest. One of the best features of our code
this year was to be modular and adaptable. Through the dynamic use of a
Moise organisations we were able to change our agents’ behaviour by swapping
roles and priorities. Because of the quality of our code, the changes to win this
match required mostly reconfiguring the team roles, it required virtually no
actual programming, so we did not consider this as breaking rule that major
changes in code were not allowed during the competition (fixing normal bugs,
which is allowed, almost invariable requires a lot more programming than this,
and it should be noted that, historically, significant reprogramming of team
strategies has been conducted in practice by many teams in the MAPC, which
has always been taken in good sport by all participants, an in line with the
competition purpose). We claim that this ease way to reconfigure the roles of
agents in the team is an important feature to have in many MAS applications
and that teams should not be restricted from solving these challenges; instead,
strategies that capitalise on map-specific details or undocumented problems that
might be overlooked by some teams should be the ones to be discouraged.

6 Team Overview: Short Answers

6.1 Participants and Their Background

What was your motivation to participate in the contest?
Our main motivation was to improve our knowledge about agent technologies,
and put them into practice in a complex multi-agent scenario. We also wanted
to compare how effective a JaCaMo implementation could be against other
agent development platforms and discover improvements that could be made.

What is the history of your group?
Most of our members are from the SMART (Semantic, Multi-Agent, and
Robotic Technologies) research group at PUCRS. Our main research is in the
area of multi-agent systems, but also on other aspects of Artificial Intelli-
gence such as argumentation, knowledge representation using formal ontolo-
gies, multi-agent planning. This is our third participation in the MAPC.
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What is your field of research? Which work therein is related?
All of our members have a background in Computer Science, and more specif-
ically Artificial Intelligence. Research topics include, but are not limited
to: Mulit-Agent Oriented Programming, Automated Planning, Multi-Agent
Planning, Coalition Formation, Task Allocation, Argumentation, and Ontolo-
gies. The deadline to send an action in each step severely limits the applica-
bility of most of the approaches developed by our research group, for example
decentralised planning [9] and task allocation [3] techniques6, although basic
concepts from these topics guided many of our ideas.

6.2 Development

How much time did you invest in the contest for (for programming,
organization your group, other)?
Approximately 200 h. It includes time spent in meetings, programming, test-
ing, and so on. We used our code developed for the 2017 MAPC as a basis,
which in turn was based on our code from 2016 (all were in the same scenario).
These 200 h were used mostly for improving significantly upon our previous
code, by adding many features required for the new edition of the scenario.

How many lines of code did you produce for your final agent team?
Our final agent team had 6109 lines of code in total, which is approximately
double of what we had in the previous MAPC (2017). From this total, we
had 3176 lines of agent code, 1234 lines in configuration files, and 1699 lines
of Java code. Measurements were taken using Linux wc command plus sed
for removing blank lines. It should be noted that comments and extra lines
that we used to improve code readability were not removed in the numbers
reported above.

How many people were involved and to which degree?
Our team consisted of 8 participants: two MSc students, three PhD students,
one postdoctoral researcher, and two collaborators.

When did you start working on your agents?
We started working on this project on the 11th of April, 2018.

6.3 System Details

How do your agents work together? (coordination, information shar-
ing, . . . )
Coordination for job allocation is based on contract net protocol. An initiator
is responsible for decomposing items, evaluating jobs, announcing tasks, and
allocating tasks to winners. Coordination for task execution is done through
the specification of Moise schemes (i.e., sets of structured social/global goals).

6 Usually, there is state space explosion in such problems, which means finding the
best solution (or at least a bound from the best solution) is often not feasible online
and with short response time as required for the MAPC.
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We also use an artefact that all agents can access to share important informa-
tion. For example, the agent sends the information that it wants to share with
the team to the TeamArtifact, which is focused by all agents in the team.

What are critical components of your team?
The main components of our team are: each agent’s environment artefact,
the contract net protocol artefacts, the team artefact, and the social schemes
from the Moise organisation. The main strategies used by our team are:
exploring the map, task allocation, coordinating agents when retrieving the
same type of item or when current intentions are changed, coordination of
task execution, battery recharge, and attacking wells.

Can your agents change their behavior during runtime? If so, what
triggers the changes?
In our team we use Jason internal actions to drop an agent’s desires and
intentions. When a new intention appears (e.g., due to environment changes)
for any given step, past intentions that aimed to send an action to the contest
server are dropped in favour of the most recent intention.

Did you have to make changes to the team (e.g. fix critical bugs)
during the contest?
During the contest we only did minor bug fixes and optimisation of a few
execution parameters. We also had a particular issue related to TUBDAI
match, as detailed in Sect. 5.3.

How do you organize your agents? Do you use e.g. hierarchies? Is your
organization implicit or explicit?
There are two organisation hierarchies in our team. Agents receive a base
role when the simulation starts; it is defined a priori. They may change roles
depending on the state of the environment (see Sect. 4). However, agents
may also organise themselves in connection to particular jobs. Agents that
are allocated to the task of assembling items form another group having
secondary roles to play. During task allocation, one of the drone agents plays
the role of initiator, but it is also allowed to place bids.

Is most of your agents’ behavior emergent on an individual or team
level?
The behaviour is highly adaptive to the state of the environment, but not
“emergent”. Most of the developed behaviour was created at the individual
level, but we do have a few team aspects for coordination and control pur-
poses, such as which agents are awarded with more than one task, and which
ones are able to retrieve items from the storage. We also have a explicit team
level behaviour defined by Moise schemes.

If your agents perform some planning, how many steps do they plan
ahead?
We developed code that can plan ahead the full route, including any stops
to recharge battery. This was not the case in our participation of previous
MAPCs, where our agents ignored charging stops during their initial plan to
bid for tasks. Thus, each agent plans the whole execution before bidding to
do a task.
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If you have a perceive-think-act cycle, how is it synchronized with the
server?
Synchronisation with the server is done through each agent’s artefact, on a
step-by-step basis. These artefacts receive perceptions from the server, filter
the ones related to their agent, discard any information that the agent has
no use for, and then send them to their respective agent. The agent reasons
about the information received, chooses an appropriate action and sends it
to their artefact, which finally sends it to the server.

How did you go about debugging your system?
Throughout the development phase, we used GitHub to collaborate and track
our progress. We used it for tracking bugs, task assignment, version control,
and especially for developing multiple strategies in different branches, and
then testing them separately and adding the best ones to the master branch.

Which operating system did you use, and is your team portable to
other operating systems?
We used Ubuntu 16.04 to run our code. Our agents are portable to any other
operating system as long as it has Java installed. It is one of the benefits of
using the JaCaMo platform.

What hardware did you use to run your agent team? (RAM, CPU,
disk space, multiple computers, any other notable requirements)
We used an Apple MacPro5, 2 Hexa Core Intel Xeon 2.40 GHz, 32 Gb RAM
(DDR3 1333MHz), 3 TB HDD, NVidia Titan Xp.

6.4 Scenario and Strategy

What is the main strategy of your agent team?
We have two main strategies. The first is to use contract net protocol for task
allocation, so that the agents themselves can decide who is best for the tasks
that a particular job requires. The second is to use an organisation structure
to coordinate item assembly, resource gathering, building wells, exploring the
map, and attacking wells.

How do your agents decide which jobs to complete?
The contract net initiator first checks if the required compound items are in
stock. If so, it starts a CNP to choose agents to deliver the job at the right
storage.

Do you have different strategies for the different roles?
The types of vehicle have an impact in each agent’s bid during task allocation
for jobs. Vehicles that move faster tend to have a smaller route length esti-
mate, making their bids more favourable, as long as they can carry all items
needed for the task. Our drones prioritise map exploration and attacking
wells, although this can be easily reconfigured.

Do your agents form ad-hoc teams to complete a task?
The team responsible for assembling a compound item is formed of all CNP
winners related to that item. These agents should, in principle, be the best
ones available for the task.
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How do your agents decide when and where to build wells?
Our agents always build wells at the beginning of each round, if there is
enough money. There is also two occasions that they could decide to build a
well: (i) after completing jobs; and (ii) after destroying opponent’s wells. Our
wells are always built on the boundaries of the map.

If your agents accumulated a lot of currency, why did they not spend
it immediately?
It could be that they are far from the boundaries of the map; or that they are
saving currency for more expensive wells; or that they are busy with other
tasks with higher priority (such as attacking wells).

6.5 And the Moral of It Is ...

What did you learn from participating in the contest?
We have improved our knowledge of agent technologies, in particular JaCaMo
programming, and how agent techniques can be applied in such a complex
scenario.

What are the strong and weak points of your team?
We believe our strongest point is the use of a role-based implementation. We
can change significantly our team’s strategy by changing only a few lines of
code. Our weakest point is the use of a centralised storage for stocking items.

How viable were your chosen programming language, methodology,
tools, and algorithms?
We did not have any major problems programming our agent team in
JaCaMo. The use of Github for source code management, access control, and
collaboration features, such as bug tracking and wikis, made it a lot easier to
manage our team more efficiently.

Did you encounter new problems during the contest?
There are a lot of random elements in this scenario, making it harder to
properly test all of our team’s code. We had a few minor bugs, but the most
troublesome was dealing with large maps with lots of facilities, with each step
of the simulation making our system slower. To solve this, especially in the
São Paulo map, we had to prune our list of charging stations in order to run
our agents properly.

Did playing against other agent teams bring about new insights on
your own agents?
During the matches with TUBDAI, we observed that their wells were located
in positions accessible only by drones, making it impossible for other agents
to attack. This situation confirmed how easy it was to adapt our team’s
strategies by just switching the roles of our agents.

What would you improve if you wanted to participate in the same
contest a week from now (or next year)?
We would finish implementing missing features. For instance, we did not finish
the implementation of bidding for auctions. Also, we would like to decentralise
the storage we use for stocking items, but this would require a new strategy
to store and assemble items.
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Which aspect of your team cost you the most time?
Developing our assemble strategy, our approach to task allocation (CNP),
dealing with concurrent intentions within the agent’s mental state, and mak-
ing sure that our code worked in as many different situations as possible.

Why did your team perform as it did? Why did the other teams per-
form better/worse than you did?
Our role-based approach was safe and straightforward. We defined each
agent’s role according to the scenario’s requirement, but also reacting to the
environment.

6.6 The Future of the MAPC

What can be improved regarding the contest for next year?
We believe the qualification phase is outdated. Instead of just testing the
connection of a team to the contest’s server, it should also make sure that
the team can accomplish a task; the task here depends on the scenario, for
example, it could be completing a job and building a well in the MAPC 2018
scenario (starting with zero currency).

What kind of scenario would you like to play next? What kind of
features should the new scenario have?
We think it would be interesting if the next scenario was aligned with hard
problems addressing current industrial challenges (e.g., smart cities, industry
4.0, etc.). A feature that would bring more diversity and new challenges would
be to have more interactions between agents of different teams. For example,
sabotaging enemy agents (as in the Mars scenario of past years), trading
items with the other team, or even some kind of cooperative action that
could benefit both teams. We also think open MAS is a very interesting and
difficult topic to be addressed as well.

Should the teams be allowed to make changes to their agents dur-
ing the contest (even based on opponent agent behavior observed
in earlier matches)? If yes, should only some changes be legal and
which ones (e.g. bugfixes), and how to decide a change’s classifica-
tion? If no, should we ensure that no changes are made and how?
Teams should be allowed to make any changes they want to their code during
the matches, as indeed it has happened in practice since the beginning of the
MAPC. Note that if the point of the competition was to have the code fully
complete before the start, as in some other AI competitions, there would be
benchmarks for testing and organisers would collect the code before the start
and run it themselves then just report the winner. Instead, this competition
has always favoured allowing teams to use the time of the competition itself
to improve their own code. This is the whole “fun” of the MAPC.
Real-world environments are extremely dynamic and MAS solutions should
be able to autonomously adapt its behaviour, as well as to allow human oper-
ators to make the required changes as fast as possible. For instance, for a self-
driving car, human operators will certainly want to change agent code when
the car is being serviced. In some applications indeed human intervention is
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not possible at all time. That is why we are programming autonomous agents,
but in any case it should certainly be allowed whenever needed. Restricting
this means in practice to constrain creative solutions that promote modularity
and adaptability, both important features in MAS.

Do you have ideas to reduce the impact of unforeseen strategies (e.g.,
playing a second leg after some time)?
The organisation should not make any attempt to address this issue. The
teams themselves should be able to adapt and counter attack potentially
questionable strategies. Most importantly, for this very reason, the organisers
must not schedule all matches of only one of the teams for the very last day
of the competition. This implies all teams know all other team strategies
except the favoured team that happened to be scheduled to play only the
final matches.

7 Conclusion

The organisers have managed to make the Agents in the City scenario the most
challenging problem yet. Our team managed to solve almost every part of this
brilliant competition problem. Following the strategy of last year’s winning team,
the BusyBeaver, our team only accepts new jobs when all required items for that
job are available in stock. At first, our team cannot deliver jobs, but after some
steps, we can possibly deliver jobs faster than the adversarial teams.

Furthermore, our team strategy was based mainly on organisational roles
from Moise. Using those roles we can enable new abilities in our agents by
simply allowing them to take a new role; this is essentially a change in one line
of code. In future work, we intend to make this role changing more dynamic
at run-time. Moise was also used for the coordination of the agents during
complex jobs. We also improved the Jason programming of our agents. This year,
we focused on manipulating agent’s desires and intentions in order to reach its
changing goals. We also mention our separation of simple behaviour from higher-
level strategies and the use of Jason modules as an important feature to keep
our code easy to be developed. The 2018 MAPC was a very interesting contest
and we hope the next one will be even more challenging.
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Abstract. The second Multi-Agent Programming Contest 2018 team of
the Technische Universität Berlin results from the course Applied Artifi-
cial Intelligence Project that has taken place in the summer term 2018.
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work ROS Hybrid Behaviour Planner (RHBP), which allows developing
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sors.
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1 Introduction

The participation of our team Dumping to gather1 in the Multi-Agent Program-
ming Contest (MAPC) is a follow-up of the approach that has been taken in the
previous edition of the contest [1]. Our team is again the result of a Technis-
che Universität Berlin (TUB) Master’s program course (Applied Artificial Intel-
ligence Project). Similarly, the final contest team is again formed by students
(computer-science, business informatics and related fields) and their supervisors.
During the execution of the project course, the students have been given the tar-
get to make use of the decision-making and planning framework ROS Hybrid
Behaviour Planner (RHBP). RHBP allows to develop distributed multi-agent
systems in the robotics domain. In the course itself we started with a simplified
MAPC scenario only using 12 agents per team and reduced task complexity.
1 Source code and documentation available: https://gitlab.tubit.tu-berlin.de/asp b

ss18-group2/mapc workspace.
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Later, the final solution of the course participants has been extended towards
the contest implementation.

The requirement of using RHBP and how we executed the course is the
same approach that we have used in the previous year [9], but as the framework
RHBP has been further developed in the meanwhile, and we wanted to make use
of the improved performance as well as recently introduced features. Particularly,
the developed solution aimed to evaluate the applicability of knowledge sharing
features that are now available in RHBP.

RHBP is a framework for decision-making and planning that especially tar-
gets the multi-robot domain [8,10]. RHBP allows to describe an agent declar-
atively in terms of its capabilities, like perception through sensors, behaviours
for its actions, and conditions for specifying the outer boundary of the desired
autonomous operation. Additionally, what the agents should aim for is controlled
through the definition of goals. During runtime, RHBP uses a behaviour network
approach for the short-term decision-making, which incorporates a state-based
PDDL planner [15] for long-term considerations. Particularly, the PDDL planner
is used as a guide for the short-term decision-making that is realised with the
behaviour network. Additionally, the required domain and problem descriptions
for the PDDL planner are automatically generated from RHBP behaviour mod-
els and fed into the planner. PDDL planning is not necessarily triggered on every
decision-making step, instead, it is monitored when replanning is required, e.g.
after goals have been achieved, added, and removed or if behaviours did not pro-
vide the expected influence on the world. The Behaviour network for opportunis-
tic decision-making and the PDDL planner form together a hybrid architecture.
Due to the fact that the behaviour models of RHBP do not include static tran-
sitions between the behaviours like for example required in hierarchical state
machine or hierarchical task network approaches, it fosters adaptiveness and
reconfigurability. Furthermore, RHBP is based on the Robot Operating System
(ROS) [17] that is, despite its name, a Linux-based middleware for development,
communication, and deployment of distributed systems.

In 2018, TUB also participated with another team (TUBDAI) that originated
from a Master’s thesis project supervised by the first author of this article. Both
TUB teams shared a similar mission, they started from the same foundation
with a given general infrastructure for communication and conversion of the
simulation protocol based on our existing system from the 2017 contest edi-
tion, they are using RHBP, and are testing recently introduced features of the
framework. However, both teams developed their solution independently, and we
ensured that no details about their strategies and implementations have been
exchanged. In consequence, we could observe that both teams opted for com-
pletely different strategies that also resulted in contrasting performances within
the contest.

In the remainder of this article, we first introduce the new knowledge sharing
features of RHBP in Sect. 2. Right after, our overall team strategy is described in
Sect. 3. Subsequently, details about our application architecture and the declara-
tively implemented behaviour model are outlined in Sects. 4 and 5. An discussion
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of our results is presented in Sect. 6. Finally, we conclude with a summary of our
insights and contributions as well as an outlook on future plans in Sect. 7.

2 Knowledge Base: Sharing Information in a Hybrid
Behaviour Network

Missing points in existing behaviour network architectures and hybrid behaviour
network approaches like [11,13,14] are concepts for information sharing amongst
multiple entities. This is not surprising considering the fact that only [11] is tar-
geting multi-agent systems. Nevertheless, a specific concept is also missing in
the solution of [11] because the presented ABBA architecture is only provid-
ing the abstract concept of feature detectors. How individual agents exchange
information is not considered.

The PDDL-based deliberative planning approaches [5,18] consider the prob-
lem of information sharing to some extent in their centralised solutions. ROSPlan
from [5] uses a completely centralised approach with one central OWL knowl-
edge base that has to be filled by the user of the framework based on a certain
set of interfaces. The framework applies the interfaces to create an ontology that
allows for determining when replanning is required. The SkiROS approach [18]
has similarities to ROSPlan. It has also one central knowledge base, called World
Model, but it partitions the knowledge into continuous, discrete, and semantic
data. Nevertheless, neither ROSPlan nor SkiROS consider information sharing
on an agent level, it functions only as a central input component for centralised
planning.

In contrast to above described approaches, RHBP is also directly aiming
for decentralised multi-robot systems, respectively multi-agent systems. In such
cases, sharing information amongst agents can foster the cooperation and simpli-
fies the creation of solutions for distributed problem solving, as shown in practice
in [3]. As a consequence, it is crucial to allow for a straightforward implemen-
tation in RHBP, too. Examples for scenarios that require sharing information
are, e.g. logistic scenarios as proposed by the MAPC but also general search and
rescue or exploration scenarios, where the agents need to exchange information
about which places have already been visited or which items have been found.

The solution from [3] is applying a blackboard architecture [7]. Despite its
age, the blackboard architecture is still used [16,20] and provides a useful pattern
for the implementation of adaptive intelligent systems. The basic idea behind a
blackboard architecture is that a central knowledge base is periodically updated
with knowledge from specialist agents that are having their own knowledge rep-
resentations.

For RHBP, we followed the blackboard approach and integrated a component
that is called knowledge base. The RHBP knowledge base allows to store arbi-
trary knowledge facts in a shared tuple space. Moreover, the implementation
gives complete freedom of the instantiation. It is possible to have one central
knowledge base, use individual knowledge bases per agent, or using different
knowledge bases for certain agent groups. Likewise, an agent can also access to



104 C.-E. Hrabia et al.

/rqt

/behaviour_model_node

/knowledge_base_node

/manager_node

/planning_status

manager

get_status()
goals

behaviours

/update, /delete, /add

knowledge_base

knowledge_base_widget

rhbp_overview_widget

get_value()

service_calls()

/topic subscriptions /ros_node rhbp_component

start(), stop(), do_step()

enable(), set_priority(), set_timeout(), force_excution()

sensors

/fact_updates

/arbitrary_topics

enable(), set_priority()

(un)register()

(un)register()

pause(). resume(), step()

/parameter_server

get_status()

/discovery

/discovery

Legend

add(), remove(), update()

Fig. 1. RHBP core ROS node and communication architecture. Direction of the edges
correspond to the initiated direction of the data flow.

several knowledge bases at the same time. From the implementation point of
view, each knowledge base is a ROS node, which is identified by its name and
namespace. All agents that know the name are able to store and retrieve informa-
tion from the knowledge base. Furthermore, all knowledge bases are continuously
broadcasting their name on a specific ROS topic for simplified discovery.

The implementation of the communication is also applying common ROS
concepts such as the publish-subscribe pattern. This pattern is mainly chosen to
implement filtering and notification of information. Here, the client agent is able
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to register a search pattern with placeholders for being updated in case desired
tuples are updated, added, or deleted. The corresponding updates are shared over
automatically created ROS topics. Here, a distinct topic for each type of changed
information is created, which corresponds to one topic per pattern for: update,
add, and delete. This becomes especially useful if multiple agents are interested
in the same search pattern, which would be mapped to the same topics, allowing
for notification broadcasts. The communication means are visualised in Fig. 1.
All components of the RHBP are based on the ROS messaging architecture and
are using ROS services and topics for communication.

On the client site of our knowledge base implementation, tuple facts can be
stored in a local tuple cache to guarantee fast access to all required information.
The local tuple cache is also beneficial in situations with interrupted commu-
nication and increases the robustness of the information exchange. All writing
access is implemented with ROS services that are conveniently abstracted in an
own knowledge base client library. The client library supports reading, writing,
updating, and tuple existence checks. The tuple space implementation is based
on the Linda tuple space [6] Python implementation lindypy2, which has been
further extended to enable additional search modes.

RHBP supports as well the information sharing through the ROS parameter
server with specific behaviours and sensors for storing and retrieving informa-
tion. This alternative solution can also be used to implement blackboard archi-
tectures. Nevertheless, the knowledge base implementation has the advantage of
being much more efficient due to the publish-subscribe-patter. In order to access
information from the parameter server, every information piece has to be polled.
Furthermore, the parameter server is less flexible, only one central instance can
be used, and it does not support filtering with search patterns.

The general knowledge base concept and implementation are entirely inde-
pendent of RHBP and can also be used together with other ROS packages. For
this reason, the implementation is also shipped as a separated ROS package.
The RHBP integration is realised with specific classes in a RHBP extension
package named rhbp utils. This package includes special sensor and behaviour
implementations for retrieving and manipulating knowledge in a knowledge base.
This allows the direct integration of shared knowledge in the existing behaviour
model concept with conditions and activators. The provided behaviour and sen-
sor classes are also providing a base for application-specific implementations.
Currently, the library contains a KnowledgeUpdateBehaviour that updates a
certain fact once the behaviour has been activated, as well as various sensor
implementation that allow to check for fact existence, retrieving specific facts
matching a pattern or the number of matching facts.

Furthermore, the knowledge base implementation is accompanied by a GUI
that allows to monitor, inspect, and manipulate the facts during execution. The
GUI is implemented as a rqt plugin widget to conveniently integrate into the
ROS ecosystem. rqt is a Qt-based framework for GUI development for ROS.
It allows to freely configure combinations of visual widget plugins in a one or

2 https://pypi.org/project/lindypy/.

https://pypi.org/project/lindypy/
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many dockable windows. rqt is shipped with several included widget plugins
and can be used to configure application specific monitoring and control GUIs.
The knowledge base monitoring widget is illustrated in Fig. 2. The widget is
implemented based on the described publish-subscribe pattern, too. Moreover,
it also supports the configuration of patterns to filter the visualised information.

Fig. 2. Graphical knowledge base monitoring, inspection and control in ROS. Shown
is a live view of the knowledge shared by our team.

All in all, the RHBP approach for knowledge sharing with the knowledge
base component is modular in terms of distribution and decentralisation, tightly
integrated into ROS and provides as the first behaviour-network based approach
means for sharing knowledge over multiple agents running a behaviour model
for task-level decision-making. Moreover, the knowledge base component allows
to extend the basic behaviour network decision-making lifecycle of RHBP core,
which is corresponding to the MAPE (monitor, analyse, plan, execute) loop con-
cept, to the extended MAPE-K concept (monitor, analyse, plan, execute knowl-
edge) [4,12]. Here, the monitoring is covered by the sensor components that
provide the input for the system and the execution is realised by the specific
behaviour implementation of the selected and executed behaviour. Whereas the
actual decision-making is realised with the behaviour network implementation
that resemble the stages analyse and plan of MAPE. In the MAPE-K concept, a
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knowledge component is required and is used to share data amongst the monitor,
analyse, plan and execution components. In this respect, the presented knowl-
edge base integration concept is exactly enabling the proposed process where the
monitoring components create the knowledge, which corresponds to the knowl-
edge sensors in RHBP. Later in the lifecycle, other RHBP components like the
behaviours as execution component are also able to modify the stored knowledge.

3 MAPC Strategy

The strategy of our team Dumping to gather is team-oriented where all agents
are able to do all types of tasks and independently choose amongst them while
cooperating in order to prevent redundant work. In this respect, all agents are
responsible for exploration and resource gathering.

The implemented main strategy followed the RHBP approach of 2017 with on
demand job processing and item gathering. The implementation is addressing all
job types except for auction jobs. Additionally, the newly required well building
is also executed on-demand if sufficient money is available.

In general, all agents share information about items, facilities, wells, agents,
and visited grid points with each other. The sharing of all permanent information
is comprehensibly making use of the RHBP knowledge base component that we
have introduced in the previous section. All non-persistent information is shared
through dedicated ROS topics in a broadcast-like manner, which is the case
for all information that is automatically updated every simulation step by the
MASSim simulation server.

For the implementation of the exploration, the simulation map area is parti-
tioned into grid cells reflecting the cell size of the simulation. The coordination
of the exploration is implicit: Already visited grid cells are being shared amongst
the agents through the knowledge base so that each agent can choose a not yet
visited point. Here, the agents are choosing the closest not yet visited cell until
all resource nodes have been discovered. However, this implicit self-organised
exploration is a custom scenario specific implementation that does not apply
the existing self-organisation extension of RHBP [8], which would have poten-
tially simplified the realisation of a self-organisation mechanism.

Furthermore, the new MAPC 2018 scenario features upgrades and selling of
item is not used because upgrades seemed too expensive in comparison to the
money required for building wells and selling items was also considered as less
beneficial in comparison to fulfilling entire jobs.

To coordinate the job fulfilment we use a contract-net-based protocol [19] that
enables decentralised coordination. For this reason, each agent has an auctioneer
node, which is responsible for managing the auctioning process amongst the
agents, and a bidder node, which selects and bids for a sub-task. Every incoming
job is assigned to an auctioneer node in a round-robin fashion. The auction is
done in stages. First, the job is decomposed into different tasks according to the
items and required capacity. It is possible that the tasks are linked since they
can depend on a preceding task. For example, if one task contains the gathering
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of an item, and another task contains the delivery of that item to a store, both
tasks should be operated by the same agent. The auctioneer node decomposes
the job and publishes the sub-tasks. Secondly, the bidder nodes of the agents
decide if they are able to do a sub-task by considering their load, the task’s
time restrictions and their already assigned plans and bid for the task with the
corresponding computed plan. Selecting a bid is done by choosing the plan that
will be finished first in simulation step time. In case a job cannot be finished in
time, all unused items are stored in storages and later reused.

The agents are mostly autonomous without any central decision-making.
Although the agents rely on the auctioneer nodes of the other agents to publish
sub-tasks and coordinate the internal auctions, the system is resilient against
failures of individuals due to the round-robin assignment of the job coordinating
agent as described before. In the worst case of a malfunctional or not responding
coordinating agent, the coordination would just fail for one simulation step and
continued in the next step with the next agent.

If an agent is not executing a sub-task of a delivery job, it is having some
idle time. If that is the case, the agents have the following priorities: First,
fulfilling jobs, secondly, building wells if sufficient money is available, thirdly
dismantling wells of opponents and lastly exploring the environment. In addition,
exploration is done by all agents at the beginning of all simulations to discover
all resource nodes that are required to assemble items. Well construction is done
in a group of agents to speed up the construction process. The build-up wells are
positioned around the border of the simulation map to minimise the probability
of accidental discovery by the opponent because the borders are not visited
without explicit exploration order.

All in all, the strategy aims for a distributed solution with autonomous
decision-making of every agent without relying on particular roles for individual
agents.

4 Application Architecture

The implemented general application architecture is very similar to the agent
architecture of 2017 [9] but it is extended with separated ROS nodes for initiating
and participating in auctions used for the contract-net-based coordination. The
diagram in Fig. 3 shows the multi-agent system architecture.

A more detailed architecture and data flow between the particular sub-
components within an individual agent is visualised in Fig. 4. Generally, the
system consists of the following components:

– MASSim Simulation Server
– MacRosBridge
– Agent Node
– Auctioneer Node
– Bidder Node
– GraphHopperProcessHandler
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Fig. 3. Multi-agent system architecture and data flow between ROS nodes (processes)
for three agents. Different line styles are only used for visibility. Arrows indicate direc-
tion of data flow.

Moreover, we see the knowledge sharing infrastructure is only used on the
inter-agent level, while the intra-agent communication relies completely on com-
mon ROS communication means. The RHBP knowledge base is used to store
all information that has to be persistent, in particular we store exploration grid
points, discovered resources, and found opponent wells. The ParameterServer is
only used to retrieve some static configurations after the system is initialised.

Graphhopper is the routing library that is used to determine distance on the
map, which is also applied internally by the MASSim Simulation Server [2]. For
each simulation map a separate GraphHopperMapServer with the corresponding
map data is started on a different port, while the management and coordination
is transparently managed by the GraphHopperProcessHandler.

The MASSim Simulation Server is sending and receiving the information of
the simulation to the MacRosBridge using a XML protocol and a socket interface.
Subsequently, the MacRosBridge can forward the information of the simulation
to the Agent Node. The Agent, which also contains a RHBPAgent component,
has an Agent that receives the information from the MacRosBridge. In turn the
Agent put the information it gained from the MacRosBridge into the Perception
Management. The perception of the world is also associated to the RHBPAgent,



110 C.-E. Hrabia et al.

the Auctioneer and the Bidder, so all component of an agent have access to the
current world perception.

The RHBP Agent is the component used for the operational planning
and decision-making of the agents, particularly, the component initialises the
behaviour model and triggers the decision-making lifecycle in every simulation
step. The world perception is also shared with the Auctioneer Node and the
Bidder Node by the MacRosBridge. Furthermore, the MacRosBridge informs
the Auctioneer Node about an incoming job through ROS topic-based broad-
casts.

As we already described, the coordination of incoming jobs is done with a
contract-net-based approach. Here, every agent can be an auctioneer. By using
the IDs of both the agent and the job as well as the overall amount of agents,
the auctioneer is determined in a round robin manner. This prevents that one
agent might always be the auctioneer. The components Auctioneer Node and
Bidder Node are needed for the coordination of the agents. As stated before, the
auctioneer receives information about an incoming job from the world perception
distributed by the MacRosBridge. The job is then decomposed into tasks in the
Job Decomposer. The tasks are then assigned in the auction.

When a Bidder Node receives the task from an Auction, it elaborates an
operation plan using its TaskHandler. The operational plan considers the route
each agent has to traverse in order to complete certain tasks. For this reason the
TaskHandler makes use of the Graphhopper Routing component.

Subsequently, the operational plan is used as a bid for the auction. The Auc-
tioneer chooses the bidder whose plan has the lowest end step. Sometimes the
duration of another plan might be shorter. However, it must be considered, that
the agent with the shortest duration could be busy. Hence, the agent might fin-
ish later even though the duration of the task is shorter. Therefore, the lowest
end step is chosen. Once the bidder is assigned to a task by the Auctioneer, the
assignment must be acknowledged by the bidder. When this is done, the assign-
ment is given to the Plan-Handler. The assigned plans are given to RHBPAgent
in the Agent Node. Then RHBP is used to execute the operational decision-
making that addresses the given plan by selecting appropriate behaviours. Exe-
cuted behaviours result in an action which is returned to the MacRosBridge. In
turn, the MacRosBridge forwards each action to the Simulation Server so it can
be processed.

5 Behaviour Model

During the contest preparation the team developed an own implementation pat-
tern for RHBP that is called BehaviourGraph. A BehaviourGraph is an abstract
component that is used to group certain behaviours, sensors, conditions and goals
of a higher level task. In contrast to the NetworkBehaviour, which are applied
by the TUBDAI implementation, the BehaviourGraphs are not adding addi-
tional decision-making layers, all behaviours and goals are still registered to the
same RHBP manager. BehaviourGraphs are used only for providing convenience
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Fig. 4. System architecture and data flow between the sub-components of one agent,
which is not considering the knowledge sharing amongst multiple agents.

functions for common initialisations, updating knowledge, adding preconditions
to all contained behaviours, resetting, as well as task-specific functionalities.
BehaviourGraphs particularly simplify modelling by avoiding repeated condi-
tion assignments.

The implemented behaviour model used for decision-making is visualised
in Fig. 5. The behaviour model diagram is a modelling language, respectively
notation, which we developed ourselves to visualise the relationship between the
first level components of a RHBP behaviour model. It was introduced in [9] due to
the reason that existing languages, such as Business Process Model and Notation
(BPMN) or Unified Modelling Language (UML), could not reflect non-sequential
precondition, action, and effect relationships. Notably, the conditions modelled
for the BehaviourGraphs are reflecting the aforementioned main priorities of the
agents. Each main task is modelled in one BehaviourGraph. The implementation
of the job fulfilment and related coordination, see lower left BehaviourGraph, is
integrated similarly to the implementation of TUBDAI 2017. Here, the actual job
tasks are determined by the RHBP-independent coordinator and then operated
by the multi-purpose execute plan and finish plan behaviour. The comparison
between the model of “Dumping to gather” in Fig. 5 and the previous version
of TUBDAI 2017 in [9] is also visualising the increased complexity of the model
with more behaviours, conditions, and goals. In detail, the old TUBDAI model
contained only 5 behaviours and 2 goals, whereas we have 5 BehaviourGraphs
with all in all 5 goals and 13 behaviours. Nevertheless, a detailed comparison
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shows that the increased complexity is deduced from the new scenario that
requires additionally well-building, well dismantling, and exploration. In the 2017
scenario, exploration was not mandatory because resource nodes have not been
required to assemble items.

6 Evaluation

Our team “Dumping to gather” achieved a reasonable performance with their
implementation, resulting in a 4th place. We have been able to address all manda-
tory elements of the scenario and made points and gained money in all simula-
tion matches, see Table 1. We gained a clear win against team UDESC, which
was having general problems with timeouts etc. Furthermore, the match against
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Fig. 5. Behaviour model for agent task execution of Dumping to gather. Behaviour-
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Table 1. MAPC 2018 simulation match results of Dumping to gather. Rating: 3 score
points per won simulation. 1 score point for a draw.

Match Sim 1 Sim 2 Sim 3 Score

Akuanduba-UDESC vs.
Dumping to gather

130 : 6402 0 : 18677 0 : 16936 0:9

Dumping to gather vs.
Jason-DTU

3030 : 3472 9973 : 14332 5847 : 8545 0:9

Dumping to gather vs.
Smart JaCaMo

2303 : 4581 9163 : 62413 4367 : 29543 0:9

Dumping to gather vs.
TUBDAI

216 : 11404 1192 : 25954 798 : 5577 0:9

Jason-DTU has been very close and counterbalanced but was barely lost. The
other two matches against the two best teams of TUBDAI and Smart JaCaMo
have been lost more clearly.

7 Conclusion

In this article, we described how a coordination of a multi-agent team in the
complex scenario of the MAPC can be realised on the foundation of the decision-
making and planning framework RHBP and the underlying communication
infrastructure of ROS. Particularly, we have used our participation in the con-
test to evaluate certain knowledge sharing features that have been introduced
recently into the RHBP framework. We did not gain special insights about if
this approach was optimal or not as our team strategy focused on the wrong
aspects of the scenario. Nevertheless, we have been able to obtain a feasibility
proof of the application of our knowledge base feature in a complex multi-agent
scenario. Finally, our team was able to keep up with the other teams in general.

In the future we would like to evaluate another new feature of RHBP that was
not finalised at the time of the contest. The new feature is a delegation compo-
nent that allows applying automated delegation of tasks including decomposition
and allocation of tasks within a group of multiple agents. This component allows
to increase the decoupling of task delegations in hierarchical decision models to
foster the flexibility and adaptation means.

1 Team Overview: Short Answers

1.1 Participants and Their Background

What was your motivation to participate in the contest?
– The motivation for the participation is twofold. First, we wanted to fur-

ther evaluate the performance of the RHBP framework within a complex
scenario testing certain features. Secondly, students are introduced in the
framework and try to apply it to the challenging scenario.
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What is the history of your group? (course project, thesis, . . . )
– Researchers of the DAI-Labor started to participate in the contest in 2007.

Since then they have contributed to every edition of the contest and have
won four of them using successive generations of the JIAC multi-agent
framework. Our current team originates from the supervisors and two vol-
unteering students from the “Applied Artificial Intelligence Project” sum-
mer term 2018 course of the Technische Universität Berlin. The applied
framework RHBP is developed in one Ph.D. thesis and several indepen-
dent Bachelor and Master’s theses.

What is your field of research? Which work therein is related?
– Our field of research is multi-agent systems applied in the robotics

domain.

1.2 Development

How much time did you invest in the contest for
programming vs. other tasks (for example organization)?
creating vs. optimizing your agents?

– We spend approximately 300 h on the scenario-specific programming and
40 h on the team coordination and contest registration. Moreover, we
have done almost no optimisation due to the fact that we still finalised
foundational functionality until the contest started.

How many lines of code did you produce for your final agent team?
– 8600

How many people were involved and to which degree?
– Christopher-Eyk Hrabia (PhD Student at Technische Universität Berlin)

- Supervision, technical consulting, RHBP improvements, MAPC com-
munication infrastructure

– Marc Schmidt and Marie Weintraud (MSc Students at Technische Univer-
sität Berlin) - Implementation of everything MAPC 2018 scenario specific
like agent behaviour and strategy development.

– Axel Hessler (Post-Doc at Technische Universität Berlin) was responsible
for the infrastructure and overall administration.

When did you start working on your agents?
– Mid April 2018 (begin summer term)

1.3 System Details

How do your agents work together? (coordination, information shar-
ing, . . . )
– All information is shared amongst the agents. Information sharing differ-

entiates in information that has to be persisted and information that is
automatically updates and provided by the simulation server.

– For each job one agent takes responsibility and coordinates the task
decomposition and allocation with a contract net protocol.
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What are critical components of your team?
– Our most critical components are the special ROS nodes implemented

to exhibit the contract net protocol, namely the auctioneer and bidder.
Furthermore, the new development pattern BehaviourGraphs for RHBP
has also been critical for the executability of our team.

Can your agents change their behaviour during runtime? If so, what
triggers the changes?
– No, but our agents adjust their behaviour based on the selected behaviour

implementations, which is selected through decision-making and planning
of RHBP.

Did you have to make changes to the team (e.g. fix critical bugs)
during the contest?
– Yes, we did not consider to have that many wells and needed to bugfix

our code to be able to create more wells. The reason for this was that
in the contest setup all jobs allowed to gain considerable more money in
comparison to the sample configuration, shared before the contest, which
made building wells much easier.

How do you organize your agents? Do you use e.g. hierarchies? Is your
organization implicit or explicit?
– We have an explicit organisation through contract-net protocol for the

job fulfilment.
– The auctioning agent (job responsible agent) is selected round robin based

on the job-id.
– Drones are responsible for exploration after an initial exploration stage

where all agents are implicitly coordinated exploring the map
– In general, all agents are allowed to fulfill all tasks

Is most of your agents’ behavior emergent on an individual or team
level?
– We apply a hybrid planning and decision making framework (RHBP

- ROS Hybrid Behaviour Planner) for the execution of the agent
behaviours. This results in adaptive and reactive behaviour for individual
agents, based on the current perception. But the deliberative part still
tries to optimize/plan for shortest routes and resource management as
charging. All in all this might lead to emergent behaviour on individual
and team level.

If your agents perform some planning, how many steps do they plan
ahead?
– Agent plan ahead as far as possible to determine if a job can be completed

within one simulation (max. 1000steps)
– RHBP planner has a configurable limit for planning steps, here 1000 steps.

If you have a perceive-think-act cycle, how is it synchronized with the
server?
– The decision-making and planning cycle, which we consider the “think”,

is initially triggered by the “request action” (“perceive”) from the server
for each agent. If answering a request action takes too long the agents are
dropping the request and are starting over with the most recent request.
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How did you go about debugging your system?
– We have not used special tools besides RHBP rqt plugings. In general we

applied manual logging and stepwise debugging with PyCharm.
Which operating system did you use, and is your team portable to

other operating systems?
– Ubuntu 16.04 - Everything (every Linux) that supports ROS will work.

What hardware did you use to run your agent team? (RAM, CPU,
disk space, multiple computers, any other notable requirements)
– Virtual Machine with 32 GB RAM, 4 Cores Intel(R) Xeon(R) CPU E5-

2697A v4 @2.60 GHz, no special hard-disk.

1.4 Scenario and Strategy

What is the main strategy of your agent team? Our strategy is based on
the following parts.
– Exploration with drones
– If jobs can be fulfilled they are targeted with highest priority.
– If no job is in queue and enough money for well building is available, wells

are build
– If neither jobs are targeted or wells are built, opponent wells are attacked
– In all other cases the agents are randomly exploring the resource nodes

and already build wells.
How do your agents decide which jobs to complete?

– Only mission jobs and priced jobs are addressed.
– We do not have a cost-benefit analysis, we try to complete jobs in the

order they appear.
– If jobs can be completed in time they are processed

Do you have different strategies for the different roles?
– Partially yes, in our strategy drones are responsible for exploration but

in general everything else is done by all agents.
Do your agents form ad-hoc teams to complete a task?

– No, all job completion is pre-planned by the coordination agents.
How do your agents decide when and where to build wells?

– The selected position depends on the location of the agent. Building takes
place if enough money is available and no other job tasks are due, see
above.

If your agents accumulated a lot of currency, why did they not spend
it immediately?
– The reason is that our solutions puts highest priority on job completion,

this can potentially result in an accumulation of money .
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1.5 And the Moral of It Is ...

What did you learn from participating in the contest?
– Focusing on strategic aspects would have improved the result.
– The sample scenarios have been much more difficult than the final contest

configurations, which made it difficult to configure our agents appropri-
ately.

– We should focus less on job completion because it was not as crucial as
expected.

– Effective well building/dismantling showed out to be more important.
What are the strong and weak points of your team?

– Strong: job completion
– Weak: We have not been able to implement a cost-benefit analysis of

jobs and our behaviour model is rigid not providing enough freedom for
adaptation.

How viable were your chosen programming language, methodology,
tools, and algorithms?
– The chosen approach with Python, ROS, RHBP was suitable and per-

formed well in our opinion.
Did you encounter new problems during the contest?

– Yes, we pre-planned to less possible well building locations (we build
around the border of the map)

Did playing against other agent teams bring about new insights on
your own agents?
– Yes, our job execution performed well, but the locations for well building

was not well chosen and leaded to long travel times for the agents.
What would you improve if you wanted to participate in the same

contest a week from now (or next year)?
– We would put less priority on job completion and concentrate on more

effective well building.
Which aspect of your team cost you the most time?

– Understanding this question as time of steps in the matches. Our agents
spend most time for the on demand job completion as well as time for
travelling between the well building locations.

Why did your team perform as it did? Why did the other teams
perform better/worse than you did?
– Because we focused to much on fulfilling the scenario of the contest instead

of developing a unique strategy.

1.6 The Future of the MAPC

What can be improved regarding the contest for next year?
– Providing similar preconditions for all participants: Hardware limitations,

connection, match appointments.
What kind of scenario would you like to play next? What kind of

features should the new scenario have?
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– It would be interesting to have the possibility of eliminating opponent
agents as well as a dynamic agent creation and not a fixed amount of
agents.

– The sample configuration should be closer to the actual contest configu-
ration to allow for selecting the strategy more effectively.

Should the teams be allowed to make changes to their agents during
the contest (even based on opponent agent behaviour observed in
earlier matches)? If yes, should only some changes be legal and
which ones (e.g. bugfixes), and how to decide a change’s classi-
fication? If no, should we ensure that no changes are made and
how?
– No, all used code should be submitted before the contest. Nevertheless,

bugfixes could be allowed through reviewed pull requests.
Do you have ideas to reduce the impact of unforeseen strategies (e.g.,

playing a second leg after some time)?
– Everything that is not exploiting bugs in the simulation and is possible

with the given API should be allowed. Unforeseen strategies should be
encouraged to make the contest more interesting. The challenge should be
to create autonomous agents that are performing well also in unexpected
situations.
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Abstract. While the decision-making and planning framework ROS
Hybrid Behaviour Planner (RHBP) has been used in a wide variety of
projects, newer features have not yet been tested in complex scenar-
ios. One of those features allows creating multiple independent levels
of decision-making by encapsulating a separate behaviour network into
behaviours. Another one is an extension for implicit coordination through
self-organisation. This paper discusses our system that was developed for
the multi-agent contest 2018 using RHBP, while especially making use
of newer features wherever possible. Our team TUBDAI achieved the
shared top spot in the contest, showing that RHBP and in particular the
new features can be used successfully in a complex scenario and mea-
sures up to the multi-agent frameworks, other teams have used. Espe-
cially, when a last-minute change to the contest environment required
us to integrate substantial strategy changes in last-minute, it turned out
that RHBP fostered adaptiveness during our development.

Keywords: Artificial Intelligence · Autonomous systems · Multi-agent
programming · Decision-making · Planning · Self-organisation

1 Introduction

The multi-agent programming contest (MAPC) provides a testbed for evalu-
ating multi-agent research results in an applied and competitive setting since
many years. Participating in the contest has long tradition at Technische Uni-
versität Berlin (TUB) (e.g. [4–6]). The motivation for participation in the contest
was always twofold. First, to use it as a platform to evaluate our multi-agent
frameworks in complex multi-agent problems of the contest. Secondly, to use the
competition setting as a platform for introducing our research to new users like

c© Springer Nature Switzerland AG 2019
T. Ahlbrecht et al. (Eds.): MAPC 2018, LNAI 11957, pp. 120–143, 2019.
https://doi.org/10.1007/978-3-030-37959-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37959-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-37959-9_6


ROS HBP: Behaviour Hierarchies and Self-organisation the MAPC 121

students, which apply our frameworks either in their thesis projects or project
courses. In 2017, we have introduced the framework ROS Hybrid Behaviour
Planner (RHBP) [11] for the realisation of our contest team [10], which has its
roots in the robotics domain.

In particular, RHBP is applied for the implementation of the individual task-
level decision-making and planning of the agents as well as the coordination
amongst the agents. RHBP is targeting the multi-robot domain and is based
on the Robot Operating System (ROS) [17] framework that provides means
for deployment, decentralised execution, and communication. The RHBP com-
bines the advantages of reactive opportunistic decision-making and goal-oriented
proactive planning in a modular hybrid architecture. Decision-making is based
on behaviour networks [14] that allow for dynamic state transitions and the def-
inition of goals, while the deliberative part is realised on the foundation of the
Planning Domain Description Language (PDDL) [15] and the particular planner
Metric-FF [7].

The reason for evaluating RHBP in a simulated comparable abstract multi-
agent scenario instead to real robot applications is that real robot applications
require to address a huge overhead of other domain-specific challenges, such as
hardware failures, very uncertain environments, and difficulties in basic robotic
capabilities like object detection and localisation [8]. Due to the reason that
RHBP is a generic framework for decision-making, planning and coordination
of multi-robot systems the evaluation in the MAPC, which focuses on task-level
agent control, allows us to concentrate on these research aspects.

Since 2016 the contest scenario has been using the discrete and distributed
last-mile delivery simulation (MASSim) [2] on top of geographic map data from
different real cities (OpenStreetMap data). The simulation allows competition
of several teams consisting of independent agents. Delivery jobs are randomly
generated and split into three categories: Mission jobs are compulsorily assigned,
auction jobs are assigned by prior auction and regular jobs are open to everyone.
Jobs are monetarily rewarded on fulfilment and can only be accomplished once.
Moreover, jobs consist of several items which can be purchased at shops (2016–
2017) or gathered in resource nodes (2017–2018), as well as stored in warehouses.
Furthermore, the 2018 edition of the contest scenario was extended with the
obligation of building wells to generate score points required to win matches.
Building wells required money that is earned by completing delivery jobs or
selling resource items in a shop. The well-building extension in 2018 fosters more
interaction and direct competition between the teams aside from increasing the
overall search space for finding the most optimal solution. Moreover, the number
of used agents per team was increased from 28 to 34 agents.

In the 2018 participation, the goal of our team was to evaluate more recent
features of RHBP that have not been tested before in a complex application.
Team TUBDAI focuses on two features in particular. First, so-called Network-
Behaviours that allow creating multiple independent levels of decision-making by
encapsulating a separate behaviour network into behaviours of the behaviour net-
work model of RHBP. Secondly, the extension so data for implicit coordination
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through self-organisation [9]. The extension so data incorporates the concept of
a virtual gradient space as a common data structure and communication mean
for various self-organisation patterns. Additionally, the so data package already
contains several abstract implementations of self-organisation patterns, while the
particular integration with RHBP is enabled through the package rhbp selforga,
which contains special sensor and behaviour components.

The participants of the 2018 edition of the contest consisted of five interna-
tional teams, with two independent participations from TUB, namely TUBDAI
and Dumping to Gather. Both teams from TUB are applying a RHBP-based
implementation as a follow-up of the introduction of RHBP in the 2017 contest
[10]. However, both teams did only share the starting point with general com-
ponents developed in the year before, like the protocol proxy mac ros bridge
and the integration of the routing library GraphHopper. Despite these general
components, both teams developed their solution completely from scratch, which
resulted in two very different general strategies. Both teams have been supported
by the technical supervision of the first author of this article. Nevertheless, strate-
gic decisions or implementations were never communicated or shared between
both teams. The resulting implementations are both highly decentralised with all
agents taking operational decisions autonomously using RHBP behaviour mod-
els. Only the evaluation of published delivery jobs is done in centralised com-
ponents in both cases. Moreover, both teams apply an own contract-net based
implementation for the coordination of the assembly and delivery for fulfilling
the jobs.

The remainder of the paper is structured as follows. In the Sect. 2, we analyse
and summarise the particular challenges of the MAPC 2018 for our team. Next,
Sect. 3 outlines and describes our general team strategy, whereas Sects. 4 and 5
provide details about our implemented architecture and coordination approach.
Subsequently, Sect. 6 describes the behaviour model we have implemented for the
autonomous decision-making of our agents making use of our RHBP framework.
In Sect. 7 we describe and discuss our contest results based on statistics and
observations we made in the individual matches. Finally, Sect. 8 concludes this
work with a summary of the contributions as well as emphasising future steps
we plan to address.

2 MAPC 2018 Challenges

The complex contest scenario offers a comprehensive environment to design,
implement and evaluate a multi-agent system. This results in some unique chal-
lenges which are covered in this section.

In the last two years, cooperation between agents became a bigger focus of the
contest. While in preceding scenarios, it was possible to develop viable solutions
without cooperation between agents by letting each agent independently work on
parts of the problem, now there are key actions that require cooperation between
multiple agents [1]. In this year, jobs only use items which need to be assembled
first, requiring the implementation of complex cooperation and communication
between agents.
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Some environmental parameters are generated randomly, which results in
much variation between simulations, thus making it harder to develop a solution
that can work well with different configurations. The number of possible finished
products to build can vary quite substantially between simulations. Strategies
like proactively assembling and hoarding items work best with a few finished
products, while a higher number of finished products makes just-in-time gath-
ering, assembly and delivery more efficient. The maps differ in size and street
layout, therefore changing the necessary effort for discovery as well as the effec-
tiveness of different agent roles. These and other differences in the unknown
contest configuration make it harder for teams to develop solutions that work
well in all cases.

Following [12] the characteristics of multi-agent systems are having incom-
plete information or capabilities, no global system control, decentralised data,
and asynchronous computation. In that spirit, a primary goal of participating in
a multi-agent contest should be to develop a decentralised solution. Nevertheless,
some previous submissions had shared data structures between agents and used
a central planner, which decided on actions for all agents. The individual agents
were then only responsible for making sure that enough battery is available to
perform those predefined actions. The benefit of such systems is that they are
easier to implement, as not much effort has to be put into agent communication
and coordination. Furthermore, the effectiveness of such systems can be observed
for example with last year’s winning submission by BusyBeaver [16]. However,
our goal was to decentralise as many decisions as possible, letting each agent
autonomously decide what to do next, except on those few cases where this
is impossible (e.g. job execution). Moreover, this decentralised approach allows
that each agent could potentially be run on a different machine.

Another challenge is the large number of possible options for strategy deci-
sions. The diversity in facilities and actions allow for many different strategies.
It would take a massive development effort to make use of all available facilities
and actions, so it is necessary to evaluate options and implement only the most
promising ones.

During each simulation, a team has to compete against another team on
the same map, which results in unique challenges. Regular job rewards are only
awarded to the team, who can perform the job faster, therefore making job deliv-
ery speed a major design goal. The competitive setting also requires weighting
actions of increasing one’s own score with actions to decrease the opponents’
score. Also, because of the broad spectrum of available strategies, it is harder to
design a system, that performs well against varying opposing strategies.

One limitation imposed by the contest is that actions have to be submitted
at latest four seconds after a step percept is published. Due to the limited time-
frame, it is hard to find the optimal solution and a compromise has to be found
between an ideal decision-making process and one, that can be finished quickly.
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3 Strategy

The main strategy of the TUBDAI implementation is a stockpile with feedback
strategy. Here, it is the goal to gather resources, assemble items in advance,
and fulfil jobs that can be performed with the available item stock. First, the
agents explore the environment until a resource node for each base item is dis-
covered. Then all agents start to gather resources to achieve a stock of base items
depending on the assigned priority for further assembly. Agent groups are formed
dynamically to assemble items once the agent capacity is exceeded. The jobs are
then prioritised according to a calculated reward. The reward is given by a ratio
of required work and revenue. If a job reaches the defined reward threshold and all
items of the job are currently in stock, the job is executed. Furthermore, urgent
item demands such as induced by mission jobs, which would result in fines if not
fulfilled, are also considered on demand based on feedback from other higher-
level components like the job planner by dynamically adjusting the priorities of
the respective items. The feedback allows reacting and changing the priorities of
finished products and base items, which results in better adaptability to changes
on demand, while still maintaining the efficiency of a general stockpile strategy.
The advantage of this stockpile with feedback strategy is a fast job performance,
enabling decentralised decision-making by individual agents to avoid a single
point of failure, while also enabling on-demand execution based on the priority
feedback. A disadvantage is that assembled finished products may not match
any job and cannot be used, hence potentially wasting time resources.

Even though we aimed for a decentralised solution, the rating of jobs is cen-
tralised in one agent for simplification because there is no difference in between
the job perception amongst the agents and the cost-benefit analysis is as well
agent independent. The distribution of task from the decomposed jobs is then
realised using a contract net protocol [19] involving all agents in a decentralised
and distributed fashion. All other components are completely decentralised, too.
Each agent has its own RHBP-based decision-making and planning component.

For the execution of jobs, an algorithm involving a chain of decisions has been
developed. At the end of the chain, the scenario-specific job planner inspects
which items currently provide high money returns. This information is con-
verted into a finished product prioritisation. This prioritisation is then used by
the next link in the decision chain, the assembly decision. The agents always
decide autonomously which items should be assembled next and share their
decision with the others. This decision is mainly based on what is needed for job
execution as well as on the available items, and the finished products that are
already assembled. In turn, this decision creates a prioritisation of base items
that are most needed for assembly. These prioritisations are then used by the
gathering algorithm to decide which base item to gather. An important point
is that the taken decisions are exchanged amongst the agents to avoid conflicts
and unwanted parallel work.

One advantage of the stockpiling strategy is that it creates job idle time,
respectively agents available for dismantling, building, and exploration because
not all agents are always striving for fulfilling the currently available jobs. Par-
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ticularly, this additional freedom for individual context-specific decisions of the
agents is fostering the adaptation and reaction to varying opponent strategies.

The exploration of the environment is implemented with the so data library
of RHBP in a decentralised and self-organised manner. The framework exten-
sion of RHBP containing so data has been introduced in [9] and enables implicit
coordination through various self-organisation patterns. Self-organisation pat-
terns are reusable design patterns abstracted from specific self-organisation algo-
rithms, respectively self-organisation mechanisms [3]. The patterns are classified
in movement patterns, decision patterns, and basic functionality patterns.

Basic Functionality Patterns are represented by gradients. Gradients are sub-
ject to spreading, aggregation and evaporation. The exchanged gradient mes-
sages (SoMessages) contain the position where they were emitted, as well as
other information and metadata, necessary for advanced patterns to base their
calculations on. Movement Patterns are used to control movement of the agents
to allow for implementation of behaviours like foraging, chemotaxis, and explo-
ration. Decision patterns allow agents to make collective decisions. The frame-
work provides samples of these behaviours including Quorum Sensing, Morpho-
genesis and Gossip.

In our MAPC implementation, each agent emits its own location with SoMes-
sages, so others do not explore these points as well, while selecting a target
location close-by that has not been visited for the longest time. The exchanged
SoMessages are filtered in a decentralised manner in each agent by the SoBuffer
module instance of the so data library, which provides the base for the calculation
of a discrete heat map. Likewise, the heat map is used to select the appropriate
exploration target locations, while the initial exploration phase is stopped after
resource nodes for all available base items have been discovered. Later during the
match, one drone agent is also exclusively patrolling the map border to discover
opponent wells, which would be difficult to discover accidentally during normal
job operation.

The general idea behind the well-building is to build wells at locations that
are difficult to discover or difficult to reach by the agents of the other team to
neglect the requirement of an explicit well defence strategy. The introduction
of well building in MAPC 2018 further emphasised the role differences between
the agents. Particularly, some locations are only reachable by drones (e.g. some
parks, rivers) because there are no close-by roads to allow other agent roles
approaching these locations. These locations make great spots for wells as only
drones can reach them, so the opponent would need to use drones for dismantling.
This strategy has the advantage that not all opponent agents are able to attack
our wells as well as that drones in general are very inefficient for dismantling
purposes, although this is at the same time a trade-off for the well building
because our drones are also inefficient in building up wells. Nevertheless, the
strategy has the potential to confuse the opponent because it either needs special
consideration or advanced adaptation capabilities.

Dismantling opponent wells keeps the opponent from gaining score points and
it allows to gain additional money for further construction of one’s own wells.
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After an opposing well is discovered, the dismantling behaviour is executed by
all agents that are not busy building wells themselves. In particular the agents
are prioritising the closest near-by wells for dismantling. The dismantling itself
is not further coordinated amongst the agents thus combined or split attacks by
groups of agents emerge from the situation.

4 Architecture

The agent architecture of TUBDAI is based on the 2017 approach but replaces
big parts of the ROS-topic-based communication in the perception with custom
information provider modules, which are feeding the information more directly
into RHBP sensors. The information providers avoid some communication over-
head coming from ROS communication to increase the efficiency of the imple-
mentation. Furthermore, the TUBDAI implementation shares information dis-
tributively with the self-organisation library so data of RHBP.

Figure 1 shows the general architecture as well as how the individual compo-
nents communicate. The MASSim contest server is running the actual contest
simulation and sending the percepts to all agents as well as receiving chosen
actions using an XML-based protocol. Each mac ros bridge receives percepts
for one agent, converts them into ROS messages and publishes them into the
ROS runtime environment, respectively communication space. Additionally, the
bridge takes action messages from the agent and converts them back into an
XML format to be passed to the contest server. Each agent in the simulation
requires a dedicated mac ros bridge and one RHBP Agent. RHBP Agent is a
ROS node and is responsible for receiving environment information from the
mac ros bridge, deciding for the best action and communicating the decision to
the bridge. Hence, a RHBP Agent follows the sense-think-act paradigm within
the ROS runtime environment. Each RHBP Agent consists of several compo-
nents, including RHBP components like Behaviours, Sensors, Effects, Condi-
tions and Goals. Additionally, we make use of the DecisionPattern from the
self-organisation extensions. Particularly, we also use the pattern not only in the
way the framework intended it but extensively for all kinds of decisions that
do not necessarily involve self-organisation. Basically, this pattern allows to eas-
ily share further calculated sensor information between behaviour objects and
decision objects. Thus, a certain calculation can be used twice, first, for the
task-level decision with RHBP, secondly, for the particular implementation of a
behaviour. The design pattern that was used to implement DecisionPattern was
found to be very useful in many situations and therefore was reused for other
components. The DecisionPattern is not visualised in the architecture diagram,
it is used within the particular behaviour implementations or condition objects.

Providers are responsible for most interaction between RHBP Agent and
other components like mac ros bridge and the graphhopper node. They subscribe
to messages from the mac ros bridge, pre-process them and keep them ready for
various components to use. This reduces the number of subscribers, and also
improves performance by eliminating duplicate code execution that would be
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necessary if each component would subscribe individually. Providers can also
send actions to the mac ros bridge and interact with the graphhopper node.

The GraphHopper node is responsible for calculating distances between given
locations. This allows other components to estimate the steps required to achieve
their goals.

The manager component of RHBP retrieves the status of all RHBP com-
ponents and is responsible for the task-level decision-making that leads to the
execution of a behaviour at the end. The chosen behaviour then emits an action
through the Action Provider to the mac ros bridge, which sends it to the MAS-
Sim server.

Conditions  

Percept (XML)

MASSim Server

Action (XML)

Percept
(ROS messages)

mac_ros_bridge

Distance response
GraphHopper Node

Distance request
Distance Provider

Provider

Action
(ROS messages) Action Provider

Sensor

Behaviour Manager

RHBP
Framework

RHBP
Agent

ROS
Runtime

Environment

SoMessages

virtual gradient space
(so_data)

SoMessages
SoMessages

Goal

Fig. 1. Component communication diagram showing how information flows between
components. The architecture is simplified to only show components that interact with
others.

5 Coordination

In this section we are providing more details about our different approaches for
coordination within our implementation. First, we explain the explicit coordina-
tion with a contract net that is used to coordinate the job fulfilment. Secondly,
we discuss details of the implicit coordination for the self-organised exploration
and information gathering about opponent well locations.
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5.1 Contract Net

A Contract Net with Confirmation Protocol (CNCP) [18] is used to coordi-
nate assembly and job coordination explicitly. This light-weight flexible and fast
protocol provides scalability, robustness against errors, adaptivity and few com-
munication bottlenecks [13]. For both of these tasks, one agent initiates the
coordination by starting an auction, not to be confused by the auction jobs of
the simulation, and requests help from other agents. Next, other agents that are
able to help send bids. Our implementation is limited to one coordination taking
place at a time. If another agent has already initiated coordination, the agent
has to wait until the current coordination cycle is complete before starting its
coordination.

Assembly
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Find
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execution
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execution

Task
execution

TaskProgress
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Fig. 2. Interaction diagram of assembly with one initiating manager and two partici-
pating contractors.

When an agent has filled up its stock, it initiates the assembly process by
starting the assembly manager (see Fig. 2). The manager requests all other agents
to send bids to help with assembly. If another agent wants to coordinate, it first
has to wait until the current coordination cycle is finished. Other agents then
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respond with their bid which includes their location, role, and the items they
can offer. Once the manager decides for a combination, it sends assignments to
all chosen agents. The agents then return an acknowledgement and the assembly
can start. Participating agents coordinate assembly by sending a TaskProgress
message. At any time, agents can interrupt assembly by sending a StopTask
message, which forces all participating agents to stop their task. This could
happen, when one agent receives a job task, which has a higher priority than
assembly tasks.

The job coordination strategy works similar to assembly coordination strat-
egy. It is initiated when a job component decides for a job to execute. The
JobManager then sends out an initial request. Each agent that doesn’t have an
active task checks if they can help with the task and respond with the items they
can offer. The manager then looks for a combination of agents that can perform
the job and sends out an assignment to all of them. The agents confirm by send-
ing an acknowledgement back and the task is started. Similar to the assembly
CNP, the task can be stopped at any time by emitting the StopTask message.

5.2 Self-organisation

The self-organisation extension for RHBP allows agents to share information
about their environment in a virtual gradient space, which can then be used for
implicit coordination [9].

In our implementation agents publish self-organisation messages whenever
they move around to let all other agents know which parts of the map they
have visited. The receiving agents then aggregate these messages from all agents
in a distributed fashion. This allows them to decide which locations require
further exploration, which is especially relevant in the initial exploration phase
to detect all necessary resource nodes in the beginning of each simulation. This
self-organisation exploration algorithm is enhanced further by using two other
types of messages. Agents publish the location they plan to go to, so other agents
are able to avoid it. This allows for the prevention of exploring certain locations
twice at the same time. Moreover, agents publish a message when a location is
not reachable, so other agents do not try to go there.

In detail, we are creating a heat map from self-organisation messages of
specific frames, indicating either how often each spot has been subject to said
frames or the last SoMessage that has been recorded at each position. The heat
map is realised using a grid of numbers instead of a vector-based system. This
reduces the accuracy but greatly simplifies later calculations. Initially, the deci-
sion pattern creates a two-dimensional array filled with zeros, which represents
the map. Whenever a SoMessage arrives, that matches one of the desired frames,
the map is updated. The location of the SoMessage is converted to a mask. The
mask is then applied to the map. MapDecision has two modes, oldest visited and
seen count Depending on the mode, the mask is applied to the existing map to
result in a heat map indicating how often a location has been visited, or when
each location has been visited last.
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The other way self-organisation is used for coordination is for agents to check
if an opponent well has successfully been dismantled. Whenever an agent locates
an opponent’s well, it informs all other agents about it through SoMessages.
Agents combine this information with location information sent by other agents.
If at some point, the well is not seen anymore, even when an agent is in range of
the well, the agent can be sure, that the well has been successfully dismantled.

6 RHBP Behaviour Model

A RHBP behaviour model allows to describe the relationships between
behaviours, goals, and sensors through conditions and effects. These models pro-
vide the foundation for the autonomous decision-making executed in the manager
component of RHBP.

In contrast to the last-years participation of TUB using RHBP with a sin-
gle behaviour model layer for decision-making, our implementation partitions
the model into various nested behaviour models. This became possible through
the recently introduced NetworkBehaviour feature. NetworkBehaviours are fre-
quently used for structuring and controlling the major responsibilities of the
agents on the highest decision-making level. Such partitioning fosters a separa-
tion of concerns, reuse of code, and a reduction of the decision-space through
grouping of certain behaviour options. NetworkBehaviours are a special type of
behaviours that directly inherit from the behaviour base class of RHBP. In con-
trast to normal behaviour implementations in RHBP, the NetworkBehaviours
are not directly executing any actions that have an influence on the environ-
ment. Instead, NetworkBehaviours are triggering a nested decision-making and
planning process to select suitable behaviours from their encapsulated behaviour
model to achieve the targeted effects.

In particular, NetworkBehaviours are modelled for controlling resource explo-
ration, discovering opponent wells, dismantling opponent wells, building wells,
gathering base items, assembling finished item products, and delivering jobs. All
NetworkBehaviour implementations are inheriting from an abstract scenario-
specific NetworkBehaviour implementation GoAndDoNetworkBehaviour that
incorporates battery management and travelling on the simulated map, which
is a basic capability of all higher-level tasks in the MAPC scenario. The high-
level decision-making behaviour model is visualised in Fig. 3. It shows the high-
level first class entities and their relationships, this in turn describes the agent
behaviour declaratively. Here, it has to mentioned that all further implicit depen-
dencies are automatically determined by the system. Hence, there is no direct
relationship between behaviours and goals in the shown model.

Considering the fact that this model covers only the highest-level of decision-
making with additional nested models within each of the shown NetworkBe-
haviours a comparison with the model of the previous participation in 2017,
please see [10], indicates that the complexity of the 2018 TUBDAI implemen-
tation is considerably larger. Overall, we see that the structure of TUBDAI is
more fine-grained, e.g. we have distinct NetworkBehaviours for assembly, deliv-
ery, and gathering. Likewise, the entire number of behaviour and goal instances
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is considerably larger but this is partly because of redundant charging goals and
behaviours in each NetworkBehaviour. In detail, the old TUBDAI model con-
tained only 5 behaviours and 2 goals, whereas TUBDAI 2018 has 3 goals and 7
NetworkBehaviours each again containing 2 goals and 4–5 behaviours.
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Fig. 3. High-level decision-making behaviour model for agent task execution of TUB-
DAI 2018. All listed behaviours are NetworkBehaviours containing nested behaviour
models. Each NetworkBehaviour contains 2 goals and 4–5 behaviours.

During the realisation of the TUBDAI implementation we discovered a new
general implementation pattern for lower-level decisions in sensor, condition,
behaviour, and goal implementations. The new implementation pattern is taken
from the self-organisation extension of RHBP, which offers a component called
DecisionPattern that can be used by certain behaviours and sensors to share low-
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level decisions between the decision-making layer of RHBP and the actual imple-
mentation of the behaviour. This implementation pattern is further generalised
and not anymore applied only for self-organisation related low-level decisions.
Instead, the DecisionPattern works as an aggregate that takes a low-level deci-
sion like selecting the closest charging station, which is then shared amongst the
sensors and conditions of behaviours and goals as well as the actual behaviour
implementation. This pattern was found to be useful for sharing information
between behaviours and sensors of one agent.

7 Evaluation

Four other teams participated in the 2018 contest: SMART JaCaMo (Pontif́ıcia
Universidade Católica do Rio Grande do Sul (PUCRS)), Dumping to Gather
(TUB), Jason-DTU (Technical University of Denmark) and Akuanduba-UDESC
(Santa Catarina State University (UDESC)). Three of these teams were defeated,
only one team was able to win against our submission. Table 1 shows main stats
that were achieved by each team against TUBDAI. The last column shows an
average of these stats for all matches of TUBDAI.

Table 1. Comparison of the performance of all teams in the matches with TUBDAI
vs overall average performance of TUBDAI.

Team Jason-DTU Akuanduba-
UDESC

Dumping to
Gather

SMART -
JaCaMo

TUBDAI
(avg)

Ranking 3 5 4 1 2

Match points 0 0 0 9 6.75

Tournament points 21 0 9 33 27

Successful jobs 83 0 35 163 79

Opponent jobs 71 127 94 24 70.25

Score after 3 matches 2236 0 2206 2923 45628.75

Opponent score 57619 71928 42935 10033 1841

No actions 15.92% 97.95% 10.40% 8.33% 8.88%

Opponent no action 8.07% 2.51% 6.40% 18.53% 33.15%

Goto actions 58695 993 70730 73039 75648.25

Goto failure rate 30.92% 41.29% 43.27% 0.00% 0.70%

Dismantle actions 0 0 3354 1780 1471

Retrieve & delivered 1078 0 94 2000 0

Build actions 402 0 1336 1371 3604.75

Successful assembly 712 688 293 1350 378

Agent upgrades 0 0 0 14 0

In the following subsections we will briefly summarise the most important
observations we made during the matches against each opponent, before we
finally discuss our performance and results in more detail. If the reader wants
to replicate our observations the source code of all teams, the simulation server,
and replays from all matches are available on the official contest homepage1.
1 https://multiagentcontest.org/2018/.

https://multiagentcontest.org/2018/
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7.1 Jason-DTU

Jason-DTU won the second place in the previous edition of the contest and also
exhibited a good performing and successful solution in this year’s contest.

To finish jobs, Jason-DTU makes excessive use of storages and specialised
task groups. Particularly, they use certain road agents for item gathering as well
as specialised agent teams for taking care of assembly and delivery. When there
is enough massium available, trucks move to the edge of the map and build wells
there.

While the team had an aggressive dismantling strategy against other teams,
during the match against TUBDAI, the team did not perform any dismantle
action. As shown in Table 1, the team had a 30.92% failure rate of the goto
action. This likely results from road agents trying to dismantle wells, but not
being able to reach them as they were built at off-road locations.

Their job strategy was very effective, due to the centralised workshop and
storage being used as intermediary item holder reduced the coordination efforts.
As items are stockpiled, the jobs can be performed quickly while also keeping the
agent’s efficiency on a high level. This led to a slightly better job performance
of 83 jobs executed, compared to 79 jobs on average in three simulations for
TUBDAI.

7.2 Akuanduba-UDESC

The second opponent in the contest was Akuanduba-UDESC. Due to an error
in their system, the team could not send actions in time. This resulted in almost
no actions by their agents.

Due to the inaction of this team’s agents, their strategy cannot be analysed.
However, it allows to evaluate our submission in a very special case. Due to the
fact, that effectively no opponent was present, no dismantling was needed. This
allowed the agents to shift more resources to job execution.

While the average job execution rate of our team against all other teams was
63 jobs, during the matches against Akuanduba-UDESC, the job execution rate
was 127 job (see Table 1). This shows that our agents adapted well to a situation
without opponent wells by shifting priorities accordingly.

7.3 Dumping to Gather

Dumping to Gather, the other team from TUB, started with the same basis for
their project including the mac ros bridge and RHBP as framework. However,
they followed the different on-demand strategy for job execution. When a job
was announced, they coordinated agent teams who were then responsible for the
whole chain of actions including gathering, assembly and delivery.

Their approach to build wells was to use multiple agents of all roles at the
same time. This allowed them to build up wells almost instantly but had the
drawback of multiple agents having to use many steps for moving to the desti-
nation location. Wells were built next to each other in a line. We assume this
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was done to reduce the number of movement steps that had to be taken between
building two wells. However, this has the disadvantage that dismantling agents
usually immediately after dismantling one well find the next one. This allowed
our team to dismantle their wells relatively quickly.

Dismantling was done using both air and road agents. This allowed Dumping
to Gather to attack our wells that were placed in off-road locations using drones.
However, other agents were not prepared to handle off-road locations and got
stuck in an error loop, trying to reach the wells. This led to a goto action failure
rate of 43.27% (see Table 1).

7.4 SMART JaCaMo

The team SMART JaCaMo was a very strong opponent in multiple regards.
First, the team’s agents seem to have been divided into different responsibilities,
six trucks were used to only build wells, two drones were only used for exploration
and dismantling and the rest performing jobs.

Secondly, the team was able to perform 163 jobs, which was substantially
more than any other team (see Table 1). The agents who were tasked with job
execution, gathered items, assembled them together and delivered them accord-
ing to the available jobs. They also made use of storing items in storages in order
to improve efficiency.

Thirdly, when enough massium was available, a number of truck-agents were
responsible for building wells. The locations seemed to have been chosen ran-
domly somewhere close to the edge of the map.

Finally, dismantling was done by two drones. Their skill was upgraded at
simulation start, so they can perform dismantling actions efficiently. Afterwards
they were only responsible for finding wells and dismantling them. As drones are
able to go to off-road locations, this defeated our strategy pretty well. Due to
the road-agents not dismantling at all, they also did not suffer from failed goto
actions like other teams.

7.5 Discussion

All in all, the last-minute changes of the well-building strategy paid off because
this has been a unique strategy, which was not expected by the opponents.
Here, this particular strategy becomes especially attractive, as the original well-
building strategy has been changed three days before the contest and the RHBP-
based architecture supported a quick integration of the new strategy, which did
not require comprehensive code changes. Originally, it was the plan to build
wells with trucks at the edges of the map area. Unfortunately, this turned out
to be less efficient with the final contest maps published three days before the
contest. Instead, we shifted to the strategy that making use of so-called off-road
locations on the map in order to neglect an explicit well defence strategy. Off-
road locations are locations that are not connected to the street network and
thus only reachable by drones.
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The conducted last-minute changes comprise shifted role responsibilities like
only drones building wells; a changed exploration that is not focusing anymore
on the map borders; less priority on the job fulfilment because the mandatory
and rare drones are often busy with well-building; and a higher priority on
dismantling to efficiently use the increased job idle time for non-drone agents.

The encapsulation of code within behaviours and aggregation in NetworkBe-
haviours made these changes very intuitive and robust. By duplicating certain
NetworkBehaviours and switching around preconditions and effects, most of the
strategy was adapted, requiring only small code changes within the behaviours.
In our opinion this would have been potentially much more difficult to achieve
with a traditional sequential programming approach.

The runtime adaptiveness of RHBP could be observed at the match against
Akuanduba-UDESC. While many resources were usually used for dismantling
opponent wells, there was no dismantling required against Akuanduba-UDESC
because of their timeout issues, which resulted in almost 100% inactivity of their
agents. This freed up resources for other tasks for our agents. The agents were
able to adapt to this unexpected situation and increased their job performance
from an average of 63 jobs to 127 jobs. This shows that TUBDAI agents adapted
well to a situation without opponent wells by shifting priorities accordingly.

Moreover, the simulation configuration used in the contest was very different
from the sample configurations that have been published together with the server
source code for the contest preparation. The biggest difference was that it was
very easy to gain money for building wells within the contest. While in the sample
configurations (which we assumed to be similar to the contest configuration)
most jobs offered rewards of less than 500, the jobs in the contest had much
higher rewards, , i.e. jobs exceeding 10,000 in reward, whereas building wells
stayed on the same price level. In consequence, building wells became easier, and
the strategy of building and defending more critical. Nevertheless, the TUBDAI
implementation has shown that it was able to adapt and handle this unexpected
setup successfully.

In the end, TUBDAI only lost the final match against SMART JaCaMo.
The reason was that they efficiently dismantled our non-defended off-road con-
structed wells exclusively with two of their drones, which have been only respon-
sible for discovering and dismantling of our wells. Moreover, their skill was
upgraded directly at simulation start, so they dismantled more efficiently. Fur-
thermore, due to the road-agents not dismantling at all, team SMART JaCaMo
did not suffer from failed goto actions like other teams. A question that might
come up at this point is why our RHBP-based approach was not able to adapt
automatically to this situation. The reason is that RHBP is only having the
opportunity of adaptation if alternative behaviour implementations are avail-
able, which was not the case for the TUBDAI implementation.

Nevertheless, a detailed analysis of the replays and the published code of
SMART JaCaMo showed that their unique strategy was also not a result of
their adaptive strategy or implementation, but rather a result of their last-
minute changes in implementation the human team has made after analysing
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the matches before the very last match of the competition between TUBDAI
and SMART JaCaMo. We could prove this by playing about 30 simulations
with the a priori published simulation sample configurations and the not modi-
fied SMART JaCaMo code in which SMART JaCaMo was not able to win any
simulation against our team. In detail, the SMART JaCaMo team added a sec-
ond drone for exploration, implemented immediate skill upgrade after simulation
start, disabled dismantling in trucks, enabled dismantling for exploration drones,
and created a second drone exploration algorithm, that targets locations that
are typically used by our agents to build wells. All these changes were made in
short time-frame while we were competing against the other three teams. The
changes seemed to be very robust and side-effect free, which is impressive for
such a substantial last-minute change. Nevertheless, it has to be stated that the
SMART JaCaMo approach did not follow the rules of the competition because
teams are encouraged to refrain from code changes during the contest that are
not pure bug fixes of their own strategy. This fact also leads to an official correc-
tion of the final placement by the steering committee of the competition resulting
in a shared top spot between TUBDAI and team SMART JaCaMo2.

8 Conclusion

In the presented article we described our successful solution for the MAPC 2018
that allowed us to win the shared top spot of the competition. Our solution
enabled us to address the described challenges of the contest. The required coor-
dination is achieved by a combination of explicit coordination based on a contract
net protocol, and implicit coordination on the foundation of the RHBP self-
organisation extension. Here, both coordination approaches are also supporting
a decentralised solution. Adapting to varying environments and situations was
possible through the application of our framework RHBP that fosters a sepa-
ration of concerns of agent capabilities, which are then used for autonomous
decision-making. Moreover, this autonomous decision-making enabled our sys-
tem to quickly react on different opponent behaviours. The given computational
constraints and requirement to handle an increased number of agents in com-
parison to the previous year have also been addressed successfully.

All in all, we could show that a multi-agent system developed on the foun-
dation of our RHBP framework is able to compete with other multi-agent
approaches even though it is actually targeting the different application domain
of multi-robot system. Particularly, using RHBP showed to be advantageous
especially in terms of adaptation capabilities during development as well as in
runtime of the system. Furthermore, our focus in 2018 on testing in practise the
recently introduced RHBP features for creating behaviour model hierarchies by
nesting and encapsulating behaviours and goals within other behaviours as well
as realising implicit coordination through sharing and filtering information with
the support of our self-organisation extension turned out to be beneficial.

2 https://multiagentcontest.org/2019/01/23/results.html.

https://multiagentcontest.org/2019/01/23/results.html
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For the future, we would like to further explore the challenge of selecting the
most appropriate high-level strategy like on-demand job completion or stockpil-
ing in such a complex scenario. So far the high-level strategy, even though suc-
cessful in our case, is the result of human considerations and engineering. Future
work could explore if we are able to select autonomously the most appropri-
ate high-level strategy, especially by applying RHBP, from several implemented
strategies depending on the opponent’s behaviour.

1 Team Overview: Short Answers

1.1 Participants and Their Background

What was your motivation to participate in the contest?
The motivation was to further evaluate the decision-making and planning
framework ROS Hybrid Behaviour Planner (RHBP). While the framework
has been used in a wide variety of projects (also in MAPC 2017), newer fea-
tures have not been tested in complex scenarios. One of those features allows
to create multiple independent levels of decision making by encapsulating a
separate behaviour network into a behaviour. Another one is an extension
for implicit coordination on the foundation of self-organisation.

What is the history of your group? (course project, thesis, . . . )
Researchers of the DAI-Labor started to participate in the contest in 2007.
Since then they have contributed to every edition of the contest and have won
four of them using successive generations of the JIAC multi-agent framework.
The TUBDAI 2018 team originates from a Master’s Thesis student and its
supervising PhD student. The applied framework RHBP is developed in one
Ph.D. thesis and several independent Bachelor and Master’s theses.

What is your field of research? Which work therein is related?
Our field of research is multi-agent systems applied in the robotics domain.

1.2 Development

How much time did you invest in the contest for
programming vs. other tasks (for example organization)?
creating vs. optimizing your agents?
We invested approximately 600 h without time for framework development
and the communication proxy (mac ros bridge). The mac ros bridge maps
the xml-based socket communication of the MASSim simulation server to
ROS communication means (which was also partly reused from MAPC 2017).
Furthermore, 400 h of the invested time budget are spend on programming
tasks while 200 h are used for optimising our approach.

How many lines of code did you produce for your final agent team?
The scenario specific code contains approximately 7000 LOC.
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How many people were involved and to which degree?
Christopher-Eyk Hrabia (Ph.D. Student at Technische Universität Berlin)
provided the general supervision, was especially responsible for the consul-
tation about scientific approaches as well as giving technical support for the
RHBP framework and its application.
Michael Franz Ettlinger (M.Sc. Student at Technische Universität Berlin)
was responsible for the scenario specific implementation and execution of the
contest.
Axel Hessler (Post-Doc at Technische Universität Berlin) was responsible for
the infrastructure and overall administration.

When did you start working on your agents?
The major work started mid May 2018, communication infrastructure (e.g.
mac ros bridge) was already done mid of April 2018.

1.3 System Details

How do your agents work together? (coordination, information shar-
ing, . . . )
Information sharing for implicit coordination (exploration, opponent well
states) as well as explicit coordination (jobs) through a contract-net pro-
tocol implementation.

What are critical components of your team?
The most critical component is the job planning component which coordi-
nates the job tasks amongst the agents.

Can your agents change their behaviour during runtime? If so, what
triggers the changes?
Yes. The agents select the most appropriate behaviour based on the current
perception and the results of the hybrid planning decision-making component
of RHBP.

Did you have to make changes to the team (e.g. fix critical bugs)
during the contest?
No.

How do you organize your agents? Do you use e.g. hierarchies? Is your
organization implicit or explicit?
No hierarchy. We partly use implicit (self-organised) and partly explicit
(contract-net protocol) coordination, see above.

Is most of your agents’ behaviour emergent on an individual or team
level?
All behaviour if it was possible emerge from individual level, which results
from the autonomously taken decision by each individual agent.

If your agents perform some planning, how many steps do they plan
ahead?
They plan one task ahead. A task can technically have unlimited amount of
steps but practically has no more than 40 simulation steps.
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If you have a perceive-think-act cycle, how is it synchronized with the
server?
Our perceive-think-act cycle is performed as quick as possible as soon as the
server delivers the percept of the current simulation step. Through enough
calculation power it was made sure that the actions are always delivered in
time.

How did you go about debugging your system?
We applied three different debugging techniques. First, RHBP offers exten-
sions visualisation and monitoring of behaviours and their internal states.
Secondly, agents can be started in development environment and analysed
with a normal Python debugger. Thirdly, we used custom log messages to
analyse the runtime behaviour without interference.

Which operating system did you use, and is your team portable to
other operating systems?
We used Ubuntu 16.04, our solution is portable to all other Linux distribu-
tions that have ROS support. Execution on Windows is also possible through
the Windows Subsystem for Linux (WSL) using a Ubuntu-binding.

What hardware did you use to run your agent team? (RAM, CPU,
disk space, multiple computers, any other notable requirements)
Intel(R) Core(TM) i7-4930K @ 3.40 GHz CPU (6 cores with hyper-
threading), 32 GB RAM and a Samsung SSD 840. It is the same machine
that was used already by our team in MAPC 2017.

1.4 Scenario and Strategy

What is the main strategy of your agent team?
Our strategy has three main tiers. Stockpiling items as well as assembled
items. Building wells at positions that are only accessible for special agents
(drones). Attacking opponent wells aggressively.

How do your agents decide which jobs to complete?
If all required items are on stock the jobs are completed.

Do you have different strategies for the different roles?
Yes, only drones build wells and one drone is responsible for well exploration
at the map border.

Do your agents form ad-hoc teams to complete a task?
Yes, the sub-tasks of a job are coordinated ad-hoc with a contract-net pro-
tocol implementation. Here, all agents participate in the auctions that are
used for the task assignment.

How do your agents decide when and where to build wells?
Random places that can’t be reached by other agents (off-road). We use the
Graphhopper back-end to determine which map locations are not accessible
by road agents.

If your agents accumulated a lot of currency, why did they not spend
it immediately?
Our strategy requires drones to execute the well building, due to the fact that
drones are comparable inefficient in building it is possible that we accumulate
currency if the drones are not able to build fast enough.
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1.5 And the Moral of It Is ...

What did you learn from participating in the contest?
What are the strong and weak points of your team?

The strategy decisions proved to be a viable solution for the contest. The
stockpile with feedback strategy worked good enough to produce the required
money (massium) for wells, while providing enough idle agent time for other
tasks. If the contest would have been about massium alone (like last year)
the strategy in its current implementation would likely preform worse. In
such a scenario the use of storages could massively improve the massium
output but would reduce the availability of agents for well building tasks.
The off-road well locations strategy was not expected by any opponent and
therefore performed well. The main drawback of the strategy was that if it
is expected, it is easy to counter. This was observable in the match against
SMART JaCaMo, who were able to adapt their strategy in a few hours to beat
our team. The only assumption that turned out wrong was that we expected
opponents to try to defend their wells once they were built. RHBP proved to
be a great framework to use for the project. After an initial learning period,
RHBP bore out to be robust and allowed agents to adapt well to changes
at run time. The implementation was robust and performed well during the
contest. The assembly coordination strategy worked well but resulted in many
empty coordination cycles. If this would have been implemented using a client
initiating contract net protocol, its performance as well as simplicity would
likely have increased.

How viable were your chosen programming language, methodology,
tools, and algorithms?
One goal of this project was to use RHBP and its new features and extensions,
evaluate them and offer improvement suggestions. RHBP was used quite suc-
cessfully and allowed to create a fast, adaptive and flexible solution for the
contest. It also allowed quick and robust changes to the strategy as discussed
in the evaluation. The run-time adaptiveness of RHBP could be observed
at the match against Akuanduba-UDESC. While many resources were usu-
ally used for dismantling opponent wells, there was no dismantling required
against Akuanduba-UDESC, which freed up resources for other tasks.

Did you encounter new problems during the contest?
We have been able to find several bugs and performance bottle necks in our
SoBuffer library, which is used for communicating and handling messages for
self-organisation.

Did playing against other agent teams bring about new insights on
your own agents?
We did not gain major insights, we could only prove the runtime adaptation
capabilities in situations we have not especially considered before.

What would you improve if you wanted to participate in the same
contest a week from now (or next year)?
We would less emphasis on job completion and would add a well defence
strategy.
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Which aspect of your team cost you the most time?
Implementing the job coordination and execution.

Why did your team perform as it did? Why did the other teams
perform better/worse than you did?
Because other teams didn’t expect off-road well locations and our solution
adapted robustly to different situations in the games.

1.6 The Future of the MAPC

What can be improved regarding the contest for next year?
Due to incidents in this years contest, we propose to make handing in code
before contest obligatory. Furthermore, we think code changes should not be
allowed, which also solves the problem of fair schedules. Maybe it could also
be a good approach to run everything on the same virtual machines or docker
containers, which are running in the organisers department to avoid prob-
lems with connection performance or too much deviating hardware require-
ments. Furthermore, we encourage to focus more on decentralisation and
autonomous agent development. while avoiding the focus on optimisation
problems.

What kind of scenario would you like to play next? What kind of
features should the new scenario have? We would suggest to have a
scenario that requires less optimisation of a scenario specific problem, high-
lighting more features of intelligent agents such as being adaptive, able to
learn, robust, ...

Should the teams be allowed to make changes to their agents during
the contest (even based on opponent agent behaviour observed in
earlier matches)? If yes, should only some changes be legal and
which ones (e.g. bugfixes), and how to decide a change’s classifica-
tion? If no, should we ensure that no changes are made and how?
Changes should not be allowed because having modifications during the con-
test defeats the purpose of finding a great strategy as well as autonomous
decision making when developers make decisions based on their observations.
Even more, we propose to enforce a code submission before the contest
starts. Bugfixes could potentially be allowed but would have to go through a
peer-reviewed pull request. For organisational reasons the review of the pull
request could also be done after the contest.

Do you have ideas to reduce the impact of unforeseen strategies (e.g.,
playing a second leg after some time)?
As long as the strategies are done on the foundation of the provided API
not exploiting bugs everything should be allowed. Even more, unforeseen
strategies should be encouraged.
If the organisers want to prevent this (which we don’t think they should),
they could request a detailed strategy description to make sure they agree
that the strategy is “expected” and not “unforeseen”.
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