
Chapter 2

Let Me Count the Ways

How do I love thee? Let me count the ways.
I love thee to the depth and breadth and height
My soul can reach, when feeling out of sight
For the ends of being and ideal grace.

Elizabeth Barrett Browning (1806–1861)

Elizabeth Browning probably didn’t realize that she was really talking
about mathematics when she penned her 43rd sonnet, How Do I Love
Thee? This chapter provides a more comprehensive answer to this
question than Browning was able to present in the remaining stanzas
where she enumerates the ways she loves the veiled object of her
sonnet. With the power of mathematics, equations are derived that
provide a thorough enumeration, leaving no stone untouched. This is
done through the simple expedient of selecting a set of items from a set.
It is surprising, as when one falls in love, how fast innocent simplicity
explodes into a tangled web of complexity. Perhaps this is what makes
love stories, and mathematics, so enduringly interesting.

Assume there are n distinguishable items in a set from which k
items are selected.1 The object of this chapter is to count the number
of possible ways to make such a selection. There are four different
counting paradigms that depend upon the order items are selected and
whether selected items are removed or returned to the set. Selection
with replacement occurs when selected items are returned, otherwise
the selection is termed selection without replacement. A permutation
occurs when the order of selected items is maintained, otherwise the
selection corresponds to a combination.

1For example, different colored balls are distinguishable whereas electrons which have
no discernible differences are indistinguishable.
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4 2 Let Me Count the Ways

To illustrate the four different selection paradigms, consider the case
where 2 items are selected from the set {1, 2, 3}. A selection can be
represented by an integer so that 31 corresponds to first selecting item
3 followed by item 1. The first line of the table below shows that there
are 6 possible permutations when items are not returned to the set
(possibilities represented by {12, 21, 13, 31, 23, 32}). When order is not
maintained (so that the selection 12 is counted as being the same as the
selection 21) then the number of possibilities reduces to 3 (possibilities
represented by {12, 13, 23}). When items are returned after selection,
the number of possibilities in each of the above cases increases by 3
corresponding to the addition of possibilities given by {11, 22, 33}.

# Permutation # Combination

Without
Replacement

6 {12, 21, 13, 31, 23, 32} 3 {12, 13, 23}

With
Replacement

9 {12, 21, 13, 31, 23, 32, 11, 22, 33} 6 {12, 13, 23, 11, 22, 33}

The rest of this chapter derives equations for the number of possible
selections for each of the four counting paradigms, establishes relation-
ships between them, and derives identities that arise from the resultant
equations.2 Throughout this chapter, let the number of different items
in a set be denoted by n from which k items are selected.

2.1 Permutations: With and Without Replacement

We first consider permutations when items are not returned to the set,
a quantity that is denoted by prk,n.

3 This value satisfies the recurrence

(2.1) prk,n = nprk−1,n, n ≥ 1, k ≥ 1

Initial values of the recurrence are pr0,n = 1 and prk,n = 0 for k < 0 or

n < 0. To explain (2.1) note that the first of the k selections can be
done in n different ways, leaving k − 1 items left to be selected. Since

2See the Appendix for a review of using recurrence to solve problems.
3The “r” superscript means with replacement rather than being a numeric index
value.
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the selected item is returned to the step, this leaves prk−1,n remaining

possibilities. Recurrence (2.1) can be solved to yield

(2.2) prk,n = nk

Values of prk,n for small parameter values are given in the following
table:

Values of prk,n = nk

k\n 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

2 9 16 25 36 49 64 81

3 64 125 216 343 512 729

4 625 1,296 2,401 4,096 6,561

5 7,776 16,807 32,768 59,049

6 117,649 262,144 531,441

7 2,097,152 4,782,969

8 43,046,721

The number of different possibilities for selecting permutations
without replacement, denoted by pk,n, satisfies the recursion

(2.3) pk,n = npk−1,n−1, n ≥ 1, k ≥ 1

with initial values of p0,n = 1 and pk,n = 0 for k < 0 of n < 0.4

To explain this, note again that the first selection can be done in n
different ways. Since the selected item now is removed from the set,
this leaves the remaining k− 1 items to be selected from a set of n− 1
items, thus the quantity pk−1,n−1. This recurrence can be solved to
yield

(2.4) pk,n = nk

where the lower factorial is defined by

(2.5) nk = n(n− 1) · · · (n− k + 1)

4The restrictions to have non-negative arguments for prk,n and pk,n can be relaxed
but will not be considered in this book.
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As an aside, note that two algebraic identities follow directly definition
(2.5):

(2.6) nk = n� (n− �)k−� , � ≤ k

and

(2.7) n nk = nk+1 + knk

Values of pk,n for small parameter values are given in the following
table (notice the size differences between this and the table above):

Values of pk,n = nk

k\n 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

2 6 12 20 30 42 56 72

3 24 60 120 210 336 504

4 120 360 840 1,680 3,024

5 720 2,520 6,720 15,120

6 5,040 20,160 60,480

7 40,320 181,440

8 362,880

So far the analysis is straightforward; however, a counterintuitive
result follows from these the two defining equations (2.3) and (2.4).
The birthday problem is typically stated by calculating the probability
that, from a set of k people, at least two people have the same birthday.
To calculate this, assume that birthdays occur uniformly throughout
the year.5 If all birthdays are unique, then a selection from 365 days
of k items is a permutation without replacement. Setting n = 365
in equation (2.4) shows that there are 365k such permutations. The
number of total possible selections from 365 days that allows duplicate
days is equivalent to selecting k days with replacement which is given

5A smoothed plot of the frequency of birthdays ascends from a low around January
until it reaches a peak in September. There is thus a greater chance that two or more
people have a common birthday than what is calculated from equation (2.8).
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by equation (2.2), 365k. Thus, the fraction of random k selections
where there are no duplicate birthdays equals6

(2.8)
pk,n
prk,n

=

k−1∏

j=1

(
1− j

n

)

To determine the probability that there are multiple birthdays,
subtract (2.8) from 1. The numerical results are surprising as shown
in the following table:

k 10 15 20 25 30 35 40 45 50 55

1− pk,n/prk,n .117 .253 .411 .569 .706 .814 .891 .941 .97 .986

The break-even point occurs when k = 23, showing that there is a
50.72% probability that two people have the same birthday! The table
shows how fast this percentage increases with k so that the 99% level
is breached at k = 57. A fun way to see mathematics in action is to
grab the microphone at a typical wedding and ask people having a
birthday today to raise their hands. It will almost never fail that at
least a couple of hands shoot up!

2.1.1 Dearrangements

To explain another problem that can be solved only using equa-
tions (2.3) and (2.4), consider a list of the integers (1, 2, . . . , n) that
are permuted to a new ordering (q1, q2, . . . , qn) so that no integer is
in its original position, qi �= i, i = 1, . . . , n. Such a rearrangement is
termed a dearrangement. Denote the number of such possibilities, by
gn which has boundary values: g0 = 1 and g1 = 0. Consider integer
j and assume that after permutation it is in position k, and hence
gk = j. There are n−1 possibilities to select k if k �= j. The number of
remaining dearrangements that are possible depend on where integer
k is permuted. If k exchanges position with j, so that gj = k, then this
leaves n − 1 remaining items in the dearrangement, a value given by

6The value of pk,n and prk,n soon swamps a computer’s floating point range for large
argument values. This is the reason why the value is computed as the product of
simple ratios.



8 2 Let Me Count the Ways

gn−1. If this is not the case and integer k is found in position � �= j so
that g� = k, then two slots of the permutation are taken leaving n− 2
items left in the dearrangement, a value given by gn−2. Summing these
disjoint possibilities shows that

(2.9) gn = (n− 1)(gn−1 + gn−2)

The number of dearrangements grows quickly with n as shown in the
following table:

n 2 4 6 8 10 12 14

gn 1 9 265 14,833 1,334,961 176,214,841 32,071,101,049

A billion dearrangements are surpassed with n = 13 (2,290,792,932
ways to be exact). Thus, if you take a fresh pack of cards, separate out
one suit in its numeric order and shuffle these 13 cards thoroughly, then
about 36.787% of 13! possibilities will correspond to dearrangements.
In fact, it is not too difficult to show that as n gets large, the fraction
of random permutations of n items that are dearrangements converges
to 1/e where e ≈ 2.718281828 is called Euler’s number after the
Swiss mathematician Leonard Euler (1707–1783) who, among his vast
achievements, studied properties of the exponential function.7

The difficulty with solving recurrence (2.9) lies in the multiplicative
factor (n − 1) found in the equation. To counteract this, consider a
scaled version where fn = gn/n!. This produces the recurrence

fn =
gn
n!

=
n− 1

n!
(gn−1 + gn−2)

=
n− 1

n!
((n− 1)!fn−1 + (n− 2)!fn−2)

=

(
1− 1

n

)
fn−1 +

1

n
fn−2

Rewriting this reveals a difference that can be formed between
successive index values

fn − fn−1 = − 1

n
(fn−1 − fn−2)

7Convergence is quick. The value of |g13/13!− 1/e| is about 10−11.
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This can be iterated to yield

fn − fn−1 = (−1)n
1

n!

This telescopes to the boundary f0 = 1 leading to the following
summation:

fn =

n∑

i=0

(−1)i

i!

Converting back to the original recursion produces a lovely result: the
number of dearrangements equals an alternating sum of permutations:

(2.10) gn = n!fn =
n∑

i=0

(−1)ipi,n

2.2 Combinations: Without Replacement

Consider a particular combination obtained from selecting k items
from a set of size n. The ordering of the items in this combination can
be permuted in k! ways without adding to the number of combinations.
Thus an equation for the number of possible combinations, denoted by
ck,n, is given by

(2.11) ck,n =
nk

k!
=

k−1∏

j=0

n− j

k − j

It is customary to write this using a binomial coefficient8

(2.12) ck,n =

(
n

k

)
=

n!

(n− k)! k!

8The product expansion (2.11) is used when computing the value of a binomial
coefficient.
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Values of ck,n for small parameter values are given in the following
table:

Values of ck,n =

(
n

k

)

k\n 1 2 3 4 5 6 7 8 9

0 1 1 1 1 1 1 1 1 1

1 1 2 3 4 5 6 7 8 9

2 1 3 6 10 15 21 28 36

3 1 4 10 20 35 56 84

4 1 5 15 35 70 126

5 1 6 21 56 126

6 1 7 28 84

7 1 8 36

8 1 9

9 1

A recursive derivation of (2.11) is instructive and proves to be useful
in future derivations. Initial conditions are easily calculated: ck,n = 0
for k > n or k < 0, c1,n = n and cn,n = 1. To derive a general
recurrence for ck,n, partition selections into two disjoint sections. If
item j is selected, then the remaining k−1 items must be selected from
the n−1 remaining items, a quantity given by ck−1,n−1. If item j is not
selected, then it is equivalent to not being in the set, a quantity given
by ck,n−1. The total number of combinations without replacement is
the sum of these two disjoint possibilities and thus equals

(2.13) ck,n = ck−1,n−1 + ck,n−1

Simple algebra establishes that equation (2.11) (or equation (2.12))
satisfies recursion (2.13). The value of ck,n equals the number of ways
to pick k items from a set of n or, equivalently, equals the number of
possible subsets of size k that can be formed from a set of n items.

2.2.1 Binomial Identities

Straightforward algebra establishes the following identities between
binomial coefficients:

(
n

k

)
=

(
n

n− k

)
(2.14)
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(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
(2.15)

(
n

k

)
=

n

k

(
n− 1

k − 1

)
=

n− k + 1

k

(
n

k − 1

)
(2.16)

(
n

k

)(
k

j

)
=

(
n

j

)(
n− j

k − j

)
(2.17)

Identity (2.14) shows the symmetry of binomials coefficients and
identity (2.15) is a direct restatement of recurrence (2.13). Identity
(2.16) follows from the product expansion of (2.11) and from setting
j = 1 in (2.17). A typical application of (2.17) is to separate variables j
and k in a summation. As an example, consider the following derivation
which uses (2.17) in the first step:

n∑

k=0

(
n

k

)
ak

1 + k
=

1

n+ 1

n∑

k=0

(
n+ 1

k + 1

)
ak(2.18)

=
1

n+ 1

n+1∑

j=1

(
n+ 1

j

)
aj−1

=
(1 + a)n+1 − 1

a(1 + n)

Two special cases of this identity arise when a = 1 or a = −1:

n∑

k=0

(
n

k

)
1

1 + k
=

2n+1 − 1

n+ 1
(2.19)

n∑

k=0

(−1)k
(
n

k

)
1

1 + k
=

1

n+ 1
(2.20)

Summations of binomial coefficients are typically derived using
induction from an easily calculated base class. There are two ways
to interpret the recursion of equation (2.13). The backward view starts
from ck,n and recurses to a lower value of n with the values ck−1,n−1

and ck,n−1. This generates an identity which starts from the base case,
c0,2 + c1,2 + c2,2 = 4, suggesting that

(2.21)
n∑

k=0

(
n

k

)
=2n
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Assume this is true for all values less than or equal to n. Using identity
(2.15) implies that

n+1∑

k=0

(
n+ 1

k

)
=

n+1∑

k=0

(
n

k − 1

)
+

(
n

k

)

=
n+1∑

k=0

(
n

k − 1

)
+ 2n

=
n∑

k=0

(
n

k

)
+

(
n

−1

)
+ 2n

= 2n + 0 + 2n

= 2n+1

thus proving the claim.
A variation of identity (2.21) involves summing over even or odd

indexed values of k. Notice that small examples include: c0,3+ c2,3 = 4
and c0,4 + c2,4 + c4,4 = 8 which suggest that

(2.22)
∑

k even

(
n

k

)
= 2n−1

Also note that c1,3 + c3,3 = 4 and c1,4 + c3,4 = 8 which suggests that

(2.23)
∑

k odd

(
n

k

)
= 2n−1

Assume that both of these assumptions holds for all values up to n
and calculate

∑

k even

(
n+ 1

k

)
=

∑

k even

(
n

k − 1

)
+

(
n

k

)

= 2n−1 +
∑

k even

(
n

k − 1

)

= 2n−1 +
∑

k odd

(
n

k

)

= 2n−1 + 2n−1 = 2n
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A similar argument holds if the initial summation takes place over
odd indices. This establishes the double induction and proves identities
(2.22) and (2.23).

Equations (2.21), (2.22), and (2.23) are all special cases of a much
deeper result—the binomial theorem. This states that

(2.24) (x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k

This is easily established for small n values. Assume it holds for all
values up to n. Then identity (2.15) shows that the pattern continues:

(x+ y)n+1 =
n+1∑

k=0

(
n+ 1

k

)
xkyn+1−k

=

n+1∑

k=0

((
n

k

)
+

(
n

k − 1

))
xkyn+1−k

= y
n∑

k=0

(
n

k

)
xkyn−k + x

n+1∑

k=1

(
n

k − 1

)
xk−1yn+1−k

= y(x+ y)n + x
n∑

�=0

(
n

�

)
xkyn−k

= y(x+ y)n + x(x+ y)n = (x+ y)n+1

There are a countless number of identities that arise by varying
parameters of the binomial theorem besides those just mentioned.
Listing just a few:

(
1− 1

�

)n

=
n∑

k=0

(
n

k

)(−1

�

)k

(2.25)

(x+ a)n − (x− a)n = 2
∑

k odd

(
n

k

)
xn−kak(2.26)

(
1

x
+

1

y

)n

=
1

yn

n∑

k=0

(
n

k

)(y
x

)k
(2.27)
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n−i∑

k=0

(−1)k
(
n− i

k

)
=

{
0, i = 0, . . . , n− 1

1, i = n
(2.28)

A further identity can be obtained by forming a telescoping summation
combined with the binomial theorem. To derive this, observe that

n =
n∑

k=1

(
n

k

)
k −

(
n

k − 1

)
(k − 1)

=

n∑

k=1

(
n

k − 1

)
(n− 2k + 2) From Identity (2.16)

= n+
n+1∑

k=1

(
n

k − 1

)
(n− 2k + 2)

= n+
n∑

k=0

(
n

k

)
(n− 2k)

Thus

n∑

k=0

(
n

k

)
(n− 2k) = 0

which, using the binomial theorem, establishes the identity

(2.29)
n∑

k=0

(
n

k

)
k = n2n−1

A similar telescoping summation can be used to calculate

(2.30)

n∑

k=0

(
n

k

)
k(k − 1) = n(n− 1)2n−2

and

(2.31)
n∑

k=0

(
n

k

)
k2 = n(n+ 1)2n−2
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The next identity we derive is the forward view of recurrence (2.13)
that proceeds from n− 1 to n and corresponds to a summation of the
numerator of the combinatorial coefficient. This summation follows
directly from the listing recursions from (2.13):

ck+1,n+1 = ck,n + ck+1,n

ck+1,n = ck,n−1 + ck+1,n−1

ck+1,n−1 = ck,n−2 + ck+1,n−2

...
...

...

ck+1,k+2 = ck,k+1 + ck+1,k+1

Collecting these yields

ck+1,n+1 = ck,n + ck,n−1 + · · ·+ ck,k+1 + 1

implies that

(2.32)

(
n+ 1

k + 1

)
=

n∑

�=k

(
�

k

)

With the index substitution, j = �− k, the right-hand side of identity
(2.32) can be rewritten as

(2.33)
n∑

�=k

(
�

k

)
=

n−k∑

j=0

(
k + j

k

)

Making the substitution m − 1 = n − k, with equations (2.32) and
(2.33), shows that9

(2.34)

m−1∑

r=0

(
k + r

k

)
=

(
m+ k

k + 1

)

Combinatoric arguments can often provide insight into identities
without the need for algebraic manipulation. Consider selecting k items

9This equation is termed Pascal’s equation after the French mathematician Blaise
Pascal (1623–1662).
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from a list of n. Divide the list n into two sublists of size m and n−m
where 0 ≤ m ≤ n and suppose that j items are selected from the
first list and k − j items from the second list. There are cj,mck−j,n−m

ways in which such a selection can be made. Accounting for all such
possibilities leads to the identity

(2.35)

(
n

k

)
=

n∑

j=0

(
m

j

)(
n−m

k − j

)
, 0 ≤ m ≤ n

The conditions we have placed on binomial terms so that ck,n = 0
if k < 0, n < 0 or k > n allow us to write the right-hand
side of equation (2.35) without needing to put restrictions on the
binomial coefficients contained in the summation. This identity is
termed Vandermonde convolution named after Alexandre-Théophile
Vandermonde (1735–1796), a French mathematician who supported
the French revolution of 1789 and is most known for his mathematical
work in determinants.

2.3 Combinations with Replacement

This leaves the last problem—to calculate the number of combinations
obtained when one uses a replacement strategy. To derive an equation,
let crk,n denote the number of combinations obtained when selecting k

items from a set of n items using replacement.10 We set cr0,1 = 1 and
it is clear that cr1,n = n and crk,1 = 1. To derive a general equation for
crk,n, partition selections into two disjoint sections. If item j is selected,
then the number of combinations with replacement is the same as if
it had been selected on the first selection, a quantity given by crk−1,n.
On the other hand, if item j is not selected, then it is equivalent to
not being in the set, a quantity given by crk,n−1. The total number of
combinations is the sum of these two disjoint possibilities and thus
equals

(2.36) crk,n = crk−1,n + crk,n−1

10Again, the r superscript means replacement rather than being an integer index.
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It is interesting to compare equations (2.13) and (2.36). They differ
only in the indices of the first term. The n index of crk−1,n as compared
to the n − 1 index of ck−1,n−1 is a result of putting a selected item
back in the list when the replacement policy is utilized. This results in
a substantial increase in the number of possibilities that a replacement
policy has in comparison to a non-replacement policy.

To proceed with the derivation, consider equation (2.36) where
k = 2:

cr2,n = cr1,n + cr2,n−1

= cr1,n + cr1,n−1 + cr2,n−2

Observe that cr2,n−2 is of the same form as cr2,n except it moves 2 down
on the n value which suggests iterating

cr2,n = cr1,n + cr1,n−1 + · · ·+ cr1,2 + cr1,1

= n+ (n− 1) + · · ·+ 2 + 1

=

(
n+ 1

2

)

This case suggests the following guess for a general solution:

crk,n =

(
n+ k − 1

k

)

Assume this equation holds for all values less than or equal to some
value k. Then, using the recurrence (2.36) permits

crk+1,n = crk,n + crk+1,n−1

= crk,n + crk,n−1 + crk+1,n−2

= crk,n + crk,n−1 · · ·+ crk,2 + crk+1,1

=

(
k + n− 1

k

)
+ · · ·+

(
k + 2

k

)
+

(
k + 1

k

)
+ 1

=

n−1∑

r=0

(
k + r

k

)
=

(
n+ (k + 1)− 1

k + 1

)
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where the last equation uses the identity (2.34). This shows that the
induction is satisfied and thus that

(2.37) crk,n =

〈
n

k

〉

where binomial-R coefficients are defined by

(2.38)

〈
n

k

〉
=

(
n+ k − 1

k

)

Values of crk,n for small parameter values are given in the following
table:

Values of crk,n =

〈
n

k

〉

k\n 1 2 3 4 5 6 7 8 9

0 1 1 1 1 1 1 1 1 1

1 1 2 3 4 5 6 7 8 9

2 1 3 6 10 15 21 28 36 45

3 1 4 10 20 35 56 84 120 165

4 1 5 15 35 70 126 210 330 495

5 1 6 21 56 126 252 462 792 1,287

6 1 7 28 84 210 462 924 1,716 3,003

7 1 8 36 120 330 792 1,716 3,432 6,435

8 1 9 45 165 495 1,287 3,003 6,435 12,870

9 1 10 55 220 715 2,002 5,005 11,440 24,310

2.3.1 Binomial-R Identities

Some identities that are easy to verify include

〈
n

k

〉
=

〈
k + 1

n− 1

〉
(2.39)

〈
n

k

〉
=

〈
n

k − 1

〉
+

〈
n− 1

k

〉
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〈
n

k

〉
=

n

k

〈
n+ 1

k − 1

〉

(
n

k

)
=

〈
n+ 1− k

k

〉

Adding one more term to (2.34) produces a similar identity expressed
in terms of binomial-R coefficients:

n∑

r=0

(
k + r

k

)
=

n−1∑

r=0

(
k + r

k

)
+

(
n+ k

k

)
(2.40)

=

(
n+ k

k + 1

)
+

(
n+ k

k

)

=

(
n+ k + 1

k + 1

)

=

〈
n+ 1

k + 1

〉

The flow of this derivation uses equations from (2.16) and (2.34). One
can also derive an identity involving the sum binomial-R coefficients
given by

(2.41)

m∑

k=0

〈
n

k

〉
=

〈
n+ 1

m

〉

The size difference between combinations without and with replace-
ment can be quantified, similar to that of equation (2.8), by forming
their ratio:

(2.42)
ck,n
crk,n

=
k−1∏

j=1

(
1− k

n+ k − j

)

With the same values as in the birthday problem, k = 23 and n = 365,
the ratio of combinations given in equation (2.42) yields an answer of
around 25% in comparison to 50% found with permutations.
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2.3.2 Polynomial Solutions to Combinatorial
Problems

To view the previous analysis within a general framework, suppose
there are a set of n integers, mi, i = 1, . . . , n, each between 0 and k
having a total sum that equals k:

m1 +m2 + · · ·+mn = k, 0 ≤ mi ≤ k

How many ways can such numbers be selected to satisfy these
constraints? This problem can be thought as the number of n partitions
of the integer k. For example, if n = 3 and k = 2, then there are six
possible partitions:

(2.43) {2, 0, 0}, {1, 1, 0}, {1, 0, 1}, {0, 2, 0}, {0, 1, 1}, {0, 0, 2}
To answer the general question, suppose that k balls are thrown
randomly into n buckets. The value of mi counts the total number of
balls that land in bucket i. Some thought shows that this is equivalent
to the number of combinations for selecting k items from a set of n
where a replacement strategy is used. To see this, associate a bucket
with each item in the set of n items. With this association, selecting the
i’th item in the set is equivalent to throwing a ball into the i’th bucket.
The constraints on the buckets mean that only up to k balls can land in
any particular bucket. Thus the solution to the posed question is that
the number of possible partitions equals crk,n. This simple solution leads
to an extremely useful concept which will be derived in the following
paragraphs.

The great thing about being a mathematician is that your work,
which is really like play, can be done almost anywhere so there is never
a danger of becoming bored. Perhaps, for instance, you are stuck in
the middle of a theater during a particularly uninteresting play. Then,
as long as you have a pen, you can play with equations on the back or
margins of the program. You might, during one of these occasions, jot
down a simple infinite polynomial like

f(x) = 1 + x+ x2 + x3 + · · ·
If x is between 0 and 1, then such a sequence convergences and its sum
is given by

1

1− x
=

∞∑

i=0

xi
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The linkage between this and combinatorics arises when f is raised to
a power

fn(x) =

(
1

1− x

)n

It is clear that this expression is another infinite polynomial

fn(x) =

∞∑

i=0

ai,nx
i

with integer coefficients ai,n. What are these coefficients?
As a concrete example, suppose that n = 3 and k = 2. Consider the

value of a2,3 which corresponds to the coefficient of x2 in f3(x). To
facilitate the argument, write

f3(x)

= (x0 + x1 + x2 + · · · )︸ ︷︷ ︸
first group

× (x0 + x1 + x2 + · · · )︸ ︷︷ ︸
second group

× (x0 + x1 + x2 + · · · )︸ ︷︷ ︸
third group

Let the exponent of x selected in the first group be denoted by m1

and similarly define m2 and m3. When the sum of these x exponents,
m1 +m2 +m3, equals 2 then those factors contribute to the value of
a2,3. Since the coefficients of f(x) are all 1, the value of a2,3 is the
number of ways three non-negative integers sum to 2. In our example,
this corresponds to the sets given in (2.43). The solution to the problem
posed a couple of paragraphs back showed that this quantity equals
cr2,3. Clearly this argument generalizes, and thus ai,n = cri,n which
establishes the equation:

(2.44) fn(x) =
∞∑

i=0

〈
n

i

〉
xi

To link this analysis back to counting, recall that crk,n is the number
of ways that m1 + m2 + · · · + mn = k where mi was bounded below
by 0 and above by k. Suppose that the value of mi has a different set
of constraints. For example, consider a simple case where n = 3 and
k = 2 that has the following constraints:

m1 ∈ {0, 1}, m2 ∈ {1, 2}, m3 ∈ {0, 2}



22 2 Let Me Count the Ways

The number of combinations where m1 +m2 +m3 = 2 can be easily
listed

(2.45) {1, 1, 0}, {0, 2, 0}

But is there a way to calculate that there are 2 possibilities without
actually listing them all?

The answer lies in the previous analysis. Associate the polynomial
x0 + x1 with the first value of m1 which mathematically incorporates
the constraint that m1 ∈ {0, 1}. Similarly associate the polynomial
x1 + x2 with m2 and x0 + x2 with m3. The polynomial g(x) defined
by the product of all these sub polynomials is given by

(2.46) g(x) = (x0 + x1)(x1 + x2)(x0 + x2) = x+2x2 +2x3 +2x4 + x5

By construction, the coefficient of x� corresponds to the number of
possible combinations that result when m1 + . . . + mk = �. Hence,
the expansion in equation (2.46) shows that the number of such
possibilities equals 2 when � = 2, thus confirming the enumeration
given in (2.45). Additionally, the expansion shows that there are no
ways to sum to 0, one way to sum to 1 or 5, and two ways to sum to
2, 3, or 4.

To state the general case, suppose that mi can only have values

(2.47) mi ∈ {vi,1, vi,2, . . . , vi,ni}

and define

gi(x) = xvi,1 + xvi,2 + · · ·+ xvi,ni

from which the following product is formed:

g(x) =
n∏

i=1

gi(x)

Then ,the coefficient of x� in the polynomial g(x) equals the number of
ways that m1+m2+ · · ·+mn = � where each mi satisfies its particular
set of constraints (2.47). In essence, this technique solves an entire class
of difficult problems—a strikingly deep result considering that it arises
from a simple combinatoric derivation.
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As a final example, consider the number of different values that can
be obtained by summing combinations of the first n primes, pi, i =
1, . . . , n. Each prime can either be selected in the sum or not and thus
gi(x) = 1 + xpi , i = 1, . . . , n, and

g(x) =
n∏

i=1

1 + xpi

For the special case of n = 4 this expansion yields

g(x) = 1+x2+x3+2x5+2x7+x8+x9+2x10+2x12+x14+x15+x17

There are multiple results contained in this expression: there are two
ways to sum the first four primes (2,3,5,7) leading to integers in set
{5, 7, 10, 12} and one way for integers in set {0, 2, 3, 8, 9, 14, 15, 17}.
The set of integers {4, 6, 11, 13, 16, 18, 19, . . .} has been left out of the
set of possibilities and there are 12 different sums that are possible
since this equals the number of terms contained in g(x). The number
of prime numbers contained in the set of possibilities equals 5 (the set
{2, 3, 5, 7, 17}) and the largest consecutive sequence of numbers has
four members (the series 7, 8, 9, 10). Clearly, these observations open
new questions concerning how they scale as n increases. Is the longest
consecutive series, for instance, bounded if n increases indefinitely?

2.4 Transforms and Identities

Let x = (x0, . . . , xn) be a vector of length n + 1 and define functions
f�(x) and g�(x) as follows:

f�(x) =
�∑

k=0

(
�

k

)
xk(2.48)

g�(x) =
�∑

k=0

(−1)�−k

(
�

k

)
xk, � = 0, . . . , n(2.49)

Define a = (a0, . . . , an) and b = (b0, . . . , bn) and set b� = f(a), � =
0, . . . , n. Expanding (2.49) yields
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g�(b) =
�∑

k=0

(−1)�−k

(
�

k

)
bk

=
�∑

k=0

(−1)�−k

(
�

k

) k∑

i=0

(
k

i

)
ai

=
�∑

i=0

ai

(
�

i

) �∑

k=i

(
�− i

k − i

)
(−1)�−k, From identity (2.17)

=
�∑

i=0

ai

(
�

i

) �−i∑

j=0

(
�− i

j

)
(−1)�−j−i

=
�∑

i=0

ai(−1)�−i

(
�

i

) �−i∑

j=0

(
�− i

j

)
(−1)j

= a� From identity (2.28)

The paired equations b� = f�(a) and a� = g�(b) show that functions
f� and g� are inverse functions of each other. This observation creates a
useful transformation termed binomial transformation. To distinguish
these functions, f� is typically termed a binomial transform and g� a
binomial inverse.

Binomial transformation can be used to create a paired set of
identities whenever a sequence satisfies either (2.48) or (2.49). For
example, equation (2.31) corresponds to the binomial transform of
a� = �2. This implies that b� = �(�+1)2�−2, � = 0, . . . , n thus creating
the paired identity

(2.50) n2 =
n∑

k=0

(
n

k

)
(−1)n−kk(k + 1)2k−2

The inverse transforms of (2.21), (2.25), (2.29), and (2.30) are given
by

n∑

k=0

(
n

k

)
(−1)n−k2k = 1(2.51)

n∑

k=0

(
n

k

)
(−1)n−k

(
1− 1

�

)k

=

(−1

�

)n

(2.52)
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n∑

k=0

(
n

k

)
(−1)n−kk2k−1 = n(2.53)

n∑

k=0

(
n

k

)
(−1)n−kk(k − 1)2k−2 = n(n− 1)(2.54)

The inverse transform of (2.18) provides the paired identity

(2.55)
n∑

k=0

(
n

k

)
(−1)n−k (1 + a)k+1 − 1

k + 1
=

an+1

n+ 1

A special case of (2.18) and (2.55) for a = 2 creates the following two
identities:

n∑

k=0

(
n

k

)
2k+1

k + 1
=

3n+1 − 1

n+ 1
(2.56)

n∑

k=0

(
n

k

)
(−1)n−k 3

k+1 − 1

k + 1
=

2n+1

n+ 1
(2.57)

Another form of a binomial transform is given by

(2.58) h�(x) =
�∑

k=0

(−1)k
(
�

k

)
xk

which defines an involution, a function that is its own inverse. To
establish this, let b� = h�(a) and proceed as follows:

h�(b) =
�∑

k=0

(−1)k
(
�

k

)
bk

=
�∑

k=0

(−1)k
(
�

k

) k∑

i=0

(−1)i
(
k

i

)
ai

=
�∑

i=0

ai

(
�

i

) �∑

k=i

(
�− i

k − i

)
(−1)k+i
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=
�∑

i=0

ai

(
�

i

) �−i∑

j=0

(
�− i

j

)
(−1)j

= a�

To illustrate a use of this form of binomial transformation, substitute
a = −b in (2.18) which then implies the two identities

(2.59)

n∑

k=0

(−1)k
(
n

k

)
bk

k + 1
= −(1− b)n+1 − 1

b(n+ 1)

and

(2.60)
n∑

k=0

(−1)k
(
n

k

)
(1− b)k+1 − 1

b(k + 1)
= − bn

(n+ 1)

As a special case of these identities, set b = 2 which then creates
identities

n∑

k=0

(−1)k
(
n

k

)
2k

k + 1
=

{
0, n odd,
1

n+1 , n even
(2.61)

n∑

k=0, k even

(−1)k
(
n

k

)
1

(k + 1)
=

2n

n+ 1
(2.62)
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