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Abstract

Tropical mathematics redefines the rules of arithmetic by replacing addition with
taking a maximum, and by replacing multiplication with addition. After briefly
discussing a tropical version of linear algebra, we study polynomials built with
these new operations. These equations define piecewise-linear geometric objects
called tropical varieties. We explore these tropical varieties in two and three
dimensions, building up discrete tools for studying them and determining their
geometric properties. We then discuss the relationship between tropical geometry
and algebraic geometry, which considers shapes defined by usual polynomial
equations.

Suggested Prerequisites We use standard set theory notation (unions, functions,
etc.) throughout this chapter. Section 1 draws on terminology and motivation from
abstract algebra and linear algebra, but can be understood without them. Section 2
draws on topics from discrete geometry, although it is mostly self-contained.
Section 3 includes geometry in three dimensions, which uses some notation from
a standard course in multivariable calculus. Section 4 uses ring theory terminology
from an abstract algebra course.
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1 Tropical Mathematics

Take a piece of graph paper, or draw your own rectangular grid. Pick some of
the grid points, and join them up to form a polygon. Be sure it is convex, so that
all the angles are less than 180◦. Now, start connecting grid points to each other
with line segments, never letting any two line segments cross. Keep going until you
cannot split things up anymore. You should end up with lots of triangles, like the
first picture in Fig. 1.

Using a different color, say purple, put a dot in every triangle. Connect two dots
with a line segment if their triangles share a side. If a triangle has a boundary edge,
just draw a little edge coming out of the dot. Your picture will now look like the
middle of Fig. 1. Now, try to draw your purple shape again, but with the following
rule: each line segment you draw should be perpendicular to the shared side of the
triangle.1 Now you might have a picture like on the right in Fig. 1. Congratulations!
You have drawn your first tropical curve.2

Tropical curves, and more generally tropical varieties, are geometric shapes
that can be defined by familiar equations called polynomials. However, these
polynomials are interpreted using different rules of arithmetic than usual addition
and multiplication, replacing addition with taking a maximum and multiplication
with addition. The study of these shapes is called tropical geometry, although we
can also study other areas of mathematics with these new rules of arithmetic. In
general, we call these subjects tropical mathematics.

The first question most people have about tropical mathematics is why it is
called “tropical.” One of the pioneers of tropical mathematics was Imre Simon,
a mathematician and computer scientist who was a professor at the University of
São Paulo Brazil. The adjective tropical to describe the field was coined by French
mathematicians (Dominique Perrin or Christian Choffrut, depending on who you

Fig. 1 Drawing a tropical curve

1You can draw this shape away from the polygon, so it is ok if your line segment between the two
dots doesn’t cross the side of the triangle anymore! If it does not seem possible: go back to Step 1,
draw your triangles differently, and try again.
2Unless you have drawn one before. But hopefully it was fun anyway!
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ask [47,52]) in Professor Simon’s honor, based on the proximity of his university to
the Tropic of Capricorn.

The second question most people have is why on Earth we would ever redefine
our rules of arithmetic in this way. It turns out that it leads to some incredibly useful
and beautiful mathematics. The first applications of this max-plus arithmetic were in
the world of tropical linear algebra, where studying matrix multiplication and related
problems in this setting helped solve automation and scheduling problems. More
recently, tropical geometry arose as a skeletonized version of algebraic geometry,
a major area of mathematics that studies solutions to polynomial equations.
By “tropicalizing” solution sets to polynomial equations, we can turn algebro-
geometric problems into combinatorial ones, studying more hands-on objects and
then lifting that information back to the classical world. Beyond having applications
to computational algebraic geometry, this has allowed for theorems, some new and
some old, to be proven in a purely tropical way.

1.1 Tropical Arithmetic and Tropical Linear Algebra

The set of real numbers R, equipped with addition + and multiplication ×, has
the algebraic structure of a field. This means we can add, subtract, multiply, and
divide (except by zero), and that arithmetic works essentially how we expect it to.
For instance, there is an additive identity 0, which does not change anything when
added to it; and there is a multiplicative identity 1, which does not change anything
when multiplied by it. The operations also play well together: for any a, b, c ∈ R,
we have a × (b + c) = a × b + a × c. If we forget about the fact that we can divide
for a minute, all these properties (together with commutativity and associativity of
our operations) mean that (R,+,×) is a commutative ring with unity.

Let us now redefine arithmetic on the real numbers with tropical addition ⊕ and
tropical multiplication �, where a⊕b = max{a, b} and a�b = a+b. So, 2⊕3 = 3
and 2 � 3 = 5. Instead of only allowing real numbers, we use the slightly larger set
R = R ∪ {−∞}, where −∞ has the property that it is smaller than any element of
R. This means, for instance, that −∞ ⊕ 2 = 2 and −∞ � 2 = −∞.

The triple (R,⊕,�) almost has the structure of a commutative ring with unity,
with −∞ as the additive identity and 0 as the multiplicative identity. However,
elements do not have additive inverses. The equation 1⊕x = 0 has no solution, since
we cannot “subtract” 1 from both sides. Thus, the triple (R,⊕,�) is a semiring, and
in particular we call it the tropical semiring.3

3We could have just as easily defined tropical addition as taking the minimum of two numbers.
(Instead of −∞, we would have used ∞ as our additive identity.) Some researchers use the min
convention, which is especially useful when studying connections to algebraic geometry; others
use the max convention, which is more useful for highlighting certain dualities. Pay attention to
the introductions of books and papers to determine which convention they are using!
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Exercise 1 Verify that tropical addition and tropical multiplication satisfy the law
of distributivity. That is, show that for any a, b, c ∈ R, we have a � (b ⊕ c) =
(a � b) ⊕ (a � c). Then explain why every element of R, besides the additive
identity, has a multiplicative inverse. Because of this it would also be reasonable to
refer to (R,⊕,�) as the tropical semifield.

Historically, the first use of these max-plus operations as an alternative to plus-
times came in the world of max-linear algebra, which is similar to linear algebra
over the real numbers except that all instances of + and × are replaced with ⊕ and
�. An example of matrix multiplication with these operations would be

(
5 2−1 8

) � (
1 0
2 −∞

) =
(

(5�1)⊕(2�2) (5�0)⊕(2�−∞)
(−1�1)⊕(8�2) (−1�0)⊕(8�−∞)

)
= (

6 5
10 −1

)
. (1)

There are many natural questions, equations, or definitions coming from usual
linear algebra that, when studied tropically, boil down to a scheduling, optimization,
or feasibility problem. We list a few here, and refer the reader to [8] for more
details:

• Solving equations of the form A � x ≤ b, where A and b are given, solves a
scheduling problem.

• Finding the determinant of a matrix solves a job assignment problem. (We have
to be careful what we mean by “determinant,” since there are no negatives
tropically!)

• Finding an eigenvalue of a matrix finds the shortest weighted cycle on the
weighted graph given by the matrix. (And strangely, this matrix only has that
one eigenvalue.)

Challenge Problem 1 Explain why each of the above linear algebra topics has the
given interpretation when working tropically.

Research Project 1 Study the complexity of tropical matrix multiplication.
For both tropical and classical matrix multiplication, the usual algorithm for
multiplying two n × n matrices (namely taking the dot product of rows and
columns) uses n3 multiplications. However, an algorithm for classical matrix
multiplication due to Strassen [53] has a runtime of O(n2.807), with more
recent algorithms pushing the runtime down to O(n2.3728639) [33]. Can such
improvements be made for tropical matrix multiplication?

More generally, study the computational complexity of problems in max-
linear algebra.
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1.2 Tropical Polynomials and Tropical Varieties

A traditional polynomial in n variables over R is a sum of terms, each of which
consists of a coefficient from R multiplied by some product of those n variables
(possibly an empty product; possibly with repeats). We study the set of points where
these polynomials vanish; in other words, we set these polynomials equal to 0, and
study the solution sets in R

n.

Example 1 The polynomial x2 − 5x + 6, the polynomial x2 + y2 − 1, and the
polynomial x2 + y2 + z2 − 1 are polynomials in one, two, and three variables,
respectively. The solution sets obtained by setting these polynomials equal to 0 are
the finite set {2, 3} in R; the unit circle in R

2; and the unit sphere in R
3, respectively.

Note that the solution set of {2, 3} to x2 − 5x + 6 = 0 (usually referred to
as the roots of the polynomial) gives a factorization, namely x2 − 5x + 6 = (x −
2)(x−3). This illustrates the fundamental theorem of algebra: that any non-constant
polynomial in one variable can be factored into linear terms, each of the form x − α

with α a root.4

Algebraic geometry is the field of mathematics that studies shapes defined by
the vanishing of polynomials. Tropical geometry, in parallel, studies shapes defined
by tropical polynomials. Tropical polynomials are the same as usual polynomials,
except with all addition and multiplication replaced with tropical addition and
tropical multiplication. This includes multiplication of variables, so that x2y is
interpreted as x � x � y = x + x + y = 2x + y.

Example 2 The tropical polynomial in one variable x2 ⊕ (2 � x) ⊕ (−1) can be
written in classical notation as max{2x, x + 2,−1}. The graph of this polynomial,
interpreted as a function from R to R, is illustrated in Fig. 2.

Although we could set a tropical polynomial equal to 0, the resulting solution
set would not be especially meaningful: most tropical polynomials in one variable
are equal to 0 at at most one point, which does not give much information about the
polynomial. Instead, we study the points where the maximum is achieved (at least)
twice. In the polynomial from Example 2, the maximum is achieved twice at two
points: when x = −3 (where the 2 � x and −1 terms tie for the maximum), and
when x = 2 (where the x2 and 2 � x terms tie for the maximum).

4There is a bit more fine print: we must work over C, the field of complex numbers, which is
algebraically closed; and we may have to include multiple copies of the same term, based on the
multiplicity of the root.
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Fig. 2 The graph of the
tropical polynomial
x2 ⊕ (2 � x) ⊕ (−1)

x

y

23-

Definition 1 We say that a tropical polynomial p(x1, . . . , xn) vanishes at a point
(a1, . . . , an) if the maximum in p(a1, . . . , an) is achieved at least twice. If p(x)

is a tropical polynomial in one variable that vanishes at a, we say that a is a root
of p(x).

As with classical roots, we can give tropical roots a notion of multiplicity: it is
the change in slope going from one linear portion of the graph to the next at that
root. So in Example 2, both roots have multiplicity 1, since the slope changes from
0 to 1, and then from 1 to 2.

Exercise 2 We say that a tropical polynomial in one variable has a root at −∞
if the leftmost linear part of its graph does not have slope 0; the multiplicity of
that root is defined to be the slope of that ray. With this definition, prove that any
tropical polynomial in one variable of degree n has exactly n roots in R, counted
with multiplicity. (In this sense, R is “tropically algebraically closed.”)

A natural question to ask is whether the tropical roots of a tropical polynomial in
one variable have any real meaning. At least in our example, they give information
about how to factor the polynomial: the reader can verify that x2 ⊕(2�x)⊕(−4) =
(x ⊕ −3) � (x ⊕ 2). This property holds in general, if we are willing to consider
factorizations that give the correct function, even if not the correct polynomial.
(Check and see why x2 ⊕0 and x2 ⊕ (−100�x)⊕0 define the same function, even
though they are different polynomials!)

Challenge Problem 2 Prove the tropical fundamental theorem of algebra: that any
tropical polynomial p(x) in one variable is equal, as a function, to

c � (x ⊕ α1)
μ1 � (x ⊕ α2)

μ1 � · · · � (x ⊕ αk)
μk , (2)

where α1, . . . , αk are the tropical roots of p, with multiplicities μ1, . . . , μk ,
respectively, and where c is a constant.
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Research Project 2 Study the factorization of tropical polynomials in more
than one variable. Work in this direction has been done in [37], who provide
efficient algorithms for certain classes of polynomials, even though in general
this is an NP-complete problem.

Moving beyond polynomials in just one variable, we obtain tropical vanishing
sets more complex than finite collections of points. In Sect. 2 we study tropical
polynomials in two variables in depth, as well as the tropical curves they define
in R

2. In Sect. 3 we consider tropical polynomials in three variables, which define
tropical surfaces. We also describe how intersecting such surfaces can give rise to
tropical curves in three dimensions. In Sect. 4 we discuss the connection between
algebraic geometry and tropical geometry through the tool of tropicalization.

1.3 Some Tropical Resources

Throughout this chapter we provide many references to books and articles on
tropical geometry, both as sources for results and as great places to find ideas
for research projects. We will frequently reference An Introduction to Tropical
Geometry by Maclagan and Sturmfels [39], a graduate text that thoroughly develops
the structure of tropical varieties and their connection to algebraic geometry. That
book uses the min convention, while we use the max convention, so we adapt their
results as necessary.

The material presented in this chapter, as well as in [39], looks at tropical
geometry from an embedded perspective, where tropical varieties are subsets of
Euclidean space. Another fruitful avenue is to look at tropical varieties, especially
tropical curves, from an abstract perspective, under which tropical curves are
thought of as graphs, possibly with lengths assigned to the edges. In the case of
graphs without edge lengths, this theory is thoroughly explored in [16]. We also refer
the reader to [3, 13, 15, 22, 41] for research articles incorporating this perspective.

Finally, there are many fantastic computational tools that help in exploring
tropical geometry, both for computing examples and for implementing algorithms.
Here are a few that we will reference in this chapter, all free to download:

• Gfan [29], a software package for computing Gröbner fans and tropical
varieties.

• Macaulay2 [25], a computer algebra system. Especially useful for us are the
Polyhedra and Tropical packages.

• polymake [23], which is open source software for research in polyhedral
geometry. Among many other things, it can deal with polytopes and tropical
hypersurfaces.
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• TOPCOM [50], a package for computing Triangulations Of Point Configurations
and Oriented Matroids. As we will see in Sects. 2 and 3, being able to find
triangulations of polygons and polytopes goes hand in hand with researching
tropical varieties.

2 Tropical Curves in the Plane

Let p(x, y) be a tropical polynomial in two variables with at least two terms. Let S

be the set of all pairs (i, j) ∈ Z
2 such that a term of the form cij � xi � yj appears

in p(x, y) with cij 	= −∞; in other words, S is the set of all exponent pairs that
actually show up in p(x, y). We can then write our polynomial as

p(x, y) =
⊕

(i,j)∈S

cij � xi � yj , (3)

or in classical notation as

p(x, y) = max
(i,j)∈S

{cij + ix + jy}. (4)

As established in Definition 1, we say p(x, y) vanishes at a point if this maximum is
achieved at least twice at that point. We call the set of points in R

2 where p vanishes
the tropical curve defined by p. Let T (p) denote this tropical curve.

Example 3 Let p(x, y) = x ⊕ y ⊕ 0. Written in classical notation, p(x, y) =
max{x, y, 0}. The maximum in this expression is achieved at least twice if two of
the terms are equal, and greater than or equal to the third. This occurs at the point
(0, 0),5 and along three rays emanating from this point: when x = y ≥ 0, when
x = 0 ≥ y, and when y = 0 ≥ x. The tropical curve T (p) is illustrated in Fig. 3.
As mentioned in Exercise 3, we call this tropical curve a tropical line.

Fig. 3 The tropical line
defined by x ⊕ y ⊕ 0

(0,0)

5In fact, the maximum occurs three times at this point.
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Exercise 3 Any tropical curve defined by a tropical polynomial of the form a�x⊕
b � y ⊕ c, with a, b, c ∈ R, is called a tropical line. Determine all the possibilities
for what a tropical line can look like. What if we allow one of a, b, or c to be −∞?

2.1 Convex Hulls and Newton Polygons

A set in R
2 (or more generally in R

n) is called convex if any line segment connecting
two points in the set is also contained in the set. The convex hull of a collection of
points is the “smallest” convex set containing all the points.6 The Newton polygon
of p(x, y), written Newt(p), is the convex hull of all the points in S. That is,

Newt(p) = conv
(
{(i, j) ∈ Z

2 | xi � yj appears in p(x, y) with cij 	= −∞}
)

.

(5)
As the convex hull of finitely many points in R

2, Newt(p) is either empty, a point, a
line segment, or a two-dimensional polygon. To avoid certain trivial cases, we will
assume that we have chosen p such that Newt(p) is a two-dimensional polygon. It is
a lattice polygon, meaning that all vertices are lattice points, which are points with
integer coordinates. In the special case that Newt(p) = conv{(0, 0), (d, 0), (0, d)}
for some positive integer d, we say that the polynomial has degree d, and we call
the Newton polygon the triangle of degree d, denoted Td .

Example 4 Let p(x, y) = (1 � x2) ⊕ (1 � y2) ⊕ (2 � xy) ⊕ (2 � x) ⊕ (2 � y) ⊕ 1.
Then we have that S = {(2, 0), (0, 2), (1, 1), (1, 0), (0, 1), (0, 0)}, so Newt(p) is the
triangle of degree 2, and p(x, y) is a polynomial of degree 2. The Newton polygon,
along with the tropical curve T (p), is illustrated in Fig. 4. Some preliminary
connections between Newt(p) and T (p) can already be observed: the rays in
T (p) point in directions that are perpendicular and outward relative to the edges
of Newt(p). However, there are other features of the tropical curve not visible from

Fig. 4 The Newton polygon
of (1 � x2) ⊕ (1 � y2) ⊕ (2 �
xy) ⊕ (2 � x) ⊕ (2 � y) ⊕ 1,
along with the tropical curve
the polynomial defines

(2, 0)(0, 0)

(0, 2)
(0, 1)

(1, 0)

( 1, 1)

(0, 0)

6More formally, it is the intersection of all convex sets containing the points. See if you can prove
that such an intersection is still convex!
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the Newton polygon; for instance, there are three bounded edges, and there are four
vertices, where multiple edges or rays come together.

2.2 Subdivisions and the Duality Theorem

Since it was presented without justification, the reader might wonder: how did we
determine T (p) in Example 4? One brute force way could be to take every possible
pair among the 6 terms in p(x, y) (there are 15 ways to do this), set them equal to
each other, and try to determine whether those two terms ever tie for the maximum,
and if so, where. It turns out that studying the Newton polygon of p leads to a much
more elegant approach.

Let P be a lattice polygon, and S = P ∩Z
2 be the set of integer coordinate points

in P . Let h : S → R be any function assigning real number values7 to each element
of S; we refer to h as a height function. We then define a set A of points in R

3 by
“lifting” the points of S to the heights prescribed by h:

A = {(i, j, h(i, j)) | (i, j) ∈ S}. (6)

Take the convex hull of A in R
3. Unless all the points of A lie on a plane, this

convex hull is a three-dimensional polytope, the three-dimensional analog of a
polygon, whose boundary consists of two-dimensional polygonal faces meeting
along edges. Viewed from above, conv(A) looks like P , except subdivided by these
upper polygonal faces. We call this subdivision of P the subdivision induced by h.
The faces of conv(A) that are visible from above form the upper convex hull of A.

Example 5 Let p(x, y) be as in Example 4. Let P = Newt(p), and S = P ∩ Z
2.

Define h : S → R using the coefficients of p(x, y), so that h(i, j) = ci,j . Then
the set A consists of the six points {(0, 0, 1), (1, 0, 2), (2, 0, 1), (0, 1, 2), (1, 1, 2),

(0, 2, 1)}, illustrated on the left in Fig. 5. Their convex hull is then a polytope with 8

(0, 1)

(1, 0)

( 1, 1)

(0, 0)

Fig. 5 The points of A labelled as ×’s, their convex hull, the induced subdivision of the triangle,
and the dual tropical curve

7This definition will still work even if we define h : S → R ∪ {−∞}, as long as h does not map
any vertices of P to −∞.
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triangular faces, illustrated in the middle of the figure. Of these faces, the 4 that are
colored are visible from above, giving the induced subdivision of P shown towards
the right. The tropical curve T (p) is reproduced, with vertices colored the same as
their corresponding triangles, as described in Theorem 1 below.

The subdivision of the Newton polygon induced by the coefficients of the tropical
polynomial gives us almost all the information regarding how to draw the tropical
curve in the plane. Although this result holds in much more generality, we spell it
out explicitly in the case of two variables.

Theorem 1 (The Duality Theorem, [39, Proposition 3.1.6]) Let p(x, y) be a
tropical polynomial with P = Newt(p) two-dimensional. Then the tropical curve
T (p) is dual to the subdivision of P induced by the coefficients of p(x, y) in the
following sense:

• Vertices of T (p) correspond to polygons in the subdivision of P .
• Edges of T (p) correspond to interior edges in the subdivision of P .
• Rays of T (p) correspond to boundary edges in the subdivision of P .
• Regions of R2 separated by T (p) correspond to lattice points of P used in the

subdivision.

Moreover, two vertices of T (p) are connected by an edge if and only if their cor-
responding polygons in the subdivision share an edge, and the edge in the Newton
polygon is perpendicular to the edge in the subdivision; and the rays emanating from
a vertex in T (p) correspond to boundary edges of the corresponding polygon in the
subdivision, with the rays in the outward perpendicular directions to the boundary
edges of P .

So once we have found the subdivision of our Newton polygon, we know
exactly what the tropical curve will look like, up to scaling edge lengths and up
to translation. If we find the subdivision from Example 5, then our tropical curve
could be either of the ones illustrated in Fig. 6 (or infinitely many others!). However,
we can nail down the exact coordinates of the vertices by solving for the relevant
three-way-ties. For instance, the top-most vertex of the tropical curve corresponds
to the triangle with vertices at (0, 2), (0, 1), and (1, 1) in the subdivision, so the
coordinates of the vertex are located at the (unique) three-way tie between the y2,
the y, and the xy terms.

Sometimes there is information present in the polynomial or in the subdivision
of the Newton polygon that is lost in the tropical curve. For instance, if p(x, y) =
x2 ⊕y2 ⊕0, then T (p) is, as a set, the tropical line from Fig. 3. By only considering
this tropical curve as a set, we thus lose information about the starting polynomial.
This leads us to decorate the edges and rays of our tropical curves with weights. In
particular, each edge or ray is given a positive integer weight m, where m is equal
to one less than the number of lattice points on the dual edge of the subdivision.
Several tropical curves with the same Newton polygon are illustrated in Fig. 7, with
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(0, 1)

(1, 0)

( 1, 1)

(0, 0)

(2, 2)

(1, 1)

(2, 4)

(8, 2)

Fig. 6 A subdivision of a Newton polygon, and two possible tropical curves dual to it

2

2

Fig. 7 Three tropical curves with the same Newton polygon, dual to different subdivisions. The
first tropical curve is smooth, and the other two are not

all weights above 1 labelled. If a tropical curve has all weights equal to 1, and
each vertex has a total of three edges and rays emanating from it, then we call the
tropical curve smooth. Equivalently, a tropical curve is smooth if its dual subdivision
is a unimodular triangulation, meaning that every polygon in the subdivision is a
triangle with no lattice points besides its vertices.8

Exercise 4 Let p(x, y) be a tropical polynomial of degree d such that T (p) is
smooth. Determine the number of edges, rays, and vertices of T (p). (Hint: count
up the corresponding objects in a unimodular triangulation of the triangle Td . You
can use the fact that any triangle in such a triangulation has area 1/2.)

Challenge Problem 3 Show that any tropical curve satisfies the following bal-
ancing condition9: choose a vertex, and let 〈a1, b1〉 , 〈a2, b2〉 , . . . , 〈a�, b�〉 be the
outgoing directions of the rays and edges emanating from the vertex, where ai, bi ∈
Z and gcd(ai, bi) = 1 for all i. Let mi denote the weight of the ith edge/ray. Show
that m1 × 〈a1, b1〉 + m2 × 〈a2, b2〉 + · · · + m� × 〈a�, b�〉 = 〈0, 0〉.

8By Pick’s Theorem [46], this in turn is equivalent to every polygon in the subdivision being a
triangle with area 1/2.
9This is a special case of a much more general result called the Structure Theorem, which says that
any tropical variety has the structure of a weighted, balanced polyhedral fan of pure dimension.
See [39, Theorem 3.3.5].
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Fig. 8 A set that turns out to
be a tropical curve

(0, 0)

Fig. 9 A regular subdivision
with a dual tropical curve, and
a non-regular subdivision

Exercise 5 Consider the subset C of R
2 illustrated in Fig. 8. It consists of three

rays, all emanating from the origin, in the directions 〈1, 0〉, 〈0, 1〉, and 〈−2,−1〉.
Show that C is a tropical curve by finding a tropical polynomial p(x, y) such that
C = T (p). (Hint: the previous Challenge Problem might be useful!)

Armed with our Duality Theorem, one way to study tropical curves is the
following: choose a tropical polynomial, find the induced subdivision of its Newton
polygon, and draw it, solving for the exact coordinates of the vertices. Perhaps the
most challenging step is finding the induced subdivision; this can be accomplished
with such computational tools as polymake, TOPCOM, and Macaulay2.

Here we take another approach, similar to the very start of this chapter. Rather
than starting with a tropical polynomial, choose the Newton polygon, and simply
draw a subdivision, perhaps a unimodular triangulation. Then try to draw a tropical
curve dual to it. (This is exactly the method from the start of Sect. 1.) An example of
a triangulation of the triangle of degree 4 is illustrated in Fig. 9, along with a tropical
curve that is dual to it. Note that to draw this tropical curve, we never needed to find
a tropical polynomial defining it!

Sadly, this approach does not always work. A tropical curve can be drawn dual
to a subdivision if and only if the subdivision is regular, meaning that it is induced
by some height function.

Exercise 6 Consider the subdivision on the right in Fig. 9. Show that it is not a
regular triangulation. (You might argue that no height function could have induced
that triangulation; or you could argue that it is impossible to draw a tropical curve
dual to it.)

It turns out that there are 1279 unimodular triangulations of the triangle of degree
4 up to symmetry [2, 7], and only one of them is non-regular: it is the unique
unimodular triangulation that completes the non-regular subdivision from Fig. 9.
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Similar phenomena occur for “small” polygons, whereby most triangulations end
up being regular, so that drawing dual tropical curves is usually possible. For larger
polygons, regular subdivisions seem to become rarer and rarer. See [30] for many
results in the case that the polygon is a lattice rectangle, as well as [19] for results
in a more general setting.

Challenge Problem 4 Let n be a positive integer, and let P be a 1 × n lattice
rectangle. Prove that any subdivision of P is regular. How many unimodular
triangulations are there of P ?

Research Project 3 Study the number of unimodular triangulations of fam-
ilies of lattice polygons, as was done for lattice rectangles in [30]. This can
involve finding upper and lower bounds that improve those in the literature.
Study the proportion of these unimodular triangulations that are regular.
For all these endeavors, polymake and TOPCOM are fantastically useful
computational tools.

2.3 The Geometry of Tropical Plane Curves

Many theorems about classical plane curves have analogs within the tropical world.
A prime example of this is Bézout’s Theorem.

Theorem 2 (Bézout’s Theorem) Let C and D be two smooth algebraic plane
curves of degrees d and e. If C and D have no common components, then C ∩ D

has at most d ×e points. If we are working in projective space over an algebraically
closed field, and counting intersection points with multiplicity, then C ∩ D has
exactly d × e points.

As shown in [49], the same result holds for tropical plane curves, once we
determine how to count intersection points with multiplicity, and how to deal with
tropical curves that intersect “badly.”

Definition 2 Suppose two tropical plane curves C1 and C2 intersect at an isolated
point (a, b) that is not a vertex of either curve. Such a point is called a transversal
intersection. Let 〈u1, v1〉 and 〈u2, v2〉 be integer vectors describing the slopes of the
edges or rays of C and D containing (a, b), where gcd(u1, v1) = gcd(u2, v2) = 1,
and let the weights of the edges or rays be m1 and m2. Then the multiplicity of
(a, b) is

μ(a, b) := m1 × m2 × ∣∣det
(

u1 v1
u2 v2

)∣∣ . (7)
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Example 6 Consider the tropical polynomials

f = (−1 � x2) ⊕ (xy) ⊕ (−1 � y2) ⊕ x ⊕ y ⊕ (−1) (8)

and

g =
(

−1

2
� x2

)
⊕ (1 � xy) ⊕ (−2 � y2) ⊕ x ⊕ y ⊕ 0. (9)

They both have the triangle of degree 2 as their Newton polygon and have induced
subdivisions as illustrated on the left in Fig. 10. As shown on the right, the tropical
curves T (f ) and T (g) intersect in three points. The multiplicities of these points
can be computed as 1, 1, and 2.

Let us push this example a little further. If we think of T (f )∪T (g) as T (f �g),
then we can consider the dual subdivision of Newt(f � g), illustrated in Fig. 11.
Every polygon in this subdivision is dual to a vertex of T (f � g), and each vertex
in T (f � g) is either a vertex of T (f ), a vertex of T (g), or an intersection point.
Note that each polygon dual to an intersection point (a, b) has area equal to μ(a, b).

Fig. 10 The subdivisions
induced by f and g, and the
two tropical curves

1

1

1 0

00

1/2

1

2

0

0 0

Newt(f)

Newt(g)

Fig. 11 The subdivisions
induced by f � g, with blue
triangles coming from
vertices in T (f ) and red
triangles coming from T (g)
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Exercise 7 Show that if f and g are tropical polynomials of degrees d and e, then
f �g is a tropical polynomial of degree d �e, and that T (f �g) = T (f )∪T (g).
Then show that the multiplicity of a transversal intersection point of f and g is equal
to the area of the corresponding polygon in the subdivision of Newt(f �g) induced
by f � g.

Theorem 3 (Tropical Bézout’s Theorem, Transversal Case) Let C and D be
two tropical plane curves of degrees d and e with finitely many intersection points
(a1, b1), · · · , (an, bn), all of which are transversal. Then

n∑

i=1

μ(ai, bi). (10)

Note that we did not need to assume C and D were smooth. For an even more
general result, we need to deal with the possibility that C and D have intersections
that are not transversal. For two tropical curves C and D, we compute the stable
tropical intersection as follows. Let v = 〈v1, v2〉 be a vector not parallel to any edge
or ray of C and D, and for ε ∈ R

+ let Dε be a translation of D by εv. We then
define

C ∩st D = lim
ε→0

C ∩ Dε. (11)

The multiplicity of a point in C ∩st D is the sum of the multiplicities of the
corresponding points in a small enough perturbation C ∩ Dε.

Example 7 If f (x, y) = x⊕y⊕0 and g(x, y) = (1�x)⊕y⊕0, then C = T (f ) and
D = T (g) are the tropical lines pictured in Fig. 12. Their set-theoretic intersection
is a ray emanating from the point (−1, 0). To find C ∩st D, we move D slightly
to Dε, and then move it back to D. In the limit, we find a single stable intersection
point at (−1, 0).

Exercise 8 Show that C ∩st D is a well-defined set of finitely many points and is
independent of the choice of v. Also show that the multiplicity of each point is well
defined.

Fig. 12 Two tropical lines
intersecting non-transversally,
and a small perturbation used
to compute the stable
intersection

CD C
Dε
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Theorem 4 (Tropical Bézout’s Theorem, General Case) Let C and D be two
tropical plane curves of degrees d and e with C ∩st D = (a1, b1), · · · , (an, bn).
Then

n∑

i=1

μ(ai, bi). (12)

Challenge Problem 5 Prove the transversal case of tropical Bézout’s Theorem
using an area-based argument involving the Newton polygon of f � g. Then use
this result to prove the general case of tropical Bézout’s Theorem.

Many classical results about algebraic plane curves involve when two curves are
tangent to one another at some collection of points. Recently much work has been
done to build up machinery to pose and study these sorts of results in the tropical
world.

Definition 3 Let C and D be tropical curves. A tangency between C and D is a
component of C ∩ D such that the stable intersection C ∩st D has more than one
point in that component, counted with multiplicity. We say C and D are tangent at
that component of C ∩ D.

A tropical line that is tangent to a degree 4 curve at two distinct components are
illustrated in Fig. 13. Such an intersection is called a bitangent line, which is also
used to refer to an intersection component of multiplicity 4 or more.

Exercise 9 Find all the bitangent lines of the curve from Fig. 13. (Hint: there are
infinitely many of them, but they still admit a nice classification.)

Counting bitangent lines is a very classical problem in algebraic geometry. In
1834, Plücker proved that a smooth algebraic plane curve of degree 4 has 28
bitangent lines [48]. A tropical analog of this fact was proved in [2].

Fig. 13 A tropical line that
is tangent to a tropical curve
at two components
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Theorem 5 (Theorem 3.9 in [2]) Let C be a smooth tropical plane curve of degree
4. Then C has exactly seven classes10 of bitangent lines.

Later work was done to relate this theorem to Plücker’s count, starting in [14]
and culminating in [34], which showed how to recover the classical count of 28
bitangent lines from the tropical count, at least in sufficiently general cases.

Research Project 4 One great starting point for asking tropical questions
is to study tropical versions of algebraic results. Study, prove, or disprove
tropical analogs of these classical results. You may have to assume something
about positions being sufficiently general.

• The De Bruijn–Erdös Theorem [18]: for any n points not all on a line
determining t points, then t ≥ n and if t = n, any two lines have exactly
one of the n points in common. (In this latter case, n − 1 of the points are
collinear.)

• Steiner’s conic problem [5]: given 5 curves of degree 2, how many curves
of degree 2 are tangent to all of them? (Classically, the answer is 3264,
although Steiner incorrectly computed it as 7776.)

• The Three Conics Theorem [20]: given three conics that pass through two
given points, the three lines joining the other two intersections of each
pair of conics all intersect at a point. Dually: given three conics that share
two common tangents, the remaining pairs of common tangents intersect
at three points that are collinear.

• The Four Conics Theorem [20]: Suppose we are given three conics, where
two intersections of each pair lie on a fourth conic. Then the three lines
joining the other two intersections of each pair of conics intersect in a
point.

It is also worth determining when tropical geometry does not nicely mirror
classical algebraic geometry. We say that an algebraic or a tropical curve C is
irreducible if it cannot be written as C1 ∪ C2, where C1 � C and C2 � C are
curves as well. One nice property of algebraic curves (and more generally algebraic
varieties) is that they admit a unique decomposition into irreducible components
[17, Theorem 4.6.4], just as any integer n ≥ 2 can be written as a product of primes
uniquely (up to reordering). Tropical curves, however, do not.

10Loosely speaking, we say two bitangent lines intersecting at (P,Q) and (P ′,Q′) with multiplic-
ity 2 at each point are equivalent if (P,Q) and (P ′,Q′) are equivalent in the language of divisor
theory [22].
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Fig. 14 A tropical curve that
can be decomposed into
irreducible tropical curves in
two distinct ways

Example 8 Consider the set C in R
2 consisting of the (usual) lines x = 0, y = 0,

and x = y. We claim that C is a tropical curve; you will show this in Exercise 10.
We can also write C as T (x ⊕y ⊕ 0)∪T ((xy)⊕x ⊕y), or as T (x ⊕y)∪T (x ⊕
0) ∪ T (y ⊕ 0), as illustrated in Fig. 14.

Exercise 10 Find a polynomial f such that C = T (f ), where C is the set from
Example 8. How does this polynomial relate to the polynomials defining the two
decompositions of C as a union of tropical curves?

Research Project 5 Study how many decompositions a tropical curve can
have as a union of tropical curves properly contained within it. You could
stratify this study by the Newton polygon of the curve. (This is closely related
to the research project on factoring tropical polynomials; see if you can see
why, especially after you try Exercise 10!)

A new approach in tropical geometry that avoids non-uniqueness of decompo-
sitions is to develop tropical schemes [24, 38], just as algebraic geometers study
algebraic schemes [27]. This model does not consider the tropical curves from the
second decomposition in Example 8 to be tropical curves, and in fact gives us a
unique decomposition in general.

2.4 Skeletons of Tropical Plane Curves

Choose a lattice polygon P with g interior lattice points, where g is at least 2.
Write Pint for the convex hull of the g interior lattice points; this is either a line
segment, or a polygon. Let p(x, y) be a tropical polynomial with Newton polygon
P . Rather than study the full tropical curve T (p), we can focus on a portion of it
called its skeleton. To find the skeleton, we delete all rays from our tropical curve,
and then successively remove any vertices incident to exactly one edge, along with
such edges. This will lead to a collection of vertices and edges, where each vertex is
incident to at least two edges. We “smooth over” the vertices incident to two edges,
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Fig. 15 A tropical curve (with its dual subdivision) undergoing the process of skeletonization.
The edges of the tropical curve that end up contributing to the skeleton are color-coded based on
which final edge they become a part of

removing such vertices and fusing the two edges into one. The resulting collection
of edges and vertices is called the skeleton of the tropical curve. This process is
illustrated in Fig. 15.

The structure that remains after “skeletonizing” a tropical curve is a graph.11

A graph is simply a collection of vertices collected by edges; in our setting, two
vertices may be connected to each other by multiple edges, and a vertex may be
connected to itself by an edge, which we call a loop. This leads us to the following
major question: Which graphs can appear as the skeleton of tropical plane curve?
To simplify, let us assume that our tropical curves are smooth.

Definition 4 A graph that is the skeleton of some smooth tropical plane curve is
called tropically planar, or troplanar for short. The genus12 of the graph is the
number of bounded regions in the plane formed by a drawing on the graph. By
Euler’s formula relating the number of vertices, edges, and faces of a planar graph,
we could also define the genus as E−V +1 for a graph with E edges and V vertices.

With these definitions, we can say that the graph on the right in Fig. 15 is
troplanar, and has genus 2.

Exercise 11 Let G be a troplanar graph. Show that G is connected (all one piece),
planar (able to be drawn in the plane without any edges crossing), and trivalent
(meaning that every vertex has three edges coming from it, where a loop counts
as two edges). Also show that the genus of the graph is equal to g, the number of
interior lattice points of the Newton polygon of any smooth tropical curve that has
G as its skeleton.

11In fact, there is a bit more structure: it is a metric graph, meaning the edges have lengths. We
will come back to that later in this subsection.
12There is another, unrelated definition of genus in graph theory, dealing with the smallest number
of holes a surface must have to allow a given graph to be embedded on it.
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A daunting task is to try to determine which graphs are tropically planar. Even
for fixed g, it is not immediately obvious that there is an algorithmic way to do this.
There are several things working in our favor:

1. There are only finitely many polygons with g ≥ 1 interior lattice points, up
to equivalence.13 As discussed in [7, Proposition 2.3], this follows from results
in [51] and [32]. An algorithm for finding all such polygons for a given g is
presented in [10].

2. If P and Q are lattice polygons with P ⊂ Q and Pint = Qint , all the troplanar
graphs arising from P also arise from Q [7, Lemma 2.6].

Exercise 12 Prove item 2 above.

Item 1 means that we only need to consider a finite collection of possible Newton
polygons for each genus g; item 2 decreases that number considerably. It means that
we need to only consider maximal polygons, which are those that are not properly
contained in any polygon with the same interior lattice points.

Even when we have restricted to maximal polygons, there are two different
flavors of polygons: the hyperelliptic polygons, for which Pint as a line segment,
and the nonhyperelliptic polygons, for which Pint is a two-dimensional polygon. See
Fig. 16 for all the maximal polygons with 4 interior lattice points, up to equivalence.
The leftmost three are nonhyperelliptic, and the other six are hyperelliptic.

How do we know there are not any other maximal polygons with 4 interior lattice
points? For the hyperelliptic case, [31] classifies all maximal hyperelliptic curves:
they are a family of trapezoids interpolating between a hyperelliptic rectangle and a

Fig. 16 The maximal polygons with 4 interior lattice points

13Here we say two lattice polygons are equivalent if one is the image of the other under a matrix
transformation

(
a b
c d

)
, where ad − bc = ±1.
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hyperelliptic triangle (this result is also presented in [10]). For the nonhyperelliptic
polygons, we have the following result.

Proposition 1 (Lemma 2.2.13 in [31]; Also Theorem 5 in [10]) Let P be a max-
imal nonhyperelliptic polygon, with Pint its interior polygon. Then P is obtained
from Pint by “pushing out” the edges of Pint . More formally, if Pint = ⋂s

i=s Hi ,
where Hi is the half-plane defined by the inequality aix + biy ≤ ci (with ai, bi, ci

relatively prime integers), then Pint = ⋂s
i=1 H ′

i , where H ′
i is the half-plane defined

by the inequality aix + biy ≤ ci + 1.

This means that in order to find all maximal nonhyperelliptic lattice polygons
with g interior lattice points, one can first all lattice polygons with g lattice points
total, and then determine which can be pushed out to form a lattice polygon.

Exercise 13 Using Proposition 1, verify that Fig. 16 does indeed contain all
maximal nonhyperelliptic polygons with 4 interior lattice points. Then find all
maximal nonhyperelliptic polygons with 5 interior lattice points.

Exercise 14 Determine which troplanar graphs of genus g come from hyperelliptic
Newton polygons. (Hint: if g = 3, there are three such graphs, namely the middle
three graphs from Fig. 17.)

Research Project 6 Study the properties of lattice polygons, stratified by the
number of interior lattice points g. (A great starting point for exploring these
topics are the papers [10] and [11].) For example: Given a maximal polygon
P , let n(P ) be the number of subpolygons of P with the same set of interior
lattice points. For which polygons is n(P ) equal to 1? What upper bounds can
we find on n(P ), in terms of g? How big is n(P ) on average? (This gives us
an idea of how much time we save by considering only maximal polygons
when studying troplanar graphs.)

Example 9 Let us find all troplanar graphs of genus 3 (This will mirror arguments
found in [2] and [7].) There are exactly five trivalent connected graphs of genus 3
[4], namely those appearing in Fig. 17. By Exercise 11, these are the only possible

Fig. 17 The five candidate graphs of genus 3
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Fig. 18 Four triangulations, giving us four tropical curves whose skeletons are the first four graphs
in Fig. 17

graphs that could be troplanar. We now must determine which of the five are actually
achievable.

Let us determine which Newton polygons are possible. As mentioned previously,
it suffices to take P maximal. We will focus on nonhyperelliptic polygons; the
hyperelliptic ones are covered by Exercise 14. It turns out that the only nonhyper-
elliptic polygon with 3 interior lattice points, up to equivalence, is T4, the triangle
of degree 4. This is because the only lattice polygon (again, up to equivalence) with
three lattice points is the triangle of degree 1, which pushes out to T4. Figure 18
shows triangulations of T4 that give tropical curves whose skeletons are the first
four graphs from Fig. 17, so we know that those four graphs are all troplanar.

Let us now argue that the fifth graph, sometimes called the lollipop graph of
genus 3, is not troplanar. Note that any bridge14 in troplanar graph must be dual
to a split in the subdivision of T4, which is an edge goes from one boundary point
to another, with some interior lattice points on each side and none in the edge’s
interior. So, any triangulation of the triangle of degree 4 that gives us the lollipop
graph would have three splits. All possible splits in the triangle are illustrated in
Fig. 19; however, no more than two of them can coexist in the same triangulation
due to intersections, meaning we cannot obtain the lollipop graph. We conclude that
there are four troplanar graphs of genus 3: the first four graphs in Fig. 17.

The fact that the lollipop graph did not appear also follows from a more general
result about structures that cannot appear in troplanar graphs. We say a connected,
trivalent graph is sprawling if removing a single vertex splits the graph into three
pieces. Several examples of sprawling graphs appear in Fig. 20.

14A bridge in a connected graph is an edge that, if removed from the graph, would disconnect the
graph.
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Fig. 19 Twelve splits, any
three of which have at least
one intersection point away
from the boundary

Fig. 20 Three sprawling graphs. Note that the vertex that disconnects the graph into three pieces
need not be unique

Fig. 21 Three graphs of
genus 5 that are not troplanar

Proposition 2 (Proposition 4.1 in [9]) A sprawling graph cannot be troplanar.

Although this result was originally proved in [9], the “sprawling” terminology
comes from [2], which offers an alternate proof.

Challenge Problem 6 Prove Proposition 2. (Hint: Consider the structure of the
dual triangulation of a smooth tropical curve with a sprawling skeleton.)

Challenge Problem 7 Show that the graphs in Fig. 21 are not troplanar.

Research Project 7 Find “forbidden structures” that never appear in tropla-
nar graphs. (Proposition 2 gives an example of such a forbidden structure.
Another is given in [42].)

Challenge Problem 8 There are 17 trivalent connected graphs of genus 4 [4].
Determine which of them are troplanar. Note that the only Newton polygons
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you need to consider are those illustrated in Fig. 16. (If you have already done
Exercise 14, you can ignore six of the polygons!)

In general, counting the number of tropically planar graphs of genus g can be
accomplished as follows:

1. Find all maximal lattice polygons P with g interior lattice points, perhaps
following [10].

2. Find all regular unimodular triangulations of each P from step 1, perhaps with
polymake or TOPCOM.

3. Find the dual skeletons to the triangulations from step 2, and sort them into
isomorphism classes.

This algorithm was implemented in [7] and was used to determine that the numbers
of troplanar graphs of genus 2, 3, 4, and 5 are 2, 4, 13, and 37, respectively. This was
pushed further as part of the Williams SMALL 2017 REU to genus 6 (151 troplanar
graphs) and genus 7 (672 troplanar graphs).

Research Project 8 Find a more efficient way to determine the number of
troplanar graphs of genus g than the algorithm outlined above.

Research Project 9 Study how the number of troplanar graphs of genus g

grows with g. Can you find upper and lower bounds? Can you determine
its asymptotic behavior? (Preliminary work in this direction was done in the
Williams College SMALL REU in 2017.)

So far we have considered skeletons from a purely combinatorial perspective.
Now we include the data of lengths on each edge of the graph, giving us a metric
graph. A natural impulse is to sum up all the Euclidean lengths of the edges of the
embedded tropical curve that make up a given edge of the skeleton and declare that
to be its length. Unfortunately this definition of length is not invariant under the
natural transformations that we apply to our Newton polygons. This leads us to use
the following definition.

Definition 5 Let P1, P2 ∈ R
2 be distinct points such that the line segment P1P2 has

rational slope (or is vertical). Write the vector from P1 to P2 as λ × 〈a, b〉, where
a, b ∈ Z with gcd(a, b) = 1 and λ ∈ R

+. The lattice length of the line segment
P1P2 is defined to be λ.
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Fig. 22 A tropical curve
with lattice lengths labelled,
and the resulting lengths on
the skeleton
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When considering a tropical plane curve, we measure the lengths of its finite
edges by lattice length. These lengths are then added up appropriately to assign
lengths to the edges of the skeleton.

Example 10 Consider the tropical plane curve illustrated on the top in Fig. 22.
Below it is the collection of all bounded edges in the curve, labelled with their
lattice lengths. As pictured, the skeleton is a graph consisting of two vertices joined
by an edge, with a loop attached to each vertex. The length of the middle edge
in the skeleton is 1; the lengths of the loops are 2 + 1 + 1 + 3 + 5 = 12 and
6 + 3 + 3 + 1 + 1 + 1 = 15. (Note that one bounded edge from the tropical curve
does not contribute to the skeleton.)

When we say that a metric graph is troplanar, we mean that it is the skeleton of
a smooth tropical plane curve giving those edge lengths. So the metric graph at the
bottom of Fig. 22 is troplanar.

Challenge Problem 9 Let P be a 2 × 3 lattice rectangle. Find all troplanar metric
graphs that are the skeleton of a smooth tropical curve with that Newton polygon.
(Hint: in some sense you can get most, but not all, graphs of genus 2.)
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Fig. 23 Two metric graphs
that are not troplanar

1

110

10

10

10
1 1

2

11

3
5

The algorithm presented in [2] did not simply find the combinatorial types of
troplanar graphs; it computed, up to closure, all metric graphs of genus at most 5
that appeared as the skeleton of a smooth tropical plane curve. In their Theorem 5.1,
they use this computation to characterize exactly which metric graphs of genus 3 are
troplanar. Beyond the lollipop graph not appearing (regardless of the edge lengths),
there are nontrivial edge length restrictions on the other four combinatorial types of
graphs. Rather than presenting their full result here, we give a consequence of it.

Theorem 6 (Corollary 5.2 in [7]) Approximately 29.5% of all metric graphs of
genus 3 are troplanar.

This probability is computed by considering the moduli space of graphs of genus 3
[6, 12]. This is a six-dimensional space, corresponding to the six edges a trivalent
graph of genus 3 has. This space is not compact, since edge lengths can be arbitrarily
long; so consider the subspace consisting of graphs with total length equal to 1;
up to scaling, every metric graph can be represented in this way. Give each of
the five combinatorial types of graphs (as illustrated in Fig. 17) an equal weight,
and compute the volume of the space of troplanar graphs within this 5-dimensional
space. This computation gives about 0.295 or 29.5%.

Challenge Problem 10 Show that neither of the metric graphs illustrated in Fig. 23
are troplanar. (This follows from the characterization given in [7, Theorem 5.1]; try
to give your own argument.)

Research Project 10 Determine which metric graphs arise as the skeleton
of a smooth tropical plane curve, perhaps under certain restrictions. For
instance:

• Characterize exactly which metric graphs arise from hyperelliptic poly-
gons, as explored in [42].

• Characterize which metric graphs arise from honeycomb polygons, a key
tool in [7].

(continued)
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Fig. 24 A nodal tropical
curve and its skeleton

• Characterize which metric graphs are troplanar with as many degrees of
freedom as possible on their edge lengths. In [7], this maximum number of
degrees of freedom was shown to be 2g + 1, at least for g ≥ 8.

All of our questions have been posed for smooth tropical plane curves. Of course,
we can also consider tropical curves with singularities. We say a tropical curve is
nodal if, in the dual subdivision, all polygons besides the triangles of area 1/2 are
quadrilaterals of area 1. A vertex in a nodal tropical curve dual to such a quadrilateral
is called a node.

Example 11 Figure 24 presents an example of a nodal tropical curve with its dual
Newton subdivision. We can still consider a skeleton of the curve by interpreting
each nodal crossing in the tropical curve as two edges in the graph that happen to
look like they are crossing. The resulting skeleton is pictured on the right.

It was shown in [9] that every connected trivalent graph can be realized in a nodal
tropical plane curve. Given a connected trivalent graph G, let N(G) be the tropical
crossing number of G, which is the smallest number of nodes required to achieve G

as the skeleton of a nodal tropical curve. For instance, N(G) = 0 if and only if G is
troplanar.

Research Project 11 Study the tropical crossing number. Can you determine
its value explicitly for certain families of graphs? (Note that if this question is
being posed for metric graphs, N(G) does depend on the edge lengths.)

3 Tropical Geometry in Three Dimensions

Moving beyond the plane into three-dimensional space, we consider tropical
polynomials in three variables x, y, and z. Such a polynomial can be written as
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Fig. 25 The tropical plane
defined by x ⊕ y ⊕ z ⊕ 0

(0, 0, 0)

p(x, y, z) =
⊕

(i,j,k)∈S

cijk � xi � yj � zk, (13)

where S is the set of all exponent vectors that appear in p(x, y, z). This polynomial
defines a tropical surface, the set of all points in R

3 where the maximum defined
by the polynomial is achieved at least twice. Again, we denote this tropical surface
T (p).

Example 12 Let p(x, y, z) = x⊕y⊕z⊕0. The tropical surface T (p) is illustrated
in Fig. 25. It consists of the origin (0, 0, 0); four rays, pointing in the directions
〈−1, 0, 0〉, 〈0,−1, 0〉, 〈0, 0,−1〉, and 〈1, 1, 1〉; and six two-dimensional pieces,
each obtained as the positive linear span of two of the rays. Such two-dimensional
pieces of a tropical surface are called two-dimensional cells. Because of the form of
p(x, y, z), we call T (p) a tropical plane.

3.1 Tropical Surfaces and the Duality Theorem

The Duality Theorem still holds for tropical polynomials in three variables and
the surfaces they define.15 This time, instead of a Newton polygon we consider
a Newton polytope, the convex hull of all exponent vectors appearing in the
polynomial. (We will assume that the Newton polytope is three-dimensional to avoid
certain degenerate cases.) To find an induced subdivision, we again associate heights
to each lattice point of the Newton polytope; this time, however, we must compute
our upper convex hull in four-dimensional space. We then have the following
correspondence between parts of the tropical surface S = T (p) and the subdivision
of Newt(p):

15Indeed, a Duality Theorem holds for all tropical varieties defined by a single equation in any
number of variables; see [39, Proposition 3.1.6].
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• Vertices in S correspond to 3-dimensional polytopes in the subdivision.
• Rays in S correspond to boundary two-dimensional faces.
• Edges in S correspond to interior two-dimensional faces.
• Unbounded two-dimensional cells in S correspond to boundary edges.
• Bounded two-dimensional cells in S correspond to interior edges.

As was the case for tropical plane curves, the relationships and geometry of all
these pieces of the tropical surface are dictated by the subdivision. For instance, two
vertices are joined by an edge if and only if the corresponding polytopes share a
face; and that edge is perpendicular to the shared face.

We say that a subdivision of a polytope is a unimodular tetrahedralization if
all polytopes in the subdivision are tetrahedra of volume 1

6 , which is the smallest
possible volume. We say that a tropical surface T (p) is smooth if the induced
subdivision of Newt(p) is a unimodular tetrahedralization. If Newt(p) is the
tetrahedron with vertices at (0, 0, 0), (d, 0, 0), (0, d, 0), and (0, 0, d), we say that
p(x, y, z) has degree d.

Example 13 Let

f (x, y, z) = (xy � z) ⊕ (−42 � xy) ⊕ x ⊕ y ⊕ z ⊕ (−42), (14)

and let P = Newt(f ). The polytope P looks like a cube with two tetrahedra sliced
off, as illustrated to the left in Fig. 26. Every term has coefficient 0, except for the
(0, 0, 0) and (1, 1, 0) terms, which have a very negative coefficient. This means
that in the subdivision, we will end up with two smaller tetrahedra with vertices
at (1, 0, 0), (0, 1, 0), (1, 1, 0), and (1, 1, 1); and at (0, 0, 0), (0, 0, 1), (1, 0, 0),
and (0, 1, 0); as well as a larger tetrahedron at (0, 0, 1), (1, 0, 0), (0, 1, 0), and
(1, 1, 1).16 This is illustrated in Fig. 26.

The tropical surface T (f ) has three vertices, corresponding to the three
tetrahedra. We can find their coordinates by computing the four-way ties.

• From −42 = x = y = z, we have a vertex at (−42,−42,−42).
• From x = y = z = x + y + z, we have a vertex at (0, 0, 0).
• From x = y = −42 + x + y = x + y + z, we have a vertex at (42, 42,−42).

The vertex at (0, 0, 0) connects to the other two vertices by a line segment.
The vertex (−42,−42,−42) will have three rays, pointing in the directions
〈−1, 0, 0〉,〈0,−1, 0〉, and 〈0, 0,−1〉. The vertex (0, 0, 0) will have two rays, point-

16To prove this rigorously, we would need to show that the hyperplane in R
4 containing the points

(1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0), and (1, 1, 1,−42) lies strictly above the points (0, 0, 1, 0) and
(0, 0, 0,−42); as well as two other similar such statements, one for each of the other tetrahedra.
(In fact, the hyperplane we get from the middle tetrahedron in (x, y, z, w)-space is just defined by
w = 0, and certainly the other two lifted points (0, 0, 0,−42) and (1, 1, 0,−42) lie below this
hyperplane.)
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Fig. 26 The subdivided
Newton polytope from
Example 13

(0, 0, 0) (1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(1, 1, 1)

(1, 1, 0)

Fig. 27 The
one-dimensional pieces of the
surface from Example 13

(0, 0, 0)

(42, 42, 42)

( 42, 42, 42)

ing in the directions 〈1,−1, 1, 〉 and 〈−1, 1, 1, 〉. Finally, the vertex (42, 42,−42)

will have three rays, pointing in the directions 〈1, 0, 0〉,〈0, 1, 0〉, and 〈0, 0, 1〉. Ignor-
ing the two-dimensional pieces, our tropical surface looks as pictured in Fig. 27.

We fill in two-dimensional pieces between adjacent rays and edges. This will
give a total of 12 unbounded two-dimensional pieces, corresponding to the 12 edges
in our tetrahedralization. All are unbounded, since all edges in the tetrahedralization
are exterior.

Note that this tropical surface is not smooth. Even though our induced subdivi-
sion is a tetrahedralization, it is not unimodular since the tetrahedra do not all have
volume 1

6 : the tetrahedron in the middle has volume 1/3.

Challenge Problem 11 Show that the tropical polynomial of degree 2 defined by

f = (−3 � x2) ⊕ (−4 � xy) ⊕ xz ⊕ (−7 � y2) ⊕ (−2 � yz)

⊕(−1 � z2) ⊕ x ⊕ y ⊕ (−2 � z) ⊕ (−7)
(15)

is a smooth tropical surface. Determine how many vertices, edges, rays, bounded
two-dimensional cells, and unbounded two-dimensional cells there are. Do the same
for the tropical polynomial of degree 3 defined by
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g = (−23 � x3) ⊕ (−15 � x2y) ⊕ (−7 � x2z) ⊕ (−15 � xy2) ⊕ xyz ⊕ (−3 � xz2)

⊕(−25 � y3) ⊕ (−6 � y2z) ⊕ (−10 � yz2) ⊕ (−20 � z3) ⊕ (−2 � x2)

⊕(−6 � xy) ⊕ (−1 � xz) ⊕ (−14 � y2) ⊕ yz ⊕ (−9 � z2) ⊕ (−11 � x)

⊕(−4 � y) ⊕ (−9 � z) ⊕ (−21).

(16)
You will almost certainly want to use a computer to help with this! After you try this
Challenge Problem, you should check your counts against the following theorem.

Theorem 7 (Theorem 4.5.2 in [39]) A smooth tropical surface of degree d has

• d3 vertices,
• 2d2(d − 1) edges,
• 4d2 rays,
• d(d − 1)(7d − 11)/6 bounded two-dimensional cells,
• 6d2 unbounded two-dimensional cells.

Its Euler characteristic17 is (d−1)(d−2)(d−3)
6 + 1.

Research Project 12 Study the geometry of smooth tropical surfaces. For
instance:

• A smooth surface of degree 3 has 10 bounded two-dimensional cells, each
of which is a polygon, say with ni sides for the ith polygon. What are the
possible values for n1, . . . , n10? How can these 10 polygons be arranged
relative to each other?

• A smooth surface of degree 4 has Euler characteristic 1, and so contains
one polytope bounding a three-dimensional region. Can we characterize
which polytopes are possible? (How many faces, how many edges, etc.)

• Moving on to smooth surfaces of degree greater than 4, which have Euler
characteristic greater than 1, there are multiple polytopes that are part of
the surface. How can these polytopes be arranged? (This is the surface
analog of asking what the skeleton of a smooth tropical plane curve can
be.)

3.2 Tropical Curves inR
3

In usual geometry, if we intersect a pair of two-dimensional surfaces in R
3, we

expect to get a one-dimensional curve. This also holds in tropical geometry, if we
are willing to assume stable intersections to avoid the overlap of two-dimensional

17Intuitively, this is the number of bounded regions of R3 encapsulated by part of the surface.
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pieces. There is still a Duality Theorem for tropical curves in R
3 that arise as the

intersection of two tropical surfaces, although it requires a bit more machinery.
Given two lattice polytopes P,Q ⊂ R

n, place P and Q in (n + 1)-dimensional
space by giving every point in P an extra coordinate of 0 and every coordinate of
Q an extra coordinate of 1. The Cayley polytope of P and Q, written Cay(P,Q), is
the convex hull in R

n+1 of this arrangement.

Example 14 If P = Q = conv({(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}), then
Cay(P,Q) is the convex hull of the eight points (0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 0, 1), (0, 1, 0, 1), and (0, 0, 1, 1) in R

4.

Suppose p(x, y, z) and q(x, y, z) are tropical polynomials in three variables,
defining tropical surfaces S1 and S2, with intersection curve C = S1 ∩st S2. Let
P = Newt(p) and Q = Newt(q). As we did with Newton polygons and Newton
polytopes of single polynomials, we can find an induced subdivision of Cay(P,Q).
Each lattice point of Cay(P,Q) is either a lattice point of P with an extra coordinate
of 0 or a lattice point of Q with an extra coordinate of 1, so we assign to each such
lattice point a “height” based on the corresponding coefficient from the relevant
polynomial. We can then compute the induced subdivision of Cay(P,Q) by looking
at the upper convex hull in R

5 of these lifted points. This subdivision then splits
Cay(P,Q) into 4-dimensional polytopes. Some of these polytopes have one vertex
from P and all others from Q, or vice versa; the other polytopes, with at least two
vertices coming from each of P and Q, are called the mixed cells of the subdivision.
The Duality Theorem for complete intersection curves, stated fully in [39, §4.6],
then says that the vertices of C correspond to the mixed cells of this subdivision.

If all cells in the Cayley subdivision have the minimum possible volume (which
turns out to be 1/24), we call the tropical curve smooth. In this case it turns out
that P ∩st Q = P ∩ Q. We can still talk about the skeletons of tropical curves in
R

3, retracting rays and leaves to obtain the desired graph. Again we still refer to the
genus of the graph, although since it might not be a planar graph we need to define
genus as E − V + 1.

Theorem 8 (Theorem 4.6.20 in [39]) Let f (x, y, z) and g(x, y, z) be tropical
polynomials with degrees d and e, respectively, such that C = T (f ) ∩ T (g) is
a smooth tropical curve. Then C has

• d2e + de2 vertices,
• (3/2)d2e + (3/2)de2 − 2de edges,
• 4de rays, and
• genus equal to (1/2)d2e + (1/2)de2 − 2de + 1.

Example 15 Let p(x, y, z) = (−1 � x) ⊕ (−1 � y) ⊕ z ⊕ 1 and q(x, y, z) =
(−2 � x) ⊕ (1 � y) ⊕ (1 � z) ⊕ (−1). Then Newt(p) and Newt(q) are P and Q
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from Example 14. Using the Macaulay2 package Polyhedra,18 we compute
the subdivision of Cay(P,Q). It consists of four cells:

Δ1 = conv({(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 1, 0, 1)}) (17)

Δ2 = conv({(0, 0, 0, 0), (1, 0, 0, 0), (0, 0, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)}) (18)

Δ3 = conv({(0, 0, 0, 0), (1, 0, 0, 0), (1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1)}) (19)

Δ4 = conv({(0, 0, 0, 0), (0, 0, 0, 1), (1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1)))})
(20)

Each cell has volume 1/24, so the tropical intersection curve is smooth; as the
intersection of two tropical planes, we call it a tropical line in R

3. Of the four cells,
only Δ2 and Δ3 are mixed cells. This means the line P ∩ Q has two vertices. The
vertex (a, b, c) coming from Δ2 arises from a three-way tie between the (0, 0, 0),
(1, 0, 0), (0, 0, 1) terms of p and a two-way tie between the (0, 1, 0) and (0, 0, 1)

terms of q. Written in conventional notation, we have 1 = −1 + a = c, so a = 2
and c = 1. We also have 1 + b = 1 + c, so b = c = 1. Thus there is a vertex at
(a, b, c) = (2, 1, 1). In the next exercise, you will find the other vertex, as well as
the rest of the line.

Exercise 15 Draw the tropical line from the previous example. Be sure to check
your answer against Theorem 8 with d = e = 1.

Challenge Problem 12 Show that the tropical surfaces from Challenge Problem 11
intersect in a smooth tropical curve. Show that the skeleton of the curve is the
complete bipartite graph K3,3.

Research Project 13 Which graphs of genus 4 arise in smooth tropical
curves that are the intersection of a tropical surface of degree 2 and a tropical
surface of degree 3? For instance, are any of these graphs sprawling?

More generally: which graphs of genus (1/2)d2e + (1/2)de2 − 2de + 1
arise as the skeleton of a smooth tropical curve that is the intersection of a
surface of degree d with a surface of degree e?

(You can approach these questions considering the graphs either combina-
torially, or as metric graphs.)

18The Polyhedra package defaults to the min convention rather than the max. This means we have
to negate all the coefficients before we find the decomposition.
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Research Project 14 Let Q1 and Q2 be two smooth tropical surfaces of
degree 2. Study the possibilities of the intersection Q1 ∩st Q2, possibly
through a similar lens as [21]. (If the intersection is a smooth curve, then
it has genus 1 by Theorem 8, and we understand its combinatorial properties
very well. What other intersections are possible?)

One noteworthy difference between classical geometry and tropical geometry
is that in tropical geometry, not all planes look the same. In the previous section,
we studied tropical curves as a subset of the usual plane R

2. But this plane is
combinatorially different from, say, the tropical plane from Example 12. A natural
question is then whether or not there are “tropical plane curves” besides those we
studied in Sect. 2; that is, whether certain tropical skeletons appear on tropical planes
in R

3 that did not arise from tropical curves in R
2. (We could ask the same for 2-

dimensional tropical planes in R
4, or R5, or in general Rn.)

Recent work shows that the answer is yes! Recall that only 29.1% of all graphs
of genus 3 appear in tropical curves in R

2. It is shown in [26] that every metric graph
of genus 3, besides a family of measure zero, appears as a tropical curve in a tropical
plane in R

3, R4, or R5. For example, they show that the lollipop graph appears as a
tropical curve on a tropical plane in R

5. It is not known if their result is sharp; for
instance, it is an open question if there are any graphs of genus 3 that do not appear
on a tropical plane in R

3.

Research Project 15 Can the lollipop graph be realized on a tropical plane
in R

3 or R4? More generally, which graphs can be realized on a tropical plane
in R

n, for different values of n?

4 Tropicalization

In this section we present the connections between algebraic geometry, which
studies solutions to usual polynomial equations, and tropical geometry, which
studies solutions to tropical polynomial equations. See [39] for a more complete
treatment of this connection, and [17] for an undergraduate introduction to algebraic
geometry.

Let k be a field, and let k[x1, . . . , xn] be the polynomial ring in n variables over k.
For an ideal I ⊂ k[x1, . . . , xn], the affine variety defined by I is

V(I ) = { (a1, . . . , an) | f (a1, . . . , an) = 0 for all f ∈ I } ⊂ kn. (21)
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Given f1, . . . , fs ∈ k[x1, . . . , xn], we can also define

V(f1, . . . , fs) = { (a1, . . . , an) | fi(a1, . . . , an) = 0 for all i } ⊂ kn. (22)

If I = 〈f1, · · · , fs〉, then V(I ) = V(f1, . . . , fs). By Hilbert’s Basis Theorem
[28]19 every ideal in k[x1, . . . xn] has a finite set of generators, so these two
characterizations of affine varieties are equivalent.

Sometimes it is useful to work within the ambient space of the algebraic torus
(k∗)n, where k∗ = k \ {0}. To do this we can let our ideal I be a subset of
k[x±1

1 , . . . , x±1
n ], so that V(I ) ⊂ (k∗)n.

4.1 Fields with Valuation

We will work with fields with an additional structure called a valuation. A valuation
on a field k is a function val : k → (R ∪ {∞}) such that

• val(a) = ∞ if and only if a = 0.
• val(ab) = val(a) + val(b).
• val(a + b) ≥ min{val(a), val(b)} with equality if val(a) 	= val(b).

Every field has an example of a valuation called the trivial valuation, defined by
val(0) = ∞ and val(a) = 0 for all a 	= 0. Let us find some nontrivial valuations.

Exercise 16 Let Q be the field of rational numbers, and let p be a prime number.
Define the p-adic valuation on Q by

valp
(
pk a

b

)
= k, (23)

where a and b are integers that are not divisible by p. Show that this is a valuation
on Q.

Research Project 16 Study the sequences obtained by applying p-adic val-
uations to sequences of integers. For instance, applying the 2-adic valuation
to the sequence of Fibonacci numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . (24)

(continued)

19For a presentation in English, see [17, §2.5].
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gives the sequence

0, 0, 1, 0, 0, 3, 0, 0, 1, 0, . . . (25)

We can think of this as tropicalizing sequences of integers. See [1, 36, 40] for
work done in this direction.

Exercise 17 Let K be a field and let K((t)) be the field of Laurent series over K ,
the nonzero elements of which are power series in t with integer exponents that are
bounded below:

amtm + am+1t
m+1 + am+2t

m+2 + · · · , (26)

where m ∈ Z, ai ∈ K for all i, and am 	= 0. We define a valuation on K((t)) by
reading off the exponent of the smallest nonzero term:

val
(
amtm + am+1t

m+1 + am+2t
m+2 + · · ·

)
= m. (27)

Show that this is indeed a valuation on K((t)).

Challenge Problem 13 It turns out that the field K((t)) is not algebraically closed,
even if K is. For an example of an algebraically closed field with a nontrivial
valuation, we turn to the field of Puiseux series over K , written K{{t}}. A nonzero
element of this field is of the form

amtm/n + am+1t
(m+1)/n + am+2t

(m+2)/n + · · · , (28)

where m ∈ Z, n ∈ Z
+, ai ∈ k for all i, and ak 	= 0. Note that the value of n can

vary between different elements of K{{t}}, so we could equivalently define a single
Puiseux series as a power series in t with rational exponents, where there is a lower
bound on the denominator of the exponents. Again, we can define a valuation by
reading off the lowest exponent:

val
(
amtm/n + am+1t

(m+1)/n + am+2t
(m+2)/n + · · ·

)
= m/n. (29)

Show that if K is algebraically closed and char(K) = 0, then K{{t}} is algebraically
closed.

Valuations have a similar flavor to tropical arithmetic, at least if we use the min
convention instead of the max convention: they introduce an infinity element ∞,
they turn multiplication into addition, and they turn addition into a minimum (except
possibly when the valuations tie). They also justify the notation of “vanishing” as
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being connected to a minimum or maximum being achieved at least twice, as you
will show in the following exercise.

Exercise 18 Let val be a valuation on a field k, and let a1, . . . , an ∈ k with
n ≥ 2. Show that if a1 + a2 + · · · + an = 0, then the minimum value among
val(a1), . . . , val(an) occurs at least twice.

4.2 TwoWays to Tropicalize

To stay consistent with the rest of this chapter, we will continue working in the
max convention.20 We now explore two ways of taking a variety V(I ) ⊂ (k∗)n and
moving it into R

n. One way is to take coordinate-wise valuation of points in V(I )

and append a minus sign onto each coordinate. That is, we consider the set image
of V(I ) under the map

− val : (k∗)n → R
n, (30)

− val(a1, · · · , an) := (−val(a1), · · · ,−val(a1)). (31)

The other way is to consider polynomials f ∈ I , and to turn them into tropical
polynomials. Given f ∈ I with f = ∑

α cαx
α1
1 · · · xαn

n , consider the tropical
polynomial

trop(f ) :=
⊕

α

(−val(cα)) � x
α1
1 � · · · � xαn

n . (32)

Since V(I ) = ⋂
f ∈I V(f ), we consider

⋂
f ∈I T (trop(f )) as a tropical version of

V(I ). We call this intersection the tropicalization of V(I ).

Exercise 19 Let k = C{{t}}, and define f ∈ k[x, y] by

f (x, y) =
(√−1

π
t3 − 3t10/3 + · · ·

)
x2 + 1000xy

+(1 − t1/2 + t5/8 + · · · )x + y + (
√

5t − t100).
(33)

Find the tropicalization of V(f ).

Example 16 Let k = C{{t}} where C is the field of complex numbers, and consider
the set V(I ) ⊂ (k∗)2 where I is generated by the single polynomial x + ty +
2 ∈ k[x, y]. A point (a, b) ∈ V(I ) is sent to (−val(a),−val(b)) by the map −val.
Note that if (a, b) ∈ V(I ), then a = −tb − 2. This means that either val(a) =

20Because we are working in the max convention, there are many instances when we have to
consider −1 times a valuation. In the min convention, we can just consider valuations.



Tropical Geometry 101

min{val(−tb),−2} = min{val(b) + 1, 0}, or val(a) ≥ min{val(b) + 1, 0} with
val(b) + 1 = 0. Equivalently, either −val(a) = max{−val(b) − 1, 0} or −val(a) ≥
max{−val(b)−1, 0} with −val(b)−1 = 0. So, all points (A,B) in −val(V(I )) fall
into one of three classes:

• A = B − 1 ≤ 0
• A = 0 ≤ B − 1
• B − 1 = 0 ≤ A

So, the minimum between A, B −1, and 0 is achieved at least twice. In other words,
−val(V(I )) ⊂ T (x ⊕ (−1 � y) ⊕ 0). We do not have equality, since all points
in −val(V(I )) have rational coordinates; we leave it as an exercise to show that
−val(V(I )) = T (x ⊕ (−1 � y) ⊕ 0) ∩ Q

2

Note that trop(x+ ty+2) = x⊕(−1�y)⊕0. All polynomials in I are multiples
of x + ty + 2, which means that

⋂
f ∈I T (trop(f )) = T (x ⊕ (−1 � y) ⊕ 0). So,

the tropicalization of V(I ) is the tropical line defined by x ⊕ (−1 � y) ⊕ 0.

These two constructions gave us similar, but not identical, subsets of R2: we had
containment of −val(V(I )) in the tropicalization of V(I ), though these sets were
not equal.

Exercise 20 Show that we always have −val(V(I )) ⊂ ⋂
f ∈I T (trop(f )).

It turns out that, as long as we are working over an algebraically closed field,
these two sets are equal up to taking a closure in the usual Euclidean topology
of Rn.

Theorem 9 (The Fundamental Theorem of Tropical Geometry) Let k be an
algebraically closed field with a nontrivial valuation val, and let I be an ideal of
k[x±

1 , · · · , x±1
n ]. Then

−val(V(I )) =
⋂

f ∈I

T (trop(f )). (34)

This fact is a key result of tropical geometry, originally proved by Kapranov in
an unpublished manuscript when I is generated by a single polynomial. A proof of
the more general result appears in [39, Theorem 3.2.3].

Given X = V(I ) ⊂ (k∗)n, let Trop(X) denote the set −val(V(I )). Understand-
ing the relationship between X and Trop(X) is one of the core themes in tropical
geometry.
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4.3 Tropical Intersections

Let X and Y be varieties in (k∗)n. Let us consider how Trop(X ∩ Y ) and Trop(X) ∩
Trop(Y ) relate to one another.

Exercise 21 Show that we always have Trop(X ∩ Y ) ⊂ Trop(X) ∩ Trop(Y ). (This
is mostly an exercise in set theory.)

The question then becomes whether we have an equality of these sets. If we do,
then every tropical intersection point in Trop(X)∩Trop(Y ) “lifts” to an intersection
point in X∩Y . One core result from [44] is that if Trop(X) and Trop(Y ) intersect in
components of the expected dimensions, then indeed the points do lift; if n = 2 and
Trop(X) and Trop(Y ) are tropical plane curves, this means they intersect in isolated
points. Not only that, these points lift with the expected multiplicity! If Trop(X) and
Trop(Y ) intersect in higher dimensional components, the story is more complicated.

Example 17 Let k = C{{t}}, and let f, g ∈ k[x, y] be defined by f (x, y) = ax +
by + c and g(x, y) = dx + ey + f , where val(a) = val(b) = val(c) = val(d) =
val(e) = val(a) = 0. Let X = V(f ) and Y = V(g) be the two lines defined by
these equations. Then Trop(X) = Trop(Y ) = T (x ⊕ y ⊕ 0), the tropical line in
Fig. 3. This means Trop(X) ∩ Trop(Y ) = T (x ⊕ y ⊕ 0). Unless X and Y are the
same line, at most one of these infinitely many tropical intersection points can lift
to an intersection point of X and Y . Let us determine which point might lift.

Assume that X∩Y consists of one point. We can solve the equations ax+by+c =
dx + ey + f = 0 to find the intersection point as

(
ce−bf
bd−ae

,
af −cd
bd−ae

)
. So we know that

Trop(X∩Y )=Trop({
(

ce − bf

bd − ae
,
af − cd

bd − ae

)
})={(−val(

ce − bf

bd − ae
),−val(

af − cd

bd − ae
)}.

(35)
If there is no cancellation in ce−bf, bd−ae, af −cd, and bd−ae, then Trop(X∩Y )

is {(0, 0)}, which is the stable tropical intersection Trop(X) ∩st Trop(Y ). However,
there are cases that give different values for Trop(X∩Y ). Let r be a positive rational
number, and note that:

• If f = x + 2y + (1 + t r ) and g = x + y + 1, then the intersection point X ∩ Y

is (−1 + t r ,−t r ), which is sent to (0,−r).
• If f = 2x + y + (1 + t r ) and g = x + y + 1, then the intersection point X ∩ Y

is (−t r ,−1 + t r , ), which is sent to (−r, 0).
• If f = (2 + t r )x + 2y + 1 and g = x + y + 1, then the intersection point X ∩ Y

is
(

1
t r

, 1+t r

t r

)
= (

t−r , t−r (1 + t r )
)
, which is sent to (r, r).

This means if all we know about X and Y is that Trop(X)∩Trop(Y ) = T (x⊕y⊕0),
then any point in T (x ⊕ y ⊕ 0) ∩ Q

2 could be the image of the intersection point
of X and Y .
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Challenge Problem 14 Let a, b, c, d, e, f ∈ k = C{{t}}, where val(a) = val(b) =
val(c) = val(d) = val(e) = 0 and val(f ) = 1. Consider the two polynomials
f, g ∈ k[x, y] defined by

f (x, y) = ax + by + c, (36)

g(x, y) = dxy + ex + fy. (37)

Let X = V(f ), and Y = V(g). What are the possible configurations of Trop(X∩Y )

inside Trop(X) ∩ Trop(Y )?

Research Project 17 Study the possibilities for Trop(X ∩ Y ) inside
Trop(X)∩Trop(Y ), for plane curves or in higher dimensions. Some resources
to check are [35, 43–45].
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