
Chapter 3

Syntax Precedes Semantics

“Good Morning!” said Bilbo, and he meant it. The sun
was shining,and the grass was very green. But Gandalf
looked at him from under long bushy eyebrows that
stuck out further than the brim of his shady hat.

“What do you mean?” he said. “Do you wish me a
good morning,or mean that it is a good morning
whether I want it or not;or that you feel good this
morning; or that it is a morning to be good on?”

“All of them at once,” said Bilbo.

J. R. R. Tolkien, The Hobbit

How you say something is often as important as what you say. A simple
“Good Morning” can confuse even a wizard like Gandalf and this can
be no more apparent than in writing mathematics where ambiguity
is not tolerated. This explains one reason why LATEX has made such
a major impact on mathematics even though it only deals with the
syntax of mathematical writing and not its content. The TEX project
started by Donald Knuth (1938–) gave mathematicians the tools they
needed to be able to write beautifully typeset papers and books that
brought to light the semantics of math in a crystal clear format. In
this way, syntax precedes semantics.

Notation is also a vitally important component of mathematics.
Clear notation reveals patterns to the mind that are obscured by more
awkward expressions. To illustrate this, recall that Pascal’s equation
was derived in the chapter, Let Me Count the Ways with equation
(2.34). To express this more concisely recall that the falling factorial
notation is defined by

(3.1) nk = n(n− 1) · · · (n− k + 1)
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and the rising factorial notation by

(3.2) nk = n(n+ 1) · · · (n+ k − 1)

Some algebra shows that nk = (n+ k − 1)k and nk = (n− k + 1)k.
With these notations we can write a binomial coefficient in multiple
ways

(
n

k

)
=

n!

k!(n− k)!
=

nk

k!
=

(n− k + 1)k

k!

The combinatorial term on the left-hand side of (2.34) can now be
expressed as

(
i+ k − 1

i− 1

)
=

ik

k!

and the right-hand side by

(
n+ k

k + 1

)
=

(
n− 1 + k + 1

k + 1

)
=

nk+1

(k + 1)!

Some minor simplifications then shows that Pascal’s formula (2.34)
can be expressed compactly as

(3.3)
n∑

i=1

ik =
nk+1

k + 1

Equation (3.3) expresses Pascal’s equation in a form that highlights
a pattern which is not evident in (2.34) and expresses a relationship
contained in the integers. Define a variety k integer to be the product

of k successive integers. Thus ik is the i’th variety k integer. In
these terms, equation (3.3) expresses a relationship between variety
k integers with variety k + 1 integers. Specifically, the equation shows
that the sum of the first n variety k integers equals the n+1’st variety
k+1 integer divided by k+1. This result will be partially generalized
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later in the book with equation (7.26) which considers the powers of
variety 2 integers. The next section brings up the question: what is a
rising factorial?

3.1 Stirling Numbers of the First Kind

To move towards answering this, first note that nk is a k’th degree
polynomial in n. Let the coefficients of this polynomial be denoted by
bi,k for i = 0, . . . k. Two coefficients are immediately obvious: b0,k = 0
and bk,k = 1. What are the remaining coefficients? To answer this, a
straightforward calculation shows that

Coefficients bi,k

k\i 1 2 3 4 5 Sum

1 1 1

2 1 1 2

3 2 3 1 6

4 6 11 6 1 24

5 24 50 35 10 1 120

Blanks above equal 0 and thus, as an illustration, the table shows that
n4 = 6n+ 11n2 + 6n3 + n4.

The numbers in the table have some interesting special values.
For example, the sum of the rows (the last column in the table)
equals factorial numbers,

∑n
i=0 bi,n = n!. Also, the first column is

simply a shifted version of the summation column, b1,n = (n − 1)!
and the submajor diagonal values in the table correspond to binomial

coefficients, bn−1,n =

(
n

2

)
. Other values found in the table do not have

obvious values which leads us to the problem of finding a relationship
between them.

To derive this relationship, note that

nk+1 = (n+ k)nk = n · nk︸ ︷︷ ︸
first part

+ k · nk︸ ︷︷ ︸
second part

This shows that the coefficient bi,k+1 consists of two parts determined
by the exponent of n. The first part corresponds to the coefficient of
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ni−1 in nk since n · ni−1 = ni, thus yielding a summand of bi−1,k.
The second part corresponds to multiplying the coefficient of ni by
k yielding a second summand of k · bi,k. Combining both summands
shows that

(3.4) bi,k+1 =

⎧⎨
⎩

bi−1,k + kbi,k, i = 1, . . . , k

1, i = k + 1

These coefficients frequently appear in mathematics and are termed
Stirling numbers of the first kind, named after the mathematician
James Stirling (1692–1770). This brings up the immediate question:
What are Stirling numbers of the second kind? We will get to that in
a moment.

The typical notation for Stirling numbers of the first kind replaces
the parenthesis of binomial coefficients with brackets leading to

bi,k =

[
k

i

]

In this notation, the special cases previously mentioned are written as
(3.5)[
k

0

]
= 0,

[
k

k

]
= 1,

[
k

1

]
= (k−1)!,

[
k

k − 1

]
=

(
k

2

)
,

k∑
i=0

[
k

i

]
= k!

The recurrence relationship (3.4), implies that

(3.6)

[
k + 1

i

]
=

[
k

i− 1

]
+ k

[
k

i

]

and

(3.7) nk =

k∑
i=1

[
k

i

]
ni

Programming the relationship (3.6), along with the special cases
just mentioned, yields the following table:
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Table of

[
k

i

]

k\i 1 2 3 4 5 6 7 8

1 1

2 1 1

3 2 3 1

4 6 11 6 1

5 24 50 35 10 1

6 120 274 225 85 15 1

7 720 1,764 1,624 735 175 21 1

8 5,040 13,068 13,132 6,769 1,960 322 28 1

Heading back to the modified version of Pascal’s equation allows a
rewrite in terms of Stirling numbers. The left-hand side of (3.3) can
be written as

n∑
i=1

ik =
n∑

i=1

k∑
j=1

[
k

j

]
ij(3.8)

=
k∑

j=1

[
k

j

] n∑
i=1

ij

=
k∑

j=1

[
k

j

]
Sj,n

where

Sj,n =
n∑

i=1

ij

The right-hand side of the Pascal equation (3.3) implies that

(3.9)
nk+1

k + 1
=

1

k + 1

k+1∑
j=1

[
k + 1

j

]
nj
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Equations (3.3), (3.8), and (3.9) thus create the identity

(3.10)

k∑
j=1

[
k

j

]
Sj,n =

1

k + 1

k+1∑
j=1

[
k + 1

j

]
nj

Minor modifications to less awkward indices with equations (3.9) and
(3.10) show that we have just derived the identity:

(3.11) nk = k
k−1∑
j=1

[
k − 1

j

]
Sj,n

and

(3.12)

(
n+ k

k + 1

)
=

〈
n

k + 1

〉
=

1

k!

k∑
j=1

[
k

j

]
Sj,n, k = 1, . . . , n

Stirling numbers of the first kind also allow writing falling factorials
after minor sign changes. The modified version of (3.7) for falling
factorials is given by

(3.13) nk =
k∑

i=1

(−1)k−i

[
k

i

]
ni

As an example, this implies that

(3.14) n4 = n4 − 6n3 + 11n2 − 6n

3.2 Stirling Numbers of the Second Kind

To reverse direction, we seek to derive an equation that expresses a
power in terms of falling factorials, specifically

(3.15) nk =

k∑
i=0

ci,kn
i

for some unknown constants ci,k. Some coefficients are immediately
obvious: the boundary cases c0,k = 0 and ck,n = 0, k > n, which can
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now be eliminated, and ck,k = 1. What are the remaining coefficients?
To answer this, a straightforward calculation shows that

Coefficients ci,k

k\i 1 2 3 4 5

1 1

2 1 1

3 1 3 1

4 1 7 6 1

5 1 15 25 10 1

Blanks above equal 0 and thus, as an illustration, the table shows that
n4 = n1+7n2+6n3+n4. There is a repeating pattern to the numbers in
this table which can be illustrated by an example. Consider the entry
for c3,5 = 25. It can be written in terms of entries on the preceding
row, specifically it equals 3c3,4+ c3,3 = 3× 6+7. This pattern persists
in the table which suggests that

(3.16) ci,k = ici,k−1 + ci−1,k−1

Assume that this holds up to some value k and write

nk+1 = n nk =
k∑

i=1

ci,kn ni

=
k∑

i=1

ci,k
(
ni+1 + i ni

)

=
k∑

i=1

ci,kn
i+1 +

k∑
i=1

ci,kin
i

=
k+1∑
i=2

ci−1,kn
i +

k∑
i=1

ci,kin
i

=
k+1∑
i=1

ci−1,kn
i +

k+1∑
i=1

ci,kin
i

=
k+1∑
i=1

ci,k+1n
i
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where the last step follows from the induction hypothesis (3.16) and
the second to last step is a result of the 0 boundary cases mentioned
above.

The coefficients just derived are termed Stirling numbers of the
second kind and are expressed in combinatorial notation using braces
instead of parenthesis, that is

{
i

k

}
= ci,k. This implies that

(3.17) nk =
k∑

i=1

{
k

i

}
ni

and, with equation (3.16), that

(3.18)

{
k

i

}
= i

{
k − 1

i

}
+

{
k − 1

i− 1

}

Programming the relationship (3.18) along with the special cases
just mentioned yields the following table:

Table of

{
k

i

}

k\i 1 2 3 4 5 6 7 8

1 1

2 1 1

3 1 3 1

4 1 7 6 1

5 1 15 25 10 1

6 1 31 90 65 15 1

7 1 63 301 350 140 21 1

8 1 127 966 1,701 1,050 266 28 1

Substituting (3.13) into (3.17) implies that

nk =
k∑

i=1

{
k

i

}
ni

=
k∑

i=1

{
k

i

} i∑
j=1

(−1)i−j

[
i

j

]
nj
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=
k∑

j=1

k∑
i=j

{
k

i

}
(−1)i−j

[
i

j

]
nj

= nk +

k−1∑
j=1

nj
k∑

i=j

(−1)i−j

{
k

i

}[
i

j

]

and thus that

(3.19)

k−1∑
j=1

nj
k∑

i=j

(−1)i−j

{
k

i

}[
i

j

]
= 0

Matching powers of n in equation (3.19) produces an equation linking
the two kinds of Stirling numbers:

(3.20)
k∑

i=j

(−1)i−j

{
k

i

}[
i

j

]
=

{
0, j = 1, . . . , k − 1

1, j = k

The second linkage between Stirling numbers is seen by comparing
the submajor diagonals in tables found on pages 31 and 34 which
suggests that

(3.21)

[
k

k − 1

]
=

{
k

k − 1

}

3.2.1 The Stirling Transform and Inverse

Equation (3.20) exposes another example of a transform. To define
this let

(3.22) u�(x) =
�∑

k=0

{
�

k

}
xk

and

(3.23) v�(x) =

�∑
k=0

(−1)�−k

[
�

k

]
xk
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and set b� = u�(a). Similar to the calculation of a binomial transform
and its inverse, calculate

v�(b) =
�∑

k=0

(−1)�−k

[
�

k

]
bk

=
�∑

k=0

(−1)�−k

[
�

k

] k∑
i=0

{
k

i

}
ai

=
�∑

i=0

ai

�∑
k=i

(−1)�−k

[
�

k

]{
k

i

}

= a� From Equation (3.20)

This shows that u� and v� are inverse function of each other. These
functions are termed a Stirling transform and inverse, respectively.

3.3 Combinatorial Interpretation

So far the discussion of Stirling numbers has focused on their algebraic
properties. This is manifested in the recurrence relations given by
equations (3.6) and (3.18). Like binomial and binomial-R coefficients,
however, there is a combinatorial interpretation of these recurrences
which lends insight into their associated algebraic properties. Consider,
for example, the total number of ways to partition n items into k non-
empty sets, a quantity we will denote by h(k, n). To illustrate, for
k = 3 and set {1, 2, 3, 4} the possible partitions are

{{1}, {2}, {3, 4}} {{1}, {3}, {2, 4}} {{1}, {4}, {2, 3}}(3.24)

{{1, 2}, {3}, {4}} {{1, 3}, {2}, {4}} {{1, 4}, {2}, {4}}

showing that h(3, 4) = 6. With n = 3 and set {2, 3, 4} the number of
partitions with two sets is given by

(3.25) {{2}, {3, 4}} {{3}, {2, 4}} {{4}, {2, 3}}
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showing that h(2, 3) = 3 and the number of partitions with three
sets by

(3.26) {{2}, {3}, {4}}

showing that h(3, 3) = 1.
These examples contain the key for calculating a general recurrence

relationship for h(k, n). Focus on one distinguished element, denoted
by e, which can either occur in a partition by itself or with other
members. For instance, letting e = 1 in the first example above (3.24)
shows that it occurs alone in partitions found in the first row and as
a member with other elements in partitions found in the second row.
When e appears by itself, the remaining elements must form a partition
of k−1 sets from the remaining n−1 elements, which for this example
corresponds to the partitions found in the second example (3.25). On
the other hand, suppose that e is in a set with other members. Then
there are k partitions of n−1 elements to which it can be added. In our
example, the second row shows that 1 is added to each of the sets on
the third example (3.26). Since there are k possibilities for selecting
the distinguished element that number of such possibilities is given
by k h(k, n − 1). These two cases count all possibilities and thus the
general recurrence consists of two disjoint parts:

(3.27) h(k, n) = h(k − 1, n− 1)︸ ︷︷ ︸
e is by itself

+ k h(k, n− 1)︸ ︷︷ ︸
e is with other elements

Comparing the recurrence in equation (3.18), with the recurrence just

derived, equation (3.27) shows that h(k, n) =
{
n

k

}
and provides a

combinatorial interpretation of Stirling numbers of the second kind.
A combinatoric interpretation of Stirling numbers of the first kind

arises when one considers cycles in permutations. Suppose that integers
1 through n are permuted leading to (a1, . . . , an). If aj = i, then we say
that item i in the permutation was moved to position j and represent
this by i → j. A cycle in the permutation is a sequence i → j → k →
· · · → i indicating that i was moved to j, j was moved to k, and so
forth until eventually the sequence returns back to i. As an example,
there are three cycles for the permutation (3, 2, 5, 6, 1, 4):

1 → 3 → 5 → 1 2 → 2 4 → 6 → 4
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Howmany possible permutations are there in which k cycles are formed
when n items are permuted?

To derive a recurrence for this, let g(i, k) count the number of pos-
sible i-cycles when k items are permuted. Focus on one distinguished
element which is added to n items. This distinguished element can
either be a cycle unto itself or become part of another cycle. In the
first case i cycles are created if the k other items form i − 1 cycles,
g(i− 1, k). In the second case, the distinguished item can be added to
any one of the existing i cycles and this can be done by adding it to
any of the k places formed by the existing items, kg(i, k). These are
disjoint cases and thus

(3.28) g(i, k + 1) = g(i− 1, k) + kg(i, k)

Comparing the recurrence in equation (3.6) with the recurrence just

derived, equation (3.28) shows that g(i, k+ 1) =
[
k + 1

i

]
and provides

a combinatorial interpretation of Stirling numbers of the first kind.
To express the recurrence relationships considered thus far in the

text along with their combinatorial interpretations, let βk,n denote
a recurrence relationship of n items having k sub-features (such as
choices, cycles, or partitions). The following table then illustrates the
differences between the primary counting regimes:

Type Recurrence Relationship Combinatorial Meaning

nk βk,n = nβk−1,n Number of permutations of k items from
a set of n with replacement

nk βk,n = nβk−1,n−1 Number of permutations of k items from
a set of n without replacement〈

n

k

〉
βk,n = βk−1,n + βk,n−1 Binomial-R coefficients: The number of

ways to choose k items from a set of n
with replacement.(

n

k

)
βk,n = βk−1,n−1 + βk,n−1 Binomial coefficients: The number of

ways to choose k items from a set of n
without replacement.[

n

k

]
βk,n = βk−1,n−1 + (n− 1)βk,n−1 Stirling numbers of the first kind: The

number of k cycles in a permutation of
n items{

n

k

}
βk,n = βk−1,n−1 + kβk,n−1 Stirling numbers of the second kind: The

number of ways to partition n items into
k non-empty subsets.
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