
Slimane Hammoudi
Luís Ferreira Pires
Bran Selić (Eds.)

7th International Conference, MODELSWARD 2019
Prague, Czech Republic, February 20–22, 2019
Revised Selected Papers

Model-Driven Engineering
and Software Development

Communications in Computer and Information Science 1161

Communications
in Computer and Information Science 1161

Commenced Publication in 2007
Founding and Former Series Editors:
Phoebe Chen, Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu,
Krishna M. Sivalingam, Dominik Ślęzak, Takashi Washio, Xiaokang Yang,
and Junsong Yuan

Editorial Board Members

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-0044-503X
https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0001-6859-7120

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Slimane Hammoudi • Luís Ferreira Pires •

Bran Selić (Eds.)

Model-Driven Engineering
and Software Development
7th International Conference, MODELSWARD 2019
Prague, Czech Republic, February 20–22, 2019
Revised Selected Papers

123

Editors
Slimane Hammoudi
Siège du Groupe ESEO
Angers, France

Luís Ferreira Pires
University of Twente
Enschede, The Netherlands

Bran Selić
Malina Software Corporation
Nepean, ON, Canada

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-37872-1 ISBN 978-3-030-37873-8 (eBook)
https://doi.org/10.1007/978-3-030-37873-8

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-37873-8

Preface

The present volume contains extended versions of selected papers from the 7th
International Conference on Model-Driven Engineering and Software Development
(MODELSWARD 2019), held in Prague, Czech Republic, during February 20–22,
2019.

The purpose of MODELSWARD 2019 was to provide a platform for researchers,
engineers, academics, as well as industrial professionals from all over the world to
present their research results and development activities in using models and
model-driven engineering techniques for Software Development. Model-Driven
Development (MDD) is an approach to the development of IT systems in which
models take a central role, not only for analysis of these systems but also for their
construction. MDD has emerged from modeling initiatives, most prominently the
Model-Driven Architecture (MDA) fostered by the Object Management Group (OMG).
In the scope of MDA, a couple of technologies have been developed that became the
cornerstones of MDD, like metamodeling and model transformations. MDD relies on
languages for defining metamodels, like the Meta-Object Facility (MOF) and Ecore
(developed in the scope of the Eclipse Modeling Framework), and transformation
specification languages like QVT and ATL.

This volume contains 16 papers that were selected by the event chairs, based on the
evaluation and comments provided by the MODELSWARD Program Committee
members, the session chairs’ assessments, as well as the program chairs’ review of all
papers included in the technical program. The authors of the selected papers were then
invited to submit a revised and extended version of their papers with at least 30%
additional new material. The selected papers address some of the most relevant chal-
lenges being faced by researchers and practitioners in this area, and cover topics such
as language design and tooling, programming support tools, code and text generation
from models, behavior modeling and analysis, model transformations and multi-view
modeling, as well as applications of MDD and its related techniques to cyber-physical
systems, cybersecurity, IoT, autonomous vehicles, and healthcare.

We would like to thank all the authors for their contributions, and also the reviewers,
who helped ensure the high quality of this publication.

February 2019 Slimane Hammoudi
Luís Ferreira Pires

Bran Selić

Organization

Conference Chair

Bran Selić Malina Software Corp., Canada

Program Co-chairs

Slimane Hammoudi ESEO, ERIS, France
Luis Ferreira Pires University of Twente, The Netherlands

Program Committee

Achilleas Achilleos University of Cyprus, Cyprus
Bülent Adak Aselsan, Turkey
Ludovic Apvrille LTCI, Télécom ParisTech, Université Paris-Saclay,

France
Ethem Arkin Aselsan, Turkey
Uwe Assmann TU Dresden, Germany
Marco Autili University of L’Aquila, Italy
Elarbi Badidi United Arab Emirates University, UAE
Omar Badreddin University of Texas at El Paso, USA
Mira Balaban Ben-Gurion University of the Negev, Israel
Antonia Bertolino CNR, Italy
Lorenzo Bettini Università di Firenze, Italy
Stamatia Bibi University of Western Macedonia, Greece
Paolo Bocciarelli University of Rome Tor Vergata, Italy
Antonio Brogi Università di Pisa, Italy
Achim Brucker SAP Research, Germany
Matthias Brun ESEO Group, France
Philipp Brune Neu-Ulm University of Applied Sciences, Germany
Christian Bunse University of Applied Sciences Stralsund, Germany
Juan Calleros Universidad Autónoma de Puebla, Mexico
Renata Carvalho Eindhoven University of Technology, The Netherlands
Hassan Charaf BME, Hungary
Olena Chebanyuk National Aviation University, Ukraine
Yuting Chen Shanghai Jiaotong University, China
Dan Chiorean Babes-Bolyai University, Romania
Antonio Cicchetti Malardalen University, Sweden
Nebut Clémentine LIRMM, Université de Montpellier, France
Andrea D’Ambrogio University of Rome Tor Vergata, Italy
Guglielmo De Angelis CNR-IASI, Italy
Sergio de Cesare University of Westminster, UK

Leonidas Deligiannidis Wentworth Institute of Technology, USA
Birgit Demuth TU Dresden, Germany
Giovanni Denaro University of Milano-Bicocca, Italy
Enrico Denti Università di Bologna, Italy
Zinovy Diskin McMaster University and University of Waterloo,

Canada
Dimitris Dranidis CITY College, International Faculty of the University

of Sheffield, Greece
Sophie Ebersold IRIT, France
Brian Eddy University of West Florida, USA
Holger Eichelberger Universität Hildesheim, Germany
Achiya Elyasaf Ben-Gurion University of the Negev, Israel
Andrea Enrici Nokia Bell Labs, France
Angelina Espinoza Universidad Autónoma Metropolitana,

Iztapalapa (UAM-I), Spain
Vladimir Estivill-Castro Griffith University, Australia
Anne Etien CNRS-Inria, CRIStAL, University Lille 1, France
João Faria Faculty of Engineering of the University of Porto,

Portugal
Stephan Flake S&N CQM Consulting & Services GmbH, Germany
Piero Fraternali Politecnico di Milano, Italy
Jicheng Fu University of Central Oklahoma, USA
Kurt Geihs University of Kassel, Germany
Paola Giannini University of Piemonte Orientale, Italy
Fabian Gilson University of Canterbury, New Zealand
Carmine Gravino University of Salerno, Italy
Joel Greenyer Leibniz Universität Hannover, Germany
Christiane Gresse von

Wangenheim
UFSC - Federal University of Santa Catarina, Brazil

Jean Hauck Universidade Federal de Santa Catarina, Brazil
Klaus Havelund NASA Jet Propulsion Laboratory, USA
Rene Hexel Griffith University, Australia
Jose R. Hilera University of Alcala, Spain
Pavel Hruby DXC Technology, Denmark
Marianne Huchard Université de Montpellier, France
Emilio Insfran Universitat Politècnica de València, Spain
Stefan Jablonski University of Bayreuth, Germany
Slinger Jansen Utrecht University, The Netherlands
Maria Jose Escalona University of Seville, Spain
Alexander Kamkin Ivannikov Institute for System Programming

of the Russian Academy of Sciences, Russia
Teemu Kanstren VTT, Finland
Alexey Khoroshilov ISPRAS, Russia
Jun Kong North Dakota State University, USA
Stephan Krusche TU München, Germany
Jochen Kuester University of Applied Sciences in Bielefeld, Germany

viii Organization

Uirá Kulesza Federal University of Rio Grande do Norte (UFRN),
Brazil

Ivan Kurtev Altran Nederland, The Netherlands
Ralf-Detlef Kutsche TU Berlin, Germany
Rafael Lahoz Beltra Complutense University of Madrid, Spain
Anna-Lena Lamprecht Utrecht University, The Netherlands
Abderrahmane Leshob University of Quebec at Montreal, Canada
Yannis Lilis Institute of Computer Science, FORTH, Greece
Lior Limonad IBM, Israel
Dongxi Liu CSIRO, Australia
Francesca Lonetti CNR, Italy
Patricia López Martínez University of Cantabria, Spain
David Lorenz Open University, Israel
Der-Chyuan Lou Chang Gung University, Taiwan
Frederic Mallet Universite Nice Sophia Antipolis, France
Eda Marchetti ISTI-CNR, Italy
Beatriz Marin Universidad Diego Portales, Chile
Johnny Marques Instituto Tecnológico de Aeronáutica, Brazil
Assaf Marron The Weizmann Institute of Science, Israel
Steve McKeever Uppsala University, Sweden
Dragan Milicev University of Belgrade, Serbia
Dugki Min Konkuk University, South Korea
Anila Mjeda Lero (The Irish Software Engineering Centre), Ireland
Ambra Molesini Università di Bologna, Italy
Valérie Monfort LAMIH Valenciennes UMR CNRS 8201, France
Rodrigo Monteiro Fluminense Federal University, Brazil
Sascha Mueller-Feuerstein Ansbach University of Applied Sciences, Germany
Stefan Naujokat TU Dortmund, Germany
Andrzej Niesler Wroclaw University of Economics, Poland
Mykola Nikitchenko Taras Shevchenko National University of Kyiv,

Ukraine
Halit Oguztüzün Middle East Technical University, Turkey
Aida Omerovic SINTEF, Norway
Olaf Owe University of Oslo, Norway
Görkem Paçacı Uppsala University, Sweden
Ana C. Paiva Faculty of Engineering of University of Porto, Portugal
Vera Pantelic McMaster University, Canada
Dana Petcu West University of Timisoara, Romania
Alexander Petrenko ISPRAS, Russia
Rob Pettit The Aerospace Corporation, USA
Elke Pulvermueller University of Osnabrueck, Germany
Ansgar Radermacher CEA, France
Aurora Ramirez University of Córdoba, Spain
Gil Regev Ecole Polytechnique Fédérale de Lausanne,

Switzerland
Iris Reinhartz-Berger University of Haifa, Israel

Organization ix

Wolfgang Reisig Humboldt-Universität zu Berlin, Germany
Werner Retschitzegger Johannes Kepler University, Austria
Colette Rolland Université De Paris1 Panthèon Sorbonne, France
Jose Raul Romero University of Cordoba, Spain
Gustavo Rossi Lifia, Argentina
Francesca Saglietti University of Erlangen-Nuremberg, Germany
Comai Sara Politecnico di Milano, Italy
Anthony Savidis Institute of Computer Science, FORTH, Greece
Wieland Schwinger Johannes Kepler University, Austria
Itai Segall Nokia Bell Labs, USA
Bran Selić Malina Software Corp., Canada
Alberto Silva IST, INESC-ID, Portugal
John Slaby Raytheon, USA
Stefan Sobernig WU Vienna, Austria
Pnina Soffer University of Haifa, Israel
Stéphane Somé University of Ottawa, Canada
Hui Song SINTEF, Norway
Jean-Sébastier Sottet Luxembourg Institute for Science and Technology,

Luxembourg
Romina Spalazzese Malmö University, Sweden
Ioanna Stamatopoulou CITY College, International Faculty of the University

of Sheeld, Greece
Ioannis Stamelos Aristotle University of Thessaloniki, Greece
Alin Stefanescu University of Bucharest, Romania
Arnon Sturm Ben-gurion University of the Negev, Israel
Hiroki Suguri Miyagi University, Japan
Massimo Tivoli University of L’Aquila, Italy
Naoyasu Ubayashi Kyushu University, Japan
Andreas Ulrich Siemens AG, Germany
Gianluigi Viscusi EPFL Lausanne, Switzerland
Layne Watson Virginia Polytechnic Institute and State University,

USA
Gera Weiss Ben Gurion University, Israel
Gereon Weiss Fraunhofer ESK, Germany
Hao Wu National University of Ireland, Ireland
Husnu Yenigun Sabanci University, Turkey
Chunying Zhao Western Illinois University, USA
Haiyan Zhao Peking University, China
Kamil Zyla Lublin University of Technology, Poland

Additional Reviewers

Ievgen Ivanov National Taras Shevchenko University of Kyiv,
Ukraine

Rahad Khandoker University of Texas at El Paso, USA
Omar Masmali University of Texas at El Paso, USA

x Organization

Sylvain Vauttier LGI2P, France
Christopher Werner TU Dresden, Germany

Invited Speakers

Hans Vangheluwe University of Antwerp, Belgium
Ed Seidewitz Model Driven Solutions, USA
Bran Selić Malina Software Corp., Canada

Organization xi

Contents

Integrating UML and ALF: An Approach to Overcome the Code
Generation Dilemma in Model-Driven Software Engineering 1

Johannes Schröpfer and Thomas Buchmann

A Model-Based Combination Language for Scheduling Verification 27
Hui Zhao, Ludovic Apvrille, and Frédéric Mallet

The Understandability of Models for Behaviour . 50
Vladimir Estivill-Castro and René Hexel

A Role Modeling Based Approach for Cyber Threat Analysis 76
Bastien Drouot, Fahad R. Golra, and Joël Champeau

Static Data-Flow Analysis of UML/SysML Functional Views for Signal
and Image Processing Applications . 101

Andrea Enrici, Ludovic Apvrille, Renaud Pacalet, and Minh Hiep Pham

Umple-TL: A Model-Oriented, Dependency-Free Text Emission Tool 127
Mahmoud Husseini Orabi, Ahmed Husseini Orabi,
and Timothy C. Lethbridge

Dataset Management Using Metadata . 156
David Milward

The Art of Bootstrapping . 182
Andreas Prinz and Gergely Mezei

A Framework for Multi-level Modeling of Analog/Mixed Signal
Embedded Systems . 201

Daniela Genius, Rodrigo Cortés Porto, Ludovic Apvrille,
and François Pêcheux

Towards Multi-editor Support for Domain-Specific Languages Utilizing
the Language Server Protocol . 225

Hendrik Bünder and Herbert Kuchen

Executing Scenario-Based Specification with Dynamic Generation
of Rich Events . 246

David Harel, Guy Katz, Assaf Marron, Aviran Sadon, and Gera Weiss

Evaluating the Multi-variant Model Transformation of UML Class
Diagrams to Java Models . 275

Sandra Greiner and Bernhard Westfechtel

Modeling and Analysis of Partitions on Functional Architectures
Using EAST-ADL. 298

Christoph Etzel and Bernhard Bauer

A Framework for Flexible Program Evolution and Verification
of Distributed Systems. 320

Olaf Owe, Elahe Fazeldehkordi, and Jia-Chun Lin

Classifying Approaches for Constructing Single Underlying Models 350
Johannes Meier, Christopher Werner, Heiko Klare, Christian Tunjic,
Uwe Aßmann, Colin Atkinson, Erik Burger, Ralf Reussner,
and Andreas Winter

TRILATERAL: A Model-Based Approach for Industrial CPS – Monitoring
and Control . 376

Markel Iglesias-Urkia, Aitziber Iglesias, Beatriz López-Davalillo,
Santiago Charramendieta, Diego Casado-Mansilla, Goiuria Sagardui,
and Aitor Urbieta

Author Index . 399

xiv Contents

Integrating UML and ALF: An Approach
to Overcome the Code Generation

Dilemma in Model-Driven
Software Engineering

Johannes Schröpfer(B) and Thomas Buchmann

Applied Computer Science I, University of Bayreuth, 95440 Bayreuth, Germany
{johannes.schroepfer,thomas.buchmann}@uni-bayreuth.de

Abstract. The state of the art in model-driven software engineering is
a combination of structural modeling and conventional programming to
supply the operational behavior of the system. This fact leads to the
so-called code generation dilemma when model and hand-written code
evolve independently during the software development process. In this
paper we present an approach of integrating two OMG standards to
overcome this problem: A tight integration of UML used for structural
modeling and the Action Language for Foundational UML (ALF) for
behavioral modeling using a textual surface notation leads to a full-blown
model-driven process which allows for the generation of fully executable
source code. Supplying hand-written code fragments in the target lan-
guage is no longer necessary.

Keywords: Model-driven development · Code generation · Executable
models · ALF · UML · BXtend · fUML · Xtext

1 Introduction

This paper is an extended version of [20] and provides besides an extended
example use case some more technical details. Model-driven software engineering
(MDSE) [24] aims at reducing effort for developing software by specifying higher-
level (executable) models, instead of lower-level hand-written source code. An
initial model capturing the requirements is often the starting point from which a
number of models over multiple levels of abstraction is derived, until the system
is eventually implemented. In order to support model-driven software engineer-
ing in a full-fledged way, key enabling technologies are mandatory for defining
modeling languages and specifying and executing model transformations.

Usually, modeling languages are defined with the help of metamodels in the
context of object-oriented modeling. To this end, the Object Management Group
(OMG) provides the Meta Object Facility (MOF) standard [18]. Throughout
the last two decades, UML [19] has been established as the de-facto standard
modeling language for model-driven development. In its current version, UML
c© Springer Nature Switzerland AG 2020
S. Hammoudi et al. (Eds.): MODELSWARD 2019, CCIS 1161, pp. 1–26, 2020.
https://doi.org/10.1007/978-3-030-37873-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37873-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-37873-8_1

2 J. Schröpfer and T. Buchmann

comprises seven kinds of diagrams dedicated to structural modeling and seven
different diagrams addressing behavioral aspects of a software system. In order to
support model-driven software engineering in a full-fledged way, having models
which allow for a generation of fully executable code is crucial.

However, generating executable code requires a precise and well-defined exe-
cution semantics of behavioral models. Unfortunately, not all behavioral dia-
grams provided by UML are equipped with such a well-defined semantics. Fur-
thermore, some diagrams with a well-defined execution semantics, e.g., activity
diagrams, are on a lower level of abstraction in terms of specifying control flow.
As a consequence, the state of the art in model-driven software engineering nowa-
days is specifying the static structure of the software system using models from
which source code is generated. This generated source code is then augmented
with behavioral elements using regular programming languages.

This fact which we call the “code generation dilemma” [6] is problematic as
the different fragments of the software system tend to evolve separately which
quickly leads to inconsistencies between the model and the (generated) source
code. Round-trip engineering [7] may help to keep the structural parts consis-
tent but unfortunately there is still no adequate representation of the manually
supplied behavioral fragments.

The Action Language for Foundational UML (ALF) [15] is also an OMG
standard addressing a textual surface representation for a major part of UML
model elements. Furthermore, it provides an execution semantics via a mapping
of the ALF concrete syntax to the abstract syntax of the OMG standard of a
Foundational Subset for Executable UML Models, also known as Foundational
UML or just fUML [16]. The primary goal is to provide a concrete textual syntax
allowing software engineers to specify executable behavior within a wider model
which is represented using the usual graphical notations of UML. A simple use
case is the specification of method bodies for operations contained in class dia-
grams. To this end, it provides a language with a procedural character whose
underlying data model is UML. However, ALF also provides a concrete syntax
for structural modeling within the limits of the fUML subset.

In the academic world, the Eclipse Modeling Framework (EMF) [22] con-
stitutes the platform for research dedicated to model-driven software engineer-
ing. Its metamodel Ecore is based on a subset of MOF called Essential MOF
(EMOF). Following a pragmatic approach, EMF strictly focuses on principles
from object-oriented modeling only providing core concepts for defining classes,
attributes, and relationships between classes. Furthermore, it allows for Java
code generation from these structural model definitions. EMF provides an exten-
sible platform for the development of MDSE applications.

In this paper, we present a tight integration of the OMG standards UML and
ALF to realize an integrated modeling environment which allows for structural
as well as behavioral modeling. Fully executable Java source code is generated
from the resulting models, allowing for “real” MDSE approaches.

The paper is structured as follows: Sect. 2 provides a conceptual overview
of our solution. An example use case is presented in Sect. 3. Technical details

Integrating UML and ALF 3

are given in Sect. 4, while our approach is discussed in Sect. 5. Related work is
discussed in Sect. 6 before Sect. 7 concludes the paper.

2 Overview

As stated above, the current state of the art in model-driven software engineer-
ing is modeling the structure of a software system which is used as a basis for
generating code. In a subsequent step, the generated code is augmented with
manually programmed method bodies to supply behavior as shown in Fig. 1.
In a strict waterfall-like development process, this approach is feasible. But in
iterative processes, the danger of model and code evolving separately is imma-
nent. In the past, approaches addressing this issue using round-trip engineering
between model and source code have been published [5,7,9]. However, a much
better solution would clearly separate the primary development artifacts – i.e.,
the development models – from generated ones – i.e., the generated platform-
specific source code – in order to avoid a concurrent evolution of artifacts located
on different levels of abstraction as depicted in Fig. 2.

Structural
Model

(e.g. UML)
Source Code

Modeler Programmer

creates / updates creates / updates method bodies

generate

Fig. 1. A state-of-the-art MDSD process.

To this end, our work presented in this paper integrates two OMG standards
in a single tool-chain. (1) UML [19] models are used for structural modeling and
(2) ALF [15] is used to model the behavior in terms of method bodies. While
UML provides a wide range of diagrams supporting structural modeling, we lim-
ited ourselves to package diagrams for the task of modeling-in-the-large [4] and
class diagrams for modeling-in-the-small. The ALF standard primarily addresses
a textual surface representation for a subset of UML model elements. Its main
benefit is an execution semantics which allows for the generation of executable
code out of ALF specifications. Executable code in this context means that the
resulting source code also comprises method bodies and extending generated
source code with hand-written code fragments is no longer necessary.

4 J. Schröpfer and T. Buchmann

UML
Model

(package &
class diagrams)

Source Code

Modeler Modeler/Programmer

creates / updates creates / updates method bodies

generate

ALF model
including

method bodies
supplied for UML

operations

M2M
Transformation

Fig. 2. MDSD process realized with our approach.

The following section introduces an example workflow which may occur in
a real-life iterative development process as an interaction between design and
implementation phase.

3 Example Workflow

This section describes an example development process of a software system in
the context of a university management system using our tool. The complete
workflow consists of four iterations each of which considering modeling parts
of the structure, augmenting the model with behavioral elements, and eventu-
ally generating fully executable Java source code. At the end of this section
some JUnit test fragments are provided that use the generated code and test its
functionality. This example is an extended version of that shown in [20, Sect. 5].

Figure 3 depicts the first iteration. We start with a UML class diagram
(step 1.1) that contains the three classes Exam, Result, and Student. As seman-
tic relationships between them, a composition and an aggregation is used.
The classes contain one operation and several properties where the property
Result::note is derived; for an instance of the class Result, the value note con-
stitutes the string representation of the numeric literal stored by Result::value,
e.g., the note "excellent" for the values 1.0 and 1.3. By invoking the cor-
responding command, the background transformation creates the ALF model
system from the UML model (step 1.2). The ALF model system consists of
the main model for the structural model elements and two branch models for
the created ALF operations storing the behavioral elements; one ALF operation
corresponds with the UML operation and one with the derived UML property.
Since derived UML properties are not contained in the fUML subset, they are
approximated by ALF operations that are supposed to define the computation
semantics. In addition, fUML does not support aggregations. In this case, the
user is informed of this incidence and can decide whether the transformation is
executed or aborted; if the transformation is not aborted, its execution results

Integrating UML and ALF 5

1.1

1.2

1.31.4

Fig. 3. The first iteration of the example workflow. Class diagram elements that are
colored red are non-fUML elements that are adapted during the process. (Color figure
online)

6 J. Schröpfer and T. Buchmann

in converting the aggregation into an ordinary, fUML-compatible association.
In this scenario, the user decides to accept this simplification and executes the
transformation.

After the transformation has been executed, the semantics of the ALF oper-
ations is modeled (step 1.3). By clicking the related UML element – the oper-
ation or the derived property, respectively – the user gets access to the textual
representation of the related branch model within an extra view providing an
embedded text editor. At this moment, the operations only consist of the struc-
tural elements, i.e., the operation head and its parameters. By completing the
respective operation textually, its behavior is defined. First, the ALF operation
Result::getNote() for the derived UML property Result::note is defined
by means of a switch statement for mapping the real values to string repre-
sentations. Furthermore, the ALF operation Student::writeExam(...) for the
related UML operation creates a new instance of the class Result and inserts it
into the model system by means of link operation expressions for creating links.

Now, the structure as well as the behavior of our model is defined, i.e., it is
fully executable. By invoking the related command, Java source code is generated
(step 1.4). For the complete class diagram, one package is created that contains
several Java interfaces and classes. For each UML class, there is one Java inter-
face and one Java class that implements the respective interface; by means of
generating interfaces and implementing classes, the obstacle of expressing multi-
inheritance in UML with Java is overcome. Since in this case, the ALF switch
statements cannot be expressed by completely analogous Java switch statements
(underlying version: Java 1.8), Java if statements are used to express this seman-
tics. The link operation expressions are mapped to invocation expressions of
special Java methods that are generated in the Java classes that correspond to
UML member classes of the related association.

Figure 4 depicts the second iteration. At the beginning, the structural model
is extended (step 2.1). The resulting UML class diagram has a new data type
Evaluation for storing statistical information about exams. It is used by the
new operation Exam::computeStatistics() that returns an instance of this
data type. Furthermore, the class Student contains two properties where the
property Student::matrNr is set to be read-only. By executing the background
transformation again, the modifications of the UML model are propagated to the
ALF model system (step 2.2), i.e., it is not built up from scratch again but it is
augmented by new elements such that the behavioral ALF elements that have
been defined within the preceding iteration are still contained. The model system
exhibits two additional ALF operations – one corresponds with the new UML
operation and one with the read-only property Student::matrNr. Properties in
fUML cannot be set to read-only and are therefore not supported by ALF. The
semantics is approximated by mapping UML read-only properties to private
ALF properties and ALF access operations to read the values; i.e., while the
values can be modified within their respective classes by setting the property,
from outside only the getter operations can be accessed since the visibility of

Integrating UML and ALF 7

2.1

2.2

2.3

2.4

Fig. 4. The second iteration of the example workflow. Elements that are colored red
are additional class diagram artifacts or source code files which are created during the
second iteration. (Color figure online)

8 J. Schröpfer and T. Buchmann

the UML property – in this case public – corresponds with the visibility of the
ALF getter operation.

After the ALF model has been adapted, the user defines the behavior for
the new ALF operation that has emerged from the UML operation (step 2.3).
Sequence operation expressions are used for the computation of the count value,
a for statement during the process for the average value, and a sequence expan-
sion expression to find the correct subset of the collection results that is impor-
tant for computing the rateFailed value. Within the integrated view, the user
does not have any possibility to modify the ALF operation for the UML read-
only property; the access operation is supposed to purely return the base value
without any further effects.

Next, source code is generated for the current ALF model (step 2.4). The
Java files are regenerated from scratch since the user has not modified them
after the generation process at the end of the first iteration. While the generated
package of the first iteration contains six files – one Java interface and one Java
class for each UML class – the package currently has an additional file – one
Java class for the UML data type Evaluation. As the behavior of the ALF
operations defined during the first iteration is still contained in the ALF model
system after the second iteration, the generated method bodies are also still part
of the generated code. In addition, a method for the ALF operation emerged from
the UML operation Exam::computeStatistics() is generated. ALF expressions
working on sequences are mapped to corresponding Java operation calls that
work on Java collections; for functional operations emerged from ALF sequence
expansion expressions – e.g., select –, in the generated code the collections are
converted into Java streams that provide analogous operations – e.g., filter.

The third iteration (cf. Fig. 5) starts with modifying the UML class diagram
again (step 3.1). A new class Employee is introduced. Obviously, the property
Student::name is not specific to students but is general for persons – also for
employees, for instance. Due to this observation an interface Person is added
that comprises the commonalities of students and employees; the property name
is moved from the class Student to the interface Person and adequate interface
realizations are inserted in the classes Student and Employee. The enumeration
AcademicDegree is created and the class Student has the new private property
degree of this type. Furthermore, the class Student has the new operation
Student(...) which is supposed to initialize a student object by setting the
property Student::matrNr.

During the propagation of the new modifications to the ALF model system
(step 3.2), another approximation of non-fUML elements is performed. Within
this iteration, the class diagram has been augmented with an interface. Interfaces
are not contained in the fUML subset and can therefore not be mapped to
directly corresponding ALF elements; instead, UML interfaces are mapped to
abstract ALF classes and their realizations to corresponding generalizations.

Now, the new operation can be implemented (step 3.3); in its textual syn-
tax, the operation can be identified to be a constructor by means of the anno-
tation @Create. The constructor is supposed to assign an initial value to the

Integrating UML and ALF 9

3.1

3.2

3.3

3.4

Fig. 5. The third iteration of the example workflow. Elements that are colored red
are additional class diagram artifacts or source code files which are created during the
third iteration. (Color figure online)

property Student::matrNr. At this point, the user recognizes that the construc-
tor needs an input parameter and the signature modeled in the class diagram is
not complete as there is no input parameter defined at all. Since the text editor
represents the complete ALF operation – including head and in particular its
parameter –, this modification can also be performed now. In the operation body,
the value of the parameter is assigned to the property. While completing and
saving the ALF operation modification process, the edit within the parameter
list is incrementally propagated to the UML model and as a result, it is also
visible in the UML diagram.

At the end of the third iteration, source code is generated (step 3.4). The
source package contains five new files: one Java interface and one Java class for
each of both the new UML class – that was transformed to an ALF class – and
the new UML interface – that was also transformed to an ALF class – and one
Java enumeration for the UML enumeration. The Java interface Person for the
UML class Person is a super-interface of both the Java interfaces Student and

10 J. Schröpfer and T. Buchmann

4.1

4.2

4.3

4.4

Fig. 6. The fourth iteration of the example workflow. Elements that are colored red
are additional class diagram artifacts or source code files which are created during the
fourth iteration. (Color figure online)

Integrating UML and ALF 11

Employee. The Java class PersonImpl for the UML class Person is a super-
class for both the UML classes StudentImpl and EmployeeImpl. From the ALF
constructor, a Java constructor is generated that can be called to create new
instances of this class.

Finally, a fourth iteration follows (cf. Fig. 6) which starts again with adding
UML elements to the class diagram (step 4.1). The university itself is mod-
eled by means of a UML class University that is connected to the interface
Person by means of a composition. For the purpose of managing students, two
UML properties are inserted in the new class University. The UML operation
addStudent(...) adds a student with the name value specified as parameter.
The UML operation removeStudent(...) removes the student with the matrNr
value specified as parameter and returns true if and only if there exists an
appropriate object; otherwise, false is returned.

During the transformation process (step 4.2), two new branch models for
the two UML operations are created. The behavior is implemented (step 4.3).
Both operations addStudent(...) and removeStudent(...) use for statements
in order to iterate over collections. While the operation removeStudent(...)
uses the reference University::persons itself as its underlying collection, the
operation addStudent(...) converts the collection of persons to a collection
of integers representing the students’ matriculation numbers; for that purpose,
a cast expression is used to filter the Student objects within the collection of
Person objects and a sequence expansion expression (iterate) is used to map
the collection of students to the collection of their matrNr values. For adding
and removing the links, both operations use adequate link operation expressions.
Since the matrNr value is supposed to be unique among all Student objects con-
tained in some University object, the Student object created by the operation
addStudent(...) gets the currently maximum value incremented by one as its
matrNr value.

Listing 1. JUnit test cases for the generated Java code.
@Test public void testStudentsCreation () {

University university = new UniversityImpl ();
assertTrue(university.getStudents (). isEmpty ());
university.addStudents("Alice");
university.addStudents("Bob");
assertEquals(2, university.getMembers (). size ());
assertTrue(university.removeStudent (1));
assertFalse(university.removeStudent (1));
assertTrue(university.removeStudent (0));
assertTrue(university.getStudents (). isEmpty ());

}

@Test public void testStudentsCreation () {
University university = new UniversityImpl ();
university.addStudent("Alice");
Student s = (Student) university.getMembers (). iterator (). next ();
Exam exam = new ExamImpl ();
assertTrue(exam.getResults (). isEmpty ());
assertTrue(s.getGrades (). isEmpty ());
s.writeExam(exam , 3);
assertTrue (!exam.getResults (). isEmpty ());
assertTrue (!s.getGrades (). isEmpty ());

}

12 J. Schröpfer and T. Buchmann

At the end of the fourth iteration, Java code is generated for the last time
(step 4.4). For the new UML class, two Java files are generated. The ALF link
operation expressions for creating and destroying links are mapped to invocations
of special Java methods that are generated in the Java classes corresponding to
the UML members classes of the new composition.

During four iterations a model has emerged that contains structural as well as
behavioral elements from which fully-executable source code has been generated
that does not require any further user editing in order to use it by further
programs. As an application for the generated Java source code, several test cases
are provided. Listing 1 depicts two JUnit test methods that check the correct
semantics of the generated Java source code, in particular of the generated Java
methods that have emerged from the specified ALF operations.

4 Integration of UML and ALF

This section describes the implementation background concerning the technical
as well as the visual integration of the textual ALF editor and the graphical
UML-based modeling tool Valkyrie [1]. The diagram editor within the Valkyrie
environment was created using GMF; GMF (Graphical Modeling Framework)1

generates projectional editors as this is a typical architecture for graphical edi-
tors: The underlying model – in case of Valkyrie the UML model – and the
diagram that constitutes a view onto the model – in this case the class diagram
– are separated into two files. When the user edits the model using editor com-
mands – e.g., the name of a model element is modified –, the underlying model
is modified and afterwards, the changes are propagated to the diagram.

In contrast to the projectional GMF-based editor, the textual ALF editor was
built using Xtext2 and therefore constitutes a parser-based editor: The text files
are persisted and a parser creates an in-memory model representation for each
text file; the resulting model is a temporary artifact and is not persisted within
an additional file. The visual integration combines the projectional graphical
UML class diagram editor for modeling structure and the parser-based textual
ALF editor for modeling behavior as well as a bidirectional and incremental
synchronization between them.

4.1 Overview of the Tool Chain

Figure 7 shows an overview of models involved in the tool chain of our approach.
The graphical editor shows the UML class diagram (1) that corresponds to an
underlying UML model (2). Since the graphical editor is a projectional editor,
the user modifies the underlying model directly and the changes are propagated
to the diagram.

The UML model is involved in the background model transformation. A
bidirectional and incremental transformation (3, cf. Sect. 4.4) converts it into
1 https://www.eclipse.org/modeling/gmp/.
2 https://www.eclipse.org/Xtext/.

https://www.eclipse.org/modeling/gmp/
https://www.eclipse.org/Xtext/

Integrating UML and ALF 13

an ALF model system (4, cf. Sect. 4.2) – corresponding to the UML model, but
containing several models – and vice versa. The ALF model system is augmented
with behavioral elements by means of the textual ALF editor (5). For each UML
element within the class diagram, a counterpart within the ALF model system is
present. As a result, the for ALF editor functions – e.g., content assist proposals
– as well as the code generation process (6, cf. Sect. 4.3) can be limited to the
ALF system since no information from the UML model is required.

Integrated user interface

Abstract syntax (background)

Fully executable source code

Valkyrie ALF editor

UML
class diagram

UML
model

ALF
main model

ALF
branch models

ALF
text files

Java
program

1

2

3

4

5

6

GMF

BXtend (M2M)

Acceleo (M2T)

Xtext Serializing
(M2T)

Xtext Parsing
(T2M)

Fig. 7. An overview of the tool chain. Based on [20, Fig. 3].

The basic idea of the visual integration within an integrated user interface
provides a textual editor that only shows an ALF operation and not the complete
ALF model. The ALF model system comprises several models: one main model
– which contains most of the structural elements corresponding to the UML
model aside from operation contents as parameters – and several branch models
– which comprise apart from structural artifacts of the ALF operations all the
behavioral model elements which are not stored in the UML model.

From the branch models, the textual representations of the ALF operations
– that are visible in the text editor – are created by means of reusing the Xtext
serialization process. The serialization process works incrementally, i.e., if a tex-
tual representation of the ALF operation already exists, the body is not affected;
thus, custom layout and comments are preserved. When the text files are mod-
ified, a parsing process propagates the changes to the respective branch model.
Within this process, the abstract syntax tree that is build temporarily by the
Xtext parser is used to store the mentioned changes permanently within the ALF
model system; when this process is performed, the contents of the branch models
are changed but no new resource is created such that the references between the
main model and the branch models are not affected. Finally, the code generator

14 J. Schröpfer and T. Buchmann

that is implemented using Acceleo3 creates Java files for ALF model elements.
The code generator retrieves information from the main model as well as the
branch models; as a result, fully executable source code is generated that con-
tains complete method bodies without requiring any manual code extensions by
a user.

4.2 The ALF Model System

According to the standard [15], an ALF model consists of structural elements –
packages, classes, data types, associations, properties, and operations – as well as
behavioral elements – different kinds of statements within the activity definitions
of the respective operations – and is self-contained. Thus, a model resource with
exactly one root model element contains all children model elements. The basic
idea of this approach is the division of the complete ALF model into several
models each of which is stored within its own resource and constitutes a certain
portion of the complete model; the single models are connected by means of inter-
model cross references resulting in an ALF model system. In order to achieve the
goal of an integrated user interface, each ALF operation is stored within its own
model. Hence, an ALF model system consists of several branch models – each of
which contains the structural and behavioral elements of one ALF operation –
and one main model – that contains all the structural model elements that are not
contained in the branch models, i.e., packages, classes, data types, associations,
and properties – with inter-model references from the main model to the branch
models in order to access the operations from their owning classes.

: Operation

: OperationDefinition

: Parameter

: Parameter

: Parameter

: DocumentationElement

: ReturnStatement

: Block : ActivityDefinition

implementation

documentation

behavior
body

statements

parameters

parameters

parameters

--- This is an ALF operation --/

public add(in x : Integer, in y : Integer) : Integer {
return x+y;

}
name = add
isAbstract = false
visibility = PUBLIC

name = x
direction = IN

name = y
direction = IN

direction = RETURN

comment = This is an ALF operation

Fig. 8. A textually represented example ALF operation and its abstract syntax tree
(simplified).

3 https://www.eclipse.org/acceleo/.

https://www.eclipse.org/acceleo/

Integrating UML and ALF 15

To this end, the underlying ALF metamodel resulting from the official stan-
dard was slightly modified in order to conform to our approach. The standard
provides one metaclass Operation for ALF operations. The access to the sur-
rounding context – represented by the metaclass Class – is provided by means
of a container reference – called ownerClass here. The adapted metamodel that
is used for this approach comprises three metaclasses for representing ALF oper-
ations:

– The metaclass OperationDefinition contains all the information about
operations that is necessary in order to serialize them within a text file. This
includes attribute values – e.g., the name and the visibility –, documentation,
contained formal parameters – represented by the metaclass Parameter –, and
the contained behavior – represented by the metaclass ActivityDefinition.

– The metaclass Operation serves as the root class for the branch models.
Instances of OperationDefinition are contained in respective instances of
Operation. For technical reasons, not the metaclass OperationDefinition
serves as the root class; instead, an additional metaclass was introduced. The
textual representation of an Operation instance only comprises an initially
empty text file; if the textual representation contains an ALF operation rep-
resentation, this corresponds to an OperationDefinition instance that is
contained in the Operation instance.

– Finally, the adapted metamodel contains the metaclass OperationNode that
provides the container reference ownerClass. Its instances are contained in
the main model and serve as placeholders for the operations that are contained
in the branch models and accessed by means of the inter-model cross reference
operation with the metaclass OperationNode as its source and Operation
as its target.

Figure 8 depicts the textual representation of an example ALF operation and
the underlying model. The root Operation contains the OperationDefinition
object – represented by the whole text fragment – that contains three parameters,
some documentation, and a ReturnStatement object as a behavioral element.

Figure 9 shows a complete ALF model system consisting of a main model –
with a Model instance as its root – and two branch models. The main model con-
tains the classes, enumerations, properties, and OperationNode instances that
provide links to the root objects of the branch models – Operation instances.
The branch models contain the operations – OperationDefinition instances
– as well as their parameters and the respective body – represented by an
ActivityDefinition instance.

16 J. Schröpfer and T. Buchmann

: Model

: Package

: Class

: Enumeration : Class

: Property : OperationNode

: Operation

: OperationDefinition

: EnumLiteral

: EnumLiteral

: OperationNode

: Operation

: OperationDefinition

: Parameter

: Parameter

: ActivityDefinition : ActivityDefinition

packages

classifiers

ownerClass ownerClass

properties operations

definition

implementation

behavior
parameters

parameters

classifiers classifiers

literals

literals

ownerClass

operations

definition

implementation

behavior

name = alf

name = Set

name = Range name = Number

name = empty

name = RATIONAL

name = REAL

name = add
isAbstract = true

name = negate
isAbstract = true

name = element
direction = IN

direction = RETURN

Fig. 9. An example ALF model system (simplified). Each model persisted within its
own resource is surrounded by a rectangle; elements of the main model are colored
blue, elements of the branch models brown. (Color figure online)

4.3 Generation of Java Source Code

In order to execute the modeled software system, Java source code is gener-
ated using a model-to-text transformation. For this purpose, we use Acceleo4

that allows to express the transformation by templates and queries pretty
intuitively using the Object Constraint Language (OCL) [17]. It constitutes
a pragmatic implementation of the MOF Model to Text Transformation Lan-
guage (MOFM2T) [14] standard. Acceleo allows for an integration of Java code:
Queries can be defined by invoking Java methods besides expressing the queries
exhaustively with OCL expressions. For this approach, “Java services” are used
to access other parts of the implementation, e.g., the ALF type system used for
the text editor.

4 https://www.eclipse.org/acceleo/.

https://www.eclipse.org/acceleo/

Integrating UML and ALF 17

For a given ALF model system, the Acceleo templates use the main model
as well as all the branch models for generating fully executable source code. The
contained ALF classifiers are successively transformed to Java files – ALF classes
to pairs of Java interfaces and classes, ALF data types to Java classes, and ALF
enumerations to Java enumerations. By accessing the branch models, the body
implementations of the ALF operations are transformed to corresponding Java
method bodies. Functional ALF expressions that cannot be expressed by com-
pletely analogous Java 1.8 constructs – e.g., operations for filtering collections
– are mapped to Java operation calls that work on streams. Java streams are
sequences of elements supporting sequential and parallel aggregation operations
as filtering and mapping methods.

4.4 The Kernel Model-to-Model Transformation

The kernel of the tool chain constitutes the model transformation between UML
models and ALF model systems. It was implemented using the BXtend app-
roach [3]; a physically persisted correspondence model contains objects which
represent the correspondence links between UML and ALF model elements. The
transformation is bidirectional: An arbitrary UML model is transformed to an
ALF model system that contains ALF elements that approximately express the
semantics given by the UML model and vice versa.

Since ALF only supports fUML which is a proper subset of the complete
UML metamodel, some UML elements cannot be transformed into completely
corresponding ALF element; using alternate mappings an approximation of the
UML elements in question by several ALF elements is performed such that sig-
nificant non-fUML elements often used in practice are also supported by this
approach (cf. Table 1).

Table 1. Mapping significant non-fUML elements to appropriate ALF elements [20].

UML model elements Alternate ALF model elements

Derived property Getter operation

Read-only property Property + getter operation

Interface Abstract class

Interface realization Generalization

Furthermore, the transformation works incrementally, i.e., in case a UML
model and a corresponding ALF model system already exist, model changes are
propagated to the respective opposite model rather than creating those mod-
els from scratch again. This is an important feature for software development
processes in practice which consist of several incremental iterations until the
software system reaches its final state. On the one hand, user-supplied method
bodies have to be retained when the UML model is transformed. On the other

18 J. Schröpfer and T. Buchmann

hand, in general UML model elements are referenced by other models such that
if they were replaced, links from other models would get lost; in case of the UML
tool presented here, those links exist from the diagram file to the UML model
which would become invalid if underlying UML model elements were replaced.

The transformation definition comprises a sequence of bidirectional trans-
formation rule calls each of which is applied to all appropriate model elements.
By means of a boolean expression that at least contains a check for the correct
type, the considered subset of model elements for a certain transformation rule
and direction is filtered; for each model element at most one transformation rule
exists for which the related boolean expression is satisfied. The execution order
of the transformation rules ensures that if a model element is transformed, its
container element (if any) has already been transformed resulting in a top-down
traversation. The rules are applied to main model elements as well as branch
model elements. For ALF operations, the respective OperationNode instance is
called from which the respective branch model is accessed. The single rules are
applied to the model elements in the following order:

1. The model roots are considered. Each UML model root instance corresponds
to an ALF model root instance with a contained root package.

2. The rules UmlClass2AlfClass and UmlInterface2AlfClass are applied.
UML interfaces are approximated by means of abstract ALF classes.

3. The transformation rules for associations, structured data types, enumera-
tions, and enumeration literals are applied.

4. For UML properties and operations, three rules are provided: The rule Uml-
Property2AlfProperty is applied to UML properties that are not derived
– they correspond to ALF properties and (if they are read-only properties)
to an accessing getter operation –, the rule UmlProperty2AlfOperation
to derived UML properties – they correspond to ALF getter operations –
and finally the rule UmlOperation2AlfOperation for UML operations –
corresponding to ordinary ALF operations.

5. Parameters are considered. For technical reasons, two different rules are pro-
vided depending on the direction of the parameter.

6. UML comments are transformed to appropriate ALF documentation.
7. The rules UmlGeneralization2AlfGeneralization and UmlInterface-

Realization 2AlfGeneralization are applied. Due to the approximation
of UML interfaces by means of abstract ALF classes, UML interface realiza-
tions lead to ALF generalizations.

Integrating UML and ALF 19

Listing 2. Xtend class for the bidirectional transformation rule UmlAssocia-
tion2AlfAssociation.
class UmlAssociation2AlfAssociation extends UmlElem2AlfElem {

// constructors omitted ...

override sourceToTarget(String desc) { // UML2ALF
sourceModel.eAllContents.filter(typeof(UmlAssociation)). forEach[a |

val target = a.getOrCreateCorrModelElement(desc)
.getOrCreateTargetElem(ALF_ASSOCIATION) as AlfAssociation

target.isAbstract = a.isAbstract
target.name = a.name
target.visibility = a.visibility.umlVisibilityToAlfVisibility ;

(a.eContainer.corrModelElem.targetElem as AlfPackage)
.classifiers += target

]
super.sourceToTarget(desc)

}

override targetToSource(String desc) { // ALF2UML
// completely symmetrical to sourceToTarget (...)

}
}

The Xtend classes for the transformation rules have the same structure. They
specialize the abstract super-class UmlElem2AlfElem and redefine the methods
sourceToTarget(...) – transforming UML elements to corresponding ALF ele-
ments – and targetToSource(...) – transforming ALF elements to correspond-
ing UML elements. The Xtend class for the transformation rule UmlAssocia-
tion2 AlfAssociation is depicted in Listing 2. Since both methods have the
same structure, we only consider the method sourceToTarget(...), i.e., the
direction UML to ALF. The body starts with filtering the correct elements; in
this case, all UML model elements that are associations and therefore have the
correct type are considered. Each selected element a is transformed now: If it
does not already exist a corresponding target element, a new object is cre-
ated; otherwise, it exists a correspondence element for a and target such that
the target object can be accessed. Next, the attribute values are transformed.
Finally, the target element is added to its container (if it is not already con-
tained) – the corresponding element for the container of a – that has already
been transformed due to the execution order of the rules. After this iteration,
the super-method is called that performs general clean-up operations as deleting
model elements that have no correspondence elements any more.

20 J. Schröpfer and T. Buchmann

Listing 3. Xtend class for the bidirectional transformation rule UmlOpera-
tion2AlfOperation.
class UmlOperation2AlfOperation extends UmlElem2AlfElem {

// constructors omitted ...

override sourceToTarget(String desc) { // UML2ALF
sourceModel.eAllContents.filter(typeof(UmlOperation)). forEach[o |

val target = a.getOrCreateCorrModelElement(desc)
.getOrCreateTargetElem(ALF_OPERATION_NODE)
as AlfOperationNode

val opDef = target.getOrCreateOperationDefinition(o)

opDef.isAbstract =
o.eContainer instanceof UmlInterface || o.isAbstract

// some more assignments omitted ...

// setting container omitted ...
]
super.sourceToTarget(desc)

}

override targetToSource(String desc) { // ALF2UML
targetModel.eAllContents.filter(typeof(AlfOperationNode)). forEach[o |

val opDef = o.operation.implementation

if (opDef.isGetter) {
val source = o.getOrCreateCorrModelElement(desc)

.getOrCreateTargetElem(UML_OPERATION)
as UmlOperation

source.isAbstract = opDef.isAbstract
// some more assignments omitted ...

// setting container omitted ...
}

]
super.targetToSource(desc)

}
}

Since the ALF model system consists of a collection of models each of which
represents a certain portion of the context, executing transformation rules may
come along with creating and deleting models. If a UML operation is trans-
formed and a corresponding ALF OperationNode instance does not exist yet,
the rule does not only have to create a new OperationNode object but also the
branch model for this operation. Analogously, if a UML operation is removed,
the respective branch model has to be deleted. Listing 3 shows the Xtend
class for the transformation rule UmlOperation2AlfOperation. During the
iteration over the UmlOperation within the method sourceToTarget(...),
for each object o not only the corresponding AlfOperationNode object but
also its AlfOperationDefinition object is considered. This is performed
by calling the operation getOrCreateOperationDefinition(...) returning
the linked AlfOperationDefinition instance; if the branch model does not
exist yet, it is created and the links are set correctly. The assignments –
apart from setting the container – use the AlfOperationDefinition object
directly. Within the method targetToSource(...) the branch model is directly
accessed; since an OperationNode instance requires a transitively contained
OperationDefinition child object, it is ensured that it exists.

Integrating UML and ALF 21

4.5 The Integrated User Interface

One significant goal for the integrated modeling tool was that the integration is
not reduced to a technical combination of both languages UML and ALF but
also comprises the user interface constituting a visual integration of different
editors such that an easy and fluent usage is feasible. Although a pretty wide
range of models are involved in the background processes, the user should get
the feeling of editing one model instead of a collection of models where each
of them represents a certain portion of the context. This section describes the
foundations of the implementation with respect to the user interface.

In order to facilitate an integrated user interface, an Eclipse view was created
that provides the textual modifications of the ALF operations. While the class
diagram is visible within the graphical editor which constitutes the main editor
where the user edits the structure, the behavior is modified textually within the
additional view.

Xtext provides tool support to embed generated editors within SWT com-
posites which is used for our tool to embed the text editor within the Eclipse
view. The view contents depend on the user’s actions in the main editor. If the
user clicks an operation or a derived property within the class diagram, the view
is notified about the respective edit part and shows the embedded editor with
the textual representation of the corresponding ALF operation. The complete
ALF operation is now visible and can be edited as in case of a usual text editor;
apart from behavioral modeling concerning the operation body, also the struc-
tural model elements related to the operation – i.e., the name, the visibility,
the parameter list, and documentation – can be modified textually. The view
provides a button for finishing and persisting the current modification of the
respective ALF operation; when the button is clicked, the respective text file is
saved, the parsing process of the ALF model is performed and eventually the
ALF-to-UML transformation is induced such that the structural changes of the
respective operation get visible within the class diagram. Thus, the integrated
tool provides round-trip engineering with respect to structural elements of oper-
ations; all other structural model elements are edited within the diagram editor
while behavior can only be edited textually.

5 Discussion

In this section, the approach presented in this paper is discussed. First, the
resulting benefits are given:

Fully Executable Models. This approach overcomes the code generation di-
lemma that occurs when model and hand-written code evolve independently.
Specifying both structure and behavior leads to a generation of fully exe-
cutable source code that can be used by further programs and does not
require any user interaction or code modifications afterwards; any informa-
tion contained in the model is mapped adequately to the resulting source
code automatically.

22 J. Schröpfer and T. Buchmann

Convenient Notation. Our approach combines modeling structure and behav-
ior using two different modeling languages and two different paradigms of edit-
ing models. On the one hand, the projectional diagram editor provides conve-
nient graphical notation for modeling structural elements. On the other hand,
behavior is added textually by means of the parser-based editor instead of using
another graphical editor; while graphical notation for behavioral model ele-
ments can result in very large and confusing diagrams, using textual syntax
results in concise model representations that are easy to read and understand.

Visual Integration. Modeling structure using UML diagrams and behavior
using ALF text is not only combined technically but also visually: The differ-
ent editors are combined in the modeling environment by means of appropri-
ate Eclipse concepts. The user gets the feeling of editing one model instead
of dealing with a collection of models that are involved in the background.

Interlinked Model System. Another conceivable approach to overcome the
code generation dilemma could provide for modeling the structure and adding
the behavior by means of code snippets in terms of plain text comments in
the UML model. By contrast, our approach contains all the information of
the modeled system in several models within an interlinked system; hence, all
the artifacts used for the code generation – in particular the ALF operations
– are persisted in terms of models within the ALF model system. In contrast
to plain code snippets, cross links can be exploited to find model elements
and text editor mechanisms as a content assist can be used.

Flexible Workflow. The kernel transformation converting UML models to ALF
model systems and vice versa is bidirectional and incremental. Thus, a very
flexible workflow is supported that allows for development processes consist-
ing of several iterations of editing structural and behavioral model elements.

These aspects emphasize in particular the benefits of using ALF as the under-
lying language for expressing behavioral elements. However, using ALF comes
along with a significant drawback with respect to expressiveness: Although by
means of ALF a quite large range of model elements can be expressed, only a
proper subset of UML is supported; thus, some elements – e.g., interfaces – cannot
be expressed exactly. Nevertheless, the semantics of non-fUML elements often can
be approximated pretty well using alternate components – e.g., abstract classes
instead of interfaces – such that in practice, the limited expressiveness resulting
from using ALF does not restrict the modeling process too hard.

6 Related Work

In the past, several tools relying on textual or graphical syntax, or even a com-
bination thereof have been published aiming for addressing model-driven devel-
opment with special emphasis on modeling behavior. While some of them are
equipped with code generation capabilities, others only allow for creating models
and thus only serve as a visualization tool.

Fujaba [23] is a graphical modeling language based on graph transformations
which allows to express both the structural and the behavioral part of a software

Integrating UML and ALF 23

system on the modeling level. Furthermore, Fujaba provides a code generation
engine that is able to transform the Fujaba specifications into executable Java
code. Behavior is specified using story diagrams. A story diagram resembles UML
activity diagrams where the activities are described using story patterns. A story
pattern specifies a graph transformation rule where both the left hand side and
the right hand side of the rule are displayed in a single graphical notation. While
story patterns provide a declarative way to describe manipulations of the run
time object graph on a high level of abstraction, the control flow of a method
is on a rather basic level as the control flow in activity diagrams is on the same
level as control flow diagrams. As a case study [8] revealed, software systems
only contain a low number of problems which require complex story patterns.
The resulting story diagrams nevertheless are big and look complex because of
the limited capabilities to express the control flow.

Another textual modeling language, designed for model-oriented program-
ming, is provided by Umple5. The language has been developed independently
from the EMF context and may be used as an Eclipse plug-in or via an online
service. In its current state, Umple allows for structural modeling with UML
class diagrams and describing behavior using state machines. A code generation
engine allows to translate Umple specifications into Java, Ruby, or PHP code.
Umple scripts may also be visualized using a graphical notation. Unfortunately,
the Eclipse-based editor only offers basic functions like syntax highlighting and
a simple validation of the parsed Umple model. Umple offers an interesting
approach which aims at assisting developers in rasing the level of abstraction
(“umplification”) in their programs [12]. Using this approach, a Java program
may be stepwise translated into an Umple script. The level of abstraction is
raised by using Umple syntax for associations.

Xcore6 recently gained more and more attention in the modeling commu-
nity. It provides a textual concrete syntax for Ecore models allowing to express
the structure as well as the behavior of the system. In contrast to ALF, the tex-
tual concrete syntax is not based on an official standard. Xcore relies on Xbase
– a statically typed expression language built on Java – to model behavior. Exe-
cutable Java code may be generated from Xcore models. Just as the realization
of ALF presented in this paper, Xcore blurs the gap between Ecore modeling
and Java programming. In contrast to ALF, the behavioral modeling part of
Xcore has a strongly procedural character. As a consequence an object-oriented
way of modeling is only possible to a limited extent. For instance, there is no
way to define object constructors to describe the instantiation of objects of a
class. Since Xcore reuses the EMF code generation mechanism [22], the factory
pattern is used for object creation. Furthermore, ALF provides more expressive
power since it is based on fUML while Xcore only addresses Ecore.

The graphical UML modeling tool Papyrus [10] allows for creating UML,
SysML, and MARTE models using various diagram editors. Additionally,
Papyrus offers dedicated support for UML profiles which includes customizing
the Papyrus UI to get a DSL-like look and feel. Papyrus is equipped with a

5 http://cruise.site.uottawa.ca/umple.
6 http://wiki.eclipse.org/Xcore.

http://cruise.site.uottawa.ca/umple
http://wiki.eclipse.org/Xcore

24 J. Schröpfer and T. Buchmann

code generation engine allowing for producing source code from class diagrams
(currently Java and C++ is supported). Future versions of Papyrus will also
come with an ALF editor. A preliminary version of the editor is available and
allows a glimpse on its provided features [11]. The textual ALF editor is inte-
grated as a property view and may be used to textually describe elements of
package or class diagrams. Furthermore, it allows to describe the behavior of
activities. The primary goal of the Papyrus ALF integration is using graphical
and textual syntax as alternative representations of the same view on the model
and not executing behavioral specifications by generating source code. While
Papyrus strictly focuses on a forward engineering process (from UML to ALF),
the approach presented in this paper explicitly addresses round-trip engineering.

The commercial tool MagicDraw UML7 recently also provides a plug-
in allowing behavioral modeling with ALF [21]. Modelers may express bod-
ies of activities using ALF statements which are then executed either sequen-
tially or with considerable concurrency (depending on the underlying computa-
tion platform). The plug-in integrates the ALF Reference Implementation8

into the commercial tool MagicDraw UML. In order to execute UML activity,
state machine, and interaction models in MagicDraw, the Cameo Simulation
Toolkit9 is required. The ALF plug-in allows to define executable behavior in
this context. The ALF implementation for MagicDraw compiles ALF text into
activity models in the background and integrates the resulting activity models
within the wider UML modeling context. Furthermore, these models may be
executed as parts of full system simulation scenarios.

Compared with our own solution presented in [2], the approach discussed
in this paper provides a much tighter integration of UML and ALF model-
ing by means of a single integrated user interface. The motivation behind our
approach presented in this paper is the combination of graphical and textual
modeling in an integrated tool in a way such that the most appropriate for-
malism is used depending on the considered model elements; while structure is
represented pretty intuitively using graphical elements, behavioral model ele-
ments can be expressed very precisely by a textual language. For this purpose,
only ALF operations are persisted, presented, and edited textually, i.e., all other
aspects of the ALF model are hidden. The modeler may focus on the current
task which results in a lower cognitive complexity exposed to the user. Fur-
thermore, instead of providing two different editors which are not connected to
each other, the ALF editor is now integrated visually in the graphical editing
process. When the user clicks an operation within the UML model, a specific
view shows the corresponding ALF operation containing the method body; UML
model and ALF text are displayed at the same time. Additionally, some actions
of the tool chain are bundled such that the user does not have to take care about
the technical details running in the background.

7 https://www.nomagic.com/products/magicdraw.
8 http://alf.modeldriven.org.
9 https://www.nomagic.com/product-addons/magicdraw-addons/cameo-simulation-

toolkit.

https://www.nomagic.com/products/magicdraw
http://alf.modeldriven.org
https://www.nomagic.com/product-addons/magicdraw-addons/cameo-simulation-toolkit
https://www.nomagic.com/product-addons/magicdraw-addons/cameo-simulation-toolkit

Integrating UML and ALF 25

7 Conclusion

In this paper, we presented an approach which allows for modeling structure
as well as behavior of a software system using an integrated tool combining
two OMG standards: UML and ALF. While UML package diagrams and class
diagrams are used for modeling the structure, method bodies – i.e., the behavior
of a method – are specified using ALF. Fully executable Java source code may be
generated from the resulting model system which can be integrated seamlessly
in existing software ecosystems. The integrated user interface abstracts from the
underlying set of models and provides a unified look and feel for the end user
allowing for graphical as well as textual modeling. The feasibility of the approach
has been demonstrated using an example workflow which may occur in real-life
iterative software development processes.

References

1. Buchmann, T.: Valkyrie: a UML-based model-driven environment for model-driven
software engineering. In: Proceedings of the 7th International Conference on Soft-
ware Paradigm Trends, ICSOFT 2012, pp. 147–157. SciTePress, Rome (2012)

2. Buchmann, T.: Prodeling with the action language for foundational UML. In:
Damiani, E., Spanoudakis, G., Maciaszek, L.A. (eds.) ENASE 2017 - Proceedings of
the 12th International Conference on Evaluation of Novel Approaches to Software
Engineering, Porto, Portugal, 28–29 April 2017, pp. 263–270. SciTePress (2017).
https://doi.org/10.5220/0006353602630270

3. Buchmann, T.: BXtend - a framework for (bidirectional) incremental model trans-
formations. In: Hammoudi, S., Pires, L.F., Selic, B. (eds.) Proceedings of the 6th
International Conference on Model-Driven Engineering and Software Development,
MODELSWARD 2018, Funchal, Madeira - Portugal, 22–24 January 2018, pp. 336–
345. SciTePress (2018). https://doi.org/10.5220/0006563503360345

4. Buchmann, T., Dotor, A., Westfechtel, B.: Model-driven software engineering: con-
cepts and tools for modeling-in-the-large with package diagrams. Comput. Sci. -
Res. Dev. 1–21. https://doi.org/10.1007/s00450-011-0201-1

5. Buchmann, T., Greiner, S.: Handcrafting a triple graph transformation system to
realize round-trip engineering between UML class models and Java source code. In:
Maciaszek, L.A., Cardoso, J.S., Ludwig, A., van Sinderen, M., Cabello, E. (eds.)
Proceedings of the 11th International Joint Conference on Software Technologies,
ICSOFT 2016 - Volume 2: ICSOFT-PT, Lisbon, Portugal, 24–26 July 2016, pp.
27–38. SciTePress (2016). https://doi.org/10.5220/0005957100270038

6. Buchmann, T., Schwägerl, F.: On a-posteriori integration of Ecore models and
hand-written Java code. In: Lorenz, P., Van Sinderen, M., Cardoso, J. (eds.) Pro-
ceedings of the 10th International Conference on Software Paradigm Trends, pp.
95–102. SciTePress, July 2015. https://doi.org/10.5220/0005552200950102

7. Buchmann, T., Westfechtel, B.: Using Triple Graph Grammars to Realize Incre-
mental Round-Trip Engineering. IET Software (July 2016). https://doi.org/10.
1049/iet-sen.2015.0125

8. Buchmann, T., Westfechtel, B., Winetzhammer, S.: The added value of pro-
grammed graph transformations – a case study from software configuration man-
agement. In: Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol.
7233, pp. 198–209. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34176-2 17

https://doi.org/10.5220/0006353602630270
https://doi.org/10.5220/0006563503360345
https://doi.org/10.1007/s00450-011-0201-1
https://doi.org/10.5220/0005957100270038
https://doi.org/10.5220/0005552200950102
https://doi.org/10.1049/iet-sen.2015.0125
https://doi.org/10.1049/iet-sen.2015.0125
https://doi.org/10.1007/978-3-642-34176-2_17
https://doi.org/10.1007/978-3-642-34176-2_17

26 J. Schröpfer and T. Buchmann

9. Greiner, S., Buchmann, T., Westfechtel, B.: Bidirectional transformations with
QVT-R: a case study in round-trip engineering UML class models and Java source
code. In: MODELSWARD 2016 - Proceedings of the 4rd International Confer-
ence on Model-Driven Engineering and Software Development, Rome, Italy, 19–21
February, 2016, pp. 15–27 (2016). https://doi.org/10.5220/0005644700150027

10. Guermazi, S., Tatibouet, J., Cuccuru, A., Seidewitz, E., Dhouib, S., Gérard, S.:
Executable modeling with fUML and Alf in Papyrus: tooling and experiments. In:
Mayerhofer et al. [13], pp. 3–8

11. Guermazi, S., Tatibouet, J., Cuccuru, A., Seidewitz, E., Dhouib, S., Gérard, S.:
Executable modeling with fUML and Alf in papyrus: Tooling and experiments. In:
Mayerhofer et al. [13], pp. 3–8. http://ceur-ws.org/Vol-1560/paper1.pdf

12. Lethbridge, T.C., Forward, A., Badreddin, O.: Umplification: refactoring to incre-
mentally add abstraction to a program. In: 2010 17th Working Conference on
Reverse Engineering (WCRE), pp. 220–224. IEEE (2010)

13. Mayerhofer, T., Langer, P., Seidewitz, E., Gray, J. (eds.): Proceedings of the 1st
International Workshop on Executable Modeling co-located with ACM/IEEE 18th
International Conference on Model Driven Engineering Languages and Systems,
MODELS 2015, Ottawa, Canada, 27 September 2015, CEUR Workshop Proceed-
ings, vol. 1560. CEUR-WS.org (2016)

14. OMG: MOF Model to Text Transformation Language, v1.0. OMG, Needham, MA,
formal/2008-01-16 edn., January 2008

15. OMG: Action Language for Foundational UML (ALF). Object Management
Group, Needham, MA, formal/2013-09-01 edn., September 2013

16. OMG: Semantics of a Foundational Subset for Executable UML Models (fUML).
Object Management Group, Needham, MA, formal/2013-08-06 edn., August 2013

17. OMG: Object Constraint Language. OMG, Needham, MA, formal/2014-02-03
edn., February 2014

18. OMG: Meta Object Facility (MOF) Version 2.5. OMG, Needham, MA,
formal/2015-06-05 edn. (2015)

19. OMG: Unified Modeling Language (UML). Object Management Group, Needham,
MA, formal/15-03-01 edn., March 2015

20. Schröpfer, J., Buchmann, T.: Unifying Modeling and Programming with Valkyrie.
In: Hammoudi, S., Pires, L.F., Selic, B. (eds.) Proceedings of the 7th International
Conference on Model-Driven Engineering and Software Development, MODEL-
SWARD 2019, Prague, Czech Republic, 20–22 February, pp. 27–38. SciTePress
(2019). https://doi.org/10.5220/0007259600270038

21. Seidewitz, E.: A development environment for the Alf language within the Mag-
icDraw UML tool (tool demo). In: Combemale, B., Mernik, M., Rumpe, B. (eds.)
Proceedings of the 10th ACM SIGPLAN International Conference on Software
Language Engineering, SLE 2017, Vancouver, BC, Canada, 23–24 October 2017,
pp. 217–220. ACM (2017). https://doi.org/10.1145/3136014.3136028

22. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF Eclipse Modeling
Framework. The Eclipse Series, 2nd edn. Addison-Wesley, Boston (2009)

23. The Fujaba Developer Teams from Paderborn, Kassel, Darmstadt, Siegen and
Bayreuth: The Fujaba Tool Suite 2005: An Overview About the Development
Efforts in Paderborn, Kassel, Darmstadt, Siegen and Bayreuth. In: Giese, H.,
Zündorf, A. (eds.) Proceedings of the 3rd international Fujaba Days, pp. 1–13,
September 2005

24. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software
Development: Technology, Engineering, Management. Wiley, Hoboken (2006)

https://doi.org/10.5220/0005644700150027
http://ceur-ws.org/Vol-1560/paper1.pdf
https://doi.org/10.5220/0007259600270038
https://doi.org/10.1145/3136014.3136028

AModel-Based Combination Language
for Scheduling Verification

Hui Zhao1(B), Ludovic Apvrille3, and Frédéric Mallet1,2

1 Université Côte d’Azur, I3S, INRIA, Nice, France
vincent.zhaohui@gmail.com

2 I3S Laboratory, UMR 7271 CNRS, Sophia Antipolis, France
3 LTCI, Télecom Paris, Institut Polytechnique de Paris, Paris, France

Abstract. Cyber-Physical Systems (CPSs) are built upon discrete software and
hardware components, as well as continuous physical components. Such hetero-
geneous systems involve numerous domains with competencies and expertise
that go far beyond traditional software engineering: systems engineering. In this
paper, we explore a model-based approach for systems engineering that advocates
the composition of several heterogeneous artifacts (called views) into a sound and
consistent system model. A model combination Language is proposed for this
purpose. Thus, rather than trying to build the universal language able to capture
all possible aspects of systems, the proposed language proposes to relate small
subsets of languages in order to offer specific analysis capabilities while keep-
ing a global consistency between all joined models. We demonstrate the interest
of our approach through an industrial process based on Capella, which provides
(among others) a large support for functional analysis from requirements to com-
ponents deployment. Even though Capella is already quite expressive, it lacks
support for schedulability analysis. AADL is also a language dedicated to system
analysis. If it is backed with advanced schedulability tools, it lacks support for
functional analysis. Thus, instead of proposing ways to add missing aspects in
either Capella or AADL, we rather extract a relevant subset of both languages to
build a view adequate for conducting schedulability analysis of Capella functional
models. Finally, our combination language is generic enough to extract pertinent
subsets of languages and combine them to build views for different experts. It
also helps maintaining a global consistency between different modeling views.

Keywords: CPS · MDE · Combination modeling language · SysML · AADL ·
Multi-view design

1 Introduction

CPSs (Cyber-Physical Systems) consists of various components and their intercon-
nections [15]. Thus, the design of the CPSs span over numerous domains of the sys-
tem. Handling requirements of different domains with different characteristics pushes
model-based approaches to their limits.

This work was financially Supported by the CLARITY project and by a UCN@Sophia Labex
scholarship.

c© Springer Nature Switzerland AG 2020
S. Hammoudi et al. (Eds.): MODELSWARD 2019, CCIS 1161, pp. 27–49, 2020.
https://doi.org/10.1007/978-3-030-37873-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37873-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-37873-8_2

28 H. Zhao et al.

Model-Driven Engineering (MDE) is considered as a well-established software
development approach that uses abstraction to bridge the gap between the problem
space and the software implementation [7,23]. MDE uses models to describe com-
plex systems at multiple levels of abstraction. In this paradigm, models are first-class
elements that represent abstractions of a real system, capturing some of its essential
properties. Models are instances of modeling languages which define their abstract
syntax (e.g., using a metamodel expressed in a class diagram), concrete syntax (e.g.,
graphical or textual), and semantics (e.g., operational or denotational by means of a
model transformation) [12]. As an important issue of MDE, multi-view modeling inte-
grates different models using various DSMLs (domain-specific modeling languages)
and abstract various aspects of systems and sub-systems, such as scheduling, behaviors
and functionalities. Therefore, it is critical to understand the relationship among (meta)
models. The modeling languages, such as Systems Modeling Language (SysML) [10]
and Architecture Analysis and Design Language (AADL) [8], have been enhanced to
better handle the CPS design, but, to the best of our knowledge, none of them cover all
the necessary domains to handle all the characteristics of CPSs effectively. The increas-
ing complexity of CPSs brings a critical challenge for developers to deal with differ-
ent domains. Developers have to rely on domain-specific languages to handle different
domains, which results in a proliferation of languages and increasing design complexity
of CPS [9,15]. Furthermore, the gaps between languages and platforms bring several
problems, for example, the specification of the CPS that has problems with inconsis-
tency and incoherency. All of those problems are exposed at integration and simulation
stages, they also augment the complexity of CPS and make it skyrocketing.

To tackle these problems, a new approach is required to efficiently take advantage of
each existing language and combine them together. To this end, the existing approaches
can be classified into two types. The first type is to continuously integrate the necessary
languages into an existing development platform, and then progressively build a com-
prehensive development platform. However, this type of approach could encounter a
never-ending process and result in a gigantic framework, thus difficult to use, maintain,
etc. The second type is to keep each language (or tool) isolated, and relate some of the
elements from each language with (sub) meta-model, so as to allow different kinds of
analysis offered by each method (e.g., scheduling analysis, safety analysis). Further-
more, each domain expert can work independently with the second type of approach.
However, since each language has its own characteristic, such as syntax and seman-
tics, the gaps between different languages have to be eliminated in order to handle the
consistency issues.

Our previous work [27] introduced a formal approach to combine two modeling
languages by defining how to link two (sub-)metamodels. More precisely, thanks to our
approach, consider two models m1 and m2 of two different modeling languages: m2

can automatically be augmented with some information of m1 so as to perform veri-
fication on the enriched model (e.g., scheduling, timing, safety), and then verification
results can be backtraced to m1.

A Model-Based Combination Language for Scheduling Verification 29

In order to validate our contribution, SysML and AADL are selected as two target
languages, and their support environments (tools) Capella/Arcadia and OSATE21 are
used to show the design of example system.

The paper is organized as follows. In Sect. 2, we first identify the workflow of the
proposed approach. Then, we explicitly present the reinforced language and the oper-
ators in Sect. 3. In Sect. 4, we apply these operators on functional and physical views.
To evaluate the proposed formal approach, train traction control systems are used to
demonstrate the architecture and analyze scheduling in Sect. 5. Section 6 illustrate the
related work. Finally, Sect. 7 concludes the paper and presents our future work. It should
be noted that, in Sects. 2, 3, 4 and 5, all elements on the left of transformation rules
belong to metamodels of Arcadia, and all elements on the right are from the AADL
metamodels. These metamodels have been imported by default, and their prefix (e.g.,
MM.Arcadia.function) are omitted for conciseness.

2 Our Approach

In this section, we describe the workflow we propose using an example based on Arca-
dia and AADL, as shown in Fig. 1 [27]. Arcadia is well adapted to describe how to
allocate functions, while AADL focuses on the concrete execution behaviors of com-
ponents. In this paper, we use transformation to enhance Arcadia with the scheduling
analysis features of AADL. The transformation is performed by proposing a set of rules
and operators to specify the relationships at the M2 level. Those relations are used for
model transformation purpose and a set of all relationships is called Transformation
Rule Library (TRL). More specifically, these rules are used to establish a relationship
between Arcadia and AADL metamodels in a Transformation Rule Library. We assume
that Arcadia and AADL define concepts that can be put in relation thanks to the pro-
posed rules.

As shown with the green part in the Fig. 1, an Arcadia function allocated to a pro-
cessor can be related to a “thread” in AADL. Additional attributes in Arcadia must
be added (e.g., period and execution time) when one feature has no equivalence, as
shown with a red part in Fig. 1). Then, the elements of metamodels are chosen manu-
ally depending on the requirements of the project. Finally, the workflow has four steps.
In step one, we can get a temporary combinational metamodel (TCM) at run time by
using TRL once the equivalence relations between the two metamodels have been set-
tled. In step two, the TCM can be used to combine an AADL model with elements of
an Arcadia model, then the new AADL model can be exported into OSATE for further
editing. In step three, the Cheddar analysis tool [22] is used to conduct scheduling sim-
ulation. This tool can be used to detect designing flaws, time and resources conflicts. In
step four, it traces back the results to the Arcadia model in order to help the designer
enhancing the performance of his/her model.

1 http://osate.org/index.html.

http://osate.org/index.html

30 H. Zhao et al.

Import

Transformation Rule
LIB

Im
p

o
rt

Arcadia Models

Functional
Design/Analysis

M2

M1
Temporary AADL Models

Architectural + Timing
Design/Analysis

Simulation

schedule 1 schedule 2

Sim
ulate

Traceback

1

2

34

co
nf

or
m

 t
o

correspondingcorresponding

Legend

conform to

Export

corresponding

to be implemented

co
nf

or
m

 to

Metamodels of AADL
Metamodels of ARCADIA

Temporary combinational Metamodel

conform
 to

Fig. 1. Overview of workflow.

3 Model Combination Language

The proposed Language is a dedicated (meta) language to extend and enrich one
DSML’s capability by combining the other DSMLs. With this language, an integration
engineer can explicitly capture combination scenarios at the language level. Combina-
tion pattern is used to specify different combination relationships. Specific operators
are provided to build up Transformation Rule Expression (TRE), a set of TRE defines
a TRL (Transformation Rule Library) which specifies how to combine different (meta)
models’ elements. Once the TRL is completed, it can be parsed by an automatic tool.
Afterwards, the tool can perform the transformation automatically. The concept of com-
bination language is illustrated in Fig. 2.

A Model-Based Combination Language for Scheduling Verification 31

TRL (Transformation Rule Library)

Operators Elements+

TRE

TRETRE (Transformation
Rule Expression)

Patterns

Parsed by

Realise

Tool

Fig. 2. Concept of combination language.

3.1 Specification

A specification consists of combination patterns and corresponding TRL. It defines
what and how elements from different models are combined. Once it is specified, inte-
gration experts can share this specification thus allowing the reuse and tuning of TRL.
As a specification can explicitly describe combination relationship, it also can be used
to decompose models by bi-directional techniques for some decomposition needs.

3.2 Combination Patterns

Currently, We predefine a number of essential combination patterns, which provide
all the declarations used in all the following examples. However, thanks to our lan-
guage, designers can build other combination patterns depending on their problems and
requirements. Certainly, they have to define some new combination patterns in the form
of TRL.

1. Association: The association pattern is the most common phenomenon and easier to
understand. It is used to indicates one element associate to another element and their
related sub-elements (for example, its embedded element or associated attributes).

2. Removal: The removal pattern indicates the situation, where some element does not
be needed for new models according to requirements.

3. Correspondence: The Correspondence pattern indicates building an equivalence
relationship among a set of elements.

4. Notation: The notation pattern aims to hint people to add some extra information
which is not existing in model. For example, the dependency relationship among the
model’s elements, and the nature of the elements.

32 H. Zhao et al.

3.3 Abstract Syntax of Combination Language

We give an abstract syntax of Combination Language by using a metamodel expressed
in a class diagram (shown in Fig. 3). The major element of Combination Language is
a specification that contains Patterns, Operators and TRL. The specification requires
importing at least two (meta) models. The imported (meta) models serve as a source of
a set of candidate elements for following operations. An operator selects the elements
and their attributes from imported (meta) models, and it also specifies how to combine
selected elements with a clear relationship.

Each operator contains a Transformation Rule Expression which relies on a strict
definition by EBNF (Extended Backus–Naur Form). Symbols are used to construct the
TRE. For instance, for adding security properties to a logical component of Capella, it
has to specify the corresponding element and their related attributes in TTool by using
TRE.

[1..n] patterns

Pattern

Transformation
Rule Express

Transformation
Rule Library

Operators

[2] (meta) models

Element

(meta) Model

Attribute

[1..n] attributes

[1..n] TREs

[1..n] Operators
[1..n] Elements

[1] TRL

Symbol

[1..n] Symbols

[1..n] Elements

Fig. 3. A simplified view of abstract syntax of combination language.

3.4 Meta Symbol and Notations Rule Expression

In this subsection, we firstly introduce some notations and meta symbols which are fun-
damental elements for constructing the well-defined Transformation Rule Expressions

A Model-Based Combination Language for Scheduling Verification 33

(see Table 1). For the propose to obtain strict definition and non-ambiguous Transfor-
mation Rule Expression pattern, we use EBNF to define TRE. EBNF is a notation tech-
nique for context-free grammars2, often used to describe the syntax of languages [17].

Table 1. Symbols of transformation rule expression.

Symbol Meaning

Γ Transformation rule

; End of rule

: Separate elements

� Transfer

<> Parent node

{ } Attribute

[] Optional value

| Alternative

+ Object to be created

¬ Ignorer

@ Notation

The detail literal meaning of symbols are as below:

1. A Transformation Rule Expression begins with “Γ ” and ends with “;”.
2. The symbol “�” indicates a transfer action.
3. A transfer action contains the source elements which in the left side of “�” and the

target elements in the right side. A simple example is as bellow:

Γ<parent> source � target;

4. Symbol “:” separates each part of TRE.
5. An angle brackets “<>” encloses the parent node if the element has one or more

parent nodes.
6. A parentheses “{ }” enclose attributes
7. A square braces “[]” delimit optional elements.
8. The alternative value is separated by a pipe “|”. For example, The port has a direc-

tional attribute called Direction which could be in or out shown as:

Port : {Direction[in|out]}

9. Symbol “@” indicates the notations which are used to add some extra infor-
mations such as dependency and nature. The extra informations are handled as
the same as operational value: enclosed in []; separated by “,”. For example,
Port@[ModelA, Security] means element Port belongs to ModelA and is used for

2 https://en.wikipedia.org/wiki/Backus--Naur form.

https://en.wikipedia.org/wiki/Backus--Naur_form

34 H. Zhao et al.

Security purpose (view). In such situation, it makes tools automatically display or
hide the element Port which is in modelA and for security view in the following
process.

With those symbols, we can build up plentiful TREs. Some more detailed examples of
Transformation Rule Expressions are shown in the Listing 1.1.

3.5 Abstract Syntax of Rule Expression in EBNF

As we mentioned in the previous subsection, the TRE consists of one or more sequences
of symbols. We list here the context-free syntax in EBNF in this subsection.

〈expression〉 ::= Γ 〈term〉�〈term〉;|〈expression〉:〈term〉; |〈operator〉 〈term〉;
〈term〉 ::= 〈element〉 | 〈operator〉〈element〉 |〈operator〉〈element〉〈operator〉
〈operator〉 ::= ’@’ | ’+’ | ’¬’ |’�’

〈element〉 ::= 〈element〉|〈attribute〉 |〈optional value〉

3.6 Operators and Semantics

The context-sensitive syntax and the operational rules could also be considered to be
semantics instead of syntax. For example, the context-sensitive syntax is called static
semantics in the UML specification documents from OMG [18]. In our case, it specifies
how an instance of a construct can be meaningfully connected to other instances.

In order to make the TRE more clearly and precisely, we firstly present a set of
relationships definitions formally. That is used to help users understand the semantics of
the operator and to avoid ambiguity and misunderstanding. Secondly, we propose a set
of operators to build up Transformation Rule Expression, which represents operations
between (meta) models (e.g., transforming, creating, ignoring) in a systematic way.
They may also help users to understand the following TRE examples.

We define a relation in the sense of set theory. Let A and B be a set of elements
respectively, with a, b, c and x, y, z: model element, write a, b, c ⊃ A and x, y, z ⊃ B.

– Relationship: If the ordered pair (a, x) in our relation, we write R(a, x) or aRx
for simplicity. It is also a boolean function. R(a, x) is true means existing a relation
between a and x.

– Equivalence: E(a, x) is a boolean function that is true if and only if a semantically
equals to x. By function E(a, x) holds R(a, x) ∧ E(a, x).

– NotIn: ¬a is a boolean function. If it is true, that means there are any corresponding
elements in set of B (x, y, z) which either have a relationship with a, nor semanti-
cally equal to a. Formally,

¬R(a, {x, y, z}) ∨ ¬E(a, {x, y, z})

A Model-Based Combination Language for Scheduling Verification 35

Operators:

(a) Transferring Operator: We use � indicates transferring operator, for example,
a � x it means that transfer from a to x, if and only if E(a, x) is true, in other
words, a and x is Equivalence relationship.

(b) Creating Operator: In the case of creating a new attribute, put the name of an
attribute in the parentheses with plus “{ }+”, that is used to present the option
which is to be created. For example, Γa � x : {y}+;, it means that transfer from
a to x and add y attribute, if and only if y ⊃ x and E(a, x) ∧ R(a, y) ∧ R(x, y) is
true. An example in practice is below,

ΓPort � Port : {Type[data|event|dataevent]}+

A portwill be transferred to another port element, and to create new attribute named
Type that associates to port with three optional value (data, event, data and event).

(c) Ignoring Operator: This operator is used for some ignored attributes and objects.
It is denoted with symbol “¬” which is in front of the object. For example, ¬a, it
means a is NotIn object of set B. Formally, ¬R(a,B) ∨ ¬E(a,B).

(d) Notation Operator: This operator is used for tagging the nature of attribute of
an element. There is an example: Port@[ModelA, Security]. It can present two
attributes of element Port with two tags. One isModelA, indicating that the element
Port belongs to ModelA. In other words, It represents a dependency relationship
between this element Port and element ModelA. Another is Security, represents an
element Port for Security purpose. It would be used to catalog the elements for
displaying or fast selecting purpose.

TRE Examples with Semantics. Transformation Rule Express (TRE) represents the
transforming relationships. It would be used for guiding the integration engineer or for
reading by automated transformation engine. We use some more detailed examples of
Transformation Rule Expressions to explicitly explain how it works. Please refer to the
TRE table which is in the Listing 1.1.

In line 1 of this example, we firstly transfer an element port (it has direction
attribute) of A to an object element port of B, and add a new attribute Type with three
optional value (date, event or data event). These “type value” can be recognised by
model B’s DSML and the supported environment. The added attribute can be used to
continue further design as well. In line 2, it is similar to previous one, but the object
element Port has a parent node called feature which is enclosed in a pair angle brackets.

Secondly, in line 3, it shows an ignored element, in which the source element may
not be found a corresponding one in the object model, or the source element is not
needed by the object model. Finally, in line 4, it is a Equivalence relationship between
the source element and the object element, in other words, it’s a set of one by one
transformations which transfer “Exfun” to “connection”, “Source” to “source” and
“Target” to “target”, respectively.

36 H. Zhao et al.

1 ΓPort:{Direction[in|out]}� <feature>:Port:{Direction[in|out]}:{Type[data|event|data
event]}+;

2 ΓPP � <feature>:Port:{Direction[in|out]}+:{Type[data|event|data event]}+;
3 ΓPort:¬{ordering};
4 ΓExfun:{Source}:{Target} � <connections>:connection:{source}:{target};

Listing 1.1. The example of transformation Rule Expressions.

4 Transformation Rule Library

As we described in the above section, the Transformation Rule Express play an impor-
tant role in the transformation process. Hence, in this section, we will show how to con-
struct a set of TREs called the Transformation Rule Library (TRL). We also respectively
present the following views, functional view and physical view in Arcadia (SysML) and
AADL. Each view contains one or more metamodels which represents as a x-tuples.

4.1 Functional View

Logical Components in Arcadia. The logical components in Arcadia contain a set of
member elements, such as logical component containers, functions, ports, and func-
tional exchanges. In the Arcadia, Functional diagrams consist of a set of SysML
blocks and its interactions, named Logical components; The notion of Logical compo-
nents enables better expression of system engineering semantics compared to SysML,
and particularly, reduces the bias towards software. SysML block definition diagrams
(BDDs) and internal block diagrams (IBDs) are assigned to different abstract and
refined layers, respectively. The definition of a block in SysML can be further detailed
by specifying its parts; ports, specifying its interaction points; and connectors, specify-
ing the connections among its parts and ports. This information can also be visualized
using logical components in Arcadia. In the Definition 1, we present a metamodel of an
instance of logical components.

Definition 1. (Logical Component)

A logical component (LC) is 5 tuples,

LC = <Comp, Fun, Port, Exfun,Mcf>

where,

Comp =
∞∑

i=1

Funi

is a logical component container which contains a set of functional elements.
Fun is a finite set of functional block include their name and id attributes. Port is

a finite set of functional ports including directions and allocation attributes. Exfun ⊆

A Model-Based Combination Language for Scheduling Verification 37

Fig. 4. An example of functional view of vehicle traction control unit in ARCADIA.

Port × Port denotes a finite set of functional exchange (connection) between two func-
tional ports, it must be pair, one is source, another is target. Mcf : ΣFun → Comp

allocate functions to a logical component container.
In the Fig. 4, there is a functional instance model of a part of a vehicle traction

control unit in ARCADIA as an example. The blue rectangle is named logical com-
ponent in Arcadia, but we consider it as a function’s container, we thus call it logical
component container Comp in this paper. The green rectangle are functions Fun which
are contained by Comp. The element Mcf has represented this allocation relationship
between logical component containers and functions Mcf : ΣFun → Comp. The deep
green square with the white triangle is the outgoing port (Port), which connects to an
incoming port (Port) that is drawn as a red square with white triangle and the green line
is the functional exchange between two functional ports (Exfun).

The Metamodels of Software in AADL. AADL is able to model a real-time system
as a hierarchy of software components, predefined software component types in the
category of the components such as thread, thread group, process, data, and subprogram
are used to model the software architecture of the system.

Definition 2. (Software Composition)

A SC is a 4-tuples:

SC = <Type, Port, Connection,Annex>

where Type specifies the type of components (e.g, system, process, thread). Port is a
set of communication point of component. Port could be different types such as data
port, event port and data event port. And, port can specify the direction such as in port,
out port, in out port. Connection is used to connect ports in the direction of data/con-
trol flow in uni- or bi-directional. Annex is defined for the refinement of component, in
this paper, we used hybrid annex to explicitly describe the both discrete and continuous
behavior of train traction control system.

38 H. Zhao et al.

Hybrid Annex. We use the HA to declare both discrete and continuous variables in
the Variables section, and the initial values of constants are given in constant section.
Assert is used to declaring predicates which may be used with invariants to define a
condition of operation. The behavior section is used to specify the continuous behavior
of the annotated AADL component in terms of concurrently executing processes, and
use continuous evolution — a differential expression to specify the behavior of a phys-
ical controlled variable of a hybrid system. The communication between computing
units and physical components are an essential part of a hybrid system, Communica-
tion between physical processes uses the channels declared in the channel section, and
communicate with an AADL component relies on ports that are declared in the compo-
nent’s type. Continuous process evolution may be terminated after a specific time or on
a communication event. There are invoked through timed and communication interrupt,
respectively. A timed interrupt preempts continuous evolution after a given amount of
time. A communication interrupt preempts continuous evolution whenever communi-
cation takes places along any one of the named ports or channels. The Definition 3 gives
a metamodel of Hybrid Annex which does not exist in SysML-based environment.

Definition 3. (Hybrid Annex)

A Hybrid Annex is a 8-tuples:

HA = <Ass, Ivar, V arhd, Conshd, Proc, ChP, Itr,Bitr>

where Ass is a finite set of assert for declaring predicates applicable to the intended
continuous behavior of the annotated AADL component. Ivar is associated with assert
to define a condition of operation that must be true during the lifetime. V arhd is a
finite set of discrete and continuous variables. Conshd is a finite set of constants which
must be initiated at declaration. Proc is a finite set of processes that are used to specify
continuous behaviors of AADL components. ChP is a finite set of channels and ports
for synchronizing processes. Itr is a finite set of time or communication interrupts.
Bitr : Itr → Proc binds interrupts to related processes.

Functional Elements Transformation Rules. The Table 2 shows the correspon-
dence between AADL and Arcade elements. The Additional attributes column are the
attributes to be created during the transformation. According to this table, we can easily
write the transformation rules to transforming Arcadia to AADL on functional parts,
denoted LC � SC + HA. An example as below (Listing 1.2 [27]):

1 ΓComp � Type[system|process]:{Runtime Protection[true|false]}+;
2 ΓFun � Type[abstract|thread]:{Dispatch Protocol[Periodic|Aperiodic|Sporadic|

Background|Timed|Hybrid]}+;
3 ...

Listing 1.2. Functional elements transformation rules example.

A Model-Based Combination Language for Scheduling Verification 39

Ta
bl
e
2.

Fu
nc
tio

na
la
nd

Ph
ys
ic
al
el
em

en
ts
co
rr
es
po
nd
en
ce

ta
bl
e.

A
rc
ad
ia

A
A
D
L

A
dd
iti
on
al
at
tr
ib
ut
es

N
ot
at
io
n

L
og
ic
al
co
m
po
ne
nt

co
nt
ai
ne
r
(C

o
m

p
)

Sy
st
em

,P
ro
ce
ss

{R
un
tim

e
Pr
ot
ec
tio

n[
tr
ue

|fa
ls
e]

}+
@
[f
un
ct
io
n|A

A
D
L
|sc

he
du
lin

g]

Fu
nc
tio

n
(F

u
n
)

A
bs
tr
ac
t,
T
hr
ea
d

{D
is
pa
tc
h
Pr
ot
oc
ol
[P
er
io
di
c|A

pe
ri
od
ic

|S
po
ra
di
c|B

ac
kg
ro
un
d|

T
im

ed
|H

yb
ri
d]

}+
@
[f
un
ct
io
n|A

A
D
L
|sc

he
du
lin

g]

Po
rt
(P

o
r
t
)

Po
rt

{T
yp
e[
da
ta

|ev
en
t|d

at
a
ev
en
t]
}+

@
[f
un
ct
io
n|A

A
D
L
|sc

he
du
lin

g]

Fu
nc
tio

na
lE

xc
ha
ng
e
(E

x
f
u
n
)

C
on
ne
ct
io
n

∅

∅
A
nn
ex

{T
yp
e[
ab
st
ra
ct

|t
hr
ea
d]

}:{
an
ne
x}

+
@
[f
un
ct
io
n|A

A
D
L
|sc

he
du
lin

g]

Ph
ys
ic
al
N
od
e
(N

o
d
e
)

D
ev
ic
e,
M
em

or
y,
Pr
oc
es
so
r,B

us
{D

is
pa
tc
h
Pr
ot
oc
ol

}+
:{P

er
io
d}

:{D
ea
dl
in
e}

+
:{p

ri
or
ity

}+
@
[p
hy
si
c|A

A
D
L
|sc

he
du
lin

g]

Ph
ys
ic
al
Po

rt
(P

P
)

∅
¬P

P
@
[p
hy
si
c|A

A
D
L
|sc

he
du
lin

g]

Ph
ys
ic
al
L
in
k
(P

L
)

B
us
/B
us
A
cc
es
s

{A
llo

w
ed

C
on
nn
ec
tio

n
Ty

pe
}+

:{A
llo

w
ed

M
es
sa
ge

Si
ze

}+
:

{A
llo

w
ed

Ph
ys
ic
al

A
cc
es
s}
+
:{T

ra
ns
m
is
si
on

T
im

e}
+

@
[p
hy
si
c|A

A
D
L
|sc

he
du
lin

g]

40 H. Zhao et al.

4.2 Physical View

Execution Platform in AADL. Processor, memory, device, and bus components are
the execution platform components for modeling the hardware part of the system. Ports
and port connections are provided to model the exchange of data and event among com-
ponents. Functional and non-functional properties like scheduling protocol and execu-
tion time of the thread can be specified in components and their interactions.

Definition 4. (Execution Platform)

A EP component is defined as a 3-tuples:

EP = <EC,BA,Conn>

where, EC defines the execution component such as processor, memory, bus and
device. BA defines the BusAccess which is interactive approach between bus com-
ponent and other execution platform components. Conn ⊆ EC × EC denotes a finite
set of connection between two components via bus device.

Physical Components in Arcadia. The physical component in Arcadia consists of
physical Node, Port and Link. The Physical Port and Link correspond to port and bus
connection in AADL. There are some choices when the physical Node is translated to
AADL such as device, memory, and processor, hence the designer has to point out what
type of target component during transformation by using transformation rule express.

Definition 5. (Physical Components)

A Physical components is 3-tuples,

PC = <Node, PP, PL>

where, Node is a execution platform, named node in Arcadia, it could be different type
of physical component (e.g, processor, board). PP is the physical component port. PL
is physical link, it could be assigned a concrete type such as bus.

Figure 5 is shown as a part of physical instance model of vehicle traction control
unit in ARCADIA. We can see the yellow parts are the physical node (Node) and the
red line is the physical link (PL) named bus in this case which connects to two physical
ports (PP), the small square in dark yellow.

Physical Elements Transformation Rules. According to the Table 2, we can easily
write the transformation rules for physical elements. Listing 1.3 [27] shown as a part of
the code to transform the physical component from Arcadia to AADL.

1 ΓNode � [Device|Process|Memory|Bus]:{Dispatch Protocol}+:{Period}:{Deadline
}+:{priority}+;

2 ΓPP � ¬PP ;
3 ΓPL � Bus/BusAccess:[{Allowed Connnection Type}+:{Allowed Message Size}+|{

Allowed Physical Access}+:{Transmission Time}+];
Listing 1.3. Physcial elements transformation rules example.

A Model-Based Combination Language for Scheduling Verification 41

Fig. 5. An example of physical view of vehicle traction control unit in ARCADIA. (Color figure
online)

What we have to especially explain is the physical link part (see line 3). The
Bus device could be a logical resource or hardware component. Hence, the bus
device has different properties depending on the role. When the bus is consid-
ered as a logical resource, it contains the properties Allowed connection type and
Allowed Message Size. When the bus is hardware, it contains Allowed Physical Access
and Transmission Time. Therefore, we write the rules that either

{Allowed Connnection Type}+ : {Allowed Message Size}+
or

{Allowed Physical Access}+ : {Transmission T ime}+

5 Case Study

To show the efficacy of our approach in transforming and using produced AADLmodels
to analyze the properties, this section presents the experimental results of analyzing the
traction controlling unit of railway signaling system. By using our proposed approach,
we transfer and extend Arcadia metamodel, and design AADL using OSATE2 with
the generated metamodel. once the concrete models have been created, the scheduling
property is chosen to show analysis ability through Cheddar tool [22].

42 H. Zhao et al.

Fig. 6. Arcadia model of TCU system.

Traction Control Unit

Alarm

Tractional coe cient

GeoMaps

GPS value

Setting value

Maps

Position

HMI

Locomotive

Operation Display

GPS

BaliseSensor

20ms

30ms

Voter

Voter

Acc/Dec value

status

sync
msg

coe cient

Restriction

Restricted
condition

c_mrin

c_prin
c_rout

status

c_cv

c_sv

c_rv

calculating speed value

Calculating Acc/DecSynchronizer

sync

c_cc
c_scc

c_cs

Expected speed

c_sec
c_cs

Current speed
60ms

Acc/Dec value

40ms

Fig. 7. AADL model of TCU system.

5.1 Train Traction Control System

Train movement is the calculation of the speed and distance profiles when a train is
traveling from one point to another according to the limitations imposed by the signal-
ing system and traction equipment characteristics. As the train has to follow the track,

A Model-Based Combination Language for Scheduling Verification 43

the movement is also under the constraints of track geometry, and speed restrictions
and the calculation becomes position-dependent. The subsystem of calculating the trac-
tion effective and speed restrictions is therefore critical to achieving train safe running.
Nowadays, Communication Based Train Control (CBTC) system is the main method
of rail transit (both urban and high-speed train) which adopts wireless local area net-
works as the bidirectional train-ground communication [28]. To increase the capacity
of rail transit lines, many information-based and digital components have been applied
for networking, automation and system inter-connection, including general communi-
cation technologies, sensor networks, and safety-critical embedded control system. A
large number of subsystems consisting of modern signaling systems of railways, there-
fore, system integration is one of the key technologies of signaling systems; it plays a
significant role in maintaining the safety of the signaling system [26].

This paper uses a subsystem which called Traction Control Unit system (TCU) from
signaling system of high-speed railway. We use this TCU system to illustrate the model
transformation from engineering level to detailed architectural level and verified the
instance models. The functional modules such as calculation and synchronization will
be transformed using our approach, and then non-functional properties such as timing
correctness and resource correctness will be verified by schedule analysis tool Ched-
dar [22].

First, we start with component functional views and physical view analysis by
designing systemmodels in Arcadia (shown in figure of TCU Fig. 6 [27]). The functions
of the traction control system are to collect the external data by sensors such as a speed
sensor. The data from Balise sensors is used to determinate the track block, and then
it is going to seek the speed restriction conditions by matching accurate positioning (if
the track blocks are divided fine enough) and digital geometric maps data. Meanwhile,
calculating speed unit received the speed data from GPS and speed control commands
from HMI (Human-Machine Interface) periodically. GPS data provides speed value
periodically (we set a period of 30 seconds in this case), and HMI data sustainedly
send the operation command with the period of 20 seconds till the value changed (e.g.,
expected speed value), then the calculating unit has to output an acceleration value and
export to the locomotive mechanical system. Although they are periodic, the external
data do not always arrive on time due to transmission delay or jitter. Therefore, we
should use a synchronizer to make sure they are synchronized. Otherwise, the result
would be wrong with asynchronous data. Similarly, to ensure the correctness of the
command of acceleration (or deceleration), we applied a voting mechanism which can
ensure the result is correct as much as possible. The voter must have the synchronized
signal and restriction condition to dedicate to output the acceleration coefficient request
to the locomotive system. The AADL diagram is shown in Fig. 7 [27].

5.2 Model Transformation

Using the Arcadia2AADL tool, the metamodel of the TCU system in Capella is trans-
lated into the corresponding AADL metamodel with the rules and approach which
describes in Sect. 4. For instance, on the one hand, the function class is translated into
the thread in AADL. To analyze the timing properties, several attributes also have been
added such as protocol type, deadline, execution time, period.

44 H. Zhao et al.

On the other hand, the physical part element Node translates to the processor in this
case. Differ from simple physical Node in Arcadia; the processor element attaches rich
properties such as scheduling protocol (scheduler type), process execution time. The
allocation relationships on both physical and functional parts are translated into AADL
as well.

5.3 Schedule Verification

The external data and internal process work sequentially is an essential safety require-
ment of the system, and each task should be scheduled properly. However, in real-
world, the risk of communication quality and rationality of scheduling must be taken
into account. Therefore, the schedule verification is a way to evaluate system timing
property. An Ada framework called Cheddar which provides tools to check if a real-
time application meets its temporal constraints. The framework is based on the real-time
scheduling theory and is mostly written for educational purposes [16].

1 thread implementation synchronizer . impl
2 properties
3 Dispatch Protocol => perodic;
4 Period => 100 ms;
5 Deadline => 100 ms;
6 Compute Execution Time => 50..60ms;
7 end synchronizer . impl;
8
9 thread implementation calalculating . impl
10 properties
11 Dispatch Protocol => perodic;
12 Period => 100 ms;
13 Deadline => 100 ms;
14 Compute Execution Time => 30ms..40ms;
15 end calalculating . impl;
16
17 thread implementation gps. position
18 properties
19 Dispatch Protocol => perodic;
20 Period => 40 ms;
21 Deadline => 40 ms;
22 Compute Execution Time => 30ms..40ms;
23 end gps. position ;
24
25 thread implementation HMI.setting
26 properties
27 Dispatch Protocol => perodic;
28 Period => 30 ms;
29 Deadline => 30 ms;
30 Compute Execution Time => 20ms..30ms;
31 end HMI.setting ;

Listing 1.4. Setting of scheduling properties.

A Model-Based Combination Language for Scheduling Verification 45

Listing 1.4 shows a set of 4 periodic tasks (cal, pos, sync and setting) of TCU respec-
tively, defined by the periods 100, 100, 40 and 30, the capacities 60, 40, 30 and 20, and
the deadlines 100, 100, 40 and 30. These tasks are scheduled with a preemptive Rate
Monotonic scheduler (the task with the lowest period is the task with the highest prior-
ity).

For a given task set, if a scheduling simulation displayed XML results in the Ched-
dar. One can find the concurrency cases or idle periods (see left of Fig. 8, comprise
the software part and physical device part). People change the parameters directly and
reload simulation; a feasible solution can be applied instead. After tuning, finally, the
appropriate setting has displayed as in right of Fig. 8. According to this simulation
result, people can correct the properties value in AADL, thereby ensure the correct-
ness of system behavior timing properties.

(a) Schedule 1 with idel time (b) Schedule 2 with compact time

Fig. 8. Simulation results of tasks schedule.

6 Related Work

We have presented our approach to extending SysML-based engineering framework
Capella to AADL and analyzed the relationships among Arcadia and AADL models in
different view at the metamodel level. Likewise, a considerable number of studies have
been proposed on “language extension, modeling languages integration and composable
language components”. This section provides a brief introduction to these works.

The complexity of the development of CPS has been the significant problems which
puzzle the developers. It is not only from the nature of problems but also from the
develop languages. Elaasar et al. has discussed [6] about the limit of UML which exac-
erbate the complexity of development, and proposed an approach to reduce the com-
plexity of UML tools by implementing and adapting the ISO 42010 standard on archi-
tecture description.

Efficient integration of different heterogeneous modeling languages is essential.
Modeling language integration is onerous and requires in-depth conceptual and techni-
cal knowledge and effort. Traditional modeling language integration approaches require

46 H. Zhao et al.

language engineers to compose monolithic language aggregates for a specific task or
project. Adapting these aggregates to different contexts requires vast effort and makes
these hardly reusable. Arne Haber et al. [11] presented a method for the engineering of
grammar-based language components that can be independently developed, are syntac-
tically composable, and ultimately reusable.

In despite of existing a lot of studies on the combining SysML and AADL [4] or
on the extending SysML with AADL [2]. Differ from the above studies, our approach
dedicates to smoothly combine engineering platform Capella/Arcadia, AADL and its
annex, and our approach can be easily applied to other languages through fine-tuning.
In practice, one could design global system at a high level and then seamlessly refine
the models within AADL and its annex for further analysis such as scheduling. In other
words, our approach can properly extend Arcadia’s design and analysis capabilities to
AADL, while essentially keeping its independence.

An approach for translating UML/MARTE detailed design into AADL design has
proposed by Brun et al. [3]. Their work focuses on the transformation of the thread
execution and communication semantics and does not cover the transformation of the
embedded system component, such as device parts. Similarly, in [25], Turki et al. pro-
posed a methodology for mapping MARTE model elements to AADL component.
They focus on the issues related to modeling architecture, and the syntactic differences
between AADL and MARTE are well handled by the transformation rules provided by
ATL tool, yet they did not consider issues related to the mapping of MARTE proper-
ties to AADL property. In [19], Ouni et al. presented an approach for transformation of
Capella to AADL models target to cover the various levels of abstraction, they take into
account the system behavior and the hardware/software mapping. However, the formal
definition and rigorous syntactic of transformation rules are missed.

Behjati et al. describe how they combined SysML and AADL in [2] and provided a
standard modeling language (in the form of the ExSAM profile) for specifying embed-
ded systems at different abstraction levels. De Saqui-Sannes et al. [4] presented anMBE
with TTool and AADL at the software level and demonstrated with the flight manage-
ment system. Both of their works do not provide the description in a formal way.

In industrial domain applications, Suri et al. [24] proposed a model-based approach
for complex systems development by separating the behavior model and execution logic
of the system.Moreover, they used UML based languages to model system behavior and
connected the behavior models to external physical API of CPS. It focuses on providing
a solution for the modularity and interoperability issues related to Industry 4.0 from a
systems integration viewpoint.

Apel et al. [1] also studied on different model driven methods for heterogenic sys-
tems for Electric vehicle. They have tried to evaluate how model-driven engineering
(MDE) combined with generative frameworks can support the transfer from platform
independent models to deployable solutions within the logistical domain.

The work of Kurtev [14] is used in the x-ray machine, it provided a family of
domain-specific languages that integrate existing techniques from formal behavioral
and time modeling. Scippacercola [21] have explored the application of model-driven
engineering on the interlocking system (a subsystem of signaling system of the railway).

A Model-Based Combination Language for Scheduling Verification 47

They discussed how to reduce efforts and costs for development, verification, and vali-
dation in a critical system.

The modeling language scientists have proposed some specific methods to weave
the models as well as metamodels formally such as [13], Degueule has proposed
Melange, a language dedicated to merging languages [5], and similar works like [20].
However, the structural properties are not supported.

Compared with current studies, the approach proposed in this paper has the follow-
ing features:

1. A proper subset of AADL has been chosen as the transformation target including
functional software composition, execution platform. We use it to describe continu-
ous behaviors of Cyber-Physical System.

2. All of the transformations is considered at metamodel level, and then a synthesized
metamodel can be used to create concrete AADL models for further analysis.

3. Transformation rules are formally defined, and then it is readable by human and
easier to verify the correctness of transformation.

7 Conclusions and Future Work

In this paper, we proposed a language-based design approach for combining different
modeling design artifact (called views). At the beginning of this paper, we explicitly
introduce the workflow of the proposed approach. Then we give the definition of syntax
and semantics of our language. We selected system engineering methodology Arcadia
(based on SysML) and architectural design language AADL as a vehicle for demonstrat-
ing the effectiveness of our approach and of model combination language for scheduling
verification. We did so for two reasons. Firstly, the integrating of heterogeneous compo-
nents and elaborate model integrity concept in system design are challenging problems
while using numerous model language to describe different views of one system (or
subsystem). Since our proposed language is generic enough to extract pertinent subsets
of languages, if it works well for combining Arcadia and AADL, it should also work
for the others, less demanding major modifications and extra cost of learning. Secondly,
Enriching the functional design with scheduling ability can discover the conflicts in the
early stage and improve the performance of CPSs in practice in a better way. Hence,
Our language is competent for combining the composition of several heterogeneous
artifacts (views) into a sound and consistent system model.

Especially, we give a formal description of the key modeling elements of Arcadia
and AADL, respectively. Then we give some example of transformation rules which
guide transforming from these Arcadia metamodels to AADL formally. Finally, a case
study of train traction controlling system is used to demonstrate the transformation
from engineering concerned design into an architectural refinement design which can
be further analyzed by scheduling properties to find flaws of functional design.

Although our proposed language-based approach is effective and has been proven
by many instances in practice, there are some drawbacks to use our approach: (i) people
have to spend times to learn the syntax of rules, and the writing of rule is error-prone.
(ii) the traceback function is not yet implemented automatically.

48 H. Zhao et al.

In our future work, we will try to build a graphic interface to write rules, and the
writing errors of the rule can be detected. We also have to implement the traceback of
simulation results, which is sketched in our workflow with the arrow in dotted line. The
results must be used automatically by upstream modeling framework. To this end, we
have to extract the critical information from cheddar outputting file and transform to
an appended file of modeling tool which can be recognized by the tool and hint user
in somehow. Secondly, we will study the transformation rules for more elements of
Arcadia and also for comprehensive SysML elements, even for other UML-like profiles
such as MARTE. At the same time, we will continue to explore the AADL and its annex
to support more analysis and formal verification of system design. Besides, the safety-
critical systems have become a trend in industrial files. We will study the extension of
AADL with verification of safety properties with transformation methodology.

References

1. Apel, S., Mauch, M., Schau, V.: Model-driven engineering tool comparison for architec-
tures within heterogenic systems for electric vehicle. In: 2016 4th International Conference
on Model-Driven Engineering and Software Development (MODELSWARD), pp. 671–676,
February 2016

2. Behjati, R., Yue, T., Nejati, S., Briand, L., Selic, B.: Extending SysML with AADL concepts
for comprehensive system architecture modeling. In: France, R.B., Kuester, J.M., Bordbar,
B., Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 236–252. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21470-7 17

3. Brun, M., Vergnaud, T., Faugere, M., Delatour, J.: From UML to AADL: an explicit execu-
tion semantics modelling with MARTE. In: ERTS 2008 (2008)

4. De Saqui-Sannes, P., Hugues, J.: Combining SysML and AADL for the design, validation
and implementation of critical systems. In: ERTS2 2012 (2012)

5. Degueule, T., Combemale, B., Blouin, A., Barais, O., Jezequel, J.M.: Melange: a meta-
language for modular and reusable development of DSLs. In: Conference on Software Lan-
guage Engineering, pp. 25–36. ACM (2015)

6. Elaasar, M., Noyrit, F., Badreddin, O., Gérard, S.: Reducing UML modeling tool complexity
with architectural contexts and viewpoints. In: MODELSWARD, pp. 129–138 (2018)

7. Ergin, H., Syriani, E., Gray, J.: Design pattern oriented development of model transforma-
tions. Comput. Lang. Syst. Struct. 46, 106–139 (2016)

8. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction to the SAE
Architecture Analysis & Design Language. Addison-Wesley, Boston (2012)

9. Garlan, D.: Modeling challenges for CPS systems. In: 2015 IEEE/ACM 1st International
Workshop on Software Engineering for Smart Cyber-Physical Systems, p. 1, May 2015.
https://doi.org/10.1109/SEsCPS.2015.8

10. Group, O.M.: OMG Systems Modeling Language, May 2017
11. Haber, A., et al.: Integration of heterogeneous modeling languages via extensible and com-

posable language components. In: 2015 3rd International Conference onModel-Driven Engi-
neering and Software Development (MODELSWARD), pp. 19–31, February 2015

12. Harel, D., Rumpe, B.: Modeling Languages: Syntax, Semantics and All That Stuff, Part I:
The Basic Stuff (2000)

13. Jezequel, J.M.: Model driven design and aspect weaving. Softw. Syst. Model. 7(2), 209–218
(2008)

14. Kurtev, I., Schuts, M., Hooman, J., Swagerman, D.J.: Integrating interface modeling and
analysis in an industrial setting. In: MODELSWARD, pp. 345–352 (2017)

https://doi.org/10.1007/978-3-642-21470-7_17
https://doi.org/10.1109/SEsCPS.2015.8

A Model-Based Combination Language for Scheduling Verification 49

15. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE International
Symposium on Object and Component-Oriented Real-Time Distributed Computing, pp.
363–369. IEEE (2008)

16. Marcé, L., Singhoff, F., Legrand, J., Nana, L.: Scheduling and memory requirements analysis
with AADL. In: SIGAda, pp. 1–10. ACM (2005)

17. McCracken, D.D., Reilly, E.D.: Backus-Naur Form (BNF) (2003)
18. OMG: OMG Unified Modeling Language, April 2015
19. Ouni, B., Gaufillet, P., Jenn, E., Hugues, J.: Model Driven Engineering with Capella and

AADL (2016)
20. Ramos, R., Barais, O., Jézéquel, J.-M.: Matching model-snippets. In: Engels, G., Opdyke,

B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 121–135. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75209-7 9

21. Scippacercola, F., Pietrantuono, R., Russo, S., Zentai, A.: Model-driven engineering of a
railway interlocking system. In: 2015 3rd International Conference on Model-Driven Engi-
neering and Software Development (MODELSWARD), pp. 509–519, February 2015

22. Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Cheddar - a flexible real time scheduling
framework. In: SIGAda, pp. 1–8 (2004)

23. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development: Technology,
Engineering, Management. Wiley, Hoboken (2006)

24. Suri, K., Cuccuru, A., Cadavid, J., Gérard, S., Gaaloul, W., Tata, S.: Model-based develop-
ment of modular complex systems for accomplishing system integration for industry 4.0. In:
MODELSWARD, pp. 487–495 (2017)

25. Turki, S., Senn, E., Blouin, D.: Mapping the MARTE UML profile to AADL. In: ACES-MB,
pp. 11–20 (2010)

26. Wang, J., Wang, J.: A new early warning method of train tracking interval based on CTC.
IEEE Trans. Intell. Transp. Syst. 1–7

27. Zhao, H., Apvrille, L., Mallet, F.: Meta-models combination for reusing verification tech-
niques. In: 7th International Conference on Model-Driven Engineering and Software Devel-
opment, pp. 39–50. SCITEPRESS-Science and Technology Publications (2019)

28. Zhu, L., Zhang, Y., Ning, B., Jiang, H.: Train-ground communication in CBTC based on
802.11 b: design and performance research. In: CMC 2009, pp. 368–372. IEEE (2009)

https://doi.org/10.1007/978-3-540-75209-7_9

The Understandability of Models
for Behaviour

Vladimir Estivill-Castro(B) and René Hexel

School of ICT, Griffith University, Nathan 4111, Australia
{v.estivill-castro,r.hexel}@griffith.edu.au

Abstract. Models are used mainly to communicate among humans the
most relevant aspects of the item being modelled. Moreover, for achiev-
ing impact in modern complex applications, modelling languages and
tools must support some level of composition. Furthermore, executable
models are the foundations of model-driven development; therefore, it is
crucial that we study the understandability of executable behaviour mod-
els, especially from the perspective of modular composition. We examine
the match between the delicate semantics of executable models for appli-
cations such as reactive- and real-time systems and developers’ usually
simple conception. Performing a series of experiments with UML stat-
echarts and logic-labelled finite-state machines (LLFSMs), we explore
understandability of event-driven vs. logic-labelled state machines as
well as the architectural options for modular composition. We find that
expertise in model manipulation is essential, and that clarification of the
semantics of LLFSMs is necessary for them to remain formally verifiable
and suitable for robotic and embedded systems.

Keywords: Model understandability · State diagram · Logic-labelled
finite-state machines

1 Introduction

“Models are often, although not always, designed to be viewed by humans. In
such cases, the models must be clear and easy to understand. One way to ensure
this is to use a modular approach in constructing the model” [47]. The use of
models to conceptualise, construct, deploy, maintain, and improve software sys-
tems would be useless if such models were not understandable by humans, or at
least expert software engineers. Model-Driven Software Development (MDSD)
suggests models realise a higher level of description and abstraction, as well as a
more human-like approach when specifying the behaviour of software systems.
Higher abstraction, away from assembly language, has been the progression of
programming languages [6], and it excels with the use of models.

Modelling is essential to communicate the representation of a system, module,
or function from a particular perspective, with the precise intention of enabling

Supported by Griffith University and Universiat Pompeu Fabra.

c© Springer Nature Switzerland AG 2020
S. Hammoudi et al. (Eds.): MODELSWARD 2019, CCIS 1161, pp. 50–75, 2020.
https://doi.org/10.1007/978-3-030-37873-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37873-8_3&domain=pdf
http://orcid.org/0000-0001-7775-0780
http://orcid.org/0000-0002-9668-849X
https://doi.org/10.1007/978-3-030-37873-8_3

The Understandability of Models for Behaviour 51

more comprehensive and productive analysis. But this is only true if models are
understandable. Models abstract information; that is, models represent the same
information as written specifications but in a more compact and compressed
way. Once again, readers of such models would benefit if indeed there was no
loss in translation. If the models are indeed understood, they enable focussing
on relevant aspects and facilitate productive analysis, design, and deployment.

Modelling formalises requirements: “So-called ‘natural language’ is wonderful
for the purposes it was created for, such as to be rude in, to tell jokes in, to cheat,
or to make love in (and Theorists of Literary Criticism can even be content-free
in it), but it is hopelessly inadequate when we have to deal unambiguously with
situations of great intricacy, situations which unavoidably arise in such activities
as legislation, arbitration, mathematics, or programming.” [11].

In this paper, we review the mechanisms most commonly used to represent
and model behaviour; namely, UML’s statecharts [41]. We expand on a series of
experiments [16], and re-iterate a series of experiments to evaluate the appar-
ent symmetry of the entry and exit actions of state notations. In contrast to
earlier work [16], we cross international, cultural, and language boundaries, con-
trasting results across Australia and Spain. We confirm that humans familiar
with UML notation generalise rapidly and overlook intricacies of construct dif-
ferences. Because MDSD uses well-established notations such as the UML, we
believe it is essential to understand the profound implications of UML semantics
for representing behaviour. The understandability of UML diagrams is crucial
for correctness, validation, and formal verification of executable models. Software
developers have highly ranked the understandability of representations among
their criteria for the adoption of UML [38]. These practitioners argue against
unnecessary model complexity and lack of formal semantics [38].

Our first quote highlights modularity in formal verification and model check-
ing. Languages and modelling tools must offer a mechanism to compose simpler
behaviours into more sophisticated ones in order to describe the complex inter-
actions and responses expected of today’s modern software systems. Complex
systems would not be achievable if it was not for composition [48]. Therefore,
in this paper, we explore the implications that nesting diagrams has as the
mechanism to compose models of complex behaviours from those of simpler
behaviours. Not surprisingly, this approach also runs into issues of understand-
ability and, perhaps more seriously, scalability. Specially if one is to combine
this with the mechanism of the subsumption architecture [5], such as the ability
of one behaviour to suspend, and then restart or resume another behaviour.

Our observations are complementary to observations regarding the readabil-
ity of formal notations: “the familiarity with notation and structure that comes
natural to [champions of formal notations] takes time, training and practice to
acquire” [20]. However, we explore further the implications for statecharts and
behaviour modelling. For this, we take advantage of the theoretical and experi-
mental validation of metrics on UML statecharts [23]. In particular, we measure
NEntryA (number of entry actions), NExitA (number of exit actions), and NCS
(number of composite states). Although previous experiments [23] suggest these

52 V. Estivill-Castro and R. Hexel

metrics are not to be correlated with the understandability of UML diagrams,
our results indicate that NEntryA (number of entry actions) and NExitA (num-
ber of exit actions) are indeed relevant for understandability of a state diagram.

Those earlier experiments suggested an inconclusive correlation between the
understandability of UML state diagrams and NA (number of activities), NSS
(number of simple states), NT (number of transitions), and NG (number of
guards) [23]. Follow-up experimentation [7,8] reached the same conclusions.

We are of the opinion that there are other issues, besides the relevance of
those metrics to the understandability of UML state diagrams, importantly the
asymmetry of entry and exit actions. We add to the list the event-driven nature
of UML. In fact if we look at logic expressions (vs events) to label transitions,
earlier research, using such logic expressions represented in tabular form, found
that subjects handled the task with very high accuracy [51]. The other issue,
as we already alluded to, is that, although abstraction and understandability
had been heralded for nesting states, this was not so evident when used in
experimental settings [7,8,51]. We claim here that the issues of nesting, and the
asymmetry of exit versus entry are subtle, but crucial to understandability and
have, thus far, not received sufficient detailed analysis.

We argue that symmetric rules for the sequencing of entry and exit actions,
while at first glance simple and straightforward, represent a series of fallacies.
Our results show that these rules are hard to comprehend and to apply by
software developers, especially when timing issues and composition are involved.
Also, defining a semantics that results in executable models for, e.g., reactive and
real-time systems is very delicate, especially if suspend/resume/restart signals
cannot be ruled out between behaviours. Third, the apparently simple semantics
actually results in a combinatorial explosion of states that hinders verification.
We reach these conclusions from reviewing the results of a series of experiments
with software developers and dissect how issues of understandability of state dia-
grams relate to nesting as well as being event-driven vs logic-labelled. We con-
trast this with the deterministic execution of logic-labelled finite-state machines
(LLFSMs), which achieve model composition through a subsumption architec-
ture using suspend/restart/resume. As a result, we propose a specific alternative
semantics for LLFSMs that is suitable for robotic and embedded systems.

2 Background

While the ultimate authority on the UML is its reference documentation [37],
we postulate here that it would not be uncommon for software developers to use
textbooks or sources such as Wikipedia, whose English version receives more
than 20 billion queries each month, for reviewing the intended meaning of the
exit and entry actions of UML’s states in statecharts. “Every state in a UML
statechart can have optional entry actions, which are executed upon entry to
a state, as well as optional exit actions, which are executed upon exit from a
state. Entry and exit actions are associated with states, not transitions. Regard-
less of how a state is entered or exited, all its entry and exit actions will be

The Understandability of Models for Behaviour 53

executed” [46]. The most natural assumption to make is that these actions are
symmetric. However, it is not hard to discover that this is not the case, e.g. when
applying model-to-model transformations [32] to reduce UML statecharts with
entry and exit actions into those that do not have such actions. This model-
to-model transformation is justified by the indication that entry and exit are
abbreviations for what otherwise would be the inefficient use of multiple states.
These actions are presented symmetrically as set-up and tear-down phases: “The
value of entry and exit actions is that they provide means for guaranteed initiali-
sation and cleanup, very much like class constructors and destructors in Object-
oriented programming” [46]. However, the transformation makes the asymmetry
of entry explicit with respect to exit. In the latter, we need to remember the
target state of the transition in an intermediate state.

Unfortunately, there is not much of an improvement with the Foundational
UML (fUML), an executable subset of standard UML offering precise execution
semantics. However, fUML uses Clause 15 of the UML Superstructure to define
the execution semantics for statecharts. fUML for a state’s entry and exit actions
is completely symmetric as it describes Alf [36, Page 328].

Fig. 1. Schema reflecting the model-to-model transformation that synchronises the
entry and exit actions and illustrates their semantics.

The fundamental tool to handle complexity is to divide the global solution
into coherent modules and compose it back from their functionality. The dom-
inant mechanism to model complex behaviour and provide logical modularisa-
tion are hierarchies, represented by nesting [51] in state-based specifications,
in particular, nesting sub-states (so-called OR-decomposition) [45, Chapter 2].
Some consider nested states a “great diagrammatic simplifications when a set of
events applies to several sub-states” [12]. Others [45, Page 69] regard hierarchi-
cally nested states [25], as the most important invention. However, Mellor [31]

54 V. Estivill-Castro and R. Hexel

highlighted several difficulties and complex semantic issues. Nested states are
a mechanism to produce common facilities and simplification to event-handling
policies (similarly to the Ultimate Hook Pattern). A notation that implies inher-
itance is a very powerful abstraction for sharing common features (including
behaviour) and perhaps substantive of object-oriented models and the UML in
particular. This abstraction capacity mostly follows Liskov’s Substitution Prin-
ciple [30] and implies that a sub-state of a composite state has behavioural
inheritance. However, in the case of states, the is a relationship of inheritance
is replaced by is in (is-in-a-state) relationship [45, Page 72]. For example, the
model in Fig. 21 shows that when the system is in the baking state, it is is-in the
heating state. The semantics of hierarchically nesting of states in UML is com-
monly specified with an interlingua approach, which again is a model-to-model
transformation that flattens the model. For hierarchically nesting, “the Carte-
sian product machine is used as the interlingua semantics of statecharts” [13,
Page 63].

Fig. 2. A sample UML statechart.

Another composition mechanism of the UML is orthogonal regions [45,
Chapter 2] (so-called AND-decomposition, which also implies unconstrained
concurrency). Along with class diagrams, UML statecharts are one of the top
used artefacts [41]. However, there are also alternatives such as the already-
mentioned subsumption architecture that enables layers of timed, logic-labelled
finite-sate machines to structure more sophisticated behaviours on top of simpler
behaviours [5].

3 State-Based Diagrams

The UML is predominantly graphical. In experimental evaluations of different
statechart presentations, graphical notations have been found to be preferred [51]
for obtaining a high-level understanding of the system. Subjects agree that hier-
archical models are easier to read than flat models and are absolutely necessary

1 Figure 2 [45, Figure 2.7] appears in Wikipedia’s page on UML state machines and is
distributed as commons material; we also used it on our experiments.

The Understandability of Models for Behaviour 55

for modelling complex systems [51]. However, subjects make the most errors
when working with hierarchical models [51] and errors they would not make if
the flat model was used [51]. UML statecharts are now heavily used for embed-
ded systems, even as executable models, synthesising VHDL [49], nevertheless,
remain the subject of strong criticism [4,24,40,44]. While such criticism is accu-
rate regarding the ambiguous semantics, conversely, UML is best used at the
conceptual level. Therefore, we explored the issue of understandability, when
the apparent syntactic sugar2 is preserving meaning but somehow those pro-
ducing the statecharts or those reading it fail to understand such shorthand
notation. Despite issues of visual syntax, visual and textual standard notations
enable communicating software designs to stake holders [34]. In particular, the
UML can be cost-effective [14], especially when used with a degree of formality
that reflects the executable code. Necessary conditions for UML to be effective
were identified monitoring 20 senior developers (10 with UML experience) on five
realistic maintenance tasks [14]. Despite the fact that the subjects were experi-
enced developers, in order to level their background, a one-day UML refresher
was delivered [14]. However, that research only considered class diagrams and
sequence diagrams. The conclusion matches earlier observations [51] and shows
that expertise with UML and usability of associated tools are strong influencing
factors in the cost-effectiveness of using UML [14].

Class diagrams (structural descriptions), sequence diagrams, and stereotypes
have been the focus of UML understandability [35]. The understandability of
UML’s use-case templates [35] was studied because of their relevance as the
main communication vehicle between all stake holders, including developers.
Once again, the understandability is linked to simplicity; UML artefacts must
be intuitive to understand to be successful [35]. UML diagram understandability
is related to cognitive load; and thus, inexperienced users struggle with diagrams
that require heavy, intrinsic cognitive load correlating with diagram details [35].
“The use case model is understandable if it allows users to recognise problem
domain information and extend their understanding in problem solving.” [35].
This definition of understandable has been used with the strong recommenda-
tion [35] that for evaluating understandability, besides question accuracy, exper-
imenters shall evaluate the time required to complete tasks: “ understanding is a
cognitive process, [and] it is difficult to directly observe it, and tests to measure
participants’ performance were conducted to assess the level of understanding
cognitively developed by each participant” [35].

Previous work [7,8,16,51] on the understandability of UML’s statecharts
seems restricted. The first study focused on the form of expressing transi-
tions [51]. This study was followed by theoretical and experimental studies of the
features that raise interpretation difficulty [23]. Later, the focus was that com-
posite states add comprehensibility when users have prior familiarity with these
features [8]. The counterintuitive outcome was that the experiments could not
establish a direct link between composite state complexity and UML statechart

2 Again, we use the model-to-model transformation of Fig. 1 to emphasise that entry

and exit actions are a syntactically convenient notation.

56 V. Estivill-Castro and R. Hexel

understandability. The seemingly intuitive hypothesis would be that the use of
composite states provides simplification, and thus enhances understandability;
but this hypothesis is not true for inexperienced users [8].

We hypothesise that developers find UML statecharts hard to understand
because their nesting usually implies uncontrolled concurrency and thus hides
unexpected complexity that is intrinsically hard to reason about. That is, nest-
ing of states, although simply described (see earlier Wikipedia quote), implies
complex rules to resolve the sequence of execution. As such, we believe that logic-
labelled finite-state machines (LLFSMs) are more understandable. The base of
our proposal is that LLFSMs execute under a deterministic schedule. Previous
research on formal verification and model checking with LLFSMs [18] demon-
strates that LLFSMs avoid the exponential explosion of associated Kripke struc-
tures used by model checkers. By contrast, UML statecharts are event-driven,
requiring a complex event handling process of at least five sub-steps.

Event Generation and Channeling: All generated events must be propa-
gated to those states in all statecharts that have transitions waiting for the
event.

Event Conveyance in Zero Time: Events are transported to current objects
and states, theoretically with no delay and without changing the event while
perfectly preserving the order of events, even in a dense-time environment.

Event Reception: Events are placed on queues (one per statechart [45]).
Event Dispatch: De-queue the event activating all responders (the listeners to

the event) concurrently with Run-Until-Completion semantics [45].
Event Consumption: Indicates that the event has been handled; in some cases,

removal from the queue is just part of this step [45].

This mechanism implies the existence of call-backs associated with the corre-
sponding events. The Hollywood principle is often viewed favourably and used
in many software patterns to seemingly minimise coupling. However, as a con-
sequence, the call-back order of execution becomes unpredictable, requiring a
model checker to evaluate all paths of execution. Formal verification must con-
sider all possible orders in which events may be queued and de-queued. This
is a fundamental source of combinatorial explosion for model checkers and cog-
nitive load for developers. To this cognitive load we further need to add the
semantics of hierarchically nesting of states in UML (or combinatorial explosion
because of the Cartesian product [13, Page 63]). Moreover, UML users’ cogni-
tive load rises because they must keep in mind all aspects of the event-driven
Run-Until-Completion semantics since “an event can trigger a transition in all
active threads, in some action threads, or in none” [13, Page 63].

By comparison, LLFSMs offer three fundamental approaches for composition.

Control/Status Message Passing: Orthogonal behaviours with different
responsibilities can synchronise through a shared memory reader/writer archi-
tecture that avoids race conditions.

Using Mechanisms to suspend/resume/restart: Enabling all sorts of rich
machine hierarchies; in particular, allowing subsumption architectures.

The Understandability of Models for Behaviour 57

Use of a Subsumption Switch: Wrap the actuators/effectors of a robotic/
embedded system with a module that filters commands in accordance with
priorities of behavioural layers.

4 Experimental Context

We invited students from two universities (Griffith University in Australia (GU),
and Universitat Pompeu Frabra in Spain, UPF) to participate in several, repli-
cated, controlled experiments. The GU participants had completed at least one
third-year, or master’s software engineering (SE) course. The UPF participants
had completed a second-year SE course and an elective robotics course that uses
LLFSMs to create behaviours (some of the students in Spain were in their fourth
year while some were in their third year). The experiments consist of either

Same Treatment of All Subjects: Everyone solves the same problem. Here,
two or more aspects of a participant’s performance are measured. Partici-
pant’s attributes may correlate with high/low performance. For example, all
subjects are required to describe everything that is communicated in a UML
statechart and we measure the accuracy of describing entry versus exit
behaviour per unit of time.

Different Treatment of Subjects: All subjects answer the same questions,
but about a different, randomly assigned diagram, whereupon we perform an
ANOVA (or t = test, if two classes). We randomly divide the participants into
two or three groups for tasks on equivalent, but different diagrams. We assign
the groups randomly to an equivalent task; but each group proceeds with
diagrams with a specific feature with the control from a diagram without the
feature (for example state nesting versus a diagram with no nesting).

The method we follow starts by formulating a hypothesis, for instance “use of
composite states improves understandability of UML”. The second step defines a
measure that accounts for how quickly subjects solve a task and how accurately
they solve the task. Typically we use the same measure of “understandability
efficiency” [8] as the accuracy (the number of correct answers) divided by the
time taken. Then, we define a hypothesis testing scenario; for example:

H0: the use of composite state diagrams does not improve the understandability effi-

ciency.

H1: the use of composite state diagrams does improve the understandability efficiency.

The experiments in Australia took place during July/August 2018 while those
in Spain between May/June 2019. Our experimental framework has the following
aspects in common with other UML understandability studies [8,10,23].

Participant Population: The Australian students were from two different cam-
puses in four different degree programs (one master and three undergraduate
programs). The students at Universitat Pompeu Fabra were from a single
campus and a single degree program (a 4-year undergraduate program).

58 V. Estivill-Castro and R. Hexel

Motivation and Persuasion: Subjects were motivated to voluntarily partic-
ipate using similar incentives such as explaining that the tasks would be
illustrative of the final exam [8,10,23].

Anonymity and Voluntary Participation: Participation is voluntary and
responses were anonymous; thus, students were not evaluated on their indi-
vidual performance.

Simplicity: The tasks in the experiment did not require a high level of industrial
experience. We selected relative easy to comprehend data models [10]. We
emphasised the premise that a simple data model was preferred over a more
complex one (as the focus was not the application domain nor the accuracy
with which the model reflects complex situations).

Concealed Information and Performance: We did not reveal our scoring
approaches or metrics of interest. Participants were allowed plenty of time to
complete the task.

Expertise: Students were in their final year, completing a course in software
engineering, or they were masters students who had already completed a prior
IT degree.

Long-term Preparation: Subjects received significant instruction on the main
constructs of the UML. Model-Driven development was illustrated and exer-
cised in laboratories using ARGO-UML [43] (students developed UML class
diagrams and generated code in C++, Java and SQL, analysing multiple
aspects of the mappings). Moreover, statecharts were used in laboratories
using MDSD and executable models through the QMTM tool. Students were
required to review “A Crash Course in UML State Machines” [1] with over-
lapping content [45, Chapter 2] and distributed by Quantum R©LeaPs.

Pre-task Preparation: Prior to attempting the tasks, subjects were given the
opportunity to review material on UML statecharts, e.g. the earlier cited
Wikipedia page [46], plus two others [2,19].

Researchers from experimental software engineering expect only minor differ-
ences between professionals and students when participants perform relatively
small tasks [3,26]. Therefore, to support the same assumption that students as
subjects are appropriate [8,10,23] all tasks consisted of the interpretation of
UML diagrams. We argue our tasks are simple because the level of nesting was
capped at 2: at most one machine and one sub-machine. To minimise the impact
of particular visual notations [34], we used materials from others that clearly
use the same visual notation or we used a graph-layout software with the same
layout parameters (in particular, we represented statechart models as conform-
ing to a meta-model and used an ATL transformation [27] from the meta-model
to dot [22]). The focus of our research is the semantics of the notation and its
representation on diagrams [10] (and we insist, not across visual notations [34]).

For behaviour models that produce short output, subjects were asked to
anticipate the output generated. For behaviours that generated continuous out-
put, subjects were required to identify the main traits of the behaviour, or alter-
natively subjects we asked whether a particular sequence of output statements
occurred in that precise order. For example, with reference to Fig. 2, a question

The Understandability of Models for Behaviour 59

asked if internal lamp on() always happened before internal lamp off().
We also emphasise that for understanding tasks (and the understandability of
UML artefacts) it is common to request subjects to provide as much information
as possible and to define the expected response prior to issuing the task.

5 Experimental Tasks and Results

5.1 Calibration

Our first task was an experiment with different treatment of subjects. We repro-
duced verbatim Cruz et al.’s original Figs. 5 (F5) and 6 (F6) [8] and question-
naire [8, Appendix A]. Subjects answer the same questionnaire but are randomly
partitioned between the two figures. Each figure is supposed to have an equiv-
alent UML diagram that models the same behaviour of a phone call: F5 uses
nesting states while F6 has no nested states. However, F6 is a simplified ver-
sion of F5 (recall the interlingua semantics of nested states). That is, F6 draws
much fewer transitions than those implied by F5. This difference demonstrates
that indeed, nesting suppresses many transitions that, if drawn, would (perhaps
unnecessarily) clutter the diagram. Although F5 and F6 are not semantically
equivalent, the questions in the questionnaire [8, Appendix A] did not explore
their semantic differences. This task could be considered particularly simple, and
unfortunately [8, Figure 5] or [8, Figure 6] may be translations from Spanish to
English (the figures have a spelling error).

Calibration Results. Reapplying the questionnaire [8, Appendix A] shows
no significant difference between nested and plain diagrams. Our experimental
results are equivalent to earlier outcomes [8]. In Australia we collected responses
from two campuses: 18 and 20 subjects respectively, each equally divided into
the two groups (nested versus flat). In Spain, we collected responses from 21
subjects, with 11 nested and 10 flat. We measured understandability efficiency.
While in the GU results there seems to be no significant improvement (or dif-
ference) in understandability/efficiency by using nested states, the UPF results
seem to suggest even a slightly worse performance with the nested version. We
offer here a new explanation derived from our earlier observations and still con-
gruent with the original conclusions [8]. Nesting states incur in construct redun-
dancy [34]. They also imply identifying a transition that is not directly leaving
the source state; thus, nested states are an advanced concept. Visual notations
are formal notations and “uniquely human-oriented representations” [34]. “One
should not underestimate the difficulty of reading a formal specification written
in mathematical notation” [21]. In the most Piagetian constructivist style, nested
statecharts require as pre-requisite knowledge flat statecharts in a concept-map.
One needs to understand the notion of state before one can capture sub-states
(let alone the notion of chain state [42]). The discovery of sub-states revises the
conceptual framework of statechart. It can only be operated efficiently if one
masters the potential combinations implied by nested states. Thus, users reach

60 V. Estivill-Castro and R. Hexel

command of nested statecharts when experience and regular usage assimilates
the implicit semantics that the interlingua semantics implies.

5.2 Simple, Nested Model

Our second experimental task is an experiment with same treatment of all sub-
jects. Participants must predict the output of a simple model, in particular, to
comprehensively describe the information provided by the UML statechart in
Fig. 2. The anticipated answer was to obtain paragraphs equivalent to those in
Fig. 3. Also a questionnaire (refer to Fig. 4) that has 8 questions testing sub-
jects on whether they could correctly identify behaviour (sequencing) on exit
actions, entry action, entry and exit actions, Run-Until-Completion, State
Nesting, ordering of events, ordering of nesting (priority on exiting a hierarchy
of nested states), and re-entering a hierarchy of nested states.

(2 points: statechart and composite states/sub-states) This diagram models the behaviour of some device that has,
fundamentally, two states: heating and door open. The heating state has sub-states toasting and
baking. Because of the solid-dot pseudo-states, this device starts in the heating state, and in the toasting
sub-state. Separate states are exclusive, so the system is either in the heating state or the door open state.
Similarly, the system is either toasting or baking. However, sub-states occur within their parent state; for
example baking happens always while heating.

(1 point: transitions labelled by events) An event CLOSE DOOR will transition the system from the state
door open to heating.

(1 point: when On-Entry and On-Exit happens) An event DOOR OPEN will cause the system to move from
heating to door open no matter what sub-state in heating. When we leave heating in this case,
the action heater off will be performed as an exit activity of the state heating followed by the action
internal lamp on which is the entry activity of the state door open. Here we see two actions where one
happens before the other.

(1 point: nesting is described) The transitions between heating and door open are both external transitions,
but the transition of the events DO BAKING and DO TOASTING are internal transitions. So when DO BAKING,
no matter the sub-state in heating, we will come to the sub-state baking, but we will not execute the
exit of heating, we will execute the exit of toasting (if we were in toasting, that is the action
disarm time event is performed but heater off is not. However, the action set temperature
of baking is performed after as the entry to baking. Every time the system goes out of toasting
the disarm time event is executed. Similarly, departing form baking always executed the action
set temperature.

Fig. 3. Grading scale to assess the translation to English when interpreting the model
of Fig. 2 (based on [16, Figure 3]).

Simple, Nested Model Results. Our first remarkable result is the score
difference observed for subjects answering questions regarding exit actions vs
entry actions on the same diagram. Our questionnaires had 8 questions: a correct
answer provided one point, an incorrect one subtracted a point. For each subject,
we subtracted their score for the exit answer from the score for the entry
answers. The null hypothesis was that the mean of these differences is 0. For our
first campus experiment, with N = 51 respondents, the mean of the difference
scores was 3.00 with a standard deviation of 3.85. The standard error of the mean

The Understandability of Models for Behaviour 61

was 0.54. A t-test with 50 degrees of freedom rejects the null hypothesis (p-value
less than 0.00001). The replication at the second campus had only N = 26
respondents; nevertheless, the mean of the score differences was 2.11, with a
standard deviation of 3.97. This results in an estimate of the standard error for
the mean of 0.41 and the t-test with 25 degrees of freedom also rejects the null
hypothesis (p-value less than 0.00001). In Spain we only had N = 10 participants;
nevertheless, the mean of the difference scores was 2.4 with a standard deviation
of 3.33 (the standard error of the mean was 0.76). The corresponding t-test has 9
degrees of freedom and also rejects the null hypothesis at 95% significance level
with p-value less than 0.049. Thus, our experimentation reveals that subjects
have different capacity to answer symmetrical questions regarding entry sections
of statecharts as opposed to exit sections. The mean accuracy is higher for the
entry questions than the exit questions.

The diagram models the behaviour of a toaster oven. Assume that no events have been issued prior to each of the ques-
tions below, and that the two behaviours were launched concurrently in the order Outer followed by Inner. Answer
only in terms of the actions: heater on(), heater off(), arm time event(me->toast color),
disarm time event(), set temperature(me->Temperature), set temperature(0),
internal lamp on(), and internal lamp off().

1. If the event to DO BAKING is received, what is/are a/the sequence of actions produced by all behaviours in-
volved?

2. If the event to DO BAKING is received; and later, after a few seconds, the event to DOOR OPEN happens, what
is/are a/the sequence of actions produced by all behaviours involved?

3. If the event to DO BAKING is received, and while the action disarm time event() is being performed, the
DOOR OPEN happens, what is/are a/the sequence of actions produced by all behaviours involved?

4. If the event to DO BAKING is received, and while the action set temperature(me->Temperature) is
running the DOOR OPEN happens, what is/are a/the sequence of actions produced by all behaviours involved?

5. If the event to DO BAKING is received, and after a few seconds the event to DOOR OPEN happens, and while the
action set temperature(0) is being performed, the DOOR CLOSE happens, what is/are a/the sequence of
actions produced by all behaviours involved?

6. If the event to DO BAKING is received, and after a few seconds the event to DOOR OPEN happens, and while the
action heater off() is executing, the DOOR CLOSE happens, what is/are a/the sequence of actions produced
by all behaviours involved?

7. Write down the minimum sequence of events and conditions needed, to go from the state toasting to the state
baking, and back to toasting, but this going back is not caused by an event to DO TOASTING:

8. Write down the minimum sequence of events and conditions needed, to go from the state toasting to the state
baking, and back to toasting.

Fig. 4. Questionnaire (in the style of earlier questionnaire [8, Appendix A]) to evalu-
ate understandability of Fig. 2 and equivalent diagrams with LLFSMs (based on [16,
Figure 6]).

5.3 Non-nested LLFSM

Our third experimental task is an experiment with same treatment of all sub-
jects. Subjects were required to predict the output of the logic-labelled finite-
state machine in Fig. 5a. We used the downloadable version of the clfsm sched-
uler [17] for logic-label finite-state machines and the MiEdit editor [15]. We
used current versions of ROS under Ubuntu for the experiments (the then-
current ROS-Kinetic under Ubuntu 16.04 LTS in Australia, and the updated

62 V. Estivill-Castro and R. Hexel

Initial

On Entry:
 count ::= 1
write "OnEntry Initial"
write count

On Exit:
 count ::= (1 + count)
write "OnExit Initial"
write count

On Internal:
 count ::= (1 + count)
write "Internal Initial"
write count

Terminal

On Entry:
 count ::= (1 + count)
write "OnEntry Terminal"
write count

On Exit:
 count ::= (1 + count)
write "OnExit Terminal"
write count

On Internal:
 count ::= (1 + count)
write "Internal Terminal"
write count

 1:[1]

(a) A simple logic-labelled finite-state
machine.

VERIFY

RESTART

On Entry:
 masterCount ::= (1 + masterCount)
write "In MASTER OnEntry Restart"
write masterCount;
resume("Simple");

On Exit:
 masterCount ::= (1 + masterCount)
write "In MASTER OnExit Restart"
write masterCount;

On Internal:
 masterCount ::= (1 + masterCount)
write "In MASTER doing Restart"
write masterCount;

 1:[(is_suspended("Simple") AND (AFTER 1))]

MASTER_INITIAL

On Entry:
 masterCount ::= 0
write "In MASTER OnEntry Initial"
write masterCount;
suspend("Simple");

On Exit:
 masterCount ::= (1 + masterCount)
write "In MASTER OnExit Initial"
write masterCount;

On Internal:
 masterCount ::= (1 + masterCount)
write "In MASTER doing Initial"
write masterCount;

 1:[is_suspended("Simple")]

TEST

 1:[is_running("Simple")] 1:[(is_running("Simple") AND (AFTER 1))]

(b) A master logic-labelled finite-state
machine.

Fig. 5. An arrangement of LLFSMs where the master suspends and resumes the simple
LLFSM.

Ubuntu 18.04 LTS and ROS-Melodic in Spain). Subjects were provided prac-
tice in executing LLFSMs with the clfsm scheduler. Communication between
LLFSMs was using the mechanisms of the ROS’ middleware.

This apparently simple model has implications for understanding the notion
of guards, when in a ringlet is a transition evaluated, and whether the exit is
executed in a terminal state.

Non-nested LLFSM Results. The notion of logic-labelled finite-state
machines (LLFSMs) could be seen as UML models with no events and only
guards: LLFSMs with no events are also called procedural state machines [13],
in that case, the model is not at the mercy of the arrival of events: “because [the
automaton] can access the input symbols at any time, it can visit states as fast
as we wish” [13, Page 15].

The discussion of the notion of guard is typically linked with the illustration
that UML statecharts are extended state machines [45, Chapter 2]. Since there
are no events in LLFSMs, their precise semantics specifies exactly when the
Boolean condition is evaluated (a snapshot of all external variables is taken
before commencing of a ringlet, and all guards of all transitions are evaluated in
this context). But this issue is somewhat ambiguous for the UML, the expressions
are meant to be evaluated upon the arrival of the event. However, events are
queued in executable models and guards are evaluated during the dispatch of
the event [45, Chapter 2] (recall the sub-steps to handle an event in Sect. 3).

Therefore, understandability of LLFSMs (although completely sequential),
seems also to require a certain level of maturity and familiarity with UML (as
we mentioned in earlier sections, most experimental evaluations of artefacts and
cost-effectiveness of the UML suggest expertise and significant familiarity are
required). Our results are consistent with this. We evaluated the understand-
ability/efficiency of the subjects as the accuracy of questions about the LLFSM
terminating (or running in a continuous loop), whether the execution leaves

The Understandability of Models for Behaviour 63

the state named INITIAL without executing the do (Internal) section, and
whether the exit of the TERMINAL state is executed because no transi-
tion fires. Therefore, a fourth element is that, when in state TERMINAL
the do does run. We had 21 respondents on our first campus, 10 graduate stu-
dents and 11 undergraduate students. The accuracy divided by the time taken
is used as understandability/efficiency and the values satisfy a normal distribu-
tion assumption with a Q-Q plot (for each group). The graduate students’ mean
understandability/efficiency is superior to that of the undergraduate students
(statistically significant at a γ = 95% confidence level). Upon replication on the
other campus, we had 6 undergraduate volunteers and 12 graduate volunteers.
Despite the lower numbers, we also saw a significant result (at γ = 95%), show-
ing a superior understandability/efficiency for graduate students over the mean
for undergraduate students. In Spain we only had 4 respondents, and all were
third year students. Despite their earlier practice with LLFSMs they all made the
same mistake of including the do action in the INITIAL although the transi-
tion fires immediately and they all include the exit action of the TERMINAL
state despite no transition fires. All took more than 5 min to complete the task.
We believe this result confirms that even the simplest UML artefacts hide very
delicate issues.

5.4 Nested LLFSMs

Our the fourth task also used an executable arrangement of LLFSMs. We tested
understanding of the clfsm scheduler again under the same ROS middleware. In
preparation for this task, the clfsm scheduler capabilities to suspend/resume/
restart one LLFSM from another LLFSM had been practiced in laboratories
in the students’ courses (in both Australia and Spain). Although the executable
model produces continuous output, the task consisted of formulating a qualita-
tive prediction of the execution of the arrangement in Fig. 5. This is the concur-
rent execution of the LLFSMs in Fig. 5a and b.

Nested LLFSM Results. We recorded the participants’ accuracy relative to
the time used to measure the understandability efficiency. The accuracy was
regarding the correct prediction of the behaviour of the concurrent execution of
two LLFSMs. The precise execution varies slightly when clfsm is invoked with
the LLFSMs in Fig. 5a and b in different order. This swapping of the arrange-
ment order slightly modifies the output. Moreover, in this case, the execution
continues endlessly. Our results indicate a similar pattern as previously. The first
campus had 14 undergraduate and 10 graduate students, the second campus had
10 undergraduate and 11 graduate respondents. Performance was significantly
superior for graduate students at γ = 95%. The undergraduate students seem to
follow each LLFSM separately. But these subjects could not master the notion
of ringlet (and of round-robin schedule of the concurrent execution of the two
LLFSMs) with the same understandability/efficiency of the graduate students.
In Spain we only had 6 volunteers from fourth year. Their performance was

64 V. Estivill-Castro and R. Hexel

superior to the undergraduate students from Australia at a significance level of
γ = 95%, but we cannot place them above or below the Australian graduate
students. This is consistent with the level of expertise. The Australian under-
graduate students were in 3-year programs, while our more highly experienced
participants were fourth year (Spain) or Master’s students (Australia).

5.5 Subsumption and Delegation Results

This task required significant preparation. In corresponding laboratories par-
ticipants had been working with examples of message passing using the ROS
publisher/subscriber (rostopics) and client/server (rosservices) software pat-
terns. They had been shown that the sequential execution of LLFSMs implies
an LLFSM cannot take the role of a ROS-subscriber (LLFSMs cannot not use
callbacks). The examples illustrated that the wrapper software pattern is appli-
cable here. A wrapper ROS-Node that plays both the role of a subscriber and a
service is placed between the publisher of a signal and the LLFSMs interested
in the topic. Wrapping of rostopic signals (events) into a rosservice enables
the LLFSM to act as a ROS client and query the status. One of the examples
practised ahead of time by all our students was the third of the downloadable
ROS LLFSMs examples [15]. Here, the elementary turtle icon of ROS is driven
to walk about its environment staying away from the boundary.

The actual task comprised implementing the model presented in Fig. 2 using
LLFSMs. We provided the executable code (as a ROS-package) for a service
wrappers for the signals DO BAKE and DO TOASTING; and the signals to DOOR OPEN
and DOOR CLOSE. The instructions of the tasks requested to emulate the nesting
hierarchy of Fig. 2. The Inner behaviour responds to DO BAKE and DO TOASTING
and as a result of that switches from the state toasting to baking. The second
behaviour corresponds to the Outer behaviour that responds to DOOR OPEN and
DOOR CLOSE. Subsequently, the behaviours are integrated. Subjects were required
to commit to one of the two strategies by which LLFSMs represent state nesting:
that is, subjects were asked to chose between suspend/resume/restart or to
use a delegation (forwarding) of messages.

Subsumption and Delegation Results. A remarkable aspect of these tasks
is that all groups of student volunteers, including the participants from Spain,
selected the incorrect implementation pattern. None of the subjects obtained a
correct implementation with LLFSMs of the model in Fig. 2.

5.6 Randomised Diagrams (Australia)

For the sixth experiment, subjects were randomly partitioned into three groups
and provided the same earlier Questionnaire (Fig. 4). However, each group was
provided with a different diagram. The first group was provided the diagram
in Fig. 2, the second group was provided a model solution to its implementa-
tion using suspend/ resume/restart with LLFSMs, and the third group was
provided a model solution using delegation/forwarding with LLFSMs.

The Understandability of Models for Behaviour 65

Randomised Diagrams (Australia) Results. Here we first used a 3-factor
ANOVA (between subjects/one-way) analysis, as we identify the three types of
diagrams. If we measure the accuracy on the 8 questions in Fig. 4 divided by
time, we find no evidence that the means are different. The box-plot in Fig. 6a
(generated with R’s ggplot [39]) shows not much difference, except for one
outlier where one subject did extremely well for the LLFSM diagram using the
delegation pattern. However, if we break the questionnaire into the four middle
questions (3, 4, 5, and 6, which deal with Run-Until-Completion semantics), we
can see that the results are significantly better for understandability/efficiency
for diagrams with suspend/resume (refer to Fig. 6b). Conversely, on Questions 1,
2, 7, and 8, the UML diagram performs much better. Again, the 3-factor ANOVA
results show no statistically significant difference. However an unpaired (two
sample) t-test of the understandability/efficiency on the UML diagram versus
the suspend/resume diagram does indicate the rejection of the null hypothesis
at 95%. That suggests UML diagrams are understandable as long as we set up
scenarios with well-spaced events, where users can follow all the consequences
of one event before the arrival of another. LLFSMs seems to be the other way
around. While, at a first glance, the run-until-completion semantics appears
obvious and straightforward, in our experimental task denoted in Figs. 2 and 4,
almost all subjects had substantial trouble with Questions 4 to 8.

0.0

2.5

5.0

7.5

10.0

DELEGATION SUSPEND/RESTART UML
DIAGRAM

UN
DE

RS
TA

ND
AB

ILI
TY

.EF
FIC

IEN
CY

DIAGRAM
DELEGATION

SUSPEND/RESTART

UML

(a) Box plot of the 3-ways understandabil-
ity/efficiency per model type of the Figure 4
questions.

0.00

0.25

0.50

0.75

1.00

DELEGATION SUSPEND/RESTART UML
DIAGRAM

UN
DE

RS
TA

ND
AB

ILI
TY

.EF
FIC

IEN
CY

DIAGRAM
DELEGATION

SUSPEND/RESTART

UML

(b) Box plot of the 3-ways understandabil-
ity/efficiency per model type on Q’s 3 to 6
for Figure 4.

Fig. 6. Box plots for Australian participants (the units on the right plot are half to
the left plot since half the questions are used).

5.7 Randomised Diagrams (Spain)

This experiment is similar to the Randomised Diagrams experiment performed
in Australia we just described (see Subsect. 5.6). However, we had only N = 15
participants, so we randomly divided them into only two groups, those working
with the UML from Fig. 2 versus those working with a suspend/resume solution
of LLFSMs. Again, the questions are those of Questionnaire (Fig. 4). Our parti-
tion results in 6 students working with the UML diagram from Fig. 2 with the
other (9 participants) working with the LLFSM diagram.

66 V. Estivill-Castro and R. Hexel

Randomised Diagrams (Spain) Results. The plots in Fig. 7 show that the
participants were (statistically significant) more proficient with the LLFSM dia-
gram than with the UML diagram. Figure 7a is the total score for the ques-
tionnaire, while Fig. 7b. In this experiment, participants performed particularly
poorly with those question that deal with the Run-Until-Completion semantics
of the UML. Recall that the Run-Until-Completion semantics requires that the
UML users keeps in mind the queue of events while resolving the current event.
Most users seem to interrupt the handling of the current event and perform the
actions of new arriving event. Note that the y-axis in the two figures in Fig. 7 is
not the same scale, nevertheless, the gap between those with the UML diagram
and the others widens, highlighting how challenging is to grasp the Run-Until-
Completion semantics of the UML.

1

2

3

SUSPEND/RESUME UML
DIAGRAM

UN
DE

RS
TA

ND
AB

ILI
TY

.EF
FIC

IEN
CY

DIAGRAM
SUSPEND/RESUME

UML

(a) Box plot of the 2-ways understandabil-
ity/efficiency per model type of the Figure 4
questions.

0.0

0.5

1.0

1.5

2.0

2.5

SUSPEND/RESUME UML
DIAGRAM

UN
DE

RS
TA

ND
AB

ILI
TY

.EF
FIC

IEN
CY

DIAGRAM
SUSPEND/RESUME

UML

(b) Box plot of the 2-ways understandabil-
ity/efficiency per model type on Q’s 3 to 6
for Figure 4.

Fig. 7. Box plots for Spanish participants (the units on the right plot are half to the
left plot since half the questions are used).

6 Analysis

6.1 Lesson Learned

LLFSMs are apparently simpler because, as we mentioned, they could be con-
sidered UML statecharts without events. But LLFSMs offer a precise and unam-
biguous semantics that provides complete detail for execution and verification.
Our results suggest that LLFSMs require significantly more maturity from par-
ticipants. However, when issues of timing and order of execution become more
critical, or when interpreting and understanding the effect of event showers, or
the handling of events while another event is still being processed, LLFSMs are
much clearer and more transparent. This is particularly supported in the Spanish
replication of the experiments.

It may not be unexpected that our experiments demonstrate that enduring
experience with UML is required for high understandability/efficiency. We never-
theless found some remarkable surprises. For example, we discovered that among

The Understandability of Models for Behaviour 67

subjects there is a strong belief that UML statecharts imply strong restrictions on
the ordering of events. In particular, 32% of the first-campus group (52 respon-
dents) indicated in one particular question that the diagram in Fig. 2 implies that
DOOR OPEN must always be followed by DOOR CLOSED (the group on the second
campus had 26 respondents, but a percentage as high as 38% also expected such
an ordering of events). These responses occurred despite earlier lab demonstra-
tions to students (prior to the questionnaire) that showed an implementation
of Fig. 2 with QMTM. In those demonstrations, we explicitly showed that all
sequences of events of the form (DOOR CLOSED|DOOR OPEN)∗ were valid for the
Outer behaviour. Our participants were a subset of the students instructed in
the laboratories who experienced the execution of the implementation which dis-
played a behaviour that would toggle between the state door open and heating
at the right time. That is, duplication of the event DOOR OPEN once in the state
door open is possible and has no effect. Moreover, 68% of these participants
could not commit either way about whether the diagram implied something
regarding the order of events. Only 10% could confirm that the UML diagram
in Fig. 2 is at the mercy of the sequence of events coming from the environment,
and its implementation (or executable model) behaves correctly only when it
makes no assumptions about a benevolent environment.

6.2 Threats to Validity

Clearly, students are not professionals in the field of practice, and although,
like others [28], we justified their participation, those with experience in several
projects may be a different group subjects [14]. Especially since our results sug-
gest that expertise developed with experience is a contributing factor to under-
standability. Since the tasks are simple or at least not very sophisticated (for
example, Figs. 2 and 4), it is possible that the results could be different in other
settings. For example, industrial scenarios usually involve complex behaviours
of many inter-dependent statecharts [38]. Also, understandability interacts with
other factors (for instance, different development tools) in more complex ways
than in our controlled experiment. In particular, to remove other factors, we con-
ducted the experiments separately, allowing at least one week in between two of
them to minimise the effect of fatigue. The groups were small so we could elim-
inate plagiarism because we could ensure no individual received any coaching,
advice, or communication with others.

Nevertheless, for evaluating understandability, the students’ lack of expe-
rience signifies the difficulty in grasping the models [35]. If models were highly
understandable, novice users would not exhibit the difficulties we observe. More-
over, using simple tasks for UML diagrams is a suitable approach when dealing
with subjects that are students, as long as we keep in mind that the experience
of users could have a more profound effect on more complex tasks [28,35].

The UML refresher material may be another issue to consider for exter-
nal validity. We found the results from Spanish students somewhat surprising,
regarding their inability to handle the Run-Till-Completion semantics of the
UML, but their high performance with LLFSMs. It is possible that more practice

68 V. Estivill-Castro and R. Hexel

is required with a tool such as the already mentioned QMTM that implements
the Run-Till-Completion semantics. Results may vary if participants are exposed
and have more exposure to a specific model of semantics. One issue could be that
Australian students effectively had little prior exposure to the notion of state
machines. Neither of five programs feeding into the pool of Australian subjects
had a course on automata and formal languages, while the Spanish students
do have exposure to automata theory and some had exposure to a course in
compilers with some content on lexical analysis. We should point out that if we
compare the performance of Spanish students against Australian students under
the same diagram, the Spanish students’ understandability/efficiency is superior,
with statistical significance, to the Australians. We can see that in Fig. 7a the
mean understandability/efficiency for Spanish participants is way above 1 for
all diagrams, which is where Australian participants are almost for all diagrams
(refer to Fig. 6a). The same is true when we focus on the Run-Till-Completion
semantics. The understandability/efficiency for Spanish participants is above
0.25 for all diagrams (Fig. 7b) which is above the understandability/efficiency for
Australian participants in the corresponding figure (Fig. 6b). Similarly, results
may vary if subjects had exposure to state diagrams from other areas.

We face the same challenges as all other studies with respect to construct
validity (the suitability of the instrument to measure understandability). Under-
standing is a cognitive process, we can only measure elements that we believe
reflect the level of understanding, using the common hypothesis that failure to
achieve a task (such as translation into another language or into the output
behaviour sequence) is linked to a lack of understanding. However, UML nota-
tions may be simply hard to learn (which may be associated with understand-
ability). We also may not have been able to record the understanding failures
accurately.

Challenges could be derived from violations to the assumptions that enable
a particular analysis (that is, statistical validly), such as low effect size or statis-
tical power. When comparing two groups, we used the t-test. Where we employ
ANOVA, we assume homogeneity of variance as there does not seem to be any
other factor that would invalidate this assumption. We used a Q-Q-plot to vali-
date the assumption of normally distributed random variables. When partition-
ing, each value was sampled independently from any other variable to ascertain
between-subject factors. However, we acknowledge that our sample sizes were
smaller than those in other, similar studies. Nevertheless, we discussed results
only where we could report statistical significance. Since participation was vol-
untary, the class sizes (where lectures and laboratories were delivered to partici-
pants) were larger than the samples reported. This self-selection of the subjects
implies a potential bias. It is possible that diligent students seek more practice.

7 Asymmetric Semantics

Similar to others [9], our results suggest that hierarchical nesting of UML state-
charts does not scale well. The suggestion that nesting level inversely correlates

The Understandability of Models for Behaviour 69

with understandability could be justified, as, when taken as executable mod-
els, UML statechart hierarchies have high McCabe Cyclomatic Complexity (the
number of linearly independent paths through the execution is high as nested
statecharts are an abbreviation of a single, large statechart containing the Carte-
sian product of states in the hierarchy). We recall that Cyclomatic Complexity
is the number of linearly independent execution paths through the model.

However, the issue becomes complicated when discussing entry and exit
actions. The following quote reflects a brief explanation for the roles of sections
in UML statecharts. “Regardless of how a state is entered or exited, all its entry
and exit actions will be executed” [45, Page 76]), proposing a symmetry between
entry and exit actions. However, building on our earlier arguments, to illustrate
further inherent asymmetry present in LLFSMs, we consider the suspension of
a member of the arrangement. Suspension is a meta-action (from the perspec-
tive of the machine being suspended) that is performed by the scheduler (when
triggered, e.g., by a higher-level machine in the subsumption architecture). In
particular, it is quite inappropriate if a machine had been suspended (thus no
longer operating) but were to execute any actions. Suspended machines must not
execute any code, not even their exit actions (or, as per philosophy of the sub-
sumption architecture, any actions are blocked from causing any effect). Figure 2
illustrates that humans interpreting the model would expect the oven would be
immediately turned off when sensors report the door is open. The results of our
study show a significant difference in the number of participants that preferred
to treat the implementation in Fig. 2 by the suspend/restart mechanism when
the DOOR OPEN/DOOR CLOSED (respectively) signals are detected.

Suggesting that exit actions are not performed in a suspended state-machine
may seem to contradict the event-driven nature of UML with its associated
Run-Till-Completion semantics—where all exit actions are always performed.
Considering what happens when a machine is suspended raises the cognitive
load on designers and developers when constructing or interpreting a set of
statecharts. In particular, designers must consider that the suspender machine
needs to account for further activity still performed by anyone who is suspended.
This possibility that a suspended actor may perform any actions violates the
principle of the least surprise. Moreover, the delicacies of this issue can have
severe consequences in safety-critical systems (such as the radiation magnetron
of a microwave), where two opposing concerns (regular operation and immediate
shutdown) suddenly have to be catered for in the same (exit) action. We now
address the critical issue of defining the semantics of a machine that receives a
suspend with respect to the exit section of its current state.

We observe that the inherent asymmetry between execution context and
sphere of control [29] (subsystem vs meta-action) results in an asymmetry of the
entry and exit actions. Composition of larger models of LLFSMs is achieved
by including further behaviours in the pre-scheduled sequential execution of
an arrangement and explicitly invoking their execution (or suspension). The
semantics of an arrangement of LLFSMs is that all machines in the arrangement
are executing concurrently, but only one at a time is effectively running. When

70 V. Estivill-Castro and R. Hexel

the holder of the execution token runs the actions associated with its current
state, it executes one ringlet in the current state; then, the scheduler passes the
token of execution to the next machine. The semantics for running a ringlet is
defined as follows.

1. The entry action is executed if (and only if) the previous state was different
to the current one.

2. The predefined sequence of transitions is evaluated; if none of them is true,
the do section is executed and the ringlet finishes.

3. Alternatively, exit is executed (when a transition T fires) and the target
state of T becomes the current state. This also completes the ringlet.

Thus, when arriving from another state, the entry section of a state is executed
once and only once, without exception (this interpretation of transitions with
identical source and target state caused some issues in SCXML [50]).

Note that, at the time a machine is suspended the suspender (another higher-
level, controller machine) holds the token of execution. That is, the suspend hap-
pens outside the sphere of control [29] of the machine being suspended. There-
fore, for robotic and embedded systems, which often implement the subsump-
tion architecture [5] and suspend/resume/restart signal, a suspended machine
should not run any actions after the suspension signal. For example, consider a
robot design where the exit of a motion state S triggers a control signal when
a transition labelled with some condition (such as an object becoming visible)
fires. Suppose that a super-imposing behaviour ensures some safety constraints
on the motion, for instance, that the posture is safe for the motion. If the robot
were to change to an unsafe posture (a fall), the super-machine would issue a sus-
pend but the controlled behaviour would execute the exit and drive the robot to
perform a motion in an unsafe posture. In fact, if designers follow the semantics
suggested here, the trigger of a motion shall not be when leaving a state, but on
arrival to a state (the design is vastly improved by breaking the preparation and
launching of the motion into two states, and the launching being in the entry).

As another illustration, we review the higher-level machine switching
behaviour between toasting and door open in Fig. 2. The submachine that
switches between toasting or baking is the inner behaviour, and it would only
receive the token of execution after being suspended, i.e. after the higher-level
machine has performed the suspend. By the time the inner machine receives
back the token of execution, it already is in its suspended state. Thus, it would
be quite surprising if it were to resume its prior state to catch up and run some
associated exit action.

To consider entry and exit actions as symmetric actions has some poten-
tial mnemonic elegance. However, the argument here is that this symmetry only
applies within the sphere of control [29] of a single machine. The earlier exam-
ples serve to stress our argument. Actions in the exit are executed when one
transition fires (the Boolean expression labelling it evaluates to true). Running
the actions of this section while suspended results in the actions of exit being
executed in a completely unpredictable context. This context is unpredictable
because it is subject to all the actions of all other behaviours in the composition;

The Understandability of Models for Behaviour 71

that is in the arrangement. Such a context can clearly be radically different and
inconsistent with the conditions that are stated in the Boolean expressions that
label the transitions leading away from the state in question. This is terribly
unsafe (and thus, our argument why the example above are a poor design and
the semantics favour a redesign).

Let us now focus on a further point of asymmetry pertaining the entry
section. Namely, entry is executed when the operation of a machine is resumed.
This is completely analogous, consistent and corresponds to having no exception
when a machine is first started and the entry of its initial state is executed.
Thus, the corresponding entry is executed when a LLFSM that was previously
suspended is resumed or restarted. The rationale is simple, the corresponding
machine is in control and able to perform its specified actions.

The earlier suggested re-design of our example robot preparing and signalling
a motion corresponds to classical software engineering principles. Executing the
actions of an entry section precisely, and only when one of the transitions has
its guard evaluated to true, acts as a precondition (in the sense of program-
ming by contract [33]). Thus, this semantics enforces stronger, first-principles
based software development with statechart models. Among these principles are
code re-use, separation of concerns, decoupling, and locality of effects, since in a
layered architecture, lower layers shall be completely unaware of higher layers.

These semantics do not prevent the implementation with LLFSMs of a
design using UML’s composability with nested states. For example, in Fig. 2,
the DOOR OPEN signal acts as a trigger to several exit actions (in the outer and
in the inner machines). Because this is a UML design, the exit actions are aimed
at reversing the corresponding entry actions. For instance, suspending the inner
machine and not executing its exit would leave the toaster on. The problem is
that the UML design hides that the super-machine requires cooperation from
its sub-machine. This assistance ought to be made explicit through notification
(to the sub-machine) of a condition. This is clearly a delegation pattern (and
forwarding of a corresponding signal). When the system is in the state baking,
it is also in the state toasting and thus it shall listen to DOOR OPEN as well.
Moreover, the order in which all the nested states execute their correspond-
ing exit actions becomes explicit by using delegation. Note, however, that the
original description of nested-state semantics by Harel prioritised first the super-
state over the sub-state, but UML has revised this interpretation and now an
inverse prioritisation is used. This, once more, highlights the significance of clear,
accessible semantics to the designer. Thus, our discussion here emphasises the
importance of characterising the scenarios where the subsumption architectural
pattern of independent components is applicable, versus those situations where
other patterns, such as delegation and communication, are applicable. Making
these explicit to software engineers may alleviate the confusion that exists, as
our experiments have revealed.

72 V. Estivill-Castro and R. Hexel

8 Conclusions

Our experiments have shown that the simplistic model of symmetry between
entry and exit actions does not even hold true when tested against simple,
nested models. Perhaps unsurprisingly, more experienced participants (masters
students) showed a superior capability in their levels of understanding compared
to less experienced participants (undergraduate students).

The wide-spread use of state diagrams for model behaviour for the ever grow-
ing number of embedded devices (just consider the Internet of Things) makes
it imperative that executable models, such as LLFSMs, delineate the precise
semantics derived from the entry and exit asymmetry. We have argued for a
semantics where exit is executed upon leaving the state in the sphere of control
of the current machine. The experiments show that the interaction of nesting
states with UML’s Run-Till-Completion semantics is particularly hard to grasp.

Overall, our study shows that, while complex, nested models are hard to inter-
pret for humans, a precise semantics (as is necessary for verifiable, executable
models) needs to be intuitive for human understandability. Importantly, com-
pared to the literature, where seemingly simple, symmetric semantics have led
to often counter-intuitive or difficult-to-comprehend system behaviours, we have
demonstrated an asymmetry in participants’ understanding of entry vs exit
behaviour that supports our hypothesis of an intrinsically asymmetric execution
semantics leading to a more intuitive system behaviour.

References

1. A crash course in UML state machines (2015). https://www.state-machine.com/
doc/AN Crash Course in UML State Machines.pdf. Accessed 20 June 2019

2. State machine diagram tutorial (2018). https://www.lucidchart.com/pages/uml-
state-machine-diagram. Accessed 20 June 2019

3. Basili, V.R., Shull, F., Lanubile, F.: Building knowledge through families of exper-
iments. IEEE Trans. Softw. Eng. 25(4), 456–473 (1999)

4. Börger, E., Cavarra, A., Riccobene, E.: Modeling the dynamics of UML state
machines. In: Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L. (eds.) ASM
2000. LNCS, vol. 1912, pp. 223–241. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-44518-8 13

5. Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot.
Autom. 2(1), 14–23 (1986)

6. Colburn, T., Shute, G.: Abstraction in computer science. Minds Mach. 17(2), 169–
184 (2007)

7. Cruz-Lemus, J.A., Genero, M., Manso, M.E., Morasca, S., Piattini, M.: Assessing
the understandability of UML statechart diagrams with composite states–a family
of empirical studies. Empir. Softw. Eng. 14(6), 685–719 (2009)

8. Cruz-Lemus, J.A., Genero, M., Manso, M.E., Piattini, M.: Evaluating the effect of
composite states on the understandability of UML statechart diagrams. In: Briand,
L., Williams, C. (eds.) MODELS 2005. LNCS, vol. 3713, pp. 113–125. Springer,
Heidelberg (2005). https://doi.org/10.1007/11557432 9

https://www.state-machine.com/doc/ AN_Crash_Course_in_UML_State_Machines.pdf
https://www.state-machine.com/doc/ AN_Crash_Course_in_UML_State_Machines.pdf
https://www.lucidchart.com/pages/uml-state-machine-diagram
https://www.lucidchart.com/pages/uml-state-machine-diagram
https://doi.org/10.1007/3-540-44518-8_13
https://doi.org/10.1007/3-540-44518-8_13
https://doi.org/10.1007/11557432_9

The Understandability of Models for Behaviour 73

9. Cruz-Lemus, J.A., Maes, A., Genero, M., Poels, G., Piattini, M.: The impact of
structural complexity on the understandability of UML statechart diagrams. Inf.
Sci. 180(11), 2209–2220 (2010)

10. De Lucia, A., Gravino, C., Oliveto, R., Tortora, G.: An experimental comparison
of ER and UML class diagrams for data modelling. Empir. Softw. Eng. 15(5),
455–492 (2010)

11. Dijkstra, E.W.: Foreword. In: Hinchey, M.G., Dean, N.C. (eds.) Teaching and
Learning Formal Methods, pp. vii–viii. Elsevier, Amsterdam (1996)

12. Douglass, B.P.: Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks, and Patterns. Addison-Wesley, Boston (1999)

13. Drusinsky, D.: Modeling and Verification Using UML Statecharts: A Working
Guide to Reactive System Design, Runtime Monitoring and Execution-based
Model Checking. Newnes, Oxford (2006)

14. Dzidek, W.J., Arisholm, E., Briand, L.C.: A realistic empirical evaluation of the
costs and benefits of UML in software maintenance. IEEE Trans. Softw. Eng. 34(3),
407–432 (2008)

15. Estivill-Castro, V., Hexel, R.: Downloads (2016). http://mipal.net.au/downloads.
php. Accessed 20 June 2019

16. Estivill-Castro, V., Hexel, R.: Resolving the asymmetry of on-exit versus on-entry
in executable models of behaviour. In: 7th International Conference on Model-
Driven Engineering and Software Development, MODELSWARD, pp. 51–63 (2019)

17. Estivill-Castro, V., Hexel, R., Lusty, C.: High performance relaying of C++11
objects across processes and logic-labeled finite-state machines. In: Brugali, D.,
Broenink, J.F., Kroeger, T., MacDonald, B.A. (eds.) SIMPAR 2014. LNCS (LNAI),
vol. 8810, pp. 182–194. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11900-7 16

18. Estivill-Castro, V., Hexel, R., Rosenblueth, D.A.: Efficient model checking and
FMEA analysis with deterministic scheduling of transition-labeled finite-state
machines. In: 3rd World Congress on Software Engineering, WCSE 2012, pp. 65–72.
IEEE Computer Society (CPS), Wuhan (2012)

19. Fakhroutdinov, K.: State Machine Diagrams (2009). https://www.uml-diagrams.
org/state-machine-diagrams.html. Accessed 20 June 2019

20. Finney, K.: Mathematical notation in formal specification: too difficult for the
masses? IEEE Trans. Softw. Eng. 22(2), 158–159 (1996)

21. Finney, K., Fedorec, A.M.: An empirical study of specification readability. In:
Hinchey, M.G., Dean, N.C. (eds.) Teaching and Learning Formal Methods, pp.
117–129. Elsevier, Amsterdam (1996)

22. Gansner, E.R., Koutsofios, E., North, S.: Drawing graphs with dot (2015). https://
www.graphviz.org/pdf/dotguide.pdf. Accessed 20 June 2019

23. Genero, M., Miranda, D., Piattini, M.: Defining metrics for UML statechart dia-
grams in a methodological way. In: Jeusfeld, M.A., Pastor, Ó. (eds.) ER 2003.
LNCS, vol. 2814, pp. 118–128. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-39597-3 12

24. Glinz, M.: Problems and deficiencies of UML as a requirements specification lan-
guage. In: 10th International Workshop on Software Specification and Design, p.
11. IEEE Computer Society (2000)

25. Harel, D., Politi, M.: Modeling Reactive Systems with Statecharts: The STATE-
MATE Approach. McGraw-Hill, New York (1998)

26. Höst, M., Regnell, B., Wohlin, C.: Using students as subjects–a comparative study
of students and professionals in lead-time impact assessment. Empir. Softw. Eng.
5(3), 201–214 (2000)

http://mipal.net.au/downloads.php
http://mipal.net.au/downloads.php
https://doi.org/10.1007/978-3-319-11900-7_16
https://doi.org/10.1007/978-3-319-11900-7_16
https://www.uml-diagrams.org/state-machine-diagrams.html
https://www.uml-diagrams.org/state-machine-diagrams.html
https://www.graphviz.org/pdf/dotguide.pdf
https://www.graphviz.org/pdf/dotguide.pdf
https://doi.org/10.1007/978-3-540-39597-3_12
https://doi.org/10.1007/978-3-540-39597-3_12

74 V. Estivill-Castro and R. Hexel

27. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Program. 72(1), 31–39 (2008). https://doi.org/10.1016/j.scico.2007.
08.002. Special Issue on Second issue of experimental software and toolkits (EST)

28. Kitchenham, B.A., et al.: Preliminary guidelines for empirical research in software
engineering. IEEE Trans. Softw. Eng. 28(8), 721–734 (2002)

29. Kopetz, H.: Real-Time Systems - Design Principles for Distributed Embedded
Applications. RTSS, 2nd edn. Springer, Boston (2011). https://doi.org/10.1007/
978-1-4419-8237-7

30. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994)

31. Mellor, S.J.: UML point/counterpoint: modeling complex behavior simply. Embed-
ded Syst. Program. 13, 38–42 (2000)

32. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electron. Not.
Theor. Comput. Sci. 152, 125–142 (2006)

33. Mitchell, R., McKim, J., Meyer, B.: Design by Contract, by Example. Addison-
Wesley, Reading (2002)

34. Moody, D.: The “physics” of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779
(2009). https://doi.org/10.1109/TSE.2009.67

35. Mustafa, B.A.: An experimental comparison of use case models understanding
by novice and high knowledge users. In: New Trends in Software Methodologies,
Tools and Techniques - 9th SoMeT 2010. Frontiers in Artificial Intelligence and
Applications, vol. 217, pp. 182–199. IOS Press (2010)

36. Object Management Group: Action language for foundational UML (Alf) – con-
crete syntax for a UML action language. Version 1.1. Technical report formal/2017-
07-04, An OMG Action Language for Foundational UML Publication (2017). Nor-
mative reference: http://www.omg.org/spec/ALF/1.1

37. Object Management Group: OMG unified modeling language version 2.5.1. Tech-
nical report formal/2017-12-05, OMG Object Management Group Publication
(2017). Normative reference: http://www.omg.org/spec/UML

38. Petre, M.: UML in practice. In: International Conference on Software Engineering,
ICSE 2013, pp. 722–731. IEEE Press, Piscataway (2013)

39. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2016). https://www.R-project.
org/

40. Reggio, G., Astesiano, E., Choppy, C., Hussmann, H.: Analysing UML active
classes and associated state machines - a lightweight formal approach. In:
Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, pp. 127–146. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-46428-X 10

41. Reggio, G., Leotta, M., Ricca, F., Clerissi, D.: What are the used UML diagrams? A
preliminary survey. In: 3rd International Workshop on Experiences and Empirical
Studies in Software Modeling (EESSMod 2013 Co-Located with MODELS 2013),
vol. 1078, pp. 3–12. CEUR (2013)

42. Richardson, M.: Guideline: Statechart Diagram. https://tinyurl.com/
RichardsonStatechart (2015). Accessed 09 Oct 2019

43. Robbins, J.E.: Cognitive support features for software development tools. Ph.D.
thesis, Department of Information and Computer Science, University of California,
Irvine (1999). Advisor: Prof. D. F. Redmiles

44. Rumpe, R.: Executable modeling with UML - a vision or a nightmare? In: Issues
and Trends of Information Technology Management in Contemporary Associations
Volume 1, pp. 697–701. Idea Group Publishing (2002)

https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1007/978-1-4419-8237-7
https://doi.org/10.1007/978-1-4419-8237-7
https://doi.org/10.1109/TSE.2009.67
http://www.omg.org/spec/ALF/1.1
http://www.omg.org/spec/UML
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1007/3-540-46428-X_10
https://tinyurl.com/RichardsonStatechart
https://tinyurl.com/RichardsonStatechart

The Understandability of Models for Behaviour 75

45. Samek, M.: Practical UML Statecharts in C/C++, Second Edition: Event-Driven
Programming for Embedded Systems. Newnes, Newton (2008)

46. Samek, M.: UML State Machine (2009). https://en.wikipedia.org/wiki/UML
state machine. Accessed 20 June 2019

47. Seshia, S.A., Sharygina, N., Tripakis, S.: Modeling for verification. Handbook of
Model Checking, pp. 75–105. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-10575-8 3

48. Shaw, M.: Toward higher-level abstractions for software systems. Data Knowl. Eng.
5(2), 119–128 (1990)

49. Wood, S.K., Akehurst, D.H., Uzenkov, O., Howells, W.G.J., McDonald-Maier,
K.D.: A model-driven development approach to mapping UML state diagrams
to synthesizable VHDL. IEEE Trans. Comput. 57(10), 1357–1371 (2008)

50. World Wide Web Consortium: State chart XML (SCXML): State machine notation
for control abstraction, 1 September 2005

51. Zimmerman, M.K., Lundqvist, K., Leveson, N.: Investigating the readability of
state-based formal requirements specification languages. In: 24th International
Conference on Software Engineering, ICSE, pp. 33–43 (2002)

https://en.wikipedia.org/wiki/UML_state_machine
https://en.wikipedia.org/wiki/UML_state_machine
https://doi.org/10.1007/978-3-319-10575-8_3
https://doi.org/10.1007/978-3-319-10575-8_3

A Role Modeling Based Approach
for Cyber Threat Analysis

Bastien Drouot(B), Fahad R. Golra, and Joël Champeau

Lab STICC UMR6285, ENSTA Bretagne, Brest, France
bastien.drouot@ensta-bretagne.org,

{fahad.golra,joel.champeau}@ensta-bretagne.fr

Abstract. Using DSMLs, the domain experts can express their models
in a language that is relevant to the problem area. However, it also adds
the complexity of interoperability between these languages, specially for
application areas that encompass multiple domains. One such applica-
tion area, Cyber Threat Analysis (CTA), is at the intersection of vari-
ous domains that can evolve independently: system modeling, attacker
modeling and threat description. In this paper, we present an approach
to address CTA interoperability issues based on role modeling. The pro-
posed language provides a mechanism to define shared semantics between
DSMLs relative to the CTA. The concept of a role is central to our app-
roach, presented as Role4All framework. These roles allow us to federate
different DSMLs to generate an attacker’s viewpoint. Our approach is
illustrated using a case study on the development of an attacker’s view-
point based on the federation of multiple domain models. Interoperabil-
ity between the domain models is crucial to apply dedicated algorithms
and interpretations on the attacker’s viewpoint. We used this attacker
viewpoint to simulate attacks on a system for security analysis.

Keywords: Model federation · Role modeling · DSML
interoperability · Cyber threat analysis · Simulation

1 Introduction

Model driven engineering (MDE) is being used in different phases of system
development life cycle for various systems like embedded systems, safety critical
systems, etc. [14]. MDE is also used for different objectives like knowledge man-
agement, systems analysis (both structural and behavioral) and performance
evaluation (worst case analysis, scheduling) [22]. In this paper, we present a
modeling approach and framework applied to the cybersecurity domain. Cyber-
security is one of the active research domains where models are being used,
especially to support the integration of digital subsystems [1].

Our work focuses on cyber threat analysis based on system modeling and
dynamic attacker knowledge to anticipate an attacker’s behavior. Due to the
large scope of cyber threat analysis, the modeling space uses multiple Domain
c© Springer Nature Switzerland AG 2020
S. Hammoudi et al. (Eds.): MODELSWARD 2019, CCIS 1161, pp. 76–100, 2020.
https://doi.org/10.1007/978-3-030-37873-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37873-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-37873-8_4

A Role Modeling Based Approach for Cyber Threat Analysis 77

Specific Modeling Languages (DSMLs); each dedicated to provide abstractions
for a specific sub-domain like system representation, vulnerability definition,
attacker competencies hypothesis, etc. In this cybersecurity context, we face two
main issues (1) creation of an attacker viewpoint from the set of heterogeneous
DSMLs (2) dynamicity of the attacker viewpoint according to the evolution of
the attacker knowledge.

The attacker viewpoint aggregates several concepts from various domains
to characterize the behavior and the competencies of an attacker relative to
the considered system. To define this viewpoint in conjunction with the system
model, we face a problem of interoperability between several DSMLs that model
a system from different concerns or domains [3]. So one of the underlying issues to
create the attacker viewpoint is to tackle the problem of DSMLs interoperability.

On the modeled viewpoint, we must be able to interpret and execute an attack
scenario to simulate the attacker behavior. The attack scenario interpretation
should be able to interpret the stepwise evolution of an attack to update the
attacker view. To support such dynamically evolving view, the framework should
be able to support the changes in DSML entities, which at times even changes
the semantics of interpretation. This dynamic semantics change in the context
of modeling approaches e.g. object (re) classification, remains an open issue.

To solve the interoperability issue between heterogeneous DSMLs, in our pre-
vious work, we proposed a model federation solution based on role modeling in
the context of cyber threat analysis [6]. Our previous work relies on the concept
of roles to interpret the model elements of a base model (DSML). In this article,
we have focused on the dynamicity for the modeled elements. The main contri-
bution of our work can be categorized as: (1) a role modeling based approach
for the interoperability of heterogeneous DSMLs that allows the modification of
interpreted concepts at runtime, (2) A dynamic attacker viewpoint that updates
the attacker view according to the advances of an attack by taking into account
new knowledge obtained from each attack step and (3) the lessons learned from
developing this solution, through the implementation of an interpreter, for sim-
ulating attack scenarios.

The rest of the paper is organized as follows. In Sect. 2, we present cyber
threat analysis as the context for the application of role modeling based federa-
tion approach. Then in Sect. 3, we discuss the modeling context by describing the
state of the art on DSML interoperability and the concept of views. We describe
the proposed framework, Role4All in Sect. 4. Then, in Sect. 5 we present our role
modeling based methodology on the cybersecurity case study. Then, we demon-
strate the interpretation and simulation of cyber threat analysis case study in
Sect. 6. In Sect. 7 we share the lessons learned from the development and appli-
cation of our framework and conclude in Sect. 8.

2 Cyber Security Context

In section we explain the background of this research work. Remaining within the
context of cybersecurity, we expand on the concepts of Cyber Threat Analysis
and Cyber Threat Modeling.

78 B. Drouot et al.

2.1 Cyber Threat Analysis

Contrary to other reactive security approaches like intrusion detection, cyber
threat analysis (CTA) is a proactive approach to anticipate a cyber security cri-
sis. CTA aims to look for vulnerabilities pertinent to a particular system or orga-
nization by taking into account the current vulnerability knowledge and analyz-
ing it against anticipated attacker’s behavior. Assumptions about the attacker’s
system knowledge and the goals for a probable attack are used to anticipate the
attacker’s behavior. Cyber threat analysis can be performed using a combination
of some of the following methods [4,7,13].

– Modeling : System elements are conceptualized to produce an abstraction of
the system under study. The objective is to gather information so as to create
a representation of the current knowledge of the system.

– System discovery : The knowledge of a system depends on the current view of
the real system. System discovery uses observations and actions that can be
performed on a system to extend some specific knowledge about it.

– Vulnerability exploitation: A vulnerability is “a weakness of an asset or control
that could potentially be exploited by one or more threats.” [17]. These vulnera-
bilities can be exploited by the attacker to achieve certain goals. Vulnerability
exploitation is performed to play the attack scenario based on attacker ability,
system access and system configuration.

System discovery can be simulated through models and models can also be
used to emulate vulnerability exploitation by playing attack scenarios. As mod-
eling can be used to realize all of these three methods, we prefer cyber threat
modeling to perform cyber threat analysis.

2.2 Cyber Threat Modeling

Threat modeling is about using models to analyze security issues for the con-
cerned systems. These models are used for developing abstractions of the system,
threats, attackers and some other details like system element configurations [27].
Different threat modeling approaches have different takes on how and what needs
to be brought into focus when modeling threats [20,23]. Our study of different
definitions and use of common themes to identify relevant models and associ-
ated DSMLs, highlights the modeling part of threat modeling and allows a clear
distinction between the system, threats and attackers.

– System modeling characterizes the system by describing the system’s behav-
ior, its features, its boundaries, etc. In this context, we are interested in two
sub-categories of system modeling i.e. the system topology and the system
configuration. System topology models an arrangement of the system ele-
ments and the network between them. In this paper, we use PimCa1 [12] as

1 PimCa specification is confidential. However we will present some details about
PimCa DSML and its metamodel in Sect. 5.1.

A Role Modeling Based Approach for Cyber Threat Analysis 79

the DSML to describe the system topology. This language is defined by a
cyber security entity of the French Ministry of Armed Forces to represent
and analyze a system at several levels of abstraction i.e. from conceptual to
physical levels. The system configuration is based on structured data defining
hardware and software components of the system elements.

– Attacker modeling characterizes the attacker and his behavior i.e. the
attacker’s goal, the attacker’s competencies and attack scenarios. The
attacker’s competencies are based on the description of an attack in the com-
mon vulnerability scoring system (CVSS) [19]. His current knowledge of the
system is represented by a specific view on the system that keeps updating
step-by-step throughout the execution of the attack.

– Threat description explains the possible vulnerabilities of the system. Every
system has vulnerabilities; most of them referenced in a library. We chose
to limit our vulnerabilities to a single library i.e. the National Vulnerability
Database (NVD) [30].

In order to cover all these models, the set of DSMLs used in this study
are PimCa, structured data of configuration, National Vulnerability Database
(NVD) and the structured data of attacker competencies. Moreover, for the
generation and stepwise animation of the attacker viewpoint, we interpret model
elements with a guarded command interpreter [5,15], which executes the attack
scenario.

3 Modeling Context

This section presents the issues related to DSML interoperability and view
dynamicity in general and specifically focuses on it from the perspective of role
modeling.

3.1 Model Interoperability

Interoperability between different formalisms and paradigms is a recurrent issue
in a development process, specifically when Model Driven Engineering (MDE)
approaches are brought into the picture. This interoperability challenge makes it
hard to conceive a system that is composed of multiple heterogeneous DSMLs.
Traditionally, the issue of interoperability is handled through integration, unifi-
cation or federation approaches [16].

Integration approach is based on the definition of a common modeling lan-
guage that is built around the union of all the concepts of the different for-
malisms/languages [8]. This approach is applied if each formalism contains only
a few concepts. It is also important that the number of formalisms remain fixed
because any new DSML integration requires the redefinition of the entire inte-
grated language which is a major drawback of this approach.

The unification mechanism is based on the identification of common con-
cepts between the formalisms and the definition of the correspondence between

80 B. Drouot et al.

these core concepts and the concepts of the modeling languages [11]. This app-
roach is usually named as the pivot/reference language approach. It is the most
used approach to conceptualize and implement interoperability between several
formalisms. In the case of a limited number of concepts, pivot language is a
powerful solution if any concept of the languages finds its correspondence in the
pivot definition. However, accurate and precise definition of the pivot language
remains a difficult task. If the definition is too abstract, important language
concepts (or properties) can be lost. On the other hand, defining a rich pivot
language produces an overly broad pivot language that faces the same problems
as of integration approaches.

Instead of defining a common language definition, model federation app-
roach focuses on modeling the semantics of the links between the concepts of
heterogeneous languages [9,21]. These links or relationships define the correspon-
dence between the concepts without a concrete pivot language definition. The
main goal of the federation is to specify the interoperability by concentrating on
the semantic definitions without modifying the language concepts. A common
advantage of all federation approaches is the clear separation between the DSML
elements and the semantic modeling relative to the federation context (the fed-
eration elements). A DSML element can have several semantic interpretations
within the same federation and at the same time several DSML elements can
share the same semantic interpretation.

Bi-directional transformations are a good option to handle interoperability
between different DSMLs [29]. However, when the DSMLs are evolving or when
dynamic interpretation of the model elements is needed (i.e. the interpretation of
an element can change over time), bi-directional transformations do not provide
enough support to handle such situations. Another limitation of bi-directional
transformations is that they are usually limited to using MetaObject Facility
Specification (MOF) metamodels at both ends of a transformation. This limits
the heterogeneity of DSMLs within the universe of MOF.

We chose to apply the federation approach to ensure the DSML interoper-
ability for the cyber threat analysis. CTA is still in its infancy and lacks mature
frameworks and languages. Thus, the DSMLs used in this domain are constantly
evolving. Evolution is a major concern when choosing an approach to tackle
DSML interoperability issues. The chosen model federation approach should be
able to integrate new languages and it also needs to cater the evolution of DSML
definitions. In this context, the approach for handling interoperability issues
should be dynamic. The dynamic interoperability ensured by role modeling is
one of the main topics that we will expand upon in the next section.

3.2 Role Modeling

Role modeling has its roots in some earlier works in data modeling during the
seventies. As a natural extension, roles were used in object-oriented design and
implementation, and modeling and metamodeling. Steimann presents a short
survey on role modeling which emphasizes the ontological definition of roles [28].
Roles are used to add dynamicity to the classic type-based approaches [18] and

A Role Modeling Based Approach for Cyber Threat Analysis 81

to define dynamic interfaces which can be adapted over time [10]. Furthermore,
these roles can be used on multiple abstraction levels i.e. metamodeling, mod-
eling, and implementation.

In our context, the natural type is provided by a metaclass of the DSML defi-
nition, and roles provide the semantic interpretation of these elements according
to the current role being played by the type. Roles are successfully used to
interconnect heterogeneous design tools in order to create tool chains for system
design. Seifert et al. [26] connect various models produced by different model-
ing tools using the concept of roles. Moreover, for the model exchange process
between multiple tools, roles have also been used to preserve the semantics of
model entities [2].

To handle the interoperability between different DSMLs in the context of
cybersecurity, we chose role modeling using Role4All framework [24]. We propose
a federation approach using role modeling and present a simulator based on roles.

4 Framework for Interoperability

In this section, we present Role4All, our proposed framework for model fed-
eration using the concept of role to define dedicated viewpoints and to map
these viewpoints to several DSMLs. It is based on the earlier works by Schneider
et al. [24]. We will present this framework in the already described context of
cyber threat analysis (Sect. 4.1) and then we focus on:

– Modeling dynamic views i.e. attacker view (Sect. 4.2).
– Federation of cyber security DSMLs (Sect. 4.3).
– Execution of attack scenario according to the attacker viewpoint (Sect. 4.4).

4.1 Role4All Framework

Role modeling has its roots in some earlier works in data modeling during the
seventies. As a natural extension, roles were used in object-oriented design and
implementation, and modeling and metamodeling. Steimann presents a survey
on role modeling which emphasizes the ontological definition of roles [28]. Roles
are successfully used to interconnect heterogeneous design tools in order to create
tool chains for system design. For example, Seifert et al. [26] connect various
models produced by different modeling tools using the concept of roles. Moreover,
for the model exchange process between multiple tools, roles have also been used
to preserve the semantics of model entities [2]. Furthermore, roles can be used on
multiple abstraction levels i.e. metamodeling, modeling, and implementation.

A significant effort has been made to provide an exhaustive formalized feature
list to characterize and define the concept of role in the context of modeling.
Kuhn et al. [18] present a list of 26 classifying features of roles from the state of
the art that describe different aspects of a role modeling language. The first 15
features in this list were originally presented by Steimann [28]. In view of these
works, each role language definition carries a subset of these 26 features. As

82 B. Drouot et al.

proposed in these works, we selected and established the relevant list of features
to ensure our needs for the proposed framework, Role4All. Table 1 presents a list
of role features, categorized in three groups to better demonstrate how they are
implemented in the proposed framework.

– (V) Viewpoint features: These features are supported to design an attacker
viewpoint (Sect. 4.2).

– (F) Federation features: These features are supported to federate data from
the cyber security DSMLs (Sect. 4.3).

– (S) Simulation features: They are supported to play attack scenarios through
the attacker viewpoint (Sect. 4.4).

Fig. 1. Role4All metamodel.

Role4All metamodel substructure, presented in Fig. 1, is based on five main
classes named: Role, Player, Type, Adapter and PlayRelation. A role is an inter-
pretation of a base type in a specific context. The base type is provided by a
metaclass of the DSML definition, and roles provide the semantic interpretation
of these elements according to the current role being played by the type. Hence
a base type, developed in its own context of a specific intent, can be used in
another context by giving it a different role. We discuss a role at three abstrac-
tion levels i.e. roleClass, role and roleInstance. RoleClass is the “Role” entity
presented in the Role4All metamodel, a role is a modeling element that con-
forms to the roleClass and a roleInstance is conformed to a role. Similar naming
convention is used throughout the paper for other entities of the metamodel e.g.
player, type playRelation and adapter.

A player is an abstract modeling element that is interpreted through a role in
the new context. We like to explain this interpretation as, “a player plays the role
of something”. Player is specialized as a type that refers to a modeling element
of the base model i.e. a cyber security DSML in our context. This is shown in the
Role4All metamodel by a typeClass as a specialization of a playerClass. Hence
we can say that “a type as a player can play a role.”

An adapter is responsible for transforming player properties into role prop-
erties. Seen from the perspective of traditional MDE approaches, we place the
transformation relevant code in the definition of the adapter. A playRelation
links a player to a role through an adapter. This pattern allows us to dynami-
cally change the semantics of a relationship (interpretation) between a role and

A Role Modeling Based Approach for Cyber Threat Analysis 83

a player. This interpretation is carried by the adapter, which can be replaced
without modifying a role or a player. For example, a person p is considered
as a student from the perspective of a university and at the same time as an
employee from the perspective of a company. In our metamodel, p is a playerIn-
stance which can play two roles: student or employee. If p play the role of the
student, we associate p with a roleIntance rs through a playRelationInstance
prs and an adapterInstance aps. In this example, rs is an instance of the role
student and aps is an instance of the adapter responsible for transforming person
properties into student properties.

Table 1. Classification of role features by Steimann and Kuhn et al.

Feature Category

1. Roles have properties and behaviors V

2. Roles depend on relationships

3. Objects may play different roles simultaneously V

4. Objects may play the same role several times V

5. Objects may acquire and abandon roles dynamically S,F

6. Sequence of role acquisition and removal may be restricted

7. Unrelated objects can play the same role V

8. Roles can play roles S, F

9. Roles can be transferred between objects F

10. The state of an object can be role-specific

11. Features of an object can be role-specific

12. Roles restrict access

13. Different roles may share structure and behavior F

14. An object and its roles share identity

15. An object and its roles have different identities V

16. Relationships between roles can be constrained

17. There may be constraints between relationships

18. Roles can be grouped and constrained together F

19. Roles depend on compartments

20. Compartments have properties and behaviors

21. A role can be part of several compartments

22. Compartments may play roles like objects

23. Compartments may play roles which are part of themselves

24. Compartments can contain other compartments

25. Different compartments may share structure and behavior

26. Compartments have their own identity

Categories: (V)iewpoints, (F)ederation and (S)imulation

84 B. Drouot et al.

4.2 Viewpoint Definition

In this subsection we first present Role4All metamodel and then describe the fea-
tures that define a role and how these features are supported by Role4All. More-
over we present how the Role4All metamodel gathers these features together.

Role4All metamodel substructure (presented Fig. 1) is based on four main
classes named: PlayRelation, Role, Player and Adapter. We discuss a role at
three abstraction levels i.e. roleClass, role and roleInstance. RoleClass is the
“Role” entity presented in the Role4All metamodel, a role is a modeling element
that conforms to the roleClass and a roleInstance is an instance of a role. Similar
naming convention is used throughout the paper for other entities of the meta-
model like Player, PlayRelation and Adapter. A player is a modeling element
that is interpreted as a role in the federation according to the new context. We
like to explain this interpretation as, “a player plays the role of something in
a federation”. As modeled in the Role4All metamodel, a typeClass is a special-
ization of a playerClass i.e. a type as a player can play a role. A typeClass in
the metamodel refers to a modeling element of the source DSMLs for a feder-
ation. For example, a doctorate student remains a student when seen from the
perspective of research, and the same doctorate student can play the role of a
teacher from the perspective of teaching.

A federation allows one to develop a viewpoint from existing models. A view-
point in Role4All is defined through a role model. In some situations a role
can also play another role, which allows among other things to create a view-
point on a viewpoint. In order to realize this, the roleClass in the metamodel
is a specialization of a playerClass. In Role4All, an adapter is responsible for
transforming player properties into role properties. In comparison to traditional
MDE approaches we place the code relevant to the transformation in the defini-
tion of the adapter. In Role4All, a playRelation links a player to a role through
an adapter. This pattern allows us to dynamically change the semantics of a
relationship (Interpretation) between a role and a player. This interpretation is
carried by the adapter, which can be replaced without modifying a role or a
player.

Like in other role modeling approaches, Role4All roles define a viewpoint
of one or several model elements. The roleClass satisfies a subset of the 26
features presented in Table 1. As previously explained, we need to create a single
viewpoint to define a common semantics for several DSMLs. In order to attain
this objective, our language implements the concept of role in a fashion that
satisfies features 1, 3, 4, 7 and 15. Each of these features are satisfied by a
different capability of the roles:

– Feature 1 demands roles to have properties and behaviors. In Role4All, a role
conforms to the roleClass with behaviors and properties. So the operational
semantics of a role is defined by the properties and the methods encapsulating
behaviors.

– Features 3 and 4 deal with different simultaneous interpretations and the
same interpretation over multiple times. In Role4All a role may be linked

A Role Modeling Based Approach for Cyber Threat Analysis 85

with many players through several playRelations. This is handled in Role4All
metamodel by the many (*) cardinality between “Player” and “PlayRela-
tion”. In addition a player may be linked to the same role several times
through a different adapter.

– Feature 7 defines a viewpoint related to different elements of different lan-
guages. The pattern using roleClass, playerClass and adapterClass, allows
various players to be linked with the same role, with a specific adapter.

– Feature 15 requires a separation between the model elements by keeping
their different native identities. As explained previously, a role and a player
conform of different classes in Role4All metamodel.

4.3 Federation with Role4All

The main goal of the federation approach is to define relationships between
different formalisms. A federation reifies the cross cutting concerns of these
formalisms. The resulting federation model has two main properties: first, it
concretizes the dynamics of the relationships between different formalisms and
second, it ensures consistency between the model elements of these different
formalisms. The main features to support the federation are:

– Feature 5 describes the capacity to attach and de-attach roles dynamically.
The playerClass has a method play that allows a playerInstance to play a
role. This method generates a playRelationInstance and an adapterInstance
and then links the playerInstance to the roleInstance using them. Moreover,
the removal of a playRelationInstance entitles a playerInstance to dynamically
leave a role.

– Feature 8 deals with the adaptation of viewpoint definition such that roles
themselves can play a role. The roleClass is a subclass of playerClass, so a
role has the inherited behavior (especially the method play). Therefore, a
roleInstance can also play a role.

– Feature 9 allows transferring a role to/from another model element. A role-
Instance can be transferred to a playerInstance via the creation of a new
playRelationInstance or a mutation of the older relation.

– Feature 13: describes the sharing of structure and behavior between federated
roles. A role conforms to the roleClass. Inheritance mechanism is used to
define roles that share behavior and structure with another role.

– Feature 18 groups roles so that a federation model can be developed. The
roleClass with the bidirectional relation containerRole/containedRoles allows
a roleInstance to contain other roleInstances or to be contained by another
roleInstance. This allows the language to define role sets through this associ-
ation. The behavior of the container includes constraints applicable to all the
contained roleInstances.

Feature 5, 8 and 9 are inherent properties of our role modeling language
to ensure that roles are dynamic and that they can serve for interoperability
between different formalisms. Indeed, if new concepts (or properties) are required

86 B. Drouot et al.

in the federation definition, we add roles to adapt this definition. Furthermore, if
concepts (or properties) are no longer necessary in the federation definition, we
can detach the corresponding roles and also remove the associated playRelation-
Instance and adapterInstance. These role capacities ensure a dynamic definition
of the federation approach.

Feature 13 and 18 ensure consistency between roles and model elements.
In the Role4All metamodel (Fig. 1), this feature is supported by the reflexive
containment reference on the roleClass. If each of the containedRoles is connected
with a model element, this containment allows to gather a logical assembly
of roleInstances, in order to define a set of federated roleInstances. This also
maintains the overall behavior of this set based on local role behaviors and
supports broadcasting notifications which come from the local behavior.

4.4 Interpretation Viewpoint in Role4All

Role4All framework allows the generation of dedicated viewpoints such as an
interpretation or a simulation viewpoint. The CTA context deals with the
attacker, so we focus on the direct interpretation of the attacker viewpoint.
As illustrated in Fig. 2 the attacker viewpoint is applied on several DSMLs and
the interpretation is applied on the attacker viewpoint.

Fig. 2. Interpretation viewpoint pattern.

Some role features already described in the previous sections are also relevant
to the definitions of an interpreter viewpoint, they are identified by an ‘S’ in
Table 1 and are described hereafter:

– Feature 5 allows the simulated elements to dynamically acquire or abandon
roles. The simulation language of the framework allows this feature. For exam-
ple, a model element with an attached role of “clean element” can switch to
the role “corrupt element”, if it is compromised.

– Feature 8 allows a role to play another role. This feature is also supported
by the framework. One can define a simulation viewpoint (role model) that
is itself based on another viewpoint (role model) of the system.

A Role Modeling Based Approach for Cyber Threat Analysis 87

The interpretation viewpoint is refined according to the type of viewpoint
being interpreted and the objective of interpretation. Figure 2 presents three dif-
ferent interpreters/simulators: a guarded command interpreter, a state machine
interpreter (SM) and a process interpreter BPMN. For example, the guarded
command viewpoint used for the interpretation described in Sect. 5 is defined
by a role model containing two roles: BlockRole and BlocksListRole. A Block-
Role has a guard and a command and a BlocksListRole has variables and several
BlockRoles. These two roles are used to adapt the information from the attacker
viewpoint in a way that it can be interpreted by the interpreter.

Both guards and commands are the attributes of a BlockRole element of the
interpretation viewpoint. For the guarded command viewpoint, a guard is:

– an evaluation of properties defined in a roleInstance
– evaluated in an interpreter (e.g. the guarded command interpreter).

A command in the guarded command viewpoint is:

– a trigger for the methods defined in a roleInstance
– executed by the guarded command interpreter.

In the context of cybersecurity, we use the interpreter to simulate the attacker
behavior on the system. The selected interpreter allows a stepwise simulation of
an attack through the attacker viewpoint of a system. The simulation of role
models uses the execution semantics defined within the roles. We expand on the
use of simulation mechanism for cyber threat analysis in the next section.

5 Role Modeling for Cyber Threat Analysis

In this section, we simulate an attack on a system based on a role interpreta-
tion offered by Role4All. In this approach, the attacker viewpoint of the system
is modeled using roles. The attacker viewpoint uses role modeling to create a
semantic viewpoint based on the federation of several DSMLs used in cyber
threat analysis.

We demonstrate the use of role modeling for CTA using a case study of
an attack simulation. The discussed scenario of this case study is enacted on a
network system composed of two parts: an attacker having access to the Internet
and a target local network which embodies most enterprise architectures with a
web server and a local network. In this architecture (as shown in Fig. 3a), Kali
machine symbolizes the attacker’s computer and the Internet is abstracted by
a switch connecting this machine to the local network. The target local network
consists of three subnets, all protected by the same Firewall. The cyber threat
analysis includes a risk analysis which emphasizes that the ActiveDirectory is
a critical resource as it contains the authentication data (logins and passwords)
for the users. In our example the ActiveDirectory is the target of the attack
scenario.

Unlike penetration testing on a real system [13], the expected benefit of a
modeling approach is to promote experimentation and analyze several system

88 B. Drouot et al.

Fig. 3. Different views of CTA case study.

configurations and scenarios according to different attacker competencies. In the
next sections, we present the details of our approach by describing the modeling
space, federation for viewpoint development and the interpreter for simulating
the attacks.

5.1 Modeling Space

In Sect. 2.2 we introduced following DSMLs used in the context of cyber threat
analysis.

1. PimCa [12], a DSML defined by a cyber security entity of the French Ministry
of Armed Forces, describing the system topology.

2. A vulnerability DSML, based on a subset of the NVD data structure [30],
describing vulnerabilities of system elements.

3. A configuration DSML, based on structured data, describing the configura-
tions of system elements.

4. An attacker competencies DSML, based on CVSS [19], describing the
attacker’s competencies to attack the system elements.

We illustrate an abstraction of the configuration DSML metamodel in Fig. 4a,
as one of the metamodels used for the development of the attacker viewpoint.
In this metamodel, a Configuration is composed of Elements which can be
an Environment, a Service or an Application. In this case study, each node
in the system topology has a configuration model e.g. the configuration of
WebServer is presented in Fig. 5a. This textual model represents the configura-
tion of the WebServer as: a server running Windows 2000 V5.2 (Environment)
providing a Network Service used by two Applications i.e. WordPress V3.6.1
and Symposium V14.11. With this configuration we describe a web server using
WordPress and Symposium plugins.

A Role Modeling Based Approach for Cyber Threat Analysis 89

Fig. 4. Excerpts of DSML metamodels in cyber threat analysis.

These versions of the applications used on this server contain certain vulnerabil-
ities2. The WebServer is part of a network and is connected with others network
elements.

In our case study we model the connections between network elements using
PimCa. An excerpt of concepts of PimCa metamodel is presented in Fig. 4b.
This metamodel allow us to model several element types such as an Attacker,
a Network or an Interface. Each of these elements is a PimCaMachinery. In
PimCa metamodel, PimCaMachineries are interconnected through PimCaRela-
tions. Check, Swap, Control, Use, Produce or Maintain are the different types of
PimCaRelations that can be used to interconnect PimCaMachineries. Figure 5b
presents the PimCa model used in the case study. In this model, each network
element is defined as one of the types of a PimCaMachinery. For example, Kali
is a user of the WebServer that wants to control the ActiveDirectory, hence
he is modeled as an Attacker and the WebServer is modeled as an Interface.
The attacker uses the WebServer through several Network elements. BobPC con-
trols the WebServer and the ActiveDirectory. The network connection between
the system elements is model by Swap relations e.g. BobPC is connected with
WebServer through four Swap relations.

Finally, like the WebServer, each element of the system has configurations
described in a the configuration DSML and relations described in another PimCa
DSML. Moreover, WebServer and the others system elements have vulnerabil-
ities (described in NVD DSML) and attacker competencies (described in the
attacker competencies DSML). The attacker viewpoint federates several infor-
mation sources about the system e.g. the attacker view on the WebServer feder-
ates, among others information, the configuration (Fig. 5a) and the PimCa model
(Fig. 5b). To federate these models, we group information from several sources

2 We will explain the link between these applications and vulnerabilities in the next
section.

90 B. Drouot et al.

Fig. 5. Excerpts of DSML models for cyber threat analysis.

and synchronize them. Lets take an example of such grouping and synchroniza-
tion from our case study. The federation of the two models i.e. configuration and
the PimCa models (shown in Fig. 5) would include the following activities.

– We federate the name and the version of the Applications running on the
WebServer with relations (Swaps and Controls) coming to the WebServer
PimCaMachinery. So, the attacker view on the WebServer federates the
WordPress V3.6.1 Application, the Wp Symposium plugin V14.11 Applica-
tion, the Control relation between BobPC and WebServer, the Swap rela-
tion between Web and WebServer and the Use relation between Kali and
WebServer.

– We synchronize the name of the WebServer PimCaMachinery from PimCa
model with the “Configuration” attribute of the Configuration model which
has the value “WebServer” (first line of the configuration model in Fig. 5a).
Indeed, these two synchronized elements describe the same information i.e.
the name of WebServer.

The federation mechanism using to federate and synchronize information
from different DSMLs is detailed in the next section.

5.2 Role Models for the Generation of Federated Viewpoint

In this section we create a viewpoint federating information from various DSMLs
using role modeling. This is a viewpoint (Fig. 3b) on the network system from
the perspective of an attacker. In Role4All, a viewpoint is defined by a role model
containing multiple roles. The attacker viewpoint is defined using five roles, two
describing system elements (ElementRole and ServiceRole) and three describing
the related concepts (ConfigurationRole, CompetenciesRole and Vulnerability-
Role). Each of these roles is modeled in Fig. 6 and presented below:

A Role Modeling Based Approach for Cyber Threat Analysis 91

Fig. 6. Attacker role model.

– ElementRole: This role models the elements that contain relevant informa-
tion regarding the attacker goals i.e. the attacker must control or corrupt
these elements. An ElementRole has a name, references to the system topol-
ogy connections, a configuration, some vulnerabilities and a list of attacker
competencies. The instances of ElementRole are depicted as circles in Fig. 3b.

– ServiceRole: This role provides a view on the system elements by modeling
elements that render a service to the system (the attacker must use or bypass
these elements for a successful attack). A ServiceRole has a name, some refer-
ences to the system topology connections and a configuration. The instances
of ServiceRole are shown as boxes in Fig. 3b.

– ConfigurationRole: It models an interpretation of the configuration of system
element from the point of view of the attacker. A ConfigurationRole consists
of an application name associated with a version number, and an ip address.

– CompetenciesRole: It specifies the attacker’s competencies with regard to a
system topology element i.e. the attacker’s access to system elements (phys-
ical, adjacent network, network), the attacker’s access rights (none, user,
administrator) and the attacker’s skill level (Low, Medium, High).

– VulnerabilityRole: It describes the vulnerabilities of a system element from
the point of view of an attacker. A VulnerabilityRole has a name, a reference
to the exploit description in the vulnerability database, effect description with
respect to the exploit, some access requirements and a complexity level. A
VulnerabilityRole is generated by applying a filter (composed of Configura-
tionRoles and CompetenciesRoles) on a vulnerability database. Typically the
NVD database is too rich and detailed, therefore we model only the relevant
vulnerabilities to reach the target scenario.

In order to understand the dynamicity of our approach, it is important to
understand the instantiation mechanism of the roles. The reflexive containment
association of the roleClass in Role4All metamodel (shown in Fig. 1) allows the
definition of containerRoles and containedRoles. A roleInstance referencing other
roleInstances using this association is a containerRole and the referenced roleIn-
stances are the containedRoles. The metamodel of Role4All does not explicitly
define any other relationship between roles, as a result the language does not
allow any other relationship between two roles. This is the reason why we do not
see any association between the roles in Fig. 6. The reason behind this design
choice is that the role model does not link the roles at design-time, it is the
instantiation scheme that ensures the relationships between the role instances

92 B. Drouot et al.

at the runtime. Two main advantages of this choice are: (1) these relationships
can be updated even at runtime e.g. dynamic conformance of the federation
to the evolution of the attacker viewpoint, in our case study and (2) any role
instance can be moved from one container to another without any constraint,
except the ones imposed by the domain.

Fig. 7. A view of the cyber threat analysis federation.

Views being the instances of viewpoints; we generate them by federating
several DSML elements at runtime. Figure 7 presents a view based on the view-
point defined by the role model shown in Fig. 6. This view represents two kind
of relationships i.e. between roleInstances themselves and between roleIntances
and playerInstances. ElementRI, in this view, is a containerRole instance of Ele-
mentRole. This containerRole contains three containedRoles i.e. compInstance
(instance of CompetenciesRole), vulnInstance (instance of VulnerabilityRole) and
confInstance (instance of ConfigurationRole). A containerRole can have several
methods to access information from different playerInstances belonging to dif-
ferent DSMLs. However, by design of the Role4All metamodel, a roleInstance is
connected to only one playerInstance. In order to realize such an implementation
where one roleInstance needs to be connected to multiple playerInstances, the
containerRole delegates the responsibility of accessing information to individual

A Role Modeling Based Approach for Cyber Threat Analysis 93

containedRoles, each connected to a different playerInstance. The containedRoles
can themselves act as containerRoles, when a complex hierarchy is required. The
containment relationship between the roles allows the containerRole to delegate
method calls to the containedRoles. In the view presented in Fig. 7, the name()
and relation() methods of the elementRI reference information of the exter-
nal DSML elements directly (named PimCaWebServer). However the rest of
the methods are delegated to the containedRoles for accessing information in
respective DSMLs.

The relationship between the elementRI and a PimCa DSML element (as
shown in Fig. 7) is a relationship between a roleInstance and a playerInstance.
Such relationships depicted in this Figure are simplified to facilitate comprehen-
sion. In fact, a roleInstance is connected to a playerIntance through a playRela-
tionInstance, as illustrated in Fig. 8. This playRelationInstance realizes the con-
nection between them by using an adapterIntance. For example the play relation
between elementRI and a PimCaMachinery is realized through a playRelation-
Instance. This relation is adapted by an instance of the adapter named Elemen-
tRoleToPimCaMachinery. This adapter contains the code relevant to the trans-
formation between PimCaMachinery and the elementRole. A detailed example
of the definition and use of an adapter is given in [25].

Fig. 8. Implementation of the play relation.

6 Simulation for Cyber Threat Analysis

6.1 Interpretation Using Roles

Role4All enables interpreting a role model to perform a simulation using a dedi-
cated viewpoint and an interpreter (as presented in Sect. 4.4). This interpreter is

94 B. Drouot et al.

based on stepwise evolution of guarded commands language, formalized by Dijk-
stra [5]. At each step all the guards are evaluated and the commands with guard
evaluated to true are selected. The interpreter allows an interactive execution,
i.e. at each step the user selects a command to execute among the triggerable
commands. Moreover, the interpreter also allows a random execution, i.e. at each
step a randomly selected command is executed among the triggerable ones. The
guards and commands used by the interpreter are the ones created by the inter-
preter viewpoint. As explained in Sect. 4.4, commands trigger role methods and
guards are the evaluations of the role properties (roles conform to the attacker
role model in our example). For CTA, we defined two kinds of commands i.e.
attacker commands are the ones executable by the attacker and system com-
mands are the ones related to the normal execution of the system. To test our
interpreter, we interactively execute an attack scenario through the attacker view
of the case study (Fig. 3b).

During this interpretation, the attacker view of the system evolves in two
ways: the attacker can extend his control range by taking control of new system
elements, or he can discover his access range (after taking control of a new
element) by communicating to the newly accessible elements. The access and
control ranges are shown in Fig. 3b. The selected attack scenario consists of 7
steps listed below:

1. The attacker legitimately connects to the webServer, thus extending his access
range. Figure 3b shows the attack view of the system after this step.

2. The attacker increases his knowledge about the webServer using dedicated
tools e.g. wpscan3.

3. The attacker exploits the vulnerabilities e.g. CVE-2014-100214 and CVE-
2016-5195 and takes control of the webServer. Hence, webServer is added to
the control range to this attacker.

4. The attacker explores the local network from the webServer using dedicate
tools e.g. nmap5. At this step, the attacker adds BobPC and ActiveDirectory
to his access range.

5. The attacker increases his knowledge about the local network and discovers
that BobPC controls the ActiveDirectory.

6. The attacker infects BobPC with a trojan horse to collect the login and
password of the ActiveDirectory. At this point in time, the attacker has
extended his control range from Kali to WebServer and BobPC and gains
access to ActiveDirectory.

7. The attacker connects to ActiveDirectory using the authentication details
collected in the previous step. At this step, the attacker achieves his goal by
taking control of ActiveDirectory.

To execute this attack scenario we created 18 system commands and 6
attacker commands. Each of these commands are in fact calling the behavior
3 https://wpscan.org/.
4 The identification number corresponds to the US National Vulnerability Database.
5 https://nmap.org/.

https://wpscan.org/
https://nmap.org/

A Role Modeling Based Approach for Cyber Threat Analysis 95

definitions (methods) of roles from the attacker role model. The system com-
mands allowed us to carry out simple tasks on the system, such as switching
on/off a system element (i.e. a node/machine of the network). The attacker
commands were of two kinds: “get information about a node” and “take control
of a node by exploiting a vulnerability”. In these commands a node is a system
element like WebServer, BobPC or ActiveDirectory and a vulnerability is an
instance of VulnerabilityRole.

As described earlier, a guard is an evaluation of properties defined in a role-
Instance whereas a command is a trigger of methods defined in a roleInstance.
For executing a command, its guard should be true e.g. the command:“get
information about the WebServer” needs the guard:“WebServer is in access
range” to be true for its execution. Once executed, this command extends the
attacker access range. In fact, this command triggers the getConfiguration,
getVulnerabilities and getAttackerCompetens methods of elementRoleIn-
stance. Once the attacker’s access or control range is extended, the associated
PimCa model is updated with the corresponding PimCaRelation i.e. a use rela-
tion is added for every addition to the access range and a control relation is
added for every new addition to the control range, as shown in Fig. 5b.

Fig. 9. Cyber threat analysis using federation at runtime.

96 B. Drouot et al.

6.2 Dynamic Update of the Federated Models

During step 2 of the attack scenario presented in the previous section, the
command “get information about the WebServer” triggers getConfiguration,
getVulnerabilities and getAttackerCompetens methods. These methods
belong to wsElementRI, an instance of ElementRole that describes a view of the
webServer. WsElementRI is a containerRole containing two containedRoles i.e.
wsConfigurationRI and wsCompetenciesRI. WsConfigurationRI, an instance
of ConfigurationRole, is part of the view on webServer that concerns the configu-
ration. WsCompetenciesRI, an instance of CompetenciesRole, is part of the view
on webServer that concerns attacker’s competencies. The getConfiguration
method of wsElementRI delegates the responsibility of accessing the config-
uration to wsCompetenciesRI. Similarly, the getAttackerCompetens method
of wsElementRI delegates the responsibility of accessing the competencies to
wsCompetenciesRI. The getVulnerabilities method has a more complex
behavior. Figure 9 illustrates the federation mechanism triggered by this method
in three steps:

– Step 1: To collected information from external sources, getVulner
abilities executes the getConfiguration and getAttackerCompetens
methods. Consequently, wsElementRI collects a configuration from configura-
tion DSML and attacker competencies for the Attacker competencies DSML
through delegation.

– Step 2: Initially, an instance of VulnerabilityRole is generated in this step
i.e. wsVulnerabilityRI. This instance queries the NVD to collect all the
vulnerabilities specific to the configurations collected in step 1.

– Step 3: wsVulnerabilityRI filters the list of vulnerabilities collected in step
2 according to the attacker competencies collected in step 1.

– Step 4: For each remaining vulnerability, wsVulnerabilityRI creates an
instance of VulnerabilityRole. Each of these created instances is a view on the
given vulnerability. Three new instances of VulnerabilityRole are generated in
our case study i.e. wsVulnerabilityRI2 and wsVulnerabilityRI3 because
webServer has three vulnerabilities.

In this case study we illustrate the use of roles for interpretation of DSML ele-
ments, the relation between containerRole and containedRoles, the information
propagation methodology and the update mechanism of a view. The methods
of the roles act on the DSML elements (playerInstances) to get and set the ele-
ment properties without keeping a copy of these elements. The creation of new
roleInstances at runtime allows dynamic adaptation of the federated system,
according to the evolution of the players and to the viewpoint definitions.

7 Lessons Learned

This research project was carried out for the french ministry of armed forces,
where the problem at hand was to simulate multiple attack scenarios. Due to the

A Role Modeling Based Approach for Cyber Threat Analysis 97

non disclosure agreement, we are not able to disclose any sensitive information
regarding the analysis. However, we would like to share the lessons learned from
this project on cybersecurity that used model driven engineering to solve the
issues at hand.

– The Ability to Update Views at Runtime. View based approaches usually
define viewpoints on a meta level. During the runtime, these viewpoints are
instantiated to get actual views on the models. During runtime, these views
interpret the base model entities as defined by the semantics chosen as the
meta level. However, most of these approaches do not support the modifica-
tion of such interpretations at runtime. During this project we came across
a problem, where the interpretation, relying on a base model element, had
to replace the based model element during the execution. In terms of tradi-
tional MDE, it would mean to change the transformation definition during
the execution of a transformation. The use of role instances allow switching
the role being played by a player on the fly. Using the pattern with adapter
and playrelation helped us resolve this problem on an implementation level.
However, further work is needed to tackle the co-evolution of dynamic views
and the base models.

– Dynamicity is Necessary for an Attacker View. Most of the current cybersecu-
rity approaches following a persona non grata approach, present a mechanism
to view the system from an attacker’s perspective. These approaches tend to
present the attacker view as a predefined static view that does not take into
account the evolution of the attacker’s perspective during the attack. Such
systems are good for analyzing and proposing attack preventive measures,
however they fall short on how to respond when an actual attack in under-
going. We solved this problem by taking into account the advances of the
attacker with each attack step. However, we find that other kinds of dynam-
icity would further strengthen the attacker point of view. For example, the
attacker view should also take into account, the state of the system. A indus-
trial robot in the context of Industry 4.0 might be more vulnerable in one
state than another.

– Generating Attack Models Facilitates Security Analysis. Attack models are
generally used in the domain of cybersecurity for classification of security
threats. These attack models then serve as input for various cyber threat
analysis approaches. They are normally developed through brainstorming
sessions arranged by the security experts. Generating of attack models can
facilitate security analysis. While exhaustive analysis of attack scenarios via
formal methods seems idealistic for the moment, generating multiple attack
paths from a given configuration seems clearly possible. Combined with the
dynamic aspect of the attacker view, it could enable multiple scenarios explo-
ration. Such tools would greatly facilitate complex and multi-step attack
design and thus produce increasingly precise analysis. For example, attack
trees and attack graphs generation could be partially automated via these
scenarios. In particular, it could bridge the gap between pentesting and attack
trees/graphs.

98 B. Drouot et al.

8 Conclusion

Handling interoperability between different DSMLs remains tedious and is gen-
erally handled by traditional model driven engineering methodologies e.g. model
transformations. When dynamicity comes into play, where models are continu-
ously evolving, it becomes hard to use the traditional mechanisms. We claim
that the model federation approach provides a viable solution to handle DSML
interoperability. In this paper, we demonstrated that role modeling provides the
capacity to define a shared semantics between different DSMLs. The goal of role
modeling is to act as a semantics viewpoint on the model elements. These model
elements remain independent of the federated model and no transformations are
applied. A role model uses behavioral functions to access and update model ele-
ments without creating intermediate model elements. We have formalized the
concept of role in our language through Role4All metamodel. The framework
offers an extension mechanism so that multiple connectors for classic data for-
mats like XML, JSON, etc. can be added to it. In this paper, we apply role
modeling based methodology to perform cyber threat analysis. This analysis
needs to use data and meta-data from different tools in different formalisms and
then correlate and process it as federated data. We presented an interpreter for
the framework that is capable of simulating the roles. We used this interpreter
to simulate an attack on a system. Our future perspectives on this research work
are to propose mechanisms for formal verification of the federated models. This
would allow us to use formal verification to generate all possible attack scenar-
ios based on different topologies, system configurations, vulnerability knowledge
and attacker competency levels.

References

1. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: from UML models
to access control infrastructures. ACM Trans. Softw. Eng. Methodol. (TOSEM)
15(1), 39–91 (2006)

2. Champeau, J., Leilde, V., Diallo, P.I.: Model federation in toolchains. In: MODELS
Companion Proceedings (2013)

3. Combemale, B., Deantoni, J., Baudry, B., France, R.B., Jézéquel, J.-M., Gray, J.:
Globalizing modeling languages. Computer 47(6), 68–71 (2014)

4. Conti, M., Dargahi, T., Dehghantanha, A.: Cyber threat intelligence: challenges
and opportunities. In: Dehghantanha, A., Conti, M., Dargahi, T. (eds.) Cyber
Threat Intelligence. AIS, vol. 70, pp. 1–6. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-73951-9 1

5. Dijkstra, E.W.: Guarded commands, nondeterminacy, and formal derivation of pro-
grams. In: Gries, D. (ed.) Programming Methodology. MCS, pp. 166–175. Springer,
New York (1978). https://doi.org/10.1007/978-1-4612-6315-9 14

6. Drouot, B., Champeau, J.: Model federation based on role modeling. In: Proceed-
ings of the 7th International Conference on Model-Driven Engineering and Soft-
ware Development, MODELSWARD 2019, Prague, Czech Republic, 20–22 Febru-
ary 2019, pp. 72–83 (2019)

https://doi.org/10.1007/978-3-319-73951-9_1
https://doi.org/10.1007/978-3-319-73951-9_1
https://doi.org/10.1007/978-1-4612-6315-9_14

A Role Modeling Based Approach for Cyber Threat Analysis 99

7. Elahi, G., Yu, E., Zannone, N.: A vulnerability-centric requirements engineering
framework: analyzing security attacks, countermeasures, and requirements based
on vulnerabilities. Requir. Eng. 15(1), 41–62 (2010)

8. Emerson, M., Sztipanovits, J.: Techniques for metamodel composition. In:
OOPSLA-6th Workshop on Domain Specific Modeling, pp. 123–139 (2006)

9. Golra, F.R., Beugnard, A., Dagnat, F., Guerin, S., Guychard, C.: Addressing mod-
ularity for heterogeneous multi-model systems using model federation. In: Com-
panion Proceedings 15th International Conference on Modularity, pp. 206–211.
ACM (2016)

10. Gottlob, G., Schrefl, M., Röck, B.: Extending object-oriented systems with roles.
ACM Trans. Inf. Syst. (TOIS) 14(3), 268–296 (1996)

11. Hardebolle, C., Boulanger, F.: ModHel’X: a component-oriented approach to multi-
formalism modeling. In: Giese, H. (ed.) MODELS 2007. LNCS, vol. 5002, pp. 247–
258. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69073-3 26

12. Hemery, D.: PimCa: Définition du langage. Technical report, DGA Maitrise de
l’Information, January 2015

13. Holik, F., Horalek, J., Marik, O., Neradova, S., Zitta, S.: Effective penetration
testing with Metasploit framework and methodologies. In: 2014 IEEE 15th Inter-
national Symposium on Computational Intelligence and Informatics (CINTI), pp.
237–242. IEEE, November 2014. https://doi.org/10.1109/CINTI.2014.7028682

14. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assess-
ment of MDE in industry. In: Proceedings of the 33rd International Conference on
Software Engineering, pp. 471–480. ACM (2011)

15. Ishida, T.: Q: a scenario description language for interactive agents. Computer
35(11), 42–47 (2002)

16. ISO 14258:1998 - Industrial automation systems - Concepts and rules for enterprise
models. Standard, International Organization for Standardization, Geneva, CH,
August 1998

17. ISO/IEC 27000:2016 - Information technology - Security techniques - Information
security management system - Overview and vocabulary. Standard, International
Organization for Standardization, August 2016

18. Kühn, T., Leuthäuser, M., Götz, S., Seidl, C., Aßmann, U.: A metamodel family for
role-based modeling and programming languages. In: Combemale, B., Pearce, D.J.,
Barais, O., Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706, pp. 141–160. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11245-9 8

19. Mell, P., Scarfone, K., Romanosky, S.: Common vulnerability scoring system. IEEE
Secur. Priv. 4(6), 85–89 (2006)

20. Myagmar, S., Lee, A.J., Yurcik, W.: Threat modeling as a basis for security
requirements. In: Symposium on Requirements Engineering for Information Secu-
rity (SREIS), vol. 2005, pp. 1–8. Citeseer (2005)

21. Niemoller, J., Mokrushin, L., Vandikas, K., Avesand, S., Angelin, L.: Model fed-
eration and probabilistic analysis for advanced OSS and BSS. In: 2013 Seventh
International Conference on Next Generation Mobile Apps, Services and Tech-
nologies (NGMAST), pp. 122–129. IEEE (2013)

22. Osis, J.: Model-Driven Domain Analysis and Software Development: Architectures
and functions. IGI Global, Hershey (2010)

23. Pauli, J., Xu, D.: Threat-driven architectural design of secure information systems.
In: Proceeding of First International Workshop on Protection by Adaptation, PBA
2005, Miami (2005)

https://doi.org/10.1007/978-3-540-69073-3_26
https://doi.org/10.1109/CINTI.2014.7028682
https://doi.org/10.1007/978-3-319-11245-9_8

100 B. Drouot et al.

24. Schneider, J.P., Champeau, J., Lagadec, L., Senn, E.: Role framework to sup-
port collaborative virtual prototyping of system of systems. In: 24th International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE), pp. 144–149. IEEE (2015)

25. Schneider, J.P., Champeau, J., Teodorov, C., Senn, E., Lagadec, L.: A role lan-
guage to interpret multi-formalism system of systems models. In: 9th Annual IEEE
International Systems Conference (SysCon), pp. 200–205. IEEE (2015)

26. Seifert, M., Wende, C., Aßmann, U.: Anticipating unanticipated tool interoper-
ability using role models. In: Proceedings of the First International Workshop on
Model-Driven Interoperability, pp. 52–60. ACM (2010)

27. Shostack, A.: Threat Modeling: Designing for Security. Wiley, Hoboken (2014)
28. Steimann, F.: On the representation of roles in object-oriented and conceptual

modelling. Data Knowl. Eng. 35(1), 83–106 (2000)
29. Stevens, P.: A landscape of bidirectional model transformations. In: Lämmel, R.,

Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 408–424. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88643-3 10

30. Zhang, S., Caragea, D., Ou, X.: An empirical study on using the national vul-
nerability database to predict software vulnerabilities. In: Hameurlain, A., Liddle,
S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011. LNCS, vol. 6860, pp. 217–231.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23088-2 15

https://doi.org/10.1007/978-3-540-88643-3_10
https://doi.org/10.1007/978-3-642-23088-2_15

Static Data-Flow Analysis
of UML/SysML Functional Views
for Signal and Image Processing

Applications

Andrea Enrici1(B), Ludovic Apvrille2, Renaud Pacalet2, and Minh Hiep Pham2

1 Nokia Bell Labs, 91620 Nozay, France
andrea.enrici@nokia-bell-labs.com

2 LTCI, Télécom Paris, Institut Polytechnique de Paris, 75013 Paris, France
{ludovic.apvrille,renaud.pacalet,minh.pham}@telecom-paris.fr

Abstract. The complexity of heterogeneous Multi-Processor Systems-
on-Chip stretches the limits of software development solutions based on
sequential languages such as C/C++. While these are still the most
widely used languages in practice, model-based solutions appear to be
an efficient alternative. However, the optimized compilation of models
for multi-processor systems still presents many open research problems.
Among others, static data-flow analyses for models require the adapta-
tion of traditional algorithms used in program analysis (iterative and
worklist algorithms). These algorithms operate on Control-Flow Graphs
with a unique start node (i.e., a node without predecessors) and assume
that every basic block is reachable from this start node.

In this paper, we present a novel combination of the well-known itera-
tive and worklist algorithms that examines a Control-Flow Graph where
basic blocks can be reached by paths that originate from different start
states. We apply this solution to functional views of signal and image pro-
cessing models denoted with UML Activity and SysML Block diagrams.
We demonstrate its effectiveness on interval analysis and show that sig-
nificant reductions in the number of visits of the models’ control-flow
graphs can be achieved.

Keywords: Static data-flow analysis · Optimizing model compilation
UML/SysML · Multi-Processor System-on-Chip

1 Introduction

Thanks to the continuous evolution of semiconductor process technologies,
tens or hundreds of processors can nowadays be integrated into single chips.
These Multi-Processor Systems-on-Chip (MPSoCs) have emerged in the last two
decades as an important class of systems that are widely used in networking,
communications, signal processing and multimedia among other applications.

c© Springer Nature Switzerland AG 2020
S. Hammoudi et al. (Eds.): MODELSWARD 2019, CCIS 1161, pp. 101–126, 2020.
https://doi.org/10.1007/978-3-030-37873-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37873-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-37873-8_5

102 A. Enrici et al.

Two branches of MPSoC platforms currently exist: homogeneous and hetero-
geneous. Homogeneous multi-processors are largely used for High-Performance
Computing (HPC) applications. They are composed of multiple instances of
identical processors (e.g., Intel x86 CPUs) that provide general-purpose capa-
bilities. Heterogeneous multi-processors are typically used in application-specific
domains (e.g., signal and image processing, embedded systems) and are com-
posed of processing elements (e.g., Digital Signal Processors - DSPs - Field Pro-
grammable Gate Arrays - FPGAs) with specific functionalities and performance
characteristics (e.g., throughput, latency, power consumption).

Because of their heterogeneity, the development of application control code
for heterogeneous MPSoCs is considered more difficult than in the case of homo-
geneous systems. By application control code, we refer to the code that runs in
the user space of an Operating System (or an equivalent software stack - hence
the adjective application) and governs the execution of an application (hence the
adjective control). Software developers are not only faced with issues that are
typical of parallel programming (e.g., synchronization, deadlocks, choice of task
granularity). They must also consider how to efficiently parallelize applications,
how to map and schedule parallel functions onto execution units as well as how
to interface hardwired accelerators (e.g., FPGAs, Graphics Processing Units -
GPUs).

Model-Based Software Engineering (MBSE) [38,39] is a software development
paradigm that can alleviate the programming of heterogeneous MPSoCs. MBSE
combines domain-specific modeling languages to abstract the structure, behavior
and requirements of a system under design, with transformation engines and
generators. The latter analyze models and produce artifacts such as source code,
simulation, verification inputs or alternative model representations.

Modeling languages like UML and SysML offer graphical constructs that have
a higher abstraction level (i.e., task-level1) than the constructs natively available
in C/C++2. Constructs in UML and SysML have a rich semantics (e.g., block-
ing, non-blocking read/write operations) that enables the expression of complex
control-flow interactions (e.g., hierarchical composition, dispatch/reception of
signals). Unfortunately, some of these constructs cannot be efficiently examined
by standard techniques for static data-flow analysis that were developed for
single-processor programs in sequential languages.

In this paper, we present an algorithm that processes a Control-Flow Graph
(CFG) derived from the specification of parallel functions. Unlike standard CFGs

1 By the term task, we denote the most coarse-grain unit of work that the programming
model of an execution unit in a target MPSoC platform offers to the programmer.
In the literature, the term task can be ambiguous and alternatives include process,
light-weight process, thread (for execution), step, request, or query (for work). For
instance, given a general-purpose CPU equipped with an Operating System (OS),
a task is equivalent to an OS process. Given a Digital Signal Processor and its
software stack, operations such as Fast-Fourier Transforms, signal modulations can
run as tasks.

2 In the context of our work, C/C++ are the reference programming languages with
which signal and image processing applications for MPSoCs are developed [20].

Static Data-Flow Analysis of UML/SysML Functional Views 103

from single-processor programs, this CFG has multi start nodes (i.e., nodes with-
out predecessors) and basic blocks are reachable on paths that can originate from
multiple start nodes. Our solution reduces the number of visits that are neces-
sary to analyze the Control-Flow Graphs (CFGs) of UML/SysML models, with
respect to a simple combination of standard techniques used in program analysis.
We demonstrate the efficiency of our algorithm for the interval analysis of func-
tional views expressed with UML Activity diagrams, SysML Block Definition
and SysML Internal Block diagrams. The design of these diagrams is supported
by TTool/DIPLODOCUS [42], a UML/SysML toolkit for the hardware/software
co-design of data-flow systems.

The rest of this paper is organized as follows. Section 2 positions our approach
for optimizing model compilation with respect to existing solutions. Section 3
positions our static analysis algorithm with respect to related work. Section 4
illustrates our contribution. Section 5 describes the analysis of UML/SysML
functional views for a testbench of signal and image processing applications.
Section 6 concludes this paper.

2 Optimizing Compilation of UML/SysML Models

In [35], existing approaches for the design of Digital Signal Processing applica-
tions for MPSoCs are classified as compiler-based, language-extension, model-
based and platform-based, according to where the application’s parallelism is
treated.

Compiler-based approaches take as input standard sequential languages (e.g.,
C) and produce software by means of a parallelizing compiler. The latter auto-
matically inspects the input specifications to find parallelizable regions of code
(e.g., time consuming loops), partitions each such a region into a set of concur-
rent tasks and maps them onto the available processors. A prominent example of
such an approach is the MPSoC Application Programming Studio (MAPS) [32].

Because of the current limitations in the automatic extraction of parallel
regions [35], language-extension approaches require the programmer to explicitly
define these regions by enriching the source code with annotations and/or calls to
Application Programming Interfaces (APIs). A prominent example of C language
extended with annotations is OpenMP [5]. Well-known examples of languages
extended with APIs are OpenCL [1], the Compute Unified Device Architecture
(CUDA) [4], the Message Passing Interface (MPI) [3] and the MATLAB tool-
boxes MATLABMPI [28] and MPITB [10].

Model-based approaches use Models of Computations (MoCs) with a formally
well-defined semantics (e.g., Synchronous Data Flow [31] - SDF - Kahn Process
Networks [27] - KPN - MATLAB/Simulink [2]) to explicitly reveal the parallelism
in an input application. The latter is described as a set of concurrent modules
interconnected by data-dependencies in the form of buffers. As an application’s
intrinsic parallelism is explicitly revealed by the input language, parallelization
consists in mapping the modules to processors.

Platform-based approaches, such as the Common Intermediate Code
(CIC) [30], can be seen as a new type of compiler for parallel processing. CIC

104 A. Enrici et al.

provides to the user an intermediate parallel programming model that is inde-
pendent of a target platform. A CIC translator automatically maps an input
specification to constructs of the CIC intermediate parallel programming model
and into target-specific code.

With respect to the above taxonomy, our approach can be classified as model-
based. The main difference with existing model-based approaches is that we use
UML/SysML diagrams as input specifications rather than a formal MoC such as
SDF or KPN. The reason for this choice being that the execution semantics of
these MoCs is focused on the communication between concurrent modules. These
MoCs ignore the modules’ internal behavior that describes the production and
consumption of information. This prevents a model compiler from implementing
aggressive optimizations that are based on a module’s internal behavior. An
example of this limitation can be seen from the work in [17]. Here, the authors
propose a memory optimization technique that is based on scripts that describe
the internal memory use of SDF actors in an input application. We advocate
that the richer execution semantics of (some) UML/SysML diagrams facilitates
the MPSoC programming with respect to MoC-based approaches. Indeed, it
avoids the user and the compiler to optimize an input application based on
specifications in different languages. Thanks to static analysis techniques such as
the one described in this paper, an optimizing compiler can automatically detect
optimization opportunities without forcing the user to specify code regions where
optimizations can take place.

An approach that also attempts to optimize models before code generation
is described in [14,15]. Their approach is based on GUML, a GCC front-end
for UML that allows to generate binary executables from UML State Machines.
GUML translates input UML diagrams into GIMPLE, which is one of GCC’s
many intermediate representation formats used by GCC for optimization pur-
poses. The authors propose two levels of optimizations that aim at reducing
the binary code size, with respect to the binary that is obtained by compiling
C++ code that is automatically generated from UML by means of standard
design patterns (e.g., State Pattern, State Table Transition, Nested Switch Case
Statements). At first, GUML eliminates the dead code that can be present in
C++ code due to the presence of unreachable states. Secondly, GUML removes
redundant expressions in state machines by analyzing the CFG that is generated
directly from UML rather than from the C++ code that is generated from UML
diagrams. From the viewpoint of the compilation approach, the main difference
with our work is that we propose a meta-compiler that clearly separates the opti-
mized model compilation from the compilation of C code. Our approach gener-
ates software binaries in two compilation steps. However, besides pure software
implementations, it also allows to target pure hardware and hardware/software
implementations via High-Level Synthesis.

The approach that we follow to generate optimized software from executable
UML/SysML models is shown in Fig. 1. In the context of our research, we develop
control software that executes as an application in the user-space of an Operating
System (or equivalent software stack in a target platform). This software governs

Static Data-Flow Analysis of UML/SysML Functional Views 105

Fig. 1. MPSoC software development from UML/SysML models - revised from [22].

the execution of data processing and transfer operations that can be implemented
as both hardware and/or software components (e.g., Intellectual Property blocks
in a FPGA, software tasks). For this reason, we model a system with a combina-
tion of UML/SysML diagrams, rather than UML only. In Fig. 1, UML/SysML
diagrams are created in TTool/DIPLODOCUS [42], step (1). These diagrams
denote: (i) the functionality of an application, (ii) the architecture and commu-
nication protocols of the target MPSoC platform and (iii) their mapping. In this
phase, models are used as the primary artifact for software development. They
are created, edited and debugged (e.g., formal verification, simulation, profiling)
until legal specifications are obtained that respect some desired constraints (e.g.,
throughput, latency, power consumption). This is similar to the way code is cre-
ated, edited and debugged in Integrated Development Environments (IDE) such
as Eclipse CDT [19].

Model-based specifications are compiled into C code, step (2) in Fig. 1, by an
optimizing compiler. This compiler’s structure is the same as those of traditional
programming languages [40]: it includes a front-end for parsing and analysis, a
middle-end for optimization and a back-end for code generation. The output code
of the model compiler in Fig. 1 can be further developed as in traditional software
engineering. In the case of our methodology, the output control software does
not include the algorithmic part of computation and communication operations.
The corresponding code is provided by an external library (e.g., I/O specific
code, platform-specific code for OS or middleware) that is specific to the target
MPSoC platform.

The output C code (control, data processings and transfers) can be further
used to produce pure hardware (e.g., a hardware IP-based design), pure soft-
ware (e.g., an application running on top of an Operating System) or mixed
hardware/software implementations (e.g., some functionalities are executed by
a general-purpose control processor and some are accelerated in hardware) as
indicated by step (3) in Fig. 1. Different translators must be used accordingly:
Computer Aided Design (CAD) toolsuites (e.g., Xilinx Vivado High Level Syn-
thesis) or traditional programming-language compilers (e.g., GNU/gcc/g++,
Clang). In the latter case, our optimizing model compiler can be seen as a

106 A. Enrici et al.

meta-compiler that coordinates the overall compilation process, on top of mul-
tiple single-processor compilers for each execution unit of the target MPSoC.

3 Related Work on Static Data-Flow Model Analysis

Similarly to techniques for program analysis [34], static data-flow model analysis
provides solutions to reasoning about the value and relations (e.g., definitions,
use) of data (e.g., Variables, Objects) that influence the execution of models,
without actually running them. Static analysis provides useful solutions in many
domains, most notably in optimizing compilers to efficiently produce code, in
software testing to detect anomalies and in security to detect malicious behaviors.
To the best of our knowledge, we appear to be the first to propose the use of
static data-flow analysis on a combination of UML Activity, SysML Internal
Block and Block Definition diagrams. Similarly, we found no related work that
applies this type of analysis to optimizing model compilers.

Generally speaking, data-flow-based analyses for models is not possible with-
out adapting traditional algorithms from program analysis (Sect. 4). The reason
for this is that edges in control-flow graphs that are derived from models are
instances of associations or references defined in a given meta-model. These
edges denote relationships between objects which may have an arbitrary seman-
tics that depends on the meta-model’s domain. Two elements in a model may be
connected by means of multiple paths that originate from different start nodes
(i.e., nodes without predecessors).

Relevant work that perform static data-flow analysis on UML models can be
found in [13,23,29,37,43,44]. In [37], the authors propose an approach for static
analysis based on attribute grammars and data-flow analysis. As a solution, they
propose a modified version of the iterative algorithm that dynamically discovers
dependencies between data-flow equations while analyzing a model.

In [23], the authors present an extended Activity diagram metamodel, called
Concurrent Control Flow Graph (CCFG), to support control-flow analysis of
UML 2.0 Sequence diagrams. The authors define a mapping based on the Object
Constraint Language that is formal and verifiable. This mapping is defined in
the form of consistency rules between a Sequence diagram and a CCFG.

Specifically, the work in [13,29,43] are dedicated to the analysis of State-
charts for software testing. The authors in [29] discuss the generation of test
cases from UML State Machines, for a set of criteria to be tested. Here, data-
flow analysis is used to identify the points in the input models where variables
are defined and used. This work examines control-flow graphs that are derived by
transforming UML State Machines into Extended Finite State Machines, where
hierarchical and concurrent states are flattened. With respect to our work, com-
munications between Classes are not considered and broadcast communications
are eliminated when in the transformation to Extended Finite State Machines.

The main contribution in [13] is a technique that guides the coverage of
UML Statecharts for test data selection in the context of fault detection. Based
on definition-use pairs of variables, this technique selects the best transition

Static Data-Flow Analysis of UML/SysML Functional Views 107

tree that is used as a data for the coverage of UML Statecharts. In our work,
a control-flow graph is entirely derived from the input UML/SysML diagrams.
Conversely, in [13] the authors use a special Event Action Flow Graph that only
represents events and actions, where operation contracts and guard conditions
are expressed in the Object Constraint Language (OCL).

The IF toolset [43] is an environment for the modeling and validation of
heterogeneous real-time systems. The toolset includes a translator for input
UML Statecharts and Class diagrams and a static analyzer. These tools make
use of an intermediate representation formalism, called IF, and support live-
variable analysis, dead-code elimination and variable abstraction. In the IF
toolset, the input diagrams represent systems implemented in software. Con-
versely, our UML/SysML diagrams can also capture mixed hardware/software
or purely hardware implementations.

The work in [44] is an approach that builds a data structure from all the asso-
ciations between definitions and use (DU) of variables in UML State Machines.
Statecharts are specified with the abstract syntax of the UML Action Specifi-
cation Language [33]. An input Statechart is parsed, its control-flow graph is
extracted and stored in an adjacency matrix that is traversed to identify all the
DU pairs. To enhance the scalability of their approach, the authors also present
a set of mapping rules that allow to port their solution to virtually any con-
crete syntax of the UML Action Specification Language. However, no effective
application of this approach is detailed.

In the domain of network applications and distributed software, the Go
language [7,18] is a relative newcomer that has gained considerable attention
in recent years. The language supports concurrency by means of two con-
structs: channels and light-weight threads called goroutines. Concurrent gor-
outines exchange data via channels in a similar way to Communicating Sequen-
tial Processes [24] and Occam [26]. In principle, Go channels are similar to the
UML/SysML operators that we use to exchange information between Activities.
Go channels cannot be associated to arbitrarily complex communication proto-
cols as with ProtocolStateMachines. However, they have certain characteristics
that make our analysis framework not reusable in the case of the Go language.
The static analysis of channel-based communication [12] is similar to pointer
analysis: channels are referenced shared data where pointers to channels can
be communicated over channels or stored and passed to sequential procedures
together with other references.

4 Static Data-Flow Model Analysis

In this section, we propose an algorithm for the static data-flow analysis of par-
allel applications at task-level of abstraction. We denote an application’s func-
tional view with UML Activity (AD) and SysML Block diagrams (i.e., SysML
Block Definition and Internal Block diagrams - shortened to BDs). UML ADs
are used to capture the internal behavior of tasks, whereas SysML BDs are used
to capture the structure of the data and control dependencies between tasks.

108 A. Enrici et al.

Our static analysis serves the purpose of detecting optimization opportunities
both within a single task (intra-task) and between parallel tasks (inter-task).

With respect to specifications in the C programming language, our
UML/SysML-based specifications are positioned at a higher level of abstrac-
tion. Still, a UML AD’s can be seen as equivalent to an entire C program.
Dedicated UML constructs, called InvocationActions, can be used to reference
UML ADs similarly to procedure calls in the C language. Thus, existing tech-
niques for program interprocedural analysis [25,36] can be reused to examine
both synchronous and asynchronous invocations of UML Activities.

Instead, novel techniques are needed to efficiently account for Control-Flow
Graphs with multiple start nodes and edges that originate from the modeling
constructs that denote the communication protocols for the exchange of informa-
tion among parallel functions (e.g., SendObjectActions, ReceiveObjectActions).

The algorithm that we present here is implemented in the optimizing model
compiler’s frontend of Fig. 1.

4.1 The Control-Flow Graph for a Functional View

Because in data-flow analysis the order of statement matters, it is more conve-
nient to view a specification (be it code or a model) as a Control Flow Graph
(CFG). Generally speaking, a CFG is a directed graph, where nodes correspond
to statements and edges represent possible flows of control. In this paper, we
do not describe the process that transforms our UML/SysML diagrams into a
CFG. UML/SysML have a graphical formalism that explicitly separates between
flows of data and control with different Tokens and Edges. Therefore, a CFG is
obtained by visiting the control dependencies in diagrams. Sequences of con-
structs with no branches in, except for the entry, and no branches out, except
for the exit, are grouped into CFG nodes (basic blocks).

Processings. The CFG that results from the composition of UML ADs and
SysML BDs is a directed graph G∗ = <N∗, E∗>. G∗ can be also seen as a
supergraph formed by the composition of a set of control flowgraphs N∗ =
{G1, G2, . . . , Gn}. Each such a control-flow graph Gi = <Ni, Ei> represents a
UML Activity: nodes Ni are the Activity’s modeling constructs and edges Ei are
the Activity’s ControlFlowEdges. One of these flowgraphs, Gsource, represents
the source Activity that is the application’s entry point (this is similar to the
CFG for the main() procedure in the C programming language). At least one
of the control-flow graphs in N∗ is a sink node in G∗ that we denote Gsink. It is
the application’s exit point. E∗ is the set of (super)edges in G∗ that represent
information dependencies between Activities. As said before, an application’s
structural view is specifically expressed in our contribution with SysML BDs.
Thus, edges in E∗ correspond to the Relationships among SysML Blocks.

Each Activity’s CFG Gi has a unique start node (i.e., UML InitialNode)
and can have multiple exit nodes (i.e., UML ActivityFinalNode and FlowFi-
nalNodes). Remaining nodes represent the modeling statements (e.g., Actions,
ControlNodes). Thus, an expanded view of G∗ presents multiple start nodes,

Static Data-Flow Analysis of UML/SysML Functional Views 109

one for each task. For each such a start node, not all the basic blocks in the
expanded view of G∗ can be reached.

Communications. In UML/SysML, communication protocols can be specified
in many ways: UML Actions with a profile-specific semantics (e.g., blocking,
non-blocking), ProtocolStateMachines, Sequence diagrams, Activity diagrams
or a combination thereof [21]. Our UML/SysML formalism uses Actions with
read and write communication primitives to describe point-to-point commu-
nications. More complex protocols (e.g., DMA transfers, broadcast transfers)
can be described with a combination of Activity and Sequence diagrams [21].
In this paper, we focus on the static analysis of point-to-point communica-
tions and we postpone the study of more complex protocols to future work.
We focus on analyzing Actions which read/write semantics can be blocking or
non-blocking. For this reason, in addition to the ordinary intra-graph edges that
connect nodes within a single Gi, we create inter -graph (super)edges for each
pair SendObjectAction-ReceiveObjectAction from a sender Gi to a receiver Gj .

Generally speaking, we advocate that for both simple and complex proto-
cols, the protocols’ control-flow graphs must be included in the global functional
view’s CFG and analyzed together with the CFGs of processings. When complex
communication protocols are present, synchronous/asynchronous call and return
nodes and edges must be added to the functional view’s CFG G∗. This allows
to reuse techniques from interprocedural program analysis.

4.2 The Control-Flow Graph Analysis

Static analysis propagates information related to the flow of data along edges
in a CFG. This is done according to the edges’ transformation functions that
account for the semantics of nodes. Common visitation algorithms stem from
two approaches: the iterative search and the worklist algorithm.

In the iterative search (Algorithm 1), given a node n, the current state of the
information associated to the node is saved (line 5 in Algorithm1). At each CFG
visitation, a node is examined once (line 6 in Algorithm1). If the state of the
output information changes after processing the node (lines 7–9 in Algorithm1),
then a flag is activated to trigger successive visitations.

The worklist algorithm (Algorithm2) is based on examining the CFG’s edges.
These are stored in a list (line 1 in Algorithm2). Edges are iteratively popped out
of the worklist (line 3 in Algorithm2) and information is propagated from the
edge’s source to its destination node (lines 4–5 in Algorithm 2). If any changes
occur then successor edges3 are pushed into the worklist. The analysis repeats
until it reaches a fixed-point that corresponds to the worklist being empty (line
2 in Algorithm 2).

During a CFG visitation (i.e., the examination of all CFG nodes), the work-
list algorithm immediately propagates changes to neighboring nodes. Edges are
stored back into the worklist and examined in the next iteration. Therefore, a
3 We always imply forward analysis. Predecessor edges must be considered in the case

of backward analysis.

110 A. Enrici et al.

complete visitation of all nodes may require multiple examinations of the same
node. Conversely, the iterative search always examines nodes once per visitation,
but it waits until the next visitation of the entire CFG to propagate a change.

Algorithm 1. The iterative search algorithm.

1 changed = true;
2 while changed do
3 changed = false;
4 for ∀node n do
5 old = out[n];
6 process(n);
7 if old �= out[n] then
8 changed = true;
9 end

10 end

11 end

In the context of our research, analyzing an expanded view of G∗ purely on the
basis of the iterative or worklist algorithm would not work. These algorithms
were designed for Control-Flow Graphs that are derived from single-processor
programs. These CFGs have a single start node from which paths originate that
reach all basic blocks. Instead, a hierarchical combination of these algorithms is
necessary, where the top-most algorithm is used to visit the tasks that compose
G∗ and the lower-most algorithms visits the basic blocks that compose each of
the tasks {G1, G2..., Gn} ∈ G∗.

We combined Algorithms 1 and 2 as proposed in [9]. The iterative search has
a more global nature in because, at each iteration, it computes data flows for
all CFG’s nodes. This makes it a suitable candidate to examine inter-Activity
dependencies and thus direct visitations of the entire supergraph G∗. The work-
list algorithm, instead, has a more local nature as it propagates data flows locally
to a node’s successors only (predecessors in case of backward analysis). This
makes it an ideal candidate to examine intra-Activity dependencies.

Nonetheless, this simple combination may still result in unnecessary visita-
tions. The iterative algorithm must not propagate local changes from a previous
iteration to all nodes in G∗. Similarly, at each visitation, the worklist algorithm
should explore a node’s successors/predecessors only when information from all
its incoming edges is available (i.e., information that is propagated on both inter-
and intra-Activity edges).

We call our combination of Algorithms 1 and 2 the Combined Iterative Block-
ing Worklist (CIBW) and present it in Algorithms 3 and 4. Specifically for this
paper, Algorithms 3 and 4 are a further improvement of the version described
in [22]. More in details, lines 1–10 in Algorithm3 in [22] and line 16 in Algorithm4
in [22] were specific to the case of acyclic super-graphs. Here, we removed this
constraint and present a CIBW algorithm that also handles cyclic super-graphs.

Static Data-Flow Analysis of UML/SysML Functional Views 111

Algorithm 2. The worklist algorithm.

1 worklist ← {start edge};
2 while worklist �= ∅ do
3 worklist ← worklist \ e;
4 old = out[e];
5 process(e);
6 if old �= out[e] then
7 for p ∈ succ[e] do
8 worklist ← worklist ∪ p;
9 end

10 end

11 end

In Algorithm 3, Activities’ CFGs are iteratively visited until no changes occur
when data-flow information is propagated. The algorithm iteratively searches
the (super)nodes of G∗ at the level of abstraction of the whole supergraph. Each
node in G∗ is processed only if the data-flow information of any of its successors
(predecessors in the case of backward analysis) has changed as indicated by a set
of pending graphs P (lines 7–17). To retain the fairness of the original iterative
approach, each node is visited exactly once on each iteration (line 6). Thus, the
same Activity’s CFG cannot be explored in consecutive iterations.

An Activity’s CFG is visited by a blocking version of the worklist search, in
Algorithm 4. This algorithm operates on a worklist of edges that is composed
of the set of intra-Activity edges. At lines 4–11, exploration proceeds like in
the classical worklist search (Algorithm 2). Exploration can be suspended and
an Activity can be marked as pending (lines 13–15) if the edge under analysis
originates from a task that has not yet been visited. Hence the name blocking
worklist. The condition at line 13 guarantees the absence of deadlocks when
blocking the analysis. Deadlocks may arise when an edge connects two tasks
that belong to the same cycle in G∗. Upon completing the analysis, the current
Activity is removed from the pending list P , line 23.

4.3 The Performance Gain of the CIBW Algorithm

We evaluate the gain of the CIBW algorithm, with respect to a non-blocking
combination of the iterative and worklist algorithms. This is given in Eq. 1 by
the ratio between number of propagations N of data-flow facts between CFG’s
nodes N∗.

g = 1 − N blocking worklist

N non−blocking worklist
= 1 − N bw

N nbw
(1)

This gain can be expressed analytically only for graphs with a simple topology
(see Sect. 5). In this case, we can express the gain, Eq. 2, in terms of the number of
unnecessary propagations N u that are performed by the non-blocking worklist
for each node n ∈ Ni that receives an inter-Activity edge.

112 A. Enrici et al.

Algorithm 3. The Combined Iterative Blocking Worklist algorithm.

/* G∗ =< N∗, E∗ > the control-flow super-graph */
/* analysis[] the state of the analysis; each entry corresponds to a basic block in

G∗ */
/* pstart ... pend: the set of basic blocks of task p */
/* P the set of pending tasks to analyze */
/* In forward analysis P is initialized with Gsource */
/* In backward analysis P is initialized with Gsink */
/* In forward analysis Next(x) is the set of successor tasks of task x in G∗ */
/* In backward analysis Next(x) is the set of successor tasks of task x in G∗ */

1 changed = true;
2 while changed do
3 changed = false;
4 foreach p ∈ P do
5 P ← P \ p;
6 old := analysis[pstart, ..., pend];
7 < blocked, analysis[] >= blocking worklist(p, analysis);
8 if blocked then
9 changed = true;

10 end
11 else
12 if old �= analysis[pstart, ..., pend] then
13 changed = true;
14 foreach s ∈ Next(p) do
15 P ← P ∪ s;
16 end

17 end

18 end

19 end

20 end

g =
N u

N bw + N u

where N nbw = N u + N bw

(2)

Unnecessary propagations are those that propagate partial information with-
out collecting, for nodes connected by inter-Activity edges, information from all
incident edges, both inter-task and intra-task. N u is zero in two cases. First,
in case n has no successors. Second, in case no path exists from an Activity’s
InitialNode to n, where all nodes in the path operate on the same set of data Dn

(Variables and/or Objects) as n. In all other cases, N u is different from zero
and depends on two factors: (i) the number of n’s successors that operate on Dn

and (ii) the type of paths (acyclic or cyclic) that these successors belong to.
Given a path where at least one node operate on Dn or a superset of Dn, the

value of N u is given by Eq. 3, for n′s successors. These successors are visited
either once, if they belong to a linear path, or kp times, one per each iteration,
if they belong to a cyclic path. The coefficient kp is defined by the number of
iterations that are necessary to reach the analysis’ fixed point.

N u =
∑

∀ path p ∈ CFG, i ∈ p

vpi

vpi =

{
1 Dn ⊆ Di, i /∈ cycle

kp Dn ⊆ Di, i ∈ cycle

(3)

Static Data-Flow Analysis of UML/SysML Functional Views 113

Algorithm 4. The blocking worklist algorithm.

1 Function blocking worklist(Ga = < N, E >, analysis[]):
/* Ga = < N, E > the UML Activity’s CFG for task a */
/* worklist the list of CFG edges E */
/* ex→y the directed edge from nodes x to y */
/* analysis[x] stores the abstract state of the analysis for basic block x */
/* fx→y(analysis[x]) is the transfer function of edge ex→y applied to the

abstract state of the analysis for basic block x. It does not modify the state
stored in analysis[x]. It returns the relevant data-flow facts that the edge
transfers to y. */

/* In forward analysis Next(x) is the set of successor of basic block x in N */
/* In backward analysis Next(x) is the set of successor of basic block x in N */

2 worklist ← E;
3 while !empty(worklist) do
4 en→m ← worklist.pop();
5 temp ← analysis[m]
 fn→m(analysis[n]);
6 if temp �� analysis[m] then
7 analysis[m] ← temp;
8 foreach p ∈ N, p ∈ Next(m) do
9 worklist.push(em→p);

10 end

11 end
12 else
13 if n ∈ Gb, m ∈ Ga, a �= b, {Ga, Gb} /∈ cycle in G∗, Gb ∈ P then
14 P ← P ∪ Ga;
15 return < true, analysis[] >;

16 end

17 end

18 end
19 P ← P \ Ga;
20 return < false, analysis[] >;

21 End function

In Eq. 3, i indexes the successors of n, Di denotes the data set on which the i-th
node operates and Dn the data set onto which n operates. A path p is defined as
a succession of nodes that starts either at the Activity’s InitialNode or at node
n. A path p can terminate at an ActivityFinalNode or at a FlowFinalNode or
at n itself or at any other node m that receives a different inter-Activity edge.

From these definitions and from Eq. 3, we can define a lower and an upper
bound for the number of unnecessary propagations on a path p, N u

p , as in Eq. 4.

Lp ≤ N u
p ≤ (kp × Lp) (4)

In Eq. 4, N u
p is comprised between Lp, in case p is a linear path, and kp × Lp,

in case p is cyclic. By Lp, we denote the number of nodes in p that operate on
Dn.

4.4 Discussion

The CIBW algorithm can be used for the analysis of compositions of UML ADs,
regardless of the presence of a SysML BD. In practice, the presence of SysML
BDs is necessary only if ProtocolStateMachines are to be used. We developed this
algorithm to analyze the CFG of models created in TTool/DIPLODOCUS [41].
The DIPLODOCUS profile does not provide global variables and diagram ref-
erences (to support the modeling of hardware implementations); information

114 A. Enrici et al.

among tasks is passed-by-value and cannot be shared between more than two
tasks (a producer and a consumer).

Our CIBW algorithm can serve as a starting point for UML/SysML profiles
where global variables and diagram references are supported. In profiles where
the synchronous invocations of tasks is allowed, valid paths in G∗ that result
from matching invocation-return sites can be analyzed by including standard
meet over all valid paths (MVP) techniques from program analysis. Instead, in
cases where asynchronous invocations of tasks are permitted, an engineer wishing
to reuse the CIBW algorithm must provide a dedicated mechanism to handle
the unbounded set of pending asynchronous calls. Techniques such as the one
in [25] can be leveraged to this purpose.

Similarly to optimizing compilers that operate on source code, our approach
also trades off precision for efficiency, e.g., when join operations are applied in
order to reduce two abstract states to one. Model-checking techniques could
be leveraged to improve the precision of our analysis, if the set of reachable
abstract states is seen as the reachability tree that denotes the possible execu-
tions of an input application [11]. Because all reachable abstract states are stored
separately in the set of reachable states (i.e., absence of join operations between
states), model-checking techniques can automatically add path-sensitivity to the
analysis.

5 Case Study

In this section, we demonstrate the effectiveness of the CIBW algorithm on
reducing the number of unnecessary propagations of data-flow facts in CFGs,
with respect to the non-blocking case. We apply the CIBW algorithm to perform
interval analysis of UML/SysML functional views of different domains, namely
signal and image processing applications. We first demonstrate the reduction in
CFGs’ visits on single Activity diagrams. In this case, we examine UML ADs
for two different functional views of a 5G channel decoder (receiver side, uplink
SC-FDMA, single antenna case, Physical Uplink Shared channel - xPUSCH).
Subsequently, we show the reduction in data-flow facts’ propagations for the
entire super control-flow graphs (composition of multiple Activities) of a set of
testbench applications.

We create and edit functional views with TTool/DIPLODOCUS [42], a
framework for the hardware/software co-design of data-dominated systems from
UML/SysML diagrams. More precisely, TTool [41] is the name of the toolkit that
allows to create, edit and validate UML/SysML diagrams. DIPLODOCUS [8] is
the name of the profile dedicated to the hardware/software co-design of data-
flow systems. In DIPLODOCUS, concurrent Activities communicate by means
of blocking or non-blocking read/write Actions. The latter operate on logical
First-In First-Out (FIFO) buffers that can be of finite or infinite size. A read
primitive blocks on empty buffers until enough items are written to the FIFO.
A write operation suspends on a full buffer until enough items are consumed.

As previously said, from the viewpoint of the compiler optimizations, inter-
val analysis allows to automatically quantify the amount of samples that are

Static Data-Flow Analysis of UML/SysML Functional Views 115

produced and consumed by tasks in a signal/image processing applications. It
also allows to quantify a task’s internal memory consumption. These values can
be used by the compiler for memory management, e.g., to determine the size of
memory regions that can be shared among tasks.

Value analysis can also be used for other purposes. In [22], we motivated
our work with the need for early check of model-based designs of Cloud-Radio
Access Network architectures [16]. In this context, our analysis algorithm can be
applied to single models (both platform independent and dependent) for check-
ing properties against a desired set of requirements, constraints and performance
characteristics, among other criteria. Furthermore, it can be applied to automat-
ically inspect different design alternatives and assist Design Space Exploration
frameworks in determining the best spatial partitioning (mapping) and temporal
partitioning (scheduling) for a target platform. For instance, given a target plat-
form with limited memory, the CIBW analysis could determine which, among
multiple designs, is the best candidate that consumes the less memory.

5.1 The Application of the CIBW Algorithm to Individual
Activities

The block diagram of the signal-processing operations for the 5G decoder that
we consider first is shown in Fig. 2. We consider functional views that are rep-
resentative of two possible MPSoC implementations of the decoder. In both
cases, the execution of the signal-processing operations in Fig. 2 is governed by
a Controller that we modeled with a dedicated source Activity.

In the first implementation, that we call sparsely controlled each of the pro-
cessing operations in Fig. 2 is denoted with two Activities, which structure
is represented by the SysML Blocks in Fig. 2. Figure 3b shows the Activity
that captures the pure processing of data (transformation of input samples).
Figure 3a shows the Activity that captures the control related to a pure pro-
cessing Activity. In this implementation, the exchange of control information is
distributed between operations but accompanies the data dependencies between
tasks (Task EvtIn and Task EvtOut in Fig. 3a). This implementation targets

Fig. 2. The block diagram of the 5G channel decoder (a). Operations are modeled with
the SysML Blocks in (b), with data dependencies (blue Ports) and control dependencies
(brown and purple Ports) - revised from [22].

116 A. Enrici et al.

Fig. 3. The UML Activities for the sparsely controlled MPSoC implementation: the
control part (a) and the data-processing part (b).

Fig. 4. The UML Activities for the centrally controlled MPSoC implementation: the
control part (a) and the data-processing part (b) - revised from [22].

MPSoC platforms where execution units coordinate the execution of the data-
processings.

Similarly, also the second implementation, that we call centrally controlled,
captures an operation by means of two Activities interconnected by SysML
Blocks as in Fig. 2. Figure 4b shows the pure processing part and Fig. 4a
shows the control related part. Here, each operation exchanges control infor-
mation (e.g., number of samples to process) with the Controller Activity only
(Update EvtIn and Update EvtIn2 in Fig. 3a). This implementation targets
MPSoC platforms where control is centralized to a general-purpose processor.

Static Data-Flow Analysis of UML/SysML Functional Views 117

We precise to the reader that, in [22], we erroneously inverted the figures
and table entries for sparsely and centrally controlled implementations. This has
been corrected in the current section.

In these implementations, we denoted each decoder’s view with a SysML
BD containing 11 SysML Composite Block Components: 1 for each operation in
Fig. 2 as well as one Source and one Sink that respectively emit and collect sam-
ples. For each operation, we created separate Activities for managing the control
information to/from the Controller and for the processing of input/output sam-
ples. This modeling strategy allows to target MPSoC platforms where the two
Activities can be mapped to different processors. Thus, each Composite Block
Component contains 2 SysML Primitive Block Components each containing a
UML AD such as the diagrams in Figs. 3 and 4.

Evaluation. Table 1 lists statistics for the number of CFGs’ visits for single
Activities in both implementations. The numbers in Table 1 are expressed as
a function of nv that indicates the number of different values for the control
variables that are dispatched by the Controller to ADs. The parameter nv in
Table 1 corresponds to kp in Eq. 3.

In the centrally controlled implementation, applying Eq. 1 to the entries in
Table 1 results in no gain for the blocking worklist. For a control Activity (Fig. 4),
both CIBW and CINBW result in no unnecessary propagations because all vari-
ables are uninitialized and no information is propagated to the successors of
the first ReceiveObjectAction. In data-processing Activities (Fig. 4), data-flow
facts are propagated an equal number of times by both CIBW and CINBW
as no inter-Activity dependency that modifies the value of control Variables in
present.

In the sparsely controlled implementation, the Controller dispatches two dif-
ferent values for Variables size and stop, thus nv = 2. The number of prop-
agations of the CIBW algorithm for the Activities in Fig. 3 is the sum of the
propagations for the nodes (excluding nodes for control statements) outside the
loop and those inside the loop: 4 + 4nv and 2 + 2nv, respectively. The number
of unnecessary propagations for the CINBW algorithm is equal to 3 as node
Update EvtIn2(size, stop) can propagate the value of size to three succes-
sors, for a processing Activity (Fig. 3). It is equal to 1 for a control Activity as
updates on the value of size can only be propagated to Update EvtOut(size,
stop) (Fig. 3). For both types of Activities, the number of unnecessary propaga-
tions does not depend on nv because of the absence of further ReceiveObjectAc-
tions in the diagrams’ loops, other than Update EvtIn(), Update EvtIn2().

For individual control Activities, applying Eq. 1 for the case of the CIBW
algorithm yields a gain equal to 14.3%. For individual data-processing Activities,
the gain amounts to 20%.

Refined Expression of the CIBW Gain. Based on our experience, the struc-
ture of the diagrams in Figs. 3 and 4 is generic to other signal-processing appli-
cations. This allows us to fix a CFG topology and to further refine Eq. 1 in order
to analytically express a generic gain, as in Eq. 5.

118 A. Enrici et al.

Table 1. Statistics for interval analysis on the two views of the 5G decoder - revised
from [22].

Type of Activity
diagram

Nb. of CFG nodes Nb. of propagations
CIBW N bw

Nb. of propagations
CINBW N nbw

Sparsely controlled implementation

Data processing 5 5nv 13nv

Control
processing

3 3nv 3nv

Centrally controlled implementation

Data processing 9 4 + 4nv 4 + 4nv + 3

Control
processing

5 2 + 2nv 2 + 2nv + 1

g = 1 − npred + nloop × nit

npred + nloop × nit + nsucc
(5)

Here, npred is the number of predecessors of the ReceiveObjectAction, nsucc

the number of its successors, nloop denotes the number of nodes in the loop. The
values for these parameters are fixed by the CFG’s topology. The only parameter
that can vary is nit, the number of iterations. The latter is related to the number
of times that novel information must be propagated to the nodes in the loop.
The gain g as a function of nit can be studied by means of the limits in Eqs. 6
and 7.

lim
nit→0

1 − npred + ������� 0

nloop × nit

npred + ������� 0

nloop × nit + nsucc

=
nsucc

npred + nsucc
(6)

lim
nit→+∞

1 − ���� 0
npred + nloop × nit

���� 0
npred + nloop × nit + ���� 0

nsucc
= 0 (7)

In Eq. 6, the gain is dominated by the number of successor nodes nsucc that
operate on the same data sets as those received by the ReceiveObjectAction.
Because a single ReceiveObjectAction is present in the loop body, in Eqs. 5–7,
the parameters npred, nsucc account for the number of propagations at the first
iteration of the CIBW algorithm. Whereas, nloop × nit denotes the number of
propagations at successive iterations. Therefore, in this case, the CIBW reduces
the number of propagations during the first visitation only. For successive visi-
tations, the blocking mechanism is no longer more beneficial.

Instead, Eq. 7 tells us that when nodes in the loop are frequently visited, the
performance of the CIBW degenerate to that of the CINBW. This occurs when
the Controller dispatches to ReceiveObjectActions a large number of different
values for the control variables.

However, if we consider models with multiple ReceiveObjectActions in the
loop body, the blocking worklist effectively reduces the number of propagations

Static Data-Flow Analysis of UML/SysML Functional Views 119

at all visitations. Here, the gain is expressed by Eq. 8, where nsucc(r) is the
number of successors of a ReceiveObjectAction r that operate on the same data
set, Dr.

∑
r n

succ(r) is the sum of a given ReceiveObjectAction r’s successors,
over all ReceiveObjectActions. r1 is the first ReceiveObjectAction, npred

r1 is the
number of r1’s predecessors and nsucc

r1 is the number of r1’s successors.

g = 1 − npred
r1 + nit × nloop

npred
r1 + nsucc

r1 + nit × (nloop +
∑

r n
succ(r))

(8)

In this case, for a large number of visitations, g does not degenerate to zero,
Eq. 9, as opposed to Eq. 7.

lim
nit→+∞

g() = 1 − nloop

nloop +
∑

r n
succ(r)

=
∑

r n
succ

nloop +
∑

r n
succ

(9)

In Eq. 9, the term
∑

r n
succ(r) is defined by the relative position of ReceiveOb-

jectActions. It is always greater or equal than 1. This is the case of a a diagram
where the loop’s body has only 2 ReceiveObjectActions.

5.2 The Application of the CIBW Algorithm to Complete
Applications

Given an application’s supergraph G∗, the total gain is computed as the ratio
of the number of propagations for all Activities (Eq. 1). This gain depends on
the combination between the supergraph’s topology and the topology of each
task’s CFG (see previous sub-section). We applied the CIBW and CINBW to
a benchmark composed of 4 signal-processing applications (including the 5G
decoder described above) and 3 image-processing applications:

– The Welch Periodogram Detector (WPD), Fig. 6, is an energy detection algo-
rithm used for sensing the spectrum and detecting when a given frequency
band can be opportunistically used. Our model refers to the implementation
described in [6].

Fig. 5. The control-flow graph of application 5G decoder at task level of abstraction.

120 A. Enrici et al.

– The High Order Cumulants (HOC), Fig. 7, as implemented in [6], that is
used in cognitive radio by a transmitter to sense the spectrum and detect
if another user is currently transmitting in the same frequency range. The
HOC algorithm operates on segments of an input stream that are processed
to extract a score. The occupancy of a specific frequency range is determined
by accumulating scores over a given classification period and by comparing
the accumulated scores with a pre-computed threshold.

– RASTA-PLP (RelAtive SpecTrA - Perceptual Linear Prediction), Fig. 10 is
an approach used in speech processing. It is applied to Perceptual Linear
Prediction techniques to reduce the influences of a communication channel’s
frequency response.

– The Sobel filter, Fig. 9, is used in edge detection algorithms. It creates an
approximation of the image’s gradient by using intensity values in a region
around each image’s point in order to approximate the corresponding image’s
gradient.

– SUSAN (Smallest Univalue Segment Assimilating Nucleus), Fig. 8, is a noise-
filtering algorithm that preserves an image’s structure by smoothing over
those neighbors which are part of a region centered around a given pixel. It
works by taking an average over all of the pixels in the locality which lie in a
region denoted as USAN (Univalue Segment Assimilating Nucleus).

– A JPEG encoder, Fig. 11, encodes an image in the JPEG (Joint Photographic
Experts Group) format. JPEG is commonly used for lossy compression of
digital images.

In Figs. 5, 6, 7, 8, 9, 10 and 11, control dependencies among tasks are
represented by continuous edges for the sparsely-controlled implementation
and by dotted edges for the centrally-controlled implementation. In sparsely-
controlled implementations, control dependencies connect the same tasks as
data-dependencies.

Table 2 reports on the results for interval analysis on our benchmark applica-
tions. Here, the number of propagations correspond to the number of times that
new data-flow facts are propagated in the CFG. We counted these propagations
by tracking how many times line 7 in Algorithm4 is executed in both block-
ing and non-blocking visitations. For each application, the CIBW and CINBW
algorithms visited the Activities’ CFGs in the same order. Similarly, the worklist
for each Activity was created with the same ordering for CFG nodes. For each

Fig. 6. The control-flow graph of application WPD at task level of abstraction.

Static Data-Flow Analysis of UML/SysML Functional Views 121

Fig. 7. The control-flow graph of application HOC at task level of abstraction.

Fig. 8. The control-flow graph of application SUSAN at task level of abstraction.

Fig. 9. The control-flow graph of application Sobel at task level of abstraction.

Fig. 10. The control-flow graph of application RASTA-PLP at task level of abstraction.

122 A. Enrici et al.

Fig. 11. The control-flow graph of application JPEG encoder at task level of abstrac-
tion.

application, we applied the analysis on the sparsely controlled and the centrally
controlled implementations. Here, the topology of single Activities is the same
as those in Figs. 3 and 4. The Controller for each application was modeled as the
source Activity that emits the samples to process. For the sake of simplicity, we
reported results for a scenario where the Controller communicates a single value
for the variable that defines the amount of samples to process.

As showed in Table 2, on average, the Control-Flow Graphs of centrally con-
trolled implementations are larger. The reasons are twofold. First, Activities
have a larger number of operators for the exchange of control information (pur-
ple and brown nodes in Fig. 4). Secondly, in Activities such as Fig. 4b, variables’
values are analyzed in paths both outside and inside the for-loop.

The gain in terms of the number of CFG visits is, on average, smaller for
centrally controlled than sparsely controlled implementations. Regardless the
type of implementation, as expected, the number of visits with the CINBW
algorithm is larger. Due to the higher number of exchanges of control information
in centrally controlled implementations’ models, the CIBW algorithm needs more
visitations than for sparsely controlled implementations.

From the viewpoint of the compiler implementation, we did not include tech-
niques to improve the performance (execution time and memory occupation) of
the analysis algorithm, such as data-sets reclamation (i.e., re-using the mem-
ory needed to store the sets of variables’ values) or data-sets factorization (i.e.,
factorizing the memory used to allocate data sets according to the type of vari-
ables - global, local, temporary) [9]. The reason being that our model compiler
does not generate (nor analyzes) code for the algorithmic part of functionalities.
This algorithmic part is included in the output code by means of an external
library of C functions (Fig. 1). The model compiler is, instead, involved in anal-
ysis and optimizing the control part of an input application (scheduling and
memory management). The CFGs that the model compiler uses are two orders
of magnitude smaller than the CFGs of typical C programs.

Static Data-Flow Analysis of UML/SysML Functional Views 123

Table 2. Statistics for interval analysis on the CFGs of a set of benchmark applications.

Application Nb. of CFG
nodes in G∗

Nb. of
propagations
CIBW N bw

Nb. of
propagations
CINBW N nbw

Gain
1 − N bw/N nbw

Sparsely controlled implementations

5G Decoder 62 131 596 78%

WPD 38 71 185 62%

HOC 44 90 202 55%

JPEG encoder 48 99 464 78%

RASTA-PLP 58 146 846 83%

Sobel 40 79 315 75%

SUSAN 42 86 524 84%

Centrally controlled implementations

5G Decoder 84 200 632 68%

WPD 42 105 204 49%

HOC 54 132 240 45%

JPEG encoder 56 140 475 71%

RASTA-PLP 67 203 616 67%

Sobel 40 101 382 74%

SUSAN 48 117 400 71%

6 Conclusions and Future Work

In this paper we presented a framework to perform static data-flow model analy-
sis on functional views of signal-processing applications denoted by UML Activ-
ity and SysML Block diagrams. Our approach considers the functionality of both
the computations and the communication protocols that can be expressed in Pro-
tocolStateMachines associated to the Ports of SysML Blocks. We also proposed
a visiting algorithm that combines well-known iterative and worklist searches
with a blocking mechanism that considers the semantics of blocking communi-
cation primitives. We demonstrated that this mechanism can significantly reduce
the number of unnecessary visits that would result from ignoring the blocking
primitives.

We believe that many opportunities are present for future work, e.g.,
the analysis of communication protocols with more complex primitives
than blocking/non-blocking read/write operations, the introduction of model-
checking techniques to improve precision, as discussed in Sect. 4.4. In the next
paragraph, we detail the opportunity that we consider to be the most relevant
for the complete development of our optimizing model compiler.

As described in Sect. 2, among the existing solutions for the programming
of MPSoC platforms, our approach is positioned in the category of model-
based solutions. Currently, all these solutions use formal Models of Computation

124 A. Enrici et al.

(MoCs). We claimed that the richer execution semantics of UML/SysML is
advantageous because it allows a compiler to perform more aggressive opti-
mizations based on the specifications for the internal behavior of tasks. These
behaviors are absent in MoC-based formalism where tasks are seen as black-
boxes. While more limited in expressiveness, MoC-based formalism have proven
to be suited to capture system-level characteristics such as scheduling or mem-
ory consumption of an application as a whole. For this reason, we believe that
SDF and KPN could be used more effectively as compiler’s intermediate rep-
resentations rather than input formalisms for the front-end. In this scenario,
where UML/SysML are the input languages and SDF/KPN are the intermedi-
ate representations, semantics analysis is also necessary. It would ensure that
a programmer correctly describes, with UML/SysML diagrams, an application
that also matches the semantics of the intermediate representations that are
internally used by the compiler to make system-level optimizations.

References

1. Khronos OpenCL: the open standard for parallel programming of heterogeneous
systems. https://www.khronos.org/opencl

2. MathWorks Simulink. https://www.mathworks.com/products/simulink
3. Message Passing Interface (MPI). https://www.mpi-forum.org/
4. nVidia CUDA: General-purpose parallel computing architecture. https://www.

nvidia.com/cuda
5. OpenMP: API specification for parallel programming. https://www.openmp.org/
6. Spectrum and Energy efficiency through multi-band Cognitive Radio: D6.3. Report

on the implementation of selected algorithms. https://cordis.europa.eu/project/
rcn/93076/reporting/fr

7. The Go programming language. https://golang.org/
8. Apvrille, L., Muhammad, W., Ameur-Boulifa, R., Coudert, S., Pacalet, R.: A UML-

based environment for system design space exploration. In: ICECS, pp. 1272–1275
(2006)

9. Atkinson, D.C., Griswold, W.G.: Implementation techniques for efficient data-flow
analysis of large programs. In: ICSM, pp. 52–61 (2001)

10. Baldomero, J.: Message passing under MATLAB. In: HPC, pp. 73–82 (2001)
11. Beyer, D., Gulwani, S., Schmidt, D.A.: Combining model checking and data-flow

analysis. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of
Model Checking, pp. 493–540. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-10575-8 16

12. Bodden, E., Pun, V.K.I., Steffen, M., Stolz, V., Wickert, A.: Information flow
analysis for go. In: ISOLA, pp. 431–445 (2016)

13. Briand, L.C., Labiche, Y., Lin, Q.: Improving statechart testing criteria using data
flow information. In: ISSRE, pp. 104–114 (2005)

14. Charfi, A., Mraidha, C., Boulet, P.: An optimized compilation of UML state
machines. In: ISORC, pp. 172–179 (2012)

15. Charfi, A., Mraidha, C., Gérard, S., Terrier, F., Boulet, P.: Toward optimized code
generation through model-based optimization. In: DATE, pp. 1313–1316 (2010)

16. Checko, A., et al.: Cloud RAN for mobile networks - a technology overview. IEEE
Commun. Surv. Tutor. 17(1), 405–426 (2015)

https://www.khronos.org/opencl
https://www.mathworks.com/products/simulink
https://www.mpi-forum.org/
https://www.nvidia.com/cuda
https://www.nvidia.com/cuda
https://www.openmp.org/
https://cordis.europa.eu/project/rcn/93076/reporting/fr
https://cordis.europa.eu/project/rcn/93076/reporting/fr
https://golang.org/
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16

Static Data-Flow Analysis of UML/SysML Functional Views 125

17. Desnos, K., Pelcat, M., Nezan, J.F., Aridhi, S.: Distributed memory allocation
technique for synchronous dataflow graphs. In: SiPS 2016 (2016)

18. Donovan, A., Kernighan, B.: The Go Programming Language. Addison-Wesley,
Boston (2015)

19. Eclipse CDT. http://www.eclipse.org/cdt/
20. EE Times: Embedded Software Stuck at C. Technical report, November 2007
21. Enrici, A., Apvrille, L., Pacalet, R.: A UML model-driven approach to efficiently

allocate complex communication schemes. In: Dingel, J., Schulte, W., Ramos, I.,
Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 370–385.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11653-2 23

22. Enrici, A., Apvrille, L., Pacalet, R.: Efficient data-flow analysis of UML/SysML
diagrams for optimized model compilation of hardware-software systems. In: MOD-
ELSWARD, pp. 86–97 (2019)

23. Garousi, V., Briand, L.C., Labiche, Y.: Control flow analysis of UML 2.0 sequence
diagrams. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748,
pp. 160–174. Springer, Heidelberg (2005). https://doi.org/10.1007/11581741 13

24. Hoare, C.: Communicating sequential processes. Communun. ACM 21(8), 666–677
(1978)

25. Jhala, R., Majumdar, R.: Interprocedural analysis of asynchronous programs. In:
POPL, pp. 339–350 (2007)

26. Jones, G., Goldsmith, M.: Programming in Occam2. Prentice-Hall International,
Upper Saddle River (1988)

27. Kahn, G.: The semantics of a simple language for parallel programming. In: IFIP
Congress, pp. 471–475 (1974)

28. Kepner, J.: MatlabMPI. J. Parallel Distrib. Comput. 64(8), 997–1005 (2004)
29. Kim, Y.G., Hong, H.S., Bae, D.H., Cha, S.D.: Test cases generation from UML

state diagrams. IEE Proc.-Softw. 146(4), 187–192 (1999)
30. Kwon, S., Kim, Y., Jeun, W., Ha, S., Paek, Y.: A retargetable parallel programming

framework for MPSoC. TODAES 13(39), 39:1–39:18 (2008)
31. Lee, E.A., Parks, T.M.: Dataflow process network. Proc. IEEE 83(5), 1235–1245

(1995)
32. Leupers, R., Aguilar, M.A., Eusse, J.F., Castrillon, J., Sheng, W.: MAPS: a soft-

ware development environment for embedded multicore applications. In: Ha, S.,
Teich, J. (eds.) Handbook of Hardware/Software Codesign, pp. 917–949. Springer,
Dordrecht (2017). https://doi.org/10.1007/978-94-017-7267-9 2

33. Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Archi-
tectures. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

34. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (2010)

35. Park, H., Oh, H., Ha, S.: Multiprocessor SoC design methods and tools. IEEE Sig.
Process. Mag. 26(6), 72–79 (2009)

36. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL, pp. 49–61 (1995)

37. Saad, C., Bauer, B.: Data-flow based model analysis and its applications. In: Mor-
eira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS,
vol. 8107, pp. 707–723. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-41533-3 43

38. Schmidt, D.C.: Model-driven engineering. IEEE Comput. 39(2), 25–31 (2006)
39. Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25

(2003)

http://www.eclipse.org/cdt/
https://doi.org/10.1007/978-3-319-11653-2_23
https://doi.org/10.1007/11581741_13
https://doi.org/10.1007/978-94-017-7267-9_2
https://doi.org/10.1007/978-3-642-41533-3_43
https://doi.org/10.1007/978-3-642-41533-3_43

126 A. Enrici et al.

40. Torczon, L., Cooper, K.: Engineering a Compiler, 2nd edn. Morgan Kaufmann
Publishers Inc., San Francisco (2007)

41. TTool (2006). http://ttool.telecom-paristech.fr
42. TTool/DIPLODOCUS (2006). http://ttool.telecom-paristech.fr/diplodocus.html
43. VERIMAG: IF: Intermediate Format and Verification Tool set (2018). http://

www-verimag.imag.fr/article58.html?lang=en
44. Waheed, T., Iqbal, M.Z.Z., Malik, Z.I.: Data flow analysis of UML action semantics

for executable models. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008.
LNCS, vol. 5095, pp. 79–93. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-69100-6 6

http://ttool.telecom-paristech.fr
http://ttool.telecom-paristech.fr/diplodocus.html
http://www-verimag.imag.fr/article58.html?lang=en
http://www-verimag.imag.fr/article58.html?lang=en
https://doi.org/10.1007/978-3-540-69100-6_6
https://doi.org/10.1007/978-3-540-69100-6_6

Umple-TL: A Model-Oriented,
Dependency-Free Text Emission Tool

Mahmoud Husseini Orabi(&) , Ahmed Husseini Orabi(&) ,
and Timothy C. Lethbridge(&)

School of Electrical Engineering and Computer Science,
University of Ottawa, 800 King Edward Avenue, Ottawa, Canada

{mhuss092,ahuss045,timothy.lethbridge}@uottawa.ca

Abstract. We describe the text-emission templating capabilities of Umple
(Umple-TL) and compare this Umple feature to other technologies for text
generation. Umple, which is written in itself, combines modeling synergistically
with programming in languages like Java and C++. Umple-TL further builds on
these synergies. With the use of Umple-TL, we eliminated dependencies on
third-party libraries for text emission. We demonstrate how Umple-TL attains
benefits such as smaller and faster executables, target-language independence
and IDE independence. We compare Umple-TL and other text emission tools in
order to show how Umple-TL can overcome many of the challenges a tool can
face. The word ‘template’ in this paper refers to patterns for the generation of
output, and not to generic types, another common use of the term.

Keywords: Umple � Umple-TL � Templates � Text emission

1 Introduction

Umple is a textual model-oriented programming language that supports code genera-
tion for different target languages such as Java, C++, PHP, and Ruby [1]. The master
code is written in Umple syntax, which insulates the developer from ever having to see
generated code. Users can also inject additional target-language code directly into the
textual model.

A key objective of Umple is to make software development simpler by adding
modelling and other constructs to base languages. This also includes the core features
of UML such as state machines, composite structure, and associations [1, 2].

In this paper, we show how we extended Umple with a text-generation-templating
sub-language we call Umple-TL. The word ‘template’ here refers to patterns of text to
output, not to generic types, which is another use of the term ‘template’ in program-
ming languages. In this paper, we explain Umple-TL in detail and compare it to other
text-generation technologies.

Languages such as PHP were designed with generation of textual output as their
motivating use case. But languages such as Java do not come with built-in template
mechanisms and rely on verbose method calls to generate text.

There are a wide variety of contexts where generating formatted textual content is
an essential requirement: These include generation of data formats such as XML and

© Springer Nature Switzerland AG 2020
S. Hammoudi et al. (Eds.): MODELSWARD 2019, CCIS 1161, pp. 127–155, 2020.
https://doi.org/10.1007/978-3-030-37873-8_6

http://orcid.org/0000-0003-3747-3998
http://orcid.org/0000-0003-4626-8750
http://orcid.org/0000-0001-9410-2056
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37873-8_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37873-8_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37873-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-37873-8_6

html, generation of modelling and programming language code (in metaprogramming
and code generation), generation of messages for inter-process communication, and
generation of user interfaces.

Templates are just one of many abstractions that have been added to Umple as a
necessary step to achieve Umple’s overall goals. Our intent is to obtain synergies by
combining templates with modelling in an easy-to-use language.

A distinguishing feature of Umple-TL is that it supports template development for
multiple target languages, allowing reuse of templates across such languages.

In Sects. 4 and 5, we explain how Umple as a template language (Umple-TL) is
used. The examples shown in this paper can be instantly run in the UmpleOnline online
editor (try.umple.org), the Umple Eclipse plugin or the Umple command line compiler.

This paper is a significant extension of the our previous MODELSWARD con-
ference paper [3] providing much greater detail, additional case studies, and more
evaluation. Specifically, in Sect. 3, we discuss common challenges that the developers
of text emission tool can face. In Sects. 4 through 6 we show more examples of using
Umple-TL. In Sect. 8, we discuss how Umple overcomes the challenges presented in
Sect. 3, and we also show a comparison between Umple-TL and other common text
emission tools.

2 Other Text Emission Tools

There are many text emission tools available to developers. These include Java Emitter
Templates (JET), Apache Velocity, Acceleo, Epsilon Generation Language (EGL),
Xpand, and Xtend. Later in the paper we compare Umple-TL to these tools. Here we
provide an overview of the capabilities of the tools.

JET, now deprecated, was one of the most commonly-used Eclipse-based textual
generation tools due to its ease of use and straightforwardness. A developer needed to
create a Java project containing the JET nature. JET has a JSP-like syntax, in which a
skeleton template was used to customize text emission. JET did not provide a direct
way to define rules that relate different JET files. It reduced the complexity of text
emission by using a single parameter-less emitter method. However, this forced
additional configuration, Eclipse dependencies, and code development restrictions.

Velocity template engine (VTL) is an Apache Velocity project [4] that aims to
provide generation units based on a model-view-controller (MVC) pattern. It depends
on third-party runtime libraries to generate the outputs of the VM files. As a result, a
Velocity configuration as well as the VM files must be a part of the product release.

Acceleo (or MTL) is an Eclipse project that enables UML modelling with code
generation support. It follows the Object Management Group (OMG) specifications for
the model to text language (MTL) standard. Acceleo requires additional Eclipse
libraries such as EMF and Ecore, and it requires experience with these to use it.
A model can have a hierarchical representation in order to define and associate the
generation units, as well as the parameters and items required to generate the content of
template files; i.e. Model Template (MT).

128 M. Husseini Orabi et al.

Similarly, Xtend is an Eclipse-based project. It was initially released as a part of the
Xtext project [5] but then became a standalone Eclipse project. Xtend is intended to
replace Xpand. Xtend tries to improve the Java programming language by introducing
additional capabilities and major features such as functional programming, text emis-
sion, operator overloading, and dynamic typing. Such features are influenced by many
languages and projects such as Scala and Xpand. Similarly to Velocity, Xtend is
restricted to Java applications only and requires a runtime library.

Epsilon generation language (EGL) is an Eclipse project that provides several code
generation options such as text emission. A model is used to manage the content of a
generation process similarly to Acceleo. However, Epsilon has an advantage over
Acceleo in that it does not have specific restrictions on certain model types. The
Epsilon model connectivity (EMC) layer is used to enforce a model-driven paradigm
by associating metamodels of several types such as EMF or XML. Epsilon script
provides features such as expression statements, polymorphism and annotations.
However, such capabilities are dependent on a runtime library, similarly to Velocity
and Xtend.

3 Challenges

Designing a text emission tool gives rise to various challenges. Some of the most
important are listed in this section, based on what we faced during the development of
Umple-TL. These can be seen as requirements for an ideal text emission tool.

3.1 Challenges Relating to the Source Language

The first group of challenges is requirements for the source language that the developer
uses to describe the sort of output to be emitted (Box 1 in Fig. 1).

Fig. 1. The process of text emission [3].

Umple-TL: A Model-Oriented, Dependency-Free Text Emission Tool 129

Constraints and Emission Flow. A text emission tool must provide a way to help a
developer specify constraints and other forms of execution control in their source files;
these will determine how or when target strings will be generated. For example, in
C++, the keyword “friend” is reserved; a tool should give a way for developers to set
constraints to prevent having this keyword appear improperly in the generated target
C++ files. Later in the chapter when discussing this requirement, we will show that
Umple-TL has an ability to specify arbitrary control constructs that can serve as
constraints; Umple also has a built-in OCL-like constraint mechanism that injects
preconditions and postconditions into any method. Together these can be used to
ensure detect issues that may result in malformed target files or runtime string output’.

Transformation Rules. A tool should ideally support rule-based transformation
across different schemas. Based on rules specified in the source language, it should be
possible to alter the string outputs without the need for a lot of rework to the source.
For example, it should be easy in the source to direct the target to switch between
generating XML and Json output.

3.2 Challenges Relating to Both Source and Target

The second group of challenges relate to both the source and target language.

Representation Consistency. The source and generated target files must have a
consistent hierarchical representation.

Target Code Efficiency. A generated target file is expected to be efficient, i.e. it must
avoid issues such as unnecessary loops or redundant string manipulations.

Target Code Readability. The generated target code must be properly represented
using appropriate spacing, indentation, variable naming and so on. Altering the gen-
erated output is something that must be avoided for the same reasons programmers do
not modify compiler output. However, for reasons such as debugging and certification,
it may be necessary to read the target code, so it must be readable. Also, not all
generated output will be ‘code’.

File Structure Management. At both source and target levels, there may be many
files of different types; the file structure used, even in the same tool, can differ between
the source and target files. For example, a source file can have an extension tailored for
a text emission tool, while the target file can have another extension such as Java class
or even two extensions as would be the case in C++.

Reusability. When required, a source or generated target file should be reusable by
other source or target files. The challenges in that case are mostly related to how the
generated target files can be linked together. For example, while a user is developing a
source file and they want to reuse another source file, they should not need to think
about how this reusability will be enforced at the level of the target files. Such
enforcement must be taken care of by the text emission tool.

130 M. Husseini Orabi et al.

Pattern Support. There is a gap between the source and target files. The main
challenge is related to how to enforce the same level of abstraction or transfer patterns
between the levels. For example, a user while developing source files can follow
patterns such as facade or builder; the target files must follow the same pattern.

Comment Support. A tool must provide a way to add comments to the source file,
and have them transferred to the target file. In particular, the tool might need to
generate comments in the target file to allow traceability back to the source file.
Comments in the source files are valuable for maintainability, reusability and all other
well-known reasons for commenting source. Comments in the target files are helpful
for debugging or investigation purposes.

Debugging Support. Debugging ought to be facilitated at the level of source files.
When issues occur in generation of target files or runtime generation, the developer
ought to be provided with information pointing back to the relevant points in the
source. The best approach is to allow full debugging or tracing at the source level, so
the developer never has to see the target files. But if this is not fully supported, then
when running a debugger on the target files, the developer should be easily pointed
back to the source files.

Additional Flexibility Aspects. Sophisticated tools provide several options that help
users to handle the content to be emitted; examples include allowing multiple text
emission methods and unlimited size of target code and runtime strings. Reusability,
which we referred to above, is one aspect of flexibility. Flexibility can also be increased
if a tool can incorporate target language expressions; this will be explained later in this
section. Some tools may put many restrictions on how text content is emitted. Other
tools may have limited solutions, such as the number of emitting methods; this causes
the development time to be increased in order to cope with such limitations.

3.3 Challenges Relating to Text Generation

The third group of challenges relates to the string output generated by the target code
(i.e. the text generated by the generated generator).

Consistency of Text Formatting. Generation output must be consistent. In this
context, we are referring to consistent output regardless of the inputs or applied con-
straints used. For example, whitespace such as for indentation at the start of lines ought
to appear consistently across all output (something not available in many tools). A text
emission tool hence ought to provide a way for a user to define whitespace formatting.

Content Protection. This refers to preventing end users of the generated systems
(Box 4 in Fig. 1), from accessing the content of text to be emitted. Failing to protect
emitable text content can pose major security or privacy issues.

Umple-TL: A Model-Oriented, Dependency-Free Text Emission Tool 131

3.4 Modelling Support in Text Generation Technology

The fourth group of challenges relates to modelling support.

Modelling Support. Use of abstract models to represent the source and target lan-
guages as well as data in the runtime system can facilitate text emission. Basing
emission on models is one of the code generation approaches on which we focus.

Input Model Restrictions. A model-based tool usually enforces certain types of
models, metamodels, or schemas. This will require tool users to work with the model
types that this tool supports. For example, several tools require the use of the Eclipse
Modelling Framework (EMF). In addition, obviously, any limitations that may exist in
the supported models will also appear in the text emission tool. Some tools such as
Epsilon Generation Language (EGL), can overcome such issues by allowing users to
select different types of models [6].

3.5 Additional Challenges

Additional challenges can appear based on the tool used; this is what the fifth group
focuses on.

Workflow Complexity. Many tools give a large number of options to the developers
to handle code generation but unfortunately, this may cause workflow complexity to be
increased. For instance, a user may be required to use different editors and wizards,
switch back and forth among different types of files, and propagate updates across
different places.

IDE Dependencies. This is a part of the workflow complexity mentioned above. Some
tools require developers to use a specific IDE. This poses problems in several contexts:
the user may happen to have selected a different IDE, or needs to run the tool outside an
IDE (e.g. in a scripting language), Or the user may want to use the tool in a very simple
manner, but would be forced to set up the tool in the IDE to get any work done. Many
tools only run in Eclipse; an ideal tool should easily run both inside and outside
Eclipse.

Third-Party Library Independence. This means that a tool only requires integration
in the development environment. The tool should not have to be integrated into a
released product (Box 4 in Fig. 1). For example when using Velocity [4] the Velocity
Engine has to be incorporated into the built final product, which can result in problems
as Velocity changes over time, and also results in increased system size.

Target Language Restrictions. A tool may require developers to be familiar with
specific languages such as Java. This can be considered a part of workflow complexity,
since users will need to learn how to use the language imposed by a tool. An ideal tool
would be able to work with several different programming languages.

132 M. Husseini Orabi et al.

Structural Complexity. This is also a part of workflow complexity. The structural
complexity of some sophisticated tools can be high due to requiring users to deal with
several types of files; this can be the case even for very simple text output. For instance,
a developer may be required first to write a metamodel file. Second, the developer may
need to write a model. Third, they might need to write a template file that uses the
model in order to specify text content to be emitted. Finally, the developer may need to
write configuration and launch files in order to produce results.

Syntax Complexity. Typically, a tool has its own script or language. The syntax
complexity of a script or language of a tool obviously causes the complexity of a tool to
be increased in general. Syntax complexity may increase as well when users are asked
to be familiar with specific metamodels or schemas.

Target Language Expressions. The script or language of tool is not necessarily
expected to be as sophisticated as commonly used target programming languages such
as Java and C++; otherwise, this will appear as reinventing the wheel. At least the basic
features of a target language must be supported such as variable declaration. While
using a tool to emit text content, a user may need to use target language expressions in
order to handle the content dynamically. However, relying on a tool’s language or
script to handle expressions may have limitations. For instance, a tool may support
“for” loops but not “while” loops. As a solution, it could be a good idea if a tool allows
users to write expressions using target language sntax. For instance, if a target language
is Java, then a user should be able to write expressions in Java. However, users will still
need to use the language provided by the tool.

4 Main Concepts of Umple-TL

Umple-TL provides synergies because it blends UML constructs and templates con-
structs (Fig. 2). Umple-TL’s text emission API is language independent and supports
multi-target blocks, i.e. blocks that can contain C++ and Java simultaneously.

Model-based Template-based Umple-TL

Fig. 2. Types of text emission.

Umple-TL: A Model-Oriented, Dependency-Free Text Emission Tool 133

The core elements of Umple-TL are as below:

Umple Source Text: This is the master code of the system under development. It
includes templates, model constructs, and methods written in the syntax of the selected
target language; i.e. C++, Java, and so on. Umple-TL is used to generate text from
templates, which are defined as a part of the source model (text). The Umple compiler
processes the source text to produce the entities below.

Compiled (Generated) Code: This is generated by the Umple compiler in a target
language. It is intended to be ignored by the programmer and should be treated like
bytecode or object code from a compiler. This is executed to produce the following.

Runtime Output Text: This is emitted when the compiled code is executed. It could
be any type of text, including error messages, html, and so on. If the Umple source text
describes a compiler, then the runtime output would be code itself. This is the case with
Umple, which compiles itself. A key motivation for Umple-TL to make it easier for
Umple to develop its own code generators [7].

The two key elements in Umple-TL source text are templates themselves and
emitter methods.

• Templates: These describe the runtime output text to be generated. A template is a
specialized Umple attribute with a unique label and a body defined within a block
delimited by �! and !�. Table 1 describes the blocks that can be nested inside the
outer delimiters.

• Emitter methods: These are invoked to create outputs based on one or more tem-
plates. The keyword ‘emit’ is used to indicate these (Snippet 1 – Line 3).

An Umple-TL template is an attribute meaning that it follows the same restrictions
an attribute has. For instance, a name cannot start with a number, nor have the same
name as any other attribute or template.

In a similar manner, an emitter method is a specialized Umple method, meaning
that it must follow the naming conventions imposed on normal Umple methods.
Arguments to the emitter method are referred to in expression and code blocks.

A template class must at least have one emitter method or template. Emitter
methods are required since they enable passing of arguments to templates, and com-
posing multiple templates

4.1 Usage of the Various Blocks

Snippet 1 shows a simple template labelled as t1 (Line 2) that is used by emitter
method, e1 (Line 3) that has no arguments. An emitter method is similar to any regular
method that can be called from any part of the system; this also includes the expression
blocks of other templates. In order to improve usability, parentheses are optional when
no parameters are defined similarly to languages such as Scala (Snippet 6 – Line 4).

134 M. Husseini Orabi et al.

1
2
3
4

class TemplateTest1{ Umple
t1 <<! My Template !>>
emit e1()(t1);

}

Snippet 1. A simple Umple-TL example.

(Line 2 - Snippet 2) demonstrates the use of a code block delineated by �# and
#�. The code in the block can be in any target language that Umple supports; i.e. Java
and C++. We use Java in the examples in this paper use Java. An Umple developer
must write valid code according to the target language’s syntax.

1
2
3
4
5

class TemplateTest2{ Umple
t2a <<!<<#if(b)#>>This will be output if b is true !>>
t2b <<! … and this will always be output !>>
emit e2(Boolean b)(t2a, t2b);

}

Snippet 2. Umple-TL example illustrating a code block and multiple templates.

(Lines 4 - Snippet 2) also shows an emitter method e2() that has an argument, b,
referred to in template t2a (Line 2). The emitter method also demonstrates emission of
two templates.

Table 1. A summary of the syntax for the blocks used to write templates in Umple-TL.

Block
type

Description

�! {b}
!�

Top Level: Defines the start and end of a template body. The {b} represents
arbitrary text to output, with any of the following nested within

�={e} � Expression: Computes strings to be inserted into the text. The {e} represents any
expression in the target language that returns a string, such as a variable or method
invocation

�# {c}
#�

Code: Code in the target language to define logical conditions (e.g. to make
output of parts of the template optional) and loops. The content of code blocks is
not appended to the runtime output text, but instead appears in the compiled code

�/* */� Comment:Material not added to the runtime output, but which does appear in the
compiled code. Comments could also be placed in code blocks, but using
comment blocks requires less nesting

�$ � Exact space: Specifies whitespace that will appear at the beginning of every line
in the runtime output text

Umple-TL: A Model-Oriented, Dependency-Free Text Emission Tool 135

There are two variables string1 (Line 2) and string2 (Line 3) in Snippet 3. Umple
creates a getter method for any public attribute; i.e. getString1() and getString2 (Lines 5
and 6). Snippet 2 has two expression blocks. The first uses the getString1(), and the
second directly appends the value of string2.

1
2
3
4
5
6
7

class TemplateTest3{ Umple
String string1;
String string2;

t3<<! String1=<<=getString1()>>; String2= <<=string2>>!>>
emit generate1()(t3);

}

Snippet 3. Using assign statements in Umple-TL.

A developer can use a combination of expression and code blocks. Snippet 4 has an
expression block where a for loop is used to emit parts of the content of the template
block. The number of times is indicated by the argument iterations. Snippet 4 also has a
comment block (Line 3).

1
2
3
4
5
6
7
8
9

class TemplateTest4{ Umple
t4 <<!

<</* Use iterations to control output*/>>
<<# for(int index=0;

index<iterations; index++){#>>
Iteration <<=index>>;<<#

}#>>!>>
emit generate1(int iterations)(t4);

}

Snippet 4. An Umple-TL example using expression and code blocks.

By default, whitespace in a template is preserved in the runtime output. However, a
user may need to generate different indentation, such whitespace at the start of lines, in
different contexts. It can also be used to make the emitted code readable.

To control the indentation in runtime output, the developer can write an exact space
block. This will fix the indentation of its contents no matter how that output is gen-
erated (e.g. from an expression, variable, or plain text).

Snippet 5 has two templates, internalTemplate and t5. t5 internally invokes gen-
erated emitter method internalGenerate() using exact space markers (Line 2). There are
four whitespaces after the �$, which means that they will appear in all lines of the
runtime output. Alternatively, a developer can pass he number of indentations when
calling the method generate().

136 M. Husseini Orabi et al.

1
2
3
4
5
6
7

class TemplateTest5{ Umple
t5 <<!<<$ internalGenerate()>>,!>>
internalTemplate<<!Some content!>>

emit generate()(t5);
private emit internalGenerate()(internalTemplate);

}

Snippet 5. An example of exact space handling.

4.2 Emitter Methods

An emitter method’s name can be followed by two sets of parentheses. In such a case,
the first is used to list the arguments, and the second is used to list the templates to emit.

A developer needs to list the templates to be used for text emission in an emitter
method (Snippet 6). A generated emitter method will output the content of all of the
referenced templates according to their defined order.

If there is just one set of parentheses, then it refers to the list of templates with the
assumption that the method has no arguments.

The visibility of an emitter method is public by default (Snippet 6 – Line 4). Thus,
adding the public keyword to an emitter method will not make a difference in visibility
(Line 3).

1
2
3
4
5

class TemplateTest{ Umple
t6 <<! My Template !>>
public static emit generate1()(t6);
emit generate2(t6);

}

Snippet 6. Emitter method examples.

Snippet 7 shows an example of an emitter method that outputs three templates.
(Snippet 8 - Line 9) shows a private emitter method internalGenerate(), which

means that it can only be called internally (Line 3).

1
2
3
4
5
6
7

class TemplateTest{ Umple
t7a <<!Content1!>>
t7b <<!Content2!>>
t7d <<!Content3!>>

emit generate1()(t7a, t7b, t7c);
}

Snippet 7. Multiple references to templates in an emitter method

Umple-TL: A Model-Oriented, Dependency-Free Text Emission Tool 137

1
2
3
4
5
6
7

class TemplateTest{ Umple
internalTemplate<<! Some content !>>
t8<<!<<=internalGenerate()>>!>>

emit generate()(t8);
private emit internalGenerate()(internalTemplate);

}

Snippet 8. An internal invocation of an emitter method

The basic distinction between an emitter method and template, is that an emitter
method is used to utilize a template or a group of templates, and to define other features
such as formatting. In order to improve usability in the future, we need to generate a
default emitter method for each template, so users can directly define templates without
needing to define emitter methods if there is no special logic behind using these
templates.

5 UML Constructs and Generation Templates

Umple-TL can use the UML modelling, separation-of-concerns and template features
of Umple in a synergistic way. Umple UML modelling constructs include associations,
state machine, and composite structure. Separation of concerns features include mixins,
traits and aspects [8]. This synergy is one of the key contributions of our work. In this
section, we will focus on using templates with state machines.

Snippet 9 shows an Umple model that displays course information based on the
number of the registered students. Each student has a name and id, while a course has a
name and description. There is an association between a course and students (Line 4),
so that a course can have zero or more students and a student may or may not be in a
course.

A course has four statuses, Opened (Line 25), Registered (Line 38), Withdrawn
(Line 45), and Closed (Line 46). The template information changes based on the status.
If a course status is Opened, all information including fees will be displayed; otherwise,
it will not. The description and number of students are displayed regardless of the
course status. If a course is in the Registered status, information such as last day to
withdraw is shown.

Figure 3 shows the state machine defined in Snippet 9. The logic of the state
machine is given textually in Lines 24–48.

138 M. Husseini Orabi et al.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

class Course { Umple
String name;
String description;
0..1 -- * Student student;

 cr <<!
!>>

 courseInfo <<!
 Course: <<=getName()>>
 Description: <<=getDescription()>>

Number of registered students: <<=numberOfStudent()>>
<<# switch(getStatus()) {#>><<# case Opened:#>>
<<# switch(getStatusOpened()) {#>><<# case

 WithoutLateRegistrationFees:#>>
 Last day to register without late fees <<=d1>>

<<# case WithLateRegistrationFees :#>>
 Last day to register with late fees <<=d2>>
 <<# } #>>

<<# case Registered:#>>
 Last day to withdraw from a course <<=d2>>
 <<# } #>>

!>>

status{
 Opened {

register -> Registered;
close -> Closed;

 WithoutLateRegistrationFees {
register -> Registered;

deadLinePassed -> WithLateRegistrationFees;
}

 WithLateRegistrationFees {
register -> Registered;
deadLinePassed -> Closed;

}
}

 Registered {
requestToWithdrow -> Withdrawn;

 LastDayToWithdraw {
requestToWithdrow -> Withdrawn;
deadLinePassed -> Closed;

}
}

 Withdrawn { }
Closed {

open -> Opened;
}

}

emit printCourseInfo(String d1, String d2,
String, d3)(courseInfo, cr);

}

class Student{
String name;
Integer id;

}

Snippet 9. An example of using UML constructs to develop templates.

Umple-TL: A Model-Oriented, Dependency-Free Text Emission Tool 139

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Student student1 = new Student("Name1", 1234); Java
Student student2 = new Student("Name2", 432);
String d1=”JA 1”; String d2=”FE 1”; String d3=”AP 1”;

Course course = new Course("Course1", "This is a course");
course.addStudent(student1);
course.addStudent(student2);

System.out.println(course.printCourseInfo(d1,d2,d3));
//Course: Course1
//Description: This is a course
//Number of registered students: 2
//Last day to register without late registration fees JA 1
//Last day to register with late registration fees FE 1
//Last day to withdraw from a course AP 1

course.close();
System.out.println(course.printCourseInfo(d1,d2,d3));
//Course: Course1
//Description: This is a course
//Number of registered students: 2

course.open();
System.out.println(course.printCourseInfo(d1,d2,d3));
//Course: Course1
//Description: This is a course
//Number of registered students: 2
//Last day to register without late registration fees JA 1
//Last day to register with late registration fees FE 1
//Last day to withdraw from a course AP 1

course.register();
System.out.println(course.printCourseInfo(d1,d2,d3));
//Course: Course1
//Description: This is a course
//Number of registered students: 2
//Last day to withdraw from a course AP 1

Snippet 10. An invocation example of Snippet 9.

Snippet 10 shows output of the generated code of Snippet 9 in green as lines of
comments. In Snippet 10, there are two students; both are added to a course. A course
status is Opened by default. The first information printed is full course information,
given that the course status is Opened. The output is shown in Lines 10–15.

In Line 17, the status of the course switches to Closed. The output in that case
(Lines 19–21) only shows the basic information about the course, as well as its reg-
istered students.

The status switches back to Opened (Snippet 10 - Line 23). The output is in Lines
25–30, which is identical to the Lines 10–14.

Finally, the status changes to Registered (In Line 31), which is similar to the Closed
state, but additionally shows the last day to withdraw (Lines 34–37).

140 M. Husseini Orabi et al.

5.1 Declarative Examples

In this section, we show three Umple-TL examples for HTML page generation. The
first example (Snippet 11) is more specific, and hence requires a few lines to execute
(Snippet 12). The second example (Snippet 13) is more generic, so it can support
dynamic table generation, but will require more lines of code to define custom tables
(Snippet 14). The last example (Snippet 15) shows the user of traits and aspect-
orientation in Umple.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

class HtmlTemplate { Umple
htmlTemplate <<!

<html>
<body>

<table>
<<# for (String name: names) {#>>

<tr>
<td>

<<=name>>
</td>

</tr>
<<#}#>>
</table>

</body>
 </html>

!>>

emit printHTML(List<String> names)(htmlTemplate);
}

Snippet 11. HTML template generation (1).

1
2
3

System.out.println(new HtmlTemplate().printHTML(Arrays.asList(new
String[]{"Row1", "Row2", "Row3"});));

Java

Snippet 12. An invocation example of Snippet 11.

Fig. 3. The state machine diagram of Snippet 9—generated automatically by Umple [3].

Umple-TL: A Model-Oriented, Dependency-Free Text Emission Tool 141

In Snippet 13, HtmlNode has two attributes, tag and content. The tag attribute is a
valid html tag such as html or body, while the content is optional with an empty value
by default; it refers to the text content of an html node.

There is an association attribute, children (Line 5). Associations are one of the key
features that Umple provides. Umple provides all different types and variations of
associations. In (Snippet 13 - Line 5), the type of association used is optional unbound
self-reflexive; this means that it refers to an unlimited number of children of the same
class, HtmlNode (or its subclasses). In addition, this list of children can be empty,
which means that it is fine for an HtmlNode to have an empty list of children.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

class HtmlNode{ Umple
String tag;

 String content= "";

0..1--* HtmlNode children;

nested <<!<<#for(HtmlNode node: children) {
#>><<=node.generate()>><<#

 }#>>!>>

print <<!<<<=tag>>>
<<=content>><<=nestedPrint()>>
</<<=tag>>>!>>

emit generate()(print);
private emit nestedPrint()(nested);

}

Snippet 13. HTML template generation (2).

There are two emitter methods for two templates, print and nested. The print
template is the main template that is used to print out the content of an HtmlNode
instance. The content of an HtmlNode instance includes the nested content of its
children in nested ways. The nested template loops the child list of an HtmlNode
instance. A child node itself can have a list of children. This continues recursively until
a node does not have any children.

Snippet 14 shows how the model written in Snippet 13 can be used to print out
similar content to Snippet 11.

5.2 Traits and Aspect Orientation

Some tools such as JET [9] can help developers easily write template skeletons, which
will contain sharable text content across all generated files; a typical use might be to
inject a copyright statement in each file. However, the generated files do not necessarily
require sharing all text content. In such a case, developers will need to write additional
skeletons causing development to be more complicated than necessary. Other
commonly-known text emission tools such as Epsilon Generation Language
(EGL) [10] and Xtend [5] may require developers to bureaucratically add copyright
statements to all template files.

142 M. Husseini Orabi et al.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

HtmlNode html = new HtmlNode("html"); Java
HtmlNode body = new HtmlNode("body");
html.addChild(body);

HtmlNode table = new HtmlNode("table");
body.addChild(table);

for (String label : Arrays.asList(new String[] {
"Row1", "Row2", "Row3" })) {
HtmlNode row = new HtmlNode("tr");
table.addChild(row);

HtmlNode tableData = new HtmlNode("td");
tableData.setContent(label);
row.addChild(tableData);

}

System.out.println(html.generate());

Snippet 14. An invocation example of Snippet 13.

This dilemma mentioned above can be overcome by using the aspect-oriented
features Umple provides. Aspect-orientation can be used in conjunction with the trait
feature of Umple [11]. Traits allow developers to create external partial definitions that
can be used by other classes. In other words, a trait contains attribute and method
definition similarly to classes; when a class uses a trait type, the attributes and methods
of this trait are mixed into that class.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

class Helper { Umple
 copyright <<//Some copyright>>;

static emit copytightEmit()(copyright);
}

trait Extension {
before generate* {

 Helper._copyrightEmit(0, sb);
}

}

class Template {
isA Extension;

 myContent1 <<! Some content1 !>>
 myContent2 <<! Some content2 !>>

 emit generate1()(myContent1);
 emit generate2()(myContent2);
}

Snippet 15. An example encompassing the features of aspect-orientation, traits, and templates.

Snippet 15 shows an example that defines two classes named Helper and Template
in addition to a trait named Extension. Helper has an emitter method used statically to
add a copyright statement. The template has two emitter methods, generate1, and

Umple-TL: A Model-Oriented, Dependency-Free Text Emission Tool 143

generate2; both emitter methods add different template content. As well, Template is a
type of the Extension trait. When the Extension trait is used as a part of a class, its
definitions will be mixed into that class.

According to Line 7 in Snippet 15, Extension looks for all methods starting with the
word “generate”, using the wildcard symbol “*”. This means that for the case of
Template, there will be two matches for generate1 and generate2. According to Line 8,
for each match, a call to the static helper method, copyrightEmit will be made. This call
will be put at the very beginning of the method body of each emitter method in
Extension.

Snippet 16 shows a portion of the code added at the beginning of each generated
emitter method of Template. This means that a copyright statement will be added
before each emitter method.

1
2
3
4
5
6
7
8
9

public StringBuilder _generate1(Integer numSpaces, Java
StringBuilder sb) {

 Helper._copyRightEmit(0, sb);
....

}

public StringBuilder _generate2(Integer numSpaces,
 StringBuilder sb) {
 Helper._copyRightEmit(0, sb);

....
}

Snippet 16. An example of a generated Java code using aspect-orientation, trait, and template
features.

From the example above, we can see the benefits of using the Umple features of
aspect-orientation and traits to alter the behavior of templates in an easy way. These
Umple features maintain the Umple straightforwardness of having a single artifact
model, while applying additional behavior.

6 Demonstration of Practical Value

We use three approaches to evaluate our work. First, we demonstrate the value of our
work in practice in this section. Second, we demonstrate the use of concrete metrics.
Third, we show a comparison between Umple and other text emission tools based on
the key challenges we listed in Sect. 3.

A practical demonstration of using Umple-TL is that the Umple compiler is written
in Umple, with all artifact generation (diagram DSLs, Java, C++, Ruby, PHP, XML
interchange data, etc.) using Umple-TL.

Before UmpleTL, the Umple compiler had used JET [9] to emit the text of gen-
erated artifacts [12]. However, JET was deprecated, and we faced limits on its capacity
(maximum size of strings). For JET replacement, we considered a variety of solutions,
including Eclipse tools such as Acceleo [13]. However, that would have tied Umple to
both Eclipse and Acceleo; it would also have added a lot of complexity for developers.
We wanted a very simple solution, hence we developed Umple-TL to fit synergistically

144 M. Husseini Orabi et al.

with other Umple features while at the same time making template generation available
for all Umple-developed applications.

After Umple-TL, a tool was developed to automatically transform all templates
written in JET into Umple-TL [12]. This tool was applied to the Umple compiler and
various other projects, with translation being accomplished in just a few minutes! The
Umple compiler has hence become an extremely large test-case for Umple-TL, and also
has proved that it works effectively.

The real-time C++ code generator in the Umple compiler was directly written in
Umple-TL from the beginning, which demonstrate that manual coding of Umple-TL is
usable. It uses the Umple-TL features and capabilities more extensively than the
generators automatically converted from JET, since it offers a comprehensive set of
features as compared to JET. For instance, the LOC of the master source in C++ is less
than half the LOC of the master source in Java, although C++ is more verbose than
Java.

7 Performance Measures

Performance of a templating tool can be measured based on the templating code,
generated code, and generation time. Both templating and generation code should have
smaller size, which helps improve the generation time.

In the following we compare the performance of the Umple compiler when it used
Jet, as of release 1.23.1, on March 22, 2016 [14], and its performance in release 1.24.0
the same day, after it was converted to use Umple-TL [15]. Note that Umple has been
enhanced since the day of that conversion so the metrics as of the latest Umple release
[16] will be different.

The metrics are presented in Table 2 and further illustrated in Figs. 4 and 5. In
Table 2 we compare the templating code written in JET (left), with the code written in
Umple-TL (right).

Code size is measured in Lines of code (LOC) and translation time for a set of test
cases is measured in milliseconds. The generators shown in our comparison are Java
[17], and PHP [18] as transcoded from Jet. Data for C++ templates manually written in
Umple-TL [19] is shown for comparison in Table 2. The master source code refers to
code written either in Umple-TL or JET, while the generated code refers to the code of
the Umple compiler generated (by Jet of Umple-TL) in Java.

Table 2. Evaluation. Marginally better values in italics; values that are more than 4% better in
red bold.

Generators JET Umple

MasterSource
LOC

Generated
Java LOC

Generation
time (ms)

MasterSource
LOC

Generated
Java LOC

Generation
time (ms)

Java 11594 21283 5988 11877 20287 4741
PHP 4760 7544 3938 4909 7444 3031
C++ 5409 10549 7908

Umple-TL: A Model-Oriented, Dependency-Free Text Emission Tool 145

In Java and PHP, we can see that the master LOC is almost the same as the Umple-
TL. However, Umple-TL is a bit larger, because it must be enclosed in a class (Snippet
1). The PhP generation template code LOC count is smaller (for both Jet and Java
templates) than the Java generation template code because Umple supports fewer
features when generating Php.

The C++ generator, which supports the same features as the Java generator,
requires many fewer lines of template code, as it better employs Umple-TL features,
resulting in 45% LOC reduction.

The emission time of Umple-TL was faster than Jet in both Java and PHP gener-
ators (Fig. 5).

8 A Comparison of Templating Tools for Text Generation

In this section, we compare Umple-TL against other tools commonly used for text
emission (Table 3). The tools include Java Emitter Templates (JET), Apache Velocity
[4], Acceleo [13], Epsilon generation language (EGL) [6, 10], Xpand [20], and Xtend
[5]. Our selection depends on whether a tool satisfies most of the challenges and
requirements listed in the previous section. Not all of the challenges and requirements

Fig. 4. LOC comparison between Jet (left) and Umple (right). Master is the source in Jet or
Umple.

Fig. 5. Generation time comparison.

146 M. Husseini Orabi et al.

are shown in Table 3. For instance, we did not include pattern support, and instead
focused on generation dynamicity and modelling support. When a tool supports
modelling with high generation dynamicity, this may imply that the generation gap
patterns will be decreased. JET is in our list of comparison as Umple’s compiler
formerly used JET before the introduction of Umple-TL (Sect. 6).

Reusability is an open-ended criterion that may not be simple to specify for a tool.
Instead, we focus on other criteria such as generation dynamicity, transformation rules,
input model restrictions, syntax complexity, structural complexity, and target language
expressions. Meeting these criteria mean that the reusability of a tool will be increased.

Comments support is present in all tools; hence, we did not add it to our
comparison.

For file structure management, we found that this not directly related to a tool itself,
but mostly related to the type of text a developer intends to emit. For instance, gen-
erating C++ code will require generation of both header and body files. In such a
context, our focus will be on that a tool should have lower workflow and structural
complexity.

For target code readability, we found that other criteria such as formatting com-
plexity and debugging support are enough for our comparison. We did not include
target code efficiency in or comparison; assessing this aspect can be a completely
different topic of discussion.

In terms of representation consistency, other aspects such as less structural com-
plexity, high generation dynamicity, and the presence of modelling support could help
users to have a consistent representation.

The criterion of the ability to specify constraints, is not included as constraints can
directly be defined using the tool or target language expressions. In addition, rule-based
transformation gives more options to handle constraints.

Consistency of text formatting is maintained when formatting complexity is
decreased. Thus, we found that it will be enough to refer to formatting complexity in
our comparison.

In Table 3, for the criteria, workflow complexity, structural complexity, syntax
complexity, and formatting complexity, the rating can be low, medium, or high. A tool
is assumed better if it has a low complexity. The same rating scale is used for gen-
eration dynamicity. A tool is presumably better if it has high generation dynamicity.

For debugging support, this can be applied at the level of source files, runtime,
generation, or a combination of them, as explained in the previous section. A tool can
support many of those types of debugging, while other tools may not provide any type
of debugging.

For other criteria, they are all yes/no answers to determine whether a feature is
supported or whether it follows certain restrictions. The desirable features of a tool are
set in bold in Table 3.

Commonly used programming languages such as PHP and Go can be directly used
for text emission. PHP is included in our comparison, since it is a good example on
how text emission can be directly handled using a programming language. Technically,
when using a tool such as JET, we can say that we use Java for text emission; however,
when we refer to PHP in our comparison, we mean that PHP can be used directly for
text emission without additional tools or extensions. Any programming language can

Umple-TL: A Model-Oriented, Dependency-Free Text Emission Tool 147

still be directly used for text emission without additional extensions; however, this will
require additional development effort and unfortunately mostly it will be unnecessary
or replicate the effort done by other text emission tools.

8.1 Tool Discussion

In this section, we discuss the results of each table entry except for Umple-TL. The
discussion of Umple-TL will come in the next section.

In terms of workflow complexity, JET, Velocity, and Xtend are easy to use. Xpand
has the highest complexity due to the effort spent to configure its workflow. The
workflow of Acceleo and Epsilon is less complex than Xpand. We marked the
workflow complexity of Epsilon as medium not as low, since a user is required to be
familiar with model-to-text transformation and the Epsilon Model Connectivity
(EMC) layer in order to use their metamodels. In addition, Epsilon requires imple-
menting configuration or launch files in order to get an Epsilon file running.

We marked the workflow complexity of PHP as medium not as low, since PHP
requires developers to be familiar with additional paradigms such as the client/server
architecture. It is important to mention that assessing the workflow complexity of text
emission of a programming language is not straightforward. For instance, in C++,
developers are not required to be familiar with the client/server architecture; however,
C++ requires a lot of effort for compilation and configuration.

Table 3. A comparison of template development tools; bold font means better.

JET Velocity Acceleo Xpand Xtend Epsilon PHP Umple-TL

Workflow
complexity

Low Low Medium High Low Medium Medium Low

IDE dependencies Eclipse None Eclipse Eclipse Eclipse Eclipse None None
Third-party library
dependencies

Yes No Yes Yes Yes Yes None No

Target language
expressions

Yes No No No No No No Yes

Input model
restrictions

No No Yes Yes No No No No

Modelling support No No Yes Yes No Yes No Yes
Transformation
rules

No No Yes Yes Yes Yes No Yes

Structural
complexity

Medium Low Medium High Low Medium Low Low

Generation
dynamicity

Low Medium Medium Medium High High High High

Syntax complexity Low Low Medium High Low Medium Low Low
Debugging support Runtime None All Runtime Runtime All Runtime Runtime
Content protection Yes No Yes Yes Yes Yes No Yes
Formatting
complexity

Medium Medium Medium Medium Medium Low Medium Low

Generator language
restrictions

Yes Yes Yes Yes Yes No No No

148 M. Husseini Orabi et al.

All of the entries mentioned have IDE dependencies except for Velocity and
PHP. However, no tool has third-party library dependencies except for Velocity. It is
well-known that in PHP, there are no restrictions to specific IDEs or libraries; devel-
opers have the liberty to choose development environment they find convenient. This is
the case for all the most widely-used programming languages.

JET is the only tool that controls emission using target language expressions (Java
in the case of Jet) as opposed to a custom language. As mentioned, relying on custom
expressions in a tool can cause limitations as a tool will not necessary be able to handle
as comprehensive a set of expressions as compared to a sophisticated language such as
Java. The PHP entry is marked as “no”, since the concept of target languages does not
exist at all when using a programming language directly for text emission.

In terms of input model restrictions, only Acceleo and Xpand enforce restrictions to
use Ecore to develop models. However, in terms of modelling support, they are the
tools that directly provide modelling support. Other tools such as Xtend can use
additional libraries such Xtext to support modelling. Epsilon overcomes this tradeoff,
since a user has the liberty to decide the type of models to be used using the Epsilon
Model Connectivity (EMC) layer. In Umple, we managed to overcome this tradeoff as
well, since Umple can be used as an object-oriented programming language as well as
being a modelling language.

We did not mark for PHP that it supports modelling, since modelling features are
not a part of its built-in features or constructs. Although, in fact, PHP or any sophis-
ticated programming language can support some aspects of modelling such as classes
and inheritance, we do not consider their level of abstraction to be sufficient to be called
modelling languages.

Only model-based tools such as Acceleo, Xpand, and Epsilon can provide a support
for transformation rules. It is important to mention that Xtend can be used with Xtext
in order to support model-related features. Transformation rules can be supported in
PHP but this will require additional effort in a similar manner to modelling support.
Thus, we marked the transformation rules in PHP as “no”.

In JET, a template file must use a skeleton file; this adds additional complexity to its
text emission structure, and thus, we marked JET’s structural complexity as medium.
On the other hand, in Xpand, we mentioned that a template file depends on the
developed metamodels and models; both add more complexity to its text emission
structure and thus we decided to mark their complexity as high.

In an Acceleo template, a developer needs to follow the structure specified in their
model; this causes the complexity to be increased and become medium. We marked the
structural complexity of Epsilon as medium, since users work with different types of
files such as Epsilon files, metamodels, launch files, and Epsilon transformations.

Epsilon provides a complete solution for code generation and contains several
features represented in different types and syntax. Similarly to any language, a user will
need a fair amount of time in order to get used to most features of a language such as
Epsilon [10]. However, we did not mark the structure complexity of Epsilon as high as
a user does not necessarily need to learn about all Epsilon features in order to get their
text emission working.

Xtend and Velocity directly use a single template file; thus, we marked their
structural complexity as low. We also marked the structural complexity of PHP as low,

Umple-TL: A Model-Oriented, Dependency-Free Text Emission Tool 149

since the main artifact the developers work with is “*.php” files. PHP developers still
work with other artifacts such as HTML, CSS, and JavaScript files. The structural
complexity varies among different programming languages if they are going to be used
for text emission directly. For instance, in C and C++, developers must work with two
artifact types; headers and bodies, while Java developers only need to write Java files.
Typically, in any development process, additional configuration and launch files are
required; this is a part of the IDE selected for the development, which we referred to
earlier in this section.

In terms of generation dynamicity, we found that of the tools that existed prior to
this research, Xtend and Epsilon provide the most dynamic solutions. A developer is
able to write as many emitter methods as they want with a variable number of
parameters; there are no restrictions on how they should implement their text emission
content. Velocity, Epsilon, Acceleo, and Xpand provide enough solutions to handle
dynamicity but in not in as flexible a way as Xtend and Epsilon; this is why we marked
them as medium. On the other hand, we marked JET is low as it does not provide a
direct way to have dynamic parameters. We marked the generation dynamicity of PHP
as high; this is the case for any sophisticated programming language if it were to be
included in our comparison.

The syntax complexity of all pre-existing tools is low except for Xpand and
Acceleo. In Xpand, a developer will need to move among different parts of the template
file in order to understand what this template does; thus, we marked the syntax com-
plexity of Xpand as high. On the other hand, Acceleo is not as complex as Xpand in
terms of syntax complexity; however, it assumes that a developer is familiar with Ecore
constructs and methods; this is why we marked its complexity as medium.

We marked the syntax complexity of Epsilon as medium instead of low, since a
user needs to use the Epsilon Model Connectivity (EMC) layer to control the meta-
model type used.

We marked the syntax complexity of PHP as low, since PHP is a commonly used
programming language. This statement may be challenged by others when comparing
with different programming languages; this depends on what programming language a
developer prefers,

We found that only Acceleo and Epsilon support all types of debugging. For
example, Epsilon provides a traceability feature to debug or audit a transformation
process [10].

On the other hand, in JET, debugging is limited but there is at least a workaround to
debug the generated classes at runtime; debugging the generated classes at runtime can
be sufficient. If there is any syntax in a JET file, there will be direct compiler errors in
its generated file.

The same workaround can be applied for Xpand; additionally, in Xpand, the tool
support has several features for validation and error highlighting such as the Check
language. In Xtend, the debugging is at the runtime level, since the Xtend files are
automatically generated. On the other hand, Velocity does not have any type of
debugging support even at runtime since the generated files are not produced. Alter-
natively, a developer can use log statements.

Debugging in PHP depends on the IDE used and the user-written code. Any
sophisticated programming language is usually supported by many tools or IDEs,

150 M. Husseini Orabi et al.

which usually offer debugging as one of its features. Thus, we marked PHP that it
supports runtime debugging.

All entries provide support for content protection except for Velocity and PHP. In
Velocity, template files are required to be a part of the release build in order to have in-
memory generation of its template. Such an issue can cause security concerns. Content
protection in PHP is one of the major discussion points that always arise when
developing an application or library. When developing a PHP library, it may not be
straightforward to protect template content; thus, we did not mark that PHP has content
protection. This is not necessarily the case for other programming languages. For
instance, in C++ and Java, developers have a lot of options to hide or compile their
solutions as binary files.

For formatting complexity, we refer to aspects such as spacing and indentation.
When a tool enables developers to write their code directly without being wrapped in a
method, the spacing and indentation will not be a problem; in other words, what a
developer sees in their source files will be what they get in the generation. Those tools
include Velocity, Acceleo, and Xpand. Such tools still do not provide APIs to enable a
user to shift or control the spacing or indentation of their text content directly. It is
important to mention that users can still find a way to handle format. For example, in
Xpand, a user can define a method to add some spaces or tabs; however, this does not
come as a part of the language semantics, which is why we marked its formatting
complexity as medium not low.

We marked the formatting complexity of Epsilon as low, since Epsilon provides a
way to set a formatter object. Using a formatter object, a user can make a sequence of
calls to format a generated text as they require [10]. However, this formatting feature
takes place after the text is already generated, which reduces the developer’s control.

On the other hand, in both JET and Xtend, the output descriptors are written in an
emitter function; a developer will always need to shift their text content and make them
aligned with their methods. This will be annoying to the developer as they will need to
do that for all methods. As well, like the abovementioned tools, there is no way to
control the number of spaces used; thus, a developer will need to do this manually at all
places in code. We marked the formatting complexity of PHP as medium, since it is the
developers’ responsibility to handle text format.

8.2 Umple Discussion

In terms of workflow complexity, a developer will only need to work with a single
artifact, an Umple model. An Umple model can encompass the required emission
information such as metamodels and models. The model could be in a single file, or
several, at the discretion of the developer.

There are no IDE dependencies required whatsoever when using Umple-TL.
A developer has the liberty to use their IDE of interest; they can even directly use
UmpleOnline (try.umple.org) editor and then download the generated files. There are
no third-party library dependencies for both development and release builds; in fact,
Umple is written in itself as an Umple model to be generated without additional tools
involved. For the tools that we studied, even those that provide third-party independent
solutions, they do not provide independence at the development level.

Umple-TL: A Model-Oriented, Dependency-Free Text Emission Tool 151

In terms of target language expressions, Umple enables users to write their
expressions in the syntax of the target language. A user even has the freedom to switch
among different target languages such as C++ and Java; other tools that we listed
restrict a developer to use a specific target language.

There are no input model restrictions in Umple. A developer can directly write their
Umple model and use the appropriate target language that fits their needs; they will not
find themselves in a situation where they have to use a specific target language or
model schema.

Obviously, there is modelling support in Umple, since it is a model-oriented lan-
guage. Umple incorporates UML constructs into template development. In other words,
in Umple, a model-oriented approach is applied on the models being implemented, not
at the tool level only. We noticed that sometimes, enforcing a model-oriented paradigm
can be turned into a burden of complexity as we showed in Xpand and Acceleo.

Being a model-oriented language means that transformation rules can be applied
on the written Umple models. In Umple, there are many transformation options such as
Java, C++, PHP, Ecore, and XMI. Although a developer has to choose a target lan-
guage for certain expressions, basic for-loops, while-loops and if-then expressions can
be specified the same in Java and C++, allowing a set of templates to be used across
target languages.

Umple has low structural complexity, since it provides a configuration-free solu-
tion. As previously mentioned, a model can encompass all information including the
configuration information. The process is simple as a user writes a model and then
generates output.

Umple-TL provides many solutions to handle generation dynamicity. Developers
are not tied to a specific emitter method or number of emitter methods; they are able to
define their emitter methods, as they require. The number of parameters to be specified
in an emitter method is dynamic; the developer is able to control and define the
parameters. Making changes to the parameter signature of an emitter method is
straightforward, since all information is represented in a single model artifact. A user is
able to invoke and use other template classes within another template class. As well, a
template class can be designed to serve as helpers or static classes.

Umple follows the C-family syntax conventions, which is desirable for many
developers, since commonly-used languages such C, C++, and Java follow this style.
As a result, Umple has a low syntax complexity. A developer will not need to worry
about learning a new script representation in order to start using Umple-TL.

In terms of debugging support, Umple still does not provide tool support for
debugging at the model level. Alternatively, a user is able to debug the generated files.
Line numbers from the source Umple are injected as comments into the generated code,
allowing ease of traceability. As well, there is a tracing support in Umple, which
enables the developers to write trace statements in their Umple models as a way to
debug generated files at runtime.

Content protection is provided by Umple, since developers will only need to use
the generated files for their product releases.

In terms of formatting complexity, we showed how Umple-TL provides APIs to
handle space and string manipulation. The solutions provided help optimize

152 M. Husseini Orabi et al.

performance; we indicated for example that the string buffer instance is shared across
different nested template calls.

Umple-TL follows a similar approach as JET and Xpand in terms of having inline
definitions for templates. For example, a user can define a template that will apply tabs
or carriage returns. In addition, a feature such as aspect orientation offers flexible
options when writing redundant content such as tabs and copyrights.

All existing tools have generator language restrictions to Java for all of them
except PHP. Being inspired by UML, in Umple-TL, we rely on the multi-language
feature of Umple to enable developers to write their models in their target language of
interest such as Java, C++, and PHP. We showed template examples in two different
target languages, C++ and Java.

9 Conclusions

Text-emission is a common capability required in many types of programs: It is needed
to create user interfaces, such as by generating html, or to communicate among pro-
grams, such as through XML or JSON. It is also needed for metaprogramming, i.e.
generating programs in other languages.

In this paper we show how the text-emission capability of Umple, called Umple-
TL, has several advantages as compared to other text-generation technologies, while
taking advantage of and integrating with Umple’s textual model-driven engineering
capabilities. Umple provides a unified approach to develop executable models that can
be written in both textual and visual notations. Umple does not depend on third-party
libraries nor specific IDEs. It keeps models language-agnostic and supports multiple
target languages including C++, Java, and PHP.

With the introduction of Umple-TL, developers are able to develop templates as a
part of the Umple syntax itself. Hence, all template development can be in Umple
without asking developers to switch among different development contexts, compilers,
file types or IDEs.

Some other distinguishing feature of Umple-TL are the following:

• Templates can be reused to produce systems with different target execution
languages.

• Templates can be generated from UML modeling constructs such as associations
and state machines. For example, different output can be generated in different
states.

• Templates can produce highly readable output through the management of inden-
tation whitespace.

• Several separation-of-concerns mechanisms can be synergistically combined when
generating templates. These include emitter methods, mixins, traits and aspects.

We provided a detailed comparison between Umple-TL and other common text
emission tools such as Xpand, Xtend, Epsilon, and Acceleo. We also illustrated how
Umple-TL can help reduce both the emission time and generated code size, while not
impacting source size.

Umple-TL: A Model-Oriented, Dependency-Free Text Emission Tool 153

We presented the challenges in development of a text-emission tool, and showed by
example how Umple-TL overcomes such challenges. We illustrated many of Umple-
TL’s capabilities through a series of examples. Of particular note is that Umple (and
hence UmpleTL) is written in itself.

Acknowledgments. This research was supported by OGS, NSERC, and ORF.

References

1. Orabi, M.H., Orabi, A.H., Lethbridge, T.: Umple as a component-based language for the
development of real-time and embedded applications. In: Proceedings of the 4th
International Conference on Model-Driven Engineering and Software Development,
pp. 282–291 (2016)

2. Husseini Orabi, M., Husseini Orabi, A., Lethbridge, T.C.: Component-based modeling in
umple. In: Proceedings of the 6th International Conference on Model-Driven Engineering
and Software Development, pp. 247–255 (2018)

3. Orabi, M., Orabi, A., Lethbridge, T.: Umple as a Template Language (Umple-TL). In:
Proceedings of the 7th International Conference on Model-Driven Engineering and Software
Development, Prague, Czech Republic, pp. 98–106 (2019)

4. Carnell, J., Harrop, R., Mittal, K.: Velocity template engine. In: Mittal, K. (ed.) Pro Apache
Struts with Ajax, pp. 317–357. Apress, Berkely (2006). https://doi.org/10.1007/978-1-4302-
0252-3_10

5. Xtend: Xtend (2017). http://eclipse.org/xtend/. Accessed 01 Jan 2015
6. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.: The epsilon generation language. In:

Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol. 5095, pp. 1–16.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69100-6_1

7. Orabi, M.H.: Facilitating the representation of composite structure, active objects, code
generation, and software component descriptions for AUTOSAR in the umple model-
oriented programming language. Ph.D. thesis, University of Ottawa (2017)

8. Badreddin, O., Lethbridge, T.C., Forward, A.: A test-driven approach for developing
software languages. In: MODELSWARD 2014, International Conference on Model-Driven
Engineering and Software Development, pp. 225–234 (2014)

9. Eclipse: JET Tutorial (Introduction to JET) (2003). https://eclipse.org/articles/Article-JET/
jet_tutorial1.html. Accessed 01 Oct 2017

10. Kolovos, D., Rose, L., García-Domínguez, A., Paige, R.: The Epsilon Book. Eclipse Public
License (2015)

11. Abdelzad, V., Lethbridge, T.C.: Promoting traits into model-driven development. Softw.
Syst. Model. 16, 997–1017 (2015)

12. Umple: JETToUmpleTL (2018). https://github.com/umple/JETToUmpleTL. Accessed 01
July 2017

13. Acceleo: Acceleo eclipse page (2017). http://www.eclipse.org/acceleo/. Accessed 01 Oct
2017

14. Umple: Github Umple (2016). https://github.com/umple/umple/releases/tag/v.1.23.1.
Accessed 01 July 2017

15. Umple: Github Umple (2016). https://github.com/umple/umple/releases/tag/v.1.24.0.
Accessed 01 July 2017

16. Github Umple: Github Umple (2018). https://github.com/umple/umple/releases/latest.
Accessed 01 July 2017

154 M. Husseini Orabi et al.

http://dx.doi.org/10.1007/978-1-4302-0252-3_10
http://dx.doi.org/10.1007/978-1-4302-0252-3_10
http://eclipse.org/xtend/
http://dx.doi.org/10.1007/978-3-540-69100-6_1
https://eclipse.org/articles/Article-JET/jet_tutorial1.html
https://eclipse.org/articles/Article-JET/jet_tutorial1.html
https://github.com/umple/JETToUmpleTL
http://www.eclipse.org/acceleo/
https://github.com/umple/umple/releases/tag/v.1.23.1
https://github.com/umple/umple/releases/tag/v.1.24.0
https://github.com/umple/umple/releases/latest

17. Github Umple: Github Umple (2018). https://github.com/umple/umple/tree/master/
UmpleToJava/UmpleTLTemplates. Accessed 01 July 2017

18. Github Umple: Github Umple (2018). https://github.com/umple/umple/tree/master/
UmpleToPhp/UmpleTLTemplates. Accessed 01 July 2017

19. Github Umple: Github Umple (2018). https://github.com/umple/umple/tree/master/
UmpleToRTCpp/UmpleTLTemplates. Accessed 01 July 2017

20. Eclipse Modeling Framework (EMF). http://www.eclipse.org/modeling/emf. Accessed 01
July 2017

Umple-TL: A Model-Oriented, Dependency-Free Text Emission Tool 155

https://github.com/umple/umple/tree/master/UmpleToJava/UmpleTLTemplates
https://github.com/umple/umple/tree/master/UmpleToJava/UmpleTLTemplates
https://github.com/umple/umple/tree/master/UmpleToPhp/UmpleTLTemplates
https://github.com/umple/umple/tree/master/UmpleToPhp/UmpleTLTemplates
https://github.com/umple/umple/tree/master/UmpleToRTCpp/UmpleTLTemplates
https://github.com/umple/umple/tree/master/UmpleToRTCpp/UmpleTLTemplates
http://www.eclipse.org/modeling/emf

Dataset Management Using Metadata

David Milward(B)

Oxford University, Oxford, UK
david.milward@cs.ox.ac.uk

http://www.cs.ox.ac.uk

Abstract. Correct data analysis depends on good quality data, and that
means having data in a form that can be consistently queried, profiled
and managed, easily and repeatedly. The healthcare sector, in particular
the growing field of personalised medicine, has some of the most complex
and diverse datasets. However, they are mostly heterogeneous datasets,
and not always easy to merge into a form that is useful for the data
scientists and researchers that are attempting to carry out data anal-
ysis. This paper describes key factors needed to automate the process
of integrating such datasets, it is based upon experience working with
standards-compliant metadata registries in precision medicine.

1 Introduction

This paper extends the work in Model Driven Engineering in Healthcare [23],
which describes experimentation carried out in the healthcare domain aimed at
automating dataset curation. This paper provides a clear motivational example
of how the improvements to the ISO11179-based metadata registry, described
in the previous work, have resulted in a significant reduction in time and effort
spent in data preparation tasks. Additional detail has been provided on the
improvements made to the meta-model and domain specific language (DSL)
developed as part of this project.

One of the fundamental problems in data science is how to derive high quality
data from multiple heterogeneous sources, and for the most part the process of
“data wrangling”, getting data from multiple sources into a form which can be
analysed, is a highly tedious process involving a high degree of expert guidance
in the curation process. This paper describes how the principles of model driven
engineering can be applied to reduce this involvement, it provides details on
a meta-model and domain specific language developed specifically to address
this problem, as well detailing experiments carried out in mapping of ontologies,
vocabularies and data models.

There is little doubt that the current landscape of the internet and the avail-
ability of large amounts of computing power provide a surplus of valuable data,
especially in the healthcare domain, from which new knowledge can be obtained.
Data is being collected not just in hospitals, but on devices used and worn by
patients, and this data if correctly matched up can provide valuable feedback

c© Springer Nature Switzerland AG 2020
S. Hammoudi et al. (Eds.): MODELSWARD 2019, CCIS 1161, pp. 156–181, 2020.
https://doi.org/10.1007/978-3-030-37873-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37873-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-37873-8_7

Dataset Management Using Metadata 157

on the efficacy of treatment regimes and new drugs. However, the capability of
the hardware has run far ahead of the ability of software to integrate that data,
always assuming there is willingness to do so.

In the next section we review the objectives of the research effort, in the
section following on Data Standards, we look at the kind of data being handled,
and the standards which are being used in the healthcare sector at present. After
this is a section on Methodology, which describes the approach to tackling the
research, following on is a section detailing the results. These are discussed in
the next section, this is followed with a look at other related work going on in
the field and that is followed by conclusions.

2 Objectives

The objectives in carrying out this research were to examine ways of automating
the process of curating data elements for the construction of research datasets. In
particular to explore ways to ensure the preservation of semantics in the datasets
being curated. The data pipeline may involve several individual transformations
of datasets, with anonymization techniques being applied before the data is
stored in its final data warehouse, and it is essential that the data semantics be
preserved if the information is to be of any use to researchers. Our aim was to
find formal ways of automating dataset curation and management. By formal,
we mean based in mathematical or logic theory, enabling a repeatable set of
rules to be derived for this process. We approached this problem by breaking
the problem into components by asking the following questions:

– What data is needed for the research area, and how should it be specified?
– How does a researcher find the data they need?
– How can a catalogue of datasets be assembled and managed effectively?
– What are the time consuming areas in this process?
– Can datasets be mapped automatically through the explicit specification of

their semantics?
– Can these time-consuming processes be automated? If so, how?

We then applied the methodology described later on to experiment with
different technologies to achieve solutions to these questions.

3 Background

This section provides a quick overview of the way in which data is structured,
stored and organised in the healthcare sector, we have included brief overviews
of the key data standards encountered in the course of this research.

158 D. Milward

3.1 Data

Data exists in many forms, primarily we are concerned in this study with health-
care data, which for the most part is derived from clinical systems and appli-
cations, however in this discussion, we also consider data from mobile devices,
Internet of Things (IOT) and social media. Data can be stored in many forms,
the following section gives a brief overview of current data storage practise in
the healthcare sector.

Spreadsheet and Delimited Date. This is data extracted from databases
or spreadsheets, and it is normally stored in a tabular format, with column
headings or field names defining the data types of columns, and with one column
containing identifiers to link the data to a patient record. In many cases these
data tables are anonymized, to hide the identity of the patient.

Laboratory Reports. These may also be provided as tabular data, but they
normally provided as pdf files, based on a template, with attached media files,
containing some sort of laboratory specific data, such as X-Ray images attached.
In some cases these will be simple text or numerical data files, in a specific
laboratory specific format. Often these will be linked using a unique identifier
to other patient record information.

XML and JSON. Some data is being provided using JSON and XML, most
of this is fairly similar to the tabular data provided from spreadsheets and
databases, although potentially the structure can be more complex.

Textual Data. This is data provided in textual reports, normally word or PDF
files, and it is referred to as unstructured data. There is some degree of structure
in the language which is re-inforced with medical terminology, but it is not based
on a defined or formal model.

Big Data. This is not yet common in our experience in the healthcare sector,
but it is likely to become so in the near future. The standard storage for Hadoop
and big data engines is a storage file, of which there are three in common usage:
ORC, Parquet and AVRO. The first two are column-based, whilst the last is
row-based, the latter also has the ability to store the complete data schema, i.e.
the metadata, in the file.

Relational Database. For the most part the output from relational databases
is in text delimited or XML forms, as discussed earlier, there is the possibility to
output in a SQL format, but unless the whole database is going to be replicated
this is not a flexible way to transfer or move data.

Dataset Management Using Metadata 159

3.2 Data Standards

Data Standards are used in healthcare, and are seen as a key component “for
unleashing the potential of clinical data for diverse scenarios of (re-) use” accord-
ing to a book recently published called “Fundamentals of Clinical Data Sci-
ence” [28]. In practise data standards are used lin an ad-hoc fashion, and are
often not built into software applications, but applied to reporting packages as
an afterthought. An outline of some of the different data standards is given in
Table 1.

Table 1. A sample of data standards in healthcare.

Name Description Origin

SNOMED CT Clinical Terminology International Health Terminology

Standards Development

Organisation (IHTSDO)

HL7 v2/v3 Messaging Standard Health Level Seven International

OpenEHR Open Electronic Health Record,

object model and terminology

openEHR Foundation

Fast Healthcare Interoperability

Resources (FHIR)

Describes data formats, elements

and an API for exchanging

electronic health records

Health Level Seven International

NHS Data Dictionary Variety of standards for data

elements, classifications and

value sets

NHS Digital

OMOP Common Data Model A standardised common data

model

OHDSI

Clinical Document Architecture

(CDA)

XML-based markup standard for

clinical documents

Health Level Seven International

Digital Imaging and

Communications in Medicine

(DICOM)

File format and networking

protocol for file exchange

National Electrical

Manufacturers Association

(NEMA)

Continuity of Care Record

(CCR)

The CCR standard is a patient

health summary standard

ASTM International (and others)

Dataset.XML Protocol for communication of

study results

Clinical Data Interchange

Standards Consortium (CDISC)

Laboratory Data Model (LAB) XML format for exchange of

laboratory data

Clinical Data Interchange

Standards Consortium (CDISC)

Operational Data Model (ODM) XML schema for modeling

electronic Case Report Forms

(CRFs)

Clinical Data Interchange

Standards Consortium (CDISC)

Health informatics - Electronic

Health Record Communication

(EN 13606/ISO13606)

European Standard for an

information architecture to

communicate Electronic Health

Records (EHR)

International Organization for

Standardization

MEDCIN standardized medical

terminology

Medicomp Systems, Inc

Medical Dictionary for

Regulatory Activities (MedDRA)

Clinically validated international

medical terminology, dictionary

and thesaurus

International Federation of

Pharmaceutical Manufacturers

and Associations (IFPMA)

RxNorm Vocabulary for clinical drugs U.S. National Library of

Medicines

During the course of this work the first six of these data standards were
frequently referenced, the others less so or possibly not at all. A brief summary
of the different standards follows.

160 D. Milward

3.3 SNOMED CT

SNOMED CT is a clinical terminology, consisting of medical terms, codes,
definitions and relationships, Originally called the systemised nomenclature of
medicine (SNOMED) in 1975, it has been combined with a number of other
terminologies since then to become SNOMED CT, and it is now it is probably
the most widely used clinical terminology in the world. It is now defined using
description logic, which allows a number of features, probably the most notable is
the existence of both pre- and post-coordinated terms. Post-coordinated terms
allow new terms to be composed from combinations of exisiting terms using
an expression language, however, this can result in particular complex terms
being expressed using both a pre-coordinated and a post-coordinated term. This
complexity is not popular with many organizations tasked with implementing
SNOMED CT. SNOMED CT has over 300,000 terms defined, and more than
1.3 million relationships.

3.4 Fast Healthcare Interoprability Resources (FHIR)

Fast Healthcare Interoperability Resources (FHIR) is the latest set of standards
from the Health Level 7 standards body, who previously developed a number
of other standards including HL7 Version 2.x Messaging Standard, HL7 Ver-
sion 3.x Messaging Standard, Continuity of Care Document (CCD) and Clinical
Document Architecture (CDA). They have been widely adopted by both the
American National Standards Institute (ANSI) and the International Standards
Organization (ISO). The standard defines a messaging REST(API) which can
exchange resources, these are built using XML or JSON using a pre-defined set
of models, describing most instances of data exchange in the healthcare domain.

3.5 International Classification of Diseases (ICD)

The World Health Organisation (WHO) manages a set of clinical diagnostic
codes collectively known as the International Classification of Diseases(ICD).
ICD-11 is the current version of the standards, however ICD-10/9/8 are in com-
mon usage in the UK. It has evolved from proposals in 1860 to classify hospital
data, in particular causes of death. The standard started with a simply system
for classifying death called the Bertillon Classification of Causes of Death, intro-
duced in 1890, since then the classification has progressed in a coding system
called the International Statistical Classification of Diseases, Injuries, and Causes
of Death into the International Classification of Diseases. As well as descriptions
of diseases it includes signs, symptoms, abnormal findings, complaints, social
circumstances, and external causes of injury or disease.

ICD-11 provided full ontological and terminological support for the whole
systems, using the web ontology language as its formal basis. It also has mappings
into SNOMED CT which uses the same formal specification basis.

Dataset Management Using Metadata 161

3.6 OpenEHR - ISO EN 13606

This is an open source standard developed from the ground up by clinicians,
guided by the ISO13606 [12] standard. The standard itself specifies a means
for communicating part or all of the electronic health record (EHR) of one or
more identified subjects of care between EHR systems, or between EHR sys-
tems and a centralised EHR data repository. The openEHR websites states that
“the openEHR mission is the construction of an open, vendor neutral platform
for electronic health records and interoperable clinical and research data. The
openEHR Foundation was established in 2003 in pursuit of this ambition. Its
work has been framed and informed by three guiding principles: technical rigour,
clinical engagement and trust.”

3.7 OMOP CDM

The research organisation called the Observational Health Data Sciences and
Informatics (OHDSI) took over a program, from the FDA and the Pharmaceu-
tical Industry to develop a common data model. The motivation stems from
side effects that were not spotted quickly enough in drugs-trial programs, due
to the diverse way in which data was stored and analysed. The idea behind a
common data model is that if data is transformed and stored in a uniform pre-
defined format, then the same queries can be run continuously over the data,
and any new anomalies, such as negative interactions between different treat-
ment regimes, can be spotted quickly. The common data model is used widely
in the US and Europe and has been used successfully to carry out large-scale
statistical analysis across patients taking prescribed medication. There are other
common data models in use, OMOP CDM has been selected for use by Genomics
England, and recently emerged as the best common data model for a community
EHR-registry [9].

3.8 LOINC

The Logical Observation Identifiers Names and Codes (LOINC), was started in
1994 and first released in 1997. It is a standard for identifying health measure-
ments, observations, and documents connected with medical laboratory reports.
It encompasses a rich catalog of codified measurements, laboratory tests, and
clinical measures as well as templates for reports, documents and forms. It is
centred on pathology, and is more granular and detailed in this area than either
SNOMED CT or the ICD-11, and can be used in conjunction with FHIR to
encode laboratory information into FHIR messaging services.

3.9 NHS Data Dictionary

Version 3 of the NHS Data Dictionary is a standard for clinical models, forms
and data elements used within the NHS. It is based on a core UML data model,
which is transformed and made available through HTML browsers on the NHS

162 D. Milward

Data Dictionary website, and through a variety of packaged datasets available
through the NHS’s Terminology Reference Data update (TRUD) service website,
alongside NHS-conformant versions of SNOMED CT, ICD-10, and Read codes.

3.10 ISO11179

ISO11179 is a standard for metadata registries, and a fairly detailed description
of the standard was included in [23]. We repeat some key details about ISO11179
in this section. Its purposes are listed in the standard as being the following:

ISO/IEC 11179 addresses the semantics of data, the representation of data
and the registration of the descriptions of that data. It is through these
descriptions that an accurate understanding of the semantics and a useful
depiction of the data are found.

Furthermore the standard states that it’s purpose is to promote:

– standard description of data
– common understanding of data across organizational elements and between

organizations
– re-use and standardization of data over time, space, and applications
– harmonization and standardization of data within an organization and across

organizations
– management of the components of descriptions of data
– re-use of the components of descriptions of data

ISO11179 Structure. The standard is all about using metadata to improve
interoperability and we repeat the following which taken from the standard:

ISO/IEC 11179 addresses the semantics of data, the representation of data
and the registration of the descriptions of that data. It is through these
descriptions that an accurate understanding of the semantics and a useful
depiction of the data are found.

The purpose of ISO/IEC 11179 is to promote the following:

– standard description of data
– common understanding of data across organizational elements and between

organizations
– re-use and standardization of data over time, space, and applications
– harmonization and standardization of data within an organization and across

organizations
– management of the components of descriptions of data
– re-use of the components of descriptions of data

Dataset Management Using Metadata 163

Part 3 of the standard provides a registry meta-model, specified using UML
diagrams, and it was thus chosen as the starting point for building this imple-
mentation. There is a warning at the beginning of Part 3, stating that this
part prescribes a conceptual model, not a physical implementation This part of
ISO/IEC 11179 also prescribes a list of basic attributes (see clause 12) for situa-
tions where a full conceptual model is not required or not appropriate. The other
5 parts were used to inform the core metadata registry metamodel as specified
in ISO11179: Part 3.

Semantic Interoperability. One of the key ideas behind ISO11179 is that of
semantic interoperability, and although semantic interoperability is not directly
referenced in the standard, there are many references to the semantics of a
data element, and how this can be assigned to data element by application of
the standard. For instance part One states that “Metadata registries (MDR),
addresses the semantics of data, the representation of data, and the registration
of the descriptions of that data. It is through these descriptions that an accurate
understanding of the semantics and a useful depiction of the data are found.”.
The text continues with “An MDR manages the semantics of data.”.

Users of ISO11179 metadata registries assert that if a data element has the
same object class and property, then this is sufficient to capture the semantics
and context of a data element. Users of ISO11179 conformant metadata registries
also claim that semantic equivalence can be achieved through careful classifica-
tion and naming of data elements, Part 1 A.5.2 states that: “All this means care
must be applied when using the MDR, both from the metadata management
perspective and the perspective of the user of data described by it. Two differ-
ent organizations might register descriptions of equivalent data in the form of
data elements, yet those data elements might look substantially different. Looked
at in a different way, just because two data element descriptions differ does not
mean they cannot be describing similar if not equivalent data.”

Thus the standard strives to include semantics into the canonical metadata
registry design, however, it does not put forward a way of coding the semantics
to make them machine readable.

4 Methodology

What was clear from looking at the problems facing researchers was that an
accessible, set of standard descriptions for datasets and data elements, one which
can be searched and accessed remotely, and which is machine readable is needed.
As this is one of key items that ISO11179 seeks to promote (see Sect. 3.10), it
became our starting point for developing the framework.

Having defined our objective as being to explore the ways in which dataset
management could be made more efficient, the next stage of the research looked
at the following key areas:

– (a) Experimentation to see if an ISO11179 compliant metadata registry could
replace the use of excel files to specify datasets.

164 D. Milward

– (b) In addition to test the ISO11179 implementation to see if it would improve
semantic interoperability between heterogeneous datasets.

– (c) If there are other techniques, such as model driven engineering that could
be applied to this problem of automating dataset curation

Initially we developed a standards-compliant metadata registry, and started,
with the help of clinicians to populate it. This proved very difficult on account of
the training needed to understand the model being used. In effect datasets and
ontologies familiar to the researchers had to be mapped to the ISO11179 meta-
model. We modified the meta-model, but still found it very difficult. We then
started from scratch, and build a new meta-model, informed by the principles
identified in ISO11179. This journey is documented in [23]. The final meta-model
and language is described in the result’s section.

4.1 Motivational Example

Consider a very simplified example of the problems associated with collecting and
analysing large quantities of heterogeneous data. Let’s take as an example the
idea that a data scientist needs a monthly update from 4 hospital trusts to make
a particular analysis, and for this she needs 3 key data items: gender, clinical
finding, outcome, in addition to the patient details, and date of outcome/finding,
to carry out this analysis. Let’s suppose this data is being updated on a monthly
basis, so in the course of a year we have 12 datasets being input, from each
of 4 hospital trusts, making a total of 48 datasets. Let’s also suppose that this
analysis is carried out over a 4-year period. In total we are seeking to examine 48
monthly datasets for each Trust, since there are 4 trusts and 3 key data points,
this makes a total of 576 data points, although date and id will also be needed
to position the data, so that gives 6 data items in each dataset, giving 1152 data
items.

It may be that each trust is sending the data directly from the system of
origin, however, it is more likely it has already been curated against some internal
or possibly external data standard. For our purposes here we can assume that one
Trust is sending the data on an ad-hoc bases, and the other 3 are referencing the
data to national standards, let’s assume 2 Trusts use the NHS Data Dictionary
for some items and LOINC for other items and that 1 Trust uses SNOMED CT
as a data standard.

If no data standards are being used then each data item from each trust needs
to be examined and compared to the destination data item specification, it is
possible that the data item specification may be the same, but it is more likely
that some kind of transformation will be required. If data standards are being
used, then it is necessary to determine how they are being used. For instance it
may be that instead of using full codes shortened enumerations are being used
instead, so these need to be mapped to the target code in the standard.

Figure 1 shows the way the data might look when input to our research
data aggregation system, let’s call this the input state. The data from each
trust consists of 4 records covering 6 data items, however the headers are not

Dataset Management Using Metadata 165

Fig. 1. Illustrative sample of heterogeneous data.

Fig. 2. Illustrative sample of homogeneous research quality data.

necessarily the same, and neither is the data formatting. Our researcher needs
consistent data in the form shown in Fig. 2, let’s call this the research state
where the data is conforming to the target data model, in this case the OMOP
Common Data Model.

What effort is required to transform the dataset in Fig. 1 to the dataset
shown in Fig. 2? How can we describe and specify the process so that it can be
automated? What techniques can be used to carry out this automation process?
The amount of data in this simple example is relatively small for illustrative
purposes, but to be useful, we need to be able to apply the techniques evaluated
to datasets of much larger sizes, at least 1000 times as large.

We assume here that if a dataset is coded to a known data standard, then all
the relevant checks can be carried out by machine, apart from the initial linking
of the source dataset to the target dataset.

Consider data input from Trust A going into the research data system. It is
an ad-hoc dataset, arguably it has a kind of data dictionary in that the header
descriptions provide metadata which applies to the whole column of data. A
lookup has to be performed from this header or data description to the OMOP
code, and then each text item needs to be translated. Since there is no definition

166 D. Milward

for the ad-hoc data we need to perform 4 manual transformation (MT) checks,
one for each data item, and we need to do this for each input data report which
arrives, unless we are prepared to make assumptions with regard to the data
input. In practise this would probably involve our researcher writing a script to
transform the data input, and then needing to check the output, at least for
errors, manually each time it is run. It is likely over this 4-year period that data
formats will change at least twice. For the period of the study we will therefore
need to carry out 192 MT’s, just for Trust A, which is sending out data on an
ad-hoc basis. If this was the case for all the trusts then we would be looking at
figure of 764 MT’s.

For the other 3 Trusts two data standards are in play, so we need to build a
transformation from each data input(source) item to each research(target) data
item. A manual transformation check will be needed to verify a particular link
from the data input format to the research data format. Since there are only 2
data standards in play we need only identify 8 links to make the transformation
for the 12 items originating from the 3 Trusts. This may change of course if any
of the standards are updated, which is quite likely in a 4 year period. So let
us assume the standards change twice in this period, it means that over the 48
month period we will need to update these 8 links twice, so in terms of manual
transformation checks we can assign a value of 24 for the period.

Overall, we can see that having standards in play reduces the amount of
manual checking from a factor of 764 to 216 MT’s, an approximate 80% reduction
in manual intervention. If we now add into our model the notion that the data
being sent over more than just 2 nodes. Very often data will originate in one
patient record system in a Hospital Trust, but it will then be transferred to
another Trust in the same group, or to a staging area, such a Genomic Medicine
Centre, which is responsible for aggregating that data. This means that it will
go through another layer of transformation. In other words, the journey from
source to the researcher will involve twice as many transformation potentially.

Our researcher is looking at 3 key data items, and to do this the data pipeline
will require 216 MT’s. If we extend the data set to one containing say 600 data
items, and assume that it passes 2 sets of transformations then we get a figure
of 86,400 MT’s over the period. This may not seem that excessive, but the
problem is that each manual transformation check requires human computation
and a repetitious attention to detail, and this is not something everybody is
good at. If one check takes 30 s then it will take about 4.5 months to ensure
the datasets are conformant. This is a significant amount of time over a 4-year
working period, time much better spent on data analysis.

If these checks can be carried out automatically then we are likely to improve
the data quality as well as reducing the time taken to obtain high quality research
data. If we manage to get all 4 Trusts to stick to 2 data standards, then we can
reduce the manual checks to 24 for 3 data items, which translates to 480 MT’s,
and at 30 s each we arrive at about 4 h of tedious checking over the 4-year
period. The rest of the transformation and checking work can be carried out
by machine. This motivational example shows how the amount of time taken to

Dataset Management Using Metadata 167

ensure transformational correctness and data quality can be reduced by signif-
icant factors by using a standards based approach. We still need to show the
most efficient way of implementing that approach.

Examples of Coding for the Example Datasets. For person phenotypic
sex in the NHS Data Dictionary we use:

– 1 Male
– 2 Female
– 9 Indeterminate (unable to be classified as either male or female)

But for Person stated gender we use:

– 0 Not Known
– 1 Male
– 2 Female
– 9 Not Specified

So these codes will need to be linked to the target gender codes as used in
OMOP:

– FEMALE (concept id=8532)
– MALE (concept id=8507)
– UNKNOWN INFORMATION (concept id=0)

A researcher will need to check that the transformations are correct, and may
assume from the data that the source is from a dataset using the phenotypic
sex codes, getting a series of digits: 1, 2, 9 which are relatively easy to map to
the target dataset values of 8507, 8532 and 0 respectively. However if the source
has changed to another application using Person Stated Gender we may start
getting a 0 appearing in the dataset. It maybe that the researcher is informed
of the change, or it may be that this may be flagged as a data error. Either way
the researcher will need to check the transformation, and then decide whether to
map the new data element value in the source file of 0 to a value of 0 in the target
file in addition to the existing 9 to 0 mapping, or whether to ignore it altogether.
If the researcher has been told of the change, or perhaps there is some metadata
indicating this change in the source dataset, then this is a relatively easy change
to implement. However, if there is suddenly a significant number of 0 values
in the dataset, the researcher will need to check back to confirm what change
has happened, has the value enumeration changed, or is the dataset suddenly
suffered a deprecation in data quality. In this case it’s highly likely that will be
mapped, however, a dataset which has all its entries mapped to male or female
is telling a different story to one which has perhaps 5% mapped to unknown.
These differences may affect the final analysis being carried out, in this example
the dataset is fairly trivial, however it illustrated the potential for changes in
the dataset, and it also shows why checking transformations manually can be a
very time-consuming process.

168 D. Milward

Once we get into the clinical detail, even for these 3 data elements, we start
to see much more complicated sets of values for data elements representing more
complex medical concepts, for Loinc we have:

– 1 Identifies as male http://snomed.info/sct c©: 446151000124109 Identifies as
male gender (finding) LA22878-5

– 2 Identifies as female http://snomed.info/sct c©: 446141000124107 Identifies
as female gender (finding) LA22879-3

– 3 Female-to-male transsexual http://snomed.info/sct c©: 407377005 Female-
to-male transsexual (finding) LA22880-1

– 4 Male-to-female transsexual http://snomed.info/sct c©: 407376001 Male-to-
female transsexual (finding) LA22881-9

– 5 Identifies as non-conforming http://snomed.info/sct c©: 446131000124102
Identifies as non-conforming gender (finding) LA22882-7

– 6 Other LA46-8
– 7 Asked but unknown

and for SNOMED CT we have:

– 1. Feminine gender (finding SCTID: 703118005)
– 2. Gender unknown (finding: SCTID: 394743007)
– 3. Gender unspecified (finding:SCTID: 394744001)
– 4. Masculine gender (finding SCTID: 703117000)
– 5. Non-binary gender (finding SCTID: 1066981000000107)
– 6. Surgically transgendered transsexual (finding SCTID: 407375002)
– 7. Surgically transgendered transsexual, female-to-male (SCTID: 407379008)
– 8. Surgically transgendered transsexual, male-to-female (SCTID: 407378000)
– 9. Transgender identity (finding:SCTID: 12271241000119109)

The 7 LOINC values can be mapped directly to the 9-value SNOMED CT listing,
however, in some cases mis-matches can occur and more metadata is required to
make the mapping. For instance, in transforming a data item linked to SCTID:
407375002 to a LOINC based dataset it is not known in detail whether the Surgi-
cally transgendered transexual is male-to-female or female-to-male and therefore
the mapping would probably be to item 5 or 6. A further transformation back to
SNOMED CT would lose the information which was previously present in the
dataset.

In the NHS Data Dictionary National Codes, for the Cancer Outcomes and
Services Data Set, LIVER CIRRHOSIS CAUSE TYPE is recorded during a
Liver Cancer Care Spell, and this data element has 6 different enumerations:
1: Alcohol excess, 2: Hepatitis B virus infection, 3: Hepatitis C virus infection,
4: Non alcohol related fatty liver disease, 5: Hereditary haemochromatosis, 6:
Other (not listed).

This motivational example shows how the manual checking time for trans-
forming data items firstly is time-consuming, tedious and requires a high level of
expertise. It also shows how the time factor can be reduced by applying machine
readable data standards to dataset management. By a simple example we have

http://snomed.info/sct
http://snomed.info/sct
http://snomed.info/sct
http://snomed.info/sct
http://snomed.info/sct

Dataset Management Using Metadata 169

Fig. 3. Types of items in a metadata registry (Reproduced from ISO111179 Part 6
4.2).

shown how employing a machine readable standard the time taken to manage
these datasets can be reduced from 4.4 months to 4 h. We will show later that
this time can be reduced to minutes by using metadata registries efficiently to
store the data standard profile in a machine readable manner.

4.2 Key Issues Highlighted by ISO11179

Following the initial tests on an ISO11179 compliant metadata registry, docu-
mented in [23], the standard was consulted to examine which parts were useful
to the study and which were not. Implementing an ISO11179 compliant meta-
data registry did not allow us to achieve our object of formally defining a way to
automate and curate datasets. However, there were a number of lessons learnt
during this exercise which enabled us to take issues identified in the standard
and apply them to the problem.

Managing Versions. Naming is dealt with in depth in Part 5, and adminis-
tration of data items is dealt with in Part 6. The practice of naming administra-
tive models as detailed in the standard was too complex for us, for instance in
the standard data items are divided into registered items, administered items,
designatable items, identifiable items, classifiable items and attached items, as
per Fig. 3, which has been reproduced from the standard. This we found could
be simplified, since every item in the registry needs to be registered and adminis-
trated so we made no distinction, and had all data elements being derived from
registeredItems. The standard also mandates that all items are given unique
identities, and that a status be registered for all items. The standard gives

170 D. Milward

the following list of possible lifecyclestates for a registered data item: Preferred
Standard, Standard, Qualified, Recorded, Candidate, Incomplete, Superseded.
Having a clear naming system which allow each data element to be uniquely
identified is essential to managing datasets, we took the ideas identified in Part
5 and 6 of the standard, and developed a simpler publishing system which also
embraced versioning,naming and identification.

Fig. 4. ISO11179-meta-model (Reproduced from ISO111179 Part 3 section 11, tables
9, 11, and 13).

Semantics. Part 1 of the standard states that:

There are semantic, syntactic, and lexical rules used to form a naming con-
vention. Names are a simple means to provide some semantics about data
constructs, however the semantics are not complete

The topic of forming a naming system is further tackled in part 5, however, no
particular set of rules is prescribed, so whilst it is acknowledged that rules are
needed to define a naming convention which can provide semantics, no indication
of how to build such a system is given. Furthermore, the use of names to provide
some kind of semantic equivalence is ruled out in Part 5 section 1:

It is out of scope of the naming rules to establish semantic equivalence of
names among different languages. Naming must be supplemented by other

Dataset Management Using Metadata 171

methods such as ontologies or controlled vocabularies in establishing semantic
equivalence.

If we go back to the start of the standard we see that semantics are core to
the concept of a metadata registry:

The contextual semantics are described by the data element concept (DEC).
The DEC describes the kinds of objects for which data are collected and
the particular characteristic of those objects being measured. The symbolic
semantics are described by the conceptual domain (CD). A CD is a set of
categories, not necessarily finite, where the categories represent the mean-
ing of the permissible values in a value domain - the allowed values for a
data element. The names, definitions, datatype, and related objects that are
associated with a particular object in an MDR give that object meaning.
The depth of this meaning is limited, because names and definitions con-
vey limited information about an object. The relationships that object has
with semantically related objects in a registry provides additional informa-
tion, but the additional information is dependent on how many semantically
related objects there are.

In the next section we examine the meta-model provided by the standard.

The Meta-model. Initially an ISO11179 based meta-model was used in the
basic architecture of the metadata registry, used to register and curate datasets
as described earlier on. However during the study 8 problems were identified,
which were listed in [23]. Some of these were problems with the way in which
the standard was expressed, and some were problems with the meta-model itself.
The key problems relating to the meta-model were;

– ISO11179 introduces representational items, such as Conceptual Domain,
Data Element, Data Element Concept, etc, indicating that they are part of
the standard or ideal metadata registry meta-model with no indication of how
the ISO11179-compliant models so defined are generated, used or related, nor
how data can be transformed into this particular model or what the actual
advantage is over any other meta-model/model.

– Basic types used in the meta-model include types which in most computer
science contexts would be viewed as derived types, this makes implementation
needlessly difficult and confusing.

– The introduction asserts that metadata registry is specified in the form of a
conceptual data model, however, despite references to other standards, and
a brief explanation in ISO/IEC 11179-3 Third Edition 15-02-2015 Annex E,
no formal definition of what is meant by conceptual data model is provided.

– Value domains are specified with the same definition that is used to describe
data types.

In addition, the representational items Object Class, Property and Conceptual
domain were thought to serve no useful purpose, and could be replaced by a set

172 D. Milward

of relationships and relationship types which would allow contextual and seman-
tic issues to be expressed through linking to other data elements, in particular
to elements from managed terminologies and ontologies. The ISO-meta-model
from Part3–10 is illustrated in Fig. 4. To address these problems and others doc-
umented in [23], a new meta-model and meta-modelling language was proposed,
which is described in the next section.

5 Results

The core of this research involved software development using an iterative, agile
methodology. Much of the success therefore depended on how effectively the
systems developed can be used by practitioners in the field. The key results of
this research were to build a data pipeline for Genonics England. They have
used this platform over the past 3 years and continue to do so, the benefits can
be listed as follows:

– Specifying exact data models for research (rather than using a preset data
standard built for another purpose)

– Providing the data description in a machine readable format, that can be
used by automatic software generation applications to develop, for example,
online research questionaires.

– Reduction in time and effort, as illustrated in the motivational example
– The ability to validate data automatically using a variety of rules and con-

straints stored in the MDR, thus raising the quality of data accepted into the
research pipeline

– The ability to access and search for similar data elements from different
datasets and models.

– The capability to generate XML and XSL schemas automatically based on
curated dataset descriptions.

– The capability to map between different data elements in different data mod-
els, due to unambiguous identification.

5.1 MDML - Metadata Modelling Language

The key requirements which were identified during the initial phase of work were
as follows:

– A well understood set of representational items or entities in the core model
– A consistent meta-model formally specified.
– A clear specification allowing deferent features to be easily identified and

evaluated
– A consistent type system
– The ability to link together different kinds of terminologies, ontologies, data

models, and programming models.

Dataset Management Using Metadata 173

– A method of linking together elements in different models, and importing
data elements from one model into another model, so that well-defined data
elements can be shared across a number of models.

– A clear cut identification systems for data elements.

The overall result is a meta-model, part of which is illustrated in Fig. 5

Fig. 5. MDML meta-model.

The key change to the meta-model concerned the adoption of a more common
grouping or containment paradigm, so that data elements can be grouped using
the notion of a class, rather than a classifier or object class as in the standard.
This provides a more flexible and intuitive means of grouping data elements,
however data elements can be contained in many different classes, unlike class
attributes in UML they are not specific to a particular class.

Another change is that every data item in the registry is in effect a data
item, or registered item, they all have a unique identifier which is related to the
publishing system. Every data item can be related to every other data item, and
every data item can have metadata attached, using the extension mechanism. A
data element has a data type, the notion of value domains has been dropped,
mostly because it was difficult to explain the difference between a value domain
and a data-type to data professionals working on the project.

MDML Specification. The MetaData Modelling Language (MDML), origi-
nally named the Metadata Management Language, is designed to address the
specific healthcare interoperability problems discussed earlier, although the spec-
ification is of a general nature and the language can be applied to datasets
outside the healthcare domain. We specified the language formally, using the Z
notation, because we wanted to examine potential semantic possibilities, how-
ever this exercise was not successful so we then then implemented it as a Domain
Specific Language (DSL) using the ECore-based XText Language toolkit. The 8
problems discussed in the last section point to a need to capture data structures,

174 D. Milward

relationships, and rules. Ideally, this language should have the core features of an
entity-relationship or object modelling notation, as well as the ability to express
logical constraints on values and value sets. The Unified Modeling Language
(UML) is a widely-used notation which meets this basic requirement, and was
initially considered as a candidate, but rejected in favour of the DSL approach.

The abstract language syntax and constraint semantics are specified using
the Z notation, following which a concrete implementation of the language using
the XText [7] toolkit of the ECore/EMF modelling framework [6]. ECore may
be seen as a widely-used implementation of the UML MOF standard—for the
purposes of data language definition, there are no significant differences between
the two. ECore is embedded into the Eclipse environment and thus comes with
a range of widely-used visualisation, programming and modelling tools.

The publishing model arrived at is much reduced from the ISO standard, and
only 4 states are defined, these are draft, finalised, deprecated (or superseded),
and deleted. While developing a model it’s composition and structure are going
to be mutable, however once a model is agreed, it needs to become immutable or
finalised. A finalised model will have a fixed, externally-valid name: a globally-
unique identifier, this will enable any references to be used in automatic processes
in a reliable and robust fashion.

Currently most published data standards do not have any globally-unique
identifier which can be used by heterogeneous systems in different locations to
refer to during any shared operation or communication.

The new meta-model has the notion of hierarchical classes, as does UML,
this allows most groupings of data elements to be included using a containment
relationship. A dataclass therefore has a set of members, each a named data
item. It has also a name, a textual definition, and a constraint. There are two
notions of factorisation in class declarations, both of which should be familiar
from object modelling: a class may ‘contain’ other classes, corresponding to an
extension of scope or control in implementation; a class may also ‘extend’ other
classes, in the sense of extending or re-using an existing class declaration. These
other classes are declared at the same level, and thus the connections to them
are represented using identifiers.

A data class is represented by the following schema:

DataClass
DataItem
contains , extends : PPath
members : Name �→ DataItem

∀n : dommembers • (members n).name = n

Names are unique within a model. A model has a name, a textual definition, and
an identifier. It may import the contents of other models. It contains a set of
classes, enumerations, and primitive types: every class, enumeration, or primitive
that we will consider is declared in exactly one model. It has a status, indicating

Dataset Management Using Metadata 175

whether or not it has been finalised: this is a key distinction, as only finalised or
immutable models may be used as a basis for determining interoperability. As
mentioned before, finalised models will be allocated a globally-unique identifier.

Status ::= draft | final | deprecated | deleted

A data model is represented by the following schema:

Model
DataItem
imports : PName
classes : Name �→ DataClass
enumerations : Name �→ Enumeration
primitives : Name �→ Primitive
status : Status

∀n : dom classes • (classes n).name = n
∀n : dom enumerations • (enumerations n).name = n
∀n : dom primitives • (primitives n).name = n

Names of classes, enumerations, and primitives must be unique within a model. A
metadata registry is an administered collection of data models, subject to specific
constraints upon the way in which models are created, edited, and published.
For the purposes of this chapter, a registry or catalogue may be represented as
an instance of (a subtype of) the following schema:

Collection
models : Name �→ Model

This is only an illustrative sample of the specification, which informed the Xtext
grammar which is described in the next section.

MDML Language. XText is a language toolkit, which works initially by defin-
ing a set of rules to form a grammar, this is similar to an EBNF grammar, but
has a slightly different syntax. However it is a formal set of rules which can be
related directly to the specification, which in turn is related back to the require-
ments derived from the original experimentation. Due to space restrictions we
are only reproducing a part of the language here to illustrate the process used
to develop the language.

DomainRegistry :
(registeredItems += DataModel)*
;

176 D. Milward

This definition is simply defining the item of a DomainRegistry as being some-
thing which can contain zero to many registered items, each of which must be a
DataModel. We then move on to define a DataModel:

DataModel:
’DataModel’ name = QualifiedName
’status:’ status = Status ’domainid:’
guid = GUID ’@’ ’(’ Version ’)’ ’{’
(elements += DataItem)*
(relations += Relationship)*
(constraint += Constraint)*
(predicate += Predicate)*
’}’
;

A DataModel is defined by a qualified name and a ‘modelid’ composed of a
unique id and a version. The QualifiedName needs to be an identifier, the id
needs to be an integer and the version is a semantic versioning [24] identifier
(e.g. 0.1.2 or X.Y.Z). Semantic versioning uses the convention that the first
digit indicates a new version, the use of which will break previous codebases, the
second digit indicates new functionality added in a backward compatible manner,
and the third digit indicates a backward compatible update to the model.

5.2 User Traction

Initially an ISO11179 compliant metadata registry was built using the
Grails(java) platform, and a number of data standards were uploaded and trans-
formed into the ISO meta-model. As is discussed in [23] this was not successful,
the meta-model was not understood, and relationship between “headers” on a
spreadsheet and data elements, data element concepts, value domains, concept
domains, object classes and properties was simply not intuitive. As a result, the
model was changes and simplified, this was still not enough and the new meta-
model was developed. Initially, it was felt that using the new language in the
Eclipse platform would be simpler and easier than specifying data models using
excel spreadsheet, however this turned out not to be the case. As a result, the
meta-model was re-built on the grails platform, and this rapidly became the
framework of choice, since the web-based user interface was definitely preferred
over the excel spreadsheet alternative.

This framework was adopted by Genomics England to promote a standard
description of data elements across all the Genomic Medicine Centres providing
data to Genomics England. It was and still is being used to promote a common
understanding of data across NHS Trusts involved in the project, allowing re-
use of datasets and descriptions of data, and allowing relationships to map data
flowing between applications using different standards. The time savings have
not been quantitatively measured for practical reasons, but have been estimated
using the motivational example introduced earlier on.

Dataset Management Using Metadata 177

6 Discussion

For small scale datasets it is clear that automatic curation and metadata-based
tooling is a big overhead, and it is only now that large amounts of data are being
integrated and collected into large data-warehouses that problems are appearing,
as identified in [26]. By taking a model-driven approach we are able to record
all aspects of a data element using a variety of different tools, and apply these
to different scenarios.

Formal description logic based ontologies are extremely good artefacts for
specifying complex research subjects, and they are now an established way
to manage and share knowledge, especially in the biological sciences domain.
Classes, concepts, elements/properties, constraints and relationships can be eas-
ily recorded, for both data descriptions (upper ontologies) and for instance data.
While they allow some degree of semantic interoperability, the problem of evo-
lution is still actively being researched [20], and there is no established way of
automatically monitoring versioning. We present a means of doing so, metadata
registries built using the MDML meta-model have versioning and identification
built in, so a REST call on the metadata registry will by default return the
current version of a particular model or ontology.

Most of the key aspects of ontologies can be stored in such a registry and
can be addressed using the same REST/JSON api as for relational or XML
based data models. In fact, although we have implemented the framework using
a java/grails/RDBMS based framework there is no reason why a graph database,
or triple store could not be used to store the data. It may indeed be an interesting
avenue for further research, especially for solving complex matching problems,
since many of the techniques already tried an tested in the field of Ontology
Matching could be applied.

The use of a metadata registry based on MDML provides the ability to cross
reference concepts from ontologies with data elements which are defined in data
models, this has enabled rules to be added, mostly as regular expressions derived
from ontological constraints, and stored on data-type items. In the Genomics
England, case a shared library of data elements and types has been developed
that has been used across another 20 or so data models, simplifying the curation,
validation and data-landing processes.

7 Related Work

As previously identified, the big data world uses ETL processes to extract data
from disparate sources, and yet it appears that data scientist’s time is largely
spent (50–80%) with data wrangling [19]. This is also logged as a problem in
the Big Data world [16], since extract-load-transform (ETL) processes can be
carried out in most big data toolkits, but they are very intensive manual tasks,
take up a lot of time, and slow down the analysis pipeline. The study on “Data
context informed Data Wrangling” [14] proposes a datalog system with a number
of algorithms to apply rules from a number of sources, and identifies metadata
as a key component in informing those processes.

178 D. Milward

The paper on data wrangling by Terrizano et al. [11] identifies the licensing
and copyright aspects of managing data, which we haven’t mentioned at all in
this study, but which are partially answered in the MDML metadata registry,
and this is an area which is calling for more research as there is little doubt that
much data is being collected with scant regard to its provenance, ownership and
legal status. Developments in automatic transformations such as reported in [2]
will also contribute to study of automated data wrangling where preformated
models are not defined.

The work described in this paper has been informed by work carried out by
colleagues at the University of Oxford on the CancerGrid project [3], where an
ISO/IEC 11179-compliant metadata registry was developed as detailed in [4].
Initially the test software for these studies was developed using the eXist XML
database, but it was found to have problems scaling once the number of data
elements increased over about 10,000, and so new work was carried out to build
a more scalable metadata registry using java-based web frameworks.

The CaBIG initiative by the National Cancer Institute in the USA was one
of the first applications of ISO11179 [15,17]. Sinaci and Erturkmen [30] describe
a semantic metadata registry framework where Common Data Elements (CDEs)
are exposed as Linked Open Data resources. Ulrich et al. [32] report on build-
ing a hybrid architecture consisting of an ISO 11179-3 conformant MDR server
application for mediating and translating data elements into Fast Health Interop-
erability Resources (FHIR) [10] for the North German Tumor Bank of Colorectal
Cancer.

Tao et al. [31] present case studies in representing HL7 Detailed Clinical Mod-
els (DCMs) and the ISO11179 model in the Web Ontology Language (OWL);
a combination of UML diagrams and Excel spreadsheets were used to extract
the meta-models for fourteen HL7 DCM constructs. A critical limitation of this
approach is that the transformation from meta-models to their ontological repre-
sentation in OWL is based on a manual encoding. Leroux et al. [18] use existing
ontologies to enrich OpenClinica forms.

Schlieter et al. [27], Atanasovski [1] apply model driven engineering tech-
niques to healthcare problems, Marcos et al. [21] describes the implementation
of an OpenEHR system. The problems with integrating data encoded using dif-
ferent datasets and terminologies are clearly identified by Jian [13], and solutions
using OpenEHR technology are put forward in [22].

In the Model Driven Health Tools (MDHT) [25] project, the HL7 Clini-
cal Document Architecture (CDA) standard [5] for managing patient records
is implemented using Eclipse UML tools [8]. MDHT supports only the CDA
standard, whereas the Model Catalogue can interoperate with any metadata
standard. The CDA standards are large and complex: Scott and Worden [29]
advocate a model-driven approach to simplify the HL7 CDA.

8 Conclusion

MDML is a domain specific language which has been used effectively to reduce
expert involvement in tedious data wrangling tasks. We have not been able

Dataset Management Using Metadata 179

to measure the full effect of this during the study as it has been an iterative
evolutionary process. Also the amount of data being examined now is well in
excess of the amount that a human expert could be expected to validate, so it
is safe to say that by using manual techniques, data validation would not have
been carried out on the core dataset. Instead it would have been carried out
by researchers on their local copy while carrying out specific analysis tasks on
an ad-hoc basis. This would have meant that each researcher would have been
carrying out the same validation in parallel, on their local subset of data. Such
a situation would be much less efficient than maintaining a high quality data
repository that can be accessed without having to carry out data wrangling tasks
locally.

Using a model driven engineering paradigm in data-wrangling has provided
an effective implementation of the main goals identified in ISO11179, using an
updated meta-model and applying a simplified version and identification protocol
for data-sets. This gives the ability to identify complex data patterns as models
and identify them with a globally unique identifier. In turn, this enables rules
associated with data elements, or with relationships between data elements, to be
applied to data-sets using automated techniques, for validation, transformation
and linking. In doing this the degree of complexity is reduced, the data becomes
easier to manage, and the human intervention in the process is significantly
reduced.

This research effort, carried out with Genomics England, resulted in the use
of a model-driven metadata registry that has significantly reduced tedious ‘data-
wrangling’ work. In addition the generation of simple low code software applica-
tions has been simplified. Applications such as web-based questionaires, excel,
word and xml reports have been automatically generated due to the application
of model driven engineering techniques.

In summary the application of model-driven engineering techniques to the
principles identified in the ISO11179 standard has led to a significant increase in
the amount of automation possible in the data wrangling, data validation and
data management process.

Acknowledgements. I would like to acknowledge the help of Adam Milward, Kathy
Farndon, Amanda O’Neill and Samuel Hubble at Genomics England, and Jim Davies,
Charles Crichton, Steve Harris and James Welch at the University of Oxford.

References

1. Atanasovski, B., et al.: On defining a model driven architecture for an enterprise
e-health system. Enterp. Inf. Syst. 12(8–9), 915–941 (2018). https://doi.org/10.
1080/17517575.2018.1521996

2. Bogatu, A., Paton, N.W., Fernandes, A.A.A.: Towards automatic data format
transformations: data wrangling at scale. In: Cal̀ı, A., Wood, P., Martin, N., Poulo-
vassilis, A. (eds.) BICOD 2017. LNCS, vol. 10365, pp. 36–48. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-60795-5 4

https://doi.org/10.1080/17517575.2018.1521996
https://doi.org/10.1080/17517575.2018.1521996
https://doi.org/10.1007/978-3-319-60795-5_4

180 D. Milward

3. Davies, J., Gibbons, J., Harris, S., Crichton, C.: The CancerGrid experience:
metadata-based model-driven engineering for clinical trials. Sci. Comput. Program.
89, 126–143 (2014)

4. Davies, J., et al.: Domain-specific modelling for clinical research. In: SPLASH
Workshop on Domain-Specific Modelling, October 2015. http://www.dsmforum.
org/events/dsm15/Papers/Davies.pdf

5. Dolin, R.H., et al.: HL7 clinical document architecture, release 2. J. Am. Med.
Inform. Assoc. 13(1), 30–39 (2006)

6. Eclipse: Ecore tools (2008). http://eclipse.org/ecoretools/
7. Eclipse: Xtext: Eclipse project (2008). https://eclipse.org/Xtext/
8. Eclipse-Foundation: Eclipse MDT UML2 tools (2018). https://eclipse.org/

modeling/mdt?project=uml2
9. Garza, M., Fiol, G.D., Tenenbaum, J., Walden, A., Zozus, M.N.: Evaluating com-

mon data models for use with a longitudinal community registry. J. Biomed.
Inform. 64, 333–341 (2016). https://doi.org/10.1016/j.jbi.2016.10.016

10. The HL7-FHIR-Foundation: Fast health interoperability resources (2017). https://
www.hl7.org/fhir/

11. Terrizzano, I.G., Schwarz, P.M., Roth, M., Colino, J.E.: Data wrangling: the chal-
lenging yourney from the wild to the lake. pdfs.semanticscholar.org (2015). https://
pdfs.semanticscholar.org/2a24/f587b68a1ef6539b4ed8725dfe76f0ed40e2.pdf

12. ISOTC215: Health informatics - electronic health record (EHR) standard (2008).
http://www.en13606.org/

13. Jian, W.S., et al.: Building a portable data and information interoperability infras-
tructure framework for a standard Taiwan electronic medical record template.
Comput. Methods Programs Biomed. 88(2), 102–111 (2007). https://doi.org/10.
1016/j.cmpb.2007.07.014. http://www.sciencedirect.com/science/article/pii/S016
9260707001848

14. Koehler, M., et al.: Data context informed data wrangling. In: 2017 IEEE Interna-
tional Conference on Big Data (Big Data), pp. 956–963, December 2017. https://
doi.org/10.1109/BigData.2017.8258015

15. Komatsoulis, G.A., et al.: caCORE version 3: implementation of a model driven,
service-oriented architecture for semantic interoperability. J. Biomed. Inform.
41(1), 106–123 (2008)

16. Konstantinou, N., et al.: Thevada architecture for cost-effective data wrangling. In:
Proceedings of the 2017 ACM International Conference on Management of Data,
pp. 1599–1602 (2017)

17. Kunz, I., Lin, M.C., Frey, L.: Metadata mapping and reuse in caBIG. BMC Bioin-
form. 10(Suppl 2), S4 (2009)

18. Leroux, H., McBride, S., Lefort, L., Kemp, M., Gibson, S.: A method for the seman-
tic enrichment of clinical trial data. In: Health Informatics: Building a Healthcare
Future Through Trusted Information; Selected Papers from the 20th Australian
National Health Informatics Conference (HIC 2012), vol. 178, p. 111. IOS Press
(2012)

19. Lohr, S.: For big-data scientists, ‘janitor work’ is key hurdle to insights. New
York Times (2014). https://www.nytimes.com/2014/08/18/technology/for-big-
data-scientists-hurdle-to-insights-is-janitor-work.html

20. Mahajan, A., Kaur, P.: A review on evolution and versioning of ontology based
information systems. IOSR J. Comput. Eng. (IOSR-JCE) 17(42), 35–43 (2015)

http://www.dsmforum.org/events/dsm15/Papers/Davies.pdf
http://www.dsmforum.org/events/dsm15/Papers/Davies.pdf
http://eclipse.org/ecoretools/
https://eclipse.org/Xtext/
https://eclipse.org/modeling/mdt?project=uml2
https://eclipse.org/modeling/mdt?project=uml2
https://doi.org/10.1016/j.jbi.2016.10.016
https://www.hl7.org/fhir/
https://www.hl7.org/fhir/
https://pdfs.semanticscholar.org/2a24/f587b68a1ef6539b4ed8725dfe76f0ed40e2.pdf
https://pdfs.semanticscholar.org/2a24/f587b68a1ef6539b4ed8725dfe76f0ed40e2.pdf
http://www.en13606.org/
https://doi.org/10.1016/j.cmpb.2007.07.014
https://doi.org/10.1016/j.cmpb.2007.07.014
http://www.sciencedirect.com/science/article/pii/S0169260707001848
http://www.sciencedirect.com/science/article/pii/S0169260707001848
https://doi.org/10.1109/BigData.2017.8258015
https://doi.org/10.1109/BigData.2017.8258015
https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html

Dataset Management Using Metadata 181

21. Marcos, M., Maldonado, J.A., Mart́ınez-Salvador, B., Boscá, D., Robles, M.: Inter-
operability of clinical decision-support systems and electronic health records using
archetypes: a case study in clinical trial eligibility. J. Biomed. Inform. 46(4), 676–
689 (2013). https://doi.org/10.1016/j.jbi.2013.05.004

22. Mart́ınez-Costa, C., Menárguez-Tortosa, M., Fernández-Breis, J.T.: An approach
for the semantic interoperability of ISO EN 13606 and OpenEHR archetypes. J.
Biomed. Inform. 43(5), 736–746 (2010). https://doi.org/10.1016/j.jbi.2010.05.013.
http://www.sciencedirect.com/science/article/pii/S1532046410000821

23. Milward, D.: Model driven data management in healthcare. In: Proceedings of the
7th International Conference on Model-Driven Engineering and Software Develop-
ment, MODELSWARD, vol. 1, pp. 107–118. INSTICC, SciTePress (2019). https://
doi.org/10.5220/0007391101070118

24. OMG: Semantic versioning (2003). https://semver.org/
25. Open-Health-Tools: model driven health tools (2008). https://projects.eclipse.org/

proposals/model-driven-health-tools
26. Press, G.: Cleaning big data: most-time-consuming, least enjoyable data sci-

encetask. Forbes (2016). https://www.forbes.com/sites/gilpress/2016/03/23/data-
preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/

27. Schlieter, H., Burwitz, M., Schönherr, O., Benedict, M.: Towards model driven
architecture in health care information system development. In: 12th International
Conference on Wirtschaftsinformatik (WI 2015), March 2015

28. Schulz, S., Stegwee, R., Chronaki, C.: Standards in healthcare data. In: Kubben,
P., Dumontier, M., Dekker, A. (eds.) Fundamentals of Clinical Data Science, pp.
19–36. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99713-1 3

29. Scott, P., Worden, R.: Semantic mapping to simplify deployment of HL7 v3 clinical
document architecture. J. Biomed. Inform. 45(4), 697–702 (2012)

30. Sinaci, A.A., Erturkmen, G.B.L.: A federated semantic metadata registry frame-
work for enabling interoperability across clinical research and care domains. J.
Biomed. Inform. 46(5), 784–794 (2013). https://doi.org/10.1016/j.jbi.2013.05.009.
http://www.sciencedirect.com/science/article/pii/S1532046413000750

31. Tao, C., Jiang, G., Wei, W., Solbrig, H.R., Chute, C.G.: Towards semantic-web
based representation and harmonization of standard meta-data models for clinical
studies. AMIA Summits Transl. Sci. Proc. 2011, 59–63 (2011)

32. Ulrich, H., Kock, A.K., Duhm-Harbeck, P., Habermann, J.K., Ingenerf, J.: Meta-
data repository for improved data sharing and reuse based on HL7 FHIR. Stud.
Health Technol. Inform. 228, 162–166 (2016)

https://doi.org/10.1016/j.jbi.2013.05.004
https://doi.org/10.1016/j.jbi.2010.05.013
http://www.sciencedirect.com/science/article/pii/S1532046410000821
https://doi.org/10.5220/0007391101070118
https://doi.org/10.5220/0007391101070118
https://semver.org/
https://projects.eclipse.org/proposals/model-driven-health-tools
https://projects.eclipse.org/proposals/model-driven-health-tools
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/
https://doi.org/10.1007/978-3-319-99713-1_3
https://doi.org/10.1016/j.jbi.2013.05.009
http://www.sciencedirect.com/science/article/pii/S1532046413000750

The Art of Bootstrapping

Andreas Prinz1(B) and Gergely Mezei2

1 Department of ICT, University of Agder, Grimstad, Norway
andreas.prinz@uia.no

2 Department of Automation and Applied Informatics,
Budapest University of Technology and Economics, Budapest, Hungary

gmezei@aut.bme.hu

Abstract. Language workbenches are used to define languages using
appropriate meta-languages. Meta-languages are also just languages and
can, therefore, be defined using themselves. The process is called boot-
strapping and is often difficult to achieve.

This paper compares four different bootstrapping solutions. The EMF
environment and the Meta-Programming System (MPS) use a compiled
bootstrapping for their own definition. The platforms LanguageLab and
DMLA are using interpreted bootstrapping. This paper compares these
kinds of bootstrapping and relates them to the definition of instantia-
tion. Besides the structural aspects of the bootstraps, the dynamism is
also elaborated. It is shown how the bootstrap is related to the execu-
tion environment. Finally, the level of changeability is also discussed. It
is shown that all approaches are quite similar and provide very flexible
environments.

Keywords: Language workbench · Bootstrapping · Metamodelling

1 Introduction

Metamodelling [12] is an approach to define languages using metalanguages. In
turn, these languages can be used to define specifications (programs) of new
languages. Typically, one would use a metamodelling environment, also called
language workbench1 [7,9,25,28], to define languages and metalanguages. The
metalanguages are also languages and thus they can be defined using the same or
different metalanguages. This process is called bootstrapping, and it is mainly
an advantage for the workbench developers. In general, the term ‘bootstrap-
ping’ is used in several contexts, e. g. to refer to the process to load the ini-
tial constructs of an engine to start it. In this paper, bootstrapping refers to
a self-descriptive process that acts as the base point of modelling. Bootstrap-
ping is typically not visible to the users. This paper discusses the similarities

1 There are also grammar-based language workbenches in addition to the metamod-
elling environments.

c© Springer Nature Switzerland AG 2020
S. Hammoudi et al. (Eds.): MODELSWARD 2019, CCIS 1161, pp. 182–200, 2020.
https://doi.org/10.1007/978-3-030-37873-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37873-8_8&domain=pdf
http://orcid.org/0000-0002-0646-2877
http://orcid.org/0000-0001-9464-7128
https://doi.org/10.1007/978-3-030-37873-8_8

The Art of Bootstrapping 183

and the differences between four language workbenches, namely Eclipse Model-
ing Framework (EMF) [24], JetBrains Meta Programming System (MPS) [3,22],
LanguageLab [11] and Dynamic Multi-Layer Algebra (DMLA) [5].

EMF is tightly connected to the Eclipse [4] infrastructure. In particular, it
is used for the structure definitions of many Eclipse projects. EMF provides
high-level descriptions of classes and their relationships similar to MOF [17].
EMF descriptions are simple class diagrams that are translated into Java classes
that integrate with the Eclipse infrastructure. Another output from the EMF
specifications is an exchange storage format XMI [18] the production of which
is auto-generated.

The open-source industrial-strength Meta-Programming System (MPS) is
provided by the company Jetbrains. MPS has several meta-languages cover-
ing a wide range of language-design elements in order to support comprehensive
language design. All the meta-languages within MPS are defined using MPS
itself making the platform bootstrapped. MPS features a language called Base
Language resembling Java, which is then available for language extension and
development inside MPS. For example, it is possible to define new constructs for
Java (Base Language) within MPS. In the project mbeddr [26], MPS provides
an almost complete definition of C++, allowing C++ to be used and extended
within MPS. This is exactly what mbeddr does: extending C++ in MPS with
state machines and units for use in embedded device programming.

LanguageLab is an academic project at the university of Agder, Norway. It
is not concerned with an industrial strength environment, but rather with the
concepts that are needed to make metamodelling user-friendly and feasible. The
main goal of LanguageLab is to show the essential concepts of metamodelling in
a clear and understandable tool, such that it can be used in university teaching
[10]. In the same way as MPS, also LanguageLab is bootstrapped such that the
few meta-languages of LanguageLab are defined within LanguageLab.

Dynamic Multi-Layer Algebra (DMLA) is also an academic project. It is
developed at the Budapest University of Technology and Economics, Hungary.
DMLA provides an environment, where stepwise refinement of concepts is pos-
sible from the highly abstract initial ideas to the fully concretized final specifi-
cations. The approach ensures rigorous validation along the whole process based
on constraints specified during the refinement. The goals of the approach are
achieved by a multi-layer modelling structure with a built-in, fully modelled
operation language. The initial modelling structure, i.e. the bootstrap of DMLA
is self-describing and self-validating.

These four language workbenches have different focus. EMF is mostly related
to defining structure. The general idea of MPS is to provide the user with as
much as possible help in defining languages and using known notation when
possible. LanguageLab is focused on a clean environment, and in this context,
it tries to avoid exposing the underlying language of the platform to the user.
DMLA has focus on validated multi-layer modelling and refinement.

184 A. Prinz and G. Mezei

All four platforms are implemented in Java, and this is very visible in EMF
and MPS, but not much visible in LanguageLab and DMLA. All four platforms
are used to define themselves, and this paper compares these four self-definitions.

The paper starts with an introduction of the essential terms and concepts
of metamodelling in Sect. 2. In Sect. 3, more details of the four platforms are
provided, before we describe their bootstrap in Sect. 4. Runtime aspects are
discussed in Sect. 5. Finally, we conclude in Sect. 6.

2 Terminology

This section introduces the concepts and terms used in metamodelling in general,
and in EMF, MPS, LanguageLab and DMLA in particular. We use basically the
terms of MPS in this paper, and indicate the different terms used in EMF,
LanguageLab, and DMLA.

Metamodelling is an application of model-driven development [1] to language
engineering and compiler construction. Instead of implementing language tools
and compilers by hand for each domain-specific language, a model of the language
is created. From the model, tools are automatically generated [16]. This way,
languages can be designed quickly for the programming tasks at hand [29].

A language description has several different aspects, which together give a
complete description of all important properties of the language. There are the
aspect groups e.g. of structure or semantics, as well as a group of tool-related
aspects. In this paper, we focus mainly on the most relevant aspects for boot-
strapping, namely structure, constraints, and semantics. Concrete syntax is not
important in this context, since we can always use a predefined concrete syntax
based on the abstract syntax.

The structure (abstract syntax, metamodel) aspect defines the concepts that
are used in the language and their relationships with each other. In EMF a
‘concept’ is represented by a ‘class’. LanguageLab uses the term ‘type’, while
DMLA uses the term ‘entity’ instead.

Concepts can own properties (of basic types) and children (enclosed con-
cepts). Properties are called ‘attributes’ in LanguageLab and EMF. Children
are referred to as ‘aggregates’ in LanguageLab, while in EMF, they are repre-
sented by containment associations. In DMLA, the term ‘slot’ is used for both
of the terms mentioned above. A slot is a placeholder that can have constraints
on its type, or cardinality and can have a value. The value can be a primitive or
complex value (child).

In modelling, relations between concepts are essential. Typical examples are
inheritance, containment, aggregation and UML-like association relations. The
containment relation is already discussed in the previous paragraph. Inheritance
is referred to as parent, while associations are called references in EMF, MPS
and LanguageLab. In DMLA, containment and association are not distinguished,
thus, the term ‘slot’ is also used for references, while inheritance is currently not
supported natively.

The abstract syntax introduces a large range of possible specifications. How-
ever, not all of them are meaningful, and thus, constraints are often used to define

The Art of Bootstrapping 185

additional conditions for valid specifications. For example, there can be size con-
straints (not more than one parent), or type constraints (the actual parameter
type must match the formal parameter type), or reference constraints (attribute
types have to be defined in the enclosing scope). Constraints are boolean condi-
tions that all have to be true for a specification to be valid.

The meaning of programs in a language is defined by its semantics. There
are two main ways to achieve this: transformations (compiler) and executions
(interpreter). In the first case, the model is mapped to another model or to
source code, and then this other representation is executed. A typical example
is a code generator that produces Java code from the model. In the second case,
we have a virtual machine that can directly interpret the language models. This
is discussed in more detail in Sect. 5.

3 Language Workbenches

In this section, we present the four language workbenches EMF, MPS, Language-
Lab, and DMLA. They are selected because they provide very different views
onto languages and bootstrapping, and they have different focus.

3.1 EMF

The Eclipse Modeling Framework (EMF) [24] is possibly the most complete
and without doubt the most well-known modelling platform nowadays. EMF
and Ecore (the underlying modelling foundation) are often referred to as the
defactor standard of modelling. There exist many tools and applications using
and extending the Eclipse-based framework of EMF in many fields, including
visual modelling, metamodeling and model processing. Models are specified in
XML Metadata Interchange (XMI) from which EMF provides tools and runtime
support to produce a set of Java classes for the model, and also a set of adapter
classes that enable viewing and editing of the model. EMF has runtime support
for manipulating the models including change notification, persistence support
and a reflective API for manipulating modelled objects generically. The platform
focuses not only on models themselves but also on editing the models. EMF
provides a basic editor and several ways to extend the editor in a textual or
visual way.

From the modelling point of view, EMF is based on Ecore which itself is
a reference implementation of the EMOF standard [19]. Although MOF has
four modelling layers, in practice, EMF is restricted to two modelling layers
(metamodel and model) from the users point of view, while the core metamodel
of Ecore is self-defining.

Although the potential extension points of an EMF domain are countless,
the usual modelling scenario is often code-based, not modelled. Typically, the
user creates the structural definition of her domain model based on the Ecore
metamodel. Then the definition is refined by additional constraints (OCL con-
straints or custom, Java validation methods) if required. If execution semantics

186 A. Prinz and G. Mezei

is needed, the user may implement the corresponding methods in Java and exe-
cute them from the modelling environment, or use approaches such as Kermeta3
[13] to overcome the limitations of Ecore. To sum up, in case of EMF, only the
structural aspect of the model definitions is modelled by its bootstrap.

3.2 MPS

JetBrains MPS is a metaprogramming system which is being developed by Jet-
Brains. MPS is a tool to design domain-specific languages (DSL). It uses pro-
jectional editing which allows users to overcome the limits of language parsers,
and build DSL editors using text, tables and diagrams. It implements language-
oriented programming [29]. MPS is an environment for language definition, a
language workbench, and an integrated development environment (IDE) for such
languages.

Developers from different domains can benefit from domain specific language
extensions in general purpose programming languages. For example, Java devel-
opers working with financial applications might benefit from built-in support for
monetary values. Unfortunately, traditional text based languages are subject to
text ambiguity problems which makes such extensions problematic.

MPS supports composable language definitions. This means that languages
can be extended, and embedded, and these extensions can be used, and will
work, in the same program in MPS. For example, if Java is extended with a
better syntax for collections and then again extended with a better syntax for
dates, these extensions will work well together.

MPS solves grammar ambiguity issues by working with the abstract syntax
tree directly. In order to edit such a tree, a text-like projectional editor is used.

MPS provides a reusable language infrastructure which is configured with
language definition languages. MPS also provides many IDE services automati-
cally: editor, code completion, find usages, etc.

The boostrap of MPS includes a definition of almost complete Java called
Base Language. It also provides languages for collections, dates, closures and reg-
ular expressions. All meta-languages (language definition languages) of MPS are
defined in MPS, with languages for structure, editor, constraints, type system,
and generator.

For better applicability of MPS, there is also a connection to C and C++
given by the project mbeddr [26]. Its main purpose is to provide support for the
development of embedded system using MPS. It has languages tailored to embed-
ded development and formal methods: core C language, components, physical
units, and state machines.

3.3 LanguageLab

In metamodel-based language design, a major challenge is to be able to oper-
ate on an adequate level of abstraction when designing a complete computer
language. There are several different technologies, meta-languages and tools in

The Art of Bootstrapping 187

use for defining different aspects of a language, that may or may not satisfy the
needs of a DSL developer when it comes to abstraction level. Before starting the
design and development of the LanguageLab workbench, we set out to exam-
ine what concepts are needed for defining the different aspects of a computer
language, and discuss how to apply them on a suitable level of abstraction. If
the abstraction level is too high, the definition of behaviour may be a challenge,
while if the abstraction level is too low, the language developer will spend too
much time on unnecessary details.

The LanguageLab platform facilitates operation on a suitable abstraction
level. It provides user-friendliness and a low threshold to getting started, in
order to make it useful for teaching of metamodelling. The platform is open for
third party language modules and it is intended to facilitate reuse of language
modules, modular language development and experiments with multiple con-
crete syntaxes. Another goal is to supply some basic guidelines for developing
LanguageLab modules that can further add to the features and capabilities of
the LanguageLab platform.

Based on experiences from teaching, the core LanguageLab is a very simple
metamodel-based language definition platform, attempting to remove some of
the complexity of the more popular existing tools. This simplicity allows students
to grasp the basic principles of metamodelling by working on small language
examples on a suitable level of abstraction for each relevant language aspect.

In LanguageLab, a language definition consists of one or more modules with
structured elements that can be run as an IDE for that language. Program (code)
specifications work in the same way. Specifications can also be run as programs
and create the intended execution as described by the language used.

LanguageLab exists as a simple prototype based on Eclipse/EMF. There is
also a more advanced version built in MPS. LanguageLab is simplistic by design.

3.4 DMLA

The Dynamic Multi-Layer Algebra (DMLA) [5] is a multi-layer modelling frame-
work based on Abstract State Machines (ASM) [2]. DMLA consists of two parts:
(i) the Core containing the formal definition of modelling structures and their
management functions; and (ii) the Bootstrap having a set of essential reusable
entities for all modelled domains in DMLA. We have intentionally separated the
two parts to be able to use the same structure with different bootstraps, like a
computer, which can be used with different operating systems.

According to the Core, each concept is defined by a 4-tuple (unique ID, meta-
reference, attributes and concrete values). Besides these tuples, the Core also
defines basic functions to manipulate the model graph, for example, to create new
model entities or query existing ones. This solution makes it possible to create
a virtual machine handling the concepts and simulating the ASM functions and
thus act as an implementation-independent interpreter for the models.

Although the tuple-based structure is defined by the Core, it is useless with-
out a proper bootstrap. The role of the Bootstrap is to define the basic, essential
built-in building blocks for practical modelling. For example, concepts such as

188 A. Prinz and G. Mezei

‘Entity’, ‘Slot’ and ‘Constraint’ are introduced here. Based on the complete setup
of these initial concepts, the definition of domain models is possible. Instantiation
in DMLA means gradual constraining and thus has several peculiarities. When-
ever a model concept claims another concept as its meta-concept, the framework
automatically validates if there is indeed a valid instantiation between the two
concepts. Similarly to concepts, slots are also automatically validated against
their meta-slots (each slot has a reference to its meta-slot). The rules of valid
instantiation are not encoded in an external programming language (e.g. Java),
but modelled by the bootstrap. The operations needed for encoding the concrete
validation logic of instantiation are modelled by their abstract syntax tree (AST)
representation as 4-tuples within the bootstrap.

In DMLA, multi-level behaviour is supported by ‘fluid metamodeling’, that
is, instead of following a rigid hierarchy between the modelling levels, each con-
cept can refer to any other concept along the complete meta-hierarchy, unless the
reference is found to be contradictory to the validation rules. This way, instan-
tiation in DMLA acts as a refinement relation, where the concepts to be refined
can be referenced anywhere within the modelling space. DMLA also supports
horizontal refinement, when previously existing slots are cloned, not concretized,
but new slots may be added and thus the original concept may be extended. Note
that this behaviour is very similar to inheritance, therefore we use it to simulate
inheritance relationships.

From the practical applications point of view, there are two major versions of
DMLA workbenches. The old version has an XText-based editing environment,
where users can edit their models using our scripting language, DMLAScript
[27]. DMLAScipt is only syntactic sugar to hide the tuple-based structure from
users. The models defined by the scripts are translated to tuples and the tuples to
Java. The generated code acts as a set of instructions for the underlying abstract
state machine developed in Java. The main limitation of this approach is that
the model is validated as a whole and dynamic modification is not supported.
In other words, one can define a hierarchy of refinements and validate it, but
cannot apply operations on the models interactively. In order to solve this, we
are working on a new workbench based on GraalVM [20] and Truffle [21]. In this
new environment, we provide a complete virtual machine for the users, which
can be used interactively, e.g. run operations altering the modelling concepts. In
this paper, we will refer to only this new version of DMLA.

4 Bootstrap

Bootstrapping is connected to a circularity in definition. In the context of lan-
guage workbenches, this means that one language is defined using itself or a
set of languages is defined using that same set. It is a good idea to distinguish
between the bootstrap situation and the bootstrap process.

Bootstrap Situation. The bootstrap situation is a static situation describing
how languages and concepts depend on each other. For normal use in a language

The Art of Bootstrapping 189

workbench, new languages are defined using existing meta-languages. Here, the
new languages depend on the meta-languages, as they are defined using them.
The meta-languages are just used and have no dependency on the new languages.

Fig. 1. Circularity between languages.

Fig. 2. Circularity between concepts.

Looking at the meta-languages themselves, they are typically also defined
using the same meta-languages, thereby establishing a circular definition-use
dependency. For example, the structure meta-language is defined using three
meta-languages: the structure meta-language, the constraint meta-language and
the semantics meta-language (Fig. 1).

Just by looking at the language level, it is hard to open up the challenge
of circularity. Instead, it is valuable to look at the dependencies on the concept
level. In Fig. 2, we show the details of the circularity displayed in Fig. 1 from
the concept level’s point of view. The three concepts ‘Concept’, ‘Property’, and
‘Reference’ are defined in the structure language, but all of them are in fact
instances of the concept ‘Concept’. They are concepts and therefore they may
have properties (like a name), children (like methods) and references (like a
type), which are instances of Property, Child and Reference, respectively. The
dependency relationship that leads to the circularity is the instantiation relation.

Language workbenches may offer different solutions, but at the very core,
they have to answer the same question: how are the concepts defined using each
other?

190 A. Prinz and G. Mezei

Bootstrap Process. The bootstrap process is the technical process that leads
from a situation without circularity to the situation with circularity. Often, this
is a technically challenging step and is difficult to understand, see [14,23].

In the process of bootstrap, the definition of Concept needs reference to
properties, children and references, but in order to achieve this, we need to have
the concept of property, containment and reference, respectively. However, the
definition of property should be based on the concept ‘Concept’ that we are just
trying to create. Often, it is possible to start with empty definitions that can
be filled later, leading to several concepts to be defined at once and referencing
each other. This leads to a tightly coupled set of concepts together forming the
essence of the bootstrap definition.

The tricky part is typically the self-reference, which would imply that a
concept is defined before it is defined, which is impossible. Often, this situation
has to be established using means from outside the language workbench. In this
paper, we focus more on the bootstrap situation as the process is only needed
once, and then the bootstrap situation can be used again and again.

4.1 The Bootstrap of EMF

The main motivation behind creating EMF was to have a universal modelling and
model processing platform that can be used in practical scenarios and application
development. The infrastructure is therefore made to be highly customizable and
easy to extend using a flexible modelling solution behind. This modelling solution
is Ecore [24], which has a strong resemblance with the EMOF variant of MOF
[17], but has more focus on practical functionality.

Ecore is the metamodel for EMF. It is self-defining because it is used to
explain its own classes. The elements and the structure of Ecore are translated
into native Java classes, which again are used to represent the metamodel of
Ecore. This way, Ecore concepts act more as interface specifications rather than
implementation classes, since their logic is not modelled. For example, the root
concept EObject has a method eContainer() that returns its container concept
(or null, if it does not have one), but it is not specified in Ecore how the container
is retrieved. More precisely the specification is available but only as an informal
textual description written in English.

The reason for this is that EMF is only a structural tool with focus on navi-
gating and manipulating the concepts and their properties. ECore does not take
into account aspects of constraints or semantics. The structural parts described
by Ecore can be extended by constraints as EAnnotations. From the practical
points of view, several methods exist to handle the constraints e.g. adding anno-
tated Java methods, or using projects such as Eclipse OCL [6]. However, from
the theoretical points of view, unfortunately, this also means that Ecore itself
does not support adding and validating constraints.

There is no support for modelling the operation logic (i.e. dynamic semantics)
in Ecore either. Similar to constraints, we can easily attach methods to the model
written in Java, or use Eclipse-based projects to model the operations, but Ecore
is capable only to describe the interface of operations.

The Art of Bootstrapping 191

Ecore, as an interface specification, is not only able to describe itself, also the
complete infrastructure of EMF is built upon the current version of Ecore. So
changes to the Ecore, although possible, might invalidate many Eclipse projects
being build using EMF, since the Java implementation relies on existing concepts
and relations between the concepts.

4.2 The Bootstrap of MPS

MPS uses all its meta-languages for the bootstrap, i.e. structure, editor, con-
straints, behaviour, typesystem, intentions, accessories, generator, runtime,
actions, dataflow, refactorings, textgen and version control. Based on the focus
of this paper, we only consider the aspects structure, constraints, and typesys-
tem as well as generator (semantics). All the other aspects are mainly used to
improve the user experience, and the bootstrap works also without them.

This leads to the language dependencies shown in Fig. 3, which are explained
in more detail in the next subsection. At the concept level, the name of the
self-referential concept is ConceptDeclaration, not Concept. Properties and ref-
erences are instances of ConceptDeclaration, and they are attached to the con-
cept declarations as already shown in Fig. 2. This way they are not involved
in the direct circularity. A similar argument applies to EditorDeclaration and
ConstraintDeclaration, which are instances of ConceptDeclaration. They are
attached to concept declarations using references.

Fig. 3. Bootstrap in MPS and LanguageLab.

The bootstrapping process in MPS is enabled by the generated Java code.
In a first attempt, the code is created semi-automatically, and then the loop is
established and the new code generation will recreate the correct code. After the
loop is existing, also changes to the bootstrap situation are possible.

192 A. Prinz and G. Mezei

4.3 The Bootstrap of LanguageLab

The bootstrap of LanguageLab is shown in Fig. 3. This figure depicts three lan-
guages in their meta-language role on the left, and in their language role on the
right. Still, the languages are the same as indicated by the same name.

There are two kinds of dependencies in Fig. 3: use dependencies and refer-
ences. A use dependency is a connection between a meta-language and a lan-
guage, i.e. an arrow from the right to the left. Essentially it means that a descrip-
tion is dependent on the language it is written in. A reference is given between
languages on the same meta-level. In our case, both the constraints language
and the generator language depend on the structure language, as the constraint
and the generator descriptions always refer to their concept description.

At the concept level, the situation is very similar as before. Here, the name of
the self-referential concept is ‘Type’, not ‘Concept’. Property and Reference are
instances of Type, and they are attached to Types. In the same way, Constraint
and Semantics are instances of Type and they are attached to Types using
references, see again Fig. 2.

This leads to the the structure language being central to the bootstrap, as
indicated in Fig. 3. There are the following reasons for the structure language
being special, all of them being related to the Type concept.

– The structure language has five incoming dependencies, three with instan-
tiation to structure, constraints, and semantics, and two as references from
constraints and semantics to Type. In fact, these two references are the only
incoming cross-language references in the bootstrap.

– The structure language is needed already for the bootstrap situation. This
means it is needed even without running a specification.

– Type is the only concept with a self-definition loop (Type being defined by a
Type).

LanguageLab has two features to allow creating the bootstrapping situation
using an appropriate bootstrapping process (see also [23]). The first feature is
that LanguageLab is interpreted, that is the language description (file) is used as
it is. This can be exploited by simply changing the dependency in the language
description file (i.e. outside the LanguageLab platform) in order to establish the
bootstrapping situation. A second helpful feature of LanguageLab is that each
language use is connected to its language definition via an interface, where the
actual language can be exchanged when the instance is loaded. This means that
there is no direct connection between language use and language definition. With
these interfaces, bootstrapping is even possible within the platform itself.

4.4 The Bootstrap of DMLA

In this paper we give a brief summary of the bootstrap elements to illustrate the
mechanisms. For more details, please refer to [5].

The bootstrap of DMLA is not structured using meta-languages: the defini-
tion of constraints and operations are merged with the structural parts. They

The Art of Bootstrapping 193

are not separated, because the structure, the validation (constraints) and the
dynamic behaviour (operations) are all essential when creating model defini-
tions, none of them would work without the other two. The main reason behind
is that even the definition of type and cardinality checking are modelled. For
example, by changing the implementation of the built-in TypeConstraint entity,
one can alter what type conformance means. Note that the term ‘implemen-
tation’ refers here to an operation fully modelled by tuples of DMLA, not to
a method written in code. This is why DMLA is said to be self-validating, as
the validation methods are essential parts of the bootstrap model. Although in
DMLA the bootstrap is not structured into separate languages, we have the
same challenges to solve: the definition of the basics of structure, constraints
and execution.

The topmost concept is referred to as ‘Base’, all other concepts are direct
or indirect instances of it. Base grants three features for its instances: (i) the
ability to have slots (properties, children and references), (ii) the ability to have
constraints and (iii) it also defines the basic validation formulae.

The first feature grants composability. Note that even the definition of ‘slot’
is modelled (by the concept SlotDef), not hard coded.

The second feature (constraint containment) is used to fine-tune instantia-
tion rules. Constraints (originated from the concept ‘Constraint’) are re-usable
validation logic definitions and they are intensively used to specify type-, and
cardinality restrictions as mentioned earlier, since no a priori instantiation rules
are implemented. The same mechanism can also be used to add custom, user-
defined constraints to further restrict instantiation.

The third feature of ‘Base’ (validation formulae) is responsible to define how
to collect attached constraints of the given concept and evaluate them. The
formulae are defined as operations and they are stored in slots. Instances may
refine these formulae, but each concept is validated against all formulae of its
meta-concepts (along the whole hierarchy). This means that the formulae may
be extended making them more rigorous, but they cannot be relaxed.

All other concepts defined in the bootstrap inherit the behaviour described
above since they are originated from Base. It is worth mentioning that besides
the structural, and constraint-related concepts, the elements of the operation
language (the expressions and statements composing an operation) are also mod-
elled. In order to achieve this, every language element has a corresponding entity
and when an operation is defined, its abstract syntax tree is built from the
instances of these entities. For example, all conditional statements refer to the
concept ‘If’ as their meta-concept.

Note that unlike in the case of the other three approaches, in DMLA, the
bootstrap definition is not available as a pre-compiled binary code, when domain
languages and models are built. Instead, the bootstrap is interpreted every time
it is used. This way, the bootstrap situation is not handled differently than the
usual models. The same rules, the same validation logic applies to the concepts of
the bootstrap as for modelling concepts of other domains. Handling all concepts
uniformly simplifies the underlying framework and helps in eliminating errors.

194 A. Prinz and G. Mezei

5 Dynamic Semantics

The discussion so far was related to the structure and the static aspects. Even
though this is the central aspect of a language, the semantics is needed to make
the language work. The structure allows us to talk about descriptions (specifi-
cations), i.e. drawings and texts. In contrast, the semantics talks about running
systems and executions of the descriptions. Moreover, the semantics is the place
to solve the bootstrapping circularity, as the circularity is between the descrip-
tion of a language and its later use, i.e. an execution.

5.1 Executing Specifications

The description provided by the model elements is passive in nature. It does
not allow any activities and it will not change by itself. It has to be placed
in a proper environment to be activated. We will refer to this environment as
the execution machine. The execution machine is always bound to a language,
which is the language of the descriptions it can run. The execution machine can
be concrete, like a concrete computer for machine code, or abstract like the Java
virtual machine for Java.

An execution machine is in some sense physical, as it can be used and exe-
cuted. It has an innate ability to create executions for a description that is placed
into it. In order to describe these machines, we will consider an abstract view
of executions as sequences of runtime states. These runtime states are struc-
tured, and their structure is coming from the specification under execution and
from additional structures used by the execution machine. As an example, if
we specify a class Person in Java, then the structure of Person objects will be
available as a template in Java runtime states. Figure 4 shows several examples
how specification elements (descriptions) can appear at runtime (as instances).

description instance
class object

attribute slot
reference slot
method activation record
variable reference to a value

if branching activity
while looping activity

assignment changing a reference to a value

Fig. 4. Different possible execution instantiations.

In addition to structures described by the models, the runtime state may
also include elements like a program counter and exception storage. These addi-
tional structure parts are not derived from the specification but created by the

The Art of Bootstrapping 195

execution machine mainly to help in managing the execution of the model. The
structure of these additional parts is universal in the sense that it is not affected
by the current specification but only by the execution machine. This also means
that if we run the same specification more than once in an executuion machine,
then the runtime states may differ. Often, the possible runtime states are called
the runtime environment (RTE). Note that by observing the run of a program
using a debugger, the current runtime state is observed.

It is the task of the execution machine to provide a way to embody the
current runtime state and also to define the rules of when and how to advance
the state based on the specification and the language semantics. This way, it
is an execution engine which turns descriptions into living things, see also the
left side of Fig. 5. Here, the specification is written in the Spec language. The
execution machine for the specification (EM 4 Spec) is bound to the specification
language. The running specification is placed inside the execution machine. It
will have runtime states as given by the language semantics.

Introducing the execution machine breaks the self-reference loop, as the
machine is working based on the laws of nature (it is physical), and the loop
is embedded in the working of the execution machine.

From the abstraction levels point of view, the use of an execution machine
is a vertical process in the sense that the specification – a high-level description
(text) – is turned into low-level runtime states and state changes of the running
specification, see again Fig. 4. For the sake of clarity, we refer to this vertical
process as execution instantiation. It is depicted as the arrow between the run-
ning specification and the specification itself in Fig. 5. Execution instantiation
relates to structural constructs like classes and methods, but also to dynamic
constructs like expressions and statements.

Fig. 5. Semantic approaches.

5.2 Compiling Specifications

Execution can also be achieved by translating the specification into another spec-
ification in a different language that has already an execution semantics, i.e. an
execution machine. We will refer to this translation as compilation. In contrast

196 A. Prinz and G. Mezei

to the aforementioned execution instantiation, compilation is a horizontal pro-
cess, as the result is not an execution, but still a description. We can consider
several compilation steps, but in the end, there has to be a final step to execute
the description.

Figure 5 shows the same execution situation for the code (to the right) as the
situation for the specification (to the left). The code is run in its own execution
machine. For our discussion, we consider the connection between the original
description and the final execution as a similar runtime connection, see the arrow
from the running code to the specification in Fig. 5. It is irrelevant how many
compilation steps are between the description and the execution - it is still one
vertical step.

5.3 Semantics in the Case Languages

In EMF, there are three stages of language definitions: (i) the language descrip-
tion is created as the instance of the meta-languages which are later saved in the
form of an XMI file; (ii) from the description Java source code is generated (com-
pilation step); (iii) the Java source files are compiled to bytecode (compilation
step), which is then loaded and thereby activated in EMF runtime (execution
step). EMF runtime is basically the same as Eclipse runtime. EMF is not a
complete language definition framework - the constraints and semantics parts
are missing. Typically, they are specified using Java, so stage (ii) is not needed
for the semantics part. From stage (iii), the JVM execution machine enriched
with Eclipse functionality takes over and handles the compiled specification, thus
allowing to close the bootstrapping cycle.

In MPS, the process is very similar, but MPS has its own file format and
does not use XMI. In addition, MPS has meta-languages for all aspects, such
that the semantics and constraints can be specified in MPS itself. Otherwise,
the JVM execution machine is again the final stop. In the case of MPS, the
JVM is running in the context of the IntelliJ IDEA [8], giving a richer execution
machine.

The situation in LanguageLab is slightly different, given by its interpretive
nature. The language description is loaded directly into the LanguageLab exe-
cution machine (LLEM), without an intermediate compilation step. The LLEM
itself is defined in Java (using EMF). The semantics of LanguageLab ensures
that the defining language is loaded read-only and before its instances. Changes
to this language are not done until the next load of the language. This way it is
possible to close the bootstrap loop.

DMLA is also interpretive and does not need a compiler step. At runtime,
all specifications are given as tuples translated from DMLAScript. This way, the
Core component of DMLA can be considered the execution machine for DMLA,
implemented based on GraalVM and Truffle. DMLA allows changes of languages
and specifications at any time at any level (even in the bootstrap). The effect of
changing a concept is immediately reflected by the runtime state of the execution
machine.

The Art of Bootstrapping 197

Both LanguageLab and DMLA are interpretive language environments allow-
ing a complete definition of a language including semantics. The semantics is
given by the underlying execution machine. Both environments can specify lan-
guages and specifications in the same framework in their languages. We can
refer to these connections as in-level instantiation, which is a different instantia-
tion than the execution instantiation introduced earlier. Execution instantiation
crosses the machine boundary, while in-level instantiation is on the same level,
i.e. instances are still descriptions.

LanguageLab uses its languages to extend its (generic) execution machine
with the language-specific parts of the language loaded, thereby creating a spe-
cialized execution machine for the language loaded. In this situation, the lan-
guage and the execution machine cannot be changed. In contrast, DMLA uses
its generic execution machine for both the language and the specification. This
way, the level of specification is left only at the very end of the process by the
execution machine, when the machine evaluates the final form of models by inter-
preting them. This solution allows a very flexible change handling as explained
in the next section.

5.4 Changeability

Many modelling environments are not modelled, but hard-coded and available
only as a binary. In contrast to these approaches, having a self-defining, modelled
bootstrap allows to modify, fine-tune or refactor the basic modelling principles
and thus the modelling mechanisms much easier. Changing the bootstrap means
to change all its aspects, namely structure, constraints, and semantics.

Here it is essential to remember that changes to a meta-language might make
all its own definitions invalid, such that the whole platform does not work any
longer. It is important to make sure that the changes maintain validity. This is
discussed in more detail in [15].

Therefore, we consider the gradual change of the bootstrap situation rather
than a complete replacement of it. This way, the previous self-references stay
intact and the result of the bootstrap is comparable with the situation before.
We assume that the changes to the bootstrap still fit with the underlying execu-
tion machine. In some sense, this sound like there is not much difference between
hard-coded and bootstrapped environments. However, a bootstrap has only a
few (typically far less than ten) self-referential concepts that are not allowed to
change, in contrast to the hard-coded situation, where we have dozens (some-
times hundreds) of such concepts.

Changing the bootstrap of EMF is not easy. The platform, the modelling
environment and the extensions (thus the whole Eclipse modelling ecosystem)
rely heavily on the binaries generated from the EMF bootstrap, thus any mod-
ification to the bootstrap may cause problems. The meta-languages for EMF
are Java and EMF. The bootstrap modification would work in two steps: first
the new language is defined, and then it is compiled and used. As long as the
generated code still adheres to the Eclipse platform requirements, such changes
are possible and have been done before.

198 A. Prinz and G. Mezei

MPS is open to changes as long as the generated code fits into its execution
machine (a variant of the IntelliJ [8] platform). This implies that the structure,
constraint, and generator languages can be partly or completely replaced, but
the core of the bootstrap, the Concept being an instance of itself, cannot be
changed. The modification of the bootstrap is a two-step process similarly to
EMF: first, the new languages are defined, and then the languages are compiled
in order to be available for use. It is used frequently to create new versions of
the meta-languages of MPS.

The situation in LanguageLab is similar, although the platform is interpreted.
All meta-languages can be changed or replaced, as long as they still fit into the
LanguageLab execution machine.

In the case of DMLA, the bootstrap can be easily modified. There are only a
few core concepts (Base, Slot, Constraint) and basic operational statements (e.g.
conditional statement), whose structure and semantics must not be modified, but
otherwise, all other elements of the bootstrap and even the validation logic can
be easily modified without needing to change anything in the execution machine.
This is also true for operations including their inner implementation. They are
executable not only directly by the execution machine, but also callable from
operations. Since operation definitions are composed of model elements, they
can also be changed by operations, thus it is possible to create self-changing,
self-refactoring models. It is even possible to create an operation that changes
its own definition.

6 Conclusion

Self-defining language workbenches tend to be more flexible and more consistent
than environments defined by an external language. The methods of bootstrap-
ping of a compiler have been discussed and used for decades in the field of the
classical programming languages, but nowadays, similar solutions are needed in
the field of model-based language workbenches as well. Having a precise, adapt-
able, self-describing bootstrap definition is not an easy task to achieve and even
then, we are only at halfway, since the challenge of evaluating the definition is
also to be solved.

In this paper, we have compared the bootstrapping strategies and mech-
anisms of four modelling platforms: EMF, MPS, LanguageLab, and DMLA.
Although both the main goals and the modelling paradigms are different in the
approaches, it is clearly visible that the basic constructs involved in the boot-
strap situation are very similar for them.

On the language level, bootstrapping gives a very tight connection between
all the involved meta-languages, which might seem to make bootstrapping impos-
sible. However, the situation becomes solvable if we look at the concept level,
where there is normally just a few concepts that are self-referential or mutu-
ally referencing each other. All four platforms have similar solutions to define
the very core concepts of the bootstraps, although there are differences: EMF
focuses merely on the structural aspects, MPS and LanguageLab have different

The Art of Bootstrapping 199

languages to handle structure, constraints and semantics, while DMLA has only
one language that covers all of these features.

The actual bootstrapping is given by the execution of the languages in an
execution machine, which can be accessed directly (interpretive) or via transfor-
mations (compiled). In the compiled case (as in EMF and MPS), the language
description is translated to another language, which is then run in its own exe-
cution machine (an extended Java VM). In the case of an interpretive approach,
there are two options: (i) the execution machine can be specialized to each lan-
guage and be able to handle specifications of this language as in LanguageLab;
or (ii) the execution machine can be generic and both language descriptions and
specifications are evaluated by the execution machine directly as in DMLA.

As the paper shows, bootstrapping is not an easy task to solve. The art of
bootstrapping is multicoloured. Existing approaches are very similar in some
sense, but at the same time, they are also very different. The main goal of
having a self-describing bootstrap can be achieved in different ways depending
on the main requirements of the users. Practical approaches, such as EMF and
MPS, focus on usability and expressivity, while academic approaches, such as
LanguageLab and DMLA, focus on creating a theoretically pure solution. By
elaborating the main challenges of creating a bootstrap, we believe that this
paper can act as a guideline to choose the right approach for the specified needs
and to create new solutions having their own bootstrap.

References

1. Atkinson, C., Kühne, T.: Model-driven development: a metamodeling foundation.
IEEE Softw. 20(5), 36–41 (2003). https://doi.org/10.1109/MS.2003.1231149

2. Boerger, E., Stark, R.: Abstract State Machines: A Method for High-Level System
Design. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-18216-7

3. Campagne, F.: The MPS Language Workbench, Vol. I. Fabien Campagne (2014)
4. D’Anjou, J., Fairbrother, S., Kehn, D., Kellerman, J., McCarthy, P.: The Java

Developer’s Guide to Eclipse. Addison-Wesley, Boston (2005)
5. DMLA Developers: Dynamic multi-layer algebra (DMLA) official webpage.

https://www.aut.bme.hu/Pages/Research/VMTS/DMLA. Accessed 12 June 2019
6. Eclipse OCL. http://projects.eclipse.org/projects/modeling.mdt.ocl. Accessed 12

June 2019
7. Erdweg, S., et al.: The state of the art in language workbenches. In: Erwig, M.,

Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp. 197–217. Springer,
Cham (2013). https://doi.org/10.1007/978-3-319-02654-1 11

8. Fields, D., Saunders, S.: IntelliJ Idea In Action. Dreamtech Press, New Delhi (2006)
9. Fowler, M.: Language workbenches: The killer-app for domain specific languages?

http://www.martinfowler.com/articles/languageWorkbench.html (2005)
10. Gjøsæter, T., Prinz, A.: Teaching computer language handling - from compiler

theory to meta-modelling. In: Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J.
(eds.) GTTSE 2009. LNCS, vol. 6491, pp. 446–460. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-18023-1 14

11. Gjøsæter, T., Prinz, A.: Languagelab 1.1 user manual. Technical report, University
of Agder (2013), http://brage.bibsys.no/xmlui/handle/11250/134943

https://doi.org/10.1109/MS.2003.1231149
https://doi.org/10.1007/978-3-642-18216-7
https://www.aut.bme.hu/Pages/Research/VMTS/DMLA
http://projects.eclipse.org/projects/modeling.mdt.ocl
https://doi.org/10.1007/978-3-319-02654-1_11
http://www.martinfowler.com/articles/languageWorkbench.html
https://doi.org/10.1007/978-3-642-18023-1_14
http://brage.bibsys.no/xmlui/handle/11250/134943

200 A. Prinz and G. Mezei

12. Gonzalez-Perez, C., Henderson-Sellers, B.: Metamodelling for Software Engineer-
ing. Wiley Publishing, Hoboken (2008)

13. Kermeta3 developers: Kermeta3 homepage: K3 - breathe life into you metamodel.
http://diverse-project.github.io/k3/index.html. Accessed 12 June 2019

14. Konat, G., Erdweg, S., Visser, E.: Bootstrapping domain-specific meta-languages
in language workbenches. In: SIGPLAN Not, vol. 52, no. 3, pp. 47–58 (2016).
https://doi.org/10.1145/3093335.2993242

15. Meijler, T.D., Nytun, J.P., Prinz, A., Wortmann, H.: Supporting fine-grained gen-
erative model-driven evolution. Softw. Syst. Model. 9(3), 403–424 (2010). https://
doi.org/10.1007/s10270-009-0144-1

16. Nytun, J.P., Prinz, A., Tveit, M.S.: Automatic generation of modelling tools. In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 268–283.
Springer, Heidelberg (2006). https://doi.org/10.1007/11787044 21

17. Object Management Group: Meta Object Facility (MOF) Core Specification.
Object Management Group (2006). http://www.omg.org/cgi-bin/doc?formal/
2006-01-01.pdf

18. Object Management Group: XML Metadata Interchange. Object Management
Group (2015). https://www.omg.org/spec/XMI/About-XMI/

19. OMG: MOF 2.5.1. specification. https://www.omg.org/spec/MOF/2.5.1/.
Accessed 12 June 2019

20. Oracle: Graalvm. https://www.graalvm.org/. Accessed 12 June 2019
21. Oracle: Truffle GitHub. http://github.com/oracle/graal/tree/master/truffle.

Accessed 12 June 2019
22. Pech, V., Shatalin, A., Völter, M.: JetBrains MPS as a tool for extending java.

In: Proceedings of the 2013 International Conference on Principles and Practices
of Programming on the Java Platform: Virtual Machines, Languages, and Tools,
PPPJ 2013, pp. 165–168. ACM (2013). https://doi.org/10.1145/2500828.2500846

23. Prinz, A., Shatalin, A.: How to bootstrap a language workbench. In: Proceedings
of the 7th International Conference on Model-Driven Engineering and Software
Development, MODELSWARD 2019, Prague, Czech Republic, 20–22 February
2019, pp. 345–352 (2019). https://doi.org/10.5220/0007398203450352

24. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley, Boston (2009). Professional

25. Stoffel, R.: Comparing language workbenches. In: MSE-seminar: Program Analysis
and Transformation, pp. 18–24 (2010). http://wiki.ifs.hsr.ch/SemProgAnTr/files/
ComparingLanguageWorkbenches-Roman-Stoffel-2010-12-23.pdf

26. Szabó, T., Voelter, M., Kolb, B., Ratiu, D., Schaetz, B.: Mbeddr: extensible lan-
guages for embedded software development. In: Proceedings of the 2014 ACM
SIGAda Annual Conference on High Integrity Language Technology, HILT 2014,
pp. 13–16. ACM, New York (2014). https://doi.org/10.1145/2663171.2663186

27. Urbán, D., Theisz, Z., Mezei, G.: Self-describing operations for multi-level meta-
modeling. In: Proceedings of the 6th International Conference on Model-Driven
Engineering and Software Development, MODELSWARD 2018, Funchal, Madeira
- Portugal, 22–24 January 2018, pp. 519–527 (2018). https://doi.org/10.5220/
0006656105190527

28. Völter, M.: Generic tools, specific languages. Ph.D. thesis, TU Delft, Delft Uni-
versity of Technology (2014). http://resolver.tudelft.nl/uuid:53c8e1e0-7a4c-43ed-
9426-934c0a5a6522

29. Ward, M.P.: Language oriented programming. In: Software-Concepts and Tools,
vol. 15, no. 4, pp. 147–161 (1994) http://www.tech.dmu.ac.uk/∼mward/martin/
papers/middle-out-t.pdf

http://diverse-project.github.io/k3/index.html
https://doi.org/10.1145/3093335.2993242
https://doi.org/10.1007/s10270-009-0144-1
https://doi.org/10.1007/s10270-009-0144-1
https://doi.org/10.1007/11787044_21
http://www.omg.org/cgi-bin/doc?formal/2006-01-01.pdf
http://www.omg.org/cgi-bin/doc?formal/2006-01-01.pdf
https://www.omg.org/spec/XMI/About-XMI/
https://www.omg.org/spec/MOF/2.5.1/
https://www.graalvm.org/
http://github.com/oracle/graal/tree/master/truffle
https://doi.org/10.1145/2500828.2500846
https://doi.org/10.5220/0007398203450352
http://wiki.ifs.hsr.ch/SemProgAnTr/files/ ComparingLanguageWorkbenches-Roman-Stoffel-2010-12-23.pdf
http://wiki.ifs.hsr.ch/SemProgAnTr/files/ ComparingLanguageWorkbenches-Roman-Stoffel-2010-12-23.pdf
https://doi.org/10.1145/2663171.2663186
https://doi.org/10.5220/0006656105190527
https://doi.org/10.5220/0006656105190527
http://resolver.tudelft.nl/uuid:53c8e1e0-7a4c-43ed-9426-934c0a5a6522
http://resolver.tudelft.nl/uuid:53c8e1e0-7a4c-43ed-9426-934c0a5a6522
http://www.tech.dmu.ac.uk/~mward/martin/papers/middle-out-t.pdf
http://www.tech.dmu.ac.uk/~mward/martin/papers/middle-out-t.pdf

A Framework for Multi-level Modeling
of Analog/Mixed Signal Embedded

Systems

Daniela Genius1(B), Rodrigo Cortés Porto1,3, Ludovic Apvrille2,
and François Pêcheux1

1 Sorbonne Université, LIP6, CNRS UMR 7606, Paris, France
daniela.genius@lip6.fr

2 LTCI, Télécom Paris, Institut Polytechnique de Paris, Sophia Antipolis, France
3 Technische Universität Kaiserslautern, Kaiserslautern, Germany

Abstract. Embedded systems are commonly built upon heterogeneous
digital and analog integrated circuits, including sensors and actuators.
Model-driven approaches for designing software and hardware are gen-
erally limited to the digital parts of systems. In the present paper, we
adopt a global view on the extensions made to an integrated model-
ing and simulation tool, TTool. In this tool, the verification and virtual
prototyping of embedded systems is described at different abstraction
levels and extended in order to handle analog/mixed-signal systems. An
extensive case study spans these levels and illustrates the usefulness of
our approach.

1 Introduction

Many model-driven techniques have been proposed for designing both digital
software and hardware. High level models are employed to specify the func-
tionality of the system, and subsequent model transformations are applied until
a virtual prototype containing software and hardware can be generated. How-
ever, embedded systems—e.g. robotics, automotive and medical systems—are
frequently built upon heterogeneous hardware components such as processors,
FPGAs, DSPs, hardware accelerators, digital and analog analog/mixed signal
(AMS) and radio frequency (RF) circuits. In early design phases, a high-level
representation that includes both digital and analog descriptions is necessary in
order to quickly explore the design space, taking into account both digital and
AMS/RF components. Obviously, at such a high level of abstraction, speed of
design space exploration prevents us from using precise models.

The paper gives an overview of our recent contribution [27] and completes
several aspects that have not yet been treated beforehand. Our model-driven
approach offers operators and views in order to capture digital and analog
domains at several abstraction levels. This approach is supported by the free
software TTool [6]. TTool can capture digital/analog aspects and generate a
virtual prototype combining SystemC and SystemC-AMS in order to evaluate
c© Springer Nature Switzerland AG 2020
S. Hammoudi et al. (Eds.): MODELSWARD 2019, CCIS 1161, pp. 201–224, 2020.
https://doi.org/10.1007/978-3-030-37873-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37873-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-37873-8_9

202 D. Genius et al.

the system under design. The paper focuses both on modeling capabilities and
simulation aspects e.g. ways to combine AMS simulation with event-based (Sys-
temC) simulation. An important aspect regarding simulation which is addressed
in the paper is the problem of synchronization between time domains. The over-
all approach is explained with toy examples before being demonstrated with an
automotive braking application.

In the next section, we give an overview of existing approaches targeting the
modeling and/or co-simulation of cyber-physical systems. Section 3 presents the
basic concepts behind the simulation of analog components. Section 4 explains
how digital and analog components can be modeled and evaluated altogether.
Section 5 illustrates the usefulness of the approach with a realistic system.
Finally, Sect. 6 concludes the paper and gives a perspective on future work.

2 Related Work

Several well established tools in analog/mixed signal design, like Ptolemy II [35]
[42], are based upon a data-flow model. They target heterogeneous system design
by defining several sub domains [21] using hierarchical models. Instantiation of
elements controlling the time synchronization between domains is left to the
responsibility of designers. Recently, a co-simulation framework for timing veri-
fication of cyber-physical systems [29] from Ptolemy models, named Metronomy,
has been developed.

Metropolis [7] is also based on high level models and facilitates the separation
of concerns between computation and communication aspects. Heterogeneous
systems are taken into consideration, yet heterogeneity can only be represented
using processes, mediums, quantities and constraints. Hierarchical models are
not allowed. Metro II [18] introduces hierarchy and allows so-called Adaptors for
data synchronization, which serve as a bridge between the semantics of compo-
nents belonging to different Models of Computation (MoCs). The model designer
still has to implement time synchronization by means of constraints, assertions,
annotators and schedulers. As a common simulation kernel handles the entire
process execution (digital and analog), MoCs are not well separated.

From the Micro Electro Mechanical Systems (MEMS) community [10] stems
an approach which can transform structural SysML diagrams into VHDL-AMS
code. It is thus closely related to our work, but limited to its domain and gener-
ates VHDL specifiations, which are less flexible than most other approaches for
expressing different Models of Computation, VHDL being essentially a hardware
description language on register transfer level.

Discrete Event System Specification (DEVS [14]) is a modular and hierar-
chical formalism for modeling and analyzing general systems. DEVS supports
discrete events and continuous systems. Continuous functions can be described
by differential equations, or hybrid systems. A dozen of platform implemen-
tations based on DEVS exist, ranging from Petri Net over object oriented to
Python based [12,41,50].

A Framework for Multi-level Modeling of AMS Embedded Systems 203

Modelica [22] is an object-oriented modeling language for component-oriented
systems containing e.g. mechanical, electrical, electronic and hydraulic compo-
nents. Classes contain a set of equations that can be translated into objects
running on a simulation engine. Yet, since time synchronization is not prede-
fined, the simulation engine must manipulate objects in a symbolic way in order
to determine an execution order between components of different MoCs.

UML/SysML based modeling techniques such as MARTE and Gaspard2
[23,48] are extremely popular for capturing the behavior of embedded systems,
but less widely used for heterogeneous system design [44]. Furthermore, with very
few exceptions such as [39,46], they do not support refinement until cycle/bit
accurate level virtual prototypes nor provide OS support for full-system simula-
tion. Co-simulation between different Models of Computation is usually out of
scope, too.

The B method [1] and more recently Event-B [2] model systems at different
abstraction levels and makes it possible to mathematically prove consistency
between refinement levels. Based on set theory and the B language, the B method
is well established in large-scale public/private projects (urban transports etc.).
To our knowledge, no extensions to cyber-physical systems have been proposed.

Several frameworks based on SystemC [32], a library of C++ classes, makes
it possible to model (digital) hardware. For instanfe, HetSC [31], HetMoC [51]
and ForSyDe [40] all have the disadvantage that instantiation of elements and
controlling the synchronization have to be managed by the designer.

The following works stem from the analog/mixed signal hardware design
domain, where SystemC-AMS extensions [3] is about to become a standard,
describing an extension of SystemC with AMS and RF features [47]. The usual
approach for linking the digital part of a heterogeneous system with SystemC-
AMS is to rely on the Discrete Event (DE) parts of SystemC AMS extensions.
For instance, Timed data Flow (TDF) adds support for signals where data values
are sampled with a constant time step.

In the scope of the BeyondDreams project [9], a mixed analog-digital systems
proof-of-concept simulator has been developed, based on the SystemC AMS
extension standard. Another simulator is proposed in the H-Inception project
[30]. All of these approaches rely on SystemC AMS code i.e. they do not provide
a high-level interface for specifying the application.

3 Basic Concepts

First, let us briefly introduce two fundamental concepts and two associated tools.
On the one hand, Timed data Flow as implemented in [19], on the other hand,
multi-level modeling and virtual prototyping as implemented in TTool [6].

3.1 Timed Data Flow

SystemC AMS predefines several Models of Computation, e.g. the Timed Data
Flow (TDF) Model of Computation, which is based on the timeless Synchronous

204 D. Genius et al.

A B Y
R= 1
D= 1

Tm= 6 ms Tm= 4 ms

Tp= 4 ms

R= 3

Tp= 2 ms
D= 0

R= 2
D= 0

Tp= 2 ms

TDF Cluster

Fig. 1. TDF cluster [27].

Data Flow (SDF) semantics [36]. At each time step, a TDF module reads a fixed
number of samples from each of its input ports, then executes the processing
function, and finally writes a fixed number of samples to each of its output
ports. TDF modules can interact with the discrete world (such as digital MPSoC
platforms) using converter ports.

Figure 1 shows a graphical representation TDF cluster. Discrete DE modules
are represented as white blocks, TDF modules as gray blocks, TDF ports as
black squares, TDF converter ports as black and white squares, and finally TDF
signals as arrows. So-called converter ports, shown as black-and white squares,
serve as interface between the TDF and DE MoC. For the SysML-like notation
supported by TTool, we will adhere to this representation.

TDF modules have the following attributes:

– Module Timestep (Tm) denotes the period during which a module is acti-
vated. One module is activated only if there are enough samples available at
its input ports.

– Rate (R). A module reads or writes a fixed number of data samples each time
it is activated. This number is annotated to the ports and it is known as the
Port Rate.

Fig. 2. Hardware/Software partitioning and Code generation for MPSoC platforms
[27]. (Color figure online)

A Framework for Multi-level Modeling of AMS Embedded Systems 205

– Port Timestep (Tp) is the period during which each port of a module is
activated. It also denotes the time interval between two samples that are
being read or written.

– Delay (D). A Delay D can be assigned to a port to make it store a given
number of samples each time it is activated, and read or write them in the
next activation.

SystemC-AMS extensions, already mentioned in Sect. 2, define models of
computations e.g. for TDF modules. We rely on a reference implementation
[19] for generating the simulation code of the analog parts.

3.2 Modeling Tool

TTool [6] is a SysML based, free and open-source software initially designed
for model-based engineering of (digital) embedded systems at different abstrac-
tion levels: functional, partitioning, software design, and deployment. To each
of these levels, as shown in Fig. 2 taken from [27], is associated separate pan-
els, which allow designers to model systems using a SysML-like notation. The
method underlying these levels explains how to take hardware/software parti-
tioning decisions at a high level of abstraction and to regularly validate them
during software development [39].

Software and hardware tasks to be partitioned are first captured within the
functional abstraction level. Software tasks used in deployments are captured in
the software design abstraction level. In both partitioning and deployment, the
computation part of tasks is deployed to processors or hardware accelerators,
and the communication and storage parts are deployed to communication and
storage elements e.g. buses and memories.

TTool allows verification and fast (and high-level) simulation of digital parts.
It also supports cycle/bit accurate virtual prototyping on a Multi-Processor
System-on-Chip (MPSoC) based on the SoCLib [45] public domain library writ-
ten in SystemC. As SystemC-AMS is an extension to SystemC, relying on TTool
for integrating analog/mixed signal components was natural. The next section
discusses this integration.

4 Integration of Analog Components

In the following, we show how TDF concepts can be integrated into SysML-like
models and in TTool, while keeping in mind our objective to generate correct-
by-construction simulation code i.e. handling potential synchronization problems
between domains before simulation starts. The philosophy of TTool also requires
that all parts of the model are check against syntax (and against a few semantic
aspects as well) before any code is generated.

Figure 2 uses orange circles to explain how the methodology described before
have been adapted in order to support AMS components in TTool. Hardware
parts, shown on the lower right, can be simulated with a cycle-accurate precision.

206 D. Genius et al.

Fig. 3. SystemC-AMS diagram of Fig. 1 in TTool SystemC-AMS panel.

Fig. 4. TDF module parameters [27].

Analog/Mixed Signal components are not represented on the partitioning level
since the decision to have them implemented in hardware or software is not
in the hands of the designer of the embedded platforms. AMS components are
thus captured in deployment diagrams, from which the hardware top cells and
the descriptions of the mapping of software objects to processors, memories and
communication elements are generated for simulation purpose.

Our contribution is twofold: we represent SystemC-AMS components in
Deployment Diagrams and are able to generate the communication between
digital and analog parts in the simulation/prototyping code.

4.1 Representing Analog Components

In our extension to TTool, analog and digital parts of a system are first designed
in different panels. As a consequence, we have enhanced the graphical interface

A Framework for Multi-level Modeling of AMS Embedded Systems 207

Fig. 5. TDF port parameters (left) and processing function (right) [27].

of TTool with an abstract way to capture SystemC-AMS blocks with DE com-
ponents, TDF modules and converter ports. Each TDF cluster must designed in
its own panel because SystemC-AMS must calculate a separate schedule [3] for
each of them.

As mentioned before, TDF modules can be connected together or with DE
modules relying on TDF, DE and ports, respectively. The panel provides graph-
ical representations of these elements. The graphical interface also offers a tool-
bar to select the different components (modules, ports) and connectors between
ports.

Figure 3 shows a TTool AMS panel for the design of the introductory exam-
ple, which contains two TDF modules (gray blocks) and a DE module (white
block) interconnected through their respective ports and signals.

Module Parameters. The name and Timestep of a module can be set and its
time resolution selected (s, µs, ns). The parameters of a TDF module such as its
internal variables or template parameters can also be set up, as shown in Fig. 4.

A TDF block has as its attributes name and Timestep. As attributes, vari-
ables and constants can be declared.

Port Parameters. Port parameters can be captured as shown in Fig. 5. For
readability, the port Timestep and Delay do not appear in the TDF block visible
on the panel but can be obtained and specified by clicking on the port (Fig. 5).

Converter ports have the same attributes, while attributes of DE ports are
slightly different (no need to specify Rate and Delay, but indicating the sensi-
tivity to a clock signal is required). TDF and converter ports have a name, a
Timestep, a Rate and a Delay. Furthermore, it has to be specified whether it is
an input or an output port (called origin in the window), and which is the type
of data to be transmitted.

Processing Function. Representing analog components in an abstract way is
quite difficult since most components are more or less unique. Thus, we decided

208 D. Genius et al.

GPIO2VCI

p_rdata_ams

p_wdata_ams

TDF_Module

p_clk

p_resetn

p_vci

VCI_Bus
TDF Cluster SoCLib DE

Components

Fig. 6. GPIO2VCI component.

that it would be best if users could directly enter a code to describe functions’
behavior. For instance, Fig. 5 shows on the right the processing function for a
n-bit analog-digital converter as described by [5].

Valid Schedule. TTool takes as input a SysML system representation to com-
pute a valid schedule for each cluster. This determines the correct execution
order of TDF modules within the cluster, such that data flow characteristics
(sampling rate, sampling period, etc.) are consistent. To compute this sched-
ule, TTool relies on the classical sequential scheduling algorithm of [37] known
as list scheduling. This algorithm uses an ordered list of the nodes to generate
the schedule. Nodes are the TDF blocks and arcs are the signals. TTool builds
this list based on the order in which the TDF blocks are created on the panel.
Note that there can be several valid schedules. In the example of Fig. 1, a valid
schedule would be ABABB.

4.2 Connecting AMS Components to the MPSoC

If the deployment model contains only SystemC-AMS clusters, TTool generates
stand-alone SystemC AMS TDF code of the components as well as the SystemC-
AMS top cells from the mixed graphical/textual descriptions, and supplies a
Makefile. In case software code is also deployed, processors, buses and memories
must also be generated. In order to run application software, we thus combine
TDF clusters with a MPSoC suitable for full-system simulation.

For this purpose, the SoCLib library provides hardware models, written in
SystemC. In particular, it allows the use of a micro kernel [8], able to load and
execute cross-compiled software for several processor cores (MIPS,ARM, ...).
SoCLib is based on the shared memory paradigm. Components are intercon-
nected based on the Virtual Component Interconnect (VCI) [49] protocol. These
components can be initiators i.e. they issue requests (e.g. CPUs) or targets that
respond to these requests (e.g. RAM memory), sometimes both (DMA, copro-
cessor wrapper).

A Framework for Multi-level Modeling of AMS Embedded Systems 209

The main idea for the integration of SystemC-AMS and SoCLib components
into TTool is that the analog components will act as targets for the SoCLib
initiator digital components (CPUs,hardwareaccelerators,DMA, ...). The gener-
ated top cell is thus composed of SoCLib modules and interfaces to the SystemC-
AMS clusters. It is also important to mention that a TDF cluster may contain
custom DE modules which are not part of the SoCLib library.

In order to connect both worlds, we have introduced a generic adapter
module that can be used as an interface between SystemC-AMS modules and
SoCLib interconnect components [16]. This component is modeled as a general-
purpose input/output (GPIO) adapter to VCI, called GPIO2VCI in the
following.

Figure 6 shows the model of the GPIO2VCI component which plays the role
an interface between the SystemC-AMS modules (TDF Module belonging to a
TDF Cluster) and the SoCLib VCI interconnect component (VCI Bus). Data
are exchanged via ports p rdata ams and p wdata ams, respectively, p vci com-
municates with the SoCLib/VCI world. There is also a clock and a reset port.
The component is manually inserted in the graphical interface of the panel, then
its instantiation and connection, in particular the required lines in the top cell,
are automatically generated.

The GPIO2VCI fulfills the rules for writing cycle-bit precise SystemC simu-
lation models of SoCLib. These writing rules, listed in [28], specify that cycle-bit
accurate components are built by one or several Finite State Machines (FSM)
and have clearly defined internal registers. The FSM can be described by three
types of functions. The transition function, which is triggered once per cycle
on the rising edge of the clock, computes the next values of the registers, depend-
ing on their current values and the values of the input signals. The genMoore
function, which is triggered once per cycle on the falling edge of the clock, com-
putes the values of output signals that depend on the internal registers. Finally,
the genMealy function, which is triggered once per cycle on the falling edge of
the clock, computes the values of output signals that depend on the internal
registers and the values of the input signals.

4.3 Solving Causality Problems

Due to their different Model of Computation, AMS components require to exe-
cute their simulated behavior apart from the rest of the system: yet, they regu-
larly have to synchronize with the digital platform. The SystemC kernel is thus
controlling the AMS kernel which runs continuously until it is interrupted by
an access to a converter port by a TDF cluster.

When a TDF module accesses its input converter port, the DE simulation
time advances until it is equal to the TDF simulation time of the input converter
port. Later, if an access to an output converter port occurs with a TDF simula-
tion time that is less than the new DE simulation time, a time synchronization
issue occurs. To avoid this situation, the TDF simulation time of the output con-
verter ports always needs to be greater or equal than the DE simulation time.

210 D. Genius et al.

This problem was exposed in [4] and resolved with the help of colored timed
Petri Nets [33] derived from the SystemC AMS code.

According to [17], when a SystemC-AMS simulation is being executed, the
execution of the SystemC DE simulation kernel is blocked while the SystemC-
AMS simulation kernel continues running. As a consequence, during this period
the DE simulation time (tDE) does not advance at all, while the TDF simulation
time (tTDF) runs according to the Timesteps of the TDF modules and ports.
On access to a TDF converter port, the SystemC-AMS simulation kernel is
interrupted and yields to the SystemC DE simulation kernel. This way, tDE

advances until it is equal to tTDF . In general, tTDF runs ahead of tDE , but
in some scenarios, tTDF ≥ tDE i.e. tDE may be greater than tTDF : this is a
causality problem.

In [4], synchronization at converter ports is modeled with the help of Colored
Timed Petri Nets derived from the SystemC-AMS code. Causality issues between
TDF and DE MoC are then automatically checked. However, this is done on
SystemC-AMS code, whereas [15] proposes a way to detect causality issues from
SysML models and also shows that only accesses to TDF input converter ports
affect synchronization.

The following algorithm presented in [16], of which a detailed version is shown
in [15], solves causality issues by iterating over additional Delays and recomput-
ing schedules until all causality issues are solved.

1: procedure detectTimeSyncIssues
2: for each Module in Static Schedule do
3: for each Converter Port do
4: if Input Converter Port then
5: advance tDE

6: compute max tDE

7: else if Output Converter Port then
8: compute tTDF of port
9: if !(tTDF ≥ max tDE) then

10: Time synchronization issue detected
11: Suggest port Delay to fix it
12: end if
13: end if
14: end for
15: end for
16: end procedure

Based on the static schedule for one complete TDF cluster period, each time
a TDF module is executed, for each accessed input converter port, the DE sim-
ulation time (tDE) advance as shown in line 5, and the maximum tDE is stored
as shown in line 6. Then, for each accessed output converter port, the TDF
simulation time (tTDF) is computed (see line 8). The tTDF of each port should
be greater than or equal to the maximum stored DE simulation time, as shown
in line 9. If this condition fails, there is a causality problem and a Delay in the
output converter port where the issue was detected is suggested.

A Framework for Multi-level Modeling of AMS Embedded Systems 211

4.4 MPSoC Virtual Prototype

GPIO2VCI components are visible in the AMS diagram, as shown in Fig. 7,
where our initial cluster is connected to a mono processor platform. Yet, only
the connection is represented on the AMS panel by the GPIO2VCI. Also, there
can be more than one such connections, one for each TDF cluster. Clicking on
one of the GPIO2VCI components opens the corresponding TDF cluster.

Conversely, TDF clusters are displayed in the Deployment Diagram, see
Fig. 8. Here, we map a monolithic toy software (a hello world message followed
by the printout of values generated by a sine wave generator in the AMS cluster),
represented by a block named software on a mono processor named CPU0.

Fig. 7. Adding a GPIO2VCI component.

4.5 Simulation of the Virtual Prototype

Since model-driven approaches expect to ideally provide model validation before
code generation (and thus simulation), we propose a way to statically identify
synchronization problems [15]. Basically, based on the static schedule for one
complete TDF cluster period, each time a TDF module is executed, for each
accessed input converter port, the DE simulation time (tDE) advances, and the
maximum tDE is stored. Then, for each accessed output converter port, the TDF
simulation time (tTDF) of each port should be greater or equal than the maximum
stored tDE. If this condition fails, it means there is a causality problem with the
time synchronization and a delay in the output converter port where the issue
was detected will be suggested to the designer in order to resolve the problem.
The schedulability of the analog part is validated using the schedulability check
of SystemC-AMS [37], thus before code is generated.

Figures 9 and 10 show the simulation of the integration of SystemC-AMS
and SoCLib SoC components: a write operation to the GPIO2VCI thus to the
analog part, followed by a read from the GPIO2VCI.

212 D. Genius et al.

Fig. 8. TTool deployment panel featuring a TDF cluster.

Fig. 9. Host machine console: Write to the GPIO2VCI component.

Fig. 10. Host machine console: Read from the GPIO2VCI component.

4.6 Trace Generation

While it possible to generate cycle accurate vcd traces of the digital signals in
the original version of TTool, the integration of SystemC-AMS necessitates the
tracing of the analog, thus continuous, signals. Thus, our tool contains additional
mechanisms for trace generation of the analog part of the simulation.

SystemC-AMS tracing using the sca trace primitives is invoked for each
analog cluster. This function, if activated from the TTool graphical interface,
allows to create one trace file per cluster. Code lines are generated and inserted
in the SystemC-AMS code of the cluster.

Listing 1.1 shows how tracing is handled for the top cell under considera-
tion A tabular trace file is created with a given name. signals connecting the
GPIO2VCI component to the TDF cluster are added to the trace, then the trac-
ing functions that have been created in the cluster’s SystemC-AMS code are
invoked. Traces can then be displayed with a tool adapted to analog traces, like

A Framework for Multi-level Modeling of AMS Embedded Systems 213

GAW - Gtk Analog Wave viewer [43]. As usual, traces of the SystemC digital
part can displayed with e.g. gtkwave [11].

sca_util::sca_trace_file *tfp = sca_util::sca_create_tabular_trace_file("analog_trace");

sca_util::sca_trace(tfp,signal_to_ams0,"signal_to_ams0");

sca_util::sca_trace(tfp,signal_from_ams0,"signal_from_ams0");

Cluster0_0.trace_Cluster0(tfp);

...

sca_util::sca_close_tabular_trace_file(tfp);

Listing 1.1. Tracing for the AMS components invoked in the top cell.

5 Case Study

Our contribution to tackle digital and analog systems is illustrated by an auto-
motive embedded system designed in the scope of the EVITA European project
[20] and for which code generation was presented in [38]. Recent on-board Intel-
ligent Transport (IT) architectures comprise a very heterogeneous landscape of
communication network technologies (e.g., LIN, CAN, MOST, and FlexRay)
that interconnect in-car Electronic Control Units (ECUs).

We apply in the following, step by step, the general methodology developed in
[25] concerning the digital part along with the new techniques introduced in [27].

Among the use cases addressed by EVITA, we selected the automatic braking
function [34]. Basically, this function works as follows: an obstacle is detected by
another automotive system which broadcasts that information to neighboring
cars. A car receiving such information has to decide whether it is concerned
with this obstacle. This decision includes a plausibility check function that takes
into account various parameters, such as the direction and speed of the car, and
also information previously received from neighboring cars. Once the decision to
brake has been taken, the braking order is forwarded to relevant ECUs. Last but
not least, the presence of this obstacle is forwarded to other neighboring cars in
case they have not yet received this information.

5.1 Partitioning

The functional view in Fig. 11 describes of a set of abstract communicating tasks;
green boxes representing TLM modules). Functional abstraction allows us to
avoid capturing the exact data processing algorithms, but rather to consider only
abstract computation complexity. Each individual task describes its abstract
functional behavior using communication operators, computation elements, and
control elements. Thanks to data abstraction, we consider only the size of the
data sent or received, and ignore details such as type, values, or names.

Then, mapping intends to partition functions between software and hardware
implementations. Figure 12 shows the deployment diagram. The architecture is
modeled as a graph built upon execution (light blue), communication (orange),
and storage (light turquoise) nodes. Execution nodes are for example CPUs and
hardware accelerators. Our extension allows a representation of analog/mixed

214 D. Genius et al.

Fig. 11. Functional view. (Color figure online)

Fig. 12. Partitioning level mapping view. (Color figure online)

signal modules, which are execution nodes too. Communication nodes include
bridges and buses, storage nodes are memories.

A function mapped onto a processor will be implemented in software, and a
function mapped onto a hardware accelerator (darker turquoise) is implemented
in hardware. Functions to be implemented in hardware are either digital or
analog functions. In our example, all sensors obtaining information from the
environment are modeled as analog blocks.

An evolution with regards to [27] is that analog blocks can now be made
explicit on the partitioning level as a particular kind of hardware accelerators,
named CAMS (abbreviating SystemC-AMS) as shown on the bottom center of
Fig. 12: the simulation environment is subsumed in the light purple block named
SimulationEnvironment, which is slightly enlarged for better readability.

A Framework for Multi-level Modeling of AMS Embedded Systems 215

Fig. 13. Block diagram from [38].

5.2 Software Design

Once the partitioning is done, software can be designed and verified with TTool.
Figure 13 shows the former software block diagram taken from [38], with the five
sensors at the top: there, sensors are captured as software components. Now,
they can be removed from the software design diagram since the partitioning
decision has already been taken for the analog blocks: they do not need to be
considered any more during software design.

Other software components are grouped according to their destination ECU:

– Communication ECU manages communication with neighboring vehicles.
– Chassis Safety Controller ECU (CSCU) processes emergency messages

and sends orders to brake to ECUs.
– Braking Controller ECU (BCU) contains two blocks: DangerAvoidanceS-
trategy determines how to efficiently and safely reduce the vehicle speed, or
brake if necessary.

– Power Train Controller ECU (PTC) enforces the engine torque modifi-
cation request.

216 D. Genius et al.

To prototype the software components with the other platform elements
(hardware components, operating system), we must map the software compo-
nents to a model of the target system. Mapping can be performed using the
deployment features introduced in [24]: such a deployment diagram is a
SysML representation of hardware components, their interconnection, software
tasks and communication channels between software tasks.

5.3 Modeling Sensors

Before, since sensors were captured as software tasks, code generation from soft-
ware design resulted in having a C/POSIX code representing the behavior of
these sensors, leading to too unrealistic simulations All five sensors are now
replaced by more realistic analog models in the form of five independent TDF
clusters.

Fig. 14. TTool panel with model of the CarPositionSimulator sensor.

Figure 14 shows the AMS panel of the textitCarPositionSimulator sensor that
gives information on surrounding cars id (e.g., car position).

From TDF information (Rate,Delay, ...), TTool infers, if possible, miss-
ing parameters, and then computes a coherent schedule, and finally generates
SystemC-AMS code, comprising ports, Delays and interfaces [15]. Cluster out-
put is read by the DSRSC Management block (see Fig. 13). Often, complex data
structures of more than one parameter are transmitted in channels (here, id and
position). Currently, they have to be transmitted one by one, basic type by basic
type. Thus, id and position require two sequential write operations to the out
port in the processing code and two corresponding read operations in the entry
code.

We can easily model the randomized choice of an integer between 1 and 5
(id) and between 3 and 10 (position) stemming from the data type of Fig. 13.
The code of this simple processing function is shown on the right of the figure
in a separate window. The write primitive sends one integer value to the out
converter port.

A Framework for Multi-level Modeling of AMS Embedded Systems 217

5.4 Interaction of Analog Blocks with the Software Design Level

In contrast to the purely digital model of the same application, the functional
blocks pertaining to the sensors are no longer represented in the software design
level block diagram, since they are represented by analog blocks captured in five
separate SystemC-AMS panels. In Fig. 13, thus, the upper row of tasks named
TestBench disappears.

A library named libsyscams has been provided to contain read and write
primitives on the side of the MPSoC, the read gpio2vci and write gpio2vci func-
tions. As shown above, CarPositionSimulator issues two random values from its
output port, EmergencySimulator does the same. By executing these software
functions, the CPU of the digital platform is able to exchange (i.e. read or write)
values with the analog components.

On the side of the MPSoC platform, according to TTool’s semantics, the
DSRSC Management block nondeterministically reads from either block, or read
a broadcastEmergencyBrakingMessage from a third, the DangerAvoidanceStrat-
egy block. In the current version, the first two blocks being replaced by sensors
modeled in SystemC-AMS, this semantics should be preserved.

Fig. 15. DSRSC Management block state machine containing link to the entry code.

Let us now consider the state machine of the DSRSC Management block
(Fig. 15). In [27], we show how to use entry code that can be contained in a
state to call libsyscams. This is the case of the WaitForEnvironmentInput state.
We read nondeterministically either the input from CarPositionSimulator or
EmergencySimulator, whenever values are available on either. This nondeter-
minism, which was in the past expressed by the semantics of TTool’s channels
between software blocks, must now be reflected in the entry code of the software
block’s state machine as well. Figure 16 shows the successive operations: we call
the read gpio2vci primitive and check whether data was successfully read and in
that case, go on to the next operation. If there are several parameters (here id
and position), they must be read sequentially.

218 D. Genius et al.

Fig. 16. WaitingForEnvironmentInput state entry code.

Fig. 17. Deployment diagram of the active braking application.

5.5 Deployment

Figure 17 shows the extended deployment diagram giving an overview of the
mapping of software tasks and channels. Where the software tasks are mapped
onto the CPU, the channels between the tasks on the memory. TDF clusters are
displayed as gray boxes along with digital components, interconnected to the
central (digital) interconnect through GPIO2VCI components as detailed below.
For a better overview, the diagram contains sensors as gray boxes, each one
corresponding to a SystemC-AMS cluster connected via a GPIO2VCI. Clicking

A Framework for Multi-level Modeling of AMS Embedded Systems 219

Fig. 18. Validation and code generation window.

Fig. 19. TTY of the SoCLib simulation showing system boot and first input from the
sensors.

on the box opens the corresponding SystemC-AMS panel. A fifth CPU which
used to simulate the sensor execution is no longer in use.

The generated MPSoC platform consists of a digital SoC based on SoCLib
components connected to the analog hardware components, modeled using
SystemC-AMS code. On the SoCLib side, a MIPS32 CPU, a 1 MB RAM memory
and a TTY terminal are modeled in SystemC. This virtual prototype is capable
of running software (limited to communicating some values and command in
the case study) and a lightweight operating system [8].

5.6 Running the Application

TTool first checks the coherency of the block and port parameters before com-
puting a valid TDF schedule for each TDF cluster, taking into account synchro-
nization issues between the TDF and DE world [27]. This is done in a so-called

220 D. Genius et al.

Fig. 20. Digital trace generated from TTool’s simulation.

Fig. 21. Analog trace generated from TTool’s simulation.

validation window (Fig. 18). Once the cluster schedule is validated, code gener-
ation can be started from another dialog window.

Figure 19 shows the start up of the software application and first incoming
measurements of the sensors (randomized values in plausible ranges were used
for simulation). Figure 20 shows part of the simulation vcd trace of the AMS
version, containing the digital signals; we focus on the signals on one of the
gpio2vci interfaces. In Fig. 21, the five incoming signals from the five sensors are
traced with GAW.

In the light of former work, we examine latencies [26]. The most important
latency is the one between the detection of an emergency situation and the
moment when the braking really occurs.

As can be seen in Fig. 22, the message is issued by ForwardEmergency-
BrakingMessage, left hand side of the figure) and received by reading from
channel brake (right hand side). In the simulated situation, the latency is of
1918 − 1681 = 237µsec. Figure 23 finally shows the sequence diagram obtained

A Framework for Multi-level Modeling of AMS Embedded Systems 221

Fig. 22. Latency checkpoints between emergency detection (write to channel For-
wardEmergencyBrakingMessage) and braking (reading from channel brake). Automates
are annotated with values obtained by running the interactive simulation.

Fig. 23. Emergency situation in a sequence diagram.

at software design level, indicating that there is an emergency message, but that
particular message can be ignored.

6 Conclusion and Perspectives

The paper shows the integration of SystemC-AMS (TDF) components into
a multi-level modeling tool for complex embedded systems. Starting from a
SysML-like representation and progressively refining, we obtain, by model trans-
formation, a cycle-accurate virtual prototype.

Virtual prototyping can be obtained from the last refinement stage, taking
into account both analog and digital parts of the system. To this end, a library
was created to provide read and write functions between digital and analog
components.

222 D. Genius et al.

Yet, in order to use analog components, C code needs to be inserted in order
to capture analog functions. The resulting code is thus no longer correct by
construction. In the future, this should be replaced by specific read and write
operators. Also, it should be possible to transmit structured data types and
multiple parameters more conveniently.

Even if analog components tend to be unique, we think that it will be possible
to select a set of typical components such as filters, analog/digital converters,
sine sources, and sinks. We plan to provide a library of parametrizable versions
of such building blocks.

Yet, TDF models are still strongly oversimplified as in the EVITA industrial
case study, further detail was not available. We are currently modeling a medical
appliance with a strong proportion of analog blocks, stemming from an Open
Source project [13], for which we have access to full implementation details.

Latency measurements are currently limited to the digital part. The feedback
of simulation results is still only semi-automatic. Automating and extending this
mechanism to the entire system should enable us to propose a full design space
exploration environment for Analog/Mixed Signal systems.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (2005)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Accellera Systems Initiative: SystemC AMS extensions Users Guide, Version 1.0.
Accellera Systems Initiative, March 2010

4. Andrade, L., Maehne, T., Vachoux, A., Ben Aoun, C., Pêcheux, F., Louërat, M.M.:
Pre-simulation formal analysis of synchronization issues between discrete event
and timed data flow models of computation. In: Design, Automation and Test in
Europe, DATE Conference, March 2015

5. Andrade Porras, L.: Principles and implementation of a generic synchronization
interface between SystemC AMS models of computation for the virtual prototyping
of multi-disciplinary systems. Ph.D. thesis, Université Pierre et Marie Curie (2016)

6. Apvrille, L.: Webpage of TTool (2011)
7. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-

Vincentelli, A.L.: Metropolis: an integrated electronic system design environment.
IEEE Comput. 36(4), 45–52 (2003)

8. Becoulet, A.: Mutekh. http://www.mutekh.org
9. Beyond Dreams Consortium: Beyond Dreams (Design Refinement of Embed-

ded Analogue and Mixed-Signal Systems) (2008–2011). http://projects.eas.iis.
fraunhofer.de/beyonddreams

10. Bouquet, F., Gauthier, J.M., Hammad, A., Peureux, F.: Transformation of SysML
structure diagrams to VHDL-AMS. In: 2012 Second Workshop on Design, Control
and Software Implementation for Distributed MEMS, pp. 74–81. IEEE (2012)

11. Bybell, T.: GTKWave Viewer (2019). http://gtkwave.sourceforge.net
12. Capocchi, L., Santucci, J.F., Poggi, B., Nicolai, C.: DEVSimPY: a collaborative

python software for modeling and simulation of DEVS systems. In: 2011 IEEE 20th
International Workshops on Enabling Technologies: Infrastructure for Collabora-
tive Enterprises, pp. 170–175. IEEE (2011)

http://www.mutekh.org
http://projects.eas.iis.fraunhofer.de/beyonddreams
http://projects.eas.iis.fraunhofer.de/beyonddreams
http://gtkwave.sourceforge.net

A Framework for Multi-level Modeling of AMS Embedded Systems 223

13. echOpen Community: Designing an open-source and low-cost echo-stethoscope
(2017). http://www.echopen.org/

14. Concepcion, A.I., Zeigler, B.P.: DEVS formalism: a framework for hierarchical
model development. IEEE Trans. Softw. Eng. 14(2), 228–241 (1988)

15. Porto, R.C.: Integration of SystemC-AMS simulation platforms into TTool. Mas-
ter’s thesis, Technische Universität Kaiserslautern (2018)

16. Porto, R.C., Genius, D., Apvrille, L.: Modeling and virtual prototyping for embed-
ded systems on mixed-signal multicores. In: RAPIDO (2019)

17. Damm, M., Grimm, C., Haas, J., Herrholz, A., Nebel, W.: Connecting SystemC-
AMS models with OSCI TLM 2.0 models using temporal decoupling. In: FDL, pp.
25–30 (2008)

18. Davare, A.: A next-generation design framework for platform-based design. In:
DVCon, vol. 152 (2007)

19. Einwich, K.: SystemC AMS PoC2.1 Library, COSEDA, Dresden (2016)
20. EVITA: E-safety vehicle intrusion protected applications. http://www.evita-

project.org/
21. Fong, C.: Discrete-time dataflow models for visual simulation in ptolemy II. Mas-

ter’s report, Memorandum UCB/ERL M 1 (2001)
22. Fritzson, P., Engelson, V.: Modelica—a unified object-oriented language for system

modeling and simulation. In: Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 67–
90. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054087

23. Gamatié, A., et al.: A model-driven design framework for massively parallel embed-
ded systems. ACM Trans. Embed. Comput. Syst. 10(4), 39 (2011)

24. Genius, D., Apvrille, L.: Virtual yet precise prototyping: an automotive case study.
In: ERTSS 2016, Toulouse, January 2016

25. Genius, D., Li, L.W., Apvrille, L.: Model-driven performance evaluation and formal
verification for multi-level embedded system design. In: 5th International Confer-
ence on Model-Driven Engineering and Software Development (MODELSWARD
2017), Porto, Portugal (2017)

26. Genius, D., Li, L.W., Apvrille, L.: Multi-level latency evaluation with an MDE app-
roach. In: 6th International Conference on Model-Driven Engineering and Software
Development (MODELSWARD 2018), Funchal, Portugal (2018)

27. Genius, D., Cortés Porto, R., Apvrille, L., Pêcheux, F.: A tool for high-level mod-
eling of analog/mixed signal embedded systems. In: 7th International Conference
on Model-Driven Engineering and Software Development (MODELSWARD 2019),
Prague, Czech Republic (2019)

28. Greiner, A.: Writing efficient cycle-accurate, bit-accurate SystemC simula-
tion models for SoCLib, September 2017. http://www.soclib.fr/trac/dev/wiki/
WritingRules/Caba. http://www.soclib.fr/trac/dev/wiki/WritingRules/Caba. As
of: 16 October 2018

29. Guo, L., Zhu, Q., Nuzzo, P., Passerone, R., Sangiovanni-Vincentelli, A., Lee, E.A.:
Metronomy: a function-architecture co-simulation framework for timing verifica-
tion of cyber-physical systems. In: Proceedings of the 2014 International Confer-
ence on Hardware/Software Codesign and System Synthesis, p. 24. ACM (2014)

30. H-Inception Consortium: Heterogeneous Inception Project (2012–2015). https://
www-soc.lip6.fr/trac/hinception

31. Herrera, F., Villar, E.: A framework for heterogeneous specification and design
of electronic embedded systems in SystemC. ACM Trans. Des. Autom. Electron.
Syst. (TODAES) 12(3), 22 (2007)

32. IEEE: SystemC. IEEE Standard 1666-2011 (2011)

http://www.echopen.org/
http://www.evita-project.org/
http://www.evita-project.org/
https://doi.org/10.1007/BFb0054087
http://www.soclib.fr/trac/dev/wiki/WritingRules/Caba
http://www.soclib.fr/trac/dev/wiki/WritingRules/Caba
http://www.soclib.fr/trac/dev/wiki/WritingRules/Caba
https://www-soc.lip6.fr/trac/hinception
https://www-soc.lip6.fr/trac/hinception

224 D. Genius et al.

33. Jensen, K., Kristensen, L.M.: Coloured Petri Nets. Modelling and Validation of
Concurrent Systems. Springer, Heidelberg (2009). https://doi.org/10.1007/b95112

34. Kelling, E., et al.: Specification and evaluation of e-security relevant use cases.
Technical report, Deliverable D2.1, EVITA Project (2009)

35. Lee, E.A.: Disciplined heterogeneous modeling. In: Petriu, D.C., Rouquette, N.,
Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6395, pp. 273–287. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-16129-2 20

36. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–
1245 (1987)

37. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Trans. Comput. C–36(1), 24–35 (1987).
https://doi.org/10.1109/TC.1987.5009446

38. Li, L., Apvrille, L., Genius, D.: Virtual prototyping of automotive systems: towards
multi-level design space exploration. In: DASIP (2016)

39. Li, L.W., Genius, D., Apvrille, L.: Formal and virtual multi-level design space
exploration. In: Pires, L.F., Hammoudi, S., Selic, B. (eds.) MODELSWARD 2017.
CCIS, vol. 880, pp. 47–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-94764-8 3

40. Niaki, S.H.A., Jakobsen, M.K., Sulonen, T., Sander, I.: Formal heterogeneous sys-
tem modeling with SystemC. In: 2012 Forum on Specification and Design Lan-
guages (FDL), pp. 160–167. IEEE (2012)

41. Ninios, P., Vlahos, K., Bunn, D.W.: OO/DEVS: a platform for industry simulation
and strategic modelling. Decis. Support Syst. 15(3), 229–245 (1995)

42. Ptolemy.org (ed.): System Design, Modeling, and Simulation using Ptolemy II
(2014)

43. Quillevere, H.: Gtk Analog Wave Viewer (2019). http://www.rvq.fr/linux/gaw.php
44. Selic, B., Gérard, S.: Modeling and Analysis of Real-Time and Embedded Systems

with UML and MARTE: Developing Cyber-Physical Systems. Elsevier, Amsterdam
(2013)

45. SocLib Consortium: The SoCLib project: an integrated system-on-chip modelling
and simulation platform. Technical report, CNRS (2003). www.soclib.fr

46. Taha, S., Radermacher, A., Gérard, S.: An entirely model-based framework for
hardware design and simulation. In: Hinchey, M., et al. (eds.) BICC/DIPES -2010.
IAICT, vol. 329, pp. 31–42. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15234-4 5

47. Vachoux, A., Grimm, C., Einwich, K.: Analog and mixed signal modelling with
SystemC-AMS. In: ISCAS (3), pp. 914–917. IEEE (2003). http://ieeexplore.ieee.
org/xpl/mostRecentIssue.jsp?punumber=8570

48. Vidal, J., de Lamotte, F., Gogniat, G., Soulard, P., Diguet, J.P.: A co-design app-
roach for embedded system modeling and code generation with UML and MARTE.
In: DATE, pp. 226–231. IEEE (2009)

49. VSI Alliance: Virtual Component Interface Standard (OCB 2 2.0), August 2000
50. Zeigler, B.P., Kim, D.: Distributed supply chain simulation in a DEVS/CORBA

execution environment. In: WSC 1999, 1999 Winter Simulation Conference Pro-
ceedings. Simulation-A Bridge to the Future (Cat. No. 99CH37038), vol. 2, pp.
1333–1340. IEEE (1999)

51. Zhu, J., Sander, I., Jantsch, A.: HetMoC: heterogeneous modelling in SystemC.
In: 2010 Forum on Specification & Design Languages (FDL 2010), pp. 1–6. IET
(2010)

https://doi.org/10.1007/b95112
https://doi.org/10.1007/978-3-642-16129-2_20
https://doi.org/10.1109/TC.1987.5009446
https://doi.org/10.1007/978-3-319-94764-8_3
https://doi.org/10.1007/978-3-319-94764-8_3
http://www.rvq.fr/linux/gaw.php
www.soclib.fr
https://doi.org/10.1007/978-3-642-15234-4_5
https://doi.org/10.1007/978-3-642-15234-4_5
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8570
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8570

Towards Multi-editor Support
for Domain-Specific Languages Utilizing

the Language Server Protocol

Hendrik Bünder1(B) and Herbert Kuchen2(B)

1 itemis AG, Bonn, Germany
buender@itemis.de

2 ERCIS, University of Münster, Münster, Germany
kuchen@uni-muenster.de

Abstract. In model-driven software development (MDSD) projects, fre-
quently domain experts and developers work together on the same model.
However, they have quite different preferences concerning tools for work-
ing with a model. While developers require a powerful integrated devel-
opment environment (IDE), domain experts are overwhelmed by the
amount of functionality of an IDE and its confusing user interface. They
prefer a simple editor, often provided as a web application, which does
not require a local installation. Currently, both stakeholders typically
agree on a common tool, which is frustrating for at least one of them. The
Language Server Protocol (LSP) is a standard that aims to include lan-
guage smarts into simple editors without turning them into IDEs. Orig-
inally, it has been designed for programming languages. In the present
paper, we will give evidence based on a case study and a corresponding
SWOT analysis that it is even more beneficial for a textual domain-
specific language (DSL) as it is often used in MDSD. We will focus on
the language workbench Xtext which supports the LSP. In particular,
we will investigate how the LSP can be used to integrate a DSL into dif-
ferent development tools (editors and IDEs). Supplementing the SWOT
analysis, we have also evaluated the practical relevance of the LSP.

Keywords: Textual domain-specific languages · Model-driven
development language server protocol · Case study

1 Introduction

Domain-specific languages (DSLs) enable the efficient creation of complex soft-
ware systems by allowing to describe the concepts of a particular domain in a
typically declarative and semantically rich way. Due to their high level of abstrac-
tion, the documents written in a DSL are typically called models rather than pro-
grams. Such models are captured in an either textual or graphical notation. In
model-driven software development, the models are automatically transformed
into documents on a lower level of abstraction. Frequently, they are directly
c© Springer Nature Switzerland AG 2020
S. Hammoudi et al. (Eds.): MODELSWARD 2019, CCIS 1161, pp. 225–245, 2020.
https://doi.org/10.1007/978-3-030-37873-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37873-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-37873-8_10

226 H. Bünder and H. Kuchen

transformed into the source code of the selected programming language. One
key factor to success for a domain-specific language is a mature editor support
that includes language smarts such as syntax highlighting, validations, and code
completion.

Focusing on textual DSLs, there is a variety of potential editors. On one
side of the scale, simple text editors such as VI [16] or Microsoft Notepad can be
used. While these editors focus on simple and fast text changes, they do not sup-
port any language-specific smarts. On the other side of the scale, sophisticated
integrated development environments (IDE) come with a feature rich, language
specific editor. Additionally, they provide an ecosystem for analyzing, running,
testing, and debugging source code.

For creating mature editor support for DSLs, language workbenches such
as MPS [5], Spoofax [13], and MontiCore [15] offer many features. Based on the
integration into IDEs such as Eclipse [33] or IntelliJ [12], language editors can be
created quickly by semi-automated processes. Although this integration enables
the fast creation of language specific editors, it also couples the editor to the
host IDE.

Since DSLs are often edited by both, technical and non-technical users, con-
flicting requirements arise. The technical users prefer the DSL editor to be deeply
integrated into the IDE that is best for their use case. For example, a developer
implementing an application in JavaScript [23] might prefer Visual Studio Code
[18]. Alternatively, a developer implementing an application in Java [1] or C++
[29] might prefer the Eclipse IDE. Since a DSL might describe different parts of
an application or provide multiple generators, it should be easily integrated into
different IDEs. On the other hand, DSLs have to provide an editor that is opti-
mized for non-technical users. In contrast to developers, non-technical users are
distracted by the overloaded user interfaces of IDEs and prefer simple editors.
Yet, they should be supported by all the language smarts that are key factor
to success for a DSL. In addition, non-technical users favor web-based editors
where no additional installation is required.

The stated requirements cause a lot of effort for toolsmiths, since they have
to provide editors for different IDEs, text editors, and browsers. Consequently
all language smarts such as code completion or syntax highlighting have to be
implemented in the programming language used by the IDE or tool in which the
editor should be integrated. Since this is not an economically reasonable strategy,
toolsmiths tend to support only a single IDE. Thereby, developer productivity
decreases due to the fact that the supported IDE for the DSL might not be
the ideal IDE for enhancing, testing, running, and debugging the source code
generated from the DSL. Additionally, non-technical are forced to used IDE to
collaborate instead of a more concise web browser based editor.

The Language Server Protocol (LSP) [22] introduced by Microsoft, RedHat
and Codenvy decouples the language smarts from the actual editor integration.
While intended to provide editor support for general purpose programming lan-
guages, it can equally well be used for DSLs. The LSP is supported by the Xtext
language workbench. DSLs built upon the Xtext language workbench support

Towards Multi-editor Support for Domain-Specific Languages 227

all LSP features including multi-IDE, multi-Editor and browser integration. In
order to exemplify the steps required to integrate an arbitrary DSL into multi-
ple editors, we have conducted a case study. In addition, we have performed an
analysis of strengths, weaknesses, opportunities and threats (SWOT) of lever-
aging the Xtext LSP integration. The present paper is an extended version of
a preceding conference paper [4]. In order to supplement the SWOT analysis,
we have now also analyzed the utilization of the LSP. The analysis focuses on
open source github projects that have been implemented utilizing Xtext and the
LSP. In order to also get an idea of the usage of the Xtext and LSP integration
in proprietary closed source projects, the Eclipse textual modeling framework
(TMF) forum was analyzed in order to evaluate, how extensively the topic is
being discussed.

The present paper is structured as follows. First, Sect. 2 gives an overview of
the LSP. In Sect. 3, the Entity-DSL implemented in the context of the case
study is described. Further, we outline the results of the conducted SWOT
analysis identifying the potential of the LSP in combination with the Xtext
language workbench. Section 4 presents our observations from analyzing open
source projects utilizing the Xtext and LSP integration. It also presents our
results from examining the Eclipse TMF (Xtext) forum. Section 5 summarizes
and discusses our results, before we describe related work in Sect. 6. Finally, we
conclude in Sect. 7.

2 Overview of the Language Server Protocol

This section describes the language server protocol [22]. Readers who are familar
with it, can skip this section. A more detailed presentation can be found in [4].

In order to enable the comfortable editing of the overwhelming variety of
existing programming languages, editor- and IDE-vendors face the challenge
to support corresponding sophisticated language smarts for them. Well-known
examples of language smarts are goto definition, hovers and code completion. At
the same time, the number of editors and IDEs is growing steadily. Therefore,
providing editor support for all languages in all available integrated development
environments and editors creates an O(n×m) complexity.

Through separation of language smarts and editor integration, the LSP
strives for mitigating this issue. By providing a server process in charge of
language smarts and a client process integrating the results into the specific
editor, both parts become independent. The implementation of language server
and development-tool extension is supported by mature Software Development
Toolkits (SDK) that encapsulate low-level communication leading to the efficient
creation of client and server processes. By communicating through the standard-
ized LSP, development tool and language server can be implemented separately
even in different programming languages. The separation of concerns in combi-
nation with the feature rich protocol decreases the complexity to O(n+m) [28].

Since the introduction of the LSP in 2016, more than 50 language servers
have been implemented covering languages such as Python, Ruby, and Java.

228 H. Bünder and H. Kuchen

Additionally, development-tool extensions are available for more than 10 IDEs
and editors such as VSCode or Eclipse [28]. The advantages of the LSP are
not only useful for programming languages but also for textual domain-specific
languages, since they require the same language smarts. Currently, only the
Xtext language workbench for developing DSLs supports the LSP. Thus, we use
this workbench in the sequel.

The LSP architecture specifies a client and a server process that communicate
through the standardized LSP. The protocol specifies capabilities that represent
possible messages exchanged between client and server process [22]. In order to
provide the right features for the right editor, development tool and language
server exchange supported Capabilities during the initial communication. In
order to enable the extension of the LSP for a specific language, the LSP offers
ExperimentalCapabilities. Instantiations of these Capabilities are not part
of the protocol. Thus, development tool and server have to be extended manually
to support these custom features.

The language server will ignore missing Capabilities and expect these lan-
guage smarts not to be supported by the development tool. For the requested
Capabilities, the language server answers with the Capabilities it sup-
ports [20].

While the number of features supported by the LSP is increasing steadily,
there are six key features [28], namely code completion (supported by 90% of the
language-server implementations), the hover feature (see Fig. 1; 88% support),
goto definition (83% support), workspace symbol (causing a search for the given
symbol in the whole workspace; supported by just 60% of the servers), find
references (63% support), and diagnostic (causing a notification back to the
development tool; 78% support). The Xtext language workbench supports all
these six key features.

Fig. 1. Theia editor integration: hover feature [4].

Towards Multi-editor Support for Domain-Specific Languages 229

The LSP has its limitations. For instance, it solely focuses on integrating lan-
guage smarts. Well-known IDE features such as building, testing, running and
debugging source code remain IDE-specific. Other protocols care about such fea-
tures [3,14]. Comparing the development-tool extension capabilities to features
provided by native IDE integration reveals additional shortcomings. For exam-
ple leveraging the native Eclipse integration of Xtext DSLs provides mature UI
features such as outline view, project-creation wizards, or type hierarchies [32].
The trade-off for integrating language smarts into multiple editors is the loss of
such advanced user-interface features.

Language servers and the corresponding development-tool extensions can
either be used by cloning the respective github repository or by installing an
extension through a market place of the respective IDE or editor.

3 Case Study: Language Server Protocol with Xtext
DSLs

A case study was conducted to quantify the efforts required to provide a language
server and two development-tool extensions for a simple example DSL. The
language server is supposed to provide the six key features as explained in Sect. 2.
The IDE integration is exemplified by providing a development-tool extension
for Theia as well as for Eclipse.

Figures 2 and 3 show the expected integration into Theia and Eclipse, respec-
tively. The grammar of the example DSL will be explained in the next subsection.
As shown by the two figures, both editors provide content sensitive proposals
determined by the language server. However, the keyword highlighting is not
supported by the LSP. Thus, it had to be implemented for each IDE separately.

Fig. 2. Theia Editor Integration [4]. Fig. 3. Eclipse Editor Integration [4].

A detailed description on how the language server and the development tools
have been implemented will be explained in the next subsections.

230 H. Bünder and H. Kuchen

3.1 Language Server Implementation of an Entity-DSL

Our simple example DSL allows to describe entities with operations and prop-
erties. Its simplified grammar in EBNF format is shown in Listing 1.1. Readers,
who are familar with Xtext, can find the original syntax description in Xtext
format in the Appendix.

A model consists of a sequence of entities. An entity has an identifier as
its name and it may inherit from another entity (keyword extends). Moreover,
it may have an arbitrary amount of features, i.e. properties and operations.
An operation has an identifier as its name, an optional list of parameters and
a return type. A property has an identifier as its name and a type. A type
can reference an entity by its name or it can be a primitive type, i.e. string,
number, or boolean.

Model:
Entity*;

Entity:
'entity' ID ('extends ' ID)? '{' Feature* '}';

Feature:
Property | Operation;

Property:
ID ':' Type;

Operation:
'op' ID '(' (Parameter (',' Parameter)*)? ')' (':' Type)?;

Parameter:
ID Type;

Type :
Primitive | EntityReference;

EntityReference :
ID;

Primitive :
'number' | 'string' | 'boolean ';

Listing 1.1. EBNF rules for the Entity-DSL. A * suffix indicates an arbitrary
number of repetitions; a ? suffix indicates an optional element. Vertical bars separate
alternatives. Parentheses () are used to limit the sope of a * or ? suffix. Symbols in
quotes are terminal symbols.

The original Xtext version of the mentioned DSL syntax serves as input for
the generators provided by the Xtext language workbench that create the corre-
sponding workbench for the DSL, including abstract syntax tree, parser, linker,
formatting, etc. The LSP for Java (LSP4J) framework is utilized by the gen-
erated workbench to create requests, responses and notifications in accordance
with the LSP. By encapsulating the low-level JSON communication through a
Java API [24], the features of the LSP are available to the generated Java-based
language-server implementation generated from the Xtext grammar. Due to the
powerful generators included in the Xtext language workbench, all six key fea-
tures are fully generated. There is no manual implementation required.

3.2 Building a Development-Tool Extension for the Theia IDE

As desktop and cloud IDE, Theia integrates different languages based on the
LSP. In addition, Theia separates backend processes and the graphical user
interface. Thereby, the frontend can either be a browser or a desktop application,

Towards Multi-editor Support for Domain-Specific Languages 231

while at the same time the backend process is executed locally or remotely on a
cloud-based infrastructure [30].

Language servers in Theia are provided through a backend extension, that
is capable of configuring the language server. Theia uses dependency injection
mechanisms [8] to provide extensions. Listing 1.2 shows the code required to
inject the Entity-DSLs backend extension. Here and in the following listings, we
do not expect the reader to understand every detail. The listings rather serve to
demonstrate that the implementation requires very limited effort.

The BaseLanguageServerContribution class from the LSP-specific Theia
framework is extended by the EntityDslContribution. As shown in Listing 1.2,
there are two working modes for the language server. First it can run as local
sub-process on the same machine. Alternatively, it can be executed remotely
using web-socket communication [7]. The client-specific libraries encapsulate the
details for establishing the connection.

@injectable ()
class EntityDslContribution extends BaseLanguageServerContribution {

start(clientConnection: IConnection): void {
let socketPort = getPort ();
if (socketPort) {
this.connectToRemoteServer(clientConnection ,socketPort)

} else {
this.connectToLocalServer(clientConnection)

}
}

}

Listing 1.2. Registering a Language-Server Extension in Theia.

After the backend extension has been registered, language smarts can be
provided through the Theia editor. However, the keyword highlighting as shown
in Fig. 2 has to be specified by a frontend extension. Within this extension, the
keywords are specified and it is determined, how they should be highlighted.
Moreover, the frontend extension contains information about the file extensions
handled by the given language server. Listing 1.3 exemplifies how the “globPat-
terns” method of the EntityDslClientContribution must be overwritten to
bind the language server to the file extension.
@injectable ()
export class EntityDslClientContribution extends

BaseLanguageClientContribution
{
protected get globPatterns () {
return ['**/*. dsl'];

}
}

Listing 1.3. Binding the “.dsl” file extension to the language server.

By providing a backend and frontend extension as shown above the Theia
IDE can provide language smarts for the Entity-DSL as shown in Fig. 2.

232 H. Bünder and H. Kuchen

3.3 Building a Development-Tool Extension for the Eclipse IDE

Xtext as language workbench and also the language tooling created by the work-
bench are heavily integrated into Eclipse through its plugin mechanism. Thereby,
Xtext DSL editors within Eclipse have a lot of default features included, such
as outline views or type hierarchies. Yet, for the purpose of the case study, the
Entity-DSL should provide an editor for the Eclipse IDE based on the LSP. For-
tunately, the language server for the Eclipse (LSP4E) framework [6] encapsulates
low-level communication through a Java-API.

The basic mechanism for providing extensions to the Eclipse ecosys-
tem is by utilizing its plugin architecture [33]. The LSP-based editor sup-
port for the Eclipse IDE will also be provided by a specific plugin that
extends the LSP4E plugins extension point [10]. The DSL-agnostic exten-
sion point “org.eclipse.lsp4e.languageServer” provided by the LSP4E plugin
is extended as shown in Listing 1.4. It delegates the implementation to the
EntityDslLanguageServerClass. This class handles all DSL-specific features
for the Entity-DSL.

<extension point="org.eclipse.lsp4e.languageServer">
<server id="org.eclipse.lsp4e.languages.dsl"

class="org.eclipse.lsp4e.languages.dsl.EntityDslLanguageServer"
label="Entity -DSL Language Server">

</server>
</extension >

Listing 1.4. Registering a Language Server Extension in Eclipse.

The implementation of the EntityDslLanguageServer that extends the
LSP4E framework class ProcessStreamConnectionProvider is shown in List-
ing 1.5. The language server is started as soon as a file with the file exten-
sion “.dsl” is opened. The createLauncherCommand method returns the com-
mand required to start a sub-process running the language server. Next, the
ProcessStreamConnectionProvider computes the working directory for the
language server.
public class EntityDslLanguageServer extends ProcessStreamConnectionProvider

{
public MyDslLanguageServer () {

setCommands(createLauncherCommand());
setWorkingDirectory(workingDirectory ());

}
}

Listing 1.5. Entity-DSL Extension.

If the language server is running on a remote host, the
ProcessOverSocketStreamConnectionProvider class from the LSP4E plugin
can be extended. Thereby, the communication to an already running language
server on a remote host can be realized via a web-socket infrastructure.

public class EntityPresentationReconciler extends PresentationReconciler {
private Set <String > keywords = new HashSet <>(Arrays.asList(new String[] {

"entity", "extends", "op", "string", "number", "boolean"}));
}

Listing 1.6. Keyword Definition for Syntax Highlighting.

Towards Multi-editor Support for Domain-Specific Languages 233

As for the Theia extension, the correct highlighting within the editor needs
to be specified by providing an additional class. For the Eclipse IDE the
PresentationReconciler is extended by the EntityPresentationReconciler
that defines syntax highlighting for comments and keyword in the Entity-DSL
as shown in Listing 1.6.

While integrating LSP-based editors into Eclipse and Theia is comparable
on a conceptual level, both require tool-specific implementations. Defining syn-
tax highlighting and the start-up of the language server are the main concerns
of both development-tool specific extensions. Nevertheless, regarding program-
ming language, architecture, and API both development tools are significantly
different.

3.4 Experimental Results of Implementing the Entity-DSL

To quantify the effort of integrating a DSL editor into two different IDEs leverag-
ing the LSP, the time required to implement a language server and the respective
development-tool extensions was measured. The first part of the case study was
the language-server implementation based on the EBNF-like grammar of the
Xtext language workbench. Due to the fact that parser, linker and all required
classes for the six key features of the language server as specified in Sect. 2 have
been generated completely, the language server implementation could be finished
in about two hours (Table 1).

Table 1. Effort for implementing the Entity-DSL [4].

Task Time (in minutes)

Language Server Implementation 127
Theia Editor Integration 414
Eclipse Editor Integration 317

The implementation of the Theia integration required more manual effort,
since a backend and frontend extension had to be provided. Since both required
manual implementation, configuration and testing the overall effort was about
7 h. Due to some conceptual similarities between the Theia and Eclipse extension,
implementing the Eclipse integration took only a little bit more than 5 h. In
general, the fast implementation of all three parts was mainly enabled by the
sophisticated SDKs that encapsulate the low-level communication.

In addition to the case study, the efforts spent on providing three extensions
in context of the Yakindu Solidity Tools project were analyzed. The project
provides an integrated development environment for Ethereum/Solidity based
smart contracts [37].

As shown by Table 2, the Yakindu Solidity Tools project provides three lan-
guage server based editor integrations, namely for Theia, Visual Studio Code,

234 H. Bünder and H. Kuchen

Table 2. Effort for implementing Multi Editor Support for the Solidity IDE.

Task Time (in minutes)

Language Server Implementation 350
Theia Editor Integration 835
VSCode Editor Integration 725
Atom Editor Integration 680

and Atom. The creation of the language-server implementation took around
350min in total. All three editor extensions required a little bit more than a
day of work with 835, 725 and 680min of effort, respectively. Since the Yakindu
Solidity IDE supports more keywords and DSL-specific functionality the imple-
mentation took more effort for all four compared to the Entity DSL.

It is clear that the observations from two projects cannot achieve statistical
significance. In order to achieve that we would need to investigate hundreds of
projects, which is not realistic taken into account the duration and costs of such
projects. However, observations from the considered projects nevertheless give
a rough idea of the effort required to provide multi-editor support for a DSL.
They indicate that providing support for multiple editors can be provided with
moderate effort using the Language Server Protocol and that this approach is
substantially easier and faster compared to a native integration.

3.5 Analysis of the Potential of the Language Server Protocol

Based on the case study, a SWOT analysis [11] has been conducted in order to
get a comprehensive view on the potential of the LSP for multi-editor support
of DSLs. By analyzing strengths and weaknesses as well as opportunities and
threats, the potential of the LSP is examined internally and with respect to
the external environment. By investigating the strengths of the LSP, advantages
increasing the market penetration will be identified. In addition, weaknesses and
threats will be determined that must be eliminated or mitigated to ensure the
success of the LSP.

The analysis starts with evaluating the internal strengths of the LSP. By
specifying a standardized protocol for development tool and language server to
communicate, language smarts can be implemented once and integrated multi-
ple times. The LSP consequently establishes a solid foundation for multi-editor
integration not only for general-purpose programming languages but also for
domain-specific languages. Reducing the overall integration complexity to m+n
rather than m× n, multiple editors can be integrated efficiently.

The lightweight JavaScript Object Notation (JSON) format used for exchang-
ing messages in combination with the JSON-RPC protocol ensures compact pay-
loads. By reducing the amount of data sent back and forth between language
server and development tool, efficient communication over a network is possible.

Towards Multi-editor Support for Domain-Specific Languages 235

Although both processes are currently running on a single machine, the JSON-
RPC protocol enables a good user experience when editing text files.

Being able to support multiple editors is especially advantageous for domain-
specific languages. Domain models might be specified collaboratively by technical
and non-technical team members. While technical users might prefer a certain
IDE, such as Eclipse or VSCode, in which the editor needs to be integrated
seamlessly, non-technical users typically prefer a browser-based interface to a
simple editor such that no additional tool needs to be installed. This reduces
the distribution and maintenance costs. Moreover, browser-based editors can
be designed to be more concise and clearly structured compared to IDEs that
are confusingly overloaded with buttons and menus from a non-technical user’s
perspective.

The LSP provides a flexible approach to extend the protocol using custom
capabilities. Thereby, toolsmiths can provide language- or editor-specific lan-
guage smarts. In contrast to the LSP capabilities, the editor integration has to
be built manually. Consequently, these smarts might not be supported by all
editors. In the long run, the LSP might adopt custom extensions that provide
value for the majority of programming languages.

In contrast to the strengths of the LSP, the following weaknesses can be
identified. Since the LSP is founded on the assumption that one language server
serves one development tool, the number of parallel language servers quickly
rises in multi-language scenarios. Editing three or more languages in parallel is a
valid scenario. In such a situation, the programming language to implement the
language server has to be chosen with respect to its memory footprint. Three
language servers implemented in Java will all run in their own Java Virtual
Machine (JVM) on a single machine allocating approximately 3 GB of memory.
Taking into account the size and complexity of the different languages, a poor
user experience might result. Yet, there are more memory efficient SDKs, e.g.
utilizing JavaScript, to implement the language server.

Since every development-tool extension requires its own implementation in
the programming language suitable for the development tool, the toolsmiths
have to decide which editors to support. Therefore, DSL-editor providers require
knowledge about providing extensions for Theia, VSCode, or Eclipse. In addition,
every extension has to be tested separately to ensure matching user experience
in terms of keyword highlighting or validations.

By separating language-server implementations on a conceptual level, they
become independent and scalable. Yet, there is no communication between differ-
ent language servers, leading to continuous re-implementations of basic features.
In contrast to native IDE integration, language servers now have to implement
functionality, e.g. to resolve classes from a classpath, that otherwise could have
been reused.

The language server was built in order to provide sophisticated editor sup-
port in multiple editors for textual programming languages. Since the Xtext
language workbench supports the LSP, it can also used for DSLs. The com-
bination of Xtext and LSP works seamlessly, because Xtext is also based on

236 H. Bünder and H. Kuchen

text files. However, DSLs can also be implemented using projectional editors
such as IntelliJ’s Meta Programming System (MPS) [9]. Further, there is a vari-
ety of graphical DSLs to specify domain models. Since the language server does
not support any of the two approaches, powerful alternatives or extensions to
textual domain-specific languages are ignored.

In addition to internal strengths and weaknesses, the SWOT analysis also
analyzes external factors in form of opportunities and threats. The first oppor-
tunity lies in the spread of domain-specific languages which are by now widely
adopted in research and practice. While language workbenches, such as Xtext or
MPS, support the fast implementation of sophisticated DSLs, the editor funtion-
ality is often bound to a single IDE. Yet, developers demand different IDEs for
different languages or projects. Moreover, non-technical users refuse to interact
with IDEs after all. A holistic DSL that enables collaboration of technical and
non-technical users needs multi-editor support in order to enable the efficient
creation and maintenance of domain models. In an industry where the number
of programming and domain-specific languages as well editors and IDEs is rising
steadily, the LSP provides a solution to efficiently provide multi-editor support.

One important requirement for multi-editor support is to enable non-
technical users to engage in the creation of domain models. Since DSLs are
describing abstract technology agnostics constructs, such as insurance contracts
or banking products [34], non-technical users need to be able to engage in the
creation. While DSLs integrated into heavyweight IDEs are confusing due to
the amount of menus, buttons and toolbars, web-based editors are perceived as
more concise and clearly structured. Moreover, web-based approaches eliminate
additional tool installations. In addition to an IDE integration, the LSP enables
the parallel use of web-based editors such as Monaco [21], that can be easily inte-
grated into web-browsers. Providing a browser-based editor lowers the barrier
for non-technical users and fosters collaboration on domain models.

Our SWOT analysis closes with examining threats regarding the LSP. Since
the LSP is the first standardized approach to provide multi-editor support, there
are no technological alternatives. On the one hand, this makes it unlikely that
the LSP will be replaced by a competing approach. On the other hand, the
investments in development tools and language servers depend on the LSP. These
investments would be lost, if the LSP was discontinued.

Providing high-level DSLs quickly generates the demand for multi-notation
support including tables, formulas, or charts. Projectional language workbenches
such as MPS offer such functionality, but are currently limited to supporting only
a single editor. In order to gain more market share, the LSP needs to be enhanced
to handle DSLs based on projectional editors.

Browser-based multi-notation language workbenches provide web editors for
DSLs typically on a high-level of abstraction. WebGME [17] is a famous example
from this category that provides a browser-based editor to specify browser-based
DSL editors. In general, multi-notational editors provide an alternative to parser-
based languages utilizing the LSP. Yet, approaches like WebGME lack support
for native IDE or multi-editor integration.

Towards Multi-editor Support for Domain-Specific Languages 237

4 Utilization of the Language Server Protocol

As mentioned above, a relevant threat when relying on the LSP is that the LSP
could be abandoned, when it is not used widely enough. Thus, as a supplement
to our SWOT analysis, we will now investigate the utilization of the LSP in prac-
tice. First, open-source projects built upon the LSP and Xtext were analyzed.
Second, the Eclipse TMF (Xtext) forum and its LSP-related threads were exam-
ined. While the first indicates the actual market penetration of LSP-based Xtext
editors in the open-source community, the second demonstrates how intensive
the topic is discussed in the Xtext community, including closed-source projects.

Fig. 4. Number of editor extensions implemented.

Fig. 5. Kind of editor integration.

238 H. Bünder and H. Kuchen

4.1 LSP-Based Xtext Solutions in Practice

The first part of the analysis started with crawling all the 98 found open-
source github repositories utilizing the LSP for academic or commercial pur-
poses. Projects using Xtext and LSP integration solely for demonstration or
testing purposes have been excluded. A manual inspection revealed that out of
the 98 search results only 51 had an actual implementation of the language server
and only 27 of those had at least one development-tool extension implemented.

As shown in Fig. 4, about 70% of all projects only provide one editor exten-
sion. Out of the 27 projects, only 7 implement two development-tool extensions
which is equal to 25%. Only the Solidity-IDE project [37] provides three editor
extensions namely for Atom, Theia and Visual Studio Code.

Figure 5 shows the different editor extensions implemented using the LSP for
the 27 projects. Since the editor integration for Eclipse is more effective using the
native integration, only 3% of the projects provide an Eclipse extension using the
LSP. Further, only 3% of the analyzed projects provide an extension for IntelliJ.
In contrast to IntelliJ and Eclipse, Atom is rather an editor than an IDE. It is
only supported by 8% of the projects. The majority of 39% provides an extension
for Visual Studio Code. Additionally, 29% of the examined projects provide a
browser extension based on the LSP. The Theia IDE that was also used in the
case study mentioned above is enhanced by 22% of the projects.

As depicted in Fig. 6, there are only 6 projects that provide their editor
extensions through at least one of the available marketplaces. The y-axis shows
the cumulative number of downloads over all available stores or marketplaces
for the given projects. The JHipster IDE is the clear outlier with more than
20,000 downloads; most of them through the VSCode marketplace. The projects
yang, plexus-interop, and ex.xtext.lsp have been downloaded between 5,000 and
1,700 times. While for the first two, the downloads stem from the VSCode mar-
ketplace only, the latter has been downloaded more than 3,000 times from the
IntelliJ marketplace. ck2xtext and scila have been downloaded 707 and 98 times,
respectively, from the VSCode marketplace.

We can conclude that the LSP is significantly used in practical open-source
projects, although its full potential has not yet been leveraged.

4.2 Eclipse TMF (Xtext) Forum Analysis

In order to analyze to which extent the LSP feature is discussed by the Xtext
community, the Eclipse TMF (Xtext) forum was examined. The forum is the
main point of discussions about features and best practices regarding Xtext.
Since the LSP support is part of Xtext since version 2.11.0 that was released
February 1, 2017, the analysis starts from the first quarter of 2017. The first
quarter of 2019 marks the end of the analysis period that is divided quarterly. For
the given time period a total number of 981 threads were discussed in the Xtext
forum. The analysis was done based on the subject and creation date of each
thread. In order to count all topics regarding the LSP, all subjects mentioning
the words Language Server Protocol, language server, or LSP were counted. In

Towards Multi-editor Support for Domain-Specific Languages 239

Fig. 6. Cumulative Downloads of Editor Extensions.

addition, subjects using the words vscode, Visual Studio Code, or Theia were
counted as LSP related. The analysis focuses on the subjects of the threads
rather than on the entire discussion. Thus, we only take those questions into
account that specifically focus on the topic.

In order to compare the search results for LSP-related topics to other impor-
tant topics in the forum, the subject headlines were analyzed to find the two-word
phrases, which occurred most frequently. Table 3 shows the six two-word phrases
most frequently occurring in the subjects of the threads in descending order of
occurrences. While the first three show no direct relation to a specific Xtext
topic, the last three are all related to specific features of the Xtext workbench.

Based on the results of the text analysis, the subjects of the threads were ana-
lyzed for the questions regarding content assist, cross reference and xtext gram-
mar. Since the topic content assist is synonymously named proposal provider or
code assist, these terms were included in the search query. For the other two
topics, no additional terms were required. Yet, for questions regarding Xtext
grammar subjects only mentioning the word grammar without Xtext were also
counted. All four analyses were done in a case-insensitive way.

Figure 7 shows the results for the four topics. The first questions regarding
the LSP Xtext integration were asked in the second quarter and third quarter
of 2017. While there are two questions on average per quarter regarding LSP,
there are also quarters such as the fourth quarter of 2017, where no questions
were asked. Although being only the third most often occurring topic based
on Table 3, “Xtext grammar” is questioned most often with an average of more
than 7 questions per quarter. “Content assist” is questioned regularly in the
Xtext forum and with an average of four question per quarter more often than
the LSP topic. The fourth topic related to cross-references is discussed in less
than two question per quarter on average.

Although, the absolute number of LSP-related topics in the considered form
is not impressive, these topics are nevertheless among the most active topics

240 H. Bünder and H. Kuchen

Table 3. Two-word phrases in thread subjects.

Two-word Phrase Occurrences

how to 76
xtext 2 40
in xtext 35
content assist 26
cross reference 18
xtext grammar 14

Fig. 7. Questions asked per topic and quarter in the Xtext TMF (Xtext) forum.

in that forum. Thus, the topic is relevant, although its importance has still a
potential to rise.

5 Discussion

The LSP offers a standardized mechanism that enables an easy integration of
language smarts into different editors and IDEs. As the case study has shown,
the Xtext language workbench integrates this feature to provide arbitrary DSLs
for different development tools. While the integration is slightly specific for each
tool, the language server parts for the key features are generated completely.
Thereby, LSP-based DSL editors can be created quickly as Subsect. 3.4 has
shown. Although the results from the case study are supported by the find-
ings from the real world open source project Yakindu Solidity Tools, additional
projects should be analyzed to further support our claims. The SWOT analysis
conducted as second part of the case study shows that the LSP addresses the
right requirements, since the number of DSLs and development tools is steadily
increasing. Yet, the Xtext and LSP integration is limited to textual DSLs, hence
ignoring sophisticated alternatives such as MPS-based projectional DSLs.

Towards Multi-editor Support for Domain-Specific Languages 241

However, our analysis of the utilization of LSP-based DSLs in real world
projects has revealed that the full potential of the LSP has not yet been lever-
aged. There are currently 27 open source projects utilizing Xtext and LSP. Only
six of them are listed on an official marketplace. Projects such as JHipster that
are utilizing Xtext and LSP and the corresponding market places to distribute
the development-tool extension can be seen as early adopters. In addition, we
know of several large DSLs that are implemented as company-specific closed
source solutions. In order to get an idea, of the overall importance of the LSP,
including closed-source projects, we have analyzed the amount of questions asked
about the language server and Xtext integration. As shown in Fig. 7 there are
between four and six questions asked per quarter about the LSP. Comparing it to
the other topics that are available in the Xtext forum, the number of LSP-related
questions is not impressive but steady.

According to our experience, especially large companies using Xtext have a
deeply integrated Eclipse-based tool chain. However up to now, their main focus
remains on Eclipse as primary IDE. Therefore, they prefer the powerful native
Eclipse integration, which has turned out to be frustrating for non-technical
users such as domain experts.

On the road to multi-editor support for arbitrary DSLs, the Xtext language
workbench integrating the LSP marks an important milestone. Separating lan-
guage smarts and editor functionality enables an efficient distribution of editor
integrations for a broad variety of editors and IDEs. In addition, the standard-
ized protocol establishes the minimal features for sophisticated editor support
as listed by the community-driven LSP-site [28]. Moreover, the Xtext-LSP inte-
gration can increase the efficiency of model-driven software development with
DSLs by integrating the language smarts into the IDE or editor that is most
appropriate for running, testing, and debugging the generated code.

Since the LSP-based DSLs also support web-editors, they can be a valid
alternative to other approaches. By integrating LSP-based Xtext DSLs into web-
browsers, also non-technical users can interact with the domain model. The
results from Sect. 4 substantiate this. They show that 25% of the LSP-based
DSLs provide a browser integration. By providing a web-based editor, technical
and non-technical team members can contribute to the domain models using
their favorite editor.

6 Related Work

Textual Domain-Specific Languages can be divided into two categories, namely
internal and external. While internal DSLs are embedded into a host language
[34], external DSLs have their own tool support [31]. The creation of domain-
specific editors is supported by language workbenches that provide frameworks
to specify abstract syntax, parser, editor, and generators [9]. While MontiCore
and MPS provide generators to create DSL editors that could be integrated
into Eclipse or IntelliJ, Xtext and Spoofax focus on Eclipse-based extensions. In
addition, Spoofax provides experimental support for an IntelliJ integration [13].

242 H. Bünder and H. Kuchen

Likewise, Xtext has a strong focus on Eclipse-based extensions and lacks contri-
butions for constantly supporting an IntelliJ integration [36].

In addition to approaches integrating language editors into classical IDEs,
there is a variety of web-based language workbenches. These web-based language
workbenches are divided into client-server and cloud-based Modeling as a Service
(MaaS) approaches by Popoola et al. [25]. Modeling platforms from the latter
category such as WebGME, CLOOCA, GenMyModel, MORSE, and MDEForge
provide their services without requiring on-premise hardware. In contrast, client-
server based approaches such as ModelBus, AToMPM, and DSLForge must be
installed on a local server. In addition to relying on proprietary protocols [26],
none of the language workbenches provides integration into editors or IDEs, such
as Atom [2] or Eclipse, respectively.

While there exists a lot of research around language workbenches for tex-
tual external DSLs and web-based language workbenches, little attention has
been paid to providing a multi-editor support for combining editor, IDE and
browser-based integration. By introducing the LSP, Microsoft, RedHat, and
Codenvy laid the foundation for providing language smarts in different devel-
opment tools through a standardized protocol [22]. With Xtext being the first
language workbench fully implementing the LSP [19] an additional milestone on
the way towards multi-editor support was reached in 2017 [35]. While Rodriguez-
Echeverria et al. [27] have already proposed an LSP infrastructure for graphical
modeling, little attention has been paid to multi-editor integration of textual
domain-specific languages.

7 Conclusions

We have reported the results of a case study conducted to quantify the effort
required to integrate an Xtext DSL into different editors or IDEs utilizing the
LSP. While the language server part can be generated completely based on
an Xtext grammar, each development-tool extension has to be implemented
specifically. However, the total integration costs are significantly below providing
individual IDE-specific extensions. In addition, the SWOT analysis has revealed
great potential of the LSP for standardizing and distributing language smarts for
different editors and IDEs. However, exclusively targeting textual editors ignores
alternative approaches such as projectional or graphical DSLs.

The LSP represents a major step towards multi-editor support for domain-
specific languages. By separating language smarts and development-tool exten-
sions by a standardized protocol, the integration costs for supporting multiple
editors significantly decrease. However, the analysis of real world projects shows
that there are only a few projects leveraging the Xtext-LSP integration and the
ecosystem around it, e.g. marketplaces for development-tool extensions, to its
full extent. Further research is required to analyze, whether these projects are
early adopters or whether the Xtext-LSP integration is targeting only a niche
market.

Large companies that build their tool-chains on top of the Eclipse ecosystem
appreciate the seamless integration of different plugins that enables the efficient

Towards Multi-editor Support for Domain-Specific Languages 243

creation of workbenches. The LSP is built on the assumption that every language
server is independent and does not interact with other languages servers. While
this approach increases the scalability, it also introduces disadvantages, since
every language server has to re-implement certain functionality. The assumption
that this separation of language servers and the consequent reimplementation of
basic features hinders large companies to adopt the LSP, has to be substantiated
by further research.

The contributions of this paper are the following. First, we have conducted
a case study to quantify the efforts for implementing a DSL and integrating
its editor into two different IDEs. Our case study has shown that this can be
done with moderate effort. In addition, we have reported on the findings from a
SWOT analysis performed to identify the potential impact of the LSP for textual
domain-specific languages. Moreover, we have supplemented the findings of the
SWOT analysis by investigating open-source github projects and the Eclipse
TMF (Xtext) forum in order to examine the practical relevance of the LSP. The
combination of the case study and the analysis of real world projects shows that
the Xtext-LSP integration offers great potential that currently is not leveraged
to its full extent.

Appendix: Syntax of Entity DSL in Xtext Format

Model:
entities += Entity*;

Entity:
'entity' name=ID ('extends ' superType=Entity)?
'{' features += Feature* '}';

Feature:
Property | Operation;

Property:
name=ID ':' type=Type;

Operation:
'op' name=ID '('(params+= parameter(','params+= parameter)*)?')
'(':'returntype=Type)?;

Parameter:
name=ID type=[Type];

Type :
{Primitive} name=Primitive | EntityReference;

EntityReference :
{EntityReference} entityDefinition =[Entity];

Primitive :
'number' | 'string' | 'boolean ';

Listing 1.7. Grammar Rules for the Entity-DSL in Xtext format.

References

1. Arnold, K., Gosling, J., Holmes, D.: The Java Programming Language. Addison
Wesley Professional, Boston (2005)

2. Atom: A hackable text editor for the 21st century (2019). https://atom.io/
3. BSP: Build server protocol (2019). https://github.com/scalacenter/bsp

https://atom.io/
https://github.com/scalacenter/bsp

244 H. Bünder and H. Kuchen

4. Bünder, H.: Decoupling language and editor – the impact of the language
server protocol on textual domain-specific languages. In: Hammoudi, S., Ferreira,
P.L., Selić, B. (eds.) Proceedings of the 7th International Conference on Model-
Driven Engineering and Software Development (MODELSWARD 2019), pp. 131–
142. Prag (2019). https://doi.org/10.5220/0007556301310142, publication status:
Published

5. Campagne, F.: The MPS Language Workbench: Meta Programming System, 3rd
edn. Campagnelab, New York (2016). version 1.5.1 edn

6. Eclipse: Eclipse LSP4E (2018). https://projects.eclipse.org/projects/technology.
lsp4e

7. Fette, I., Melnikov, A.: The websocket protocol. Technical report (2011)
8. Fowler, M.: Inversion of control containers and the dependency injection pattern

(2004)
9. Fowler, M.: Language workbenches: The killer-app for domain specific languages

(2005). https://www.martinfowler.com/articles/languageWorkbench.html
10. Gamma, E., Beck, K.: Contributing to Eclipse: Principles, Patterns, and Plug-ins.

Addison-Wesley Professional, Boston (2004)
11. Helms, M.M., Nixon, J.: Exploring SWOT analysis - where are we now?: a review of

academic research from the last decade. J. Strategy Manag. 3(3), 215–251 (2010).
https://doi.org/10.1108/17554251011064837

12. JetBrains: IntelliJ IDEA (2018). https://www.jetbrains.com/idea/
13. Kats, L.C., Visser, E.: The spoofax language workbench: rules for declarative spec-

ification of languages and IDEs. In: Proceedings of the ACM International Con-
ference on Object Oriented Programming Systems Languages and Applications,
OOPSLA 2010, pp. 444–463. ACM, New York (2010). https://doi.org/10.1145/
1869459.1869497

14. Kichwas Coders: Debugging protocol vs. language server protocol (2018). https://
kichwacoders.com/2017/11/08/debug-protocol-vs-language-server-protocol/

15. Krahn, H., Rumpe, B., Völkel, S.: Efficient editor generation for compositional
DSLs in eclipse. arXiv preprint arXiv:1409.6625 (2014)

16. Lamb, L., Robbins, A.: Learning the vi Editor, 6th edn. O’Reilly & Associates,
Sebastopol (1998)

17. Maróti, M., et al.: Next generation (meta) modeling: web-and cloud-based collab-
orative tool infrastructure. In: MPM@ MoDELS, vol. 1237, pp. 41–60 (2014)

18. Microsoft: Code editing. Redefined (2018). https://code.visualstudio.com/
19. Microsoft: Implementations - language servers (2018). https://microsoft.github.io/

language-server-protocol/implementors/servers/
20. Microsoft: Language server protocol specification - initialize (2018). https://

microsoft.github.io/language-server-protocol/specification#initialize
21. Microsoft: Monaco editor - about (2018). https://microsoft.github.io/monaco-

editor/
22. Microsoft: Overview - what is the language server protocol (2018). https://

microsoft.github.io/language-server-protocol/overview
23. Mikkonen, T., Taivalsaari, A.: Using JavaScript as a real programming language

(2007)
24. Spönemann, M.: The language server protocol in Java (2018). https://typefox.io/

the-language-server-protocol-in-java
25. Popoola, S., Carver, J., Gray, J.: Modeling as a service: a survey of existing tools.

In: MODELS (Satellite Events), pp. 360–367 (2017)

https://doi.org/10.5220/0007556301310142
https://projects.eclipse.org/projects/technology.lsp4e
https://projects.eclipse.org/projects/technology.lsp4e
https://www.martinfowler.com/articles/languageWorkbench.html
https://doi.org/10.1108/17554251011064837
https://www.jetbrains.com/idea/
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/1869459.1869497
https://kichwacoders.com/2017/11/08/debug-protocol-vs-language-server-protocol/
https://kichwacoders.com/2017/11/08/debug-protocol-vs-language-server-protocol/
http://arxiv.org/abs/1409.6625
https://code.visualstudio.com/
https://microsoft.github.io/language-server-protocol/implementors/servers/
https://microsoft.github.io/language-server-protocol/implementors/servers/
https://microsoft.github.io/language-server-protocol/specification#initialize
https://microsoft.github.io/language-server-protocol/specification#initialize
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/language-server-protocol/overview
https://microsoft.github.io/language-server-protocol/overview
https://typefox.io/the-language-server-protocol-in-java
https://typefox.io/the-language-server-protocol-in-java

Towards Multi-editor Support for Domain-Specific Languages 245

26. Rodriguez-Echeverria, R., Izquierdo, J.L.C., Wimmer, M., Cabot, J.: An LSP
infrastructure to build EMF language servers for web-deployable model editors.
In: Proceedings of the Second Workshop on Model-Driven Engineering Tools
(MDETools 2018), pp. 1–10. CEUR (2018)

27. Rodriguez-Echeverria, R., Izquierdo, J.L.C., Wimmer, M., Cabot, J.: Towards a
language server protocol infrastructure for graphical modeling. In: Proceedings
of the 21th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, pp. 370–380. MODELS 2018. ACM, New York (2018).
https://doi.org/10.1145/3239372.3239383

28. Sourcegraph: Languageserver.org (2018). https://langserver.org/
29. Stroustrup, B.: The C++ Programming Language. Pearson Education India, Ben-

galuru (2000)
30. Theia.org: Theia - cloud and desktop IDE (2018). https://www.theia-ide.org
31. Tomassetti, F.: The complete guide to (external) domain-specific languages (2017).

https://tomassetti.me/domain-specific-languages
32. Vogel, L., Milinkovich, M.: Eclipse Rich Client Platform. Vogella series, Lars Vogel

(2015). https://books.google.de/books?id=AC4_CQAAQBAJ
33. Vogel, L., Beaton, W.: Eclipse IDE: Java Programming, Debugging, Unit Testing,

Task Management and Git Version Conrol with Eclipse, 3rd edn. Vogella Series,
Vogella, Lexington (2013)

34. Völter, M.: DSL Engineering: Designing, Implementing and Using Domain-Specific
Languages. CreateSpace Independent Publishing Platform, Lexington (2013)

35. Xtext: Xtext 2.11.0 release notes (2017). https://www.eclipse.org/Xtext/
releasenotes.html#/releasenotes/2017/02/01/version-2-11-0

36. Xtext: Idea support (2018). https://www.eclipse.org/Xtext/releasenotes.html
37. Yakindu: Yakindu solidity tools (2019). https://yakindu.github.io/solidity-ide/

https://doi.org/10.1145/3239372.3239383
https://langserver.org/
https://www.theia-ide.org
https://tomassetti.me/domain-specific-languages
https://books.google.de/books?id=AC4_CQAAQBAJ
https://www.eclipse.org/Xtext/releasenotes.html#/releasenotes/2017/02/01/version-2-11-0
https://www.eclipse.org/Xtext/releasenotes.html#/releasenotes/2017/02/01/version-2-11-0
https://www.eclipse.org/Xtext/releasenotes.html
https://yakindu.github.io/solidity-ide/

Executing Scenario-Based Specification
with Dynamic Generation of Rich Events

David Harel1, Guy Katz2(B), Assaf Marron1, Aviran Sadon3, and Gera Weiss3

1 Weizmann Institute of Science, Rehovot, Israel
{David.Harel,assaf.marron}@weizmann.ac.il

2 The Hebrew University of Jerusalem, Jerusalem, Israel
guykatz@cs.huji.ac.il

3 Ben-Gurion University of the Negev, Be’er Sheva, Israel
sadonav@post.bgu.ac.il, geraw@cs.bgu.ac.il

Abstract. Scenario-Based Programming (SBP) is an approach to mod-
eling and running complex, event-based, system behavior by composing
narrower views of overall behavior. In this paper we introduce significant
extensions to the strict interfaces by which scenarios in existing SBP
frameworks specify what the system must, may, or must not do, and to
the mechanisms that execute these scenarios: (i) we allow events with a
multitude of variables and parameters; each event can become an entire
model, and each event selection can be the selection of a major section of
the new state of the system and the environment; (ii) we extend the basic
request/block SBP interfaces with a rich set of composable constraints
and functions, which can describe desired and undesired variable assign-
ments, where each constraint may relate to all variables or to just a sub-
set thereof; (iii) we introduce a central, application-agnostic mechanism
for adding optimization to standard event selection; and (iv) we relate
our method to Null-Space Behavior (NSB)—a successful compositional
approach in control theory. We demonstrate these language-independent
concepts through several use cases that are implemented in a variety of
languages and solvers.

Keywords: Scenario-Based Programming · Behavioral programming ·
Constraint solvers · SMT solvers · NSB · Mathematica ·
MATLAB-Simulink Z3 · Python

1 Introduction

One of the key goals in Model Driven Engineering (MDE) is creating executable
models, which, on one hand, represent how engineers and other stakeholder con-
ceive a problem and a system, and, on the other hand, can be used directly

This paper substantially extends the paper titled “On-the-Fly Construction of Compos-
ite Events in Scenario-Based Modeling Using Constraint Solvers”, published in Mod-
elsward 2019 [48].

c© Springer Nature Switzerland AG 2020
S. Hammoudi et al. (Eds.): MODELSWARD 2019, CCIS 1161, pp. 246–274, 2020.
https://doi.org/10.1007/978-3-030-37873-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37873-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-37873-8_11

Executing Scenario-Based Specification with Dynamic Generation 247

for automatic generation of system and environment behavior: for simulation,
for formal analysis, and for final production deployment. Scenario-Based Pro-
gramming (SBP) [16,40,45] tackles this challenge by offering dynamic, run-time,
composition of scenarios, each of which specifies a narrow facet of the system’s
behavior, as might be described in a requirements document, resulting in cohesive
integrated system behavior. Individual scenarios describe both desired behav-
iors, which should be manifested in the system as a whole, and undesired (or
even forbidden) behaviors, which the system should avoid. The SBP principles
are general, i.e., language agnostic. They have been implemented in dedicated
frameworks, such as the Play-Engine and PlayGo for the visual language of Live
Sequence Charts (LSC) [39,40] and ScenarioTools [22] for the textual Scenario
Modeling Language (SML). Furthermore, SBP has been implemented as libraries
in programming languages like Java [41], C++ [30], and JavsScript [4], and has
been amalgamated with the Statecharts visual formalism [53]. SBP has been suc-
cessfully used in modeling complex systems, including industrial manufacturing,
biological modeling, web-servers [30], cache coherence protocols [32], robotic con-
trollers [25], and in new approaches for intelligent software-development assistant
tools [32–34,52].

In this work, we expand SBP capabilities by allowing more expressive speci-
fication of each scenario’s view of the composite behavior, and richer techniques
for composing these views.

The principles of execution mechanisms used in current behavioral program-
ming tools are as follows. System and environment behavior is modeled as a
sequence of discrete events, each perhaps with one or two parameters (e.g., traf-
fic light turns green, vehicle starts moving, vehicle makes a 45◦ right turn);
all scenarios are run in parallel and are synchronized at predetermined points;
at every synchronization point each scenario declares a discrete set of events it
would like to see triggered, termed requested events, and a set of events it forbids
from being triggered, termed blocked events; the underlying SBP infrastructure
then selects for triggering a single event that is requested by at least one sce-
nario and is not blocked by any scenarios; the selected event is then broadcast
to all scenarios; scenarios can react to that event and change their declarations;
and the execution continues until the next synchronization point is reached. An
example appears in Fig. 1.

Some of the benefits of SBP stem from these intuitive [19] and succinct [31]
expression and composition semantics, reducing the cognitive load that might
be imposed by a single composite automaton, or depicting visually the actual
conditions of which events are allowed in which composite states. The approach
also renders scenario-based models more amenable to automatic analysis using
formal compositional techniques [21,28,29,32,37], and even makes it easier to
automatically distribute, repair and synthesize such models [23,24,26,35,57,58].

Here is how we would like to extend the current capabilities of SBP:

1. We wish to allow for rich events that may have multiple numeric and dis-
crete parameters. This need is clear in the context of modern systems, such
as autonomous driving, advanced robotics, and more. We believe that in
this area there is a gap in most, if not all, software engineering approaches.

248 D. Harel et al.

wait for
WATERLOW

request
ADDHOT

request
ADDHOT

request
ADDHOT

ADDHOTWATER

wait for
WATERLOW

request
ADDCOLD

request
ADDCOLD

request
ADDCOLD

ADDCOLDWATER

wait for
ADDHOT

while blocking
ADDCOLD

wait for
ADDCOLD

while blocking
ADDHOT

STABILITY

· · ·
WATERLOW
ADDHOT
ADDCOLD
ADDHOT
ADDCOLD
ADDHOT
ADDCOLD

· · ·

EVENT LOG

Fig. 1. (From [36]) A scenario-based system for controlling the water level in a tank
with hot and cold water taps. Scenarios are depicted as parallel-running transition
systems that synchronize at every state. The scenario object AddHotWater repeat-
edly waits for WaterLow events and requests the event AddHot three times; the
scenario object AddColdWater performs a symmetrical operation with cold water.
In a model that includes only the objects AddHotWater and AddColdWater, the
three AddHot events and three AddCold events may be triggered in any order during
execution. In order to maintain the stability of the water temperature in the tank, the
scenario object Stability enforces the interleaving of AddHot and AddCold events,
by using event blocking. The execution trace of the resulting model appears in the
event log.

In particular, it may well be that the recent trend to employ machine learn-
ing (ML) techniques directly to a large variety of complex problems is fueled
not only by the great success of computational learning techniques in solving
certain kinds of problems. It is quite accepted that for complex systems even
if all rules and specifications needed for a procedural solution were available,
e.g., from domain experts, or by extraction from statistical and ML tools,
there are no practical engineering techniques for using these rules in building
the system so that it is robust, efficient, predictable, analyzable and main-
tainable.

2. We would like to be able to view events as entire instances of object models
of the system and the environment, enabling new assignments to any and all
variables in a single synchronization point. As will be seen later, this concept
of finding object model instance aligns well with the terminology of constraint
solvers, which aim to find a model that satisfies the given constraints. These
instantaneous models are not to be confused with the model of the system,
which describes the objects in the system and their behaviors.

3. We want to extend the basic request/block SBP interfaces with a richer set of
composable constraints which may relate to all variables or to just a subset
thereof; further, these constraints may be organized in hierarchies or priorities
of various kinds, and interfere with (or override) each other in more ways than
the request/block protocol allows.

4. We would like to add intelligence and insight to the event (or model) selec-
tion, such that when multiple solutions satisfy the constraints, optimization
techniques may be introduced, to select a preferred solution.

Executing Scenario-Based Specification with Dynamic Generation 249

These extensions can be thought of as enhancing SBP’s concept of event
selection to a form of event construction. We accomplish them by allowing the
scenarios to present rich constraints in languages accepted by a variety of con-
straint solvers, and then having the SBP infrastructure invoke a solver and/or
optimizer at every synchronization point to solve a composite formula, which is
assembled from the declarations of all scenarios.

The work described in this paper extends our previous work [48] in several
ways. First, we introduce here an extension to SBP that performs constraint
resolution with optimization. Additionally, we study the concept of variable tar-
geting in constraint specifications. We also demonstrate the applicability of our
approach using additional use-cases, discuss its applicability to real-time set-
tings, and compare the solutions it yields to related solutions proposed in the
literature, particularly Null-Space behavior (NSB). Our extensions demonstrate
that through the proposed enhancements to SBP, the concept of rich events can
be expanded so that the entire state of the system and its environment, with its
numerous variables and parameters, can be determined by behavioral decisions
at every step. We propose the concept of variable targeting with proper labeling
and meta processing, and implement it in Python/Z3. Finally, we introduce an
implementation of the extended SBP principles, using Wolfram Mathematica.

The paper is organized as follows. In Sect. 2 we provide some necessary back-
ground on SBP and on constraint solvers. In Sect. 3 we provide the formal def-
initions of how SBP is to be extended to allow for the new capabilities, and
in Sect. 4 we describe certain technical aspects of the implementation of SBP
with various solvers. In Sect. 5 we review the main capabilities of the new app-
roach and illustrate them with specific example applications. In Sect. 6 we review
related work, and we conclude in Sect. 7.

2 Background

2.1 Scenario-Based Modeling

Formally, a scenario-based specification/model/program consists of modules
termed scenarios. All scenarios run in parallel. Each scenario repeatedly declares
sets of events which, from its own perspective, should, may, or must not occur at
that particular point in time during the execution. The simultaneously-running
scenarios are repeatedly synchronized, and a central mechanism selects events
that constitute the integrated system behavior. Ideally, the scenarios do not
interact with each other directly— all interactions are carried out through the
common event selection and broadcasting mechanism.

Following the definitions in [41,49], we define a scenario object O over event
set E as a tuple O = 〈Q, δ, q0, R,B〉, where the components are interpreted as
follows:

– Q is a set of states, each representing one of the predetermined synchroniza-
tion points;

– q0 is the initial state;

250 D. Harel et al.

– R : Q → 2E and B : Q → 2E map states to the sets of events requested and
blocked at these states, respectively; and

– δ : Q×E → 2Q is a transition function indicating how the object reacts when
an event is triggered.

Scenario objects can be composed, in the following manner. For objects
O1 = 〈Q1, δ1, q10 , R

1, B1〉 and O2 = 〈Q2, δ2, q20 , R
2, B2〉 over a common event

set E, the composite scenario object O1 ‖ O2 is defined by O1 ‖ O2 =
〈Q1 × Q2, δ, 〈q10 , q20〉, R1 ∪ R2, B1 ∪ B2〉 where:

– 〈q̃1, q̃2〉 ∈ δ(〈q1, q2〉, e) if and only if q̃1 ∈ δ1(q1, e) and q̃2 ∈ δ2(q2, e); and
– The union of the labeling functions is defined in the natural way; i.e., e ∈ (R1∪

R2)(〈q1, q2〉) if and only if e ∈ R1(q1) ∪ R2(q2), and e ∈ (B1 ∪ B2)(〈q1, q2〉) if
and only if e ∈ B1(q1) ∪ B2(q2).

A behavioral model M is simply a collection of scenario objects
O1, O2, . . . , On, and the executions of M are the executions of the composite
object O = O1 ‖ O2 ‖ . . . ‖ On. Each such execution starts from the initial state
of O, and in each state q along the run an enabled event is chosen for triggering,
if one exists (i.e., an event e ∈ R(q)−B(q)). Then, the execution moves to state
q̃ ∈ δ(q, e), and so on.

2.2 Constraint Solvers

Broadly speaking, constraint solvers are tools that take as input a set of con-
straints given as a formula ϕ over a set of variables V , and either (i) return a
variable assignment that satisfies ϕ, or (ii) state that no such variable assignment
exists. As mentioned above, a satisfying assignment is usually called a model,
but we will try to refrain from using that term, so as to not confuse it with the
model of the system under development. Different solvers differ in the kinds of
constraints they allow as part of their input, and many popular solvers operate
on constraints given in restricted forms of first order logic. The performance of
these solvers (and the complexity of the problems they solve) also closely depends
on the kinds of inputs they allow. Automated solvers have become widespread
and highly successful in the last decades, particularly in tasks related to program
analysis and verification [5,14].

The types of candidate solvers relevant to our work are as follows:

Boolean Satisfiability (SAT) Solvers. These are solvers that operate on a
set V of Boolean variables, and limit the constraint input ϕ to be a quantifier-
free propositional formula over the variables of V . The solver then attempts
to find a Boolean assignment that satisfies ϕ. For example, for V = {p, q}, the
formula ϕ1 = (p∨q)∧(p∨¬q) is satisfiable, and one satisfying assignment is p,¬q,
whereas the formula ϕ2 = (¬p∨¬q)∧p∧q is unsatisfiable. Although the Boolean
satisfiability problem is NP-complete, there exist many mature tools that can
solve instances that appear in practice, and which contain hundreds of thousands
of variables [54]. A particular kind of SAT solver, called MaxSAT, attempts to

Executing Scenario-Based Specification with Dynamic Generation 251

find a Boolean assignment that satisfies as many of the input constraints as
possible (and not necessarily all of them).

Linear Programming (LP) Solvers. LP solvers operate on a set V of rational
variables, and the constraint formula ϕ is a conjunction of linear constraints,
often referred to as a linear program. For example, for the variables V = {x, y, z},
the constraint ϕ3 = (x ≤ 5) ∧ (x + y ≤ z) is satisfiable, whereas the constraint
ϕ4 = (x ≤ 5) ∧ (y ≤ 2) ∧ (x + y ≥ 20) is unsatisfiable. The general linear
programming problem is known to be solvable in polynomial time, although
many solvers use worst-case exponential algorithms that turn out to be more
efficient in practice [13].

Satisfiability Modulo Theories (SMT) Solvers. These solvers can be
regarded as generalized SAT solvers, capable of handling formulas in rich frag-
ments of first order logic. The satisfiability of the formulas is checked subject to
(i.e., modulo) background theories, which intuitively restrict the search only to
satisfying assignments that “make sense” according to these certain theories. For
example, considering the theory of arrays of integer elements with variable set
V = {a, b}, the formula ϕ5 = (a[3] ≥ b[5]) ∧ (a[4] ≤ b[0]) is satisfiable, whereas
the formula ϕ6 = (a = b) ∧ (a[4] �= b[4]) is unsatisfiable. Modern SMT solvers
support many theories of interest, including various arithmetic theories, the the-
ory of uninterpreted functions, and theories of arrays, of sets, of strings, and
others [6]. Furthermore, these background theories can be combined: for exam-
ple, one can define formulas that include arrays of integers or sets of strings,
etc. The SMT problem is, in general, undecidable, although certain background
theories afford efficient decision procedures.

Numeric Optimization Solvers. For some optimization problems, it is ben-
eficial to apply solvers that are guaranteed to terminate after a finite number
of steps. Some tools, such as MATLAB and Mathematica, implement iterative
algorithms that after a finite number of steps terminate, either converging to an
optimal solution or providing an approximation thereof if one has not yet been
discovered. Such solvers are useful, for example, when implementing a controller
for generating real-time feedback in the context of a physical system, such as an
autonomous car, a drone, a robot, etc.

The above kinds of solvers are used for many tasks in academia and industry,
and all are highly successful. Many mature tools supporting them exist, and a
great deal of research is being put into improving them further.

3 New Extension Mechanisms

3.1 Formal Definitions of the New Event Generation Mechanism

The mechanism underlying our extensions of SBP is as follows. At each synchro-
nization point, instead of declaring sets of requested and blocked events, each sce-
nario object Oi can instead declare a set of constraint formulas Φ = {ϕ1

i , . . . , ϕ
l
i}

that are intended as guiding rules for a solver-based mechanism that assembles

252 D. Harel et al.

the events. Further, these constraint formulas are labeled by a labeling function
Li, which maps each formula ϕk

i into a subset of a finite set of predefined labels
(or tags) L. The labels then provide additional meta information/semantics that
can guide the SBP infrastructure in assembling and composing the various for-
mulas, such as distinguishing must constraints from may constraints, assigning
different priorities to some constraints, etc.

At each synchronization point, the execution mechanism collects from all
scenarios the sets of constraint formulas Φ1, . . . , Φn, and assembles them into a
global constraint formula ϕ. This formula is then passed as input to a constraint
solver. If the formula is found to be satisfiable, the result (i.e., the satisfying
assignment returned by the solver) is broadcast to all scenarios, which can then
change their states and declarations. When no satisfying assignment is found,
the system takes no action, and waits for an external event, as described in [42].
Alternatively, when the set of scenarios also includes scenarios that play the
role of (i.e., simulate) the environment, no additional external events can be
expected, and the system can then stop or terminate for further debugging.

Formally, we modify the definitions of SBP to support the new capabilities,
via integration with constraint solvers, as follows. Let V denote a set of variables.
(Note: the goal of the SBP infrastructure is to assign a value to each of these
variables, at each synchronization point.) Let L denote a finite set of labels.
We define a scenario object O over V and L as a tuple O = 〈Q, δ, q0, C, L〉,
where Q is a set of states and q0 is the initial state, as before. The function C
(which replaces the labeling functions R and B in the original definition of SBP)
maps each state q ∈ Q to a set of constraint formulas Φ = {ϕ1, . . . , ϕl} over the
variables of V . The function L maps each state to a labeling of these constraint
formulas; i.e., L : Q×ξ → 2L, where ξ represents the set of all possible formulas.
By convention, we require that L(q, ϕ) = ∅ for every ϕ such that ϕ /∈ C(q). The
transition function δ is now defined as δ : Q×A(V) → 2Q, where A(V) is the set
of all possible assignments to the variables of V . Intuitively, given a specific state
q and a variable assignment α ∈ A(V) (as may be chosen by the solver-assisted
execution infrastructure), invoking δ(q, α) returns the set of states into which
the object may transition.

In order to account for the new constraint formulas, we modify the com-
position operator for scenario objects, as follows: for scenario objects O1 =
〈Q1, δ1, q10 , C

1, L1〉 and O2 = 〈Q2, δ2, q20 , C
2, L2〉 over a common variable set V

and a common label set L, the composite scenario object O1 ‖ O2 is defined
by O1 ‖ O2 = 〈Q1 × Q2, δ, 〈q10 , q20〉, C, L〉, where 〈q̃1, q̃2〉 ∈ δ(〈q1, q2〉, α) if and
only if q̃1 ∈ δ1(q1, α) and q̃2 ∈ δ2(q2, α). The constraint-generating function C
is defined as C(〈q1, q2〉) = C1(q1) ∪ C2(q2); i.e., the constraints defined by the
individual objects are combined and become the constraints defined by the com-
posite object. We define L(〈q1, q2〉, ϕ) = L1(q1, ϕ) ∪ L2(q2, ϕ), using again the
convention that Li(qi, ϕ) = ∅ if ϕ /∈ Ci(qi).

The key difference between our extended semantics and the original is only in
the event selection mechanism. As before, a behavioral model M is a collection of
scenario objects O1, O2, . . . , On, and the executions of M are the executions of

Executing Scenario-Based Specification with Dynamic Generation 253

the composite object O = O1 ‖ O2 ‖ . . . ‖ On. Each such execution starts from
the initial state of O, and after each state q along the run a variable assignment
α is assembled, by invoking a constraint solver on a formula ϕ constructed from
C(q) according to the constraint labeling L. Specifically, we assume that the
modeler also provides a constraint composition rule ψ. Given the constraint-
generating function C and the labeling function L, ψ interprets the labels in
L and thus dictates how to construct for every state q the constraint formula
ϕ that should be passed along to the solver, and/or how, in general, to treat
the various constraints (e.g., applying conjunctions, disjunctions and negations,
applying priorities among scenarios, or applying various optimization goals when
multiple solutions exist). The execution then moves to state q̃ ∈ δ(q, α), and so
on.

3.2 Extension of the Request/Block Semantics of SBP

The original semantics of SBP, as defined in [41,49], can be obtained from the
new one as follows. We allow only two labels L = {“Request”, “Block”} rep-
resenting request constraints and block constraints respectively. In addition, we
define the variable set V to contain precisely one variable e, representing the
triggered event. Next, we syntactically restrict the constraint formulas ϕi to be
of the form e = c for some constant c; and finally, for any state q we define the
constraint composition rule to be:

ψ(q, C, L) = (
∨

ϕ∈C(q) | “Request”∈L(q,ϕ)

ϕ) ∧ (
∧

ϕ∈C(q) | “Block”∈L(q,ϕ)

¬ϕ) (1)

Intuitively, at each state, each scenario object can declare events it requests
(expressed as constraints tagged with the label “Request”), and those it wants
to block (expressed as constraints tagged with the label “Block”). The constraint
composition rule then translates these individual constraints into a global for-
mula representing the fact that the triggered event needs to be requested and
not blocked; i.e., it should satisfy the conjunction of being requested with the
negation of being blocked.

When using these particular restrictions, the straightforward solver of choice
is a SAT solver: since the formula ϕ only contains propositional connectives
and the variable e can only take on a finite number of values, we can encode
these possible values using a finite set of Boolean variables (this process is often
called bit-blasting). A modern SAT solver can then be used for selecting the
triggered event very quickly, in a way that is likely to enable an execution that
is sufficiently fast for many application domains.

Beyond just SAT solvers, we propose in this paper to use SMT solvers. This
allows for richer constraint languages that employ theories such as the theory
of real numbers. Further, we do not restrict V to contain only a single variable.
This enables the constraint resolutions to yield not only the choice of a value or
event from a set of candidates, but an assignment of values to an entire system
configuration.

254 D. Harel et al.

As explained in more detail in Sect. 5.6, to make sure that all variables are
properly assigned, and to comply with the scenario’s intentions of which variable
should constrain the values of each other variable, we enrich the “Request”
tagging and labeling with a subset S of the set V of variable names, i.e., we
use the labels L = {“Request(S)”|S ⊆ V } ∪ {“Block”}. The following formula
extends formula (1), in stating that for each variable in V there must be at least
one constraint satisfied in the constraint resolution, which stated that it wishes
that this variable be set.

ψ(q, C, L) = (2)
⎛

⎝
∧

v∈V

⎛

⎝
∨

ϕ∈C(q) | “Request(S)”∈L(q,ϕ),v∈S

ϕ

⎞

⎠

⎞

⎠ ∧
⎛

⎝
∧

ϕ∈C(q) | “Block”∈L(q,ϕ)

¬ϕ

⎞

⎠

4 Implementation Infrastructure

To demonstrate and evaluate our approach, we developed proof-of-concept appli-
cations on multiple platforms.

The first implementation uses MATLAB/Simulink. Scenario objects generate
their constraints as strings containing textual descriptions of the constraints.
These strings are then passed into MATLAB’s equation and system solver, which
is called solve. The solution yielded by the solver is then translated into variable
values that flow along the classical Simulink connectors as input to other blocks,
driving standard Simulink behavior. The results of this behavior (i.e., the effect
on the environment) are also fed back into the scenarios, which can then change
the constraints they present. See Sect. 5.7 for more details on this case study.

In a second, experimental implementation, described in Sect. 5.8, we used
solvers and optimizers of Wolfram’s Mathematica to create composite behavior
from SBP-like specifications.

A third implementation, used in the code examples in this paper, is based
on the Python language and the Z3 SMT solver [17]. We use Python and Z3
to implement the event selection formula (2). To simplify the specifications, we
also added the label Wait-For that allows a scenario to maintain its declaration
as long as the condition tagged by this label is not met. The default for this
tag, if not present, is True, i.e., if a scenario does not specify an explicit “Wait-
For” condition, its request and block statements are valid for the next event
only. Note that since formulas that are labeled only with “Wait-For” do dot
appear in Eq. (2) they do not affect event construction, only the progress of the
scenarios.

In our implementation, each scenario object is coded as a Python generator.
A generator is a function that can pause itself and pass control back to its caller
at any point, using the yield idiom. It can then be subsequently resumed when it
is re-invoked with the language’s next idiom. The infrastructure mimics the par-
allel execution, as follows (the core of the execution mechanism code for a similar
system appears in [48]). It calls each generator sequentially, waiting for it to yield

Executing Scenario-Based Specification with Dynamic Generation 255

control, and then calls the next one. When all scenarios reach their respective
synchronization points, the infrastructure collects the constraints passed by the
scenarios (in the form of a Python dictionary containing Z3 constraints labeled
by keys from the set {Request (S), Block, and Wait-For}). It then invokes
the solver to obtain an assignment for all variables of V that satisfies Eq. (2).
We also support the label Request (without the set S) that is automatically
translated to the label Request (S), where S is the set of all the variables that
appear in the labeled formula.

5 Modeling with the New Composition Principles

What can be achieved by using this new composition mechanism? How does it
help system engineers and modelers? We review these capabilities via several
illustrative examples:

1. An extension of the water-tank example with hot and cold water taps.
2. A UAV/drone that is capable of maneuvers in three dimensional space.
3. A software installation management system and/or software product line

management system, where dependencies and conflicts among software
libraries/features/packages determine which component is to be installed or
included in a particular delivery.

4. Solving the Towers of Hanoi puzzle. In this application the scenarios describe
the (a) essence of the puzzle, i.e., the initial state (all disks on one peg), the
goal (all disks are on some other peg), and rules (e.g., disks on a peg must be
ordered by decreasing diameter); and (b) behavioral scenarios for executing
an iterative solution.

5. Navigating a flock/swarm of robots, in two-dimensional space, towards a des-
tination, while bypassing obstacles. The goal is to move all robots towards a
configuration where the set’s centroid (“center of gravity”) is at a pre-specified
destination, while the individual robots avoid colliding with the obstacles,
whose boundaries were also pre-specified.

Listings of actual scenarios for these applications/models are available as
part of the supplementary material [15].

5.1 Constructing Rich Multi-variable Events

We now illustrate the richness of the events that can be modeled our extension.
In the drone example, the UAV is capable of simultaneous vertical and hor-

izontal maneuvers. We can define V to include two variables, V = {v, h}, where
v represents the vertical angular velocity and h the horizontal angular velocity.
One scenario can set upper and lower bounds on the vertical angular velocity, say
due to the drone’s mechanical limitations, and another can limit the horizontal
angular velocity (see Fig. 2). Here we require no labeling of the constraints, i.e.
L = ∅, and the constraint composition rule ψ is a simply a conjunction of all the
individual constraints.

256 D. Harel et al.

1 = −5 ≤ v ≤ 5

true

2 = −10 ≤ h ≤ 10

true

Fig. 2. Two scenario objects, represented as transition systems (state machines) that,
respectively, put hard limits on the vertical and horizontal angular velocities of the
drone. Each scenario has a single synchronization point, as indicated by its single
state, in which it contributes a constraint (e.g., ϕ1 = −5 ≤ v ≤ 5) to the global
constraint set. The only transition, a self loop that does not depend on the variable
assignment returned by the solver, indicates that the scenario continues to contribute
this constraint, regardless of the satisfying assignment discovered by the solver.

Without any additional limitations, i.e., if only these two scenarios existed
in the system, the constraint formula at any synchronization point would be

ϕ = ϕ1 ∧ ϕ2 = (−5 ≤ v ≤ 5) ∧ (−10 ≤ h ≤ 10)

Because the constraints are arithmetical, linear constraints, we can use an
LP solver to dispatch them; and indeed, in this case an LP solver will return an
assignment such as v = 3, h = 0. Other scenario objects in the system, referred
to as actuator scenarios, may then receive and process these values, and through
appropriate APIs adjust the drone’s engines accordingly.

Let us now extend the example with a particular flight situation, where
another scenario navigates the drone to its destination, and that scenario is
requesting a right turn at an angular velocity of at least 6 degrees per second:

ϕ3 = h ≥ 6

We also add an obstacle-detection scenario that detected the presence of a
cellular-communication antenna tower up ahead, and which, in order to circum-
vent the obstacle, is requesting that the elevation be increased or that a left turn
be initiated:

ϕ4 = h ≤ −3 ∨ v ≥ 2

When the solver is given the global constraint formula ϕ = ∧4
i=1ϕi, it can

construct the composite event by yielding the solution h = 8, v = 3, which
satisfies all constraints by both turning right and increasing the drone’s altitude.

In the Towers of Hanoi example (see detailed scenarios in Sect. 5.5 and in
the supplementary material), we observe how the scenarios form a complete
configuration; i.e., they specify which disc should reside on which peg, and which
pegs would be designated as source and destination respectively. Thus, in each
step, the SBP execution mechanism implicitly constructs the entire three-peg
configuration. The instructions for the actual moving of a disk from one peg
to another, is (purposely for this example) only implicit, in contrast to more
standard programming where this step would be at the core of the program.

Executing Scenario-Based Specification with Dynamic Generation 257

5.2 Rich Constraint Specifications

While the events and the environment configurations are greatly enriched by
supporting the assignment of many variables in every step, one should note
that feeding the solvers with arbitrary expressions allows scenarios to introduce
constraints that in themselves are rich. For example, a scenario can introduce an
irregularly-shaped obstacle by describing the curve of its boundary in a single
expression. Or, the effect of gradually changing speeds and friction coefficients
as a car slows down or swerves on an uneven road, can be introduced as a single
rich function of time and location.

5.3 Enhanced Incrementality

Figure 3 lists the Python code for the water tank system, depicted as a set of tran-
sition systems in Fig. 1. During execution, the satisfying assignments obtained
by the solver alternate between assigning hot to true and cold to false, and vice
versa.

Fig. 3. A solver-based SBP specification for the water-tank application. The hot (resp.,
cold) variables/flags indicate that a dose of hot (resp., cold) water is to be added to
the tank. The rules/requirements are: (1) do not add hot and cold doses at the same
time; (2) add three doses of hot water; (3) add three doses of cold water; (4) never add
two doses of the same type consecutively.

258 D. Harel et al.

Fig. 4. New requirements for the water tap model: (1) the temperature of a hot event
must be above 50; (2) the temperature of a cold event must be below 50; (3) the
temperature of an event that follows a hot event must be above 20; (4) the temperature
of an event that follows a cold event must be below 80.

Consider now a customer-driven requirements change. E.g., the requirement
prohibiting two consecutive doses of the same type is removed, and the customer
decides to add requirements about water temperature, as presented in Fig. 4 and
its caption. In an SBP model, one can simply add and remove the respective lines
of scenario code. These additional requirements introduce a new solver variable
temp. The new scenarios can control this new variable, and the solver can handle
it, in addition to preexisting variables, without changing other scenarios. Note
that the remaining scenarios are unaware of the new variable.

5.4 Rich Constraint-Composition Semantics

So far, we have seen two examples for constraint composition rules (annotated
as ψ above): request-and-block and conjunction. We now demonstrate another
composition rule.

In a system for managing software package dependencies, package A may
require package B and/or it may be incompatible with package C, and thus
cannot be installed alongside C. The state of the entire system is the set of
currently installed software packages. Finally, the system is given a user-supplied

Executing Scenario-Based Specification with Dynamic Generation 259

goal, such as install Package A, and is then required to install A and any
prerequisite packages, while removing the smallest number of packages currently
installed with which A and its dependencies are incompatible.

To model this, we can utilize a MaxSAT solver, whose input formula consists
of subformulas labeled either hard or soft. The solver finds an assignment that
satisfies the hard constraints and as many of the soft constraints as possible.
For each package dependency, we will specify a scenario that adds a hard con-
straint representing this dependency, and we will model the currently-installed
packages as soft constraints that are introduced by designated scenarios. The
MaxSAT solver will thus return an assignment such that the goal package and
its prerequisites are installed while the number of previously installed packages
that are removed is minimized [2,51].

More specifically, the variable set V consists of a Boolean variable for each
software package, e.g. {xA, xB , xC , . . .}, which are true if and only if the pack-
age is installed. Actuator scenarios respond to changes in variable values by
installing or removing a package. Our label set is {h, s}, indicating whether a
constraint is hard or soft, respectively. Each dependency is represented by a
dedicated object; for example, the requirement “A requires B” is encoded by
the top scenario object in Fig. 5. Other objects are used for encoding the soft
constraints representing the currently installed packages; an example appears in
the bottom scenario object in Fig. 5.

The composition rule ψ constructs the formula ϕ (to be passed to the
MaxSAT solver) as the conjunction of the individual scenario objects’ con-
straints, and marks these constraints as hard or soft according to their labels.

h
A = (¬xA xB)

true

s
B = xB =

xB

¬xB

¬xB

xB

Fig. 5. Software-package Management Example: (Left) A scenario object that specifies
that installing A requires B and labels the constraint as hard for the MaxSAT solver.
(Right) A scenario that adds xB as a soft constraint if package B is currently installed
(left state), and contributes no constraints if it is not installed (right state). Switching
between the states is performed according to the assignment discovered by the solver;
specifically, it depends on whether xB is assigned to true or not. We assume the package
is initially installed.

5.5 Combining “Stories” with Constraints

An important feature of SBP is the ability of each scenario object to describe
an aspect of system behavior as a “story”; i.e., a scenario of events in time.
This description does not mandate, as in standard programming, a complete
step-by-step prescription of all process steps.

260 D. Harel et al.

We illustrate this concept via the Towers of Hanoi example. Our SBP model
for solving the puzzle is based on the following iterative (rather than recursive)
algorithm:

Repeat the following two steps: (1) move the smallest disk to the “next” peg
to the right (cyclically, or modulo three); and then (2) move “any” disk that is
not the smallest (there is only one option for this).

Using the Python/Z3 implementation of SBP, the (rich) events, or system
states can be modeled using the following state variables:

peg1 = Const(’peg1’, SetSort(IntSort()))

peg2 = Const(’peg2’, SetSort(IntSort()))

peg3 = Const(’peg3’, SetSort(IntSort()))

source, dest = Ints("source dest")

The variables source and dest are used to model the next action to be taken.
Note that the variables peg1, peg2, and peg3, which represent the disks on

the three pegs, are sets. Recomputing them at every step further illustrates
the richness of events and event selection, as discussed in Sect. 5.1. Furthermore,
observe that in this particular model we use sets rather than ordered entities such
as arrays or lists. We can do so for two independent reasons: (a) the particular
system is for executing a solution, and not for solving the puzzle, and as in other
models, not all assumptions must be explicitly coded; (b) in the representation
of the problem in the SMT solver the “identity” of a disk is also its size and
its location in the linear order (much as a collection of two-dimensional vectors
〈x, y〉 can imply relative locations for multiple pairs of points in a 2D space
without explicitly stating this fact).

The main scenario that provides the core steps of the algorithm states that
the variables source and dest should be chosen so that, repeatedly, (1) disk zero
is moved one peg to the right (cyclically), and (2) disk zero is not moved:

def cycle():

while True:

yield {Request([source, dest]):

And(min(peg(source)) == 0,

dest == nxtMod3(source))}

yield {Request([source, dest]):

min(peg(source)) != 0}
This ability to use SBP to extract and highlight the core steps of an algorithm

into separate scenarios, distinguishing them from technicalities like initialization,
termination, data management and other mandatory bookkeeping, is discussed
in greater detail in the proposal for Scenario-Based Algorithmics [44].

Executing Scenario-Based Specification with Dynamic Generation 261

We model the rest of the behavior of the solution with the following scenarios:
– The values of variables source and dest must always be different from each

other and in the range 1,2,3 (notice the use of the blocking idiom):

def ranges():

yield {Block: Or(source < 1, source > 3,

dest < 1, dest > 3,

source == dest),

WaitFor: false}
This scenario is coded to never resume and change states; its constraints
always hold, though the same behavior could be exhibited with a specification
that contains a loop that resumes after any event (WaitFor: True) and then
returns to the same state.

– The initial state of the pegs is 〈{0, . . . , n}, ∅, ∅〉:
def init():

yield {Request: And(peg1 == FullSet(),

peg2 == EmptySet(),

peg3 == EmptySet())}
– The smallest disk on the source peg must be smaller than the smallest disk

on the destination peg:

def size():

yield {Block: min(peg(dest)) < min(peg(source)),

WaitFor: false}
– The source peg must not be empty:

def nonempty():

yield {Block: IsEmpty(peg(source),

WaitFor: false}
– The smallest disk from the src peg should move to dest peg:

def actuator():

m = yield {}

while True:

src = pegs[m.eval(source).as long()−1]

dst = pegs[m.eval(dest).as long()−1]

thrd = (set(pegs) − {src, dst}).pop()

d = m.eval(min(src)).as long()

m=yield {Request([peg1, peg2, peg3]):

And(eqSet(dst, m.eval(SetAdd(dst, d))),

eqSet(thrd, m.eval(thrd)),

eqSet(src, m.eval(SetDel(src, d))))}

262 D. Harel et al.

5.6 Specifying Targeted Constraints

Using the constraint solvers allows each scenario to relate to some variables,
while ignoring others. This is another source of expressive power. However, since
the solver must, at every step, assign values to each of the variables, it is the
modeler’s responsibility to specify for each variable at least one scenario that
requests a value for it. While this is normally not a significant burden, there
are some fine points that must be handled, and for which we offer a particular
interface.

Consider the situation in Fig. 6, where two scenarios deal with separate vari-
ables, x1 and x2, respectively. The first scenario requests that x1 be greater than
50, and the second requests that x2 be greater than 50. In traditional SBP, if
each of these two scenarios were to request, say, the coordinates for a robot’s
destination, exactly (and only) one of the two requests would be satisfied, but
both scenarios would be able to react to the choice (e.g., abandon requests that
were not chosen, or maintain the request until it is satisfied, perhaps after visit-
ing the destination that was chosen first). However, the current case is different.
Since the first scenario is not aware of the second one, the designer implicitly
assumes that the only may constraint for x1 is that it be greater than 50, hence
it does not expect the solver to allow an assignment to x1 that is smaller than
50. According to our semantics, however, the composition rules produces the
constraint ψ = x1 > 50 ∨ x2 > 50, which is satisfied, e.g., by the assignment
{x1 = 0, x2 = 51}. A way to avoid this unintended behavior is to label each
proposition with the variable that it is aware of and to solve for each set of vari-
ables separately. Another way to avoid the problem is to look for assignments
that maximize the number of satisfied may constraints, e.g., by using solvers that
optimize the number of satisfied clauses.

Fig. 6. Unintended behavior with the Request semantics when using Equation (1).
Solving (x1<50) ∨ (x2>50), the assignment {x1 = 0, x2 = 51} is valid, despite the fact
that no scenario specified that x1 may be smaller than 50.

In another case that must be handled, recall that, when specifying a con-
straint like x = y, a modeler may have different intents: whether the values for
both x and y are to be chosen, or the value for x should be chosen such that
it is equal to the value of y that was determined by other means, or the value
for y should be implied by that of the predetermined value of x. The need to
distinguish between these intents is particularly important in our setting, where
the constraint solver may be asked to set (almost) all variables of the system and

Executing Scenario-Based Specification with Dynamic Generation 263

its environment, and may thus yield surprising results, such as having a vehi-
cle avoid an obstacle by moving the obstacle. Using existing idioms to specify
environment assumptions, like “the coordinates of this obstacle cannot change”
is not enough, because the intent to change or not change a particular variable
may vary from one scenario to another, or from one scenario state to another,
even within the same scenario.

In our implementation, we address this by using the labeling system.
E.g., specifying Request[source,dest] in the algorithm “story” scenario, and
Request[peg1,peg2,peg3] in the disk-moving actuator scenario, we indicate that the
first request is to assign values only to source and to dest and the second request
is to assign values only to peg1, peg2, and peg3.

The event selection mechanism is then changed to not only satisfy one request
while obeying all blocking statements, but to satisfy at least one request for
changing each of the variables for which there exists a request.

Thus, removing the [source,dest] and the [peg1,peg2,peg3] from the above labels
would allow for assignments that are consistent with one of the two requests but
are not consistent with the other one (since in SBP not all requests must be
satisfied).

The labeling of which variables can be set by a particular constraint is
optional. When absent, the default is that the request applies to all, and only,
the variables mentioned in the request.

This feature can be seen to provide additional expressive power, as follows.
The formal definition and the implementation allow the additional tagging of
the requests to include labels that are not necessarily variable names, or are
variable names but ones that are not mentioned in the particular mathematical
formulation of the constraint at hand. Thus, a scenario can specify that its
requested constraints may be ignored altogether if other constraints labeled in
the same way are satisfied.

5.7 Real-Time Reactivity

Even though solvers are designed to apply complex mathematical and logical
operations and extensive searches, they can be also be used in real-time reac-
tive systems that need to provide fine-grained discretization of near-continuous
behavior.

To illustrate this, consider a model for a controlled follower rover that
needs to track a leader rover while keeping a safe distance from it. The fol-
lower must accommodate nearly-arbitrary leader behavior, constrained only by
basic, reasonable bounds on the leader’s speed and turn angles. This served
as a challenge problem in the MDETOOLS’18 workshop, where the orga-
nizers supplied a simulator for driving the participants’ demonstrations. (See
mdetools.github.io/mdetools18/challengeproblem.html.)

The simulator periodically emits the locations of the rovers, the distance
between them, and the heading angle of the follower. The follower advancement
and turning is controlled by setting the power for the left and right wheels.

http://mdetools.github.io/mdetools18/challengeproblem.html

264 D. Harel et al.

The scenarios’ code is shown in Fig. 7: (i) bounds: the bounds for the pR and pL
variables, indicating the power to the right and left wheels; (ii) forward.backward:
forward and backward motion in reaction to relative distance; i.e., when the
rovers are too far apart or too close the follower accelerates, decelerates or even
reverses its direction; (iii) spin: steering towards the leader by turning the wheels
when the relative angle (based on the latest simulator input) exceeds a specified
value (3◦), the follower turns left or right towards the leader; (iv) turnpowers:
calculating the needed wheel power(s) for an already-triggered turn.

This example demonstrates the ability to construct complex behavior at run
time, using distinct, modular, behavioral aspects.

The resulting system behavior is indeed very similar to the one presented
in [20], which resulted from using SBP without a constraint solver, employing
direct request-and-block logic, and which could request only finite sets of events.
The use of constraint-solvers enabled, e.g., the spin() scenario, to specify infinitely
many options and allows, as demonstrated by the turnpowers() scenario, to further
decompose the specification and to better align with the requirements.

The real-time capabilities of this solver-based composition is further demon-
strated in the Patrol Vehicle example (described here only briefly, in order to fit
space constraints), this time in a MATLAB/Simulink framework, using MAT-
LAB solvers. This is a simulation of an autonomous vehicle that moves repeatedly
in a fixed route in the shape of the figure eight, and is subject to strict speed
demands and constraints, as reflected by the following scenarios: (1) always
attempt to accelerate to a maximum pre-specified speed; (2) when arriving at
a sharp curve, reduce speed below a specified value until exiting the curve; and
(3) after driving at a speed that is higher than a certain value for longer than a
certain time limit, reduce the allowed speed and acceleration to be below some
other limits, for a certain amount of time (e.g., to avoid overheating or wearing
out of the motor).

In addition to the real-time perspective, this example also illustrates the
ability to model “stories” (see Sect. 5.5) that progress from one state to another
and present different constraints at different times and states. Thus, for example,
specifying the speed constraints that hold only after detecting the arrival at
(or departure from) a sharp curve, or after the passage of a certain amount
of time, appears quite intuitive and well aligned with the stated requirements.
This can be contrasted with the less intuitive use of ever-present constraints,
each constantly requiring a conjunction of conditions, e.g., current-speed-and-
current-road-curvature, or, current-speed-and-time-since-certain-past-event.

5.8 Event Construction with Optimization

In this section, we show how the computational tools (namely, solvers) can also
be applied to enrich the event construction with optimization of event-selection
and variable assignment choices. This optimization capability is a step towards
being able to manage multiple concurrent prioritized goals. This part of the work is
inspired by the Null Space Behaviour (NSB) technique [1] in control theory, where
composition and optimization of controllers is based on linear matrix operations,

Executing Scenario-Based Specification with Dynamic Generation 265

Fig. 7. Main scenarios of the leader-follower rover model (see explanation in the text).

and where computing solutions for lower priority goals is done within the null space
of the matrices used for the achieving higher priority goals.

This richer example also further illustrates other key properties discussed
earlier. These include the ability to construct decisions with a multitude of vari-
ables; the ability to compose scenarios, each of which has a partial view of the
system behavior; and, more importantly, the ability to specify what can or can-
not be changed in the system and its environment.

The system in this example coordinates and guides the motion of a flock of
robots (a.k.a. a multi-robot) in a two-dimensional space, as proposed in [1]. Both
our approach and NSB are based on first designing simple controllers for achiev-
ing individual aspects of the required behaviour, and then composing them into
a combined controller, whose emergent behaviour addresses all the requirements
together.

266 D. Harel et al.

The requirements for the flock’s motion are: (i) the centroid (“center of grav-
ity”) of the flock should move in the direction of a specified point; (ii) a robot
may not travel faster than 10 meters per second; (iii) initially, the robots are
placed at equal distances on (the perimeter/curve of) a given circle; (iv) while
moving, the robots should strive to maintain the circle formation; (v) the robots
should stay within a specified rectangular region; (vi) the robots should not
path through a specified elliptical obstacle; (vii) the centroid should also not
pass through the given elliptical obstacle; (viii) the robots should maintain a
minimal specified distance between any two.

In this implementation, the solver we used is the “FindMinimum” procedure
from Wolfram’s Mathematica.

We formalized each requirement as an objective function or a blocking con-
straint to be presented to the solver. Specifically, we created a separate mod-
ule/formula for each requirement. This modeling approach helps engineers and
other stakeholders examine how the behaviour of a system might change when
individual requirements are added, removed, or changed.

The solver was used to steer the multi-robot iteratively, in a greedy approach.
Conceptually, at each step, all possible movements of the flock were considered
and an optimal one was chosen. The resulting motions of each step were used
to move the robots’ coordinates, and this information then served as the input
for forming the equations for the next step. In future enhancements additional
parameters can be considered in subsequent steps, such as past speeds and direc-
tions, in the interest of creating smoother motion or detecting situations where
a robot is stuck in a tight corner.

The simulation ran successfully at about 20 steps per second (i.e., at intervals
of 50 ms), thus supporting the claim that solvers can be used for real-time control
systems. Clearly, faster processors now enable the running of new and complex
computational tools for applications that previously demanded solutions to focus
on leanness and efficiency (as in the case of NSB).

The use of the Mathematica solver enables composing the controllers in a
way that manages goals hierarchically. One approach is to nest the calls for
finding optimal solutions, and pass the results of each invocation as a constraint
on the search for the next-lower goal in the hierarchy ladder. This can be done
as follows:

arg max{f2(x, v) : v ∈ arg max{f1(x, v) : v ∈ R
2n}}

Here, n is the number of robots, x ∈ R
2n is a vector representing the positions

of the robots in the plane, v ∈ R
2n is a vector representing the horizontal and

vertical velocities that the controller needs to assign to the robots, and f1 and f2
represent the higher-priority and lower-priority goal functions, such as reaching
the target destination, avoiding an obstacle, or preserving a formation.

The idea in this formulation is to only create sets of commands that are
optimal with respect to the high-priority function, while using the low-priority
function as a secondary consideration within the first solution space (similarly
to sorting database records by a primary and secondary sort keys).

Executing Scenario-Based Specification with Dynamic Generation 267

Other composition rules can support more refined controller combinations;
e.g., composing the constraints in parallel to achieve a joint objective function,
and controlling goal priorities via weights as opposed to solving for one goal and
only then for the other.

The general characteristics of the solution’s emergent behaviour is similar
to the behaviours shown in the NSB paper [1]. In particular, casual observation
makes it clear that in both cases global solutions are handled with narrower local
views; i.e., the scenario-weaving mechanism returns the control commands only
for a specific time instance. A detailed comparison of the two approaches accord-
ing to criteria like solution quality (e.g., successful termination, path length and
smoothness of trajectory and speed), computational cost/efficiency, the ability
to provide formal correctness proofs, and ease of development, is beyond the
scope of the current paper.

The demonstration of SBP with Mathematica is still in early stages. We have
not built interfaces between a procedural/scripting language like Java or Python
to Mathematica. Hence, the present example does not (yet) demonstrate the SBP
capabilities of scenarios that follow a “story”, changing states and declaration
following the occurrence of relevant events. Given that SBP principles are lan-
guage agnostic, and our experience with developing such interfaces in multiple
languages and environments, we regard this issue is a technicality.

Other interesting challenges we encountered include the following. First, there
were several technical issues to be addressed. For example, the solver was not
able to cope with rectangular and other non-elliptical obstacles. Clearly, this
should not be attributed to the use of SBP, and we expect that engineers will
be able to specify constraints and objective functions that indeed test the limits
of each solver’s capabilities.

A second issue is that, as stated earlier, the solver is applied locally, in very
short time intervals, and without look-ahead or backward planning. This can
cause some robots to get stuck in tight corners, not recognizing that they have
to reverse some distance in order to get back on track. Finding a composition
technique that allows for global solutions, e.g., for adding a requirement that
the path be the shortest possible, or that it meet some other overall conditions,
remains as future research. Note that global solutions do not mandate look-ahead
that is provided by the execution infrastructure. As in NSB, the individual sce-
narios can contain the needed logic. For example, the flock may apply the “right
hand rule” a localized approach to finding paths in certain mazes; or pilot/scout
robots can explore the perimeter of the obstacle, reporting to others, who then
plan a trajectory with straightforward geometry. Specialized sensors (simulating
ordinary long-distance vision, or the availability of maps) can detect obstacles
from a distance, triggering bypass trajectories that are less likely to get stuck
in narrow crevasses. Alternatively, recovery scenarios can exercise “simulated
annealing”, detecting when robots are stuck and driving them to return and
explore new directions.

Another important issue is verification, and especially, compositional verifi-
cation. The basic-style SBP lent itself very well to compositional verification,

268 D. Harel et al.

which helps tackle the state explosion that often hinders application of formal
methods to complex reactive systems [29]. How does one specify the assumptions
and guarantees of scenarios when their declarations include complex assertions
that are understood only by rich solvers? A first step could be to use yet another
kind of solver for composing behaviors, one that is geared especially for such a
verification purpose [18].

6 Related Work

In this paper, we propose a particular approach to run-time composition of
behavior, namely, extending the composition rules of existing SBP-style frame-
works with specification and solving of constraints. We now briefly compare
SBP to other mechanisms for execution-time composition of events, with a spe-
cial focus on the present context of constraint specifications (an earlier, related
analysis appears in [45]).

An important feature of SBP is its intuitiveness and succinctness. These
properties are a consequence of the ability to specify forbidden behavior directly
and explicitly, rather than doing so using control-flow conditions, designed to
prevent certain pieces of code or specification from actually doing the unde-
sired action. In SBP, this feature was originally embodied in the use of concrete
lists of requested events and filter-based blocking. Using this paper’s extensions,
this is done with constraint solvers. For example, one can now build and test
the specification that a vehicle is not allowed to enter a road intersection when
the traffic light is red, even before having coded how vehicles behave. Other
approaches, such as business-workflow engines, simulation engines, and tools for
test-driven development, often support intuitive specification of executable use
cases and scenarios, but their support for generic composition of multiple allowed
scenarios and forbidden scenarios is limited. Conventional object oriented and
procedural programming, logic programming and functional programming lan-
guages provide for composition of behaviors, but the requirements’ use cases and
scenarios are not directly visible in the code. Instead, they are typically reflected
only in emergent properties of the actual execution.

The principles of SBP have been implemented in several languages, in both
centralized and distributed environments. These implementations have posi-
tioned SBP as a design pattern for using constructs like messaging, semaphores
and threads, and concepts such as agent-orientation for achieving incrementality
and alignment of code with a set of requirements.

Publish-subscribe is a related framework for parallel composition, which does
not provide language support for forbidden behavior. Aspect oriented program-
ming [50] supports specifying and executing cross-cutting program instructions
on top of a base application, but, unlike SBP, it does not allow for specifying
forbidden behavior, state management within an aspect, or symmetry between
aspects and base code.

Other behavior-based models, such as Brooks’s subsumption architec-
ture [12], Branicky’s behavioral programming [11], and LEGO Mindstorms leJOS

Executing Scenario-Based Specification with Dynamic Generation 269

(see [3]), call for constructing systems from behaviors. The SBP formalism is
language-independent, has multiple implementations, and extends in a variety
of ways each of the coordination and arbitration mechanisms used by those
architectures.

The execution semantics employed by SBP is similar to the event-based
scheduling of SystemC [46], which uses cyclical co-routine scheduling by syn-
chronization, evaluation, update and notification. SBP is different from Sys-
temC in that it offers support for specifying scenarios and forbidden scenarios
that directly correspond with the original requirements, while SystemC provides
a particular framework for composing parallel components in certain designs and
architectures. In SBP, synchronization is an inherent technique for continuously
complying with the constraints posed by the requirements, whereas in SystemC
synchronization is used for the coordination of an otherwise parallel component
execution. This also implies differences in the semantic details of synchronization,
queuing, event selection, and state management within each parallel component.

The BIP language (behavior, interaction, priority) [8] utilizes the concept of
glue for assembling components. It pursues goals similar to SBP’s, with a focus
on correct-by-construction systems. SBP is more geared towards the execution
of intuitively specified behaviors and constraints, and the run-time resolution of
these constraints.

As mentioned earlier, SBP has recently been implemented using the visual
formalism of Statecharts. The Yakindu Statecharts tool now offers an extension
of Statecharts’ original support for concurrent, orthogonal and hierarchical state
machines [27] with the optional specification of requested and blocked events in
any state, accompanied by an enhanced event selection semantics [53]. These
enhancements provide the formal definitions of SBP principles, which are based
on transition systems and state machines (see, e.g., [41]), with a direct, concrete
executable implementation that is readily understood by humans. This allows to
directly cast inter-object behaviour, which typically modelled with Statecharts
and other state-based languages, in the same formalism and language as intra-
object behaviour.

In SBP, the direct execution and/or simulation of a model is termed play-out.
Play-out is achieved by considering all constraints of the various scenarios before
each event selection. Thus, the computational burden required for each runtime
decision depends mainly on the number of scenarios, and does not depend on the
number of states in each scenario or on the nondeterministic branching in future
system and environment behavior. In contrast, many general program synthesis
approaches for reactive systems (see, e.g., [9]) apply planning, model-checking,
and other techniques to resolve environment assumptions and specification con-
straints a-priori. This gives rise to a strategy (e.g., a deterministic finite automa-
ton) for successfully handling all possible environment behaviors that may be
encountered in all reachable program states. Synthesis has been applied to SBP
specifications with the request-and-block idioms in, e.g., [43].

General synthesis techniques typically have to deal with very large state
graphs. Often, this is done via run-time planning (also termed online/on-the-fly

270 D. Harel et al.

synthesis) (see, e.g., [10]). In this approach, an execution mechanism consid-
ers a single starting state of the system and its environment, thus limiting the
number of system and/or environment actions considered in the search. Such
a technique was implemented in SBP in, e.g., smart play-out [38]. An intrigu-
ing future research avenue is to perform run-time look-ahead, or complete pro-
gram synthesis during development, for SBP specifications with rich constraint
specifications like the ones discussed in this paper. Such research could include
identifying categories of constraint specifications that are richer than the filters
and lists used in traditional SBP, but which are still more amenable to synthesis
than arbitrary constraints.

Our proposed use of constraint solvers to directly control the execution
of SBP specifications differs from other uses of these tools in the verifica-
tion and analysis of systems, including symbolic execution [55], bounded model-
checking [7], concolic testing [56], and others. SMT solvers have previously been
applied in performing such analysis tasks also in the context of SBP; e.g., by
extending SMT solvers to deal more efficiently with transition systems [47] and
by using the solvers to efficiently prove compositional properties for collections
of SBP scenarios [29].

7 Conclusion

We have described a substantial extension of the Scenario-Based programming
design and modeling approach for complex systems. By enabling the invocation
of general, rich, and well-proven solvers and optimizers at every decision that
the system makes, we enable modelers to perform sophisticated, yet trusted,
composition of modular requirement specifications. At the same time, each nar-
row requirement can itself be as deep and rich as the domain professional that
presented it wishes it to be. The enhancements allow scenario objects to interact
with each other in far more subtle and intricate ways than is possible with only
the original request-and-block idioms. All these capabilities enable engineers to
use SBP in order to more directly create faithful models of complex systems.
The theoretical principles of this extension are demonstrated through numerous
applications that explore the capabilities, and limits, of the approach.

Future research directions include making intelligent run-time decisions using
look-ahead (with model checking facilities), development-time and run-time pro-
gram synthesis, and applying machine learning techniques for improving program
decisions over time. These tools exist already in basic forms for traditional SBP,
and have been shown to be useful. However, extending them to the present
formulation will entail accounting for the more flexible event selection process.

References

1. Antonelli, G., Arrichiello, F., Chiaverini, S.: The NSB control: a behavior-based
approach for multi-robot systems. Paladyn, J. Behav. Robot. 1(1), 48–56 (2010)

Executing Scenario-Based Specification with Dynamic Generation 271

2. Argelich, J., Lynce, I.: CNF instances from the software package installation prob-
lem. In: Proceedings of 15th RCRA Workshop on Experimental Evaluation of
Algorithms for Solving Problems with Combinatorial Explosion (2008)

3. Arkin, R.C.: Behavior-Based Robotics. MIT Press, Cambridge (1998)
4. Bar-Sinai, M., Weiss, G., Shmuel, R.: BPjs: an extensible, open infrastructure for

behavioral programming research. In: Proceedings of 21st ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and Systems (MOD-
ELS), pp. 59–60 (2018)

5. Barrett, C., Kroening, D., Melham, T.: Problem Solving for the 21st Century:
Efficient Solvers for Satisfiability Modulo Theories. London Mathematical Society
and Smith Institute for Industrial Mathematics and System Engineering (2014)

6. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E., Henzinger, T.,
Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 305–343. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-10575-8 11

7. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

8. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based sys-
tems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp.
508–522. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-
9 39

9. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Saar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

10. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artif.
Intell. 90(1–2), 281–300 (1997)

11. Branicky, M.: Behavioral Programming. In: Working Notes AAAI Spring Sympo-
sium on Hybrid Systems and AI (1999)

12. Brooks, R.: A robust layered control system for a mobile robot. Robot. Autom.
2(1), 14–23 (1986)

13. Chvátal, V.: Linear Programming. Freeman W.H., New York (1983)
14. Clarke, E., Henzinger, T., Veith, H., Bloem, R.: Handbook of Model Checking.

Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-10575-8
15. Harel, D., Katz, G., Marron, A., Sadon, A., Weiss, G.: Supplementary Material for

Scenario-based Programming with Rich Event Construction (2019). http://www.
b-prog.org/ccismw19

16. Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. J. Formal
Methods Syst. Des. (FMSD) 19(1), 45–80 (2001)

17. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

18. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

19. Gordon, M., Marron, A., Meerbaum-Salant, O.: Spaghetti for the main course?:
observations on the naturalness of scenario-based programming. In: Innovation and
Technology in Computer Science Education, ITiCSE 2012. ACM (2012). https://
doi.org/10.1145/2325296.2325346

20. Greenyer, J., Bar-Sinai, M., Weiss, G., Sadon, A., Marron, A.: Modeling and pro-
gramming a leader-follower challenge problem with scenario-based tools. In: Pro-
ceedings of 21st ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS), pp. 376–385 (2018)

https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-540-85361-9_39
https://doi.org/10.1007/978-3-540-85361-9_39
https://doi.org/10.1007/978-3-319-10575-8
http://www.b-prog.org/ccismw19
http://www.b-prog.org/ccismw19
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1145/2325296.2325346
https://doi.org/10.1145/2325296.2325346

272 D. Harel et al.

21. Greenyer, J., Gritzner, D.: Generating correct, compact, and efficient PLC Code
from scenario-based GR(1) specifications. In: System-Integrated Intelligence: Chal-
lenges for Product and Production Engineering (SYSINT) (2018)

22. Greenyer, J., et al.: ScenarioTools—a tool suite for the scenario-based modeling
and analysis of reactive systems. J. Sci. Comput. Program. 149, 15–27 (2017)

23. Greenyer, J., Gritzner, D., Katz, G., Marron, A.: Scenario-based modeling and
synthesis for reactive systems with dynamic system structure in scenariotools. In:
Proceedings of 19th ACM/IEEE International Conference on Model Driven Engi-
neering Languages and Systems (MODELS), pp. 16–23 (2016)

24. Greenyer, J., et al.: Distributed execution of scenario-based specifications of
structurally dynamic cyber-physical systems. In: International Conference on
System-Integrated Intelligence: Challenges for Product and Production Engineer-
ing (SYSINT), pp. 552–559 (2016)

25. Gritzner, D., Greenyer, J.: Synthesizing executable PLC code for robots from
scenario-based GR(1) specifications. In: Seidl, M., Zschaler, S. (eds.) STAF 2017.
LNCS, vol. 10748, pp. 247–262. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-74730-9 23

26. Harel, D. Kantor, A., Katz, G., Marron, A., Weiss, G., Wiener, G.: Towards behav-
ioral programming in distributed architectures. J. Sci. Comput. Program. (J. SCP)
98, 233–267 (2015)

27. Harel, D.: Statecharts: a visual formalism for complex systems. J. Sci. Comput.
Program. (J. SCP) 8(3), 231–274 (1987)

28. Harel, D., Kantor, A., Katz, G.: Relaxing synchronization constraints in behavioral
programs. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013.
LNCS, vol. 8312, pp. 355–372. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-45221-5 25

29. Harel, D., Kantor, A., Katz, G., Marron, A., Mizrahi, L., Weiss, G.: On com-
posing and proving the correctness of reactive behavior. In: Proceedings of 13th
International Conference on Embedded Software (EMSOFT), pp. 1–10 (2013)

30. Harel, D., Katz, G.: Scaling-up behavioral programming: steps from basic principles
to application architectures. In: International Workshop on Programming Based
on Actors, Agents, and Decentralized Control (AGERE!), pp. 95–108 (2014)

31. Harel, D., Katz, G., Lampert, R., Marron, A., Weiss, G.: On the succinctness of
idioms for concurrent programming. In: Proceedings of 26th International Confer-
ence on Concurrency Theory (CONCUR), pp. 85–99 (2015)

32. Harel, D., Katz, G., Marelly, R., Marron, A.: An initial wise development envi-
ronment for behavioral models. In: Proceedings of 4th International Conference
on Model-Driven Engineering and Software Development (MODELSWARD), pp.
600–612 (2016)

33. Harel, D., Katz, G., Marelly, R., Marron, A.: First steps towards a wise develop-
ment environment for behavioral models. Int. J. Inf. Syst. Model. Des. (IJISMD)
7(3), 1–22 (2016)

34. Harel, D., Katz, G., Marelly, R., Marron, A.: Wise computing: toward endowing
system development with proactive wisdom. IEEE Comput. 51(2), 14–26 (2018)

35. Harel, D., Katz, G., Marron, A., Weiss, G.: Non-intrusive repair of reactive pro-
grams. In: Proceedings of 17th IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS), pp. 3–12 (2012)

36. Harel, D., Katz, G., Marron, A., Weiss, G.: Non-intrusive repair of safety and
liveness violations in reactive programs. Trans. Comput. Collect. Intell. (TCCI)
16, 1–33 (2014)

https://doi.org/10.1007/978-3-319-74730-9_23
https://doi.org/10.1007/978-3-319-74730-9_23
https://doi.org/10.1007/978-3-642-45221-5_25
https://doi.org/10.1007/978-3-642-45221-5_25

Executing Scenario-Based Specification with Dynamic Generation 273

37. Harel, D., Katz, G., Marron, A., Weiss, G.: The effect of concurrent program-
ming idioms on verification: a position paper. In: Proceedings of 3rd International
Conference on Model-Driven Engineering and Software Development (MODEL-
SWARD), pp. 363–369 (2015)

38. Harel, D., Kugler, H., Marelly, R., Pnueli, A.: Smart play-out of behavioral require-
ments. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517,
pp. 378–398. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36126-
X 23

39. Harel, D., Maoz, S., Szekely, S., Barkan, D.: PlayGo: towards a comprehensive tool
for scenario based programming. In: Proceedings of 10th International Conference
on Automated Software Engineering (ASE), pp. 359–360 (2010)

40. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
642-19029-2

41. Harel, D., Marron, A., Weiss, G.: Programming coordinated behavior in Java. In:
D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 250–274. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-14107-2 12

42. Harel, D., Marron, A., Weiss, G., Wiener, G.: Behavioral programming, decentral-
ized control, and multiple time scales. In: Proceedings of 1st SPLASH Workshop
on Programming Systems, Languages, and Applications Based on Agents, Actors,
and Decentralized Control (AGERE!), pp. 171–182 (2011)

43. Harel, D., Segall, I.: Synthesis from live sequence chart specifications. Comput.
Syst. Sci. 78(3), 970–980 (2012)

44. Harel, D., Marron, A.: Toward scenario-based algorithmics. In: Böckenhauer, H.-
J., Komm, D., Unger, W. (eds.) Adventures Between Lower Bounds and Higher
Altitudes. LNCS, vol. 11011, pp. 549–567. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-98355-4 32

45. Harel, D., Marron, A., Weiss, G.: Behavioral programming. Commun. ACM 55(7),
90–100 (2012)

46. IEEE: Standard SystemC Lang. Ref. Manual. IEEE (2006)
47. Katz, G., Barrett, C., Harel, D.: Theory-aided model checking of concurrent transi-

tion systems. In: Proceedings of 15th International Conference on Formal Methods
in Computer-Aided Design (FMCAD), pp. 81–88 (2015)

48. Katz, G., Marron, A., Sadon, A., Weiss, G.: On-the-fly construction of composite
events in scenario-based modeling using constraint solvers. In: Model-Driven Engi-
neering and Software Development, MODELSWARD 2019, pp. 141–154 (2019).
https://doi.org/10.5220/0007573801410154

49. Katz, G.: On module-based abstraction and repair of behavioral programs. In:
Proceedings of 19th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR), pp. 518–535 (2013)

50. Kiczales, G., et al.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S.
(eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0053381

51. Mancinelli, F., Boender, J., Di Cosmo, R., Vouillon, J., Durak, B., Leroy, R.:
Treinen: managing the complexity of large free and open source package based
software distributions. In: Proceedings of 21st IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pp. 199–208 (2006)

52. Marron, A., et al.: Six (im)possible things before breakfast: building-blocks and
design-principles for wise computing. In: Proceedings of 19th ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and Systems (MOD-
ELS), pp. 94–100 (2016)

https://doi.org/10.1007/3-540-36126-X_23
https://doi.org/10.1007/3-540-36126-X_23
https://doi.org/10.1007/978-3-642-19029-2
https://doi.org/10.1007/978-3-642-19029-2
https://doi.org/10.1007/978-3-642-14107-2_12
https://doi.org/10.1007/978-3-319-98355-4_32
https://doi.org/10.1007/978-3-319-98355-4_32
https://doi.org/10.5220/0007573801410154
https://doi.org/10.1007/BFb0053381

274 D. Harel et al.

53. Marron, A., Hacohen, Y., Harel, D., Mülder, A., Terfloth, A.: Embedding scenario-
based modeling in statecharts. In: Proceedings of 5th International Workshop on
Model-Driven Robot Software Engineering (MORSE) (2018)

54. Nadel, A.: Understanding and improving a modern SAT solver, Ph.D. thesis, Tel
Aviv University (2009)

55. Păsăreanu, C., Visser, W.: A survey of new trends in symbolic execution for soft-
ware testing and analysis. Int. J. Softw. Tools Technol. Transf. 11(4), 339–353
(2009)

56. Sen, K.: Concolic testing. In: Proceedings of 22nd IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), pp. 571–572 (2007)

57. Steinberg, S., Greenyer, J., Gritzner, D., Harel, D., Katz, G., Marron, A.: Distribut-
ing scenario-based models: a replicate-and-project approach. In: Proceedings of 5th
International Conference on Model-Driven Engineering and Software Development
(MODELSWARD), pp. 182–195 (2015)

58. Steinberg, S., Greenyer, J., Gritzner, D., Harel, D., Katz, G., Marron, A.: Effi-
cient distributed execution of multi-component scenario-based models. Commun.
Comput. Inf. Sci. (CCIS) 880, 449–483 (2018)

Evaluating the Multi-variant Model
Transformation of UML Class Diagrams

to Java Models

Sandra Greiner(B) and Bernhard Westfechtel

Applied Computer Science I, University of Bayreuth, 95440 Bayreuth, Germany
{sandra.greiner,bernhard.westfechtel}@uni-bayreuth.de

Abstract. When the two disciplines, software product line engineering
(SPLE) and model-driven software engineering (MDSE), come together
multi-variant model transformations (MVMTs) are almost indispensable
tool support.

Variability annotations are boolean expressions used in annotative
SPL engineering (SPLE) for expressing in which products model ele-
ments are visible. Developing the SPL in a model-driven way requires
various model representations, e.g., Java models for generating the source
code. Although model transformations are the key essence of MDSE
and can be used to generate these representations from already exist-
ing (model) artifacts, they suffer from not being able to handle the
variability annotations automatically. Thus, the developer is forced to
annotate target models manually contradicting the goal of both disci-
plines, MDSE and SPLE, to increase productivity. Recently, approaches
have been proposed to solve the problem using, e.g., traces, to propagate
annotations without changing the transformation itself. In this paper
we utilize a generic framework allowing to evaluate whether the target
model of arbitrary (reuse-based) MVMTs was annotated correctly. In
particular, for two different product lines we illuminate the transforma-
tion of UML class diagrams to Java models from which we finally can
generate source code. On the one hand, we examine the quality of dif-
ferent post-processing annotation propagation strategies, on the other
hand, the scalability of the framework itself.

Keywords: Model-driven software engineering · Software product line
engineering · Multi-variant model transformations · Annotative
approach

1 Introduction

When the two disciplines, software product line engineering (SPLE) and model-
driven software engineering (MDSE), come together in model-driven product
line engineering (MDPLE), multi-variant model transformations (MVMTs) are
almost indispensable tool support.

c© Springer Nature Switzerland AG 2020
S. Hammoudi et al. (Eds.): MODELSWARD 2019, CCIS 1161, pp. 275–297, 2020.
https://doi.org/10.1007/978-3-030-37873-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37873-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-37873-8_12

276 S. Greiner and B. Westfechtel

SPLE applies the paradigms of organized reuse and variability for increasing
productivity when developing a set of closely related products. In the phase
of domain engineering the superimposition of the products is developed in the
platform. Thereafter, in the phase of application engineering products are derived
from the platform and prepared for delivery [29]. Feature models [21] capture the
common and varying parts of the products as features. In annotative approaches
[2] the artifacts at the domain engineering level are associated with variability
annotations resulting in a superimposed (150%) model. In the ongoing we denote
a boolean expression over features from the feature model as annotation. By
providing a selection of the features in a feature configuration a model filter
derives configured models from the platform by removing elements.

Quite alike, MDSE [34] aims to increase the level of productivity by raising
the level of abstraction when developing software. Metamodels define the syntax
for concrete models from which eventually running source code should be gener-
ated. The EMF framework [35] establishes the de-facto standard in the academic
world for model-driven development.

In MDPLE [9,10,16] models are the main development artifacts in the phase
of domain engineering. Applying an annotative approach in model-driven SPLE
means that model elements are associated with annotations. Typically, not only
one single model but various types of models establish a model-driven product
line. For instance, a UML class diagram [28] may capture the structure of the
platform and an database may be necessary to store the objects which eventually
requires an object-relational mapping. In addition, from the models source code
needs to be created. Model transformations are the key essence in MDSE for
creating target representations in an automated way. They allow for transforming
source (input) models to target (output) representations in different modes, e.g.,
model-to-model (M2M) or model-to-text (M2T) transformations, creating either
a model or text, e.g., source code.

Despite the fact that model transformations are well established in MDSE, a
priori they do not regard annotations attached to the model elements in MDPLE.
Consequently, state-of-the-art model transformations create a superimposed tar-
get model but neglect the annotations. Since annotating the target model man-
ually is a tedious task, contradicting the general purpose of MDSE and SPLE
to increase productivity, there is the need for the SPLE engineer to automati-
cally propagate annotations from the source to the target representation. Solu-
tions supporting this task are referred to as multi-variant model transforma-
tions (MVMT) [32]. A variety of approaches has been proposed, like lifting [30],
extending the execution with aspects [13], a higher order transformation [41] or
applying an a-posteriori propagation [12,14,42].

In [15] we have presented a framework for executing MVMTs and for eval-
uating their outcome generically. This paper extends the conference paper and
contributes

Evaluating the Multi-variant Model Transformation 277

– an extended motivating example in Sect. 2.1, detailing the case study used in
Sect. 5.

– an evaluation of the performance of different post-processing strategies and
the home automation system as a large case study.

– revised discussion regarding the bottleneck of evaluating the commutativity
criterion and of applying post-processing propagation strategies.

The following section motivates the necessity of multi-variant model transfor-
mations. Thereafter, we provide an overview on existing approaches and motivate
why a framework for their evaluation is necessary. In Sect. 4 the architecture of
the evaluation framework is sketched and one realization is presented in the fol-
lowing example. Finally, related work is shortly discussed and a conclusion is
drawn.

2 Motivation

This section motivates why multi-variant model transformations are essential to
MDPLE and derives basic requirements such transformation should adhere to.

2.1 Graph Product Line

In [26] the authors introduce a product line for graphs. We take up this example
and use it to illustrate the need for MVMTs. As depicted in Fig. 1, the fea-
ture model (on the right hand side) consists of the mandatory features Nodes
and Edges. Edges are refined by the optional features Directed and Weighted and
nodes may be colored. Optionally, a graph may include a search mechanism
which is either depth first search DFS or breadth first search BFS (XOR feature

Fig. 1. Feature model and annotated domain model for the Graphs product line.

278 S. Greiner and B. Westfechtel

group). Further Algorithms may be present for analyzing the graph structure,
like computing a Minimum Spanning Tree.

As a starting point for developing the product line in a model-driven way, its
structure can be defined in an Ecore class diagram [35]. The model consists of a
class Graph containing nodes and edges. The optional colored nodes are realized
by a unidirectional reference to the respective class and Weighted edges by a
corresponding attribute. In the case of undirected graphs, nodes and edges are
linked with a one bidirectional reference whereas in the case of directed graphs
two bidirectional references are designed to distinguish the source from the target
node of an edge. The algorithms are implemented in respective operations.

In order to keep track in which products a (domain) model element should be
present, the elements are associated with annotations, i.e., boolean expressions
over the features of the feature model. For instance, the class Color is only
present in colored graphs. Based on a feature configuration providing each feature
of the feature model with a selection state, custom-oriented models are derived.

When generating source code from the models, the programs are not deliv-
erable, yet, because still behavior, in form of method bodies, is missing. For
delivery, for instance the search algorithms, have to be implemented if they are
selected in the product. Assuming the MDPLE engineer implements the algo-
rithm, e.g., for the DFS algorithm, for the first product, it is at least necessary
to copy the method body to each further product shipped with the DFS feature.
However, this contradicts the aim of organized reuse in SPLE. Thus, the algo-
rithms should not be implemented in the phase of application engineering but
in the phase of domain engineering.

For that reason, source code should be created for the complete Graph prod-
uct line (instead of for each configured product) allowing to implement the
method bodies only once. While it is possible to prevent the method bodies
from being overwritten upon regeneration, the Ecore code generator – like all
single-variant model transformations – is unaware of the annotations associated
with the model elements and does not consider them in the code generation out-
of-the-box. As a consequence, a superimposed source code platform is available
but without the links to the features single source code fragments are realiz-
ing. Moreover, if the annotations were present in the Java source code, it would
require a facility, like a preprocessor, capable to correctly derive source products
containing only the source code associated with the feature configuration.

For that reason, in the first step we transform the Ecore model into a source
code model, like the Java model from the MoDisco framework [4] in a M2M
transformation. Then, it is possible to annotate the target model and to apply
a model filter to derive products.

Again, without a variability-aware model transformation, i.e., without an
MVMT, the annotations are lost in the target model requiring the SPLE engi-
neer to annotate the target model manually, which is laborious and error-prone
work, contradicting the aim to increase productivity in MDPLE. Consequently,
multi-variant model transformations are necessary, which, besides creating the
target model, propagate the annotations from the source to the target model

Evaluating the Multi-variant Model Transformation 279

automatically. Then, it is possible to include the method body once in the respec-
tive methods of the Java model. Since the annotations are attached to the Java
model, the product delivery becomes a simple derivation steps without requiring
additional handwork.

2.2 Requirements

From above example we can postulate the following requirements that need to
be fulfilled by a multi-variant model transformation.

First of all, multi-variant model transformations are used in MDPLE envi-
ronments, which offer integrated tool support for model-driven product line engi-
neering. As a consequence, two groups are confronted with such framework: on
the one hand, the requirements of the user, on the other hand, the requirements
of the builder of the MDPLE tool need to be satisfied.

The user requires automated and correct tool support:

– Automation: The multi-variant model transformation should propagate
annotations from the source to the target model automatically.
As stated in the previous section, the laborious and error-prone task of man-
ually annotating the target model contradicts the aim of increasing efficiency
and productivity in software engineering.

– Correctness: The multi-variant model transformation should propagate
annotations correctly, i.e., for each feature configuration applied to the source
and target model the filtered products should be consistent.
Consistency is defined on product level and, thus, by the single-variant trans-
formation as stated in Sect. 3.1.

On top of that, the tool builder of an MDPLE environment, further may
postulate the subsequent requirements:

– Reuse: Multi-variant model transformations should reuse (already existing)
single-variant model transformations.
An MVMT extends a single-variant model transformation inasmuch as it exe-
cutes the SVMT and propagates variability annotations, in addition. There-
fore, a tool builder would like to reuse already existing single-variant model
transformation technology and specifications.

– Genericity: In a generic way single-variant model transformations should be
extended to multi-variant transformations, minimizing the effort of the tool
builder.

The requirements of the end user, stated in the first place, are hardly debatable
and should be supported in any MDPLE environment. Contrastingly, the tool
builder’s requirements may depend on the respective MDPLE environment:

On the one hand, there are closed environments with a small set of built-in
model transformations, all written in the same language. In this case, it may be
sufficient to extend each of the single-variant transformation definitions manu-
ally, by editing the respective transformation definition.

280 S. Greiner and B. Westfechtel

On the other hand, there are open environments in which neither the type
of models nor the model transformations are fixed. For instance, MDPLE envi-
ronments such as Feature Mapper [16] and Famile [8,9] support arbitrary EMF-
based domain models [35] and make no assumptions on the tools operating
on these models (including model transformation tools and their underlying
transformation languages). In such environments, a generic approach to realiz-
ing multi-variant model transformations is indispensable.

3 Overview

This section defines the correctness requirement for MVMTs at first, followed
by a categorization and overview on already existing approaches to MVMTs.

3.1 Correctness

The most important requirement for this contribution is the criterion of correct-
ness. For evaluating the validity of the target models of the MVMT, a commuta-
tivity criterion has been postulated in [30]. We use the criterion for assessing the
quality of the annotations propagated to the target model. As sketched in Fig. 2,
the criterion requires to filter both, the annotated source model ms and the
annotated target model mt, by a feature configuration fc. The resulting prod-
ucts m′

t and m′′
t can be compared after transforming the filtered source product

m′
s. If the target products are the same for each valid feature configuration the

MVMT is said to commute. In different words, path one (1), i.e.m filtering and
applying the tsv, must result in the same target models as path two (2) which
first transforms (tmv) once and filters afterwards.

Fig. 2. Commutativity criterion: filtering the superimposed models ms and mt by all
valid feature configurations fc should result in consistent products where the source
product is transformed with the reused SVMT for the comparison of m′

t and m′′
t .

[Adapted from [15].]

To this end, the validity of the filtered target models is ensured in the fol-
lowing way: It is assumed the source model ms is valid and correctly annotated

Evaluating the Multi-variant Model Transformation 281

such that each derived product m′
s is valid as well. Furthermore, with a valid

model m′
s as input tsv creates a valid target model m′

t. Since m′′
t should equal

m′
t, it is ensured that m′′

t is valid, too. If all filtered products m′′
t are valid, the

superimposed target model mt is semantically correct, too.

3.2 Error Measurement

For measuring the quality of the annotations propagated to the target model
mt, we introduce two errors, an absolute error and a severity error. The absolute
error counts each feature configuration resulting in at least one mismatch on
product level as erroneous whereas the severity error takes the number of the
affected model elements into account. Thus, the absolute error is measured by
counting the number of feature configurations in which commutativity is violated
and by comparing it with the number of all valid feature configurations:

Definition 1 (Absolute error). Let n be the number of all valid feature con-
figurations and let v be the number of feature configurations in which a strategy
violates commutativity with v ≤ n. Then, the absolute error errabs can be com-
puted in the following way:

errabs =
v

n

This error rate is rather rigorous since it counts a feature configuration as
wrong as soon as there is one difference between the models m′

t and m′′
t . For

that reason, the error could be relaxed by considering the number of differences
between m′

t and m′′
t and comparing it with the number of elements in the multi-

variant target model mt. Summing these error rates up and dividing them by
the number of valid feature configurations gives a hint on the overall error in
terms of the affected elements (severity of the error).

Definition 2. Let n be the number of all valid feature configurations. Let |mt|
be the cardinality of mt, i.e., the number of annotated elements in the target
model. Let further diff be the number of differences between m′

t and m′′
t . Then,

the severity error errsev is calculated as follows:

errsev =

∑n
i=1(

#diffi

|mt|)

n

Both error rates allow to draw conclusions on the quality of the MVMT with
respect to fulfilling commutativity.

3.3 Existing Approaches

Different approaches for automating the annotation of model elements exist,
which can be roughly categorized in black-box and white-box solutions depending
on the fact whether no or all internals (i.e., the contents of the transformation)
are exploited, respectively. All of them, however, have in common that existing
transformations or the existing tool environments are reused to some extent.

282 S. Greiner and B. Westfechtel

Lifting [30] and higher order transformations as presented in [33] can be
classified as white-box solutions. Lifting changes the semantics of the execution
engine and is defined for in-place graph transformations but was also applied
in out-place transformations with a graph-like DSL [11]. The solution based
on higher order transformations in ATL transformations [33] is specific to the
language ATL [19] and not generally applicable. While both approaches are
based on reusing existing technology, both require to change this technology.

In contrast, pure black-box approaches do not intervene in the functionality
of the reused transformation engine. Instead, they exploit the existing technology
and the created artifacts during the transformation for propagating the annota-
tions from the source to the target model orthogonally to the transformation.

Firstly, in [7] this behavior is supported by using the provided DSL MySync
allowing to specify corresponding elements in the source and target models.
The SVMT is executed as it stands. Thereafter, the annotations are propagated
to the corresponding elements as stated in the mappings. So far, this approach
works only for metamodels conforming to the Ecore meta-metamodel. Moreover,
it requires the user to manually specify the corresponding elements for each new
kind of input or output metamodel.

Another approach to achieve the desired behavior is trace-based propagation
as proposed in [42]. A generic trace model serves as interface for different kinds of
traces. Annotations of source elements are applied to their corresponding target
elements as recorded in the trace. It is a generic approach since it is independent
of the applied transformation language and the input and output metamodel.
The approach only requires a trace to be persisted. Therefore, it may support
various transformation tools, like the ATL/EMFTVM [41], medini QVT [17] or
QVT-d [43], Bxtend [5] and eMoflon [25].

Please note: Traces vary with respect to the granularity of the persisted
information. As stated in [42] at least three categories can be distinguished:
incomplete, generation-complete and complete traces. The first category only
stores one source and one target element in so called correspondence graphs,
being the key element in triple graph grammars (TGGs) [31]. In these realiza-
tions further dependent elements are determined from the basic mappings. In
contrast, generation-complete traces persist all source and all target elements of
a rule application whereas complete traces distinguish the elements of the target
model with respect to the fact whether they have already been present before
applying a rule (context elements) or they have been created due to applying a
rule. Depending on the granularity of the trace, the propagation of annotations
may have to be adapted. The authors provide a computation model for trans-
formations based on complete traces which is proved to fulfill commutativity.

Quite differently, if the transformation language supports aspect-oriented
programming [22], a generic aspect could be provided to transfer the annota-
tions [13]. The aspect should attach the annotation of the element triggering
its execution to the created target element. In the cited approach this behavior
is implemented for the Xpand language [23] supporting M2T transformations
only. Thus, annotations are integrated as preprocessor directives and products

Evaluating the Multi-variant Model Transformation 283

filtered by using a preprocessor. While the approach is specific to the language
Xpand (language-dependent), it can be categorized as black-box approach since
transformation rules are not analyzed.

4 Evaluation Framework

In order to keep this article self-contained, this section highlights key elements
of the evaluation framework and illustrates how it can be extended to measure
the performance regarding the runtime.

4.1 Architectural Overview

As depicted in Fig. 3, the evaluation framework needs to execute all the steps
of the commutativity criterion presented in Sect. 3.1. The necessary inputs to
the system are the annotated source and target model, ms and mt, respectively,
as well as the feature model (fm) and the single-variant transformation (tsv)
which has been reused to create mt. The output of the evaluation is the answer,
whether the commutativity criterion is satisfied. Moreover, when commutativity
is violated, the differences should be made available. In the figure, all yellow
boxes represent interfaces which have to be replaced by realizations specific to
the respective MDPLE tool. All of them are part of the abstract Evaluator
which offers the single steps solely in single methods or bundled altogether in
one evaluate() method. Furthermore, the results of the evaluation should be
persisted and made available to the product line engineer. Please note: although
only one instance of the feature configuration (fc) and the products (m′

s, m
′
t

and m′′
t), respectively, is shown in Fig. 2, the evaluation takes all valid feature

configurations into account.

Fig. 3. Overview on the architecture of the MVMT evaluation framework (Color figure
online).

284 S. Greiner and B. Westfechtel

The evaluation takes place in the following steps: At first, a FeatureConfigu-
rator is supposed to generate all valid feature configurations. For sufficing the
evaluation of commutativity, it is obligatory to generate all valid configurations,
even if the number of them might increase exponentially with respect to the
number of optional features in the feature model. One alternative is to sample
the configurations, which is discussed in Sect. 6. Given the set of feature configu-
rations, the source and the target model are both filtered by each configuration.
We employ two Filters because the representation of the target model may differ
from the source model’s one in as much as a second filter for the target may
be required. For instance, if source code is generated in a M2T transformation,
instead of a model filter a preprocessor will remove deselected parts from the
superimposed source code.

Before comparing the products, the filtered source products m′
s have to be

transformed by the SVTransformer which is the instance that should have been
reused to create the target model mt. Thereafter, each pair of the filtered (m′′

t)
and the transformed (m′

t) target product is compared by the Comparator. There-
fore, the comparator must correspond with the representation of the target mod-
els, e.g., for models a comparison based on the EMFCompare framework [3] can
take place or a pure textual String compare when source code or model files
should be compared literally.

4.2 Runtime Measurement

The components necessary for executing the transformation and evaluating it
have been explained in [15] extensively. Here, we like to provide some exten-
sions. Firstly, the evaluator is extended to provide runtime measurements. In
a fine granular way, the evaluator provides runtime measurements of the sin-
gle evaluation steps. The evaluator measures the runtime of filtering the source
model by each configuration and the runtime of filtering the target model in
the same way. Furthermore, it measures how much time was spent to create all
valid feature configurations and to transform the filtered source product m′

s to
the target product. Likewise, the executor of the MVMT provides the runtime
measurement of running the MVMT.

Runtime measurements allow for comparing different propagation strategies
with respect to their performance. Furthermore, measuring the runtime of the
evaluation steps may reveal bottlenecks in the evaluation method.

5 Example

The goal of the evaluation framework is to verify whether an MVMT commutes.
In [12] we have introduced the real-world use case of transforming instances of
the UML class diagram to instances of the Java MoDisco metamodel. Primarily,
this example demonstrated how the evaluation framework works and what kind
of output is generated. Here we like to take up this example and extend it by
measuring its performance with respect to the runtime of the evaluation steps.

Evaluating the Multi-variant Model Transformation 285

In addition, we examine different strategies to determine missing annotations
in partially annotated models. Moreover, the section present a second product
line for home automation systems (HAS) which is picked to demonstrate the
strengths and limitations of the evaluation method.

5.1 Setup

In the following examples we focus on the evaluation of trace-based propagation
[42] in real-world scenarios transforming UML into Java. The source models are
built with the MDPLE tool FAMILE [9], i.e., they consist of a UML domain
model and an associated mapping model. The mapping model contains a map-
ping element for each domain model element. The mapping element associates
the domain model element with an annotation. A feature model defines the
features that are allowed to be used for annotations.

At first, the FeatureConfigurator iterates the feature model and generates all
valid configurations, taking into account AND, OR and XOR feature groups and
requires and excludes relationships between features. The model filter, integrated
in FAMILE, removes – based on a feature propagation strategy – deselected
elements. It is a hierarchical filter which ensures the validity of the derived
products by including or excluding elements which initially would have been
removed or kept, respectively. For instance, if a child element is included but its
parent is not selected, the children will be deselected as well. Elements without
an annotation are assumed to be globally visible, i.e. present in each feature
configuration. Finally, the models have to be compared. Since EMFCompare
provides a mature framework for comparing models conforming to the same
metamodel, we utilize its mechanism to conduct a pure structural comparison
of two models.

Transformation. The reused SVMT is the Bxtend transformation presented
in [6]. It is a bidirectional transformation based on a correspondence model,
i.e., on 1:1 traces. As discussed in [14] and [12], 1:1 traces typically leave parts
of the target model without an annotation since in reality 1:1 mappings only
occur rarely. Thus, post-processing strategies have been proposed to annotate
the elements still missing an annotation after an initial propagation. We apply
each strategy in our use case and compare the measurements regarding the error
values and the runtime.

To keep this article self-contained, we summarize here the post-processing
strategies for incomplete traces in a nutshell. The algorithms assume each model
is structured as a spanning containment tree. Each node represents a model
element where the contained nodes are the children of the node and the container
is the parent node. Then, each element missing an annotation is added to a list
of open elements in a preorder traversal of the tree. In the case the root of the
domain model misses an annotation, the root feature of the feature model is
taken as annotation.

286 S. Greiner and B. Westfechtel

Thereafter, the list of open elements is iterated with one of the following
strategies to compute the missing annotations:

1. TRUE. Iterates the list from the beginning and assigns the annotation true.
This strategy is comparable with our hierarchical filter, which a priori assumes
that a element is globally visible in the case it does not carry an annotation.

2. Container. Iterates the list from the beginning and assigns the annotation
of the parent node to an element without annotation.

3. Contained. Iterates the list from the end and assigns the disjunction of the
annotation of the element’s children nodes. In the case leafs of the tree miss
an annotation, the annotation true is assigned.

4. Combined. Combines strategy two and three: Firstly, it iterates the list
from the beginning and assigns the annotation of the container. Secondly, it
iterates the list from the end and combines the container annotation of each
element in a conjunction with the disjunction of the children annotation.

To this end, the single-variant transformation creating a Java model for a
given UML class diagram is a BXtend transformation as described in [6]. For
each UML association the transformation specification creates a class declaration
in the Java model capturing the two association ends as field declarations. For
each UML class a Java class declaration is created and a compilation unit which
is necessary to represent the corresponding Java file that is generated by the
MoDisco source code generation. This situation for the class Color of the Graph
product line is sketched in Fig. 4. The figure also drafts the rule for transforming
UML classifiers on the right hand side: Besides the compilation unit, a param-
eterized type is created for each UML classifier in order to represent complex
types with multiplicities greater than one. The Bxtend trace, however, records
only main correspondences, i. e., for example a UML class and the created Java
class declaration. Both, the compilation unit and the parameterized type are left
from the incomplete trace as written with BXtend but would be present in a
complete trace. Please note: The Java Model element, shown in the figure, is the
root of the Java MoDisco model and, thus, annotated with the root feature in
our propagation mechanism.

Technical Details. The system, on which we conducted the performance mea-
surements, was an Intel i7-5600U 2.60 GHz × 4 processor with 16 GB of memory
(Ubuntu 18.04.2). In the case it was possible each measurement was run 5 times.
We removed the first runtime which was an outlier most probably resulting from
missing compiler optimization. The arithmetic mean was taken from the four
remaining measurements. Detailed numbers can be found online1.

5.2 Graph Product Line

In the first scenario we consider the Graph product line presented in Sect. 2 on
instance level. However, it is modeled as a UML class diagram instead of an
1 http://btn1x4.inf.uni-bayreuth.de/mvmt/uml2java.

http://btn1x4.inf.uni-bayreuth.de/mvmt/uml2java

Evaluating the Multi-variant Model Transformation 287

Fig. 4. Simplified example of Java MoDisco metamodel and the snippet of the trans-
formed models. On the right, one transformation rule and the trace corresponding to
the snippet is sketched.

Ecore model. In total, the source model comprises 140 elements from which 325
target elements are created.

The components necessary for executing and evaluating the transformation
have been explained in [15] extensively. In addition to the error values, we mea-
sure the runtime in this contribution. Furthermore, we compare the applied
strategies with respect to their correctness and their runtime performance.

Error Values. At first, we compare the error values computed in each strategy.
The results reveal that the error is always of the same size. In each strategy the
absolute error is 100% and the severity error is 48.26%. Furthermore, looking at
the number of mismatches in each strategy, reveals that the differences are the
same in corresponding feature configurations.

From the above observation, we can conclude that applying any of the strate-
gies makes no difference with respect to the mismatches between the products in
this use case. This is due to the capabilities of the hierarchical filter and mostly
depends on the structure of the metamodel as sketched in Fig. 4. In detail, we see
from the difference files, that compilation units and parameterized types are not
present in the transformed target model m′

t whereas they remain in the filtered
model m′′

t . Both kinds of elements are contained in the overall container of the
Java model, the Model which is annotated with the root feature GraphProductLine.
As a consequence, for instance the annotation of a compilation unit is either true
(strategy: true), GraphProductLine (strategy:container), true (strategy: contained)
or GraphProductLine and true (strategy:combined), respectively. To this end, this

288 S. Greiner and B. Westfechtel

means the element is kept in any configuration, and, thus, e.g., the compila-
tion unit for the class Color remains in the model although the corresponding
class declaration is removed by the model filter in the case the feature Color is
deselected. Moreover, the compilation unit does not contain any elements but
references the class declaration in a cross reference, thus, the cross-referenced
element is not considered for determining the annotation of the compilation
unit but would actually be needed in this case. The same explanation holds for
the parameterized type where in reality the relationship to its type(s) is more
complex than picked in the figure.

From the above description, it becomes obvious that each compilation unit
and parameterized type created for a model element with an optional fea-
tures needs to get a refined annotation. Consequently, the product line engineer
changes their annotations and runs the evaluation again yielding a result of 100%
correctness.

Table 1. Mean runtime for each strategy and the respective evaluation step given in
seconds [sec].

Strategy generateFeatConfig source filter target filter tsv tmv path 1 path 2

true 0.467 2.262 1.570 27.85 0.050 30.11 1.620

container 0.502 1.427 2.488 27.80 0.067 29.23 2.556

contained 0.498 1.362 1.777 26.71 0.098 28.07 1.875

combined 0.465 1.564 2.758 26.20 0.056 27.76 2.814

mean 0.483 1.654 – 27.14 – – –

Runtime. The mean runtime measurements are enumerated in Table 1. It can
be seen that the time consumptions of each strategy are almost of the same size.
Generating 180 feature configurations for the feature model with nine optional
features takes about 0.5 s which is still feasible. The source filter for filtering a
domain model with 150 elements is slightly faster than the target filter, filtering
325 elements. Most of the time is spent for running the single-variant model
transformation 180 times which takes about half a minute (27.14 s). Please note:
it is possible to compute the mean for the methods generating all feature con-
figurations, filtering the source model and transforming the resulting product
since all of them act on the same input and produce the same output. Solely,
the multi-variant transformation and the target filter behave either differently
or work on different input, respectively.

In contrast, the multi-variant transformations (tmv) run all in the same
amount of size (0.05–0.1 s). Furthermore, it becomes obvious that the combined
strategy does not consume significantly more runtime for iterating the list of
open elements twice but is of the same size. The comparably high value for
the contained strategy may be caused by the fact that for each element miss-
ing an annotation its list of children elements is iterated which is requires more

Evaluating the Multi-variant Model Transformation 289

time than only looking up the annotation of one element, like the parent in the
strategy using the container.

More importantly, in the last two columns of Table 1 the two paths of the
commutativity diagram have been compared as described in Sect. 3.1. We do
not add the time for generating all feature configurations, which is performed
on both paths but summarize in the first path the time spent for filtering the
source model and transforming the resulting products which is almost 30 times
slower than using the MVMT and filtering thereafter (path 2). This clearly
demonstrates a further benefit of applying MVMT which is time reduction.

5.3 Home Automation System (HAS)

The second product line we utilize for the evaluation is one for home automation
systems (HAS) adapted from the descriptions in [29]. In general, it includes
mostly technical design decision where we focused on modeling the structure.

Fig. 5. Feature model for the home automation system.

The feature model is depicted in Fig. 5. It comprises the mandatory mecha-
nisms Remote Connection, Identification Mechanism and Peripherals. The remote con-
trol contains an OR group of wireless, bluetooth and cable support. If a wireless
connection is chosen at least the feature IEEE 802.11a must be selected which is
obligatorily required by the other two IEEE standards. Furthermore, one or two
of the identification mechanisms can be selected and any of the peripherals (OR)
can be integrated. The mircowave oven may include an optional cooldown mode.
As secure connection either SSH or VPN can optionally be added to the HAS.
Finally, there is a number of optional add-ons. In total, with respect to the depen-
dencies between the features and the minimum and maximum of allowed selected
features, the feature configurator finds 16560 valid feature configurations.

Figure 6 sketches the structure of the UML class diagram by placing the
included classes in their corresponding packages. In total, it is 221 elements
being part of the domain model and the created target model comprises 509

290 S. Greiner and B. Westfechtel

elements. Out of the 221 source model elements we have annotated all packages
and classifiers including associations in the mapping model. Most of the annota-
tions are quite straight-forward and can be deferred from the names of the model
elements. Please note, the package wifi is included whenever Wireless or Bluetooth
is selected. The Cooldown Mode for microwave ovens is implemented in a state
chart, which we have omitted for the sake of simplicity in this contribution.

Fig. 6. UML Package diagram for the home automation system.

Executing the MVMT creating 509 elements does not significantly influence
the runtime of the transformation which takes now about 0.2 s, i.e., about 0.39 ms
to create one element which is comparable with the Graph scenario where it takes
about 75 ms/325 = 0.23 ms to create one element (which still depends in detail on
the respective strategy). Table 2 enumerates the arithmetic mean of the runtime
measurements in each strategy. In contrast to the measurements of the Graph
product line, in this scenario the strategy utilizing the contained elements is even
faster than the one using containers. However, as in the first scenario there is
no significant difference between each strategy regarding the runtime since each
one takes about 0.2 s.

However, this scenario is introduced mainly to exemplify the limitations of
the commutativity evaluation. In terms of the number of valid feature config-
urations it is still possible to generate the 16560 configurations in a feasible
amount of time which takes 3.234 min in the mean (running it 5 times). How-
ever, consecutively filtering and transforming is hard to accomplish. Moreover,

Evaluating the Multi-variant Model Transformation 291

Table 2. Mean runtime of multi-variant model transformation in each strategy in the
HAS use case, measured in seconds.

true container contained combined

tmv [sec] 0.197 0.210 0.186 0.216

storing the feature configurations and difference files becomes expensive as well.
Due to the high number of feature configurations it was not possible to run the
complete evaluation more often than once. It is possible to filter the source and
target model once and to store all the products which took 5.76 and 6.49 min,
respectively. However, running the transformation afterwards, is not possible
out-of-the-box because the default Java heap is too small to keep the source
models and target models all in memory to finally compare them. Otherwise,
not keeping the models in memory would increase the runtime for loading and
unloading the respective model pairs. Moreover, if the models are not kept in
memory and running the transformation directly, it still takes more than one
day to execute all transformations.

As a consequence, this example demonstrates that a brute force approach of
evaluating commutativity by using all valid feature configurations is only feasible
up to a limited amount of configurations. For large product lines alternatives
have to be applied which can also be integrated in our framework.

5.4 Threats to Validity

Some threats to validity have to be mentioned. At first, although we have picked
a real-world use case with relevant models from a practical point of view, the
domain models are still small but w.r.t. the number of elements. Moreover, def-
initely not all kind of relationships between source and target model elements
are present in the UMl to Java use case. There are more mapping relationships
possible, e.g., having to deal with information loss. For instance, the Family
to Person use case [1] may also reveal differences for the single post-processing
strategies regarding the error values.

Furthermore, the measurements were conducted at maximum 5 times. This
number was picked in order to have a number which still allows to store all
feature configurations and models in smaller use cases without exploiting too
much memory. In addition, we were able to run parts of the evaluation in the
HAS case study in a feasible amount of time. For better accuracy, however
outliers in terms of the longest and shortest runtime should also be removed
from the measurements which in turn requires more measurement executions.
We only removed the first measurement which took always the most time for
setting up the system and not being optimized by the compiler.

292 S. Greiner and B. Westfechtel

6 Discussion

First of all, as illustrated in the first scenario the evaluation framework allows for
evaluating consistency of MVMTs. By that, it is possible to detect strengths and
weaknesses of propagation approaches. The scenario shows that with above app-
roach complete and correct automation of propagating annotations may become
impossible in real-world applications. Nonetheless, the example also reveals that
errors can be detected and may be fixed with a very small amount of effort.

In this section two points stand out to be discussed. On the one hand, the
post-processing strategies can be evaluated based on the results in the UML2Java
use case. On the other hand, the scalability of the commutativity evaluation as
presented in this contribution needs to be considered.

To both product lines we have applied four the post-processing strategies
introduced in Sect. 5.1. We measured their performance on both product lines
and their quality with respect to the error values in the Graph product line.
Looking at the runtime of the different strategies reveals that there are no sig-
nificant differences. Although the more complex one (strategy combined), which
iterates the list of elements, awaiting an annotation, twice, takes a little longer
in the case there are more elements to be annotated (HAS use case) but still
remains in the same amount of time. Regarding the quality of the strategies the
computed error values in the Graph product line are the same in each strategy.
However, this is mostly caused by the properties of the transformation and the
corresponding metamodels. In the case of the Java MoDisco model a better accu-
racy would be achieved, if the annotations of cross references were taken into
account. However, generalizing this approach means to collect all annotations
of cross referenced elements in addition to the containment relationships but
would also require to consider realization relationships, like inheritance. Thus,
its complexity rises significantly and elements which may be irrelevant or already
included anyway would be taken into account additionally. As a consequence,
from the results it is recommendable to use the combined strategy which is more
accurate but still not expensive.

In the second place, evaluating commutativity completely does not scale very
well. It is feasible for a small number of configurations (up to ca. 400 configu-
ration), for larger numbers the evaluation runs out of memory and takes too
long. For only generating 16560 configurations and filtering both models by each
configuration the framework already spends more than 15 min taken together.
The consecutive single-variant model transformation on all products exceeds the
default Java heap size and running it standalone requires about one day for
only transforming all models. For that reason, we propose to integrate sampling
strategies picking only a representative number of configurations and running
the evaluation on these samples only. For instance, there is various forms of
coverage-based sampling [18,27] which apply t-wise strategies or distance-based
sampling [20] which promises to covert the configuration space more uniformly
in an efficient way. Instead of our feature configurator which creates all valid
feature configurations one of aforementioned mechanisms could be integrated
to create only a representative set of valid feature configurations to evaluate
commutativity.

Evaluating the Multi-variant Model Transformation 293

7 Related Work

Transforming product lines has gained popularity in the last few years. Thereby,
the term “multi-variant model transformation” may be interpreted differently:
transformation of multi-variant models, the focus of our contributions, and multi-
variant transformation of models, as addressed in [37,38]. In addition, transfor-
mations of product lines [39], covering both feature and domain models, goes
beyond the scope of our work in which we evaluate the transformation of arti-
facts in a single software product line. Moreover, the tool presented in [24] allows
for summarizing families of (slightly varying) transformations into a product line
which is not the focus of our work.

Various strategies to transform a multi-variant source model into a multi-
variant target model are discussed in Sect. 3.3. To the best of our knowledge, so
far there is no common means to evaluate the quality of the resulting target mod-
els with a generic framework. In addition, solutions which are formally proven
[36,40,42] ensure the transformation behaves correctly, if the underlying com-
putational model is satisfied. However, if the computational model is violated,
our framework helps to find out where the transformation fails and why it fails.
This allows for improving the MVMT solution for supporting more (general) use
cases.

Sampling mechanisms as mentioned to circumvent the bottleneck of gener-
ating all valid feature configurations are not always specific to SPLE but often
aimed to support arbitrary configurable system.

8 Conclusion

Summing it up, this paper presents an evaluation framework for multi-variant
model transformations. In a real-world use case of model transformations where
UML class diagrams are transformed in a Java source code model, two scenar-
ios are illuminated. The two well-known product lines show the strengths and
weaknesses of the framework.

In the future we like to use the strength of the framework to further evaluate
different MVMT approaches and to give recommendations but also like to work
on the weakness of handling exploding numbers of feature configurations, e.g.,
by including sampling mechanisms.

References

1. Anjorin, A., Buchmann, T., Westfechtel, B.: The families to persons case. In: Pro-
ceedings of the 10th Transformation Tool Contest (TTC 2017), Co-located with the
2017 Software Technologies: Applications and Foundations (STAF 2017), Marburg,
Germany, 21 July 2017, pp. 27–34 (2017). http://ceur-ws.org/Vol-2026/paper2.pdf

2. Apel, S., Janda, F., Trujillo, S., Kästner, C.: Model superimposition in soft-
ware product lines. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 4–19.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02408-5 2

http://ceur-ws.org/Vol-2026/paper2.pdf
https://doi.org/10.1007/978-3-642-02408-5_2

294 S. Greiner and B. Westfechtel

3. Brun, C., Pierantonio, A.: Model differences in the eclipse modelling framework.
UPGRADE IX(2), 29–34 (2008)

4. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: MoDisco: a generic and exten-
sible framework for model driven reverse engineering. In: Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering, ASE
2010, pp. 173–174. ACM, New York (2010). https://doi.org/10.1145/1858996.
1859032

5. Buchmann, T.: BXtend - a framework for (Bidirectional) incremental model trans-
formations. In: Proceedings of the 6th International Conference on Model-Driven
Engineering and Software Development, MODELSWARD 2018, Funchal, Madeira
- Portugal, 22–24 January 2018, pp. 336–345 (2018). https://doi.org/10.5220/
0006563503360345

6. Buchmann, T., Greiner, S.: Bidirectional model transformations using a hand-
crafted triple graph transformation system. In: Software Technologies, 11th Inter-
national Joint Conference, ICSOFT 2016, Lisbon, Portugal, 24–26 July 2016,
Revised Selected Papers, pp. 201–220 (2016). https://doi.org/10.1007/978-3-319-
62569-0 10

7. Buchmann, T., Greiner, S.: Managing variability in models and derived artefacts
in model-driven software product lines. In: Proceedings of the 6th International
Conference on Model-Driven Engineering and Software Development, MODEL-
SWARD 2018, Funchal, Madeira - Portugal, 22–24 January 2018, pp. 326–335
(2018). https://doi.org/10.5220/0006563403260335

8. Buchmann, T., Schwägerl, F.: Ensuring well-formedness of configured domain mod-
els in model-driven product lines based on negative variability. In: 4th International
Workshop on Feature-Oriented Software Development, FOSD 2012, Dresden, Ger-
many, 24–25 September 2012, pp. 37–44 (2012). https://doi.org/10.1145/2377816.
2377822

9. Buchmann, T., Schwägerl, F.: FAMILE: tool support for evolving model-driven
product lines. In: Joint Proceedings of Co-located Events at 8th ECMFA, CEUR
WS, Lyngby, Denmark, pp. 59–62, July 2012. http://btn1x4.inf.uni-bayreuth.de/
publications/ECMFA-Buchmann2012.pdf

10. Czarnecki, K., Antkiewicz, M., Kim, C.H.P., Lau, S., Pietroszek, K.: Model-driven
software product lines. In: Companion to the 20th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2005, San Diego, CA, USA, 16–20 October 2005, pp. 126–127 (2005).
https://doi.org/10.1145/1094855.1094896

11. Famelis, M., et al.: Migrating automotive product lines: a case study. In: Theory
and Practice of Model Transformations - 8th International Conference, ICMT 2015,
Held as Part of STAF 2015, Proceedings, L’Aquila, Italy, 20–21 July 2015, pp. 82–
97 (2015). https://doi.org/10.1007/978-3-319-21155-8 7

12. Greiner, S., Westfechtel, B.: On determining variability annotations in partially
annotated models. In: Proceedings of the 13th International Workshop on Vari-
ability Modelling of Software-Intensive Systems, VAMOS 2019, Leuven, Belgium,
6–8 February 2019. https://doi.org/10.1145/3302333.3302341

13. Greiner, S., Westfechtel, B.: Generating multi-variant java source code using
generic aspects. In: Proceedings of the 6th International Conference on Model-
Driven Engineering and Software Development, MODELSWARD 2018, Funchal,
Madeira - Portugal, 22–24 January 2018, pp. 36–47 (2018). https://doi.org/10.
5220/0006536700360047

https://doi.org/10.1145/1858996.1859032
https://doi.org/10.1145/1858996.1859032
https://doi.org/10.5220/0006563503360345
https://doi.org/10.5220/0006563503360345
https://doi.org/10.1007/978-3-319-62569-0_10
https://doi.org/10.1007/978-3-319-62569-0_10
https://doi.org/10.5220/0006563403260335
https://doi.org/10.1145/2377816.2377822
https://doi.org/10.1145/2377816.2377822
http://btn1x4.inf.uni-bayreuth.de/publications/ECMFA-Buchmann2012.pdf
http://btn1x4.inf.uni-bayreuth.de/publications/ECMFA-Buchmann2012.pdf
https://doi.org/10.1145/1094855.1094896
https://doi.org/10.1007/978-3-319-21155-8_7
https://doi.org/10.1145/3302333.3302341
https://doi.org/10.5220/0006536700360047
https://doi.org/10.5220/0006536700360047

Evaluating the Multi-variant Model Transformation 295

14. Greiner, S., Westfechtel, B.: Improving trace-based propagation of feature anno-
tations in model transformations. In: Proceedings of MODELS 2018 Workshops:
ModComp, MRT, OCL, FlexMDE, EXE, COMMitMDE, MDETools, GEMOC,
MORSE, MDE4IoT, MDEbug, MoDeVVa, ME, MULTI, HuFaMo, AMMoRe,
PAINS Co-located with ACM/IEEE 21st International Conference on Model
Driven Engineering Languages and Systems (MODELS 2018), Copenhagen, Den-
mark, 14 October 2018, pp. 584–593 (2018). http://ceur-ws.org/Vol-2245/me
paper 2.pdf

15. Greiner, S., Westfechtel, B.: Generic framework for evaluating commutativity of
multi-variant model transformations. In: Proceedings of the 7th International Con-
ference on Model-Driven Engineering and Software Development, MODELSWARD
2019, Prague, Czech Republic, 20–22 February 2019, pp. 155–166 (2019). https://
doi.org/10.5220/0007585701550166

16. Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: Mapping features to
models. In: Companion Proceedings of 30th ICSE, pp. 943–944. ACM, Leipzi,
May 2008. https://doi.org/10.1145/1370175.1370199

17. ikv++ technologies: medini QVT. ikv++ technologies (2018). http://projects.ikv.
de/qvt

18. Johansen, M.F., Haugen, Ø., Fleurey, F.: An algorithm for generating t-wise cover-
ing arrays from large feature models. In: 16th International Software Product Line
Conference, SPLC 2012, Salvador, Brazil , 2–7 September 2012, vol. 1, pp. 46–55
(2012). https://doi.org/10.1145/2362536.2362547

19. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation
tool. Sci. Comput. Program. 72(1–2), 31–39 (2008). https://doi.org/10.1016/j.
scico.2007.08.002

20. Kaltenecker, C., Grebhahn, A., Siegmund, N., Guo, J., Apel, S.: Distance-based
sampling of software configuration spaces. In: Proceedings of the 41st International
Conference on Software Engineering, pp. 1084–1094. ICSE 2019. IEEE Press, Pis-
cataway (2019). https://doi.org/10.1109/ICSE.2019.00112

21. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21,
Carnegie-Mellon University, Software Engineering Institute, November 1990

22. Kiczales, G.: Aspect-oriented programming. In: Proceedings of the 27th Interna-
tional Conference on Software Engineering, ICSE 2005, St. Louis, MO, USA, p. 730.
ACM, New York (2005). ISBN: 1-58113-963-2. https://doi.org/10.1145/1062455.
1062640

23. Klatt, B.: Xpand: a closer look at the model2text transformation language. Lan-
guage 10(16), 2008 (2007)

24. de Lara, J., Guerra, E., Chechik, M., Salay, R.: Model transformation product lines.
In: Proceedings of the 21th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, MODELS 2018, Copenhagen, Denmark, 14–
19 October 2018, pp. 67–77 (2018). https://doi.org/10.1145/3239372.3239377

25. Leblebici, E., Anjorin, A., Schürr, A.: Developing emoflon with emoflon. In: Theory
and Practice of Model Transformations - 7th International Conference, ICMT 2014,
Held as Part of STAF 2014, . Proceedings, York, UK, 21–22 July 2014, pp. 138–145
(2014). https://doi.org/10.1007/978-3-319-08789-4 10

26. Lopez-Herrejon, R.E., Batory, D.: A standard problem for evaluating product-
line methodologies. In: Bosch, J. (ed.) GCSE 2001. LNCS, vol. 2186, pp. 10–24.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44800-4 2

http://ceur-ws.org/Vol-2245/me_paper_2.pdf
http://ceur-ws.org/Vol-2245/me_paper_2.pdf
https://doi.org/10.5220/0007585701550166
https://doi.org/10.5220/0007585701550166
https://doi.org/10.1145/1370175.1370199
http://projects.ikv.de/qvt
http://projects.ikv.de/qvt
https://doi.org/10.1145/2362536.2362547
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1109/ICSE.2019.00112
https://doi.org/10.1145/1062455.1062640
https://doi.org/10.1145/1062455.1062640
https://doi.org/10.1145/3239372.3239377
https://doi.org/10.1007/978-3-319-08789-4_10
https://doi.org/10.1007/3-540-44800-4_2

296 S. Greiner and B. Westfechtel

27. Marijan, D., Gotlieb, A., Sen, S., Hervieu, A.: Practical pairwise testing for software
product lines. In: 17th International Software Product Line Conference, SPLC
2013, Tokyo, Japan, 26–30 August 2013, pp. 227–235 (2013). https://doi.org/10.
1145/2491627.2491646

28. Object Management Group, Needham, MA: Unified Modeling Language (UML),
formal/17-12-05 edn. March 2017

29. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engi-
neering: Foundations Principles and Techniques. Springer, Berlin (2005).
https://link.springer.com/book/10.1007%2F3-540-28901-1

30. Salay, R., Famelis, M., Rubin, J., Sandro, A.D., Chechik, M.: Lifting model trans-
formations to product lines. In: 36th International Conference on Software Engi-
neering, ICSE 2014, Hyderabad, India, 31 May–07 June 2014, pp. 117–128 (2014).
https://doi.org/10.1145/2568225.2568267

31. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59071-4 45

32. Schwägerl, F., Buchmann, T., Westfechtel, B.: Multi-variant model transforma-
tions - a problem statement. In: ENASE 2016 - Proceedings of the 11th Inter-
national Conference on Evaluation of Novel Approaches to Software Engineer-
ing, Rome, Italy 27–28, April 2016, pp. 203–209 (2016). https://doi.org/10.5220/
0005878702030209

33. Sijtema, M.: Introducing variability rules in atl for managing variability in mde-
based product lines. In: Proceedings of MtATL, vol. 10, pp. 39–49 (2010)

34. Stahl, T., Völter, M., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software
Development - Technology, Engineering, Management. Pitman, London (2006).
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470025700.html

35. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF Eclipse Modeling
Framework. The Eclipse Series, 2nd edn. Addison-Wesley, Boston (2009)

36. Strüber, D., Rubin, J., Arendt, T., Chechik, M., Taentzer, G., Plöger, J.:
Variability-based model transformation: formal foundation and application. For-
mal Aspects Comput. 30(1), 133–162 (2018). https://doi.org/10.1007/s00165-017-
0441-3

37. Strüber, D., Peldzsus, S., Jürjens, J.: Taming multi-variability of software prod-
uct line transformations. In: Russo, A., Schürr, A. (eds.) FASE 2018. LNCS, vol.
10802, pp. 337–355. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
89363-1 19

38. Strüber, D., Schulz, S.: A tool environment for managing families of model trans-
formation rules. In: Echahed, R., Minas, M. (eds.) ICGT 2016. LNCS, vol. 9761,
pp. 89–101. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40530-8 6

39. Taentzer, G., Salay, R., Strüber, D., Chechik, M.: Transformations of software prod-
uct lines: A generalizing framework based on category theory. In: 20th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems,
MODELS 2017, Austin, TX, USA, 17–22 September 2017, pp. 101–111 (2017).
https://doi.org/10.1109/MODELS.2017.22

40. Taentzer, G., Salay, R., Strüber, D., Chechik, M.: Transformation of software
product lines. In: Tichy, M., Bodden, E., Kuhrmann, M., Wagner, S., Steghöfer,
J.P. (eds.) Software Engineering und Software Management 2018, pp. 51–52.
Gesellschaft für Informatik, Bonn (2018)

41. Wagelaar, D., Iovino, L., Ruscio, D.D., Pierantonio, A.: Translational semantics
of a co-evolution specific language with the EMF transformation virtual machine.

https://doi.org/10.1145/2491627.2491646
https://doi.org/10.1145/2491627.2491646
https://springerlink.bibliotecabuap.elogim.com/book/10.1007%2F3-540-28901-1
https://doi.org/10.1145/2568225.2568267
https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.5220/0005878702030209
https://doi.org/10.5220/0005878702030209
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470025700.html
https://doi.org/10.1007/s00165-017-0441-3
https://doi.org/10.1007/s00165-017-0441-3
https://doi.org/10.1007/978-3-319-89363-1_19
https://doi.org/10.1007/978-3-319-89363-1_19
https://doi.org/10.1007/978-3-319-40530-8_6
https://doi.org/10.1109/MODELS.2017.22

Evaluating the Multi-variant Model Transformation 297

In: Theory and Practice of Model Transformations - 5th International Conference,
ICMT 2012, Proceedings, Prague, Czech Republic, 28–29 May 2012, pp. 192–207
(2012). https://doi.org/10.1007/978-3-642-30476-7 13

42. Westfechtel, B., Greiner, S.: From single- to multi-variant model transformations:
trace-based propagation of variability annotations. In: Proceedings of the 21th
ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems, MODELS 2018, Copenhagen, Denmark, 14–19 October 2018, pp.
46–56 (2018). https://doi.org/10.1145/3239372.3239414

43. Willink, E.D.: The micromapping model of computation; the foundation for opti-
mized execution of eclipse qvtc/qvtr/umlx. In: Theory and Practice of Model
Transformation - 10th International Conference, ICMT 2017, Held as Part of STAF
2017, Proceedings, Marburg, Germany, 17–18 July 2017, pp. 51–65 (2017). https://
doi.org/10.1007/978-3-319-61473-1 4

https://doi.org/10.1007/978-3-642-30476-7_13
https://doi.org/10.1145/3239372.3239414
https://doi.org/10.1007/978-3-319-61473-1_4
https://doi.org/10.1007/978-3-319-61473-1_4

Modeling and Analysis of Partitions
on Functional Architectures

Using EAST-ADL

Christoph Etzel(B) and Bernhard Bauer

Institute of Computer Science, University of Augsburg, Augsburg, Germany
{christoph.etzel,bauer}@informatik.uni-augsburg.de

Abstract. The complexity in automotive systems engineering is increas-
ing over the last decade. Autonomous driving and new comfort functions
are some reasons for this growing complexity. With the introduction of
multi-core processors in automotive system architectures, the shift from
sequential to parallel thinking is more and more important in the differ-
ent development phases. Based on the EAST-ADL, we present an app-
roach to support the design process for distributed systems by using par-
titioning as an additional viewpoint on the architecture level. Therefore,
we developed an extension to the EAST-ADL for partitioning and show
automatic partitioning analysis on different architecture abstractions.
These derived partitions can support system designers during the design
process of functional architectures, by having a first insight how indepen-
dent the functional components are structured from a data dependency
viewpoint. This gives hints for the allocation of functions to hardware in
later stages of the development process.

Keywords: System architecture · Model-driven systems engineering ·
Automotive systems engineering

1 Introduction

The trend of model-driven development to manage complexity during system
development is still ongoing. Automotive systems are containing more and more
hard- and software parts and forming huge distributed systems. In 2007 a BMW
7 contained 67 embedded devices providing 270 functions interacting with the
user [19] and this further increased to 100 Electronic Control Units (ECUs)
in premium vehicles around 2013 [14]. With the development of autonomous
vehicles and its increased demand for additional sensors and data, the required
computing power and the system complexity will further rise to assure a safe and
comfort driving experience. Replacing single-core ECUs with multi-core systems

This work was partially funded within the project ARAMiS II by the German Federal
Ministry for Education and Research with the funding ID 01IS16025. The responsibility
for the content remains with the authors.

c© Springer Nature Switzerland AG 2020
S. Hammoudi et al. (Eds.): MODELSWARD 2019, CCIS 1161, pp. 298–319, 2020.
https://doi.org/10.1007/978-3-030-37873-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37873-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-37873-8_13

Modeling and Analysis of Partitions on Functional Architectures 299

is a possible way to lower the system complexity in vehicles [1]. This is an
intensive discussed topic and first vehicles using multi-core architectures are on
the road [15]. To utilize these newly created systems including the embedded
multi-core technique, a “parallel thinking” is required already from the start of
the system development. Having a well-designed abstract system model during
early design steps, helps deriving it further down towards the concrete system.
Starting the design process at the system level includes many different models
and stakeholders and there exists no golden standard of methods and frameworks
[7]. In the automotive domain many projects use a bottom-up approach [15]. Such
an approach has the high probability to not fully understand the big picture
of the system and therefore detailed analysis of the whole system are hard to
achieve.

Model-based approaches can provide customized views for the current devel-
opment situation to the stakeholders. This supports achieving their engineering
and optimization tasks, by focusing on the level of intention. Different abstrac-
tion levels, starting with a high level view in the early stage to a more detailed
technical view in a later stage, is a common way to manage development com-
plexity. The architecture description language EAST-ADL supports such an app-
roach by providing on the one side a step-wise refinement and on the other
side dealing with cross-cutting issues. Allover, EAST-ADL allows modelling of
requirements, features, functional components, timing constraints, safety con-
straints and other engineering related information.

The focus of our work is to support system designers during their architec-
tural design decisions. We support the propagated “parallel thinking” through
analyzing and parallelization of the logical and component-based architectures
to achieve partitions, based on data dependencies. The partitioning shall give
the system designer a starting point how and how well parts of the architecture
can be distributed, e.g., without stressing the bus system (communication over-
head). Sets of components in a partition may be executed independently from
components in other partitions. To get a better understanding of the partitions,
key figures for partitions are calculated. The partitioning analysis support the
system designer to choose a suitable hardware architecture for system functions.
The current version of EAST-ADL supports functional composition modeling,
but has no modeling notations to express partitions. We introduce an extension
of the EAST-ADL to store information about partitions and present partitioning
algorithms to compute such partitions from an architectural model.

This paper is an extended version of our previous published work at MODEL-
SWARD 2019 [6]. In this version, we added an additional partitioning algorithm
(KaFFPa) and used it to evaluate the Single Entry Region (SER) analysis. First,
introduce EAST-ADL and the used partitioning algorithms to perform our anal-
ysis. In Sect. 3 we present our approach and tooling. This is followed (Sect. 4) by
the extension of the EAST-ADL meta-model with elements to handle partition-
ing information on in the model. Section 5 shows how the algorithms are applied
to different target abstraction levels to find partitions and which key figures can
be calculated to get a better understanding of a partition. The approach is eval-

300 C. Etzel and B. Bauer

uated in a case study showing a brake-by-wire system example (Sect. 6). The
paper completes with the conclusion and giving an outlook for further research.

2 Preliminaries

This chapter introduces existing languages, methods and algorithms used in this
paper.

2.1 EAST-ADL

EAST-ADL stands for ‘Electronics Architecture and Software Technology -
Architecture Description Language’ and is maintained by the EAST-ADL Asso-
ciation [5]. Its focus is on capturing engineering information for automotive elec-
tronic system development. It offers elements to capture requirements, features,
functions, software & hardware components and communication in a standard-
ized form. The system’s implementation is not part of the EAST-ADL, but the
established AUTomotive Open System ARchitecture (AUTOSAR) standard [2]
is used. While AUTOSAR’s most abstract concept is the software architecture,
the EAST-ADL provides means to model the system architecture and capture
essential engineering information on this stage [3].

Fig. 1. EAST-ADL abstraction levels with the containing models and cross cutting
extensions. On the right hand side the partitioning extension and methods provided in
this research. [6] (Color figure online)

The current release of the EAST-ADL2 [4] describes four abstraction levels
to model the vehicle in different levels of detail (see left hand side of Fig. 1).
The Vehicle Level includes a Technical Feature Model of the electric and elec-
tronic system. It can be used as a software product line by using decomposition
and variability to allow different feature configurations. The Analysis Level
includes the Functional Analysis Architecture (FAA). On this level, the fea-
tures of the Vehicle Level are realized by abstract functions. These functions

Modeling and Analysis of Partitions on Functional Architectures 301

are connected through devices (e.g., sensors or actuators) to the vehicle environ-
ment, defining the systems boundary. The Design Level includes the Functional
Design Architecture (FDA) and the Hardware Design Architecture (HDA). The
FDA realizes the abstract function of the FAA with an implementation-oriented
aspect. This includes software, middleware and hardware abstraction. The HDA
captures physical resources and their connections and is used to allocate func-
tions from the FDA to hardware entities. The Implementation Level is the
connection to the AUTOSAR system model. The EAST-ADL is aligned with
AUTOSAR and elements of the Design Level can be mapped to AUTOSAR enti-
ties [20]. These alignment and mapping capabilities enable traceability through
the models during the whole development process.

Beside these abstraction levels, EAST-ADL is extended by several cross-
cutting concern extensions, spanning over the layers of abstraction. Figure 1
shows the abstraction levels with their models horizontal and the extensions
(cross-cutting concerns) are vertically aligned over all levels. Examples for these
extensions in are Environment, Requirements, Variability and Timing. In this
paper, we present an additional extension called Partitioning and methods appli-
cable using this extension. Our contributions are marked with a red circle in
Fig. 1. Since the focus of our research is on the Functional Analysis Architec-
ture (FAA) and the Functional Design Architecture (FDA) we provide a more
detailed description of these two abstraction levels. Both architectures contain
a component-based architecture model to capture the system information. The
elements of the architectures are build up using a type/prototype concept similar
to AUTOSAR. The basic elements are FunctionTypes and FunctionPrototype.
A FunctionType is an abstract function component description and gets instan-
tiated by one or more FunctionPrototypes. A FunctionType contains Function-
Ports, which can be connected together using FunctionConnectors. Hierarchical
architectures are realized by the specializations of FunctionType on the Analysis
and Design Level (FunctionAnalysisType and FunctionDesignType), which can
own parts in form of FunctionAnalysisPrototypes respectively FunctionDesign-
Prototypes. FunctionConnectors linking owned prototypes are called assembly
connection, while a connection between a port of the type itself and a prototype
is called delegation connection.

Besides the FDA, the Design Level includes the Hardware Design Architec-
ture (HDA) to model the hardware system. The HDA defines the connectivity,
capabilities and basic safety characteristics of technical architectures, e.g., the
execution units (ECUs) including their cores and the communication paths. This
information can be expressed using the following elements from the EAST-ADL
modeling language (again using type/prototype concept): HardwareComponent-
Type is the basic element for the specializations Node, Sensor, Actuator and
ElectricalCompmonent. It defines HardwarePorts and HardwarePins of the com-
ponent and the embedded connections. An ECU is a Node element and its cores
are contained HardwareComponentPrototypes of type Node. HardwarePortCon-
nectors forming the bus system by connection ports and are capable to store
information about the bus type and speed. HardwarePorts containing Hard-
warePins and these pins are connected using HardwareConnectors, forming the
bus system.

302 C. Etzel and B. Bauer

Since every abstraction level defined by the EAST-ADL includes a complete
model of the whole system, a full tracebility between the levels can be realized.
This is supported by linking elements of different abstraction levels together
using the Realization relationship. E.g., a function on the FAA is realized by a
group of functions on the FDA. Using realization links, this can be documented
for later development stages or analyzes.

The EAST-ADL abstraction levels can be seen as equivalents to the phases
of a system developing life cycle. For example, the abstraction levels can be
used/mapped to phases of the V-Modell XT [30] as follows: the Vehicle Level,
including its feature models, is part of the systems requirements analysis; the
Analysis and Design Level are used in the system analysis, system architecture
and system design phase; the Implementation Level belongs to the software
architecture phase. Another example is the ATESST2 project, which released a
methodology guideline for the development with EAST-ADL2 [27]. It defines a
top-down development process and we embed our partitioning analysis into it,
by making suggestions at which point of the process the partitioning step should
be performed.

2.2 Partitioning Algorithms

In this section, partitioning algorithms used in this paper are explained. The
strongly connected components algorithm is a classical algorithm from graph
theory, while the extended single entry region algorithm is a more recent publi-
cation dedicated to AUTOSAR systems. Karlsruhe Fast Flow Partitioner (KaF-
PPa) algorithm is a state of the art multilevel graph partitioning algorithm.

Strongly Connected Components. Strongly connected components (SCCs)
are highly interconnected nodes in a directed graph. Tarjan [26] presents def-
initions for strong connectivity in graphs and an algorithm for computing the
strongly connected components. A (sub-)graph is called strongly connected if
there exists a path between each pair of nodes. A partition is formed by the set
of strongly connected components.

Feedback loops, which are a very common pattern in automotive control
systems, would form such a strongly connected component. Therefore, we see
potential in applying the SCC on EAST-ADL architectures of the Analysis and
Design Level.

Potts et al. [18] applied the SCC algorithm on system of systems (SoS) to
support architectural decision making.

Single Entry Region. The Single Entry Region (SER) analysis is a data
dependency graph analysis for AUTOSAR system description models introduced
by Kienberger et al. in [12] and further refined in [11,13]. It is based on work of
[8,9,17,28]. The analysis tries to identify regions having a loose coupling to other
parts of the system and therefore be somewhat isolated. A SER is described by
the following three properties:

Modeling and Analysis of Partitions on Functional Architectures 303

– The number of nodes is greater or equal to two.
– All input dependencies from nodes outside the SER are routed over a single

“entry node”.
– There is a path from the “entry node” to any other node inside the SER.

The SER analysis is performed on an AUTOSAR system description model,
namely on the component-based architecture formed by Runnable Entities
(AUTOSAR’s atomic executable and schedulable units) and their data depen-
dencies. From our point of view, the analysis can be used for every appropriate
type of dependency in a graph. Since the components of an AUTOSAR system
description model are derived from the FDA on EAST-ADL’s Design Level and
the FDA and FAA are component-based architectures with data dependencies,
we adopt the SER analysis to EAST-ADL.

KaFFPa. KaFFPa (Karlsruhe Fast Flow Partitioner) is a multilevel graph par-
titioning approach [22]. In a first step, it contracts the initial graph to create
smaller graphs and does a first partitioning of this contracted graph. Then the
contraction is reverted at each level and a local improvement is done to opti-
mize the partitions on the coarser levels. The algorithm partitions the graph
into a predetermined number of partitions, often denoted as k. The graph may
contain weighted nodes and/or edges to describe the workload of a node or the
communication of an edge, for example.

The KaFFPa algorithm is embedded in the KaHIP (Karlsruhe High Quality
Partitioning) framework, which is public available [24]. Since the algorithm is
reported to have very promising results in partitioning [21] and is easy available
by using the public framework, we chose it for our approach.

3 Our Approach

Our approach has the goal to support the system designer during his architec-
tural design decisions in order to have an architectural model that is well suited
for further fine-grained development. Partitioning, in our context, is the process
of grouping the system under development (SUD) into different parts without
changing its functional component-based architecture. It is not intended to pro-
vide concrete mappings of functional components to hardware elements. The
approach provides additional views on the SUD, depending on which criteria
the partitioning is performed. We identified the FAA on the Analysis Level and
the FDA on the Design Level as targets for our partitioning.

By using the extension mechanism of the EAST-ADL, the EAST-ADL sys-
tem model remains unchanged and is only extended with new elements. The new
extension makes use of already available EAST-ADL modeling concepts to define
its elements and use them for structuring system model elements. Figure 2 shows
the extension called “Partitioning” and its meta-model elements to express par-
titions. Also elements to store additional information not yet available in the
EAST-ADL meta model, but helpful for analyzing a SUD, are specified. Since

304 C. Etzel and B. Bauer

These classes are from
the EAST-ADL meta-model. TimingConstraint

EstimatedExecutionTime
element : FunctionPrototype [1]
average : TimingExpression [1]
bestCase : TimingExpression [0..1]
worstCase : TimingExpression [0..1]

EstimatedMemorySize
element : FunctionPrototype [1]
average : EANumericalValue [1]
upperBound : EANumericalValue [0..1]
lowerBound : EANumericalValue [0..1]

EAElement
name : String

PartitionPackage
elements : EAPackageableElement [0..*]

PartitionModel
targetLevel : SystemModel [1]

subPackages
0..*

1
 partitionArchitecture

Fig. 2. The “Partitioning” meta-model extension. [6]

there are only references to elements in the system model, the FAA on the Anal-
ysis Level or the FDA on the Design Level remain unchanged.

A short example shows how this works: For example, on the Analysis Level,
the SUD is described by the FAA using functional devices and analysis functions.
The functional devices are the connection to the environment; using sensors
to get data from the environment and actuators to interact with it. Typically,
chains of AnalysisFunctions link sensors to actuators, by performing calculations
on the sensors data and react accordingly through the actuators. The connec-
tions between the devices and functions are modeled by ports to provide and
receive data, which are linked together with function connectors. This compo-
nent based description of the architecture together with additional data defined
in the extensions is used to determine partitions, which can be persisted with
the proposed Partitioning extension.

Tooling

AutoAnalyze. The extension of EAST-ADL and the analyses are implemented
in our tool AutoAnalyze. It is based on the Eclipse Modeling Framework1, the
Model Analysis Framework2, EATOP3 and Artop4. This allows us to load, edit
and save models defined with the EAST-ADL meta-model by using the EAXML
format.

KaHIP. KaHIP (Karlsruhe High Quality Partitioning) is a framework for doing
graph partitioning with different algorithms [24]. It includes KaFFPa (Karl-
sruhe Fast Flow Partitioner), the multilevel graph partitioning algorithm we use

1 Eclipse Modeling Framework (EMF) https://www.eclipse.org/modeling/emf/.
2 Model Analysis Framework - Data-flow based model analysis (MAF) https://www.

informatik.uni-augsburg.de/en/chairs/swt/ds/projects/mde/maf/.
3 Eclipse EATOP Project https://www.eclipse.org/eatop/.
4 AUTOSAR Tool Platform (Artop) https://www.artop.org/.

https://www.eclipse.org/modeling/emf/
https://www.informatik.uni-augsburg.de/en/chairs/swt/ds/projects/mde/maf/
https://www.informatik.uni-augsburg.de/en/chairs/swt/ds/projects/mde/maf/
https://www.eclipse.org/eatop/
https://www.artop.org/

Modeling and Analysis of Partitions on Functional Architectures 305

in this paper and several other algorithms. KaHIP uses the Metis file format
as explained in the Metis 4.0 user guide [10,23]. AutoAnalyze is extended to
export a graph in the Metis format, which then can be loaded into the KaHIP
framework.

4 EAST-ADL Partitioning Extension

The focus of our approach is not limited to partition architectures on the differ-
ent abstraction levels provided by EAST-ADL, but also to have a standardized
way to retain and exchange the partition information. EAST-ADL structures
the system model into different abstraction levels and it shall be possible to
have multiple partition models per abstraction level. This is motivated by the
idea that partitioning can be done with different goals to achieve different views
on the model. These goals influence the selection and weight of properties going
into the calculation, resulting in many possible partition views on the system.
While the content of the architectures is diverse for every abstraction level, the
meta-model elements shall be shared to support a common handling of partition-
ing in every use case. The newly introduced elements are derived from already
specified elements in the EAST-ADL to be compatible with it. In the following
definitions, most elements from the EAST-ADL meta-model can be identified
by the prefix “EA”, for example, EAElement and EANumericalValue are both
from the EAST-ADL infrastructure package. The EAST-ADL meta-model con-
tains some none prefixed elements, we will indicate if such an element is used.
Besides having a good compatibility and extensibility using basic elements of the
EAST-ADL, the partitioning extension fully benefits of already available con-
cepts, e.g., connecting elements using EAST-ADL realization links to achieve a
full traceability over the model.

The complete “Partitioning Extension” can be seen in Fig. 2. On the left hand
side are the meta-model elements to capture partitions and on the right hand
side are elements to support the analysis of partitions. The root of the new parti-
tioning elements is PartitionModel, pointing to the architectural model which is
partitioned. It is derived from EAElement, an abstract metaclass of the EAST-
ADL meta-model, defining an identifiable and named element. The EAElement
has some attributes omitted in the figure, for example, the UUID attribute,
as a global unique identifier, an expressive name and a comment attribute for
additional descriptions. The partition model contains two associations the tar-
getLevel and partitionArchitecture. The targetLevel is used to link the partition
model to the level it partitions the architecture; i.e., the AnalysisLevel or Design-
Level object which are of the EAST-ADL meta-model super type SystemModel.
The association partitionArchitecture points to the root package of the partition
architecture. Since the partitioning is done independently on every abstraction
level, only elements that are part of the target level are allowed to be linked in
the partition architecture and its nested packages.

306 C. Etzel and B. Bauer

Name. PartitionModel
Description. The PartitionModel is used to organize the partition architecture

of an abstraction level.
Generalizations. EAElement
Attributes. No additional attributes.
Associations.

targetLevel : SystemModel [1]
partitionArchitecture : PartitionPackage [1]

Constraints. All (nested) referenced elements in the partitionArchitecture shall
be part of the referenced targetLevel.

Semantics. PartitionModel is the representation of a nested set of partitions
for a specific system abstraction level.

PartitionPackages are used to collect elements belonging to a partition, by using
the elements association. The reason to define a new class PartitionPackage
instead of using the already existing EAST-ADL meta-model element EAPack-
age is that an EAPackage uses a composition to aggregate the containing ele-
ments, while a PartitionPackage shall only provide an association to the elements
in the architecture. Using the association a duplication of elements is avoided
and changes to properties of elements in the architecture have not to be mirrored
to the partition model. The subPackages association contains sub partitions and
is realized using a composition. A PartitionPackage can contain multiple ele-
ments and packages to enable hierarchical partition architectures. To achieve a
sound hierarchy, the association to elements in the target architecture shall be
only once and as deep as possible in the subPackages structure.

Name. PartitionPackage
Description. The PartitionPackage is used to form partitions of elements.
Generalizations. EAElement
Attributes. No additional attributes.
Associations.

elements : EAPackageableElement [0..*]
subPackages : PartitionPackage [0..*] {comp.}

Constraints. No additional constraints
Semantics. PartitionPackages can be used to organize EAPackageableElement

that form a partition. The packages can be structured hierarchically, where
each level may contain variable number of EAPackageableElements and sub
packages forming sub partitions.

The two elements PartitionModel and PartitionPackage enable a structural
description of partitions. They link to elements in the architecture using asso-
ciations and by this mechanism, no change of the architectures themselves is
necessary.

The EAST-ADL includes already multiple extensions for different purposes.
The timing extension, for example, defines modeling elements to specify tim-
ing constraints and other timing related information to enable timing analysis.

Modeling and Analysis of Partitions on Functional Architectures 307

Despite the existing extensions, there are still some elements missing from our
point of view that would be helpful for analyzing partitions. To allow a more
accurate partitioning of an architecture, two additional elements are defined, to
store estimated values of memory footprints and execution time.

The element EstimatedMemorySize is used to capture the estimated mem-
ory footprint of a component. For example, this element can be used to balance
partitions based on the memory size or to get an idea of the memory require-
ments of a partition. It has an association to an element in the system model
and three values describing its estimated average memory size in bytes and
optional upper/lower bound values to define a spectrum the memory size varies.
The element and average associations are mandatory, otherwise no meaningful
statement could be made.

Name. EstimatedMemorySize
Description. The estimated size of memory used by the function in bytes.
Generalizations. EAElement
Attributes. No additional attributes.
Associations.

element : FunctionPrototype [1]
average : EANumericalValue [1]
upperBound : EANumericalValue [0..1]
lowerBound : EANumericalValue [0..1]

Constraints. If set, the values shall comply to lowerBound ≤ average ≤
upperBound.

Semantics. The EstimatedMemorySize stores the estimated or measured aver-
age memory size in bytes and optional an upper/lower bound.

The EAST-ADL timing extension describes an execution time constraint spec-
ifying the upper and lower bound run-time of an event. We introduce an Esti-
matedExecutionTime element, storing estimated or measured average execution
time of a function and optionally a best and worst case value. It makes use of the
already defined elements TimingConstraint and TimingExpression in the EAST-
ADL timing package. TimingExpression allows the specification of a time includ-
ing a unit and a time base. The EstimatedExecutionTime element is derived
from the element TimingConstraint. The average, best and worst case elements
are derived from TimingExpression. The element and average associations are
mandatory, otherwise no meaningful statement could be made. In a SUD all
defined values have be in line with already defined execution time constraints.

Name. EstimatedExecutionTime
Description. The estimated execution time of the function.
Generalizations. TimingConstraint
Attributes. No additional attributes.
Associations.

element : FunctionPrototype [1]
average : TimingExpression [1]

308 C. Etzel and B. Bauer

bestCase : TimingExpression [0..1]
worstCase : TimingExpression [0..1]

Constraints. If set, the values shall comply to
bestCase ≤ average ≤ worstCase.

Semantics. The EstimatedExecutionTime stores the estimated or measured val-
ues of the average execution time and optional a best/worst case value.

5 Partitioning Analysis

In this section, we describe how the SCC, SER and KaFFPa algorithms are
used to automatic search for partitions on the architectures of the Analysis
and Design Level. Partitions are formed by sets of functional components and
analysis is done independently on the Analysis and Design Level. Besides using
an algorithm to compute sets of partitions, an engineer can manually model
partitions or modify the generated partitions afterwards.

5.1 Parameters for the Analysis

The main focus on our analysis are on supporting the engineer in understanding
the architecture from the data dependency viewpoint. In our use cases we identi-
fied additional kinds of relevant clustering parameters: communication between
functions and resource usage of functions. The communication is closely related
to the data dependencies, since the data has to be transferred between the func-
tions. Therefore, the amount of data exchanged between functions and the cou-
pling of those can be taken into account. On the resource side execution time,
execution frequency and memory consumption are values of interest. Using the
newly introduced meta-model elements and already available elements in the
EAST-ADL three parameter to consider these viewpoints: Data Flow Weight,
Function Computational Time Weight and Function Memory Weight.

Data Flow Weight. For the communication perspective we introduce a param-
eter to describe a weight for the data exchanged on a connection between
two functions. The size of the transferred data can be calculated using the
EADatatype specified for the connection and the repetition of the transfer,
which can be derived of the function triggering (FunctionTrigger).

Function Computational Time Weight. This parameter combines our intro-
duced EstimatedExecutionTime element to estimate the computing time in
conjunction with function triggering to get an idea how a processor is utilized
by a function.

Function Memory Weight. Using the newly specified EstimatedMemorySize,
the memory footprint either of the binary or the resource usage during run-
time including temporary memory can be calculated.

These parameters can either be used in partition search algorithms or to cal-
culate key figures of a partition. E.g., partitions can be rated by their memory

Modeling and Analysis of Partitions on Functional Architectures 309

footprint summing up the Function Memory Weight of every component, or by
their Function Computational Time Weight, if it is assumed that the set of func-
tions in one partition is executed sequentially. These key figures are indicators
for the system designer to judge about the architecture and possibly perform a
refactoring.

5.2 EAST-ADL Analysis Level

The Analysis Level includes an abstract functional representation of the archi-
tecture captured in the FAA. This architecture is designed very early in the
development process during the system analysis phase [27]. From a methodol-
ogy point of view, the partitioning shall be placed in the development process
after the task to specify the analysis function details. The result of partitioning
analysis can then be used to further refine the architecture in an iterative way.

Before starting the analysis on the FAA, we have implemented multiple model
pre-checks in our tool, such as if all directions of the ports and the binding
to the function connectors are reasonable. For example, if two functions are
connected via “IN” ports a warning is raised. The same applies to “OUT” ports.
Additionally, it should be noted that a client-server connection in the model is
interpreted as a bi-directional connection between the components.

SCC Analysis. The first analysis implements the strongly connected compo-
nent search. The directed graph consists of the analysis function prototypes as
the vertices and the function connectors as the directed edges between the ver-
tices. Since the SCC algorithm analyzes paths between the vertices, only the
communication between the functions is taken into account to form partitions.

The results of the strongly connected component search is transferred into a
partitioning model, where a set of strongly connected functions forms a partition.
For every detected set with more than one component a PartitionPackage is
created referring to the containing functions. An example with three graphs can
be seen in Fig. 3. The sets of strongly connected components enclosing more
than one element are visualized with the same color. In the graph on the bottom
of the figure is a single element “Prototype3” not colored (white background),
since it forms a strongly connected set containing only itself and sets with just
one element do not need a distinct color.

SER Analysis. Another implemented algorithm is the Single Entry Region
(SER) analysis, which was developed for AUTOSAR system description models
[13]. A brief general description can be found in Sect. 2.2. We adapted the algo-
rithm to fit to the EAST-ADL Analysis Level. For this purpose, every Analysis-
FunctionPrototype contained in the FAA represents a node. The dependencies
between the nodes are formed by the function connectors between the proto-
types. The dependency weights are calculated by using the introduced Data
Flow Weight parameter and summing it up for every connection between a pair

310 C. Etzel and B. Bauer

Fig. 3. Three examples of graphs with strongly connected components. [6] (Color figure
online)

of nodes. The output of the algorithm are regions containing sets of Analysis-
FunctionPrototypes. This gets transferred into the partitioning model such that
every calculated region forms one partition.

KaFFPa. The KaHIP framework offers graph partitions algorithms with vari-
able strategies. For our problem domain, we choose the KaFFPa algorithm and
transfer the architectures to the METIS format, which serves as the input for-
mat. The AnalysisFunctionPrototypes of the FAA form the nodes of the graph.
Optionally, the nodes can be weighted using the introduced parameters Func-
tion Computational Time Weight and Function Memory Weight introduced in
Sect. 5.1. In contrast to the SCC and SER analyses, which use directed graphs,
KaFFPa expects undirected graphs with only one edge between a pair of nodes.
As a result, the direction information of the function connectors is ignored and
every set of connections between two components becomes an edge. The weight
of the edge is calculated by summing up the weights of all connections in this set.
The weight itself is defined by the introduced Data Flow Weight (see Sect. 5.1),
and therefore depends on the exchanged data type (to calculate the size of the
data) and how often it is exchanged.

These information form a graph, which is complete to be partitioned using
KaFFPa. To run KaFFPa, it needs a parameter k, defining the number of par-
titions the graph should be divided into. At present, this has to be provided by
the engineer conducting the analysis.

The output of KaFFPa is a text file containing as many lines as nodes in the
graph. Each of these lines represents a node and the value in the line represents
the partition block ID. With the information how input graph was generated
(knowing which AnalysisFunctionPrototype is which node), the output file is
transferred into the partitioning model such that all nodes with the same block
ID form one partition.

Modeling and Analysis of Partitions on Functional Architectures 311

5.3 EAST-ADL Design Level

The Design Level includes an implementation-oriented functional model of the
architecture captured in the FDA. Looking into the design process, the FDA
is specified during the design phase in parallel with the HDA [27]. This newly
introduced partitioning step shall be placed in the development process after the
task to specify the design details, but before the allocation the functions to the
HDA. The result of partitioning analysis can then be used to further refine the
architecture in an iterative way and as an input artifact to the HDA allocation
task.

Since the elements of the FDA are very similar to the ones used for the
analysis of the FAA on the Analysis Level, the SCC, SER and KaFFPa analysis
are analogous to the analyses explained into detail in Sect. 5.2. The graphs are
formed by function prototypes and function connectors. Even the pre-checks and
the handling of client-server connections are identical.

By using a partition model of our analysis an engineer can allocate func-
tions to elements of the HDA. Elements grouped into one partition by these two
algorithms are candidates to be allocated on one node, because they commu-
nicate with each other. Placing them on one node or closely connected nodes
can reduce the communication overhead. The HDA can also serve as a starting
point to determine the parameter k for KaFFPa. k should be at least as high as
the number of cores which are available to run components of the architecture
on. KaFFPa includes an option to use a mapping algorithm, which performing a
mapping which is communication and topology aware [25]. In Sect. 7 we discuss
shortly, why this is not reasonably applicable for our approach in the automotive
domain.

6 Case Study - Brake-by-Wire System Example

To evaluate the proposed approach a case study on an example architecture
is carried out, showing the results of the SER and KaFFPa in detail. Since our
approach tries to help an engineer understanding his/her model, we compare the
different partitioning results between algorithms not by minimum cut values or
other parameters, for example, but doing an expert review. It should be noted,
that the SCC analysis would not find partitions with more than one component
in this particular example and is therefore not discussed further. Nevertheless,
we picked this model, because it illustrates the SER analysis, the differences
to KaFFPa and the partition transition during the development process very
clearly.

The “Brake-by-Wire for four-wheel vehicles” model is originally from the
EAST-ADL Association and published on their website5.

5 Brake-by-Wire System II (http://www.east-adl.info/Resources.html) (Accessed July
12, 2019).

http://www.east-adl.info/Resources.html

312 C. Etzel and B. Bauer

Fig. 4. Functional Analysis Architecture (FAA) of Brake-by-Wire Example. The col-
ored elements are SER partitions. [6] (Color figure online)

Fig. 5. Functional Design Architecture (FDA) of Brake-by-Wire Example. The colored
elements are SER partitions. [6] (Color figure online)

The FAA on the Analysis Level consists of 16 components and 26 connections
between these (see Fig. 4). The main function is a pGlobalBrakeController, which
gets data from four wheel speed sensors, the vehicle speed and the requested
brake force. The vehicle speed is calculated by the pVehSpeedEstimator getting
data from the wheel speed sensors. The vehicle speed is provided to the pGlob-
alBrakeController and the four ABS controllers. The brake force is calculated
by the pBrakeTorqueMap with data from the pBrakePedalSensor. The four ABS
controllers are sending data to each brake actuator. The colored components in
Fig. 4 are partitions computed by the SER analysis. The upper green colored par-
tition consists of two components (pBrakePedalSensor and pBrakeTorqueMap),
the lower four partitions are each formed by the ABS and the brake actuator of
one wheel. All three properties that a partition created by SER analysis must
fulfill are very well recognizable. The partitions have more than one element, all

Modeling and Analysis of Partitions on Functional Architectures 313

dependencies from outside into the partition pass through an entrance node and
there is a path between every pair of nodes.

The SER analysis found five partitions and six single elements, so we set
k = 11 for KaFFPa, since the six single elements are partitions of size = 1.
Using this setting, we can compare the results of both algorithms. To under-
stand the output of the analysis with KaFFPa, we give the numbering of the
components as generated for the input graph: 1: pBrakePedalSensor, 2: pBrake-
TorqueMap, 3: pWheelSpeedSensor FL, 4: pWheelSpeedSensor FR, 5: pWheel-
SpeedSensor RR, 6: pWheelSpeedSensor RL, 7: pGlobalBrakeController, 8: pVeh-
SpeedEstimator, 9: pABS FL, 10: pBrakeActuator FL, 11: pABS FR, 12: pBrake-
Actuator FR, 13: pABS RR, 14: pBrakeActuator RR, 15: pABS RL, 16: pBrake-
Actuator RL. In Listing 1.1 the output of KaFFPa for the FAA can be seen. Each
line represents a node from the input graph and contains the block ID of the
node. Line 1 is the first node pBrakePedalSensor, associated with block/partition
number 2. Line 2 pBrakeTorqueMap, block/partition number 3. ... It can be seen
that the partitions on the bottom of Fig. 4, the components 9–16, are identical
generated by KaFFPa. A difference comes up for pWheelSpeedSensor RL and
pVehSpeedEstimator (lines 6 and 8), which are packed together in one partitions
(block ID 7). The SER analysis puts pBrakePedalSensor and pBrakeTorqueMap
(lines 1 and 2) together, which is from viewpoint of an expert review the more
natural choice. Other values for k did not lead to a better evaluation result in
the expert review. In our evaluation the best results to help the engineer to get
a better understanding of the FAA is the SER analysis.

The design architecture (see Fig. 5) is derived from the FAA. It contains 28
components and 27 connections (some components are for diagnoses, their con-
nections to components outside the scope of this braking example have been
omitted). For example, a wheel speed sensor from the functional analysis archi-
tecture is now more detailed by using two components. One is a hardware encoder
providing the digital hardware signal and the other is a local device manager
(LDM) encapsulating the hardware device specific parts. On the actuator side, a
similar detailing is performed by using a LDM and a hardware function compo-
nent for the realization. Two components for diagnose tasks are also embedded
in the example. One is a diagnose component in the pBrakePedalLDM and the
other one in the pGlobalBrakeController.

The partitions found using the SER algorithm are very similar to the ones on
the analysis architecture. On the bottom, every ABS component together with a
LDM and the actuator form a partition. Four new partitions are originated from
the decomposition of the wheel speed sensors into hardware encoders and LDMs.
A difference can be seen looking at the former partition of the pBrakePedalSensor
and pBrakeTorqueMap, which is for a better recognition marked with a square
of orange dots in both figures. Because a diagnose component (Diag Pt), which
provides data to other components not visible in this figure, is embedded in the
pBrakePedalLDM, it is not marked as a potential partition on this level. An
option to in- or excluding diagnose components in the analysis is part of our

314 C. Etzel and B. Bauer

Listing 1.1. Out-
put partitioning FAA
using KaFFPa with
k = 11.

1 2
2 3
3 4
4 0
5 6
6 7
7 4
8 7
9 5

10 5
11 1
12 1
13 10
14 10
15 8
16 8

Listing 1.2. Out-
put partitioning FDA
using KaFFPa with
k = 10.

1 7
2 7
3 1
4 0
5 0
6 9
7 9
8 6
9 6

10 2
11 2
12 1
13 0
14 4
15 4
16 9
17 8
18 8
19 6
20 5
21 5
22 2
23 3
24 3

Listing 1.3. Out-
put partitioning FDA
using KaFFPa with
k = 12.

1 1
2 1
3 1
4 8
5 8
6 0
7 2
8 5
9 5

10 4
11 4
12 3
13 7
14 7
15 6
16 2
17 11
18 11
19 5
20 9
21 9
22 3
23 10
24 10

framework. Turning it off, the components pBrakePedalSensor, pBrakePedal-
LDM and pBrakeTorqueMap get together in one partition. Since there is no flag
in the EAST-ADL meta-model to identify diagnose components, we are using a
naming schema (the prefix “Diag ”) to recognize these components.

For KaFFPa we discuss two outputs with k = 10 (number of partitions
and solo components in SER analysis excluding the diagnose components) and
k = 12 (including diagnose components). The model was simplified for the
paper and the expert review by just using pBrakePedalLDM and pGlobal-
BrakeController, while not explicitly modeling the diagnose components and the
BrakeConrollerRequests pt for the KaFFPa input file. The lines to component
mapping is as follows: 1: pBrakePedalSensor, 2: pBrakePedalLDM, 3: pBrake-
TorqueMap, 4: pHW Encoder RR, 5: pLDM Sensor RR, 6: pHW Encoder RL,
7: pLDM Sensor RL, 8: pHW Encoder FR, 9: pLDM Sensor FR, 10: pHW -
Encoder FL, 11: pLDM Sensor FL, 12: GlobalBrakeController, 13: ABS RR Pt,
14: pLDM Brake RR, 15: pHW Brake RR, 16: ABS RL Pt, 17: pLDM Brake -
RL, 18: pHW Brake RL, 19: ABS FR Pt, 20: pLDM Brake FR, 21: pHW Brake -
FR, 22: ABS FL Pt, 23: pLDM Brake FL, 24: pHW Brake FL.

Modeling and Analysis of Partitions on Functional Architectures 315

Fig. 6. Zoom into KaFFPa partitioning results (k = 10 and k = 12) of the FDA
Brake-by-Wire Example.

In comparison to the SER analysis results, a noticeable difference in the
KaFFPa results for k = 10 and k = 12 is that all encoder and sensor elements
are in a partition together with the ABS component. Figure 6 shows an example
of the partitions for the set of elements to control the front right brake. For List-
ing 1.2 these are the block IDs 6 and 5 and for Listing 1.3 the block IDs 5 and 9.
This shows the difference to the SER characteristic, there all input edges have
to be routed over a single entry node, while KaFFPa does partitioning on undi-
rected graphs. From the expert review point of view, the SER results are more
useful to get an understanding which groups of components may be executed
independently whereas KaFFPa tries minimizing the cutting. An additional dif-
ference in the partitioning for k = 10 is that the components pBrakePedalSensor,
pBrakePedalLDM and pBrakeTorqueMap do not form one partition. While the
first two form a partition (block ID 7), the pBrakeTorqueMap is placed together
with the GlobalBrakeController (block ID 1). While this may be an optimal
choice from the algorithms perspective, it would not be the natural one of an
engineer. We evaluated the KaFFPa output for values of k from [8,16], but did
not find more useful sets for our approach.

In summary, the results of the SER are preferable for identifying indepen-
dent parts from the data flow perspective, while the KaFFPa partitions optimize
the data throughput. An open point is how to determine the value of k to get
results, which help the engineer understanding the architecture. Since the techni-
cal architecture, which the systems is deployed on, is in most cases heterogeneous,
k equals number of ECUs or cores may not be a useful selection.

Using the analysis results, an engineer can check if the transition from the
analysis architecture to the design architecture is sound (e.g., having a closer
look, why one partition is now missing) and link the partitioned elements to

316 C. Etzel and B. Bauer

elements of the HDA. This allocation is supported by the key figures, which can
be calculated for the partitions (see Sect. 5.1).

7 Related Work

Using the KaHIP framework, the KaFFPa offers an option to perform a process
mapping communication and topology aware process mapping developed by [25].
It was designed to address the mapping problem on modern supercomputer sys-
tems and several assumptions have been made. The hardware topology is hierar-
chically organized and every hierarchy level is identical. For example, every node
in the topology has the same number of processors and every processor the same
number of cores. This also applies to the distance value of the communication
links inside each hierarchy level, which is assumed to be identical. On the other
hand, automotive technical system architectures are very heterogeneous, contain-
ing different bus systems (high/low data transfer rates, non-/deterministic, ...)
and ECUs (high/low performance, different architectures, ...). In addition, there
are timing and safety requirements that require certain properties of individual
hardware elements and thus constrain the mapping. Considering the differences,
the KaFFPa process mapping is not a useful option for our problem domain,
specifically for the HDA allocation task.

Marinescu et al. [16] propose a modeling extension for EAST-ADL and model
analysis with the focus on resource-usage. The analysis is applied on the FDA
using a priced timed automata to predict resource usage and optimizing resource
utilization. In contrast to our approach, theirs is focusing on resource usage and
allocation, while ours is proposing a general extension to describe partitions
and algorithms focusing on the analysis of data dependencies. A mapping of
parts of our extension to theirs is possible, e.g., EstimatedMemorySize (ours)
to MemoryConstraint (theirs). In the development process, their resource-usage
analysis is placed after ours during the development of the Design Level elements.

Walker et al. [29] have developed a multi-objective optimization approach for
EAST-ADL system architectures. Such an automation to rapidly explore archi-
tecture variants enables system designers to focus on the challenging parts. Their
framework allows the connection of various analyses using an Analysis Wrapper.
The analyses are performed independently and just provide their results to the
optimization engine. This extension mechanism would make it possible to use
our partitioning analysis in their framework. However, there has to be done fur-
ther research how to derive and rate quantitative criteria for the optimizer from
the partitioning models.

8 Conclusion and Further Research

In this paper, we presented an approach to support system designers during the
development process by doing partitioning on functional architectures. There-
fore, we proposed an extension to the EAST-ADL meta-model to capture par-
titions without the need to alter the architecture. Additionally two elements

Modeling and Analysis of Partitions on Functional Architectures 317

are added to the extension to extend the analysis with additional information
concerning the memory consumption and executing time of functions. These
elements can be used to calculate key figure values of the partitions to get a
better understanding of them. We presented three algorithms (SCC, SER and
KaFFPa) to perform an automated analysis for partitions on the architectures
of the Analysis and Design Level (FAA and FDA). These analyses are indepen-
dent of the partitioning extension, if no persistence of the partitions is needed to
perform further analyses. Moreover, we applied the new approach to a small case
study from the EAST-ADL consortium and specifically done an expert review
to compare the SER and KaFFPa results with regard to our goals.

The results concerning our approach are very promising and in the next
steps we will evaluate it with additional scenarios. The best working approach
for getting a better understanding of the architecture and its potential for par-
allelization, seems to be the SER analysis. We will further refine the introduced
analysis for partitioning of functional models on these levels of abstraction. We
think the proposed approach is not limited to the EAST-ADL modeling lan-
guage and can be transferred to similar concepts even outside the automotive
domain. Examples for other languages are SysML6 and AADL7, both strongly
influenced the EAST-ADL specification [3].

References

1. Arbeitskreis Multicore, BICCnet Innovationszirkel Embedded Systems: Relevanz
eines Multicore-Ökosystems für künftige Embedded Systems: Positionspapier zur
Bedeutung, Bestandsaufnahme und Potentialermittlung der Multicore-Technologie
für den Industrie- und Forschungsstandort Deutschland (2011). https://www.bicc-
net.de/workspace/uploads/subfeatures/downloads/positionspapier multicore
oekosys-1323952449.pdf. Accessed 15 July 2019

2. AUTOSAR: AUTOSAR website (2019). https://www.autosar.org/. Accessed 15
July 2019

3. Blom, H., et al.: EAST-ADL: An architecture description language for automotive
software-intensive systems in the light of recent use and research. Int. J. Syst.
Dynam. Appl. (IJSDA) 5(3), 1–20 (2016)

4. EAST-ADL Association: EAST-ADL Domain Model Specification. Version V2.1.12
(2013)

5. EAST-ADL Association: EAST-ADL website (2018). http://www.east-adl.info/.
Accessed 15 July 2019

6. Etzel, C., Bauer., B.: Extending EAST-ADL for modeling and analysis of parti-
tions on functional architectures. In: Proceedings of the 7th International Con-
ference on Model-Driven Engineering and Software Development : MODEL-
SWARD, INSTICC, vol. 1, pp. 169–178. SciTePress (2019). https://doi.org/10.
5220/0007688301690178

7. Gajski, D.D., Abdi, S., Gerstlauer, A., Schirner, G.: Embedded System Design:
Modeling, Synthesis and Verification. Springer, New York (2009)

6 Issued by the OMG, http://www.omgsysml.org/.
7 Issued by the SAE International, http://www.aadl.info/.

https://www.bicc-net.de/workspace/uploads/subfeatures/downloads/positionspapier_multicore_oekosys-1323952449.pdf
https://www.bicc-net.de/workspace/uploads/subfeatures/downloads/positionspapier_multicore_oekosys-1323952449.pdf
https://www.bicc-net.de/workspace/uploads/subfeatures/downloads/positionspapier_multicore_oekosys-1323952449.pdf
https://www.autosar.org/
http://www.east-adl.info/
https://doi.org/10.5220/0007688301690178
https://doi.org/10.5220/0007688301690178
http://www.omgsysml.org/
http://www.aadl.info/

318 C. Etzel and B. Bauer

8. Gotz, M., Roser, S., Lautenbacher, F., Bauer, B.: Token analysis of graph-oriented
process models. In: 13th Enterprise Distributed Object Computing Conference
Workshops, pp. 15–24, September 2009. https://doi.org/10.1109/EDOCW.2009.
5332020

9. Johnson, R., Pearson, D., Pingali, K.: Program structure tree: computing con-
trol regions in linear time. In: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pp. 171–185. ACM
January 1994

10. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998). https://doi.org/
10.1137/S1064827595287997

11. Kienberger, J.: Systematic and Methodical Analysis, Validation and Parallelization
of Embedded Automotive Software for Multiple-IEU Platforms. Ph.D. dissertation,
University of Augsburg (2019)

12. Kienberger, J., Minnerup, P., Kuntz, S., Bauer, B.: Analysis and validation of
AUTOSAR models. In: Proceedings of the 2nd International Conference on Model-
Driven Engineering and Software Development, pp. 274–281. MODELSWARD
2014, SCITEPRESS - Science and Technology Publications, Lda, Portugal (2014).
https://doi.org/10.5220/0004701002740281

13. Kienberger, J., Saad, C., Kuntz, S., Bauer, B.: Efficient parallelization of complex
automotive systems. In: Balaji, P., Leung, K.C. (eds.) Proceedings of the 7th Inter-
national Workshop on Programming Models and Applications for Multicores and
Manycores, pp. 40–49. ACM (2016). https://doi.org/10.1145/2883404.2883421

14. Lukasiewycz, M., et al.: System architecture and software design for elec-
tric vehicles. In: IEEE (ed.) Design Automation Conference (DAC), 2013 50th
ACM/EDAC/IEEE, pp. 1–6 (2013)

15. Macher, G., Höller, A., Armengaud, E., Kreiner, C.: Automotive embedded soft-
ware: migration challenges to multi-core computing platforms. In: IEEE 13th Inter-
national Conference on Industrial Informatics (INDIN), pp. 1386–1393, July 2015.
https://doi.org/10.1109/INDIN.2015.7281937

16. Marinescu, R., Enoiu, E.P.: Extending EAST-ADL for modeling and analysis of
system’s resource-usage. In: IEEE 36th Annual Computer Software and Appli-
cations Conference Workshops, pp. 532–537, July 2012. https://doi.org/10.1109/
COMPSACW.2012.99

17. Ottenstein, K.J., Ottenstein, L.M.: The program dependence graph in a software
development environment. SIGPLAN Not. 19(5), 177–184 (1984). https://doi.org/
10.1145/390011.808263

18. Potts, M., Sartor, P., Johnson, A., Bullock, S.: Hidden structures: using graph
theory to explore complex system of systems architectures. In: International Con-
ference on Complex Systems Design & Management. CSD & M, December 2017

19. Pretschner, A., Broy, M., Kruger, I.H., Stauner, T.: Software engineering for auto-
motive systems: a roadmap. In: Future of Software Engineering, pp. 55–71 (2007).
https://doi.org/10.1109/FOSE.2007.22

20. Qureshi, T.N., Chen, D.J., Lönn, H., Törngren, M.: From EAST-ADL to
AUTOSAR software architecture: a mapping scheme. In: Crnkovic, I., Gruhn, V.,
Book, M. (eds.) ECSA 2011. LNCS, vol. 6903, pp. 328–335. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23798-0 35

21. Sanders, P., Schulz, C.: Engineering multilevel graph partitioning algorithms.
CoRR abs/1012.0006 (2010), http://arxiv.org/abs/1012.0006

https://doi.org/10.1109/EDOCW.2009.5332020
https://doi.org/10.1109/EDOCW.2009.5332020
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.5220/0004701002740281
https://doi.org/10.1145/2883404.2883421
https://doi.org/10.1109/INDIN.2015.7281937
https://doi.org/10.1109/COMPSACW.2012.99
https://doi.org/10.1109/COMPSACW.2012.99
https://doi.org/10.1145/390011.808263
https://doi.org/10.1145/390011.808263
https://doi.org/10.1109/FOSE.2007.22
https://doi.org/10.1007/978-3-642-23798-0_35
http://arxiv.org/abs/1012.0006

Modeling and Analysis of Partitions on Functional Architectures 319

22. Sanders, P., Schulz, C.: High quality graph partitioning. In: Bader, D.A., Meyer-
henke, H., Sanders, P., Wagner, D. (eds.) Graph Partitioning and Graph Clustering,
10th DIMACS Implementation Challenge Workshop, Georgia Institute of Technol-
ogy, Proceedings, Contemporary Mathematics 2012, Atlanta, GA, USA, February
13–14, vol. 588, pp. 1–18. American Mathematical Society (2012). https://doi.org/
10.1090/conm/588, http://www.ams.org/books/conm/588/11700

23. Sanders, P., Schulz, C.: Kahip v2.10 - karlsruhe high quality partitioning - user
guide. CoRR abs/1311.1714 (2019), http://arxiv.org/abs/1311.1714

24. Schulz, C.: KaHIP website (2018). http://algo2.iti.kit.edu/kahip/. Accessed 15
July 2019

25. Schulz, C., Träff, J.L.: Better process mapping and sparse quadratic assignment.
In: Iliopoulos, C.S., Pissis, S.P., Puglisi, S.J., Raman, R. (eds.) 16th International
Symposium on Experimental Algorithms (SEA 2017). Leibniz International Pro-
ceedings in Informatics (LIPIcs), vol. 75, pp. 4:1–4:15. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany (2017). https://doi.org/10.4230/
LIPIcs.SEA.2017.4, http://drops.dagstuhl.de/opus/volltexte/2017/7603

26. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2),
146–160 (1972). https://doi.org/10.1137/0201010

27. The ATESST2 Consortium: Methodology guideline when using EAST-ADL2.
Deliverable D5.1.1 V1.1 (2010)

28. Tip, F.: A survey of program slicing techniques. J. Program. Lang. 3, 121–189
(1995)

29. Walker, M., et al.: Automatic optimisation of system architectures using EAST-
ADL. J. Syst. Softw. 86(10), 2467–2487 (2013). https://doi.org/10.1016/j.jss.2013.
04.001

30. Weit, E.V.: V-Modell XT: Das deutsche Referenzmodell für Systementwick-
lungsprojekte Version 2.2 (2018)

https://doi.org/10.1090/conm/588
https://doi.org/10.1090/conm/588
http://www.ams.org/books/conm/588/11700
http://arxiv.org/abs/1311.1714
http://algo2.iti.kit.edu/kahip/
https://doi.org/10.4230/LIPIcs.SEA.2017.4
https://doi.org/10.4230/LIPIcs.SEA.2017.4
http://drops.dagstuhl.de/opus/volltexte/2017/7603
https://doi.org/10.1137/0201010
https://doi.org/10.1016/j.jss.2013.04.001
https://doi.org/10.1016/j.jss.2013.04.001

A Framework for Flexible Program
Evolution and Verification of Distributed

Systems

Olaf Owe1(B), Elahe Fazeldehkordi1,3(B), and Jia-Chun Lin1,2(B)

1 Department of Informatics, University of Oslo, Oslo, Norway
{olaf,elahefa,kellylin}@ifi.uio.no

2 Department of Information Security and Communication Technology,
NTNU Gjøvik, Gjøvik, Norway

3 Department of Technology Systems, University of Oslo, Oslo, Norway

Abstract. Program evolution may reveal bad design decisions, misun-
derstandings, erroneous code, or erroneous specifications, because prob-
lems made early in the design of a system may not be discovered until
much later in the life-time of the system. Non-trivial changes of old code
may be necessary. Flexibility in making such changes is essential, espe-
cially in a distributed setting where the system components are updated
independently. In this setting re-verification is challenging. We consider
flexibility with respect to what changes can be made as well as what can
be efficiently reverified.

In this paper we propose a flexible framework for modeling and evo-
lution of distributed systems. It supports unrestricted modifications in
such systems, both in code and specifications, and with support of ver-
ification and re-verification. We consider on the setting of concurrent
and object-oriented distributed programs, and introduce a core high-level
modeling language supporting active objects. We allow multiple inheri-
tance because it gives added flexibility during evolution, allowing a wider
class of software changes. To avoid undesired effects of multiple inheri-
tance, we apply a healthy binding strategy. We prove that the framework
supports Modification Independence and Hierarchy Independence, which
requires healthy binding. We demonstrate that our framework can deal
with verification of software changes that are not possible in comparable
frameworks.

Keywords: Program evolution · Program reasoning · Software
changes · Multiple inheritance · Healthy binding · Active objects ·
Concurrency · Re-verification · Evolution flexibility · Modification
independence · Hierarchy independence

1 Introduction

There is a need for program evolution in modern systems, because of long life-
time and changing environmental needs. System development is a complicated
c© Springer Nature Switzerland AG 2020
S. Hammoudi et al. (Eds.): MODELSWARD 2019, CCIS 1161, pp. 320–349, 2020.
https://doi.org/10.1007/978-3-030-37873-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37873-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-37873-8_14

A Framework for Flexible Program Evolution 321

process where many kinds of mistakes can be made over time, including bad
design decisions, unclear specifications, misunderstandings, and erroneous code
or specifications. Problems or bad design decisions made early may not be dis-
covered until much later. Redesigning or modifying code made at an early stage
in the software development may have severe implications on the overall system.
Making changes may create new problems that are hard to foresee. These kinds
of problems are severe in the setting of concurrent programs where the interac-
tion of the different concurrent units is complicated, and also in the setting of
object-oriented programs where inheritance, late binding, and code reuse cause
dependencies between the classes. A systematic approach, in which the conse-
quences of a software change can be formalized, would be advantageous. Formal
methods could be helpful in supporting specification and analysis of program
properties. However, formal methods are mainly oriented towards developing
correct specifications and programs, rather than the process of redoing earlier
decisions. It is therefore interesting to look at formal frameworks with support
for unrestricted software changes, and such that the framework can detect pos-
sible consequences. A trivial approach to reasoning about program changes is to
re-verify and reprove all results whenever a change has been made. However this
is time-consuming and expensive, especially for large software systems. Ideally
we would like to reprove as little as possible, without losing soundness. This is
critical in the setting of distributed systems where the system components are
updated independently.

We focus on the setting of distributed, concurrent, and object-oriented sys-
tems, and introduce a framework for modeling, development, and evolution of
such systems – with support of verification. Our framework includes several life
cycle aspects such as formal requirement specification, system design, executable
modeling, analysis, and maintenance. This means that one can avoid transla-
tion between different formalisms. The framework allows unrestricted changes
in code and requirements, and includes a theory for reverification of a changed
system. We consider programming mechanisms for efficient, imperative style
programming in a distributed setting, including non-blocking as well as block-
ing remote method calls, combined with suspension and scheduling control of
processes inside an object. Our goal is flexibility, in the sense of support of
unrestricted software changes and with simplicity of reverification, more specif-
ically, that the framework makes it possible to do desired changes in software
and requirements (Modification Independence, Theorem 1), and that the effect
of changing one class is limited to that class and possibly subclasses inheriting
from it (Hierarchy Independence, Theorem 2). We show that we can deal with
software changes that are not possible to verify in comparable frameworks.

A framework that allows the simplest reverification of any given software
change, has the best flexibility. Clearly incremental and modular reasoning are
preferable, as well as limiting the number of modules to be affected by a given
change. It is desirable to avoid reverification of the whole system when pos-
sible. Flexibility depends on the choice of programming and specification con-
structs, their semantics, as well as the reasoning system. In particular flexibility

322 O. Owe et al.

is affected by the choice of abstraction mechanisms. For instance, for shared vari-
able concurrency it is hard to analyze the effect of software changes, even with
an advanced reasoning framework. And synchronization by signaling is notori-
ously hard to reason about. In the setting of behavioral subtyping, a change in
a subclass may violate superclasses requirements, thereby limiting flexibility.

Flexibility demands programming languages with a compositional seman-
tics and compositional reasoning frameworks. Compositional reasoning of classes
is supported by several approaches. Our framework is based on a program-
ming paradigm with compositional semantics, cooperative scheduling to sup-
port object-local synchronization control, using interface abstraction to reduce
dependencies between classes, and the use of communication histories to enable
compositional specification and reasoning.

In the presence of class inheritance, modularity of each subclass is advan-
tageous, as cross-class dependencies hinder flexibility. The strong dependencies
of behavioral subtyping can be reduced with the notion of lazy behavioral sub-
typing [8,9]; however, reasoning requirements to local calls in a superclass are
imposed on subclasses, which limits flexibility. A framework for evolution based
on this approach is given in [11].

We observe that changing a class C in the middle of a class hierarchy may
in general affect existing subclasses as well as superclasses. Clearly code inher-
ited from C in subclasses could lead to inconsistencies, since C is changed. And
requirements imposed on C from superclasses may also lead to inconsistencies,
something which may in general be remediated by changes in these superclasses,
thereby affecting other subclasses of these superclasses as well. This makes rea-
soning about changes of classes difficult. However, the effect on superclasses
depends on the semantics of class inheritance. Therefore the choice of class
inheritance semantics is essential, in particular when it comes to inheritance
of requirements. If a class is changed, it is undesirable that its superclasses also
need to be modified, as this will destroy flexibility. This is the case in approaches
where requirements are pushed from superclasses to subclasses, as in the case of
behavioral subtyping.

In order to avoid this inherent flexibility limitation, we build on an approach
with separation of the reuse of code from the reuse of specifications to allow
unrestricted reuse of code and specifications. In particular we build on the app-
roach of behavioral interface subtyping [20] where each class is only required to
satisfy its own interface specifications, and any invariant or other local speci-
fications given in the class. This means that a method redefined in a subclass
is allowed to break the requirements of the superclass. This opens up for more
liberal modifications than earlier work based on lazy behavioral subtyping [8,9].
As no superclass requirements are imposed on a subclass, this allows full control
of the inheritance of code and of requirements when a subclass is defined, and
when it is modified. In this way we may avoid inconsistent specifications due
to inheritance. In our approach we can avoid inconsistencies due to superclass
requirements, simply by controlling which requirements to inherit.

A Framework for Flexible Program Evolution 323

The notion of multiple inheritance allows adjustments in the inheritance hier-
archy in the middle without removing existing inheritance relationships, simply
by adding superclasses (and superinterfaces) as needed. This gives added flexibil-
ity during evolution, while allowing backwards compatibility. However, multiple
inheritance has been criticized for too much flexibility and ambiguity issues, as
exemplified in the diamond problem. We therefore add syntax for resolving ambi-
guities statically by using class names to limit the binding, and insisting on the
healthiness condition suggested in [9], which implies that a local call appearing
in a class C may only bind to a class below or above C, and not to a class in a
different branch than that of C. Thus program changes in other branches than
C will not affect the binding of such calls. The addition of superclasses dur-
ing program evolution makes it possible to adjust the inheritance hierarchy and
to reuse code from added superclasses. For instance, a service-oriented system
defined by a class S defining online purchases of tickets of some kind may be
extended with functionality for subscription to newsletters (of the relevant kind)
and such that newsletters are sent to the subscribing customers. This extension
can be done by adding the subscription class as an additional subclass of S and
adding the relevant subscription interface as an interfaces of S. Without support
of multiple inheritance this extension would not be possible when S already has
a subclass from before.

Our framework allows unrestricted changes of code and specifications (assum-
ing type correctness). This means that one may write combinations of code and
specifications that are inconsistent, for instance when a class does not satisfy the
requirements of its interface(s). The framework will detect such inconsistencies
so that they may be resolved, by changing code and/or specifications. In order to
determine the consequences of changes in a (super)class, the framework needs to
keep track of dependencies of local calls. We show that our framework can deal
with software changes that are not possible to verify in comparable frameworks,
and show how to reason within a hierarchy where some classes are verified and
others not. We demonstrate our framework by examples.

Our approach is modular in the sense that the consistency of a class is deter-
mined by looking at the class itself, its interface(s), and reused code from super-
classes. In order to analyze a software modification, one must first determine
the affected code, in particular subclasses, and for each such subclass one must
reverify the affected parts (after redesign of any inconsistent parts). Incremental
reasoning is achieved by not letting a class impose restrictions on its subclasses.
The present work extends the framework of [22] by adding multiple inheritance.
As argued, multiple inheritance provides significant improvements in flexibil-
ity and simplicity during evolution since it enables added functionality just by
adding superclasses and interface support in the middle of a class hierarchy,
where needed. Thus multiple inheritance can be more useful in the program
evolution phase than in the original program design phase.

Outline. Section 2 gives the programming setting for our framework, and Sect. 3
gives a summary of history-based specification and reasoning, including an
example. Section 4 describes the proof obligations generated by our framework,

324 O. Owe et al.

simplifying [21]. In Sect. 5, we show how the framework is extended to deal with
software changes. Finally, we discuss related work (Sect. 6) and give a conclusion
(Sect. 7).

2 Language Setting

Our setting is distributed systems, and we focus on asynchronously communi-
cating objects, so-called active objects, supporting blocking and non-blocking
remote calls, without support of remote field access. In this setting, verification
of a system of concurrent objects can be done compositionally, verifying each
class separately, letting the specification of each class and interface refer to its
local history [21]. The local history of an object reflects the time sequence of
communication events such as method calls and returns, involving the object.
Each class can be verified in a sequential manner, and a compositional rule states
that a global invariant about the global history can be obtained by conjunction
of the local invariants on local histories together with a wellformedness predicate
relating the local histories to the global history.

We consider multiple inheritance, because this gives the freedom to extend
the inheritance hierarchy during evolution, which greatly adds to the flexibil-
ity of changing programs. A class can then inherit from several superclasses
while removing/adding/redefining method definitions, method specifications and
invariants. As customary, we require a non-cyclic inheritance graph. And fields w
may be added (an initial value r may be given, otherwise the default value of the
type is used). Class parameters are concatenated, and so are fields and initial-
ization code. In case of a diamond-shaped inheritance, where the top superclass
is inherited through several superclasses, the top superclass is inherited only
once. This is achieved by the binding strategy. Method names (and field and
class parameter names) can be qualified by a class name so that the occurrence
is unique in the given class. This provides fine-grained control of the inher-
ited names. For local calls we may use a class name to make the name unique,
and similarly for fields and class parameters. Dot-notation as in o.n(. . .) and
this C.n(. . .) is reserved for late-bound method calls, while the colon notation
C : n(. . .) is reserved for static local method calls. If a field w is ambiguous due
to multiple inheritance, we use the syntax C :w for a field as seen in a superclass
C. We insist on healthy binding, which means that an internal call made by a
method defined in class C must bind to a class hereditarily related to C (as
defined below).

We consider a core high-level imperative modeling language, given in Fig. 1,
inspired by the concurrency model of Creol [15] – extended to multiple inher-
itance. The language is executable with an interpreter in Rewriting logic/-
Maude [5]. The language is similar to that of [22], which considered only single
inheritance. A program consists of a number of interfaces and classes. A class
may implement a number of interfaces and inherit a number of (super)classes.
The reflexive and transitive extension of the subclass relation is denoted ≤. If
A ≤ B, we say that A is below B, and B is above A; and we say that A and B are

A Framework for Flexible Program Evolution 325

Pr ::= [In∗ Cl]+

In ::= interface F [extends F+] ?{S∗ I∗}
Cl ::= class C [([T cp]+)] ? [implements F+] ?

[inherits [C(e)]+] ? [removing m+] ?

{[T w [:= r]?]∗ s? M∗ S∗ I∗}
M ::= T m([T x]∗) B P ∗

S ::= T m([T x]∗) P ∗

B ::= {[[T x [:= r]?]+;]? [s;]? return r}
T ::= F | Any | Void | Bool | String | Int | Nat | . . .
v ::= x | w
e ::= null | this | caller | v | cp | f(e) | (e)
r ::= e | new C(e) | e.m(e) | this C.m(e) | [C]? : m(e)

s ::= skip | [v :=]?r | s; s
| await v := e.m(e) | await e

| if e then s [else s]? fi
P ::= [[A,A]]+ [where A+]?

I ::= inv A+ [where A+]?

program
interface declaration
class definition
inheritance mechanisms
class body
method definition
method signature
method body
types
variables (local or field)
pure expressions
right-hand-side/call/new
basic statements
suspending statements
if statement
pre-/postcondition pairs
invariant specification

Fig. 1. Language syntax. Specification elements are written in blue. F denotes an inter-
face name, C a class name, m a method name, cp a formal class parameter, w a field, x
a method parameter or local variable. We use [] as meta parentheses and superscripts ∗,
+, and ? for repetition, non-empty repetition, and optional parts, respectively. Expres-
sions e are side-effect free, and e denotes a (possibly empty) expression list. Assertions
A are first order Boolean expressions and may refer to the local communication history
h . A where clause defines auxiliary functions used for specification purposes. Other
statements, such as while loops, can be added. (Color figure online)

hereditarily related if either A is below B or A is above B. Class instances repre-
sent concurrent and active objects. Local data structures are defined by (build-in
or user-defined) data types. An interface can extend other (super)interfaces and
add declarations of methods, behavioral constraints, and invariants.

A variable referring to an object is typed by an interface, not by a class. A
variable declared of interface F is called an F variable. Through type checking
the language guarantees that for an F variable, the object referred to by the
variable at run-time implements F . This is called the interface substitution prin-
ciple [15,17,23]. We distinguish between public methods, those exported through
an interface of the class, and private methods, those that are not exported
through any interface of the class. Note that interface abstraction defines the
publicness, rather than keywords such as private and public. Thus a public
method in a class may be private in a subclass (and vice versa).

We allow remote calls of public methods with the syntax v := o.m(e) where
e the list of actual parameters and o is the callee. The value resulting from the
call is assigned to the variable v. (The assignment part may be omitted if this
value is not needed). A remote call v := o.m(e) is type correct if the interface
of o supports a method m such that the type of the actual parameters e is a
subtype of the formal parameters of m and the output type of m is a subtype

326 O. Owe et al.

of the type of v. Since verification is done after type checking, we assume type
correct programs, and assume that a class does not offer two declarations of the
same method name. (If needed we could index the method name by the input
and output type in order to make them distinct).

We allow both late-bound and static-bound local method calls, syntactically
indicated by dot-notation and colon-notation, respectively. Local calls have the
syntax v := this.m(e) and v := this C.m(e) (where C limits the binding of m) for
late-bound calls, or v := C :m(e) for static-bound calls, where this refers to the
current object. We let this have the enclosing class as its type. Public methods
are required to maintain the class invariant. Private methods may only be called
locally, and may be called in states violating the invariant. A static local call
: m(...) binds to the method m defined in the enclosing class C, if any, and

otherwise to the closest inherited m, using a depth-first, then left-first, traversal
of the superclasses of C. If neither C nor its superclasses has a method m, the
call is statically illegal. The static local call B : m(...) (for C ≤ B) binds to
the method m defined in class B or inherited by B, as defined for a local call
: m(...) appearing in class B. The class qualification (B) enables the programmer
to select which version of a redefined method is needed. A late-bound local call
this B.m(...) is legal if B : m(...) is legal and binds to the class closest to
that of the executing object, as explained in detail in Sect. 3.2. The local call
this C.m(...) when occurring in class C, may be abbreviated to this.m(...). Note
that all legal calls will have a binding. Type checking ensures that there exists
a binding, following [17].

In order to allow non-blocking calls, the language offers a suspension mech-
anism, programmed by await statements. An object may perform at most
one process at a given time, and suspended processes are placed on a process
queue local to the object. When the active process is suspended or completed
(by a return statement), an enabled process from the process queue may be
resumed. We consider conditional suspension (by means of a Boolean expression)
and call-related suspension, suspending while the return value from a remote call
has not arrived. The call await v := o.m(e) suspends the current process and
places the remaining part of the process in the queue, and it is enabled when
the result from the call has arrived to the object. In the meantime the object
may execute enables processes or handle incoming calls. Note that the callee
o may be this, in which case the call will be done by the object. However, we
may not suspend on a local call to a private method (since the syntax await
v := C : m(e) is not part of the language) as this would complicate the class
invariant reasoning, as explained below.

The behavior of methods may be specified by pre/post specifications. This is
needed for reasoning about local calls, for which the invariant may be violated,
and is in particular useful for private methods, and other locally called meth-
ods. Multiple pre/post specifications of each method are allowed, and a class
may implement multiple interfaces. A class without an implements list will
implement the empty interface Any, which is the superinterface of all interfaces.

A Framework for Flexible Program Evolution 327

When an interface extends another (super)interface, all declarations and
specifications are inherited. When a class inherits another class (the super-
class), all code and specifications are inherited unless redefined: A pre/post pair
(P) is inherited unless another is stated, an invariant (I) is inherited unless
another is stated, the initialization code (s) is inherited unless another is stated,
and a method body (B) is inherited unless the method is redefined or removed.
Likewise, the implementation clause of the superclass is inherited unless a new
implementation clause is provided, in which case the superclass implementation
clause is not inherited.

The syntax removing m1,m2. . . . expresses that the listed methods should
not be inherited, thereby defining “negative” inheritance. By type checking it
must be ensured that public methods are not removed and that the remaining
methods in C (including inherited ones) do not (directly or indirectly) lead to a
call on a removed method. The purpose of a removal is to make a semantically
simpler subclass, where irrelevant or problematic code is eliminated. In particular
this can be used to make verification easier, and even avoid verification problems
for instance when an invariant is redefined. Removal of fields will mainly be a
typing issue. For simplicity, we assume read-only access to method and class
parameters.

Apart from standard statements, we have included multiple inheritance, both
static and late-bound calls, as well as cooperative scheduling and suspension
allowing non-blocking calls, something which is useful in a distributed concurrent
setting. Recursive calls are allowed, and while statements can easily be added.

3 History-Based Specification

The abstract state of an object is captured by the time sequence of communica-
tion events that have occurred so far involving the object. In a given state this
sequence is finite. Thus finite communication sequences suffice for safety rea-
soning, called histories. Interface, class, and system specifications are expressed
by means of histories. Global histories capture all communication events in a
distributed system (or subsystem), and local histories capture all communica-
tion events seen from a given object. The local history h of an object o is part
of the global history H, and these are related by the equation h = H/o where
H/o denotes the projection of the global history H to all communication events
involving o as either the sender or receiver.

The invariant of an interface F may refer to the local history h and this,
but not fields since these are not visible at the interface level. When seen from
another class or interface with a larger alphabet, the F invariant must hold on
the alphabet of F . The invariant of a class C may refer to fields, the local history
h, class parameters, and this. This invariant must be maintained by each public
method of the class (possibly inherited), and a class must satisfy each imple-
mented interface using projection on the history to reflect the subset of methods
visible through the interface. A method specification may in addition refer to the
formal parameters (including the caller) and logical variables (primed variables),

328 O. Owe et al.

and a postcondition may talk about the result (return). When seen from another
class with a larger alphabet, a C invariant must hold on the alphabet of C.

The local history h of a class/interface is the time sequence of communica-
tions events seen by this object, considering the following kinds of events:

– a method call made by this object, denoted this → o.m(e)
– a method call received by this object, denoted o � this.m(e) (for m in the

class)
– a method return made by this object, denoted o ← this.m(e; e) (for m in the

class)
– a method return received by this object, denoted this � o.m(e; e), as well as
– a creation event made by this object, denoted this → o.newC(e)

where o represents the other part in the communication. In practice, specifica-
tions using histories will often be concerned about method completions, i.e., ←
and � events, and possibly creation events, since these capture the essential
input/output relations. (This is the case for our examples.) For a given method
call, the ← event precedes the � event, which is formalized by a wellformedness
predicate (wf) below.

Sequence Notation: A sequence is either empty or of the form q;x where q is
a sequence and x an element. The notation q/s denotes the projection of q
restricted to elements in the set s, q ≤ q′ denotes that q is a prefix (head sub-
sequence) of q′, xbeforex′ in q denotes that x appears before any occurrence
of x′ in q, i.e., length(q′/x) ≤ length(q′/x′) for any prefix q′ of q. For a global
history H, there must be a meaningful ordering of the events, i.e., the history
must be wellformed, defining wf(H) by the conjunction of:

(o → o′.m(e)) before (o � o′.m(e)) in H
(o � o′.m(e)) before (o ← o′.m(e; e)) in H
(o ← o′.m(e; e)) before (o � o′.m(e; e)) in H
(o′ →o.newC(e))before (o→o′′.m(e′))in H
(o′ →o.newC(e))before (o′′ →o.m(e′))in H

expressing that messages are sent before they are received, that method invo-
cation must precede method return, and that a creation event of o must pre-
cede other o events. The conjunction of these properties (universally quantified)
expresses the wellformedness predicate, used in the compositional rule for global
reasoning. The rule for object composition essentially says that the global invari-
ant is the conjunction of the wellformedness predicate and all object interface
invariants, each referring to its own alphabet. Since the alphabets of the objects
are by definition disjoint, the wellformedness predicate is needed to connect the
different object invariants.

We let h/F denote the projection of a local history h to the events visible
through F , i.e., events of the form this → o.newC(e), this → o.m(e), and this �
o.m(e; e), as well as events of the form o � this.m(e) and o ← this.m(e; e) for
m offered by F . The same notation applies to classes C, projecting to this →

A Framework for Flexible Program Evolution 329

and this � events as well as � this.m and ← this.m for m defined or inherited
in the class. An invariant I(h) of an interface F is understood as I(h/F) in
a subinterface or class. We therefore define IF (h) as I(h/F), and similarly for
classes, defining IC(h) � I(h/C).

In general history-based invariant specification is more expressive than pre/-
post conditions since a pre/post pair (P,Q) of a method m with parameters x
can be formulated as the invariant (caller ← this.m(x; return)) ∈ h ∧ P ⇒ Q
where P and Q may refer to this, caller, and x, and Q also to return, and h. For
instance, one may express that the return event of a method hire implies that
the object has received the return of a method check budget with OK as result.
However, a specification expressible as a pre/post specification can be simpler
to read and write than the corresponding invariant.

3.1 A Bank Example

Figure 2 shows a minimalistic example defining a class BANK and a subclass
BANKPLUS, as well as related interfaces and a possible CLIENT class. The example
is taken from [22]. The code illustrates suspension, non-blocking and blocking
calls, static and late-bound local calls. Interface and type names are capitalized
while class names are written in upper case letters. The keyword inv identifies
invariants and the keyword where identifies auxiliary function definitions. In
assertions, inv refers to the current invariant, while C : inv refers to the
invariant of class C.

Interface Bank states that the balance (as returned by bal) is the sum of
amounts deposited (by add) or withdrawn (by sub) from the bank account, ignor-
ing unsuccessful add and sub calls. In addition it states that add calls always suc-
ceed. Interface PerfectBank extends Bank by stating that also sub calls succeed,
while interface BankPlus extends Bank by stating that the balance is always non-
negative. Interface Client (here omitted) includes methods salary (for receiving
salary) and bill (for paying a bill).

The specifications of interface Bank and class CLIENT illustrate history-based
specification, with inductive definitions of sum and allpaid. Functions are defined
by a set of equations. The left hand sides can be seen as patterns, using under-
score (_) to match any expression and letting others match any other case not
covered by the other left hand sides. The auxiliary function sum calculates the
balance from the local history. Note that only method-return events are used in
the specification as other kinds of events are covered by the others equations.
This is a typical situation for objects with “reactive” behavior as illustrated here.

The subclass BANKPLUS inherits the pre/post specifications of bal and add
from BANK, but not the ones for upd and sub, which are redefined and therefore
not inherited. In fact, the subclass violates the pre/post specifications for upd
and sub in BANK. BANKPLUS does not support the BANK interface PerfectBank.
Therefore the implements clause is redefined and not inherited. The await
statement in class CLIENT allows the client to be responsive to salary reception
calls and bill payment calls in case the sub call takes much time. However, it is

330 O. Owe et al.

Fig. 2. A bank example with a client class [22].

A Framework for Flexible Program Evolution 331

then possible that two bills with the same kid are both paid. This would not be
possible if the sub call is made as a blocking call.

In this example, the subclass does not obey the requirements imposed by
behavioral subtyping, nor by lazy behavioral subtyping. The redefinition of upd
in BANKPLUS does not satisfy the BANK postcondition of upd, and therefore the
verification of the redefined upd will not succeed when using the framework of
lazy behavioral subtyping (since the BANK postcondition of upd is needed for the
local upd calls in the verification of BANK and therefore pushed to subclasses). In
our framework, the BANK postcondition of upd is not imposed on the subclass,
and the example can be verified without problems.

Fig. 3. A possible subclass of class BANKPLUS [22].

Figure 3 shows a subclass of BANKPLUS that could be meaningful in a dis-
tributed setting. A transaction is delayed as long as the balance is insufficient.
This is done by means of an await statement, which suspends the sub activation,
but does not block the object. Note that sub is inherited but not its specification.
Class BANK2 implements the additional interface PerfectBank, and it inherits
from BANKPLUS the invariant and all pre/post specifications, except the ones
for upd and sub, which are violated. Again reasoning with behavioral subtyping
or lazy behavioral subtyping breaks down, because the reasoning about the (late-
bound) calls to upd in BANK depends on the postcondition of upd, and therefore
it is imposed on all subclasses in the case of lazy behavioral subtyping. Our
framework allows flexible reuse of code and specifications, without verification
problems, avoiding harmful superclass requirements.

Consider next that class BANKPLUS is changed for instance by redefining sub
by

Bool sub(Nat x) {return BANK:sub(x+1)}

A fee of 1 unit is incorporated in the withdrawal. In this case, class BANKPLUS
can still be reverified, but the subclass BANK2 is indirectly affected by this
change, and it is no longer a PerfectBank (because of the fee). Thus to avoid
this inconsistency, class BANK2 should be modified, say by removing Perfect-
Bank as an interface.

If a subclass of BANK redefines add and sub without using upd, that subclass
may remove method upd. And a subclass of BANK implementing an interface
with add, but not sub, and with the same class invariant as class BANKPLUS,
may remove method sub in order to make invariant reasoning simpler.

332 O. Owe et al.

3.2 Reasoning About Late Binding and Static Binding

Statically bound calls are resolved at compile time, while late bound calls are
bound at runtime. In either case the behavior of the call depends on the class
of the object executing the method, called the actual class, since the behavior
may (possibly indirectly) depend on late bound calls inside the method body.
For C1 and C2 subclasses of C, it may be that there is a local call this.n(x) in
method m of C, and if n is redefined in both C1 and C2, an m call will bind n
differently depending on the actual class. For instance in the Bank example, a
call to sub binds to BANK :sub, but the this.upd call in the body of BANK :sub
binds to BANKPLUS :upd or BANK :upd depending on the class of the executing
object, BANKPLUS or BANK, respectively.

To formalize the binding of late-bound and static calls, we introduce three
functions, bind(A,m), bind(A,B,m), and bind(A,B,C,m), where A ≤ B and
B ≤ C. We let the function bind(A,m) return A if it has a definition of m,
otherwise the closest class with a definition of m considering the superclasses
above A, using a depth-first, left-fist traversal. This is used for binding a static
call : m(...) appearing in class A and also for a static call A : m(...) appearing in
subclass of A. We let the function bind(C,B,m) return C if C has a definition of
m, otherwise the closest superclass of C with a definition of m using a depth-first,
left-first search of the superclass hierarchy of C, restricted to classes hereditar-
ily related to B. Similarly, bind(C,B,A,m) returns the closest superclass of C
hereditarily related to both B and C, using a depth-first, left-first search of the
superclass hierarchy. When C is known, bind(C, ..,m) can be calculated, even
with an open-ended class hierarchy.

A late-bound local call this.m(. . .) appearing in a class B binds to
bind(C,B,m) where C is the class of the executing object. The late-bound local
call this A.m(. . .) appearing in a class B binds to bind(C,B,A,m) with B ≤ A
and C and B as above. For a late-bound local call the binding can be calculated
statically for a given actual class of the executing object, this.

In the case of verification based on behavioral interface subtyping, we recon-
sider each possible actual class of this. Thus for each subclass of C (defined so
far), we reconsider the verification of any inherited or reused methods. For each
subclass C ′, the binding can then be done at verification time, binding a call
this.m appearing in C to bind(C ′, C,m) and binding C :m(..) to bind(C,m) as
explained.

A complication in reasoning about local calls is that a release point (pro-
grammed by an await statement) should maintain the invariant of the actual
class (say D) as opposed to the enclosing class (C). Thus reasoning about a
release point occurring in a method C : m must consider the invariant of the
actual class, which may be a subclass (D) of C. We therefore index the deriva-
tion symbol (�) both with the class of the executing object D as well as with
the class of the enclosing object C, using the notation �D,C . In the setting of
behavioral interface subtyping, reasoning is done for each choice of D. For a
method inherited from C, we derive properties by means of �D,C , thereby let-
ting all relevant proof obligations from C be reconsidered for each subclass D.

A Framework for Flexible Program Evolution 333

In reasoning with behavioral subtyping, this is not needed since reasoning about
method m of C is made (once) for all actual D. The latter approach makes rea-
soning simple when it succeeds, at the cost of redefinition flexibility – whereas
in our system, based on behavioral interface subtyping, we may differentiate the
different versions of an inherited method in the different subclasses. This gives
more fine-grained reasoning (and specification) control, which is valuable in the
setting of flexible code reuse and program evolution. A pre/post specification of
m in C will be based on the invariant of C, which may be different from that of
D. Therefore a pre/post specification of m in C cannot in general be guaranteed
in a subclass D if C :m has local calls or release points.

For example, consider two executions of a late-bound m call occurring in
class A with C1 and C2 as the actual classes. These can be referred to by C1:m
and C2 :m, respectively. We have that bind(C1, A,m) = bind(C2, A,m) when
the closest definition of m (hereditarily related to A) is in a common superclass
of C1 and C2. A call to m with C as the actual class may cause a local call
this.n(y) (directly or indirectly). In the verification, this call will then be re-
analyzed with C as the actual class, using the binding bind(C,A, n) where A
is the class enclosing the call, and a static call D : n(y) with C as the actual
class will be re-analyzed using the binding bind(D,m). The analysis of these call
is the same when bind(C,A,m) = bind(D,A,m) and the method body has no
local calls to methods redefined below D and no release points.

For partial correctness reasoning, we consider theorems of the form

�C,A [P] s [Q]

where C is the actual class and A is the class enclosing s, and the Hoare triple
[P] s [Q] states that if the statement(list) s is executed in a state satisfying
the precondition P the final state will satisfy the postcondition Q provided
the execution of s terminates (using square brackets rather than curly brackets
since the latter are part of the programming language syntax). Figure 4 presents
sample proof rules needed for the example, modifying the rules in [22] (using
a double-indexed proof symbol). Note that the axiom schema for assignment
is as for sequential programs without aliasing. If we had allowed remote field
access, this would no longer hold. The notation Qv

e denotes (capture-free) textual
substitution replacing all free occurrences of the variable v by the expression e.
Similarly, Qv,v′

e,e′ denotes simultaneous replacement (v by e and v′ by e′). Rules
for sequential composition and if-statements are as usual. Rules for while-loops
and recursive calls are also standard, but are omitted here for brevity.

For a class C we use �C,A to prove the pre/post verification conditions for
objects of that class, for code inherited from A. For code in class C this corre-
sponds to normal class-based reasoning (�C,C). For code inherited from A, rea-
soning about release points and local or self calls depends on C, which reflects the
actual class of this object, as well as A. Note that reasoning about late-bound self
calls reduces to reasoning about static local calls: According to rule self call, the
late-bound self call v := this B.m(x) is equivalent to the static call v := D :m(x)
where D is given by bind(C,A,B,m). Thus the binding depends on the class of

334 O. Owe et al.

assign �C,A [Qv
e] v := e [Q]

history �C,A [h′ = h] s [h′ ≤ h]

await guard �C,A [IC ∧ L] await b [b ∧ IC ∧ L]

new �C,A [∀v′ . fresh(v′, h) ⇒ Qv ,h
v′,h;(this v′.newC(e))] v := new C(e) [Q]

simple call �C,A [Qh
h;(this o.m(e))] o.m(e) [Q]

blocking call �C,A [∀v′ . o �= this ∧ Qv, h
v′,h;(this o.m(e));(this�o.m(e;v′))] v := o.m(e) [Q]

non-blocking call
�C,A [P] await true [∀v′ . Qv, h

v′,h;(this�o.m(e;v′))]

�C,A [P h
h;(this o.m(e))] await v := o.m(e) [Q]

self call �C,A [P] v := bind(C,A,B,m) : m(e) [Q]

�C,A [P] v := this B.m(e) [Q]

implicit self call �C,A [P] v := bind(C,A,m) : m(e) [Q]

�C,A [o = this ∧ P] v := o.m(e) [Q]

static call
�C,A [P] bodybind(B,m):m [Qh

h;(this�this.m(e;v))]

�C,A [P x,caller,h
e,this,h;(this this.m(e)) ∧ L] v := B : m(e) [Qx,caller,return

e,this,v ∧ L]

sequence �C,A [P] s [Q] �C,A [Q] s′ [R]

�C,A [P] s; s′ [R]

if-then-else �C,A [P ∧ b] s [Q] �C,A [P ∧ ¬b] s′ [Q]

�C,A [P] if b then s else s′ fi [Q]

Fig. 4. Hoare-style rules and axioms. Primed variables represent fresh logical vari-
ables, fresh(v′,h) expresses that v′ does not occur in h, and L denotes a local asser-
tion, i.e., without occurrences of fields. In rules self call and static call, we assume
that v does not occur in e (otherwise we would need a primed variable, v′). In
rule static call we assume that x is the formal parameter list (which is read-only).
Note that binding is calculated at verification time.

the executing object C, restricted by A and B. The binding bind(C,A,B,m) can
be calculated at verification time since C, A, and B are known. We have that
the self call v := this.m(e) abbreviates v := this A.m(e) where A is the enclosing
class, and similarly that the static call v := : m(e) abbreviates v := A : m(e).
Thus rules for these special cases are omitted. For instance, reasoning about the
late-bound call v := this.m(x) reduces to reasoning about the static v :=: m(x)
if the class of this has a redefinition of m. Rule static call states that reasoning
about v := B :m(e) reduces to reasoning about bodybind(B,m):m, adding effects

A Framework for Flexible Program Evolution 335

on the history, where bodyC:m denotes the body of the definition of method m
in class C.

The body of a method definition m(x){s; return e} is given by
h := (h; caller � this.m(x));
s; return := e;
h := (h; caller ← this.m(x; return))

incorporating the effects on the local history reflecting method call reception
and method return. Since each class is analyzed separately, we obtain a modular
and incremental verification system suitable for an open-ended class hierarchy,
not unlike [7]. In the analysis of a class C we may need to consider super-
classes of C, but not subclasses. We may reuse superclass verification results as
follows: For code inherited from a superclass B, we may derive �C,B [P] s [Q]
from �B,B [P] s [Q] when s has no release points and no local calls leading to
calls of methods redefined below B. Otherwise �C,B [P] s [Q] can be established
by a new analysis of s and of any locally called methods in s. In particular
�C,B [P] v := B :m(x) [Q] follows from �B,B [P] v := B :m(x) [Q] when B : m
has no release points nor local calls. In contrast to behavioral subtyping and
lazy behavioral subtyping, no requirements are imposed on subclasses.

4 Proof Obligations

For each class C we must ensure that it satisfies the stated requirements, i.e.,
that the implements clause is satisfied (syntactically and semantically), that the
class invariants are maintained by each method (except private ones), and that
the stated pre/post specifications are satisfied by the corresponding methods of
the class.

In this proof, inherited methods must be considered, while superclass imple-
mentation claims, superclass invariants, and superclass pre/post specifications,
are not considered unless inherited. Each class is verified in this sense, taking
inherited superclass code into consideration. Together with correct typing of
object variables, this ensures that each object variable will satisfy its declared
interfaces, and each object of run-time class C will satisfy the interfaces of C.
This ensures that the compositional rule (Sect. 5.1) for reasoning about active
object systems is sound. Furthermore, each late-bound local call with C as the
run-time class of the caller/callee will satisfy the pre/post specification given in
C since class C is statically verified. This is reflected in the composition rule,
which considers all verified callee classes.

We formalize the proof obligations expressing the correctness of a program, a
class, an interface claim, a class invariant, and a method specification. We define
the following proof obligations, identifying the actual class and the enclosing
class:

Definition 1 (Program and Class Correctness).
A program P is correct, denoted � P ok , if each class in the program is correct.

A class C is correct, denoted � C ok , iff

336 O. Owe et al.

� C satF for each interface F specified in the implements clause of
C,

� C inv I for each stated (or explicitly inherited) invariant I of C,
�C,C m(x)sat [P,Q] for each method m(x) defined in C, and each speci-

fication [P,Q] stated (or inherited) in C for m,
�C,A m(x)sat [P,Q] for each method m(x) inherited from A, and each

specification [P,Q] stated (or inherited) in C for m,

where

�C,A m(x)sat [P,Q] is verified by proving �C,A [P] bodybind(C,A,m):m [Q]
(as explained above).

� C inv I is verified by proving �C,C m(x)sat [I, I] for each public
method m(x) in C, and by proving �C,A m(x)sat [I, I] for each public
method m(x) inherited from A, and by proving that the invariant holds
initially, i.e., I holds when h is replaced by the empty history and fields
by initial values.

� C satF is verified by proving that the conjunction of the invariants
Ii(h) of C implies the invariant of F , IF (considering methods visible
through F , as explained in Sect. 3):

∧iIi(h) ⇒ IF (h/F)

Note that type checking ensures that all methods of F are offered in C, with
a signature better or equal to that of F (i.e., contravariant parameter types and
covariant return types). And it ensures that removed methods are not directly
or indirectly called from C, and that private methods of C are not directly or
indirectly called with await .

For a subclass C ′ of C, �C,A m(x)sat [P,Q] need not imply �C′,A
m(x)sat [P,Q] even if m is not redefined, since the binding of local calls
appearing in the body of m in C may bind differently in the context of
C ′ (i.e., bind(C,A, n) versus bind(C ′, A, n), respectively). In general �C,A

m(x)sat [P,Q] depends on redefinition of m or locally called methods and
possible C invariants in case of suspension (by await statements). A redef-
inition in C ′ of a locally called method may violate the supertype specification
of that method. A suspension point performed on a C ′ object can only guar-
antee that the C ′ invariant is maintained, which could be weaker than the C
invariant. We therefore track these dependencies, and we may conclude that
�C,A m(x)sat [P,Q] implies �C′,A m(x)sat [P,Q] if �C m(x)sat [P,Q] does
not depend on any redefined code and that any invariant used in the verification
is respected by C ′.

For a method m defined in B without local calls or suspension points, we
have that the theorem �C,A B :m(x)sat [P,Q] reduces to �C,C m(x)sat [P,Q].
This gives a practical way of reusing proofs from superclasses.

4.1 Verification of the Bank Example

Let B denote BANK and BP denote BANKPLUS. Let IB denote the invariant of
B and IBP that of BP . According to our definition of class correctness, we get

A Framework for Flexible Program Evolution 337

the following verification conditions for class BANK (� B ok):

� IB ⇒ IPerfectBank (h/PerfectBank) (1)
�B,B bal(x)sat [true, return = bal] (2)
�B,B add(x)sat [true, return = true] (3)
�B,B sub(x)sat [true, return = true] (4)

� IB
h,bal
empty,0 (5)

�B,B bal(x)sat [IB, IB] (6)
�B,B add(x)sat [IB, IB] (7)
�B,B sub(x)sat [IB , IB] (8)
�B,B upd(x)sat [IB , bal = sum(h) + x ∧ return = true] (9)

In addition we must verify the PerfectBank pre/post conditions, which fol-
low by the corresponding BANK pre/post conditions (2,3,4). In particular, the
postcondition return = sum(h/PerfectBank) follows by (2) and IB . Here (1)
represents the entailment of the PerfectBank invariant, which in this case is an
empty obligation since PerfectBank has no invariant, (2,3,4) are requirements
from BANK, (5) states that IB holds initially, (6,7,8) state the invariance of IB ,
and (9) represents the additional pre/post specifications of upd given in BANK.
Verification conditions (2,5,6) and (9) are trivial, (3,4) and (7,8) follow from (9),
treating the return e of a public method m(x) as the assignment return := e,
followed by h := (h; (caller ← this.m(x; return))) according to the definition of
body.

For class BANKPLUS we must verify � BP ok , which amounts to the verifi-
cation conditions given in Fig. 5. These represent the entailment of the BankPlus
invariant (10), the inherited pre/post specifications of BankPlus (11,12), the
initial satisfaction of IBP (13), the invariance of IBP (14–16), and the pre/-
post specification of upd given in BANKPLUS (17). Here (10,13,14) are triv-
ial and (11) reduces to (2) by observing that �BP,B bal(x)sat [P,Q] equals
�B,B bal(x)sat [P,Q] (for any [P,Q]) since there are no local calls nor release
points. Then (12,15,16) follows by using (17). For the local call in the redefined
upd we observe that proofs about B :upd(x) do not depend on the actual class
since the body has no local calls. We may therefore reuse the specification of upd
from BANK when analyzing the call BANK :upd(x) in class BANKPLUS. Then
verification of (17) is straightforward, and verification of (18) reduces to the triv-
ial condition b′ = bal ⇒ if bal + x ≥ 0 then b′ + x ≥ 0 = true else b′ + x ≥
0 = false. Moreover, the verification above can easily be mechanized.

Consider BANKPP, abbreviated B2, of Fig. 3. We have that IB2 is IBP .
Figure 6 gives the verification obligations for � B2ok . Here (19,23) reduce to
(10,13) since IB2 is the same as IBP . Since reasoning about bal(x) does not
depend on the actual class, (20) reduces to (2). Furthermore, (24) is trivial, and
(20,22,25,26) follow by (27). For (27) we use Hoare-style reasoning and must
verify that the given pre/post specification is satisfied by the body of upd, which
is:

338 O. Owe et al.

� IBP ⇒ sum(h/BankP lus) ≥ 0 (10)
�BP,B bal(x)sat [true, return = bal] (11)
�BP,B add(x)sat [true, return = true] (12)

� IBP
h,bal
empty,0 (13)

�BP,B bal(x)sat [IBP , IBP] (14)
�BP,B add(x)sat [IBP , IBP] (15)
�BP,B sub(x)sat [IBP , IBP] (16)
�BP,BP upd(x)sat [IBP , bal ≥ 0 ∧ bal = sum(h) + if returnthenxelse 0] (17)
�BP,BP upd(x)sat [b′ = bal, return = (b′ + x ≥ 0)] (18)

Fig. 5. Verification conditions for class BANKPLUS.

� IB2 ⇒ sum(h/BankP lus) ≥ 0 (19)
�B2,B bal(x)sat [true, return = bal] (20)
�B2,B add(x)sat [true, return = true] (21)
�B2,B sub(x)sat [true, return = true] (22)

� IB2
h,bal
empty,0 (23)

�B2,B bal(x)sat [IB2, IB2] (24)
�B2,B add(x)sat [IB2, IB2] (25)
�B2,B sub(x)sat [IB2, IB2] (26)
�B2,B2 upd(x)sat [IB2, bal = sum(h) + x ∧ bal ≥ 0 ∧ return = true] (27)

Fig. 6. Verification conditions for class BANK2.

await bal+ x ≥ 0; bal := bal+ x; return := true;h := (h; (caller ← this.upd(x; return)))

(since we may here ignore all → events) which reduces to the condition

IB2 ∧ bal + x ≥ 0 ⇒ (bal+ x = sum(h; (caller ← this.upd(x; true))) + x∧ bal+ x ≥ 0)

which is trivial since upd events do not affect sum due to the others equation.
The example shows that: Verification of a class is done by inspecting the class
and its superclasses, and does not impose any proof obligations on subclasses.
Reasoning about static and late-bound local calls are handled by the actual class
context. Proof obligations can often be reduced to already verified superclass
obligations. The verification conditions we have seen are easily verified and thus
easily automated.

5 Evolutionary Program Changes

During evolution of a system there may be a series of program changes, including
changes of existing classes as well as additions of new classes and interfaces. For

A Framework for Flexible Program Evolution 339

instance, an existing class in the middle of a class hierarchy may by augmented
by adding a new class as a superclass and by adding new implementation clauses.
And one may introduce a new interface to make two independent subsystems
interact, adding support of the new interface in one or more existing classes.

In general, an existing class D may be changed by adding methods and
fields, replacing methods, changing inheritance clauses, implementation clauses,
removal clauses, and/or specifications. This can be understood by replacing the
whole class definition by another definition. The updated class D may in general
have a number of subclasses (at the time when D is updated) and these are
implicitly modified if they inherit or reuse code from D. Thus, we need to reverify
the redefined D, but in addition we need to consider the affected subclasses of
D.

Definition 2 (System Change). A system change is given as a sequence of
introduce and update definitions. We use the syntax introduce In for
adding an interface definition In and the syntax introduce Cl for adding a
class definition Cl , with In and Cl as defined in Fig. 1. We use the following
syntax for defining class updates:

update class D [([T cp]+)] ?
[implements also ? F+] ?

[inherits also ? C(e)] ?

[removing also ? m+] ?

{[T w [:= r]?]∗ s? M∗ S∗ I∗}

This class update modifies an existing class D by adding class parameters cp+
(if present), changing the interface support to F+ (if present), adding super-
classes [C(e)]+ (if present), removing methods m+ (if present), adding fields w+

(if present), adding initialization code s (if present), adding/redefining method
definitions M∗ (if present), changing method specifications S∗ (if present), and
changing the invariant to I∗ (if present). For any optional item omitted, there is
no change from the original class. This is somewhat similar to the semantics of
inheritance, except that the modifications are made on an existing class rather
than a new subclass. In order to limit duplication of old code, we use the quasi
class name OLD to refer to elements of the original version of the class, thus the
redefinition of a method m may contain the call OLD : m(...) to reuse the old
version of m. In contrast to static calls, such a call is textually expanded using
the original definition (since the original definition may be removed). Similarly,
OLD : inv expands to the old invariant. We may use the keyword also in
implements , inherits , and removes clauses, to define added elements.
Thus inherits also C means that the updated class inherits C in addition
to the classes inherited by the original version of the class.

An example of a class update is given in Fig. 7. Here the transaction-oriented
bank version given by BANK 2 is changed so that one can check earlier transac-
tions. This is done by letting the BANK 2 class inherit SAFETRANS in addition
to the old superclass, thereby using multiple inheritance. The SAFETRANS class

340 O. Owe et al.

stores transactions in a secure manner, by giving limited read access, through
checking if a given transaction has happened or not, and restricting write access
to append. (For brevity the class is minimalistic.) The upd method of BANK 2
is then updated using the append method of SAFETRANS. The added invariant
states that the transactions defined by SAFETRANS corresponds to the history
as defined in Bank. Note that sum(h) is here understood as sum(h/Bank).
The example shows the usefulness of multiple inheritance during evolution. The
updated BANK 2 class supports the old interfaces (PerfectBank and BankPlus),
so any previous usage of BANK 2 objects through these interfaces is not affected
by the change. After the update, BANK 2 objects can also be used through the
SafeTrans interface. One needs to verify that the updated upd method satis-
fies the (inherited) conditions and the new invariant. This will be quite straight
forward in this example.

We consider correctness of the updated code, and avoid complications such
as run-time upgrades where new and old versions of the updated code are part
of the running system. As before we assume type correctness. In general, the
redefined class D (let us refer to it as D̂) implements some interfaces, which
may or may not be the same as for D. If D̂ includes all interfaces of D, all
type correct calls to D objects will be type correct and supported by D̂ objects
as well; and if the interface specifications are the same, global reasoning from
interface specifications of D objects is not violated by replacing D objects by D̂
objects.

Consider next the case that a class is modified by removing the support for
an interface. In this case the statement v := new D, becomes illegal when class
D is modified so that it no longer supports the interface type of variable v. We
may then change the statement to v := new B where B supports the interface. In
general we may need a sequence of changes in order to obtain a desired resulting
program, including changes to C and other classes using D. (Subclasses that
inherit the interface clause of D may then explicitly add support for the interface,
when desirable.)

The verification obligations caused by the redefinition consist of verifying
� D̂ ok and reverification of the subclasses of D since they may be affected by
the change. We first mark the obligation � D ok , as well as all sub-obligations,
as pending. And for each subclass D′ we mark the obligation � D′ ok , as well
as all sub-obligations, as pending. Verification of � D̂ ok is then done as defined
above for the class resulting from the update, and the subclasses of D must
be reverified. If an obligation depends on a pending sub-obligation, one should
consider the latter first. Since subclasses may depend on classes defined earlier
(as substantiated by Theorem 1 below), we reconsider the subclasses in the order
defined. For a subclass D′, the obligation � D′ ok should be marked as pending
if the proof made use of a result from D, say �D,A m(v)sat [P,Q]. For each
such D result, it suffices to prove �D̂,A m(v)sat [P,Q]. If all sub-obligations of
� D′ ok can be reverified in this manner, the obligation � D′ ok is marked
correct .

A Framework for Flexible Program Evolution 341

Fig. 7. An update of Bank2 causing multiple inheritance.

The state of a proof obligation indicates whether it has been proved or not.
We consider the states: correct, incorrect, pending . These express respectively
that the obligation is verified, that the (old) proof is no longer valid, that veri-
fication remains to be done. As explained above, if a pending obligation can be
verified or be reduced to a correct obligation, its state can be reset to correct. If
a pending obligation cannot be verified, its state can be set to incorrect. In some
cases it may be possible to reverify the obligation using additional specifications
of inherited or called methods, but in general this may require human insight.
Otherwise further modifications are needed.

An advantage of our approach is that violations in a class C caused by super-
class modifications can be handled without changing the superclasses of C, called
Modification Independence:

Theorem 1 (Modification Independence). Assume that a class C is
affected by a superclass modification such that some inherited superclass specifi-
cations are violated in C. Then C can be modified such that there is no violation.

Proof. Let [P,Q] be a violated m-specification. If this specification is inherited,
we simply change C by not inheriting it and then the specification is no longer
required in C. And if [P,Q] is stated in C, we remove the specification. In case
[I, I] is then removed for an invariant I, we also remove the invariant from C,
and remove any interface of C depending on the invariant. We repeat this process
until all violations are removed. �
This means that any undesired requirements due to modifications in a superclass
can be removed. After removal one may add desired requirements and verify these
requirements (modifying the class if needed). In this way one may reverify that
the stated interfaces are satisfied. This gives full flexibility of properties during
evolution, at the cost of reconsidering subclasses in case the modifications require
changes in subclasses.

Our framework supports independence between different branches of a hier-
archy, a property which is essential for flexible evolution. However, this kind of

342 O. Owe et al.

Hierarchy Independence is non-trivial, especially in presence of multiple inheri-
tance.

Theorem 2 (Hierarchy Independence).
Modification of a class C will only affect C and subclasses of C.

Proof. Let D be a class other than a subclass of C. The case when C is a
subclass of D follows by the theorem above. Thus we may assume that C and D
are hereditarily unrelated, but in the presence of multiple inheritance they may
have common superclasses and common subclasses. By our healthiness condition
on the binding strategy, a late-bound call in D cannot bind to a method defined in
C because the healthiness condition then requires that C and D are hereditarily
related. And it cannot bind to a common subclass of C and D because we may
assume that D is the executing object, and thus all late-bound calls will bind
to a method defined in D or a superclass. Such a call may bind to a common
superclass (of C and D), but by Theorem 1, this superclass is not affected by
the change in C.

A static-bound call occurring in D may bind to superclass of D which may
contain a late-bound call. However, our binding strategy ensures that this is call
binds to a class above D due to the healthiness condition. Thus it cannot bind
to C. �

5.1 Reasoning in Presence of Unverified Classes

Our approach may result in some verified classes and some classes that are not
yet verified. In this imperfect setting we may still reason about the overall system
by using the following formulation of the global system invariant I(H) over the
global history H (i.e., the sequence of all events that have occurred so far in the
total system):

I(H) � wf(H)
∧

→o.newC(_)∈H

∧

F∈C

IF (H/o)thiso

where C is restricted to range over classes that are tagged correct, i.e., those
satisfying � C ok . The last conjunction ranges over all interfaces F implemented
by C. Here wf (H) denotes the wellformedness predicate, expressing the before
ordering between events, given in Sect. 3.

This global invariant captures the partial knowledge of the global history H
given by the interface invariants of the objects appearing in the system (possibly
dynamically generated) considering only objects of correct classes. This global
reasoning rule essentially turns off the interface invariants for the non-correct
classes.

Limitation: We assume type correctness since reverification of a modified class
C will be preceded by type checking of the modified class and other existing
classes using C in creation statements. Thus we consider only program changes
that result in type correct programs. Removal of declarations of fields, methods,

A Framework for Flexible Program Evolution 343

parameters, and variables is therefore only allowed when not in use. Secondly
we do not consider changes in an interface I. This can be simulated by adding
the new version of I as a separate interface, making changes wherever I (or a
subinterface) is used, and then removing the original I when no longer referred
to.

5.2 Examples of Software Changes on BANK

Assume now that class BANK is changed so that upd calls checkAvail, which
returns true.

update class BANK implements PerfectBank {
Bool checkAvail(Int x){return true} [true, return]
Bool upd(Int x){Bool ok:=checkAvail(x);
if ok then bal:=bal+x fi; return ok}
[inv, bal=sum(h)+x and return=true] }

All other aspects of class BANK are kept unchanged, including all BANK spec-
ifications. Thus inv refers to the original invariant of BANK. Since checkAvail
returns true, the verification of upd can be reused, and the other verification
conditions of BANK are as before and need not be reverified. And the verification
of the added local method checkAvail is trivial. Furthermore, the subclasses are
not affected by this change. Thus the verification conditions caused by the class
update are straightforward.

However, if class BANKPLUS is changed by redefining checkAvail(x) as in

update class BANKPLUS {
Bool checkAvail(Int x){return bal+x>0} }

the local late-bound call to upd(−x) in the inherited method sub results in the
value of bal − x > 0 to be returned from sub. Again verification conditions
are straightforward. In contrast this could not be verified in the frameworks
of [10,11].

Adding a side effect in checkAvail such as if x < 0 then bal := bal− 1 fi
would destroy the BANK invariant, but not the BANKPLUS invariant. Then the
former should be removed.

Consider next the following update of class BANK with a redefinition of sub:

update class BANK { Bool sub(Nat x)
{ bal:=bal−x; return true} }

The new version of BANK inherits the old interface (PerfectBank), the methods
add, bal, and upd, the old invariant, the old specification of sub (i.e., postcon-
dition return = true). The proof obligations amount to first verifying that the
redefined sub maintains the invariant and satisfies the postcondition. This is
trivial. Secondly it must be verified that each subclass is still ok . As subclass
BANKPLUS now may allow a negative balance, the BANKPLUS invariant bal ≥ 0
cannot be verified (because it is incorrect). We may still do (limited) global
invariant reasoning about a system containing BANKPLUS objects.

344 O. Owe et al.

To solve this inconsistency in BANKPLUS, we may update this class by remov-
ing the support of interface BankPlus and removing the last conjunct of the
invariant and the specification of sub, and then reverify. Alternatively, we may
change BANKPLUS by redefining sub so that the old specifications can be rever-
ified.

Finally, the redefinition of sub in Sect. 3.1 can be handled by removing
interface PerfectBank in class BANK2 and checking/adjusting any usage of new
BANK2 (as PerfectBank) in other classes.

6 Related Work

Formal notions of refinement have been used to reflect software development.
A refinement is in general leading from a design with certain properties to a
design which preserves these properties while adding more detail. In this way
refinement is semantics-preserving [27]. Certain refinement logics support the
addition of error values, thereby semantics is preserved as long as no errors
appear. Banach et al. have argued for the need of refinement-like steps that go
beyond the limitation of semantics-preserving development [2]. But their app-
roach does not support analysis of program properties. Hu and Smith [12,13]
consider verification of evolving Z specifications. However, they do not look at
changes to classes that may affect global system properties.

In the setting of object-oriented programs with inheritance, behavioral sub-
typing is the most common reasoning approach, restricting subclasses to obey
the super-class specifications [19]. This means that subclasses must preserve
behavior. Lazy behavioral subtyping [8,9] relaxes this condition; only behavior
that is needed to verify local calls in a superclass must be respected by a sub-
class redefining the method. This gives added flexibility, allowing a larger class
of changes without breaking the requirements.

Interface abstraction allows reasoning about remote calls to rely on the
declared interface of the callee. This means that changes in a (super)class imple-
mentation may be done as long as the stated interface support is respected,
and as long as subclass reasoning is not affected. A calculus allowing changes to
methods, (super)classes and interfaces is presented in [11], based on lazy behav-
ioral subtyping. Program properties, represented by Hoare triples, are classified
in two categories for each class C, representing the verified ones and the unre-
solved (unverified) ones, U(C). The set of verified properties of a given class C
and method m is denoted G(C,m). When the set of unverified program prop-
erties is verified (i.e., U(C) is empty) the class is found to be correct in the
sense that all pre/post method specifications are satisfied by the corresponding
implementation in a class as well as those in interfaces supported by the class.
Changes in code or specifications may affect both categories. However, a pro-
gram requirement added to U(C) may be impossible to verify (in case the Hoare
triple is not satisfied), and it will then remain in U(C), and there is no guarantee
that this problem is detected.

The approach in [10] addresses transformation of classes and allow classes
in the middle of a class hierarchy to be changed. Modifications are archived by

A Framework for Flexible Program Evolution 345

means of update operations modify and simplify. The modify operations extend
class definitions, allowing code such as new fields, method definitions, guarantees,
and interfaces to be added to classes, and existing methods to be redefined.
The simplify operation allows redundant methods to be removed from class
definitions. The approach does not classify classes using G and U such as in [11],
rather, for each update applied to a class, all verification work is done to methods
affected by the update. However, any superclass requirements needed to handle
local calls are imposed on subclasses, as in [11].

A number of works on asynchronously communicating concurrent objects,
partly by the authors of this paper, consider certain forms of software and/or
specification changes: The concept of dynamic software updates allows changes
to (super)classes during run-time [16]. A challenge with run-time upgrades of
distributed systems is the need to allow updates in a distributed manner, and
thereby allowing coexistence of different versions of the software [1,16,25]. In
contrast to these works, we are focusing on the reasoning aspects. Bannwart
and Müller [3] consider program changes through refactoring, and show how to
preserve external behavior for a class of non-trivial refactoring. However, they
do not include changes that violate behaviors.

Another line of work considers proof reuse, including partial reuse of proofs
of earlier verified properties. This may require some storage of proof outlines
or non-trivial verification steps. This means that when a module is corrected,
one may try to rerun previous proofs to alleviate the verification burden [24].
The notion of abstract method calls allows reuse of abstract proof outlines, for
a fixed method body, while their instances may need further work when other
methods or requirements are changed [4,14]. A related approach is the use of
symbolic predicates to express requirements to general properties for a given pro-
gram without knowing what the concrete properties are [6]. These approaches
simplify the verification task of evolving programs. The amount of proof reuse
can be balanced against the amount of automation. Efficiently automated proofs
need not be reused while interactive proofs could benefit from reuse, if possible.
Our approach is oriented towards a language with a high degree of automation of
verification conditions, and proof reuse is therefore not our focus. A recent work
by Ulewicz et al. [26] supports a tight integration of verification of unchanged
behavior (regression verification) with that of changed behavior (delta verifica-
tion); but unrestricted changes are not supported.

We build on results from [21] concerning (single) class inheritance. In contrast
to that work, we consider here program changes and evolution, supporting Modi-
fication Independence (Theorem 1), and give a reasoning rule for partially rever-
ified systems. In addition we provide here more fine-grained control of reused
code, and a simplified treatment of (static and late-bound) local calls. Further-
more, while [21] assumes single class inheritance, we here extend the approach
to multiple inheritance. This greatly improves flexibility since addition of super-
classes during evolution allows an outdated inheritance hierarchy to be adjusted
with minor class changes. Multiple inheritance has also been considered in [20],
but not in the context of program evolution.

346 O. Owe et al.

The present work is an extension of the framework presented in [22], provid-
ing more details and theoretical results supporting Modification Independence
and Hierarchy Independence, and extending that framework and reasoning sys-
tem to multiple inheritance. This requires the reasoning rules to use a double-
indexed proof symbol, without complicating the practical applicability. Multiple
inheritance has been criticized due to possible confusion between horizontal and
vertical name conflicts. However, our language include qualification of inherited
names by a superclass, which provides fine-grained control of used names, solv-
ing both horizontal and vertical name conflicts at the cost of awareness of which
superclass inherit the relevant definition. And we insist on a healthy binding
strategy, as also argued in [9] for the purpose of program reasoning. This limits
undesired vertical name conflicts in the case of late binding. In addition, we allow
static binding to allow reuse of code from superclasses in a way not affected by
added or changed subclasses.

Moreover healthiness is essential in order to ensure Hierarchy Independence
(Theorem 2) in the presence of multiple inheritance. This ensures that changes
in a class will only affect subclasses. Without this property we could no longer
claim to have a flexible evolution framework! The particular binding strategy
used in our approach is based primarily on depth-first traversal of the superclass
hierarchy, and secondarily on following superclasses left to right. This is similar
to binding in the Perl language (apart from healthiness). This binding strategy
is not the most commonly used, but it is advantageous in the setting of evolu-
tion, since adding a superclass at the end of a superclass list (somewhere in a
hierarchy) will not affect the binding made in existing code. This simplifies the
reverification needed for inherited code. The binding strategy also ensures that
calls that have a binding before an added superclass also has a binding after the
class change. (If inherited method differ in parameter types and numbers, we
would need to index the method name by the parameter types.) These factors
are advantageous from a pragmatic point of view.

The considered concurrency model is used by a number of languages support-
ing active objects, including Creol, ABS, Encore, Rebecca, and ASP/Proactive.
The core language used here is avoiding the use of futures, in order to simplify
the basic reasoning rules for method calls, as discussed in a recent paper [18].

7 Conclusion

We have introduced a framework for evolution of distributed systems, offering
flexibility with respect to both changes of code and specifications. We support
reverification of changed classes without requiring changes or reverification of
(unchanged) superclasses, captured by Hierarchy Independence (Theorem 2).
Specification violations in changed classes or affected subclasses can be solved
modulo local changes in these classes, captured by Modification Independence
(Theorem 1). In contrast to earlier work [22] we consider evolution in presence
of multiple inheritance. We have argued that multiple inheritance is useful and
powerful during evolution, and demonstrated this by an example (given in Fig. 7).

A Framework for Flexible Program Evolution 347

By adopting a healthy binding strategy, we control vertical name conflicts, and
healthiness is needed for Hierarchy Independence.

We are avoiding inconsistencies that are inherent in frameworks building on
behavioral subtyping/lazy behavioral subtyping. Flexibility with respect to reuse
and inheritance, beyond the limitations of behavioral subtyping, requires that all
objects are seen through an interface (interface abstraction). Our approach builds
on the principle of the interface substitution (any object of interface F supports
any superinterface of F as well) and the principle of behavioral interface subtyp-
ing, where each class must support its declared interfaces, but need not support
interfaces of superclasses. This allows the class hierarchy to be used for code
reuse while the interface hierarchy is used for behavioral reuse. In contrast to
lazy behavioral subtyping, no superclass requirements are imposed on subclasses
by the framework. This gives a more flexible framework for software modifica-
tions than those of [10,11] since methods can be redefined without restrictions
caused by superclasses. This means that we may deal with software changes that
cannot be verified with approaches building on lazy behavioral subtyping. The
Bank example demonstrated this.

In our framework, modifications to a class C lead to reverification of that
class, and subclasses must be reconsidered when they (directly or indirectly)
inherit modified parts of C, but superclasses need not be reverified. Other (i.e.,
hereditarily unrelated) classes are not affected unless some interfaces are removed
from the implementation clause of C, in which case all v := new C statements
must be reconsidered, ensuring C still supports the interface of o and if not, using
another class. During reverification, proofs can be reused as much as possible,
and further changes to the class and/or subclasses may be done as needed.

Our framework considers the setting of active, concurrent objects, for which
Java code can be generated. We have demonstrated that Hoare-style reasoning
is quite simple for this setting, in the sense that reasoning is like sequential
reasoning, with sequential effects on the history added. The handling of multiple
inheritance implies a double indexing of the proof symbol for Hoare triples,
which guides the generation of verification conditions without adding practical
complications. Our language supports late-bound remote method calls, as well
as static local calls and late-bound local calls. The notion of static local calls
is needed in the framework to reduce verification conditions about late-bound
local calls to verification conditions about static local calls. Our framework gives
fine-grained control of reused code, where the handling of local calls, both late-
bound and static ones, as well as suspension, is essential. Static local calls are
also useful in programming, avoiding the fragile base class problem since the
binding is fixed for such calls.

We have assumed type correct programs. Therefore removal of fields, meth-
ods, classes, and interfaces is only allowed when these are superfluous. We have
not considered changes in interfaces, other than removal of superfluous interfaces.
As mentioned the change of an interface could be simulated by introducing a
new version of the interface, and by changing all usage of the old interface, and
then removing it.

348 O. Owe et al.

Our framework may be extended to reason about dynamic (run-time) class
upgrades, assuming existing objects are upgraded in invariant states, as in
Creol [16], where new calls run renewed code and suspended old calls run old
code. The new invariant must imply the old invariant, and it must be verified
that old methods maintain the new invariant. This ensures that the interleav-
ing of new code and remaining old code is not harmful. The requirements to
an upgraded class are strengthened by these requirements, whereas the require-
ments to subclasses are as described.

Acknowledgments. This work is supported by the IoTSec project, the Norwegian
Research Council (No. 248113/O70), and by the SCOTT project, the European Lead-
ership Joint Undertaking under EU H2020 (No. 737422).

References

1. Ajmani, S., Liskov, B., Shrira, L.: Modular software upgrades for distributed sys-
tems. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 452–476. Springer,
Heidelberg (2006). https://doi.org/10.1007/11785477_26

2. Banach, R., Poppleton, M., Jeske, C., Stepney, S.: Engineering and theoretical
underpinnings of retrenchment. Sci. Comput. Program. 67(2–3), 301–329 (2007)

3. Bannwart, F., Müller, P.: Changing programs correctly: refactoring with specifica-
tions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085,
pp. 492–507. Springer, Heidelberg (2006). https://doi.org/10.1007/11813040_33

4. Bubel, R., et al.: Proof repositories for compositional verification of evolving soft-
ware systems - managing change when proving software correct. Trans. Found.
Mastering Change 1, 130–156 (2016)

5. Clavel, M., et al.: Maude manual (version 2.4) (2008)
6. Din, C.C., Johnsen, E.B., Owe, O., Yu, I.C.: A modular reasoning system using

uninterpreted predicates for code reuse. J. Logical Algebraic Methods Program.
95, 82–102 (2018)

7. Din, C.C., Owe, O.: A sound and complete reasoning system for asynchronous
communication with shared futures. J. Logical Algeb. Methods Program. 83(5–6),
360–383 (2014)

8. Dovland, J., Johnsen, E.B., Owe, O., Steffen, M.: Lazy behavioral subtyping. J.
Logic Algebraic Program. 79(7), 578–607 (2010)

9. Dovland, J., Johnsen, E.B., Owe, O., Steffen, M.: Incremental reasoning with lazy
behavioral subtyping for multiple inheritance. Sci. Comput. Program. 76(10), 915–
941 (2011)

10. Dovland, J., Johnsen, E.B., Owe, O., Yu, I.C.: A proof system for adaptable class
hierarchies. J. Logical Algebraic Methods Program. 84(1), 37–53 (2015)

11. Dovland, J., Johnsen, E.B., Yu, I.C.: Tracking behavioral constraints during object-
oriented software evolution. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS,
vol. 7609, pp. 253–268. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-34026-0_19

12. Fu, Z., Smith, G.: Towards more flexible development of Z specifications. In: 2nd
IFIP/IEEE International Symposium on Theoretical Aspects of Software Engi-
neering, pp. 281–288, June 2008

13. Fu, Z., Smith, G.: Property transformation under specification change. Front. Com-
put. Sci. China 5(1), 1–13 (2011)

https://doi.org/10.1007/11785477_26
https://doi.org/10.1007/11813040_33
https://doi.org/10.1007/978-3-642-34026-0_19
https://doi.org/10.1007/978-3-642-34026-0_19

A Framework for Flexible Program Evolution 349

14. Hähnle, R., Schaefer, I., Bubel, R.: Reuse in software verification by abstract
method calls. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp.
300–314. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-
2_21

15. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Softw. Syst. Model. 6(1), 35–58 (2007)

16. Johnsen, E.B., Owe, O., Simplot-Ryl, I.: A dynamic class construct for asyn-
chronous concurrent objects. In: Steffen, M., Zavattaro, G. (eds.) FMOODS 2005.
LNCS, vol. 3535, pp. 15–30. Springer, Heidelberg (2005). https://doi.org/10.1007/
11494881_2

17. Johnsen, E.B., Owe, O., Yu, I.C.: Creol: a type-safe object-oriented model for
distributed concurrent systems. Theoret. Comput. Sci. 365(1–2), 23–66 (2006)

18. Karami, F., Owe, O., Ramezanifarkhani, T.: An evaluation of interaction
paradigms for active objects. J. Logical Algebraic Methods Program. 103, 154–
183 (2019)

19. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994)

20. Owe, O.: Verifiable programming of object-oriented and distributed systems. In:
Petre, L., Sekerinski, E. (eds.) From Action System to Distributed Systems: The
Refinement Approach, pp. 61–80. Taylor&Francis (2015)

21. Owe, O.: Reasoning about inheritance and unrestricted reuse in object-oriented
concurrent systems. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol.
9681, pp. 210–225. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33693-0_14

22. Owe, O., Lin, J.-C., Fazeldehkordi, E.: A flexible framework for program evolution
and verification. In: 7th International Conference on Model-Driven Engineering
and Software Development (Modelsward 2019), February 2019

23. Owe, O., Ryl, I.: On combining object orientation, openness and reliability. In:
Proceedings of the Norwegian Informatics Conference (NIK 1999), Tapir, pp. 187–
198, November 1999

24. Reif, W., Stenzel, K.: Reuse of proofs in software verification. In: Shyamasun-
dar, R.K. (ed.) FSTTCS 1993. LNCS, vol. 761, pp. 284–293. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-57529-4_61

25. Seifzadeh, H., Abolhassani, H., Moshkenani, M.S.: A survey of dynamic software
updating. J. Softw.: Evol. Process 25(5), 535–568 (2013)

26. Ulewicz, S., et al.: A verification-supported evolution approach to assist software
application engineers in industrial factory automation. In: 2016 IEEE International
Symposium on Assembly and Manufacturing (ISAM), pp. 19–25, August 2016

27. Ward, M.P., Bennett, K.H.: Formal methods to aid the evolution of software. Int.
J. Softw. Eng. Knowl. Eng. 05(01), 25–47 (1995)

https://doi.org/10.1007/978-3-642-38574-2_21
https://doi.org/10.1007/978-3-642-38574-2_21
https://doi.org/10.1007/11494881_2
https://doi.org/10.1007/11494881_2
https://doi.org/10.1007/978-3-319-33693-0_14
https://doi.org/10.1007/978-3-319-33693-0_14
https://doi.org/10.1007/3-540-57529-4_61

Classifying Approaches for Constructing Single
Underlying Models

Johannes Meier1(B), Christopher Werner2, Heiko Klare3 , Christian Tunjic4,
Uwe Aßmann2, Colin Atkinson4 , Erik Burger3 , Ralf Reussner3 ,

and Andreas Winter1

1 Software Engineering Group, University of Oldenburg, Oldenburg, Germany
{meier,winter}@se.uni-oldenburg.de

2 Software Technology Group, Technische Universität Dresden, Dresden, Germany
{christopher.werner,uwe.assmann}@tu-dresden.de

3 Software Design and Quality Group, Karlsruhe Institute of Technology, Karlsruhe, Germany
{klare,burger,reussner}@kit.edu

4 Software Engineering Group, University of Mannheim, Mannheim, Germany
{tunjic,atkinson}@informatik.uni-mannheim.de

Abstract. Multi-view environments for software development allow different
views of a software system to be defined to cover the requirements of different
stakeholders. One way of ensuring consistency of overlapping information often
contained in such views is to project them “on demand” from a Single Underly-
ing Model (SUM). However, there are several ways to construct and adapt such
SUMs. This paper presents four archetypal approaches and analyses their advan-
tages and disadvantages based on several new criteria. In addition, guidelines
are presented for selecting a suitable SUM construction approach for a specific
project.

Keywords: Projectional · SUM · Model consistency · Integration ·
Metamodeling · View-based

1 Introduction

The increasing complexity of modern software-intensive systems means that individual
developers are no longer able to cope with every detail of their structure and function-
ality. View-based software development approaches are therefore useful for allowing
individual aspects of a system to be considered independently by separate developers.
However, the resulting fragmentation of system descriptions leads to redundancies and
dependencies between the information shown in different views which are difficult to
resolve manually. Therefore, automatic mechanisms are needed to ensure holistic con-
sistency between views and the system they portray.

View-based approaches can be characterized as either synthetic or projective [16]
based on the primary source of information for the views. Synthetic approaches dis-
tribute information about the system over all the separate views, whereas projec-
tive approaches centralize the description in a Single Underlying Model (SUM) [2]
c© Springer Nature Switzerland AG 2020

S. Hammoudi et al. (Eds.): MODELSWARD 2019, CCIS 1161, pp. 350–375, 2020.
https://doi.org/10.1007/978-3-030-37873-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37873-8_15&domain=pdf
http://orcid.org/0000-0002-9711-8835
http://orcid.org/0000-0002-3164-5595
http://orcid.org/0000-0003-2832-3349
http://orcid.org/0000-0002-9308-6290
https://doi.org/10.1007/978-3-030-37873-8_15

Classifying Approaches for Constructing Single Underlying Models 351

from which views are projected when needed. As with all model-driven development
approaches, a SUM is constructed in terms of instances of concepts defined in a meta-
model, which we refer to as a Single Underlying MetaModel (SUMM). Many of the
challenges faced in defining generic mechanisms for creating and synchronizing SUMs
therefore need to be solved at the SUMM level.

This paper compares the advantages and disadvantages of different strategies for
realizing SUM-based approaches to software engineering. The common feature of all
projective approaches is that views are regarded as constructively correct, and thus inher-
ently consistent with one another, as long as they agree with the SUM. The problem of
maintaining inter-view consistency therefore becomes the problem of maintaining the
internal consistency of the SUM and the correctness of the SUM-to-View projections.
To describe the different approaches in a uniform way and analyze their pros and cons
systematically, this paper classifies the different strategies for constructing SUM(M)s
and identifies criteria for evaluating them. Four existing approaches for constructing
SUM(M)s are then compared in terms of how they fulfill the identified criteria. Finally,
the suitability of the approaches for different situations is analyzed based on the iden-
tified criteria. The presented results allow researchers to classify new approaches for
SUM(M) construction and help developers select SUM-based approaches for their spe-
cific requirements based on the identified criteria.

After discussing related work in Sect. 2, the running example and terminology used
in this paper are introduced in Sect. 3, followed by classification criteria for SUM
approaches that are described in Sect. 4. The four SUM approaches OSM (Sect. 5), VIT-
RUVIUS (Sect. 6), RSUM (Sect. 7), and MOCONSEMI (Sect. 8) are presented subse-
quently and are classified using the criteria in Sect. 9. In addition, this section describes
guidelines for deciding when to choose each approach. Section 10 summarizes the find-
ings of this paper.

2 Related Work

The explicit use of views or perspectives in software engineering can be traced back to
the VOSE method in the early 1990s [9], which strongly advocated a synthetic approach
to views given the state-of-the-art at the time. Most “view-based” software engineering
methods that have emerged since then, such as the 4+1 model [20] or the Unified Pro-
cess [22], assume that views are supported in a synthetic way, although this is usually
not stated explicitly (the actual distinction between synthetic and projective approaches
to views was first clearly articulated in the ISO 42010 standard [16]). To our knowledge,
no general purpose software engineering method available today is based exclusively
on the notion of projective views driven by a SUM. However, there are approaches
that address the more specific problem of keeping multiple views on a database con-
sistent [7], or that support a synthetic approach to modeling in a limited context like
multi-paradigm modeling [28].

The discipline in which the idea of using views to provide different perspectives on
large, complex systems is the most mature is Enterprise Architecture (EA) modeling,
characterized by approaches such as Zachman [31] and TOGAF [12]. These all pro-
vide some kind of “viewpoint framework” defining the constellation of views available

352 J. Meier et al.

to stakeholders and the kind of “models” that should be used to portray them. Some,
like RM-ODP [24], adopt an explicitly synthetic approach, while others such as Archi-
Mate [15] and MEMO [10] make no commitment. However, again no EA modeling
platform today explicitly advocates, or is oriented towards, the use of projective views.

Bruneliere et al. [4] conducted a systematic study of model view approaches and
from it distilled a detailed feature model of the different capabilities they offer. However,
they mainly focused on mechanisms and languages rather than fundamental architec-
tural choices, and did not specifically consider the “synthetic versus projective” distinc-
tion of importance here. Atkinson and Tunjic [3], on the other hand, focused on exactly
this distinction when they identified several fundamental design choices for realizing
multi-view systems. However, they were concerned with the fundamental differences
between SUM-based and non-SUM-based approaches rather than between individual
SUM-based approaches. In contrast, in this paper we explicitly focus on four distinct
SUM-based approaches.

Given the growing importance of projectional approaches, one goal of this paper is
to support the evolution of SUM construction methods based on criteria to specify the
conceptual solution space (Sect. 4.1).The aims is for developers to be able to use these
criteria (Sect. 4.2) to help select a concrete SUM approach for a specific situation. Four
existing SUM approaches are therefore classified in terms of the criteria characterizing
the feasibility of projective, multi-view approaches and examples of how to design and
apply SUM approaches are presented.

All four groups actively developing SUM-based approaches at the present time are
contributing authors of this paper, which is an extension of a MODELSWARD2019
paper [25]. The main additions are the inclusion of a fourth SUM-based method
(RSUM) in Sect. 7, and a new, independent set of “technical criteria” for classify-
ing SUM approaches in Sect. 4.3. The explanation of the use of the different SUM
approaches in the context of the running ongoing example is also extended and made
more explicit. Finally, further insights about how the different SUM approaches can
be combined, arising from an ongoing series of joint meetings, have been added to
Sect. 9.5. The progress made in these meetings and VAO international workshops
was continued at the International Workshop on View-based Software Engineering in
September 2019 with further researchers.

3 Running Example and Terminology

In this section we introduce a running example of a highly simplified software develop-
ment project in which requirements, architecture models and implementation (i.e. code
units) need to be kept consistent. These three views are described by languages using
metamodels that define the elements (e.g., classes, associations etc.) that can appear in
models. Figure 1 sketches metamodels for the three views. Since this example is used
to demonstrate all four SUM approaches, it is directly taken from the initial paper [25].

As shown in Fig. 1, requirements contain natural language sentences (package
Req). The RequirementsSpecification consists of Requirements which
are identified by a unique id and contain the corresponding natural language sen-
tence as simple text, written by an author. Simplified class diagrams are used for

Classifying Approaches for Constructing Single Underlying Models 353

RequirementsSpecification

Requirement
id : EString [0..1]
author : EString [0..1]
text : EString [0..1]

JavaASG

ClassType
name : EString [1]

Method
name : EString [1]

ClassDiagram

Class
className : EString [1]

Association
name : EString [1]
lowerBound : EInt [0..1]
upperBound : EInt [0..1]

container [1]

content [∗]

asg [1]

classes [∗]

class [1]

methods [∗]

calledBy [∗] calling [∗]

diagram [1]

classes [∗]

class [1]

associations [∗]

type [1]
usedBy [∗]

Req JavaUML

Fig. 1. Simplified metamodels for Requirements (left), Class Diagrams (middle), and Java source
code (right), taken from [25].

the architecture and represent system modules as classes (package UML). Classes
have a className, one or more unidirectional Associations and are collected
in ClassDiagrams. The implementation is represented by simplified Java (package
Java) and realizes the architecture and requirements. The JavaASG (Abstract Syntax
Graph) contains ClassTypes with their name, which in turn contain Methods with
their call relations.

These three languages describe different (but not necessarily all) facets of the sys-
tem under development and thus represent three overlapping viewtypes. According to
[11], a viewtype is the metamodel of a view, while a view is a model that projects infor-
mation from another model (here: the SUM) for a specific purpose. Since all views
share information about the system under development, they are semantically intercon-
nected and contain dependent information, which requires updates of other views if
one is changed. The interdependence of information can be explicitly defined in terms
of consistency rules which define the relations that have to hold between instances of
metamodels.

In the running example, two exemplary consistency rules can be found, which are
directly taken from [25] – Consistency Rule 1, targeting redundant information which
needs to be kept consistent, and Consistency Rule 2, controlling the way additional
information is derived from other, already existing information. These two consistency
rules are considered representative, because overlapping views usually contain redun-
dant concepts or special interrelations.

Consistency Rule 1: Classes can be defined in the architecture view and
in the implementation view. A class can be defined only in the implementa-
tion (Java.ClassType), or in both the implementation and the architecture
(UML.Class) if it represents a module. In the latter case, the class has to be kept con-
sistent in the implementation and architecture views (i.e. if it is renamed). Therefore,
the implementation and architecture are only consistent if the architecture contains a
subset of the classes in the implementation.

Consistency Rule 2: Since requirements define goals that the implementation should
fulfill, the progress of the development project can be measured by counting the require-
ments that are supported by the current implementation. Therefore, Requirements
must be linked to the implementing Methods. We thus require that each Method has
to be automatically linked to those Requirements that contain the Method’s name
in their text. This additional information between the requirements and implementa-
tion has to be stored and kept consistent. Only these two consistency rules are consid-

354 J. Meier et al.

ered to keep the example as simple as possible. However, in general many more rules
could also be envisaged. These two consistency rules and three languages help to show
the application of the SUM approaches in Sects. 5–8. SUM approaches specify con-
ceptually how SUMs and corresponding SUMMs are constructed. Platform specialists
design SUM approaches and implement supporting platforms. Sections 5–8 show how
four such SUM platforms are applied to this running example. SUM approaches are
applied by a methodologist who uses a SUM platform to construct a concrete SUM(M)
fulfilling the needs of the particular multi-view-project [2].

Depending on the approach, the methodologist creates the SUMM either by reusing
the existing metamodels in Fig. 1 or by defining a new metamodel from scratch. After
that, the developer works with views projected from the SUM which is an instance
of the SUMM developed by the methodologist. To provide views to cope with all the
concerns of developers new viewtypes can be configured by the methodologist.

4 Classification Criteria

In order to classify SUM approaches, this section describes classification criteria
grouped into three categories with the following objectives: design criteria which tar-
get the SUM construction process in Sect. 4.1, selection criteria which help users select
an appropriate approach for the current application in Sect. 4.2, and technical criteria
which focus on technical realization strategies to implement an already conceptually
designed SUM approach in Sect. 4.3.

Because the first two criteria groups were already defined in the initial version of
this paper, those definitions have been directly taken from [25] and repeated here. The
extended criteria and their grouping represent the first new contribution of this paper.
They are used to classify the four SUM approaches (Sects. 5.3, 6.3, 7.3, 8.3) and to
compare them with each other (Sect. 9).

4.1 Design Criteria

Design criteria capture how a SUM is constructed independently of technical issues
(Sect. 4.3). They describe the main conceptual design decisions for SUM approaches,
which span the solution space of possible approaches from the problem perspective.
They do not evaluate the quality of SUMs, but help platform specialists decide on the
conceptual degrees of freedom when designing a SUM approach.

Criterion C1 (Construction Process) covers the process of creating a SUM(M)
depending on the initial situation. In a top-down approach, a new SUM and SUMM
are created from scratch. A bottom-up approach, on the other hand, starts with existing
models and metamodels and combines them into a SUMM and initial SUM.

Criterion C2 (Pureness) relates to the absence of internal redundancy in the SUM
under construction. An essential SUM is “completely free of any internal redun-
dancy” [3] and dependencies by design. A pragmatic SUM contains redundant infor-
mation (e.g., because it contains different metamodels that define concepts more than
once) that has to be interrelated and kept consistent, and thus only behaves as if it is

Classifying Approaches for Constructing Single Underlying Models 355

free of dependencies due to internal consistency preservation mechanisms. Pragmatic
SUMs require additional information to wire the internal models together and thus
involve more complex consistency rules than equivalent essential SUMs. In between
these extremes, some initial redundancies could be resolved targeting a more essential
SUM.

While C1 focuses on the starting point of the SUM construction process, C2 focuses
on the results. Together they allow SUM approaches to be compared at a conceptual
level, while the details of the approaches are designed individually.

4.2 Selection Criteria

When there are several concrete SUM approaches available, the selection criteria help
to select the most appropriate SUM approach for a particular situation. These criteria
reflect the conceptual preconditions and requirements that favor one concrete SUM
approach over another for the application in hand. They therefore help methodologists
compare different SUM approaches when selecting one to use for a particular project.
For example, if many new viewtypes have to be defined on top of the SUM, an approach
should be selected that eases the definition of new viewtypes (see following E3).

Criterion E1 (Metamodel Reusability) determines whether concepts to be represented
in the SUMM are already available within predefined metamodels and should be reused
in the new SUMM. If so, the SUM approach has to accommodate these legacy meta-
models by combining them into an initial SUMM. This can either be done directly
without additional work or indirectly by providing strategies for migrating the “legacy”
metamodels into the SUMM (“easy”). The value “middle” indicates that some manual
effort is required, while “hard” indicates no support from the approach. Since numer-
ous languages, metamodels and tools with fixed viewtypes are usually already avail-
able, approaches fulfilling this criterion support their reuse. Reusing metamodels usu-
ally implies a bottom-up approach according to C1.

Criterion E2 (Model Reusability) establishes whether already existing artifacts (i.e.,
existing instances of the metamodels) need to be incorporated in an initial version of the
SUM. If so, the SUM approach has to import these models. This can be done directly
without additional work or indirectly using a strategy for migrating the legacy models
into views or into the SUM by some kind of model-to-model transformations (“easy”).
It requires the reuse of the corresponding initial metamodels according to E1 and usu-
ally requires a bottom-up strategy according to C1. To reuse models they may have to
be consistent according to the consistency relations between the integrated metamod-
els before they can be integrated into the SUM. This requires additional manual effort
to ensure consistency beforehand (“middle”), in contrast to SUM approaches which
offer strategies to handle inconsistent information during their integration into the SUM
(“easy”). Existing artifacts developed without a consistency-preserving SUM approach
usually do not initially fulfill the consistency relationships, which is why this criterion
also checks whether those inconsistencies can be handled automatically during integra-
tion. The value “hard” indicates no support from the approach.

Criterion E3 (Viewtype Definability) focuses on the task of specifying new types of
views on a SUMM for specific concerns (e.g., managing the traceability links from

356 J. Meier et al.

Consistency Rule 2) whose instances can be used by developers to change the related
information in the SUM. Supporting the definition of customized, role-specific view-
types is an essential capability of view-based development approaches, so the level of
difficulty involved has a strong impact on the usability of an approach. The degrees
of difficulty depend on whether there are no redundancies (“easy”) or all initial redun-
dancies still exist (“hard”) and how many models internally exist to query information
from. This is because redundant and distributed information makes it harder to collect
all relevant information and to propagate changes back into the SUM.

Criterion E4 (Language Evolvability) focuses on the task of maintaining the SUMM
in the face of evolved language concepts represented in their metamodels, changed
consistency rules, and the integration of new viewtypes. Changes in the metamodel can
require corresponding changes in the model (i.e., model co-evolution [14]) as well as the
creation or adaptation of consistency rules. Since languages are subject to change (e.g.,
new versions of Java are regularly introduced) the difficulty of updating the SUMM and
its instances after evolution of the integration languages is a relevant criterion whose
importance depends on the probability that languages will evolve. The degrees of diffi-
culty, “easy”, “middle”, and “hard” depend on how many of the unchanged parts of the
SUMM can be reused unchanged in the new SUMM version.

Criterion E5 (SUMM Reusability) focuses on the question of whether only a subset
of the integrated metamodels and their consistency rules from one project can be reused
to construct a SUMM for other projects, or if a SUMM can only be reused as a whole.
Additionally, this criterion addresses the amount of effort involved in adding new meta-
models to an already existing SUMM. Although this criterion does not target reuse at
the model level, it is important since there are many software development projects that
use slightly different languages or consistency rules, which need to be managed. The
degrees of difficulty depend on whether each single part of the SUMM can be reused
without any manual effort (“easy”), some manual effort is required with some restric-
tions (“middle”) or the SUMM is non-reusable and unstructured (“hard”).

4.3 Technical Design Decisions

Technical Design Decisions describe the degrees of freedom available in the technical
realization of a single approach. These technical realization choices are orthogonal to
the conceptual design decisions (Sect. 4.1) and the related conceptual selection criteria
(Sect. 4.2) since they can be realized independently of the actual SUM approach used.
In other words, they form degrees of freedom for realizing different technical aspects
of a particular SUM approach after deciding on the design criteria. They help platform
specialists identify and address technical challenges during implementation.

Criterion T1 (Configuration Languages) addresses the platform specialist’s chal-
lenge of providing languages that can be used by methodologists to customize a
SUM approach to the needs of the current project. In particular, languages to spec-
ify project-specific consistency rules are required that allow methodologists to tailor
SUM approaches to different projects in different application domains. Methodologists
need languages to consider and realize project-specific consistency rules, manipulate
the SUM, define additional viewtypes and support additional needs of the developers.

Classifying Approaches for Constructing Single Underlying Models 357

Criterion T2 (Meta-Metamodel) addresses the issues of choosing a language to
describe metamodels in the implementation of a SUM approach. This meta-metamodel
defines the possible language elements available to methodologists to describe the
SUMM and the viewtypes to be integrated.

5 Orthographic Software Modeling

Orthographic Software Modeling (OSM) is a view-based approach initially developed
to support software development [2] using multiple perspectives. However, OSM can be
applied to other domains like enterprise architecture modeling [27] in order to support
methods like Zachman [31].

5.1 Design Objectives

The OSM approach is inspired by the orthographic projection technique used to visual-
ize physical objects in CAD systems. OSM utilizes this principle to define “orthogonal”
views on a system under development that present each stakeholder, such as software
engineers, with the data he or she needs in a domain-specific notation. Stakeholders can
only see and manipulate the system using the views, since the actual description of the
system is stored in a SUM. The views are defined to be as “orthogonal” as possible
using independent dimensions (i.e., concerns) ranging from behavioral properties and
feature specifications to architectural composition. Ultimately, the system description
in the SUM can be made formal enough to be automatically deployed and executed on
appropriate platforms, thus allowing automatic redeployment on changes. To support
the complete life-cycle of a system, ranging from requirements analysis to deployment,
the internal structure of the SUM must support the storing of all required data in a
clean and uniform way. The data in the SUM should thus be free from dependencies
and capture all relationships between inner elements in a redundancy-free way using
approaches like Information Compression and Information Expansion [3].

In order to use the OSM approach, an environment has to be developed which
realizes its goals and principles. Both steps, the definition of the approach and the
implementation of a framework which supports the concepts of the approach, are per-
formed by a platform specialist. The work involves the development of a framework
which can be customized for the used methodology (e.g., KobrA [1], MEMO [10],
ArchiMate [15]) and the targeted domain (e.g., software engineering, enterprise archi-
tecture modeling). The configurations can be reused for projects in the same domain
and the same methodology. [27] presents a metamodel which is used by the current
prototype implementation to support the configuration of OSM environments. In partic-
ular, it facilitates the configuration of the SUMM and viewtypes, and their integration
in a dimension-based view navigation approach using hyper-cubes of the kind used in
OLAP [6] systems.

A software engineer, playing the role of a methodologist, performs the customiza-
tion of the environment for a specific domain and methodology. In order to be able to
configure and customize the environment according to the requirements, the method-
ologist must have knowledge of the involved domain and the OSM environment. In
particular, he or she is responsible for defining the SUMM and the viewtypes in a way

358 J. Meier et al.

Req

Java UML

Traceability

SUMM
+

SUM

VT Viewtype

SUM(M) pure SUM(M)

deepATL Transfor-
mation / Projection

Fig. 2. SUM approach OSM.

ClassUseClass
name : EString [1]
lowerBound : EInt [0..1]
upperBound : EInt [0..1]

Class
name : EString [1]

Method
name : EString [1]

Requirement
id : EString [0..1]
author : EString [0..1]
text : EString [0..1]

fullfills [∗]

fulfilledBy [∗]

class [1]

methods [∗]

class [1]

classUseClass [∗]

type [1]
usedBy [∗]

calling [∗]calledBy [∗]

SUMM

Fig. 3. Exemplary metamodel for SUM in
OSM (taken from [25]).

that adheres to the principles of redundancy-freeness and minimality. Defining a view-
type involves the definition of a suitable metamodel as well as a model transformation
that maps the concepts from the SUM to those in a view and vice versa. The resulting
configuration can be stored in the tooling environment for reuse in other projects.

Once a complete configuration of an OSM environment has been defined by a
methodologist, developers can use it to develop a specific system specification. To this
end, either an empty SUM is created to start a project from scratch, or existing content
is imported into the SUM using model-to-model transformations from external artifacts.
When using the OSM platform to develop a system, developers are able to access views
using the dimension-based view navigation approach and use them to see and update
information from the SUM.

5.2 Application to the Running Example

Figure 3 shows an example of an OSM-oriented SUMM, corresponding to the informa-
tion presented in Fig. 1. Since a fundamental tenet of the OSM approach is to have a
pure and optimized SUMM, it is usually created manually from scratch based on the
needed viewtypes and concerns of the involved stakeholders. Figure 3 is a reduced
version of Fig. 1 in which all redundant information, and thus the correspondences
that connect duplicate stores of data, have been manually removed. Thus, for exam-
ple, the two equivalent elements ClassType and Class have been compressed into
one concept Class in Fig. 3. This is possible because although the two concepts
define their own properties for their own contexts, and use different names (i.e., name
and className), they are in fact equivalent and can be combined. Both attributes
are therefore mapped to the single attribute name in the SUMM. The two dependen-
cies are distinct and are hence both added to the Class element: The first allows
Classes to have Methods, while the second describes dependencies between two

Classifying Approaches for Constructing Single Underlying Models 359

Classes (Consistency Rule 1). Consistency Rule 2 is captured by a relationship
between Requirement and Method, representing the fact that the requirement is
being fulfilled by the method. In order to allow developers to create instances of the rela-
tionship, a new view can be defined containing at least the concepts Requirement,
Method and the relationship between them. While Fig. 3 shows the integration of the
3 domains into a SUMM, Fig. 2 shows the arrangement of the viewtypes resulting
from the integrated domains. Each viewtype is related by a one-to-one projection to
the SUMM, or more precisely to the relevant concepts from the SUMM. The data struc-
ture shown in Fig. 3 is simpler than disparate representation in Fig. 1. This is achieved
by unifying names for equivalent concepts (ClassType vs. Class) and using names
with more meaning (Association vs. ClassUseClass). Although the SUMM is
built from scratch in the presented example, in principle it is possible to import existing
artifacts into the environment using model-to-model transformations.

5.3 Classification Based on the Criteria

In OSM the SUM is built following a top-down approach (C1) , based on the domain
and applied methodology. Since the SUM is created from scratch, it can be constructed
in an optimal way by avoiding any internal redundancies and dependencies, resulting in
an essential SUM (C2) (see Table 1).

The E1 selection criterion is only conceptually supported by the OSM approach
(“hard”) since engineers can always informally draw upon the information contained
in existing metamodels when constructing the essential SUMM, either manually or by
model-to-model transformations. However, this is not a formal part of the approach.
The OSM approach supports the E2 selection criterion in a semi-automatic way, i.e.
by importing data from existing models into the newly constructed SUM using model
transformations (“hard”). The models do not need to be initially consistent as long as
the transformations are defined to generate consistent output. As the essential SUM
provides an integrated and redundancy-free structure, the E3 selection criterion can be
easily fulfilled by the OSM approach (“easy”), since the information relevant for views
is contained in one single artifact, the SUM. The E4 selection criterion, related to model
evolution, is supported quite well (“middle”) by OSM’s essential SUM principle, since
it is free of redundant information but has to check that the changes keep the SUMM
redundancy-free. However, the transformations that generate views from the SUM have
to be updated manually to stay up-to-date with the SUMM changes. Finally, the E5
selection criterion is supported by OSM, since a SUMM can easily be extended by
adding new concepts directly into the existing structure where they are needed. How-
ever, redundancy-freeness must be preserved and when concepts are removed from the
SUMM, related concepts have to be checked to ensure consistency (“middle”).

The configuration of the current OSM prototype environment is realized using the
ECORE modeling language (T1), which is used to define the dimension-based view-
navigation feature of OSM. The SUMM and the view-types are defined using the PLM
modeling language (T2), which supports the usage of multiple classification levels
using ontologies, while the relationships between the SUMM and the view-types are
defined using the DeepATL transformation language.

360 J. Meier et al.

6 VITRUVIUS

The VITRUVIUS approach [18] is based on a so called virtual SUMM (V-SUMM), which
composes a SUMM of existing metamodels instead of creating it from scratch. There-
fore, VITRUVIUS relies on pragmatic SUMMs that are defined in a bottom-up fashion.

6.1 Design Objectives

In the VITRUVIUS approach, the whole description of a system is encapsulated in
a SUM, which may only be modified via projectional views. This conforms to the
projectional SUM idea of the OSM approach. VITRUVIUS follows a pragmatic app-
roach by composing a SUMM of existing metamodels that are coupled by Consistency
Preservation Rules (CPRs), which specify how consistency of dependent information
in instances of those metamodels is preserved after one of them is changed. The CPRs
use and modify a trace model that contains so called correspondences, which reference
model elements that have to be kept consistent. A set of metamodels with a set of CPRs
constitutes a virtual SUMM (V-SUMM), while instances of them with an actual cor-
respondence model are denoted as V-SUMs. These CPRs make dependencies between
metamodels explicit and ensure that after modifications in one model, all other depen-
dent models are updated consistently. A V-SUM operates inductively, i.e., it is always
consistent before a modification and ensures that it is again consistent after modifica-
tions by executing the CPRs. As a consequence, a V-SUM behaves completely like an
essential SUM in the OSM approach since it provides the same guarantees regarding
consistency.

Consistency preservation in VITRUVIUS is performed in a delta-based manner. In
other words, it tracks edit operations instead of comparing two models states like in
state-based consistency preservation. This results in less information loss [8]. For exam-
ple, a state-based approach cannot reliably distinguish the deletion and creation of an
element from renaming it, whereas a delta-based approach tracks the actual operations.
Specific languages have been developed that support the definition of such delta-based
consistency preservation in the VITRUVIUS approach [17]. Consistency preservation in
VITRUVIUS was first investigated on a case study of component-based architectures,
Java code and code contracts [19].

The development of a framework such as VITRUVIUS first involves a platform spe-
cialist who defines the interface of a V-SUM, implements the logic for executing CPRs
and defines or selects specific languages or at least an interface to define CPRs. The cur-
rent implementation of the VITRUVIUS approach (http://vitruv.tools) based on Ecore
contains a Java-based definition of V-SUMs and provides two languages for defining
consistency preservation at different abstraction levels.

The methodologist selects metamodels and reuses or defines CPRs for those selected
metamodels to define a V-SUMM. Finally, one or more developers can instantiate the
V-SUMM, derive views according to existing or newly defined viewtypes, and perform
modifications of them. A change recorder tracks modifications in a view and applies
them to the V-SUM as a sequence of atomic change events (creation, deletion, insertion,
removal or replacement). After each of these changes is applied, the responsible CPRs
are executed to restore consistency, which results in an inductively consistent V-SUM.

http://vitruv.tools

Classifying Approaches for Constructing Single Underlying Models 361

Req

UML

Java

CPR

CPR

VTUML

VTJava

VTReq

VTTraceability V-SUMM

MM Metamodel

CPR
Consistency
Preservation
Rule

VT Viewtype

View Trans-
formation

Java-requirements view
programmer

uses

C1

C2 C3

UML class diagram viewarchitect

uses

Fig. 4. Example V-SUMM in VITRUVIUS (extended version of Fig. 3 of [25]).

6.2 Application to the Running Example

We depict an exemplary V-SUMM for the metamodels from Fig. 1 in Fig. 4. It consists
of the reused metamodels and a set of CPRs between them. For Consistency Rule 1
a CPR defines the creation of a Java class ClassType in reaction to the creation of
a UML class Class. The methodologist is free to specify the expected behavior in
the other direction, i.e., whether a UML class is created for each Java class or if the
developer shall be asked what to do. Additionally, the rule propagates all changes on
the name or className to the respective other model. The additional requirements
traces in Consistency Rule 2 can be expressed by matching requirements and methods
after adding or modifying methods as well as requirements, and by storing them as
correspondences in the existing trace model. Alternatively, such links could be specified
in an additional model, which is modified by a CPR whenever a requirement or method
is changed.

Two types of projectional viewtypes can be defined on a V-SUMM. First, existing
viewtypes for the existing metamodels, such as a textual editor for Java or a graphical
editor for UML, can be reused. In Fig. 4, these viewtypes are VTJava, VTUML and VTReq,
which provide concrete syntaxes for the original metamodels from Fig. 1. Second, the
methodologist and the developers can define additional viewtypes, which may combine
information from different metamodels and their relations defined in the CPRs. Figure 4
contains VTTraceability, which displays the trace information for Consistency Rule 2 by
extracting information from Java and the requirements model, as well as from the cor-
respondences generated by the CPRs. This viewtype could, as exemplarily sketched
in Fig. 4, show the Java code with annotations attached to the methods that show the
requirements they fulfill. Such viewtypes may combine information from multiple meta-
models, which needs to be supported by an appropriate language. In VITRUVIUS, that
can be expressed with the ModelJoin language [5].

6.3 Classification Regarding the Criteria

VITRUVIUS follows a bottom-up construction approach (C1) to build a pragmatic SUM
(C2). This V-SUMM may contain redundancies, but keeps them consistent by explicit

362 J. Meier et al.

consistency preservation mechanisms. In general, VITRUVIUS provides good support
for reusability and evolvability of metamodels and SUMMs, but requires considerable
effort to reuse existing models and to define new viewtypes (see Table 1).

Metamodel Reusability (E1) is well supported (“easy”), because existing meta-
models can be integrated into a V-SUMM as is without further effort. They serve as an
unmodified component of a V-SUMM. On the contrary, Model Reusability (E2) is only
moderately (“middle”) supported by VITRUVIUS. Although existing models can be inte-
grated into a V-SUM, they first need to be consistent according to the consistency rules,
and second, have to be enriched with the correspondences that would have been created
if the consistency preservation rules were executed during the creation of the models.
This is necessary because of the inductive characteristics of the approach. Viewtype
Definability (E3) is comparatively difficult (“hard”) using VITRUVIUS, because infor-
mation that is to be projected into a view is potentially spread across several models
so that information has to be combined and aggregated. This may require high effort
and especially high knowledge about the involved metamodels from the person who
specifies a viewtype. To ease viewtype definition, VITRUVIUS provides the specialized
ModelJoin language for defining viewtypes on several models.

One well supported feature is Language Evolvability (E4) (“easy”). Due to the
integration of original metamodels into the V-SUMM, their evolution can be easily sup-
ported. Necessary adaptations after the evolution of a metamodels concern the defined
CPRs, as well as defined viewtypes. Finally, SUMMReusability (E5) is high (“easy”),
because it is easy to add or remove single metamodels from the V-SUMM by just adding
or removing the metamodels with associated CPRs. For that reason, the reuse of a sub-
set of the metamodels in a V-SUMM is well supported and enables the reuse of parts of
a V-SUMM in a different context and the combinations with other V-SUMMs.

Regarding technical design decisions, the configuration languages (T1) in VITRU-
VIUS consist of the declarative Mappings language and the imperative Reactions lan-
guage for specifying CPRs, as well as the ModelJoin language for defining view types
on several metamodels. All concepts of VITRUVIUS are designed for a meta-metamodel
(T2) that conforms to the EMOF standard. This especially includes the Ecore meta-
metamodel that is used for the current implementation of VITRUVIUS.

7 RSUM

The Role-based Single Underlying Model (RSUM, [30]) follows the same basic idea
as the VITRUVIUS approach where several metamodels are kept consistent with consis-
tency preservation rules. However, the metamodels are no longer regarded as separate,
but can be reconnected and combined with new relations as visualized in Fig. 5.

7.1 Design Objectives

Regarding the design objectives, the RSUM approach differs only slightly from the
VITRUVIUS approach and follows the projectional SUM idea, whereby all information
is stored in a pragmatic SUM of different combined models. Additionally, only projec-
tional views can be generated on this SUM. Compared to the VITRUVIUS approach,

Classifying Approaches for Constructing Single Underlying Models 363

UML

Java
+

Req

CMC

VTReq

VTJava VTUML

VTTraceability

M(M)
pure M(M)

CMC
Consistency
Management
Compartment

VT Viewtype

View Trans-
formation

Fig. 5. SUM approach RSUM.

Req

Java UML

Traceability

SUM(M)1 2
Add As-
sociation

3 5

Change
Multi-
plicity

2x
6

Merge
Classes

Merge
Attributes

7

8

VT Original View(type)

VT SU(M)M

VT New View(type)

i Intermediate (Meta)Model

Integration Operator

Fig. 6. SUM approach MOCONSEMI with
Chain of Configured Operators to integrate
Requirements, UML and Java, adapted
from [25].

which works in the background with object-based programming, the RSUM approach
uses role-based programming as introduced by Kühn et al. [21] in the form of the Com-
partment Role Object Model (CROM). The idea behind CROM is a new partition of
elements into natural types, role types, and compartment types. Naturals describe fixed
objects that play roles in compartments. A role adapts the behavior of a natural in a
compartment and interacts with various other roles in it. The concept of compartments
is used in the RSUM approach to explicitly describe consistency preservation rules
(CPRs) and build relationships [29] between metamodel elements that blur the bound-
aries of the base metamodels. The compartments for consistency assurance follow an
incremental approach and propagate all changes directly to the related elements. Such
incremental direct propagation is also implemented between views and the RSUM, and
back. It is planned to extend the change propagation with the use of transactions.

For the development of the RSUM framework, a platform specialist is required that
provides the basic functionalities for the integration of new views, metamodels, models,
and CPRs. The direct implementations can be automatically generated with Domain
Specific Languages (DSLs), created by the platform specialist, and integrated into the
framework. The current RSUM implementation uses CROM and is based on the SCala
ROLes Language (SCROLL) [23], a role-based programming language in Scala.

The methodologist selects the needed metamodels and then defines all CPRs
between these metamodels in predefined DSLs. Consistency rules differ in two classes,

364 J. Meier et al.

RSUM

11 11 11

RequirementsSpecificationClassDiagram

Requirement
id : EString [0..1]

author : EString [0..1]
text : EString [0..1]

Class
className : EString [1]

Association
name : EString [1]

lowerBound : EInt [0..1]
upperBound : EInt [0..1]

JavaASG

ClassType
name : EString [1]

Method
name : EString [1]

ClassUseClass

TargetSource

MethodsCallingMethods

Target
RoleGroup (1..1)

Source

1

1

1

1

ClassUseType

TargetSource
11

ClassHasMethods

TargetSource
11

MethodsFulfillRequirement

TargetSource
11

ClassUseClass

SourceTarget

JavaHasClasses

TargetSource

ContainRequirement

SourceTarget

ConsistencyManagement

SyncAttribute

Construction

Constructor

Destruction

Destructor

SyncAttributeConsistentNames

SyncSyncManager

0..*0..*

0..*

RsumManagement

RsumManager

ExtensionsExtensions
Extensions

Extension

…

0..*

0..*

0..*

…

Natural

Compartment

Role

Plays Relation

RoleGroup (n..m)

Role . . .

Relation

Role
n..m n..m

Role
n..m

Role cardinality

n..m

Legend:

Fig. 7. RSUM metamodel of the running example.

as exemplified in Sect. 3 with “Consistency Rule 1 & 2”. For rules of the first category,
special consistency relationships are defined using extra consistency management com-
partments (CMCs) in RSUM. The second category of rules creates relational compart-
ments that blur the separation between the integrated metamodels, as described in more
detail in the next paragraph. After that, the developer creates new viewtypes and instan-
tiates views from them on the RSUM. To minimize the learning effort for different SUM
approaches, the RSUM approach uses the syntax of ModelJoin [5] to define viewtypes,
which is used to generate view compartments with incremental change propagation to
the RSUM. In the RSUM, consistency is automatically ensured by the defined CPRs.

7.2 Application to the Running Example

Figure 7 shows an RSUM at the metamodel level resulting from the running exam-
ple in Fig. 1. The basic concept consists of separating all relations from the classes
and managing them in extra relational compartments. This leads to a certain addi-
tional overhead but simplifies the administration of the elements in the RSUM and
the views. Furthermore, they are automatically generated when integrating metamod-
els in the RSUM, whereby this design decision remains hidden from the developer.
Figure 7 highlights three special compartments in grey that are not created by integrat-
ing metamodels. The RsumManagement compartment is the central component of
the RSUM approach and manages the internal elements, the active and inactive views,
and the extensions where currently only one extension for recording changes is pre-
implemented. The other two compartments serve to ensure consistency in RSUM and
are only created when a consistency rule is defined and integrated. In this case, the
ConsistencyManagement compartment (CMC) ensures consistency between the
naturals Class and ClassType, defining what happens to the other element when
deleting, inserting, or modifying one of these elements. This compartment is automat-
ically generated after describing the CPRs from a methodologist in the predefined
DSLs. The last highlighted compartment is the MethodsFulfillRequirement
compartment, which represents a new relation between the naturals Method and
Requirement. This compartment is created by a DSL and then integrated into the

Classifying Approaches for Constructing Single Underlying Models 365

RSUM. This new relation merges the requirements model with the Java source code
model as shown on an abstract level in Fig. 5.

For the generation of views, projections can be generated on all relations (relational
compartments) and naturals. In this approach, the views are implemented as compart-
ments, which means that the elements in the RSUM only play roles in the views and
therefore do not generate materialized views. The flexibility arising from the fact that
roles can be played by other elements at instance level is a big advantage of the role
concept and makes the approach useful.

7.3 Classification Regarding the Criteria

When considering the design criteria, the RSUM approach looks the same as the VIT-
RUVIUS approach. It follows a bottom-up design approach (C1) to create a pragmatic
SUM (C2) and does not resolve inconsistencies but provides consistency management
through CPRs. If there are certain 1-to-1 mappings between model elements in the
CPRs, it would be possible to merge them into one natural type. However, this leads to
disadvantages in a language evolution step.

The reusability of metamodels (E1) is supported as the metamodels have no special
dependencies in the RSUM and new ones can be added without much effort (“easy”).
Regarding the reusability of models (E2), it looks like the reusability of metamodels
without the possibility to compare input models with existing instances (“middle”). Cur-
rently, (meta)models can be automatically integrated into RSUM as Ecore and XMI
files. Since the definition of viewtypes (E3) requires knowledge of the integrated meta-
models, this could lead to some problems (“middle”). If, however, enough knowledge
of the underlying models is available or only predefined viewtypes of the methodologist
are used, the use of ModelJoin no longer poses a problem. The evolution of languages
(E4) is relatively easy due to the integration of metamodels (“middle”). However, not
only the consistency compartments have to be modified, all additional relational com-
partments must be adapted. As in VITRUVIUS, the SUMM (E5) is easy to reuse since
metamodels and consistency relationships can easily be integrated and removed because
of the loosely coupling of all elements provide by the role concept.

Regarding the technical criteria, a DSL is used to generate the CPRs and also view-
types are generated with ModelJoin queries (T1). The management of the created ele-
ments is done by the RsumManagement compartment. In the background the RSUM
approach works with the role-based programming language SCROLL on the CROM
model, which is modeled with ECORE (T2).

8 MOCONSEMI

MOdel CONSistency Ensured by Metamodel Integration (MOCONSEMI, [26]) com-
bines the bottom-up reuse of existing (meta-)models with their operator-based improve-
ment into one more essential SUM.

366 J. Meier et al.

RequirementsSpecification

Requirement
id : EString [0..1]
author : EString [0..1]
text : EString [0..1]

JavaASG

ClassType
name : EString [1]

Method
name : EString [1]

ProjectData

ClassDiagram

Association
name : EString [1]
lowerBound : EInt [0..1]
upperBound : EInt [0..1]

container [1]

content [∗]

asg [0..1]

classes [∗]

class [1]

methods [∗]

calledBy [∗] calling [∗]

containsRequirementsSpecification [∗]

integrator [0..1]

containsJavaASG [∗]

integrator [0..1]

fulfilled [∗]

fulfilledBy [∗]

integrator [0..1]

containsClassDiagram [∗]

classes [∗]
diagram [0..1]

class [1]

associations [∗]

type [1]
usedBy [∗]

SUMM

Fig. 8. SUMM with integrated Requirements, Class Diagrams and Java (taken from [25]).

8.1 Design Objectives

MOCONSEMI is a SUM approach which starts with existing initial models and con-
forming metamodels (exemplarily shown in Fig. 1) and creates a SUM(M) as suggested
by [2]. In practice, many models and metamodels already exist in the form of DSLs
and tools with fixed data schemas. To reuse them, these initial models and metamodels
are integrated and kept in sync as views of the SUM. To achieve this, the initial models
and conforming metamodels have to be transformed into the final SUM and conforming
SUMM. Therefore, the required transformations have to target models and metamodels
together.

After creating the initial SUM(M) as the output of the executed transformations
with the initial (meta)models as input, the initial models have to be kept consistent with
respect to changes made by the developer in the SUM. Therefore, the transformations
have to be executable in an inverse direction from the SUM to the initial models, as
well as in a forward direction. The last main design objective of MOCONSEMI is that
the required transformations are reusable in different projects, not only in software engi-
neering projects.

To fulfill these design objectives, MOCONSEMI uses operators which divide the
whole transformation between initial models and the SUM into chains of small and
reusable parts. Each operator does a small change on the current metamodel (e.g., adds
a new association) controlled by metamodel decisions (e.g., multiplicities, source and
target class of the new association). To achieve the required model co-evolution [14],
the operator also changes the current model to keep it consistent with the changed meta-
model. Degrees of freedom in the model-co-evolution process are influenced by model
decisions, which allow consistency rules to be fulfilled (e.g., specify, when new links
should be added, or if at all). The concatenation of several operators builds the whole
transformation between initial models and SUM. Additionally, the operators can be
used to define new viewtypes on top of the SUMM. The required backward executabil-
ity of operators is attained by combining each operator with an inverse operator, e.g.,
DeleteAssociation for AddAssociation.

8.2 Application to the Running Example

The operators are developed once by the platform specialist and are provided as a
reusable library (currently 23 operators including inverse ones). A supporting frame-

Classifying Approaches for Constructing Single Underlying Models 367

work is under development using Java and a subset of Ecore, reusing parts of Eclipse
EDapt [13], and extending some coupled operators [14] for the needs of MOCONSEMI.

The methodologist reuses the provided operators by combining them as chain of
operators to describe the transformation between initial (meta-)models (Fig. 1) and
SUM(M) (Fig. 8) in step-wise way as shown in Fig. 6 individually for each project.
The methodologist uses the metamodel and model decisions to configure the operators
to support the consistency rules for the current project.

The first step is to combine the initial models and metamodels for Requirements ,
Java and ClassDiagrams only technically at 1 and 3 . For this, the used EMF
framework requires ProjectData and its compositions as container (Fig. 8).After
that, Consistency Rule 2 is realized by the operator AddAssociation 1 → 2 as
the first contentwise integration regarding traceability links between requirements and
methods.It creates a new association between Requirement and Method whenever
required and thereby enables traceability information to store. In the model, the operator
adds links between some methods and requirements as configured by the methodologist
to ensure that a method is linked with those requirements that contain the name of the
method in their text.

Before fulfilling Consistency Rule 1, the operator ChangeMultiplicity is
applied twice 5 as a technical preparation. After that, MergeClasses 5 → 6
merges the two classes Class (from UML) and ClassType (from Java) into one sin-
gle class in the metamodel representing data classes both in UML and Java at the same
time. In the model, matching UML and Java instances are merged into each other, again
controlled by a model decision, which was configured to identify matching instances
when they have the same values for Class.className and ClassType.name.
The motivation for this merging step is the unification of redundant information which
ensures consistency and makes the resulting SUM more “essential”. Finally, MergeAt-
tributes merges the two redundantly name attributes. The last stable model and
metamodel are used as the SUM(M) . The SUMM in Fig. 8 marks the changes done by
the operators in red compared to the initial metamodels in Fig. 1.

Ultimately, MOCONSEMI “migrates” the initial (meta)models to view(type)s on
the SUM(M). Therefore, the developer can change the initial models, the SUM and
the newly defined views in the same way. To propagate the changes automatically into
all other models in order to ensure their consistency, the operator chain is executed in
forward and backward directions.

8.3 Classification Regarding the Criteria

Since MOCONSEMI starts with the initial (meta-)models, it is bottom-up regarding
C1 (see Table 1) and inherits all their initial redundancies. Because the operators can
resolve redundancies in a step-wise way, pureness can be improved until, in the best
case, a SUM(M) without any dependencies is attained (C2).

Metamodel Reusability (E1) is well supported (“easy”), since the initial metamod-
els are used as the starting point of the operator chain. The same counts for the Model
Reusability (E2) (“easy”), since even initial inconsistencies can be resolved by execut-
ing the operator chain in both directions. Viewtype Definability (E3) benefits by the

368 J. Meier et al.

Table 1. Comparison of the four approaches regarding design criteria, selection criteria, and
technical design decisions (extended version of Table 1 from [25]).

Criterion OSM VITRUVIUS RSUM MOCONSEMI

C1 Construction Process top-down bottom-up bottom-up bottom-up

C2 Pureness essential pragmatic pragmatic pragmatic → essential

E1 Metamodel Reusability hard easy easy easy

E2 Model Reusability hard middle middle easy

E3 Viewtype Definability easy hard middle middle

E4 Language Evolvability middle easy middle middle

E5 SUMM Reusability middle easy easy middle

T1 Configuration Languages Ecore, Mappings/React., RCs, Bidirect. Operators

DeepATL ModelJoin ModelJoin

T2 Meta-Metamodel PLM Ecore CROM Ecore

explicit and integrated SUMM, since all information is collected and integrated inside
one metamodel (“middle”). In contrast to OSM, the SUM(M) in MOCONSEMI might
still contain redundant information, which makes the definition of new viewtypes harder,
since the same information can be found at different places. The Language Evolvabil-
ity (E4) in MOCONSEMI highly depends on the kind of change. Additional elements
in the metamodels are directly added to the SUMM without any changes in the operator
chain, while big refactorings in the metamodels require lots of changes in the opera-
tor chain (“middle”). SUMM Reusability (E5) is easy when adding new metamodels,
because the existing chain of operators is lengthen by some more operators. Removing
an already integrated metamodel requires all the operators which were needed for its
integration to be removed or changed (“middle”). As a result, E5 depends on the order
of integrated initial (meta-)models (“middle”).

Regarding technical design decisions, MOCONSEMI uses chains of operators as a
configuration language which change metamodels and models together to create the
initial SUM(M) and to keep all models consistent (T1) . The same operators allow new
views to be defined. The current implementation supports a subset of ECore (T2) .

9 Discussion and Comparison of SUM Approaches

This section summarizes the classification of the four presented SUM approaches in
Table 1 regarding the three groups of classification criteria. Each approach’s classifi-
cation is described in detail in its respective section, so this section contains a more
abstract discussion about the dependencies of the criteria on each other. It also answers
the general question of which approach fits best for which situation and why. We con-
clude this section with the idea of combining SUM approaches to create more flexible
ones.

Classifying Approaches for Constructing Single Underlying Models 369

C1: Construction Process

C2: Pureness

bottom
-up

top-
down

pragmatic
(initial dependencies)

pragmatic → essential
(some dependencies resolved)

essential
(no dependencies)

Req

Java UML

Traceability

SUMM
+

SUM

OSM

Req

Java

CPR
VTReq

VTJava

Vitruvius

Req

Java UML

Traceability

SUM(M)1 2 3 4 5

6

7

MoConseMI

UML

+
CMC

VTUML

VTTraceability

RSUM

Fig. 9. Conceptual Classification of SUM Approaches.

9.1 Design Criteria

Design criteria form the foundation of every approach and therefore have considerable
influence on the manifestation of the selection criteria and limit the technical implemen-
tation possibilities. Figure 9 shows the solution space spanned by the design criteria and
the placement of the four presented approaches. Each approach can be distinguished as
a top-down or bottom-up approach (C1), whereby the decision to use existing models is
considered as a starting point. Three of the presented approaches (VITRUVIUS, RSUM,
and MOCONSEMI) follow a bottom-up approach while one (OSM) follows a top-down
approach. The top-down variant has the advantage that a new model is created and can
be adapted to the requirements of users. This facilitates the definition of new viewtypes
and avoids redundancy. However, it offers no reuse opportunities and makes adaptation
and evolution more difficult. Bottom-up approaches, on the other hand, offer increased
reusability, but require more effort to manage the (meta)models.

The use of an essential or pragmatic SUM(M) approach (C2) is directly influenced
by the decision whether a top-down or bottom-up approach is used (C1). In a bottom-
up approach, it is hard to achieve a SUM that is free of redundancy. The MOCONSEMI
approach is the only one of the four approaches that offers a way of moving from a
pragmatic to an essential SUM(M) by creating a redundancy-free SUM(M) bottom-up.
In a top-down approach, redundancy can already be avoided by construction.

9.2 Selection Criteria

The selection criteria depend mainly on the underlying design criteria as mentioned in
the previous section. Metamodel Reusability (E1) is better supported by bottom-up

370 J. Meier et al.

approaches than by top-down approaches, since they are already based on the meta-
models and no new ones are generated. The same applies to Model Reusability (E2).
However, it depends on the consistency of the models to be integrated and the already
integrated models. In addition, the mechanisms for reusability depend mainly on the
automatic modification of the basic metamodels because only changes that can be auto-
matically undone promote reusability. In contrast, Viewtype Definability (E3) depends
on the type of SUM(M) approach. Due to the absence of redundancy and the minimality
of an essential SUM(M) approaches, the creation of viewtypes is much easier. However,
if pragmatic approaches can provide reliable consistency mechanisms and viewtypes
are only defined on partial models, they can also support the creation of viewtypes in
a relatively simple way. The creation of viewpoints only gets complicated when they
cross model boundaries.

Language Evolvability (E4) means in general the evolution of metamodels. In prag-
matic approaches this should be easier than in essential ones because they are con-
structed from existing metamodels and have formally defined relationships between
them. In contrast, these approaches must preserve consistency after the evolution steps,
i.e., the adaptation of the internal model operators and consistency preservation rules.
In essential approaches, there exists only a conceptual relation between the existing
artifacts and the SUMM, i.e., a manual adaptation of the new metamodel must be done
to ensure redundancy-freeness and minimality that leads to high effort and error prone-
ness. SUMM Reusability (E5) does not have much to do with criteria E1-E4, since it
is about adding and removing single metamodel elements in the SUMM. Pragmatic and
essential approaches achieve this in a different way. Pragmatic approaches facilitate the
simple addition and removal of metamodels, as the structure of the original metamodels
still exist separately and the change operations are performed on the abstract metalevel.
In contrast, essential approaches make it easy to fine-tune metamodels to project needs,
since the manipulation of the essential SUMM is possible at the level of individual
model elements. The existence of only one model without dependencies removes the
clear boundaries between the starting metamodels.

The application of the selection criteria highlights the general differences between
the four SUM approaches. None of the presented criteria is fulfilled by one approach
best, i.e., each approach has its pros and cons regarding all considered criteria. In gen-
eral, each selection criteria can be realized in a simple way if the corresponding design
criteria is selected, or in complex way using a lot of boilerplate code if a different (non-
corresponding) design criteria is selected. From the correlation of design and selection
criteria, dependencies can also be determined within the selection criteria. The list of
criteria presented here cannot be considered complete and it is unclear whether these
are the most important criteria for selecting a SUM approach. However, the criteria can
be used as an initial indicator of which approach would be best, since relevant situations
such as the evolution and reusability of metamodels and other points are covered.

9.3 Technical Design Decisions

The technical design decisions (T1 and T2) are independent of the two categories
described before, since the implementation of each approach depends on the preferred

Classifying Approaches for Constructing Single Underlying Models 371

RSUMOSM VITRUVIUS MOCONSEMI

E5: SUMM Reuse

else

E3: Viewtypes required

E1, E2: no Reuse
of (Meta)Models

E4: Language Evolution

E2:
inconsistent Models

T2: Deep Modeling

T2: Role-oriented

T2: Object-oriented

T1: declarative language T1: single language

C
on
ce
pt
ua
l

Te
ch
ni
ca
l

Fig. 10. Process for selecting SUM Approaches.

languages but could be done with different technical choices. The current implemen-
tations for each of the four approaches are presented here, all of which are constantly
evolving. The used Configuration Languages (T1) apply the generic approaches to
specific application projects. These configuration languages contain transformation lan-
guages to manage the consistency in, and the integration of models into, the SUM. In
addition, they imply query languages to realize initial and new view(type)s on top of the
SUM. If we consider the Meta-Metamodel (T2) of the four approaches they cover the
complete space between object-oriented modeling via role-oriented modeling to deep
modelling, which show that each technology allows the realization of SUM approaches.

9.4 Process for Approach Selection

After describing the overall differences between the four SUM approaches regarding the
different criteria, in this section we describe a process for selecting a SUM approach, as
illustrated in Fig. 10. This process considers the choice of an approach from a technical
and a conceptual point of view.

From a conceptual point of view the main question is about the existence and degree
of reuse of legacy tools or metamodels (E1 and E2). If there are no tools or metamodels
to reuse, the top-down OSM approach fits most because it defines a new metamod-
els without redundancy that can avoid dependencies to external tool vendors. In addi-
tion, OSM provides a simple viewtype definition strategy (E3). If the reusability of
(meta-)models or viewtypes is important, bottom-up approaches (C1) like VITRUVIUS,
RSUM, or MOCONSEMI are a better choice. These approaches are compatible to exist-
ing tools or even to complete development environments and facilitate integration with-
out remodeling models. When the models have inconsistencies, MOCONSEMI is best
because the models contained therein do not have to be conform to any specific consis-
tency rules and can be initially adapted. If the reusability of the SUMM (E5) is more
important, VITRUVIUS or RSUM are the most appropriate. These approaches allow
the modular definition of consistency relationships and the reusability of these and the

372 J. Meier et al.

Table 2. Main advantages and disadvantages of approaches with exemplary application areas
(extended version of Table 2 from [25]).

OSM VITRUVIUS RSUM MOCONSEMI

Advantages Easy Viewtype Definition Reuse of Metamodels/Tools Reuse of Models +
Metamodels

Reuse of Models +
Metamodels

No Dependencies to Legacy
Tools

Modular Views Modular Views Easy + incremental
Integration

Disadvantages No Support for Existing
Artifacts

Difficult Reuse of Models Overhead for
role-modeling and
programming

No Modularity

Exemplary
Application
Areas

No Reuse of (Meta-)Models Reuse of Metamodels Reuse of (Meta-)Models Reuse of (Meta-)Models

New Domain Description
Language

Combination of Existing
Standards for new Projects

Runtime adaptation and
integration of
(Meta-)Models

Software
Re-Engineering
Activities

(meta-)models across projects. VITRUVIUS and RSUM differ in the complexity of view
definition (E3) (use RSUM) and language evolution (E4) (use VITRUVIUS).

If the selection of a SUM approach is based on technical specifications, the question
of the implementation paradigm (T2) arises first. The OSM prototype implementation
currently uses deep modeling for the implementation, whereby RSUM is based on
the role-based programming paradigm. In contrast, the approaches MOCONSEMI and
VITRUVIUS use object orientation. One important difference between VITRUVIUS and
MOCONSEMI is the type of configuration languages (T1) supported. VITRUVIUS uses
multiple declarative languages in while MOCONSEMI only uses a single language.

In summary, the guideline in Fig. 10 offers a decision-making aid for selecting the
most suitable SUM approach from a technical or conceptual point of view. In addi-
tion, Table 2 summarizes the main advantages and disadvantages of the four SUM
approaches.

9.5 Combination of SUM Approaches

As well as selecting a single SUM approach (Sect. 9.4), there can sometimes also be
advantages in combining several SUM approaches. Since SUMs can be accessed by
well defined views, their provided viewtypes can be used to merge several SUMs into
a single unified SUM. If an essential SUM was defined to support the modeling of
a specific aspect of a system using the OSM approach, it could be combined with
other already existing metamodels in pragmatic SUMs using the VITRUVIUS, RSUM
or MOCONSEMI approach.

A similar strategy helps to ease the construction of pragmatic SUMs. If several
(meta-)models are combined, pragmatic SUMs can become incomprehensible because
of the growing number of interrelations between the (meta-)models. Instead, combining
only small numbers of metamodels into a pragmatic SUM and hierarchically compos-
ing these pragmatic SUM into larger SUMs reduces the complexity of each individual
SUM and improves their reusability. For example, it may be reasonable to combine
highly related metamodels, such as object-oriented programming languages and UML
class diagrams, into one SUM, which is equivalent to create an essential SUM, and to

Classifying Approaches for Constructing Single Underlying Models 373

combine that SUM with other, less related metamodels instead of combining them all
together. Nevertheless, this currently only represents a conceptual possibility and its
feasibility and applicability have to be further investigated in future work.

10 Conclusion

Larger and more complex systems require mechanisms to ensure holistic consistency
during system development. This paper presents uniform terminology and a criteria
catalog for the classification of approaches that use a SUM-based approach as a solution
to the consistency problem. These are then used to define a set of guidelines that can
be used to select which one of the four presented SUM approaches, OSM, VITRUVIUS,
RSUM, and MOCONSEMI, is the most suitable for a particular project. To this end,
the selection of an approach can be considered either from a technical point of view
based on the programming paradigm or from a conceptual point of view based on the
selection criteria including metamodel reusability and viewtype definability.

The four presented approaches cover the entire solution space available at the
present time. The OSM approach describes a top-down approach where a pure SUM
is created without redundancies. On the other hand, the RSUM and VITRUVIUS

approaches are based on pragmatic SUMs that take a bottom-up approach to keep mul-
tiple models consistent through defined relationships. MOCONSEMI also introduces a
bottom-up approach, but can move between pragmatic and essential SUMs since redun-
dant information can be removed. We are not currently aware of an implementation of
a pragmatic top-down approach.

OSM is regarded as the initiator of the initial SUM idea, where models are only
views of an entire model and are projected from it by transformations. RSUM, VIT-
RUVIUS, and MOCONSEMI are concrete strategies for constructing a pragmatic imple-
mentation, since the use of a single, redundancy-free model has some disadvantages as
described in the discussion.

References

1. Atkinson, C.: Component-Based Product Line Engineering with UML. Addison-Wesley,
Boston (2002)

2. Atkinson, C., Stoll, D., Bostan, P.: Orthographic software modeling: a practical approach
to view-based development. In: Maciaszek, L.A., González-Pérez, C., Jablonski, S. (eds.)
ENASE 2008. CCIS, vol. 69, pp. 206–219. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14819-4 15

3. Atkinson, C., Tunjic, C., Moller, T.: Fundamental realization strategies for multi-view spec-
ification environments. In: 19th International Enterprise Distributed Object Computing Con-
ference, pp. 40–49. IEEE (2015)

4. Bruneliere, H., Burger, E., Cabot, J., Wimmer, M.: A feature-based survey of model view
approaches. Softw. Syst. Model. 9764, 138–155 (2017)

5. Burger, E., Henß, J., Küster, M., Kruse, S., Happe, L.: View-based model-driven software
development with ModelJoin. Softw. Syst. Model. 15(2), 472–496 (2014)

6. Codd, E., Codd, S., Salley, C.: Providing OLAP (On-line Analytical Processing) to User-
Analysts: An IT Mandate. Codd & Associates, Manchester (1993)

https://doi.org/10.1007/978-3-642-14819-4_15
https://doi.org/10.1007/978-3-642-14819-4_15

374 J. Meier et al.

7. Dayal, U., Bernstein, P.A.: On the updatability of network views–extending relational view
theory to the network model. Inf. Syst. 7(1), 29–46 (1982)

8. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From state- to
delta-based bidirectional model transformations: the symmetric case. In: Whittle, J., Clark,
T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 304–318. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24485-8 22

9. Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M.: Viewpoints: a frame-
work for integrating multiple perspectives in system development. Int. J. Softw. Eng. Knowl.
Eng. 2(1), 31–57 (1992)

10. Frank, U.: Multi-perspective enterprise modeling (MEMO) - conceptual framework and mod-
eling languages. In: Hawaii International Conference on System Sciences (HICSS), pp. 72–
81 (2002)

11. Goldschmidt, T., Becker, S., Burger, E.: Towards a tool-oriented taxonomy of view- based
modelling. In: Proceedings of the Modellierung 2012. GI-Edition – Lecture Notes in Infor-
matics (LNI), pp. 59–74. GI e.V. (2012)

12. Haren, V.: TOGAF Version 9.1. Van Haren Publishing, Zaltbommel (2011)
13. Herrmannsdoerfer, M.: COPE – a workbench for the coupled evolution of metamodels and

models. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp.
286–295. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19440-5 18

14. Herrmannsdoerfer, M., Vermolen, S.D., Wachsmuth, G.: An extensive catalog of operators
for the coupled evolution of metamodels and models. In: Malloy, B., Staab, S., van den Brand,
M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 163–182. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-19440-5 10

15. Iacob, M., Jonkers, D.H., Lankhorst, M., Proper, E., Quartel, D.D.: ArchiMate 2.0 Specifica-
tion: The Open Group (2012). http://doc.utwente.nl/82972/

16. ISO/IEC/IEEE: ISO/IEC/IEEE 42010:2011(E): Systems and Software Engineering - Archi-
tecture Description. International Organization for Standardization, Geneva, Switzerland
(2011)

17. Kramer, M.E.: Specification languages for preserving consistency between models of differ-
ent languages. Ph.D. thesis, Karlsruhe Institute of Technology (KIT) (2017)

18. Kramer, M.E., Burger, E., Langhammer, M.: View-centric engineering with synchronized
heterogeneous models. In: Proceedings of the 1st Workshop on View-Based, Aspect-
Oriented and Orthographic Software Modelling, VAO 2013, pp. 5:1–5:6. ACM (2013)

19. Kramer, M.E., Langhammer, M., Messinger, D., Seifermann, S., Burger, E.: Change- driven
consistency for component code, architectural models, and contracts. In: 18th International
ACM SIGSOFT Symposium on Component-Based Software Engineering, CBSE 2015, pp.
21–26. ACM (2015)

20. Kruchten, P.B.: The 4+1 view model of architecture. IEEE Softw. 12(6), 42–50 (1995)
21. Kühn, T., Leuthäuser, M., Götz, S., Seidl, C., Aßmann, U.: A metamodel family for role-

based modeling and programming languages. In: Combemale, B., Pearce, D.J., Barais, O.,
Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706, pp. 141–160. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11245-9 8

22. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and Iterative Development, 3rd edn. Prentice Hall, Upper Saddle River (2004)

23. Leuthäuser, M., Aßmann, U.: Enabling view-based programming with scroll: using roles and
dynamic dispatch for establishing view-based programming. In: Joint MORSE/- VAO Work-
shop on Model-Driven Robot Software Engineering and View-based Software-Engineering,
pp. 25–33. ACM (2015)

24. Linington, P.F., Milosvic, Z., Tanaka, A., Vallecillo, A.: Building Enterprise Systems with
ODP. Chapman and Hall, London (2011)

https://doi.org/10.1007/978-3-642-24485-8_22
https://doi.org/10.1007/978-3-642-19440-5_18
https://doi.org/10.1007/978-3-642-19440-5_10
https://doi.org/10.1007/978-3-642-19440-5_10
http://doc.utwente.nl/82972/
https://doi.org/10.1007/978-3-319-11245-9_8
https://doi.org/10.1007/978-3-319-11245-9_8

Classifying Approaches for Constructing Single Underlying Models 375

25. Meier, J., et al.: Single underlying models for projectional, multi-view environments. In:
7th International Conference on Model-Driven Engineering and Software Development, pp.
119–130. SCITEPRESS - Science and Technology Publications (2019)

26. Meier, J., Winter, A.: Model consistency ensured by metamodel integration. In: 6th Interna-
tional Workshop on The Globalization of Modeling Languages, Co-Located with MODELS
2018 (2018)

27. Tunjic, C., Atkinson, C., Draheim, D.: Supporting the model-driven organization vision
through deep, orthographic modeling. Enterp. Model. Inf. Syst. Archit.-Int. J. 13(2), 1–39
(2018)

28. Vangheluwe, H., de Lara, J., Mosterman, P.J.: An introduction to multi-paradigm modelling
and simulation. In: AIS’2002 Conference, pp. 9–20 (2002)

29. Werner, C., Schön, H., Kühn, T., Götz, S., Aßmann, U.: Role-based runtime model synchro-
nization. In: 44th Euromicro Conference on Software Engineering and Advanced Applica-
tions (SEAA), pp. 306–313 (2018)

30. Werner, C., Aßmann, U.: Model synchronization with the role-oriented single underlying
model. In: MODELS 2018 Workshops (2018)

31. Zachman, J.A.: A framework for information systems architecture. IBM Syst. J. 26(3), 276–
292 (1987)

TRILATERAL: A Model-Based
Approach for Industrial CPS –

Monitoring and Control

Markel Iglesias-Urkia1(B) , Aitziber Iglesias1 , Beatriz López-Davalillo1 ,
Santiago Charramendieta1 , Diego Casado-Mansilla2 , Goiuria Sagardui3 ,

and Aitor Urbieta1

1 Ikerlan Technology Research Centre, Po J. M. Arizmendiarrieta, 2,
20500 Arrasate-Mondragón, Spain

{miglesias,aiglesias,blopezdavalillo,scharramendieta,aurbieta}@ikerlan.es
2 Deusto Institute of Technology, University of Deusto, Av. Universidades, 24,

48007 Bilbao, Spain
dcasado@deusto.es

3 Mondragon Unibertsitatea, Loramendi, 4, Apartado 23,
20500 Arrasate-Mondragón, Spain

gsagardui@mondragon.edu

Abstract. Internet of Things (IoT) devices are advanced embedded sys-
tems within a Cyber-Physical System (CPS) that require to be monitored
and controlled. Such necessities are becoming increasingly common due
to the advent of the Industry 4.0 among other smart deployments. A
recurring issue in this field is that existing and new projects are rein-
venting the wheel by starting the development and deployment of IoT
devices from scratch. To overcome such loss of efficiency in development,
we propose to use Software Product Line (SPL) and Model-Based Engi-
neering (MBE) since they seem promising in the literature in order to
accelerate and ease the development software while reducing bugs and
errors, and hence, costs. Additionally, a personalized solution is needed
since not all Industrial CPSs (ICPSs) are composed by the same devices
or use the same IoT communication protocols. Thus, we realized that
a Domain Specific Language (DSL) along with a standard, will allow
the user to graphically model the ICPS for this to be monitored and
controlled. Therefore, this work presents TRILATERAL, a SPL Model
Based tool that uses a Domain Specific Language (DSL) to allow users to
graphically model ICPSs with a IEC 61850 based metamodel, a standard
originally designed for electrical substations but that has also been used
in other domains. TRILATERAL automatically generates an artifact
in order to create a middleware between the ICPS and the monitoring
system to monitor and control all the devices within the ICPS. This
tool is designed, implemented and finally, validated with a real use case
(catenary-free tram) where different lessons have been learned.

This article is an extended version of the conference paper in [12].

c© Springer Nature Switzerland AG 2020
S. Hammoudi et al. (Eds.): MODELSWARD 2019, CCIS 1161, pp. 376–398, 2020.
https://doi.org/10.1007/978-3-030-37873-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37873-8_16&domain=pdf
http://orcid.org/0000-0001-7708-3252
http://orcid.org/0000-0001-9220-047X
http://orcid.org/0000-0002-2063-1833
http://orcid.org/0000-0002-4718-1342
http://orcid.org/0000-0002-1070-7494
http://orcid.org/0000-0003-1002-456X
http://orcid.org/0000-0001-5836-4198
https://doi.org/10.1007/978-3-030-37873-8_16

TRILATERAL: A Model-Based Approach for Industrial CPS 377

Keywords: Internet of Things (IoT) · Cyber-Physical System (CPS) ·
Domain Specific Language (DSL) · Software Product Line (SPL) · IEC
61850 · Model-Based Engineering (MBE)

1 Introduction

The Fourth Industrial Revolution, also named Industry 4.0 is playing a pivotal
role in several industrial domains [13,24], such as Smart Grids, Smart Manufac-
turing and Smart Logistics. This paradigm joins the cyber and physical world in
Cyber-Physical Systems (CPSs), allowing to interconnect all kind of devices of
the industrial processes with the Internet of Things (IoT) [22]. CPSs integrate
the cyber world of computation with the physical world of industrial processes.
On the other hand, IoT devices are embedded devices that have connectivity,
and when they are deployed on industrial scenarios, the requirements in terms of
monitoring and control are usually more advanced than consumer systems [33].
Joining these embedded IoT devices with the IoT for network monitoring and
control of the physical processes is what enables the Industry 4.0.

CPSs in industrial domains are usually named Industrial CPSs (ICPSs).
Being able to monitor and control the ICPSs remotely is becoming essential, as
it enables to perform automated analysis, facilitate decision making, and finally,
detect anomalies. Thus, monitoring and controlling enables the transition of a
traditional industrial system towards an ICPS in the context of Industry 4.0.
ICPSs can have a high number of devices, and capturing data and being aware
of their state during operation is essential [14]. In these scenarios, IoT communi-
cation protocols make the communication between the stakeholder and the ICPS
possible. Each stakeholder has different needs, hence, monitoring/controlling sys-
tems and IoT communication protocols must be adapted [11].

ICPSs integrate different devices that can be classified into sensors, actuators
and displays [13]. Therefore, considering the number of devices an ICPS can have,
connecting to them to capture data and know what is happening in the ICPS
during operation is important. That is why IoT communication protocols are
needed, as they make the communication between the stakeholder and the ICPS
possible. Notice that each stakeholder has different needs. Thus, in each case,
the monitoring/controlling system and IoT communication protocols must be
adapted to the stakeholder.

The adaptation of IoT communication protocols is based on the stakeholder’s
needs or the industrial environment. At the same time, the ICPSs usually are
composed by different devices even if they are from the same industrial domain.
As in industrial domains safety is of critical importance, reducing the complex-
ity of the design, development, testing and validation can decrease development
time and costs increasing code quality. Due to such commonalities and variabil-
ity within the same domains and across the domains, a common solution for
ICPSs can benefit from the System Product Line (SPL) paradigm. As Capilla
et al. assert, applying SPL paradigm can improve productivity and reduce costs
[6]. In a SPL, a common architecture is defined in which the user can configure

378 M. Iglesias-Urkia et al.

the exposed variability. Hence, users can produce specific systems by reusing
common elements and configuring the variability. Combining a Domain Spe-
cific Language (DSL) with a SPL enables the communication with stakeholders
simplifying complex code [8]. A DSL provides a notation adapted to an appli-
cation domain and it is based on the concepts and relevant characteristics of
the domains [35]. With DSL, a system can be more flexible while providing a
more immediate response to the stakeholder [23], and at the same time, SPL
enables to produce specific systems reusing common elements and configuring
variabilities.

Taking into account the need to use different IoT communication protocols
to communicate the physical world with the virtual environment, we analyzed
an international standard, IEC 61850 [34]. IEC 61850 is a standard defined by
the International Electrotechnical Commission (IEC) to enable the modelling,
control and monitoring of electrical substations. This standard defines a Basic
Information Model, some services to interact with the model and recommen-
dations for communication protocols, although it is open for the use of addi-
tional ones. This standard is divided in five parts, with specific parts for general
specifications, configuration, model definition and communications, and testing.
Although IEC 61850 was designed for electrical substations, at Ikerlan we have
successfully use it in other use cases such as smart elevators, catenary-free trams
and wind turbine farms as it is described on the following pages. Following the
knowledge acquired from these projects, we came to the conclusion that it has
become necessary to provide a common solution that is able to meet stakeholder’s
needs, both in terms of abstract device definition and the use of IoT commu-
nication protocols. TRILATERAL (sofTware pRoduct lIne based muLtidomain
iot ArTifact gEneration for industRiAL cps) is our proposal for addressing this
issue and it aims to become a tool to join IEC 61850, Industry 4.0 (including IoT
and CPS), and SPL. TRILATERAL was conceived as a tool that follows Model
Based Engineering (MBE) techniques, and using the IEC 61850 standard, SPL
paradigm and a DSL, allows for a user to graphically configure IoT communica-
tion protocols (HTTP-REST, WS-SOAP and CoAP). With that configuration,
TRILATERAL automatically generates the source code that allows to transmit
data between the cyber and the physics part in order to monitor/control an
ICPS.

This book chapter is the extension of a conference paper previously presented
at Modelsward 2019 [12], which presents TRILATERAL, a tool to generate code
automatically based on the IEC 61850 standard, with the previously presented
but extended contributions: (1) problem statement; and (2) related literature. In
addition, this book chapter introduces the following novel contributions: (3) the
description of the implementation; (4) a general evaluation of TRILATERAL;
and (5) application of TRILATERAL on a real use case, i.e., a catenary-free
tram.

The rest of this chapter is organized as follows. The next chapter states the
problem. Section 3 analyzes the related literature. Next, the used technological
tools are explained, followed by the proposed design, i.e., TRILATERAL. In

TRILATERAL: A Model-Based Approach for Industrial CPS 379

Sect. 6, the implementation of TRILATERAL is explained and the next section
provides a general evaluation of our proposal and a validation on a catenary-free
tram use case. Finally, we conclude this book chapter in Sect. 8.

2 Problem Statement

Considering the domain analysis fulfilled in the previous work [13], we realized
that different domains have common needs in terms of control and monitor-
ing. This is due to the important role that Industry 4.0 is playing on different
industrial domains.

Personalized Solution 1

Manual Code
Generation 1

Manual Model
Implementation 1

Ad-hoc
Model 1

Industrial Domain 1

Can we used the
same model?

Implement MetaModel

yes

Can the code be
automatically
generated?

yes

no

Implement Automatic
Code Generation

no

??

??

Can the model
be generic?

??

yes

no

Fig. 1. Manual vs Automated processes.

As shown in Fig. 1, every ICPS is different, i.e., it is composed by different
devices [14], that is why, if data from the devices needs to be captured, usually
an ad-doc solution is required. As this solution is manual, the implementation
process is error-prone [3,32]. This makes the implementation of every model
costly (in terms of time, resources, etc.). Thus, taking into account that dif-
ferent industrial domains share requirements, can the ICPS be represented by a
base model? If the model is not suitable, the model needs to be designed for each
project. Otherwise, can we generate a generic model?, if so, a metamodel can be
implemented, which can be used to describe a specific model instead of imple-
menting the model manually. Finally, can the code be generated automatically?

380 M. Iglesias-Urkia et al.

If not, the source code needs to be manually written. Else, a code generator
can be developed in order to automatically generate the source code and give a
personalized solution from a common base.

Following the process presented in Fig. 1, our proposal is to choose a model
that is valid for different industrial domain in order to create a metamodel. In
this manner, personalized models that conform the metamodel can be configured,
making the process less error-prone and reducing development cost. In order to
give a solution, we believe that MBE and SPL are two promising paradigms to
provide a solution. Additionally, using a DSL promotes effective communication
with stakeholders which can help to give a personalized solution. Besides, the
use of standards have the following advantages:

– Interoperability.
– Intuitive device and data modeling and naming, using hierarchical structure,

instead of a plainly formatted one.
– Lower installation, configuration and maintenance costs.

3 Related Work

There are several works that address the issues of maintenance costs of devel-
oping different industrial systems. SPL and MBE are two paradigms that are
being increasingly used in the industry [6,36]. [1,13,30,32] research the usage of
SPL and MBE in ICPSs, managing the variability of different devices inside a
ICPS. DSL is also used to manage the variability of the ICPSs [30]. An approach
for modeling IoT systems with a web-based DSL has also been proposed in [31].
Another proposal of DSL use, focusing on the resource constrained devices of
the IoT, is presented in [25], where the behaviour of client nodes is dynamically
changed from a gateway.

Regarding the use of models, Iglesias et al. [13] combine the IEC 61850 and
IEC 62264 standards to capture the data generated in an ICPS using SPL and
MBE. Focusing on IEC 61850, [17,21] review the usage of different communi-
cation protocols along with devices supporting the standard. The IEC 61850
standard proposes the use of MMS as the communication protocol, while the
related IEC 61400 proposes a SOAP Web-Services [10] mapping. Research has
been done regarding the use of other protocols, i.e., CORBA [28], DDS [2,4],
or a combination of both [5]. [26,27] are the first works considering a REST-
ful approach, using HTTP. A publish/subscribe paradigm based communication
protocol has also been proposed using XMPP [9]. In order to reduce the overhead
and communication capability requirements, CoAP has been the first specific IoT
proposed to be used in combination with the IEC 61850 in [21,29].

To the best of our knowledge, TRILATERAL [12] is the first approach of
using IEC 61580 as the basis for modelling a DSL and generate a framework
capable of monitoring and controlling ICPSs. TRILATERAL does not only gen-
erate the base framework with the structure of the devices inside a ICPS, but also
allows to configure the selected IoT communication protocol (e.g., HTTP-REST,
WS-SOAP and CoAP) based on SPL and MBE.

TRILATERAL: A Model-Based Approach for Industrial CPS 381

4 Technological Overview

After reviewing the related literature, in this section we present and summarize
the technical tools that we used for this project.

4.1 IEC 61850

As previously explained, the generic model used in this work is based on the
IEC 61850 standard. This standard enables interoperability between Distributed
Energy Resources of different manufacturers, allowing more flexibility on the
electrical grid. This also allows to reduce the costs from design to operation
and maintenance tasks, while enabling to select the solution with the best
cost/benefit ratio for each case.

IEC 61850 uses two main building blocks to model the behaviour of intelligent
electronic devices in an electrical substation, i.e., the Basic Information Model
(BIM) and some Control Blocks (CB) for additional functions. The BIM models
real world element information with a simple structure, marked in green in Fig. 2:

Control Blocks

Server

Logical Device

Logical Node

Data

DataAttribute Dataset
10...*

1
1...*

1

1...*

1

1...*

1

1...*

0..*

File

BRCB

URCB

LCB

LOG

SGCB

GoCB

GsCB

MSVCB

USVCB

LLN0

1

1

0..*

0..*

0..*

1

1

1

1

1

0..1

0..1

0..1

0..1

0..1

0..1

1

1

0..*
1

0..*

0..*

0..*

0..*

0..*

0..*

0..*

11 1 1 1 1 1

0..*

1

0...*

1

Basic Services

General Functionality
Services

Reporting Services

Setting Services

Eventing Services

Sample Value Transmission Services

Logging Services

Fig. 2. The information model of the IEC 61850 standard (based on [12]). (Color figure
online)

– Server : exposes the system to the outside and includes one or more Logical
Devices (LDs).

– Logical Device: virtual representation of a real device, composed of one or
more Logical Nodes (LNs).

382 M. Iglesias-Urkia et al.

– Logical Node: virtual abstraction application functionalities. All LDs have a
special LN, Logical Node Zero (LLN0), to represent data which is common
for the entire LD.

– Data: physical world information, associated to a LN.
– DataAttribute: information piece of a Data, e.g., value, timestamp. The values

of a DataAttribute are defined by a type.
– Dataset : group of existing Data and DataAttributes of a LD.

The CBs are the classes that allow to interact with the BIM, and are marked
using different colors in Fig. 2, one color for each type of CB:

– Reporting marked in orange: Buffered Report Control Blocks (BRCP) and
Unbuffered Report Control Blocks (URCB) define the generation of reports,
the former ensures that the reports arrive to the destination while the latter
works on a best effort basis.

– Logging marked in purple: Log Control Block (LCB) configures the creation
of logs from Datasets, what to log and under which circumstances.

– Configuration marked in red: Setting Group Control Block (SGCB) groups
settings and allows to change between the defined sets.

– Eventing marked in blue: Generic Object Oriented Substation Event
(GOOSE) and Generic Substation State Event (GSSE) are respectively man-
aged by GOOSE Control Block (GoCB) and GSSE Control Block (GsCB) to
deliver Datasets containing DataAttributes and basic state change informa-
tion. The events are based on publish-subscribe communications.

– Sampled Values marked in yellow: manage the transfer of sampled infor-
mation in Datasets of DataAttributes in a time controlled way. It can be
implemented in two ways: using multicast communication with a Multicast
Sample Value Control block (MSVCB) or unicast communication with an
Unicast Sample Value Control Block (USCVB).

Files are also described in the information model, marked in black. All
the elements have a name and an absolute reference to uniquely identify them
throughout the entire model.

4.2 IoT Communication Protocols

A pivotal part of ICPSs is the need for monitoring and controlling their parame-
ters, and to do so, IoT communication capability is essential. There are different
IoT communication protocols, and each of them has its characteristics, hence,
each of them can be the most appropriate one depending on the use case [15,17].

Among all the existing IoT communication protocols, in this work WS-SOAP,
HTTP-REST and CoAP have been used. Although WS-SOAP and HTTP-REST
are not strictly speaking IoT protocols, as they were not designed for resource
constrained devices, they have been used historically on machine-to-machine
(M2M) communications. M2M communications can be considered as the pre-
cursor of IoT, so in this work, we also refer to WS-SOAP and HTTP-REST as
IoT communication protocols. There are more IoT protocols such as MQTT,

TRILATERAL: A Model-Based Approach for Industrial CPS 383

DDS or AMQP [18], and even though we did not use them in this project, the
tool is prepared to include them if a use case that justifies their use arises.

HyperText Transfer Protocol (HTTP) is an application layer protocol that
we used in two different forms in this work. On the one hand, in HTTP-REST,
we follow the RESTful [7] architecture, using JSON as the resource representa-
tion format and using the CRUD (Create, Read, Update, Delete) methods, i.e.,
GET, PUT, POST and DELETE. On the other hand, HTTP can be used to
encapsulate XML files on POST requests. This is the approach that follows WS-
SOAP. The last protocol used in this work is CoAP [19,20]. CoAP is a lightweight
protocol specially designed for IoT and resource constrained devices. It follows
the RESTful architecture with GET, PUT, POST and DELETE methods and
has a smaller headers than HTTP-REST. It is also capable of having pub-sub
communication thanks to its Observe extension [16].

5 Solution Design: TRILATERAL

Considering the importance of monitoring ICPSs and that different IoT com-
munication protocols exist to transfer the captured data we realized that a tool
with configuration capabilities is a good starting point. The created tool will
give configuration capabilities to different industrial domains that will allow to
reduce costs in terms of development, test, etc.

Thus, we have developed a MBE tool, i.e., SofTware pRoduct lIne based muL-
tidomain iot ArTifact gEneration for industRiAL cps (TRILATERAL), using
the SPL paradigm and DSL to make it easier for the user to graphically config-
ure the IoT communication protocols in order to monitor/control a ICPS. The
artifact is the framework responsible for establishing communication between
the devices and the monitoring system. As a common solution is needed, a IEC
61850 based metamodel has been modeled, because it can be useful for different
industrial domains.

With TRILATERAL, an IoT communication middleware is created to mon-
itor/control devices within an ICPS. Although there is an interaction with the
user to achieve the objective, note that if the stakeholder has its requirements
and knows the real structure of its industrial domain, a part of the artifact

Fig. 3. TRILATERAL components.

384 M. Iglesias-Urkia et al.

(IoT communication protocol and device data structure and logic) can be gener-
ated through TRILATERAL, becoming the process faster and less error-prone.

TRILATERAL is divided into two parts: (1) the server model definition
and (2) the information model definition. Both of them are configured by the
user using the DSL. The former one, i.e., server model definition, is used for
configuring the IoT communications (e.g., CoAP), and the logic of the device
(e.g., when the data from the device needs to be transferred to the monitoring
software system). The latter one is for configuring the ICPS structure where all
the devices and the attributes which these devices are able to send, are specified
based on IEC 61850 (Fig. 3).

In order to configure the Information Model, IEC 61850 is modeled. Thanks
to it and the DSL, the intelligence of the electronic device can be configured. To
do so, the BIM and CB of IEC 61850 need to be configured (see Sect. 4). The
BIM defines the elements of the real world (Logical Device, Logical Node, Data,
DataAttribute), i.e., the structure of the device within the ICPS to be monitored.

Fig. 4. TRILATERAL workflow.

TRILATERAL: A Model-Based Approach for Industrial CPS 385

The CBs are specialized classes to interact with the information model through
some additional functionalities.

In the same manner, to configure the Server Model, the user needs to select
and configure the communication protocol to use, the kernel, the reporting and
also the session by using the DSL. Thanks to the DSL and the user collaboration,
it is possible to automatically configure the server to communicate the artifact
with an external monitoring system.

As shown in Fig. 4, the user first configures the server model by choosing
the IoT communication protocol (step 1). More than one IoT communication
protocol can be configured if required. Hence, the user must choose the protocol
that best suits the ICPS. TRILATERAL provides three IoT communication
protocols, i.e., SOAP, HTTP and CoAP. Thus, the user can configure the server
according to the customer’s needs. Figure 5 shows the feature model where the
different options that the user has are presented in order to configure the server
model.

Once the IoT communication protocol is chosen and the user has selected
all the needed configurations, TRILATERAL automatically creates user and
server configuration files where the user will enter the necessary information for
the system to be adapted. Then, TRILATERAL automatically generates two
directories: one for certificates, where all security certificates are stored; and
another one where the files related to file management functionalities offered by
the IEC 61850 standard are stored.

Fig. 5. Server definition feature model [12].

Thus, after the communication protocol is chosen, the user configures the
information model based on IEC 61850 (step 2). Then, to configure the ICPS
based on IEC 61850, the user configures the BIM and the CBs with TRILAT-
ERAL. Therefore, once the user configures the server model and the information
model, TRILATERAL automatically generates the source code (generated code)
using model-to-text (M2T) transformation (step 3). Thus, thanks to TRILAT-
ERAL, two parts of an artifact are automatically created (i.e., generated code).

After TRILATERAL generates the corresponding generated code, the user
needs to introduce the corresponding driver (the connector that links the devices
with the information model, connecting physical data with its virtual data model
representation) and compiles the generated code with a specific driver (step 4).
The driver and the device logic is different in each case, it depends on the device

386 M. Iglesias-Urkia et al.

to control or monitor. Once the driver and the device logic are compiled with
the generated code, some libraries and executables are created (step 5), i.e., the
artifact.

In order to start monitoring or controlling the ICPS, the artifact needs to be
deployed in a PC/machine within the ICPS. After its deployment, it is possible
to communicate with the artifact from the outside using CRUD functionalities.
Thus, thanks to TRILATERAL, we are able to create a middleware between the
ICPS and the monitoring system to monitor and control all the devices within
the ICPS.

6 Implementation

TRILATERAL is a graphical Eclipse plugin, developed with the Eclipse Model-
ing Framework1, based on the data model. The data model is the tree structure
of the ICPS that needs to be monitored and/or controlled. For the implementa-
tion of TRILATERAL, several steps were followed, as shown in Fig. 6. The main
components are two: a tree view editor for the users to input the model of the
system that they want to implement and a code generator.

 IEC 61850
Information

Model
 Metamodel

 specific-
model.

iec61850

Ecore
Graphical

tool Xtend
Code

Fig. 6. TRILATERAL implementation steps.

The first step for implementing TRILATERAL was to generate a metamodel
based on the IEC 61850 information model. This was done with the Ecore lan-
guage in the EMF. A simplified version of the generated metamodel can be seen
in Fig. 7.

Once the metamodel was defined with Ecore, the EMF generated the tree
view editor. The tree view editor generates files with the .iec61850 extension,
consistent with the name of the metamodel. The .iec61850 files are generated by
the user, they define the model they want to implement. This files can also be
opened as XML files.

In order to generate the code automatically, a code generator was imple-
mented using Xtend. Xtend is the tool in EMF to make model-to-text transfor-
mation, in this case, the text is C++ code, divided in header (.h) and source
(.cpp) files. The TRILATERAL code generator takes the .iec61850 file as input
and generates all the needed source files, where some files are generated based on
the model, while other are just copies of the needed framework, such as libraries.

Using the tree view editor, a user can choose between WS-SOAP, HTTP-
REST or CoAP as the IoT communication protocol when creating the model.

1 https://www.eclipse.org/modeling/emf/.

https://www.eclipse.org/modeling/emf/

TRILATERAL: A Model-Based Approach for Industrial CPS 387

Fig. 7. Simplified version of the metamodel used in TRILATERAL.

Fig. 8. Layers with the projects of the generated code.

More than one can also be included. The generated code composes several Eclipse
projects in different layers, as can be seen in Fig. 8.

388 M. Iglesias-Urkia et al.

The lower level is the kernel of model, with the lib-model-kernel for the
generic classes of the model, and the lib-model-specific-model, which is the model
generated with TRILATERAL, different for each modelled domain. The middle
layer includes the auxiliary libraries for generating the servers for each IoT com-
munication protocol. These libraries are, on the one hand, external libraries
(libcoap for CoAP communication, cbor for CBOR information representation,
jsoncpp for JSON representation, microhttpd for HTTP-REST communication
and gSOAP for using WS-SOAP) and, on the other hand, the specific libraries
generated for this work, which allow to communicate the kernel layers with the
server applications. The server applications are specific for each IoT communi-
cation protocol and are built on top of just the needed libraries.

The reporting server and clients work separately from the main servers. WS-
SOAP and HTTP-REST need separate servers and clients because the com-
munication paradigm changes, as they follow the client-server paradigm. This
does not happen with CoAP due to its Observe extension for Pub/Sub commu-
nication. However, the reporting client and servers for WS-SOAP and HTTP-
REST have the same three layers. The kernel layers are the same as the general
server, but they have their own auxiliary libraries for generating the reporting
client and server executables, i.e., lib-reporting-server-rest, lib-reporting-client-
rest, lib-reporting-server-soap and lib-reporting-client-soap. Both WS-SOAP and
HTTP-REST work in a similar way regarding the reporting functions. The ser-
vice server stores the reports in a folder that is defined when configuring the
system. On runtime, the client checks that folder periodically, following a polling
method, and if any report has been generated, it sends it to the reporting server.
In the case of the CoAP implementation, using the Observe extension, the reg-
ular client can just subscribe to the reports and the server uses a notification to
send the reports to the client when they are generated.

Once TRILATERAL was implemented, creating new projects with different
uses is quite trivial, as can be seen in Fig. 9. A user needs to describe the model
in the tree view editor. As explained in Sect. 5, the Information Model and the
Server Model are needed. TRILATERAL takes the .iec61850 file generated with
the tree view editor and automatically generates the entire source code.

TRILATERAL
Graphical

tool Code

Information
Model

Server
Model

Input
output

Fig. 9. Creating a ICPS artifact in TRILATERAL.

7 Evaluation and Validation

After explaining the implementation, in this section we evaluate TRILATERAL
and validate the results with the concrete use of a catenary-free tram.

TRILATERAL: A Model-Based Approach for Industrial CPS 389

7.1 Evaluation

As explained in the previous section, the generated code is divided in different
layers, and each layer has several projects. Table 1 shows the sizes that each
library or executable has in KBs, and in with which communication protocol is
needed.

Table 1. Libraries and apps need for introducing communication protocols to an arti-
fact by TRILATERAL.

Protocol KB CoAP HTTP SOAP

app-reporting-client-rest 675.1 X

app-reporting-client-soap 1600 X

app-reporting-server-rest 1300 X

app-reporting-server-soap 1600 X

app-service-server-coap 9600 X

app-service-server-rest 8200 X

app-service-server-soap 9700 X

libenv.a 1200 X

libgsoap++.a 1600 X

libjsoncpp.a 2000 X

libcoap.a 814.5 X

libcbor.a 381.6 X

libreporting-client-soap.a 2800 X

libreporting-server-soap.a 3000 X

libreporting-client-rest.a 2700 X

libreporting-server-rest.a 2900 X

libservice-server-rest.a 6900 X

libservice-server-soap.a 7100 X

libservice-server-coap.a 6900 X

libmodel-specific.a ????? X X X

libmodel-kernel.a 25 700 X X X

Total 96 671.2 43 396.1 50 375.1 54 300

45% 52% 56%

The projects starting with app-service-server-* are the final server executa-
bles for each protocol, while the ones starting with app-reporting-* are the exe-
cutables for the reporting server and clients. Below that, there are the auxiliary
external libraries needed. Next, the libraries to generate the server and reporting
executables. The libmodel-specific library is very model dependant, as it is the
description of the model itself, so its size is very variable (See Fig. 10). Finally,
the kernel is common for all the implementations created with TRILATERAL.

390 M. Iglesias-Urkia et al.

Thanks to the modular design of TRILATERAL, selecting the IoT commu-
nication protocol in the tree view editor makes the created system optimized.
Only the needed projects are included in the code, leading to a reduction in the
range of 50% and 30% of the size, depending on the protocol, as can be seen in
Fig. 10.

Common Common Common Common

CoAP CoAP

HTTP

HTTP

SOAP

SOAP

Specific Model

Specific Model
Specific Model

Specific Model

All CoAP HTTP SOAP
0

20k

40k

60k

80k

?k Common
CoAP
HTTP
SOAP
Specific Model

Protocols

Si
ze

 [K
B

]

Fig. 10. Different protocol sizes.

7.2 Validation

To validate TRILATERAL, we selected the transport domain, where there are
companies that focus on design, development and commissioning of trains and
trams. Trams are a means of passenger transport that run on rails in urban
areas. In this specific use case we are focused on a type of tram, i.e., catenary-
free tram, which is a special type of tram being increasingly used in Europe. Its
great advantage compared to a normal tram is that it does not need a catenary,
making the necessary infrastructure simpler. In order to convert the catenary-
free tram in a controlled environment for the citizens’ safety, it is important to
monitor different devices within the catenary-free tram, e.g., engine and brake
status, battery health, etc. Depending on stakeholders’ needs the quantity of
wagons will be different and each wagon has its own characteristics as shown in
Fig. 11.

Thus, catenary-free tram systems may have different parameters to monitor
its state, ranging from critical parameters such as speed, direction or mainte-
nance related information (e.g., state of the power source, break wear, etc.) to
non critical systems such as information or multimedia features, or climate sys-
tems. In a regular wagon usually a battery controller is found, i.e., battery con-
troller is the component that controls the entire energy system to make the tram

TRILATERAL: A Model-Based Approach for Industrial CPS 391

Traction Wagon Regular Wagon Regular Wagon

control board

engine
controller

batery
controller

climate

climate

multimedia
feature

Geolocalization

Fig. 11. Catenary-free tram partial Layout.

move from one place to another. This is composed of twelve different devices that
are capable of sending more than 200 critical attributes or values. In addition to
the energy manager, there are other components such as speed and resistance
profiles, engine controller, braking motors, auxiliary loads, etc.

In addition to the quantity of devices within an catenary-free tram, two
different peculiarities need to be taken into account. On the one hand, when the
tram is moving the environment is mobile and can have power or connectivity
limitations. On the other hand, the tram can bulk much more information when
it is on a station or a stop. However, since a catenary-free tram has to follow a
schedule, the time for bulking the data is limited, so the data transfer time must
also be taken into account. Thus, depending on whether the tram is moving or
in station the communication protocol to use will be different. Note that the
quantity of information to bulk, the speed, etc. will be different, hence, it is
necessary to adapt the system to multiple scenarios.

Therefore all catenary-free trams are not equal, i.e., catenary-free trams have
different features depending on the city to be installed, the used mechanism, the
route to be followed, etc. Because of that, each train will depend on the needs
and requirements of the stakeholder. Note that this kind of trams work without
catenary, this means that they need to collect energy to move forward and for
this different techniques can be used. For example, in some kind of trams fast
change accumulators are used, while others get energy from the rails themselves.
Thus, even if both of them are related with energy, depending on the system the
devices within the catenary-free tram are different. Non critical systems can also
be installed in order to collect more information about the tram (e.g., multimedia
feature), but these depends on the stakeholders’ requirements.

Over time, elements that were considered non-critical can be considered crit-
ical, which can provoke to force updates in the devices in order to have more
control about them. Additionally, time to time the tram can evolve, e.g., the
stakeholder may want to introduce more devices into their tram in order to con-
trol more parameters of their catenary-free tram or a new wagon needs to be

392 M. Iglesias-Urkia et al.

introduced for carrying more people. Thus, the structure of a tram can evolve
over time. Furthermore, the devices can evolve, i.e., they can be damaged and
therefore must be changed or they may even become obsolete over time and
require replacement.

Figure 12 shows a screenshot of TRILATERAL’s tree view editor, where
the climate system of a tram is being described. There is a Server named
SERVER NODE. The Server has the ClimateSystem LD LD, which includes
several LNs. Those LNs then have different Datas, Datasets and CBs.

Fig. 12. Screenshot of TRILATERAL’s tree view editor describing a catenary-free
tram.

For the catenary-free tram use case, two different scenarios were defined: (1)
when the tram is on route, or (2) when it is on a station. Depending on the
scenario, the tram needs to communicate with the monitoring system with a
different protocol. When the tram is on route, the CoAP protocol was used,
because it is a mobile scenario where connectivity or power issues can occur.

TRILATERAL: A Model-Based Approach for Industrial CPS 393

For a tram on a station, HTTP was used, since the scenario is in a controlled
environment, with no connectivity issues.

As explained in the previous subsection, the library file generated for the
specific model is different for each described model. In this case, the library was
named libmodel-tram.a, and its size is 11700 KBs.

After TRILATERAL was developed and validated with a real use case, we
realized that even if the use case is related to a transport domain, the proposed
solution can be used in any IoT environment (manufacturing, energy, etc.) that
needs to be monitored/controlled remotely. IEC 61850 has proven useful outside
the electrical substations. Also, it can be seen how beneficial the paradigms
SPL and DSL can be. Even though many differentiated domains exist, a lot of
them share similar requirements and many commonalities exist between them. In
addition, although the DSL development was complex, once it was well designed
and developed, the configuration of an IoT system becomes much simpler, mainly
due to the use of a visual editor.

This has been proved internally, as we also implement other use cases from
different domains. These other use cases are smart elevators for tall buildings
with several elevators and wind farms, where wind power generates electricity
using wind turbines. Table 2 summarizes the use cases, with the protocol used
in each of them and the characteristics of the use case.

Table 2. IoT communication protocols for each use case characteristics.

Protocol Use case

Wind farm Smart elevator Catenary-free tram

WS-SOAP - Controlled
environment

- No connectivity/
power issues

HTTP-REST - Remote location Station

- Connectivity issues - Controlled environment

- Smaller header with big
payloads

CoAP On route

- Mobile

- Connectivity/Power issues

7.3 Lessons Learned

From these implementations, we learned the following lessons:

– The first and most important lesson is that development and deployment
time has decreased drastically from previous similar projects. Using a generic
model makes an ad-hoc model not necessary. This, along with removing man-
ual tasks thanks to the automated source code and artifact generation, leads

394 M. Iglesias-Urkia et al.

to a reduction of development time and costs. Not only that, but it also has the
benefit of increasing the quality of the code and the delivered artifacts, mak-
ing maintenance easier, thus, reducing engineering and maintenance costs.

– Even though the IEC 61850 is oriented to electrical substations, we learned
that it can be applicable to other domains. We used TRILATERAL in
domains that are not related to electrical substations, but are somewhat
related to energy systems. However, the domains are diverse enough that
they present different communication patterns (device-to-cloud systems and
device-to-device systems). Therefore, we believe that TRILATERAL can be
used in any IoT domain that requires remote monitoring and/or control, such
as manufacturing, transport, etc.

– Using common blocks in different projects, the validation process of the sys-
tem is improved. The kernel code is the same, and the libraries and server and
client application also, with minimal changes. Hence, those parts are already
tested and validated, so using them in a new scenario would not require to val-
idate them again. This also helps in the maintenance of the code, as updates,
bug correction, etc. would be developed once and deployed on all systems.

– Finally, thanks to this work, we can prove the benefits of the SPL paradigms in
industrial domains. With similarities on requirements throughout the diverse
domains, there are many commonalities in the solutions. Even though the
development of TRILATERAL was complex, DSL have also proven their
benefits, as creating a new system for a different use case is easy with TRI-
LATERAL. The use of the visual tree editor is a big part of that. Thanks to
the joint use of SPL and DSL, the development time has been decreased as
stated in the first learned lesson. Hence, as a last learned lesson, we conclude
that using SPL and DSL on industry is very beneficial.

As shown in Fig. 13, creating TRILATERAL has been more costly in terms
of workforce time than creating a project from scratch. However, we expect
that its application on different projects will have long term benefits. A Return

Fig. 13. General view of the time to develop projects from scratch versus projects
implemented with TRILATERAL.

TRILATERAL: A Model-Based Approach for Industrial CPS 395

Of Investment (ROI) analysis is expected as a future work, when we get the
corresponding data of the costs of different projects.

In summary, TRILATERAL has allowed Ikerlan to improve the engineering
process of the development of ICPS, reducing time and costs but also improv-
ing the validation and maintenance tasks. Also, it has allowed to open a new
opportunity to extend it to other IoT domains.

8 Conclusion

This book chapter extends the work presented in [12] with the previously pre-
sented but extended contributions: (1) problem statement; and (2) related liter-
ature. In addition, this article introduces the following novel contributions: (3)
the description of the implementation; (4) a general evaluation of TRILATERAL;
and (5) application of TRILATERAL on a real use case, i.e., a catenary-free
tram. Hence, the design, implementation and evaluation of TRILATERAL are
explained. TRILATERAL is a MBE SPL solution using IEC 61850 for configur-
ing IoT communication protocols graphically. The presented tool makes it possible
to define the data model of different ICPSs even if they belong to different indus-
trial domains. This is possible due to the definition of a DSL which is integrated
in the solution and the use of MBE and SPL, since a part of an artifact can be
automatically created in order to monitor and control the industrial domain.

As concluded in the previous work, with IEC 61850 it is possible to model the
architecture and requirements for the monitoring and control of ICPSs. In order
to evaluate the usability of TRILATERAL an evaluation has been carried out in
a catenary-free tram domain. With this evaluation, some additional conclusions
have been achieved: (1) the development of a monitoring system of an ICPS is
faster, less complex and less error prone, (2) the designed system is modular,
which makes the artifact more lightweight, i.e., as explained in Sect. 7 with the
modular system a reduction between 30 and 50% can be achieved in the eval-
uated domain. In addition, the use of standards provide: (3) greater flexibility
by enabling interoperability, and (4) external connectivity functions to monitor
and control ICPSs. The main disadvantage of this standard is that the interfaces
and operator functions are not standardized.

Carrying this work out has provide some important lessons in the use of SPL
paradigm and DSL in industrial domains where different ICPSs share similarities
in requirements such as control and monitoring. We have learned how manual
tasks can be removed, leading to common code maintenance, updates and bug
fixes, while reducing engineering and maintenance costs. In addition, the impor-
tance of using already existing standards has been pointed out, which can lead to
develop tools like TRILATERAL, and using them also outside of their original
intended domain. IEC 61850 was originally designed for monitoring of electrical
substations, but in this work it has also been used in other IoT use cases that
require remote monitoring and control.

The main disadvantage of TRILATERAL which would be addressed in the
future is the capability of adaptation, i.e., if the ICPS evolves, the artifact needs

396 M. Iglesias-Urkia et al.

to be updated by the user (with TRILATERAL) but its deployment is manual.
Some additional future lines are expected to be addressed in the short-medium
term:

1. Apply TRILATERAL in other domains, such as Automated Warehouses or
Press Machine domains.

2. Convert TRILATERAL into a Dynamic SPL (DSPL), regarding physical ele-
ment changes (update, add or remove physical nodes).

3. Allow to remotely update the artifact in the ICPS, in this way we will be able
to further reduce the maintenance costs.

4. Automatic driver generation, since TRILATERAL is able to generate two of
the three parts (IoT communication protocol, and device data structure and
logic) of the artifact leaving the driver out.

5. Create a user interface able to connect to the artifact using the corresponding
IoT protocol in order to visualize the captured data using CRUD functional-
ities.

Acknowledgements. This work has received funding from the Electronic Component
Systems for European Leadership Joint Undertaking under the MegaM@Rt2 project
(Grant agreement No. 737494) in the EU Horizon 2020 program and the Basque Gov-
ernment through the Elkartek program under the TEKINTZE project (Grant agree-
ment No. KK-2018/00104).

References

1. Ayala, I., Amor, M., Fuentes, L., Troya, J.M.: A software product line process to
develop agents for the IoT. Sensors 15(7), 15640–15660 (2015)

2. Bi, Y., Jiang, L., Wang, X.J., Cui, L.Z.: Mapping of IEC 61850 to data distribute
service for digital substation communication. In: IEEE Power and Energy Society
General Meeting, pp. 1–5 (2013)

3. Bougouffa, S., Meßmer, K., Cha, S., Trunzer, E., Vogel-Heuser, B.: Industry 4.0
interface for dynamic reconfiguration of an open lab size automated production
system to allow remote community experiments. In: 2017 IEEE International Con-
ference on Industrial Engineering and Engineering Management (IEEM), pp. 2058–
2062, December 2017. https://doi.org/10.1109/IEEM.2017.8290254

4. Calvo, I., Garcia de Albéniz, O., Pérez, F.: A communication backbone for sub-
station automation systems based on the OMG DDS standard. In: Przeglad Elek-
trotechniczny, vol. 88, pp. 146–150 (2012)

5. Calvo, I., Garćıa De Albéniz, O., Noguero, A., Pérez, F.: Towards a modular and
scalable design for the communications of electrical protection relays. In: IECON
Proceedings (Industrial Electronics Conference), pp. 2511–2516 (2009)

6. Capilla, R., Bosch, J., Trinidad, P., Ruiz-Cortés, A., Hinchey, M.: An overview
of dynamic software product line architectures and techniques: observations from
research and industry. J. Syst. Softw. 91, 3–23 (2014)

7. Fielding, R.T.: REST: Architectural Styles and the Design of Network-based Soft-
ware Architectures. Doctoral dissertation, University of California, Irvine (2000)

8. Fowler, M.: Domain-Specific Languages. The Addison-Wesley signature series,
Addison-Wesley (2011). http://vig.pearsoned.com/store/product/1,1207,store-
12521 isbn-0321712943,00.html

https://doi.org/10.1109/IEEM.2017.8290254
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0321712943,00.html
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0321712943,00.html

TRILATERAL: A Model-Based Approach for Industrial CPS 397

9. Hussain, S.M.S., Aftab, M.A., Ali, I.: IEC 61850 modeling of dSTATCOM and
XMPP communication for reactive power management in microgrids. IEEE Syst.
J. 12(4), 1–11 (2018)

10. IEC TC-88: Wind energy generation systems - part 25–4: Communications for
monitoring and control of wind power plants - mapping to communication profile
(2016)

11. Iglesias, A., Arellano, C., Yue, T., Ali, S., Sagardui, G.: Model- based personalized
visualization system for monitoring evolving industrial cyber-physical system. In:
Accepted for Publishing in 25th Asia-Pacific Software Engineering Conference,
APSEC 2018 (2018)

12. Iglesias, A., Iglesias-Urkia, M., López-Davalillo, B., Charramendieta, S., Urbieta,
A.: Trilateral: software product line based multidomain iot artifact generation for
industrial cps. In: Proceedings of the 7th International Conference on Model-Driven
Engineering and Software Development, MODELSWARD, INSTICC, vol. 1, pp.
64–73. SciTePress (2019). https://doi.org/10.5220/0007343500640073

13. Iglesias, A., Lu, H., Arellano, C., Yue, T., Ali, S., Sagardui, G.: Product line engi-
neering of monitoring functionality in industrial cyber-physical systems: a domain
analysis. In: Proceedings of the 21st International Systems and Software Product
Line Conference, SPLC 2017, vol. A, pp. 195–204 (2017)

14. Iglesias, A., Sagardui, G., Arellano, C.: Industrial cyber-physical system evolution
detection and alert generation. Appl. Sci. 9(8), 1586 (2019). https://doi.org/10.
3390/app9081586. http://www.mdpi.com/2076-3417/9/8/1586

15. Iglesias-Urkia, M., Casado-Mansilla, D., Mayer, S., Bilbao, J., Urbieta, A.: Inte-
grating electrical substations within the IoT using IEC 61850, CoAP and CBOR.
IEEE Internet of Things J. pp. 1–1 (2019). https://doi.org/10.1109/JIOT.2019.
2903344

16. Iglesias-Urkia, M., Casado-Mansilla, D., Mayer, S., Urbieta, A.: Enhanced pub-
lish/subscribe in CoAP: describing advanced subscription mechanisms for the
observe extension. In: ACM International Conference Proceeding Series. Associ-
ation for Computing Machinery (2018). https://doi.org/10.1145/3277593.3277594

17. Iglesias-Urkia, M., Casado-Mansilla, D., Mayer, S., Urbieta, A.: Validation of a
CoAP to IEC 61850 mapping and benchmarking vs http-rest and ws-soap. In:
IEEE International Conference on Emerging Technologies and Factory Automa-
tion, ETFA, vol. 2018-September, pp. 1015–1022 (2018). https://doi.org/10.1109/
ETFA.2018.8502624

18. Iglesias-Urkia, M., Orive, A., Barcelo, M., Moran, A., Bilbao, J., Urbieta, A.:
Towards a lightweight protocol for industry 4.0: An implementation based bench-
mark. In: Proceedings of the 2017 IEEE International Workshop of Electronics,
Control, Measurement, Signals and their Application to Mechatronics, ECMSM
2017. Institute of Electrical and Electronics Engineers Inc. (2017). https://doi.
org/10.1109/ECMSM.2017.7945894

19. Iglesias-Urkia, M., Orive, A., Urbieta, A.: Analysis of CoAP implementations for
industrial internet of things: a survey. Proc. Comput. Sci. 109, 188–195 (2017).
https://doi.org/10.1016/j.procs.2017.05.323

20. Iglesias-Urkia, M., Orive, A., Urbieta, A., Casado-Mansilla, D.: Analysis of CoAP
implementations for industrial Internet of Things: a survey. J. Ambient Intell. Hum.
Comput. 10(7), 1–14 (2018). https://doi.org/10.1007/s12652-018-0729-z

21. Iglesias-Urkia, M., Urbieta, A., Parra, J., Casado-Mansilla, D.: IEC 61850 meets
CoAP: towards the integration of smart grids and IoT standards. In: ACM Interna-
tional Conference Proceeding Series. Association for Computing Machinery (2017).
https://doi.org/10.1145/3131542.3131545

https://doi.org/10.5220/0007343500640073
https://doi.org/10.3390/app9081586
https://doi.org/10.3390/app9081586
http://www.mdpi.com/2076-3417/9/8/1586
https://doi.org/10.1109/JIOT.2019.2903344
https://doi.org/10.1109/JIOT.2019.2903344
https://doi.org/10.1145/3277593.3277594
https://doi.org/10.1109/ETFA.2018.8502624
https://doi.org/10.1109/ETFA.2018.8502624
https://doi.org/10.1109/ECMSM.2017.7945894
https://doi.org/10.1109/ECMSM.2017.7945894
https://doi.org/10.1016/j.procs.2017.05.323
https://doi.org/10.1007/s12652-018-0729-z
https://doi.org/10.1145/3131542.3131545

398 M. Iglesias-Urkia et al.

22. Kagermann, H., Helbig, J., Hellinger, A., Wahlster, W.: Recommendations for
Implementing the Strategic Initiative INDUSTRIE 4.0: Securing the Future of
German Manufacturing Industry; Final Report of the Industrie 4.0 Working Group.
Forschungsunion (2013). https://books.google.es/books?id=AsfOoAEACAAJ

23. Kelly, S., Tolvanen, J.: Domain-Specific Modeling - Enabling Full Code Generation.
Wiley, Hoboken (2008). http://eu.wiley.com/WileyCDA/WileyTitle/productCd-
0470036664.html

24. Leitão, P., Colombo, A.W., Karnouskos, S.: Industrial automation based on cyber-
physical systems technologies: prototype implementations and challenges. Comput.
Ind. 81, 11–25 (2016)

25. Negash, B., Westerlund, T., Rahmani, A., Liljeberg, P., Tenhunen, H.: Dos-il: a
domain specific internet of things language for resource constrained devices. Proc.
Comput. Sci. 109, 416–423 (2017). https://doi.org/10.1016/j.procs.2017.05.411

26. Parra, J.: Restful Framework for Collaborative Internet of Things Based on IEC
61850. Ph.D. thesis, Universidad del Páıs Vasco - Euskal Herriko Unibertsitatea
(UPV/EHU) (2016)

27. Pedersen, A.B., Hauksson, E.B., Andersen, P.B., Poulsen, B., Træholt, C., Gan-
tenbein, D.: Facilitating a generic communication interface to distributed energy
resources: mapping IEC 61850 to RESTful services. In: 2010 First IEEE Interna-
tional Conference on Smart Grid Communications (SmartGridComm), pp. 61–66
(2010)

28. Sanz, R., Clavijo, J.A., Segarra, M.J., de Antonio, A., Alonso, M.: CORBA-based
substation automation systems. In: Proceedings of IEEE Conference on Control
Applications (2001)

29. Shin, I.J., Song, B.K., Eom, D.S.: International Electronical Committee (IEC)
61850 mapping with constrained application protocol (CoAP) in smart grids based
European telecommunications standard institute machine-to-machine (M2M) envi-
ronment. Energies 10(3), 393 (2017)

30. Sinnhofer, A.D., et al.: Combining business process variability and software vari-
ability using traceable links. In: Shishkov, B. (ed.) BMSD 2017. LNBIP, vol. 309,
pp. 67–86. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78428-1 4

31. Sneps-Sneppe, M., Namiot, D.: On web-based domain-specific language for Internet
of Things. In: International Congress on Ultra Modern Telecommunications and
Control Systems and Workshops, vol. 2016-January, pp. 287–292. IEEE Computer
Society (2016). https://doi.org/10.1109/ICUMT.2015.7382444

32. Tang, H., Li, D., Wang, S., Dong, Z.: CASOA: an architecture for agent-based
manufacturing system in the context of industry 4.0. IEEE Access 6, 12746–12754
(2018)

33. Tao, F., Zuo, Y., Xu, L.D., Zhang, L.: IoT-based intelligent perception and access
of manufacturing resource toward cloud manufacturing. IEEE Trans. Ind. Inform.
10(2), 1547–1557 (2014)

34. TC-57, I.: Communication networks and systems in substations - part 7–1: Basic
communication structure for substation and feeder equipment - principles and mod-
els (2003)

35. Van Deursen, A., Klint, P.: Domain-specific language design requires feature
descriptions. J. Comput. Inf. Technol. 10(1), 1–17 (2002)

36. Young, B., Cheatwood, J., Peterson, T., Flores, R., Clements, P.C.: Product line
engineering meets model based engineering in the defense and automotive indus-
tries. In: Proceedings of the 21st International Systems and Software Product Line
Conference, SPLC 2017, vol. A, pp. 175–179 (2017)

https://books.google.es/books?id=AsfOoAEACAAJ
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470036664.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470036664.html
https://doi.org/10.1016/j.procs.2017.05.411
https://doi.org/10.1007/978-3-319-78428-1_4
https://doi.org/10.1109/ICUMT.2015.7382444

Author Index

Apvrille, Ludovic 27, 101, 201
Aßmann, Uwe 350
Atkinson, Colin 350

Bauer, Bernhard 298
Buchmann, Thomas 1
Bünder, Hendrik 225
Burger, Erik 350

Casado-Mansilla, Diego 376
Champeau, Joël 76
Charramendieta, Santiago 376
Cortés Porto, Rodrigo 201

Drouot, Bastien 76

Enrici, Andrea 101
Estivill-Castro, Vladimir 50
Etzel, Christoph 298

Fazeldehkordi, Elahe 320

Genius, Daniela 201
Golra, Fahad R. 76
Greiner, Sandra 275

Harel, David 246
Hexel, René 50
Husseini Orabi, Ahmed 127
Husseini Orabi, Mahmoud 127

Iglesias, Aitziber 376
Iglesias-Urkia, Markel 376

Katz, Guy 246
Klare, Heiko 350
Kuchen, Herbert 225

Lethbridge, Timothy C. 127
Lin, Jia-Chun 320
López-Davalillo, Beatriz 376

Mallet, Frédéric 27
Marron, Assaf 246
Meier, Johannes 350
Mezei, Gergely 182
Milward, David 156

Owe, Olaf 320

Pacalet, Renaud 101
Pêcheux, François 201
Pham, Minh Hiep 101
Prinz, Andreas 182

Reussner, Ralf 350

Sadon, Aviran 246
Sagardui, Goiuria 376
Schröpfer, Johannes 1

Tunjic, Christian 350

Urbieta, Aitor 376

Weiss, Gera 246
Werner, Christopher 350
Westfechtel, Bernhard 275
Winter, Andreas 350

Zhao, Hui 27

	Preface
	Organization
	Contents
	Integrating UML and ALF: An Approach to Overcome the Code Generation Dilemma in Model-Driven Software Engineering
	1 Introduction
	2 Overview
	3 Example Workflow
	4 Integration of UML and ALF
	4.1 Overview of the Tool Chain
	4.2 The ALF Model System
	4.3 Generation of Java Source Code
	4.4 The Kernel Model-to-Model Transformation
	4.5 The Integrated User Interface

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	A Model-Based Combination Language for Scheduling Verification
	1 Introduction
	2 Our Approach
	3 Model Combination Language
	3.1 Specification
	3.2 Combination Patterns
	3.3 Abstract Syntax of Combination Language
	3.4 Meta Symbol and Notations Rule Expression
	3.5 Abstract Syntax of Rule Expression in EBNF
	3.6 Operators and Semantics

	4 Transformation Rule Library
	4.1 Functional View
	4.2 Physical View

	5 Case Study
	5.1 Train Traction Control System
	5.2 Model Transformation
	5.3 Schedule Verification

	6 Related Work
	7 Conclusions and Future Work
	References

	The Understandability of Models for Behaviour
	1 Introduction
	2 Background
	3 State-Based Diagrams
	4 Experimental Context
	5 Experimental Tasks and Results
	5.1 Calibration
	5.2 Simple, Nested Model
	5.3 Non-nested LLFSM
	5.4 Nested LLFSMs
	5.5 Subsumption and Delegation Results
	5.6 Randomised Diagrams (Australia)
	5.7 Randomised Diagrams (Spain)

	6 Analysis
	6.1 Lesson Learned
	6.2 Threats to Validity

	7 Asymmetric Semantics
	8 Conclusions
	References

	A Role Modeling Based Approach for Cyber Threat Analysis
	1 Introduction
	2 Cyber Security Context
	2.1 Cyber Threat Analysis
	2.2 Cyber Threat Modeling

	3 Modeling Context
	3.1 Model Interoperability
	3.2 Role Modeling

	4 Framework for Interoperability
	4.1 Role4All Framework
	4.2 Viewpoint Definition
	4.3 Federation with Role4All
	4.4 Interpretation Viewpoint in Role4All

	5 Role Modeling for Cyber Threat Analysis
	5.1 Modeling Space
	5.2 Role Models for the Generation of Federated Viewpoint

	6 Simulation for Cyber Threat Analysis
	6.1 Interpretation Using Roles
	6.2 Dynamic Update of the Federated Models

	7 Lessons Learned
	8 Conclusion
	References

	Static Data-Flow Analysis of UML/SysML Functional Views for Signal and Image Processing Applications
	1 Introduction
	2 Optimizing Compilation of UML/SysML Models
	3 Related Work on Static Data-Flow Model Analysis
	4 Static Data-Flow Model Analysis
	4.1 The Control-Flow Graph for a Functional View
	4.2 The Control-Flow Graph Analysis
	4.3 The Performance Gain of the CIBW Algorithm
	4.4 Discussion

	5 Case Study
	5.1 The Application of the CIBW Algorithm to Individual Activities
	5.2 The Application of the CIBW Algorithm to Complete Applications

	6 Conclusions and Future Work
	References

	Umple-TL: A Model-Oriented, Dependency-Free Text Emission Tool
	Abstract
	1 Introduction
	2 Other Text Emission Tools
	3 Challenges
	3.1 Challenges Relating to the Source Language
	3.2 Challenges Relating to Both Source and Target
	3.3 Challenges Relating to Text Generation
	3.4 Modelling Support in Text Generation Technology
	3.5 Additional Challenges

	4 Main Concepts of Umple-TL
	4.1 Usage of the Various Blocks
	4.2 Emitter Methods

	5 UML Constructs and Generation Templates
	5.1 Declarative Examples
	5.2 Traits and Aspect Orientation

	6 Demonstration of Practical Value
	7 Performance Measures
	8 A Comparison of Templating Tools for Text Generation
	8.1 Tool Discussion
	8.2 Umple Discussion

	9 Conclusions
	Acknowledgments
	References

	Dataset Management Using Metadata
	1 Introduction
	2 Objectives
	3 Background
	3.1 Data
	3.2 Data Standards
	3.3 SNOMED CT
	3.4 Fast Healthcare Interoprability Resources (FHIR)
	3.5 International Classification of Diseases (ICD)
	3.6 OpenEHR - ISO EN 13606
	3.7 OMOP CDM
	3.8 LOINC
	3.9 NHS Data Dictionary
	3.10 ISO11179

	4 Methodology
	4.1 Motivational Example
	4.2 Key Issues Highlighted by ISO11179

	5 Results
	5.1 MDML - Metadata Modelling Language
	5.2 User Traction

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	The Art of Bootstrapping
	1 Introduction
	2 Terminology
	3 Language Workbenches
	3.1 EMF
	3.2 MPS
	3.3 LanguageLab
	3.4 DMLA

	4 Bootstrap
	4.1 The Bootstrap of EMF
	4.2 The Bootstrap of MPS
	4.3 The Bootstrap of LanguageLab
	4.4 The Bootstrap of DMLA

	5 Dynamic Semantics
	5.1 Executing Specifications
	5.2 Compiling Specifications
	5.3 Semantics in the Case Languages
	5.4 Changeability

	6 Conclusion
	References

	A Framework for Multi-level Modeling of Analog/Mixed Signal Embedded Systems
	1 Introduction
	2 Related Work
	3 Basic Concepts
	3.1 Timed Data Flow
	3.2 Modeling Tool

	4 Integration of Analog Components
	4.1 Representing Analog Components
	4.2 Connecting AMS Components to the MPSoC
	4.3 Solving Causality Problems
	4.4 MPSoC Virtual Prototype
	4.5 Simulation of the Virtual Prototype
	4.6 Trace Generation

	5 Case Study
	5.1 Partitioning
	5.2 Software Design
	5.3 Modeling Sensors
	5.4 Interaction of Analog Blocks with the Software Design Level
	5.5 Deployment
	5.6 Running the Application

	6 Conclusion and Perspectives
	References

	Towards Multi-editor Support for Domain-Specific Languages Utilizing the Language Server Protocol
	1 Introduction
	2 Overview of the Language Server Protocol
	3 Case Study: Language Server Protocol with Xtext DSLs
	3.1 Language Server Implementation of an Entity-DSL
	3.2 Building a Development-Tool Extension for the Theia IDE
	3.3 Building a Development-Tool Extension for the Eclipse IDE
	3.4 Experimental Results of Implementing the Entity-DSL
	3.5 Analysis of the Potential of the Language Server Protocol

	4 Utilization of the Language Server Protocol
	4.1 LSP-Based Xtext Solutions in Practice
	4.2 Eclipse TMF (Xtext) Forum Analysis

	5 Discussion
	6 Related Work
	7 Conclusions
	References

	Executing Scenario-Based Specification with Dynamic Generation of Rich Events
	1 Introduction
	2 Background
	2.1 Scenario-Based Modeling
	2.2 Constraint Solvers

	3 New Extension Mechanisms
	3.1 Formal Definitions of the New Event Generation Mechanism
	3.2 Extension of the Request/Block Semantics of SBP

	4 Implementation Infrastructure
	5 Modeling with the New Composition Principles
	5.1 Constructing Rich Multi-variable Events
	5.2 Rich Constraint Specifications
	5.3 Enhanced Incrementality
	5.4 Rich Constraint-Composition Semantics
	5.5 Combining ``Stories'' with Constraints
	5.6 Specifying Targeted Constraints
	5.7 Real-Time Reactivity
	5.8 Event Construction with Optimization

	6 Related Work
	7 Conclusion
	References

	Evaluating the Multi-variant Model Transformation of UML Class Diagrams to Java Models
	1 Introduction
	2 Motivation
	2.1 Graph Product Line
	2.2 Requirements

	3 Overview
	3.1 Correctness
	3.2 Error Measurement
	3.3 Existing Approaches

	4 Evaluation Framework
	4.1 Architectural Overview
	4.2 Runtime Measurement

	5 Example
	5.1 Setup
	5.2 Graph Product Line
	5.3 Home Automation System (HAS)
	5.4 Threats to Validity

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Modeling and Analysis of Partitions on Functional Architectures Using EAST-ADL
	1 Introduction
	2 Preliminaries
	2.1 EAST-ADL
	2.2 Partitioning Algorithms

	3 Our Approach
	4 EAST-ADL Partitioning Extension
	5 Partitioning Analysis
	5.1 Parameters for the Analysis
	5.2 EAST-ADL Analysis Level
	5.3 EAST-ADL Design Level

	6 Case Study - Brake-by-Wire System Example
	7 Related Work
	8 Conclusion and Further Research
	References

	A Framework for Flexible Program Evolution and Verification of Distributed Systems
	1 Introduction
	2 Language Setting
	3 History-Based Specification
	3.1 A Bank Example
	3.2 Reasoning About Late Binding and Static Binding

	4 Proof Obligations
	4.1 Verification of the Bank Example

	5 Evolutionary Program Changes
	5.1 Reasoning in Presence of Unverified Classes
	5.2 Examples of Software Changes on BANK

	6 Related Work
	7 Conclusion
	References

	Classifying Approaches for Constructing Single Underlying Models
	1 Introduction
	2 Related Work
	3 Running Example and Terminology
	4 Classification Criteria
	4.1 Design Criteria
	4.2 Selection Criteria
	4.3 Technical Design Decisions

	5 Orthographic Software Modeling
	5.1 Design Objectives
	5.2 Application to the Running Example
	5.3 Classification Based on the Criteria

	6 Vitruvius
	6.1 Design Objectives
	6.2 Application to the Running Example
	6.3 Classification Regarding the Criteria

	7 RSUM
	7.1 Design Objectives
	7.2 Application to the Running Example
	7.3 Classification Regarding the Criteria

	8 MoConseMI
	8.1 Design Objectives
	8.2 Application to the Running Example
	8.3 Classification Regarding the Criteria

	9 Discussion and Comparison of SUM Approaches
	9.1 Design Criteria
	9.2 Selection Criteria
	9.3 Technical Design Decisions
	9.4 Process for Approach Selection
	9.5 Combination of SUM Approaches

	10 Conclusion
	References

	TRILATERAL: A Model-Based Approach for Industrial CPS – Monitoring and Control
	1 Introduction
	2 Problem Statement
	3 Related Work
	4 Technological Overview
	4.1 IEC 61850
	4.2 IoT Communication Protocols

	5 Solution Design: TRILATERAL
	6 Implementation
	7 Evaluation and Validation
	7.1 Evaluation
	7.2 Validation
	7.3 Lessons Learned

	8 Conclusion
	References

	Author Index

