
A Framework for Multi-level Modeling
of Analog/Mixed Signal Embedded

Systems

Daniela Genius1(B), Rodrigo Cortés Porto1,3, Ludovic Apvrille2,
and François Pêcheux1

1 Sorbonne Université, LIP6, CNRS UMR 7606, Paris, France
daniela.genius@lip6.fr

2 LTCI, Télécom Paris, Institut Polytechnique de Paris, Sophia Antipolis, France
3 Technische Universität Kaiserslautern, Kaiserslautern, Germany

Abstract. Embedded systems are commonly built upon heterogeneous
digital and analog integrated circuits, including sensors and actuators.
Model-driven approaches for designing software and hardware are gen-
erally limited to the digital parts of systems. In the present paper, we
adopt a global view on the extensions made to an integrated model-
ing and simulation tool, TTool. In this tool, the verification and virtual
prototyping of embedded systems is described at different abstraction
levels and extended in order to handle analog/mixed-signal systems. An
extensive case study spans these levels and illustrates the usefulness of
our approach.

1 Introduction

Many model-driven techniques have been proposed for designing both digital
software and hardware. High level models are employed to specify the func-
tionality of the system, and subsequent model transformations are applied until
a virtual prototype containing software and hardware can be generated. How-
ever, embedded systems—e.g. robotics, automotive and medical systems—are
frequently built upon heterogeneous hardware components such as processors,
FPGAs, DSPs, hardware accelerators, digital and analog analog/mixed signal
(AMS) and radio frequency (RF) circuits. In early design phases, a high-level
representation that includes both digital and analog descriptions is necessary in
order to quickly explore the design space, taking into account both digital and
AMS/RF components. Obviously, at such a high level of abstraction, speed of
design space exploration prevents us from using precise models.

The paper gives an overview of our recent contribution [27] and completes
several aspects that have not yet been treated beforehand. Our model-driven
approach offers operators and views in order to capture digital and analog
domains at several abstraction levels. This approach is supported by the free
software TTool [6]. TTool can capture digital/analog aspects and generate a
virtual prototype combining SystemC and SystemC-AMS in order to evaluate
c© Springer Nature Switzerland AG 2020
S. Hammoudi et al. (Eds.): MODELSWARD 2019, CCIS 1161, pp. 201–224, 2020.
https://doi.org/10.1007/978-3-030-37873-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37873-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-37873-8_9


202 D. Genius et al.

the system under design. The paper focuses both on modeling capabilities and
simulation aspects e.g. ways to combine AMS simulation with event-based (Sys-
temC) simulation. An important aspect regarding simulation which is addressed
in the paper is the problem of synchronization between time domains. The over-
all approach is explained with toy examples before being demonstrated with an
automotive braking application.

In the next section, we give an overview of existing approaches targeting the
modeling and/or co-simulation of cyber-physical systems. Section 3 presents the
basic concepts behind the simulation of analog components. Section 4 explains
how digital and analog components can be modeled and evaluated altogether.
Section 5 illustrates the usefulness of the approach with a realistic system.
Finally, Sect. 6 concludes the paper and gives a perspective on future work.

2 Related Work

Several well established tools in analog/mixed signal design, like Ptolemy II [35]
[42], are based upon a data-flow model. They target heterogeneous system design
by defining several sub domains [21] using hierarchical models. Instantiation of
elements controlling the time synchronization between domains is left to the
responsibility of designers. Recently, a co-simulation framework for timing veri-
fication of cyber-physical systems [29] from Ptolemy models, named Metronomy,
has been developed.

Metropolis [7] is also based on high level models and facilitates the separation
of concerns between computation and communication aspects. Heterogeneous
systems are taken into consideration, yet heterogeneity can only be represented
using processes, mediums, quantities and constraints. Hierarchical models are
not allowed. Metro II [18] introduces hierarchy and allows so-called Adaptors for
data synchronization, which serve as a bridge between the semantics of compo-
nents belonging to different Models of Computation (MoCs). The model designer
still has to implement time synchronization by means of constraints, assertions,
annotators and schedulers. As a common simulation kernel handles the entire
process execution (digital and analog), MoCs are not well separated.

From the Micro Electro Mechanical Systems (MEMS) community [10] stems
an approach which can transform structural SysML diagrams into VHDL-AMS
code. It is thus closely related to our work, but limited to its domain and gener-
ates VHDL specifiations, which are less flexible than most other approaches for
expressing different Models of Computation, VHDL being essentially a hardware
description language on register transfer level.

Discrete Event System Specification (DEVS [14]) is a modular and hierar-
chical formalism for modeling and analyzing general systems. DEVS supports
discrete events and continuous systems. Continuous functions can be described
by differential equations, or hybrid systems. A dozen of platform implemen-
tations based on DEVS exist, ranging from Petri Net over object oriented to
Python based [12,41,50].



A Framework for Multi-level Modeling of AMS Embedded Systems 203

Modelica [22] is an object-oriented modeling language for component-oriented
systems containing e.g. mechanical, electrical, electronic and hydraulic compo-
nents. Classes contain a set of equations that can be translated into objects
running on a simulation engine. Yet, since time synchronization is not prede-
fined, the simulation engine must manipulate objects in a symbolic way in order
to determine an execution order between components of different MoCs.

UML/SysML based modeling techniques such as MARTE and Gaspard2
[23,48] are extremely popular for capturing the behavior of embedded systems,
but less widely used for heterogeneous system design [44]. Furthermore, with very
few exceptions such as [39,46], they do not support refinement until cycle/bit
accurate level virtual prototypes nor provide OS support for full-system simula-
tion. Co-simulation between different Models of Computation is usually out of
scope, too.

The B method [1] and more recently Event-B [2] model systems at different
abstraction levels and makes it possible to mathematically prove consistency
between refinement levels. Based on set theory and the B language, the B method
is well established in large-scale public/private projects (urban transports etc.).
To our knowledge, no extensions to cyber-physical systems have been proposed.

Several frameworks based on SystemC [32], a library of C++ classes, makes
it possible to model (digital) hardware. For instanfe, HetSC [31], HetMoC [51]
and ForSyDe [40] all have the disadvantage that instantiation of elements and
controlling the synchronization have to be managed by the designer.

The following works stem from the analog/mixed signal hardware design
domain, where SystemC-AMS extensions [3] is about to become a standard,
describing an extension of SystemC with AMS and RF features [47]. The usual
approach for linking the digital part of a heterogeneous system with SystemC-
AMS is to rely on the Discrete Event (DE) parts of SystemC AMS extensions.
For instance, Timed data Flow (TDF) adds support for signals where data values
are sampled with a constant time step.

In the scope of the BeyondDreams project [9], a mixed analog-digital systems
proof-of-concept simulator has been developed, based on the SystemC AMS
extension standard. Another simulator is proposed in the H-Inception project
[30]. All of these approaches rely on SystemC AMS code i.e. they do not provide
a high-level interface for specifying the application.

3 Basic Concepts

First, let us briefly introduce two fundamental concepts and two associated tools.
On the one hand, Timed data Flow as implemented in [19], on the other hand,
multi-level modeling and virtual prototyping as implemented in TTool [6].

3.1 Timed Data Flow

SystemC AMS predefines several Models of Computation, e.g. the Timed Data
Flow (TDF) Model of Computation, which is based on the timeless Synchronous



204 D. Genius et al.

A B Y
R= 1
D= 1

Tm= 6 ms Tm= 4 ms

Tp= 4 ms

R= 3

Tp= 2 ms
D= 0

R= 2
D= 0

Tp= 2 ms

TDF Cluster

Fig. 1. TDF cluster [27].

Data Flow (SDF) semantics [36]. At each time step, a TDF module reads a fixed
number of samples from each of its input ports, then executes the processing
function, and finally writes a fixed number of samples to each of its output
ports. TDF modules can interact with the discrete world (such as digital MPSoC
platforms) using converter ports.

Figure 1 shows a graphical representation TDF cluster. Discrete DE modules
are represented as white blocks, TDF modules as gray blocks, TDF ports as
black squares, TDF converter ports as black and white squares, and finally TDF
signals as arrows. So-called converter ports, shown as black-and white squares,
serve as interface between the TDF and DE MoC. For the SysML-like notation
supported by TTool, we will adhere to this representation.

TDF modules have the following attributes:

– Module Timestep (Tm) denotes the period during which a module is acti-
vated. One module is activated only if there are enough samples available at
its input ports.

– Rate (R). A module reads or writes a fixed number of data samples each time
it is activated. This number is annotated to the ports and it is known as the
Port Rate.

Fig. 2. Hardware/Software partitioning and Code generation for MPSoC platforms
[27]. (Color figure online)



A Framework for Multi-level Modeling of AMS Embedded Systems 205

– Port Timestep (Tp) is the period during which each port of a module is
activated. It also denotes the time interval between two samples that are
being read or written.

– Delay (D). A Delay D can be assigned to a port to make it store a given
number of samples each time it is activated, and read or write them in the
next activation.

SystemC-AMS extensions, already mentioned in Sect. 2, define models of
computations e.g. for TDF modules. We rely on a reference implementation
[19] for generating the simulation code of the analog parts.

3.2 Modeling Tool

TTool [6] is a SysML based, free and open-source software initially designed
for model-based engineering of (digital) embedded systems at different abstrac-
tion levels: functional, partitioning, software design, and deployment. To each
of these levels, as shown in Fig. 2 taken from [27], is associated separate pan-
els, which allow designers to model systems using a SysML-like notation. The
method underlying these levels explains how to take hardware/software parti-
tioning decisions at a high level of abstraction and to regularly validate them
during software development [39].

Software and hardware tasks to be partitioned are first captured within the
functional abstraction level. Software tasks used in deployments are captured in
the software design abstraction level. In both partitioning and deployment, the
computation part of tasks is deployed to processors or hardware accelerators,
and the communication and storage parts are deployed to communication and
storage elements e.g. buses and memories.

TTool allows verification and fast (and high-level) simulation of digital parts.
It also supports cycle/bit accurate virtual prototyping on a Multi-Processor
System-on-Chip (MPSoC) based on the SoCLib [45] public domain library writ-
ten in SystemC. As SystemC-AMS is an extension to SystemC, relying on TTool
for integrating analog/mixed signal components was natural. The next section
discusses this integration.

4 Integration of Analog Components

In the following, we show how TDF concepts can be integrated into SysML-like
models and in TTool, while keeping in mind our objective to generate correct-
by-construction simulation code i.e. handling potential synchronization problems
between domains before simulation starts. The philosophy of TTool also requires
that all parts of the model are check against syntax (and against a few semantic
aspects as well) before any code is generated.

Figure 2 uses orange circles to explain how the methodology described before
have been adapted in order to support AMS components in TTool. Hardware
parts, shown on the lower right, can be simulated with a cycle-accurate precision.



206 D. Genius et al.

Fig. 3. SystemC-AMS diagram of Fig. 1 in TTool SystemC-AMS panel.

Fig. 4. TDF module parameters [27].

Analog/Mixed Signal components are not represented on the partitioning level
since the decision to have them implemented in hardware or software is not
in the hands of the designer of the embedded platforms. AMS components are
thus captured in deployment diagrams, from which the hardware top cells and
the descriptions of the mapping of software objects to processors, memories and
communication elements are generated for simulation purpose.

Our contribution is twofold: we represent SystemC-AMS components in
Deployment Diagrams and are able to generate the communication between
digital and analog parts in the simulation/prototyping code.

4.1 Representing Analog Components

In our extension to TTool, analog and digital parts of a system are first designed
in different panels. As a consequence, we have enhanced the graphical interface



A Framework for Multi-level Modeling of AMS Embedded Systems 207

Fig. 5. TDF port parameters (left) and processing function (right) [27].

of TTool with an abstract way to capture SystemC-AMS blocks with DE com-
ponents, TDF modules and converter ports. Each TDF cluster must designed in
its own panel because SystemC-AMS must calculate a separate schedule [3] for
each of them.

As mentioned before, TDF modules can be connected together or with DE
modules relying on TDF, DE and ports, respectively. The panel provides graph-
ical representations of these elements. The graphical interface also offers a tool-
bar to select the different components (modules, ports) and connectors between
ports.

Figure 3 shows a TTool AMS panel for the design of the introductory exam-
ple, which contains two TDF modules (gray blocks) and a DE module (white
block) interconnected through their respective ports and signals.

Module Parameters. The name and Timestep of a module can be set and its
time resolution selected (s, µs, ns). The parameters of a TDF module such as its
internal variables or template parameters can also be set up, as shown in Fig. 4.

A TDF block has as its attributes name and Timestep. As attributes, vari-
ables and constants can be declared.

Port Parameters. Port parameters can be captured as shown in Fig. 5. For
readability, the port Timestep and Delay do not appear in the TDF block visible
on the panel but can be obtained and specified by clicking on the port (Fig. 5).

Converter ports have the same attributes, while attributes of DE ports are
slightly different (no need to specify Rate and Delay, but indicating the sensi-
tivity to a clock signal is required). TDF and converter ports have a name, a
Timestep, a Rate and a Delay. Furthermore, it has to be specified whether it is
an input or an output port (called origin in the window), and which is the type
of data to be transmitted.

Processing Function. Representing analog components in an abstract way is
quite difficult since most components are more or less unique. Thus, we decided



208 D. Genius et al.

GPIO2VCI

p_rdata_ams

p_wdata_ams

TDF_Module

p_clk

p_resetn

p_vci

VCI_Bus
TDF Cluster SoCLib DE 

Components

Fig. 6. GPIO2VCI component.

that it would be best if users could directly enter a code to describe functions’
behavior. For instance, Fig. 5 shows on the right the processing function for a
n-bit analog-digital converter as described by [5].

Valid Schedule. TTool takes as input a SysML system representation to com-
pute a valid schedule for each cluster. This determines the correct execution
order of TDF modules within the cluster, such that data flow characteristics
(sampling rate, sampling period, etc.) are consistent. To compute this sched-
ule, TTool relies on the classical sequential scheduling algorithm of [37] known
as list scheduling. This algorithm uses an ordered list of the nodes to generate
the schedule. Nodes are the TDF blocks and arcs are the signals. TTool builds
this list based on the order in which the TDF blocks are created on the panel.
Note that there can be several valid schedules. In the example of Fig. 1, a valid
schedule would be ABABB.

4.2 Connecting AMS Components to the MPSoC

If the deployment model contains only SystemC-AMS clusters, TTool generates
stand-alone SystemC AMS TDF code of the components as well as the SystemC-
AMS top cells from the mixed graphical/textual descriptions, and supplies a
Makefile. In case software code is also deployed, processors, buses and memories
must also be generated. In order to run application software, we thus combine
TDF clusters with a MPSoC suitable for full-system simulation.

For this purpose, the SoCLib library provides hardware models, written in
SystemC. In particular, it allows the use of a micro kernel [8], able to load and
execute cross-compiled software for several processor cores (MIPS,ARM, ...).
SoCLib is based on the shared memory paradigm. Components are intercon-
nected based on the Virtual Component Interconnect (VCI) [49] protocol. These
components can be initiators i.e. they issue requests (e.g. CPUs) or targets that
respond to these requests (e.g. RAM memory), sometimes both (DMA, copro-
cessor wrapper).



A Framework for Multi-level Modeling of AMS Embedded Systems 209

The main idea for the integration of SystemC-AMS and SoCLib components
into TTool is that the analog components will act as targets for the SoCLib
initiator digital components (CPUs,hardwareaccelerators,DMA, ...). The gener-
ated top cell is thus composed of SoCLib modules and interfaces to the SystemC-
AMS clusters. It is also important to mention that a TDF cluster may contain
custom DE modules which are not part of the SoCLib library.

In order to connect both worlds, we have introduced a generic adapter
module that can be used as an interface between SystemC-AMS modules and
SoCLib interconnect components [16]. This component is modeled as a general-
purpose input/output (GPIO) adapter to VCI, called GPIO2VCI in the
following.

Figure 6 shows the model of the GPIO2VCI component which plays the role
an interface between the SystemC-AMS modules (TDF Module belonging to a
TDF Cluster) and the SoCLib VCI interconnect component (VCI Bus). Data
are exchanged via ports p rdata ams and p wdata ams, respectively, p vci com-
municates with the SoCLib/VCI world. There is also a clock and a reset port.
The component is manually inserted in the graphical interface of the panel, then
its instantiation and connection, in particular the required lines in the top cell,
are automatically generated.

The GPIO2VCI fulfills the rules for writing cycle-bit precise SystemC simu-
lation models of SoCLib. These writing rules, listed in [28], specify that cycle-bit
accurate components are built by one or several Finite State Machines (FSM)
and have clearly defined internal registers. The FSM can be described by three
types of functions. The transition function, which is triggered once per cycle
on the rising edge of the clock, computes the next values of the registers, depend-
ing on their current values and the values of the input signals. The genMoore
function, which is triggered once per cycle on the falling edge of the clock, com-
putes the values of output signals that depend on the internal registers. Finally,
the genMealy function, which is triggered once per cycle on the falling edge of
the clock, computes the values of output signals that depend on the internal
registers and the values of the input signals.

4.3 Solving Causality Problems

Due to their different Model of Computation, AMS components require to exe-
cute their simulated behavior apart from the rest of the system: yet, they regu-
larly have to synchronize with the digital platform. The SystemC kernel is thus
controlling the AMS kernel which runs continuously until it is interrupted by
an access to a converter port by a TDF cluster.

When a TDF module accesses its input converter port, the DE simulation
time advances until it is equal to the TDF simulation time of the input converter
port. Later, if an access to an output converter port occurs with a TDF simula-
tion time that is less than the new DE simulation time, a time synchronization
issue occurs. To avoid this situation, the TDF simulation time of the output con-
verter ports always needs to be greater or equal than the DE simulation time.



210 D. Genius et al.

This problem was exposed in [4] and resolved with the help of colored timed
Petri Nets [33] derived from the SystemC AMS code.

According to [17], when a SystemC-AMS simulation is being executed, the
execution of the SystemC DE simulation kernel is blocked while the SystemC-
AMS simulation kernel continues running. As a consequence, during this period
the DE simulation time (tDE) does not advance at all, while the TDF simulation
time (tTDF ) runs according to the Timesteps of the TDF modules and ports.
On access to a TDF converter port, the SystemC-AMS simulation kernel is
interrupted and yields to the SystemC DE simulation kernel. This way, tDE

advances until it is equal to tTDF . In general, tTDF runs ahead of tDE , but
in some scenarios, tTDF ≥ tDE i.e. tDE may be greater than tTDF : this is a
causality problem.

In [4], synchronization at converter ports is modeled with the help of Colored
Timed Petri Nets derived from the SystemC-AMS code. Causality issues between
TDF and DE MoC are then automatically checked. However, this is done on
SystemC-AMS code, whereas [15] proposes a way to detect causality issues from
SysML models and also shows that only accesses to TDF input converter ports
affect synchronization.

The following algorithm presented in [16], of which a detailed version is shown
in [15], solves causality issues by iterating over additional Delays and recomput-
ing schedules until all causality issues are solved.

1: procedure detectTimeSyncIssues
2: for each Module in Static Schedule do
3: for each Converter Port do
4: if Input Converter Port then
5: advance tDE

6: compute max tDE

7: else if Output Converter Port then
8: compute tTDF of port
9: if !(tTDF ≥ max tDE) then

10: Time synchronization issue detected
11: Suggest port Delay to fix it
12: end if
13: end if
14: end for
15: end for
16: end procedure

Based on the static schedule for one complete TDF cluster period, each time
a TDF module is executed, for each accessed input converter port, the DE sim-
ulation time (tDE) advance as shown in line 5, and the maximum tDE is stored
as shown in line 6. Then, for each accessed output converter port, the TDF
simulation time (tTDF) is computed (see line 8). The tTDF of each port should
be greater than or equal to the maximum stored DE simulation time, as shown
in line 9. If this condition fails, there is a causality problem and a Delay in the
output converter port where the issue was detected is suggested.



A Framework for Multi-level Modeling of AMS Embedded Systems 211

4.4 MPSoC Virtual Prototype

GPIO2VCI components are visible in the AMS diagram, as shown in Fig. 7,
where our initial cluster is connected to a mono processor platform. Yet, only
the connection is represented on the AMS panel by the GPIO2VCI. Also, there
can be more than one such connections, one for each TDF cluster. Clicking on
one of the GPIO2VCI components opens the corresponding TDF cluster.

Conversely, TDF clusters are displayed in the Deployment Diagram, see
Fig. 8. Here, we map a monolithic toy software (a hello world message followed
by the printout of values generated by a sine wave generator in the AMS cluster),
represented by a block named software on a mono processor named CPU0.

Fig. 7. Adding a GPIO2VCI component.

4.5 Simulation of the Virtual Prototype

Since model-driven approaches expect to ideally provide model validation before
code generation (and thus simulation), we propose a way to statically identify
synchronization problems [15]. Basically, based on the static schedule for one
complete TDF cluster period, each time a TDF module is executed, for each
accessed input converter port, the DE simulation time (tDE) advances, and the
maximum tDE is stored. Then, for each accessed output converter port, the TDF
simulation time (tTDF) of each port should be greater or equal than the maximum
stored tDE. If this condition fails, it means there is a causality problem with the
time synchronization and a delay in the output converter port where the issue
was detected will be suggested to the designer in order to resolve the problem.
The schedulability of the analog part is validated using the schedulability check
of SystemC-AMS [37], thus before code is generated.

Figures 9 and 10 show the simulation of the integration of SystemC-AMS
and SoCLib SoC components: a write operation to the GPIO2VCI thus to the
analog part, followed by a read from the GPIO2VCI.



212 D. Genius et al.

Fig. 8. TTool deployment panel featuring a TDF cluster.

Fig. 9. Host machine console: Write to the GPIO2VCI component.

Fig. 10. Host machine console: Read from the GPIO2VCI component.

4.6 Trace Generation

While it possible to generate cycle accurate vcd traces of the digital signals in
the original version of TTool, the integration of SystemC-AMS necessitates the
tracing of the analog, thus continuous, signals. Thus, our tool contains additional
mechanisms for trace generation of the analog part of the simulation.

SystemC-AMS tracing using the sca trace primitives is invoked for each
analog cluster. This function, if activated from the TTool graphical interface,
allows to create one trace file per cluster. Code lines are generated and inserted
in the SystemC-AMS code of the cluster.

Listing 1.1 shows how tracing is handled for the top cell under considera-
tion A tabular trace file is created with a given name. signals connecting the
GPIO2VCI component to the TDF cluster are added to the trace, then the trac-
ing functions that have been created in the cluster’s SystemC-AMS code are
invoked. Traces can then be displayed with a tool adapted to analog traces, like



A Framework for Multi-level Modeling of AMS Embedded Systems 213

GAW - Gtk Analog Wave viewer [43]. As usual, traces of the SystemC digital
part can displayed with e.g. gtkwave [11].

sca_util::sca_trace_file *tfp = sca_util::sca_create_tabular_trace_file("analog_trace");

sca_util::sca_trace(tfp,signal_to_ams0,"signal_to_ams0");

sca_util::sca_trace(tfp,signal_from_ams0,"signal_from_ams0");

Cluster0_0.trace_Cluster0(tfp);

...

sca_util::sca_close_tabular_trace_file(tfp);

Listing 1.1. Tracing for the AMS components invoked in the top cell.

5 Case Study

Our contribution to tackle digital and analog systems is illustrated by an auto-
motive embedded system designed in the scope of the EVITA European project
[20] and for which code generation was presented in [38]. Recent on-board Intel-
ligent Transport (IT) architectures comprise a very heterogeneous landscape of
communication network technologies (e.g., LIN, CAN, MOST, and FlexRay)
that interconnect in-car Electronic Control Units (ECUs).

We apply in the following, step by step, the general methodology developed in
[25] concerning the digital part along with the new techniques introduced in [27].

Among the use cases addressed by EVITA, we selected the automatic braking
function [34]. Basically, this function works as follows: an obstacle is detected by
another automotive system which broadcasts that information to neighboring
cars. A car receiving such information has to decide whether it is concerned
with this obstacle. This decision includes a plausibility check function that takes
into account various parameters, such as the direction and speed of the car, and
also information previously received from neighboring cars. Once the decision to
brake has been taken, the braking order is forwarded to relevant ECUs. Last but
not least, the presence of this obstacle is forwarded to other neighboring cars in
case they have not yet received this information.

5.1 Partitioning

The functional view in Fig. 11 describes of a set of abstract communicating tasks;
green boxes representing TLM modules). Functional abstraction allows us to
avoid capturing the exact data processing algorithms, but rather to consider only
abstract computation complexity. Each individual task describes its abstract
functional behavior using communication operators, computation elements, and
control elements. Thanks to data abstraction, we consider only the size of the
data sent or received, and ignore details such as type, values, or names.

Then, mapping intends to partition functions between software and hardware
implementations. Figure 12 shows the deployment diagram. The architecture is
modeled as a graph built upon execution (light blue), communication (orange),
and storage (light turquoise) nodes. Execution nodes are for example CPUs and
hardware accelerators. Our extension allows a representation of analog/mixed



214 D. Genius et al.

Fig. 11. Functional view. (Color figure online)

Fig. 12. Partitioning level mapping view. (Color figure online)

signal modules, which are execution nodes too. Communication nodes include
bridges and buses, storage nodes are memories.

A function mapped onto a processor will be implemented in software, and a
function mapped onto a hardware accelerator (darker turquoise) is implemented
in hardware. Functions to be implemented in hardware are either digital or
analog functions. In our example, all sensors obtaining information from the
environment are modeled as analog blocks.

An evolution with regards to [27] is that analog blocks can now be made
explicit on the partitioning level as a particular kind of hardware accelerators,
named CAMS (abbreviating SystemC-AMS) as shown on the bottom center of
Fig. 12: the simulation environment is subsumed in the light purple block named
SimulationEnvironment, which is slightly enlarged for better readability.



A Framework for Multi-level Modeling of AMS Embedded Systems 215

Fig. 13. Block diagram from [38].

5.2 Software Design

Once the partitioning is done, software can be designed and verified with TTool.
Figure 13 shows the former software block diagram taken from [38], with the five
sensors at the top: there, sensors are captured as software components. Now,
they can be removed from the software design diagram since the partitioning
decision has already been taken for the analog blocks: they do not need to be
considered any more during software design.

Other software components are grouped according to their destination ECU:

– Communication ECU manages communication with neighboring vehicles.
– Chassis Safety Controller ECU (CSCU) processes emergency messages

and sends orders to brake to ECUs.
– Braking Controller ECU (BCU) contains two blocks: DangerAvoidanceS-
trategy determines how to efficiently and safely reduce the vehicle speed, or
brake if necessary.

– Power Train Controller ECU (PTC) enforces the engine torque modifi-
cation request.



216 D. Genius et al.

To prototype the software components with the other platform elements
(hardware components, operating system), we must map the software compo-
nents to a model of the target system. Mapping can be performed using the
deployment features introduced in [24]: such a deployment diagram is a
SysML representation of hardware components, their interconnection, software
tasks and communication channels between software tasks.

5.3 Modeling Sensors

Before, since sensors were captured as software tasks, code generation from soft-
ware design resulted in having a C/POSIX code representing the behavior of
these sensors, leading to too unrealistic simulations All five sensors are now
replaced by more realistic analog models in the form of five independent TDF
clusters.

Fig. 14. TTool panel with model of the CarPositionSimulator sensor.

Figure 14 shows the AMS panel of the textitCarPositionSimulator sensor that
gives information on surrounding cars id (e.g., car position).

From TDF information (Rate,Delay, ...), TTool infers, if possible, miss-
ing parameters, and then computes a coherent schedule, and finally generates
SystemC-AMS code, comprising ports, Delays and interfaces [15]. Cluster out-
put is read by the DSRSC Management block (see Fig. 13). Often, complex data
structures of more than one parameter are transmitted in channels (here, id and
position). Currently, they have to be transmitted one by one, basic type by basic
type. Thus, id and position require two sequential write operations to the out
port in the processing code and two corresponding read operations in the entry
code.

We can easily model the randomized choice of an integer between 1 and 5
(id) and between 3 and 10 (position) stemming from the data type of Fig. 13.
The code of this simple processing function is shown on the right of the figure
in a separate window. The write primitive sends one integer value to the out
converter port.



A Framework for Multi-level Modeling of AMS Embedded Systems 217

5.4 Interaction of Analog Blocks with the Software Design Level

In contrast to the purely digital model of the same application, the functional
blocks pertaining to the sensors are no longer represented in the software design
level block diagram, since they are represented by analog blocks captured in five
separate SystemC-AMS panels. In Fig. 13, thus, the upper row of tasks named
TestBench disappears.

A library named libsyscams has been provided to contain read and write
primitives on the side of the MPSoC, the read gpio2vci and write gpio2vci func-
tions. As shown above, CarPositionSimulator issues two random values from its
output port, EmergencySimulator does the same. By executing these software
functions, the CPU of the digital platform is able to exchange (i.e. read or write)
values with the analog components.

On the side of the MPSoC platform, according to TTool’s semantics, the
DSRSC Management block nondeterministically reads from either block, or read
a broadcastEmergencyBrakingMessage from a third, the DangerAvoidanceStrat-
egy block. In the current version, the first two blocks being replaced by sensors
modeled in SystemC-AMS, this semantics should be preserved.

Fig. 15. DSRSC Management block state machine containing link to the entry code.

Let us now consider the state machine of the DSRSC Management block
(Fig. 15). In [27], we show how to use entry code that can be contained in a
state to call libsyscams. This is the case of the WaitForEnvironmentInput state.
We read nondeterministically either the input from CarPositionSimulator or
EmergencySimulator, whenever values are available on either. This nondeter-
minism, which was in the past expressed by the semantics of TTool’s channels
between software blocks, must now be reflected in the entry code of the software
block’s state machine as well. Figure 16 shows the successive operations: we call
the read gpio2vci primitive and check whether data was successfully read and in
that case, go on to the next operation. If there are several parameters (here id
and position), they must be read sequentially.



218 D. Genius et al.

Fig. 16. WaitingForEnvironmentInput state entry code.

Fig. 17. Deployment diagram of the active braking application.

5.5 Deployment

Figure 17 shows the extended deployment diagram giving an overview of the
mapping of software tasks and channels. Where the software tasks are mapped
onto the CPU, the channels between the tasks on the memory. TDF clusters are
displayed as gray boxes along with digital components, interconnected to the
central (digital) interconnect through GPIO2VCI components as detailed below.
For a better overview, the diagram contains sensors as gray boxes, each one
corresponding to a SystemC-AMS cluster connected via a GPIO2VCI. Clicking



A Framework for Multi-level Modeling of AMS Embedded Systems 219

Fig. 18. Validation and code generation window.

Fig. 19. TTY of the SoCLib simulation showing system boot and first input from the
sensors.

on the box opens the corresponding SystemC-AMS panel. A fifth CPU which
used to simulate the sensor execution is no longer in use.

The generated MPSoC platform consists of a digital SoC based on SoCLib
components connected to the analog hardware components, modeled using
SystemC-AMS code. On the SoCLib side, a MIPS32 CPU, a 1 MB RAM memory
and a TTY terminal are modeled in SystemC. This virtual prototype is capable
of running software (limited to communicating some values and command in
the case study) and a lightweight operating system [8].

5.6 Running the Application

TTool first checks the coherency of the block and port parameters before com-
puting a valid TDF schedule for each TDF cluster, taking into account synchro-
nization issues between the TDF and DE world [27]. This is done in a so-called



220 D. Genius et al.

Fig. 20. Digital trace generated from TTool’s simulation.

Fig. 21. Analog trace generated from TTool’s simulation.

validation window (Fig. 18). Once the cluster schedule is validated, code gener-
ation can be started from another dialog window.

Figure 19 shows the start up of the software application and first incoming
measurements of the sensors (randomized values in plausible ranges were used
for simulation). Figure 20 shows part of the simulation vcd trace of the AMS
version, containing the digital signals; we focus on the signals on one of the
gpio2vci interfaces. In Fig. 21, the five incoming signals from the five sensors are
traced with GAW.

In the light of former work, we examine latencies [26]. The most important
latency is the one between the detection of an emergency situation and the
moment when the braking really occurs.

As can be seen in Fig. 22, the message is issued by ForwardEmergency-
BrakingMessage, left hand side of the figure) and received by reading from
channel brake (right hand side). In the simulated situation, the latency is of
1918 − 1681 = 237µsec. Figure 23 finally shows the sequence diagram obtained



A Framework for Multi-level Modeling of AMS Embedded Systems 221

Fig. 22. Latency checkpoints between emergency detection (write to channel For-
wardEmergencyBrakingMessage) and braking (reading from channel brake). Automates
are annotated with values obtained by running the interactive simulation.

Fig. 23. Emergency situation in a sequence diagram.

at software design level, indicating that there is an emergency message, but that
particular message can be ignored.

6 Conclusion and Perspectives

The paper shows the integration of SystemC-AMS (TDF) components into
a multi-level modeling tool for complex embedded systems. Starting from a
SysML-like representation and progressively refining, we obtain, by model trans-
formation, a cycle-accurate virtual prototype.

Virtual prototyping can be obtained from the last refinement stage, taking
into account both analog and digital parts of the system. To this end, a library
was created to provide read and write functions between digital and analog
components.



222 D. Genius et al.

Yet, in order to use analog components, C code needs to be inserted in order
to capture analog functions. The resulting code is thus no longer correct by
construction. In the future, this should be replaced by specific read and write
operators. Also, it should be possible to transmit structured data types and
multiple parameters more conveniently.

Even if analog components tend to be unique, we think that it will be possible
to select a set of typical components such as filters, analog/digital converters,
sine sources, and sinks. We plan to provide a library of parametrizable versions
of such building blocks.

Yet, TDF models are still strongly oversimplified as in the EVITA industrial
case study, further detail was not available. We are currently modeling a medical
appliance with a strong proportion of analog blocks, stemming from an Open
Source project [13], for which we have access to full implementation details.

Latency measurements are currently limited to the digital part. The feedback
of simulation results is still only semi-automatic. Automating and extending this
mechanism to the entire system should enable us to propose a full design space
exploration environment for Analog/Mixed Signal systems.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (2005)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Accellera Systems Initiative: SystemC AMS extensions Users Guide, Version 1.0.
Accellera Systems Initiative, March 2010

4. Andrade, L., Maehne, T., Vachoux, A., Ben Aoun, C., Pêcheux, F., Louërat, M.M.:
Pre-simulation formal analysis of synchronization issues between discrete event
and timed data flow models of computation. In: Design, Automation and Test in
Europe, DATE Conference, March 2015

5. Andrade Porras, L.: Principles and implementation of a generic synchronization
interface between SystemC AMS models of computation for the virtual prototyping
of multi-disciplinary systems. Ph.D. thesis, Université Pierre et Marie Curie (2016)

6. Apvrille, L.: Webpage of TTool (2011)
7. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-

Vincentelli, A.L.: Metropolis: an integrated electronic system design environment.
IEEE Comput. 36(4), 45–52 (2003)

8. Becoulet, A.: Mutekh. http://www.mutekh.org
9. Beyond Dreams Consortium: Beyond Dreams (Design Refinement of Embed-

ded Analogue and Mixed-Signal Systems) (2008–2011). http://projects.eas.iis.
fraunhofer.de/beyonddreams

10. Bouquet, F., Gauthier, J.M., Hammad, A., Peureux, F.: Transformation of SysML
structure diagrams to VHDL-AMS. In: 2012 Second Workshop on Design, Control
and Software Implementation for Distributed MEMS, pp. 74–81. IEEE (2012)

11. Bybell, T.: GTKWave Viewer (2019). http://gtkwave.sourceforge.net
12. Capocchi, L., Santucci, J.F., Poggi, B., Nicolai, C.: DEVSimPY: a collaborative

python software for modeling and simulation of DEVS systems. In: 2011 IEEE 20th
International Workshops on Enabling Technologies: Infrastructure for Collabora-
tive Enterprises, pp. 170–175. IEEE (2011)

http://www.mutekh.org
http://projects.eas.iis.fraunhofer.de/beyonddreams
http://projects.eas.iis.fraunhofer.de/beyonddreams
http://gtkwave.sourceforge.net


A Framework for Multi-level Modeling of AMS Embedded Systems 223

13. echOpen Community: Designing an open-source and low-cost echo-stethoscope
(2017). http://www.echopen.org/

14. Concepcion, A.I., Zeigler, B.P.: DEVS formalism: a framework for hierarchical
model development. IEEE Trans. Softw. Eng. 14(2), 228–241 (1988)

15. Porto, R.C.: Integration of SystemC-AMS simulation platforms into TTool. Mas-
ter’s thesis, Technische Universität Kaiserslautern (2018)

16. Porto, R.C., Genius, D., Apvrille, L.: Modeling and virtual prototyping for embed-
ded systems on mixed-signal multicores. In: RAPIDO (2019)

17. Damm, M., Grimm, C., Haas, J., Herrholz, A., Nebel, W.: Connecting SystemC-
AMS models with OSCI TLM 2.0 models using temporal decoupling. In: FDL, pp.
25–30 (2008)

18. Davare, A.: A next-generation design framework for platform-based design. In:
DVCon, vol. 152 (2007)

19. Einwich, K.: SystemC AMS PoC2.1 Library, COSEDA, Dresden (2016)
20. EVITA: E-safety vehicle intrusion protected applications. http://www.evita-

project.org/
21. Fong, C.: Discrete-time dataflow models for visual simulation in ptolemy II. Mas-

ter’s report, Memorandum UCB/ERL M 1 (2001)
22. Fritzson, P., Engelson, V.: Modelica—a unified object-oriented language for system

modeling and simulation. In: Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 67–
90. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054087

23. Gamatié, A., et al.: A model-driven design framework for massively parallel embed-
ded systems. ACM Trans. Embed. Comput. Syst. 10(4), 39 (2011)

24. Genius, D., Apvrille, L.: Virtual yet precise prototyping: an automotive case study.
In: ERTSS 2016, Toulouse, January 2016

25. Genius, D., Li, L.W., Apvrille, L.: Model-driven performance evaluation and formal
verification for multi-level embedded system design. In: 5th International Confer-
ence on Model-Driven Engineering and Software Development (MODELSWARD
2017), Porto, Portugal (2017)

26. Genius, D., Li, L.W., Apvrille, L.: Multi-level latency evaluation with an MDE app-
roach. In: 6th International Conference on Model-Driven Engineering and Software
Development (MODELSWARD 2018), Funchal, Portugal (2018)

27. Genius, D., Cortés Porto, R., Apvrille, L., Pêcheux, F.: A tool for high-level mod-
eling of analog/mixed signal embedded systems. In: 7th International Conference
on Model-Driven Engineering and Software Development (MODELSWARD 2019),
Prague, Czech Republic (2019)

28. Greiner, A.: Writing efficient cycle-accurate, bit-accurate SystemC simula-
tion models for SoCLib, September 2017. http://www.soclib.fr/trac/dev/wiki/
WritingRules/Caba. http://www.soclib.fr/trac/dev/wiki/WritingRules/Caba. As
of: 16 October 2018

29. Guo, L., Zhu, Q., Nuzzo, P., Passerone, R., Sangiovanni-Vincentelli, A., Lee, E.A.:
Metronomy: a function-architecture co-simulation framework for timing verifica-
tion of cyber-physical systems. In: Proceedings of the 2014 International Confer-
ence on Hardware/Software Codesign and System Synthesis, p. 24. ACM (2014)

30. H-Inception Consortium: Heterogeneous Inception Project (2012–2015). https://
www-soc.lip6.fr/trac/hinception

31. Herrera, F., Villar, E.: A framework for heterogeneous specification and design
of electronic embedded systems in SystemC. ACM Trans. Des. Autom. Electron.
Syst. (TODAES) 12(3), 22 (2007)

32. IEEE: SystemC. IEEE Standard 1666-2011 (2011)

http://www.echopen.org/
http://www.evita-project.org/
http://www.evita-project.org/
https://doi.org/10.1007/BFb0054087
http://www.soclib.fr/trac/dev/wiki/WritingRules/Caba
http://www.soclib.fr/trac/dev/wiki/WritingRules/Caba
http://www.soclib.fr/trac/dev/wiki/WritingRules/Caba
https://www-soc.lip6.fr/trac/hinception
https://www-soc.lip6.fr/trac/hinception


224 D. Genius et al.

33. Jensen, K., Kristensen, L.M.: Coloured Petri Nets. Modelling and Validation of
Concurrent Systems. Springer, Heidelberg (2009). https://doi.org/10.1007/b95112

34. Kelling, E., et al.: Specification and evaluation of e-security relevant use cases.
Technical report, Deliverable D2.1, EVITA Project (2009)

35. Lee, E.A.: Disciplined heterogeneous modeling. In: Petriu, D.C., Rouquette, N.,
Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6395, pp. 273–287. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-16129-2 20

36. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–
1245 (1987)

37. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Trans. Comput. C–36(1), 24–35 (1987).
https://doi.org/10.1109/TC.1987.5009446

38. Li, L., Apvrille, L., Genius, D.: Virtual prototyping of automotive systems: towards
multi-level design space exploration. In: DASIP (2016)

39. Li, L.W., Genius, D., Apvrille, L.: Formal and virtual multi-level design space
exploration. In: Pires, L.F., Hammoudi, S., Selic, B. (eds.) MODELSWARD 2017.
CCIS, vol. 880, pp. 47–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-94764-8 3

40. Niaki, S.H.A., Jakobsen, M.K., Sulonen, T., Sander, I.: Formal heterogeneous sys-
tem modeling with SystemC. In: 2012 Forum on Specification and Design Lan-
guages (FDL), pp. 160–167. IEEE (2012)

41. Ninios, P., Vlahos, K., Bunn, D.W.: OO/DEVS: a platform for industry simulation
and strategic modelling. Decis. Support Syst. 15(3), 229–245 (1995)

42. Ptolemy.org (ed.): System Design, Modeling, and Simulation using Ptolemy II
(2014)

43. Quillevere, H.: Gtk Analog Wave Viewer (2019). http://www.rvq.fr/linux/gaw.php
44. Selic, B., Gérard, S.: Modeling and Analysis of Real-Time and Embedded Systems

with UML and MARTE: Developing Cyber-Physical Systems. Elsevier, Amsterdam
(2013)

45. SocLib Consortium: The SoCLib project: an integrated system-on-chip modelling
and simulation platform. Technical report, CNRS (2003). www.soclib.fr

46. Taha, S., Radermacher, A., Gérard, S.: An entirely model-based framework for
hardware design and simulation. In: Hinchey, M., et al. (eds.) BICC/DIPES -2010.
IAICT, vol. 329, pp. 31–42. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15234-4 5

47. Vachoux, A., Grimm, C., Einwich, K.: Analog and mixed signal modelling with
SystemC-AMS. In: ISCAS (3), pp. 914–917. IEEE (2003). http://ieeexplore.ieee.
org/xpl/mostRecentIssue.jsp?punumber=8570

48. Vidal, J., de Lamotte, F., Gogniat, G., Soulard, P., Diguet, J.P.: A co-design app-
roach for embedded system modeling and code generation with UML and MARTE.
In: DATE, pp. 226–231. IEEE (2009)

49. VSI Alliance: Virtual Component Interface Standard (OCB 2 2.0), August 2000
50. Zeigler, B.P., Kim, D.: Distributed supply chain simulation in a DEVS/CORBA

execution environment. In: WSC 1999, 1999 Winter Simulation Conference Pro-
ceedings. Simulation-A Bridge to the Future (Cat. No. 99CH37038), vol. 2, pp.
1333–1340. IEEE (1999)

51. Zhu, J., Sander, I., Jantsch, A.: HetMoC: heterogeneous modelling in SystemC.
In: 2010 Forum on Specification & Design Languages (FDL 2010), pp. 1–6. IET
(2010)

https://doi.org/10.1007/b95112
https://doi.org/10.1007/978-3-642-16129-2_20
https://doi.org/10.1109/TC.1987.5009446
https://doi.org/10.1007/978-3-319-94764-8_3
https://doi.org/10.1007/978-3-319-94764-8_3
http://www.rvq.fr/linux/gaw.php
www.soclib.fr
https://doi.org/10.1007/978-3-642-15234-4_5
https://doi.org/10.1007/978-3-642-15234-4_5
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8570
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8570

	A Framework for Multi-level Modeling of Analog/Mixed Signal Embedded Systems
	1 Introduction
	2 Related Work
	3 Basic Concepts
	3.1 Timed Data Flow
	3.2 Modeling Tool

	4 Integration of Analog Components
	4.1 Representing Analog Components
	4.2 Connecting AMS Components to the MPSoC
	4.3 Solving Causality Problems
	4.4 MPSoC Virtual Prototype
	4.5 Simulation of the Virtual Prototype
	4.6 Trace Generation

	5 Case Study
	5.1 Partitioning
	5.2 Software Design
	5.3 Modeling Sensors
	5.4 Interaction of Analog Blocks with the Software Design Level
	5.5 Deployment
	5.6 Running the Application

	6 Conclusion and Perspectives
	References




