
Bridging Ontology and Implementation
with a New DEMO Action Meta-model

and Engine

Magno Andrade1(&), David Aveiro1,2(&), and Duarte Pinto1(&)

1 Madeira Interactive Technologies Institute, Caminho da Penteada,
9020-105 Funchal, Portugal

magnoandrade43@gmail.com, duartenfpinto@gmail.com
2 Faculty of Exact Sciences and Engineering, University of Madeira,

Caminho da Penteada, 9020-105 Funchal, Portugal
daveiro@uma.pt

Abstract. We consider current Design and Engineering Methodology for
Organizations (DEMO) Action Rules Specification to be unnecessarily complex
and ambiguous. Even while using a “structured English” syntax similar to the
one used in SBVR, such specifications are: incomplete while not containing
enough ontological information to derive a functional implementation; and
complex by containing mostly unneeded specifications. We propose a new
meta-model for DEMO’s Action Model in the form of an EBNF syntax which is
being implemented in a prototype that directly executes DEMO models as an
Information and Workflow System. This prototype includes an action engine
that runs DEMO transactions and the enclosed actions specified in our approach.
We are currently integrating Blockly in our solution to allow syntactically
correct visual programming of our proposed new Action Rule language that
includes constructs to evaluate logical conditions, update the state of internal or
external information systems, obtain input and provide output (formatted with
WYSIWYG template editor) to users, among others.

Keywords: Enterprise engineering � DEMO � Meta model � Action model �
Action rules � Syntax � Workflow � Information systems � Requirements

1 Introduction

Many studies claim that information technology projects fail to meet initial expecta-
tions of end users. From [1], where some case studies were developed, a survey with
800 IT managers [2, 3], found that 63% of software development projects failed, 49%
suffered budget overruns, 47% had higher than expected maintenance costs and 41%
failed to deliver the expected business value and user’s expectations.

In [4] from 2019, authors analyse many of the published papers regarding project
failure and compile a list of failure factors contributing for this high failure rate.
Some of the common causes were unrealistic project objectives, incomplete require-
ments, lack of stakeholder’s and users engagement/involvement, problems in project
management and control, insufficient budget, unrealistic expectations, changing

© Springer Nature Switzerland AG 2020
D. Aveiro et al. (Eds.): EEWC 2019, LNBIP 374, pp. 66–82, 2020.
https://doi.org/10.1007/978-3-030-37933-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37933-9_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37933-9_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37933-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-37933-9_5

requirements, requirements and specifications inconsistency, lack of planning, lack of
communication, use of new technologies that software developers didn’t have adequate
experience and expertise, amongst others.

DEMO [5] is a well-established enterprise engineering method associated with a
solid collection of theories that aim to contribute to solving the before mentioned
problems. However, regardless of how sound DEMO is in theory many open ends
remain. One of the clearer examples is the models that are produced and used for
isolated efforts for analysing the organization and providing support for discussing
changes initiatives. Current practice very commonly leaves out one of the key pillars in
the theory and one of the main components – the Action Model (AM) – which indeed is
barely used in practice [6]. This happens even though the founder of the methodology
himself has considered, in [5] and [7], the AM as the most important model and where
all essential model information can be found. It is considered to be the differentiator
model of the organization – what makes it unique – and, alone, can be used to derive
the remaining three aspect models.

This paper is integrated in a broader research initiative that aims at the development
of a software platform having the DEMO methodology as a solid foundation for the
production of collaborative-based organizational models and diagrams for the speci-
fication of its processes, information flow, responsibilities of both human and software,
procedures and other kind of organizational artefacts.

Those models and diagrams should provide an up to date “picture” of the “orga-
nizational self” at any given time and in a collaborative fashion, guiding its participants
in, (1) supporting the perception of the global reality of the organization [8], (2) sup-
porting the definition and execution of their operational work and (3) supporting the
creative process for organizational change [9].

Like our initiative, other widely used approaches such as ArchiMate [10] and
BPMN [11] try to tackle most of these goals but suffer from the lack of a solid formal
theory behind them and from ambiguous semantics [12, 13].

Our DEMO-based approach, based on sound theory drew some inspiration from the
Universal Enterprise Adaptive Object Model (UEAOM) [14], and aims at the gener-
ation and execution of DEMO models that capture crucial information of organiza-
tional responsibilities and the flows of information, often overlooked in other
approaches. Using these easy to share and understand models, with a high level of
abstraction, we systematically seek to derive increasingly detailed models for exe-
cutable workflows and manual work instructions.

In this paper we propose Bridging Ontology and Implementation with a new
DEMO Action Meta-Model and Engine by revising the DEMO Action Model and
proposing a new meta-model in the form of a EBNF syntax which is currently being
implemented in our prototype called DISME (Direct Information Systems Modeller
and Executer).

We claim that the current way of specifying Action Rules in DEMO leads to
incomplete specifications that, on one hand, do not contain enough ontological infor-
mation and, on another hand, keep a reasonable amount of ambiguity. With our pro-
posal, we can specify – still on an ontological level – a broader variety of essential
details and information to allow an almost direct execution of models. Thus, we
contribute to bridge the huge gap between DEMO models and the important

Bridging Ontology and Implementation with a New DEMO Action Meta-model 67

implementation problems that arise at project time and which must be specified
immediately in conjunction with ontological elements. By combining our approach
with a low code platform prototype that we are developing, we aim to contribute to
bridge and solve the gaps mentioned in the first paragraphs of this introduction. By
having a direct execution of models we highly reduce the time to production of
information systems and by using DEMO as a base we have as a starting point a more
complete elicitation of requirements, one of the main points of failure in IS projects.
We use the EU-rent case presented in [15] to exemplify and validate our contribution.

2 Research Method

The Information Systems Research paradigm adopted in this paper should be consid-
ered as a group of three closely related cycles of activities according to Design Science
Research by Hevner [16, 17].

These activities are represented on Fig. 1. Hevner claims that only together these
three activities constitute a good design science research and could render a valid
output and therefore should not be applied isolated. In our research, and in relation to
the first cycle, Relevance, represented in Fig. 1, we identified a clear problem of
ambiguity and lack of concise and essential information about the current syntax of the
DEMO Action Rules and therefore an opportunity to design a more comprehensive
syntax was at hand. In regards of the second cycle of design, we propose a new
grammar for DEMO’s Action Rules. These rules were obtained after several iterations
of exhaustive and comprehensive, design, implementation and evaluation of different
grammar and language elements, as well as testing in the action executer engine in our
prototype, both with the EU-Rent case and a practical project being developed in a
local private company. We propose a new Action Meta Model for DEMO that we
claim to allow a more concise, comprehensive and complete way for devising Action
Rule Specifications. Finally, concerning the last third cycle, Rigor, the research is
supported by the theoretical grounding foundations of DEMO itself.

Fig. 1. Design science research cycles [17]

68 M. Andrade et al.

3 Background and Theoretical Foundations

3.1 DEMO’s Operation, Transaction and Distinction Axioms

In the W-theory [18] – on which DEMO is based – the operation axiom [5] states that,
in organizations, subjects perform two kinds of acts: production acts that have an effect
in the production world or P-world and coordination acts that have an effect on the
coordination world or C-world. Subjects are actors performing an actor role responsible
for the execution of these acts. At any moment, these worlds are in a particular state
specified by the C-facts and P-facts respectively occurred until that moment in time.
When active, actors take the current state of the P-world and the C-world into account.
C-facts serve as agenda for actors, which they constantly try to deal with. In other
words, actors interact by means of creating and dealing with C-facts. This interaction
between the actors and the worlds is illustrated in Fig. 3. It depicts the operational
principle of organizations where actors are committed to deal adequately with their
agenda. The production acts contribute towards the organization’s objectives by
bringing about or delivering products and/or services to the organization’s environment
and coordination acts are the way actors enter into and comply with commitments
towards achieving a certain production fact [19].

According to the W-theory’s transaction axiom, the coordination acts follow a
certain path along a generic universal pattern called transaction [5].

The transaction pattern has three phases: (1) the order phase, were the initiating
actor role of the transaction expresses his wishes in the shape of a request, and the

Fig. 2. Basic transaction pattern [5]

Fig. 3. Actor’s Interaction with production and coordination worlds [5]

Bridging Ontology and Implementation with a New DEMO Action Meta-model 69

executing actor role promises to produce the desired result; (2) the execution phase
where the executing actor role produces in fact the desired result; and (3) the result
phase, where the executing actor role states the produced result and the initiating actor
role accepts that result, thus effectively concluding the transaction.

This sequence is known as the basic transaction pattern, illustrated in Fig. 2, and
only considers the “happy case” where everything happens according to the expected
outcomes. All these five mandatory steps must happen so that a new production fact is
realized. In [19] we find the universal transaction pattern that also considers many other
coordination acts, including cancellations and rejections that may happen at every step
of the “happy path”.

Even though all transactions go through the four – social commitment – coordi-
nation acts of request, promise, state and accept, these may be performed tacitly, i.e.
without any kind of explicit communication happening. This may happen due to the
traditional “no news is good news” rule or pure forgetfulness, which can lead to severe
business breakdown. Thus the importance of always considering the full transaction
pattern when designing organizations. Transaction steps are the responsibility of two
specific actor roles. The initiating actor role is responsible for the request and accept
steps and the executing actor role is responsible for the promise, execution and state
steps. These steps may not be performed by the responsible actor as the respective
subjects, may delegate on another subject one or more of the transaction steps under
their responsibility, although they remain ultimately responsible for such actions [19].

The distinction axiom from the W-theory states that three human abilities play a
significant role in an organization’s operation: (1) the forma ability that concerns
datalogical actions; (2) the informa that concerns infological actions; and (3) the per-
forma that concerns ontological actions [5]. Regarding coordination acts, the performa
ability may be considered the essential human ability for doing any kind of business as
it concerns being able to engage into commitments either as a performer or as an
addressee of a coordination act [19]. When it comes to production, the performa ability
concerns the business actors. Those are the actors who perform production acts like
deciding or judging or producing new and original (non derivable) things, thus real-
izing the organization’s production facts. The informa ability on the other hand con-
cerns the intellectual actors, the ones who perform infological acts like deriving or
computing already existing facts. Finally, the forma ability concerns the datalogical
actors, the ones who perform datalogical acts like gathering, distributing or storing
documents and or data. The organization theorem states that actors in each of these
abilities form three kinds of systems whereas the D-organization supports the I-
organization with datalogical services and the I-organization supports the B-
organization (from Business=Ontological) with informational services [20].

3.2 DISME (Direct Information Systems Modeller and Executer)

DISME [21] is mainly comprised by three modules: (1) a Diagram Editor to create and
view DEMO models as well as import and export them to the System Modeller (2) the

70 M. Andrade et al.

System Modeller to adapt and parametrize in detail the information system to the needs
of the organization; and (3) the System Executer that runs in production mode the
modelled information system.

In the System Modeller, one or more users take upon their selves the administrator
role, and are able to shape each process of an organization creating and editing
transactions, their relations as well as associating input forms to these transactions, or in
specific transactions steps, together with the specification of entity and property types,
that is, the main business objects and their attributes or, in other words the database of
the system. Forms are dynamically generated by the System Executer component
taking in account all specifications and when users are fulfilling their organizational
tasks. The users that model the system, have no need for any specific programming
skill only some basic knowledge of enterprise engineering modelling which is close to
the “language /representation” used within organizations.

In the System Executer, users that have acquired permissions to take part in the
transactions do so according to their roles following DEMO’s transaction pattern.

The System Executer can be divided itself into two main components, (1) the
Dashboard that provides the user interface with which the users interact with on their
organizational tasks and (2) the Action Engine, that controls the flow of information
according with the transactions and causal links defined in the Action Rules and
Transactions and their relations (the equivalent to the Process Step Diagram).

The development of the database behind the prototype solution was heavily
influenced by the DEMO way of thinking, trying to capture the essence of an orga-
nization’s workflow, but without abstracting from their infological and datalogical
implementations. One of the goals was to keep the platform as flexible as possible in
terms of the editing possibilities available.

3.3 DEMO Action Rules

DEMO Action Rules are the specifications for handling events that actors have to
respond to, business rules. The Action Model of DEMO is not comprised by this set of
rules alone, but also contains work instructions regarding the execution of production
acts both represented in the Action Rules Specification (ARS) [7].

The general form to represent an action rule is <event part> <assess part> <re-
sponse part>. The event part specifies what event (or set of concurrent events) is
responded to. The assess part in an action rule is divided in three sections, corre-
sponding with the three validity claims: the claim to justice, the claim to sincerity, and
the claim to truth. And the final part, the response, is divided in an if clause that
specifies what action has to be taken if the actor considers complying with the event to
be justifiable, and possibly what action must be taken if this is not the case. This way of
formulating action rules allows the performer to deviate from the ‘rule’, if he/she thinks
this is justifiable (and for which he/she will be held accountable) [7].

We consider this set of Action Rules Specification to be ambiguous because,
although it uses a structured English syntax similar to the one used in Semantics of

Bridging Ontology and Implementation with a New DEMO Action Meta-model 71

Business Vocabulary and Rules [15] it does so in an incomplete way that does not
contain all the needed ontological information to derive the implementation from it. For
example, it lacks a way do deal with sets of actions or operators as we will approach in
further detail on Sect. 3 New Action Rule Syntax – Specification and Implementation.
And this set of rules is also complex by containing mostly unneeded specifications of
three types of assessment, the justice, sincerity and truth. These claims are developed
on the next section where we elaborate on our proposal. This is why we propose a new
set of rules Bridging Ontology and Implementation with a new DEMO Action Meta-
Model and Engine.

4 New Action Rule Syntax

In the following tables, we present, in EBNF, the current result of our iterations of
development of a syntax and constructs for a runnable specification of DEMO Action
Rules (Tables 1 and 2).

Table 1. EBNF specification for Action Model (the column separation means the “=”) (Part 1)

when “WHEN” transaction_type “IS” (c-fact | p-fact) action
transaction_type string (NOTE: has to be a transaction specified in the system)
c-fact “requested” | “promised” | “stated” | “accepted” |

“revoke_request_requested” | “revoke_request_allowed” |
“revoke_request_refused” | “revoke_promise_requested” |
“revoke_promise_allowed” | “revoke_promise_refused” |
“revoke_statement_requested” | “revoke_statement_allowed” |
“revoke_statement_refused” | “revoke_acceptance_requested” |
“revoke_acceptance_allowed” | “revoke_acceptance_refused” |
“rejected” | “declined”

p-fact “executed”
action action_type [(assign_expression | causal_link)] {action }
action_type specify_data | if | while | foreach | “C-ACT” | “WRITE_VALUE” |

“READ_VALUE” | “PRODUCE_DOCUMENT” |
“CLIENT_OUTPUT” | “EXTERNAL_CALL”

assign_expression property “=” (constant_value | property_value | math_expression)
math_expression string (NOTE: a mathematical expression evaluated by the dashboard, in

principle produced by blockly mathblocks)
property string (NOTE: has to be an existent property specified in the internal

information system)
constant_value String

72 M. Andrade et al.

As we can see in the previous EBNF specification, an action rule occurs in the
context of a transaction type in the activation of a particular transaction state. An action
rule can lead to the execution of one or more actions of a specific type. Namely, an
action might imply a causal link or simply assigning some value to some property in
the system. We can have a sequence of one or more actions. For each action, one needs
to specify the action type that will imply what concrete operations/instructions will be
executed by the action engine. We can also express logical conditions that allow us to
design expressions that are evaluated by the engine and determine the path that a
certain process instance must take. We can specify an action that will automatically
generate a form for user input, that is, for the use to specify some data for a certain
process instance. This form will be automatically generated by the dashboard according
to the properties associated to the respective action. It’s possible to specify, for each
property in the form a condition that has to be satisfied/validated so that the process can
advance. If the condition is not satisfied it’s possible to define a particular output to the
user. It’s also possible to define simple computations regarding data in the current form.
One can also specify traditional “if then else” flows and logical conditions that are
evaluated automatically by the engine to control the flow. It’s possible also the for-
mulation of “informal expressions” that have to be evaluated by the user as true or false

Table 2. EBNF specification for Action Model (the column separation means the “=”) (Part 2)

causal_link transaction_type “[must be]” c-fact min max
min Integer
max Integer | *
specify_data {property [cur_form_compute_code]} - {condition

CLIENT_OUTPUT} (NOTE: for each pair (validation)
condition+output if condition is true engine goes ahead if not
shows CLIENT_OUTPUT)

cur_form_compute_code ENABLE condition | math_expression
if “IF” condition

“THEN” action
[“ELSE” action]

condition [“NOT”] evaluated_expression {(“AND” | “OR”) condition}
evaluated_expression comp_evaluated_expression | user_evaluated_expression
comp_evaluated_expression property operator (property_value | property)
user_evaluated_expression String (NOTE: dashboard shows this “textual informal

expression” that has to be evaluated by the user who will
decide on a result of true or false)

property operator “<” | “>” | “==” | “!=” | “*”

property_value string (NOTE: can be a numerical value or a possible ENUM
value associated to a property)

while “WHILE” condition action
foreach “FOREACH” set action
set set of elements

Bridging Ontology and Implementation with a New DEMO Action Meta-model 73

in order for the flow to continue in a certain way or another. While and for each kinds
of flows are still not implemented but are planned to be included in our prototype.

The terminal symbols presented as string and set of elements are automatically
parsed and interpreted by the action engine of DISME. The set of elements can be a
group/array of elements that can be obtained from a customized query that returns a set
of elements from the internal and/or external information system.

In Fig. 4 we can see an example of an action rule using our newly proposed syntax.
After the IF we can find an expression that has to be evaluated by a human user looking
physically at the car and comparing to the damage sheet signed at pickup. In case new
damage is present a transaction is initiated to handle the issue, but before that, a
property in the rental instance of boolean type has the value true written to it. This
property works as a flag in the rental entity which is needed for general queries on
rentals. We then have a couple of IF instructions where conditions can be automatically
evaluated and enacted upon. Different other flags associated to the rental can be
updated accordingly and the value of penalty charges can be calculated by mathe-
matical expressions. The rule finishes with a couple more IF instructions, the first to
determine if the penalty payment transaction must be requested and the final which
provides another expression for the user to decide on the evaluation and eventually
accept the transaction even if normally that would not be the case.

To enable the implementation of our new format for action rules in DISME, three
components were implemented; (1) the Action Rules Manager, (2) the Action Manager,
and (3) the Action Template manager. The above example applying our syntax can be
specified in these components as to allow the engine to later interpret the rule. Action
Rules Manager and Action manager – these are the components responsible for

Fig. 4. Action Rule to handle the state step of transaction Car drop-off

74 M. Andrade et al.

creating, editing and deleting the action rules for each transaction type and transaction
state. As mentioned above one action rule has one or more actions associated. On this
component there are multiple functionalities available. We can create new actions
associated to that action rule or view actions that were previously created. We next
present in Fig. 5 a different and older version of the action rule above, equivalent to the
version of the DISME’s screen shot provided also ahead as the prototype is currently
being adapted to the last version of our syntax presented in this paper.

The above example works as follows, when the “Car drop-off” transaction is in the
Stated transaction state, the action type IF is evaluated. If the condition (automatically
evaluated by the engine) evaluates to true, the ATOMIC action type c-act is performed.

When using the component Action manager, actions that belong to the action rule
selected by the user are displayed. Figure 6 shows the same action rule presented in
Fig. 5, but according to the DISME interface. This is the main component where we
can add different actions, logical conditions, templates, etc. While on execution mode
of DISME, these actions will be interpreted by the engine developed together with the
dashboard interface.

Action Template Manager – this component is only used together with an action.
The purpose of this functionality is to have custom templates for certain actions. Note
that each action can have multiple templates but a template can only belong to an
action. The engine in DISME uses the specifications inserted into these three com-
ponents to apply, enforce and control the flow of the transaction and subsequently
perform the specified actions. This means that when a user initiates or wants to con-
tinue a transaction inside the dashboard, if the transaction has actions associated, the

Fig. 5. Example of actions for the action rule handling the state of car drop-off

Fig. 6. List of actions that belongs to a specific action rule

Bridging Ontology and Implementation with a New DEMO Action Meta-model 75

engine analyzes, verifies and interprets the actions associated to an action rule and
carries out the respective operations in the context of that particular transaction
instance. Some of these actions can be automatically performed by the engine without
the need to wait for user input. Actions of type PRODUCE_DOCUMENT and CLI-
ENT_OUTPUT use the templates specified in the Action Template Manager with a
WYSIWYG editor that can use properties and values of the underlying information
system to either automatically produce a PDF document or output formatted content to
the client interface.

DISME allows the specification of entity types and properties in a database like
fashion, allowing business users to, in a graphical user interface, specify their business
objects and fields. In actions of type specify_data we can select a set of one or more
existing properties that need to be specified by user input. The DISME dashboard will
automatically render a form based on the input types defined previously in a form
editor. After, for example, a successful reservation of a rental, the dashboard can output
to the client some formatted text defined in a template and using elements of the filled
form and/or other elements from the database.

We now illustrate and present an example of the dashboard interface using the
action engine module that interprets our action rule specifications to control the flow.

In this example, we are using the action rule exhibited on Fig. 5, but first we need
to explain the flow intended in this process. For this particular example, we will
consider that we have only two transactions: T01 – Rental Contracting and T02 – Car
drop-off. T02 has an action rule defined that is the same as on Fig. 6.

In this process, the first transaction step to be performed is T01 – Request (Fig. 7).
After that, transaction T02 is the next to be performed (state Request) and a field is
filled by the user. When the state for the transaction T02 is “Stated” the engine module
is going to retrieve previously inserted data that has been filled in T01 – Request. This
data retrieved by the engine module is the data inserted previously on the field Con-
tracted pick-up branch (T01 – Request) and evaluated with inputted data from another
field. This field was filled by the user on the current transaction T02 but on another

Fig. 7. Car Rental Request

76 M. Andrade et al.

state (T02 – Request). Thereafter, the engine module decides what path to proceed
always having as a base the actions specified in the action rule.

Below we can see an example of the dashboard using these action rules:

One user initiates the transaction T01 and selects the option Lisbon Airport for the
field Contracted drop-off branch as shown in Fig. 8.

After the initialization of T01, another user initiates the transaction T02 and selects
the option Berlin Airport for the field Actual drop-off branch as show in Fig. 9 and
presses the green button Continue. When the transaction state “Stated” for the trans-
action T02 is a fact, the engine will evaluate the expression that is inside rectangle 1 in
the following Fig. 10:

Given the example case, the expression will be evaluated as true because the chosen
Contracted drop-off branch in T01 and Actual drop-off branch in T02 are different
(‘Lisbon Airport’ ! = ‘Berlin Airport’) and so the path chosen by the engine module
will be the instructions/operations/actions within the THEN block. The instructions
within the THEN block are inside rectangle 2 in Fig. 10. With theses
instructions/operations/actions, a new instance/transaction of transaction type “Penalty
payment” on the state “Request” is created automatically by the engine.

Fig. 8. T01 - Rental Contracting and the property field Contracted drop-off branch

Fig. 9. T01 - Rental Contracting and the property field Contracted drop-off branch

Fig. 10. Action Rule used by the engine module after the button Continue is pressed.

Bridging Ontology and Implementation with a New DEMO Action Meta-model 77

5 Discussion

In the current official standard, the specification of Action Rules is devised with the
following structure (see example in Fig. 11): <event part> <assess part> <response
part>. Although in [7] it is claimed that action rules specified with the grammar of
‘structured English’ are very simple, it is also stated that when presenting this grammar
to members of the board, some of them appeared to be confused with the explanation of
this first action rule.

One of the problems of this grammar lies at the root of its specification. The author
also states that the action rule should be written so we can understand them as formal,
this arises that the formulation of these action rules is apparently too formal and
difficult to read for people outside the scope of DEMO theory and even to new and
inexperienced people using DEMO.

Comparing it to our approach, we can specify a set of actions for an action rule,
each with a specific type which denotes what the system should execute/perform in a
more simple, literal, structured and systematic way, already oriented to implementation.
We argue that the notions of claims to justice, sincerity and truth specified in the
<assess part> bring unnecessary complexity and ambiguity. With our approach, actions
inside an action rule can be specified as a group of structured acts, some with direct
effect on the information system with eventual associated expressions (logical and/or
arithmetical) that control the flow of actions. This allows collaborators like system
analysts, who are not aware of the social side of DEMO theory expressed in the truth,
justice and sincerity claims, to understand and write action rules in a simpler and more
powerful way. There is no need to complicate the action rules with the language action
paradigm claims as, even with our structure, rules can become somewhat complex in
some cases as the example we presented previously in Fig. 4.

Our grammar is more flexible and has many other options and functionalities as
compared to the current standard. For example, we can perform inputs and outputs to

Fig. 11. Action Rule in ‘structured English”

78 M. Andrade et al.

the client, such as producing documents or showing information which is necessary for
the proper and informed functioning of the organization’s process. Collaborators acting
as analysts can specify actions with the simple constructs of our language which, in
their essence and syntax, specify clearly what is intended with them and without the
need of knowledge of technical programming languages. DISME’s action engine
automatically interprets the specified rules and we are currently adapting Google’
Blockly platform to our prototype so it’s even easier for business analysts to design
action rules.

We will now discuss in a more specific and detailed way some aspects of the two
grammars of action rules. On Fig. 12, another action rule in the format of the structured
English grammar is displayed. The <assess part> doesn’t specify causal links in the
multiple conditions specified in this part, this does not happen in our grammar because
we evaluate and verify in a simple way properties that belong to a certain entity type
related to the current action being executed.

Regarding the <truth> claim there is no way of specifying the consequences that
can occur if conditions present here are not individually fulfilled; different actions
might need to be executed due to different conditions and different values might need to
be updated like shown in our example in Fig. 4. If we compare Figs. 12 and 4, we can
immediately conclude that syntax and simplicity are not the strength of the current
grammar of Action Rules for DEMO and that it is not specified anywhere in the action
rule what consequences can arise if the ‘Actual drop-off branch’ is not the same as the
‘Contracted pick-up branch’. The same does not happen in the action rule defined in
our grammar, as specified in Fig. 4. We can specify consequences for different con-
ditions depending if they are either true or false. In our example we can call 3 different
transactions in a way that would not be possible with current standard syntax.

As mentioned above, each action rule is a set of actions, so for each action inside
the action rule, we also define what kind of action (action type) will happen at a certain

Fig. 12. EU-Rent Rule TEOO [7]

Bridging Ontology and Implementation with a New DEMO Action Meta-model 79

point in the action rule, for this particular case the consequences that can happen are of
the action type WRITE_VALUE as shown on Fig. 4. In this case, if we are within the
ELSE block, the ‘location penalty’ property of the rental will have its value assign
automatically to ‘true’, and on the other hand, the ‘location penalty charge’ property
will have its value obtained from an ‘expression’, for example this ‘expression’ can be
a mathematical operation between two values, or even two distinct properties.

In the <response part>, that is displayed on the Fig. 13, when an action rule calls
for other or multiple transactions, it is not immediately apparent not only which par-
ticular condition originates a call to other transactions nor how to handle information,
inputs and outputs. It is not clear at all how to do something of this kind in the TEOO
[7] grammar. Several parts of the action rule, especially the ones starting with the with
clause or the justice claim lines are redundant or ambiguous. There should be no need
to specify elements such as the addressees or requested production time of a transaction
as those elements are automatically part of the context of an instance of a process
performing these actions. These add unneeded complexity to the action rule.

As shown on Fig. 14, our grammar allows a much easier way to understand which
actions/conditions lead to calls of other transactions, such as C-ACT ‘Penalty payment
[must be] requested’, and that same transaction type can also have an action rule with
its set of actions to be carried out, which will take in account the values
written/evaluated as specified. We find the current standard brings also ambiguity with
the use of the some clause. In the example being analysed, the drop-off branch should
be clearly defined by the context/instance at run time and a different specification
should be done or not needed at all. It is claimed that DEMO models are supposed to be
independent of implementation and/or infological/datalogical aspects. In other works
we have been defending that DEMO models allow us an abstraction from reality and a
reduction of complexity, but they cannot be separated from reality/implementation and
action rules are the perfect spot to realize this connection. DEMO’s Construction
Model which has the higher level and complete view of a process as a tree of

Fig. 13. <response part> of the EU-Rent Rule of TEOO. [7]

Fig. 14. Excerpt from the action rule in our format

80 M. Andrade et al.

transactions and actor roles indeed is quite abstracted from implementation. But
delving onto the domain of business rules and execution, which is addressed on
DEMO’s Action Rules, there is a dire need for a more systematic and simple con-
nection to reality/implementation. Current use of with clauses are in fact connecting to
reality/implementation with clauses such as: the requested production time of penalty
payment is Now and also dealing with infological/datalogical issues with clauses like
the one calculating the penalty amount, so it’s only natural that we “walk the last mile”
and allow the specification of implementation details in the action rule specifications, to
the point of client output, database updates, external calls to other systems, etc. and still
in a way that is independent of specific technology. We are in fact allowing a very
detailed specification of the implementation model, as per the GSDP [5] philosophy
associated with DEMO theories. This model can then be directly run (with no com-
pilation steps) in a live system like our DISME prototype.

6 Conclusions and Future Work

As can be seen from the above discussion, the Action Rule Syntax we propose in this
paper is more complete, flexible and easier to read/understand/implement/run.

Our approach is better because we clearly specify what types of action will be
undertaken and what inputs or outputs will be made by the system/user, what asyn-
chronous calls to other transactions or IS will be performed. The Action Model is the
perfect place to bridge the higher level models (Construction Model and State Model)
to the implementation model. As it can be seen by the Action Rules examples in
TEOO, specifying action rules in an abstracted way from the implementation leads to
complex and impractical rules, especially difficult to interpret due to the orientation to
the claims on justice, sincerity and truth. Business analysts should be able to design
action rules already thinking and designing implementation issues such as logical rules
that control the flow and assigning system properties to forms for input, to logical and
arithmetical expressions for evaluation and output. The practical engineering approach
we are following allows that, with minimal training on certain language constructs,
specialized business analysts are able to “program” the flow of their enterprise in a way
that directly connects strategic high level models with low level details of imple-
mentation. There are many open ends in our current prototype like how to handle
external calls to other systems in the IT environment, either for input our output and we
foresee the number and complexity of our action types will for sure increase. However,
the philosophy that we follow and was presented in this paper seems to be a promising
approach.

References

1. Dalal, S., Chhillar, R.S.: Case studies of most common and severe types of software system
failure. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2, 341–347 (2012)

2. Shull, F., et al.: What we have learned about fighting defects. In: Proceedings of 8th
International Software Metrics Symposium, pp. 249–258 (2002)

Bridging Ontology and Implementation with a New DEMO Action Meta-model 81

3. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure–inducing input. IEEE Trans.
Softw. Eng. 28(2), 183–200 (2002). https://doi.org/10.1109/32.988498

4. Ibraigheeth, M., Fadzli, S.A.: Core factors for software projects success. JOIV: Int. J. Inform.
Vis. 3, 69–74 (2019)

5. Dietz, J.L.G.: Enterprise Ontology: Theory and Methodology. Springer, Heidelberg (2006).
https://doi.org/10.1007/3-540-33149-2

6. Dumay, M., Dietz, J.L.G., Mulder, H.: Evaluation of DEMO and the language/action
perspective after 10 years of experience. In: Proceedings of LAP 2005 (2005)

7. Perinforma, A.P.C.: The Essence of Organisation: An Introduction to Enterprise Engineer-
ing. Sapio Enterprise Engineering, Leidschendam (2015)

8. Aveiro, D., Silva, A.R., Tribolet, J.: Towards a G.O.D. organization for organizational self-
awareness. In: Albani, A., Dietz, Jan L.G. (eds.) CIAO! 2010. LNBIP, vol. 49, pp. 16–30.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13048-9_2

9. Aveiro, D., Silva, A.R., Tribolet, J.: Extending the design and engineering methodology for
organizations with the generation operationalization and discontinuation organization. In:
Winter, R., Zhao, J.Leon, Aier, S. (eds.) DESRIST 2010. LNCS, vol. 6105, pp. 226–241.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13335-0_16

10. The Open Group: ArchiMate® 2.1. http://pubs.opengroup.org/architecture/archimate2-doc/
11. Object Management Group: BPMN 2.0. http://www.omg.org/spec/BPMN/2.0/
12. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models

in BPMN. Inf. Softw. Technol. 50, 1281–1294 (2008)
13. Ettema, R., Dietz, J.L.G.: ArchiMate and DEMO – mates to date? In: Albani, A., Barjis, J.,

Dietz, J.L.G. (eds.) CIAO!/EOMAS -2009. LNBIP, vol. 34, pp. 172–186. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01915-9_13

14. Aveiro, D., Pinto, D.: Universal enterprise adaptive object model. In: Presented at the 5th
International Conference on Knowledge Engineering and Ontology Development (KEOD),
Vilamoura, Portugal, September 2013

15. Bollen, P.: SBVR: a fact-oriented OMG standard. In: Meersman, R., Tari, Z., Herrero,
P. (eds.) OTM 2008. LNCS, vol. 5333, pp. 718–727. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-88875-8_96

16. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. Manag. Inf. Syst. Q. 28, 75–106 (2004)

17. Hevner, A.R.: A three cycle view of design science research. Scand. J. Inf. Syst. 19, 4 (2007)
18. Dietz, J.L.G.: Is it PHI TAO PSI or Bullshit? Presented at the Methodologies for Enterprise

Engineering Symposium, Delft (2009)
19. Dietz, J.L.G.: On the nature of business rules. In: Dietz, J.L.G., Albani, A., Barjis, J. (eds.)

CIAO!/EOMAS -2008. LNBIP, vol. 10, pp. 1–15. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-68644-6_1

20. Dietz, J.L.G., Albani, A.: Basic notions regarding business processes and supporting
information systems. Requir. Eng. 10, 175–183 (2005). https://doi.org/10.1007/s00766-005-
0002-9

21. Andrade, M., Aveiro, D., Pinto, D.: DEMO based dynamic information system modeller and
executer. In: IC3K 2018 (2018)

82 M. Andrade et al.

http://dx.doi.org/10.1109/32.988498
http://dx.doi.org/10.1007/3-540-33149-2
http://dx.doi.org/10.1007/978-3-642-13048-9_2
http://dx.doi.org/10.1007/978-3-642-13335-0_16
http://pubs.opengroup.org/architecture/archimate2-doc/
http://www.omg.org/spec/BPMN/2.0/
http://dx.doi.org/10.1007/978-3-642-01915-9_13
http://dx.doi.org/10.1007/978-3-540-88875-8_96
http://dx.doi.org/10.1007/978-3-540-88875-8_96
http://dx.doi.org/10.1007/978-3-540-68644-6_1
http://dx.doi.org/10.1007/978-3-540-68644-6_1
http://dx.doi.org/10.1007/s00766-005-0002-9
http://dx.doi.org/10.1007/s00766-005-0002-9

	Bridging Ontology and Implementation with a New DEMO Action Meta-model and Engine
	Abstract
	1 Introduction
	2 Research Method
	3 Background and Theoretical Foundations
	3.1 DEMO’s Operation, Transaction and Distinction Axioms
	3.2 DISME (Direct Information Systems Modeller and Executer)
	3.3 DEMO Action Rules

	4 New Action Rule Syntax
	5 Discussion
	6 Conclusions and Future Work
	References

