
Chapter 7

Sums of the Powers of Successive
Integers

Not only could nobody but Gauss have produced it,
but it would never have occurred to any but Gauss
that such a formula was possible

Albert Einstein (1879–1955)

What happens when you sum successive powers of integers? To
investigate this, define

(7.1) Sk,n = 1 + 2k + 3k + · · ·+ nk =
n∑

i=1

ik, k = 0, 1, . . .

An easy program generates the following table of numeric values for
small k and n:

Table of Values of Sk,n

k/n 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

1 1 3 6 10 15 21 28 36 45 55

2 1 5 14 30 55 91 140 204 285 385

3 1 9 36 100 225 441 784 1,296 2,025 3,025

4 1 17 98 354 979 2,275 4,676 8,772 15,333 25,333

5 1 33 276 1,300 4,425 12,201 29,008 61,776 120,825 220,825

6 1 65 794 4,890 20,515 67,171 184,820 446,964 978,405 1,978,405

7 1 129 2,316 18,700 96,825 376,761 1,200,304 3,297,456 8,080,425 18,080,425

The k = 0 case, shown above, is immediate since

S0,n = 10 + 20 + · · ·+ n0 = n
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Supposedly, the case for k = 1 was assigned as a teacher’s punishment
for the child prodigy, Carl Friedrich Gauss (1777–1855). Gauss was
told to sum the numbers from 1 to 100 and, instead of laboring for
an hour or two, he quickly responded 5,050 to the consternation of his
teacher. How did he do it so quickly?

The young Gauss, who later grew up to be a famous mathematician,
probably noticed that a backwards version of S1,n given by

S1,n = n+ (n− 1) + · · ·+ 1 =
n∑

i=1

(n+ 1− i)

could be added to the forward version to yield

2S1,n =
n∑

i=1

(n+ 1− i) +
n∑

i=1

i =
n∑

i=1

(n+ 1) = n(n+ 1)

quickly giving

(7.2) S1,n =
n(n+ 1)

2

The precocious Gauss saw this pattern, did the numerical calculation,
and thus bypassed his teacher’s punishment.

7.1 A General Equation

A key observation to make on the above approach is that by canceling
the i in the forward and backward versions of the k = 1 case, the
solution only required the equation for the previous, k = 0, case.
Following on this logic, consider another way to solve for S1,n which
arises by forming an equation for the next higher dimension, k = 2, and
having the i2 term conveniently cancel out. To illustrate this, consider
the shifted sequence given by (i+1)2. Summing this from 1 to n creates
an addition term of (n + 1)2 but lacks the first term when compared
to S2,n. Thus

n∑

i=1

(i+ 1)2 = S2,n + (n+ 1)2 − 1
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Expanding (i + 1)2 and subtracting i2 of the original sequence yields
2i + 1 which suggests that subtracting the original sequence from its
shifted version

S2,n + (n+ 1)2 − 1− S2,n =
n∑

i=1

(i+ 1)2 −
n∑

i=1

i2

=
n∑

i=1

2i+ 1 = 2S1,n + n

Thus,

(n+ 1)2 − 1 = 2S1,n + n

which yields

S1,n =
(n+ 1)2 − 1− n

2
=

n(n+ 1)

2

as before.
A pattern emerges which is made clear with one more example.

Writing

(i+ 1)3 = i3 + 3i2 + 3i+ 1

and using the fact that

n∑

i=1

(i+ 1)3 = S3,n + (n+ 1)3 − 1

implies that

S3,n + (n+ 1)3 − 1− S3,n =
n∑

i=1

3i2 + 3i+ 1 = 3S2,n + 3S1,n + n

This shows that

(n+ 1)3 − 1 = 3S2,n + 3S1,n + n
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which, when substituting the above expression for S1,n, solves to

S2,n =
(n+ 1)3 − (1 + n)− 3n(n+ 1)/2

3
(7.3)

=
(n+ 1)

6

(
2(n+ 1)2 − 2− 3n

)

=
(n+ 1)

6

(
2n2 + n

)

=
n(n+ 1)(2n+ 1)

6

The pattern suggests that the solution of the k case emerges when
considering the case for one dimension higher, k + 1. An equation for
Sk,n can then be determined by arranging for the cancellation of the
term, ik+1. The binomial theorem implies that

(7.4) (i+ 1)k+1 − ik+1 =
k+1∑

�=0

(
k + 1

�

)
i� − ik+1 =

k∑

�=0

(
k + 1

�

)
i�

Summation of (7.4) produces a telescoping sum on the left-hand side
of the equation yielding the general equation

(n+ 1)k+1 − 1 =
n∑

i=1

k∑

�=0

(
k + 1

�

)
i�(7.5)

=
k∑

�=0

(
k + 1

�

) n∑

i=1

i�

=
k∑

�=0

(
k + 1

�

)
S�,n

Also observe that the binomial theorem shows that

(n+ 1)k+1 − 1 =

k+1∑

�=1

(
k + 1

�

)
n�
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which, after substitution into (7.5) yields

k∑

�=0

(
k + 1

�

)
S�,n =

k+1∑

�=1

(
k + 1

�

)
n�

This can be rewritten as

(7.6) n+
k∑

�=1

(
k + 1

�

)
S�,n =

k∑

�=1

(
k + 1

�

)
n� + nk+1

The right-hand side of (7.6) is a polynomial of order k+1 which implies
that the left-hand side is also a polynomial of this order. This implies
that the function S�,n can be expressed as a polynomial (previous
calculations show is of order �+ 1) so that

S�,n = a1,� n+ a2,� n
2 + · · ·+ a�+1,� n

�+1

The coefficients of this polynomial can be determined by isolating
powers of n. The constant coefficient above is missing since S�,0 = 0.
Note that

k∑

�=1

(
k + 1

�

)
S�,n =

k∑

�=1

(
k + 1

�

) �+1∑

j=1

aj,�n
j

= n
k∑

�=1

(
k + 1

�

)
a1,� +

k+1∑

j=2

nj
k∑

�=j−1

(
k + 1

�

)
aj,�

The defining equation (7.6) can now be expressed to expose the powers
of n on each side of the equation:

n+ n
k∑

�=1

(
k + 1

�

)
a1,� +

k+1∑

j=2

nj
k∑

�=j−1

(
k + 1

�

)
aj,�

=

k∑

�=1

(
k + 1

�

)
n� + nk+1

The k + 1 equations that arise from matching powers of nj on each
side of the equation can be delineated as
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Power Equation

j=1 1 +
∑k

�=1

(
k + 1

�

)
a1,� = k + 1

j = 2, . . . , k
∑k

�=j−1

(
k + 1

�

)
aj,� =

(
k + 1

j

)

j = k + 1 (k + 1)ak+1,k = 1

The last entry shows that

(7.7) ak+1,k = 1/(k + 1)

The remaining coefficients can be found iteratively. Two cases illustrate
how this is done: For j = 1, we can simplify the equation found in the
table

k∑

�=1

(
k + 1

�

)
a1,� = k

and proceed sequentially:

k = 1 :

(
2

1

)
a1,1 = 1

=⇒ a1,1 = 1/2

k = 2 :

(
3

1

)
1/2 +

(
3

2

)
a1,2 = 2

=⇒ a1,2 = 1/6

k = 3 :

(
4

1

)
1/2 +

(
4

2

)
1/6 +

(
4

3

)
a1,3 = 3

=⇒ a1,3 = 0

k = 4 :

(
5

1

)
1/2 +

(
5

2

)
1/6 +

(
5

3

)
0 +

(
5

4

)
a1,4 = 4

=⇒ a1,4 = −1/30
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A similar procedure can be used for j = 2:

k = 1 :

(
2

1

)
a2,1 = 1

=⇒ a2,1 = 1/2

k = 2 :

(
3

1

)
1/2 +

(
3

2

)
a2,2 =

(
3

2

)

=⇒ a2,2 = 1/2

k = 3 :

(
4

1

)
1/2 +

(
4

2

)
1/2 +

(
4

3

)
a2,3 =

(
4

2

)

=⇒ a2,3 = 1/4

k = 4 :

(
5

1

)
1/2 +

(
5

2

)
1/2 +

(
5

3

)
1/4 +

(
5

4

)
a2,4 =

(
5

2

)

=⇒ a2,4 = 0

The sequence of operations outlined above applies to all j ≤ k
and is easily programmed. The results, for the first seven cases, are
summarized in the following table (the column headed by d is a
denominator):

Table of Values of aj,k

k\j 1 2 3 4 5 6 7 8 d

0 1 0 0 0 0 0 0 0 1

1 1 1 0 0 0 0 0 0 2

2 1 3 2 0 0 0 0 0 6

3 0 1 2 1 0 0 0 0 4

4 -1 0 10 15 6 0 0 0 30

5 0 -1 0 5 6 2 0 0 12

6 1 0 -7 0 21 21 6 0 42

7 0 2 0 -7 0 14 12 3 24

We have highlighted the non-zero entries in bold that are required
to write the equation for S5,n given by
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S5,n =
−n2 + 5n4 + 6n5 + 2n6

12

Using the above coefficients we can easily calculate the polynomial
equation for Sk,n but this sheds no light on the relationship between
the numbers found in the table of values given at the beginning of the
chapter. What is this relationship? Can one start with a simple case
and generate the remainder of the numbers algorithmically?

7.1.1 Iterative Approach

If there exists such an algorithm, then it must be the case that the
value of Sk,n can be written in terms of elements that occur previous
to it in the table. Typically this can be done either by a calculation of
terms in the previous row or the previous column. In this way, values
can be generated starting from easily calculated small values of k and
n. It makes sense then to consider two different summations: one along
the n axis and one along the k axis.

To follow this approach, first consider the following summation:

n∑

�=1

Sk,� = 1 + (1 + 2k) + (1 + 2k + 3k) + · · ·+ (1 + 2k + · · ·+ nk)

This shows that 1 appears in all n of the sums, 2k appears in n− 1 of
them, and �k appears in n− �+ 1 of the summations. Hence,

(7.8) Sk,n = nSk−1,n −
n−1∑

i=1

Sk−1,i

This shows that Sk,n can be calculated using the previous row in the
table. To illustrate this, consider the case k = 3 and n = 4. The
equation above yields the value of 100 that is underlined in the table:

100 = 4 · 30− (1 + 5 + 14)

Now consider the column-wise summation along the k axis. A
straightforward summation like that above yields
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k∑

�=0

S�,n =
k∑

�=0

n∑

i=1

i�

=
n∑

i=1

1 + i1 + i2 + · · ·+ ik

= S0,n + S1,n + · · ·+ Sk,n

which gets nowhere. A key insight that often proves to be useful arises
by inserting a combinatorial term in the above sum, thus allowing the
binomial theorem to be used to obtain a closed form equation. With
this thought in mind consider the binomial transform of S�,n

k∑

�=0

(
k

�

)
S�,n =

k∑

�=0

(
k

�

) n∑

i=1

i�(7.9)

=
n∑

i=1

k∑

�=0

(
k

�

)
i�

=
n∑

i=1

(i+ 1)k

= Sk,n+1 − 1

This works like a charm and rewriting the above equation more directly
leads to the identity

(7.10) Sk,n = 1 +
k∑

r=0

(
k

r

)
Sr,n−1

This equation provides a method that uses the columns to determine
the value of Sk,n. Illustrating this with k = 3 and n = 7 results in the
underlined value of 784 found in the table

784 = 1 + 6 + 3 · 21 + 3 · 91 + 441

These two methods can be used to generate all the values of Sk,n

starting from initial beginning values.
This section ends with two easily calculated identities. Forming the

binomial inverse of (7.10) leads to the identity
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Sk,n =
k∑

�=0

(
k

�

)
(−1)k−� (S�,n+1 − 1)(7.11)

=
k∑

�=0

(
k

�

)
(−1)k−�S�,n+1

The sum of integer powers leads to

S2
k,n =

(
n∑

i=1

ik

)2

= S2k,n + 2
n−1∑

i=1

n∑

j=i+1

(ij)k

Thus, a closed form equation for the cross product terms contained in
the summation:

(7.12)
n−1∑

i=1

n∑

j=i+1

(ij)k =
S2
k,n − S2k,n

2

7.2 Triangular Numbers

The values of S1,n given by 1, 3, 6, 10, 15, 21, 28, . . . correspond to the
number of items needed to fill out a triangle like a rack of billiard balls.
Because of this analogy, they are called triangular numbers. Simplify
notation and define

(7.13) Tn =
n(n+ 1)

2
=

(
n+ 1

2

)
, n = 0, 1, . . .

Like Fibonacci numbers, triangular numbers have a multitude of
interesting properties. One property was discovered by Gauss who
might have had an affinity for these numbers since they allowed his
school boy escape. In one of his notebooks, Gauss wrote Eureka!
(actually his note book said, EYPHKA:num=Δ + Δ + Δ) after he
discovered that all numbers could be written as the sum of three
triangular numbers. Hence, for any integer k, Gauss showed that it
is possible to find integers mi, i = 1, 2, 3, such

k = Tm1 + Tm2 + Tm3
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An example

30 = 1 + 1 + 28 = 3 + 6 + 21 = 0 + 15 + 15 = 10 + 10 + 10

shows that there might be multiple ways to write this sum. We say a
number, n, is represented by a general expression if an equality for n
can be found by varying the terms of that expression. Thus, Gauss’s
Eureka moment came when he saw that three triangular numbers
represented all non-negative integers.

Endless diversion can be found in the relationships between trian-
gular numbers. For example, straightforward algebra establishes the
following identities that result in a polynomial in n:

Tn + Tn+1 = (n+ 1)2(7.14)

Tn+1 − Tn = n+ 1

T 2
n+1 − T 2

n = (n+ 1)3

8Tn + 1 = (2n+ 1)2

T2n+1 − T2n = 2n+ 1

T2n−1 − 2Tn−1 = n2

An identity that arises from viewing triangular numbers combinatori-
ally is given by

(7.15) Tn+k = Tn + Tk + nk

To prove this, consider two sets: one consisting of n elements and
the other containing k elements. We are interested in calculating
the number of ways to select a pair of items from these two sets,
Tn+k. There are three mutually different ways this can be done: both
elements can be selected from the set of n elements in Tn different ways,
from the set of k elements in Tk different ways, and one from each set
in nk different ways. Summing these yields the equation above.

By varying values of k, a variety of relations can be derived from
this equation including

Tn(n+1) = Tn + Tn2 + n3 (k = n2)(7.16)

Tn+2 = Tn + T2 + 2n (k = 2)

T2n = 2Tn + n2 (k = n)

TTn = Tn + TTn−1 + nTn−1 (k = Tn−1)
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By selecting k = Tn in the defining equation Tk−1+ k = Tk, we obtain
the identity

(7.17) TTn = TTn−1 + Tn

Equating the last two identities yields the tongue twisting result

(7.18) TTn−1 = TTn−1 + nTn−1

There is a similarity between the two identities previously stated that
contain an n2 term. Stated again, these identities reveal the curious
relationship

n2 = T2n−1 − 2Tn−1 = T2n − 2Tn

If we assume that Ti = 0 for i ≤ 0, then both of these equations are
special cases of a family of identities given by

(7.19) n2 = T2n−k + Tk−1 − 2Tn−k, k = 0, . . . , n

A product formula, analogous to the summation identity stated
above, is given by

(7.20) Tnk = Tn−1Tk−1 + TnTk

Again, varying k leads to a variety of results:

Tn2 = T 2
n−1 + T 2

n , (k = n)(7.21)

Tn3 = Tn−1Tn2−1 + TnTn2 , (k = n2)

T2Tn = Tn (Tn−1 + Tn+1) , (k = n+ 1)

T2n = T1Tn−1 + T2Tn, (k = 2)

A triangle is a 2-dimensional object which, when raised to three
dimensions, becomes a pyramid. In this case, instead of racking billiard
balls, one stacks cannon balls. The sequence of values then corresponds
to 1, 4, 10, 20, 35, . . . which are given by values of T2n. The numeric
sequence can be written as 4i − 1 and thus another identity for T2n

emerges into view
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(7.22) T2n =
n∑

i=1

4i− 1 = 4Tn − n

The algebra to calculate the sum of the squares of triangular
numbers is a bit tricky. Linking back to the equation derived for the
sums of power of integers reveals the curious relationship S3,n = T 2

n .
Using this, and the row-wise summation previously derived, shows that

(7.23)
n∑

i=1

T 2
i =

n∑

i=1

S3,i = (n+ 1)S3,n − S4,n

Writing this in a different way leads to
(7.24)
n∑

i=1

T 2
i =

1

4

n∑

i=1

i2(i+1)2 =
1

4

n∑

i=1

i4+2i3+ i2 =
1

4
(S4,n + 2S3,n + S2,n)

Equating these last two equations leads to the identity

2(2n+ 1)S3,n = S2,n + 5S4,n

The general case for the summing the k’th power of triangular numbers
can be written as

n∑

i=1

T k
i =

n∑

i=1

ik(i+ 1)k

2k
=

n∑

i=1

ik

2k

k∑

�=0

(
k

�

)
i�(7.25)

=
1

2k

k∑

�=0

(
k

�

) n∑

i=1

ik+� =
1

2k

k∑

�=0

(
k

�

)
Sk+�,n

This identity can also be recast as1

(7.26)

n∑

i=1

ik(i+ 1)k =

k∑

�=0

(
k

�

)
Sk+�,n

We can analyze the fine structure of T k
i by using a telescoping sum

to write

1This corresponds to the sum of powers of variety-2 integers, see equation (3.3).
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T k
i =

i∑

j=1

T k
j − T k

j−1(7.27)

=

i∑

j=1

(
j(j + 1)

2

)k

−
(
(j − 1)j

2

)k

=
1

2k

i∑

j=1

jk
(
(j + 1)k − (j − 1)k

)

=
1

2k

i∑

j=1

jk
k∑

�=0

(
k

�

)
j�
(
1− (−1)k−�

)

=
1

2k

k∑

�=0

(
k

�

)(
1− (−1)k−�

) i∑

j=1

jk+�

=
1

2k

k∑

�=0

(
k

�

)(
1− (−1)k−�

)
Sk+�,i

The term 1 − (−1)k−� above equals 0 if k − � is even and equals 2
if k − � is odd. In light of this parity, let Ik be the set of odd (even,
respectively) integers less than k if k is an even (respectively, odd)
integer. Then, summing the above equation yields

n∑

i=1

T k
i =

1

2k−1

n∑

i=1

∑

�∈Ik

(
k

�

)
Sk+�,i(7.28)

=
1

2k−1

∑

�∈Ik

(
k

�

) n∑

i=1

Sk+�,i

=
1

2k−1

∑

�∈Ik

(
k

�

)
((n+ 1)Sk+�,n − Sk+�+1,n)

The last identity of this section displays a curious symmetry

(7.29) n2Tk + nTk−1 = k2Tn + kTn−1
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7.3 Cauchy’s Theorem

As stated before, Gauss showed that all numbers could be written as
the sum of three triangular numbers. This generalizes to squares with a
theorem by Joseph-Louis Lagrange (1736–1813) which shows that four
squares summed together are sufficient to represent all non-negative
integers (like triangular numbers we consider 0 to be a member of
this set). A generalization of these results is best stated in terms of
polygonal numbers.

The n’th number from the set of k polygonal numbers is given by

Pk,n =
(k − 2)n2 − (k − 4)n

2

Triangular numbers correspond to k = 3 in the above equation and
square numbers to k = 4. Like racking billiard balls, these numbers
arise when you rack k-gons. Polygonal numbers can be written multiple
ways in terms of triangular numbers after some algebraic manipulation

(7.30) Pk,n = (k− 2)Tn−1+n = (k− 3)Tn−1+Tn = (k− 4)Tn−1+n2

Some conjectures are so pure and beautiful that one feels that
something would be wrong with the world if they were not true. We
are facing one example here because the natural generalization of the
two cases above is: all integers can be written as the sum of k polygonal
numbers of order k. It turns out that this is not just a lofty conjecture
that implies the perfection of mathematics, it is actually a theorem
that was first proved by Augustin-Louis Cauchy (1789–1857).

It might seem that there are good reasons to not expect Cauchy’s
result since the distance between successive polygonal numbers
increases with k and n

Pk,n − Pk,n−1 = n(k − 2) + 3− k

For example, the k = 8 sequence corresponds to an octagon whose first
few values are

0, 1, 8, 21, 40, 96, 133, 176, 225, 280

whereas for squares we have

0, 1, 4, 9, 16, 25, 36, 49, 64, 81
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The increased spacing of the octagonal case over the square case is
offset by the need to have eight, rather than four, values added together
so that all integers can be represented. This is a deep and beautiful
result.

It is hard to resist answering one further question that arises:
are some k polygonal numbers also triangular numbers? Recall the
identity n2 = T2n−1 − 2Tn−1 of (7.14). Using this equation and the
identity Pk,n = (k− 4)Tn−1+n2 shows that these two equations share
the common terms of n2 and Tn−1. Equating them

n2 = T2n−1 − 2Tn−1 = Pk,n − (k − 4)Tn−1

thus uncovers that k = 6 satisfies the equation and thus hexagonal
k-gons are also triangular,

P6,n = T2n−1

What other forms of equations can be used to represent sets of
numbers? How about the number of cubes needed to represent all
numbers or, for that matter, the number of k powers that are required.
Edward Waring (1736–1798) posed this question by defining a function
g(k) to be the minimum number of k powers that were required to
represent all of the integers. Lagrange’s four square theorem showed
that g(2) = 4. Currently we only know the values g(3) = 9, g(4) = 19,
g(5) = 37, and g(6) = 73. Bounds and properties of g have been
extensively studied but, as of yet, the functional form of g remains
unknown.
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