
Chapter 8

As Simple as 2 + 2 = 1

Freedom, is the freedom to say two plus two make four.
If that is granted, all else follows.

George Orwell (1903–1950)

Orwell was not speaking about mathematics in the quote above
from his book 1984. Rather, he was commenting on how totalitarian
governments attempt to define, and impose, their own notion of reality
on the public. Speaking mathematically, it is as clear as the back of
your hand that 2 + 2 = 1 and 1 + 2 = 0. That is, if you belong to a
three fingered species. We have grown so used to the ten fingers on our
hands, that we forget that there is nothing special about base 10. Since
the invention of the number 0 by Indian mathematicians of the fifth
century, this means that all of our numbers are composed of the digits
0 through 9. To three fingered species this means that their number
system uses the digits 0 through 2 so that 3 wraps around to 0 and 4
to 1. Thus 2+2 = 1 and 1+2 = 0 in base 3. Orwell’s above statement
is thus valid for all bases 5 and larger unless, of course as he alludes,
the totalitarian regime in power says otherwise.

8.1 Modular Arithmetic

Often the remainder of a number after division is the only charac-
teristic that is necessary to establish a mathematical property—the
magnitude of the integer is not relevant. For example, all primes
greater than 2 are odd independent of their magnitude. In base 2
looking at integers in this way essentially splits them into 2 disjoint
sets. The first set contains the even integers, {. . . , −4, −2, 0, 2, 4, . . .}
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and the second the odds, {. . . , −5, −3, −1, 1, 3, 5, . . .}. These two
groups arise by skipping the integers by 2 (up and down) starting
from a point determined by the remainder when an integer is divided
by 2.

In base n integers are split into n disjoint sets depending on their
remainder when divided by n (the possible remainders are 0 through
n − 1). Similar to odd even parity, these sets occur by skipping by
n steps. For example, the set corresponding to a remainder of k is
given by

{. . . , −3n+ k, −2n+ k, −n+ k, k, n+ k, 2n+ k, . . .},
k = 0, . . . , n− 1

Mathematically, one uses modular arithmetic when the only charac-
teristic necessary to establish a property is the parity of the number
with respect to some base. Equality in such a system is customarily
written as

b ≡ β (mod n)

which means that b and β leave the same remainder when divided by
modulus n. This equation represents a congruence relation between b
and β. A more concise notation used in this book when dealing with
modulo arithmetic is written as

(8.1) b ≡n β

As examples, the equations 38 ≡5 53, −2 ≡5 3, and −47 ≡5 −222
are all valid since 38, 53, -2, -47, and -222 leave a remainder of 3
when divided by 5. Since an + k ≡n bn + k for any integers a and b
it is customary to write the right-hand side of a modulo equation by
setting b = 0 or b = −1. Thus the equation 38 ≡5 53 would typically
be written as 38 ≡5 3 or 38 ≡5 −2.

The equation b ≡n β is equivalent to the fact that b − β is evenly
divisible by n. In essence, both statements are a restatement of the
equation (b− β) ≡n 0. In terms of the sets that we mentioned above,
the equation means that b and β are in the same set. Negative numbers
in modulo arithmetic can be viewed in terms of positive complements
through the following equation:

(8.2) n− b ≡n −b, b = 0, . . . , n− 1
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For example, 9 ≡10 −1. In everyday life, clocks form a natural modulo
system of order 12 provided that the hours are relabeled 0 through 11.

It is clear that the congruence relation is reflexive (b ≡n b),
symmetric (b ≡n β also means β ≡n b), and transitive (b ≡n β and
β ≡n γ imply b ≡n γ). Other properties of modulo arithmetic include
(� is assumed to be an integer)

�+ b ≡n �+ β addition property

�b ≡n �β multiplication property

b� ≡n β� (� > 0) power property

One way to establish the last property is to use (A.7) to write

b� − β� = (b− β)
�−1∑

i=0

biβ�−i−1

The divisibility of b� − β� by n then follows from the fact that b − β
is divisible by n. Notice that the combination of all three properties
listed above imply that if p is a polynomial with integer coefficients
and b ≡n β, then p(b) ≡n p(β).

To state properties having combinations of modular terms, assume
that a ≡n α and b ≡n β. Then

a± b ≡n α± β(8.3)

ab ≡n αβ

To establish the last equation, note that the quantity αb−αβ = α(b−β)
is divisible by n and thus αb ≡n αβ. Similarly ab − αb = b(a − α) is
divisible by n and thus ab ≡n αb. These two equations, along with
symmetry and transitivity, yield ab ≡n αβ. This relationship provides
another way to establish the power property in the first list, b� ≡n β�.
To see this, set a = b and α = β and repeat �− 1 times.

The following two properties can be used to cancel � in the following
equations:

�+ b ≡n �+ β =⇒ b ≡n β

�b ≡n �β =⇒ b ≡n β

provided that n and � are coprime
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In this last equation, n and �must not have any common factors for the
relationship to hold in general. To show this, write �b− �β = �(b− β).
If � is divisible by n, then there is no necessity for b − β to also be
divisible by n. Thus � cannot be cancelled from the equation and still
guarantee the equality. If � and n are co-prime, however, then the only
way �(b − β) is divisible by n is for b − β to be divisible by n. Thus
b ≡n β.

8.2 Fermat’s Little Theorem

At this point it makes sense to ask—what use is such a concept? Many
applications seem like tricky test questions. To illustrate one example:
what is the remainder when 19317 is divided by 3? To determine the
answer, note that 19 ≡3 1 since 19 = 3 · 6 + 1. The power property
above then yields the answer: 19317 ≡3 1.

For another example, let � be an integer with digits di, i =
0, . . . ,m where the i’th digit corresponds to the i’th power of 10. This
corresponds to the polynomial

� = d0 + d110
1 + · · ·+ dm10m

Suppose that � ≡3 0. Then is it possible to say anything about the
digits comprising �? To answer this, note that 10 ≡3 1 and thus 10i ≡3

1. Using the multiplication property shows that di10
i ≡3 di and thus

� ≡3 d0 + d1 + · · · + dm. These observations imply that the sum of
the digits of � must be divisible by 3 for � to be divisible by 3. A
straightforward generalization concerns base n integers written as

� = d0 + d1n
1 + · · ·+ dmnm

A similar argument shows that � ≡n−1 d0 + · · ·+ dm (since n ≡n−1 1).
Thus, octal integers are divisible by 7 if the sum of their digits is
divisible by 7.

As another example, a number is divisible by 11 if the alternating
(±) sum of its digits is divisible by 11 (this arises from the fact that
10 ≡11 −1). There are a wealth of results along these lines.

Modulo arithmetic also leads to many basic results of number
theory. For example, assume that p is a prime number and consider
the binomial expansion
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(a+ b)p =

p∑

i=0

(
p

i

)
aibp−i

= ap + bp +

p−1∑

i=1

(
p

i

)
aibp−i

In this expression, the binomial coefficient in the summation is divisible
by p since p is contained in the numerator1 but not the denominator.
Hence

(
p

i

)
≡p 0, i = 1, . . . , n− 1

which implies that

(8.4) (a+ b)p ≡p a
p + bp

A result that follows from this is due to Pierre de Fermat (1607–1665)
which is aptly called Fermat’s Little Theorem. It states that

(8.5) xp ≡p x

for x integer and p prime. To prove it, observe that the claim clearly
holds for x = 0. Thus, assume it holds up to a value of x = a.
Using (8.4) we can write

(a+ 1)p ≡p a
p + 1p ≡p a+ 1

where the last step follows from the induction assumption. This
equation is simply a restatement of (8.5) for the next highest integer
and establishes the result.

Fermat’s little theorem can be used as a test to determine if an
integer n is prime. For example, suppose for some x that xn �≡n x.
Then the theorem implies that n is not prime. No statement can
be made; however, if Fermat’s equation holds since it can do so
for composite n. In fact, there are composite integers n that satisfy
Fermat’s equation for every value x that is relatively prime to n.

1The numerator equals p(p− 1)!.
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Such Carmichael numbers pose a formidable test to Fermat since they
present the appearance of being prime. There are an infinite number
of such Carmichael numbers masquerading as primes, at least through
the eyes of Fermat’s test. The smallest such number is 561.

8.3 Lagrange’s Theorem

Another result from modular arithmetic is due to Lagrange and
deals with the roots of a polynomial modulo a prime. A polynomial
f(x) = a0 + a1x + · · · + amxm has degree k modulo n if ak is the
highest coefficient that is not divisible by n. The theorem states that
the number of roots of a polynomial modulo p, where p is prime, cannot
exceed its degree. The proof of this proceeds by induction starting
with a degree 1 polynomial where the result is obvious. Assume the
proposition holds up to degree n−1. Suppose polynomial f has degree
n modulo p. If f does not have a root, then there is nothing to prove.
Therefore, assume that a root b exists so that f(b) ≡p 0. Write

f(x)− f(b) =
n∑

i=1

ai(x
i − bi)

= (x− b)
n∑

i=1

ai

i−1∑

j=0

xjbi−j−1 from equation (A.7)

= (x− b)
n−1∑

j=0

xj
n∑

i=j+1

aib
i−j−1

= (x− b)
n−1∑

j=0

cjx
j

where cj is defined as

cj =
n∑

i=j+1

aib
i−j−1

Thus f(x) can be written as

f(x) = f(b) + (x− b)
n−1∑

j=0

cjx
j ≡p (x− b)

n−1∑

j=0

cjx
j
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By the induction hypothesis, the polynomial
∑n−1

j=0 cjx
j can have at

most n − 1 roots. This, along with the assumption that b is a root,
implies there can be at most n roots to f(x) modulo p and thus
establishes the result.

8.4 Wilson’s Theorem

The theorems of Fermat and Lagrange just discussed can be used to
extract a deep result. Fermat’s result (8.5) can be rewritten as xp−1 −
1 ≡p 0 which shows that there are p − 1 roots modulo p with the
values 1, 2, . . . , p−1. Consider the polynomial (see (3.1) for the falling
factorial notation)

(x− 1)(p−1) = (x− 1)(x− 2) · · · (x− (p− 1))

This clearly also has roots 1, 2, . . . , p − 1 modulo p. Using the
result (3.13) we can write

(x− 1)(p−1) =

p−1∑

i=1

(−1)p−i−1

[
p− 1

i

]
(x− 1)i

=

p−1∑

i=1

(−1)p−i−1

[
p− 1

i

] i∑

j=0

(
i

j

)
(−1)i−jxi

=

p−1∑

i=1

(−1)p−1

[
p− 1

i

]

+

p−1∑

j=1

xj
p−1∑

i=j

(−1)p−j−1

(
i

j

)[
p− 1

i

]

= (−1)p−1

[
p− 1

p− 1

]
+

p−1∑

j=1

ej,p−1x
j

where we have defined

ej,p−1 =

p−1∑

i=j

(−1)p−j−1

(
i

j

)[
p− 1

i

]
, j = 0, . . . , p− 1
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If p is a prime greater than 2, then we can use (3.5), and the observation
that cp−1,p−1 = 1, to simplify the above expression:

(x− 1)(p−1) = (p− 1)! + xp−1 +

p−2∑

j=1

ej,p−1x
j

Our next step is to consider the polynomial defined by subtracting
Fermat’s equation from the falling factorial

f(x) = (x− 1)(p−1) − (
xp−1 − 1

)
(8.6)

= (p− 1)! + 1 +

p−2∑

j=1

ej,p−1x
j

=

p−2∑

j=0

ej,p−1x
j

In the last equation we have extended the definition of the coefficients
to include the constant term

(8.7) e0,p−1 = (p− 1)! + 1

From its definition, it is clear that f has the same roots as the two
functions that define it. Thus it has p− 1 roots modulo p. But this is
impossible according to Lagrange’s theorem since f has of degree p−2
modulo p which only allows p− 2 roots. Hence, f must be identically
equal to 0 modulo p which implies that all of its coefficients must equal
0 modulo p:

ej,p−1 ≡p 0, j = 0, . . . , p− 2

This establishes the following set of identities:

(p− 1)! + 1 ≡p 0(8.8)

p−1∑

i=j

(−1)p−j−1

(
i

j

)[
p− 1

i

]
≡p 0, j = 1, . . . , p− 2
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These ruminations lead us to the deep result mentioned above.
Wilson’s theorem named after John Wilson (1741–1793) states that
the equation

(8.9) (n− 1)! + 1 ≡n 0

is satisfied if and only if n is a prime number. The if portion is simply
the first identity above (8.8) that deals with the constant coefficient
of f . To prove the only if portion of Wilson’s theorem, assume that n
is composite and also satisfies (n− 1)! + 1 ≡n 0. Then it must be the
case that n is divisible by an integer k < n. But (n − 1)! necessarily
contains k and thus (n− 1)! + 1 �≡k 0 for any k < n. This violates the
assumption that n is composite.

Wilson’s theorem provides another method to test if a number is
prime—simply see if (n− 1)!+ 1 ≡n 0. Like Fermat’s little theorem, it
also is a poor test since factorials increase rapidly. Wilson’s theorem
does provide entertainment by producing a wealth of parlor tricks. For
example, from the theorem we know that 72! ≡73 −1 since 73 is prime.
Thus, since 72 ≡73 −1, we can use (8.3) to conclude that 71! ≡73 1.
Following this example, we can write the general equation (p−2)! ≡p 1
for p prime.

8.5 Cryptography

A less flippant application of modular arithmetic than numeric
divisibility challenges is a procedure that is used millions of times
a day on the Internet. It is called public key cryptography. The
objective of cryptography is to create a secure communications channel
between two participants such that an eavesdropper cannot decode
their communications. To explain this procedure, suppose that A
wants to send a secure message to B and that C is listening to the
communication. Both A and B share a large prime number p and a
base number n. These can also be known by C. Let ea be an integer
only known by A and similarly let eb be an integer only known by B.
Participant A computes the value

va ≡p n
ea
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and sends it on the channel to B. Likewise, B computes

vb ≡p n
eb

and sends it to A. Note that C can listen to these communications;
they take place on an insecure channel.

Now the magic starts. Participant A takes the communication it
received from B and computes

wa ≡p v
ea
b

This computed value cannot be determined by C because ea is only
known to A. Likewise, B computes

wb ≡p v
eb
a

which also cannot be computed by C. But A and B now share the same
value because w = wa = wb. This follows from the power property of
modular arithmetic since

vb ≡p n
eb =⇒ (vb)

ea ≡p (n
eb)ea

and

va ≡p n
ea =⇒ (va)

eb ≡p (n
ea)eb

The value of w can now be used as a key for a cryptographic scheme
for the duration of the communication and C cannot easily break the
code because everything is calculated modulo a large prime. I need the
word easily in this last statement because if there was a fast way to
calculate the value of ea or eb from w (remember p, n, va, and vb are all
assumed to be known by C), then C could break the code. Solving for
such values is called the discrete logarithm problem which is currently
computationally intractable for large p.
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