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1 Introduction

Sesterterpenoids are a relatively small group of natural products. Even though they
belong to one of the largest families of natural products, the “terpenoids,” only
around 1000 natural sesterterpenoids have been reported [1–5]. Considering that
over 80,000 terpenoids have already been isolated [6–8], the number of known
sesterterpenoids is quite small. Moreover, in almost all cases, their biological role is
unknown. However, sesterterpenoids have been isolated from many kinds of organ-
isms (e.g., plants, bacteria, fungi, lichens, insects, marine sponges, and other marine
organisms) [1–5]. This fact implies that various organisms have the potential to
produce sesterterpenoids.

In this contribution, we will introduce the chemical structures of sesterterpenoids.
Although the number of sesterterpenoids is not very large, they have a large variety
of simple to complicated chemical structures. Herein, we have classified the
sesterterpenoids based on the number of carbocyclic moieties in their chemical
structures. In addition, we will also explain how the structure of each sesterterpenoid
is formed in Nature.

2 What Are the Sesterterpenoids?

2.1 “Sesterterpenoids” Are Members of the “Terpenoids”

As mentioned above, the sesterterpenoids are a subgroup of the terpenoids. There-
fore, we will start by briefly describing the terpenoids. Terpenoids are defined as a
group of natural products composed of simple “C5” units, called isoprene units
(Fig. 1). Thus, terpenoids are also called “isoprenoids.” In this definition, “C5”

means that a compound contains five carbon atoms. This notation will be frequently
used in this chapter, and thus “C25” refers to a compound containing 25 carbon
atoms.

For example, the chemical structure of sesterbrasiliatriene (1), a type of terpenoid,
contains five isoprene units (Fig. 2b) [9]. In another example, four isoprene units
(b) constitute the chemical structure (a) of 2 (Fig. 3) [10].

The origins of the isoprene units are dimethylallyl pyrophosphate (DMAPP) (3)
and isopentenyl pyrophosphate (IPP) (4) (Fig. 4) [6–8]. Both are widely distributed
in Nature, and generated via two kinds of metabolic pathways, known as the MVA
(mevalonate) and MEP (methylerythritol phosphate) pathways [11, 12].

The biosynthesis of all terpenoids starts from condensation reactions of 3 and 4 to
yield polyprenyl diphosphates, which are important intermediates of terpenoids.

Fig. 1 Isoprene unit
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Each polyprenyl diphosphate is designated as follows: (C10) geranyl diphosphate
(GPP) (5), (C15) farnesyl diphosphate (FPP) (6), (C20) geranylgeranyl diphosphate
(GGPP) (7), and (C25) geranylfarnesyl diphosphate (GFPP) (8). These condensation
reactions are catalyzed by enzymes called “prenyltransferases” (Fig. 5) [6–8].

In many cases, the polyprenyl diphosphates are subjected to cyclization reactions
to form a carbocyclic moiety. These cyclization reactions are catalyzed by “terpene
cyclases.” Generally, the terpene cyclases are divided into two classes, “type 1” and
“type 2,” based on their catalytic mechanisms.

The type 1 terpene cyclases initiate the cyclization by heterolytic cleavage of the
diphosphate moiety of the polyprenyl diphosphates. The heterolytic cleavage leads
to the generation of cation intermediates, and the high energy of the cation interme-
diate is the driving force of the cyclization reaction. The cyclization reaction is
finalized by either deprotonation or an attack by H2O. For example, 1 is formed by a
type 1 terpene cyclase (Fig. 6).

The other class of terpene cyclases is known as the “type 2” terpene cyclases. The
type 2 terpene cyclases also generate cation intermediates to initiate the cyclization
reaction. However, the strategy to generate the cation intermediate is different from
that of the type 1 terpene cyclases. The type 2 terpene cyclases generate the cation
intermediate via the protonation of a double bond of the polyprenyl diphosphates.
For example, 2 is formed by a type 2 terpene cyclase (Fig. 7).

1 (sesterbrasiliatriene) 

a) b)Fig. 2 Structure of 1. The
structure of 1 contains five
isoprene units. Each
isoprene unit is shown by
bold lines with different
colors

OPP

2 (copalyl diphosphate)

OPP

a) b)Fig. 3 Structure of 2. The
structure of 2 contains four
isoprene units. Each
isoprene unit is shown by
bold lines with different
colors

3 (DMAPP)

OPP OPP

4 (IPP)

Fig. 4 Structures of
dimethylallyl
pyrophosphate (DMAPP)
(3) and isopentenyl
pyrophosphate (IPP) (4)
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number of  
carbon atoms 

OPP

OPP

OPP

OPP

OPP

OPP

OPP

OPP

OPP

H

H

H

H

H

H

H

H

3 4

4

4

4

5 (GPP) 

6 (FPP)

7 (GGPP)

8 (GFPP)

C5

C10

C15

C20

C25

Fig. 5 Condensation reaction catalyzed by prenyltransferases to form polyprenyl diphosphates,
and structures of 5–8

1

H

H

OPP

– OPP–

– H+

H

heterolytic cleavage of  
the diphosphate moiety 

deprotonation to finalize 
the cyclization reaction

8

Fig. 6 Cyclization reaction to form sesterbrasiliatriene (1). This reaction is catalyzed by the
type 1 terpene cyclase
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After the fundamental carbon skeleton of the terpenoids is formed by the
prenyltransferases and terpene cyclases, the intermediates of the terpenoids are
converted into the final products by tailoring enzymes. A typical tailoring enzyme
is cytochrome P450, which catalyzes an oxidation reaction. For instance, casbene (9)
is converted to the oxidized products 10–12 by means of cytochrome P450 (Fig. 8)
[13]. However, in addition to cytochrome P450, various other enzymes are also
involved in the biosynthesis of terpenoids and expand their structural diversity.

For example, many kinds of tailoring enzymes (prenyltransferase, oxidase, ami-
notransferase, methyltransferase, sugar transferase, and ligase) are involved in the
biosynthesis of brasilicardin A (13), a terpenoid with potent immunosuppressive

7

OPP

OPP

OPP

H+

+ H+

– H+

H

2

protonation to initiate
the cyclization reaction

deprotonation to finalize 
the cyclization reaction

Fig. 7 Cyclization reaction
to form 2. This reaction is
catalyzed by the
type 2 terpene cyclase

9

OH

O

O

O 11

12

10P450

Fig. 8 Compound 9 could
be oxidized by a cytochrome
P450, forming 10–12
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activity (Fig. 9). After the formation of 15 via 7 and 14, these tailoring enzymes
apparently convert 15 to 13 [14].

2.2 Definition of “Sesterterpenoids”

The terpenoids are classified by the chain lengths of the polyprenyl diphosphates
used in their biosynthesis. In the case of the sesterterpenoids, they are defined as
compounds that are biosynthesized via geranylfarnesyl diphosphate (GFPP) (8)
(Fig. 10).

For example, preasperterpenoid A (16) is biosynthesized via 8 (Fig. 11) [9]. Thus,
16 is a sesterterpenoid. Actually, 1 is also a sesterterpenoid, while 2 is not, by
considering their biosynthesis pathways (Figs. 6 and 7). Compounds 9–15 are also
not sesterterpenoids (Figs. 8 and 9).

The other classes of terpenoids biosynthesized via different polyprenyl diphos-
phates are defined as follows: “hemiterpenoids” are from (C5) 3 or 4,
“monoterpenoids” are from (C10) 5, “sesquiterpenoids” are from (C15) 6,

OPP OPP

OPP

O

H

HO

HO

OH
NH2

OO
O

O

OH
OO

HO
HO NHAc

HO

O

O
HO

OPP OPP

H+

3 4

7 14

15

prenyltransferase

oxidase

type 2 terpene cyclase

tailoring enzymes:
prenyltransferase, oxidase, 

aminotransferase, methyltransferase, 
sugartransferase, and ligase

13

Fig. 9 Putative biosynthesis pathway of brasilicardin A (13). The functional groups of 13, which
might be generated by the tailoring enzymes, are shown in red
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“diterpenoids” are from (C20) 7, and “triterpenoids” are from (C30) squalene (17)
(Fig. 12).

In contrast to 5–8, 17 is generated by the condensation of two (C15) 6 units. This
condensation pattern is known as a tail-to-tail (Fig. 13b) linkage. The other
polyprenyl diphosphates 5–8 exhibit only head-to-tail linkages (Fig. 13b).

3
OPP OPP

OPP

4

8

sesterterpenoids

Fig. 10 Definition of
sesterterpenoids. The
genuine sesterterpenoids
should be biosynthesized
via 8

16
H

H

OPP
8

3
OPP

OPP
4

16 is biosynthesized via 8

Fig. 11 Biosynthesis of
preasperterpenoid A (16).
Compound 16 is a
sesterterpenoid, since 16 is
biosynthesized via 8
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2.3 Natural Products Confused with Sesterterpenoids

Since all genuine sesterterpenoids should be derived from GFPP (8), the basic carbon
skeletons of many sesterterpenoids are composed of 25 carbon atoms. However, it
should be noted that not all compounds with basic carbon skeletons consisting of
25 carbon atoms are sesterterpenoids. Herein, we introduce examples of natural
products that could be confused with sesterterpenoids. When determining whether a
compound is a sesterterpenoid, it is essential to consider its biosynthetic origin.

OPP

OPP

OPP

OPP

OPP

OPP

hemiterpenoids

monoterpenoids

sesquiterpenoids

diterpenoids

sesterterpenoids

triterpenoids

tail-to-tail linkage

Fig. 12 Classification of
the terpenoids

8

OPP

isoprene unit

head tail

17

a)

b)

head-to-tail linkage

tail-to-tail linkage

Fig. 13 (a) The “head” and
“tail” positions in the
isoprene unit. (b)
Compound 8 is formed only
by the “head-to-tail”
condensation of isoprene
units, while 17 is formed not
only by the “head-to-tail”
linkage but also by the “tail-
to-tail” linkage
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2.3.1 Meroterpenoids

One example of natural products that could be confused with the sesterterpenoids is a
group of meroterpenoids containing a C10 polyketide moiety (e.g., preterretonin A
(18), protoaustinoid A (19), and andrastin E (20)) (Fig. 14) [15]. There are 25 carbon
atoms in the basic carbon skeletons of these compounds. However, they are not
biosynthesized via 8, but are generated from a C15 terpenoid moiety and a C10

polyketide moiety. These C15 and C10 moieties are combined in their biosynthesis to
form the C25 basic carbon skeleton.

18

O

OH
CO2CH3

O
H+

HO
CO2CH3

O

OH

H

HO
CO2CH3

O

OH

H

HO
CO2CH3

O

OH

H

O

HO
CO2CH3

OH
HO

CO2CH3

O

O

O

HO
CO2CH3

OH

OH

OH
CO2H

OPP

19 20

6

+

C15 terpenoid

condensation

oxidation
O-methylation

C10 polyketide

cyclization

C25 basic carbon skeleton

Fig. 14 Biosynthesis of 18–20. In their basic carbon skeletons, there are 25 carbons. However,
they are not sesterterpenoids
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2.3.2 Highly Branched Isoprenoids

Compound 21 is a highly branched isoprenoid produced by the diatom
Rhizosolenia setigera [16]. Five isoprene units are found readily in its structure
(Fig. 15). Thus, 21 is a member of the terpenoids, and 25 carbon atoms exist in
its basic carbon skeleton. However, 21 is not a sesterterpenoid, since 21 is not
derived from the C25 polyprenyl diphosphate 8, but from (C10) 5 and (C15)
6 (Fig. 16).

21

Fig. 15 Structure of 21. The structure of 21 has five isoprene units, but 21 is not a sesterterpenoid.
The isoprene units are shown by bold lines

21

OPP

OPP

6

5

OPP

8

C15

C10

C25

C25

Fig. 16 Putative biosynthesis pathway of 21. Compound 21 is biosynthesized from 5 and 6, but not
from 8
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2.3.3 Other Notable Points

The examples shown in Sects. 2.3.1 and 2.3.2 suggest that not all compounds with
25 carbon atoms are sesterterpenoids. However, it should also be noted that the basic
carbon skeletons of some sesterterpenoids are composed of fewer than 25 carbons,
due to a degradation reaction during their biosynthesis. For example, even though
ircinin-3 (22) from the sponge Ircinia oros possesses only 21 carbon atoms, 22 is a
sesterterpenoid (Fig. 17) [17].

3 Linear Sesterterpenoids

The linear sesterterpenoids do not possess a carbocyclic moiety. Thus, the terpene
cyclases are not involved in their biosynthesis. The C25 polyprenyl chain of GFPP
(8) is directly modified by tailoring enzymes to form a variety of linear
sesterterpenoids.

One of the simplest linear sesterterpenoids is geranylfarnesol (23), discovered
from the wax of the scale insect Ceroplastes albolineatus [18]. Another example of a
simple linear sesterterpenoid is geranylnerolidol (24) from the fungus Cochliobolus
heterostrophus [19]. The putative biosynthesis pathways of 23 and 24 should not be
complicated, since the elimination of the diphosphate moiety and the attack of H2O
should be sufficient to form 23 and 24 from 8 (Fig. 18).

Actually, 23 and 24 are the simplest examples, and in many cases, further
tailoring reactions occur to generate more functionalized linear sesterterpenoids. In
spite of their simple basic carbon skeletons, many kinds of linear sesterterpenoids,
especially from marine organisms, have been reported.

22

HOOC

OPP
8

C25

C21

– C4

O
O

Fig. 17 Compound 22 is
considered to be generated
from 8. The C4 partial
structure, which is shown by
bold blue lines in 8, is
removed by the degradation
reaction during the
biosynthesis of 22
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3.1 Linear Sesterterpenoids with a Furan Ring Moiety

A furan ring moiety is observed frequently in the structures of the linear
sesterterpenoids. However, in almost all cases, the enzymes responsible for the
formation of the furan moiety of the linear sesterterpenoids have not been identified.
One example of a possible pathway for the biosynthesis of the furan skeleton is
shown in Fig. 19. Other pathways for the formation of the furan ring could also be
proposed as shown in Fig. 20.

As examples of linear sesterterpenoids with a furan ring moiety, furospongin-3
(25) and furospongin-4 (26) were isolated from the marine sponge Spongia
officinalis (Plate 1) (Fig. 21) [17]. Another example is idiadione (27), which was
discovered in a different sponge, Spongia idia (Fig. 21) [20]. An
epoxyfuranosesterterpene carboxylic acid (28) was isolated from a Western
Australian sponge Spongia sp. [21]. These linear sesterterpenoids possess one
furan ring moiety in their structures. In addition, other tailoring reactions (e.g.,
oxidation, reduction, methyl ester formation) also seem to occur in their
biosynthesis.

O

HO

OH

H+

oxidation

furan ring moiety

OO

OH

H

Fig. 19 One example of the
proposed pathways for the
formation of the furan
moiety

8

OH

OH

OPP

23

24

– OPP

+ H2O

Fig. 18 Putative
biosynthesis pathway of
geranylfarnesol (23) and
geranylnerolidol (24)
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Plate 1 Spongia officinalis,
Greece. Photograph
courtesy E. Voultsiadou
et al., Creative Commons
2.5

25O

O

O

O

OHO

O OH

O O

O
HO

O

26

27

28

OHOO

OO OH

OO

O

O

O

O

O

HO

O

O

O

O

O

Fig. 21 Structures of 25–
28. The furan ring moieties
are shown in red circles. The
other functional groups,
generated by oxidation,
reduction, and methyl ester
formation, are shown in
blue, orange, and purple,
respectively

OH

O

OH

H+
oxidation

furan ring moiety

OO

H

HO

Fig. 20 Another pathway
for the formation of the
furan moiety
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3.2 Linear Sesterterpenoids with a 2-Furanone Moiety

Linear sesterterpenoids with a 2-furanone moiety also exist. The formation of the
2-furanone moiety should be similar to that of the furan ring moiety. Two possible
pathways are shown in Figs. 22 and 23.

Two linear sesterterpenoids with a 2-furanone moiety, 29 and 30, were isolated
from the Caribbean sponge Thorecta horridus (Fig. 24) [22]. In particular, 29
possesses potent inflammatory activity, inducing histamine release (in vitro), and
causes edema in rat paws (in vivo).

Compound 29 has also been reported from the Australian sponge Luffariella
geometrica, and designated as luffarin Q [23]. Luffarin R (31) was also isolated from
the same sponge (Fig. 25) [23]. Compound 31 possesses a γ-butyrolactone moiety in
addition to the 2-furanone moiety.

O

HO

OH

H+

oxidation

furan ring moiety

OO

OH
aromatization

oxidation O

O

O

O

2-furanone moiety

Fig. 22 Formation of the
2-furanone moiety

OH

O

OH

H+

oxidation

furan ring moiety

OO
HO

aromatization

oxidation
O

O
O

O

2-furanone moiety

Fig. 23 An alternative
pathway for the formation of
the 2-furanone moiety
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3.3 Linear Sesterterpenoids with a Tetronic Acid Moiety

The tetronic acid moiety is present in numerous linear sesterterpenoids, and many of
them exhibit bioactivities. The tetronic acid moiety seems to be generated by an
oxidation of the 2-furanone moiety (Fig. 26).

For example, 32 was isolated from the Australian sponge Psammocinia
sp. (Fig. 27) [24] and has antimicrobial activity. A similar compound, isopalinurin
(33), was reported from the South Australian sponge, Dysidea sp. (Fig. 27)
[25]. Compound 33 is known as a moderate protein phosphatase inhibitor. In
addition to the tetronic acid moiety, 32 and 33 also possess a furan ring moiety.

Variabilin (34), an antimicrobial linear sesterterpene with a tetronic acid moiety
(Fig. 28) [26], was isolated from the Okinawan sponge, Amphidmedon
sp. Compound 34 possesses a stereocenter at the C-18 position, and the absolute
configuration of this position was determined as (S) by the synthesis of the degra-
dation product of 34 [26].

29

30

2-furanone moiety

O

O

O

O

Fig. 24 Structures of 29
and 30. The 2-furanone
moieties are highlighted by
blue circles

OH
31

-butyrolactone moiety 2-furanone moiety

O

O

O
O

Fig. 25 Structure of
luffarin R (31), which
possesses not only the
2-furanone moiety but also a
γ-butyrolactone moiety

2-furanone moiety

tetronic acid moiety

oxidation

O

O

O

O

OH

Fig. 26 Proposed pathway
for the formation of the
tetronic acid moiety
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An enantiomer of 34, (18R)-variabilin (35), was isolated from the Caribbean
sponge Ircinia felix (Fig. 28) [27]. Together with 35, variabilin
11-methyloctadecanoate (36), a branched-chain fatty acid ester of 35, was also
isolated [28].

Compounds 32–36 possess not only a tetronic acid moiety but also a furan ring
moiety. Actually, many linear sesterterpenoids with a tetronic acid moiety have a
furan ring moiety, and some of them possess more than one furan ring moiety in their
chemical structures. For example, spongionellin (37) [29], dehydrospongionellin
(38) [29], ircinin-1 (39) [30, 31], and ircinin-2 (40) [30, 31] have two furan ring
moieties, in addition to a tetronic acid moiety (Fig. 29). Compounds 37 and 38 are
from a Japanese sponge, Spongionella sp., and both inhibit the cell division of
fertilized starfish (Asterina pectinifera) eggs. Compounds 39 and 40 were isolated
from the sponge Ircinia oros, collected in the Bay of Naples along the south-western
coast of Italy [30], and another sponge Ircinia sp., collected from the Island of Bora
Bora in French Polynesia [31].

32

33

tetronic acid moiety furan ring moiety

O

OO

O

O

O

OH

OH

Fig. 27 Structures of 32
and 33. The tetronic acid
and furan ring moieties are
highlighted by orange and
red circles, respectively

34OH

OH

O

O

35

36 branched-chain fatty acid ester

(S)

(R)

(R)

O

O

O

O

O

O

O

O

O

Fig. 28 Structures of 34–
36. The tetronic acid and
branched-chain fatty acid
ester are highlighted by
orange and purple circles,
respectively
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3.4 Degraded Linear Sesterterpenoids

As mentioned in Sect. 2.3.3, the numbers of carbon atoms in some sesterterpenoids
are less than 25, because of degradation reactions in their biosynthesis. Herein, we
introduce the “C21” and “C24” linear sesterterpenoids.

3.4.1 “C21” Linear Sesterterpenoids

The C21 linear sesterterpenoids are one of the largest groups among the degraded
linear sesterterpenoids. The C21 linear sesterterpenoids are considered to arise from
the cleavage of the tetronic acid moiety, which was introduced in Sect. 3.3. This
hypothesis is supported by the co-occurrence of the C21 linear sesterterpenoids (e.g.
22, ircinin-4 (41)) and the corresponding linear sesterterpenoids with a tetronic acid
moiety (e.g., 39 and 40) (Figs. 17 and 30) [17]. A proposed mechanism of the
degradation reaction is shown in Fig. 31 [1, 17]. Some sesterterpenoids with a
tetronic acid moiety (e.g., 39 and 40) possess a double bond, which is attached to
the tetronic acid moiety (Figs. 30 and 31). Thus, when this tetronic acid moiety
becomes an opened form, a reactive α-dicarbonyl moiety is generated, and the
α-dicarbonyl moiety is cleaved. For example, a hydroperoxide compound, which
could be formed by autoxidation, is capable of cleaving an α-dicarbonyl compound
[32]. However, this is just one possible way, and further studies are required to reveal
the mechanism leading to the formation of the C21 linear sesterterpenoids.

37

OH

OH

OH

OH

38

39

40

dehydrogenation

tetronic acid moiety

two furan ring moieties

O
O

O
O

O
O

O
O

O

O

O

O

O

O

O

O

Fig. 29 Structures of 37–
40. The tetronic acid and
furan ring moieties are
highlighted by orange and
red circles, respectively.
Compounds 37–40 possess
two furan ring moieties and
one tetronic acid moiety
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Interestingly, many of the C21 linear sesterterpenoids possess furan ring moieties
at both ends of their structures. For example, untenospongin C (42), obtained from
an Okinawan sponge Hippospongia sp. (Fig. 32) [33], exhibited cytotoxicity against
murine lymphoma L1210 cells (in vitro experiment). Another example is isonitenin
(43) from the sponge Spongia officinalis collected at O Grove, Pontevedra, Spain
(Fig. 32) [34]. Anhydrofurospongin-1 (44) [35] and furospongin-1 (45) [36] have
been found in both the Spongia officinalis and Hippospongia communis sponges,

39OH

OH

HOOC

HOOC

22

40

41

tetronic acid moiety

tetronic acid moiety
C25

C21

C25

C21

O

O

O

O

O

O

O

O

O

O

O

O

Fig. 30 Comparison of the
structures of 22, 41, 39, and
40, which were all isolated
from the same marine
sponge, Ircinia oros. The
double bonds attached to the
tetronic acid moiety are
highlighted by the bold red
line. Compounds 22 and 41
are considered to be
generated by the cleavage of
39 and 40, respectively. The
structure of 22 is also shown
in Fig. 17, and the structures
of 39 and 40 are also shown
in Fig. 29

OH

O
O

O

OH
O

OH

OH OH

+ H2O
(ring opening reaction)

tetronic acid moiety

cleavage

-dicarbonyl moiety

C21 sesterterpenoids

O

OFig. 31 Proposed
mechanism leading to the
formation of the C21 linear
sesterterpenoids. Double
bonds attached to the
tetronic acid moiety are
emphasized by bold red
lines
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which were collected in the Bay of Naples, Italy (Fig. 32). In addition, 46 has been
reported from a sponge Spongia sp. collected in Western Australia [37], and
tetradehydrofurospongin-1 (47) has been found in both the Leiosella sp. and Spongia
sp. sponges (Fig. 32) [37, 38].

On the other hand, furospongolide (48), from the sponge Dysidea herbacea
(Fig. 33) [39], possesses one furan ring moiety and one 2-furanone moiety at the
ends of the molecule.

3.4.2 “C24” Linear Sesterterpenoids

The C24 linear sesterterpenoids are also considered to be formed from the linear
sesterterpenoids with a tetronic acid moiety. In the case of the C24 linear

O
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OH
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43

44

45
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furan ring moieties at both ends of molecule
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O

O

O

O

O

OO

O

O

O

O

O

Fig. 32 Structures of 42–
47. These are C21 linear
sesterterpenoids, with the
furan ring moiety at both
ends of their structures

48

2-furanone moiety furan ring moiety

OO

O

Fig. 33 Structure of
furospongolide (48), which
possesses one furan ring
moiety and one 2-furanone
moiety at the ends of the
molecule
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sesterterpenoids, decarboxylation occurs to remove one carbon atom from the
molecule (Fig. 34).

The C24 linear sesterterpenoids are exemplified by sarcotin P (49), from a sponge
Sarcotragus sp. collected off Cheju Island, Korea (Fig. 35) [40]. Compound 49
might show toxicity to brine shrimp larvae, since this compound was isolated by a
bioactivity-guided fractionation procedure that evaluated toxicity to brine shrimp
larvae, although this was not confirmed.

Halogenated C24 linear sesterterpenoids also exist, and are exemplified by
konakhin (50) [41], 51 [42], and 52 [42] (Fig. 36). Compound 50 was isolated
from an unidentified sponge collected off the coast of Konakhè, near Dakar, Senegal,
while 51 and 52 were obtained from a North Adriatic Sea collection of Ircinia oros.

A proposed mechanism leading to the formation of the halogenated C24 linear
sesterterpenoids is shown in Fig. 37. In this pathway, after decarboxylation to form
the C24 fundamental carbon skeleton, a halogenation reaction occurs.

OH

O
O

O

OH
O

OH

OH O

+ H2O
(ring opening reaction)

tetronic acid moiety

-dicarbonyl moiety

C24 sesterterpenoids
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(decarboxylation)

O

OH

O

OFig. 34 Proposed
mechanism leading to the
formation of the C24 linear
sesterterpenoids

49

O OH

OH
O

Fig. 35 Structure of
sarcotin P (49)
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3.5 Linear Sesterterpenoids Containing a Nitrogen Atom

All linear sesterterpenoids shown above (22–52) are composed of only carbon,
hydrogen, and oxygen atoms. However, some linear sesterterpenoids contain a
nitrogen atom, as exemplified by the ircinialactams (53–55) (Fig. 38) [43], purified

OH

O

OH

Cl
Cl

– CO2

O

O

ClO

OH

Cl reduction

O
O

C25 C24

Fig. 37 Proposed
mechanism leading to the
formation of the
halogenated C24 linear
sesterterpenoids
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Fig. 36 Structures of 50–
52. Halogen atoms are
shown in red
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Fig. 38 Structures of the ircinialactams 53–55, which contain a nitrogen atom in their structures
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from Australian sponges of the family Irciniidae. From these sponges, the C21

degraded compounds, 56 and 57, have also been isolated (Fig. 39) [43]. The
proposed degradation mechanism is shown in Fig. 31. Compounds (53–57) are all
modulators of glycine receptor chloride channels.

4 Monocarbocyclic Sesterterpenoids

In the biosynthesis of the monocarbocyclic sesterterpenoids, terpene cyclases are
responsible for the formation of the carbocyclic moiety (Figs. 6 and 7). As men-
tioned above, there are two kinds of terpene cyclases, types 1 and 2. Each cyclase can
generate a variety of characteristic basic carbon skeletons of sesterterpenoids.

4.1 Monocarbocyclic Sesterterpenoids Constructed by
the Type 1 Terpene Cyclases

4.1.1 14-Membered Ring

Monocarbocyclic sesterterpenoids constructed by the type 1 terpene cyclases are
relatively rare. They are exemplified by ceriferol (58), ceriferic acid (59), ceriferol-I
(60), 13-methoxycericerene (61), and ceriferol-II (62), which possess 14-membered
ring systems (Fig. 40) [44–49]. They were isolated from the wax of the scale insect
Ceroplastes ceriferus. In fact, scale insects are known as good sources of
sesterterpenoids.

The mechanism of the 14-membered ring formation by the type 1 terpene
cyclases is shown in Fig. 41. The cyclization reaction is initiated by the heterolytic
cleavage of the diphosphate moiety of 8, and then the cyclization is finalized by the
deprotonation or the attack of H2O.

56

O OH

HO

O OH

HO

57
degraded

N

N

O

O

COOH

COOH

Fig. 39 Structures of 56 and 57, which contain a nitrogen atom in their structures, and are members
of the C21 linear sesterterpenoids
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Fig. 40 Structures of 58–62
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Fig. 41 The mechanism of
14-membered ring
formation by the type 1
terpene cyclases
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4.1.2 6-Membered Ring

The compound (�)-alotaketal A (63), which possesses a 6-membered ring system,
was reported from a marine sponge, Hamigera sp., collected in Papua New Guinea
(Fig. 42) [50], and is known to activate the cAMP cell signaling pathway. Its
biosynthesis originates from geranylfarnesyl diphosphate (GFPP) (8).

4.2 Monocarbocyclic Sesterterpenoids Constructed by
the Type 2 Terpene Cyclases

4.2.1 6-Membered Ring

The type 2 terpene cyclases also generate 6-membered ring systems. Moreover, most
of the monocarbocyclic sesterterpenoids constructed by the type 2 terpene cyclases
possess a 6-membered ring. For example, 64 [51], 65 [51], luffariolide H (66) [52],
and luffariolide J (67) [52] have been reported (Fig. 43). Compounds 64 and 65 were
isolated from the sponge Hyrtios cf. erecta, collected at Nananu-I-Ra, Fiji. Com-
pounds 66 and 67 were reported from an Okinawan marine sponge, Luffariella sp.,
and exhibit antimicrobial activities against Staphylococcus aureus, Bacillus subtilis,
and Micrococcus luteus.

Acantholide A (68) [53] and acantholide B (69) [53] also possess 6-membered
rings (Fig. 44). They were isolated from an Indonesian sponge, Acanthodendrilla
sp., and 69 has antimicrobial activities against Staphylococcus aureus and Bacillus
subtilis.

A cyclization mechanism for the formation of the 6-membered rings of 64–69 is
shown in Fig. 45. Since their basic carbon skeletons are formed by the type 2 terpene
cyclases, the cyclization reaction is initiated by the protonation of the double bond of
geranylfarnesyl diphosphate (GFPP) (8).

PPO
OPP

8

63

O
O

O

OH

H

6-membered ring

Fig. 42 Structure and
formation of (–)-alotaketal
A (63)
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Fig. 45 Cyclization
mechanism for the
formation of the
6-membered rings of 64–69
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Another monocarbocyclic sesterterpenoid with a 6-membered ring is
cyclolinteinone (70), isolated from the Caribbean sponge Cacospongia linteiformis
(Fig. 46) [54]. The positions of the methyl groups on the 6-membered ring differentiate
70 from 64–69. Compound 70 can downregulate the protein expression of an induc-
ible NO synthase and cyclo-oxygenase-2 via the inhibition of NF-ĸB activation.

A cyclization reaction leading to the formation of the basic carbon skeleton of 70
is shown in Fig. 47. In this proposed mechanism, a 1,2-hydride shift and a 1,2-alkyl
shift occur to change the position of the methyl group on the 6-membered ring, and
then deprotonation finalizes the reaction.

The structures of cyclolinteinol (71) and cyclolinteinol acetate (72) are similar to
that of 70 (Fig. 48) [55]. They were isolated from the Caribbean sponge
Cacospongia cf. linteiformis.

70
O
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O
Fig. 46 Structure of 70

8
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deprotonation

Fig. 47 Cyclization
reaction leading to the
formation of the basic
carbon skeleton of 70
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Fig. 48 Structures of
cyclolinteinol (71) and
cyclolinteinol acetate (72)
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4.2.2 5-Membered Ring

Monocarbocyclic sesterterpenoids with 5-membered ring systems also exist. How-
ever, they are rare, as compared with the monocarbocyclic sesterterpenoids with
6-membered ring systems. Such sesterterpenoids are exemplified by
25-acetoxyluffariellins A and B (73 and 74) (Fig. 49) [56], isolated from the sponge
Luffariella variabilis from the Great Barrier Reef, Australia. Notably, they are
unstable in the sponge tissue, even though they are stable after isolation. Thus, the
sponge apparently has some enzymes that can convert or degrade these compounds.

A proposed mechanism for the formation of the 5-membered ring system is
shown in Fig. 50.

A different type of 5-membered ring is seen in the structures of acantholide D (75)
and acantholide E (76) (Fig. 51) [53]. Actually, 75 and 76 were co-isolated with 68
and 69 from the Indonesian sponge, Acanthodendrilla sp. [53], and 76 exhibited
cytotoxicity against the L5187Y mouse lymphoma cell line. A proposed cyclization
mechanism for generating the basic carbon skeleton of 75 and 76 starting from
geranylfarnesyl diphosphate (8) is shown in Fig. 52.
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Fig. 49 Structures of 25-
acetoxyluffariellins A (73)
and B (74)
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Fig. 50 Proposed
mechanism for the
formation of the
5-membered rings of 73 and
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5 Bicarbocyclic Sesterterpenoids

5.1 Bicarbocyclic Sesterterpenoids Constructed by
the Type 1 Terpene Cyclases

5.1.1 15/5-Membered Ring System

Bicarbocyclic sesterterpenoids, constructed by the type 1 terpene cyclases, have
been reported from fungi. Terpestacin (77), a representative compound with a 15/5-
membered ring system (Fig. 53) [57, 58], has been isolated from the fungi
Arthrinium sp. [57] and Phomopsis sp. XZ-26 [58]. Compound 77 reportedly
inhibits tumor angiogenesis by binding to the 13.4-kDa subunit of the mitochondrial
complex III and suppresses hypoxia-induced reactive oxygen species production and
cellular oxygen sensing [59].
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Fig. 51 Structures of
acantholide D (75) and
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Fig. 52 Proposed
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Interestingly, the compound known as “siccanol,” isolated from the fungus
Bipolaris sorokiniana NSDR-011, is also compound 77. Even though “siccanol”
was initially reported as 11-epiterpestacin (78), an epimer of 77 (Fig. 53) [60], the
total synthesis of 78 revealed that “siccanol” was not 78, but 77 [61].

Fusaproliferin (79), isolated from the fungus Fusarium proliferatum, also pos-
sesses the 15/5-membered ring system (Fig. 53) [62]. Compound 79 is an acetate
ester of 77, and the stereochemistry of 79 was established by a synthesis approach
[63]. A proposed cyclization mechanism for the formation of the 15/5-membered
ring system starting from geranylfarnesyl diphosphate (8) is shown in Fig. 54. This
cyclization involves a 1,5-hydride shift, which is seen frequently in the type 1 cycli-
zation reactions of sesterterpenoids.

5.1.2 12/6-Membered Ring System

Emericellene A (80) and related compounds have been reported from an endophytic
fungus, Emericella sp. AST0036, collected from a healthy leaf of the plant
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Astragalus lentiginosus (Fig. 55) [64]. Compound 80 possesses a 12/6-membered
ring system. A proposed cyclization mechanism for generating the 12/6-membered
ring system originating in geranylfarnesyl diphosphate (8) is shown in Fig. 55, and
the formation of a 14-membered ring might be the first step in this reaction.

5.2 Bicarbocyclic Sesterterpenoids Constructed by the
Type 2 Terpene Cyclases

The majority of bicarbocyclic sesterterpenoids constructed by the type 2 terpene
cyclases possess 6/6-membered ring systems. An example of the 6/6-membered ring
formation starting from geranylfarnesyl diphosphate (8) is shown in Fig. 56.

Salvimirzacolide (81), with a 6/6-membered ring system, was isolated from the
aerial parts of the plant Salvia mirzayanii (Fig. 57) [65]. Another example is
salvileucolide methyl ester (82), which reportedly exists in the aerial parts of two
Iranian Salvia species plants (Fig. 57) [66]. The structures of both 81 and 82 have
been confirmed by X-ray crystallography.

In some cases, an alkyl shift occurs in the middle of the cyclization reaction. For
example, the basic carbon skeleton of halisulfate-3 (83) is different from those of 81
and 82 (Fig. 58) [67]. Compound 83 is one of the metabolites of a sponge, Ircinia
sp., which was collected in the Philippines. The cyclization reaction for the forma-
tion of the basic carbon skeleton of 83 starting from geranylfarnesyl diphosphate (8)
is shown in Fig. 59.
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Another example of an alkyl shift is found in the formation of thorectandrol A
(84) and thorectandrol B (85) (Fig. 60) [68]. Compounds 84 and 85 were isolated
from the sponge Thorectandra sp. collected in Palau, and both 84 and 85 inhibited
the growth of the MALME-3M and MCF-7 cancer cells. A proposed cyclization
mechanism for the formation of the basic carbon skeletons of 84 and 85 starting from
geranylfarnesyl diphosphate (8) is shown in Fig. 61. During this reaction, the alkyl
shift occurs twice.

5.3 Other Bicarbocyclic Sesterterpenoids

Even though most of the carbocyclic moieties of sesterterpenoids are formed by the
terpene cyclases, some carbocyclic structures are generated in a different manner.
For example, the bicarbocyclic ring systems of (+)-wistarin (86) [69, 70] and (�)-
wistarin (87) [71] would not be formed by the typical terpene cyclases (Fig. 62).
Compound 87 is an enantiomer of 86. Compound 86was found in the sponge Ircinia
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wistarii from the Great Barrier Reef, Australia [69], while 87 was isolated from a
sponge, Ircinia sp., collected at Hurghada, Red Sea, Egypt [71].

A proposed biosynthesis of 86 is shown in Fig. 63. Actually, 86 seems to be
biosynthesized via a linear sesterterpenoid 88, and the Diels–Alder reaction might
occur to form the bicarbocyclic moiety of 86. In the same manner, 87 should be
formed via ent-88.

The biosynthesis pathway of ircinianin sulfate (89) (Fig. 64) [72] should be
similar to that of 86. Compound 89 is an unstable metabolite from the sponge Ircinia
wistarii, collected from the Great Barrier Reef, Australia.
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6 Tricarbocyclic Sesterterpenoids

A greater number of carbocyclic moieties increases the complexity of the structures
of sesterterpenoids. Thus, sesterterpenoids with more than three carbocyclic rings
exhibit considerable complexity. Moreover, the diversity of the basic carbon skele-
ton is also increased. Especially the type 1 terpene cyclases have great potential to
generate various kinds of structures with more than three carbocyclic rings.

6.1 Tricarbocyclic Sesterterpenoids Constructed by the Type 1
Terpene Cyclases

6.1.1 5/8/5-Membered Ring System

A tricarbocyclic sesterterpenoid with a 5/8/5-membered ring system (90), from the
fungi Ophiobolus miyabeanus and Helminthosporium oryzae, was found initially
and characterized by Japanese [73] and Italian [74] groups, independently. The
Japanese group designated this compound as ophiobolin, while the Italian group
named it cochliobolin. In order to avoid confusion, a joint paper from these two
groups was published, and this compound was renamed ophiobolin A (90)
(Fig. 65) [75].

Many derivatives of 90 have been reported, and they are called ophiobolin-type
sesterterpenoids. Examples of the ophiobolin-type sesterterpenoids, ophiobolins
B-M (91–102), are shown in Figs. 66 and 67 [19, 76–86]. Notably, the
ophiobolin-type sesterterpenoids are known as bioactive compounds. For example,
90, 91, 92, and 100 exhibited activity toward leukemia cells with the induction of
apoptosis, at nanomolar concentrations [87].

A proposed cyclization mechanism for the formation of the 5/8/5-membered ring
system starting from geranylfarnesyl diphosphate (8) is shown in Fig. 68. In this
reaction, an 11/5-membered ring system first would be generated. Subsequently, a
1,5-hydride shift and the formation of another 5-membered ring would occur.

Epimers of many ophiobolins have also been reported, as exemplified by
6-epiophiobolin A (103) [88, 89], 6-epiophiobolin C (104) [85], 6-epiophiobolin I
(105) [82], and 6-epiophiobolin K (106) [83] (Fig. 69).

Many ophiobolin-type sesterterpenoids have been described, and even now, the
number of ophiobolin-type sesterterpenoids is increasing. For example, the new
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ophiobolin-type sesterterpenoids, asperophiobolins A (107), and ten other related
new sesterterpenoids were reported in 2019 (Fig. 70) [90]. They were isolated from
cultures of a mangrove endophytic fungus, Aspergillus sp. ZJ-68.
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6.1.2 5/12/5-Membered Ring System

Sesterterpenoids with 5/12/5-membered ring systems have been found in both a
fungus and a plant. Variculanol (108) was isolated from the fungus Aspergillus
variecolor [91], while nitinol (109) was reported from the plant Gentianella nitida,
which is used in Peruvian folk medicine (Fig. 71) [92]. Compound 109 exhibits
activity to enhance IL-2 gene expression in a human T cell line. A possible
cyclization mechanism for the formation of the 5/12/5-membered ring system
starting from geranylfarnesyl diphosphate (8) is shown in Fig. 72.
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6.1.3 11/6/5-Membered Ring System

Two groups of sesterterpenoids possess 11/6/5-membered ring systems. One is
exemplified by flocerol (110) and floceric acid (111) from the secretions of the
scale insect Ceroplastes floridensis, an orchard pest collected in Osaka, Japan
(Fig. 73) [93]. The other is exemplified by stellatic acid (112) (Fig. 73) [94], isolated
from the metabolites of the fungus Aspergillus stellatus.

A proposed cyclization mechanism for the formation of the 11/6/5-membered
ring systems of 110 and 111 starting from geranylfarnesyl diphosphate (8) is shown
in Fig. 74. At first, an 11/5-membered ring system is generated. Importantly, the
configuration of one of the two double bonds in the 11-membered ring is (Z ). Next, a
ring expansion from a 5-membered ring to a 6-membered ring occurs, and at the
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same time, a new 5-membered ring is generated to form the 11/6/5-membered ring
system. Subsequently, deprotonation occurs to finalize the cyclization reaction.

A cyclization reaction for generating the basic carbon skeleton of 112 starting
from geranylfarnesyl diphosphate (8) is shown in Fig. 75. There are several differ-
ences between the reactions shown in Figs. 74 and 75. First, the configuration of
both double bonds in the 11-membered ring is (E) in Fig. 75. Second, the ring
expansion from the 5-membered ring to the 6-membered ring occurs in a different
manner. These two differences result in the generation of two different types of 11/6/
5-membered ring systems.

6.1.4 11/6/6-Membered Ring System

Floridenol (113) possesses an 11/6/6-membered ring (Fig. 76) [93] and was also
isolated from the wax of the scale insect from which 110 and 111 were reported. The
formation of the 11/6/6-membered ring system starting from geranylfarnesyl diphos-
phate (8) is illustrated in Fig. 77. The formation of 113 seems to have diverged from
those of 110 and 111.
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6.2 Tricarbocyclic Sesterterpenoids Constructed by the Type 2
Terpene Cyclases

6.2.1 6/6/6-Membered Ring Systems

Many tricarbocyclic sesterterpenoids constructed by the type 2 terpene cyclases
exhibit 6/6/6-membered ring systems. For example, suvanine (114) [95] and
lintenolide F (115) [96] possess the 6/6/6-membered ring system (Fig. 78). Com-
pound 114 was isolated from a sponge, Ircinia sp., and its chemical structure has
been confirmed by the X-ray crystallography of its degradation product [95], while
115 was isolated from a Caribbean sponge, Cacospongia cf. linteiformis [96].

A proposed cyclization mechanism for the formation of the carbon skeleton of
114 starting from geranylfarnesyl diphosphate (8) is shown in Fig. 79a, while the
cyclization reaction for that of 115 is illustrated in Fig. 79b.
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6.2.2 6/6/5-Membered Ring System

Hyrtiosal (116), which possesses a 6/6/5-membered ring system, was isolated from
the Okinawan marine sponge Hyrtios erectus, collected at a coral reef off Ishigaki
Island, Okinawa, Japan (Fig. 80) [97]. Compound 116 has been shown to inhibit the
proliferation of KB cells. Its formation starting from geranylfarnesyl diphosphate (8)
is illustrated in Fig. 80.
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6.2.3 3/6/6-Membered Ring System

Cacospongionolide (117), with a 3/6/6-membered ring system (Fig. 81) [98, 99],
was isolated as a potent antitumor and ichthyotoxic agent from the sponge
Cacospongia mollior, collected in the Northern Adriatic Sea. The chemical structure
of 117 has been confirmed by the X-ray crystallography of its acetyl derivative.

A proposed cyclization mechanism for the formation of the 3/6/6-membered ring
system starting from geranylfarnesyl diphosphate (8) is shown in Fig. 82. One
methyl group of 8, highlighted with a red color in Fig. 82, might be involved in
the formation of the cyclopropane ring of 117.

6.2.4 6/5/4-Membered Ring System

Lintenone (118) is a representative sesterterpenoid with a 6/5/4-membered ring system
(Fig. 83) [100]. Compound 118 was isolated from a Caribbean sponge, Cacospongia
cf. linteiformis, and possesses potent ichthyotoxicity and antifeedant properties.
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One possible mechanism for the formation of the 6/5/4-membered ring system
starting from geranylfarnesyl diphosphate (8) is shown in Fig. 84 [3]. In this
proposal, the cyclization reactions occur twice to generate the characteristic 6/5/4-
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membered ring system. After a 6-membered ring is formed by the first cyclization
reaction, an epoxide might be generated by tailoring enzymes. The second cycliza-
tion reaction would then be initiated by the protonation of the epoxide.

6.3 Tricarbocyclic Sesterterpenoids Constructed by Both
Type 1 and 2 Terpene Cyclases

In some sesterterpenoids, the type 1 and 2 terpene cyclases seem to work together to
form the complex basic carbon skeleton, and many such sesterterpenoids have been
isolated from marine organisms [101].

One example is ansellone A (119), isolated from the nudibranch Cadlina
luteromarginata and a sponge, Phorbas sp. (Fig. 85) [102]. Analyses revealed that
119 activates the cAMP signaling pathway. In the proposed biosynthesis pathway, at
first the type 1 cyclization starting from geranylfarnesyl diphosphate (8) occurs, and
then the type 2 cyclization reactions form the basic carbon skeleton of 119
(Fig. 85) [101].
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7 Tetracarbocyclic Sesterterpenoids

7.1 Tetracarbocyclic Sesterterpenoids Constructed by
the Type 1 Terpene Cyclases

7.1.1 7/6/6/5-Membered Ring System

Aspergilloxide (120), isolated from a fungus, Aspergillus sp., has a 7/6/6/5-
membered ring system (Fig. 86) [103]. A possible cyclization reaction to form
the basic carbon skeleton starting from geranylfarnesyl diphosphate (8) is also
shown in Fig. 86.

7.1.2 5/8/6/6-Membered Ring System

Asperterpenol A (121) and a derivative have been reported from a mangrove
endophytic fungus, Aspergillus sp. 085242 (Fig. 87) [104]. Compound 121 is an
acetylcholinesterase inhibitor. Their tetracarbocyclic skeletons would be formed
starting from geranylfarnesyl diphosphate (8) as shown in Fig. 87.
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7.1.3 5/8/6/5-Membered Ring System

There are two types of 5/8/6/5-ring systems. One is exemplified by variecolin (122),
which has been isolated from some fungi, including Aspergillus variecolor MF138
[105], Emericella purpurea [106], and Emericella aurantio-brunnea [107] (Fig. 88).
Compound 122 possesses immunosuppressive activity, and the formation of its 5/8/
6/5-membered ring system is shown in Fig. 88. In this reaction, an 11/6/5-membered
ring system is first formed from geranylfarnesyl diphosphate (8), and then proton-
ation occurs to start a second round of cyclization, and the 5/8/6/5-membered ring
system is generated.

The other type of 5/8/6/5-membered ring systems is exemplified by aleurodiscal
(123), from the corticioid fungus Aleurodiscus mirabilis [108], and nitidasin (124),
from the plant Gentianella nitida [109, 110] (Fig. 89). The formation of the 5/8/6/5-
membered ring systems of 123 and 124 is initiated by generating a 15/5-membered
ring system (Fig. 89), while that of 122 starts from the generation of the 11/5-
membered ring system (Fig. 88).
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7.1.4 5/5/6/5- and 5/6/6/5-Membered Ring Systems

The 5/5/6/5-membered ring system is exemplified by mangicol A (125) [111], while
the 5/6/6/5-membered ring system is found in the structure of neomangicol A (126)
(Fig. 90) [112]. A proposed cyclization mechanism for the formation of the 5/5/6/5-
membered ring systems is shown in Fig. 91. Since both 125 and 126 were isolated
from the same fungus, Fusarium heterosporum, it is proposed that the 5/6/6/5-
membered ring system of 126 is generated starting from geranylfarnesyl diphosphate
(8) by the conversion of a precursor possessing the 5/5/6/5-membered ring
system [111].
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7.2 Tetracarbocyclic Sesterterpenoids Constructed by
the Type 2 Terpene Cyclases

7.2.1 6/6/6/6-Membered Ring System

Most tetracarbocyclic sesterterpenoids constructed by the type 2 terpene cyclases
exhibit a 6/6/6/6-membered ring system and are among the most common
sesterterpenoids. Scalarin (127) was the first of this type of compound to be isolated
[113, 114]. The chemical structure of 127 and a cyclization mechanism for the
formation of the 6/6/6/6-membered ring system starting from geranylfarnesyl
diphosphate (8) are shown in Fig. 92.

7.2.2 6/6/5/7-Membered Ring System

Salmahyrtisol A (128) [115] and hippospongide A (129) (Fig. 93) [116] possess a 6/
6/5/7-membered ring system. Compounds 128 and 129 were isolated from the
sponges Hyrtios erecta from the Red Sea and Hippospongia sp. from coral reefs
off the coast of Tai-tung, Taiwan, respectively. From these two sponges, 116 with a
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6/6/5-membered ring system has also been isolated. Considering the structural
relationship among 128, 129, and 116, 116 might be a biosynthetic intermediate of
128 and 129.

8 Pentacarbocyclic Sesterterpenoids

Pentacarbocyclic sesterterpenoids are rare, and the complexity of their structures is
quite high. In particular, the type 1 terpene cyclases are known to generate fascinat-
ing pentacarbocyclic skeletons.

8.1 Pentacarbocyclic Sesterterpenoids Constructed by
the Type 1 Terpene Cyclases

8.1.1 5/6/5/6/5-Membered Ring System

Peniroquesine A (130) and its derivatives, which possess 5/6/5/6/5-membered ring
systems, have been isolated from the fungus Penicillium roqueforti YJ-14 (Fig. 94)
[117]. Compound 130 is a potent inhibitor of nitric oxide production in
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Fig. 94 Structure of peniroquesine A (130), and possible cyclization reaction for the formation of
the 5/6/5/6/5-membered ring system
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LPS-activated RAW264.7 macrophages. During the proposed cyclization reaction
for the formation of the 5/6/5/6/5-membered ring system starting from
geranylfarnesyl diphosphate (8), several complex rearrangements could occur
(Fig. 94).

8.1.2 5/7/3/6/5-Membered Ring System

Asperterpenoid A (131), with a 5/7/3/6/5-membered ring system, has been isolated
from a mangrove endophytic fungus, Aspergillus sp. 16-5c (Fig. 95) [118]. Com-
pound 131 is a strong inhibitor of Mycobacterium tuberculosis protein tyrosine
phosphatase B. Its formation from geranylfarnesyl diphosphate (8) is illustrated in
Fig. 95.
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the 5/7/3/6/5-membered ring system of 131
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8.1.3 5/3/7/6/5- and 5/4/7/6/5-Membered Ring Systems

Aspterpenacid A (132) [119] has a 5/3/7/6/5-membered ring system, while astellatol
(133) [120] possesses a 5/4/7/6/5-membered ring system (Fig. 96). Compounds 132
and 133 were isolated from the fungi Aspergillus terreus H010 and Aspergillus
variecolor, respectively. Proposed pathways for the formation of the 5/4/7/6/5- and
5/3/7/6/5-membered ring systems starting from geranylfarnesyl diphosphate (8) are
also shown in Fig. 96.
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Fig. 96 Structures of 132 and 133, and possible cyclization reactions for the formation of the basic
carbon skeletons of 132 and 133
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8.1.4 5/5/5/6/5-Membered Ring System

Retigeranic acid A (134) [121, 122], retigeran-11-ol (135) [123], and
4-hydroxyretigeran-11-ol (136) [123] possess 5/5/5/6/5-membered ring systems,
which originate from geranylfarnesyl diphosphate (8) (Fig. 97). Compounds 135
and 136 were isolated from the lichen Leprocaulon microscopicum. Compound 134
was isolated from lichens of the Lobaria retigera group (Plate 2), and 134 reportedly
exists as a mixture with retigeranic acid B (137), an epimer of 134, in Nature
(Fig. 98) [124].
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135 136
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Fig. 97 Structures of 134–136, and possible cyclization reactions for the formation of the basic
carbon skeleton of 134–136
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9 Hexacarbocyclic Sesterterpenoids

Niduterpenoid A (138) and niduterpenoid B (139) possess hexacarbocyclic 5/5/5/5/
3/5-membered ring systems (Fig. 99) [125]. Both compounds were isolated from
Aspergillus nidulans. Compound 138 lacks cytotoxicity, but abrogates 17-estradiol-
induced cell proliferation. The cyclization reaction for the formation of the
hexacarbocyclic system starting from geranylfarnesyl diphosphate (8) is quite com-
plicated, as shown in Fig. 100. After the formation of the intermediate A, with a 5/5/
5/6/5-membered ring system, further rearrangements occur to form the
hexacarbocyclic structure. Notably, the 5/5/5/6/5-membered ring system of the
intermediate A is distinct from those of 134–137 (Figs. 97 and 98).

Plate 2 Lobaria retigera (Bory) Trevisan, Maungataniwha Ecological District. Photograph cour-
tesy D. J. Galloway, CCBY Auckland Museum, Creative Commons 4.0

COOH

137

Fig. 98 Structure of retigeranic acid B (137)
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OH

OH

HO

138 139

Fig. 99 Structures of niduterpenoid A (138) and niduterpenoid B (139)
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10 Sesterterpenoids Found by a Genome-Based Approach

Recently, a genome-based approach to the search for novel sesterterpenoids has been
reported [126, 127]. As in a typical search for new natural products, researchers
extract mixtures of compounds from natural sources and search for new compounds
in the crude extracts. However, in the genome-based approach, investigators extract
the genomic DNA from such natural resources and perform genome sequencing.
From the obtained genomic data, a search is made for genes that could be involved in
sesterterpenoid biosynthesis. These genes are expressed inducibly utilizing genetic
engineering techniques. If the expressed genes are responsible for the formation of
unknown sesterterpenoids, then these new sesterterpenoids can be isolated. By
utilizing this approach, several new sesterterpenoids have been identified from
fungi, plants, and bacteria.

OPP
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H

H

H

H

139

138

8

A

Fig. 100 Possible cyclization reactions for the formation of the hexacarbocyclic skeleton of 138
and 139. The intermediate A possesses a 5/5/5/6/5-membered ring system, which is distinct from
that of 134–137
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10.1 5/5/5/6/5-Membered Ring System

A genome-based approach generated quiannulatene (140), with a 5/5/5/6/5-
membered ring system (Fig. 101) [128]. The gene responsible for the production
of 140 was found from the genomic data of the fungus Emericella variecolor NBRC
32302. Notably, the 5/5/5/6/5-membered ring system of 140 is different from those
of 134–137 (Figs. 97 and 98). It is proposed that 140 is generated by the
deprotonation of the intermediate A in Fig. 100. The detailed cyclization mechanism
leading to the formation of 140 has been investigated by both computational
approaches [129, 130] and isotope labeling experiments [128]. From the plant
Arabidopsis thaliana, a gene for the biosynthesis of ent-140 has also been found
[131]. In addition, from the plant Brassica oleracea, a gene for the production of
boleracene (141) has been identified (Fig. 101) [131]. The stereochemistry of 141 is
different from those of 140 and ent-140.

10.2 5/8/6/5-Membered Ring System

Compound Bm2 (142) [132] and sesterfisherol (143), with a 5/8/6/5-membered ring
system, were also discovered by the genome-based approach (Fig. 102)
[133, 134]. The genes responsible for the production of 142 and 143 were found
in the genomes of the fungi Bipolaris maydis ATCC48331 and Neosartorya fischeri,
respectively. In fact, 123 and 124, which were mentioned in Sect. 7.1.3, also possess
similar 5/8/6/5-membered ring systems (Figs. 89 and 102). However, the stereo-
chemistry and positions of the double bonds of 142, 143, 123, and 124 are different
from each other. A possible cyclization reaction starting from geranylfarnesyl
diphosphate (8) leading to the formation of 142 and 143 is shown in Fig. 103.

A
H

140

ent-140 141

Fig. 101 Structures of quiannulatene (140), ent-140, and boleracene (141), and formation of 140.
The formation of intermediate A is shown in Fig. 100
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10.3 11/6/5-Membered Ring Systems

(+)-Thalianatriene (144), which is also known as (+)-arathanatriene, possesses an 11/
6/5-membered ring system (Fig. 104) [131, 135]. The gene encoding the synthase of
144 has been identified in the Arabidopsis thaliana genome. In addition, a gene
involved in the production of a related compound, caprutriene (145), has been found
in the genome of the plant Capsella rubella [131].

In Sect. 6.1.3, two kinds of 11/6/5-membered ring systems were introduced.
However, the 11/6/5-membered ring systems of 144 and 145 are different from the
two known 11/6/5-membered ring systems. The formation of 144 and 145 from
geranylfarnesyl diphosphate (8) starts from the generation of a 15/5-membered ring
system (Fig. 105), while the formation of the other two 11/6/5-membered ring
systems is initiated by the formation of the 11/5-membered ring system (Figs. 74
and 75).
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Fig. 102 Structures of 142,
143, and 123 and 124
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Fig. 103 Formation of 142
and 143
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10.4 6/6/7/5- and 6/11/5-Membered Ring Systems

A sesterterpene synthase, identified from the genetic data of the plant Capsella
rubella, was found to produce (�)-caprudiene A (146), (�)-caprutriene B (147),
and (+)-caprutriene C (148) (Fig. 106) [136]. Compound 146 possesses a 6/6/7/5-
membered ring system, while 147 and 148 have 6/11/5-membered ring systems. In
addition to 146–148, this enzyme also produces (+)-brassitetraene A (149) and (+)-
brassitetraene B (150) with 15/5-membered ring systems. In fact, 149 and 150 are
considered as intermediates of 146–148. Thus, after the formation of 149 and 150
starting from geranylfarnesyl diphosphate (8), a second round of cyclization,

144 145

Fig. 104 Structures of (þ)-thalianatriene (144) and caprutriene (145)

OPP

H

8

H

144

OPP

OPP
8

110

111

112

(Z) 145

H

11/5-membered 
ring system 

11/5-membered 
ring system 
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Fig. 105 Formation of 144 and 145, and comparison with those of 110–112
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initiated by the protonation of 149 and 150, occurs to form 146–148. Other genes for
the production of related sesterterpenoids with a 6/6/7/5-membered ring system have
also been found in the genomes of the plants Arabidopsis thaliana and Brassica
rapa [136].

10.5 5/4/5- and 4/5/5-Membered Ring Systems

A terpene cyclase designated as “spata-13,17-diene synthase” was found in the
marine bacterium Streptomyces xinghaiensis by the genome-based approach
[137]. This enzyme has the potential to produce prenylspata-13,17-diene (151),
geranylkelsoene (152), and other C15 sesqui- and C20 di-terpenoids. Compound

OPP
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H

H+H+

H

H

H

149 150

147

148

146

H

H

Fig. 106 Structures and formation of 146–150
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151 possesses a 5/4/5-membered ring system, while 152 has a 4/5/5-membered ring
system (Fig. 107).

10.6 6/8/6/5-Membered Ring System

Astellifadiene (153) is a sesterterpenoid with a 6/8/6/5-membered ring system
(Fig. 108) [138]. The formation of the 6/8/6/5-membered ring system from
geranylfarnesyl diphosphate (8) requires two cyclization reactions. In the first
cyclization, an 11/6/5-membered ring is generated, and then deprotonation finalizes
the reaction. Next, protonation occurs to initiate the second round of cyclization, and
the basic carbon skeleton of 153 is formed. The gene for the biosynthesis of 153 has
been found in the genome of the fungus Emericella variecolor NBRC 32302.

OPP H

H+

HH

8

151 152

Fig. 107 Structures and formation of prenylspata-13,17-diene (151) and geranylkelsoene (152)
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10.7 5/12/5-Membered Ring System

Sesterbrasiliatriene (1) [9], betaestacin I (154) [132], and Bm1 (155) [132] have 5/
12/5-membered ring systems (Fig. 109) and were found by the genome-based

OPP

H

H+

H

H

8

153

– OPP

– H+

+ H+

– H+

11/6/5-membered 
ring system

first-round cyclization

second-round cyclization 

Fig. 108 Structure and formation of astellifadiene (153)

1541 155

HO

OH

OH

108 109

Fig. 109 Structures of 1, 154, 155, 108, and 109. Compounds 1, 154, and 155were discovered by a
genome-based approach. Structures of 108 and 109 are also shown in Fig. 71
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approach. The genes responsible for the production of 1, 154, and 155 are from the
fungi Penicillium brasilianum NBRC 6234, Phoma betae PS-13, and Bipolaris
maydis ATCC48331, respectively. Of these, 108 and 109 with 5/12/5-membered
ring systems were isolated from Nature, as mentioned in Sect. 6.1.2. However, the
configurations and positions of the double bonds of 1, 154, 155, 108, and 109 are
different from each other.

10.8 Genes for the Formation of a Linear Sesterterpenoid

Genes for the biosynthesis of linear sesterterpenoids have also been found. For
example, a gene from the bacterium Bacillus clausii encodes an enzyme that can
transform geranylfarnesyl diphosphate (8) into a linear sesterterpene, hydrocarbon
β-geranylfarnesene (156) (Fig. 110) [139].

10.9 Genes Encoding a Membrane-Bound Sesterterpene
Cyclase

The typical terpene cyclases, which catalyze type 1 terpene cyclization reactions, are
soluble proteins. However, there are also membrane-bound terpene cyclases for
type 1 cyclization reactions, and they are referred to as UbiA-type terpene cyclases.
A gene encoding a UbiA-type terpene cyclase involved in the biosynthesis of
sesterterpenoids has been found in the bacterium Streptomyces somaliensis
[140]. This enzyme can convert geranylfarnesyl diphosphate (8) to somaliensenes
A (157) and B (158) (Fig. 111).

OPP

H

8

156

Fig. 110 Structure and formation of β-geranylfarnesene (156)
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10.10 A Sesterterpenoid Produced by an Artificially
Engineered Enzyme

In many cases, fungal sesterterpene synthases (C25) and diterpene synthases (C20)
exist as chimeric enzymes, composed of a terpene cyclase and a prenyltransferase
[126, 127]. In other words, the terpene cyclase and the prenyltransferase are linked
together (Fig. 112). The reactions catalyzed by these two enzymes are shown in
Figs. 5–7. The fusion of these two enzymes is considered to provide a catalytic

8

OPP
PPO

H

157 158

H

Fig. 111 Structures and formation of somaliensenes A (157) and B (158)
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cyclizationchain elongation

Fig. 112 Constitution of
the fungal chimeric
diterpene synthase and
sesterterpene synthase. The
chimeric terpene synthase
consists of two domains.
The C-terminal domain
possesses the
prenyltransferase activity,
while the N-terminal
domain exhibits the terpene
cyclase activity
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advantage, because the physical proximity of the active sites of the two enzymes can
enhance product flux [141, 142]. Polyprenyl diphosphates 7 and 8, which are
produced by the prenyltransferase, could be efficiently moved into the active site
of the terpene cyclase if these enzymes are linked together, namely, exist near each
other.

The prenyltransferase domain of the fungal diterpene synthase (C20) might
produce mainly the (C20) polyprenyl diphosphate 7, while that of sesterterpene
synthase might yield primarily the (C25) version 8. Therefore, even when the terpene
cyclase domain of a fungal diterpene cyclase has the potential to cyclize not only
7 but also 8, the major products of the enzyme should be diterpenes (C20), because
the prenyltransferase domain supplies principally (C20) 7, not (C25) 8, to the terpene
cyclase domain.

Accordingly, a protein engineering experiment, in which the prenyltransferase
domain of a fungal diterpene synthase is exchanged with that of a sesterterpene
synthase, could enable the terpene cyclase domain of the diterpene synthase to
produce sesterterpenoids, since the prenyltransferase domain of the sesterterpene
synthases can supply a sufficient amount of 8.

A protein engineering experiment based on this hypothesis has been reported
[143]. This study utilized a fungal diterpene cyclase, designated as EvVS. The wild-
type EvVS produces only C20 variediene (159). However, after its prenyltransferase
domain was exchanged artificially with that of a sesterterpene synthase by genetic
engineering, this enzyme produced a sesterterpene, (2E)-α-cericerene (160)
(Figs. 113 and 114). A similar approach using a different fungal diterpene synthase
has also been reported [144].

Prenyltransferase Terpene Cyclase

N-termimusC-termimus
Linker

3

4  3

OPP

OPP

cyclizationchain elongation

OPP

OPP

7 159

7

C20

Wild-typeFig. 113 Reaction
catalyzed by the wild-type
fungal diterpene synthase
(EvVS), which produces
159. Since the
prenyltransferase domain of
this enzyme mainly
produces 7, the terpene
cyclase domain primarily
accepts 7. Thus, only the
cyclized diterpene 159 is
produced by the wild-
type EvVS
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10.11 Tailoring Enzymes for the Derivatization
of Sesterterpenoids

In addition to the enzymes responsible for the formation of the basic carbon
skeletons of the sesterterpenoids, modification enzymes, which can attach a func-
tional group to these compounds, have been found by the genome-based approach.
For example, from the fungus Talaromyces wortmannii ATCC 26942, a cytochrome
P450, which can convert 131 to a new sesterterpenoid, asperterpenoid C (161), has
been identified (Fig. 115) [145]. The cytochrome P450 catalyzes an oxidation
reaction and attaches a hydroxy group to 131.

Another example refers to the tailoring enzymes for the derivatization of 154
[146]. Analyses revealed that three cytochrome P450s, from the fungi Phoma betae
and Colletotrichum orbiculare, are involved in the conversion of 154 into the new
sesterterpenoids 162–168 (Fig. 116).

In addition, cytochrome P450s for the formation of new sesterterpenoids,
quiannulatic acid (169) and sesterfisheric acid (170), have also been identified
(Fig. 117) [128, 133].
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catalyzed by the engineered
EvVS. The
prenyltransferase domain of
EvVS was exchanged with
that of a sesterterpene
synthase. In the case of the
engineered EvVS, 8 is
primarily supplied to the
terpene cyclase domain.
Therefore, the terpene
cyclase domain starts to
accept 8 and produces the
cyclized sesterterpene 160
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Fig. 115 Structure and formation of asperterpenoid C (161). The structure of 131 is also shown in
Fig. 95
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Fig. 116 Structures and formation of 162–168. Reactions catalyzed by different enzymes are
shown by arrows with different colors. The structure of 154 is also shown in Fig. 109
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Figs. 101 and 102
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10.12 Genes for the Biosynthesis of Known Sesterterpenoids
or Their Precursors

The genome-based approach has also identified the genes involved in the biosyn-
thesis of known sesterterpenoids. Herein, such examples are introduced. Impor-
tantly, in many cases, the genome-based approach enables the isolation of the
biosynthetic precursors of the known sesterterpenoids, which have never been
isolated from Nature.

10.12.1 Stellatic Acid

The gene for the production of stellata-2,6,19-triene (171) was found in the genome
from the fungus Emericella variecolor NBRC 32302 (Fig. 118) [147]. In fact, 170 is
a biosynthetic precursor of stellatic acid (112) and has not been reported from natural
sources. Moreover, a cytochrome P450 for the conversion of 170 into 112 has also
been identified from the same fungal strain.

10.12.2 Ophiobolin F

A gene encoding a sesterterpene synthase for the production of ophiobolin F (95) has
been found in the genome from the fungus Aspergillus clavatus (Figs. 66 and 112)
[148]. Indeed, this enzyme is the first example of a sesterterpene synthase.

The gene for the biosynthesis of 95 has also been found in the genome from the
fungus Aspergillus ustus 094102, and the genes responsible for the accumulation of
95 in this fungus have been investigated in detail [149, 150]. Based on this
information, the production of 95 in Escherichia coli has been accomplished [151].

10.12.3 Mangicol A

The gene encoding a sesterterpene synthase for the production of mangicdiene (172)
has been found in the genome from the fungus Fusarium graminearum J1-012
(Fig. 119) [152]. Compound 172 is considered to be a biosynthetic intermediate of
mangicol A (125).

COOH
112171

Fig. 118 Structures of 171
and 112. The structure of
112 is also shown in Fig. 73
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10.12.4 Retigeranic Acid B

The gene for the biosynthesis of retigeranin B (173) has been found in the genome
from the plant Arabidopsis thaliana (Fig. 120) [131, 135]. Compound 173 is
considered to be a biosynthetic intermediate of retigeranic acid B (137).

10.12.5 Astellatol

The gene for the production of astellatene (174) has been identified in the genome
from the plant Arabidopsis thaliana (Fig. 121) [131]. Compound 174 might be a
precursor of astellatol (133). Incidentally, the genes for the production of 174
(Fig. 121) and ent-140 (Fig. 101) reportedly play an important role in the root
microbiota assembly of the plant [153]. This is one of the few examples of an
investigation into the biological roles of sesterterpenoids.

OH
HO
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125172

Fig. 119 Structures of 172 and 125. The structure of 125 is also shown in Fig. 90

COOH

137173

Fig. 120 Structures of 173 and 137. The structure of 137 is also shown in Fig. 98

OH

133174

Fig. 121 Structures of 174 and 133. The structure of 133 is also shown in Fig. 96
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10.12.6 Terpestacin

Four genes for the biosynthesis of terpestacin (77) have been identified in the
genome from the fungus Bipolaris maydis [132, 154]. One of the four genes encodes
a sesterterpene synthase that produces 175. The other three genes encode oxidases,
two cytochrome P450s, and a single flavin-dependent oxidase. These oxidases could
convert 175 into 176, 177, 178, and 77 (Fig. 122).

11 Conclusions

This contribution provides an overview of the chemical structures of
sesterterpenoids. Even though only relatively few sesterterpenoids are known,
their structures are quite fascinating. In particular, the complexity of polycarbocyclic
sesterterpenoids is quite high. There are many stereocenters in their structures, and
their stereochemistry is well controlled during the cyclization reactions leading to the
formation of their basic carbon skeletons. Moreover, many sesterterpenoids are
known as bioactive compounds.
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Fig. 122 Structures and formation of 175–178, and 77. The structure of 77 is also shown in Fig. 53
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Considering that some sesterterpenoids with novel chemical structures have been
reported very recently, we can look forward to many exciting discoveries of
unknown sesterterpenoids in the near future. Therefore, the present authors believe
that it is worthwhile maintaining a sharp focus on sesterterpenoid research.
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