
Chapter 10

Running Off the Page

Logical analysis is indispensable for an examination of
the strength of a mathematical structure, but it is
useless for its conception and design.
The great advances in mathematics have not been
made by logic but by creative imagination.

George Frederick James Temple (1901–1992)

The analysis in this chapter illustrates Temple’s observation regarding
the necessity for creative imagination in mathematics. A simple
expression is all that is needed to develop the theory of continued
fractions which leads to a deep theorem of Lagrange and also leads to
an optimal way to approximate real numbers as rational fractions.

To proceed, assume that f(x) is a positive function. Obviously

(1 + f(x))f(x) = f(x) + f2(x)

which implies that

f(x) =
f(x) + f2(x)

1 + f(x)
(10.1)

=
1 + f(x) + f2(x)− 1

1 + f(x)

= 1 +
f2(x)− 1

1 + f(x)

This rearrangement of symbols seems like nonsense which has no
possibility of yielding a meaningful result. Before concluding this,
however, consider the case where f(x) =

√
x. Equation (10.1) then
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yields

(10.2)
√
x = 1 +

x− 1

1 +
√
x

which expresses
√
x in terms of itself. This means that substituting

the right-hand side of (10.2) for the occurrence of
√
x appearing in the

denominator results in

√
x = 1 +

x− 1

1 +

(
1 +

x− 1

1 +
√
x

) = 1 +
x− 1

2 +
x− 1

1 +
√
x

Continuing in this way another time shows that

(10.3)
√
x = 1 +

x− 1

2 +
x− 1

1 +

(
1 +

x− 1

1 +
√
x

)
= 1 +

x− 1

2 +
x− 1

2 +
x− 1

1 +
√
x

and now a pattern is clear. Expressing a function in terms of itself
leads to a regression. If the function appears in the denominator of the
expression, then the resultant expansion is called a continued fraction.
On first encounter, the infinite descent of fractions that threaten to run
off the page appear to be inane. Changing notation can solve this run
away train problem, but to show that continued fractions are anything
but inane requires the rest of this chapter.

10.1 Simple Continued Fractions

A special case, termed a simple continued fraction, restricts all
numerators to equal 1. This is denoted by

(10.4) [b0, b1, b2, . . . , bn] = b0 +
1

b1 +
1

b2 +
1

. . .
1

bn
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With this notation, equation (10.3) with x = 2 shows that

(10.5)
√
2 = [1, 2, . . .]

To simplify notation an underline is used to represent periodic
arguments. Thus, a more succinct expression of (10.5) is given by

(10.6)
√
2 = [1, 2]

Some algebraic properties follow directly from definition (10.4)
which can be summarized by the following identities:

(10.7) [b0, b1, b2, . . .] = b0 +
1

[b1, b2, . . .]

(10.8) [b0, b1, . . . , bk−1, bk] = [b0, b1, . . . , bk−2, bk−1 + 1/bk]

(10.9) [b0, b1, b2, . . . , bn−1, bn, . . .] = [b0, b1, b2, . . . , bn−1, [bn, bn+1, . . .]]

(10.10)
1

[0, b1, b2, . . .]
= [b1, b2, . . .]

To generalize the form of equation (10.6), consider the continued
fraction [a, b] where a and b are non-zero integers. To derive an equation
for this form, use (10.7) to write

(10.11) [a, b] = a+
1

[b]

and

α = b+
1

α

where α = [b]. This creates the quadratic equation

(10.12) α2 = bα+ 1
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where only the positive solution is applicable:

α =
b+

√
b2 + 4

2
= − 2

b−√
b2 + 4

Substituting this solution into (10.11) produces an equation for [a, b]:

(10.13) [a, b] = a− b−√
b2 + 4

2
=

2a− b

2
+

√
b2 + 4

2

Special cases of (10.13) that involve square roots are depicted in the
following table:

Constant Periodic Portion Value

1 [2]
√
2

2 [4]
√
5

3 [6]
√
10

4 [8]
√
17

5 [10]
√
26

6 [12]
√
37

7 [14]
√
50

8 [16]
√
65

9 [18]
√
82

Purely Periodic

1 [1] (1+
√
5)/2

2 [2] 1 +
√
2

3 [3] (3 +
√
13)/2

4 [4] 2 +
√
5

5 [5] (5 +
√
29)/2

6 [6] 3 +
√
10

7 [7] (7 +
√
53)/2

8 [8] 4 +
√
17

9 [9] (9 +
√
85)/2

The last section of the table deals with the special case of purely
periodic continued fractions with unit period length. The first entry of
that section of the table highlights the exquisitely beautiful example
of an infinite continued fraction: that of the golden ratio1

1These results have been seen before, see equations (5.19) and (5.27).
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(10.14) φ = [1] = (1 +
√
5)/2

Before delving deeper into the patterns depicted in the above table,
consider continued fractions having a periodic pattern of length of 2
given by [a, b0, b1]. Let α = [b0, b1] and write:

α = b0 +
1

[b1, b0]
= b0 +

1

b1 +
1

α

(10.15)

= b0 +
α

b1α+ 1
=

(b0b1 + 1)α+ b0

b1α+ 1

The resultant quadratic equation

α2 = b0α+ b0/b1

is a generalization of (10.12) with the solution

α =
b0 +

√
b20 + 4b0/b1

2
= − 2b0/b1

b1 −
√
b20 + 4b0/b1

The final expression is thus given by

(10.16) [a, b0, b1] =
2a− b1

2
+

b1
√
b20 + 4b0/b1

2b0

Continuing the special cases that involve square roots expands the
previous table to include:

Constant Periodic Portion Value

1 [1, 2]
√
3

2 [2, 4]
√
6

3 [3, 6]
√
11

4 [4, 8]
√
18

5 [5, 10]
√
27

6 [6, 12]
√
38

7 [7, 14]
√
51

8 [8, 16]
√
66

9 [9, 18]
√
83
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The path to generalizing these results to periodic sections with
longer length seems clear but the necessary algebra that mimics the
expansion of (10.15) soon gets out of hand. To derive a method to
handle this algebra, consider the series of convergents given by

[b0, b1] = b0 +
1

b1
=

b0b1 + 1

b1

[b0, b1, b2] = b0 +
1

b1 +
1

b2

=
b0b1b2 + b0 + b2

b1b2 + 1

[b0, b1, b2, b3] =
b3(b0b1b2 + b0 + b2) + b0b1 + 1

b3(b1b2 + 1) + b1

To establish the general pattern for these convergents, let ni and
di denote the numerator and denominator of the i’th convergent of
[b0, b1, . . . , bi]. Initial values include n1 = b0b1 + 1, d1 = b1 and

[b0, b1, b2] =
b0b1b2 + b0 + b2

b1b2 + 1
=

b2n1 + b0

b2d1 + 1
=

n2

d2

and

[b0, b1, b2, b3] =
b3(b0b1b2 + b0 + b2) + b0b1 + 1

b3(b1b2 + 1) + b1
=

b3n2 + n1

b3d2 + d1
=

n3

d3

These examples show that the numerator and denominator satisfy the
general recurrence, xi = bixi−1+xi−2, where each starts with different
initial values

n−1 = 1, n0 = b0 and d−1 = 0, d0 = 1

The following inductive argument will establish this recurrence rela-
tionship. Assume that the recurrence holds for all cases up to some
value k. Use (10.8) to write

[b0, b1, . . . , bk, bk + 1/bk+1] =
(bk + 1/bk+1)nk−1 + nk−2

(bk + 1/bk+1)dk−1 + dk−2

=
(bnbk+1 + 1)nk−1 + bk+1nk−2

(bkbk+1 + 1)dk−1 + bk+1dk−2
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=
bk+1(bknk−1 + nk−2) + nk−1

bk+1(bknk−1 + nk−2) + dk−1

=
bk+1nk + nk−1

bk+1nk + dk−1

=
nk+1

dk+1

This shows the pattern continuing to the k+1’st case and establishes
the general expression

(10.17) [b0, b1, . . . , bi] =
ni

di
=

bini−1 + ni−2

bidi−1 + di−2
, i = 0, . . .

Note that, for i = 0, these equations yield n0/d0 = b0
2.

One further relationship will prove to be useful. Define

αj = [bj , bj+1, . . .]

and use equation (10.9) to write

α0 = [b0, . . .] = [b0, . . . bi, αi+1], i = 0, . . .

Treating αi+1 as if it were the last part of the continued fraction
permits expressing α0 as

(10.18) α0 =
αi+1ni + ni−1

αi+1di + di−1
, i = 0, . . .

where (10.18) is not necessarily rational.

10.1.1 Periodic Simple Continued Fractions

To proceed with an investigation of simple continued fractions that are
periodic, let α be defined by

2Later in equation (10.50) on page 152 integers ni and di are shown to be co-prime.
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(10.19) α = [b0, b1, . . . , bk]

Equation (10.18) shows that

(10.20) α =
αnk + nk−1

αdk + dk−1

where the convergents arise from equation (10.19). Equation (10.20)
corresponds to the quadratic equation

(10.21) dkα
2 − (nk − dk−1)α− nk−1 = 0

which has the solution

α =
nk − dk−1 +

√
(nk − dk−1)2 + 4dknk−1

2dk
(10.22)

= − 2nk−1

nk − dk−1 −
√
(nk − dk−1)2 + 4dknk−1

Collecting these results implies that
(10.23)

[a, b0, b1, . . . , bk] =
2nk−1a− (nk − dk−1)

2nk−1
+

√
(nk − dk−1)2 + 4dknk−1

2nk−1

This equation can be used to fill out some of the square roots that
were missing from the previous tables:

10.1.2 Summary of Results

The patterns depicted in the three previous tables show that there
appears to be a relationship between square roots of non-square
integers and continued fractions that have periodic sections from some
point onward. For decimal numbers, such as 2/3 = .6 or 7/12 = .583,
cyclic patterns of this type arise if and only if the number is rational.
Is there an analogous theorem for periodic continued fractions?

The entries in the tables also suggest that, if there were such a
pattern, then it would pertain to irrational, rather than to rational,
numbers. This follows from the fact that the square root of non-square
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Constant Periodic Portion Value

2 [1, 1, 1, 4]
√
7

3 [1, 1, 1, 1, 6]
√
13

3 [1, 2, 1, 6]
√
14

4 [2, 1, 3, 1, 2, 8]
√
19

4 [1, 1, 2, 1, 1, 8]
√
21

4 [1, 2, 4, 2, 1, 8]
√
22

4 [1, 3, 1, 8]
√
23

5 [3, 2, 3, 10]
√
28

5 [1, 1, 3, 5, 3, 1, 1, 10]
√
31

5 [1, 1, 1, 10]
√
32

5 [1, 2, 1, 10]
√
33

5 [1, 4, 1, 10]
√
34

6 [2, 2, 12]
√
41

6 [1, 1, 3, 1, 5, 1, 3, 1, 1, 12]
√
43

6 [1, 1, 1, 2, 1, 1, 1, 12]
√
44

6 [1, 2, 2, 2, 1, 12]
√
45

6 [1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12]
√
46

6 [1, 5, 1, 12]
√
47

integers is irrational.3 There is also a curious form to the square root
examples especially revealed in the last table: the last number in the
periodic section equals twice the first number of the fraction, bk = 2a,
and the numbers in the periodic section (not including the last) form
a palindrome: bi = bk−i−1, i = 0, . . . , k − 1. All of these observations
lead us to the question: Is something deeper at hand?

In fact there is. These preliminary results are examples of special
cases of a theorem of Lagrange that established that solutions to
quadratic equations with a non-square discriminant and integer coef-
ficients4 have continued fractions that are periodic from some point
onward. This is the analogy of the theorem for decimal expansions
regarding rational numbers. Equation (10.23) is one part of Lagrange’s
theorem. The remaining parts will fall into place over the next few
pages. The structure of the repeating portion of square roots follows

3A quick proof establishes this fact. Suppose that
√
β = c/d for integers c and d. This

implies that d2β = c2. Since β is not square, there must be a prime p with an odd
exponent in its factorization. All of the exponents in the prime factorizations of c2

and d2, however, are even. This implies that p has an odd exponent in d2β and an
even exponent in c2 which means they cannot be equal. This contradicts the claim
that

√
β is rational.

4Such numbers are called quadratic irrational numbers.
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as a special case of the theorem. These results are surprising and
beautiful. Why would a value that is a solution to a particular type
of quadratic equation impose a periodic structure on its continued
fraction expansion?

There are still some results which are required to derive the
necessary part of Lagrange’s theorem (which was formally proved by
Galois). First, a method that creates a continued fraction representa-
tion for an arbitrary number must be created. After this is completed,
properties of purely periodic continued fractions are analyzed. Like
periodic decimal expansions, such as 1/7 = .142857, purely periodic
continued fractions do not have a non-periodic preamble which implies
they can be written as [b0, b1, . . . , b�−1] for some period length �.
These investigations will then provide the apparatus needed to prove
Lagrange’s theorem.

10.2 General Method to Create a Continued
Fraction

Let �x� be the integer component of positive value x, for example
�1.4142135� = 1, and let r(x) = x− �x� be the decimal component of
x, for example r(1.4142135) = .4142135. Clearly x = �x� + r(x) and
r(x) satisfies 0 ≤ r(x) < 1. Provided that r(x) �= 0 this implies that
1/r(x) is greater than 1 which shows that

(10.24) x = �x�+ 1

1/r(x)

We can use this equation as an operation to create a continued fraction
expansion. Applying the operation on the denominator of (10.24)
highlights the technique:

x = �x�+ 1

�1/r(x)�+ 1/r(1/r(x))

To recursively write the continued fraction expansion resulting from
repeatedly applying (10.24), let b0 = �x�. Let ψ0 = 1/r(x) and for
i ≥ 1 define

(10.25) bi = �ψi−1�
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and

(10.26) ψi = 1/r(ψi−1)

The recursion ends when the remainder in the denominator of (10.26)
equals 0. With this notation, a continued fraction expression for x can
be expressed as

x = [b0, b1, . . . , bn]

where n is finite if x is a rational number (irrational numbers obviously
have infinite continued fraction expansions). Checking this recursion
for the golden ratio (10.14) shows that b0 = �φ� = 1 and

ψ0 =
1

r(φ)
=

1

φ− �φ� =
2√
5− 1

= φ

(the last equality was also derived in equation (5.4)). This shows that
b1 = �φ� = 1. Repeating this process leads to the previously derived
equation, φ = [1].

In this example, successive iterates of equation (10.26) created a
periodic sequence of unit length so that ψi+1 = ψi for all i ≥ 0.
Suppose, instead of unit length, the sequence generated a period of
length � so that ψi+� = ψi for i ≥ 0. Then the resultant continued
fraction expansion would be purely periodic with length �. To explore
conditions where this occurs we next discuss properties of quadratic
irrational numbers.

10.2.1 Integer Quadratics and Quadratic Surds

The quadratic equation

ax2 + bx+ c = 0

has two solutions given by

(10.27) r± =
−b±√

b2 − 4ac

2a
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Let an integer quadratic be a quadratic equation where its coefficients,
a, b and c, are integers that satisfy a > 0 and b2 + 4ac is not square
(this last expression is termed the discriminate). Quadratic irrational
numbers are typically represented in the form

(10.28) χ± =
α±√

β

γ

where α and γ are rational numbers and β is a non-square integer. The
value χ− = (α−√

β)/γ is said to be the conjugate of χ+ = (α+
√
β)/γ.

(Similarly χ+ is said to be the conjugate of χ−.)
For every solution to an integer quadratic equation there corre-

sponds a unique quadratic irrational number. This follows by setting
α = −b, γ = a, and β = b2 − 4ac which shows that χ± = r±.
Conversely, for every quadratic irrational number there corresponds
a unique integer quadratic equation (this is true up to a multiplicative
constant). To show this, assume that χ = (α +

√
β)/γ is a quadratic

irrational number. Set α = −b̂ and γ = 2â which implies that
â = 1/(2γ) and b̂ = −α/γ. Equating

β = b̂2 − 4âĉ =
α2 − 2γĉ

γ2

and solving yields ĉ = (α2 − βγ2)/(2γ).
Solutions to quadratics are not altered by multiplying their coeffi-

cients by a non-zero constant. Hence we can multiply â, b̂, and ĉ by
2γ leading to integer coefficients: a = 1, b = −2α, and c = α2 − βγ2.
The resultant discriminant is not square since β is not square:

√
b2 − 4ac =

√
4γ2β = 2γ

√
β

By construction then χ satisfies the integer quadratic ax2+bx+c = 0.
Clearly the conjugate quadratic irrational number, given by χ′ = (α−√
β)/γ, also satisfies this integer quadratic.
We note here that conjugates have algebraic properties that are best

expressed by a set of identities

(λ± ν)′ = λ′ ± ν ′

(λν)′ = λ′ ν ′
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(
λ

ν

)′
=

λ′

ν ′

(
λ′)′ = λ

Consider the set of numbers generated by varying α and γ of

(10.29) χ =
α+

√
β

γ

and its conjugate

(10.30) χ′ =
α−√

β

γ

over all integer values while keeping β constant. If β is non-square
and α and γ are integer with γ > 0, then this generates an
infinite set of quadratic irrational numbers. Such a group of quadratic
irrational numbers inherit their irrationality from the same source—
their common

√
β term.

Restricting α and γ so that χ > 1 and −1 < χ′ < 0 creates a finite
set of quadratic irrational numbers which are termed reduced quadratic
surds. To derive bounds on α and γ that satisfy these inequalities,
observe that χ > 1 and χ′ > −1 imply that χ+χ′ > 0. Thus 2α/γ > 0
which implies that α > 0. Since χ′ < 0, it must be the case that
α−√

β < 0. Collecting these inequalities establishes bounds on α:

(10.31) 0 < α <
√
β

To address bounds on γ, note that χ > 1 implies that α +
√
β > γ.

From χ′ > −1 it follows that α − √
β > −γ or that γ >

√
β − α.

Collecting these inequalities produces the following bounds:

(10.32)
√
β − α < γ < α+

√
β

As an example, consider the following table that gives the set of six
reduced quadratic surds, along with their associated integer quadratic
equations, that inherit their irrationality from

√
7
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α γ Integer Quadratic Equation Reduced Quadratic Surds

1 2 4x2 − 4x− 6 {(1 +
√
7)/2, (1−√

7)/2}
1 3 9x2 − 6x− 6 {(1 +

√
7)/3, (1−√

7)/3}
2 1 x2 − 4x− 3 {2 +

√
7, 2−√

7}
2 2 4x2 − 8x− 3 {(2 +

√
7)/2, (2−√

7)/2}
2 3 9x2 − 12x− 3 {(2 +

√
7)/3, (2−√

7)/3}
2 4 16x2 − 16x− 3 {(2 +

√
7)/4, (2−√

7)/4}

The key step in generating a continued fraction expansion is
equation (10.24) which is expressed recursively with equations (10.25)
and (10.26). To analyze the operation (10.24) with less awkward
notion, let e = �x� and f = 1/r(x) and thus

(10.33) x = e+
1

f

Assume that x is a reduced quadratic surd. Then we claim that f is
also a reduced quadratic surd with the same square root value as x. To
establish this, let x = (α +

√
β)/γ and assume the associated integer

quadratic equation is given by ax2 + bx + c = 0 and hence α = −b,
γ = 2a and β = b2−4ac. Clearly e+1/f satisfies this integer quadratic
equation so that

a

(
e+

1

f

)2

+ b

(
e+

1

f

)
+ c = 0

Straightforward algebra shows that

(10.34) (ae2 + be+ c)f2 + (2ae+ b)f + a = 0

Hence f is the root of this integer quadratic which can be written by

f = (α̂+
√

β)/γ̂

where α̂ = −(2ae + b) and γ̂ = 2(ae2 + be + c). Note that the
discriminant of (10.34) is given by

√
(2ae+ b)2 − 4a(2ae+ b) =

√
b2 − 4ac =

√
β

so that both x and f inherit their irrationality from
√
β.
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To show that f is a reduced quadratic surd, first note that 0 <
1/f < 1 since, by definition, 1/f = r(x). Thus f > 1. To form its
conjugate, solve (10.33) for f

f =
1

x− e

We can use the identities for conjugates to write

(10.35) f ′ =
1

x′ − e

By assumption −1 < x′ < 0 and by definition e ≥ 1. Thus (10.35)
implies that −1 < f ′ < 0.

With this preliminary work behind us, we find ourselves at the
doorway of an important result. Linking up to the recursive pro-
cess (10.26), the previous discussion shows that if x is a reduced
quadratic surd, then ψ0 = 1/r(x) and ψi = 1/r(ψi−1) for i ≥ 1
are also reduced quadratic surds sharing the same square root as x.
Since there are only a finite number of reduced quadratic surds with
the same square root, this implies that there exists a value � such
that ψ� = ψ0 for 1 ≤ � < ∞. But this also implies that ψ�+1 = ψ1

since ψ�+1 = 1/r(ψ�) = 1/r(ψ0) = ψ1. Repeating this process shows
that ψ�+k = ψk for all k ≥ 0. Hence the continued fraction is purely
periodic with period length �. This proves that quadratic irrational
numbers that are reduced quadratic surds have continued fractions
that are purely periodic. Thus, for this special case, we have established
Lagrange’s theorem. Lagrange’s theorem, however, is more general
since it proves that all quadratic irrational numbers have a repeating
structure from some point onward, even if they start with a non-
periodic preamble. We will address this issue later in the chapter after
establishing a limit property of continued fraction expansions.

An example at this point might be illustrative. Consider
√
19 =

[4, 2, 1, 3, 1, 2, 8] which is not a reduced quadratic surd since −1 �<
−√

19. Adding 4 = �√19� to this, however, produces a reduced
quadratic surd which has a purely periodic continued fraction expan-
sion: 4 +

√
19 = [8, 2, 1, 3, 1, 2]. A simple calculation shows that there

are 20 reduced quadratic surds that inherit their irrationality from√
19. Six of these cycle to create the purely periodic continued fraction

expansion given in the table below.
One additional fact about convergents will be all that we need to

explain the special structure of continued fractions for square roots
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Cycle of Reduced Quadratic Surds for the Continued Fraction of 4 +
√
19

Period Number 1 2 3 4 5 6

Reduced Quadratic Surd 4+
√

19
1

4+
√

19
3

2+
√

19
5

3+
√

19
2

3+
√

19
5

2+
√

19
3

Continued Fraction Digit 8 2 1 3 1 2

of non-square integers. Consider the recursion for the numerator of
a convergent (equation (10.17)): ni = bini−1 + ni−2. This can be
rewritten as

(10.36)
ni

ni−1
= bi +

ni−2

ni−1
= bi +

1

ni−1

ni−2

For i = 1 this equation shows that

n1

n0
= b1 +

1

n0

n−1

= b1 +
1

b0
= [b1, b0]

and for i = 2 that

n2

n1
= b2 +

1

n1

n0

= b2 +
1

[b1, b0]
= [b2, b1, b0]

The general pattern corresponds to a reversal of the digits in the
continued fraction expansion. A simple induction thus shows

(10.37)
ni

ni−1
= [bi, . . . , b1, b0]

Applying the same procedure for the denominator shows a similar
reversal

(10.38)
di

di−1
= [bi, . . . , b1]

(the difference between (10.37) and (10.38) is a result of the different
initial values).
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Suppose that x = (α+
√
β)/γ is a reduced quadratic surd so that its

continued fraction expansion is given by x = [b0, . . . , bk] and assume its
convergents are denoted by ni/di. Repeating equation (10.21) shows
that

(10.39) dkx
2 − (nk − dk−1)x− nk−1 = 0

Let y correspond to a reversal of the digits of x: y = [bk, . . . , b0]. From
the previous discussion, y has convergents given by

nk

nk−1
= [bk, . . . , b0] =

n̂k

d̂k

and

dk
dk−1

= [bk, . . . , b1] =
n̂k−1

d̂k−1

where n̂k−1 = dk, d̂k−1 = dk−1, n̂k = nk, and d̂k = nk−1. This implies
that y satisfies

d̂ky
2 − (n̂k − d̂k−1)y − n̂k−1 = 0

or, after making the above substitutions, that

(10.40) nk−1y
2 − (nk − dk−1)y − dk = 0

Setting z = −1/y in (10.40) reverses the ordering of the coefficients of
this quadratic leading to

(10.41) dkz
2 − (nk − dk−1)z − nk−1 = 0

These manipulations show that (10.41) and (10.39) are identical
equations and thus x and z correspond to the quadratic’s two solutions.
Expressed in terms of the conjugate of x, this implies that z = x′

(10.42) x′ =
α−√

β

γ
= −1

y

so that y = −1/x′. Thus the continued fraction of x and of y are
reversals of each other.
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This allows a characterization of the continued fraction expansion
of

√
n for non-square n. Assume that

√
n = [c1, c2, . . .] and note that

this is not a reduced quadratic surd since −√
n < −1 and thus is not

purely periodic. By construction, c1 = �n� and also that c1 +
√
n is a

reduced quadratic surd and thus is purely periodic

(10.43) x = c1 +
√
n = [2c1, c2, . . . , ck−1, ck]

and in the previous paragraphs we showed that the continued fraction
expansion for y = −1/x′ is a reverse of that for x, hence

(10.44) y =
1√

n− c1
= [ck, ck−1, . . . , c2, 2c1]

Equation (10.43) implies that the form for the
√
n is given by

(10.45)
√
n = [c1, c2, . . . , ck−1, ck, 2c1]

Thus
√
n− c1 = [0, c2, . . . , ck, 2c1] and, from relationship (10.10), that

(10.46)
1√

n− c1
= [c2, . . . , ck, 2c1]

Equations (10.44) and (10.46) represent the same continued fraction
which implies that there is a palindromic relationship between the
coefficients, cj = ck+2−j , k = 2, . . . , k. Collecting these results together
shows that the form of the continued fraction expansion for

√
n is given

by

(10.47)
√
n = [�n�, c2, c3, . . . , c3, c2, 2�n�]

This form is exemplified in all of the previous tables of the continued
fraction expansions of square roots of non-square integers.

10.3 Approximations Using Continued Fractions

The chapter up to this point has focused on the structure of continued
fraction expansions for irrational numbers and in particular concen-
trated on quadratic irrational numbers that have lovely expansions.
This is not to say that continued fractions are not useful, however, since
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they are frequently used in approximations. To develop the subject
along these lines it suffices to continue the example that started this
chapter, that of

√
2. The beginning portion of its decimal expansion is

given by

√
2 = 1.4142135623731 . . .

Consider a series of truncated continued fractions leading to a series
of approximations. If these approximations improve as more terms are
added, then the inequality

(10.48)

∣∣∣∣∣∣
√
2− [1, 2, . . . , 2︸ ︷︷ ︸

n+1 terms

]

∣∣∣∣∣∣ <
∣∣∣∣∣∣
√
2− [1, 2, . . . , 2︸ ︷︷ ︸

n terms

]

∣∣∣∣∣∣ , n = 1, . . .

should hold. For the
√
2 example these convergents yield

[1, 2] = 3/2, [1, 2, 2] = 7/5, [1, 2, 2, 2] = 17/12

which produces the following errors to the sequence of approximations:

∣∣∣√2− 3/2
∣∣∣ = .085786 . . .

∣∣∣√2− 7/5
∣∣∣ = .014213 . . .

∣∣∣√2− 17/12
∣∣∣ = .002453 . . .

These first three terms corroborate the intuition that the absolute
difference between the approximation and the actual result decreases
as more convergents are included in the continued fraction. The
following table depicts the values obtained from successive convergent
approximations for

√
2:

Three salient features of this table pose questions which beg to be
addressed. Firstly, notice the oscillation of the sign of the difference
between the approximation and the exact result. Odd steps overesti-
mate the true value where even steps underestimate it. Does a series
of convergents always rotate between overshooting and undershooting
the precise value?

Secondly, notice the quick convergence of the approximation to the
precise value where odd steps decrease towards the true value and even
steps increase towards it. Does this always occur, and if so, how can
one characterize the convergence rate?
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Continued Fraction Approximations of
√
2

Step bi ni di
√
2− ni/di λi

1 2 3 2 −0.0857864376269049 . . . 2

2 2 7 5 0.0142135623730952 . . . 10

3 2 17 12 −0.0024531042935716 . . . 60

4 2 41 29 0.0004204589248193 . . . 348

5 2 99 70 −0.0000721519126191 . . . 2,030

6 2 239 169 0.0000123789411425 . . . 11,830

7 2 577 408 −0.0000021239014147 . . . 68,952

8 2 1393 985 0.0000003644035520 . . . 401,880

9 2 3363 2378 −0.0000000625217744 . . . 2,342,330

10 2 8119 5741 0.0000000107270403 . . . 13,652,098

Thirdly, observe that the values of ni and di in the above table
are always relatively prime (they have no common divisors) and the
denominator steadily increases. Is this always the case?

To begin addressing these questions, consider the difference between
two convergents,

(10.49)
ni

di
− ni−1

di−1
=

nidi−1 − ni−1di

di−1di
, i = 2, . . .

It is clear from the general recurrence equation for convergents that di
forms an integer sequence that increases with i. Thus the denominator
of (10.53), given by di−1di, is positive and increasing. Focusing on the
numerator, write

nidi−1 − ni−1di = (bini−1 + ni−2)di−1 − ni−1(bidi−1 + di−2)

= bini−1di−1 + ni−2di−1 − bini−1di−1 − ni−1di−2

= ni−2di−1 − ni−1di−2

= −(ni−1di−2 − ni−2di−1)

Telescoping this relationship to the boundary n0d−1 − n−1d0 = −1
implies that

(10.50) nidi−1 − ni−1di = (−1)i+1
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This shows that a linear combination of ni and di equals ±1 and
answers the third question above since it implies that they must be
co-prime.5

Defining λi = di−1di permits rewriting (10.49) as

(10.51)
ni

di
− ni−1

di−1
=

(−1)i+1

λi
, i = 2, . . .

This suggests telescoping the relationship to get the following equation:

k∑
i=1

ni

di
− ni−1

di−1
=

nk

dk
− b0

Using this, and equations (10.17) and (10.51), yields a succinct
representation of a continued fraction

(10.52) [b0, b1, . . . , bk] = b0 +
k∑

i=1

(−1)i+1

λi

A simple recursion provides a lower bound on the rate at which λi

increases. First note that the recursion di = bidi−1 + di−2 implies that
di grows at least as fast as the integers. Substituting this recursion,
and using the initial values of di, provides the following equation for
λi:

(10.53) λi =

⎧⎨
⎩

0, i = 0

bid
2
i−1 + λi−1, i = 1, . . .

which easily yields

(10.54) λi =
i∑

j=1

bjd
2
j−1

5This follows from the fact that if they had a common multiple, so that ni = am
and di = bm, then nidi−1 −ni−1di = m(adi−1 + bni−1) = ±1. This implies that m
must divide 1 forcing m = 1.
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This shows that λi grows at least as fast as the sum of the squared
integers.

Equation (10.51) answers one portion of the first question above:
truncating a continued fraction expansion creates an approximation
that oscillates around a central value. Such oscillations, however, might
not be around α0 = [b0, . . .]. To address this issue, use (10.18) to write
the difference between α0 and the convergents at the i’th step as:

α0 −
ni

di
=

αi+1ni + ni−1

αi+1di + di−1
− ni

di
(10.55)

=
di(αi+1ni + ni−1)− ni(αi+1di + di−1)

di(αi+1di + di−1)

=
ni−1di − nidi−1

di(αi+1di + di−1)

=
− xi

di(αi+1di + di−1)

=
(−1)i

di(αi+1di + di−1)

This now fully answers the first question: odd and even indexed
convergents successively alternate around α0.

This brings us to the second question which can now be answered:
the series of even indexed convergents increase towards α0 whereas odd
indexed convergents decrease towards it. Both reach the same limit
which implies that |α0−ni/di| is a decreasing sequence as conjectured
in equation (10.48). These results can be summarized by an infinite
series of inequalities

(10.56)
n0

d0
<

n2

d2
< · · · < α0 < · · · < n3

d3
<

n1

d1

Thus, continued fraction approximations converge to α0 as the
number of terms of the truncated continued fraction increases without
bound. Observe that the last column in the table on page 152 shows a
dramatic increase in the size of λi as i increases for the

√
2 example.

At the tenth step, for instance, the value λ10 is more than 13 million
and the approximation is accurate to 7 decimals.

The least that λi can be at each step occurs when the values of bi
are least which occurs in the case of the golden ratio where bi = 1
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for all i. This implies that, for a given degree of accuracy, the golden
ratio requires more steps in a continued fraction approximation than
any other irrational number. In this sense it is the hardest irrational
number to approximate. Said more picturesquely, the golden ratio is
the most irrational number! It is instructive to compare the table of
its approximations to that of

√
2:

Continued Fraction Approximations of φ = (1 +
√
5)/2

Step bi ni di φ− ni/di λi

1 1 2 1 −0. 381966011250105 . . . 1

2 1 3 2 0. 118033988749895 . . . 2

3 1 5 3 −0. 0486326779167718 . . . 6

4 1 8 5 0. 0180339887498948 . . . 15

5 1 13 8 −0. 0069660112501051 . . . 40

6 1 21 13 0. 0026493733652794 . . . 104

7 1 34 21 −0. 00101363029772417 . . . 273

8 1 55 34 0. 00038692992636546 . . . 714

9 1 89 55 −0. 000147829431923263 . . . 1,870

10 1 144 89 0. 000056460660007307 . . . 4,895

Notice that at the tenth step, instead of more than 13 million with 7
digit accuracy, the value of λ10 is less than 5 thousand leading to an
accuracy of only 4 decimals.

We have seen the pattern of numbers in this table before. From the
above table it appears that ni = fi+2 and di = fi+1. Thus, another
delightful equation links the golden ratio with the Fibonacci sequence

(10.57) φ ≈ ni

di
=

fi+2

fi+1

From the third property above, this also yields the immediate result
that successive Fibonacci numbers are co-prime. The last column
of numbers also reveal a hidden jewel since they correspond to the
cumulative sum of squared Fibonacci numbers. This follows from the
recurrence (10.53) and the relationship λi = fi+1fi which leads to
λi = f2

1 + · · ·+ f2
i (see equation (5.17) on page 70).

All of these results suggest that continued fractions are clever and
accurate approximations to irrational numbers. To further support this
claim, return to the portion of the denominator of equation (10.55)
given by αi+1di + di−1. By construction, bi+1 = �αi+1� and clearly
αi+1 > 1. This implies that



156 10 Running Off the Page

di+1 = bi+1di + di−1 < αi+1di + di−1

Applying this to equation (10.55), with some minor simplifications,
yields the following upper and lower bounds on the accuracy of a
continued fraction approximation:

(10.58) |diα0 − ni| < 1

di+1

The form of equation (10.58) motivates a method to compare approxi-
mations. A rational approximation n/d is said to be a best approxima-

tion if |dα0 − n| <
∣∣∣d̂α0 − n̂

∣∣∣ for any n̂/d̂ where n/d �= n̂/d̂ and d̂ ≤ d.

In this definition it is assumed that both n/d and n̂/d̂ are fractions
that have been reduced to have no common factors.

10.3.1 Best Approximations

The previous results lead to a beautiful result: all best approximations
are convergents from a continued fraction approximation. To prove
this, first assume that d̂ = di for the i’th convergent and note that the
triangle inequality implies that

(10.59) |n̂− ni| ≤ |n̂− diα0|+ |diα0 − ni|

The bound of (10.58), and the fact that n̂ �= ni, implies that

(10.60) |n̂− ni| − |diα0 − ni| > 1− 1

di+1
=

di+1 − 1

di+1
>

1

di+1

The triangle inequality (10.59) thus implies that

1

di+1
< |n̂− ni| − |diα0 − ni| ≤ |din̂− α0|

which, compared to (10.58), shows that n̂/d̂ is not a best approxima-
tion.

Assume now that n̂/d̂ is a best approximation where d̂ is not equal to
the denominator of any convergent. Without loss of generality we will
prove the case where n̂/d̂ < α0 (the case where n̂/d̂ > α0 is completely
analogous). Select i to satisfy
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(10.61)
n2i−2

d2i−2
<

n̂

d̂
<

n2i

d2i
< α0 <

n2i−1

d2i−1

All variables are integers and thus the following inequalities are
satisfied:

(10.62) n̂d2i−2 − n2i−2d̂ ≥ 1

and

(10.63) n2id̂− n̂d2i ≥ 1

Equations (10.61) and (10.51) show that

(10.64)
n̂

d̂
− n2i−2

d2i−2
<

n2i−1

d2i−1
− n2i−2

d2i−2
=

1

d2i−2d2i−1

and

(10.65)
n2i

d2i
− n̂

d̂
< α0 − n̂

d̂

Equation (10.62) implies that

n̂

d̂
− n2i−2

d2i−2
=

n̂d2i−2 − n2i−2d̂

d2i−2d̂
≥ 1

d2i−2d̂

which, with inequality (10.64), implies that

(10.66) d̂ < d2i−1

Equation (10.63) implies that

n2i

d2i
− n̂

d̂
=

n2id̂− n̂d2i

d2id̂
≥ 1

d2id̂

which, with inequality (10.65), implies that

1

d2i
< d̂α0 − n̂
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Additionally, equation (10.58) implies the following inequality

d2i−1α0 − n2i−1 <
1

d2i

These last two inequalities thus result in

d2i−1α0 − n2i−1 < d̂α0 − n̂

which, along with (10.66), contradicts the assumption that n̂/d̂ is a
best approximation. The two cases above show that a best approxi-
mation cannot differ from a convergent from a continued fraction—a
beautiful, and extremely useful, result.

10.4 Lagrange’s Theorem and Historical Review

Before tying up some of the loose ends, let’s step back in time and pay
homage to some early mathematicians who somehow discovered the
power of convergent approximations. The first few convergents that
approximate π, for example, are given by 22/7, 333/106, and 355/113
= 3.141592. The last of these approximations, which is amazingly
accurate to 6 decimals, was known to Tsu Ch’ung-Chih (429–500),
a mathematician in the service of the Chinese emperor, Hsiao-wu.
The same approximation was also known to Adriaan Anthonisz (1527–
1607), a Dutch mathematician and surveyor. Six decimals of accuracy
is achieved for the golden ratio at the 15’th convergent leading to the
approximation φ ≈ 1,597/987. Similar accuracy is achieved for

√
2 at

the 8’th convergent with the approximation
√
2 ≈ 1,393/985. The 7’th

convergent for
√
2 yields 5 decimals of accuracy,

√
2 ≈ 577/408, and

was known by Greek mathematicians of the fifth century B.C. as well
as by Indian mathematicians of the third or fourth century B.C.

The theorem of Lagrange was left hanging in midair. Recall that the
analysis only proved the special case that quadratic irrational numbers
that are reduced quadratic surds have purely periodic continued
fractions. The theorem states that all quadratic irrationals eventually
have periodic expansions. To complete the proof, first form the
conjugate of equation (10.18)
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α′
0 =

α′
i+1ni + ni−1

α′
i+1di + di−1

This implies that

α′
i+1 = −α′

0di−1 − ni−1

α′
0di − ni

= −
(
di−1

di

) (
α′
0 − ni−1/di−1

α′
0 − ni/di

)

Previous work in the chapter shows that convergents ni−1/di−1

and ni/di converge to α0 as i increases without bound and that
0 < di−1/di < 1 for all i. Thus, for some value i�, the value of
(α′

0 − ni�−1/di�−1)/(α
′
0 − ni�/di�) is less than 1. It follows that this

observation is also valid for all values k ≥ i� which implies that the
value of α′

k+1 from i� onward falls between −1 and 0. The fact that
αk+1 > 1 for all k shows that after i�, αk+1 is a reduced quadratic surd.
The conclusion is thus that continued fraction onward from convergent
i� is periodic. This completes the proof of Lagrange’s theorem.
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