
Chapter 9

Hidden in Plain Sight

Chebyshev said it, and I’ll say it again,
There’s always a prime between n and 2n

Nathan Fine (1916–1994)

Take any number and keep finding factors of that number that cannot
be factored themselves. For example, 84 = 2 · 2 · 3 · 7, 455 = 5 · 7 · 13 or
897 = 3 ·13 ·23. These examples show that a number can be written as
the product of prime numbers.1 This is called a prime factorization.
A separate argument, that we will shortly get to, shows that this
factorization is unique. This result has far reaching consequences and
is called the Fundamental Theorem of Arithmetic. This theorem shows
that primes are the DNA of the number system. Essentially all of the
results of number theory are theorems of the primes, the topic of this
chapter.

9.1 Properties of Prime Numbers

Do primes ever end? To address this question, let p1, p2, . . . , pn
be a list of successive primes that end with an assumed maximal
prime pn. Consider a primorial number, denoted by the somewhat
strange notation pn#, that corresponds to the product of the first n
consecutive primes

(9.1) pn# = p1 · p2 · · · pn−1 · pn

1Just keep dividing until it is not possible to continue without having a remainder.
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This is not a prime number but how about pn# + 1? If pn# + 1 is
divided by pj :

pn#+ 1

pj
= p1 · p2 · · · pj−1 · pj+1 · · · pn−1 · pn +

1

pj

then the result is a whole number with a remainder. But if no previous
prime divides pn# + 1, then it must be prime and it is clearly larger
than pn, the presumed largest prime. This contradicts the assumption
that there is a maximal prime. This clever argument was first put
forth sometime around 300 BC by Euclid of Alexandria, the father
of Euclidean geometry. There are literally dozens of proofs that the
primes go on infinitely and we will see a couple more in this chapter.

How does one generate a list of prime numbers? Let us discuss one
way proposed by another Greek mathematician, Eratosthenes (276–
194 BC), who developed a technique sometime around 200 BC. It is
a simple idea called a sieve. For a variety of reasons the integer 1 is
not considered to be prime.2 A sieve starts by writing all the integers
starting from 2

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, . . .

The first number in the list, 2, is the first prime and this means that
all subsequent multiples of 2 can be crossed out as candidate primes;

2, 3, �4, 5, �6, 7, �8, 9, �10, 11, �12, 13, �14, 15, �16, 17, �18, 19, �20, 21, �22, 23, . . .

This leaves the next prime, 3. Repeating this process, cross out all
multiples of 3 yielding

2, 3, �4, 5, �6, 7, �8, �9, �10, 11, �12, 13, �14, �15, �16, 17, �18, 19, �20, �21, �22, 23, . . .

Notice that 6 is already crossed out because it was divisible by 2 and
would again be crossed out because it is also divisible by 3. The first
remaining number is the next prime, 5, and the process continues by
crossing out multiples of 5

2, 3, �4, 5, �6, 7, �8, �9, �10, 11, �12, 13, �14, �15, �16, 17, �18, 19, �20, �21, �22, 23, . . .

This leaves 7 as the next prime. The algorithm continues on from here.

2Essentially it makes too many trivial exceptions in theorems in number theory.
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Eventually the only numbers left not crossed are the set of primes.
This sieve shows how primes emerge as the essential components of
the integers. There are other methods to generate primes and long
lists of primes can be found on the Internet. Its maddening, however,
that there is no equation for the n’th prime. No one who has walked
the earth, and even perhaps who will ever walk the earth, knows the
17 quadragintillion’th prime.

We next return to the fundamental theorem of arithmetic and prove
that the representation of an integer as a product of primes is unique.
For small values of n this is easily established so assume the first
time uniqueness does not hold is at integer m. It is clear that m
cannot be prime. Assume that composite m has two different prime
factorizations. In these factorizations, order the primes in increasing
value so that p is the smallest prime in the first factorization and
q is the smallest in the second. Let the remaining portion of the
factorizations of m be denoted by P and Q, respectively. Thus we
can write

m = pP = qQ

Note that P is composed of primes at least as large as p and, similarly,
Q consists of primes at least as large as q. If p = q, then we reach a
contradiction since P = m/p = m/q = Q is an integer smaller than
m which is assumed to have a unique factorization. Since p and q
differ, one has to be greater so assume that p > q. Note, from the
two factorizations above, m is divisible by both p and q. It clearly is
divisible by p but what about q? If q divides m, then it must divide
either p or P . But this is impossible since both of these terms consist
of products of primes that are strictly larger than q. Thus we reach a
contradiction—prime factorizations are unique.

From now we will talk about integers in terms of their prime
factorization. Let ωi(n) be the exponent of the i’th prime, pi, in the
representation of the integer n, thus

n = 2ω1(n) · 3ω2(n) · 5ω3(n) · 7ω4(n) · · · pωi(n)
i · · · =

∞∏

i=1

p
ωi(n)
i

To multiply two numbers using this representation one simply adds
exponents

n ·m =
∞∏

i=1

p
ωi(n)+ωi(m)
i
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More conveniently we can write n as the infinite vector of values ω(n) =
(ω1(n), ω2(n), . . .) where the j’th place corresponds to the exponent
of pj . Thus n · m is represented as the vector addition: ω(n · m) =
(ω1(n) + ω1(m), ω2(n) + ω2(m), . . .). As an example,

(9.2) 198 = (1, 2, 0, 0, 1, 0, . . .) = 2 · 32 · 11

Note that wi(n/m) = wi(n) − wi(m) (provided n is divisible by m)
and wi(n

k) = kwi(n) for integer k.

9.1.1 Properties of Integer Divisors

This notation allows us to specify the total number of divisors as well
as the sum of all the divisors with simple arithmetic expressions. Define
σk(n) be the

(9.3) σk(n) =
∑

d|n
dk

where d|n means that the summation occur over all possible integer
values of d that evenly divide n. Thus, σ0(n) is the number of total
divisors of n and σ1(n) is the sum of the total divisors. For the
example (9.2) above there are 12 divisors given by

{1, 2, 3, 11, 2 · 3, 2 · 11, 32, 3 · 11, 2 · 32, 2 · 3 · 11, 32 · 11, 2 · 32 · 11}

To calculate an expression for σ0(n), concentrate on the i’th prime
which has an exponent of ωi(n). The total number of possible divisors
due to this prime is given by

p0i , p1i , . . . , p
ωi(n)
i

leading to a total of 1 + ωi(n) possibilities. Since this is true for all i
we have

(9.4) σ0(n) = (1 + ω1(n))(1 + ω2(n)) · · · =
∞∏

i=1

(1 + ωi(n))
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Note the special case for primes raised to a power:

(9.5) σ0(p
k
i ) = k + 1

The value sum of the divisors for the example can be expressed by

σ1(198) = (20 + 21)(30 + 31 + 32)(110 + 111)

To explain this, note that expanding this multiplication into its
individual factors corresponds to summing all possible products of
the form 2k13k211k5 , where k1 = 0, 1, k2 = 1, 2, 3, and k5 = 1, 2.
Following this pattern we can write the sum of all the divisors for n
as the product of the sum of all the divisors for the i’th prime

1 + p1i + p2i + · · ·+ p
ωi(n)
i =

p
ωi(n)+1
i − 1

pi − 1

Thus σ1(n) is given by

(9.6) σ1(n) =
∞∏

i=1

p
ωi(n)+1
i − 1

pi − 1

For the example above, we obtain σ1(198) = 468. Note the special case
for primes raised to a power:

(9.7) σ1(p
k
i ) = 1 + p1i + · · ·+ pki =

pk+1
i − 1

pi − 1

The prime factorization of n! = n(n − 1) · · · 2 · 1 can be obtained
from the factorizations of all the integers less than or equal to n. For
prime pi, let Ωi(n) = ωi(n!) which is given by

Ωi(n) =
n∑

k=2

ωi(k)

A modification of a sieve argument allows us to calculate a closed
form expression for Ωi(n). To motivate this argument, consider the
prime factorization of 10! and concentrate on the value of the exponent
of 2 in that factorization. Every step of size 2i, i = 1, . . . corresponds
to a multiplication by 2 which has to be counted in the final value of
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the exponent. For 10! we have factors associated with 21, arising from
2, 4, 6, 8, 10, factors associated with 22, from 4 and 8, and associated
with 23, from 8. Counting all of these shows that the final exponent of
2 equals 8. Mathematically, we can write the contribution to the final
exponent for factors associated with 2i by the integer portion of n/2i.
Generalization of this argument shows that

(9.8) Ωi(n) =
∑

�:p�i≤n

⌊
n

p�i

⌋

The prime factorization can therefore be written as

(9.9) n! =
∞∏

i=1

p
Ωi(n)
i

From this equation it is clear that n! cannot be prime (indeed all
factorial numbers are even), but n! ± 1 could be. Such primes are
called factorial primes. Less than a hundred of these primes have been
discovered.

Recall the definition of a primorial number defined in equation (9.1),
values of which are given by

n 1 2 3 4 5 6 7 8 9

pn 2 3 5 7 11 13 17 19 23

pn# 2 6 30 210 2,310 30,030 510,510 9,699,690 223,092,870

9.2 The Prime Counting Function

A closely related function to pn#, denoted by z#, is the product of
all primes less than or equal to a value z:

(9.10) z# =

π(z)∏

i=1

pi

where π(z), the prime counting function, is the number of primes less
than or equal to z
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(9.11) π(z) =
∑

i:pi≤z

1

Since z# only depends on primes, if the largest prime less than
or equal to z is pn (equivalently π(z) = n), then pn# = z#. From
equations (9.5) and (9.7) we can write σ0(pn#) = 2n and

(9.12) σ1(pn#) =
n∏

i=1

(pi + 1)

or, expressing this in a different notation, that

(9.13) σ1(z#) =

π(z)∏

i=1

(pi + 1)

We wish to show that an upper bound of z# is given by

(9.14) z# ≤ 4z−1

Since �z�# = z# and 4�z�−1 ≤ 4z−1 we can, without loss of generality,
restrict z to be integer when deriving the bound. It is easy to check
that (9.14) holds for small values of z. Assume then, inductively, that
it holds for all values up to z. Since the value of z# only depends on
primes less than or equal to z, it suffices to show that (9.14) holds for
the largest odd prime less than or equal to z. Let this prime be given
by 2�+ 1 and decompose (2�+ 1)# into disjoint multiplications:

(2�+ 1)# = (�+ 1)#
∏

i:�+1<pi≤2�+1

pi(9.15)

≤ 4�
∏

i:�+1<pi≤2�+1

pi

The induction hypothesis is used to create the inequality in the first
term of the last equation.

The second product term in (9.15) reminds one of a portion of a
binomial coefficient. In particular, recall the computational form for
binomial coefficients given in equation (2.11):



126 9 Hidden in Plain Sight

(9.16)

(
2�+ 1

�

)
=

�−1∏

j=0

2�+ 1− j

�− j

There are two things to note: each term of this product is a fraction
that is greater than 1 and primes in the range i : � + 1 < pi ≤ 2� + 1
are contained in the numerator of (9.16) but not in the denominator.
This shows that the binomial coefficient is larger or equal to the
multiplication of consecutive primes from � + 1 to 2� + 1 and thus
that

(9.17)
∏

i:�+1<pi≤2�+1

pi <

(
2�+ 1

�

)

Since

(
2�+ 1

�

)
=

(
2�+ 1

�+ 1

)

we can use the binomial summation formula of (2.21) to write

2

(
2�+ 1

�

)
= 22�+1 −

∑

j �=�,�+1

(
2�+ 1

j

)

Dividing by 2 and eliminating the subtraction shows that

(
2�+ 1

�

)
< 22� = 4�

Combining this with (9.15) yields the final bound

(9.18) (2�+ 1)# ≤ 42�

For z not restricted to being integer or prime, this bound can be
rewritten in the form of equation (9.14).
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9.3 There Is Always a Prime Between n and 2n

A generalization of a primorial number is one consisting of the multipli-
cation of primes (not necessarily consecutive). Such numbers are said
to be square-free since the exponents in their prime factorization are
less than or equal to 1. The following proof shows that all integers can
be factorized as the product of an integer and a square-free number.
Let n be an integer and write

(9.19) n = m2�

where m2 is the largest square divisor of n (possibly equal to 1) and �
is a square-free integer. Recall that ωi(n) is the exponent of pi in the
prime factorization of n. Let ai(n) and bi(n) solve

(9.20) ωi(n) = 2ai(n) + bi(n), 0 ≤ bi(n) ≤ 1

If bi(n) = 1, then the i’th exponent has odd parity.
With this notation, the factorization of n given by (9.19) follows for

m and � that satisfy ωi(m) = ai(n) and ωi(�) = bi(n). To illustrate
this with an example, consider

2, 156, 000 = 25 53 72 11

Then m = 140 = 22 ·5 ·7 and � = 110 = 2 ·5 ·11 and thus 2, 156, 000 =
1402 · 110.

How many square-free numbers are there less than n? To answer
this, note that since all products of primes less than n are square-free,
the total number corresponds to the number of subsets of π(n) items
which is given by 2π(n).3 We have just showed that any number can
be written as product of a square with a square-free number. There
are at most

√
n square numbers less than n. Thus, it must be the case

that n ≤ √
n 2π(n). After taking the natural logarithm of both sides,

this implies that

(9.21) π(n) ≥ ln(n)

2 ln(2)

3A consequence of the binomial theorem, see equation (2.21).
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Equation (9.21) is not only another proof of the infinitude of the
primes but it also provides a lower bound for the n’th prime. You
should note that this strong result is a direct consequence of the simple
factorization given in (9.19).

Equation (9.9) proves useful in deriving an upper bound on the
central binomial coefficient:

(
2n

n

)
=
(2n)!

(n!)2
=

∞∏

i=1

p
Ωi(2n)
i /

( ∞∏

i=1

p
Ωi(n)
i

)2

(9.22)

=
∞∏

i=1

p
Ωi(2n)
i /

∞∏

i=1

p
2Ωi(n)
i =

∞∏

i=1

p
Ωi(2n)−2Ωi(n)
i

=
∞∏

i=1

pmi
i

where we have defined

(9.23) mi =
∑

�:p�i≤2n

ψi,�

and

(9.24) ψi,� =

⌊
2n

p�i

⌋
− 2

⌊
n

p�i

⌋

Equations (9.23) and (9.24) are the keys to calculating the upper
bound. Clearly (9.24) shows that ψi,� = 0 if p�i > 2n. The same
equation also shows that ψi,� can at most equal 1. To establish this,
observe that if x and a are positive and a integer, then4

�ax� − a�x� < a

Setting x = n/p�i and a = 2 and using this inequality shows that
ψi,� < 2, thus establishing the claim.

To derive the upper bound, write (9.9) in disjoint ranges as

4A quick proof goes as follows: let x = �x�+ r, where 0 ≤ r < 1. Then the inequality
follows from a��x�+ r� = a�x� and �a(�x�+ r)� < a�x�+ a.
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(9.25)(
2n

n

)
=

∏

pi≤
√
2n

p
mi,�

i

∏
√
2n<pi≤2n/3

p
mi,�

i

∏

2n/3<pi≤n

p
mi,�

i

∏

n<pi≤2n

p
mi,�

i

We now proceed to calculate a bound for each range in (9.25). There
are at most

√
2n primes less than or equal to

√
2n and each of them

is clearly less than 2n. Thus a bound for the first range is given by

(9.26)
∏

pi≤
√
2n

p
mi,�

i < (2n)
√
2n

For primes that satisfy
√
2n < pi ≤ 2n/3 we claim that mi ≤ 1.

Since ψi,� can be at most 1, to show that mi ≤ 1 it suffices to show
that ψi,2 = 0 in this range. This follows immediately since the smallest
square prime in this range is larger than 2n. Thus, at most, this range
consists of the multiplication of consecutive primes from

√
2n + 1 to

2n/3. This corresponds to a primordial number and thus, using the
inequality (9.14), we can write

(9.27)
∏

√
2n<pi≤2n/3

p
mi,�

i ≤ 42n/3−1 < 42n/3

There are no primes in the third range: mi = 0 if 2n/3 < pi ≤ n.
To show this, note that this range can be rewritten as 1 ≤ n/pi < 3/2.
Thus setting

(9.28) n = pi + r, 0 ≤ r < pi/2

implies that �2n/pi� = 2 and 2�n/pi� = 2 showing that ψi,1 = 0. To
show that ψi,� = 0 for � > 1, note that (9.28) implies that

n

p�i
=

1

p�−1
i

(
1 +

r

pi

)
<

3

2p�−1
i

< 1

Collecting the results of (9.26) and (9.27) and substituting
into (9.25) shows that

(9.29)

(
2n

n

)
< (2n)

√
2n42n/3

∏

n<pi≤2n

p
mi,�

i
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Previously a lower bound was derived for the number of coin tossing
games of length 2n that end even, see equation (6.5) . Incorporating
this into (9.29):

4n

2n
<

(
2n

n

)
< (2n)

√
2n42n/3

∏

n<pi≤2n

p
mi,�

i

uncovers the result mentioned in the beginning quote by Fine since it
shows that

(9.30)
4n/3

(2n)
√
2n+1

<
∏

n<pi≤2n

p
mi,�

i

Two quick computer programs now complete the result. The left-
hand side of (9.30) increases with n and, solving it numerically, shows
that it crosses 1 for n = 468. This guarantees that there is a prime
between n and 2n for all n ≥ 468. A trivial program then can be used
to verify the result for values of n less than 468. Giving credit to Paul
Erdős for the above analysis allows us to rephrase Fine’s quote as:

Chebyshev found them, then Paul Erdős again,
Primes trying to hide within n and 2n

Equivalent ways of expressing this theorem are: pn+1 < 2pn and π(z)−
π(z/2) ≥ 1.

There are a couple direct consequences of this result. First, it is
another proof that there is no largest prime. Next, it also suggests
a method to write any integer as the sum of distinct primes along
with the possible addition of 1. To quickly sketch a way to construct
such a sum, let pk1 denote the largest prime less than or equal to n.
The theorem shows that �n/2� + 1 ≤ pk1 ≤ n. If pk1 = n, then the
construction is finished. Otherwise, we are left to write n− pk1 as the
sum of distinct primes. Again, select the largest prime less than or
equal to this value and denote it by pk2 . Applying the theorem again
shows that �(n − pk1)/2� + 1 ≤ pk2 ≤ n − pk1 . If pk2 = n − pk1 , then
we are done since n = pk1 +pk2 . Otherwise, the construction continues
sequentially until it stops at the m’th step where either n = pk1 + · · ·+
pkm or n = pk1 + · · · + pkm + 1. To illustrate the output, note that
the algorithm produces the following representations: 212, 506, 133 =
212, 506, 123 + 7 + 3 and 212, 506, 135 = 212, 506, 123 + 11 + 1.

This construction says nothing more about the representation
of an integer as the sum of primes other than constructing one.
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We should mention Goldbach’s conjecture, named after Christian
Goldbach (1690–1764). This conjecture claims that every even integer
larger than 2 can be written as the sum of two primes. This conjecture
has not yet been proved (computers have not found a counter example
up to about 1018). The above algorithm, most frequently yields two
summands, although this is clearly not mandated in its specification.

You may not have noticed that the arguments leading to equa-
tion (9.30) utilized coarse inequalities that could be substantially far
from their exact values. For example, inequality (9.26) is tantamount
to assuming that all positive integers less than

√
2n are primes with

the value 2n and inequality (9.27) assumes that the product of primes
in the range

√
2n to 2n/3 equals the product of all primes less than n.

These are extremely crude approximations to the actual values, and
yet, these arguments are sufficient to establish a deep result—that a
prime lies between any number and its double. How is this possible?

Let me answer the question with a question. Did you ever get an
F on a test? Okay, probably not if you are reading this book. But if
you did, then you would know that it is almost impossible to pass the
course, and this is especially true if your F was a result of getting 0
points out of 100. This is the case for this bound. The range 2n/3 to n
grows linearly as n increases and, as proved above, there are no primes
in the binomial coefficient within this range. The overestimations in
the previous ranges eventually are dwarfed by the lack of primes in
this range. This is the genius of the argument and shows that even
when mathematics is used as a blunt tool, it can achieve a result of
fine precision.

9.3.1 The Prime Number Theorem with a
Controversy

There is a glaring hole now left in this chapter. We know that
there are an infinite number of primes, know that the n’th prime
must grow as ln(n) (equation (9.21)) and know that a prime always
exists between a number and its double. The question left hanging
concerns the asymptotic distribution of the primes among the integers.
Is there a function f(n), so that as n grows without bound the
ratio π(n)/f(n) converges to a non-zero value? If so, then this tell
us something about the regularity of the appearance of primes in
the integers. As mentioned before, there is little hope of finding a
more precise answer to this question since there is no formula for
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the n’th prime. In the chapter, As Simple as 2+2=1 , we discussed
Fermat’s little theorem (8.5) which can be used to test if an integer
is a prime, and Wilson’s theorem, equation (8.9), which provided
necessary and sufficient conditions for an integer to be prime. These
theorems, however, do not address the distribution question. Like the
decimal digits of π which are completely deterministic but essentially
unpredictable, primes occur among the integers seemingly popping up
at random but leaving behind a madding trace of regularity.

The search for understanding how this series of surprises achieves a
mathematical uniformity resulted in the prime number theorem which
finally put the matter to rest by showing that

(9.31) lim
n→∞

π(n)

n/ ln(n)
→ 1

The following table shows the value of the ratio of (9.31) converges
towards 1 for values of n from 101 to 108:

n = 10k 2 4 6 8
π(n)/(n/ ln(n)) 1.1513 1.1320 1.0845 1.0613

There is a long history of the discovery of this theorem, most of
which utilizes advanced mathematics. In 1948, Atle Selberg (1917–
2007) established an elementary approach that promised to be pivotal
in proving the result. This was achieved by both Selberg and Erdős
and resulted in a controversial interchange regarding the ownership of
the result. Even though these later techniques are elementary, they lie
outside the scope of this book.
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