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Beauty is the first test:
There is no permanent place in the world for
ugly mathematics.

G. H. Hardy (1877–1947)



Dedicated to my wife - Cynthia Nelson



Acknowledgments

I would like to thank several of my colleagues at work who shared
their enthusiasm and interest for the book over the many years it took
to write. Sean McNeill suffered through many monologues concerning
mathematical relationships that I found particularly beautiful and
I remember Rod Dodson having to undergo similar orations. Eric
Norman was always receptive to the ideas in the book and even had
his daughter read some chapters. Linda Wu, a fellow mathematician,
shared her exuberant interest in the material and continually encour-
aged me towards publication.

I have sat across a restaurant table literally hundreds of times with
my business partner, Ira Leventhal. Frequently, during our conversa-
tions, the topic would veer away from business towards mathematics.
Invariably, this led me to profit from Ira’s uncanny intuition regarding
numerical relationships.

I would be amiss without acknowledging two professors who have
had a major influence on my research career. Rod Oldehoeft’s warm
and enthusiastic reception of a new student who walked into his office
one day started my career. Leonard Kleinrock, my doctorate thesis
advisor, opened my eyes to the joys of mathematical modeling with
his unique and charismatic view of the subject which launched me on
my own research path. I am forever grateful to these professors for
their life changing guidance.

I would also like to thank the editor at Springer, Elizabeth Loew,
who offered her encouragement for the book and guided its reviews.
The last anonymous reviewer, who I wish to particularly thank, made
several cogent criticisms that improved the book.

ix



x Acknowledgments

This book is dedicated to my wife, Cynthia, without whom, in so
many ways, it would never have seen the light of day. Appreciation also
goes to my children, Austin, Caresse, and Cristina, who sometimes lost
their father even while he was physically present.



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Let Me Count the Ways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Permutations: With and Without Replacement . . . . . . 4

2.1.1 Dearrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Combinations: Without Replacement . . . . . . . . . . . . . . . . . 9

2.2.1 Binomial Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Combinations with Replacement . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Binomial-R Identities. . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Polynomial Solutions to Combinatorial

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Transforms and Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Syntax Precedes Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Stirling Numbers of the First Kind. . . . . . . . . . . . . . . . . . . . 29
3.2 Stirling Numbers of the Second Kind . . . . . . . . . . . . . . . . . 32

3.2.1 The Stirling Transform and Inverse . . . . . . . . . . 35
3.3 Combinatorial Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Fearful Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1 Symmetric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Simple Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 The Quadratic Equation . . . . . . . . . . . . . . . . . . . . . . 41
4.1.3 Equation of the Minimum Distance Line . . . . 42
4.1.4 The Pythagorean Theorem . . . . . . . . . . . . . . . . . . . 44
4.1.5 Cubic Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Elementary Symmetric Polynomials. . . . . . . . . . . . . . . . . . . 48
4.2.1 Newton–Girard Formula . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Identities and Combinatorial Coefficients. . . . 52

xi



xii Contents

4.2.3 Inclusion–Exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Fundamental Theorem of Symmetric Polynomials . . . 57
4.4 Galois’ Theorem and Numerical Solutions . . . . . . . . . . . . 59

5 All That Glitters Is Not Gold . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1 The Golden Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 Fibonacci Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.2 A Closed Form Solution. . . . . . . . . . . . . . . . . . . . . . . 67

5.2 An Alternate Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Generalized Fibonacci Numbers . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 k-Bonacci Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5 Generalization of the Fibonacci Recurrence . . . . . . . . . . 76

6 Heads I Win, Tails You Lose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.1 The Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1.1 Games That End Even . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.2 Catalan Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.1.3 Non-intuitive Results . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 The Correct Insight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3 Particular Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Sums of the Powers of Successive Integers . . . . . . . . . . . 93
7.1 A General Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.1.1 Iterative Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2 Triangular Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.3 Cauchy’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8 As Simple as 2 + 2 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.1 Modular Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2 Fermat’s Little Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.3 Lagrange’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.4 Wilson’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.5 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9 Hidden in Plain Sight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.1 Properties of Prime Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.1.1 Properties of Integer Divisors. . . . . . . . . . . . . . . . . 122
9.2 The Prime Counting Function . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.3 There Is Always a Prime Between n and 2n . . . . . . . . . 127

9.3.1 The Prime Number Theorem with a
Controversy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



Contents xiii

10 Running Off the Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
10.1 Simple Continued Fractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

10.1.1 Periodic Simple Continued Fractions . . . . . . . . 139
10.1.2 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

10.2 General Method to Create a Continued Fraction . . . . 142
10.2.1 Integer Quadratics and Quadratic Surds . . . . 143

10.3 Approximations Using Continued Fractions . . . . . . . . . . 150
10.3.1 Best Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 156

10.4 Lagrange’s Theorem and Historical Review . . . . . . . . . . 158

A Tools of the Trade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.1 Recurrence Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.2 Adding Zero to an Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.3 Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
A.4 Contradiction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
A.5 Order of Summations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

B Notation and Identities Derived in the Book . . . . . . . 173

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183



Chapter 1

Introduction

Suit the action to the word, the word to the action,
with this special observance, that you o’erstep not the
modesty of nature:
for any thing so o’erdone is from the purpose of
playing,
whose end, both at the first and now, was and is, to
hold as
’twere the mirror up to nature:
to show virtue her feature, scorn her own image,
and the very age and body of the time his form and
pressure.

William Shakespeare (1564–1616)
Hamlet Act 3, scene 2

Hamlet’s advice to actors, quoted above, speaks to the essence of
mathematics: the action and word are neither more nor less than what
is required, the virtue of pure thought and its ageless body transcends
time and, finally, that mathematics is the mirror that reflects the face
of nature.

In this brief book, the mirror of mathematics is held up to reflect
the light of discrete mathematics. This area, with results that can be
typically expressed in terms of integer ratios, forms a core discipline
within the expansive field of mathematics. Topics addressed include
combinatorics, properties of symmetric functions, the Golden ratio
as it leads to k-bonacci numbers, non-intuitive and surprising results
found in a simple coin tossing game, analysis of sums of integer powers
and triangular numbers, the playful, trick question aspects of modular
systems, exploration of basic properties of prime numbers including
a proof that a prime always exists between a number and its double,
and a derivation of bewildering results that arise from approximating
irrational numbers as continued fraction expansions. The Appendix
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2 1 Introduction

contains the basic tools of mathematics that are used in the text along
with a numerous list of identities that are derived in the body of the
book.

It might seem surprising that so many areas of analysis fall under
the auspices of discrete math but, in fact, many aspects of discrete
math are not covered such as set theory, logic and Boolean algebra,
algorithms, and the theory of computation, graph theory, and matrix
theory. The references found at the back of the book are a good starting
point for investigations in these areas.

The approach in the book is concise and proceeds directly from first
principles. On one occasion a result that lies outside of the book is
lifted from probability theory to expedite a derivation. Otherwise, the
book is self-contained and does not rely on results not derived within
its pages. A reader should be well versed with symbol manipulation
and also have some fluency with algebra.

Each chapter follows a sequence of straightforward questions to a
logical end that lies at the doorstep of a field of study. In the writer’s
opinion, these results are beautiful and often surprisingly non-intuitive.
This frames the wonder of mathematics and highlights the complex
world that lies behind a series of simple, mathematical, deductions.



Chapter 2

Let Me Count the Ways

How do I love thee? Let me count the ways.
I love thee to the depth and breadth and height
My soul can reach, when feeling out of sight
For the ends of being and ideal grace.

Elizabeth Barrett Browning (1806–1861)

Elizabeth Browning probably didn’t realize that she was really talking
about mathematics when she penned her 43rd sonnet, How Do I Love
Thee? This chapter provides a more comprehensive answer to this
question than Browning was able to present in the remaining stanzas
where she enumerates the ways she loves the veiled object of her
sonnet. With the power of mathematics, equations are derived that
provide a thorough enumeration, leaving no stone untouched. This is
done through the simple expedient of selecting a set of items from a set.
It is surprising, as when one falls in love, how fast innocent simplicity
explodes into a tangled web of complexity. Perhaps this is what makes
love stories, and mathematics, so enduringly interesting.

Assume there are n distinguishable items in a set from which k
items are selected.1 The object of this chapter is to count the number
of possible ways to make such a selection. There are four different
counting paradigms that depend upon the order items are selected and
whether selected items are removed or returned to the set. Selection
with replacement occurs when selected items are returned, otherwise
the selection is termed selection without replacement. A permutation
occurs when the order of selected items is maintained, otherwise the
selection corresponds to a combination.

1For example, different colored balls are distinguishable whereas electrons which have
no discernible differences are indistinguishable.

© Springer Nature Switzerland AG 2020
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4 2 Let Me Count the Ways

To illustrate the four different selection paradigms, consider the case
where 2 items are selected from the set {1, 2, 3}. A selection can be
represented by an integer so that 31 corresponds to first selecting item
3 followed by item 1. The first line of the table below shows that there
are 6 possible permutations when items are not returned to the set
(possibilities represented by {12, 21, 13, 31, 23, 32}). When order is not
maintained (so that the selection 12 is counted as being the same as the
selection 21) then the number of possibilities reduces to 3 (possibilities
represented by {12, 13, 23}). When items are returned after selection,
the number of possibilities in each of the above cases increases by 3
corresponding to the addition of possibilities given by {11, 22, 33}.

# Permutation # Combination

Without
Replacement

6 {12, 21, 13, 31, 23, 32} 3 {12, 13, 23}

With
Replacement

9 {12, 21, 13, 31, 23, 32, 11, 22, 33} 6 {12, 13, 23, 11, 22, 33}

The rest of this chapter derives equations for the number of possible
selections for each of the four counting paradigms, establishes relation-
ships between them, and derives identities that arise from the resultant
equations.2 Throughout this chapter, let the number of different items
in a set be denoted by n from which k items are selected.

2.1 Permutations: With and Without Replacement

We first consider permutations when items are not returned to the set,
a quantity that is denoted by prk,n.

3 This value satisfies the recurrence

(2.1) prk,n = nprk−1,n, n ≥ 1, k ≥ 1

Initial values of the recurrence are pr0,n = 1 and prk,n = 0 for k < 0 or

n < 0. To explain (2.1) note that the first of the k selections can be
done in n different ways, leaving k − 1 items left to be selected. Since

2See the Appendix for a review of using recurrence to solve problems.
3The “r” superscript means with replacement rather than being a numeric index
value.



2.1 Permutations: With and Without Replacement 5

the selected item is returned to the step, this leaves prk−1,n remaining

possibilities. Recurrence (2.1) can be solved to yield

(2.2) prk,n = nk

Values of prk,n for small parameter values are given in the following
table:

Values of prk,n = nk

k\n 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

2 9 16 25 36 49 64 81

3 64 125 216 343 512 729

4 625 1,296 2,401 4,096 6,561

5 7,776 16,807 32,768 59,049

6 117,649 262,144 531,441

7 2,097,152 4,782,969

8 43,046,721

The number of different possibilities for selecting permutations
without replacement, denoted by pk,n, satisfies the recursion

(2.3) pk,n = npk−1,n−1, n ≥ 1, k ≥ 1

with initial values of p0,n = 1 and pk,n = 0 for k < 0 of n < 0.4

To explain this, note again that the first selection can be done in n
different ways. Since the selected item now is removed from the set,
this leaves the remaining k− 1 items to be selected from a set of n− 1
items, thus the quantity pk−1,n−1. This recurrence can be solved to
yield

(2.4) pk,n = nk

where the lower factorial is defined by

(2.5) nk = n(n− 1) · · · (n− k + 1)

4The restrictions to have non-negative arguments for prk,n and pk,n can be relaxed
but will not be considered in this book.
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As an aside, note that two algebraic identities follow directly definition
(2.5):

(2.6) nk = n� (n− �)k−� , � ≤ k

and

(2.7) n nk = nk+1 + knk

Values of pk,n for small parameter values are given in the following
table (notice the size differences between this and the table above):

Values of pk,n = nk

k\n 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

2 6 12 20 30 42 56 72

3 24 60 120 210 336 504

4 120 360 840 1,680 3,024

5 720 2,520 6,720 15,120

6 5,040 20,160 60,480

7 40,320 181,440

8 362,880

So far the analysis is straightforward; however, a counterintuitive
result follows from these the two defining equations (2.3) and (2.4).
The birthday problem is typically stated by calculating the probability
that, from a set of k people, at least two people have the same birthday.
To calculate this, assume that birthdays occur uniformly throughout
the year.5 If all birthdays are unique, then a selection from 365 days
of k items is a permutation without replacement. Setting n = 365
in equation (2.4) shows that there are 365k such permutations. The
number of total possible selections from 365 days that allows duplicate
days is equivalent to selecting k days with replacement which is given

5A smoothed plot of the frequency of birthdays ascends from a low around January
until it reaches a peak in September. There is thus a greater chance that two or more
people have a common birthday than what is calculated from equation (2.8).



2.1 Permutations: With and Without Replacement 7

by equation (2.2), 365k. Thus, the fraction of random k selections
where there are no duplicate birthdays equals6

(2.8)
pk,n
prk,n

=

k−1∏

j=1

(
1− j

n

)

To determine the probability that there are multiple birthdays,
subtract (2.8) from 1. The numerical results are surprising as shown
in the following table:

k 10 15 20 25 30 35 40 45 50 55

1− pk,n/prk,n .117 .253 .411 .569 .706 .814 .891 .941 .97 .986

The break-even point occurs when k = 23, showing that there is a
50.72% probability that two people have the same birthday! The table
shows how fast this percentage increases with k so that the 99% level
is breached at k = 57. A fun way to see mathematics in action is to
grab the microphone at a typical wedding and ask people having a
birthday today to raise their hands. It will almost never fail that at
least a couple of hands shoot up!

2.1.1 Dearrangements

To explain another problem that can be solved only using equa-
tions (2.3) and (2.4), consider a list of the integers (1, 2, . . . , n) that
are permuted to a new ordering (q1, q2, . . . , qn) so that no integer is
in its original position, qi �= i, i = 1, . . . , n. Such a rearrangement is
termed a dearrangement. Denote the number of such possibilities, by
gn which has boundary values: g0 = 1 and g1 = 0. Consider integer
j and assume that after permutation it is in position k, and hence
gk = j. There are n−1 possibilities to select k if k �= j. The number of
remaining dearrangements that are possible depend on where integer
k is permuted. If k exchanges position with j, so that gj = k, then this
leaves n − 1 remaining items in the dearrangement, a value given by

6The value of pk,n and prk,n soon swamps a computer’s floating point range for large
argument values. This is the reason why the value is computed as the product of
simple ratios.
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gn−1. If this is not the case and integer k is found in position � �= j so
that g� = k, then two slots of the permutation are taken leaving n− 2
items left in the dearrangement, a value given by gn−2. Summing these
disjoint possibilities shows that

(2.9) gn = (n− 1)(gn−1 + gn−2)

The number of dearrangements grows quickly with n as shown in the
following table:

n 2 4 6 8 10 12 14

gn 1 9 265 14,833 1,334,961 176,214,841 32,071,101,049

A billion dearrangements are surpassed with n = 13 (2,290,792,932
ways to be exact). Thus, if you take a fresh pack of cards, separate out
one suit in its numeric order and shuffle these 13 cards thoroughly, then
about 36.787% of 13! possibilities will correspond to dearrangements.
In fact, it is not too difficult to show that as n gets large, the fraction
of random permutations of n items that are dearrangements converges
to 1/e where e ≈ 2.718281828 is called Euler’s number after the
Swiss mathematician Leonard Euler (1707–1783) who, among his vast
achievements, studied properties of the exponential function.7

The difficulty with solving recurrence (2.9) lies in the multiplicative
factor (n − 1) found in the equation. To counteract this, consider a
scaled version where fn = gn/n!. This produces the recurrence

fn =
gn
n!

=
n− 1

n!
(gn−1 + gn−2)

=
n− 1

n!
((n− 1)!fn−1 + (n− 2)!fn−2)

=

(
1− 1

n

)
fn−1 +

1

n
fn−2

Rewriting this reveals a difference that can be formed between
successive index values

fn − fn−1 = − 1

n
(fn−1 − fn−2)

7Convergence is quick. The value of |g13/13!− 1/e| is about 10−11.
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This can be iterated to yield

fn − fn−1 = (−1)n
1

n!

This telescopes to the boundary f0 = 1 leading to the following
summation:

fn =

n∑

i=0

(−1)i

i!

Converting back to the original recursion produces a lovely result: the
number of dearrangements equals an alternating sum of permutations:

(2.10) gn = n!fn =
n∑

i=0

(−1)ipi,n

2.2 Combinations: Without Replacement

Consider a particular combination obtained from selecting k items
from a set of size n. The ordering of the items in this combination can
be permuted in k! ways without adding to the number of combinations.
Thus an equation for the number of possible combinations, denoted by
ck,n, is given by

(2.11) ck,n =
nk

k!
=

k−1∏

j=0

n− j

k − j

It is customary to write this using a binomial coefficient8

(2.12) ck,n =

(
n

k

)
=

n!

(n− k)! k!

8The product expansion (2.11) is used when computing the value of a binomial
coefficient.
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Values of ck,n for small parameter values are given in the following
table:

Values of ck,n =

(
n

k

)

k\n 1 2 3 4 5 6 7 8 9

0 1 1 1 1 1 1 1 1 1

1 1 2 3 4 5 6 7 8 9

2 1 3 6 10 15 21 28 36

3 1 4 10 20 35 56 84

4 1 5 15 35 70 126

5 1 6 21 56 126

6 1 7 28 84

7 1 8 36

8 1 9

9 1

A recursive derivation of (2.11) is instructive and proves to be useful
in future derivations. Initial conditions are easily calculated: ck,n = 0
for k > n or k < 0, c1,n = n and cn,n = 1. To derive a general
recurrence for ck,n, partition selections into two disjoint sections. If
item j is selected, then the remaining k−1 items must be selected from
the n−1 remaining items, a quantity given by ck−1,n−1. If item j is not
selected, then it is equivalent to not being in the set, a quantity given
by ck,n−1. The total number of combinations without replacement is
the sum of these two disjoint possibilities and thus equals

(2.13) ck,n = ck−1,n−1 + ck,n−1

Simple algebra establishes that equation (2.11) (or equation (2.12))
satisfies recursion (2.13). The value of ck,n equals the number of ways
to pick k items from a set of n or, equivalently, equals the number of
possible subsets of size k that can be formed from a set of n items.

2.2.1 Binomial Identities

Straightforward algebra establishes the following identities between
binomial coefficients:

(
n

k

)
=

(
n

n− k

)
(2.14)
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(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
(2.15)

(
n

k

)
=

n

k

(
n− 1

k − 1

)
=

n− k + 1

k

(
n

k − 1

)
(2.16)

(
n

k

)(
k

j

)
=

(
n

j

)(
n− j

k − j

)
(2.17)

Identity (2.14) shows the symmetry of binomials coefficients and
identity (2.15) is a direct restatement of recurrence (2.13). Identity
(2.16) follows from the product expansion of (2.11) and from setting
j = 1 in (2.17). A typical application of (2.17) is to separate variables j
and k in a summation. As an example, consider the following derivation
which uses (2.17) in the first step:

n∑

k=0

(
n

k

)
ak

1 + k
=

1

n+ 1

n∑

k=0

(
n+ 1

k + 1

)
ak(2.18)

=
1

n+ 1

n+1∑

j=1

(
n+ 1

j

)
aj−1

=
(1 + a)n+1 − 1

a(1 + n)

Two special cases of this identity arise when a = 1 or a = −1:

n∑

k=0

(
n

k

)
1

1 + k
=

2n+1 − 1

n+ 1
(2.19)

n∑

k=0

(−1)k
(
n

k

)
1

1 + k
=

1

n+ 1
(2.20)

Summations of binomial coefficients are typically derived using
induction from an easily calculated base class. There are two ways
to interpret the recursion of equation (2.13). The backward view starts
from ck,n and recurses to a lower value of n with the values ck−1,n−1

and ck,n−1. This generates an identity which starts from the base case,
c0,2 + c1,2 + c2,2 = 4, suggesting that

(2.21)
n∑

k=0

(
n

k

)
=2n
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Assume this is true for all values less than or equal to n. Using identity
(2.15) implies that

n+1∑

k=0

(
n+ 1

k

)
=

n+1∑

k=0

(
n

k − 1

)
+

(
n

k

)

=
n+1∑

k=0

(
n

k − 1

)
+ 2n

=
n∑

k=0

(
n

k

)
+

(
n

−1

)
+ 2n

= 2n + 0 + 2n

= 2n+1

thus proving the claim.
A variation of identity (2.21) involves summing over even or odd

indexed values of k. Notice that small examples include: c0,3+ c2,3 = 4
and c0,4 + c2,4 + c4,4 = 8 which suggest that

(2.22)
∑

k even

(
n

k

)
= 2n−1

Also note that c1,3 + c3,3 = 4 and c1,4 + c3,4 = 8 which suggests that

(2.23)
∑

k odd

(
n

k

)
= 2n−1

Assume that both of these assumptions holds for all values up to n
and calculate

∑

k even

(
n+ 1

k

)
=
∑

k even

(
n

k − 1

)
+

(
n

k

)

= 2n−1 +
∑

k even

(
n

k − 1

)

= 2n−1 +
∑

k odd

(
n

k

)

= 2n−1 + 2n−1 = 2n
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A similar argument holds if the initial summation takes place over
odd indices. This establishes the double induction and proves identities
(2.22) and (2.23).

Equations (2.21), (2.22), and (2.23) are all special cases of a much
deeper result—the binomial theorem. This states that

(2.24) (x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k

This is easily established for small n values. Assume it holds for all
values up to n. Then identity (2.15) shows that the pattern continues:

(x+ y)n+1 =
n+1∑

k=0

(
n+ 1

k

)
xkyn+1−k

=

n+1∑

k=0

((
n

k

)
+

(
n

k − 1

))
xkyn+1−k

= y
n∑

k=0

(
n

k

)
xkyn−k + x

n+1∑

k=1

(
n

k − 1

)
xk−1yn+1−k

= y(x+ y)n + x
n∑

�=0

(
n

�

)
xkyn−k

= y(x+ y)n + x(x+ y)n = (x+ y)n+1

There are a countless number of identities that arise by varying
parameters of the binomial theorem besides those just mentioned.
Listing just a few:

(
1− 1

�

)n

=
n∑

k=0

(
n

k

)(−1

�

)k

(2.25)

(x+ a)n − (x− a)n = 2
∑

k odd

(
n

k

)
xn−kak(2.26)

(
1

x
+

1

y

)n

=
1

yn

n∑

k=0

(
n

k

)(y
x

)k
(2.27)
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n−i∑

k=0

(−1)k
(
n− i

k

)
=

{
0, i = 0, . . . , n− 1

1, i = n
(2.28)

A further identity can be obtained by forming a telescoping summation
combined with the binomial theorem. To derive this, observe that

n =
n∑

k=1

(
n

k

)
k −
(

n

k − 1

)
(k − 1)

=

n∑

k=1

(
n

k − 1

)
(n− 2k + 2) From Identity (2.16)

= n+
n+1∑

k=1

(
n

k − 1

)
(n− 2k + 2)

= n+
n∑

k=0

(
n

k

)
(n− 2k)

Thus

n∑

k=0

(
n

k

)
(n− 2k) = 0

which, using the binomial theorem, establishes the identity

(2.29)
n∑

k=0

(
n

k

)
k = n2n−1

A similar telescoping summation can be used to calculate

(2.30)

n∑

k=0

(
n

k

)
k(k − 1) = n(n− 1)2n−2

and

(2.31)
n∑

k=0

(
n

k

)
k2 = n(n+ 1)2n−2
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The next identity we derive is the forward view of recurrence (2.13)
that proceeds from n− 1 to n and corresponds to a summation of the
numerator of the combinatorial coefficient. This summation follows
directly from the listing recursions from (2.13):

ck+1,n+1 = ck,n + ck+1,n

ck+1,n = ck,n−1 + ck+1,n−1

ck+1,n−1 = ck,n−2 + ck+1,n−2

...
...

...

ck+1,k+2 = ck,k+1 + ck+1,k+1

Collecting these yields

ck+1,n+1 = ck,n + ck,n−1 + · · ·+ ck,k+1 + 1

implies that

(2.32)

(
n+ 1

k + 1

)
=

n∑

�=k

(
�

k

)

With the index substitution, j = �− k, the right-hand side of identity
(2.32) can be rewritten as

(2.33)
n∑

�=k

(
�

k

)
=

n−k∑

j=0

(
k + j

k

)

Making the substitution m − 1 = n − k, with equations (2.32) and
(2.33), shows that9

(2.34)

m−1∑

r=0

(
k + r

k

)
=

(
m+ k

k + 1

)

Combinatoric arguments can often provide insight into identities
without the need for algebraic manipulation. Consider selecting k items

9This equation is termed Pascal’s equation after the French mathematician Blaise
Pascal (1623–1662).
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from a list of n. Divide the list n into two sublists of size m and n−m
where 0 ≤ m ≤ n and suppose that j items are selected from the
first list and k − j items from the second list. There are cj,mck−j,n−m

ways in which such a selection can be made. Accounting for all such
possibilities leads to the identity

(2.35)

(
n

k

)
=

n∑

j=0

(
m

j

)(
n−m

k − j

)
, 0 ≤ m ≤ n

The conditions we have placed on binomial terms so that ck,n = 0
if k < 0, n < 0 or k > n allow us to write the right-hand
side of equation (2.35) without needing to put restrictions on the
binomial coefficients contained in the summation. This identity is
termed Vandermonde convolution named after Alexandre-Théophile
Vandermonde (1735–1796), a French mathematician who supported
the French revolution of 1789 and is most known for his mathematical
work in determinants.

2.3 Combinations with Replacement

This leaves the last problem—to calculate the number of combinations
obtained when one uses a replacement strategy. To derive an equation,
let crk,n denote the number of combinations obtained when selecting k

items from a set of n items using replacement.10 We set cr0,1 = 1 and
it is clear that cr1,n = n and crk,1 = 1. To derive a general equation for
crk,n, partition selections into two disjoint sections. If item j is selected,
then the number of combinations with replacement is the same as if
it had been selected on the first selection, a quantity given by crk−1,n.
On the other hand, if item j is not selected, then it is equivalent to
not being in the set, a quantity given by crk,n−1. The total number of
combinations is the sum of these two disjoint possibilities and thus
equals

(2.36) crk,n = crk−1,n + crk,n−1

10Again, the r superscript means replacement rather than being an integer index.
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It is interesting to compare equations (2.13) and (2.36). They differ
only in the indices of the first term. The n index of crk−1,n as compared
to the n − 1 index of ck−1,n−1 is a result of putting a selected item
back in the list when the replacement policy is utilized. This results in
a substantial increase in the number of possibilities that a replacement
policy has in comparison to a non-replacement policy.

To proceed with the derivation, consider equation (2.36) where
k = 2:

cr2,n = cr1,n + cr2,n−1

= cr1,n + cr1,n−1 + cr2,n−2

Observe that cr2,n−2 is of the same form as cr2,n except it moves 2 down
on the n value which suggests iterating

cr2,n = cr1,n + cr1,n−1 + · · ·+ cr1,2 + cr1,1

= n+ (n− 1) + · · ·+ 2 + 1

=

(
n+ 1

2

)

This case suggests the following guess for a general solution:

crk,n =

(
n+ k − 1

k

)

Assume this equation holds for all values less than or equal to some
value k. Then, using the recurrence (2.36) permits

crk+1,n = crk,n + crk+1,n−1

= crk,n + crk,n−1 + crk+1,n−2

= crk,n + crk,n−1 · · ·+ crk,2 + crk+1,1

=

(
k + n− 1

k

)
+ · · ·+

(
k + 2

k

)
+

(
k + 1

k

)
+ 1

=

n−1∑

r=0

(
k + r

k

)
=

(
n+ (k + 1)− 1

k + 1

)
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where the last equation uses the identity (2.34). This shows that the
induction is satisfied and thus that

(2.37) crk,n =

〈
n

k

〉

where binomial-R coefficients are defined by

(2.38)

〈
n

k

〉
=

(
n+ k − 1

k

)

Values of crk,n for small parameter values are given in the following
table:

Values of crk,n =

〈
n

k

〉

k\n 1 2 3 4 5 6 7 8 9

0 1 1 1 1 1 1 1 1 1

1 1 2 3 4 5 6 7 8 9

2 1 3 6 10 15 21 28 36 45

3 1 4 10 20 35 56 84 120 165

4 1 5 15 35 70 126 210 330 495

5 1 6 21 56 126 252 462 792 1,287

6 1 7 28 84 210 462 924 1,716 3,003

7 1 8 36 120 330 792 1,716 3,432 6,435

8 1 9 45 165 495 1,287 3,003 6,435 12,870

9 1 10 55 220 715 2,002 5,005 11,440 24,310

2.3.1 Binomial-R Identities

Some identities that are easy to verify include

〈
n

k

〉
=

〈
k + 1

n− 1

〉
(2.39)

〈
n

k

〉
=

〈
n

k − 1

〉
+

〈
n− 1

k

〉
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〈
n

k

〉
=

n

k

〈
n+ 1

k − 1

〉

(
n

k

)
=

〈
n+ 1− k

k

〉

Adding one more term to (2.34) produces a similar identity expressed
in terms of binomial-R coefficients:

n∑

r=0

(
k + r

k

)
=

n−1∑

r=0

(
k + r

k

)
+

(
n+ k

k

)
(2.40)

=

(
n+ k

k + 1

)
+

(
n+ k

k

)

=

(
n+ k + 1

k + 1

)

=

〈
n+ 1

k + 1

〉

The flow of this derivation uses equations from (2.16) and (2.34). One
can also derive an identity involving the sum binomial-R coefficients
given by

(2.41)

m∑

k=0

〈
n

k

〉
=

〈
n+ 1

m

〉

The size difference between combinations without and with replace-
ment can be quantified, similar to that of equation (2.8), by forming
their ratio:

(2.42)
ck,n
crk,n

=
k−1∏

j=1

(
1− k

n+ k − j

)

With the same values as in the birthday problem, k = 23 and n = 365,
the ratio of combinations given in equation (2.42) yields an answer of
around 25% in comparison to 50% found with permutations.
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2.3.2 Polynomial Solutions to Combinatorial
Problems

To view the previous analysis within a general framework, suppose
there are a set of n integers, mi, i = 1, . . . , n, each between 0 and k
having a total sum that equals k:

m1 +m2 + · · ·+mn = k, 0 ≤ mi ≤ k

How many ways can such numbers be selected to satisfy these
constraints? This problem can be thought as the number of n partitions
of the integer k. For example, if n = 3 and k = 2, then there are six
possible partitions:

(2.43) {2, 0, 0}, {1, 1, 0}, {1, 0, 1}, {0, 2, 0}, {0, 1, 1}, {0, 0, 2}
To answer the general question, suppose that k balls are thrown
randomly into n buckets. The value of mi counts the total number of
balls that land in bucket i. Some thought shows that this is equivalent
to the number of combinations for selecting k items from a set of n
where a replacement strategy is used. To see this, associate a bucket
with each item in the set of n items. With this association, selecting the
i’th item in the set is equivalent to throwing a ball into the i’th bucket.
The constraints on the buckets mean that only up to k balls can land in
any particular bucket. Thus the solution to the posed question is that
the number of possible partitions equals crk,n. This simple solution leads
to an extremely useful concept which will be derived in the following
paragraphs.

The great thing about being a mathematician is that your work,
which is really like play, can be done almost anywhere so there is never
a danger of becoming bored. Perhaps, for instance, you are stuck in
the middle of a theater during a particularly uninteresting play. Then,
as long as you have a pen, you can play with equations on the back or
margins of the program. You might, during one of these occasions, jot
down a simple infinite polynomial like

f(x) = 1 + x+ x2 + x3 + · · ·
If x is between 0 and 1, then such a sequence convergences and its sum
is given by

1

1− x
=

∞∑

i=0

xi
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The linkage between this and combinatorics arises when f is raised to
a power

fn(x) =

(
1

1− x

)n

It is clear that this expression is another infinite polynomial

fn(x) =

∞∑

i=0

ai,nx
i

with integer coefficients ai,n. What are these coefficients?
As a concrete example, suppose that n = 3 and k = 2. Consider the

value of a2,3 which corresponds to the coefficient of x2 in f3(x). To
facilitate the argument, write

f3(x)

= (x0 + x1 + x2 + · · · )︸ ︷︷ ︸
first group

× (x0 + x1 + x2 + · · · )︸ ︷︷ ︸
second group

× (x0 + x1 + x2 + · · · )︸ ︷︷ ︸
third group

Let the exponent of x selected in the first group be denoted by m1

and similarly define m2 and m3. When the sum of these x exponents,
m1 +m2 +m3, equals 2 then those factors contribute to the value of
a2,3. Since the coefficients of f(x) are all 1, the value of a2,3 is the
number of ways three non-negative integers sum to 2. In our example,
this corresponds to the sets given in (2.43). The solution to the problem
posed a couple of paragraphs back showed that this quantity equals
cr2,3. Clearly this argument generalizes, and thus ai,n = cri,n which
establishes the equation:

(2.44) fn(x) =
∞∑

i=0

〈
n

i

〉
xi

To link this analysis back to counting, recall that crk,n is the number
of ways that m1 + m2 + · · · + mn = k where mi was bounded below
by 0 and above by k. Suppose that the value of mi has a different set
of constraints. For example, consider a simple case where n = 3 and
k = 2 that has the following constraints:

m1 ∈ {0, 1}, m2 ∈ {1, 2}, m3 ∈ {0, 2}
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The number of combinations where m1 +m2 +m3 = 2 can be easily
listed

(2.45) {1, 1, 0}, {0, 2, 0}

But is there a way to calculate that there are 2 possibilities without
actually listing them all?

The answer lies in the previous analysis. Associate the polynomial
x0 + x1 with the first value of m1 which mathematically incorporates
the constraint that m1 ∈ {0, 1}. Similarly associate the polynomial
x1 + x2 with m2 and x0 + x2 with m3. The polynomial g(x) defined
by the product of all these sub polynomials is given by

(2.46) g(x) = (x0 + x1)(x1 + x2)(x0 + x2) = x+2x2 +2x3 +2x4 + x5

By construction, the coefficient of x� corresponds to the number of
possible combinations that result when m1 + . . . + mk = �. Hence,
the expansion in equation (2.46) shows that the number of such
possibilities equals 2 when � = 2, thus confirming the enumeration
given in (2.45). Additionally, the expansion shows that there are no
ways to sum to 0, one way to sum to 1 or 5, and two ways to sum to
2, 3, or 4.

To state the general case, suppose that mi can only have values

(2.47) mi ∈ {vi,1, vi,2, . . . , vi,ni}

and define

gi(x) = xvi,1 + xvi,2 + · · ·+ xvi,ni

from which the following product is formed:

g(x) =
n∏

i=1

gi(x)

Then ,the coefficient of x� in the polynomial g(x) equals the number of
ways that m1+m2+ · · ·+mn = � where each mi satisfies its particular
set of constraints (2.47). In essence, this technique solves an entire class
of difficult problems—a strikingly deep result considering that it arises
from a simple combinatoric derivation.
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As a final example, consider the number of different values that can
be obtained by summing combinations of the first n primes, pi, i =
1, . . . , n. Each prime can either be selected in the sum or not and thus
gi(x) = 1 + xpi , i = 1, . . . , n, and

g(x) =
n∏

i=1

1 + xpi

For the special case of n = 4 this expansion yields

g(x) = 1+x2+x3+2x5+2x7+x8+x9+2x10+2x12+x14+x15+x17

There are multiple results contained in this expression: there are two
ways to sum the first four primes (2,3,5,7) leading to integers in set
{5, 7, 10, 12} and one way for integers in set {0, 2, 3, 8, 9, 14, 15, 17}.
The set of integers {4, 6, 11, 13, 16, 18, 19, . . .} has been left out of the
set of possibilities and there are 12 different sums that are possible
since this equals the number of terms contained in g(x). The number
of prime numbers contained in the set of possibilities equals 5 (the set
{2, 3, 5, 7, 17}) and the largest consecutive sequence of numbers has
four members (the series 7, 8, 9, 10). Clearly, these observations open
new questions concerning how they scale as n increases. Is the longest
consecutive series, for instance, bounded if n increases indefinitely?

2.4 Transforms and Identities

Let x = (x0, . . . , xn) be a vector of length n + 1 and define functions
f�(x) and g�(x) as follows:

f�(x) =
�∑

k=0

(
�

k

)
xk(2.48)

g�(x) =
�∑

k=0

(−1)�−k

(
�

k

)
xk, � = 0, . . . , n(2.49)

Define a = (a0, . . . , an) and b = (b0, . . . , bn) and set b� = f(a), � =
0, . . . , n. Expanding (2.49) yields
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g�(b) =
�∑

k=0

(−1)�−k

(
�

k

)
bk

=
�∑

k=0

(−1)�−k

(
�

k

) k∑

i=0

(
k

i

)
ai

=
�∑

i=0

ai

(
�

i

) �∑

k=i

(
�− i

k − i

)
(−1)�−k, From identity (2.17)

=
�∑

i=0

ai

(
�

i

) �−i∑

j=0

(
�− i

j

)
(−1)�−j−i

=
�∑

i=0

ai(−1)�−i

(
�

i

) �−i∑

j=0

(
�− i

j

)
(−1)j

= a� From identity (2.28)

The paired equations b� = f�(a) and a� = g�(b) show that functions
f� and g� are inverse functions of each other. This observation creates a
useful transformation termed binomial transformation. To distinguish
these functions, f� is typically termed a binomial transform and g� a
binomial inverse.

Binomial transformation can be used to create a paired set of
identities whenever a sequence satisfies either (2.48) or (2.49). For
example, equation (2.31) corresponds to the binomial transform of
a� = �2. This implies that b� = �(�+1)2�−2, � = 0, . . . , n thus creating
the paired identity

(2.50) n2 =
n∑

k=0

(
n

k

)
(−1)n−kk(k + 1)2k−2

The inverse transforms of (2.21), (2.25), (2.29), and (2.30) are given
by

n∑

k=0

(
n

k

)
(−1)n−k2k = 1(2.51)

n∑

k=0

(
n

k

)
(−1)n−k

(
1− 1

�

)k

=

(−1

�

)n

(2.52)
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n∑

k=0

(
n

k

)
(−1)n−kk2k−1 = n(2.53)

n∑

k=0

(
n

k

)
(−1)n−kk(k − 1)2k−2 = n(n− 1)(2.54)

The inverse transform of (2.18) provides the paired identity

(2.55)
n∑

k=0

(
n

k

)
(−1)n−k (1 + a)k+1 − 1

k + 1
=

an+1

n+ 1

A special case of (2.18) and (2.55) for a = 2 creates the following two
identities:

n∑

k=0

(
n

k

)
2k+1

k + 1
=

3n+1 − 1

n+ 1
(2.56)

n∑

k=0

(
n

k

)
(−1)n−k 3

k+1 − 1

k + 1
=

2n+1

n+ 1
(2.57)

Another form of a binomial transform is given by

(2.58) h�(x) =
�∑

k=0

(−1)k
(
�

k

)
xk

which defines an involution, a function that is its own inverse. To
establish this, let b� = h�(a) and proceed as follows:

h�(b) =
�∑

k=0

(−1)k
(
�

k

)
bk

=
�∑

k=0

(−1)k
(
�

k

) k∑

i=0

(−1)i
(
k

i

)
ai

=
�∑

i=0

ai

(
�

i

) �∑

k=i

(
�− i

k − i

)
(−1)k+i
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=
�∑

i=0

ai

(
�

i

) �−i∑

j=0

(
�− i

j

)
(−1)j

= a�

To illustrate a use of this form of binomial transformation, substitute
a = −b in (2.18) which then implies the two identities

(2.59)

n∑

k=0

(−1)k
(
n

k

)
bk

k + 1
= −(1− b)n+1 − 1

b(n+ 1)

and

(2.60)
n∑

k=0

(−1)k
(
n

k

)
(1− b)k+1 − 1

b(k + 1)
= − bn

(n+ 1)

As a special case of these identities, set b = 2 which then creates
identities

n∑

k=0

(−1)k
(
n

k

)
2k

k + 1
=

{
0, n odd,
1

n+1 , n even
(2.61)

n∑

k=0, k even

(−1)k
(
n

k

)
1

(k + 1)
=

2n

n+ 1
(2.62)



Chapter 3

Syntax Precedes Semantics

“Good Morning!” said Bilbo, and he meant it. The sun
was shining,and the grass was very green. But Gandalf
looked at him from under long bushy eyebrows that
stuck out further than the brim of his shady hat.

“What do you mean?” he said. “Do you wish me a
good morning,or mean that it is a good morning
whether I want it or not;or that you feel good this
morning; or that it is a morning to be good on?”

“All of them at once,” said Bilbo.

J. R. R. Tolkien, The Hobbit

How you say something is often as important as what you say. A simple
“Good Morning” can confuse even a wizard like Gandalf and this can
be no more apparent than in writing mathematics where ambiguity
is not tolerated. This explains one reason why LATEX has made such
a major impact on mathematics even though it only deals with the
syntax of mathematical writing and not its content. The TEX project
started by Donald Knuth (1938–) gave mathematicians the tools they
needed to be able to write beautifully typeset papers and books that
brought to light the semantics of math in a crystal clear format. In
this way, syntax precedes semantics.

Notation is also a vitally important component of mathematics.
Clear notation reveals patterns to the mind that are obscured by more
awkward expressions. To illustrate this, recall that Pascal’s equation
was derived in the chapter, Let Me Count the Ways with equation
(2.34). To express this more concisely recall that the falling factorial
notation is defined by

(3.1) nk = n(n− 1) · · · (n− k + 1)

© Springer Nature Switzerland AG 2020
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and the rising factorial notation by

(3.2) nk = n(n+ 1) · · · (n+ k − 1)

Some algebra shows that nk = (n+ k − 1)k and nk = (n− k + 1)k.
With these notations we can write a binomial coefficient in multiple
ways

(
n

k

)
=

n!

k!(n− k)!
=

nk

k!
=

(n− k + 1)k

k!

The combinatorial term on the left-hand side of (2.34) can now be
expressed as

(
i+ k − 1

i− 1

)
=

ik

k!

and the right-hand side by

(
n+ k

k + 1

)
=

(
n− 1 + k + 1

k + 1

)
=

nk+1

(k + 1)!

Some minor simplifications then shows that Pascal’s formula (2.34)
can be expressed compactly as

(3.3)
n∑

i=1

ik =
nk+1

k + 1

Equation (3.3) expresses Pascal’s equation in a form that highlights
a pattern which is not evident in (2.34) and expresses a relationship
contained in the integers. Define a variety k integer to be the product

of k successive integers. Thus ik is the i’th variety k integer. In
these terms, equation (3.3) expresses a relationship between variety
k integers with variety k + 1 integers. Specifically, the equation shows
that the sum of the first n variety k integers equals the n+1’st variety
k+1 integer divided by k+1. This result will be partially generalized
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later in the book with equation (7.26) which considers the powers of
variety 2 integers. The next section brings up the question: what is a
rising factorial?

3.1 Stirling Numbers of the First Kind

To move towards answering this, first note that nk is a k’th degree
polynomial in n. Let the coefficients of this polynomial be denoted by
bi,k for i = 0, . . . k. Two coefficients are immediately obvious: b0,k = 0
and bk,k = 1. What are the remaining coefficients? To answer this, a
straightforward calculation shows that

Coefficients bi,k

k\i 1 2 3 4 5 Sum

1 1 1

2 1 1 2

3 2 3 1 6

4 6 11 6 1 24

5 24 50 35 10 1 120

Blanks above equal 0 and thus, as an illustration, the table shows that
n4 = 6n+ 11n2 + 6n3 + n4.

The numbers in the table have some interesting special values.
For example, the sum of the rows (the last column in the table)
equals factorial numbers,

∑n
i=0 bi,n = n!. Also, the first column is

simply a shifted version of the summation column, b1,n = (n − 1)!
and the submajor diagonal values in the table correspond to binomial

coefficients, bn−1,n =

(
n

2

)
. Other values found in the table do not have

obvious values which leads us to the problem of finding a relationship
between them.

To derive this relationship, note that

nk+1 = (n+ k)nk = n · nk
︸ ︷︷ ︸
first part

+ k · nk
︸ ︷︷ ︸
second part

This shows that the coefficient bi,k+1 consists of two parts determined
by the exponent of n. The first part corresponds to the coefficient of
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ni−1 in nk since n · ni−1 = ni, thus yielding a summand of bi−1,k.
The second part corresponds to multiplying the coefficient of ni by
k yielding a second summand of k · bi,k. Combining both summands
shows that

(3.4) bi,k+1 =

⎧
⎨

⎩

bi−1,k + kbi,k, i = 1, . . . , k

1, i = k + 1

These coefficients frequently appear in mathematics and are termed
Stirling numbers of the first kind, named after the mathematician
James Stirling (1692–1770). This brings up the immediate question:
What are Stirling numbers of the second kind? We will get to that in
a moment.

The typical notation for Stirling numbers of the first kind replaces
the parenthesis of binomial coefficients with brackets leading to

bi,k =

[
k

i

]

In this notation, the special cases previously mentioned are written as
(3.5)
[
k

0

]
= 0,

[
k

k

]
= 1,

[
k

1

]
= (k−1)!,

[
k

k − 1

]
=

(
k

2

)
,

k∑

i=0

[
k

i

]
= k!

The recurrence relationship (3.4), implies that

(3.6)

[
k + 1

i

]
=

[
k

i− 1

]
+ k

[
k

i

]

and

(3.7) nk =

k∑

i=1

[
k

i

]
ni

Programming the relationship (3.6), along with the special cases
just mentioned, yields the following table:
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Table of

[
k

i

]

k\i 1 2 3 4 5 6 7 8

1 1

2 1 1

3 2 3 1

4 6 11 6 1

5 24 50 35 10 1

6 120 274 225 85 15 1

7 720 1,764 1,624 735 175 21 1

8 5,040 13,068 13,132 6,769 1,960 322 28 1

Heading back to the modified version of Pascal’s equation allows a
rewrite in terms of Stirling numbers. The left-hand side of (3.3) can
be written as

n∑

i=1

ik =
n∑

i=1

k∑

j=1

[
k

j

]
ij(3.8)

=
k∑

j=1

[
k

j

] n∑

i=1

ij

=
k∑

j=1

[
k

j

]
Sj,n

where

Sj,n =
n∑

i=1

ij

The right-hand side of the Pascal equation (3.3) implies that

(3.9)
nk+1

k + 1
=

1

k + 1

k+1∑

j=1

[
k + 1

j

]
nj
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Equations (3.3), (3.8), and (3.9) thus create the identity

(3.10)

k∑

j=1

[
k

j

]
Sj,n =

1

k + 1

k+1∑

j=1

[
k + 1

j

]
nj

Minor modifications to less awkward indices with equations (3.9) and
(3.10) show that we have just derived the identity:

(3.11) nk = k
k−1∑

j=1

[
k − 1

j

]
Sj,n

and

(3.12)

(
n+ k

k + 1

)
=

〈
n

k + 1

〉
=

1

k!

k∑

j=1

[
k

j

]
Sj,n, k = 1, . . . , n

Stirling numbers of the first kind also allow writing falling factorials
after minor sign changes. The modified version of (3.7) for falling
factorials is given by

(3.13) nk =
k∑

i=1

(−1)k−i

[
k

i

]
ni

As an example, this implies that

(3.14) n4 = n4 − 6n3 + 11n2 − 6n

3.2 Stirling Numbers of the Second Kind

To reverse direction, we seek to derive an equation that expresses a
power in terms of falling factorials, specifically

(3.15) nk =

k∑

i=0

ci,kn
i

for some unknown constants ci,k. Some coefficients are immediately
obvious: the boundary cases c0,k = 0 and ck,n = 0, k > n, which can
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now be eliminated, and ck,k = 1. What are the remaining coefficients?
To answer this, a straightforward calculation shows that

Coefficients ci,k

k\i 1 2 3 4 5

1 1

2 1 1

3 1 3 1

4 1 7 6 1

5 1 15 25 10 1

Blanks above equal 0 and thus, as an illustration, the table shows that
n4 = n1+7n2+6n3+n4. There is a repeating pattern to the numbers in
this table which can be illustrated by an example. Consider the entry
for c3,5 = 25. It can be written in terms of entries on the preceding
row, specifically it equals 3c3,4+ c3,3 = 3× 6+7. This pattern persists
in the table which suggests that

(3.16) ci,k = ici,k−1 + ci−1,k−1

Assume that this holds up to some value k and write

nk+1 = n nk =
k∑

i=1

ci,kn ni

=
k∑

i=1

ci,k
(
ni+1 + i ni

)

=
k∑

i=1

ci,kn
i+1 +

k∑

i=1

ci,kin
i

=
k+1∑

i=2

ci−1,kn
i +

k∑

i=1

ci,kin
i

=
k+1∑

i=1

ci−1,kn
i +

k+1∑

i=1

ci,kin
i

=
k+1∑

i=1

ci,k+1n
i



34 3 Syntax Precedes Semantics

where the last step follows from the induction hypothesis (3.16) and
the second to last step is a result of the 0 boundary cases mentioned
above.

The coefficients just derived are termed Stirling numbers of the
second kind and are expressed in combinatorial notation using braces
instead of parenthesis, that is

{
i

k

}
= ci,k. This implies that

(3.17) nk =
k∑

i=1

{
k

i

}
ni

and, with equation (3.16), that

(3.18)

{
k

i

}
= i

{
k − 1

i

}
+

{
k − 1

i− 1

}

Programming the relationship (3.18) along with the special cases
just mentioned yields the following table:

Table of

{
k

i

}

k\i 1 2 3 4 5 6 7 8

1 1

2 1 1

3 1 3 1

4 1 7 6 1

5 1 15 25 10 1

6 1 31 90 65 15 1

7 1 63 301 350 140 21 1

8 1 127 966 1,701 1,050 266 28 1

Substituting (3.13) into (3.17) implies that

nk =
k∑

i=1

{
k

i

}
ni

=
k∑

i=1

{
k

i

} i∑

j=1

(−1)i−j

[
i

j

]
nj
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=
k∑

j=1

k∑

i=j

{
k

i

}
(−1)i−j

[
i

j

]
nj

= nk +

k−1∑

j=1

nj
k∑

i=j

(−1)i−j

{
k

i

}[
i

j

]

and thus that

(3.19)

k−1∑

j=1

nj
k∑

i=j

(−1)i−j

{
k

i

}[
i

j

]
= 0

Matching powers of n in equation (3.19) produces an equation linking
the two kinds of Stirling numbers:

(3.20)
k∑

i=j

(−1)i−j

{
k

i

}[
i

j

]
=

{
0, j = 1, . . . , k − 1

1, j = k

The second linkage between Stirling numbers is seen by comparing
the submajor diagonals in tables found on pages 31 and 34 which
suggests that

(3.21)

[
k

k − 1

]
=

{
k

k − 1

}

3.2.1 The Stirling Transform and Inverse

Equation (3.20) exposes another example of a transform. To define
this let

(3.22) u�(x) =
�∑

k=0

{
�

k

}
xk

and

(3.23) v�(x) =

�∑

k=0

(−1)�−k

[
�

k

]
xk
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and set b� = u�(a). Similar to the calculation of a binomial transform
and its inverse, calculate

v�(b) =
�∑

k=0

(−1)�−k

[
�

k

]
bk

=
�∑

k=0

(−1)�−k

[
�

k

] k∑

i=0

{
k

i

}
ai

=
�∑

i=0

ai

�∑

k=i

(−1)�−k

[
�

k

]{
k

i

}

= a� From Equation (3.20)

This shows that u� and v� are inverse function of each other. These
functions are termed a Stirling transform and inverse, respectively.

3.3 Combinatorial Interpretation

So far the discussion of Stirling numbers has focused on their algebraic
properties. This is manifested in the recurrence relations given by
equations (3.6) and (3.18). Like binomial and binomial-R coefficients,
however, there is a combinatorial interpretation of these recurrences
which lends insight into their associated algebraic properties. Consider,
for example, the total number of ways to partition n items into k non-
empty sets, a quantity we will denote by h(k, n). To illustrate, for
k = 3 and set {1, 2, 3, 4} the possible partitions are

{{1}, {2}, {3, 4}} {{1}, {3}, {2, 4}} {{1}, {4}, {2, 3}}(3.24)

{{1, 2}, {3}, {4}} {{1, 3}, {2}, {4}} {{1, 4}, {2}, {4}}

showing that h(3, 4) = 6. With n = 3 and set {2, 3, 4} the number of
partitions with two sets is given by

(3.25) {{2}, {3, 4}} {{3}, {2, 4}} {{4}, {2, 3}}
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showing that h(2, 3) = 3 and the number of partitions with three
sets by

(3.26) {{2}, {3}, {4}}

showing that h(3, 3) = 1.
These examples contain the key for calculating a general recurrence

relationship for h(k, n). Focus on one distinguished element, denoted
by e, which can either occur in a partition by itself or with other
members. For instance, letting e = 1 in the first example above (3.24)
shows that it occurs alone in partitions found in the first row and as
a member with other elements in partitions found in the second row.
When e appears by itself, the remaining elements must form a partition
of k−1 sets from the remaining n−1 elements, which for this example
corresponds to the partitions found in the second example (3.25). On
the other hand, suppose that e is in a set with other members. Then
there are k partitions of n−1 elements to which it can be added. In our
example, the second row shows that 1 is added to each of the sets on
the third example (3.26). Since there are k possibilities for selecting
the distinguished element that number of such possibilities is given
by k h(k, n − 1). These two cases count all possibilities and thus the
general recurrence consists of two disjoint parts:

(3.27) h(k, n) = h(k − 1, n− 1)︸ ︷︷ ︸
e is by itself

+ k h(k, n− 1)︸ ︷︷ ︸
e is with other elements

Comparing the recurrence in equation (3.18), with the recurrence just

derived, equation (3.27) shows that h(k, n) =
{
n

k

}
and provides a

combinatorial interpretation of Stirling numbers of the second kind.
A combinatoric interpretation of Stirling numbers of the first kind

arises when one considers cycles in permutations. Suppose that integers
1 through n are permuted leading to (a1, . . . , an). If aj = i, then we say
that item i in the permutation was moved to position j and represent
this by i → j. A cycle in the permutation is a sequence i → j → k →
· · · → i indicating that i was moved to j, j was moved to k, and so
forth until eventually the sequence returns back to i. As an example,
there are three cycles for the permutation (3, 2, 5, 6, 1, 4):

1 → 3 → 5 → 1 2 → 2 4 → 6 → 4
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Howmany possible permutations are there in which k cycles are formed
when n items are permuted?

To derive a recurrence for this, let g(i, k) count the number of pos-
sible i-cycles when k items are permuted. Focus on one distinguished
element which is added to n items. This distinguished element can
either be a cycle unto itself or become part of another cycle. In the
first case i cycles are created if the k other items form i − 1 cycles,
g(i− 1, k). In the second case, the distinguished item can be added to
any one of the existing i cycles and this can be done by adding it to
any of the k places formed by the existing items, kg(i, k). These are
disjoint cases and thus

(3.28) g(i, k + 1) = g(i− 1, k) + kg(i, k)

Comparing the recurrence in equation (3.6) with the recurrence just

derived, equation (3.28) shows that g(i, k+ 1) =
[
k + 1

i

]
and provides

a combinatorial interpretation of Stirling numbers of the first kind.
To express the recurrence relationships considered thus far in the

text along with their combinatorial interpretations, let βk,n denote
a recurrence relationship of n items having k sub-features (such as
choices, cycles, or partitions). The following table then illustrates the
differences between the primary counting regimes:

Type Recurrence Relationship Combinatorial Meaning

nk βk,n = nβk−1,n Number of permutations of k items from
a set of n with replacement

nk βk,n = nβk−1,n−1 Number of permutations of k items from
a set of n without replacement〈

n

k

〉
βk,n = βk−1,n + βk,n−1 Binomial-R coefficients: The number of

ways to choose k items from a set of n
with replacement.(

n

k

)
βk,n = βk−1,n−1 + βk,n−1 Binomial coefficients: The number of

ways to choose k items from a set of n
without replacement.[

n

k

]
βk,n = βk−1,n−1 + (n− 1)βk,n−1 Stirling numbers of the first kind: The

number of k cycles in a permutation of
n items{

n

k

}
βk,n = βk−1,n−1 + kβk,n−1 Stirling numbers of the second kind: The

number of ways to partition n items into
k non-empty subsets.



Chapter 4

Fearful Symmetry

Tyger Tyger, burning bright,
In the forests of the night;
What immortal hand or eye,
Could frame thy fearful symmetry?

William Blake (1757–1827)

Symmetry might be fearful in a Tiger as William Blake alludes to
in his poem, The Tyger, but in mathematics it is wholly a thing of
beauty. Symmetry can often be used as a tool to cut a simple, elegant,
path through a labyrinth of mathematical obstacles. Abstractly, a
mathematical object displays the property of symmetry if it is invariant
to parametric change.

For example, a function f of n arguments is symmetric if any permu-
tation of its arguments leaves the value of the function unchanged. To
state this precisely, let �i be a permutation of the integers 1 through n.
Then f is symmetric if it satisfies

f(x1, . . . , xn) = f(x�1 , . . . , x�n)

for all possible permutations. A geometric figure is said to be sym-
metric about an axis of symmetry if its shape is invariant to rotations
about that axis. This can be expressed in terms of the equation for
the figure. Thus if f(x) is an equation for a figure on the plane, then
it is said to have even symmetry if f(x) = f(−x) and odd symmetry
if −f(x) = f(−x). These symmetries correspond to an invariance of
shape when the figure is rotated about a vertical line (even symmetry)
or rotated about a vertical line and a horizontal line (odd symmetry).

This chapter derives results that follow from symmetric properties
starting with simple polynomials. Classic results such as the quadratic
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formula, the equation for the line of shortest distance between a
point and a line, and the Pythagorean Theorem are derived using
symmetry. Expressing a polynomial in terms of its roots leads to the
definition of elementary simple polynomials which in turn leads to the
Newton–Giraud formula. This formula produces a wealth of identity
relationships which links up symmetry with combinatorics providing
a unified way to express binomial and binomial-R coefficients as well
as Stirling numbers of the first and second kind.

4.1 Symmetric Functions

A function is said to be symmetric if its value is invariant under a
reordering of its arguments. For example, Euclidean distance between
two points, pi = (xi, yi), i = 1, 2 in the plane is a symmetric function
of the points:

(4.1) d(p1, p2) =
√
(x2 − x1)2 + (y2 − y1)2

4.1.1 Simple Polynomials

Another example of symmetric functions arises in a first degree
polynomial, a line, with equation

y = f(x) = ax+ b

The slope

(4.2) a =
y2 − y1
x2 − x1

and intercept

(4.3) b =
y1x2 − y2x1
x2 − x1

clearly do not depend on the order of the points and thus are symmetric
functions of p1 and p2.

A quadratic polynomial is written as

g(x) = ax2 + bx+ c
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It may not be obvious from this equation but that g has a point of
symmetry, which we denote by s. This implies that a parabola, the
curve of a quadratic polynomial, has the same shape when flipped
about the y-axis centering on point s (it has even symmetry). Consider
g evaluated about the point s:

g(s+ x) = a(s+ x)2 + b(s+ x) + c

= g(s) + ax2 + (2as+ b)x

Notice that the coefficient of the x term above vanishes if we select s
to equal

(4.4) s = − b

2a

The value of the function at this point is given by

(4.5) g(s) =
b2

4a
− b2

2a
+ c = c− b2

4a
= c− as2

and the function evaluated about it by

(4.6) g(s+ x) = g(s) + ax2

Since equation (4.6) only contains an even power of x, it follows that
g(s+x) = g(s−x) showing that s is a point of symmetry. Since x2 > 0,
equation (4.6) also shows that g(s) corresponds to a minimal of the
function if a > 0 and to a maximal value if a < 0.

4.1.2 The Quadratic Equation

The symmetry of g affords an effortless derivation of a classical result.
The roots of a function are places where it equals 0. In the quadratic
case, to solve for the roots we can lever off our results for the symmetric
point s to write

0 = g(s+ x) = g(s) + ax2

Solving this requires finding the value of s + x where the equation
equals 0. To determine the value of x we solve the equation yielding
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x2 = −g(s)

a

Taking the square root to get the x portion of the solution and then
combining with s leads to a solution given by

x�1,2 = s±
√
−g(s)

a

Substituting (4.4) and (4.5) for s and g(s), respectively, leads to the
well-known quadratic formula

x�1,2 =
−b±√

b2 − 4ac

2a

4.1.3 Equation of the Minimum Distance Line

An immediate question arises when adding another point p3 = (x3, y3)
to the plane: what is the distance from this point to the nearest point
on a line. To address this, let y = f(x) = ax + b be the equation for
the line and note that the distance of p3 from the line equals 0 if p3
lies on this line. Otherwise, to derive the minimum distance it is easier
to work with square of the distance, termed the Squared Euclidean
distance. The value of d2 to a point (x, y) using (4.1) can be written
as the quadratic

d2 = (x3 − x)2 + (y3 − (ax+ b))2

Some algebra reduces this expression to the quadratic polynomial

(4.7) d2 = αx2 + βx+ γ

where

(4.8) α = 1 +m2, β = −2(x3 +m(y3 − b)), γ = x23 + (b− y3)
2

Let σ denote the symmetric point of this quadratic given in (4.4)

(4.9) σ = − β

2α
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Since α = 1 + a2 is positive, the value of the quadratic (4.7) at
symmetric point α corresponds to the minimal distance. Thus the
distance between point q = (σ, f(σ)) on the line and point p3 = (x3, y3)
corresponds to the minimum distance. The minimal squared distance
is thus given by (4.5)

d2 = γ − β2

4α
= x23 + (y3 − b)2 − (x3 + a(y3 − b))2

1 + a2

which simplifies to

d2 =
(y3 − b− ax3)

2

1 + a2

Taking the positive square root of this (expressed here in terms of an
absolute value) shows that the minimal distance of point p3 to the line
f is given by

(4.10) d =
|y3 − b− ax3|√

1 + a2
=

|y3 − f(x3)|√
1 + a2

Let the equation for the minimum distance line be given by w(x) =
ux + v. The point of intersection on the line corresponding to the
minimal distance equals q = (σ, f(σ)). Substituting the values for α
and β in these expressions yields

(4.11) σ =
x3 + a(y3 − b)

1 + a2

and

(4.12) f(σ) =
a2y3 + ax3 + b

1 + a2

To determine the equations for u and v we can use the previous results
derived for linear equations. The slope u of the minimal distance line,
using (4.2), is given by

u =
y3 − f(σ)

x3 − σ
=

y3 − a2y3+ax3+b
1+a2

x3 − x3+a(y3−b)
1+a2
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which simplifies to

u = −1

a

The intercept, using (4.3), is given by

v =
f(σ)x3 − y3σ

x3 − σ
=

(a2y3+ax3+b)x3−y3(x3+a(y3−b)
1+a2

x3 − x3+a(y3−b)
1+a2

which gracefully collapses to

v = y3 +
x3
a

Thus the equation for the minimal distance line can be compactly
written as

(4.13) w(x) = y3 +
x3 − x

a

4.1.4 The Pythagorean Theorem

Another well-known result depending only on symmetry arises from
the previous arguments. Point p3 = (x3, y3) is a distance of d from
point (σ, f(σ)) on line f . Consider another point that lies on line f
denoted by r = (x, y) and, to avoid a special case, assume that r �= q =
(σ, f(σ)). There are now three different line segments that arise when
points p3, q, and r are taken two at a time. What is the relationship
between them? Once again we will deal with squared distances to
simplify equations.

Equations for these three line segments can be written as follows:
from equation (4.10)

d2p3,q =
(y3 − f(x3))

2

1 + a2

The distance between q and r can be written in terms of σ:

d2q,r = (x− σ)2 + (y − f(σ))2
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and between r and p by

d2r,p = (x− x3)
2 + (y − y3)

2

Substituting (4.11) and (4.12) into the equation for d2q,r, along with
tedious algebra, shows that these distances satisfy

d2r,p = d2p,q + d2q,r

This equation is a form of the Pythagorean Theorem.
Typical derivations of the theorem start with a triangle having

one angle of 90 degrees, a right triangle, and then establish the
equation relating the length of the hypotenuse to that of the sides
of the triangle. The Pythagorean Theorem here emerged algebraically
only using symmetry without requiring the notion of an angle. The
obvious conclusion is that the line connecting point (x, y) along the
shortest path to f intersects f in a right angle. Joining this with the
Pythagorean Theorem supports the intuition that the shortest distance
between two points on a plane is a straight line.

This conclusion, however, is a consequence of the choice of a dis-
tance metric.The Euclidean metric implies the Pythagorean Theorem
whereas other metrics do not. For example, a Manhattan metric allows
only movements on a grid, like the streets of Manhattan, thus allowing
no diagonal moves. In contrast, a Chebyshev metric is similar to the
way a King moves on a chess board which does allow diagonal moves.
The shortest distance between a point and a line defined in these spaces
results in different conclusions.

4.1.5 Cubic Polynomials

It makes sense at this point to ask the obvious question: does the same
geometric symmetry exist for a cubic polynomial? To investigate this,
write the cubic as

p(x) = ax3 + bx2 + cx+ d

and consider the cubic around a given point s to write
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p(s+ x) = a

3∑

i=0

(
3

i

)
six3−i + b

2∑

i=0

(
2

i

)
six2−1 + c(s+ x) + d

= p(s) + (3as2 + 2bs+ c)x+ (3as+ b)x2 + ax3

= p(s) + f(x)

where we have defined

f(x) = (3as2 + 2bs+ c)x+ (3as+ b)x2 + ax3

Selecting a value of s so that 3as + b = 0 eliminates the square term
above

s = − b

3a

With minor algebra this leads to

f(x) = (c+ bs)x+ ax3

and

p(s) = 2bs2/3 + cs+ d

Notice that f only has odd powers of x and thus f(x) = −f(−x). This
shows that p is an odd function and thus implies that the shape of
the cubic is invariant to flipping it about point s while also flipping it
about the x-axis:

f(x) = p(s+ x)− p(s) = −(p(s− x)− p(s))

The point of symmetry for the quadratic provided a simple way to
obtain its roots. Does the cubic yield its roots so easily? The roots are
obtained by solving the equation

ax3 + bx2 + cx+ d = 0

The roots do not change if the equation is divided by a. To avoid
carrying around awkward notation, let the values of b, c, and d now
correspond to the arguments that result after division. This creates
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the monic polynomial (a univariate polynomial where the leading
coefficient equals 1)

x3 + bx2 + cx+ d = 0

The symmetric point for this modification is given by

s = − b

3

Solving for the roots of this polynomial implies finding the values of x
which satisfy

p(s+ x) = f(x) + p(s) = 0

which, after expanding the terms, means solving

(c+ bs)x+ x3 + p(s) = 0

Since p(s) is a constant, the difficulty with solving this equation lies in
the fact that there is a non-zero coefficient for the x term in the above
equation. If it were eliminated, then taking the cube root would yield
the solution.

This presents the general problem to solve

(4.14) x3 + μx+ ω = 0

where μ and ω are constants. François Viète (1540–1603) proposed an
ingenious substitution that reduces this problem to that of solving a
quadratic. Let z be a variable that satisfies

(4.15) x = z +
ν

z

for some constant ν. Then substitution of (4.15) into (4.14) leads to

(
z +

ν

z

)3
+ μ
(
z +

ν

z

)
+ ω = 0

Expanding and collecting terms leads to

z3 + (3ν + μ) z + ν (3ν + μ)
1

z
+

ν3

z3
+ ω = 0
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The genius of Viète’s substitution is seen when the z and 1/z term
both vanish with the selection of

ν = −μ

3

This leads to the much reduced equation

z3 +
μ3

27z3
+ ω = 0

To determine the roots for this equation, multiply by z3 which aptly
leads to a quadratic in z3

(
z3
)2

+ ω
(
z3
)
+

μ3

27
= 0

This is easily solved using the quadratic formula.
With this general solution behind us, the roots of the original

polynomial can now be written by unfolding all of the substitutions
made along the way. We will only sketch the process here. The steps
include solving the quadratic, taking the cube root of the solutions
to determine x, substituting the values of μ, ω, and s, including the
function p(s), and expressing everything in terms of b, c, and d. The
path along the way poses issues that deal with imaginary numbers.

4.2 Elementary Symmetric Polynomials

The roots ri, i = 1, . . . , n, of a polynomial of degree n can be analyzed
by writing the polynomial as a monic polynomial consisting of a
product of terms:

pn(x) = (x− r1)(x− r2) · · · (x− rn)

= xn + an−1,nx
n−1 + · · ·+ a1,nx+ a0,n

In the last equation ak,n denotes the coefficient of xk (an,n = 1) in the
expanded polynomial. Clearly pn(x) = 0 whenever x = ri. To obtain
an idea of how to calculate the coefficients of pn expand the first few
cases:

p2(x) = x2 − (r1 + r2)x+ r1r2

p3(x) = x3 − (r1 + r2 + r3)x
2 + (r1r2 + r1r3 + r2r3)x− r1r2r3
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p4(x) = x4 − (r1 + r2 + r3 + r4)x
3 + (r1r2 + r1r3 + r1r4 + r2r3

+ r2r4 + r3r4)x
2 −−(r1r2r3 + r1r2r4 + r1r3r4

+ r2r3r4)x+ r1r2r3r4

What is the pattern? Ignoring the sign of the coefficients for now,
observe that the constant term is the product of all of the roots, the
coefficient of xn−1 is the sum of all the roots taken one at a time,
and the coefficient of xn−2 is the sum of all possible unique products
of roots taken two at a time. In general, then, the coefficient of xn−k

is the sum of all possible unique product of roots taken k at a time.
There are

(
n

k

)
such products.

With these observations in mind, define a family of elementary
symmetric polynomials that delineate these possibilities1

(4.16)

ek(x1, . . . , xn) =

⎧
⎨

⎩

∑
1≤i1<i2<···<ik≤n xi1xi2 · · ·xik k = 1, . . . , n,

0, k > n

In these terms, the pattern depicted above can be written as

(4.17) pn(x) = xn +
n∑

i=1

(−1)iei(r1, . . . , rn)x
n−i

which compactly expresses the polynomial as a function of its roots.
The coefficient of xk of the polynomial pn(x) is thus given by

(4.18) ak,n =

⎧
⎨

⎩

1, k = n

(−1)n−ken−k(r1, . . . , rn), k = 0, . . . , n− 1

As an application of this equation consider a falling factorial defined
by

nk = n(n− 1) · · · (n− k + 1)

= nk + bk−1,kn
k−1 + . . .+ b1,kn

1This generalizes the summation found in equation (4.36)which counted the number
of times an inner loop was executed in a nested set of for loops.
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where the coefficients of the polynomial associated with the falling
factorial are denoted by bi,k. It is clear that there are k roots of the
falling factorial polynomial that are given by ri = i − 1, i = 1, . . . , k.
To simplify notation, let νn be a vector defined by νn = (0, 1, . . . , n).
Thus equation (4.18) implies that

(4.19) bi,k =

⎧
⎨

⎩

1, i = k

(−1)k−iek−i(νk−1), i = 1, . . . , k − 1

Thus

(4.20) nk =
k∑

i=1

(−1)k−iek−i(νk−1)n
i

To calculate an equation for the elementary symmetric polynomials
in (4.20), consider the following expansion which is easily derived by
mimicking the derivation of (4.17):

n∏

i=1

(λ+ zi) = λn +
n∑

i=1

ei(z1, . . . , zn)λ
n−i

This equation equals 0 for λ = −z�, � = 1, . . . , n,

0 = (−1)nzn� +
n∑

i=1

(−1)n−iei(z1, . . . , zn)z
n−i
� , � = 1, . . . , n

Summing all of these equations yields

0 =
n∑

�=1

(
(−1)nzn� +

n∑

i=1

(−1)n−iei(z1, . . . , zn)z
n−i
�

)

= (−1)n
n∑

�=1

zn� +
n∑

i=1

(−1)n−iei(z1, . . . , zn)
n∑

�=1

zn−i
�

Defining

(4.21) qk(z1, . . . , zn) = zk1 + · · ·+ zkn
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and rewriting yields

0 = (−1)nqn(z1, . . . , zn) +
n∑

i=1

(−1)n−iei(z1, . . . , zn)qn−i(z1, . . . , zn)

(4.22)

This formula, termed the Newton–Girard formula, was first discovered
by Albert Girard (1595–1632) and later, independently, by Isaac
Newton (1653–1727).

4.2.1 Newton–Girard Formula

Equation (4.22) lends itself to a recursive representation. Since the
equation is valid for any number of arguments, simplify notation by
dropping the argument list. Also note that q0 = z01 + · · · + z0n = n.
Rewriting (4.22) with these simplifications, along with a reorganization
of the terms, yields

(4.23) nen = (−1)n+1qn +
n−1∑

i=1

(−1)n−i+1eiqn−i

The first few recursions for the functions ei are given by

e1 = q1

e2 =
1

2
(e1q1 − q2)

e3 =
1

3
(e2q1 − e1q2 + q3)

e4 =
1

4
(e3q1 − e2q2 + e1q3 − q4)

Unfolding these recursions leads to the equalities

e1 = q1(4.24)

e2 =
1

2
(q21 − q2)
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e3 =
1

6
(q31 − 3q1q2 + 2q3)

e4 =
1

24
(q41 − 6q21q2 + 8q1q3 + 3q22 − 6q4)

Writing a recursion for the values of qi leads to the following equations:

q1 = e1

q2 = e1q1 − 2e2

q3 = e1q2 − e2q1 + 3e3

q4 = e1q3 − e2q2 + e3q1 − 4e4

Unfolding these recursions leads to

q1 = e1(4.25)

q2 = e21 − 2e2

q3 = e31 − 3e1e2 + 3e3

q4 = e41 − 4e21e2 + 4e1e3 + 2e22 − 4e4

4.2.2 Identities and Combinatorial Coefficients

With these recursions in place it is easy to compute the values ek for the
falling factorial considered in equation (4.20) (closed form expressions
for these values can also be written). Note that

(4.26) qk(ν�−1) = Sk,�−1

where S is the sum of integer powers defined by

Sk,n = 1 + 2k + · · ·+ nk

Substituting this into (4.23) for the first few values yields the following
table for the values of ek:
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Table of ek(νn)

n

k\n 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0

2 3 2 0 0 0 0 0

3 6 11 6 0 0 0 0

4 10 35 50 24 0 0 0

5 15 85 225 274 120 0 0

6 21 175 735 1,624 1,764 720 0

7 28 322 1,960 6,769 13,132 13,068 5,040

As an example of using the results of this table consider the third row
in the table which shows

n4 = n4 − 6n3 + 11n2 − 6n

This table is similar to that of page 31 associated with Stirling numbers
of the first kind (page 29). Linking equation (4.20) with the derivation
of equation (3.13) in that chapter establishes the relationship between
these two mathematical systems

(4.27) nk =
k∑

i=1

(−1)k−iek−i(νk−1)n
i =

k∑

i=1

(−1)k−i

[
k

i

]
ni

Matching exponents of n establishes an equation between elementary
symmetric polynomials and Stirling numbers of the first kind:

(4.28) ek−i(νk−1) =

[
k

i

]
, i = 1, . . . , k − 1

The Newton–Girard formula opens up a literal ocean of possible
identities . To state a few, use (4.26) and (4.28) in the equations for
ei in (4.24) along with some minor index manipulations, to create

S1,� =

[
�+ 1

�

]
(4.29)

1

2

(
S2
1,� − S2,�

)
=

[
�+ 1

�− 1

]
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1

6

(
S3
1,� − 3S1,�S2,� + 2S3,�

)
=

[
�+ 1

�− 2

]

1

24

(
S4
1,� − 6S2

1,�S2,� + 8S1,�S3,� + 3S2
2,� − 6S4,�

)
=

[
�+ 1

�− 3

]

To proceed along the complementary path, use the equations for qi in
(4.25) to produce the identities

(4.30) S2,� =

[
�+ 1

�

]2
− 2

[
�+ 1

�− 1

]

(4.31) S3,� =

[
�+ 1

�

]3
− 3

[
�+ 1

�

] [
�+ 1

�− 1

]
+ 3

[
�+ 1

�− 2

]

To consider the special case where zi = 1, i = 1, . . . , n, let 1n be a
length n vector of 1’s, 1n = (1, . . . , 1)︸ ︷︷ ︸

n times

and note that

(4.32) qk(1n) = n, k = 1, . . .

Substituting into (4.24) yields

e1(1n) = n(4.33)

e2(1n) =
1

2
(n2 − n)

e3(1n) =
1

6
(n3 − 3n2 + 2n)

e4(1n) =
1

24
(n4 − 6n3 + 11n2 − 6n)

Equation (4.27) implies that we can write this pattern by

(4.34) ek(1n) =
nk

k!
=

(
n

k

)
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Substituting this into (4.25) generates the following sequence of
identities:

n = n2 − 2

(
n

2

)
(4.35)

= n3 − 3n

(
n

2

)
+ 3

(
n

3

)

= n4 − 4n2

(
n

2

)
+ 4n

(
n

3

)
+ 2

(
n

2

)2

− 4

(
n

4

)

Unfolding (4.34) yields an identity pertinent to computer programming
that counts the number of times the inner loop is executed in a nested
series of for loops

(4.36)
∑

1≤i1<···<ik≤n

1 =

(
n

k

)

4.2.3 Inclusion–Exclusion

A novel use of identity (4.36) is to determine the size of a set. To
explain this, let |x| denote the number of elements of a set x and let
ai, i = 1, . . . n be a family of sets.. For n = 2 a familiar result shows
that

(4.37) |a1 ∪ a2| = |a1|+ |a2| − |a1 ∩ a2|
The analogous statement for n = 3 is

|a1 ∪ a2 ∪ a3|
(4.38)

= |a1|+ |a2|+ |a3| − |a1 ∩ a2| − |a1 ∩ a3| − |a2 ∩ a3|+ |a1 ∩ a2 ∩ a3|

The inclusion–exclusion principle generalizes these results and states
that
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|a1 ∪ · · · ∪ an|
(4.39)

=
n∑

i=1

|ai| −
∑

1≤i1<i2≤n

|ai1 ∩ ai2 |+
∑

1≤i1<i2<i3≤n

|ai1 ∩ ai2 ∩ ai3 |+

· · ·+ (−1)n−1 |a1 ∩ · · · ∩ an|

To prove this, note that if element α is in any one of the sets ai,
then the left-hand side of equation (4.39) equals 1. Suppose then that
α is contained in � sets and, without loss of generality, assume that
these are the sets 1 through �. Thus α ∈ ai, i = 1, . . . , � and α /∈ aj , j =
� + 1, . . . , n. This implies that intersections on the right-hand side of
(4.39) with any set ai where i > � add 0 to the equation. Concentrating
on a particular intersection on the right-hand side shows that

∑

1≤i1<···<ik≤n

|ai1 ∩ · · · ∩ aik | =
∑

1≤i1<···<ik≤�

|ai1 ∩ · · · ∩ aik |

=
∑

1≤i1<···<ik≤�

1

=

(
�

k

)

where we have used the loop counting identity (4.36) in the last
simplification. Thus the right-hand side of equation (4.39) for element
α yields

�−
(
�

2

)
+

(
�

3

)
+ · · ·+ (−1)�−1

(
�

�

)
=

�∑

i=1

(−1)i−1

(
�

i

)
= 1

where the last equality comes from identity (2.28).
Often, when equations that have alternating signs, it is an indication

that they can be derived using inclusion–exclusion. One case where this
previously occurred involved dearrangements, equation (2.10). The
form of this equation correctly suggests that an inclusion–exclusion
argument could have been used to derive the result.
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4.3 Fundamental Theorem of Symmetric
Polynomials

There is a deeper theorem underlying the previous results. Both
the elementary symmetric polynomials (4.16) and the power sum
polynomials (4.21) are specific examples of symmetric polynomial
functions. Other examples include

F (X1, X2) = X2
1X

2
2 −X3

1X2 −X1X
3
2

F (X1, X2, X3) = X1X2X3 +X1X2 +X2X3 +X1X3

F (X1, X2, X3) = (X1 −X2)
2 + (X1 −X3)

2 + (X2 −X3)
2

There are, however, many other families of polynomials that are
symmetric. For example, the complete homogeneous symmetric poly-
nomials are defined similarly to the elementary symmetric polynomials
by replacing the < sign in the summation by a ≤ sign:
(4.40)

hk(x1, . . . , xn) =

⎧
⎨

⎩

∑
1≤i1≤i2≤···≤ik≤n xi1xi2 · · ·xik k = 1, . . . , n,

0, k > n

Similar to equation (4.34), it can be shown that binomial-R
coefficients satisfy

(4.41) hk(1n) =

〈
n

k

〉

In computer programming, this counts the number of loops where in
(4.36) less than signs are replaced with less than or equal signs can be
derived which shows that

(4.42)
∑

1≤i1≤···≤ik≤n

1 =

〈
n

k

〉

It is also the case that, like equation (4.28) for Stirling numbers of
the first kind, Stirling numbers of the second kind can be expressed in
terms of the family of homogeneous symmetric polynomials:

(4.43) hn−k(νk) =

{
n

k

}
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The results linking combinatorial coefficients with symmetric polyno-
mials are summarized in the table below:

Type Combinatorial Term Symmetry
(
n

k

)
Binomial Coefficient ek(1n)

〈
n

k

〉
Binomial-R Coefficient hk(1n)

[
n

k

]
Stirling Numbers of the First Kind en−k(νn−1)

{
n

k

}
Stirling Numbers of the Second Kind hn−k(νk)

The monomial symmetric polynomials are another family of sym-
metric polynomials which are specified through exponents that corre-
spond to a partition of an integer. An example can be used as a quick
way to define these polynomials. Consider a partition of the integer 6
given by (3, 2, 1), 6 = 3 + 2 + 1 then

m(3,2,1) = X3
1X

2
2X3 +X3

1X2X
2
3 +X2

1X
3
2X3 +X2

1X2X
3
3

+X1X
3
2X

2
2 +X1X

2
2X

3
3

The partition of the integer k given by

λk = (1, . . . , 1︸ ︷︷ ︸
k 1’s

, 0, . . . , 0︸ ︷︷ ︸
n−k 0’s

)

shows that the elementary symmetric polynomials and the monomial
symmetric polynomials are related by

(4.44) ek(x1, . . . , xn) = mλk
(x1, . . . , xn)

There are many other examples of families of symmetric polynomials
but the four examples defined so far are sufficient to make our point.
To aid in this, it suffices to simply state two equations that are similar
in spirit to the Newton–Girard formula (4.22):

(4.45) 0 =
n∑

k=0

(−1)iek(x1, . . . , xn)hn−k(x1, . . . , xn)
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and

(4.46) 0 =
∑

λ=all partitions of integer k

mλ(x1, . . . , xn)− hk(x1, . . . , xn)

Something deeper is at hand. Equations (4.22), (4.44), (4.45), and
(4.46) all depict a weighted summation that equals 0 that relates to the
elementary symmetric polynomials. These equations all point towards
the same source: the Fundamental Theorem of Symmetric Polynomials.
This theorem states that any symmetric polynomial can be expressed
as a unique combination of the elementary symmetric polynomials.
The families of symmetric polynomials defined so far, the power sum,
the homogeneous, and the monomial, are all special cases of this
theorem.

This chapter has now almost come close to full closure. It started
with the symmetry found in an Euclidean distance metric and with
the equations for the slope and intersect of a linear equation. This led
to the equation for the minimal distance from a point to the line which
required the symmetry of a quadratic polynomial. A byproduct of this
symmetry was the quadratic formula and the Pythagorean Theorem.
As an aside cubic polynomials were shown to have a reverse symmetry.
The elementary symmetric polynomials were derived to analyze the
structure of the roots of a polynomial and this led to an equation
between these polynomials and the power sum polynomials. A wealth
of identities were derived leading the way to the fundamental theorem
of symmetric polynomials.

4.4 Galois’ Theorem and Numerical Solutions

One of mathematics more bizarre stories deals with the impossibility
of a general closed form equation for the roots of polynomials of degree
5 or higher. This was proved by Évariste Galois (1811–1832) and,
at first, was not accepted by the mathematical community. Under
premonitions of his impending death, Galois wrote a mathematical
testament the night before a scheduled duel. In the margins of the
manuscript he wrote the foreboding words, “There is something to
complete in this demonstration. I do not have the time”. It is presumed
that the duel had something to do with his love relationship, or
lack thereof, with Stephanie-Felice du Motel. Although his results
eventually won the minds of mathematicians and led to a branch of
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mathematics called Galois Theory , he lost in the heart of love and was
wounded in the duel. Pitilessly abandoned on the field of battle by his
opponent, a peasant found him and he died the next day at the young
age of 20.

If you cannot write an equation for the solution of the roots of a
higher order polynomial, then a numerical technique must be utilized.
One way to create such an algorithm is through a series of linear
approximations. To describe one such algorithm, let f(x) be a function
and let x0 and x1 be two different values that are selected to be close
to a root.2 If either f(x0) or f(x1) equals 0 then a root has been found
and the algorithm stops. The line connecting these points has a slope
given by equation (4.2)

m1 =
f(x1)− f(x0)

x1 − x0

and an intercept given by equation (4.3)

h1 =
x1f(x0)− x0f(x1)

x1 − x0

The root of this linear equation, given by the next iterate x2, is an
estimate for a root of f . This is found by solving

0 = m1x2 + h1

which implies that

(4.47) x2 =
−h1
m1

=
x0f(x1)− x1f(x0)

f(x1)− f(x0)

If function f is linear over the range of x0 and x1, then x2 is a root
and the algorithm stops, otherwise the iteration continues by creating
a series of estimates given by a straightforward index modification of
(4.47):

xi =
xi−2f(xi−1)− xi−1f(xi−2)

f(xi−1)− f(xi−2)
, i = 2, . . .

2Selecting initial points to start the algorithm is often an art rather than a science.
It is not uncommon to perform a set of experiments with a variety of initial points.
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This algorithm, termed the sequent method , corresponds to a series
of linear approximations that continue until |xn+1 − xn| becomes
sufficiently small or a limit on the number of iterations is exceeded.

The basic idea of the algorithm is that as the xi−1 and xi get closer,
the function for that small range is closely approximated by a straight
line. Typically this assumption holds and the algorithm converges to
a root. It is possible, however, to start with a poor choice of initial
points, or to have a function that is difficult to approximate linearly
even over small ranges. In such cases, the algorithm stops after the
iteration limit is achieved without finding a root.

To illustrate the algorithm, consider the quintic rising factorial
polynomial

x5 = x(x+ 1)(x+ 2)(x+ 3)(x+ 4) = x5 + 10x4 + 35x3 + 50x2 + 24

which obviously has roots −i for i = 0, 1, 2, 3, 4. Starting with
x0 = −2.1 and x1 = −3.9 yields the following output showing that
convergence to the root at x = −3 occurs after six iterations

i xi f(xi)

0 -2.1 -0.39501

1 -3.9 1.93401

2 -2.40528634361233 -1.29922451355076

3 -3.00591355298394 0.0356551283383601

4 -2.9898705783504 -0.0602583598595037

5 -2.99994969607251 -0.000301810911873649

6 -3.00000043261029 2.59566265598619e-06

7 -2.99999999998186 -1.08816955444756e-10

8 -3 0

The field of numerical analysis launches from this platform.



Chapter 5

All That Glitters Is Not Gold

All that glisters is not gold;
Often have you heard that told:
Many a man his life hath sold
But my outside to behold:
Gilded tombs do worms enfold.

William Shakespeare (1564–1616)
The Merchant of Venice, Act 2, scene 7

Despite the temptations of gold alluded to in Shakespeare’s verse above
from The Merchant of Venice, the pursuit of mathematical gold leads,
not to gilded tombs, but to the paradise of the Elysian fields of ancient
Greece. Our journey in this chapter takes us back to the days of Phidias
(480–430 BC), a Greek sculptor and mathematician who is said to have
helped with the design of the Parthenon. The approach in this chapter
uses a simple artifice—the ratio of two line segments.

5.1 The Golden Ratio

Consider a line consisting of two line segments. The first segment has
a length of 1 unit and the other has length 1− ε where 0 < ε < 1. By
construction, the second length is the smaller of the two. We are going
to select the value of ε that equalizes two ratios. The first ratio, r1, is
the length of the total line segment to that of the larger section, thus

(5.1) r1 =
1 + 1− ε

1
= 2− ε
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The second ratio, r2, is the length of the larger segment to that of the
smaller segment

(5.2) r2 =
1

1− ε

For some value ε� the two ratios are equal. It is not hard to derive an
equation for ε�:

2− ε� =
1

1− ε�

or that

(ε�)2 − 3ε� + 1 = 0

Using the quadratic formula yields the solution to this quadratic
polynomial

ε� =
3±√

5

2

The solution corresponding to the positive square root is larger than 1
which lies outside the bound on the length of the second segment so1

ε� =
3−√

5

2
= 0.381966011250105 . . .

The value of ε� can be calculated using (5.1) and shows that

(5.3) r1 = 2−ε� = 2−3−√
5

2
=

1 +
√
5

2
= φ = 1.61803398874989 . . .

This calculated value, typically denoted by φ, is the golden ratio that
was admired by Phidias who used it in the design of the shape of the
Parthenon.2

Equation (5.2) expresses φ differently

1The appearance of
√
5 implies that ε� is irrational, see the proof on page 171.

2The Internet is replete with interesting historical facts dealing with this ratio.
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(5.4) r2 =
1

1− ε�
=

1

1− 3−√
5

2

=
1

−1+
√
5

2

=
2√
5− 1

= φ

These two ratios provide two equations for the golden ratio. Straight-
forward algebra shows that

(5.5) φ =
1 +

√
5

2
=⇒

√
5 = 2φ− 1

Using this in (5.4) yields

φ =
2√
5− 1

=
2

2φ− 2
=

1

φ− 1

and thus

φ2 = φ+ 1

This shows that the golden ratio is one of the solutions to the quadratic
equation x2 = x+ 1, an equation which, in this chapter, is termed the
defining equation. A key observation to make about this equation is
that the left-hand side, x2, corresponds to a multiplication whereas the
right-hand side, x+1, is an addition. In essence, the equation converts
multiplication to addition. What can such an observation yield?

5.1.1 Fibonacci Numbers

Since φ is one solution to the defining equation this means all
occurrences of φ2 can be replaced with φ + 1 without changing the
value of an expression. This can be used to calculate an expression for
φ3:

φ3 = φφ2 = φ(φ+ 1) = φ2 + φ = φ+ 1 + φ = 2φ+ 1

Using this to calculate the next power shows that

φ4 = φφ3 = φ(2φ+ 1) = 2φ2 + φ = 2(φ+ 1) + φ = 3φ+ 2
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Continuing with this progression yields

φ5 = φφ4 = φ(3φ+ 2) = 3φ2 + 2φ = 3(φ+ 1) + 2φ = 5φ+ 3

φ6 = φφ5 = φ(5φ+ 3) = 5φ2 + 3φ = 5(φ+ 1) + 3φ = 8φ+ 5

φ7 = φφ6 = φ(8φ+ 5) = 8φ2 + 5φ = 8(φ+ 1) + 5φ = 13φ+ 8

φ8 = φφ7 = φ(13φ+ 8) = 13φ2 + 8φ = 13(φ+ 1) + 8φ = 21φ+ 13

The numbers have an intriguing progression and to see the pattern
more clearly consider the following table:

Power Multiple of φ Constant

1 1 0

2 1 1

3 2 1

4 3 2

5 5 3

6 8 5

7 13 8

8 21 13

The first thing to note is that the multiplier equals the constant for
the following power. In other words the values are just shifted versions
of each other. There is another observation that comes from looking
at the sequence of numbers

1, 1, 2, 3, 5, 8, 13, 21, . . .

Observe that after starting with two, 1’s, the next number is the sum
of the previous 2. This sequence of numbers is the famous Fibonacci
sequence named for the Italian mathematician, Leonardo of Pisa
(1170–1240?) around the year 1200. The Internet is replete with the
history and myriad applications of this sequence including the mating
characteristics of rabbits.
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Let fi, i = 0, . . . denote the Fibonacci numbers so that f1 = 1, f2 =
1, f3 = 2, f4 = 5, and fn = fn−1 + fn−2, n = 4, . . .. It is customary to
start the sequence with f0 = 0. The above table suggests that

(5.6) φn = fnφ+ fn−1, n = 2, . . .

To prove this, use the technique of substituting φ+1 for all occurrences
of φ2:

φn+1 = φφn = φ(fnφ+ fn−1)

= fnφ
2 + φfn−1 = fn(φ+ 1) + φfn−1 = (fn + fn−1)φ+ fn

Since fn+1 = fn + fn−1 the last expression can be rewritten as

(5.7) φn+1 = fn+1φ+ fn

which shows that the pattern continues to the n + 1’st case. There
is an analogy in the recurrence relationship of the Fibonacci numbers
with the golden ratio seen by writing patterns side by side:

fn = fn−1 + fn−2 φn = φn−1 + φn−2

To derive the second expression, write

φn = φn−2φ2 = φn−2(φ+ 1) = φn−1 + φn−2, n = 3, . . .

5.1.2 A Closed Form Solution

To derive a closed form equation for fn, return to the other solution
besides φ to the defining quadratic equation x2 = x + 1. The second
solution from the quadratic formula is

(5.8) ψ =
1−√

5

2
= −0.61803398874989 . . .

This solution necessarily shares properties similar to φ since it also
satisfies ψ2 = ψ + 1. This implies that the pattern derived above for
powers of φ also holds for powers of ψ
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(5.9) ψn = fnψ + fn−1, n = 2, . . .

This equation gives the key in finding an expression for fn. Subtract
ψn of equation (5.9) from φn of (5.6) to get:

φn − ψn = fnφ+ fn−1 − (fnψ + fn−1) = fn (φ− ψ)

and, like picking a rabbit out of hat, this shows that

fn =
φn − ψn

φ− ψ

This almost seems too easy a way to get such a difficult result. This
expression can be simplified since

φ− ψ =
1 +

√
5

2
− 1−√

5

2
=

√
5

which yields the compact formula

(5.10) fn =
φn − ψn

√
5

This equation was first derived along different lines by Jacques Binet
(1786–1856).

Before ending this section, observe that substitution (5.5) into
equation (5.8) shows that

ψ =
1−√

5

2
=

1− (2φ− 1)

2
=

2− 2φ

2
= 1− φ

which yields

φ+ ψ = 1

This is useful in deriving an expression for the sum of φn and ψn.
Using equations (5.7) and (5.9) yields

φn + ψn = fnφ+ fn−1 + (fnψ + fn−1)

= fn(φ+ ψ) + 2fn−1 = fn + 2fn−1
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This can be rewritten in an easier form

(5.11) φn + ψn = fn + 2fn−1 = fn + fn−1 + fn−1 = fn+1 + fn−1

which leads to the sequence of numbers3:

(5.12) 2, 1, 3, 4, 7, 11, 18, 29, . . .

The Fibonacci recurrence relationship invites one to derive identities
between the values. For example, write the equation for f2n

f2n =
φ2n − ψ2n

√
5

=
(φn)2 − (ψn)2√

5

and use the identity x2 − y2 = (x − y)(x + y) and the equation for
φn + ψn above in (5.11) to obtain

(5.13) f2n =
φn − ψn

√
5

(φn + ψn) = fn(fn+1 + fn−1)

To derive the same value along a different line write

f2n =
φ2n − ψ2n

√
5

=

(
φ2
)n − (ψ2

)n
√
5

Use the fact that φ2 = 1+φ and ψ2 = 1+ψ, and the binomial theorem
to express f2n as
(5.14)

f2n =
(1 + φ)n − (1 + ψ)n√

5
=

n∑

k=0

(
n

k

)
φk − ψk

√
5

=
n∑

k=0

(
n

k

)
fk

Equating the two identities yields the relationships

f2n = fn(fn+1 + fn−1) =
n∑

k=0

(
n

k

)
fk

3This sequence is termed the Lucas sequence and will be revisited later in the chapter,
see equation (5.23).
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Equation (5.14) corresponds to a binomial expansion of the values
fk. Using binomial inversion thus leads to another identity involving
Fibonacci numbers:

(5.15) fn =
n∑

k=0

(
n

k

)
(−1)n−kf2k

To consider another identity, let αn = fn+1fn−1 − f2
n and observe

that α1 = −1 and α2 = 1. This suggests that αn = (−1)2. The
following set of manipulations shows that

αn = fn+1fn−1 − f2
n

= (fn + fn−1)fn−1 − f2
n

= f2
n−1 − fn(fn−1 + fn−2 − fn−1)

= f2
n−1 − fnfn−1

= −αn−1

which thus yields the identity

(5.16) fn+1fn−1 − f2
n = (−1)n

One more identity can easily be obtained. Consider the product of two
successive Fibonacci numbers

fifi−1 = (fi−1 + fi−2)fi−1 = f2
i−1 + fi−1fi−2

This recursive equation is easily solved, leading to the identity

(5.17) fifi−1 =
i−1∑

j=1

f2
j , i = 1, . . .

The process of creating identities for Fibonacci numbers could go on
almost endlessly since there are literally tens of thousands of such
relationships.
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The equation φ2 = φ + 1 leads to some beautiful equations. Take
the square root of this to yield

φ =
√
φ2 =

√
φ+ 1

Substituting the square root expression for every occurrence of φ shows
that:

φ =
√
1 + φ =

√
1 +
√
1 + φ =

√
1 +

√
1 +
√
1 + φ

Clearly this continues without end and thus φ arises from the infinite
cascade of square roots:

(5.18) φ =

√

1 +

√

1 +

√
1 +

√
1 + · · ·

If the defining equation is rewritten as

φ = 1 +
1

φ

then continual substitution for φ leads to an infinite continued fraction
expansion of φ4:

(5.19) φ = 1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

. . .

The golden ratio φ ≈ 1.6180339 is one of a handful of fundamental
constants like π ≈ 3.1415926, the base of the natural logarithm e ≈
2.7182818, or Euler’s constant γ ≈ 0.5772156.

4An alternative derivation is found in (10.14).
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5.2 An Alternate Derivation

Viewing Fibonacci numbers through the eyes of a different model
reveals a strikingly different closed form expression. Consider the
number of possible sequences of the integers 1 or 2 that, when
summed, equals n. Let ρ(n) be the number of different ways to do
this. For example, ρ(2) = 2 since the sequences 11 and 2 are the
only possibilities. Other cases include ρ(3) = 3, (111, 12 and 21) and
ρ(4) = 5, (1111, 112, 121, 211, and 22).

Comparing these values to Fibonacci numbers suggests that ρ(n) =
fn+1. To show that this is the case it suffices to establish the recurrence

(5.20) ρ(n) = ρ(n− 1) + ρ(n− 2)

The small examples above show that this is satisfied for values of
n ≤ 4. The equation is established by induction. For n > 4, consider
a sequence that adds up to n that starts with a 1. In this case, the
remaining integers of the sequence necessarily add up to n − 1 which
we know amounts to ρ(n − 1) possible sequences. Similarly for those
sequences that start with 2 the remaining numbers must add to n− 2
which equals a total of ρ(n − 2) sequences. These two cases account
for all possibilities and thus establishes (5.20).

This perspective opens up a different form of a closed form
expression for ρ(n) and thus also for fn+1. Partition all sequences
of 1s and 2s by their length. There is only one sequence of length
n which consists of all 1s. Consider a sequence having i, 2s, in it. Such
a sequence has n − 2i ≥ 0, 1s, since the sum equals n. This implies
the sequence length is n − 2i + i = n − i. There are

(
n − i

i

)
ways of

choosing the places for the i, 2s, in such sequences. Since n − 2i > 0,
it must be the case that i ≤ �n/2 where �x is the integer portion of
x. Summing all possibilities shows that

(5.21) ρ(n) =

�n/2�∑

i=0

(
n− i

i

) (
fn+1 =

φn+1 − ψn+1

√
5

)

In equation (5.21) the previous closed form expression (5.10) is shown
to contrast the striking difference between the two derivations. Such
contrasts often happen in mathematics in the form of equations that
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arise for the same mathematical quantity when viewed from different
perspectives. Adjusting the indices of (5.21) to be more natural
provides the following identity:

(5.22) f2n+1 =
n∑

i=0

(
n+ i

2i

)
=

n∑

i=0

(
n+ i

n− i

)

5.3 Generalized Fibonacci Numbers

Clearly the starting values for the Fibonacci series are arbitrary and
have little influence on any basic properties derived from the essential
recurrence fn = fn−1 + fn−2. For example, if the sequence starts with
a, b (they both cannot be 0) then these generalized Fibonacci numbers
satisfy

gn = afn−1 + bfn

The widely studied Lucas sequence (named after Édouard Lucas
(1842–1891)), that arises with the selection a = 2 and b = 1, yields5

(5.23) 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, . . .

A closed form solution for gn is a modification of equation (5.10)

gn = a

(
φn−1 − ψn−1

√
5

)
+ b

(
φn − ψn

√
5

)

=
φn(b+ aφ−1)− ψn(b+ aψ−1)√

5

=
φn(b− aψ)− ψn(b− aφ)√

5

The last simplification uses the equation φψ = −1.

5Equation (5.11) also generated this sequence.
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5.4 k-Bonacci Numbers

Recall that Fibonacci numbers arise from the defining equation x2 =
x + 1. Consider the next highest defining equation given by x3 =
x2+x+1. Mimicking the previous derivation of Fibonacci numbers in
Section 5.1.1 by deriving powers of x yields the following pattern:

Power x2 term x term 1 term

x3 1 1 1

x4 2 2 1

x5 4 3 2

x6 7 6 4

x7 13 11 7

Notice that the numbers in each row are the sum of the previous
three numbers in the preceding rows. Such numbers are said to
be Tribonacci numbers and the differences in sequences shown in
the columns arise, like the difference between Fibonacci and Lucas
numbers, from their different initial values. In particular, the first and
third column correspond to the sequence starting with 0, 0, 1,

0, 0, 1, 1, 2, 4, 7, 13, · · ·

whereas the second column corresponds to the sequence starting with
0, 1, 0,

0, 1, 0, 1, 2, 3, 6, 11, · · ·

In all cases, the general term of the recurrence satisfies tn = tn−1 +
tn−2 + tn−3. This generalization of Fibonacci numbers also leads to
closed form expressions that have an algebraic and a combinatoric
representation although they are substantially more complicated. The
combinatoric representation for tn for the starting value 0, 0, 1, for
example, is given by

tn =

�n/2�∑

i=0

�n/3�∑

k=0

(
n− i− 2k

i+ k

)(
i+ k

k

)
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Such sequences easily generalize to the k-bonacci numbers defined by

(5.24) bn = bn−1 + · · ·+ bn−k

with starting values given by k− 1 zeros followed a 1. A table of these
numbers up to k = 5 follows:

k Name Initial Values Rest of Sequence

2 Fibonacci 0, 1 1 1 2 3 5 8 13 21 34 55 . . .

3 Tribonacci 0, 0, 1 1 1 2 4 7 13 24 44 81 149 . . .

4 Tetranacci 0, 0, 0, 1 1 1 2 4 8 15 29 56 108 208 . . .

5 Pentanacci 0, 0, 0, 0, 1 1 1 2 4 8 16 31 61 120 236 . . .

The defining equation for k-bonacci numbers is xk = xk−1+ · · ·+x+1.
It can be shown that every integer has at least one way to write it as

the sum of k-bonacci integers. To illustrate this, consider the Fibonacci
case where 100 can be written in terms of Fibonacci numbers as 3+8+
89, 1+ 2+ 8+ 89, 3+ 8+ 34+ 55 and 3+ 8+ 89. Edouard Zeckendorf
(1901–1983) showed for the k = 2 case that there is only one way
to write such a representation that does not use adjacent Fibonacci
numbers (100 = 3+8+89 above). It is trivial to construct a Zeckendorf
representation for small values of n by enumeration. Assume that such
a representation is possible for all integers up to n. If n+1 is a Fibonacci
integer, then it already has such a representation (a Fibonacci number
is its own representation). Therefore consider the case where n+1 not
Fibonacci. This implies that there is a value j that satisfies

fj < n+ 1 < fj+1

By assumption, the value m defined by m = n+1−fj has a Zeckendorf
representation since it is less than n. Using this representation shows
that m + fj is a representation for the integer n + 1 that uses only
Fibonacci numbers. But this representation might consist of adjacent
Fibonacci numbers and thus not be a Zeckendorf representation. To
show that this cannot be the case, use the general recurrence for
Fibonacci integers to write

m+ fj < fj+1 = fj + fj−1 =⇒ m < fj−1
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5.5 Generalization of the Fibonacci Recurrence

Consider a generalization along different lines. Since the Fibonacci
sequence arises from the number of sequences of the numbers 1 and
2 that sum to n, it is only natural to ask what type of numbers arise
from patterns only using the numbers 1 and k. Denote the number
of such sequences by ρk(n). Solving the general case, using a similar
argument to the derivation of equation (5.21), yields

ρk(n) =

�n/k�∑

i=0

(
n− (k − 1)i

i

)

Interestingly, the recurrence equation corresponding to these values is
given by

gn = gn−1 + gn−k, n = k + 1, . . .

where the initial portion of the sequence consists of k, 1’s, followed by
a 2. A table of these numbers is given by

k Initial Values Rest of Sequence

2 1, 1, 2 3 5 8 13 21 34 55 89 144 233 377 610 . . .

3 1, 1, 1, 2 3 4 6 9 13 19 28 41 60 88 129 189 . . .

4 1, 1, 1, 1, 2 3 4 5 7 10 14 19 26 36 50 69 95 . . .

5 1, 1, 1, 1, 1, 2 3 4 5 6 8 11 15 20 26 34 45 60 . . .

Another generalization arises if the defining equation is changed so
that x2 = ax + 1 for some positive integer a. An analysis similar to
that found in the beginning of the chapter shows that this creates a
Fibonacci type sequence which satisfies hi = ahi−1+hi−2. With initial
conditions h0 = 0, h1 = 1, and h2 = a we find that the n’th type
Hibonacci number (coining the term) is given by

(5.25) hn,a =
(h+a )

n − (h−a )
n

√
a2 + 4

where

(5.26) h+a =
a+

√
a2 + 4

2
and h−a =

a−√
a2 + 4

2
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It is straightforward to derive equation (5.25) by mimicking the steps
leading to equation (5.10). Some illustrative values of such sequences
are given in the following table:

a Hibonacci Sequence

1 1 1 2 3 5 8 13 21 34

2 1 2 5 12 29 70 169 408 985

3 1 3 10 33 109 360 1,189 3,927 12,970

4 1 4 17 72 305 1,292 5,473 23,184 98,209

5 1 5 26 135 701 3,640 18,901 98,145 509,626

6 1 6 37 228 1,405 8,658 53,353 328,776 2,026,009

7 1 7 50 357 2,549 18,200 129,949 927,843 6,624,850

The continued fraction expansion of h+a is a generalization of φ found
in equation (5.19) and is given by6

(5.27) h+a = a+
1

a+
1

a+
1

a+
1

a+
1

. . .

Also observe that the generalization of equation (5.18) for Hibonacci
numbers is given by

h+a =

√

1 + a

√

1 + a

√
1 + a

√
1 + · · ·

Clearly there are endless generalizations and results to be found along
these, and other, lines.

6Derivation of equation (5.27) is found in equation (10.13) and the values in the table
found on page 137.



Chapter 6

Heads I Win, Tails You Lose

The results concerning fluctuations in coin tossing
show the widely held beliefs about the law of large
numbers are fallacious. They were so amazing and so
at variance with common intuition that even
sophisticated colleagues doubted that coins actually
misbehave as theory predicts.

William Feller (1906–1970)

Consider a game where two players toss a coin. If the coin lands heads
up, player 1 wins a dollar. Otherwise player 2 wins a dollar. If the coin
is fair, then each player has the same chance of winning. A few things
about the game are obvious from the outset. Since neither player has
an edge over the other, there is little chance that one of them will win a
lot of money. Thus, the game should hover around break even most of
the time. Additionally, each player should be ahead of the other about
half of the time. Another feature of the game concerns its duration if
there is an agreed stopping event. For example, suppose the game stops
the first time heads is ahead of tails. Then, clearly, the game should
end fairly quickly. These observations are all straightforward which
suggests that coin tossing does not have much to offer in terms of
mathematical results. To show this, and move on to a more interesting
topic, let us quickly dispense with the mathematical analysis that
establishes these obvious, intuitive, observations.

6.1 The Mathematical Model

There are many ways to create a mathematical model of how the game
evolves. Let us consider one version which deals with binary numbers.
If heads is thrown, then this indicated by the number 1. If tails, then
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by the number 0, so a game can be specified by a binary number.
For example, reading left to right, the game 11011001 represents two
heads, followed by a tail, then two heads, two tails, and finally ending
with a head. This specification has a unique advantage since we can
convert the binary integer into its decimal equivalent and use this, and
the number of steps, as a way to describe a game.1 The example just
given corresponds to the 8 step game with decimal equivalent 217.

This representation gives the first result. Since a binary number of
length n can represent 2n different numbers there are 2n different coin
tossing games of length n. Another result arises from the fact that a
0 or a 1 occurs in such sequences with equal probability. This implies
that all sequences of length n occur with the same probability. Thus,
to calculate the probability of a particular set of games, the number of
elements of this set must be determined and then multiplied by 1/2n.
Letting pk,n denote the probability a coin tossing game of length n has
k heads thrown. Then these comments imply that

(6.1) pk,n =

(
n

k

)
1

2n

To analyze this binary model, let bi, i = 1, . . . , n, be the sequence of
digits (bi = 0 or bi = 1) of the game. The level of the game at step i
is defined by

(6.2) �i = 2
i∑

k=1

bk − i

In terms of the game, �i is the number of dollars player 1 is ahead (or
behind if negative) of player 2 after the i’th toss. Notice that equation
(6.2) shows that any permutation of the digits bk, k = 1, . . . , i, yields
the same level. In particular, this means that if the digits were reversed
or sorted so that heads preceded all of the tails of a sequence, or if one
portion of a game was moved from the front to the back while being
reversed in time, then the final level �i would not change. If one plots
a game on a Cartesian coordinate axis so that tosses proceed on the x-
axis and the level is plotted on the y-axis, then the game corresponds

1The number of steps also has to be given to distinguish games such as 1011 and
001011 which have the same decimal equivalence.
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to a graph that steps up or steps down by one unit at each toss of
the coin. With this in mind, and to avoid repetitious language, we will
also refer to a game, or a portion of a game, as a sequence or as a
path. For the same reason, heads and 1’s, tails and 0’s, will be used
interchangeably when referring to the outcome of a toss, a flip, or a
step as the game proceeds in time.

6.1.1 Games That End Even

Let Nm,n denote the number of games of length n that end at level m.
The number of heads thrown in such a game equals (m+ n)/2. Thus,
the number of such paths is given by the binomial coefficient:

(6.3) Nm,n =

(
n

(m+ n)/2

)

Since the belief is that most games hover around even, it makes sense
to first analyze games of length 2n that end at level 0. The number
of such games is a special case of (6.3) and, to simplify expressions,
defines

(6.4) zn =

(
2n

n

)

To give a sense of the size of zn consider the following upper and lower
bounds. The value of zn is the largest of all binomial coefficients in the
form

(
2n

k

)
, k = 0, . . . , 2n, and the binomial theorem shows that the

sum of all such coefficients equals 22n = 4n. This implies that zn must
be greater than the average binomial coefficient of this type and must
also be less than the total sum:

(6.5)
4n

2n
<

(
2n

n

)
< 4n

A never behind path is characterized by �2n = 0 and �i ≥ 0 for
i = 1, . . . , 2n. This corresponds to a game that ends even but where
player 1 is ahead or even throughout the entire game. From symmetry,
a never ahead game is one where player 2 is ahead or even the entire
game. In light of the opening comments, either type of game should
rarely occur. A generalization of never behind or never ahead paths is
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to have a reference level. Thus, a never behind sequence with respect
to a reference level of k is a sequence where the level never goes below
level k and ends at level k. A similar definition applies to reference level
of never ahead games. If a reference level is unspecified, it is assumed
to be level 0.

6.1.2 Catalan Numbers

Consider a sequence ending at zero that violates the never behind
condition and does so the first time at step j. At this point in the game,
�j−1 = 0 and �j = −1. Switch the digits from point j onward, so that

a new sequence (b1, . . . , bj−1, b̂j , . . . , b̂2n) is created, where b̂k = 1− bk.
This modified path is comprised of n+1, 0’s, and n−1, 1’s. There are
(

2n

n + 1

)
such paths. It is clear that every path that violates the never

behind condition must have a first time doing so and that its modified
path is unique. Thus

(
2n

n + 1

)
counts all paths in violation of the never

behind constraint. This implies that the number of paths that are
never behind, denoted by cn, is given by

(6.6) cn =

(
2n

n

)
−
(

2n

n+ 1

)
=

1

n+ 1

(
2n

n

)

These numbers, termed Catalan numbers, appear frequently in
mathematics. They are named for Eugéne Charles Catalan (1814–
1894), a Belgian mathematician who did initial work with them and
who also left the world with the conjecture that 23 and 32 are the
only two powers of integers that are separated by 1.2 A list of Catalan
numbers is given in the following table:

n 1 2 3 4 5 6 7 8 9 10 11

Cn 1 2 5 14 42 132 429 1,430 4,862 16,796 58,786

Another problem solved with Catalan numbers concerns the number
of valid parenthesized expressions with n opening parenthesis. This
solution is similar to the analysis above and follows from the observa-
tion that there cannot be a closing parenthesis without first having a

2Proved by Preda Mihǎilescu (1955–) in 2002.
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preceding opening parenthesis. Linking heads with opening parenthesis
and tails with closing parenthesis shows that a valid parenthesized
expression corresponds to a coin toss game that is never behind. There
are many more models associated with Catalan numbers that have a
similar flavor.

The analysis above can be levered to derive a result concerning the
first time the two players are even. Let hn denote the number of paths
where level 0 is visited the first time after 2n tosses. To construct
all such paths, consider a game that starts with a 1, is followed with
2(n−1) tosses that are never behind with level 1 as the reference point
and then ends with a 0. Such a path visits 0 the first time at toss 2n
and counts half of the paths that do so. By symmetry, the other half
of paths are constructed by starting with a 0, followed by 2(n − 1)
tosses that are never ahead with level 1 as the reference point, and
ending with a 1. The number of paths in the middle 2(n− 1) tosses in
both cases corresponds to the Catalan number, cn−1. Summing these
disjoint possibilities yields

(6.7) hn = 2cn−1 =
2

n

(
2(n− 1)

n− 1

)

A path that ends at zero must visit zero a first time. If this occurs
at toss 2k, then from this point there are zn−k paths that end at level
zero. Summing all of these possibilities implies that the number of
paths that visit zero at toss 2n equals

(6.8) zn = h1zn−1 + · · ·+ hnz0

Substituting equations (6.7) and (6.4) into this equation yields the
identity

(6.9)

(
2n

n

)
=

n∑

k=1

2

k

(
2(k − 1)

k − 1

)(
2(n− k)

n− k

)

Returning to the initial derivation of never behind paths shows that
the fraction of games that satisfy this condition is given by the ratio
of the number of never behind games to the number of even games

cn
zn

=
1

n+ 1
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The fraction of even games where one player is ahead of or equal to the
other player for the entire game follows from symmetry and is given
by 2/(n+ 1). This is a rare event for large n. Thus, the intuition that
paths frequently cross keeping both players essentially even appears to
be satisfied.

6.1.3 Non-intuitive Results

There is just one problem with this conclusion—its derivation was
biased by only considering paths that end even. The probability that
a path ends at level m is given by equation (6.3) which is a symmetric
function centered aroundm = 0. Since this corresponds to a maximum,
ending even is the most likely outcome. To determine how likely this is,
requires evaluating the magnitude of binomial coefficients around their
midpoint. The value of a binomial coefficient can be computed using
the formula (2.11) for values where k is small. For large values of n,
where k is close to n/2, this computational method becomes infeasible.
An excellent approximation in these cases is given by the Laplace–de
Moivre formula which states that3

(6.10)

(
n

k

)
≈ 2n

√
2

nπ
exp

{
− 2

n

(
k − n

2

)2}

This is easily programmed and is accurate for cases where k is close
to the midpoint. For n = 60 the percent error is about 1% for k = 20,
.6% for k = 25, and .4% for k = 30. Error percents decrease with
increasing values of n.

Notice that (6.10) includes a factor of 2n on the right-hand side of
(6.10). This term conveniently cancels the denominator of 1/2n when
calculating the approximate probability of throwing k heads in a coin
tossing game of length n, an expression given by

(6.11) pk,n ≈
√

2

nπ
exp

{
− 2

n

(
k − n

2

)2}

3This approximation from probability theory is the only result that is not derived
within the book.
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This can be used to approximate the probability of being even after
the 2n’th toss

(6.12) pn,2n ≈
√

1

nπ

Thus, the likelihood of being even decreases the longer the game
is played. For instance, the probability that a game is even after a
thousand tosses is approximately .017 which decreases to .00056 after
a million tosses. This exposes a hole in the opening intuition that
games hover around the break-even point. What is wrong with the
intuition?

To find out, we next calculate the expected number of steps for a
game to reach even when starting with one player ahead. Let ei, i =
0, . . . be the expected number of tosses it takes until the game becomes
even when the first player starts ahead by i dollars. Obviously e0 =
0 and ei > i for i ≥ 1. Consider the case where i = 1. There are
two possibilities for the next toss. Either a tails is tossed, at which
point the game is even, or a heads is tossed so that player 1 is two
dollars ahead. Since each possibility occurs with equal probability the
following equation can be written (the 1 in this equation counts the
step):

e1 = 1 +
e2
2

More generally, suppose player 1 is ahead by i dollars where i > 1.
Then the two possibilities lead to the following equation:

ei = 1 +
1

2
(ei−1 + ei+1), i = 2, . . .

The general equation which summarizes these cases is given by

(6.13) 2ei =

⎧
⎨

⎩

2 + e2, i = 1

2 + ei−1 + ei+1, i = 2, . . .

To solve this recurrence, first note that e2 = 2e1 − 2 and consider the
case where i = 3. Using this and (6.13) implies
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2e2 = 2 + e1 + e3

2(2e1 − 2) = 2 + e1 + e3

3e1 − 4 = 2 + e3

3e1 = 6 + e3

Using the same procedure for the next case yields

4e1 = 12 + e4

which suggests the general form

(6.14) ke1 = k(k − 1) + ek, k = 2, . . .

To establish this, assume that it holds for all values up to k and use
(6.13) to write

ek+1 = 2ek − 2− ek−1

= 2(ke1 − k(k − 1))− 2− ((k − 1)e1 − (k − 1)(k − 2))

= (k + 1)e1 − (k + 1)k

The pattern thus continues to the k + 1’th step and proves the
induction. Rewriting (6.14) as

e1 = k − 1 +
ek
k
, k = 2, . . .

poses an immediate problem. Since ek/k > 1, this equation implies
that e1 > k for all k. This can only happen if e1 is unbounded. This
forces the seemingly ridiculous conclusion that a game starting with
player 1 being one dollar ahead takes an infinite expected time to
reach equality! Such nonsense forces us to question the validity of the
analysis.

To approach the analysis in a different way, observe that equations
(6.7) and (6.4) can be expressed in terms of probabilities (a hat is

placed on a variables when converting to a probability) so that ĥn =
hn/2

2n is the probability of first visiting zero at toss 2n and ẑn =
zn/2

2n is the probability of visiting zero at step 2n. Simple algebra

reveals an interesting relationship between ĥn and ẑn:
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(6.15) ĥn =
1

22n−1n

(
2(n− 1)

n− 1

)
=

1

2n
ẑn−1

and

ẑn−1 − ẑn =
1

22(n−1)

((
2(n− 1)

n− 1

)
− 2n(2n− 1)(2n− 2)!

22n2((n− 1)!)2

)
(6.16)

=
1

22(n−1)

(
2(n− 1)

n− 1

)(
1− 2n− 1

2n

)

=
1

2n
ẑn−1

Comparison of (6.15) and (6.16) shows that

(6.17) ĥn = ẑn−1 − ẑn

A path of length 2n either visits zero a first time over 2n tosses or
it never visits zero. The probability that a path does not visit zero is
given by 1−(ĥ1+· · ·+ĥn) which, from equation (6.17), is a telescoping
sum. Since ẑ0 = 1, this implies that

(6.18) ẑn = 1−
n∑

i=1

ĥi

This again leads us to a non-intuitive conclusion: the probability a
path never visits zero (the right-hand side of (6.18)) is the same as
the probability that it visits zero at the 2n’th toss (the left-hand side)!
Expressed in terms of the game, it is just as likely that one player leads
the other for the entire game than for the players to be equal at the end
of the game. The intuition stated at the beginning of the chapter is
now under attack. Before moving on to address this issue, consider an
identity that arises from (6.18). Multiplying both sides of this equation
by 22n with some minor algebra yields

(6.19)

n∑

i=1

22(n−i)+1

n

(
2(i− 1)

i− 1

)
= 22n −

(
2n

n

)

In an attempt to support the initial intuition about the game,
consider deriving an equation for the number of tosses that player 1 is
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ahead or equal to player 2 in a game of length 2n (player 1 is necessarily
ahead an even number). Let w2k,2n denote the number of paths where
player 1 is ahead or equal to the player 2 for 2k tosses in a game
of length 2n. If level 0 is not visited over the 2n tosses, then player
1 is either ahead the entire time or is never ahead. The probability
that this occurs is given by equation (6.18) which implies two initial
conditions w2n,2n = zn and, by symmetry, w0,2n = zn. Thus the cases
where k = 0 and k = n are solved. Cases where k = 1, . . . , n− 1 imply
that level 0 is visited at some point over the 2n tosses.

There are hj paths where level zero is visited the first time on toss
2j and two cases to consider. Case 1 corresponds to player 1 being
ahead or equal to player 2 up to the point level 0 is visited. In this
case, 2j tosses are counted up and including visiting level 0 and 2(k−j)
tosses are counted afterwards. Thus, the component of w2k,2n for case
1 equals h2jw2(k−j),2(n−j), j ≤ k. Case 2 corresponds to player 1 being
behind player 2 to the point level 0 is visited. In this case no tosses
are counted over 2j tosses and 2k must be counted afterwards. The
component of w2k,2n for case 2 thus equals h2jw2k,2(n−j), j ≤ n − k.
Each case is equally likely. Thus, summing over all j implies that
(6.20)

w2k,2n =
1

2

⎛

⎝
k∑

j=1

hjw2(k−j),2(n−j) +

n−k∑

j=1

hjw2k,2(n−j)

⎞

⎠ , k = 1, . . . n− 1

Like computer scientists, sometimes mathematicians need to incor-
porate hubris to do their work.4 To utilize this characteristic, boldly
generalize the form of the two initial cases by guessing that w2k,2m =
zkzm−k. This holds for m = 1 so assume it holds up to m = n − 1.
With this guess (6.20) can be simplified to yield

(6.21) 2w2k,2n = zn−k

k∑

j=1

hjzk−j + zk

n−k∑

j=1

hjzn−j−k

The summations in this equation have been encountered before
in equation (6.8). The first equals zk and the second zn−k which
establishes the validity of the hubristic guess. Thus it is the case that

(6.22) w2k,2n = zkzn−k

4Larry Wall (1954–), the author of the Perl programming language, listed hubris as
a characteristic of a great programmer.
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Moving over to probabilities with the approximation (6.12) shows that
for large n

(6.23) ŵ2k,2n ≈ 1

π
√

k(n− k)

Now there is a full frontal assault on intuition since both (6.22) and
(6.23) are symmetric functions in k where the minimum lies in center.
Intuitively, one expects the maximum of this function to be in the
center which would imply that the fortunes of each player are more
or less equal over the duration of the game. The implication of both
equations is exactly the opposite: it is more likely that one lucky player
is ahead of the other over most of the game.

Some illustrative values will further confute our intuition. As n
increases, the approximation of (6.23) becomes more accurate. For
example, setting 2n = 10, 000, 000 and summing over all values k that
do not result in an undefined quantity (k = 0 or k = n) yields a
total probability of .9997. This is close enough to 1 to lend credence
that results based on using (6.23) as a probability will approximate
exact results. The object is to characterize the percent of time a game
spends on one side of level 0. Since games are symmetric, these results
are indifferent to whether this is player 1 or player 2. To make this
characteristic precise, let α be a specified fraction and let k(α, n) solve

(6.24) α = 2
n−1∑

k=k(α,n)

1

π
√
k(n− k)

This is not difficult to program and the results are shocking:

α .05 .1 .15 .20 .25 .30 .35 .40 .45 .50

k(α, n)/2n .9985 .9940 .9865 .9759 .9625 .9461 .9271 .9053 .8811 .8546

In words, the third column shows that in 15% of games one player
stays ahead of the other for 98.65% percent of the tosses. In a quarter
of the games, one player leads for 96.25% percent of the time. We are
talking about some very lucky players here, not biased coins. This is the
true nature of the coin tossing game; changing sides is an infrequent
occurrence. It is no wonder that intuition has failed to predict results
like this.
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6.2 The Correct Insight

At the beginning, the mathematical properties of coin tossing were
obvious and intuitive. Analysis then abruptly transformed our facile
conclusions into a quagmire of perplexity. We are at the point of
puzzlement to ask the simple question: what is really going on? The
answer is straightforward. First be assured that the above analysis is
correct. The game does behave in the somewhat neurotic way outlined
by the previous equations. The game is not at fault, coins do not
conspire to fool us. Shakespeare says it best; in Julius Caesar, Cassius
opines,

The fault, dear Brutus, is not in our stars,
But in ourselves, that we are underlings.

We need to look no further than ourselves to find the glaring fault.
Common sense notions of coin tossing are just dead wrong. The root
of the misunderstanding arises from the fairness of the game. Because
there is no bias for either player to win or lose a toss, there is no
preferred direction for the game. This directionless aspect of coin
tossing subtly violates intuition.

If there was the slightest bias in the coin to make the outcome of the
game more even, then all of the intuitive comments made throughout
the chapter would hold. For instance, suppose the coin became slightly
biased towards landing up tails when player 1 was ahead. Also assume
a similar bias towards landing up heads if player 2 was ahead. Under
these assumptions, even if this bias was slight, then the intuition found
in the opening remarks of the chapter would be satisfied. Without
such a bias, there is no tendency to even out the players fortunes
and the game simply drifts aimlessly along without any tendency to
make things come out fair and even. At each toss, the game effectively
starts anew from its current level. One player will be more lucky than
the other. It is that simple; intuition lies on a knife edge, violated
if completely balanced. It is ironic, that it is exactly the notion of
fairness that produces outcomes that seem unfair. Having one player
be ahead of the other most of the time, as we have just seen, is the
game’s natural state.
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6.3 Particular Sequences

Let us end the chapter with some lighter fare concerning a particular
sequence of heads and tails. Call a game valid if it does not have
two consecutive 0’s. How many valid games are there of length n? To
calculate this, let vn denote this quantity. Enumerating simple cases
shows that v1 = 1 and v2 = 3. There are 5 games where n = 3 since
only games 001, 100, and 000 violate the condition. Thus v3 = 5.
These examples suggest that vn = fn+2 where fk is the k’th Fibonacci
number.5 The following table shows a construction method that can
be used to support this supposition.

Construction Method for Calculating vn

n = 2 Append 10 to end n = 3 Append 1 to end Result for n = 4

111 1111 1111

11 1110 110 1101 1110, 1101

10 1010 101 1011 1010, 1011

01 0110 011 0111 0110, 0111

010 0101 0101

This construction illustrates that the set of valid games of length n can
be obtained by forming the union of two subsets. The first appends
10 to the end of sequences in the set of valid games of length n − 2
and the second appends a 1 to the end of sequences in the set of valid
games of length n − 1. It is clear that this construction produces all
valid games of length n since all valid sequences must end in a 1 or in
a 10. From the initial values, v2 = f4 and v3 = f5, this construction
sequentially produces the Fibonacci series (since fi = fi−1 + fi−2).

To generalize, define a valid -k game, for k = 2, . . . , as a game

where no consecutive sequence of k tails is found. Let v
(k)
n denote the

number of valid-k games. The generalization of Fibonacci numbers is
that of k-bonacci numbers discussed on page 75. Instead of summing
the previous two numbers to get the next value, these numbers are
generated by summing the previous k numbers (see equation (5.24)

along with the table on the same page). Let f
(k)
i be the i’th k-bonacci

number. Then a similar argument to the one above shows that

5See the chapter, All that Glitters is not Gold, especially page 67 for the definition
of this sequence of numbers.
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(6.25) v(k)n = f
(k)
n+2, k = 2, . . .

To illustrate the derivation of (6.25), consider Tribonacci numbers
for which k = 3. Then games of length n consist of the union of three
sets. The first appends 100 to valid-3 games of length n−2, the second
appends 10 to valid-3 games of length n−2, and finally the last appends

1 to valid-3 games of length n − 1. This generates all f
(3)
n+2 possible

valid-3 games. In the general case, the set of valid-k games of length
n is constructed by forming the union of the set of games created by
appending 1 . . . 1︸ ︷︷ ︸

�−1 1’s

0 to valid-k games of length n− �, � = 1, . . . , k.

6.4 Conclusions

Let us sum up the chapter. A key derivation is that of the Catalan
numbers which provided the mathematical framework to derive the
first time a coin tossing game visits level 0. With this result, a series of
results were derived that assaulted intuition. Level 0 is visited with a
frequency of 1/

√
nπ and is the most probable state. That being said,

there is an equal probability of a game of length 2n ending at level
0 or never visiting level 0. Games are ultimately unfair in the sense
that one player typically leads the other most of the time. Strangely,
the expected number of steps to visit level 0 starting from any non-
zero state is infinite. This fact probably goes most strongly against the
experiences found in actual games.

Coin tossing is the most elementary example in the field of math-
ematics dealing with random walks. It takes place in one dimension,
the integers of the x-axis. Higher dimensional random walks have also
been extensively studied. For instance, in a random walk on the points
of a plane there are four possibilities for the next step: up, down, left,
or right. In three-dimensional space there are 8 possible next steps and
this continues expanding as we go to higher dimensions. In continuous
space, random walks are termed diffusion processes which have been
analyzed in great detail and find applications in physics and finance. In
all cases, because of the directionless property of next steps, common
intuition is often violated and must be replaced with the understanding
that comes through analysis.



Chapter 7

Sums of the Powers of Successive
Integers

Not only could nobody but Gauss have produced it,
but it would never have occurred to any but Gauss
that such a formula was possible

Albert Einstein (1879–1955)

What happens when you sum successive powers of integers? To
investigate this, define

(7.1) Sk,n = 1 + 2k + 3k + · · ·+ nk =
n∑

i=1

ik, k = 0, 1, . . .

An easy program generates the following table of numeric values for
small k and n:

Table of Values of Sk,n

k/n 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

1 1 3 6 10 15 21 28 36 45 55

2 1 5 14 30 55 91 140 204 285 385

3 1 9 36 100 225 441 784 1,296 2,025 3,025

4 1 17 98 354 979 2,275 4,676 8,772 15,333 25,333

5 1 33 276 1,300 4,425 12,201 29,008 61,776 120,825 220,825

6 1 65 794 4,890 20,515 67,171 184,820 446,964 978,405 1,978,405

7 1 129 2,316 18,700 96,825 376,761 1,200,304 3,297,456 8,080,425 18,080,425

The k = 0 case, shown above, is immediate since

S0,n = 10 + 20 + · · ·+ n0 = n
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Supposedly, the case for k = 1 was assigned as a teacher’s punishment
for the child prodigy, Carl Friedrich Gauss (1777–1855). Gauss was
told to sum the numbers from 1 to 100 and, instead of laboring for
an hour or two, he quickly responded 5,050 to the consternation of his
teacher. How did he do it so quickly?

The young Gauss, who later grew up to be a famous mathematician,
probably noticed that a backwards version of S1,n given by

S1,n = n+ (n− 1) + · · ·+ 1 =
n∑

i=1

(n+ 1− i)

could be added to the forward version to yield

2S1,n =
n∑

i=1

(n+ 1− i) +
n∑

i=1

i =
n∑

i=1

(n+ 1) = n(n+ 1)

quickly giving

(7.2) S1,n =
n(n+ 1)

2

The precocious Gauss saw this pattern, did the numerical calculation,
and thus bypassed his teacher’s punishment.

7.1 A General Equation

A key observation to make on the above approach is that by canceling
the i in the forward and backward versions of the k = 1 case, the
solution only required the equation for the previous, k = 0, case.
Following on this logic, consider another way to solve for S1,n which
arises by forming an equation for the next higher dimension, k = 2, and
having the i2 term conveniently cancel out. To illustrate this, consider
the shifted sequence given by (i+1)2. Summing this from 1 to n creates
an addition term of (n + 1)2 but lacks the first term when compared
to S2,n. Thus

n∑

i=1

(i+ 1)2 = S2,n + (n+ 1)2 − 1
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Expanding (i + 1)2 and subtracting i2 of the original sequence yields
2i + 1 which suggests that subtracting the original sequence from its
shifted version

S2,n + (n+ 1)2 − 1− S2,n =
n∑

i=1

(i+ 1)2 −
n∑

i=1

i2

=
n∑

i=1

2i+ 1 = 2S1,n + n

Thus,

(n+ 1)2 − 1 = 2S1,n + n

which yields

S1,n =
(n+ 1)2 − 1− n

2
=

n(n+ 1)

2

as before.
A pattern emerges which is made clear with one more example.

Writing

(i+ 1)3 = i3 + 3i2 + 3i+ 1

and using the fact that

n∑

i=1

(i+ 1)3 = S3,n + (n+ 1)3 − 1

implies that

S3,n + (n+ 1)3 − 1− S3,n =
n∑

i=1

3i2 + 3i+ 1 = 3S2,n + 3S1,n + n

This shows that

(n+ 1)3 − 1 = 3S2,n + 3S1,n + n



96 7 Sums of the Powers of Successive Integers

which, when substituting the above expression for S1,n, solves to

S2,n =
(n+ 1)3 − (1 + n)− 3n(n+ 1)/2

3
(7.3)

=
(n+ 1)

6

(
2(n+ 1)2 − 2− 3n

)

=
(n+ 1)

6

(
2n2 + n

)

=
n(n+ 1)(2n+ 1)

6

The pattern suggests that the solution of the k case emerges when
considering the case for one dimension higher, k + 1. An equation for
Sk,n can then be determined by arranging for the cancellation of the
term, ik+1. The binomial theorem implies that

(7.4) (i+ 1)k+1 − ik+1 =
k+1∑

�=0

(
k + 1

�

)
i� − ik+1 =

k∑

�=0

(
k + 1

�

)
i�

Summation of (7.4) produces a telescoping sum on the left-hand side
of the equation yielding the general equation

(n+ 1)k+1 − 1 =
n∑

i=1

k∑

�=0

(
k + 1

�

)
i�(7.5)

=
k∑

�=0

(
k + 1

�

) n∑

i=1

i�

=
k∑

�=0

(
k + 1

�

)
S�,n

Also observe that the binomial theorem shows that

(n+ 1)k+1 − 1 =

k+1∑

�=1

(
k + 1

�

)
n�
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which, after substitution into (7.5) yields

k∑

�=0

(
k + 1

�

)
S�,n =

k+1∑

�=1

(
k + 1

�

)
n�

This can be rewritten as

(7.6) n+
k∑

�=1

(
k + 1

�

)
S�,n =

k∑

�=1

(
k + 1

�

)
n� + nk+1

The right-hand side of (7.6) is a polynomial of order k+1 which implies
that the left-hand side is also a polynomial of this order. This implies
that the function S�,n can be expressed as a polynomial (previous
calculations show is of order �+ 1) so that

S�,n = a1,� n+ a2,� n
2 + · · ·+ a�+1,� n

�+1

The coefficients of this polynomial can be determined by isolating
powers of n. The constant coefficient above is missing since S�,0 = 0.
Note that

k∑

�=1

(
k + 1

�

)
S�,n =

k∑

�=1

(
k + 1

�

) �+1∑

j=1

aj,�n
j

= n
k∑

�=1

(
k + 1

�

)
a1,� +

k+1∑

j=2

nj
k∑

�=j−1

(
k + 1

�

)
aj,�

The defining equation (7.6) can now be expressed to expose the powers
of n on each side of the equation:

n+ n
k∑

�=1

(
k + 1

�

)
a1,� +

k+1∑

j=2

nj
k∑

�=j−1

(
k + 1

�

)
aj,�

=

k∑

�=1

(
k + 1

�

)
n� + nk+1

The k + 1 equations that arise from matching powers of nj on each
side of the equation can be delineated as
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Power Equation

j=1 1 +
∑k

�=1

(
k + 1

�

)
a1,� = k + 1

j = 2, . . . , k
∑k

�=j−1

(
k + 1

�

)
aj,� =

(
k + 1

j

)

j = k + 1 (k + 1)ak+1,k = 1

The last entry shows that

(7.7) ak+1,k = 1/(k + 1)

The remaining coefficients can be found iteratively. Two cases illustrate
how this is done: For j = 1, we can simplify the equation found in the
table

k∑

�=1

(
k + 1

�

)
a1,� = k

and proceed sequentially:

k = 1 :

(
2

1

)
a1,1 = 1

=⇒ a1,1 = 1/2

k = 2 :

(
3

1

)
1/2 +

(
3

2

)
a1,2 = 2

=⇒ a1,2 = 1/6

k = 3 :

(
4

1

)
1/2 +

(
4

2

)
1/6 +

(
4

3

)
a1,3 = 3

=⇒ a1,3 = 0

k = 4 :

(
5

1

)
1/2 +

(
5

2

)
1/6 +

(
5

3

)
0 +

(
5

4

)
a1,4 = 4

=⇒ a1,4 = −1/30



7.1 A General Equation 99

A similar procedure can be used for j = 2:

k = 1 :

(
2

1

)
a2,1 = 1

=⇒ a2,1 = 1/2

k = 2 :

(
3

1

)
1/2 +

(
3

2

)
a2,2 =

(
3

2

)

=⇒ a2,2 = 1/2

k = 3 :

(
4

1

)
1/2 +

(
4

2

)
1/2 +

(
4

3

)
a2,3 =

(
4

2

)

=⇒ a2,3 = 1/4

k = 4 :

(
5

1

)
1/2 +

(
5

2

)
1/2 +

(
5

3

)
1/4 +

(
5

4

)
a2,4 =

(
5

2

)

=⇒ a2,4 = 0

The sequence of operations outlined above applies to all j ≤ k
and is easily programmed. The results, for the first seven cases, are
summarized in the following table (the column headed by d is a
denominator):

Table of Values of aj,k

k\j 1 2 3 4 5 6 7 8 d

0 1 0 0 0 0 0 0 0 1

1 1 1 0 0 0 0 0 0 2

2 1 3 2 0 0 0 0 0 6

3 0 1 2 1 0 0 0 0 4

4 -1 0 10 15 6 0 0 0 30

5 0 -1 0 5 6 2 0 0 12

6 1 0 -7 0 21 21 6 0 42

7 0 2 0 -7 0 14 12 3 24

We have highlighted the non-zero entries in bold that are required
to write the equation for S5,n given by
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S5,n =
−n2 + 5n4 + 6n5 + 2n6

12

Using the above coefficients we can easily calculate the polynomial
equation for Sk,n but this sheds no light on the relationship between
the numbers found in the table of values given at the beginning of the
chapter. What is this relationship? Can one start with a simple case
and generate the remainder of the numbers algorithmically?

7.1.1 Iterative Approach

If there exists such an algorithm, then it must be the case that the
value of Sk,n can be written in terms of elements that occur previous
to it in the table. Typically this can be done either by a calculation of
terms in the previous row or the previous column. In this way, values
can be generated starting from easily calculated small values of k and
n. It makes sense then to consider two different summations: one along
the n axis and one along the k axis.

To follow this approach, first consider the following summation:

n∑

�=1

Sk,� = 1 + (1 + 2k) + (1 + 2k + 3k) + · · ·+ (1 + 2k + · · ·+ nk)

This shows that 1 appears in all n of the sums, 2k appears in n− 1 of
them, and �k appears in n− �+ 1 of the summations. Hence,

(7.8) Sk,n = nSk−1,n −
n−1∑

i=1

Sk−1,i

This shows that Sk,n can be calculated using the previous row in the
table. To illustrate this, consider the case k = 3 and n = 4. The
equation above yields the value of 100 that is underlined in the table:

100 = 4 · 30− (1 + 5 + 14)

Now consider the column-wise summation along the k axis. A
straightforward summation like that above yields
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k∑

�=0

S�,n =
k∑

�=0

n∑

i=1

i�

=
n∑

i=1

1 + i1 + i2 + · · ·+ ik

= S0,n + S1,n + · · ·+ Sk,n

which gets nowhere. A key insight that often proves to be useful arises
by inserting a combinatorial term in the above sum, thus allowing the
binomial theorem to be used to obtain a closed form equation. With
this thought in mind consider the binomial transform of S�,n

k∑

�=0

(
k

�

)
S�,n =

k∑

�=0

(
k

�

) n∑

i=1

i�(7.9)

=
n∑

i=1

k∑

�=0

(
k

�

)
i�

=
n∑

i=1

(i+ 1)k

= Sk,n+1 − 1

This works like a charm and rewriting the above equation more directly
leads to the identity

(7.10) Sk,n = 1 +
k∑

r=0

(
k

r

)
Sr,n−1

This equation provides a method that uses the columns to determine
the value of Sk,n. Illustrating this with k = 3 and n = 7 results in the
underlined value of 784 found in the table

784 = 1 + 6 + 3 · 21 + 3 · 91 + 441

These two methods can be used to generate all the values of Sk,n

starting from initial beginning values.
This section ends with two easily calculated identities. Forming the

binomial inverse of (7.10) leads to the identity
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Sk,n =
k∑

�=0

(
k

�

)
(−1)k−� (S�,n+1 − 1)(7.11)

=
k∑

�=0

(
k

�

)
(−1)k−�S�,n+1

The sum of integer powers leads to

S2
k,n =

(
n∑

i=1

ik

)2

= S2k,n + 2
n−1∑

i=1

n∑

j=i+1

(ij)k

Thus, a closed form equation for the cross product terms contained in
the summation:

(7.12)
n−1∑

i=1

n∑

j=i+1

(ij)k =
S2
k,n − S2k,n

2

7.2 Triangular Numbers

The values of S1,n given by 1, 3, 6, 10, 15, 21, 28, . . . correspond to the
number of items needed to fill out a triangle like a rack of billiard balls.
Because of this analogy, they are called triangular numbers. Simplify
notation and define

(7.13) Tn =
n(n+ 1)

2
=

(
n+ 1

2

)
, n = 0, 1, . . .

Like Fibonacci numbers, triangular numbers have a multitude of
interesting properties. One property was discovered by Gauss who
might have had an affinity for these numbers since they allowed his
school boy escape. In one of his notebooks, Gauss wrote Eureka!
(actually his note book said, EYPHKA:num=Δ + Δ + Δ) after he
discovered that all numbers could be written as the sum of three
triangular numbers. Hence, for any integer k, Gauss showed that it
is possible to find integers mi, i = 1, 2, 3, such

k = Tm1 + Tm2 + Tm3
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An example

30 = 1 + 1 + 28 = 3 + 6 + 21 = 0 + 15 + 15 = 10 + 10 + 10

shows that there might be multiple ways to write this sum. We say a
number, n, is represented by a general expression if an equality for n
can be found by varying the terms of that expression. Thus, Gauss’s
Eureka moment came when he saw that three triangular numbers
represented all non-negative integers.

Endless diversion can be found in the relationships between trian-
gular numbers. For example, straightforward algebra establishes the
following identities that result in a polynomial in n:

Tn + Tn+1 = (n+ 1)2(7.14)

Tn+1 − Tn = n+ 1

T 2
n+1 − T 2

n = (n+ 1)3

8Tn + 1 = (2n+ 1)2

T2n+1 − T2n = 2n+ 1

T2n−1 − 2Tn−1 = n2

An identity that arises from viewing triangular numbers combinatori-
ally is given by

(7.15) Tn+k = Tn + Tk + nk

To prove this, consider two sets: one consisting of n elements and
the other containing k elements. We are interested in calculating
the number of ways to select a pair of items from these two sets,
Tn+k. There are three mutually different ways this can be done: both
elements can be selected from the set of n elements in Tn different ways,
from the set of k elements in Tk different ways, and one from each set
in nk different ways. Summing these yields the equation above.

By varying values of k, a variety of relations can be derived from
this equation including

Tn(n+1) = Tn + Tn2 + n3 (k = n2)(7.16)

Tn+2 = Tn + T2 + 2n (k = 2)

T2n = 2Tn + n2 (k = n)

TTn = Tn + TTn−1 + nTn−1 (k = Tn−1)
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By selecting k = Tn in the defining equation Tk−1+ k = Tk, we obtain
the identity

(7.17) TTn = TTn−1 + Tn

Equating the last two identities yields the tongue twisting result

(7.18) TTn−1 = TTn−1 + nTn−1

There is a similarity between the two identities previously stated that
contain an n2 term. Stated again, these identities reveal the curious
relationship

n2 = T2n−1 − 2Tn−1 = T2n − 2Tn

If we assume that Ti = 0 for i ≤ 0, then both of these equations are
special cases of a family of identities given by

(7.19) n2 = T2n−k + Tk−1 − 2Tn−k, k = 0, . . . , n

A product formula, analogous to the summation identity stated
above, is given by

(7.20) Tnk = Tn−1Tk−1 + TnTk

Again, varying k leads to a variety of results:

Tn2 = T 2
n−1 + T 2

n , (k = n)(7.21)

Tn3 = Tn−1Tn2−1 + TnTn2 , (k = n2)

T2Tn = Tn (Tn−1 + Tn+1) , (k = n+ 1)

T2n = T1Tn−1 + T2Tn, (k = 2)

A triangle is a 2-dimensional object which, when raised to three
dimensions, becomes a pyramid. In this case, instead of racking billiard
balls, one stacks cannon balls. The sequence of values then corresponds
to 1, 4, 10, 20, 35, . . . which are given by values of T2n. The numeric
sequence can be written as 4i − 1 and thus another identity for T2n

emerges into view
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(7.22) T2n =
n∑

i=1

4i− 1 = 4Tn − n

The algebra to calculate the sum of the squares of triangular
numbers is a bit tricky. Linking back to the equation derived for the
sums of power of integers reveals the curious relationship S3,n = T 2

n .
Using this, and the row-wise summation previously derived, shows that

(7.23)
n∑

i=1

T 2
i =

n∑

i=1

S3,i = (n+ 1)S3,n − S4,n

Writing this in a different way leads to
(7.24)
n∑

i=1

T 2
i =

1

4

n∑

i=1

i2(i+1)2 =
1

4

n∑

i=1

i4+2i3+ i2 =
1

4
(S4,n + 2S3,n + S2,n)

Equating these last two equations leads to the identity

2(2n+ 1)S3,n = S2,n + 5S4,n

The general case for the summing the k’th power of triangular numbers
can be written as

n∑

i=1

T k
i =

n∑

i=1

ik(i+ 1)k

2k
=

n∑

i=1

ik

2k

k∑

�=0

(
k

�

)
i�(7.25)

=
1

2k

k∑

�=0

(
k

�

) n∑

i=1

ik+� =
1

2k

k∑

�=0

(
k

�

)
Sk+�,n

This identity can also be recast as1

(7.26)

n∑

i=1

ik(i+ 1)k =

k∑

�=0

(
k

�

)
Sk+�,n

We can analyze the fine structure of T k
i by using a telescoping sum

to write

1This corresponds to the sum of powers of variety-2 integers, see equation (3.3).
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T k
i =

i∑

j=1

T k
j − T k

j−1(7.27)

=

i∑

j=1

(
j(j + 1)

2

)k

−
(
(j − 1)j

2

)k

=
1

2k

i∑

j=1

jk
(
(j + 1)k − (j − 1)k

)

=
1

2k

i∑

j=1

jk
k∑

�=0

(
k

�

)
j�
(
1− (−1)k−�

)

=
1

2k

k∑

�=0

(
k

�

)(
1− (−1)k−�

) i∑

j=1

jk+�

=
1

2k

k∑

�=0

(
k

�

)(
1− (−1)k−�

)
Sk+�,i

The term 1 − (−1)k−� above equals 0 if k − � is even and equals 2
if k − � is odd. In light of this parity, let Ik be the set of odd (even,
respectively) integers less than k if k is an even (respectively, odd)
integer. Then, summing the above equation yields

n∑

i=1

T k
i =

1

2k−1

n∑

i=1

∑

�∈Ik

(
k

�

)
Sk+�,i(7.28)

=
1

2k−1

∑

�∈Ik

(
k

�

) n∑

i=1

Sk+�,i

=
1

2k−1

∑

�∈Ik

(
k

�

)
((n+ 1)Sk+�,n − Sk+�+1,n)

The last identity of this section displays a curious symmetry

(7.29) n2Tk + nTk−1 = k2Tn + kTn−1
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7.3 Cauchy’s Theorem

As stated before, Gauss showed that all numbers could be written as
the sum of three triangular numbers. This generalizes to squares with a
theorem by Joseph-Louis Lagrange (1736–1813) which shows that four
squares summed together are sufficient to represent all non-negative
integers (like triangular numbers we consider 0 to be a member of
this set). A generalization of these results is best stated in terms of
polygonal numbers.

The n’th number from the set of k polygonal numbers is given by

Pk,n =
(k − 2)n2 − (k − 4)n

2

Triangular numbers correspond to k = 3 in the above equation and
square numbers to k = 4. Like racking billiard balls, these numbers
arise when you rack k-gons. Polygonal numbers can be written multiple
ways in terms of triangular numbers after some algebraic manipulation

(7.30) Pk,n = (k− 2)Tn−1+n = (k− 3)Tn−1+Tn = (k− 4)Tn−1+n2

Some conjectures are so pure and beautiful that one feels that
something would be wrong with the world if they were not true. We
are facing one example here because the natural generalization of the
two cases above is: all integers can be written as the sum of k polygonal
numbers of order k. It turns out that this is not just a lofty conjecture
that implies the perfection of mathematics, it is actually a theorem
that was first proved by Augustin-Louis Cauchy (1789–1857).

It might seem that there are good reasons to not expect Cauchy’s
result since the distance between successive polygonal numbers
increases with k and n

Pk,n − Pk,n−1 = n(k − 2) + 3− k

For example, the k = 8 sequence corresponds to an octagon whose first
few values are

0, 1, 8, 21, 40, 96, 133, 176, 225, 280

whereas for squares we have

0, 1, 4, 9, 16, 25, 36, 49, 64, 81
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The increased spacing of the octagonal case over the square case is
offset by the need to have eight, rather than four, values added together
so that all integers can be represented. This is a deep and beautiful
result.

It is hard to resist answering one further question that arises:
are some k polygonal numbers also triangular numbers? Recall the
identity n2 = T2n−1 − 2Tn−1 of (7.14). Using this equation and the
identity Pk,n = (k− 4)Tn−1+n2 shows that these two equations share
the common terms of n2 and Tn−1. Equating them

n2 = T2n−1 − 2Tn−1 = Pk,n − (k − 4)Tn−1

thus uncovers that k = 6 satisfies the equation and thus hexagonal
k-gons are also triangular,

P6,n = T2n−1

What other forms of equations can be used to represent sets of
numbers? How about the number of cubes needed to represent all
numbers or, for that matter, the number of k powers that are required.
Edward Waring (1736–1798) posed this question by defining a function
g(k) to be the minimum number of k powers that were required to
represent all of the integers. Lagrange’s four square theorem showed
that g(2) = 4. Currently we only know the values g(3) = 9, g(4) = 19,
g(5) = 37, and g(6) = 73. Bounds and properties of g have been
extensively studied but, as of yet, the functional form of g remains
unknown.



Chapter 8

As Simple as 2 + 2 = 1

Freedom, is the freedom to say two plus two make four.
If that is granted, all else follows.

George Orwell (1903–1950)

Orwell was not speaking about mathematics in the quote above
from his book 1984. Rather, he was commenting on how totalitarian
governments attempt to define, and impose, their own notion of reality
on the public. Speaking mathematically, it is as clear as the back of
your hand that 2 + 2 = 1 and 1 + 2 = 0. That is, if you belong to a
three fingered species. We have grown so used to the ten fingers on our
hands, that we forget that there is nothing special about base 10. Since
the invention of the number 0 by Indian mathematicians of the fifth
century, this means that all of our numbers are composed of the digits
0 through 9. To three fingered species this means that their number
system uses the digits 0 through 2 so that 3 wraps around to 0 and 4
to 1. Thus 2+2 = 1 and 1+2 = 0 in base 3. Orwell’s above statement
is thus valid for all bases 5 and larger unless, of course as he alludes,
the totalitarian regime in power says otherwise.

8.1 Modular Arithmetic

Often the remainder of a number after division is the only charac-
teristic that is necessary to establish a mathematical property—the
magnitude of the integer is not relevant. For example, all primes
greater than 2 are odd independent of their magnitude. In base 2
looking at integers in this way essentially splits them into 2 disjoint
sets. The first set contains the even integers, {. . . , −4, −2, 0, 2, 4, . . .}
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and the second the odds, {. . . , −5, −3, −1, 1, 3, 5, . . .}. These two
groups arise by skipping the integers by 2 (up and down) starting
from a point determined by the remainder when an integer is divided
by 2.

In base n integers are split into n disjoint sets depending on their
remainder when divided by n (the possible remainders are 0 through
n − 1). Similar to odd even parity, these sets occur by skipping by
n steps. For example, the set corresponding to a remainder of k is
given by

{. . . , −3n+ k, −2n+ k, −n+ k, k, n+ k, 2n+ k, . . .},
k = 0, . . . , n− 1

Mathematically, one uses modular arithmetic when the only charac-
teristic necessary to establish a property is the parity of the number
with respect to some base. Equality in such a system is customarily
written as

b ≡ β (mod n)

which means that b and β leave the same remainder when divided by
modulus n. This equation represents a congruence relation between b
and β. A more concise notation used in this book when dealing with
modulo arithmetic is written as

(8.1) b ≡n β

As examples, the equations 38 ≡5 53, −2 ≡5 3, and −47 ≡5 −222
are all valid since 38, 53, -2, -47, and -222 leave a remainder of 3
when divided by 5. Since an + k ≡n bn + k for any integers a and b
it is customary to write the right-hand side of a modulo equation by
setting b = 0 or b = −1. Thus the equation 38 ≡5 53 would typically
be written as 38 ≡5 3 or 38 ≡5 −2.

The equation b ≡n β is equivalent to the fact that b − β is evenly
divisible by n. In essence, both statements are a restatement of the
equation (b− β) ≡n 0. In terms of the sets that we mentioned above,
the equation means that b and β are in the same set. Negative numbers
in modulo arithmetic can be viewed in terms of positive complements
through the following equation:

(8.2) n− b ≡n −b, b = 0, . . . , n− 1
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For example, 9 ≡10 −1. In everyday life, clocks form a natural modulo
system of order 12 provided that the hours are relabeled 0 through 11.

It is clear that the congruence relation is reflexive (b ≡n b),
symmetric (b ≡n β also means β ≡n b), and transitive (b ≡n β and
β ≡n γ imply b ≡n γ). Other properties of modulo arithmetic include
(� is assumed to be an integer)

�+ b ≡n �+ β addition property

�b ≡n �β multiplication property

b� ≡n β� (� > 0) power property

One way to establish the last property is to use (A.7) to write

b� − β� = (b− β)
�−1∑

i=0

biβ�−i−1

The divisibility of b� − β� by n then follows from the fact that b − β
is divisible by n. Notice that the combination of all three properties
listed above imply that if p is a polynomial with integer coefficients
and b ≡n β, then p(b) ≡n p(β).

To state properties having combinations of modular terms, assume
that a ≡n α and b ≡n β. Then

a± b ≡n α± β(8.3)

ab ≡n αβ

To establish the last equation, note that the quantity αb−αβ = α(b−β)
is divisible by n and thus αb ≡n αβ. Similarly ab − αb = b(a − α) is
divisible by n and thus ab ≡n αb. These two equations, along with
symmetry and transitivity, yield ab ≡n αβ. This relationship provides
another way to establish the power property in the first list, b� ≡n β�.
To see this, set a = b and α = β and repeat �− 1 times.

The following two properties can be used to cancel � in the following
equations:

�+ b ≡n �+ β =⇒ b ≡n β

�b ≡n �β =⇒ b ≡n β

provided that n and � are coprime
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In this last equation, n and �must not have any common factors for the
relationship to hold in general. To show this, write �b− �β = �(b− β).
If � is divisible by n, then there is no necessity for b − β to also be
divisible by n. Thus � cannot be cancelled from the equation and still
guarantee the equality. If � and n are co-prime, however, then the only
way �(b − β) is divisible by n is for b − β to be divisible by n. Thus
b ≡n β.

8.2 Fermat’s Little Theorem

At this point it makes sense to ask—what use is such a concept? Many
applications seem like tricky test questions. To illustrate one example:
what is the remainder when 19317 is divided by 3? To determine the
answer, note that 19 ≡3 1 since 19 = 3 · 6 + 1. The power property
above then yields the answer: 19317 ≡3 1.

For another example, let � be an integer with digits di, i =
0, . . . ,m where the i’th digit corresponds to the i’th power of 10. This
corresponds to the polynomial

� = d0 + d110
1 + · · ·+ dm10m

Suppose that � ≡3 0. Then is it possible to say anything about the
digits comprising �? To answer this, note that 10 ≡3 1 and thus 10i ≡3

1. Using the multiplication property shows that di10
i ≡3 di and thus

� ≡3 d0 + d1 + · · · + dm. These observations imply that the sum of
the digits of � must be divisible by 3 for � to be divisible by 3. A
straightforward generalization concerns base n integers written as

� = d0 + d1n
1 + · · ·+ dmnm

A similar argument shows that � ≡n−1 d0 + · · ·+ dm (since n ≡n−1 1).
Thus, octal integers are divisible by 7 if the sum of their digits is
divisible by 7.

As another example, a number is divisible by 11 if the alternating
(±) sum of its digits is divisible by 11 (this arises from the fact that
10 ≡11 −1). There are a wealth of results along these lines.

Modulo arithmetic also leads to many basic results of number
theory. For example, assume that p is a prime number and consider
the binomial expansion
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(a+ b)p =

p∑

i=0

(
p

i

)
aibp−i

= ap + bp +

p−1∑

i=1

(
p

i

)
aibp−i

In this expression, the binomial coefficient in the summation is divisible
by p since p is contained in the numerator1 but not the denominator.
Hence

(
p

i

)
≡p 0, i = 1, . . . , n− 1

which implies that

(8.4) (a+ b)p ≡p a
p + bp

A result that follows from this is due to Pierre de Fermat (1607–1665)
which is aptly called Fermat’s Little Theorem. It states that

(8.5) xp ≡p x

for x integer and p prime. To prove it, observe that the claim clearly
holds for x = 0. Thus, assume it holds up to a value of x = a.
Using (8.4) we can write

(a+ 1)p ≡p a
p + 1p ≡p a+ 1

where the last step follows from the induction assumption. This
equation is simply a restatement of (8.5) for the next highest integer
and establishes the result.

Fermat’s little theorem can be used as a test to determine if an
integer n is prime. For example, suppose for some x that xn �≡n x.
Then the theorem implies that n is not prime. No statement can
be made; however, if Fermat’s equation holds since it can do so
for composite n. In fact, there are composite integers n that satisfy
Fermat’s equation for every value x that is relatively prime to n.

1The numerator equals p(p− 1)!.
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Such Carmichael numbers pose a formidable test to Fermat since they
present the appearance of being prime. There are an infinite number
of such Carmichael numbers masquerading as primes, at least through
the eyes of Fermat’s test. The smallest such number is 561.

8.3 Lagrange’s Theorem

Another result from modular arithmetic is due to Lagrange and
deals with the roots of a polynomial modulo a prime. A polynomial
f(x) = a0 + a1x + · · · + amxm has degree k modulo n if ak is the
highest coefficient that is not divisible by n. The theorem states that
the number of roots of a polynomial modulo p, where p is prime, cannot
exceed its degree. The proof of this proceeds by induction starting
with a degree 1 polynomial where the result is obvious. Assume the
proposition holds up to degree n−1. Suppose polynomial f has degree
n modulo p. If f does not have a root, then there is nothing to prove.
Therefore, assume that a root b exists so that f(b) ≡p 0. Write

f(x)− f(b) =
n∑

i=1

ai(x
i − bi)

= (x− b)
n∑

i=1

ai

i−1∑

j=0

xjbi−j−1 from equation (A.7)

= (x− b)
n−1∑

j=0

xj
n∑

i=j+1

aib
i−j−1

= (x− b)
n−1∑

j=0

cjx
j

where cj is defined as

cj =
n∑

i=j+1

aib
i−j−1

Thus f(x) can be written as

f(x) = f(b) + (x− b)
n−1∑

j=0

cjx
j ≡p (x− b)

n−1∑

j=0

cjx
j
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By the induction hypothesis, the polynomial
∑n−1

j=0 cjx
j can have at

most n − 1 roots. This, along with the assumption that b is a root,
implies there can be at most n roots to f(x) modulo p and thus
establishes the result.

8.4 Wilson’s Theorem

The theorems of Fermat and Lagrange just discussed can be used to
extract a deep result. Fermat’s result (8.5) can be rewritten as xp−1 −
1 ≡p 0 which shows that there are p − 1 roots modulo p with the
values 1, 2, . . . , p−1. Consider the polynomial (see (3.1) for the falling
factorial notation)

(x− 1)(p−1) = (x− 1)(x− 2) · · · (x− (p− 1))

This clearly also has roots 1, 2, . . . , p − 1 modulo p. Using the
result (3.13) we can write

(x− 1)(p−1) =

p−1∑

i=1

(−1)p−i−1

[
p− 1

i

]
(x− 1)i

=

p−1∑

i=1

(−1)p−i−1

[
p− 1

i

] i∑

j=0

(
i

j

)
(−1)i−jxi

=

p−1∑

i=1

(−1)p−1

[
p− 1

i

]

+

p−1∑

j=1

xj
p−1∑

i=j

(−1)p−j−1

(
i

j

)[
p− 1

i

]

= (−1)p−1

[
p− 1

p− 1

]
+

p−1∑

j=1

ej,p−1x
j

where we have defined

ej,p−1 =

p−1∑

i=j

(−1)p−j−1

(
i

j

)[
p− 1

i

]
, j = 0, . . . , p− 1
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If p is a prime greater than 2, then we can use (3.5), and the observation
that cp−1,p−1 = 1, to simplify the above expression:

(x− 1)(p−1) = (p− 1)! + xp−1 +

p−2∑

j=1

ej,p−1x
j

Our next step is to consider the polynomial defined by subtracting
Fermat’s equation from the falling factorial

f(x) = (x− 1)(p−1) − (xp−1 − 1
)

(8.6)

= (p− 1)! + 1 +

p−2∑

j=1

ej,p−1x
j

=

p−2∑

j=0

ej,p−1x
j

In the last equation we have extended the definition of the coefficients
to include the constant term

(8.7) e0,p−1 = (p− 1)! + 1

From its definition, it is clear that f has the same roots as the two
functions that define it. Thus it has p− 1 roots modulo p. But this is
impossible according to Lagrange’s theorem since f has of degree p−2
modulo p which only allows p− 2 roots. Hence, f must be identically
equal to 0 modulo p which implies that all of its coefficients must equal
0 modulo p:

ej,p−1 ≡p 0, j = 0, . . . , p− 2

This establishes the following set of identities:

(p− 1)! + 1 ≡p 0(8.8)

p−1∑

i=j

(−1)p−j−1

(
i

j

)[
p− 1

i

]
≡p 0, j = 1, . . . , p− 2
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These ruminations lead us to the deep result mentioned above.
Wilson’s theorem named after John Wilson (1741–1793) states that
the equation

(8.9) (n− 1)! + 1 ≡n 0

is satisfied if and only if n is a prime number. The if portion is simply
the first identity above (8.8) that deals with the constant coefficient
of f . To prove the only if portion of Wilson’s theorem, assume that n
is composite and also satisfies (n− 1)! + 1 ≡n 0. Then it must be the
case that n is divisible by an integer k < n. But (n − 1)! necessarily
contains k and thus (n− 1)! + 1 �≡k 0 for any k < n. This violates the
assumption that n is composite.

Wilson’s theorem provides another method to test if a number is
prime—simply see if (n− 1)!+ 1 ≡n 0. Like Fermat’s little theorem, it
also is a poor test since factorials increase rapidly. Wilson’s theorem
does provide entertainment by producing a wealth of parlor tricks. For
example, from the theorem we know that 72! ≡73 −1 since 73 is prime.
Thus, since 72 ≡73 −1, we can use (8.3) to conclude that 71! ≡73 1.
Following this example, we can write the general equation (p−2)! ≡p 1
for p prime.

8.5 Cryptography

A less flippant application of modular arithmetic than numeric
divisibility challenges is a procedure that is used millions of times
a day on the Internet. It is called public key cryptography. The
objective of cryptography is to create a secure communications channel
between two participants such that an eavesdropper cannot decode
their communications. To explain this procedure, suppose that A
wants to send a secure message to B and that C is listening to the
communication. Both A and B share a large prime number p and a
base number n. These can also be known by C. Let ea be an integer
only known by A and similarly let eb be an integer only known by B.
Participant A computes the value

va ≡p n
ea
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and sends it on the channel to B. Likewise, B computes

vb ≡p n
eb

and sends it to A. Note that C can listen to these communications;
they take place on an insecure channel.

Now the magic starts. Participant A takes the communication it
received from B and computes

wa ≡p v
ea
b

This computed value cannot be determined by C because ea is only
known to A. Likewise, B computes

wb ≡p v
eb
a

which also cannot be computed by C. But A and B now share the same
value because w = wa = wb. This follows from the power property of
modular arithmetic since

vb ≡p n
eb =⇒ (vb)

ea ≡p (n
eb)ea

and

va ≡p n
ea =⇒ (va)

eb ≡p (n
ea)eb

The value of w can now be used as a key for a cryptographic scheme
for the duration of the communication and C cannot easily break the
code because everything is calculated modulo a large prime. I need the
word easily in this last statement because if there was a fast way to
calculate the value of ea or eb from w (remember p, n, va, and vb are all
assumed to be known by C), then C could break the code. Solving for
such values is called the discrete logarithm problem which is currently
computationally intractable for large p.



Chapter 9

Hidden in Plain Sight

Chebyshev said it, and I’ll say it again,
There’s always a prime between n and 2n

Nathan Fine (1916–1994)

Take any number and keep finding factors of that number that cannot
be factored themselves. For example, 84 = 2 · 2 · 3 · 7, 455 = 5 · 7 · 13 or
897 = 3 ·13 ·23. These examples show that a number can be written as
the product of prime numbers.1 This is called a prime factorization.
A separate argument, that we will shortly get to, shows that this
factorization is unique. This result has far reaching consequences and
is called the Fundamental Theorem of Arithmetic. This theorem shows
that primes are the DNA of the number system. Essentially all of the
results of number theory are theorems of the primes, the topic of this
chapter.

9.1 Properties of Prime Numbers

Do primes ever end? To address this question, let p1, p2, . . . , pn
be a list of successive primes that end with an assumed maximal
prime pn. Consider a primorial number, denoted by the somewhat
strange notation pn#, that corresponds to the product of the first n
consecutive primes

(9.1) pn# = p1 · p2 · · · pn−1 · pn

1Just keep dividing until it is not possible to continue without having a remainder.
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This is not a prime number but how about pn# + 1? If pn# + 1 is
divided by pj :

pn#+ 1

pj
= p1 · p2 · · · pj−1 · pj+1 · · · pn−1 · pn +

1

pj

then the result is a whole number with a remainder. But if no previous
prime divides pn# + 1, then it must be prime and it is clearly larger
than pn, the presumed largest prime. This contradicts the assumption
that there is a maximal prime. This clever argument was first put
forth sometime around 300 BC by Euclid of Alexandria, the father
of Euclidean geometry. There are literally dozens of proofs that the
primes go on infinitely and we will see a couple more in this chapter.

How does one generate a list of prime numbers? Let us discuss one
way proposed by another Greek mathematician, Eratosthenes (276–
194 BC), who developed a technique sometime around 200 BC. It is
a simple idea called a sieve. For a variety of reasons the integer 1 is
not considered to be prime.2 A sieve starts by writing all the integers
starting from 2

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, . . .

The first number in the list, 2, is the first prime and this means that
all subsequent multiples of 2 can be crossed out as candidate primes;

2, 3, �4, 5, �6, 7, �8, 9, �10, 11, �12, 13, �14, 15, �16, 17, �18, 19, �20, 21, �22, 23, . . .

This leaves the next prime, 3. Repeating this process, cross out all
multiples of 3 yielding

2, 3, �4, 5, �6, 7, �8, �9, �10, 11, �12, 13, �14, �15, �16, 17, �18, 19, �20, �21, �22, 23, . . .

Notice that 6 is already crossed out because it was divisible by 2 and
would again be crossed out because it is also divisible by 3. The first
remaining number is the next prime, 5, and the process continues by
crossing out multiples of 5

2, 3, �4, 5, �6, 7, �8, �9, �10, 11, �12, 13, �14, �15, �16, 17, �18, 19, �20, �21, �22, 23, . . .

This leaves 7 as the next prime. The algorithm continues on from here.

2Essentially it makes too many trivial exceptions in theorems in number theory.
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Eventually the only numbers left not crossed are the set of primes.
This sieve shows how primes emerge as the essential components of
the integers. There are other methods to generate primes and long
lists of primes can be found on the Internet. Its maddening, however,
that there is no equation for the n’th prime. No one who has walked
the earth, and even perhaps who will ever walk the earth, knows the
17 quadragintillion’th prime.

We next return to the fundamental theorem of arithmetic and prove
that the representation of an integer as a product of primes is unique.
For small values of n this is easily established so assume the first
time uniqueness does not hold is at integer m. It is clear that m
cannot be prime. Assume that composite m has two different prime
factorizations. In these factorizations, order the primes in increasing
value so that p is the smallest prime in the first factorization and
q is the smallest in the second. Let the remaining portion of the
factorizations of m be denoted by P and Q, respectively. Thus we
can write

m = pP = qQ

Note that P is composed of primes at least as large as p and, similarly,
Q consists of primes at least as large as q. If p = q, then we reach a
contradiction since P = m/p = m/q = Q is an integer smaller than
m which is assumed to have a unique factorization. Since p and q
differ, one has to be greater so assume that p > q. Note, from the
two factorizations above, m is divisible by both p and q. It clearly is
divisible by p but what about q? If q divides m, then it must divide
either p or P . But this is impossible since both of these terms consist
of products of primes that are strictly larger than q. Thus we reach a
contradiction—prime factorizations are unique.

From now we will talk about integers in terms of their prime
factorization. Let ωi(n) be the exponent of the i’th prime, pi, in the
representation of the integer n, thus

n = 2ω1(n) · 3ω2(n) · 5ω3(n) · 7ω4(n) · · · pωi(n)
i · · · =

∞∏

i=1

p
ωi(n)
i

To multiply two numbers using this representation one simply adds
exponents

n ·m =
∞∏

i=1

p
ωi(n)+ωi(m)
i
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More conveniently we can write n as the infinite vector of values ω(n) =
(ω1(n), ω2(n), . . .) where the j’th place corresponds to the exponent
of pj . Thus n · m is represented as the vector addition: ω(n · m) =
(ω1(n) + ω1(m), ω2(n) + ω2(m), . . .). As an example,

(9.2) 198 = (1, 2, 0, 0, 1, 0, . . .) = 2 · 32 · 11

Note that wi(n/m) = wi(n) − wi(m) (provided n is divisible by m)
and wi(n

k) = kwi(n) for integer k.

9.1.1 Properties of Integer Divisors

This notation allows us to specify the total number of divisors as well
as the sum of all the divisors with simple arithmetic expressions. Define
σk(n) be the

(9.3) σk(n) =
∑

d|n
dk

where d|n means that the summation occur over all possible integer
values of d that evenly divide n. Thus, σ0(n) is the number of total
divisors of n and σ1(n) is the sum of the total divisors. For the
example (9.2) above there are 12 divisors given by

{1, 2, 3, 11, 2 · 3, 2 · 11, 32, 3 · 11, 2 · 32, 2 · 3 · 11, 32 · 11, 2 · 32 · 11}

To calculate an expression for σ0(n), concentrate on the i’th prime
which has an exponent of ωi(n). The total number of possible divisors
due to this prime is given by

p0i , p1i , . . . , p
ωi(n)
i

leading to a total of 1 + ωi(n) possibilities. Since this is true for all i
we have

(9.4) σ0(n) = (1 + ω1(n))(1 + ω2(n)) · · · =
∞∏

i=1

(1 + ωi(n))
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Note the special case for primes raised to a power:

(9.5) σ0(p
k
i ) = k + 1

The value sum of the divisors for the example can be expressed by

σ1(198) = (20 + 21)(30 + 31 + 32)(110 + 111)

To explain this, note that expanding this multiplication into its
individual factors corresponds to summing all possible products of
the form 2k13k211k5 , where k1 = 0, 1, k2 = 1, 2, 3, and k5 = 1, 2.
Following this pattern we can write the sum of all the divisors for n
as the product of the sum of all the divisors for the i’th prime

1 + p1i + p2i + · · ·+ p
ωi(n)
i =

p
ωi(n)+1
i − 1

pi − 1

Thus σ1(n) is given by

(9.6) σ1(n) =
∞∏

i=1

p
ωi(n)+1
i − 1

pi − 1

For the example above, we obtain σ1(198) = 468. Note the special case
for primes raised to a power:

(9.7) σ1(p
k
i ) = 1 + p1i + · · ·+ pki =

pk+1
i − 1

pi − 1

The prime factorization of n! = n(n − 1) · · · 2 · 1 can be obtained
from the factorizations of all the integers less than or equal to n. For
prime pi, let Ωi(n) = ωi(n!) which is given by

Ωi(n) =
n∑

k=2

ωi(k)

A modification of a sieve argument allows us to calculate a closed
form expression for Ωi(n). To motivate this argument, consider the
prime factorization of 10! and concentrate on the value of the exponent
of 2 in that factorization. Every step of size 2i, i = 1, . . . corresponds
to a multiplication by 2 which has to be counted in the final value of
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the exponent. For 10! we have factors associated with 21, arising from
2, 4, 6, 8, 10, factors associated with 22, from 4 and 8, and associated
with 23, from 8. Counting all of these shows that the final exponent of
2 equals 8. Mathematically, we can write the contribution to the final
exponent for factors associated with 2i by the integer portion of n/2i.
Generalization of this argument shows that

(9.8) Ωi(n) =
∑

�:p�i≤n

⌊
n

p�i

⌋

The prime factorization can therefore be written as

(9.9) n! =
∞∏

i=1

p
Ωi(n)
i

From this equation it is clear that n! cannot be prime (indeed all
factorial numbers are even), but n! ± 1 could be. Such primes are
called factorial primes. Less than a hundred of these primes have been
discovered.

Recall the definition of a primorial number defined in equation (9.1),
values of which are given by

n 1 2 3 4 5 6 7 8 9

pn 2 3 5 7 11 13 17 19 23

pn# 2 6 30 210 2,310 30,030 510,510 9,699,690 223,092,870

9.2 The Prime Counting Function

A closely related function to pn#, denoted by z#, is the product of
all primes less than or equal to a value z:

(9.10) z# =

π(z)∏

i=1

pi

where π(z), the prime counting function, is the number of primes less
than or equal to z
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(9.11) π(z) =
∑

i:pi≤z

1

Since z# only depends on primes, if the largest prime less than
or equal to z is pn (equivalently π(z) = n), then pn# = z#. From
equations (9.5) and (9.7) we can write σ0(pn#) = 2n and

(9.12) σ1(pn#) =
n∏

i=1

(pi + 1)

or, expressing this in a different notation, that

(9.13) σ1(z#) =

π(z)∏

i=1

(pi + 1)

We wish to show that an upper bound of z# is given by

(9.14) z# ≤ 4z−1

Since �z# = z# and 4�z�−1 ≤ 4z−1 we can, without loss of generality,
restrict z to be integer when deriving the bound. It is easy to check
that (9.14) holds for small values of z. Assume then, inductively, that
it holds for all values up to z. Since the value of z# only depends on
primes less than or equal to z, it suffices to show that (9.14) holds for
the largest odd prime less than or equal to z. Let this prime be given
by 2�+ 1 and decompose (2�+ 1)# into disjoint multiplications:

(2�+ 1)# = (�+ 1)#
∏

i:�+1<pi≤2�+1

pi(9.15)

≤ 4�
∏

i:�+1<pi≤2�+1

pi

The induction hypothesis is used to create the inequality in the first
term of the last equation.

The second product term in (9.15) reminds one of a portion of a
binomial coefficient. In particular, recall the computational form for
binomial coefficients given in equation (2.11):
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(9.16)

(
2�+ 1

�

)
=

�−1∏

j=0

2�+ 1− j

�− j

There are two things to note: each term of this product is a fraction
that is greater than 1 and primes in the range i : � + 1 < pi ≤ 2� + 1
are contained in the numerator of (9.16) but not in the denominator.
This shows that the binomial coefficient is larger or equal to the
multiplication of consecutive primes from � + 1 to 2� + 1 and thus
that

(9.17)
∏

i:�+1<pi≤2�+1

pi <

(
2�+ 1

�

)

Since

(
2�+ 1

�

)
=

(
2�+ 1

�+ 1

)

we can use the binomial summation formula of (2.21) to write

2

(
2�+ 1

�

)
= 22�+1 −

∑

j �=�,�+1

(
2�+ 1

j

)

Dividing by 2 and eliminating the subtraction shows that

(
2�+ 1

�

)
< 22� = 4�

Combining this with (9.15) yields the final bound

(9.18) (2�+ 1)# ≤ 42�

For z not restricted to being integer or prime, this bound can be
rewritten in the form of equation (9.14).
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9.3 There Is Always a Prime Between n and 2n

A generalization of a primorial number is one consisting of the multipli-
cation of primes (not necessarily consecutive). Such numbers are said
to be square-free since the exponents in their prime factorization are
less than or equal to 1. The following proof shows that all integers can
be factorized as the product of an integer and a square-free number.
Let n be an integer and write

(9.19) n = m2�

where m2 is the largest square divisor of n (possibly equal to 1) and �
is a square-free integer. Recall that ωi(n) is the exponent of pi in the
prime factorization of n. Let ai(n) and bi(n) solve

(9.20) ωi(n) = 2ai(n) + bi(n), 0 ≤ bi(n) ≤ 1

If bi(n) = 1, then the i’th exponent has odd parity.
With this notation, the factorization of n given by (9.19) follows for

m and � that satisfy ωi(m) = ai(n) and ωi(�) = bi(n). To illustrate
this with an example, consider

2, 156, 000 = 25 53 72 11

Then m = 140 = 22 ·5 ·7 and � = 110 = 2 ·5 ·11 and thus 2, 156, 000 =
1402 · 110.

How many square-free numbers are there less than n? To answer
this, note that since all products of primes less than n are square-free,
the total number corresponds to the number of subsets of π(n) items
which is given by 2π(n).3 We have just showed that any number can
be written as product of a square with a square-free number. There
are at most

√
n square numbers less than n. Thus, it must be the case

that n ≤ √
n 2π(n). After taking the natural logarithm of both sides,

this implies that

(9.21) π(n) ≥ ln(n)

2 ln(2)

3A consequence of the binomial theorem, see equation (2.21).
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Equation (9.21) is not only another proof of the infinitude of the
primes but it also provides a lower bound for the n’th prime. You
should note that this strong result is a direct consequence of the simple
factorization given in (9.19).

Equation (9.9) proves useful in deriving an upper bound on the
central binomial coefficient:

(
2n

n

)
=
(2n)!

(n!)2
=

∞∏

i=1

p
Ωi(2n)
i /

( ∞∏

i=1

p
Ωi(n)
i

)2

(9.22)

=
∞∏

i=1

p
Ωi(2n)
i /

∞∏

i=1

p
2Ωi(n)
i =

∞∏

i=1

p
Ωi(2n)−2Ωi(n)
i

=
∞∏

i=1

pmi
i

where we have defined

(9.23) mi =
∑

�:p�i≤2n

ψi,�

and

(9.24) ψi,� =

⌊
2n

p�i

⌋
− 2

⌊
n

p�i

⌋

Equations (9.23) and (9.24) are the keys to calculating the upper
bound. Clearly (9.24) shows that ψi,� = 0 if p�i > 2n. The same
equation also shows that ψi,� can at most equal 1. To establish this,
observe that if x and a are positive and a integer, then4

�ax − a�x < a

Setting x = n/p�i and a = 2 and using this inequality shows that
ψi,� < 2, thus establishing the claim.

To derive the upper bound, write (9.9) in disjoint ranges as

4A quick proof goes as follows: let x = �x�+ r, where 0 ≤ r < 1. Then the inequality
follows from a��x�+ r� = a�x� and �a(�x�+ r)� < a�x�+ a.



9.3 There Is Always a Prime Between n and 2n 129

(9.25)(
2n

n

)
=
∏

pi≤
√
2n

p
mi,�

i

∏
√
2n<pi≤2n/3

p
mi,�

i

∏

2n/3<pi≤n

p
mi,�

i

∏

n<pi≤2n

p
mi,�

i

We now proceed to calculate a bound for each range in (9.25). There
are at most

√
2n primes less than or equal to

√
2n and each of them

is clearly less than 2n. Thus a bound for the first range is given by

(9.26)
∏

pi≤
√
2n

p
mi,�

i < (2n)
√
2n

For primes that satisfy
√
2n < pi ≤ 2n/3 we claim that mi ≤ 1.

Since ψi,� can be at most 1, to show that mi ≤ 1 it suffices to show
that ψi,2 = 0 in this range. This follows immediately since the smallest
square prime in this range is larger than 2n. Thus, at most, this range
consists of the multiplication of consecutive primes from

√
2n + 1 to

2n/3. This corresponds to a primordial number and thus, using the
inequality (9.14), we can write

(9.27)
∏

√
2n<pi≤2n/3

p
mi,�

i ≤ 42n/3−1 < 42n/3

There are no primes in the third range: mi = 0 if 2n/3 < pi ≤ n.
To show this, note that this range can be rewritten as 1 ≤ n/pi < 3/2.
Thus setting

(9.28) n = pi + r, 0 ≤ r < pi/2

implies that �2n/pi = 2 and 2�n/pi = 2 showing that ψi,1 = 0. To
show that ψi,� = 0 for � > 1, note that (9.28) implies that

n

p�i
=

1

p�−1
i

(
1 +

r

pi

)
<

3

2p�−1
i

< 1

Collecting the results of (9.26) and (9.27) and substituting
into (9.25) shows that

(9.29)

(
2n

n

)
< (2n)

√
2n42n/3

∏

n<pi≤2n

p
mi,�

i



130 9 Hidden in Plain Sight

Previously a lower bound was derived for the number of coin tossing
games of length 2n that end even, see equation (6.5) . Incorporating
this into (9.29):

4n

2n
<

(
2n

n

)
< (2n)

√
2n42n/3

∏

n<pi≤2n

p
mi,�

i

uncovers the result mentioned in the beginning quote by Fine since it
shows that

(9.30)
4n/3

(2n)
√
2n+1

<
∏

n<pi≤2n

p
mi,�

i

Two quick computer programs now complete the result. The left-
hand side of (9.30) increases with n and, solving it numerically, shows
that it crosses 1 for n = 468. This guarantees that there is a prime
between n and 2n for all n ≥ 468. A trivial program then can be used
to verify the result for values of n less than 468. Giving credit to Paul
Erdős for the above analysis allows us to rephrase Fine’s quote as:

Chebyshev found them, then Paul Erdős again,
Primes trying to hide within n and 2n

Equivalent ways of expressing this theorem are: pn+1 < 2pn and π(z)−
π(z/2) ≥ 1.

There are a couple direct consequences of this result. First, it is
another proof that there is no largest prime. Next, it also suggests
a method to write any integer as the sum of distinct primes along
with the possible addition of 1. To quickly sketch a way to construct
such a sum, let pk1 denote the largest prime less than or equal to n.
The theorem shows that �n/2 + 1 ≤ pk1 ≤ n. If pk1 = n, then the
construction is finished. Otherwise, we are left to write n− pk1 as the
sum of distinct primes. Again, select the largest prime less than or
equal to this value and denote it by pk2 . Applying the theorem again
shows that �(n − pk1)/2 + 1 ≤ pk2 ≤ n − pk1 . If pk2 = n − pk1 , then
we are done since n = pk1 +pk2 . Otherwise, the construction continues
sequentially until it stops at the m’th step where either n = pk1 + · · ·+
pkm or n = pk1 + · · · + pkm + 1. To illustrate the output, note that
the algorithm produces the following representations: 212, 506, 133 =
212, 506, 123 + 7 + 3 and 212, 506, 135 = 212, 506, 123 + 11 + 1.

This construction says nothing more about the representation
of an integer as the sum of primes other than constructing one.
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We should mention Goldbach’s conjecture, named after Christian
Goldbach (1690–1764). This conjecture claims that every even integer
larger than 2 can be written as the sum of two primes. This conjecture
has not yet been proved (computers have not found a counter example
up to about 1018). The above algorithm, most frequently yields two
summands, although this is clearly not mandated in its specification.

You may not have noticed that the arguments leading to equa-
tion (9.30) utilized coarse inequalities that could be substantially far
from their exact values. For example, inequality (9.26) is tantamount
to assuming that all positive integers less than

√
2n are primes with

the value 2n and inequality (9.27) assumes that the product of primes
in the range

√
2n to 2n/3 equals the product of all primes less than n.

These are extremely crude approximations to the actual values, and
yet, these arguments are sufficient to establish a deep result—that a
prime lies between any number and its double. How is this possible?

Let me answer the question with a question. Did you ever get an
F on a test? Okay, probably not if you are reading this book. But if
you did, then you would know that it is almost impossible to pass the
course, and this is especially true if your F was a result of getting 0
points out of 100. This is the case for this bound. The range 2n/3 to n
grows linearly as n increases and, as proved above, there are no primes
in the binomial coefficient within this range. The overestimations in
the previous ranges eventually are dwarfed by the lack of primes in
this range. This is the genius of the argument and shows that even
when mathematics is used as a blunt tool, it can achieve a result of
fine precision.

9.3.1 The Prime Number Theorem with a
Controversy

There is a glaring hole now left in this chapter. We know that
there are an infinite number of primes, know that the n’th prime
must grow as ln(n) (equation (9.21)) and know that a prime always
exists between a number and its double. The question left hanging
concerns the asymptotic distribution of the primes among the integers.
Is there a function f(n), so that as n grows without bound the
ratio π(n)/f(n) converges to a non-zero value? If so, then this tell
us something about the regularity of the appearance of primes in
the integers. As mentioned before, there is little hope of finding a
more precise answer to this question since there is no formula for
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the n’th prime. In the chapter, As Simple as 2+2=1 , we discussed
Fermat’s little theorem (8.5) which can be used to test if an integer
is a prime, and Wilson’s theorem, equation (8.9), which provided
necessary and sufficient conditions for an integer to be prime. These
theorems, however, do not address the distribution question. Like the
decimal digits of π which are completely deterministic but essentially
unpredictable, primes occur among the integers seemingly popping up
at random but leaving behind a madding trace of regularity.

The search for understanding how this series of surprises achieves a
mathematical uniformity resulted in the prime number theorem which
finally put the matter to rest by showing that

(9.31) lim
n→∞

π(n)

n/ ln(n)
→ 1

The following table shows the value of the ratio of (9.31) converges
towards 1 for values of n from 101 to 108:

n = 10k 2 4 6 8
π(n)/(n/ ln(n)) 1.1513 1.1320 1.0845 1.0613

There is a long history of the discovery of this theorem, most of
which utilizes advanced mathematics. In 1948, Atle Selberg (1917–
2007) established an elementary approach that promised to be pivotal
in proving the result. This was achieved by both Selberg and Erdős
and resulted in a controversial interchange regarding the ownership of
the result. Even though these later techniques are elementary, they lie
outside the scope of this book.



Chapter 10

Running Off the Page

Logical analysis is indispensable for an examination of
the strength of a mathematical structure, but it is
useless for its conception and design.
The great advances in mathematics have not been
made by logic but by creative imagination.

George Frederick James Temple (1901–1992)

The analysis in this chapter illustrates Temple’s observation regarding
the necessity for creative imagination in mathematics. A simple
expression is all that is needed to develop the theory of continued
fractions which leads to a deep theorem of Lagrange and also leads to
an optimal way to approximate real numbers as rational fractions.

To proceed, assume that f(x) is a positive function. Obviously

(1 + f(x))f(x) = f(x) + f2(x)

which implies that

f(x) =
f(x) + f2(x)

1 + f(x)
(10.1)

=
1 + f(x) + f2(x)− 1

1 + f(x)

= 1 +
f2(x)− 1

1 + f(x)

This rearrangement of symbols seems like nonsense which has no
possibility of yielding a meaningful result. Before concluding this,
however, consider the case where f(x) =

√
x. Equation (10.1) then
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yields

(10.2)
√
x = 1 +

x− 1

1 +
√
x

which expresses
√
x in terms of itself. This means that substituting

the right-hand side of (10.2) for the occurrence of
√
x appearing in the

denominator results in

√
x = 1 +

x− 1

1 +

(
1 +

x− 1

1 +
√
x

) = 1 +
x− 1

2 +
x− 1

1 +
√
x

Continuing in this way another time shows that

(10.3)
√
x = 1 +

x− 1

2 +
x− 1

1 +

(
1 +

x− 1

1 +
√
x

)
= 1 +

x− 1

2 +
x− 1

2 +
x− 1

1 +
√
x

and now a pattern is clear. Expressing a function in terms of itself
leads to a regression. If the function appears in the denominator of the
expression, then the resultant expansion is called a continued fraction.
On first encounter, the infinite descent of fractions that threaten to run
off the page appear to be inane. Changing notation can solve this run
away train problem, but to show that continued fractions are anything
but inane requires the rest of this chapter.

10.1 Simple Continued Fractions

A special case, termed a simple continued fraction, restricts all
numerators to equal 1. This is denoted by

(10.4) [b0, b1, b2, . . . , bn] = b0 +
1

b1 +
1

b2 +
1

. . .
1

bn



10.1 Simple Continued Fractions 135

With this notation, equation (10.3) with x = 2 shows that

(10.5)
√
2 = [1, 2, . . .]

To simplify notation an underline is used to represent periodic
arguments. Thus, a more succinct expression of (10.5) is given by

(10.6)
√
2 = [1, 2]

Some algebraic properties follow directly from definition (10.4)
which can be summarized by the following identities:

(10.7) [b0, b1, b2, . . .] = b0 +
1

[b1, b2, . . .]

(10.8) [b0, b1, . . . , bk−1, bk] = [b0, b1, . . . , bk−2, bk−1 + 1/bk]

(10.9) [b0, b1, b2, . . . , bn−1, bn, . . .] = [b0, b1, b2, . . . , bn−1, [bn, bn+1, . . .]]

(10.10)
1

[0, b1, b2, . . .]
= [b1, b2, . . .]

To generalize the form of equation (10.6), consider the continued
fraction [a, b] where a and b are non-zero integers. To derive an equation
for this form, use (10.7) to write

(10.11) [a, b] = a+
1

[b]

and

α = b+
1

α

where α = [b]. This creates the quadratic equation

(10.12) α2 = bα+ 1
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where only the positive solution is applicable:

α =
b+

√
b2 + 4

2
= − 2

b−√
b2 + 4

Substituting this solution into (10.11) produces an equation for [a, b]:

(10.13) [a, b] = a− b−√
b2 + 4

2
=

2a− b

2
+

√
b2 + 4

2

Special cases of (10.13) that involve square roots are depicted in the
following table:

Constant Periodic Portion Value

1 [2]
√
2

2 [4]
√
5

3 [6]
√
10

4 [8]
√
17

5 [10]
√
26

6 [12]
√
37

7 [14]
√
50

8 [16]
√
65

9 [18]
√
82

Purely Periodic

1 [1] (1+
√
5)/2

2 [2] 1 +
√
2

3 [3] (3 +
√
13)/2

4 [4] 2 +
√
5

5 [5] (5 +
√
29)/2

6 [6] 3 +
√
10

7 [7] (7 +
√
53)/2

8 [8] 4 +
√
17

9 [9] (9 +
√
85)/2

The last section of the table deals with the special case of purely
periodic continued fractions with unit period length. The first entry of
that section of the table highlights the exquisitely beautiful example
of an infinite continued fraction: that of the golden ratio1

1These results have been seen before, see equations (5.19) and (5.27).
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(10.14) φ = [1] = (1 +
√
5)/2

Before delving deeper into the patterns depicted in the above table,
consider continued fractions having a periodic pattern of length of 2
given by [a, b0, b1]. Let α = [b0, b1] and write:

α = b0 +
1

[b1, b0]
= b0 +

1

b1 +
1

α

(10.15)

= b0 +
α

b1α+ 1
=

(b0b1 + 1)α+ b0

b1α+ 1

The resultant quadratic equation

α2 = b0α+ b0/b1

is a generalization of (10.12) with the solution

α =
b0 +

√
b20 + 4b0/b1

2
= − 2b0/b1

b1 −
√
b20 + 4b0/b1

The final expression is thus given by

(10.16) [a, b0, b1] =
2a− b1

2
+

b1
√
b20 + 4b0/b1

2b0

Continuing the special cases that involve square roots expands the
previous table to include:

Constant Periodic Portion Value

1 [1, 2]
√
3

2 [2, 4]
√
6

3 [3, 6]
√
11

4 [4, 8]
√
18

5 [5, 10]
√
27

6 [6, 12]
√
38

7 [7, 14]
√
51

8 [8, 16]
√
66

9 [9, 18]
√
83
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The path to generalizing these results to periodic sections with
longer length seems clear but the necessary algebra that mimics the
expansion of (10.15) soon gets out of hand. To derive a method to
handle this algebra, consider the series of convergents given by

[b0, b1] = b0 +
1

b1
=

b0b1 + 1

b1

[b0, b1, b2] = b0 +
1

b1 +
1

b2

=
b0b1b2 + b0 + b2

b1b2 + 1

[b0, b1, b2, b3] =
b3(b0b1b2 + b0 + b2) + b0b1 + 1

b3(b1b2 + 1) + b1

To establish the general pattern for these convergents, let ni and
di denote the numerator and denominator of the i’th convergent of
[b0, b1, . . . , bi]. Initial values include n1 = b0b1 + 1, d1 = b1 and

[b0, b1, b2] =
b0b1b2 + b0 + b2

b1b2 + 1
=

b2n1 + b0

b2d1 + 1
=

n2

d2

and

[b0, b1, b2, b3] =
b3(b0b1b2 + b0 + b2) + b0b1 + 1

b3(b1b2 + 1) + b1
=

b3n2 + n1

b3d2 + d1
=

n3

d3

These examples show that the numerator and denominator satisfy the
general recurrence, xi = bixi−1+xi−2, where each starts with different
initial values

n−1 = 1, n0 = b0 and d−1 = 0, d0 = 1

The following inductive argument will establish this recurrence rela-
tionship. Assume that the recurrence holds for all cases up to some
value k. Use (10.8) to write

[b0, b1, . . . , bk, bk + 1/bk+1] =
(bk + 1/bk+1)nk−1 + nk−2

(bk + 1/bk+1)dk−1 + dk−2

=
(bnbk+1 + 1)nk−1 + bk+1nk−2

(bkbk+1 + 1)dk−1 + bk+1dk−2
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=
bk+1(bknk−1 + nk−2) + nk−1

bk+1(bknk−1 + nk−2) + dk−1

=
bk+1nk + nk−1

bk+1nk + dk−1

=
nk+1

dk+1

This shows the pattern continuing to the k+1’st case and establishes
the general expression

(10.17) [b0, b1, . . . , bi] =
ni

di
=

bini−1 + ni−2

bidi−1 + di−2
, i = 0, . . .

Note that, for i = 0, these equations yield n0/d0 = b0
2.

One further relationship will prove to be useful. Define

αj = [bj , bj+1, . . .]

and use equation (10.9) to write

α0 = [b0, . . .] = [b0, . . . bi, αi+1], i = 0, . . .

Treating αi+1 as if it were the last part of the continued fraction
permits expressing α0 as

(10.18) α0 =
αi+1ni + ni−1

αi+1di + di−1
, i = 0, . . .

where (10.18) is not necessarily rational.

10.1.1 Periodic Simple Continued Fractions

To proceed with an investigation of simple continued fractions that are
periodic, let α be defined by

2Later in equation (10.50) on page 152 integers ni and di are shown to be co-prime.



140 10 Running Off the Page

(10.19) α = [b0, b1, . . . , bk]

Equation (10.18) shows that

(10.20) α =
αnk + nk−1

αdk + dk−1

where the convergents arise from equation (10.19). Equation (10.20)
corresponds to the quadratic equation

(10.21) dkα
2 − (nk − dk−1)α− nk−1 = 0

which has the solution

α =
nk − dk−1 +

√
(nk − dk−1)2 + 4dknk−1

2dk
(10.22)

= − 2nk−1

nk − dk−1 −
√
(nk − dk−1)2 + 4dknk−1

Collecting these results implies that
(10.23)

[a, b0, b1, . . . , bk] =
2nk−1a− (nk − dk−1)

2nk−1
+

√
(nk − dk−1)2 + 4dknk−1

2nk−1

This equation can be used to fill out some of the square roots that
were missing from the previous tables:

10.1.2 Summary of Results

The patterns depicted in the three previous tables show that there
appears to be a relationship between square roots of non-square
integers and continued fractions that have periodic sections from some
point onward. For decimal numbers, such as 2/3 = .6 or 7/12 = .583,
cyclic patterns of this type arise if and only if the number is rational.
Is there an analogous theorem for periodic continued fractions?

The entries in the tables also suggest that, if there were such a
pattern, then it would pertain to irrational, rather than to rational,
numbers. This follows from the fact that the square root of non-square
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Constant Periodic Portion Value

2 [1, 1, 1, 4]
√
7

3 [1, 1, 1, 1, 6]
√
13

3 [1, 2, 1, 6]
√
14

4 [2, 1, 3, 1, 2, 8]
√
19

4 [1, 1, 2, 1, 1, 8]
√
21

4 [1, 2, 4, 2, 1, 8]
√
22

4 [1, 3, 1, 8]
√
23

5 [3, 2, 3, 10]
√
28

5 [1, 1, 3, 5, 3, 1, 1, 10]
√
31

5 [1, 1, 1, 10]
√
32

5 [1, 2, 1, 10]
√
33

5 [1, 4, 1, 10]
√
34

6 [2, 2, 12]
√
41

6 [1, 1, 3, 1, 5, 1, 3, 1, 1, 12]
√
43

6 [1, 1, 1, 2, 1, 1, 1, 12]
√
44

6 [1, 2, 2, 2, 1, 12]
√
45

6 [1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12]
√
46

6 [1, 5, 1, 12]
√
47

integers is irrational.3 There is also a curious form to the square root
examples especially revealed in the last table: the last number in the
periodic section equals twice the first number of the fraction, bk = 2a,
and the numbers in the periodic section (not including the last) form
a palindrome: bi = bk−i−1, i = 0, . . . , k − 1. All of these observations
lead us to the question: Is something deeper at hand?

In fact there is. These preliminary results are examples of special
cases of a theorem of Lagrange that established that solutions to
quadratic equations with a non-square discriminant and integer coef-
ficients4 have continued fractions that are periodic from some point
onward. This is the analogy of the theorem for decimal expansions
regarding rational numbers. Equation (10.23) is one part of Lagrange’s
theorem. The remaining parts will fall into place over the next few
pages. The structure of the repeating portion of square roots follows

3A quick proof establishes this fact. Suppose that
√
β = c/d for integers c and d. This

implies that d2β = c2. Since β is not square, there must be a prime p with an odd
exponent in its factorization. All of the exponents in the prime factorizations of c2

and d2, however, are even. This implies that p has an odd exponent in d2β and an
even exponent in c2 which means they cannot be equal. This contradicts the claim
that

√
β is rational.

4Such numbers are called quadratic irrational numbers.
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as a special case of the theorem. These results are surprising and
beautiful. Why would a value that is a solution to a particular type
of quadratic equation impose a periodic structure on its continued
fraction expansion?

There are still some results which are required to derive the
necessary part of Lagrange’s theorem (which was formally proved by
Galois). First, a method that creates a continued fraction representa-
tion for an arbitrary number must be created. After this is completed,
properties of purely periodic continued fractions are analyzed. Like
periodic decimal expansions, such as 1/7 = .142857, purely periodic
continued fractions do not have a non-periodic preamble which implies
they can be written as [b0, b1, . . . , b�−1] for some period length �.
These investigations will then provide the apparatus needed to prove
Lagrange’s theorem.

10.2 General Method to Create a Continued
Fraction

Let �x be the integer component of positive value x, for example
�1.4142135 = 1, and let r(x) = x− �x be the decimal component of
x, for example r(1.4142135) = .4142135. Clearly x = �x + r(x) and
r(x) satisfies 0 ≤ r(x) < 1. Provided that r(x) �= 0 this implies that
1/r(x) is greater than 1 which shows that

(10.24) x = �x+ 1

1/r(x)

We can use this equation as an operation to create a continued fraction
expansion. Applying the operation on the denominator of (10.24)
highlights the technique:

x = �x+ 1

�1/r(x)+ 1/r(1/r(x))

To recursively write the continued fraction expansion resulting from
repeatedly applying (10.24), let b0 = �x. Let ψ0 = 1/r(x) and for
i ≥ 1 define

(10.25) bi = �ψi−1
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and

(10.26) ψi = 1/r(ψi−1)

The recursion ends when the remainder in the denominator of (10.26)
equals 0. With this notation, a continued fraction expression for x can
be expressed as

x = [b0, b1, . . . , bn]

where n is finite if x is a rational number (irrational numbers obviously
have infinite continued fraction expansions). Checking this recursion
for the golden ratio (10.14) shows that b0 = �φ = 1 and

ψ0 =
1

r(φ)
=

1

φ− �φ =
2√
5− 1

= φ

(the last equality was also derived in equation (5.4)). This shows that
b1 = �φ = 1. Repeating this process leads to the previously derived
equation, φ = [1].

In this example, successive iterates of equation (10.26) created a
periodic sequence of unit length so that ψi+1 = ψi for all i ≥ 0.
Suppose, instead of unit length, the sequence generated a period of
length � so that ψi+� = ψi for i ≥ 0. Then the resultant continued
fraction expansion would be purely periodic with length �. To explore
conditions where this occurs we next discuss properties of quadratic
irrational numbers.

10.2.1 Integer Quadratics and Quadratic Surds

The quadratic equation

ax2 + bx+ c = 0

has two solutions given by

(10.27) r± =
−b±√

b2 − 4ac

2a



144 10 Running Off the Page

Let an integer quadratic be a quadratic equation where its coefficients,
a, b and c, are integers that satisfy a > 0 and b2 + 4ac is not square
(this last expression is termed the discriminate). Quadratic irrational
numbers are typically represented in the form

(10.28) χ± =
α±√

β

γ

where α and γ are rational numbers and β is a non-square integer. The
value χ− = (α−√

β)/γ is said to be the conjugate of χ+ = (α+
√
β)/γ.

(Similarly χ+ is said to be the conjugate of χ−.)
For every solution to an integer quadratic equation there corre-

sponds a unique quadratic irrational number. This follows by setting
α = −b, γ = a, and β = b2 − 4ac which shows that χ± = r±.
Conversely, for every quadratic irrational number there corresponds
a unique integer quadratic equation (this is true up to a multiplicative
constant). To show this, assume that χ = (α +

√
β)/γ is a quadratic

irrational number. Set α = −b̂ and γ = 2â which implies that
â = 1/(2γ) and b̂ = −α/γ. Equating

β = b̂2 − 4âĉ =
α2 − 2γĉ

γ2

and solving yields ĉ = (α2 − βγ2)/(2γ).
Solutions to quadratics are not altered by multiplying their coeffi-

cients by a non-zero constant. Hence we can multiply â, b̂, and ĉ by
2γ leading to integer coefficients: a = 1, b = −2α, and c = α2 − βγ2.
The resultant discriminant is not square since β is not square:

√
b2 − 4ac =

√
4γ2β = 2γ

√
β

By construction then χ satisfies the integer quadratic ax2+bx+c = 0.
Clearly the conjugate quadratic irrational number, given by χ′ = (α−√
β)/γ, also satisfies this integer quadratic.
We note here that conjugates have algebraic properties that are best

expressed by a set of identities

(λ± ν)′ = λ′ ± ν ′

(λν)′ = λ′ ν ′
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(
λ

ν

)′
=

λ′

ν ′

(
λ′)′ = λ

Consider the set of numbers generated by varying α and γ of

(10.29) χ =
α+

√
β

γ

and its conjugate

(10.30) χ′ =
α−√

β

γ

over all integer values while keeping β constant. If β is non-square
and α and γ are integer with γ > 0, then this generates an
infinite set of quadratic irrational numbers. Such a group of quadratic
irrational numbers inherit their irrationality from the same source—
their common

√
β term.

Restricting α and γ so that χ > 1 and −1 < χ′ < 0 creates a finite
set of quadratic irrational numbers which are termed reduced quadratic
surds. To derive bounds on α and γ that satisfy these inequalities,
observe that χ > 1 and χ′ > −1 imply that χ+χ′ > 0. Thus 2α/γ > 0
which implies that α > 0. Since χ′ < 0, it must be the case that
α−√

β < 0. Collecting these inequalities establishes bounds on α:

(10.31) 0 < α <
√
β

To address bounds on γ, note that χ > 1 implies that α +
√
β > γ.

From χ′ > −1 it follows that α − √
β > −γ or that γ >

√
β − α.

Collecting these inequalities produces the following bounds:

(10.32)
√
β − α < γ < α+

√
β

As an example, consider the following table that gives the set of six
reduced quadratic surds, along with their associated integer quadratic
equations, that inherit their irrationality from

√
7
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α γ Integer Quadratic Equation Reduced Quadratic Surds

1 2 4x2 − 4x− 6 {(1 +
√
7)/2, (1−√

7)/2}
1 3 9x2 − 6x− 6 {(1 +

√
7)/3, (1−√

7)/3}
2 1 x2 − 4x− 3 {2 +

√
7, 2−√

7}
2 2 4x2 − 8x− 3 {(2 +

√
7)/2, (2−√

7)/2}
2 3 9x2 − 12x− 3 {(2 +

√
7)/3, (2−√

7)/3}
2 4 16x2 − 16x− 3 {(2 +

√
7)/4, (2−√

7)/4}

The key step in generating a continued fraction expansion is
equation (10.24) which is expressed recursively with equations (10.25)
and (10.26). To analyze the operation (10.24) with less awkward
notion, let e = �x and f = 1/r(x) and thus

(10.33) x = e+
1

f

Assume that x is a reduced quadratic surd. Then we claim that f is
also a reduced quadratic surd with the same square root value as x. To
establish this, let x = (α +

√
β)/γ and assume the associated integer

quadratic equation is given by ax2 + bx + c = 0 and hence α = −b,
γ = 2a and β = b2−4ac. Clearly e+1/f satisfies this integer quadratic
equation so that

a

(
e+

1

f

)2

+ b

(
e+

1

f

)
+ c = 0

Straightforward algebra shows that

(10.34) (ae2 + be+ c)f2 + (2ae+ b)f + a = 0

Hence f is the root of this integer quadratic which can be written by

f = (α̂+
√

β)/γ̂

where α̂ = −(2ae + b) and γ̂ = 2(ae2 + be + c). Note that the
discriminant of (10.34) is given by

√
(2ae+ b)2 − 4a(2ae+ b) =

√
b2 − 4ac =

√
β

so that both x and f inherit their irrationality from
√
β.
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To show that f is a reduced quadratic surd, first note that 0 <
1/f < 1 since, by definition, 1/f = r(x). Thus f > 1. To form its
conjugate, solve (10.33) for f

f =
1

x− e

We can use the identities for conjugates to write

(10.35) f ′ =
1

x′ − e

By assumption −1 < x′ < 0 and by definition e ≥ 1. Thus (10.35)
implies that −1 < f ′ < 0.

With this preliminary work behind us, we find ourselves at the
doorway of an important result. Linking up to the recursive pro-
cess (10.26), the previous discussion shows that if x is a reduced
quadratic surd, then ψ0 = 1/r(x) and ψi = 1/r(ψi−1) for i ≥ 1
are also reduced quadratic surds sharing the same square root as x.
Since there are only a finite number of reduced quadratic surds with
the same square root, this implies that there exists a value � such
that ψ� = ψ0 for 1 ≤ � < ∞. But this also implies that ψ�+1 = ψ1

since ψ�+1 = 1/r(ψ�) = 1/r(ψ0) = ψ1. Repeating this process shows
that ψ�+k = ψk for all k ≥ 0. Hence the continued fraction is purely
periodic with period length �. This proves that quadratic irrational
numbers that are reduced quadratic surds have continued fractions
that are purely periodic. Thus, for this special case, we have established
Lagrange’s theorem. Lagrange’s theorem, however, is more general
since it proves that all quadratic irrational numbers have a repeating
structure from some point onward, even if they start with a non-
periodic preamble. We will address this issue later in the chapter after
establishing a limit property of continued fraction expansions.

An example at this point might be illustrative. Consider
√
19 =

[4, 2, 1, 3, 1, 2, 8] which is not a reduced quadratic surd since −1 �<
−√

19. Adding 4 = �√19 to this, however, produces a reduced
quadratic surd which has a purely periodic continued fraction expan-
sion: 4 +

√
19 = [8, 2, 1, 3, 1, 2]. A simple calculation shows that there

are 20 reduced quadratic surds that inherit their irrationality from√
19. Six of these cycle to create the purely periodic continued fraction

expansion given in the table below.
One additional fact about convergents will be all that we need to

explain the special structure of continued fractions for square roots
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Cycle of Reduced Quadratic Surds for the Continued Fraction of 4 +
√
19

Period Number 1 2 3 4 5 6

Reduced Quadratic Surd 4+
√

19
1

4+
√

19
3

2+
√

19
5

3+
√

19
2

3+
√

19
5

2+
√

19
3

Continued Fraction Digit 8 2 1 3 1 2

of non-square integers. Consider the recursion for the numerator of
a convergent (equation (10.17)): ni = bini−1 + ni−2. This can be
rewritten as

(10.36)
ni

ni−1
= bi +

ni−2

ni−1
= bi +

1

ni−1

ni−2

For i = 1 this equation shows that

n1

n0
= b1 +

1

n0

n−1

= b1 +
1

b0
= [b1, b0]

and for i = 2 that

n2

n1
= b2 +

1

n1

n0

= b2 +
1

[b1, b0]
= [b2, b1, b0]

The general pattern corresponds to a reversal of the digits in the
continued fraction expansion. A simple induction thus shows

(10.37)
ni

ni−1
= [bi, . . . , b1, b0]

Applying the same procedure for the denominator shows a similar
reversal

(10.38)
di

di−1
= [bi, . . . , b1]

(the difference between (10.37) and (10.38) is a result of the different
initial values).
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Suppose that x = (α+
√
β)/γ is a reduced quadratic surd so that its

continued fraction expansion is given by x = [b0, . . . , bk] and assume its
convergents are denoted by ni/di. Repeating equation (10.21) shows
that

(10.39) dkx
2 − (nk − dk−1)x− nk−1 = 0

Let y correspond to a reversal of the digits of x: y = [bk, . . . , b0]. From
the previous discussion, y has convergents given by

nk

nk−1
= [bk, . . . , b0] =

n̂k

d̂k

and

dk
dk−1

= [bk, . . . , b1] =
n̂k−1

d̂k−1

where n̂k−1 = dk, d̂k−1 = dk−1, n̂k = nk, and d̂k = nk−1. This implies
that y satisfies

d̂ky
2 − (n̂k − d̂k−1)y − n̂k−1 = 0

or, after making the above substitutions, that

(10.40) nk−1y
2 − (nk − dk−1)y − dk = 0

Setting z = −1/y in (10.40) reverses the ordering of the coefficients of
this quadratic leading to

(10.41) dkz
2 − (nk − dk−1)z − nk−1 = 0

These manipulations show that (10.41) and (10.39) are identical
equations and thus x and z correspond to the quadratic’s two solutions.
Expressed in terms of the conjugate of x, this implies that z = x′

(10.42) x′ =
α−√

β

γ
= −1

y

so that y = −1/x′. Thus the continued fraction of x and of y are
reversals of each other.



150 10 Running Off the Page

This allows a characterization of the continued fraction expansion
of

√
n for non-square n. Assume that

√
n = [c1, c2, . . .] and note that

this is not a reduced quadratic surd since −√
n < −1 and thus is not

purely periodic. By construction, c1 = �n and also that c1 +
√
n is a

reduced quadratic surd and thus is purely periodic

(10.43) x = c1 +
√
n = [2c1, c2, . . . , ck−1, ck]

and in the previous paragraphs we showed that the continued fraction
expansion for y = −1/x′ is a reverse of that for x, hence

(10.44) y =
1√

n− c1
= [ck, ck−1, . . . , c2, 2c1]

Equation (10.43) implies that the form for the
√
n is given by

(10.45)
√
n = [c1, c2, . . . , ck−1, ck, 2c1]

Thus
√
n− c1 = [0, c2, . . . , ck, 2c1] and, from relationship (10.10), that

(10.46)
1√

n− c1
= [c2, . . . , ck, 2c1]

Equations (10.44) and (10.46) represent the same continued fraction
which implies that there is a palindromic relationship between the
coefficients, cj = ck+2−j , k = 2, . . . , k. Collecting these results together
shows that the form of the continued fraction expansion for

√
n is given

by

(10.47)
√
n = [�n, c2, c3, . . . , c3, c2, 2�n]

This form is exemplified in all of the previous tables of the continued
fraction expansions of square roots of non-square integers.

10.3 Approximations Using Continued Fractions

The chapter up to this point has focused on the structure of continued
fraction expansions for irrational numbers and in particular concen-
trated on quadratic irrational numbers that have lovely expansions.
This is not to say that continued fractions are not useful, however, since
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they are frequently used in approximations. To develop the subject
along these lines it suffices to continue the example that started this
chapter, that of

√
2. The beginning portion of its decimal expansion is

given by

√
2 = 1.4142135623731 . . .

Consider a series of truncated continued fractions leading to a series
of approximations. If these approximations improve as more terms are
added, then the inequality

(10.48)

∣∣∣∣∣∣

√
2− [1, 2, . . . , 2︸ ︷︷ ︸

n+1 terms

]

∣∣∣∣∣∣
<

∣∣∣∣∣∣

√
2− [1, 2, . . . , 2︸ ︷︷ ︸

n terms

]

∣∣∣∣∣∣
, n = 1, . . .

should hold. For the
√
2 example these convergents yield

[1, 2] = 3/2, [1, 2, 2] = 7/5, [1, 2, 2, 2] = 17/12

which produces the following errors to the sequence of approximations:

∣∣∣
√
2− 3/2

∣∣∣ = .085786 . . .
∣∣∣
√
2− 7/5

∣∣∣ = .014213 . . .

∣∣∣
√
2− 17/12

∣∣∣ = .002453 . . .

These first three terms corroborate the intuition that the absolute
difference between the approximation and the actual result decreases
as more convergents are included in the continued fraction. The
following table depicts the values obtained from successive convergent
approximations for

√
2:

Three salient features of this table pose questions which beg to be
addressed. Firstly, notice the oscillation of the sign of the difference
between the approximation and the exact result. Odd steps overesti-
mate the true value where even steps underestimate it. Does a series
of convergents always rotate between overshooting and undershooting
the precise value?

Secondly, notice the quick convergence of the approximation to the
precise value where odd steps decrease towards the true value and even
steps increase towards it. Does this always occur, and if so, how can
one characterize the convergence rate?
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Continued Fraction Approximations of
√
2

Step bi ni di
√
2− ni/di λi

1 2 3 2 −0.0857864376269049 . . . 2

2 2 7 5 0.0142135623730952 . . . 10

3 2 17 12 −0.0024531042935716 . . . 60

4 2 41 29 0.0004204589248193 . . . 348

5 2 99 70 −0.0000721519126191 . . . 2,030

6 2 239 169 0.0000123789411425 . . . 11,830

7 2 577 408 −0.0000021239014147 . . . 68,952

8 2 1393 985 0.0000003644035520 . . . 401,880

9 2 3363 2378 −0.0000000625217744 . . . 2,342,330

10 2 8119 5741 0.0000000107270403 . . . 13,652,098

Thirdly, observe that the values of ni and di in the above table
are always relatively prime (they have no common divisors) and the
denominator steadily increases. Is this always the case?

To begin addressing these questions, consider the difference between
two convergents,

(10.49)
ni

di
− ni−1

di−1
=

nidi−1 − ni−1di

di−1di
, i = 2, . . .

It is clear from the general recurrence equation for convergents that di
forms an integer sequence that increases with i. Thus the denominator
of (10.53), given by di−1di, is positive and increasing. Focusing on the
numerator, write

nidi−1 − ni−1di = (bini−1 + ni−2)di−1 − ni−1(bidi−1 + di−2)

= bini−1di−1 + ni−2di−1 − bini−1di−1 − ni−1di−2

= ni−2di−1 − ni−1di−2

= −(ni−1di−2 − ni−2di−1)

Telescoping this relationship to the boundary n0d−1 − n−1d0 = −1
implies that

(10.50) nidi−1 − ni−1di = (−1)i+1
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This shows that a linear combination of ni and di equals ±1 and
answers the third question above since it implies that they must be
co-prime.5

Defining λi = di−1di permits rewriting (10.49) as

(10.51)
ni

di
− ni−1

di−1
=

(−1)i+1

λi
, i = 2, . . .

This suggests telescoping the relationship to get the following equation:

k∑

i=1

ni

di
− ni−1

di−1
=

nk

dk
− b0

Using this, and equations (10.17) and (10.51), yields a succinct
representation of a continued fraction

(10.52) [b0, b1, . . . , bk] = b0 +
k∑

i=1

(−1)i+1

λi

A simple recursion provides a lower bound on the rate at which λi

increases. First note that the recursion di = bidi−1 + di−2 implies that
di grows at least as fast as the integers. Substituting this recursion,
and using the initial values of di, provides the following equation for
λi:

(10.53) λi =

⎧
⎨

⎩

0, i = 0

bid
2
i−1 + λi−1, i = 1, . . .

which easily yields

(10.54) λi =
i∑

j=1

bjd
2
j−1

5This follows from the fact that if they had a common multiple, so that ni = am
and di = bm, then nidi−1 −ni−1di = m(adi−1 + bni−1) = ±1. This implies that m
must divide 1 forcing m = 1.
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This shows that λi grows at least as fast as the sum of the squared
integers.

Equation (10.51) answers one portion of the first question above:
truncating a continued fraction expansion creates an approximation
that oscillates around a central value. Such oscillations, however, might
not be around α0 = [b0, . . .]. To address this issue, use (10.18) to write
the difference between α0 and the convergents at the i’th step as:

α0 −
ni

di
=

αi+1ni + ni−1

αi+1di + di−1
− ni

di
(10.55)

=
di(αi+1ni + ni−1)− ni(αi+1di + di−1)

di(αi+1di + di−1)

=
ni−1di − nidi−1

di(αi+1di + di−1)

=
− xi

di(αi+1di + di−1)

=
(−1)i

di(αi+1di + di−1)

This now fully answers the first question: odd and even indexed
convergents successively alternate around α0.

This brings us to the second question which can now be answered:
the series of even indexed convergents increase towards α0 whereas odd
indexed convergents decrease towards it. Both reach the same limit
which implies that |α0−ni/di| is a decreasing sequence as conjectured
in equation (10.48). These results can be summarized by an infinite
series of inequalities

(10.56)
n0

d0
<

n2

d2
< · · · < α0 < · · · < n3

d3
<

n1

d1

Thus, continued fraction approximations converge to α0 as the
number of terms of the truncated continued fraction increases without
bound. Observe that the last column in the table on page 152 shows a
dramatic increase in the size of λi as i increases for the

√
2 example.

At the tenth step, for instance, the value λ10 is more than 13 million
and the approximation is accurate to 7 decimals.

The least that λi can be at each step occurs when the values of bi
are least which occurs in the case of the golden ratio where bi = 1
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for all i. This implies that, for a given degree of accuracy, the golden
ratio requires more steps in a continued fraction approximation than
any other irrational number. In this sense it is the hardest irrational
number to approximate. Said more picturesquely, the golden ratio is
the most irrational number! It is instructive to compare the table of
its approximations to that of

√
2:

Continued Fraction Approximations of φ = (1 +
√
5)/2

Step bi ni di φ− ni/di λi

1 1 2 1 −0. 381966011250105 . . . 1

2 1 3 2 0. 118033988749895 . . . 2

3 1 5 3 −0. 0486326779167718 . . . 6

4 1 8 5 0. 0180339887498948 . . . 15

5 1 13 8 −0. 0069660112501051 . . . 40

6 1 21 13 0. 0026493733652794 . . . 104

7 1 34 21 −0. 00101363029772417 . . . 273

8 1 55 34 0. 00038692992636546 . . . 714

9 1 89 55 −0. 000147829431923263 . . . 1,870

10 1 144 89 0. 000056460660007307 . . . 4,895

Notice that at the tenth step, instead of more than 13 million with 7
digit accuracy, the value of λ10 is less than 5 thousand leading to an
accuracy of only 4 decimals.

We have seen the pattern of numbers in this table before. From the
above table it appears that ni = fi+2 and di = fi+1. Thus, another
delightful equation links the golden ratio with the Fibonacci sequence

(10.57) φ ≈ ni

di
=

fi+2

fi+1

From the third property above, this also yields the immediate result
that successive Fibonacci numbers are co-prime. The last column
of numbers also reveal a hidden jewel since they correspond to the
cumulative sum of squared Fibonacci numbers. This follows from the
recurrence (10.53) and the relationship λi = fi+1fi which leads to
λi = f2

1 + · · ·+ f2
i (see equation (5.17) on page 70).

All of these results suggest that continued fractions are clever and
accurate approximations to irrational numbers. To further support this
claim, return to the portion of the denominator of equation (10.55)
given by αi+1di + di−1. By construction, bi+1 = �αi+1 and clearly
αi+1 > 1. This implies that
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di+1 = bi+1di + di−1 < αi+1di + di−1

Applying this to equation (10.55), with some minor simplifications,
yields the following upper and lower bounds on the accuracy of a
continued fraction approximation:

(10.58) |diα0 − ni| < 1

di+1

The form of equation (10.58) motivates a method to compare approxi-
mations. A rational approximation n/d is said to be a best approxima-

tion if |dα0 − n| <
∣∣∣d̂α0 − n̂

∣∣∣ for any n̂/d̂ where n/d �= n̂/d̂ and d̂ ≤ d.

In this definition it is assumed that both n/d and n̂/d̂ are fractions
that have been reduced to have no common factors.

10.3.1 Best Approximations

The previous results lead to a beautiful result: all best approximations
are convergents from a continued fraction approximation. To prove
this, first assume that d̂ = di for the i’th convergent and note that the
triangle inequality implies that

(10.59) |n̂− ni| ≤ |n̂− diα0|+ |diα0 − ni|

The bound of (10.58), and the fact that n̂ �= ni, implies that

(10.60) |n̂− ni| − |diα0 − ni| > 1− 1

di+1
=

di+1 − 1

di+1
>

1

di+1

The triangle inequality (10.59) thus implies that

1

di+1
< |n̂− ni| − |diα0 − ni| ≤ |din̂− α0|

which, compared to (10.58), shows that n̂/d̂ is not a best approxima-
tion.

Assume now that n̂/d̂ is a best approximation where d̂ is not equal to
the denominator of any convergent. Without loss of generality we will
prove the case where n̂/d̂ < α0 (the case where n̂/d̂ > α0 is completely
analogous). Select i to satisfy
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(10.61)
n2i−2

d2i−2
<

n̂

d̂
<

n2i

d2i
< α0 <

n2i−1

d2i−1

All variables are integers and thus the following inequalities are
satisfied:

(10.62) n̂d2i−2 − n2i−2d̂ ≥ 1

and

(10.63) n2id̂− n̂d2i ≥ 1

Equations (10.61) and (10.51) show that

(10.64)
n̂

d̂
− n2i−2

d2i−2
<

n2i−1

d2i−1
− n2i−2

d2i−2
=

1

d2i−2d2i−1

and

(10.65)
n2i

d2i
− n̂

d̂
< α0 − n̂

d̂

Equation (10.62) implies that

n̂

d̂
− n2i−2

d2i−2
=

n̂d2i−2 − n2i−2d̂

d2i−2d̂
≥ 1

d2i−2d̂

which, with inequality (10.64), implies that

(10.66) d̂ < d2i−1

Equation (10.63) implies that

n2i

d2i
− n̂

d̂
=

n2id̂− n̂d2i

d2id̂
≥ 1

d2id̂

which, with inequality (10.65), implies that

1

d2i
< d̂α0 − n̂
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Additionally, equation (10.58) implies the following inequality

d2i−1α0 − n2i−1 <
1

d2i

These last two inequalities thus result in

d2i−1α0 − n2i−1 < d̂α0 − n̂

which, along with (10.66), contradicts the assumption that n̂/d̂ is a
best approximation. The two cases above show that a best approxi-
mation cannot differ from a convergent from a continued fraction—a
beautiful, and extremely useful, result.

10.4 Lagrange’s Theorem and Historical Review

Before tying up some of the loose ends, let’s step back in time and pay
homage to some early mathematicians who somehow discovered the
power of convergent approximations. The first few convergents that
approximate π, for example, are given by 22/7, 333/106, and 355/113
= 3.141592. The last of these approximations, which is amazingly
accurate to 6 decimals, was known to Tsu Ch’ung-Chih (429–500),
a mathematician in the service of the Chinese emperor, Hsiao-wu.
The same approximation was also known to Adriaan Anthonisz (1527–
1607), a Dutch mathematician and surveyor. Six decimals of accuracy
is achieved for the golden ratio at the 15’th convergent leading to the
approximation φ ≈ 1,597/987. Similar accuracy is achieved for

√
2 at

the 8’th convergent with the approximation
√
2 ≈ 1,393/985. The 7’th

convergent for
√
2 yields 5 decimals of accuracy,

√
2 ≈ 577/408, and

was known by Greek mathematicians of the fifth century B.C. as well
as by Indian mathematicians of the third or fourth century B.C.

The theorem of Lagrange was left hanging in midair. Recall that the
analysis only proved the special case that quadratic irrational numbers
that are reduced quadratic surds have purely periodic continued
fractions. The theorem states that all quadratic irrationals eventually
have periodic expansions. To complete the proof, first form the
conjugate of equation (10.18)
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α′
0 =

α′
i+1ni + ni−1

α′
i+1di + di−1

This implies that

α′
i+1 = −α′

0di−1 − ni−1

α′
0di − ni

= −
(
di−1

di

) (
α′
0 − ni−1/di−1

α′
0 − ni/di

)

Previous work in the chapter shows that convergents ni−1/di−1

and ni/di converge to α0 as i increases without bound and that
0 < di−1/di < 1 for all i. Thus, for some value i�, the value of
(α′

0 − ni�−1/di�−1)/(α
′
0 − ni�/di�) is less than 1. It follows that this

observation is also valid for all values k ≥ i� which implies that the
value of α′

k+1 from i� onward falls between −1 and 0. The fact that
αk+1 > 1 for all k shows that after i�, αk+1 is a reduced quadratic surd.
The conclusion is thus that continued fraction onward from convergent
i� is periodic. This completes the proof of Lagrange’s theorem.



Appendix A

Tools of the Trade

This section lists some of the tools of the trade that are required in
the book.

A.1 Recurrence Relationships

The secret of getting ahead is getting started.
The secret of getting started is breaking your complex
overwhelming tasks into small manageable tasks, and
starting on the first one.

Mark Twain (1835–1910)

Consider an investment of d dollars that has a holding cost of � dollars
per year and yields r > 0 percent interest that is paid yearly. What
is the amount of capital of this investment after n years? To answer
this question, we follow Twain’s advice above and break the problem
into manageable pieces. To do this, let ci be the capital at the end of i
years for i = 1, . . . , n. The statement of the problem implies that the
desired answer is given by the value of cn.

A recursion is set up by writing an equation for cn in terms of
previous values {d, c1, . . . , cn−1}. In most cases, only a few previous
values are needed to evaluate cn. In particular, the value of cn can be
calculated using the previous case, cn−1. To write this equation, note
that the capital at the end of year n equals the capital at the end of
the previous year, cn−1, plus the interest gained in that year, rcn−1,

© Springer Nature Switzerland AG 2020
R. Nelson, A Brief Journey in Discrete Mathematics,
https://doi.org/10.1007/978-3-030-37861-5

161

https://doi.org/10.1007/978-3-030-37861-5
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less the year’s holding cost, �. Thus

(A.1) cn = cn−1 + rcn−1 − � = cn−1(1 + r)− �

There is nothing special about year n and thus the same form of
equation holds for all years past the first:

(A.2) ci = ci−1(1 + r)− �, i = 2, . . . , n

The first year uses the initial capital and is given by

(A.3) c1 = d(1 + r)− �

An equation like (A.1) is said to be a recursion.1 After writing
such an equation, the next step is to determine if there is a closed
form equation that solves it (in our case this is an equation for cn
that includes only values d, r, and �). Closed form equations can be
determined in a variety of ways; one of which is to guess an answer
which then is proved by induction.

To illustrate this technique, start with small values of i and iterate
to larger values. This reveals an overall pattern:

c2 = c1(1 + r)− �

= (d(1 + r)− �)(1 + r)− � substituting (A.3)

= d(1 + r)2 − �(1 + r)− �

Proceeding to c3 reveals a similar form:

c3 = c2(1 + r)− �

=
(
d(1 + r)2 − �(1 + r)− �

)
(1 + r)− �

= d(1 + r)3 − �(1 + r)2 − �(1 + r)− �

These equations suggest that

cn = d(1 + r)n − �
n−1∑

j=0

(1 + r)j

1Also termed a difference equation.
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which, using the well-known geometric summation,2 suggests that

(A.4) cn = d(1 + r)n − �
(1 + r)n − 1

r

Equation (A.4) can be verified to hold by induction. If a closed
form solution cannot be found, then one typically solves recurrences
numerically on a computer using an iterative or recursive algorithm.

This simple problem exemplifies a mathematical tool that is fre-
quently used in the book (for examples, see equations (2.1), (2.3), (2.9),
(2.36), (3.4), (3.16), (3.27), (7.8) and (7.10)).

A.2 Adding Zero to an Equation

Nothing Comes from Nothing

Parmenides of Elea (515 BC)

The founder of metaphysics, Parmenides of Elea (515 BC), penned the
above quote which, at first, seems completely sensible. Mathematics,
however, accepts nothing without proof. In fact, a commonly used
technique completely ignores Parmenides’ claim. This technique can
be used to derive identities using the expedient of adding zero to an
equation, a step which could initially seem like nonsense.

To express the technique generally, assume there is a sequence of
values ai, i = 0, . . . , n, and write an equation for an − a0 as:

an − a0 = an − a0 + (a1 − a1) + (a2 − a2) + · · ·+ (an−1 − an−1)

This adds zero to the equation in the form of summands, ai − ai, i =
0, 1, . . . , n − 1. The method to this madness appears when the order
of the terms in the equation is changed to create

an − a0 = an − an−1 + an−1 − an−2 + · · ·+ a2 − a1 + a1 − a0(A.5)

=
n∑

i=1

ai − ai−1

2See the derivation of this summation in (A.6).
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The right-hand side of equation (A.5) is termed a telescoping sum and
it is surprisingly useful in deriving a variety of identities.

To illustrate, let ai = xi which, using (A.5), implies that

xn − 1 =
n∑

i=1

xi − xi−1 = (x− 1)
n∑

i=1

xi−1

Rearrangement of the terms of this equation reveals the well-known
result

(A.6)
n−1∑

i=0

xi =
xn − 1

x− 1

A further identity follows immediately from this by substituting x =
y/z into (A.6) to get

n−1∑

i=0

(y
z

)i
=

(y
z

)n − 1
y
z − 1

=
1

zn−1

yn − zn

y − z

This can be rewritten as

(A.7)
n−1∑

i=0

yizn−i−1 =
yn − zn

y − z

For another example, let ai =
(
n

i

)
so that

(
n

n

)
−
(
n

0

)
=

n∑

i=1

(
n

i

)
−
(

n

i− 1

)

The left-hand side of this equation equals 0 and the summand on the
right-hand side can be simplified

(
n

i

)
−
(

n

i− 1

)
=

n!

(i− 1)!(n− i)!

(
1

i
− 1

n− i+ 1

)

=
n!

(i− 1)!(n− i)!

n− 2i+ 1

i(n− i+ 1)

=

(
n

i

)(
1− i

n− i+ 1

)
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The binomial theorem shows that

2n = (1 + 1)n =

n∑

i=0

(
n

i

)

Using both of these observations to rewrite the equation above yields

0 =

n∑

i=1

(
n

i

)(
1− i

n− i+ 1

)
= 2n − 1−

n∑

i=1

(
n

i

)
i

n− i+ 1

which, with minor adjustment, yields

(A.8)

n∑

i=1

(
n

i

)
i

n− i+ 1
= 2n − 1

A few more examples should cinch the fact that adding zero is a
useful technique to keep in the tool box. Let ai =

(
2i

i

)
with a0 = 1.

Elementary algebra shows that

ai − ai−1 =

(
2i

i

)
−
(
2(i− 1)

i− 1

)
=

(
2(i− 1)

i− 1

)(
3− 2

i

)

Telescoping thus implies that

(A.9)

(
2n

n

)
= 1 +

n∑

k=1

(
2(k − 1)

k − 1

)(
3− 2

k

)

Suppose that ai = 1/(i+ 1). Then the telescope equation shows that

1

n+ 1
− 1 =

n∑

i=1

1

i+ 1
− 1

i
=

n∑

i=1

1

i(i+ 1)

which derives the identity

(A.10)
n

n+ 1
=

n∑

i=1

1

i(i+ 1)

Consider setting ai = 1/(2i i!) in equation (A.5) with a0 = 1 and
ai − ai−1 = (1 − 2i)/(2i i!). The telescoping equation then yields the
identity
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(A.11)
n∑

i=1

1− 2i

2i i!
=

1

2n n!
− 1

For the last example, set ai = 1/(i+ 1)! which yields the identity

(A.12)
n∑

i=0

i

(i+ 1)!
= 1− 1

(n+ 1)!

Creating identities in this way to some extent seems like creating
something out of thin air, but this thin air often proves to be
surprisingly breathable.

A.3 Induction

Analysis and natural philosophy owe their most
important discover to this
fruitful means, which is called induction.

Pierre-Simon Laplace (1749–1827)

Establishing that an equation is valid by induction, also termed proof
by induction, is a mathematical technique used to demonstrate that
a pattern continues indefinitely. Typically small cases are established
which suggests a pattern. Next, the induction step is established that
proves that if case k holds then case k+ 1 also holds. This establishes
that the pattern continues indefinitely. Often one guesses the form
of an equation that is satisfied by a few small cases and then uses
induction to prove that the form continues for all cases. A few examples
will illustrate this surprisingly powerful technique.

Consider the cumulative sum of triangular numbers k(k+1)/2. This
sequence generates the values 1, 4, 10, 20, 35, 56. It is easy to show that
this sequence of numbers is also generated by successive values of n(n+
1)(n+ 2)/6 leading to the conjecture that

(A.13)
n∑

k=1

k(k + 1)

2
=

n(n+ 1)(n+ 2)

6
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To prove this, assume it holds up to all values n and consider the
n+ 1’st case:

n+1∑

k=1

k(k + 1)

2
=

n∑

k=1

k(k + 1)

2
+

(n+ 1)(n+ 2)

2

=
n(n+ 1)(n+ 2)

6
+

(n+ 1)(n+ 2)

2

=
1

6
(n(n+ 1)(n+ 2) + 3(n+ 1)(n+ 2))

=
(n+ 1)(n+ 2)(n+ 3)

6

This shows that the pattern continues to the n + 1’st case and thus
proves the induction step.

Another example deals with the observation that the alternating
sum of squares leads to an alternating triangular sequence:

(A.14)

n∑

k=1

(−1)kk2 = (−1)n
n(n+ 1)

2

It is easy to see that when n = 1 the equation is satisfied. To prove
that this pattern continues indefinitely, assume it holds for all cases
up to n and consider the n+ 1’st case:

n+1∑

k=1

(−1)kk2 =
n∑

k=1

(−1)kk2 + (−1)n+1(n+ 1)2

= (−1)n
n(n+ 1)

2
+ (−1)n+1(n+ 1)2

=
n+ 1

2

(
(−1)nn+ (−1)n+12(n+ 1)

)

= (−1)n+1n+ 1

2
(−n+ 2(n+ 1))

= (−1)n+1 (n+ 1)(n+ 2)

2
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Consider the following proposed identity which is easily shown to
be satisfied for small values of n:

(A.15)
n∑

k=1

2k − 1

2kk!
= 1− 1

2nn!

This falls away effortlessly with induction

n+1∑

k=1

2k − 1

2kk!
=

2(n+ 1)− 1

2n+1(n+ 1)!
+

n∑

k=1

2k − 1

2kk!

=
1

2n!
− 1

2n+1(n+ 1)!
+ 1− 1

2nn!

= 1− 1

2n+1(n+ 1)!

This example can also be used to show that in some cases, induction
and telescoping are essentially the same thing. To explain this, suppose
there are functions that satisfy g(k) − g(k − 1) = f(k), k = 1, . . . , n.
Telescoping trivially creates the identity

g(n) =
n∑

k=1

f(k)

An induction argument proceeds by calculating

g(n+ 1) =
n+1∑

k=1

f(k) = f(n+ 1) + g(n)

To use identity (A.15) as an example, set

g(k) = 1− 1

2kk!
, k = 1, . . . n

and thus

f(k) =
1

2k−1(k − 1)!
− 1

2kk!
=

2k − 1

2kk!
, k = 1, . . . , n

Adding the n+ 1’st term yields
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2(n+ 1)− 1

2n+1(n+ 1)!
+ g(n) =

2(n+ 1)− 1

2n+1(n+ 1)!
+ 1− 1

2nn!

=
1

2nn!
− 1

2n+1(n+ 1)!
+ 1− 1

2nn!

= 1− 1

2n+1(n+ 1)!

which shows that either technique could be used to derive the identity.
One more example provides convincing evidence of the power of

induction. Consider the conjecture:

(A.16)

n∑

k=1

kk! = (n+ 1)!− 1

It is easy to establish that this holds for n = 1. The induction proceeds
along lines that should now be familiar

n+1∑

k=1

kk! =
n∑

k=1

kk! + (n+ 1)(n+ 1)!

= (n+ 1)!− 1 + (n+ 1)(n+ 1)!

= (n+ 1)!(1 + (n+ 1))− 1

= (n+ 2)!− 1

thus satisfying the induction step.

A.4 Contradiction

Do I contradict myself?
Very Well then I contradict myself;
(I am large, I contain multitudes.)

Walt Whitman (1819–1892)
Leaves of Grass, Song of Myself

Contradiction might work in poetry but it doesn’t in mathemat-
ics. The axioms that define a field of mathematics also determine
the statements that can be proved within the scope of this field.
Statements that can lie outside the scope of the field are neither
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provable nor not provable. If, however, a statement lies within the
scope, then there is no other alternative that a statement be either
true or false. Mathematics is the only subject that possesses such,
unequivocal, certainty. One method of establishing the veracity of a
mathematical statement, therefore, is to assume the opposite of the
statement and show that this leads to a contradiction. This method of
proof is appropriately termed, proof by contradiction.

A simple example is the fact that there exist an infinity of integers.
To prove this, assume that there is a largest integer m. This, however,
is contradicted by the fact that adding 1 to any integer increases its
value. Thus, m cannot be the largest integer which establishes that
integers increase without bound.

Euclid (300 BC) defined the axiomatic system of mathematics and
provided a brilliant proof that there are an infinity of primes. He did
this by assuming there is a largest prime, pm, in the finite set of all
prime numbers, pi, i = 1, . . . ,m. From these primes, construct the
integer q = 1 + p1 · p2 · · · pm. If q is prime, then we immediately reach
a contraction since q > pm. Thus assume that q is not prime. If this is
the case, however, then it must be divisible by a prime less than it. By
the definition of q, however, it follows that q/pi leaves a remainder of
1/q for all pi thus contradicting the claim that q is not prime. We are
forced to conclude that q is prime contradicting that pm is the largest
prime. Thus the primes, like the integers, increase without bound.

Another example using proof by contradiction shows that
√
5 is an

irrational number. To prove this assume on the contrary that it is
rational and can be expressed as

√
5 = a/b where a and b are integers

and the fraction is reduced to the lowest common denominator.
Squaring both sides of this equation implies that 5b2 = a2. If b is
even then 5b2 is even which implies that a2 is even which contradicts
that a/b is reduced to the lowest common denominator. Thus, b is an
odd integer. Squaring a number doesn’t change its odd or evenness
and an odd times an odd is an odd number. This implies that 5b2 is
odd which then implies that a is also odd. Writing b = 2β + 1 and
a = 2α+ 1 leads to

5(4β2 + 4β + 1) = 4α2 + 4α+ 1

which can be simplified to

5β2 + 5β + 1 = α2 + α
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Factoring leads to

5β(β + 1) + 1 = α(α+ 1)

For any integer n, the term n(n+1) is even. Thus the left-hand side of
this equation is odd and the right-hand side is even which is impossible
and thus contradicts the claim that

√
5 can be written as a rational

number.
Another example shows that the sum of a rational and irrational

number must be irrational. Assume then that x is rational and y is
irrational and form z = x+y which is claimed to be a rational number.
By assumption, this means that x can be written as x = a/b for integer
a and b. There is no such rational representation for y but the claim is
that z = c/d for integer c and d. The contradiction is immediate since

z =
c

d
= x+ y =

a

b
+ y =⇒ y =

c

d
− a

b
=

cb− ad

bd

which shows that z is a rational number contradicting our assumption.
The last example of proof by contradiction involving rationality

concerns a quadratic polynomial with odd coefficients. Let a, b, and c
be odd numbers and consider the roots of the polynomial ax2+bx+c =
0. The claim is that such roots necessarily must be irrational numbers.
To prove this, assume otherwise so that a root is given by d/e with
d and e being integer and reduced to have no common factor. This
implies that one of values d or e is odd and the other is even. Recall
that squaring a number does not change its odd or evenness and that
an odd multiplied by an odd number is odd. Then

a(d/e)2 + b(d/e) + c = 0 =⇒ ad2 + bde+ ce2 = 0.

From the previous comments, ad2 and ce2 must have opposite parity
and bde is even. This implies that ad2 + bde+ ce2 is odd contradicting
the fact that it equals the even number 0.

A.5 Order of Summations

The order of double summations is sometimes reversed to obtain
a closed form solution to a summation. To review the types of
interchanges found in the book define ωi,j , αi, and βj where i, j =
1, . . . , n. Then common double summations include:
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∑n
i=1

∑n
j=1 ωi,j =

∑n
j=1

∑n
i=1 ωi,j Independent Summations

∑n
i=1 αi

∑n
j=1 βj =

∑n
j=1 βj

∑n
i=1 αi

∑n
i=1

∑n
j=i ωi,j =

∑n
j=1

∑j
i=1 ωi,j Upper Triangular

∑n
i=1 αi

∑n
j=i βj =

∑n
j=1 βj

∑j
i=1 αi

∑n
i=1

∑i
j=1 ωi,j =

∑n
j=1

∑n
i=j ωi,j Lower Triangular

∑n
i=1 αi

∑i
j=1 βj =

∑n
j=1 βj

∑n
i=j αi



Appendix B

Notation and Identities Derived in
the Book

Algebraic Identities

Equation Page

n = n2 − 2
(

n

2

)
(4.35) 55

n = n3 − 3n
(

n

2

)
+ 3

(
n

3

)
(4.35) 55

n = n4 − 4n2
(

n

2

)
+ 4n

(
n

3

)
+ 2

(
n

2

)2 − 4
(

n

4

)
(4.35) 55

∑n−1
i=0 xi = xn−1

x−1
(A.6) 164

∑n
i=1

(
n

i

)
i

n−i+1
= 2n − 1 (A.8) 165

n
n+1

=
∑n

i=1
1

i(i+1)
(A.10) 165

∑n
i=1

1−2i
2i i!

= 1
2n n!

− 1 (A.11) 166

∑n
i=0

i
(i+1)!

= 1− 1
(n+1)!

(A.12) 166

∑n
k=1

k(k+1)

2
= n(n+1)(n+2)

6
(A.13) 166

∑n
k=1(−1)kk2 = (−1)n n(n+1)

2
(A.14) 167

∑n
k=1

2k−1
2kk!

= 1− 1
2nn!

(A.15) 168

∑n
k=1 kk! = (n+ 1)!− 1 (A.16) 169

© Springer Nature Switzerland AG 2020
R. Nelson, A Brief Journey in Discrete Mathematics,
https://doi.org/10.1007/978-3-030-37861-5

173

https://doi.org/10.1007/978-3-030-37861-5


174 B Notation and Identities Derived in the Book

Identities involving The Golden Ratio and Fibonacci Numbers

φ = 1+
√

5
2

, ψ = 1−√
5

2
, f0 = 0, f1 = 1, fk = fk−1 + fk−2 Equation Page

fn = φn−ψn
√

5
(5.10) 68

f2n = fn(fn+1 + fn−1) (5.13) 69

f2n =
∑n

k=0

(
n

k

)
fk (5.14) 69

fn =
∑n

k=0

(
n

k

)
(−1)n−kf2k (5.15) 70

fn+1fn−1 − f2
n = (−1)n (5.16) 70

fifi−1 =
∑i−1

j=1 f
2
j (5.17) 70

fn+1 =
∑�n/2�

i=0

(
n − i

i

)
(5.21) 72

f2n+1 =
∑n

i=0

(
n + i

n − i

)
(5.22) 73

Identities involving Sum of Integer Powers

Sk,n =
∑n

i=1 ik Equation Page

∑k
j=1

[
k

j

]
Sj,n = 1

k+1

∑k+1
j=1

[
k + 1

j

]
nj (3.10) 32

S1,� =
[
� + 1

�

]
(4.29) 53

1
2

(
S2
1,� − S2,�

)
=

[
� + 1

� − 1

]
(4.29) 53

1
6

(
S3
1,� − 3S1,�S2,� + 2S3,�

)
=

[
� + 1

� − 2

]
(4.29) 54

1
24

(
S4
1,� − 6S2

1,�S2,� + 8S1,�S3,� + 3S2
2,� − 6S4,�

)
=

[
� + 1

� − 3

]
(4.29) 54

S2,� =
[
� + 1

�

] 2 − 2
[
� + 1

� − 1

]
(4.30) 54

S3,� =
[
� + 1

�

] 3 − 3
[
� + 1

�

] [
� + 1

� − 1

]
+ 3

[
� + 1

� − 2

]
(4.31) 54

S1,n = n(n+1)

2
(7.2) 94

S2,n = n(n+1)(2n+1)

6
(7.3) 96

∑k
�=0

(
k + 1

�

)
S�,n = (n+ 1)k+1 − 1 (7.5) 96

Sk,n = 1 +
∑k

r=0

(
k

r

)
Sr,n−1 (7.10) 101

Sk,n =
∑k

�=0

(
k

�

)
(−1)k−�S�,n+1 (7.11) 102

∑n−1
i=1

∑n
j=i+1(ij)

k =
S2

k,n
−S2k,n

2
(7.12) 102

∑k
�=0

(
k

�

)
Sk+�,n =

∑n
i=1 i

k(i+ 1)k (7.26) 105
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Identities involving Triangular Numbers

Tn = (n+1)n

2
=

(
n + 1

2

)
Equation Page

Tn + Tn+1 = (n+ 1)2 (7.14) 103

Tn+1 − Tn = n+ 1 (7.14) 103

T 2
n+1 − T 2

n = (n+ 1)3 (7.14) 103

8Tn + 1 = (2n+ 1)2 (7.14) 103

T2n+1 − T2n = 2n+ 1 (7.14) 103

T2n−1 − 2Tn−1 = n2 (7.14) 103

Tn+k = Tn + Tk + nk (7.15) 103

Tn(n+1) = Tn + Tn2 + n3 (7.16) 103

Tn+2 = Tn + T2 + 2n (7.16) 103

T2n = 2Tn + n2 (7.16) 103

TTn
= Tn + TTn−1

+ nTn−1 (7.16) 103

TTn
= TTn−1 + Tn (7.17) 104

TTn−1 = TTn−1
+ nTn−1 (7.18) 104

T2n−k + Tk−1 − 2Tn−k = n2, k = 0, . . . , n (7.19) 104

Tnk = Tn−1Tk−1 + TnTk (7.20) 104

Tn2 = T 2
n−1 + T 2

n (7.21) 104

Tn3 = Tn−1Tn2−1 + TnTn2 (7.21) 104

T2Tn
= Tn (Tn−1 + Tn+1) (7.21) 104

T2n = T1Tn−1 + T2Tn (7.21) 104

T2n = 4Tn − n (7.22) 105

∑n
i=1 T 2

i = (n+ 1)S3,n − S4,n (7.23) 105

∑n
i=1 T 2

i = 1
4
(S4,n + 2S3,n + S2,n) (7.24) 105

∑n
i=1 Tk

i = 1
2k

∑k
�=0

(
k

�

)
Sk+�,n (7.25) 105

Tk
i = 1

2k

∑k
�=0

(
k

�

) (
1− (−1)k−�

)
Sk+�,i (7.27) 106

n2Tk + nTk−1 = k2Tn + kTn−1 (7.29) 106
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Identities involving Binomial Coefficients
(

n

k

)
= n!

k!(n−k)!
Equation Page

(
n

k

)
=

(
n

n − k

)
(2.14) 10

(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
(2.15) 11

(
n

k

) (
k

j

)
=

(
n

j

) (
n − j

k − j

)
(2.16) 11

(
n

k

)
= n

k

(
n − 1

k − 1

)
(2.17) 11

∑n
k=0

(
n

k

)
ak

1+k
= (1+a)n+1−1

a(1+n)
(2.18) 11

∑n
k=0

(
n

k

)
1

1+k
= 2n+1−1

n+1
(2.19) 11

∑n
k=0(−1)k

(
n

k

)
1

1+k
= 1

n+1
(2.20) 11

∑n
k=0

(
n

k

)
=2n (2.21) 11

∑
k even

(
n

k

)
= 2n−1 (2.22) 12

∑
k odd

(
n

k

)
= 2n−1 (2.23) 12

(
1− 1

�

)n
=
∑n

k=0

(
n

k

) (−1
�

)k
(2.25) 13

(x− a)n − (x− a)n = 2
∑

k odd

(
n

k

)
xn−kak (2.26) 13

(
1
x
+ 1

y

)n
= 1

yn

∑n
k=0

(
n

k

) (
y
x

)k
(2.27) 13

∑n−i
k=0(−1)k

(
n − i

k

)
=

{
0, i = 0, . . . , n− 1

1, i = n
(2.28) 14

∑n
k=0

(
n

k

)
k = n2n−1 (2.29) 14

∑n
k=0

(
n

k

)
k(k − 1) = n(n− 1)2n−2 (2.30) 14

∑n
k=0

(
n

k

)
k2 = n(n+ 1)2n−2 (2.31) 14

∑n
�=k

(
�

k

)
=

(
n + 1

k + 1

)
(2.32) 15

∑
1≤i1<···<ik≤n 1 =

(
n

k

)
(4.36) 55

∑m−1
r=0

(
k + r

k

)
=

(
m + k

k + 1

)
(2.34) 15

∑n
k=0

(
n

k

)
ak

k+1
= (a+1)n+1−1

(n+1)a
(2.18) 11

∑n
k=0

(
n

k

)
(−1)n−k (a+1)k+1−1

k+1
= an+1

n+1
(2.55) 25
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Identities involving Binomial Coefficients-Continued
(

n

k

)
= n!

k!(n−k)!
Equation Page

∑n
k=0

(
n

k

)
2k+1

k+1
= 3n+1−1

n+1
(2.56) 25

∑n
k=0

(
n

k

)
(−1)n−k 3k+1−1

k+1
= 2n+1

n+1
(2.57) 25

∑n
k=0

(
n

k

)
(−1)n−k2k = 1 (2.51) 24

∑n
k=0

(
n

k

)
(−1)n−k

(
1− 1

�

)k
=
(−1

�

)n
(2.52) 24

∑n
k=0

(
n

k

)
(−1)n−kk2k−1 = n (2.53) 25

∑n
k=0

(
n

k

)
(−1)n−kk(k − 1)2k−2 = n(n− 1) (2.54) 25

∑n
k=0

(
n

k

)
(−1)n−kk(k + 1)2k−2 = n2 (2.50) 24

∑n
k=0(−1)k

(
n

k

)
bk

k+1
= − (1−b)n+1−1

b(n+1)
(2.59) 26

∑n
k=0(−1)k

(
n

k

)
(1−b)k+1−1

b(k+1)
= − bn

(n+1)
(2.60) 26

∑n
k=0(−1)k

(
n

k

)
2k

k+1
=

{
0, n odd,
1

n+1
, n even

(2.61) 26

∑n
k=0, k even(−1)k

(
n

k

)
1

(k+1)
= 2n

n+1
(2.62) 26

(
n

k

)
=
∑n

j=0

(
m

j

) (
n − m

k − j

)
, 0 ≤ m ≤ n (2.35) 16

(
2n

n

)
=
∑n

k=1
2
k

(
2(k − 1)

k − 1

) (
2(n − k)

n − k

)
(6.9) 83

∑n
i=1

22(n−i)+1

n

(
2(i − 1)

i − 1

)
= 22n −

(
2n

n

)
(6.19) 87

(
2n

n

)
= 1 +

∑n
k=1

(
2(k − 1)

k − 1

) (
3− 2

k

)
(A.9) 165

Identities involving Binomial-R coefficients
〈

n

k

〉
=

〈
k + 1

n − 1

〉
(2.39) 18

〈
n

k

〉
=

〈
n

k − 1

〉
+

〈
n − 1

k

〉
(2.39) 18

〈
n

k

〉
= n

k

〈
n + 1

k − 1

〉
(2.39) 18

(
n

k

)
=

〈
n + 1 − k

k

〉
(2.39) 18

∑n
r=0

(
k + r

k

)
=

〈
n + 1

k + 1

〉
(2.40) 19

∑
1≤i1≤···≤ik≤n 1 =

〈
n

k

〉
(4.42) 57

∑m
k=0

〈
n

k

〉
=

〈
n + 1

m

〉
(2.41) 19

(
1

1−x

)n
=
∑∞

i=0

〈
n

i

〉
xi (2.44) 21
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Identities involving Stirling Numbers

Equation Page
[
k + 1

i

]
=

[
k

i − 1

]
+ k

[
k

i

]
(3.6) 30

nk =
∑k

i=1

[
k

i

]
ni (3.7) 30

∑k
j=1

[
k

j

]
Sj,n = 1

k+1

∑k+1
j=1

[
k + 1

j

]
nj (3.10) 32

nk = k
∑k−1

j=1

[
k − 1

j

]
Sj,n (3.12) 32

nk =
∑k

i=1(−1)k−i
[
k

i

]
ni (3.13) 32

(
n + k

k + 1

)
= 1

k!

∑k
j=1

[
k

j

]
Sj,n, k = 1, . . . , n (3.12) 32

nk =
∑k

i=1

{
k

i

}
ni (3.17) 34

{
k

i

}
= i

{
k − 1

i

}
+

{
k − 1

i − 1

}
(3.18) 34

∑k
i=j(−1)i−j

{
k

i

} [
i

j

]
= 0, j = 1, . . . , k − 1 (3.20) 35

[
k

k − 1

]
=

{
k

k − 1

}
(3.21) 35

(p− 1)! + 1 ≡p 0, p prime (8.8) 116

∑p−1
i=j (−1)p−j−1

(
i

j

) [
p − 1

i

]
≡p 0, j = 1, . . . , p− 2 (8.8) 116

Identities involving Elementary Symmetric Polynomials

ek(x1, . . . , xn) =
∑

1≤i1<i2<···<ik≤n xi1xi2 · · ·xik , k = 1, . . . , n

hk(x1, . . . , xn) =
∑

1≤i1≤i2≤···≤ik≤n xi1xi2 · · ·xik , k = 1, . . . , n

qk(z1, . . . , zn) = zk1 + · · ·+ zkn
1n = (1, . . . , 1)

︸ ︷︷ ︸
n times

, νn = (0, 1, . . . , n) Equation Page

nk =
∑k

i=1(−1)k−iek−i(νk−1)ni (4.20) 50

qk(ν�−1) = Sk,�−1 (4.26) 52

ek−i(νk−1) =
[
k

i

]
, i = 1, . . . , k (4.28) 53

qk(1n) = n, k = 1, . . . (4.32) 54

e1(1n) = n (4.33) 54

e2(1n) =
1
2
(n2 − n) (4.33) 54

e3(1n) =
1
6
(n3 − 3n2 + 2n) (4.33) 54

e4(1n) =
1
24

(n4 − 6n3 + 11n2 − 6n) (4.33) 54

ek(1n) =
(

n

k

)
(4.34) 54

hk(1n) =
〈

n

k

〉
(4.41) 57

hk(νn) =
[
n + k

n

]
(4.43) 57
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a ∪ b union of sets a and b

a ∩ b intersection of sets a and b

|a| number of elements in set a

P(a) power set of a

n! = n(n− 1) · · · 1 factorial operator

nk = n(n− 1) · · · (n− k + 1) falling factorial

nk = n(n+ 1) · · · (n+ k − 1) rising factorial
(

n

k

)
= n!

(n−k)! k!
binomial coefficient

〈
n

k

〉
=

(
n + k − 1

k

)
binomial-R coefficient

[
k

i

]
Stirling number of first kind

{
k

i

}
Stirling number of second
kind∑n

i=1 ai = a1 + · · ·+ an summation operator

∏n
i=1 ai = a1a2 · · · an multiplication operator

�a� integer portion of a

Sk,n = 1 + 2k + · · ·+ nk sum of integer powers

Hk,n =
∑n

i=1

(
1
n

)k
harmonic summation

Tn = n(n+1)

2
triangular number

Pk,n = (k−2)n2−(k−4)n

2
polygonal number

b ≡n β the value of b modulus β

b1, . . . , bk = (b1, . . . , bk, b1, . . . , bk, b1 . . .) repeating operator

[b0, . . .] simple continued fraction

λ′ conjugate of a quadratic
irrational number λ

ek(x1, . . . , xn) =
∑

1≤i1<i2<···<ik≤n xi1xi2 · · ·xik elementary symmetric
polynomial

hk(x1, . . . , xn) =
∑

1≤i1≤i2≤···≤ik≤n xi1xi2 · · ·xik homogeneous symmetric
polynomial

qk(z1, . . . , zn) = zk1 + · · ·+ zkn symmetric power function
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