
Chapter 5

All That Glitters Is Not Gold

All that glisters is not gold;
Often have you heard that told:
Many a man his life hath sold
But my outside to behold:
Gilded tombs do worms enfold.

William Shakespeare (1564–1616)
The Merchant of Venice, Act 2, scene 7

Despite the temptations of gold alluded to in Shakespeare’s verse above
from The Merchant of Venice, the pursuit of mathematical gold leads,
not to gilded tombs, but to the paradise of the Elysian fields of ancient
Greece. Our journey in this chapter takes us back to the days of Phidias
(480–430 BC), a Greek sculptor and mathematician who is said to have
helped with the design of the Parthenon. The approach in this chapter
uses a simple artifice—the ratio of two line segments.

5.1 The Golden Ratio

Consider a line consisting of two line segments. The first segment has
a length of 1 unit and the other has length 1− ε where 0 < ε < 1. By
construction, the second length is the smaller of the two. We are going
to select the value of ε that equalizes two ratios. The first ratio, r1, is
the length of the total line segment to that of the larger section, thus

(5.1) r1 =
1 + 1− ε

1
= 2− ε
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The second ratio, r2, is the length of the larger segment to that of the
smaller segment

(5.2) r2 =
1

1− ε

For some value ε� the two ratios are equal. It is not hard to derive an
equation for ε�:

2− ε� =
1

1− ε�

or that

(ε�)2 − 3ε� + 1 = 0

Using the quadratic formula yields the solution to this quadratic
polynomial

ε� =
3±√

5

2

The solution corresponding to the positive square root is larger than 1
which lies outside the bound on the length of the second segment so1

ε� =
3−√

5

2
= 0.381966011250105 . . .

The value of ε� can be calculated using (5.1) and shows that

(5.3) r1 = 2−ε� = 2−3−√
5

2
=

1 +
√
5

2
= φ = 1.61803398874989 . . .

This calculated value, typically denoted by φ, is the golden ratio that
was admired by Phidias who used it in the design of the shape of the
Parthenon.2

Equation (5.2) expresses φ differently

1The appearance of
√
5 implies that ε� is irrational, see the proof on page 171.

2The Internet is replete with interesting historical facts dealing with this ratio.
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(5.4) r2 =
1

1− ε�
=

1

1− 3−√
5

2

=
1

−1+
√
5

2

=
2√
5− 1

= φ

These two ratios provide two equations for the golden ratio. Straight-
forward algebra shows that

(5.5) φ =
1 +

√
5

2
=⇒

√
5 = 2φ− 1

Using this in (5.4) yields

φ =
2√
5− 1

=
2

2φ− 2
=

1

φ− 1

and thus

φ2 = φ+ 1

This shows that the golden ratio is one of the solutions to the quadratic
equation x2 = x+ 1, an equation which, in this chapter, is termed the
defining equation. A key observation to make about this equation is
that the left-hand side, x2, corresponds to a multiplication whereas the
right-hand side, x+1, is an addition. In essence, the equation converts
multiplication to addition. What can such an observation yield?

5.1.1 Fibonacci Numbers

Since φ is one solution to the defining equation this means all
occurrences of φ2 can be replaced with φ + 1 without changing the
value of an expression. This can be used to calculate an expression for
φ3:

φ3 = φφ2 = φ(φ+ 1) = φ2 + φ = φ+ 1 + φ = 2φ+ 1

Using this to calculate the next power shows that

φ4 = φφ3 = φ(2φ+ 1) = 2φ2 + φ = 2(φ+ 1) + φ = 3φ+ 2
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Continuing with this progression yields

φ5 = φφ4 = φ(3φ+ 2) = 3φ2 + 2φ = 3(φ+ 1) + 2φ = 5φ+ 3

φ6 = φφ5 = φ(5φ+ 3) = 5φ2 + 3φ = 5(φ+ 1) + 3φ = 8φ+ 5

φ7 = φφ6 = φ(8φ+ 5) = 8φ2 + 5φ = 8(φ+ 1) + 5φ = 13φ+ 8

φ8 = φφ7 = φ(13φ+ 8) = 13φ2 + 8φ = 13(φ+ 1) + 8φ = 21φ+ 13

The numbers have an intriguing progression and to see the pattern
more clearly consider the following table:

Power Multiple of φ Constant

1 1 0

2 1 1

3 2 1

4 3 2

5 5 3

6 8 5

7 13 8

8 21 13

The first thing to note is that the multiplier equals the constant for
the following power. In other words the values are just shifted versions
of each other. There is another observation that comes from looking
at the sequence of numbers

1, 1, 2, 3, 5, 8, 13, 21, . . .

Observe that after starting with two, 1’s, the next number is the sum
of the previous 2. This sequence of numbers is the famous Fibonacci
sequence named for the Italian mathematician, Leonardo of Pisa
(1170–1240?) around the year 1200. The Internet is replete with the
history and myriad applications of this sequence including the mating
characteristics of rabbits.
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Let fi, i = 0, . . . denote the Fibonacci numbers so that f1 = 1, f2 =
1, f3 = 2, f4 = 5, and fn = fn−1 + fn−2, n = 4, . . .. It is customary to
start the sequence with f0 = 0. The above table suggests that

(5.6) φn = fnφ+ fn−1, n = 2, . . .

To prove this, use the technique of substituting φ+1 for all occurrences
of φ2:

φn+1 = φφn = φ(fnφ+ fn−1)

= fnφ
2 + φfn−1 = fn(φ+ 1) + φfn−1 = (fn + fn−1)φ+ fn

Since fn+1 = fn + fn−1 the last expression can be rewritten as

(5.7) φn+1 = fn+1φ+ fn

which shows that the pattern continues to the n + 1’st case. There
is an analogy in the recurrence relationship of the Fibonacci numbers
with the golden ratio seen by writing patterns side by side:

fn = fn−1 + fn−2 φn = φn−1 + φn−2

To derive the second expression, write

φn = φn−2φ2 = φn−2(φ+ 1) = φn−1 + φn−2, n = 3, . . .

5.1.2 A Closed Form Solution

To derive a closed form equation for fn, return to the other solution
besides φ to the defining quadratic equation x2 = x + 1. The second
solution from the quadratic formula is

(5.8) ψ =
1−√

5

2
= −0.61803398874989 . . .

This solution necessarily shares properties similar to φ since it also
satisfies ψ2 = ψ + 1. This implies that the pattern derived above for
powers of φ also holds for powers of ψ



68 5 All That Glitters Is Not Gold

(5.9) ψn = fnψ + fn−1, n = 2, . . .

This equation gives the key in finding an expression for fn. Subtract
ψn of equation (5.9) from φn of (5.6) to get:

φn − ψn = fnφ+ fn−1 − (fnψ + fn−1) = fn (φ− ψ)

and, like picking a rabbit out of hat, this shows that

fn =
φn − ψn

φ− ψ

This almost seems too easy a way to get such a difficult result. This
expression can be simplified since

φ− ψ =
1 +

√
5

2
− 1−√

5

2
=

√
5

which yields the compact formula

(5.10) fn =
φn − ψn

√
5

This equation was first derived along different lines by Jacques Binet
(1786–1856).

Before ending this section, observe that substitution (5.5) into
equation (5.8) shows that

ψ =
1−√

5

2
=

1− (2φ− 1)

2
=

2− 2φ

2
= 1− φ

which yields

φ+ ψ = 1

This is useful in deriving an expression for the sum of φn and ψn.
Using equations (5.7) and (5.9) yields

φn + ψn = fnφ+ fn−1 + (fnψ + fn−1)

= fn(φ+ ψ) + 2fn−1 = fn + 2fn−1
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This can be rewritten in an easier form

(5.11) φn + ψn = fn + 2fn−1 = fn + fn−1 + fn−1 = fn+1 + fn−1

which leads to the sequence of numbers3:

(5.12) 2, 1, 3, 4, 7, 11, 18, 29, . . .

The Fibonacci recurrence relationship invites one to derive identities
between the values. For example, write the equation for f2n

f2n =
φ2n − ψ2n

√
5

=
(φn)2 − (ψn)2√

5

and use the identity x2 − y2 = (x − y)(x + y) and the equation for
φn + ψn above in (5.11) to obtain

(5.13) f2n =
φn − ψn

√
5

(φn + ψn) = fn(fn+1 + fn−1)

To derive the same value along a different line write

f2n =
φ2n − ψ2n

√
5

=

(
φ2

)n − (
ψ2

)n
√
5

Use the fact that φ2 = 1+φ and ψ2 = 1+ψ, and the binomial theorem
to express f2n as
(5.14)

f2n =
(1 + φ)n − (1 + ψ)n√

5
=

n∑

k=0

(
n

k

)
φk − ψk

√
5

=
n∑

k=0

(
n

k

)
fk

Equating the two identities yields the relationships

f2n = fn(fn+1 + fn−1) =
n∑

k=0

(
n

k

)
fk

3This sequence is termed the Lucas sequence and will be revisited later in the chapter,
see equation (5.23).
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Equation (5.14) corresponds to a binomial expansion of the values
fk. Using binomial inversion thus leads to another identity involving
Fibonacci numbers:

(5.15) fn =
n∑

k=0

(
n

k

)
(−1)n−kf2k

To consider another identity, let αn = fn+1fn−1 − f2
n and observe

that α1 = −1 and α2 = 1. This suggests that αn = (−1)2. The
following set of manipulations shows that

αn = fn+1fn−1 − f2
n

= (fn + fn−1)fn−1 − f2
n

= f2
n−1 − fn(fn−1 + fn−2 − fn−1)

= f2
n−1 − fnfn−1

= −αn−1

which thus yields the identity

(5.16) fn+1fn−1 − f2
n = (−1)n

One more identity can easily be obtained. Consider the product of two
successive Fibonacci numbers

fifi−1 = (fi−1 + fi−2)fi−1 = f2
i−1 + fi−1fi−2

This recursive equation is easily solved, leading to the identity

(5.17) fifi−1 =
i−1∑

j=1

f2
j , i = 1, . . .

The process of creating identities for Fibonacci numbers could go on
almost endlessly since there are literally tens of thousands of such
relationships.
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The equation φ2 = φ + 1 leads to some beautiful equations. Take
the square root of this to yield

φ =
√
φ2 =

√
φ+ 1

Substituting the square root expression for every occurrence of φ shows
that:

φ =
√
1 + φ =

√
1 +

√
1 + φ =

√

1 +

√
1 +

√
1 + φ

Clearly this continues without end and thus φ arises from the infinite
cascade of square roots:

(5.18) φ =

√

1 +

√

1 +

√
1 +

√
1 + · · ·

If the defining equation is rewritten as

φ = 1 +
1

φ

then continual substitution for φ leads to an infinite continued fraction
expansion of φ4:

(5.19) φ = 1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

. . .

The golden ratio φ ≈ 1.6180339 is one of a handful of fundamental
constants like π ≈ 3.1415926, the base of the natural logarithm e ≈
2.7182818, or Euler’s constant γ ≈ 0.5772156.

4An alternative derivation is found in (10.14).
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5.2 An Alternate Derivation

Viewing Fibonacci numbers through the eyes of a different model
reveals a strikingly different closed form expression. Consider the
number of possible sequences of the integers 1 or 2 that, when
summed, equals n. Let ρ(n) be the number of different ways to do
this. For example, ρ(2) = 2 since the sequences 11 and 2 are the
only possibilities. Other cases include ρ(3) = 3, (111, 12 and 21) and
ρ(4) = 5, (1111, 112, 121, 211, and 22).

Comparing these values to Fibonacci numbers suggests that ρ(n) =
fn+1. To show that this is the case it suffices to establish the recurrence

(5.20) ρ(n) = ρ(n− 1) + ρ(n− 2)

The small examples above show that this is satisfied for values of
n ≤ 4. The equation is established by induction. For n > 4, consider
a sequence that adds up to n that starts with a 1. In this case, the
remaining integers of the sequence necessarily add up to n − 1 which
we know amounts to ρ(n − 1) possible sequences. Similarly for those
sequences that start with 2 the remaining numbers must add to n− 2
which equals a total of ρ(n − 2) sequences. These two cases account
for all possibilities and thus establishes (5.20).

This perspective opens up a different form of a closed form
expression for ρ(n) and thus also for fn+1. Partition all sequences
of 1s and 2s by their length. There is only one sequence of length
n which consists of all 1s. Consider a sequence having i, 2s, in it. Such
a sequence has n − 2i ≥ 0, 1s, since the sum equals n. This implies
the sequence length is n − 2i + i = n − i. There are

(
n − i

i

)
ways of

choosing the places for the i, 2s, in such sequences. Since n − 2i > 0,
it must be the case that i ≤ �n/2� where �x� is the integer portion of
x. Summing all possibilities shows that

(5.21) ρ(n) =

�n/2�∑

i=0

(
n− i

i

) (
fn+1 =

φn+1 − ψn+1

√
5

)

In equation (5.21) the previous closed form expression (5.10) is shown
to contrast the striking difference between the two derivations. Such
contrasts often happen in mathematics in the form of equations that
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arise for the same mathematical quantity when viewed from different
perspectives. Adjusting the indices of (5.21) to be more natural
provides the following identity:

(5.22) f2n+1 =
n∑

i=0

(
n+ i

2i

)
=

n∑

i=0

(
n+ i

n− i

)

5.3 Generalized Fibonacci Numbers

Clearly the starting values for the Fibonacci series are arbitrary and
have little influence on any basic properties derived from the essential
recurrence fn = fn−1 + fn−2. For example, if the sequence starts with
a, b (they both cannot be 0) then these generalized Fibonacci numbers
satisfy

gn = afn−1 + bfn

The widely studied Lucas sequence (named after Édouard Lucas
(1842–1891)), that arises with the selection a = 2 and b = 1, yields5

(5.23) 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, . . .

A closed form solution for gn is a modification of equation (5.10)

gn = a

(
φn−1 − ψn−1

√
5

)
+ b

(
φn − ψn

√
5

)

=
φn(b+ aφ−1)− ψn(b+ aψ−1)√

5

=
φn(b− aψ)− ψn(b− aφ)√

5

The last simplification uses the equation φψ = −1.

5Equation (5.11) also generated this sequence.
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5.4 k-Bonacci Numbers

Recall that Fibonacci numbers arise from the defining equation x2 =
x + 1. Consider the next highest defining equation given by x3 =
x2+x+1. Mimicking the previous derivation of Fibonacci numbers in
Section 5.1.1 by deriving powers of x yields the following pattern:

Power x2 term x term 1 term

x3 1 1 1

x4 2 2 1

x5 4 3 2

x6 7 6 4

x7 13 11 7

Notice that the numbers in each row are the sum of the previous
three numbers in the preceding rows. Such numbers are said to
be Tribonacci numbers and the differences in sequences shown in
the columns arise, like the difference between Fibonacci and Lucas
numbers, from their different initial values. In particular, the first and
third column correspond to the sequence starting with 0, 0, 1,

0, 0, 1, 1, 2, 4, 7, 13, · · ·

whereas the second column corresponds to the sequence starting with
0, 1, 0,

0, 1, 0, 1, 2, 3, 6, 11, · · ·

In all cases, the general term of the recurrence satisfies tn = tn−1 +
tn−2 + tn−3. This generalization of Fibonacci numbers also leads to
closed form expressions that have an algebraic and a combinatoric
representation although they are substantially more complicated. The
combinatoric representation for tn for the starting value 0, 0, 1, for
example, is given by

tn =

�n/2�∑

i=0

�n/3�∑

k=0

(
n− i− 2k

i+ k

)(
i+ k

k

)
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Such sequences easily generalize to the k-bonacci numbers defined by

(5.24) bn = bn−1 + · · ·+ bn−k

with starting values given by k− 1 zeros followed a 1. A table of these
numbers up to k = 5 follows:

k Name Initial Values Rest of Sequence

2 Fibonacci 0, 1 1 1 2 3 5 8 13 21 34 55 . . .

3 Tribonacci 0, 0, 1 1 1 2 4 7 13 24 44 81 149 . . .

4 Tetranacci 0, 0, 0, 1 1 1 2 4 8 15 29 56 108 208 . . .

5 Pentanacci 0, 0, 0, 0, 1 1 1 2 4 8 16 31 61 120 236 . . .

The defining equation for k-bonacci numbers is xk = xk−1+ · · ·+x+1.
It can be shown that every integer has at least one way to write it as

the sum of k-bonacci integers. To illustrate this, consider the Fibonacci
case where 100 can be written in terms of Fibonacci numbers as 3+8+
89, 1+ 2+ 8+ 89, 3+ 8+ 34+ 55 and 3+ 8+ 89. Edouard Zeckendorf
(1901–1983) showed for the k = 2 case that there is only one way
to write such a representation that does not use adjacent Fibonacci
numbers (100 = 3+8+89 above). It is trivial to construct a Zeckendorf
representation for small values of n by enumeration. Assume that such
a representation is possible for all integers up to n. If n+1 is a Fibonacci
integer, then it already has such a representation (a Fibonacci number
is its own representation). Therefore consider the case where n+1 not
Fibonacci. This implies that there is a value j that satisfies

fj < n+ 1 < fj+1

By assumption, the value m defined by m = n+1−fj has a Zeckendorf
representation since it is less than n. Using this representation shows
that m + fj is a representation for the integer n + 1 that uses only
Fibonacci numbers. But this representation might consist of adjacent
Fibonacci numbers and thus not be a Zeckendorf representation. To
show that this cannot be the case, use the general recurrence for
Fibonacci integers to write

m+ fj < fj+1 = fj + fj−1 =⇒ m < fj−1
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5.5 Generalization of the Fibonacci Recurrence

Consider a generalization along different lines. Since the Fibonacci
sequence arises from the number of sequences of the numbers 1 and
2 that sum to n, it is only natural to ask what type of numbers arise
from patterns only using the numbers 1 and k. Denote the number
of such sequences by ρk(n). Solving the general case, using a similar
argument to the derivation of equation (5.21), yields

ρk(n) =

�n/k�∑

i=0

(
n− (k − 1)i

i

)

Interestingly, the recurrence equation corresponding to these values is
given by

gn = gn−1 + gn−k, n = k + 1, . . .

where the initial portion of the sequence consists of k, 1’s, followed by
a 2. A table of these numbers is given by

k Initial Values Rest of Sequence

2 1, 1, 2 3 5 8 13 21 34 55 89 144 233 377 610 . . .

3 1, 1, 1, 2 3 4 6 9 13 19 28 41 60 88 129 189 . . .

4 1, 1, 1, 1, 2 3 4 5 7 10 14 19 26 36 50 69 95 . . .

5 1, 1, 1, 1, 1, 2 3 4 5 6 8 11 15 20 26 34 45 60 . . .

Another generalization arises if the defining equation is changed so
that x2 = ax + 1 for some positive integer a. An analysis similar to
that found in the beginning of the chapter shows that this creates a
Fibonacci type sequence which satisfies hi = ahi−1+hi−2. With initial
conditions h0 = 0, h1 = 1, and h2 = a we find that the n’th type
Hibonacci number (coining the term) is given by

(5.25) hn,a =
(h+a )

n − (h−a )
n

√
a2 + 4

where

(5.26) h+a =
a+

√
a2 + 4

2
and h−a =

a−√
a2 + 4

2
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It is straightforward to derive equation (5.25) by mimicking the steps
leading to equation (5.10). Some illustrative values of such sequences
are given in the following table:

a Hibonacci Sequence

1 1 1 2 3 5 8 13 21 34

2 1 2 5 12 29 70 169 408 985

3 1 3 10 33 109 360 1,189 3,927 12,970

4 1 4 17 72 305 1,292 5,473 23,184 98,209

5 1 5 26 135 701 3,640 18,901 98,145 509,626

6 1 6 37 228 1,405 8,658 53,353 328,776 2,026,009

7 1 7 50 357 2,549 18,200 129,949 927,843 6,624,850

The continued fraction expansion of h+a is a generalization of φ found
in equation (5.19) and is given by6

(5.27) h+a = a+
1

a+
1

a+
1

a+
1

a+
1

. . .

Also observe that the generalization of equation (5.18) for Hibonacci
numbers is given by

h+a =

√

1 + a

√

1 + a

√
1 + a

√
1 + · · ·

Clearly there are endless generalizations and results to be found along
these, and other, lines.

6Derivation of equation (5.27) is found in equation (10.13) and the values in the table
found on page 137.
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