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Research experience has become an increasingly important aspect of undergraduate
programs in mathematics. Students fortunate enough to take part in such research,
either through their home institution or via an external program, are exposed to the
heart of the discipline. These students learn valuable skills and habits of mind that
reach beyond what is typically addressed by the undergraduate curriculum, and are
often more attractive to graduate programs and future employers than peers without
research experience.

Despite their growing value in the community, research experiences for under-
graduate students in mathematics are still the exception rather than the rule. The time
commitment required to run or partake in a successful program can be prohibitive,
and support for students and mentors is limited. For the faculty member, establishing
such a program often requires taking a sophisticated topic outside the scope of the
typical undergraduate curriculum and translating it in order to make it accessible
to undergraduates with limited backgrounds. It also requires identifying problems
or projects that are amenable to undergraduate exploration yet still relevant and
interesting to the wider mathematical community. For the undergraduate, pursuing
research can often mean reviewing extensive articles and technical texts while
meeting regularly with a faculty member. This is no easy feat for the modern
undergraduate with a heavy class load, or one who counts on a summer job to help
offset academic costs.

The primary goal of the Foundations for Undergraduate Research in Mathe-
matics series is to provide faculty and undergraduates with the tools they need to
pursue collaborative or independent undergraduate research without the burden it
often requires. In order to attain this goal, each volume in the series is a collection
of chapters by researchers who have worked extensively with undergraduates to a
great degree of success. Each chapter will typically include the following:

e A list of classes from the standard undergraduate curriculum that serve as
prerequisites for a full understanding of the chapter

¢ An expository treatment of a topic in mathematics, written so a student with the
stated prerequisites can understand it with limited guidance

* Exercises and Challenge Problems to help students grasp the technical concepts
introduced
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e A list of specific open problems that could serve as projects for interested
undergraduates

* An extensive bibliography and carefully chosen citations intended to provide
undergraduates and faculty mentors with a keen interest in the topic with
appropriate further reading

On reading a chapter and doing the recommended exercises, the intention is that
a student is now ready to pursue research, either collaboratively or independently,
in that area. Moreover, that student has a number of open research problems at hand
on which they can immediately get to work.

Undergraduate research programs are prevalent in the sciences, technology and
engineering and their tremendous benefits are well-documented. Though far less
common, the benefits of undergraduate research in mathematics are equally valuable
as their scientific counterparts, and increased participation is strongly supported by
all the major professional societies in mathematics. As the pioneering series of its
type, Foundations for Undergraduate Research in Mathematics will take the lead
in making undergraduate research in mathematics significantly more accessible to
students from all types of backgrounds and with a wide range of interests and
abilities.



The Foundations for Undergraduate Research in Mathematics series was created
to support and promote the pursuit of undergraduate research in the mathematical
sciences. To achieve this goal, the typical chapter in each volume is written with two
primary objectives. First, to introduce an area of mathematics, often outside of the
standard undergraduate mathematics curriculum, written at a level understandable
to an undergraduate. Second, to provide a number of specific research problems or
projects that are accessible to undergraduates. The goal of each chapter being that
on reading that chapter a student is now ready and able to pursue research.

The current volume of the Foundations for Undergraduate Research in Math-
ematics series extends the focus of many of its chapters to a third objective:
to promote development of sustainable research programs. While the chapters in
the Foundations for Undergraduate Research in Mathematics series can initiate
individual research projects, it is the development of sustainable, self-perpetuating
programs that will allow undergraduate research in mathematics to thrive. Accord-
ingly, authors in the current volume have been invited to contribute chapters given
their significant achievement in developing successful research programs, which
heavily include undergraduate students. While a majority of the chapters follow
the traditional Foundations for Undergraduate Research in Mathematics series
structure of introducing a topic in mathematics and providing explicit research
projects, in many of the chapters, authors provide tips and tricks for how to turn
initial projects into a long-term research program. For example, in the chapter
“Lateral Movement in Undergraduate Research,” S. Garcia provides over 20
guiding principles on sustaining undergraduate research. Likewise, in the chapter
“Researching in Undergraduate Mathematics Education: Possible Directions for
Both Undergraduate Students and Faculty,” M. Savic provides a detailed account
of how to direct undergraduates to do research in Undergraduate Mathematics
Education, the first such account appearing in a Foundations for Undergraduate
Research in Mathematics series volume.

Though the theme of this volume is building a sustainable program, the specific
chapters span a broad spectrum of disciplines in mathematics. To provide readers
with a cohesive volume, we have grouped chapters together based on the subdisci-
plines of the mathematics presented. The first nine chapters lie in the general area of
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pure mathematics with Chaps. 1-5 falling into the area of Combinatorics, Chaps. 6
and 7 Number Theory, Chap. 8 Graph Theory, and Chap.9 Analysis. Chapter 10
falls into the area of Mathematics Education, and Chap. 11 Applied Mathematics,
or more specifically, Mathematical Biology.

Chapter 1, “Folding Words Around Trees: Models Inspired by RNA,” lies at the
intersection of mathematics and biology, an area where mathematical models are
built to address biological questions and new mathematical theories are inspired by
biological structures. In this chapter, Drellich and Smith explore a combinatorial
model for folding words around plane trees, which is inspired by the bonds that
form between nucleotides in a single-stranded RNA molecule.

In Chap. 2, “Phylogenetic Networks,” Gross, Long, and Rusinko introduce the
mathematics of phylogenetic networks, which are a class of graphs sufficient for
modeling a large range of evolutionary events. Phylogenetic trees have traditionally
been used to describe and model the evolution of species, but trees are not sufficient
to model more complex evolutionary events such as hybridization. The authors
explore both the combinatorics of these graphs and an algebraic statistical model
of evolution whose structure depends on the networks in this chapter.

Chapter 3, “Tropical Geometry,” introduces tropical mathematics and more
specifically tropical curves and surfaces. In tropical mathematics, the rules of
arithmetic are redesigned so that “plus” means “take a maximum” and “times”
means “plus.” Tropical geometry asks the following question: what geometric
shapes are defined by equations that use these new rules of arithmetic? These shapes,
called tropical curves and tropical surfaces, are piecewise-linear objects, which are
related to triangulations of polygons and polyhedra through a beautiful duality. Not
only do these combinatorial objects mirror the behavior of the traditional curves
and surfaces we are used to: they can be used to study solutions to good old-
fashioned polynomial equations, through a process called tropicalization. In this
chapter, Morrison investigates the structure and properties of tropical curves and
tropical surfaces in their own right, as well as their connections to objects from
algebraic geometry.

In Chap. 4, “Chip Firing Games and Critical Groups,” Glass and Kaplan describe
some of the main properties of critical groups and outline open problems that can
be approached by students with a variety of backgrounds. For any finite connected
graph, one can associate a finite abelian group known as the critical group. This
group can be defined either in terms of a matrix associated with the graph known as
the Laplacian or in terms of an elementary combinatorial operation known as chip-
firing. Critical groups have been studied from a number of different perspectives,
using techniques from linear algebra, combinatorics, number theory, group theory,
and other areas of mathematics.

In Chap. 5, “Counting Tilings by Taking Walks in a Graph,” Butler, Ekstrand, and
Osborne consider the problem of tiling regions. Given a collection of shapes (tiles)
and a given region, a classical question to ask is whether it is possible to cover that
region with those tiles. More generally, we can ask in how many different ways a
region can be covered with these tiles. As the size of the region starts to grow and
the tiles become more complex, this task soon becomes daunting as the number of
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configurations starts to grow dramatically (usually exponentially). However, in this
chapter the authors show that if we do not focus on the tiles but focus on the way
that the tiles cross between consecutive layers (the zen approach to tiling), then the
problem reduces to one which can be counted with basic tools of linear algebra
(mixed with a bit of patience and a dash of computer programming). This opens
up large sets of problems as the tiles and regions can be chosen to be much more
interesting, the only limitation being imagination.

In Chap. 6, “Beyond Coins, Stamps, and Chicken McNuggets: An Invitation to
Numerical Semigroups,” Chapman, Garcia, and O’Neill provide several interesting
projects for undergraduates whose roots lie in the intersection of number theory and
factorization, linear algebra, and discrete mathematics. They start in the introductory
sections by working through various concepts and examples, beginning with the
historically intriguing Frobenius Coin Exchange Problem and advancing through
related concepts used to study numerical semigroups. With additional insight on
computational tools used in this field, the interested reader will be able to hit the
ground computing examples, creating conjectures, and contributing to this very
active field of research.

In Chap.7, “Lateral Movement in Undergraduate Research: Case Studies in
Number Theory,” Garcia explores the thought processes, strategies, and pitfalls
involved in entering new territory, developing novel projects, and seeing them
through to publication. Twenty-one guiding principles for developing a sustainable
undergraduate research pipeline are proposed. These ideas are then illustrated in
three detailed case studies that show these guidelines in action.

Next, in Chap. 8, “Projects in (¢, r) Broadcast Domination,” Harris, Insko, and
Johnson introduce the reader to a game played on graphs that was first explored in
2015. The goal is to place broadcasting towers in an efficient manner so that every
location has good reception. The authors summarize their past work with students,
describe how this game generalizes other graph domination problems, and present
many remaining open problems and variations to consider. They end the chapter by
providing some advice on how to continue to develop new research projects with
and for students; although the mathematical content of the chapter is in domination
theory, the ending suggestions can be implemented in any area.

In Chap. 9, “Squigonometry: Trigonometry in the p-Norm,” Wood and Poodiack
consider the effects on the classical trigonometric functions when the definition
of distance is changed. The classical trigonometric functions sine and cosine
parameterize the unit circle x>4y? = 1 in a natural way. Information like the area of
a sector, arc length, and angle measure subtended follows organically; the circle is a
perfect shape. A good way to see this perfection is to introduce some imperfection.
What happens if the definition of distance is changed, the exponent of 2 being
changed to a generic p > 17 It results in less perfect square-like circles, and with
them new generalized trigonometric functions and new values of w. This chapter
investigates these functions and how they capture the newly broken symmetries,
exploring new connections between geometry and special functions along with a
fresh appreciation of the familiar trigonometric functions.



X Preface

In Chap. 10, “Researching in Undergraduate Mathematics Education: Possible
Directions for Both Undergraduate Students and Faculty,” Savic describes the many
methods, questions, and examples of undergraduates researching in undergraduate
mathematics education (RUME). For faculty, it is a chapter that can assist with the
advising process, giving out examples, references, and open research questions in
RUME. For undergraduate students, it has a template of writing in RUME and
undergraduate stories of success. Overall, the chapter could be a resource for anyone
looking to dive into the new field of RUME.

Finally, in Chap. 11, “Undergraduate Research in Mathematical Epidemiology,”
Baiiuelos, Bush, Martinez, and Prieto-Langarica provide an introduction to using
mathematics to track the spread of diseases, or anything else that travels in space
and time. It is written as an inquiry-based study which the authors hope will help
faculty mentors allow students to take lead on a given project. Different modeling
techniques are used to answer biological/conservation questions, such as how a
disease can be controlled. The authors have written the chapter with the view that
any calculus student can attempt the research questions posed.

Williamstown, MA, USA Pamela E. Harris
Fort Myers, FL, USA Erik Insko
Portland, OR, USA Aaron Wootton
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Elizabeth Drellich and Heather C. Smith

Abstract

At the intersection of mathematics and biology, we find mathematical models
built to address biological questions as well as new mathematical theories
inspired by biological structures. In this chapter, we explore a combinatorial
model for folding words around plane trees which is inspired by the bonds that
form between nucleotides in a single-stranded RNA molecule.

This chapter walks the reader through the construction of valid plane trees,
structures formed by folding a word in a complementary alphabet around a
plane tree, and enumerates the class of words with exactly one such folding.
Valid plane trees are relatively unexplored combinatorial objects, and while we
present several potential research projects, a careful reader can come up with
many additional directions for further study.

Suggested Prerequisites Familiarity with proofs is sufficient for a student to get
started. No additional prerequisites are required, though prior exposure to graph
theory, combinatorics, and algorithms is helpful.

This work was completed while ED was affiliated with Swarthmore College.

E. Drellich
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e-mail: edrellich@haverford.edu

H. C. Smith (0<)
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2 E. Drellich and H. C. Smith

1 Introduction

Though they may sometimes seem quite different, pure and applied fields of
mathematics are in constant communication with each other. Mathematicians model
real-world phenomena, which in turn can lead to new theorems and new mathemat-
ical objects. This interplay is a two way street: science inspiring mathematics and
mathematics furthering science. This chapter will present a family of combinatorial
questions that arise from the simplest models of RNA folding.

Nucleotides in a strand of RNA attach to others in the sequence like a length
of sticky tape. Unlike DNA which forms the familiar double helix and stores
biological information, single-stranded RNA molecules fold themselves into all
kinds of shapes which are essential to their function.

Consider the word w = ACGCAUGCGUU A with twelve nucleotides in which
bonds can form between G and C and also between A and U, the Watson—Crick
pairs. Figure 1 shows one way this word could be wrapped around a rooted tree
with letters on opposite sides of an edge forming a bond. This combinatorial object,
consisting of a word folded around a plane tree, is a simplified model of an RNA
molecule.

For the first seven sections of this chapter we concern ourselves only with
the combinatorial objects. We begin in Sect.2 with the necessary background in
the combinatorics of Catalan objects, particularly non-crossing matchings and plane
trees, which we will use heavily throughout. Sections 3 through 6 are based on work
originally published in [1] and [2]. Biologically inspired variations are discussed
in Sect.7. The RNA folding and inverse folding problems are described in Sect. 8
where we also give a number of resources for readers interested in this applied
problem.

Fig. 1 A folding of
w=ACGCAUGCGUUA
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2 Catalan Numbers

Consider the following expression:
O-7D-@-6)—-((5-2)—-1D.

The parentheses tell us in which order the operations should be performed. To do
this, the parentheses come in pairs, where each open parenthesis has a particular
corresponding closed parenthesis, isolating a part of the expression. In fact, when we
drop the numbers and the minus signs, we are left with the following arrangement:

(OM)-

Even here, you can still identify the matched pairs of parentheses, and so we call
such arrangements correctly matched. In contrast, the arrangement ())((())() is
not correctly matched. While we would suspect that the first two parentheses are
paired, this leave the third parenthesis, which is closed, without a corresponding
open parenthesis to its left.

Now take 2 open parentheses and 2 closed parentheses. How many ways can
you order these parentheses so that they are correctly matched? There are two ways
which are correctly matched: (()) and ()(). Now try this for 3 open parentheses and
3 closed parentheses. Here are the 5 arrangements:

0» 00 MO 0 000.

Exercise 1 List all 14 correctly matched arrangements of 4 pairs of parentheses.

We will use the notation Cy, where k is a natural number, to denote the number
of ways to arrange k open parentheses and k closed parentheses so that they are
correctly matched. Here is what we know so far:

Ci=1, C=2, (C3=5, C4=14

These counts create an infinite sequence (Cy, C2, C3, Cq4, ...), but currently we
only know the first 4 values. You may be hesitant to start arranging 5 sets of
parentheses and just looking at the numbers, it is not entirely clear what Cs should
be. This is where the Online Encyclopedia of Integer Sequences (OEIS) [8] comes
to the rescue! When we enter our sequence (1, 2, 5, 14), we are quickly linked to the
Catalan numbers which is sequence A000108. You will even notice in the comments
section that there is an entry about arrangements of parentheses.

The Catalan numbers are an infinite sequence of numbers that enumerate many
different types of objects including the number of ways one can arrange n pairs of
parentheses which are correctly matched. The sequence begins like this:
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Ci=1, Cr=2, C3=5, C4=14, Cs5=42, Ceg=132, C7=429.

Stopping the list here, there still does not seem to be an obvious pattern to indicate
what comes next, and you certainly do not want to start listing all arrangements of 8
pairs of parentheses. However, there is a closed form for computing these numbers:

1 2n 1 (2n)!
C, = = — . €))]
n+1\n n+1n!'n!
The Catalan numbers are so ubiquitous that many textbooks contain a whole chapter
on them. A good introduction can be found in the chapter titled Catalan Numbers
in [7]. For a much more in depth treatment of them, see [17].

The Catalan numbers can also be computed using this recursive definition for
computing the Catalan numbers.

n
Co=1, Ci=1, and Cyp1=) CiCpfornz=1. 2)
i=0

The initial conditions Cp and C are given. We have already seen that C; = 1. For
Cy, there is only one empty word and it vacuously meets the condition that pairs
of parentheses must be correctly matching, so Co = 1. The recursive formula then
tells us how to calculate C, for any n > 2. First, C; = CoC| + C1Co = 2. Then we
can use Cyp, C1, and C; and the recursive formula to compute C3. Continuing in this
way, we can find C,, for any natural number »n.

To convince ourselves of the recursive formula, let us see how it connects with
enumerating arrangements of matched parenthesis. Consider the recursive formula
for Cs:

Cs5 = CoCq + C1C3 4+ C2C3 + C3C) + C4Cy. 3)

We know that C5 counts the number of ways to arrange 5 sets of parentheses which
are correctly matched. Now we need to see that the right side of the equation
counts the same thing. Since there are 5 terms being added, we need to sort our
arrangements into 5 different categories where the arrangements in each category
share some common characteristic. We know that every arrangement starts with an
open parenthesis. Now how far away is its matching closed parenthesis? We could
sort by this. For example, in (()())() (), there are two pairs of parentheses between
the first open parenthesis and its mate, so let us put this arrangement into Category 2.
On the other hand, (((())))() goes in Category 3 while ()()()(()) goes in Category O.
There are now five categories, and every arrangement is in exactly one of them,
forming a partition.

Now our task is to determine how many arrangements are in each category. Let
us start with Category 0. In this category, each arrangement begins with () and is
followed by some valid arrangement of 4 sets of parentheses. But we know this
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quantity to be C4 which is equal to CoCjy in Eq. (3). The arrangements in Category
1 have the form (——) — — — — where the first and fourth parentheses are matched. In
between, we find a single pair of parentheses that must be matched and the number
of possible arrangements is Cj. After the closed parenthesis in the fourth position,
we must find three more pairs of parentheses that are correctly matched and there
are C3 arrangements possible. Thus the total number of arrangements in Category
1 is C1C3. Following this logic Category 2 has C>C, arrangements, Category 3 has
C3C1, and Category 4 has C4Cy.

Exercise 2 Generalize this argument using strong induction to prove that the
recursive formula (2) enumerates the matched arrangements of n sets of parentheses
for each natural number n.

The following inequality will be needed for a proof in Sect. 6. One possible proof
can be obtained by counting arrangements of parentheses.

Exercise 3 For any n € N and any integer 0 < i <n,

Cn > Ci Cn—i~

The Catalan numbers enumerate many other sets of objects. We focus on two
here: non-crossing perfect matchings and plane trees.

Definition 1 A perfect matching of {1, ..., 2n} for some natural number n, is a set
of n ordered pairs M = {(i,j) : i,j € {l,...,2n},i < j} such that for each
k € {1,...,2n}, there is exactly one (i, j) € M with k € {i, j}.

Definition 2 A non-crossing perfect matching of size n is a perfect matching M of
{1,...,2n} which can be represented as a series of n non-intersecting arcs drawn
in the plane above the line y = 0 where each (i, j) € M corresponds with the arc
having endpoints on the x-axis with x-coordinates i and j. The set of non-crossing
perfect matchings of size n is denoted by M,,.

Figure 2 shows all non-crossing perfect matchings in M3.
Definition 3 A plane tree is a straight line drawing of a rooted tree embedded in

the plane with the root higher than all other vertices. The set of plane trees with n
edges is denoted by 7;,.

v LD LN nimy Lo

Fig. 2 Non-crossing perfect matchings of size 3
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Fig. 3 All 5 distinct plane trees with 3 edges

All plane trees in 73 are found in Fig. 3, where the root is identified by an un-filled
vertex.

Before we move on, we would like a more compact way to describe a plane
tree. For a drawing of a plane tree, start at the root and follow your way around
the tree, counterclockwise, until you return to the root. As you go, you will walk
down the left side of an edge and later you will walk up the right side of the same
edge. The full path creates an ordering of the half edges of the plane tree, so we can
label the half edges with the integers 1, 2, ..., 2n in the order they are visited. As a
result, each edge has a pair of labels (i, j) withi < j and we name the edge e(i, j).
For example, the edges in the second plane tree in Fig. 3 are e(1, 4), e(2, 3), e(5, 6),
while the edges in fourth plane tree in Fig.3 are e(l, 2), e(3, 6), e(4, 5), making
these two distinct plane trees.

Not every set of pairs corresponds to a plane tree, for example, there is no plane
tree with edges e(1, 3), e(2,4), e(5, 6). However, each plane tree has a unique set
of edge labels that can be used to reconstruct the plane tree.

Exercise 4 Given a set of edge labels, give an algorithm to find the corresponding
plane tree if one exists.

Now back to the Catalan numbers. In Exercise 2, you proved that C,, enumerates
the matched arrangements of n pairs of parentheses, using strong induction and the
recursive definition (2) for the Catalan numbers.

Exercise 5 Use strong induction and the recursive definition (2) to prove that, for
each natural number 7, the Catalan number C,, enumerates the non-crossing perfect
matchings of size n and also the plane trees with n edges. (As a hint, think about
what remains when the arc (1, j) is removed.)

Let P, be the set of matched arrangements of n pairs of parentheses. In
Exercise 2, you proved that |P,| = C,. In Exercise 5, you used a similar method
to prove |M,| = C, and |T,,| = C,, however, there is an alternative method using
bijections since we already know | P,| = C,,.
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Definition 4 Let A and B be non-empty sets. A mappingt : A — Bis...

* afunction provided, for each a € A, there is exactly one b € B such that t(a) =
b.

* an injection provided t is a function and, for any a, a’ € A, if 7(a) = 7(a’), then
a=ad.

* asurjection provided t is a function and, for any b € B, there exists a € A with
the property t(a) = b.

* abijection provided t is both an injection and a surjection.

For two sets, A and B, if there exists a bijection ¢ : A — B, then |A| = |B|. So
if we can define a bijection T : M,, — P,, this will imply |M,| = | P,| and, since
|P,| = C,, we will have |M,,| = C,,.

Define a mapping t : M,, — P, as follows: For an arbitrary M € M,,, we will
define t(M) to be the sequence w = wjws...wy, established by the following
rules: Foreachi € {1,2,...,2n}

e If M contains an arc with its left endpoint at x-coordinate i, set w; equal to (.
* Otherwise, set w; equal to ).

For an example, let M| be the leftmost non-crossing perfect matching in Fig. 2 and
let M5 be the rightmost one. Then t(M;) is ()()() and 7(M5) is (()()). Exercise 6
asks you to prove that our mapping t : M,, — P, is a bijection.

Exercise 6 To see that t : M, — P, is a bijection, verify the following three
properties:

1. Function: For each M in M,,, verify that (M) is in P,.

2. Injection: If t(M) = t(N) for some M, N in M,,, show that M = N.

3. Surjection: For each P in P,, prove that there exists M in M, such that
(M) =P.

Now we leave it to you to give a similar proof that plane trees are counted by
the Catalan numbers in the first part of Exercise 7. In upcoming sections, you will
find that the connection between plane trees and non-crossing perfect matchings is
essential, so the second part of Exercise 7 asks you to define a bijection directly
between M,, and T,,.

Exercise 7 Give two alternate proofs for the fact |7,,| = C,, as follows:
1. Find a bijection between 7, and P,.

2. Find a bijection between 7,, and M,,. Hint: Consider mapping the edge e(i, j) to
the pair (i, j).
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3 Valid Plane Trees

We are not, in general, going to want all C,, plane trees with n edges, only those that
admit a given word in a complementary alphabet.

Definition 5 A set </ is a complementary alphabet if for every letter B € </
there is a unique complement B € 7 that is distinct from B and taking the

complement is an involution on .«¢, in other words § = B foreach B € &/. We
use the notation .7, _to denote an alphabet with 2m letters and we typically use
Sy ={A1,..., Am, A1, ..., A} whenm > 3.

Definition 6 For n € N, given a word w = wjw;...wy, in a complementary
alphabet o7, a plane tree T is called w-valid if whenever e(i, j) is an edge in T,
w; = w;. A word w is called foldable if at least one w-valid plane tree exists. A
word w is called k-foldable when there are exactly k plane trees which are w-valid.

Definition 6 is equivalent to the requirement that if the word w is wrapped around
the plane tree T, starting at the root and traversing counterclockwise, one letter per
half edge, then every edge of T has a pair of complementary letters labeling its
two sides. Alternatively we could say a plane tree T is w-valid if the non-crossing
matching of {1, ..., 2n} corresponding to T has the property that i is matched with
Jjonlyif w; =w;.

Example 1 Consider the word w = A A A AAA with alphabet <7 . Figure 4 shows
one plane tree which is w-valid, showing that w is foldable. Figure 4 also gives a
plane tree which is not w-valid, so w is k-foldable for some k with 1 < k < C3
since the total number of plane trees with 3 edges is Cs3.

Exercise 8 Not all words in a complementary alphabet have a valid plane tree. Find
necessary conditions for the word w to have a valid plane tree. Are your conditions
sufficient?

Fig. 4 Only the plane tree on
the right is valid for

w=AAAAAA
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Though most words in complementary alphabets do not admit even one valid
plane tree, if a sequence has a valid plane tree, one valid plane tree can be created
via a simple greedy algorithm.

Definition 7 Given a word w = wjw; ... ws, in a complementary alphabet, the
pseudocode for a greedy algorithm is given next which returns a list of edges e(i, j)
and a (possibly empty) stack of unused letters.

Pseudocode for the Greedy Algorithm
1. Consider the word wiw> ... wy, as stack IN with w; on the top and wj, on the
bottom. Let the stack OUT be empty.

2. Move the letter on top of stack IN to the top of stack OUT.

3. If the letters w; and w;, respectively, on the top of stacks IN and OUT are a
complementary pair in the alphabet, pop both of them and record edge e(i, j).

4. Repeat step 3 until the letters on top of the stacks IN and OUT are not a
complementary pair (or one stack is empty).

5. If stack IN is non-empty, return to step 2. Else, output the recorded edges and the
stack OUT.

An example of the greedy algorithm for the word ABBAABBA is given
in Fig. 5.

Theorem 1 ([2]) A w-valid plane tree exists for word w whenever the stack OUT
is empty at the end of the greedy algorithm.

A

B B

B B

A A A A

A A A A

B B B B B B

B B B B B B

A A A A A A A A A A A A A

IN OUT IN OUT IN OUT IN OUT IN OUT IN OUT IN OUT IN OUT IN OUT
e(2,3) e(4,5) e(6,7) e(1,8)

Fig. 5 The greedy algorithm is run on the word w = ABBAABBA and the output edges define
the given w-valid plane tree
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In particular, the collection of edges returned by the greedy algorithm form a w-
valid plane tree.

Proof 1f stack OUT is empty at the end of the greedy algorithm, consider the
collection of edges e(i, j) recorded in step 3 of the algorithm. Using your bijection
from Exercise 7, those edges form a plane tree if and only if they determine a non-
crossing perfect matching of {1, 2, ..., 2n}.

Given that the greedy algorithm terminated leaving both the IN and OUT stacks
empty, every letter w; must be paired with a w; and thus

{(i, j) : e(i, j) is output by the greedy algorithm}

is a perfect matching on {1, 2, ..., 2n}.

Furthermore an edge e(i, j) could only have been produced in step 3 if all of the
letters w1, wi42, ..., w;—1 had already be paired by the algorithm. None of those
letters could have been paired with wy for any k > j since the algorithm has yet to
encounter wg. Nor can any of those letters been paired with wy for £ < i since wy,
if it is still in the OUT stack, appears below w; in the OUT stack from the time w;
was moved from the IN to the OUT stack. Therefore the matching created by the
greedy algorithm is non-crossing and the edges produced by the greedy algorithm
form a plane tree. That plane tree is w-valid by construction so a w-valid plane tree
exists. O

The converse, that a w-valid plane tree exists only if the OUT stack is empty at
the end of the greedy algorithm, will require some tools from the next section.

4 Local Moves and the State Space Graph

If the plane tree formed by the greedy algorithm is not the only w-valid plane tree,
the next consideration is how those different w-valid plane trees are related to each
other. Similarity between two plane trees can be quantified by the number of edges
that they share (Fig. 6).

To move between two plane trees, Condon, Heitsch, and Hoos [5] defined local
moves to be the following operation on pairs of edges in a plane tree.

Fig. 6 Plane tree (b) shares
edge e(2, 3) with (a), whereas
plane tree (c) has no edges in

common with (a) but shares
edge e(5, 6) with (b)

(a) (b) (©
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Fig. 7 Local moves between valid trees

Definition 8 Leti < j < i’ < j" and fix a plane tree T. The two local moves are

Type 1: if e(i, j) and e(i’, j') are incident edges (share a common endpoint) in
T, then e(i, j), e(i’, j') are replaced by e(i, j'), e(J, i').

Type 2: if e(i, j') and e(j, ") are incident edges in T, then e(i, j'), e(j, i) are
replaced by e(i, j), e(i’, j).

A local move results in a new plane tree 7.

A local move is modeled after an unfolding-and-refolding operation on nearby
base pairs in a strand of RNA. It can be thought of as “unzipping” two adjacent
bonds, and “rezipping” them in the opposite orientation.

Note that local moves can be performed on edges without any successively
labeled half edges, namely withi < j —1and j <i’—1andi’ < j/ — 1. In other
words there can be many other edges incident to the vertices in Fig. 7, including
edges that come between those sketched in the schematic.

Exercise 9 Find all 7 local moves on the plane tree with edges e(1, 10), e(2, 3),
e(4,5),e(6,9), e(7, 8) and verify that each results in a new plane tree.

The existence of local moves allows us to now define the state space graph.

Definition 9 Fix n € N. Let G,, be the graph with a vertex for each plane tree with
n edges and an edge between two vertices when the corresponding plane trees have
the property that one can be transformed into the other by a single local move. For
simplicity, vertices are named by their corresponding plane trees.
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(a) (®)

Fig. 8 (a) The directed state space graph 6 3 (b) The directed state space graph 610 where w =
AABBAA

Figure 8a shows G3, but with direction on the edges, which will be introduced
later.

You may have observed that performing a local move on a w-valid tree might
result in a tree that is no longer w-valid. This leads us to our next collection of
definitions.

Definition 10 Fix a word w and let T be a w-valid plane tree. A local move on
adjacent edges in T is a valid local move if the tree T’ obtained by performing the
local move is also w-valid.

Exercise 10 Given a word w with at least one valid plane tree, prove the following
statements that will be used in the proofs of Theorems 2 and 3:

1. A local move on half edges i < j < i’ < j’ is valid if and only if w; = w; =
w; =wj.

2. If w; = wiz1 and e(i, i + 1) not an edge of w-valid plane tree T, then a single
local move can be performed to create edge e(i, i + 1).

We now have the machinery to prove the converse of Theorem 1.

Theorem 2 ([2]) If a w-valid plane tree exists, the greedy algorithm will result in
an empty OUT stack.

Proof Suppose it is possible for a w-valid plane tree to exist but for the greedy
algorithm to return a non-empty stack OUT. Without loss of generality assume that
w is a word of shortest length for which this occurs. Since the greedy algorithm
returns a valid plane tree whenever one exists for words of length 2, our word w
must have length at least 4.
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Even though the greedy algorithm fails to produce a w-valid plane tree, we claim
that it must produce at least one edge of the form e(j, j + 1). First note that if the
greedy algorithm produces any edges at all, the first one produced will have the
desired form. Further, every plane tree has an edge of the form e(j, j + 1), so w
must have two letters w;, w;1 that are complementary because it is foldable. If the
greedy algorithm has not yet created an edge of the form e(j, j + 1) when it gets to
letter w; 41, it will form the edge e(i, i 4+ 1).

Lete(j, j+1) be the first edge formed by the greedy algorithm on w and let 7" be
a w-valid plane tree. Then either e(j, j + 1) is an edge in T, or a single valid local
move can transform 7 into a w-valid tree T’ containing e(j, j + 1). If e(j, j + 1)
is not in 7', then T contains edges corresponding to {w;, wi} and {w;y1, we} for
some wy, we in w. These edges are necessarily adjacent in 7 and, by Exercise 10,
there is a valid local move transforming 7 into a new tree T’ containing e(j, j + 1)
and the edge corresponding to pair {wy, w¢}. So let T; be a w-valid plane tree which
contains the edge e(j, j + 1).

Now let w be the word wiws ... w;_jwj42 ... w2, and consider the plane tree
f‘j formed by removing the edge e(j, j+1) from T;. Then YA“]- is a w-valid plane tree,
but the greedy algorithm will produce the same non-empty OUT stack for w that it
did for w making w a shorter word than w that has a valid plane tree but for which
the greedy algorithm fails to produce a plane tree, contradicting the minimality of w.

]

Definition 11 For a word w of length 2n, the restricted state space graph G, is the
subgraph of G, consisting of only those vertices which correspond to w-valid plane
trees and edges that represent w-valid local moves.

To test your understanding of the definitions we have discussed so far, try the
following problem for which no answer has been published:

Challenge Problem 1 Determine whether G, the subgraph of G,, is necessarily
an induced subgraph for any word w of length 2n.
Exercise 11 Let w = AABBBBAABBAA, so a w-valid plane tree has 6 edges.
Note that C¢ = 132 and thus there are 132 plane trees with 6 edges. The number of
w-valid plane trees, however, is significantly smaller. How many vertices does G,
have? Draw (or program a computer to draw) G,.

Theorem 3 ([2]) The restricted state space graph G, is connected for any foldable
word w.

Proof We prove this by induction on the length of the word w. If w has length 2,
then the state space graph is trivially connected since it contains only the single w-
valid plane tree given by the greedy algorithm. Suppose that for any word of length
at most 2n — 2, the restricted state space graph of valid plane trees is connected.
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Let w be a word of length 2n with w-valid plane trees S and 7. If S and T both
have the edge e(i, j), delete that edge to create new plane trees: S’ and T’ both
valid plane trees for w’ = wy ... wi—jwj41 ... w2, and §” and T” valid plane trees
for w” = wj41...w;_1. By the inductive hypothesis there is a sequence of valid
local moves from S’ to T’ and a sequence of valid local moves from S” to T".
Concatenating these sequences gives a sequence of valid local moves from S to 7.
If S and T do not agree on any edges, then with a single local move on T, we
will create a w-valid plane tree T that shares an edge with S. Observe that § must
have an edge e(i,i + 1) forsome i € {1, ..., 2n — 1}. By Exercise 10 there must be
a valid local move on T creating w-valid plane tree T with edge e(i, i + 1). Thus
by the earlier argument, there is a sequence of valid local moves from S to T which
can then be extended to a sequence of valid local moves from S to 7. O

Type 1 and Type 2 local moves are inverses of each other, so we can create a
directed version of a restricted state space graph G, by replacing each edge between
vertices S and T by a directed edge from S to T indicating that there is a Type 2
move which transforms § into 7. Two examples are shown in Fig. 8.

—
Theorem 4 ([2]) The directed state space graph G, is acyclic and has a unique
sink (a vertex with no edges pointing away from it), namely the w-valid plane tree
produced by the greedy algorithm.

Exercise 12 Prove Theorem 4. You can do this in three steps:

1. Let Tp be the w-valid plane tree produced by the greedy algorithm. Prove that no
valid local moves of Type 2 can be performed on Tj.

2. Prove that if T is not Tp, a valid local move of Type 2 can be performed on 7.

3. Prove that the directed state space graph G,, has no cycles. Think about what a
Type 2 move does to the sum

Z d(v,r),

veV(T)

where d (v, r) is the distance from vertex v to the root vertex r in plane tree 7.

5 Enumerating Words with Only One Valid Plane Tree

Some words have no valid plane trees, such as AAAB B B. On the other hand, there
are C,, plane trees with n edges, so any word of length 2n can have at most C,, valid
plane trees. Try the next exercise to discover words which are C,-foldable.
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Exercise 13 Foranyn € N, let w = (AA)" = AA ... AA be a word of length 2n.
Prove that every plane tree with n edges is w-valid. Are there other words of length
2n which have C, valid plane trees?

There are also words which have exactly one valid plane tree, such as AAAAAA,
which are called one-foldable. These one-foldable words are the words that we will
focus on in this section. Our goal is to characterize and enumerate the words of
length 2n from alphabet 7, which have exactly one valid plane tree.

Given a word w, we saw previously that the greedy algorithm will produce
a w-valid plane tree if one exists. Based on our knowledge of local moves and
connectivity of the state space graph, there is only one w-valid plane tree if and
only if the tree produced by the greedy algorithm does not have any valid local
moves which can be made.

For a foldable word w, let Ty (w) be the w-valid plane tree produced by the greedy
algorithm. In Exercise 12 (proving Theorem 4), we saw that no Type 2 moves are
possible in the tree produced by the greedy algorithm. So a local move is available
only if we see two edges e(i, j) and e(i’, j) of To(w), withi < j < i’ < j' and
w; = wy and w; = w s, which share a common vertex in the plane tree.

Let us look closer at the conditions required for a local move to exist. Notice
the distinction between the greedy trees for the words AAAA and AAAA. While
{wr, wa} = {w3, wa} in both cases, a local move is only possible for the second
word. The parity of the location of the letters comes into play. Further, for any
edge e(i, j) in a plane tree, there is a perfect non-crossing matching of the indices
i+ 1,...,j — 1 which implies there are an even number of values between i and
Jj. As aresult, one value in {7, j} is even while the other is odd. Stated another way,
if i and j have the same parity, even if w; and w; are complementary letters, we
immediately know that e(i, j) can never be an edge in a w-valid plane tree.

To take advantage of the constraints that result from parity, we introduce the
notion of a doubled alphabet:

Definition 12 Let w be a word of length 2n from alphabet .7,. Transform w into
a new word w of length 2n and form the doubled alphabet <f,, by updating each
letter of w independently using the following rules:

. Ifjisevenandwj=Zi,thenﬁ1j=zi.
» If jisevenand w; = A;, then 0; = Anti.
* If jisoddand w; = A;, then w; = A;.
« Ifjisoddand w; = A;, then ; = Ay

The resulting word w has the property that w; € {A1, ..., Ay} if and only if i is
odd.

Here is an example of a word w from alphabet % and the resulting word w after
the transformation using the doubled alphabet:
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w=A1A1A1A1A1A1A1A1A1A1 Az A,
W= A1A3A3A3A41A1A3A3A3A1A2A,.

Following the transformation, we can clearly identify that the first and third letters
cannot form a bond despite being complementary letters in w. Observe that w can
be recovered from w given the value of m, so the transformation is injective.

Exercise 14 Prove that the number of w-valid plane trees is precisely the number
of w-valid plane trees.

Now consider the edges in the greedy tree To(w). If two edges e(i, j) and e(i’, j')
share a common vertex, then j and i’ have opposite parities because there must be
an even number of letters in between corresponding to any edges of the tree between
these edges. So if {w;, w;} = {W;/, W/}, then the structure of w introduced by the
doubled alphabet implies that w; = w;» and w; = w ;. Consequently, we must have
an available local move, a statement which was not true before the transformation
using the doubled alphabet.

Now let us take it one step further. For T, a valid plane tree for w and for w, the
doubled alphabet induces a 2m-coloring of the edges of T (which is not necessarily
proper). In particular, if edge e(i, j) corresponds to {w;, w;} = {Ag, Ay}, then use
color k for the edge e(i, j). Notice that the tree T together with its edge coloring
uniquely determines the word @ (and w). We give an example in Fig. 9.

Exercise 15 Let T be a plane tree with n edges. Trace back through the transfor-
mations to prove that the number of colorings ¢ : E(T) — [2m] of the edges of T
with 2m colors is precisely the number of words of length 2 from alphabet 7, for
which T is a valid plane tree.

We proved in Sect. 2 that the number of plane trees with n edges is C,,. With 2m
possible colors for each edge, we see that there are (2m)" C,, pairs (T, ¢) where c is
an edge coloring of 7'. Of these, we would like to enumerate the pairs (7', ¢) which
correspond to words with exactly one valid plane tree. We start with an exercise.

Exercise 16 For a foldable word w of length 2n from the alphabet 7, let T be a
w-valid plane tree. Consider the corresponding edge coloring of T induced by w.

Fig. 9 A folding of w =
A1X3A3Z3A1Z] A3Z3A3Z1 AzZz
and the corresponding edge
coloring of the tree
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How do valid local moves correspond to the edge coloring? Investigate for several
short words.

Setting aside the words w and W, now we can identify local moves just by looking
at the tree and its edge coloring. If two edges share a common vertex and have the
same color, then there is a local move on these edges. These lead to our next lemma.

Lemma 1 ([1]) The words of length 2n from alphabet <y, which are one-foldable
are in bijection with the proper 2m-edge colorings of plane trees with n edges.

Exact enumerations and asymptotics for the number of one-foldable words for
any m and n can be found in [1]. Here, let us pause to consider the case when
m = 1. Thus we are looking for plane trees with proper 2-edge colorings. This is
only possible if the degree of each vertex is at most 2. Since trees are connected,
the plane tree must be a path with one vertex identified as the root. There are n such
plane trees with n edges and each has exactly 2 proper edge colorings with 2 colors.
So there are 21 words of length 2n from alphabet {A, A} which have only one valid
plane tree.

Exercise 17 For each n € N, we claim that there are 2n words of length 2n from
alphabet {A, A} which have only one valid plane tree. See if you can write down
these words, starting with small values for n and then try generalizing your findings
to larger values of n.

The connection between words and edge-colored plane trees can be useful in
other contexts. Consider the following research question:

Research Project 1 Characterize the pairs (7, c) which correspond with
words of length 2n from .7, which have exactly two valid plane trees. Use
your characterization to enumerate these two-foldable words when m = 1 and
when m = 2. Enumerate two-foldable words of length 2n for any m.

6 Enumeration of Valid Plane Trees

In this section, we consider the integers k for which there is a k-foldable word, a
word which has exactly k valid plane trees.

Definition 13 For any natural numbers n and m, let Z(n, m) be the set of integers
k for which there is a word w of length 2n from alphabet <7, which is k-foldable.

The word A?* = AA...A has no valid plane trees, so 0 € Z(n,m). In
Exercise 13, you proved that every plane tree with n edges is valid for the word
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(AA)" = AAAA ... AA. Therefore C,, € #(n, m) for any m € N, the maximum
possible value in Z(n, m). In the previous section, we also discovered many words
which are one-foldable, such as A"A",s0 1 € Z (n, m).

How are the sets Z(n, m) related for various choices of m and n? Since C,, is the
maximum value in Z(n, m) for any m, we have Z(n, m) # %Z(n + 1, m). Wagner
[18] further proved that Z(n,m) C Z(n + 1, m). On the other hand, since the
alphabet o7, is a subset of the alphabet <7, 1, every word from alphabet o7}, is
also a word from 7,4 and we conclude Z(n, m) C Z%(n, m + 1). However, this
subset relation may be strict as demonstrated by an example when n = 7 given by
Wagner [18].

We now focus our attention on Z(n, 1), the case when our alphabet contains
just two letters <7{ = {A, A}. There are 2" words of length 21 and many of these
words have no valid plane trees. Desiring a more thorough understanding of the set
Z(n, 1), here is our primary question for this section:

Let n € N. Determine which integers are in the set Z(n, 1). In other woids, for
which k € N does there exists a word w from the alphabet oy = {A, A} with
exactly k plane trees which are w-valid?

We approach this question from two different perspectives:

1. Which values are in Z(n, 1)? In particular, what is the smallest integer not in
H(n, 1)?
2. Which values are not in Z(n, 1)?

Some computational work in [1] reveals the following for small values of n.
Note that the ellipses indicate that all integers in the range are present in the set.

Z(1,1) ={0, 1}

Z2,1) =1{0,1,2};

Z3,1)=1{0,1,2,5})

Z(4,1)=1{0,1,2,3,4,5,14};

Z(5,1)=1{0,1,2,3,4,5,7, 10, 14, 42};
Z(6,1)=1{0,1,...,8,10,12, 14, 16, 18, 19, 25, 28, 42, 132}
Z(1,1) = Z2(6,1) U {9, 15, 20, 30, 40, 43, 52, 56, 70, 84, 429}

6.1 Small Values in Z(n, 1)

To show that an integer k appears in Z(n, 1), our primary approach is to propose
a word wy of length 2n from alphabet o] and show that there are exactly k plane
trees which are wy-valid.
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We have seen 0, 1, C,, € #Z(n, 1). The Catalan numbers are an integral part of
Z(n, 1), as first seen by the following exercise:

Challenge Problem 2 For n € N with n > 2, find a word of length 2n from the
alphabet 7] which shows that C,_; € Z(n, 1). Extend your construction to show
C; € Z(n, 1) foreach 1 <t < n.(Wagner proves this is possible in Proposition 2.3
of [18].)

Based on the computational results given, you likely noticed that for each n, there
exists £ € N such that {0,1,2,...,¢} C #Z(n, 1). For example, when n = 6, we
have ¢ = 8, and when n = 7, we have £ = 10. Our first results toward discovering
these values of ¢ can be summarized in the following theorem: Our first results
toward discovering these values of £ can be summarized in the following theorem:

Theorem 5 ([1]) For each integern > 4, {0, 1, ...,n} C Z(n, 1).

This theorem is the result of a few constructions and lots of careful counting.
However, there are many constructions possible and some may even lead to a
stronger result, so we leave the following to you.

Challenge ProblEm 3 Foreachi € {0, 1, ..., n}, find a word w; of length 2n from
the alphabet {A, A} such that there are exactly i plane trees which are w;-valid (i.e.,
i € #(n, 1)).! (This appears in the proof of Proposition 4.10 in [1].)

Theorem 5 is the current status of the work and we state the following open
problem:

Research Project 2 Fix n € N. What is the largest £ € N such that
{0,1,...,4} S Z(n, 1)?

6.2 Large Values notin #(n, 1)

You may also notice in the computational data that the largest two values in Z(n, 1)
seem to be C,,— and C,,. If this is true, then any word w with more than C,_ valid
plane trees will have exactly C, plane tree which are w-valid. The next theorem
confirms our suspicions.

'For one possible construction, let 1 < £ < n and consider the word w, = AAYATATAYA where
j =n — 1 —£. For determining the number of w,-valid plane trees, it may be useful to divide this
into two cases: when j < ¢ and when ¢ < j.
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Theorem 6 ([2]) Let n € Nwithn > 3. If £ is an integer satisfying C,—1 < £ <
Cy,, thent & Z(n, 1).

Proof Fix n € N and an integer £ with C,_1 < £ < C,. For contradiction, suppose
w is a word of length 2n from alphabet <%, which has exactly £ valid plane trees.
Transform w into W using the doubled alphabet transformation from Definition 12.
By Exercise 14, w is also £-foldable.

Let m 4 be the number of occurrences of A in w and let m g be the number of
occurrences of B in w. Therefore the number of valid plane trees for w is at most
CnyCpp where my +mp = n.

In Exercise 3, you proved C; > C;C;_; forany t € Nwith 0 <i <. Since £ <
Ciny Cnp, it follows that either £ = C,, or £ < C,_1C; = C,_1 which contradicts
our initial choice of £. o

A closer look at the computational data reveals many integers which are not in
Z(n, 1). The following theorem extends Theorem 6, exposing other integers that do
not appear in Z(n, 1):

Theorem 7 ([1]) For n > 8, the largest six integers in Z(n, 1) are
Cn2+Ca-Cha, Ch2+Cp3, C3-Cyp3, C2-Cya, Cy_1, and C,.
Further, these are the largest six integers in Z(n, m) for any integer m > 1.
This further demonstrates the fundamental connection between the Catalan

numbers and the set Z(n, 1). However, for large n, there are many more intervals of
integers which are not in Z(n, 1). This leads us to the following research project:

Research Project 3 For natural numbers n and ¢ where ¢ > 6, characterize
the largest ¢ integers in Z(n, 1). Is there a generalized formula which would
generate these?

We summarize Sect. 6 with the following research problem:

Research Project 4 For each n € N, completely characterize the integers in
Z(n, 1).
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7 Wobble Pairs and Other Modifications to the Model

The model discussed thus far allows for matchings between complementary letters
of the alphabet. This is a generalization of the Watson—Crick pairs (A with U and C
with G) which bond when a single-strand of RNA folds onto itself. However, for the
RNA molecule, there is one more type of bond which can form between nucleotides,
abond between G and U, often called a wobble pair. Within the categories “A,” “U,”
“C,” and “G,” nucleotides can vary, resulting in dozens of additional base pairs [9].
There are even unnatural bases pairs (UBPs) created in labs [14].

Restricting our attention again to words from the alphabet {A, U, C, G} and now
allowing both Watson—Crick pairs and wobble pairs to form bonds, we have a new
model to study and can ask a similar series of questions.

As a natural first question, given a word w of length 2n from the alphabet
{A, U, C, G}, how do we decide whether there exists a w-valid plane tree? When we
disallowed the G — U bond, we were able to define a greedy algorithm (Definition 7)
that would produce a w-valid plane tree if one existed. However, the natural
extension of the greedy algorithm for our new setting no longer works. Consider the
word GUAC. The greedy algorithm would first pair G with U and then it would
halt with both A and C in the OUT stack as these cannot bond, declaring that there is
no w-valid plane tree. However, we know that there is a valid plane tree for GU AC
by pairing G with C and U with A.

Exercise 18 In the alphabet of nucleotides {A, C, G, U}, does there exist a word
that has at least one valid plane tree using only Watson—Crick pairs, but has more
valid plane trees if wobble pairs G — U are allowed?

One can always run a brute force algorithm, checking all possible plane trees to
determine if one is w-valid, but the number of trees to examine grows exponentially
with the length of w, making it an unfeasible option for long words. On the other
hand, the greedy algorithm (Definition 7) for only the Watson—Crick pairs only
considers each letter in the IN stack once and hence runs in linear time. This brings
us to a project:

Research Project5 For n € N, let w be an arbitrary word from
{A, U, C, G}*". Give an algorithm, whose run-time is polynomial in n, to
determine if w has at least one valid plane tree within the model where we
allowbonds A —U,C — G,and G — U.

Ideally, an algorithm given in response to the previous project would output a
w-valid plane tree if one exists, but this is not a requirement. To make small steps
toward this bigger question, think about some properties which are quickly checked
and may immediately reveal that a word has no valid plane tree. Let w be a word
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from {A, U, C, G}2" and, foreachk € {A,U,C, G}, letnk) ={i : w; =k}. Ifw
is foldable, then n(G) < n(C) +n(U), but this condition is not enough to guarantee
w is foldable. Additionally, if w is foldable and n(A) = 0, what else must be true?

Exercise 19 Write a series of necessary conditions in order for word w in
{A,U,C, G}2” to have at least one valid plane tree, allowing for wobble pairs.
Are your conditions (individually or collectively) sufficient for characterizing when
w is foldable?

As another observation, for each w-valid plane tree, there exists at least one i €
{1,...,2n — 1} such that w;w;4; form an edge in the tree. So, a word with at
least one valid plane tree must have a consecutive pair of letters which can bond.
For example, the word w = GGUU has a valid plane tree in which wpws forms
a bond. However, for w’ = GUAC, the consecutive pair wjw/, can form a bond,
but this bond does not appear in any w’-valid plane tree. The only consecutive pair
which is bonded in a w’-valid plane tree is w)wj. The next open-ended question
seeks to quantify this.

Exercise 20 Look at some short words w and the set of w-valid plane trees for
each. Are there consecutive letters that form a bond in all of the valid plane trees?
Are there consecutive letters that never form a bond? Make a conjecture regarding
the bonds that form among consecutive pairs in valid plane trees, then test your
conjectures on longer words.

Here are some other questions about our new model which are analogous to
results we discussed in for our original complementary alphabet model:

Research Project 6 Let w be a word in {A, C, G, U }2” and consider the
model in which both Watson—Crick pairs and wobble pairs can form bonds.

1. Define a local move on valid plane trees analogous to the one introduced
in Definition 10. Is the restricted state space graph G,, connected?

2. Characterize the words which have exactly one valid plane tree.

. Prove that the number of w-valid plane trees is at most Cj,.

4. For which k € {0, 1, ..., C,} does there exist a word of length 2n which
has exactly k valid plane trees?

(O8]

Our exploration thus far has been motivated by bonds formed between
nucleotides in RNA, bonds that have been observed in nature. However, one could
consider other alphabets and rules for which pairs of letters can form bonds. Some
may be more interesting than others, but you will never know until you explore. The
possibilities are limitless. Here is one you might consider.
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Fig. 10 A pseudoknot corresponds to a crossing matching, and the minimum distance between
paired nucleotides is three base pairs

Challenge Problem 4 Consider an alphabet with 4 letters in which each letter can
form a bond with each other letter (but not with itself). The greedy algorithm
still does not work here. Give an example to demonstrate this. Can you write a
polynomial algorithm to output a valid plane tree if one exists? The existence of
such an algorithm is an open problem.

Another important physical reality of a folding RNA that we have thus far
ignored is the fact that two nucleotides must be separated by at least three others
to form a bond [20]. The structure formed by a bonded pair and the unbonded
nucleotides between them in the sequence is called a hairpin loop. Because a
hairpin loop is not required to form any bonds at all, it is impossible for every
nucleotide to be paired off; a strand of RNA can never form a perfect matching.
Other nucleotides might also remain unpaired as RNA folds.

The imperfect matching formed by a strand of RNA in real life might even
include crossings, called pseudoknots like the one shown in Fig. 10. You can find
more information about pseudoknots in [16].

Challenge Problem 5 Consider the word w = AABBBBAABBAA from Exer-
cise 11.

1. Give all non-crossing matchings of w that have at least three unpaired letters
between any two paired letters.
. Can you arrange those matchings into a state space graph?
3. How many matchings of w have at least three unpaired letters between any two
paired letters if we include those matchings with pseudoknots?

[\S]

Research Project 7 Explore! Fix a set of alphabet letters and a set rules for
which letters form bonds. See what you can discover about your new model.



24 E. Drellich and H. C. Smith

o — TN
N =

Sl

Fig. 11 Meanders of orders 4, 6, and 7 respectively

Since we are mathematicians, we cannot resist leaving you with one more
combinatorial structure which has been around a long time but is surrounded by
open questions which remain elusive to mathematicians. Some of the tools of this
chapter, particularly local moves, may open the door for new insights.

Definition 14 For a natural number 7, a meander of order n is a pair of size n non-
crossing perfect matchings, with one drawn above the x-axis and one drawn below
the x-axis, which together form a single closed curve (Fig. 11).

The study of meanders can be traced back to the work of Poincaré [15], however,
the enumeration of meanders of size n remains an open problem. Recent efforts have
been made via mixing time arguments for Markov chains. These stem from a study
of local moves on meanders. The local move that we learned about for plane trees
(Definition 8) can be restated as a local move on non-crossing perfect matchings via
the bijection you found in Exercise 7. We can then define a local move on a meander
by applying one local move to the non-crossing perfect matching above the x-axis
and another local move to the matching below the x-axis, provided the outcome is
still a meander. These are precisely the local moves studied for meanders in [6].
Could variations on these local moves, inspired by RNA, yield more insight toward
a hundred-year-old question in pure math: the enumeration of meanders?

8 Numerical Models of RNA Folding

Everything we have talked about so far falls under the umbrella of mathematics
inspired by molecular biology, but, as that phrase implies, its origins are in the realm
of mathematics to further molecular biology. If, having read this far, you still have a
nagging feeling that these mathematical abstractions are ignoring the overwhelming
biological complexity of the foundational questions, this section will give you some
directions to explore. If you are intrigued by the combinatorial elegance of the
abstractions, this section will direct you to some additional biological properties
that may inspire you to ask new questions. For a broader overview of the landscape
of these numerical models, [4] is a good place to start.
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Fig. 12 The secondary structure of E. coli tRNA molecule tdbD00000067 [10]

8.1 Structures of RNA

While DNA encodes an organism’s blueprint in the familiar double helix,
the molecules carrying out those instructions are the single-stranded RNA.
These shorter snippets fold on themselves, with base pairs bonding and shifting
to make functional molecules. What any given strand of RNA will do depends not
just on its sequence of nucleotides, but on the ways in which those nucleotides bond
with each other and how they orient themselves in three dimensional space. The
three levels of complexity are referred to as the primary (nucleotide sequences),
secondary, and ternary structures. In this sense, a w-valid plane tree is a secondary
structure for the primary structure given by word w. The secondary structure can
even be represented as a sequence of matched parentheses indicating bonded pairs
(similar to Sect. 2), and dots indicating unbonded nucleotides (Fig. 12).

Like a word w may have many w-valid plane trees, a particular RNA primary
structure may have many secondary and ternary structures it can exhibit. These are
expensive, in terms of both time and money, to observe experimentally. Moreover
the secondary and ternary structures of RNA can be relatively unstable: how it is
folded can change. The primary structure, on the other hand, is relatively cheap and
easy to observe and therefore modeling the way that primary structures can take on
secondary and ternary structures is an important and active area of combinatorial
molecular biology. The text by Waterman [19] and the book edited by Patcher
and Sturmfels [12] are good places for curious readers to continue exploring the
mathematical techniques researchers use to study computational biology, beyond
those mentioned in [4].

8.2 The RNA Folding Problem

The RNA folding problem seeks to accurately model the secondary, and eventually
ternary structures of RNA strands based only on the sequence of base pairs. Many
of the numerical models for predicting the secondary structure of RNA rely on the
thermodynamic theory that molecules tend toward states with the least free energy.
These minimal free energy models assign an energy value to every substructure of
a folded strand of RNA, and then use numerical methods to identify structures that
minimize free energy and thus are deemed most likely to occur. Even though these
models use thousands of parameters, most of them experimentally determined, they
can still struggle to correctly predict how even the shortest, simplest strands of RNA,
transfer RNA, will fold [13,20].

Nevertheless, transfer RNA (tRNA) is a good place to start if you want to
look at some real RNA sequences. A tRNA sequence is relatively short, about 75
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Fig. 13 The secondary
structure of a tRNA molecule

nucleotides long, and both the secondary and ternary structures are known, as is
their biological function. Transfer RNA molecules carry the amino acids that are
specified by the codons in DNA and other forms of RNA. To read and execute
these instructions, tRNA molecules all have closely related secondary structures,
illustrated in Fig. 13. Check out the over 10,000 tRNA sequences in the tRNA
Database, hosted jointly by the Universities of Leipzig, Marburg, and Strasbourg
[9,10].

8.3 The Inverse RNA Folding Problem

The inverse problem to modeling how a particular strand of RNA will fold is to start
with a particular secondary structure and ask what sequences of RNA can fold into
that shape. Some of the work of finding these sequences has been crowdsourced.
The game Eterna, which you can play at eternagame.org, lets players build their own
RNA sequences and uses a folding model to determine what secondary structure the
artificial sequence will form. The goal of this project is to find RNA sequences that,
because of their secondary structure, can help detect and cure illness [11].

Several other programs are available to computationally find sequence that fold
into a particular shape. These tend to be somewhat less user-friendly, but given a
secondary structure, they can return possible sequences that could form it. A recent
survey details the strengths and weaknesses of five other programs: RNAinverse,
RNAIiFold, AntaRNA, NUPACK, and IncaRNAfbinv [3].

The first step to investigating the numerical models for the folding and inverse
folding problems is to figure out how to work with the programs that already exist.

Challenge Problem 6 Explore the capabilities of one of these folding or inverse
folding programs. Necessary steps will include:

1. Download the appropriate files from github or another repository. A link to each
of the five inverse folding programs is in [3]. Two folding programs are cited
directly in the references of this paper [13,20].

2. Follow the steps in the README file to install the program on your school or
personal computer.

3. Determine what inputs the program takes and what outputs it can give you.
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If you have successfully gotten one or more of these programs running and are
interested in the intricacies of the model, you can check out the associated research
papers. From there you can formulate your own questions or contact the authors of
the program you are interested in to see if there are specific problems you can study.

9 Conclusion

We leave you with the broad strokes of this story: how mathematical molecular biol-
ogy led to new combinatorial problems. An RNA molecule binds to itself forming
a structure which determines its functionality. In modeling this bonded structure,
biologists discovered that the molecule forms a tree-like structure. Mathematicians
model these structures as plane trees and these simplified models led to the new
combinatorial objects, valid plane trees, that we discussed in this chapter.

With the exception of the numerical models in Sect. 8, everything in this chapter
could be studied purely as an extension of pre-existing combinatorial objects. Planes
trees and non-crossing perfect matchings have been around a long time. But our new
spin with wrapping words around plane trees has led us to focus on just those trees
which are valid for a particular word. This opens up a door to a wide range of
combinatorial questions, including:

1. Which words have at least one valid plane tree? (Theorem 2)

2. What does the space of all w-valid plane trees look like? (Sect. 4)

3. Which words have only one valid plane tree? (Sect. 5)

4. Given a k € N, is there a word which has exactly k valid plane trees? (Sect. 6)

As we saw in Sect.7, new pure math research questions can be found by adding
more of the biological constraints, but there is no reason to stop there! Follow your
curiosity as a mathematician and consider other alphabets and other rules for how
bonds can form. Or perhaps this chapter has served as a springboard for you to
learn more about the biological study of RNA folding as you explore the numerical
models in Sect. 8.

We have posed a number of research directions, but do not limit yourself to
these. Explore examples, look for patterns, and ask questions. The possibilities are
endless! We would love to hear about your findings as you delve deeper into the
topics discussed in this chapter.
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Abstract

Phylogenetics is the study of the evolutionary relationships between organisms.
One of the main challenges in the field is to take biological data for a group
of organisms and to infer an evolutionary tree, a graph that represents these
relationships. Developing practical and efficient methods for inferring phyloge-
netic trees has led to a number of interesting mathematical questions across a
variety of fields. However, due to hybridization and gene flow, a phylogenetic
network may be a better representation of the evolutionary history of some
groups of organisms. In this chapter, we introduce some of the basic concepts
in phylogenetics and present related research projects on phylogenetic networks
that touch on areas of graph theory and abstract algebra. In the first section, we
describe several open research questions related to the combinatorics of phylo-
genetic networks. In the second, we describe problems related to understanding
phylogenetic statistical models as algebraic varieties. These problems fit broadly
in the realm of algebra, but could be more accurately classified as problems in
algebraic statistics or applied algebraic geometry.
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Suggested Prerequisites An introductory course in graph theory or discrete
mathematics for the research projects in Sect.2. For the projects in Sect.3, an
introductory course in abstract algebra would also be helpful.

1 Introduction

The field of phylogenetics is concerned with uncovering the evolutionary relation-
ships between species. Even before Darwin proposed evolution through variation
and natural selection, people used family trees to show how individuals were
related to one another. Since Darwin’s theory implies that all species alive today
are descended from a common ancestor, the relationships among any group of
individuals, even those from different species, can similarly be displayed on a
phylogenetic tree. Thus, the goal of phylogenetics is to use biological data for a
collection of individuals or species, and to infer a tree that describes how they are
related. In modern phylogenetics, the biological data that we consider is most often
the aligned DNA sequences for the species under consideration. Understanding how
species have evolved has important applications in evolutionary biology, species
conservation, and epidemiology [36].

Perhaps unsurprisingly, there is a rich interplay between phylogenetics and
mathematics. A tree can be viewed as a certain type of graph, and graph theory is an
entire field of mathematics dedicated to understanding the structure and properties
of graphs. Similarly, DNA mutation is a random process, and understanding
random processes falls in the domain of probability and statistics. As such, there
are many mathematical tools that have been developed for doing phylogenetic
inference. Often, developing a new tool or trying to answer a novel question in
phylogenetics requires solving some previously unsolved mathematical problem. It
is also common for a phylogenetic problem to suggest a mathematical problem that
is interesting in its own right.

The outline above, where every set of species is related by a phylogenetic
tree, is a simplified description of the evolutionary process. Rarely does the
evolutionary history for a set of species neatly conform to this story. Instead, species
hybridize and swap genes. Moreover, genes within individuals have their own
unique evolutionary histories that can differ from that of the individuals in which
they reside [29,44]. The result is that in many cases, a tree is simply insufficient to
represent the evolutionary process. Recognizing this, many researchers have argued
that networks can be a more appropriate way to represent evolution. While using
networks might be more realistic from a biological standpoint, there are many
complexities and new mathematical questions that must be solved in order to infer
phylogenetic networks. In particular, understanding inference for networks requires
proving results for networks analogous to those known for trees. The projects that
we present in this chapter are examples of some of the new lines of inquiry inspired
by using networks in phylogenetics.
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The first category of problems that we describe concern the combinatorics of
phylogenetic networks. Inferring phylogenies for large sets of species can often
be computationally intensive regardless of the method chosen. One approach for
dealing with this in the tree setting is to consider small subsets of species one at
a time. Once phylogenetic trees have been built for each subset, the small trees
are then assembled to construct the tree for the entire set of species. The details
of actually doing this can of course become quite complicated. Thus, different
heuristics and algorithms have been proposed, and understanding their performance
and properties leads to a number of interesting questions about the combinatorics
of trees. As a first example, one might consider if it is even possible to uniquely
determine the species tree for a set of species only from knowledge of how each
subset of a certain size is related. Even if this is possible, one then might like
to know how to resolve contradictions between subtrees if there is error in the
inference process. Adopting a similar strategy for inferring phylogenetic networks
from subnetworks leads to a host of similar combinatorial questions about networks.
In Sect. 2, we will explore the structure of phylogenetic networks in greater depth
and formulate some of these questions more precisely for potential research projects.

The second class of problems we discuss concerns the surprising connections
between abstract algebra and phylogenetics. One of the ways that researchers have
sought to infer phylogenies is by building models of DNA sequence evolution on
phylogenetic trees. Once the tree parameter is chosen, the numerical parameters
of the model control the rates and types of mutations that can occur as evolution
proceeds along the tree. Once all the parameters for the model are specified, the
result is a probability distribution on DNA site-patterns. That is, the model predicts
the frequency with which different DNA site-patterns will appear in the aligned
DNA sequences of a set of species. For example, the model might predict that at the
same DNA locus for three species, there is a 5% chance that the DNA nucleotide
A is at that locus in each species. Another way to write this is to write that for this
choice of parameters, paaa = .05. Algebra enters the picture when we start to
consider the algebraic relationship between the predicted sight pattern frequencies.
For example, we might find that for a particular model on a tree 7', no matter how we
choose the numerical parameters the probability of observing ACC under the model
is always the same as the probability of observing GTT. We can express this via the
polynomial relationship pacc — pgrr = 0, and polynomials that always evaluate
to zero on the model we call phylogenetic invariants [8] for the model on T.

The set of all phylogenetic invariants for a model is an algebraic object called
an ideal. By studying the ideals and invariants associated to phylogenetic models,
researchers have been able to prove various properties of the models, such as
their dimension and whether or not they are identifiable, as well as to develop
new methods for phylogenetic inference (see, e.g., [2,7,9, 34]). As with some of
the combinatorial questions above, there are a number of papers studying these
questions in the case of trees, but few in the case of networks. In Sect.3, we
show how to associate invariants and ideals to phylogenetic networks and describe
several related research projects. While there are fascinating connections between
these algebraic objects and statistical models of DNA sequence evolution, our
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presentation distills some of the background material and emphasizes the algebra.
There is also a computational algebra component to some of these projects and we
provide example computations with Macaulay2 [17] code.

2 Combinatorics of Phylogenetic Networks

In this section, we give the background necessary to work on the research and
challenge questions related to the structure of phylogenetic networks. We begin by
introducing some of the concepts from graph theory necessary to formally define
a phylogenetic tree and a phylogenetic network. We then discuss some ways to
encode trees and networks and common operations that we can perform on them.
Much of the terminology around trees and graphs is standard in graph theory, and so
we have omitted some of the basic definitions that can be found in the first chapter
of any text on the subject. An affordable and helpful source for more information
and standard graph theoretic results would be [10]. The terms that are specific
to phylogenetic trees and networks we have adapted largely from [16, 35]. The
textbook [22] provides a thorough introduction to phylogenetic networks, though the
specific terminology being used in the research literature is still evolving. A broader
introduction to phylogenetics from a mathematical perspective can be found in [39].

2.1 Graphs and Trees

The outcome of a phylogenetic analysis is typically a phylogenetic tree, a graph that
describes the ancestry for a set of taxa. As an example, an interactive phylogenetic
tree relating hundreds of different species can be accessed at https://itol.embl.de/
itol.cgi.

In mathematical terms, a tree is a connected graph with no cycles. We refer to
the degree one vertices of a tree as the leaves of the tree. The leaves correspond
to the extant species for which we have data in a phylogenetic analysis and so we
label these vertices by some label set. In theoretical applications, the label set for an
n-leaf tree is often just the set [n] := {1, ..., n}, and we call such a tree an n -leaf
phylogenetic tree. Note that we consider two n-leaf phylogenetic trees to be distinct
even if they differ only by the labeling of the leaves. In technical terms, two n-leaf
trees are the same if and only if there is a graph isomorphism between them that
also preserves the leaf-labeling.

We often distinguish one special vertex of an n-leaf phylogenetic tree which we
call the root. If the root is specified, then the tree can be regarded as a directed graph,
where all edges point away from the root. The root corresponds to the common
ancestor of all of the species of the tree, hence, the directed edges can be thought of
as indicating the direction of time. We also often restrict the set of trees we consider
to those that are binary. A binary tree is one in which every vertex other than the
root has degree one or degree three. If the root is specified for a binary tree, then it
will have degree two. We use these rooted binary phylogenetic trees as a model of
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1

Fig. 1 A rooted 4-leaf binary phylogenetic tree and the tree obtained by unrooting this tree

evolution. The degree three internal vertices correspond to speciation events, where
there is one species at the time just prior to the vertex, and two species that emerge
from the vertex.

Depending on the application, it is common in phylogenetics to consider both
rooted and unrooted trees. As such, we can think about rooting a tree, where we
place a degree two vertex along an edge and direct the edges away from this vertex
(so that there is a directed path from the root to every vertex in the graph). Or, we can
think about unrooting a tree, where we suppress the degree two vertex (see the trees
in Fig. 1). As an example, there is only one 3-leaf binary phylogenetic tree, however,
there are three different rooted 3-leaf binary phylogenetic trees that can be obtained
by rooting along the three different edges of the unrooted tree.

Example 1 Figure 1 shows a rooted 4-leaf binary phylogenetic tree and the tree
obtained by unrooting this tree. Notice that the edges of the rooted tree are directed,
but that this is unnecessary since the root determines the direction of each edge. Also
observe that if we root the unrooted tree along the edge labeled by 1, we obtain the
rooted tree at left. Finally, notice that swapping the labels 1 and 3 in the rooted tree
produces a distinct rooted 4-leaf binary phylogenetic tree, whereas for the unrooted
tree, swapping these labels leaves the tree unchanged.

Exercise 1 How many edges are there in an n-leaf rooted binary phylogenetic tree?

Exercise 2 Prove that there exists a unique path between any pair of vertices in a
tree.

Exercise 3 Prove that the number of rooted binary phylogenetic n-trees is (2n - 3)!!
Here the symbol !! does not mean the factorial of the factorial, but rather multiplying
by numbers decreasing by two. For example, 7!! = 7 x 5 x 3 x 1 = 105 and
1011 =10 x 8 x 6 x 4 x 2 = 3840.
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Each edge of an unrooted phylogenetic tree subdivides the collection of leaves
into a pair of disjoint sets. This pair is called a split. For example, the unrooted tree
in Fig. 1 displays the splits S = {1|234, 2|134, 3|124, 4|123, 13|24}.

Exercise 4 Draw an unrooted tree with the set of splits
S={1]23456, 213456, 3|12456, 4|12356, 5|12346, 612345, 13|2456, 135|246, 46|1235}.

Challenge Problem 1 Prove that two unrooted phylogenetic trees are isomorphic
if and only if they display the same set of splits.

2.2 Phylogenetic Networks

As mentioned in the introduction, a tree might not always be sufficient to describe
the history of a set of species. For example, consider the graphs depicted in Fig. 3.
Notice that there are vertices in these graphs with in-degree two and out-degree one.
There are a few ways that we might interpret these reticulation events. It could be
that two distinct species entered the vertex, and only one, their hybrid, emerged. Or,
it might be that one of the edges directed into the degree two vertices represents
a gene flow event where species remain distinct but exchange a small amount of
genetic material. If we undirect all of the edges of either of these graphs, the result
is clearly not a tree since the resulting undirected graph contains a cycle. In fact, this
is a phylogenetic network. A more thorough introduction to phylogenetic networks
than we offer here can be found in [22,31]. The website “Who’s who in phylogenetic
networks” [1] is also an excellent resource for discovering articles and authors in the
field.

Definition 1 A phylogenetic network N on a set of leaves [n] is a rooted acyclic
directed graph with no edges in parallel (i.e., no multiple edges) and satisfying the
following properties:

(i) The root has out-degree two.
(ii) The only vertices with out-degree zero are the leaves [n] and each of these have
in-degree one.
(iii) All other vertices either have in-degree one and out-degree two, or in-degree
two and out-degree one.

In the preceding definition, the term acyclic refers to the fact that the network
should contain no directed cycles. The vertices of in-degree two are called the
reticulation vertices of the network since they correspond to reticulation events.
Likewise, the edges that are directed into reticulation vertices are called reticulation
edges. Observe that the set of rooted binary phylogenetic trees is the subset of the
set of phylogenetic networks.
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Exercise 5 For what m € N is it possible to draw a rooted 3-leaf phylogenetic
network with exactly m edges?

Exercise 6 Show that there are an infinite number of rooted n-leaf phylogenetic
networks.

The ability of phylogenetic networks to describe more complicated evolutionary
histories comes at a cost in that networks can be much more difficult to analyze.
Since there are infinitely many phylogenetic networks versus only finitely many
phylogenetic trees, selecting the best network to describe a set of species is
particularly challenging. Because there are so many networks, it is often desirable
to consider only certain subclasses of phylogenetic networks depending on the
particular application. One way to restrict the class of networks is by considering
only networks with a certain number of reticulations or those of a certain level. The
concept of the level of a network, introduced in [25], relies on the definition of a
biconnected component of a graph.

Definition 2 A graph G is biconnected (or 2-connected) if for every vertex v €
V(G), G — {v} is a connected graph. The biconnected components of a graph are
the maximal biconnected subgraphs.

Definition 3 The reticulation number of a phylogenetic network is the total number
of reticulation vertices of the network. The level of a rooted phylogenetic network
is the maximum number of reticulation vertices in a biconnected component
(considered as an undirected graph) of the network.

Exercise 7 What is the reticulation number of the two phylogenetic networks
pictured in Fig.2? What are the biconnected components of each network? What
are the levels of the two networks?

Fig. 2 Two rooted binary phylogenetic networks
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Exercise 8 Suppose that you remove one reticulation edge from each pair of edges
directed into a reticulation vertex in a phylogenetic network. Show that if you
undirect the remaining edges, the result is a connected, acyclic graph.

Exercise 9 How many 3-leaf rooted phylogenetic networks with a single reticula-
tion vertex are there?

23 Semi-Directed Networks

Whether we work with rooted or unrooted phylogenetic trees or networks depends
upon the particular application. As an example, for some statistical models of DNA
sequence evolution, the models for two distinct rooted trees will be the same if the
trees are the same when unrooted [39, Chapter 7]. Thus, when working with such
models, there is no basis for selecting one location of the root over any other, and so
we only concern ourselves with unrooted trees.

Rooting a tree is one way of assigning a direction to each of its edges. When
constructing evolutionary models associated to phylogenetic networks it can occur
that the direction of some edges can be distinguished by the model, but that the
directions associated to other edges cannot. Thus it makes sense to consider the class
of unrooted networks in which some of the edges are directed which are known as
semi-directed networks.

For certain algebraic models of evolution, the models will not necessarily be the
same if the unrooted phylogenetic network parameters are the same. However, they
will be if the underlying semi-directed topology of the networks is the same.

Definition 4 The semi-directed topology of a rooted phylogenetic network is the
semi-directed network obtained by unrooting the network and undirecting all non-
reticulation edges.

Because of the increasing importance of networks in phylogenetics, several
authors have investigated the combinatorics of both rooted and unrooted phyloge-
netic networks (e.g., [16,23,33]). The semi-directed topology has recently appeared
in some applications [18,38], but the combinatorics of these networks have received
comparatively little attention.

Of course, the semi-directed networks that we are interested in are those that
actually correspond to the semi-directed topology of a rooted phylogenetic network,
which we call phylogenetic semi-directed networks. An edge in a phylogenetic semi-
directed network is a valid root location if the network can be rooted along this
edge and orientations chosen for the remaining undirected edges to yield a rooted
phylogenetic network.

Example 2 Figure 3 shows three semi-directed networks. The 3-leaf semi-directed
network is a phylogenetic semi-directed network, which can be seen by noting that
it is the semi-directed topology of the 3-leaf network in Fig.2. The 4-leaf semi-
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Fig. 3 A 3-leaf phylogenetic semi-directed network, a 4-leaf semi-directed network that is not
phylogenetic, and a 6-leaf phylogenetic semi-directed network

Fig. 4 The semi-directed
network referenced in
Exercise 14

directed network is not a phylogenetic semi-directed network. Notice that there is no
way to orient the edge connecting the reticulation vertices without creating vertices
of in-degree 3 and out-degree 3, violating the conditions of Definition 1. The 6-leaf
network is also a phylogenetic semi-directed network (Exercise 11).

Exercise 10 Find all of the valid root locations for the 3-leaf phylogenetic semi-
directed network in Fig. 3.

Exercise 11 Show that the 6-leaf semi-directed network in Fig. 3 is a phylogenetic
semi-directed network. Find all of the valid root locations.

Exercise 12 Draw the semi-directed topology of the 5-leaf rooted phylogenetic
network in Fig. 3.

Exercise 13 How many 4-leaf semi-directed networks with a single reticulation are
there?

Exercise 14 Show that there is no way to direct any of the existing undirected
edges in the semi-directed network in Fig. 4 to obtain a phylogenetic semi-directed
network.



38 E. Gross et al.

Exercise 15 Find a formula for the reticulation number of a phylogenetic semi-
directed network in terms of the number of leaves and edges of the network.

Exercise 16 Consider the semi-directed topology of the rooted 5-leaf network in
Fig.2. How many different rooted phylogenetic networks share this semi-directed
topology?

Challenge Problem 2 Prove or provide a counterexample to the following state-
ment. It is impossible for two distinct phylogenetic semi-directed networks to have
the same unrooted topology and the same set of reticulation vertices (i.e., to differ
only by which edges are the reticulation edges).

As a hint for this challenge problem, consider the 3-leaf phylogenetic semi-
directed network in Fig. 3. Two of the reticulation vertices are incident to leaf edges
in the network. As a first step, it may be helpful to consider whether or not there is
any way to reorient the edges into one of these vertices so that it is still a reticulation
vertex and so that the network remains a phylogenetic semi-directed network.

Challenge Problem 3 Find an explicit formula for the number of semi-directed
networks with a single reticulation vertex and n leaves.

Research Project 1 Find an explicit formula for the number of level-1
semi-directed networks with n leaves and m reticulation vertices. Can you
generalize this formula to level-k networks with n leaves and m reticulation
vertices?

For Research Project 1, the level of a semi-directed network is defined in terms
of the unrooted, undirected topology just as for phylogenetic networks. Thus, any
phylogenetic network and its semi-directed topology will have the same level. A
starting point would be to look for patterns in small families of trees or networks. To
begin thinking about proof techniques you might examine the proofs of the number
of rooted trees with n leaves, or perhaps the number of distinct unlabeled tree
topologies with n leaves. Chapter three of Felsenstein’s book Inferring Phylogenies
provides some intuition about tree counting [15].

Challenge Problem 4 Find necessary and sufficient conditions for a semi-directed
network to be a phylogenetic semi-directed network.
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Fig. 5 The rooted P
phylogenetic network
corresponding to the V4 A v
adjacency matrix in
Example 3
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Research Project 2 Determine a method or algorithm for counting valid root
locations in a phylogenetic semi-directed network (i.e., count the number of
rooted networks corresponding to a particular semi-directed network).

By definition, a phylogenetic semi-directed network must have at least one valid
root location. A simple, though extremely inefficient algorithm for finding all valid
root locations would be to check all edges as root locations and then all possible
orientations for the other edges. To improve on this naive algorithm, you might
start by considering each reticulation vertex one at a time. Does a single pair of
reticulation edges place restrictions on the possible valid root locations?

It also might be helpful to have an efficient representation of a phylogenetic
network. Since a phylogenetic network is just a special type of graph, it can be
represented by an adjacency matrix. The adjacency matrix for a directed graph with
vertex set V is a square |V| x |V| matrix where the rows and columns are indexed
by the elements of V. The (v;, v;) entry of the graph is 1 if and only if there is
a directed edge from v; to v; and O otherwise. The following example shows the
adjacency matrix for a rooted phylogenetic network.

Example 3 Consider the rooted 3-leaf phylogenetic network pictured in Fig. 5. The
network has 8 vertices which form the row and column labels of the adjacency
matrix. The 7 edges of the network correspond to the 7 non-zero entries of the
adjacency matrix.
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Notice that properties of the matrix correspond to properties of the graph. For
example, the fact that vg is the only vertex with in-degree two can be seen from the
matrix, since the column corresponding to vg is the only column with two non-zero
entries.

There are some subtleties involved in constructing the adjacency matrix for
a semi-directed network, as there are both directed and undirected edges. One
possibility would be to encode semi-directed networks by treating the undirected
edges as bidirected. In any case, it might then prove useful to construct a dictionary
between properties of a network and properties of the adjacency matrix of that
network.

Research Project 3 Construct a fast heuristic algorithm which will deter-
mine if a semi-directed network is a phylogenetic semi-directed network.
Alternatively, determine the computational complexity of determining if a
given semi-directed network with n leaves and reticulation number m is a
phylogenetic semi-directed network.

These research projects may be closely related to Research Project 2 above.
After all, determining if a semi-directed network is phylogenetic amounts to
determining if there exist any valid root locations. Thus, one might consider
some of the suggestions above when approaching these problems. Determining the
computational complexity may prove very difficult indeed, and it may be a challenge
to prove something even when m = 1.

One general strategy for proving computational complexity results is to find a
transformation from the problem of interest into another problem with a known
computational complexity. A good model for how this might work in the context of
phylogenetics can be found in [6] a project which was the result of collaboration
between undergraduates and faculty members.

24 Restrictions of Networks

In phylogenetics it is frequently necessary to pass back and forth between analyzing
full datasets on a complete set of organisms [#] and a more confined analysis on
subset of [n]. For instance, you may have access to an existing data set on [n] but
are only interested in some subset of the organisms. Alternatively you may have
information on a collection of subsets of [#] and want to piece them together to
determine information about the complete set of organisms.

Definition 5 Let N be an n-leaf phylogenetic network with root p, and let A C [n].
The restriction of N to A is the phylogenetic network N4 constructed by
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(i) Taking the union of all directed paths from p to a leaf labeled by an element
of A.
(i) Deleting any vertices that lie above a vertex that is on every such path.
(iii) Suppressing all degree two vertices other than the root.
(iv) Removing all parallel edges.
(v) Applying steps (iii) and (iv) until the network is a phylogenetic network.

We say that N displays N\ 4.

While the definition of restriction is defined in terms of a rooted phylogenetic
network, we can also apply this definition to a semi-directed network. Given a phylo-
genetic semi-directed network, its restriction to a subset A C [n] is found by rooting
the network at a valid root location, restricting the rooted phylogenetic network to A,
and then taking the semi-directed topology of the restricted phylogenetic network.
The following challenge problem shows that this operation is well-defined.

Challenge Problem 5 Suppose that a valid rooting is chosen for an n-leaf semi-
directed network and that the network is then restricted to a subset of the leaves of
size k < n. Show that the k-leaf semi-directed network obtained by unrooting the
restricted network is independent of the original rooting chosen.

In practice it can be computationally difficult to directly estimate a phylogenetic
network from sequence data corresponding to the set [r]. One potential workaround
is to infer phylogenetic networks on a collection of subsets of [n], and then select a
larger network N which best reflects the networks estimated on the various subsets.

Definition 6 A set of phylogenetic networks &/ = {Ny, N, - - - , Ny} whose leaves
are all contained in a set [n] is called compatible if there exists a phylogenetic
network N for which the restriction of N to the leaf set of N; is isomorphic to
N;foralll <i <k.

It is common when working with unrooted trees to restrict the trees to four
element subsets of the leaves. The resulting 4-leaf trees are called quartets, and
an n-leaf phylogenetic tree is uniquely determined by its (Z) quartets. Similarly,
when working with a network, we can construct a quarnet by restricting the network
to a four element subset of its leaves. In this paper, since we are working with
semi-directed phylogenetic networks, we will use the term quarnet to mean a 4-leaf
semi-directed phylogenetic network. However, note that in other sources a quarnet

may refer to an unrooted 4-leaf network.

Exercise 17 Determine if the following collections of quarnets are compatible.
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It is possible that some collections of subnetworks can be displayed by multiple
phylogenetic networks. In practice we might want to know when a collection of
subnetworks can be used to represent a unique network.

Definition 7 Let &7 = {Ny, Np, ---, Ny} be a collection of phylogenetic networks
for which the union of all of the corresponding leaf sets is [1]. The collection 7 is
said to distinguish a phylogenetic network N, if N is the only phylogenetic network
with leaf set [n] such that the restriction of N to the leaf set of N; is isomorphic to
Njforalll <i <k.

Exercise 18 Find a collection of three quarnets which are displayed by the 6-leaf
phylogenetic network in Fig. 6 which do not distinguish that network.
Challenge Problem 6 Show that the set of all quarnets of a level-one semi-directed

network distinguishes that network.

A good strategy for proving this might be to consider two distinct level-one semi-
directed networks, and then show that there must be a quarnet on which they differ.

5 4 5 4 1

Fig. 6 The restriction of a 6-leaf phylogenetic network to the set {1, 4, 5}. The networks pictured
are obtained by applying (i), (i), and then (iii), (iv), and (iii) again to obtain the restricted
phylogenetic network

1
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Challenge Problem 7 Find all minimal sets of quarnets which distinguish the
semi-directed topology of the 6-leaf phylogenetic network in Fig. 6.

Challenge Problem 8 Give criteria for determining whether or not a collection of
quarnets are compatible. Hint: There are known criteria for determining if a set of
quartet trees are compatible [19].

Research Project 4 Describe an algorithm that determines if a set of semi-
directed networks &/ = {Nj, Np,---, Ni} is compatible. Bonus points
if the algorithm is efficient, constructive, or determines if the collection
distinguishes a unique network. This question is already interesting in the
case that each of the »; is a quarnet.

The previous research problem is based on the notion that one could compu-
tationally estimate quarnets from DNA sequence data, and then the compatible
quarnets could be combined to determine a single network which describes the
evolution across a broader collection of organisms. This idea has proven successful
when building phylogenetic trees, thus, a number of authors have studied whether
or not networks can be constructed by building up large networks from smaller
structures (e.g., [21, 23, 24, 26]). Insights and techniques from these papers will
likely prove valuable for attacking some of these research and challenge questions.
However, it is unlikely that any results will translate directly, since each of the
sources cited place different restrictions on the types of input networks and the types
of networks constructed.

As a warmup to this activity one might examine similar results on trees as
can be found throughout Chapters 3 and 6 in the textbook Basic Phylogenetic
Combinatorics [12], the introductory chapters of which also provide a nice mathe-
matical framework for working with trees and networks. However, there is a level of
abstraction in this book which mandates that readers may need to keep a running list
of concrete examples nearby to connect the text with their intuitive understanding
of trees and networks.

Exercise 19 Construct a phylogenetic network which displays the following quar-
nets: Either prove this collection distinguishes the network or find the set of all
networks which display this collection.

i 4 1 5
N
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In practice, the estimation of quarnets from data is likely to be imperfect. Thus,
even if we produce data from a model on an [n]-leaf semi-directed network, the
collection of estimated quarnets is likely to be incompatible. The same issue applies
no matter the size of the inferred subnetworks. In such cases, one would like to
construct a phylogenetic network which displays the maximum number of quarnets
or other semi-directed networks in a collection .27

Exercise 20 Find a phylogenetic network which displays the maximum number of
the following collection of quarnets.

—

%]

Research Project 5 Given a collection &/ = {Nj, Na, ---, Ni} of semi-
directed networks, give an efficient algorithm for computing a semi-directed
network N which maximizes the number of subnetworks in .27 displayed
by N.

As a warmup example, in the case of trees, there are two very popular approaches
to this problem. The first is described in a series of papers describing the ASTRAL
family of software [30], where the solution tree T is assumed to have certain features
which appear in the trees in 7. This is a very efficient algorithm which provably
solves the problem under this assumption. An alternative is the quartet MaxCut
family of algorithms [37] which provide a fast heuristic for solving this problem.
While it does not offer the same theoretical guarantees of the ASTRAL methods, it
also removes some of the restrictive assumptions of the ASTRAL method. Both of
these algorithms would be good starting points for exploration.
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In moving towards networks, one might examine the recent software SNAQ [38]
which builds phylogenetic networks based on input from a collection of quarnets.
This research problem is very broad and allows for many types of restrictions that
would still be interesting in practice. One should feel free to restrict both the types
of networks in the collection .2/ and the type of semi-directed network N which is
allowed. Consider restrictions both on the number of leaves, level, and number of
reticulation vertices.

3 Algebra of Phylogenetic Trees and Networks

In the previous section, we introduced networks as a possible explanation for the
evolutionary history of a set of species and explored some combinatorial questions
related to their structure. In this section we move from combinatorial to algebraic
questions. In particular, we study phylogenetic ideals, collections of polynomials
associated to models of DNA sequence evolution. Phylogenetic ideals associated
to tree models have been well-studied (e.g., [4, 13,42]) and have been used not
only for model selection but also to prove theoretical results about the models.
For example, they have been used to show that the tree parameters of certain
models are identifiable (e.g., [2,4,9, 28]). A model parameter is identifiable if
each output from the model uniquely determines the value of that parameter. This
is an important consideration for using phylogenetic models for inference, since
it would be undesirable to have multiple different trees explain our data equally
well. In contrast to trees, the ideals associated to semi-directed networks have not
been well-studied and the topic is rich enough that even the simplest networks give
rise to interesting research questions. Therefore, in this section, we will work with
phylogenetic semi-directed networks with only a single reticulation vertex. As an
undirected graph, a phylogenetic semi-directed network with a single reticulation
has a unique cycle of length k, and so we call these networks k-cycle networks.
Phylogenetic ideals are determined by two things: a model of DNA sequence
evolution and a tree or network. In this section, we fix the model of DNA sequence
evolution, and then focus on how the polynomials change based on different network
attributes. The model of evolution that is quietly sitting in the background is the
Cavendar—Farris—Neyman (CFN) model. While there are four DNA bases (adenine
(A), guanine (G), cytosine (C), and thymine (7)), the CFN model only distinguishes
between purines (A, G) and pyrimidines (C, T). Thus, it is a 2-state model of
evolution where the two states are represented by 0 and 1. For the CFN model on
a fixed n-leaf tree T, the mutations between purines and pyrimidines are modeled
as a Markov process proceeding along the tree. The numerical parameters of the
model determine the probabilities that mutations occur along each edge. Once the
numerical parameters are specified, the model gives a probability distribution on
the set {0, 1}"". Put another way, the tree determines a map, or parameterization,
that sends each choice of numerical parameters to a probability distribution.
Because each coordinate of this map is a polynomial, we can consider it as a
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ring homomorphism. The kernel of this homomorphism is the phylogenetic ideal
associated to T'.

We begin in Sect. 3.1 describing in greater detail how to construct an ideal from
an unrooted phylogenetic tree. In the subsequent sections, we show how a similar
process can be used to associate an ideal to different classes of k-cycle networks.
Phylogenetic network ideals were originally studied in [18], and it is likely they will
receive increasing attention as researchers look to apply methods that have proven
successful for trees to phylogenetic networks. In these sections, we also present a
number of research projects related to uncovering generating sets and properties of
network ideals as well as comparing the ideals for different networks.

While not essential for the projects presented below, for those interested in
learning more about the CFN model and the connections to phylogenetic ideals
we recommend [5]. One reason that we do not dwell on the details of the maps
referenced above is that we actually work in a set of transformed coordinates
called the Fourier coordinates, introduced in [14]. This is common when studying
phylogenetic ideals, as it makes many of the computations feasible. Though the
derivation and details of the transform are outside the scope of this chapter, they can
be found in [13, 14,41]. Viewing phylogenetic statistical models from an algebraic
perspective fits broadly into the field of algebraic statistics. An overview of some
of the basic concepts and significant results in this area can be found in [43, Chapter
15]. Similarly, many of the concepts below come from computational algebraic
geometry, and some good first references for students are [11, 20]. If the reader
has not yet had a course in abstract algebra, [3, Chapter 4] provides an excellent
introduction to the algebraic viewpoint on phylogenetics which is accessible to
readers who are familiar with matrices.

3.1 Ideals Associated to Trees

An ideal I of a ring R is a subset of R closed under addition and multiplication
by ring elements, that is, for all f,g € I, we have f + g € I, and for all
r € Rand f € I, we have rf e I. In this and the proceeding sections, our
rings of interest will be polynomial rings. The polynomial ring Q[xq, ..., x,]
is the set of all polynomials in variables xi, ..., x, with coefficients in Q. The
mathematical fields for studying polynomial rings and their ideals are ring theory
and commutative algebra. One subfield of commutative algebra is combinatorial
commutative algebra. In combinatorial commutative algebra, it is quite common
to encounter ideals arising as the kernel of ring homomorphisms described by a
combinatorial structure (such as a tree, graph, or simplicial complex). Phylogenetic
ideals are also defined in this way. To demonstrate the process for constructing a
phylogenetic ideal, we will begin by taking an in-depth look into how to construct
the phylogenetic ideal associated to the 4-leaf tree T pictured in Fig. 7.

For what follows, we will use Z, to denote the quotient group Z/27Z. This group
has two elements, 0 and 1, with addition modulo 2. We will see that the tree T
encodes a ring homomorphism between two polynomial rings R and S7. Because
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Fig. 7 An unrooted 4-leaf 1 3
binary phylogenetic tree

T has four leaves, the variables of Ry are indexed by all 4-tuples of the form
(i1, 17,13, 1i4) Where i1, ip,i3,i4 € Zp and i1 + ip + i3 + i4 = 0. This restriction
comes from the fact that the CFN model is a group-based model for the group Z,
[41]. Using this restriction on the indices (and dropping parentheses and commas),
we get

Rt = Q[q0000, g0011, 90101, 40110, 91001, 410105 41100, g1111].

The tree T has five edges, four of which are leaf edges and one of which is an
internal edge. The variables of the ring St come in two forms corresponding to
the two types of edges. Each of these variables has an upper and lower index. The
variables corresponding to the leaf edges are of the form a(()J ) , afl ) where Jj is the
label of the leaf and 0 and 1 are elements of Z,. The variables corresponding to the
one internal edge are b(()l) and bgl). Thus, the ring S7, with all its variables listed, is

1 1 2 2 3 3 4 4 1 1
St =Qlay’.ay".al’.a® . al ., a’ af?, aP, by", b1,

The structure of the tree T determines the following ring homomorphism:
¢r : Rt — St

defined by

H @ 3 @,
1 (qo0o00) = ayay’ag a by

D @) ) @1
¢r(qoorn) = aay’a’a Vbl

D 2 3 @,
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H @ 3 @),
or(quoo) = a\"a?ad’alV by

D 2 3 @1
¢r(qun) = a a?a’a Vb



48 E. Gross et al.

Notice that the image of each variable g;,;,;;;, under ¢r is a monomial that has
one variable for each leaf edge, a(()" ) or afJ ), and one variable, b(()l) or bgl), for the
internal edge. In order to determine the “color” (either O or 1) of each variable in
the monomial corresponding to ¢;,,i5i,, We consider the index (i1, iz, i3,14) as a
coloring of the leaves of T. The lower index of each leaf variable is just the color
of that leaf. To determine the lower index of the internal edge variable, we sum up
the colors (as elements of Zj;) on either side of the split 12|34 which is induced
by the internal edge (splits are discussed in Sect. 2.1). This sum is always the same
regardless of which side of the split we consider. For example, the variable go101
maps to a monomial with the variable bil). We could determine the subscript of this
variable by summing up the colors of 1 and 2 on one side of the split (0+ 1 = 1) or
by summing up the colors of 3 and 4 on the other side of the split (1 + 0 = 1).

We now can define the phylogenetic ideal of T. The phylogenetic ideal of T is
the kernel of ¢, that is,

IT = ker(¢T) = {f € RT : ¢T(f) = 0}

An example of an element in I is q111190000 — g110090011- Elements of I7 are
referred to as phylogenetic invariants as described in the introduction to this section.

The ideal Iy < Ry contains an infinite number of elements, but we would
prefer to have a finite way to describe I7. This is similar to the way that we
use bases in linear algebra to describe a vector space that has an infinite number
of elements. Luckily, the ideal I7 is finitely generated, meaning that there exist
gls--->»8&n € Rr such that for any f € Ir, there exist r(, ..., r, € Rt such that
f=rigr+rg + ...+ rngm- Any set {g1, ..., gn} that satisfies the preceding
definition is called a generating set of IT. The problem of finding generating sets
for phylogenetic tree ideals has been solved in many cases, and for small trees,
explicit lists of generators are available online at https://www.shsu.edu/~1dg005/
small-trees/, the work of which is described in Chapter 15 of [32].

Exercise 21 Show that the polynomial
4111140000 — 4110040011
is in I7. Find another polynomial in /7.

Exercise 22 Show that the kernel of any ring homomorphism is an ideal.

3.2 Ideals Associated to Sunlet Networks

To begin our discussion of network ideals, we will first consider a specific type
of phylogenetic semi-directed network called a sunlet. As an undirected graph, a
phylogenetic semi-directed network with a single reticulation vertex has a unique
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Fig. 8 A 4-sunlet network
and a 6-sunlet network

cycle of length k, and so we call such a network a k-cycle network. A k-sunlet
network is a k-leaf, k-cycle network. Starting with sunlet networks will allow us to
introduce network ideals in a simplified setting, before we show how to associate an
ideal to a general k-cycle network in Sect. 3.3.

Exercise 23 Show that as an undirected graph, a phylogenetic semi-directed
network with a single reticulation vertex has a unique cycle that contains the
reticulation vertex.

To describe how to associate a polynomial ideal to a sunlet, we will begin
by looking at the 4-leaf sunlet network N4 pictured in Fig. 8. As in the previous
section on trees, the sunlet network N4 encodes a ring homomorphism between
two polynomial rings. For the 4-sunlet, these two rings are called R4 and S4.
The variables of R4 are indexed by all 4-tuples of the form (i1, iz, i3, i4) where
i1,i2,13,14 € Zp and i1 + i» 4 i3 + i4 = 0. This is exactly the same as the ring Ry
in the previous section because both the 4-sunlet and 7" have four leaves, thus,

Ry = Q[CIOOOO’ 40011, 40101, 40110, 41001, 41010, 41100, 41111].

The ring S4 has two variables for each edge of N4 just as the ring St had two
variables for each edge of T. Since the sunlet network N4 has three more internal
edges than 7', the polynomial ring S4 contains six additional variables not in St.
Thus,

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4
S4=Q[a(() ),a§ ),a(() ),a§ ),aé ),a§ ),aé ),ag ),b(()),b§ ),bf) ),b§ ),b(() ),b§ ),b(() ),b§ 1.

The 4-sunlet N4 defines the map

@4 Ry — S4

M _2) 3 @12 L0 2,3 @
iy iz izig > Gy 743,474y, (bi1 bi1+i2bi1+i2+i3 +bi2 bi2+i3bi2+i3+i4)'
The image of each variable in R4 under the map ¢4 is listed in Example 4. To

understand the combinatorial nature of the parameterization ¢4, observe that if we
remove one of the reticulation edges of Ny, the result is an unrooted 4-leaf tree
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Fig. 9 The 4-sunlet network
N4 and the two trees 77 and
T, obtained by removing each
reticulation edge

with labeled leaves (see Fig. 9). These two resulting trees, 77 and 75, are not binary
since removing a reticulation edge in the network will leave vertices of degree two.
Consider the image of ¢;,;,i,i, under ¢4. Multiplying through by al.(ll)al.(zz)aﬁ)ai(f)
gives us a binomial where the first part corresponds to the tree 77 and the second part
corresponds to the tree 7. The indices of the a variables appearing in ¢4(q;, iy,is,is)
correspond to the coloring (i1, i2, i3, i4) of the leaves of T} and 7>, while the indices
of the b variables are obtained by considering the splits of 77 and 73. In particular,
the index of the »/) variable in the first part of the binomial is obtained by removing
the jth edge of 77 and summing the colors (as elements of Z) on either side of the
induced split, and the index of the b\ variable in the second part of the binomial is
obtained by a similar process on 7>. Notice that 77 and 73 each have three internal
edges, and thus, there are three b variables in each part of the binomial. As in the
tree case, the phylogenetic ideal associated to Ny is the kernel of the map ¢a4:

14 := ker(¢s).

As we will see in Example 4, the ideal /4 is generated by a single polynomial,
4011041001 — 4010141010 + g001141100 — 400004 1111-

Exercise 24 Verify that the polynomial go11091001 — qo10191010 + go01191100 —
q000041111 18 in I4.

Now that we have gone through the process of constructing the phylogenetic
ideal for the 4-leaf sunlet, let us generalize the procedure for arbitrary k-sunlets. Let
Ny be the k-sunlet network with the leaves labeled clockwise, from 1 to &, starting
from the leaf extending from the single reticulation vertex. For example, N is the
network pictured at right in Fig. 8. For each k, we now define two polynomials rings,
Ry and S, a ring map ¢, and the phylogenetic ideal .

The first polynomial ring we consider is Ry, which is a generalization of R4.

Ry = Q[qil»~-~,ik il ip €Zo, i1+ ...+ i =0]

Exercise 25 Enumerate the indeterminates, i.e., variables, for R3. In general, how
many indeterminates does Ry have?

The next ring we will consider is a ring with two indeterminates associated
to each edge in Ng. The k-sunlet network N; has 2k edges, k of which are leaf
edges and k of which are internal (non-leaf) edges. We label the leaf edges of the
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network from 1 to k to match the corresponding leaf labels. Similarly, we label the
internal edges from 1 to k, starting with the reticulation edge clockwise from the
leaf edge labeled by 1 and continuing around the sunlet (as in Fig. 8). To each edge
of the sunlet, we associate two variables, one for each element of Z,. We denote
the variables for the leaf edge labeled by j as a(() /) and a1 ) and the variables for the

internal edge labeled by j as bé] ) and bg’ ). The second polynomial ring of interest is
. G () . ; ;
Sk = Q[ai s bi 1 <1< k’ J € ZZ]

Now that we have defined the rings Ry and Si, we can define the ring map ¢y and
the ideal I;. The ideal I; associated to the phylogenetic network Ny is the kernel of
the ring homomorphism:

dr @ Ry — Sk

ON (k) ) ()
qiy,...ix > a . (1_[ bllj+ i + Hblzj+ +lj

In other words,

Iy :=Kker(¢r) = {f € R : ¢ (f) =0}.

Exercise 26 For k = 3 write down the rings Ry and Si. Let f = 3q1‘1,0q12’0’1 +
40,0,0- Compute ¢3(f).

Exercise 27 Find a non-zero polynomial in /3 or prove that no such polynomial
exists.

As mentioned previously, when studying ideals associated to phylogenetic
networks, we are interested in the polynomials in the ideal. In some cases, just
knowing a few polynomials in the ideal is helpful, but we can obtain a more
complete understanding of the ideal if we can determine a generating set.

There are algorithms based on the theory of Grobner bases for determining the
generating set for an ideal from its parameterization. A Grobner basis is a special
type of generating set for an ideal and we encourage curious readers to learn more
about them before starting on some of the research problems in this section (see,
e.g., [11,40]). However, while these algorithms give us a means of determining a
generating set for an ideal, in most cases of interest, it is infeasible to perform all
the computations necessary by hand. Therefore, we will want to use a computer
algebra system to do most of the tedious work for us. In this chapter, we will use the
computer algebra system Macaulay? [17]. As a first example, we show below how
to use this program to find a generating set for /4, the ideal associated to the sunlet
network Nj.
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Example 4 Let us consider N4, the 4-leaf sunlet network pictured in Fig. 8. Recall
that for N4, the two rings of interest are

R4 = QIlq0000, 0011, 90101, 0110, g1001, 91010, §1100, g1111], and

542010,V @, 0@, & a® a®.a® 10 5D o2 1@ 4D 5P 4P o

The ring homomorphism ¢4 is described as follows:

1 2 (3 4
Batanoo0) = a0l

D 2 (3) ¢
®a(qoo11) = a(() )a(() )af 'a®

H () (3) @
$a(gor0) = aia?ai’ a;”

D 2 G @
@4(qo110) = a(() )af) Dy ()

( (1)b(2)b(3) +b(()2)b(()3)b(()4))
(bo )
(Bo )
(bo )
D, (3) (4)( “)b(z)b@+b(2>b(3>b(4>),
( )
(b1 )
(b} )-

’

(D@53 | pOpDp®

b ,
b(l)b(z)bG) +b(2)b(3)b(4) i
b BB 1 p@pPp®),
$4(q1001) = a; ‘a; a

da@ion0) = ¢Pa@aPa® (VP 1 p@p®p®

1 2) (3 4
Batario0) = aaPaPal?

H @ (3 @
¢a(qr) = afaPalaf?

3

b(l)b(Z)bG) b(Z)b(3)b(4)

’

pVp@p® 4 @ pDp

Using Macaulay? we can compute a generating set for 1. In the code below, we use
T for this ideal, R and S for the rings R4 and S4, and phi for the map ¢4.

i1: R = 00lg_{o0,0,0,0}, g_{0,0,1,1}, g {0,1,0,1},
a_{o,1,1,0},
g_{1,0,0,1}, g {1,0,1,0}, g {1,1,0,0},
g {1,1,1,1}]
i2: S = QQlal 0, @l 1, a2 0, a2_1, a3_0, a3_1, a4 0, a4 1,

bl 0, bl 1, b2 0, b2 1, b3 0, b3 1, b4 0, ba_11;

i3: phi = map(S, R,
{a1_0xa2 0xa3 0wxa4 O«
al Oxa2 0xa3_1xa4 1x

(bl _0xb2 0xb3 _0+b2 0xb3 0xb4 0),
(bl _0%b2 0%b3 1+b2 0%b3 1xb4 0),
al Oxa2 1xa3 Oxa4 1+ (bl 0xb2 1xb3 1+b2 1xb3 1xb4 0),
al Oxa2 1+a3 1%a4 O (bl 0%b2 1xb3 0+b2 1xb3 0+b4 0),
al 1xa2 Oxa3_Oxa4 1+ (bl _1xb2 1+b3 1+b2 0xb3 0xb4 1),
al 1xa2 0+a3 1%a4 O (bl 1xb2 1xb3 0+b2 0+b3 1xb4 1),
al 1xa2 1xa3_Oxa4 0+ (bl _1xb2 0+b3 0+b2 1xb3 1xb4 1),
al 1xa2 1%a3 1xa4 1x (bl 1xb2 0xb3 1+b2 1xb3 0xb4 1)})
i4: I = ker phi

o4: ideal(g {0, 1, 1, 0}%q {1, 0, 0, 1}-g {0, 1, 0, 1}
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g {0, o, 1, 1}*q {1, 1, 0, 0}-g {0, 0, 0, 0}
*q_{1, 1, 1, 1}).

The output of the last command tells us that I4 is generated by a single
polynomial, namely

4011041001 — 4010141010 + g001141100 — 00004 1111-

Exercise 28 Compute the ideal /5 for the 5-sunlet N5 using Macaulay2 or another
computer algebra system. How many generators are returned? What are the degrees
of the returned generators?

Exercise 29 Verify (computationally or by hand) that the polynomial

401100910010 — 901010410100 + 00110411000 — 00000411110
is in the ideal I5.

On a standard laptop, the computation in Exercise 28 will finish, but not imme-
diately. You may notice the difference in the time it takes to run the computation
for 14 in Example 4 and for /5 in Exercise 28. As we increase k, computing [}
becomes even more complex, to the point that a computer may take several hours
or days or may run out of memory before returning a generating set. The computer,
of course, will execute an algorithm to determine a generating set for /x. In many
cases, however, executing all the steps of the algorithm is not actually necessary to
obtain the information about the ideal that we are interested in. Therefore, we can
use some tricks and techniques to reduce the size of the computations and extract
information about the ideals.

For example, we can use some of the built-in options in Macaulay? such
as SubringLimit, a command that stops the computation after a specified
number of polynomials have been found. If using this strategy, we will obtain a
set of polynomials in the ideal I;, but we will not have a certification that these
polynomials generate I;. However, if we let J be the ideal, they generate then we
know that J C I;. We can show that J = I} if we can show that J is prime and that
the dimension of J is equal to that of I;. Anideal I C R is prime if for all f, g € R,
if fg € I,then f € I or g € I. Checking whether an ideal is prime and finding its
dimension can be done in Macaulay2 using the 1 sPrime and dim commands. Of
course, we do not have a set of generators for I, since that is what we are trying to
find, so we cannot use dim to find its dimension. However, we can still determine a
lower bound on the dimension of I; from the map ¢ using the rank of the Jacobian
matrix as shown in Example 5. Since J C I, we have dim(/;) < dim(J), and so if
the rank of the Jacobian is equal to dim(J), then dim(/;) = dim(J).

This SubringLimit method of determining a generating set for an ideal was
used to prove Proposition 4.6 in [18]. That paper also includes supplementary
Macaulay?2 code which may prove useful.
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Example 5 Let I = {qo11041001 — 4010191010 + q001191100 — gooooq1111) be the
ideal returned from Example 4. The following Macaualy2 code is used to determine
whether the dimension of the ideal I is the same as the dimension of the ideal I4 as
well as whether or not 7 is prime. This serves as verification that / is indeed equal
to I4.

i5: phimatrix = matrix{{

al Oxa2 Oxa3 _Oxa4 0+ (bl 0xb2 0+b3 0+b2 0xb3 0xb4 0),
al Oxa2 O0xa3_1xa4 1x(bl 0xb2 0xb3 1+b2 0+b3_1xb4 0),

al Oxa2 1+xa3 0%a4 1% (bl 0%b2 1xb3 1+b2 1xb3 1xb4 0)
al Oxa2 1+a3_1xa4 0% (bl 0%b2 1xb3 0+b2 1+b3 0+b4 0),
al 1xa2 O0+xa3 0%a4 1% (bl 1xb2 1xb3 1+b2 0xb3 0+b4 1),

( )

( )

( )

’

al 1xa2 0xa3_1wxa4 0% (bl _1xb2 1xb3 0+b2 0+b3_1xb4 1),
al l1+xa2 1%a3_0xa4 0% (bl _1+b2 0xb3 0+b2 1xb3 1xb4 1
al 1xa2 1%a3_1wxa4 1% (bl _1+b2 0xb3_1+b2 1xb3 0xb4 1

1}
i6: rank Jacobian phimatrix == dim(I)

i7: isPrime I.

Challenge Problem 9 Compute I in Macaulay? by imposing a limit on the
number of polynomials returned using SubringLimit. Verify that the ideal that
is returned is indeed /.

One will only get so far using the strategy described above, as for larger k, there
may be many polynomials required to generate I; and they may take a very long
time to find. In these cases, just being able to compute the ideal I; becomes an
interesting project on its own.

Research Project 6 Find a generating set for the ideal I; of the k-sunlet
network Ny when k =7, 8, 9.

Moving from the computational to the theoretical, it is sometimes possible to
give a description of a generating set for a whole class of ideals.

Research Project 7 Give a description of a set of phylogenetic invariants in
the sunlet ideal /. Does this set of invariants generate the ideal? Does this
set of invariants form a Grobner basis for the ideal with respect to some term
order?
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We can envision two different approaches to Research Project 7. The first is to
compute the sunlet ideals for a range of examples. As you are able to compute I}
for higher k, patterns should emerge. We see this even for k = 4 and k = 5. For
example, Exercise 29 might give a hint of how we can find some invariants for larger
k by doing computations for small k. Once you discover a pattern, you could then
try to prove that this pattern holds in general.

The second approach would be to try to construct invariants for sunlet networks
using the known invariants in the ideals of the trees that they display. As an example,
consider the map ¢4 encoded by the sunlet N4. Consider the following two maps.
The first, g7y : R4 — Sa, sends g, iyi5i, to the term of ¢4(q;,iiyi,) that includes bl.(ll)
and the other, ¢7, : R4 — S4, sends g;,;,i5i, to the second term of ¢4(q;,i,isi,) that

includes bG)

iy hizig” So, for example,

D @ 3 @), 2,0 D@ G #,2),03),¢
o, (qooo)=a ai” i ag by bi” bE and ér, (qooe0)=ag aal s bi b b,

The ideal I7, = ker(¢r,) is the ideal of the tree created by removing the reticulation
edge e4 from the 4-sunlet in Fig. 8. The ideal I7, = ker(¢r,) is the ideal of the tree
created by removing the reticulation edge e;. The problem of finding invariants for
trees is discussed briefly in Sect. 3.1.

Tree ideals are parametrized by monomials which makes it easier to find
invariants. In particular, invariants for ideals parameterized by monomials can
be found by examining the additive relationships between the exponents of the
monomials. This means that finding invariants for these ideals can be done using
only tools from linear algebra.

Example 6 Let f : R — R be the map defined by (11, 1) > (7, tit2, 13). We
can represent this map by a 2 x 3 matrix A, where the ij-th entry is the exponent of
t; in the j-th coordinate of the image of (71, ),

A= 210 .
012
Elements of the integer kernel of A encode binomial invariants in ker(f). For
example, the integer vector (1, —2, DT is a vector of integers in ker(A). We can

interpret the positive entries as the monomial y;y3 and the negative integers as the
monomial y%, and conclude that y> — y1y;3 is in ker(f).

Notice in the preceding example that while the parameterization was in terms of
monomials, the invariant we constructed is a binomial. While there are many dif-
ferent formal definitions, the class of ideals which are parameterized by monomials
are called toric ideals and it is known that toric ideals are generated by binomials.
This fact is proven in [40, Chapter 4], which might also serve as a good reference
for learning more about the invariants of toric ideals. The following exercise shows
why toric ideals may prove useful when trying to find invariants for sunlet ideals.
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Exercise 30 Consider the ideals I4, I1, = ker(¢7,), and I, = ker(¢r,) described
above.

(a) Show thatif f € Iy, then f € I, N Iy,.

(b) Compute I, = ker(¢r,) and I, = ker(¢r,) using Macaulay2. You can
verify that your computations are correct using the online catalog of invariants
referenced in Sect.3.1. Specifically, by looking under “Invariants in Fourier
coordinates” for the “Neyman 2-state model” (another name for the CFN
model).

(c) Verify that the generator for /4 found in Example 4 is contained in /7, and in
Ir,. (Hint: To determine if a polynomial f is contained in an ideal /, you can
verify in Macaulay? that £ $ I == O returns TRUE).

The previous exercise shows that I4 C I, N Ir,. Put another way, invariants in
I, and Ir, are candidates to be invariants in I4. Similar statements hold for all of
the ideals I} in this section, and for the ideals I that we describe in the next section.
Thus, exploring toric ideals might prove useful for finding network invariants.

3.3 Beyond Sunlet Networks

Sunlet networks have a very particular structure, and the ring map we described
in Sect. 3.2 is specific to sunlets. In this section, we set up the ring map ¢ more
generally, which will allow us to explore the algebra of general n-leaf, k-cycle
networks, such as the two pictured below in Fig. 10.

Let N be an n-leaf, k-cycle network. The first ring we will consider is of the same
form as that from the previous section,

R, :=Q[qi1 .... in S Alse.osin €Zo, i1+ ... +i, =0].

The next ring we will consider is a ring with two indeterminates associated to
each edge of N. As with the sunlet, an n-leaf, k-cycle network has 2n edges, but
unlike with sunlets, we no longer make a distinction between the leaf edges and the
interior edges when labeling and so label all the edges by {1, ..., 2n}. As before, we
associate two parameters to each edge, indexed by the edge label and the elements
of Z».

Fig. 10 A 6-leaf, 3-cycle 1 4 1 4 9 5
network and a 10-leaf,
5-cycle network &
3 7 i
A
ELY 3 :

10

2 6 5
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Sp = Q[a(()l),ail) 1 <i<2n].

Our next step will be to define the map ¢y : R, — S,. If we remove either of
the reticulation edges of N, the result is an unrooted n-leaf tree with labeled leaves.
These two trees, 71 and 75, are not binary since removing a reticulation edge in the
network will leave vertices of degree two.

The map ¢y sends each variable in R, to a binomial in S, where the two terms
are determined by 7| and 73. For what follows, let L,, C [2n] be the set of edge

indices of Tj,. For the variable g;,, . ; the term that is associated to 7,, will be a

monomial, with one indeterminate, a(()’ ) or ai’ ) for each edge of the tree. In order to

determine the “color” (0 or 1) of each edge indeterminate, we consider (i, ..., i)
as a labeling of the leaves of T, by elements of Z;. If we remove an edge e; of
T, the resulting graph has two connected components which splits the leaves into
two sets. Let s}" (i1, ..., i,) be the group sum of the leaf labels on either side of the
split induced by removing the edge e; from T,,. (Note the sum of leaf labels is the

same on either side of the split.) The indeterminate associated to the edge e; is then
)]

a 1y Thus we have the map
l l
oN R, — S,
o (/) 0
Qit.enin = 1_[ S (ll ~~~~~ in) 1_[ as%(il ~~~~~ in).
JjeLy j€Ly -

Now the phylogenetic ideal I associated to N is the kernel of ¢y :

Iy :=ker(¢n) ={f € Ry = on(f) =0}

Example 7 Let N be the 6-leaf, 3-cycle network pictured in Fig. 10. Removing the
reticulation edges of N creates two trees, 71 and T3, with edge indices L1 = [12] \
{9} and L, = [12] \ {10}. To determine the parameterization for the coordinate
q111100, We color the leaves by (1, 1, 1, 1, 0, 0). Here, we show vertices and edges
colored by 1 as magenta.

To determine the color of an edge, we sum the leaf colors on either side of the
split created by removing that edge. For example, the edge e in 77 corresponds to
the split 134]|256. Since
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h+i3+tia=14+14+1=ir+is5+ig=14+0+0=1,

e11 is colored by 1. Thus, the indeterminate for eq; is af“). Then for the map ¢y,
we have

D@ @) @ () © (7 8 (10) (1) (12
qinoo = ayaPaNaVad oV afaP a)'"afVaf? +

agl)a§2)a§3)a§4)a(()S)a(()ﬁ)a(()7)a(()8)a§9)a§ll)a(()12)‘

Exercise 31 Let N be the quarnet with leaf label set {1, 2, 3, 4} from Exercise 20.
Write out R, S, and ¢ . Use Macaulay?2 to compute /.

Exercise 32 Let N be the sunlet network Nj. Show that the ring map in this section
is the same ring map as the previous section if we replace the b indeterminates with
the appropriate a indeterminates.

Notice that if we swap the leaf labels 1 and 3 in the 4-sunlet N4, we obtain a
different 4-sunlet network. In the following challenge problem, we will see how
changing the labeling of a network changes which polynomials are in the ideal.

Challenge Problem 10 How many labeled 4-leaf sunlets are there? Compute Iy
for each of the 4-leaf sunlets. How are the generating sets of each of these ideals
related to 14?

For the sunlet graphs, we could factor all of the indeterminates corresponding to
the leaf edges from the binomial but no other indeterminates. In essence, we could
write the image of every variable in Ry as a monomial multiplied by a binomial. We
can also do this for the k-cycle networks, and as Example 7 shows, sometimes we
can factor out many more indeterminates. From that example, we could write

d111100 > ail)ail)a53)a§4)a(()5)a(()6)a87)a§1l)a(()IZ) (a§8)a§]0) + a§9)a(11)).

The following challenge problem is aimed to get at this general phenomenon for
k-cycle networks.

Challenge Problem 11 Write out the map ¢y for several 4-leaf and 5-leaf k-cycle
networks. For each graph, which edge indeterminates can you factor for every
binomial in the map? Can you describe the general pattern for k-cycle networks?

In our explorations we have seen that different networks may induce different
phylogenetic ideals. The ideals of certain networks may contain the ideals of other
networks with the same leaf set. This suggests we might try to understand the
relationship between ideal containment and the corresponding network structures.
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Research Project 8 Draw all of the 5-leaf level-one networks. Which net-
works have the same ideal under the CFN model? Which networks have ideals
that are contained in one another?

To explore the structure of the ideals you might use the Macaulay 2 command

isSubset (J, I) to determine if the ideal J is contained in the ideal /. Similarly,

I

== J will tell you if two ideals are equal. In order to formalize the ideal

containment structures you identify, it might be helpful to use a mathematical object
called a partially ordered set (poset). The definition of a poset as well as examples
can be found in Chapter 6 of [27].
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Abstract

Tropical mathematics redefines the rules of arithmetic by replacing addition with
taking a maximum, and by replacing multiplication with addition. After briefly
discussing a tropical version of linear algebra, we study polynomials built with
these new operations. These equations define piecewise-linear geometric objects
called tropical varieties. We explore these tropical varieties in two and three
dimensions, building up discrete tools for studying them and determining their
geometric properties. We then discuss the relationship between tropical geometry
and algebraic geometry, which considers shapes defined by usual polynomial
equations.
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1 Tropical Mathematics

Take a piece of graph paper, or draw your own rectangular grid. Pick some of
the grid points, and join them up to form a polygon. Be sure it is convex, so that
all the angles are less than 180°. Now, start connecting grid points to each other
with line segments, never letting any two line segments cross. Keep going until you
cannot split things up anymore. You should end up with lots of triangles, like the
first picture in Fig. 1.

Using a different color, say purple, put a dot in every triangle. Connect two dots
with a line segment if their triangles share a side. If a triangle has a boundary edge,
just draw a little edge coming out of the dot. Your picture will now look like the
middle of Fig. 1. Now, try to draw your purple shape again, but with the following
rule: each line segment you draw should be perpendicular to the shared side of the
triangle.! Now you might have a picture like on the right in Fig. 1. Congratulations!
You have drawn your first tropical curve.”

Tropical curves, and more generally tropical varieties, are geometric shapes
that can be defined by familiar equations called polynomials. However, these
polynomials are interpreted using different rules of arithmetic than usual addition
and multiplication, replacing addition with taking a maximum and multiplication
with addition. The study of these shapes is called tropical geometry, although we
can also study other areas of mathematics with these new rules of arithmetic. In
general, we call these subjects tropical mathematics.

The first question most people have about tropical mathematics is why it is
called “tropical.” One of the pioneers of tropical mathematics was Imre Simon,
a mathematician and computer scientist who was a professor at the University of
Sao Paulo Brazil. The adjective tropical to describe the field was coined by French
mathematicians (Dominique Perrin or Christian Choffrut, depending on who you

Fig. 1 Drawing a tropical curve

1You can draw this shape away from the polygon, so it is ok if your line segment between the two
dots doesn’t cross the side of the triangle anymore! If it does not seem possible: go back to Step 1,
draw your triangles differently, and try again.

2Unless you have drawn one before. But hopefully it was fun anyway!
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ask [47,52]) in Professor Simon’s honor, based on the proximity of his university to
the Tropic of Capricorn.

The second question most people have is why on Earth we would ever redefine
our rules of arithmetic in this way. It turns out that it leads to some incredibly useful
and beautiful mathematics. The first applications of this max-plus arithmetic were in
the world of tropical linear algebra, where studying matrix multiplication and related
problems in this setting helped solve automation and scheduling problems. More
recently, tropical geometry arose as a skeletonized version of algebraic geometry,
a major area of mathematics that studies solutions to polynomial equations.
By “tropicalizing” solution sets to polynomial equations, we can turn algebro-
geometric problems into combinatorial ones, studying more hands-on objects and
then lifting that information back to the classical world. Beyond having applications
to computational algebraic geometry, this has allowed for theorems, some new and
some old, to be proven in a purely tropical way.

1.1 Tropical Arithmetic and Tropical Linear Algebra

The set of real numbers R, equipped with addition 4+ and multiplication x, has
the algebraic structure of a field. This means we can add, subtract, multiply, and
divide (except by zero), and that arithmetic works essentially how we expect it to.
For instance, there is an additive identity 0, which does not change anything when
added to it; and there is a multiplicative identity 1, which does not change anything
when multiplied by it. The operations also play well together: for any a, b, ¢ € R,
we have a x (b+c) = a x b+ a x c. If we forget about the fact that we can divide
for a minute, all these properties (together with commutativity and associativity of
our operations) mean that (R, +, x) is a commutative ring with unity.

Let us now redefine arithmetic on the real numbers with tropical addition @ and
tropical multiplication ©, where a®b = max{a, b} anda®b = a+b. So,2d3 =3
and 2 © 3 = 5. Instead of only allowing real numbers, we use the slightly larger set
R = R U {—00}, where —oo has the property that it is smaller than any element of
R. This means, for instance, that —co @2 =2 and —00 © 2 = —o0.

The triple (R, ®, ©®) almost has the structure of a commutative ring with unity,
with —oo as the additive identity and O as the multiplicative identity. However,
elements do not have additive inverses. The equation 1@&x = 0 has no solution, since
we cannot “subtract” 1 from both sides. Thus, the triple (E, @, ©) is a semiring, and
in particular we call it the tropical semiring.>

3We could have just as easily defined tropical addition as taking the minimum of two numbers.
(Instead of —oo, we would have used co as our additive identity.) Some researchers use the min
convention, which is especially useful when studying connections to algebraic geometry; others
use the max convention, which is more useful for highlighting certain dualities. Pay attention to
the introductions of books and papers to determine which convention they are using!
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Exercise 1 Verify that tropical addition and tropical multiplication satisfy the law
of distributivity. That is, show that for any a, b, ¢ € R, we have a © bdc) =
(a ® b) ® (a O c¢). Then explain why every element of R, besides the additive
identity, has a multiplicative inverse. Because of this it would also be reasonable to
refer to (R @, ©) as the tropical semifield.

Historically, the first use of these max-plus operations as an alternative to plus-
times came in the world of max-linear algebra, which is similar to linear algebra
over the real numbers except that all instances of 4 and x are replaced with @& and
©. An example of matrix multiplication with these operations would be

52 10 ) _ ( 50H8202) (GONOR2O0-0) \ _ (6 5
(215) o) (<71®1)®(8®2) (*160)69(8@700)) = (1o >1)- M

There are many natural questions, equations, or definitions coming from usual
linear algebra that, when studied tropically, boil down to a scheduling, optimization,
or feasibility problem. We list a few here, and refer the reader to [8] for more
details:

¢ Solving equations of the form A ©® x < b, where A and b are given, solves a
scheduling problem.

¢ Finding the determinant of a matrix solves a job assignment problem. (We have
to be careful what we mean by “determinant,” since there are no negatives
tropically!)

* Finding an eigenvalue of a matrix finds the shortest weighted cycle on the
weighted graph given by the matrix. (And strangely, this matrix only has that
one eigenvalue.)

Challenge Problem 1 Explain why each of the above linear algebra topics has the
given interpretation when working tropically.

Research Project 1 Study the complexity of tropical matrix multiplication.
For both tropical and classical matrix multiplication, the usual algorithm for
multiplying two n x n matrices (namely taking the dot product of rows and
columns) uses 73 multiplications. However, an algorithm for classical matrix
multiplication due to Strassen [53] has a runtime of 0 (n*897), with more
recent algorithms pushing the runtime down to O (n>372863%) [33]. Can such
improvements be made for tropical matrix multiplication?

More generally, study the computational complexity of problems in max-
linear algebra.
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1.2 Tropical Polynomials and Tropical Varieties

A traditional polynomial in n variables over R is a sum of terms, each of which
consists of a coefficient from R multiplied by some product of those n variables
(possibly an empty product; possibly with repeats). We study the set of points where
these polynomials vanish; in other words, we set these polynomials equal to 0, and
study the solution sets in R”".

Example 1 The polynomial x> — 5x + 6, the polynomial x> + y? — 1, and the
polynomial x> + y? 4+ z2 — 1 are polynomials in one, two, and three variables,
respectively. The solution sets obtained by setting these polynomials equal to O are
the finite set {2, 3} in R; the unit circle in R?; and the unit sphere in R3, respectively.

Note that the solution set of {2,3} to x> — 5x + 6 = 0 (usually referred to
as the roots of the polynomial) gives a factorization, namely x> — 5x + 6 = (x —
2)(x —3). This illustrates the fundamental theorem of algebra: that any non-constant
polynomial in one variable can be factored into linear terms, each of the form x — «
with o a root.*

Algebraic geometry is the field of mathematics that studies shapes defined by
the vanishing of polynomials. Tropical geometry, in parallel, studies shapes defined
by tropical polynomials. Tropical polynomials are the same as usual polynomials,
except with all addition and multiplication replaced with tropical addition and
tropical multiplication. This includes multiplication of variables, so that x?y is
interpreted asx Ox Oy =x+x +y =2x +y.

Example 2 The tropical polynomial in one variable x> @ (2 © x) @ (—1) can be
written in classical notation as max{2x, x 4+ 2, —1}. The graph of this polynomial,
interpreted as a function from R to R, is illustrated in Fig. 2.

Although we could set a tropical polynomial equal to 0, the resulting solution
set would not be especially meaningful: most tropical polynomials in one variable
are equal to 0 at at most one point, which does not give much information about the
polynomial. Instead, we study the points where the maximum is achieved (at least)
twice. In the polynomial from Example 2, the maximum is achieved twice at two
points: when x = —3 (where the 2 © x and —1 terms tie for the maximum), and
when x = 2 (where the x2 and 2 © x terms tie for the maximum).

“4There is a bit more fine print: we must work over C, the field of complex numbers, which is
algebraically closed; and we may have to include multiple copies of the same term, based on the
multiplicity of the root.
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Fig. 2 The graph of the
tropical polynomial
PO2ox® (=1

Definition 1 We say that a tropical polynomial p(xy, ..., x,;) vanishes at a point
(ay, ..., ay,) if the maximum in p(ay, ..., a,) is achieved at least twice. If p(x)
is a tropical polynomial in one variable that vanishes at a, we say that a is a root
of p(x).

As with classical roots, we can give tropical roots a notion of multiplicity: it is
the change in slope going from one linear portion of the graph to the next at that
root. So in Example 2, both roots have multiplicity 1, since the slope changes from
0 to 1, and then from 1 to 2.

Exercise 2 We say that a tropical polynomial in one variable has a root at —oo
if the leftmost linear part of its graph does not have slope 0; the multiplicity of
that root is defined to be the slope of that ray. With this definition, prove that any
tropical polynomial in one variable of degree n has exactly n roots in R, counted
with multiplicity. (In this sense, R is “tropically algebraically closed.”)

A natural question to ask is whether the tropical roots of a tropical polynomial in
one variable have any real meaning. At least in our example, they give information
about how to factor the polynomial: the reader can verify that 2eQRox)®d(—4) =
(x & —3) © (x @ 2). This property holds in general, if we are willing to consider
factorizations that give the correct function, even if not the correct polynomial.
(Check and see why x2@0and x2® (=100 ® x) ® 0 define the same function, even
though they are different polynomials!)

Challenge Problem 2 Prove the tropical fundamental theorem of algebra: that any
tropical polynomial p(x) in one variable is equal, as a function, to

cCOXDaMOEDa)M O+ O (x B o), ()

where «f,...,q; are the tropical roots of p, with multiplicities ui, ..., U,
respectively, and where c is a constant.
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Research Project 2 Study the factorization of tropical polynomials in more
than one variable. Work in this direction has been done in [37], who provide
efficient algorithms for certain classes of polynomials, even though in general
this is an NP-complete problem.

Moving beyond polynomials in just one variable, we obtain tropical vanishing
sets more complex than finite collections of points. In Sect.2 we study tropical
polynomials in two variables in depth, as well as the tropical curves they define
in R2. In Sect. 3 we consider tropical polynomials in three variables, which define
tropical surfaces. We also describe how intersecting such surfaces can give rise to
tropical curves in three dimensions. In Sect.4 we discuss the connection between
algebraic geometry and tropical geometry through the tool of tropicalization.

1.3 Some Tropical Resources

Throughout this chapter we provide many references to books and articles on
tropical geometry, both as sources for results and as great places to find ideas
for research projects. We will frequently reference An Introduction to Tropical
Geometry by Maclagan and Sturmfels [39], a graduate text that thoroughly develops
the structure of tropical varieties and their connection to algebraic geometry. That
book uses the min convention, while we use the max convention, so we adapt their
results as necessary.

The material presented in this chapter, as well as in [39], looks at tropical
geometry from an embedded perspective, where tropical varieties are subsets of
Euclidean space. Another fruitful avenue is to look at tropical varieties, especially
tropical curves, from an abstract perspective, under which tropical curves are
thought of as graphs, possibly with lengths assigned to the edges. In the case of
graphs without edge lengths, this theory is thoroughly explored in [16]. We also refer
the reader to [3, 13, 15,22,41] for research articles incorporating this perspective.

Finally, there are many fantastic computational tools that help in exploring
tropical geometry, both for computing examples and for implementing algorithms.
Here are a few that we will reference in this chapter, all free to download:

e Gfan [29], a software package for computing Grobner fans and tropical
varieties.

e Macaulay?2 [25], a computer algebra system. Especially useful for us are the
Polyhedra and Tropical packages.

e polymake [23], which is open source software for research in polyhedral
geometry. Among many other things, it can deal with polytopes and tropical
hypersurfaces.
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e TOPCOM [50], a package for computing Triangulations Of Point Configurations
and Oriented Matroids. As we will see in Sects.2 and 3, being able to find
triangulations of polygons and polytopes goes hand in hand with researching
tropical varieties.

2 Tropical Curves in the Plane

Let p(x, y) be a tropical polynomial in two variables with at least two terms. Let S
be the set of all pairs (i, j) € Z? such that a term of the form c; i O x' © y/ appears
in p(x,y) with ¢;; # —o0; in other words, S is the set of all exponent pairs that
actually show up in p(x, y). We can then write our polynomial as

.= P ajox oy, 3)
@i, j)es
or in classical notation as
p(x,y) = max {c¢;j +ix + jy} “4)
(i,j)esS

As established in Definition 1, we say p(x, y) vanishes at a point if this maximum is
achieved at least twice at that point. We call the set of points in R* where p vanishes
the tropical curve defined by p. Let 7 (p) denote this tropical curve.

Example 3 Let p(x,y) = x & y & 0. Written in classical notation, p(x,y) =
max{x, y, 0}. The maximum in this expression is achieved at least twice if two of
the terms are equal, and greater than or equal to the third. This occurs at the point
(0,0),> and along three rays emanating from this point: when x = y > 0, when
x =0 >y, and when y = 0 > x. The tropical curve .7 (p) is illustrated in Fig. 3.
As mentioned in Exercise 3, we call this tropical curve a tropical line.

Fig. 3 The tropical line
definedby x & y © 0

5In fact, the maximum occurs three times at this point.
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Exercise 3 Any tropical curve defined by a tropical polynomial of the form a ©x ®
bOy®c,witha, b, c € R, is called a tropical line. Determine all the possibilities
for what a tropical line can look like. What if we allow one of a, b, or ¢ to be —oc0?

2.1 Convex Hulls and Newton Polygons

A setin R? (or more generally in R") is called convex if any line segment connecting
two points in the set is also contained in the set. The convex hull of a collection of
points is the “smallest” convex set containing all the points.® The Newton polygon
of p(x, y), written Newt(p), is the convex hull of all the points in S. That is,

Newt(p) = conv ({(i, Jj) € 7? |x' © yjappears in p(x, y) with ¢;; # —oo}) .

&)
As the convex hull of finitely many points in R?, Newt(p) is either empty, a point, a
line segment, or a two-dimensional polygon. To avoid certain trivial cases, we will
assume that we have chosen p such that Newt(p) is a two-dimensional polygon. It is
a lattice polygon, meaning that all vertices are lattice points, which are points with
integer coordinates. In the special case that Newt(p) = conv{(0, 0), (d, 0), (0, d)}
for some positive integer d, we say that the polynomial has degree d, and we call
the Newton polygon the triangle of degree d, denoted T.

Example 4 Let p(x,y) = (10x)@(10y)@20x)@Q20x)&Q20Y) 1.
Then we have that S = {(2, 0), (0, 2), (1, 1), (1, 0), (0, 1), (0, 0)}, so Newt(p) is the
triangle of degree 2, and p(x, y) is a polynomial of degree 2. The Newton polygon,
along with the tropical curve 7 (p), is illustrated in Fig.4. Some preliminary
connections between Newt(p) and 7 (p) can already be observed: the rays in
7 (p) point in directions that are perpendicular and outward relative to the edges
of Newt(p). However, there are other features of the tropical curve not visible from

Fig. 4 The Newton polygon
of 10x)@®(10y)®Q20 (0,1)
NOLONSLOY®I, (0,2) -

along with the tropical curve
the polynomial defines

(1,0)

5More formally, it is the intersection of all convex sets containing the points. See if you can prove
that such an intersection is still convex!
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the Newton polygon; for instance, there are three bounded edges, and there are four
vertices, where multiple edges or rays come together.

2.2 Subdivisions and the Duality Theorem

Since it was presented without justification, the reader might wonder: how did we
determine .7 (p) in Example 4? One brute force way could be to take every possible
pair among the 6 terms in p(x, y) (there are 15 ways to do this), set them equal to
each other, and try to determine whether those two terms ever tie for the maximum,
and if so, where. It turns out that studying the Newton polygon of p leads to a much
more elegant approach.

Let P be a lattice polygon, and S = P NZ? be the set of integer coordinate points
in P.Leth : S — R be any function assigning real number values’ to each element
of S; we refer to & as a height function. We then define a set A of points in R? by
“lifting” the points of S to the heights prescribed by A:

A=A j,hG, )G, J) €S} (6)

Take the convex hull of A in R3. Unless all the points of A lie on a plane, this
convex hull is a three-dimensional polyfope, the three-dimensional analog of a
polygon, whose boundary consists of two-dimensional polygonal faces meeting
along edges. Viewed from above, conv(A) looks like P, except subdivided by these
upper polygonal faces. We call this subdivision of P the subdivision induced by h.
The faces of conv(A) that are visible from above form the upper convex hull of A.

Example 5 Let p(x, y) be as in Example 4. Let P = Newt(p), and S = P N Z2.
Define & : S — R using the coefficients of p(x, y), so that h(i, j) = ¢; j. Then
the set A consists of the six points {(0, 0, 1), (1,0, 2), (2,0, 1), (0, 1, 2), (1, 1, 2),
(0, 2, 1)}, illustrated on the left in Fig. 5. Their convex hull is then a polytope with 8

Fig. 5 The points of A labelled as x’s, their convex hull, the induced subdivision of the triangle,
and the dual tropical curve

TThis definition will still work even if we define 4 : § — R U {—o00}, as long as 4 does not map
any vertices of P to —oo.
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triangular faces, illustrated in the middle of the figure. Of these faces, the 4 that are
colored are visible from above, giving the induced subdivision of Pshown towards
the right. The tropical curve .7 (p) is reproduced, with vertices colored the same as
their corresponding triangles, as described in Theorem 1 below.

The subdivision of the Newton polygon induced by the coefficients of the tropical
polynomial gives us almost all the information regarding how to draw the tropical
curve in the plane. Although this result holds in much more generality, we spell it
out explicitly in the case of two variables.

Theorem 1 (The Duality Theorem, [39, Proposition 3.1.6]) Ler p(x,y) be a
tropical polynomial with P = Newt(p) two-dimensional. Then the tropical curve
T (p) is dual to the subdivision of P induced by the coefficients of p(x, y) in the
following sense:

o Vertices of 7 (p) correspond to polygons in the subdivision of P.

* Edges of 7 (p) correspond to interior edges in the subdivision of P.

* Rays of 7 (p) correspond to boundary edges in the subdivision of P.

s Regions of R? separated by 7 (p) correspond to lattice points of P used in the
subdivision.

Moreover, two vertices of 7 (p) are connected by an edge if and only if their cor-
responding polygons in the subdivision share an edge, and the edge in the Newton
polygon is perpendicular to the edge in the subdivision; and the rays emanating from
avertex in 7 (p) correspond to boundary edges of the corresponding polygon in the
subdivision, with the rays in the outward perpendicular directions to the boundary
edges of P.

So once we have found the subdivision of our Newton polygon, we know
exactly what the tropical curve will look like, up to scaling edge lengths and up
to translation. If we find the subdivision from Example 5, then our tropical curve
could be either of the ones illustrated in Fig. 6 (or infinitely many others!). However,
we can nail down the exact coordinates of the vertices by solving for the relevant
three-way-ties. For instance, the top-most vertex of the tropical curve corresponds
to the triangle with vertices at (0, 2), (0, 1), and (1, 1) in the subdivision, so the
coordinates of the vertex are located at the (unique) three-way tie between the y?,
the y, and the xy terms.

Sometimes there is information present in the polynomial or in the subdivision
of the Newton polygon that is lost in the tropical curve. For instance, if p(x, y) =
x2@y2 @0, then .7 (p) is, as a set, the tropical line from Fig. 3. By only considering
this tropical curve as a set, we thus lose information about the starting polynomial.
This leads us to decorate the edges and rays of our tropical curves with weights. In
particular, each edge or ray is given a positive integer weight m, where m is equal
to one less than the number of lattice points on the dual edge of the subdivision.
Several tropical curves with the same Newton polygon are illustrated in Fig. 7, with
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. (0,0) @9
(1,0)

-——¢
(-1,-1) (1,1)
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Fig. 6 A subdivision of a Newton polygon, and two possible tropical curves dual to it

N T O e

Fig. 7 Three tropical curves with the same Newton polygon, dual to different subdivisions. The
first tropical curve is smooth, and the other two are not

all weights above 1 labelled. If a tropical curve has all weights equal to 1, and
each vertex has a total of three edges and rays emanating from it, then we call the
tropical curve smooth. Equivalently, a tropical curve is smooth if its dual subdivision
is a unimodular triangulation, meaning that every polygon in the subdivision is a
triangle with no lattice points besides its vertices.

Exercise 4 Let p(x, y) be a tropical polynomial of degree d such that 7 (p) is
smooth. Determine the number of edges, rays, and vertices of .7 (p). (Hint: count
up the corresponding objects in a unimodular triangulation of the triangle 7;. You
can use the fact that any triangle in such a triangulation has area 1/2.)

Challenge Problem 3 Show that any tropical curve satisfies the following bal-
ancing condition®: choose a vertex, and let {aj, b1), {az, ba) , ..., {ag, be) be the
outgoing directions of the rays and edges emanating from the vertex, where a;, b; €
Z and ged(a;, bi) = 1 for all i. Let m; denote the weight of the i’ edge/ray. Show
that my x {ai, by) + my X (a2, by) + -+ -+ my x {(ag, bg) = (0, 0).

8By Pick’s Theorem [46], this in turn is equivalent to every polygon in the subdivision being a
triangle with area 1/2.

This is a special case of a much more general result called the Structure Theorem, which says that
any tropical variety has the structure of a weighted, balanced polyhedral fan of pure dimension.
See [39, Theorem 3.3.5].
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Fig. 8 A set that turns out to

be a tropical curve

(0,0)

Fig. 9 A regular subdivision
with a dual tropical curve, and
a non-regular subdivision

Exercise 5 Consider the subset C of R? illustrated in Fig. 8. It consists of three
rays, all emanating from the origin, in the directions (1, 0), (0, 1), and (-2, —1).
Show that C is a tropical curve by finding a tropical polynomial p(x, y) such that
C = 7 (p). (Hint: the previous Challenge Problem might be useful!)

Armed with our Duality Theorem, one way to study tropical curves is the
following: choose a tropical polynomial, find the induced subdivision of its Newton
polygon, and draw it, solving for the exact coordinates of the vertices. Perhaps the
most challenging step is finding the induced subdivision; this can be accomplished
with such computational tools as polymake, TOPCOM, and Macaulay?2.

Here we take another approach, similar to the very start of this chapter. Rather
than starting with a tropical polynomial, choose the Newton polygon, and simply
draw a subdivision, perhaps a unimodular triangulation. Then try to draw a tropical
curve dual to it. (This is exactly the method from the start of Sect. 1.) An example of
a triangulation of the triangle of degree 4 is illustrated in Fig. 9, along with a tropical
curve that is dual to it. Note that to draw this tropical curve, we never needed to find
a tropical polynomial defining it!

Sadly, this approach does not always work. A tropical curve can be drawn dual
to a subdivision if and only if the subdivision is regular, meaning that it is induced
by some height function.

Exercise 6 Consider the subdivision on the right in Fig.9. Show that it is not a
regular triangulation. (You might argue that no height function could have induced
that triangulation; or you could argue that it is impossible to draw a tropical curve
dual to it.)

It turns out that there are 1279 unimodular triangulations of the triangle of degree
4 up to symmetry [2,7], and only one of them is non-regular: it is the unique
unimodular triangulation that completes the non-regular subdivision from Fig.9.
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Similar phenomena occur for “small” polygons, whereby most triangulations end
up being regular, so that drawing dual tropical curves is usually possible. For larger
polygons, regular subdivisions seem to become rarer and rarer. See [30] for many
results in the case that the polygon is a lattice rectangle, as well as [19] for results
in a more general setting.

Challenge Problem 4 Let n be a positive integer, and let P be a 1 x n lattice
rectangle. Prove that any subdivision of P is regular. How many unimodular
triangulations are there of P?

Research Project 3 Study the number of unimodular triangulations of fam-
ilies of lattice polygons, as was done for lattice rectangles in [30]. This can
involve finding upper and lower bounds that improve those in the literature.
Study the proportion of these unimodular triangulations that are regular.
For all these endeavors, polymake and TOPCOM are fantastically useful
computational tools.

23 The Geometry of Tropical Plane Curves

Many theorems about classical plane curves have analogs within the tropical world.
A prime example of this is Bézout’s Theorem.

Theorem 2 (Bézout’s Theorem) Let C and D be two smooth algebraic plane
curves of degrees d and e. If C and D have no common components, then C N D
has at most d x e points. If we are working in projective space over an algebraically
closed field, and counting intersection points with multiplicity, then C N D has
exactly d x e points.

As shown in [49], the same result holds for tropical plane curves, once we
determine how to count intersection points with multiplicity, and how to deal with
tropical curves that intersect “badly.”

Definition 2 Suppose two tropical plane curves C| and C, intersect at an isolated
point (a, b) that is not a vertex of either curve. Such a point is called a transversal
intersection. Let (u1, v1) and (u7, v2) be integer vectors describing the slopes of the
edges or rays of C and D containing (a, b), where gcd(u1, v1) = ged(uz, v2) =1,
and let the weights of the edges or rays be m and m>. Then the multiplicity of
(a,b) is

pla, b) :=mj x my x |det (i} 1)) 7
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Example 6 Consider the tropical polynomials
f=Eloeane-loy)exeya (-1 (8)

and
1
g=<—§®x2)€B(1®xy)€B(—2®y2)69x€By€BO. 9

They both have the triangle of degree 2 as their Newton polygon and have induced
subdivisions as illustrated on the left in Fig. 10. As shown on the right, the tropical
curves .7 (f) and .7 (g) intersect in three points. The multiplicities of these points
can be computed as 1, 1, and 2.

Let us push this example a little further. If we think of .7 (f)U.Z (g) as 7 (fOg),
then we can consider the dual subdivision of Newt(f © g), illustrated in Fig. 11.
Every polygon in this subdivision is dual to a vertex of 7 (f © g), and each vertex
in 7 (f © g) is either a vertex of 7 (f), a vertex of .7 (g), or an intersection point.
Note that each polygon dual to an intersection point (a, b) has area equal to i (a, b).

Fig. 10 The subdivisions -1
induced by f and g, and the
two tropical curves 0 m
-1 0 -1 <
Newt(f)
-—
-2
0 1
0 g -1/2
Newt(g)

Fig. 11 The subdivisions
induced by f © g, with blue
triangles coming from
vertices in .7 (f) and red
triangles coming from .7 (g)
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Exercise 7 Show that if f and g are tropical polynomials of degrees d and e, then
f ©g is atropical polynomial of degree d ©e, and that 7 (f © g) = T (f)UT ().
Then show that the multiplicity of a transversal intersection point of f and g is equal
to the area of the corresponding polygon in the subdivision of Newt(f © g) induced

by fOg.

Theorem 3 (Tropical Bézout’s Theorem, Transversal Case) Let C and D be
two tropical plane curves of degrees d and e with finitely many intersection points
(a1, b1), -+, (an, by), all of which are transversal. Then

D wlai, bi). (10)
i=1

Note that we did not need to assume C and D were smooth. For an even more
general result, we need to deal with the possibility that C and D have intersections
that are not transversal. For two tropical curves C and D, we compute the stable
tropical intersection as follows. Let v = (v1, v2) be a vector not parallel to any edge
or ray of C and D, and for ¢ € R let D, be a translation of D by ev. We then
define

C Ny D = lim CN D,. (1)
e—0

The multiplicity of a point in C Ng D is the sum of the multiplicities of the
corresponding points in a small enough perturbation C N D,.

Example 7 1f f(x,y) = x®y®0and g(x, y) = (10x)Dyd0, then C = 7 (f) and
D = 7 (g) are the tropical lines pictured in Fig. 12. Their set-theoretic intersection
is a ray emanating from the point (—1, 0). To find C Ny D, we move D slightly
to D¢, and then move it back to D. In the limit, we find a single stable intersection
point at (—1, 0).

Exercise 8 Show that C Ny D is a well-defined set of finitely many points and is
independent of the choice of v. Also show that the multiplicity of each point is well
defined.

Fig. 12 Two tropical lines
intersecting non-transversally,
and a small perturbation used D C
to compute the stable
intersection

A
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Theorem 4 (Tropical Bézout’s Theorem, General Case) Let C and D be two
tropical plane curves of degrees d and e with C Ny, D = (a1, by), -, (an, by).
Then

> wlai by). (12)

i=1

Challenge Problem 5 Prove the transversal case of tropical Bézout’s Theorem
using an area-based argument involving the Newton polygon of f © g. Then use
this result to prove the general case of tropical Bézout’s Theorem.

Many classical results about algebraic plane curves involve when two curves are
tangent to one another at some collection of points. Recently much work has been
done to build up machinery to pose and study these sorts of results in the tropical
world.

Definition 3 Let C and D be tropical curves. A rangency between C and D is a
component of C N D such that the stable intersection C Ng; D has more than one
point in that component, counted with multiplicity. We say C and D are tangent at
that component of C N D.

A tropical line that is tangent to a degree 4 curve at two distinct components are
illustrated in Fig. 13. Such an intersection is called a bitangent line, which is also
used to refer to an intersection component of multiplicity 4 or more.

Exercise 9 Find all the bitangent lines of the curve from Fig. 13. (Hint: there are
infinitely many of them, but they still admit a nice classification.)

Counting bitangent lines is a very classical problem in algebraic geometry. In
1834, Pliicker proved that a smooth algebraic plane curve of degree 4 has 28
bitangent lines [48]. A tropical analog of this fact was proved in [2].

Fig. 13 A tropical line that
is tangent to a tropical curve
at two components
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Theorem 5 (Theorem 3.9 in [2]) Ler C be a smooth tropical plane curve of degree
4. Then C has exactly seven classes'® of bitangent lines.

Later work was done to relate this theorem to Pliicker’s count, starting in [14]
and culminating in [34], which showed how to recover the classical count of 28
bitangent lines from the tropical count, at least in sufficiently general cases.

Research Project 4 One great starting point for asking tropical questions
is to study tropical versions of algebraic results. Study, prove, or disprove
tropical analogs of these classical results. You may have to assume something
about positions being sufficiently general.

e The De Bruijn—Erdés Theorem [18]: for any n points not all on a line
determining ¢ points, then + > n and if + = n, any two lines have exactly
one of the n points in common. (In this latter case, n — 1 of the points are
collinear.)

* Steiner’s conic problem [5]: given 5 curves of degree 2, how many curves
of degree 2 are tangent to all of them? (Classically, the answer is 3264,
although Steiner incorrectly computed it as 7776.)

e The Three Conics Theorem [20]: given three conics that pass through two
given points, the three lines joining the other two intersections of each
pair of conics all intersect at a point. Dually: given three conics that share
two common tangents, the remaining pairs of common tangents intersect
at three points that are collinear.

* The Four Conics Theorem [20]: Suppose we are given three conics, where
two intersections of each pair lie on a fourth conic. Then the three lines
joining the other two intersections of each pair of conics intersect in a
point.

It is also worth determining when tropical geometry does not nicely mirror
classical algebraic geometry. We say that an algebraic or a tropical curve C is
irreducible if it cannot be written as C; U Cp, where C1 C C and C, C C are
curves as well. One nice property of algebraic curves (and more generally algebraic
varieties) is that they admit a unique decomposition into irreducible components
[17, Theorem 4.6.4], just as any integer n > 2 can be written as a product of primes

uniquely (up to reordering). Tropical curves, however, do not.

10 oosely speaking, we say two bitangent lines intersecting at (P, Q) and (P’, Q') with multiplic-
ity 2 at each point are equivalent if (P, Q) and (P’, Q') are equivalent in the language of divisor
theory [22].
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Fig. 14 A tropical curve that
can be decomposed into
irreducible tropical curves in
two distinct ways

Example 8 Consider the set C in R? consisting of the (usual) lines x = 0, y = 0,
and x = y. We claim that C is a tropical curve; you will show this in Exercise 10.
We can also write C as T (x ®yDO)U T ((xy) ®x P y),oras T (xDy)UT (x ®
0) U Z(y & 0), as illustrated in Fig. 14.

Exercise 10 Find a polynomial f such that C = 7 (f), where C is the set from
Example 8. How does this polynomial relate to the polynomials defining the two
decompositions of C as a union of tropical curves?

Research Project 5 Study how many decompositions a tropical curve can
have as a union of tropical curves properly contained within it. You could
stratify this study by the Newton polygon of the curve. (This is closely related
to the research project on factoring tropical polynomials; see if you can see
why, especially after you try Exercise 10!)

A new approach in tropical geometry that avoids non-uniqueness of decompo-
sitions is to develop tropical schemes [24,38], just as algebraic geometers study
algebraic schemes [27]. This model does not consider the tropical curves from the
second decomposition in Example 8 to be tropical curves, and in fact gives us a
unique decomposition in general.

24 Skeletons of Tropical Plane Curves

Choose a lattice polygon P with g interior lattice points, where g is at least 2.
Write P;,; for the convex hull of the g interior lattice points; this is either a line
segment, or a polygon. Let p(x, y) be a tropical polynomial with Newton polygon
P. Rather than study the full tropical curve .7 (p), we can focus on a portion of it
called its skeleton. To find the skeleton, we delete all rays from our tropical curve,
and then successively remove any vertices incident to exactly one edge, along with
such edges. This will lead to a collection of vertices and edges, where each vertex is
incident to at least two edges. We “smooth over” the vertices incident to two edges,
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s

Fig. 15 A tropical curve (with its dual subdivision) undergoing the process of skeletonization.
The edges of the tropical curve that end up contributing to the skeleton are color-coded based on
which final edge they become a part of

removing such vertices and fusing the two edges into one. The resulting collection
of edges and vertices is called the skeleton of the tropical curve. This process is
illustrated in Fig. 15.

The structure that remains after “skeletonizing” a tropical curve is a graph.'!
A graph is simply a collection of vertices collected by edges; in our setting, two
vertices may be connected to each other by multiple edges, and a vertex may be
connected to itself by an edge, which we call a loop. This leads us to the following
major question: Which graphs can appear as the skeleton of tropical plane curve?
To simplify, let us assume that our tropical curves are smooth.

Definition 4 A graph that is the skeleton of some smooth tropical plane curve is
called tropically planar, or troplanar for short. The genus'? of the graph is the
number of bounded regions in the plane formed by a drawing on the graph. By
Euler’s formula relating the number of vertices, edges, and faces of a planar graph,
we could also define the genus as E —V +1 for a graph with E edges and V vertices.

With these definitions, we can say that the graph on the right in Fig. 15 is
troplanar, and has genus 2.

Exercise 11 Let G be a troplanar graph. Show that G is connected (all one piece),
planar (able to be drawn in the plane without any edges crossing), and trivalent
(meaning that every vertex has three edges coming from it, where a loop counts
as two edges). Also show that the genus of the graph is equal to g, the number of
interior lattice points of the Newton polygon of any smooth tropical curve that has
G as its skeleton.

n fact, there is a bit more structure: it is a metric graph, meaning the edges have lengths. We
will come back to that later in this subsection.

12There is another, unrelated definition of genus in graph theory, dealing with the smallest number
of holes a surface must have to allow a given graph to be embedded on it.
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A daunting task is to try to determine which graphs are tropically planar. Even
for fixed g, it is not immediately obvious that there is an algorithmic way to do this.
There are several things working in our favor:

1. There are only finitely many polygons with g > 1 interior lattice points, up
to equivalence.!> As discussed in [7, Proposition 2.3], this follows from results
in [51] and [32]. An algorithm for finding all such polygons for a given g is
presented in [10].

2. If P and Q are lattice polygons with P C Q and Pi,; = Qjns, all the troplanar
graphs arising from P also arise from Q [7, Lemma 2.6].

Exercise 12 Prove item 2 above.

Item 1 means that we only need to consider a finite collection of possible Newton
polygons for each genus g; item 2 decreases that number considerably. It means that
we need to only consider maximal polygons, which are those that are not properly
contained in any polygon with the same interior lattice points.

Even when we have restricted to maximal polygons, there are two different
flavors of polygons: the hyperelliptic polygons, for which P;;,; as a line segment,
and the nonhyperelliptic polygons, for which P;,; is a two-dimensional polygon. See
Fig. 16 for all the maximal polygons with 4 interior lattice points, up to equivalence.
The leftmost three are nonhyperelliptic, and the other six are hyperelliptic.

How do we know there are not any other maximal polygons with 4 interior lattice
points? For the hyperelliptic case, [31] classifies all maximal hyperelliptic curves:
they are a family of trapezoids interpolating between a hyperelliptic rectangle and a

[ ]
L ]
[ ]
[ ]

Fig. 16 The maximal polygons with 4 interior lattice points

13Here we say two lattice polygons are equivalent if one is the image of the other under a matrix
transformation (‘; Z), where ad — bc = £1.
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hyperelliptic triangle (this result is also presented in [10]). For the nonhyperelliptic
polygons, we have the following result.

Proposition 1 (Lemma 2.2.13 in [31]; Also Theorem 5 in [10]) Let P be a max-
imal nonhyperelliptic polygon, with Pj,; its interior polygon. Then P is obtained
from Pin; by “pushing out” the edges of Pini. More formally, if Py = (i, Hi,
where H; is the half-plane defined by the inequality a;jx + b;y < c¢; (with a;, b;, ¢;
relatively prime integers), then Pi,, = (\i_; H!, where H! is the half-plane defined
by the inequality a;x + b;y < c; + 1.

This means that in order to find all maximal nonhyperelliptic lattice polygons
with g interior lattice points, one can first all lattice polygons with g lattice points
total, and then determine which can be pushed out to form a lattice polygon.

Exercise 13 Using Proposition 1, verify that Fig.16 does indeed contain all
maximal nonhyperelliptic polygons with 4 interior lattice points. Then find all
maximal nonhyperelliptic polygons with 5 interior lattice points.

Exercise 14 Determine which troplanar graphs of genus g come from hyperelliptic
Newton polygons. (Hint: if g = 3, there are three such graphs, namely the middle
three graphs from Fig. 17.)

Research Project 6 Study the properties of lattice polygons, stratified by the
number of interior lattice points g. (A great starting point for exploring these
topics are the papers [10] and [11].) For example: Given a maximal polygon
P, let n(P) be the number of subpolygons of P with the same set of interior
lattice points. For which polygons is n(P) equal to 1? What upper bounds can
we find on n(P), in terms of g? How big is n(P) on average? (This gives us
an idea of how much time we save by considering only maximal polygons
when studying troplanar graphs.)

Example 9 Let us find all troplanar graphs of genus 3 (This will mirror arguments
found in [2] and [7].) There are exactly five trivalent connected graphs of genus 3
[4], namely those appearing in Fig. 17. By Exercise 11, these are the only possible

@—oo@oﬁ@

Fig. 17 The five candidate graphs of genus 3
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Be

Fig. 18 Four triangulations, giving us four tropical curves whose skeletons are the first four graphs
in Fig. 17

graphs that could be troplanar. We now must determine which of the five are actually
achievable.

Let us determine which Newton polygons are possible. As mentioned previously,
it suffices to take P maximal. We will focus on nonhyperelliptic polygons; the
hyperelliptic ones are covered by Exercise 14. It turns out that the only nonhyper-
elliptic polygon with 3 interior lattice points, up to equivalence, is 74, the triangle
of degree 4. This is because the only lattice polygon (again, up to equivalence) with
three lattice points is the triangle of degree 1, which pushes out to 7. Figure 18
shows triangulations of Ty that give tropical curves whose skeletons are the first
four graphs from Fig. 17, so we know that those four graphs are all troplanar.

Let us now argue that the fifth graph, sometimes called the lollipop graph of
genus 3, is not troplanar. Note that any bridge'* in troplanar graph must be dual
to a split in the subdivision of 74, which is an edge goes from one boundary point
to another, with some interior lattice points on each side and none in the edge’s
interior. So, any triangulation of the triangle of degree 4 that gives us the lollipop
graph would have three splits. All possible splits in the triangle are illustrated in
Fig. 19; however, no more than two of them can coexist in the same triangulation
due to intersections, meaning we cannot obtain the lollipop graph. We conclude that
there are four troplanar graphs of genus 3: the first four graphs in Fig. 17.

The fact that the lollipop graph did not appear also follows from a more general
result about structures that cannot appear in troplanar graphs. We say a connected,
trivalent graph is sprawling if removing a single vertex splits the graph into three
pieces. Several examples of sprawling graphs appear in Fig. 20.

14 A bridge in a connected graph is an edge that, if removed from the graph, would disconnect the
graph.



86 R. Morrison

Fig. 19 Twelve splits, any
three of which have at least
one intersection point away
from the boundary

St

Fig. 20 Three sprawling graphs. Note that the vertex that disconnects the graph into three pieces

need not be unique

Proposition 2 (Proposition 4.1 in [9]) A sprawling graph cannot be troplanar.

Fig. 21 Three graphs of
genus 5 that are not troplanar

Although this result was originally proved in [9], the “sprawling” terminology
comes from [2], which offers an alternate proof.

Challenge Problem 6 Prove Proposition 2. (Hint: Consider the structure of the
dual triangulation of a smooth tropical curve with a sprawling skeleton.)

Challenge Problem 7 Show that the graphs in Fig. 21 are not troplanar.

Research Project 7 Find “forbidden structures” that never appear in tropla-
nar graphs. (Proposition 2 gives an example of such a forbidden structure.
Another is given in [42].)

Challenge Problem 8 There are 17 trivalent connected graphs of genus 4 [4].
Determine which of them are troplanar. Note that the only Newton polygons
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you need to consider are those illustrated in Fig. 16. (If you have already done
Exercise 14, you can ignore six of the polygons!)

In general, counting the number of tropically planar graphs of genus g can be
accomplished as follows:

1. Find all maximal lattice polygons P with g interior lattice points, perhaps
following [10].

2. Find all regular unimodular triangulations of each P from step 1, perhaps with
polymake or TOPCOM.

3. Find the dual skeletons to the triangulations from step 2, and sort them into
isomorphism classes.

This algorithm was implemented in [7] and was used to determine that the numbers
of troplanar graphs of genus 2, 3, 4, and 5 are 2, 4, 13, and 37, respectively. This was
pushed further as part of the Williams SMALL 2017 REU to genus 6 (151 troplanar
graphs) and genus 7 (672 troplanar graphs).

Research Project 8 Find a more efficient way to determine the number of
troplanar graphs of genus g than the algorithm outlined above.

Research Project 9 Study how the number of troplanar graphs of genus g
grows with g. Can you find upper and lower bounds? Can you determine
its asymptotic behavior? (Preliminary work in this direction was done in the
Williams College SMALL REU in 2017.)

So far we have considered skeletons from a purely combinatorial perspective.
Now we include the data of lengths on each edge of the graph, giving us a metric
graph. A natural impulse is to sum up all the Euclidean lengths of the edges of the
embedded tropical curve that make up a given edge of the skeleton and declare that
to be its length. Unfortunately this definition of length is not invariant under the
natural transformations that we apply to our Newton polygons. This leads us to use
the following definition.

Definition 5 Let P;, P> € R? be distinct points such that the line segment ‘P, P, has
rational slope (or is vertical). Write the vector from P; to P> as A x (a, b), where
a,b € Z with gcd(a, b) = 1 and A € R™. The lattice length of the line segment
P P is defined to be A.
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Fig. 22 A tropical curve
with lattice lengths labelled,
and the resulting lengths on
the skeleton

(14,04
(0,0) (,0) (15,-1)
(15,-2
11,-3 _
e ( ); ;(14, 3)
3
2
L —
1
3 1
1
3
12
15

When considering a tropical plane curve, we measure the lengths of its finite
edges by lattice length. These lengths are then added up appropriately to assign
lengths to the edges of the skeleton.

Example 10 Consider the tropical plane curve illustrated on the top in Fig.22.
Below it is the collection of all bounded edges in the curve, labelled with their
lattice lengths. As pictured, the skeleton is a graph consisting of two vertices joined
by an edge, with a loop attached to each vertex. The length of the middle edge
in the skeleton is 1; the lengths of the loops are 2 + 1+ 1+ 3 +5 = 12 and
6+3+3+4+1+4+1+4 1= 15. (Note that one bounded edge from the tropical curve
does not contribute to the skeleton.)

When we say that a metric graph is troplanar, we mean that it is the skeleton of
a smooth tropical plane curve giving those edge lengths. So the metric graph at the
bottom of Fig. 22 is troplanar.

Challenge Problem 9 Let P be a2 x 3 lattice rectangle. Find all troplanar metric
graphs that are the skeleton of a smooth tropical curve with that Newton polygon.
(Hint: in some sense you can get most, but not all, graphs of genus 2.)
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Fig. 23 Two metric graphs
that are not troplanar

10 1

L

10

The algorithm presented in [2] did not simply find the combinatorial types of
troplanar graphs; it computed, up to closure, all metric graphs of genus at most 5
that appeared as the skeleton of a smooth tropical plane curve. In their Theorem 5.1,
they use this computation to characterize exactly which metric graphs of genus 3 are
troplanar. Beyond the lollipop graph not appearing (regardless of the edge lengths),
there are nontrivial edge length restrictions on the other four combinatorial types of
graphs. Rather than presenting their full result here, we give a consequence of it.

Theorem 6 (Corollary 5.2 in [7]) Approximately 29.5% of all metric graphs of
genus 3 are troplanar.

This probability is computed by considering the moduli space of graphs of genus 3
[6, 12]. This is a six-dimensional space, corresponding to the six edges a trivalent
graph of genus 3 has. This space is not compact, since edge lengths can be arbitrarily
long; so consider the subspace consisting of graphs with total length equal to 1;
up to scaling, every metric graph can be represented in this way. Give each of
the five combinatorial types of graphs (as illustrated in Fig. 17) an equal weight,
and compute the volume of the space of troplanar graphs within this 5-dimensional
space. This computation gives about 0.295 or 29.5%.

Challenge Problem 10 Show that neither of the metric graphs illustrated in Fig. 23
are troplanar. (This follows from the characterization given in [7, Theorem 5.1]; try
to give your own argument.)

Research Project 10 Determine which metric graphs arise as the skeleton
of a smooth tropical plane curve, perhaps under certain restrictions. For
instance:

* Characterize exactly which metric graphs arise from hyperelliptic poly-
gons, as explored in [42].

* Characterize which metric graphs arise from honeycomb polygons, a key
tool in [7].

(continued)
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Fig. 24 A nodal tropical
curve and its skeleton

* Characterize which metric graphs are troplanar with as many degrees of
freedom as possible on their edge lengths. In [7], this maximum number of
degrees of freedom was shown to be 2g + 1, at least for g > 8.

All of our questions have been posed for smooth tropical plane curves. Of course,
we can also consider tropical curves with singularities. We say a tropical curve is
nodal if, in the dual subdivision, all polygons besides the triangles of area 1/2 are
quadrilaterals of area 1. A vertex in a nodal tropical curve dual to such a quadrilateral
is called a node.

Example 11 Figure 24 presents an example of a nodal tropical curve with its dual
Newton subdivision. We can still consider a skeleton of the curve by interpreting
each nodal crossing in the tropical curve as two edges in the graph that happen to
look like they are crossing. The resulting skeleton is pictured on the right.

It was shown in [9] that every connected trivalent graph can be realized in a nodal
tropical plane curve. Given a connected trivalent graph G, let N(G) be the tropical
crossing number of G, which is the smallest number of nodes required to achieve G
as the skeleton of a nodal tropical curve. For instance, N(G) = 0 if and only if G is
troplanar.

Research Project 11 Study the tropical crossing number. Can you determine
its value explicitly for certain families of graphs? (Note that if this question is
being posed for metric graphs, N (G) does depend on the edge lengths.)

3 Tropical Geometry in Three Dimensions

Moving beyond the plane into three-dimensional space, we consider tropical
polynomials in three variables x, y, and z. Such a polynomial can be written as
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Fig. 25 The tropical plane
definedby x ® y®z @0

7
1

px.y.2= P apox oy o (13)
@i,j.k)eS

where S is the set of all exponent vectors that appear in p(x, y, z). This polynomial
defines a tropical surface, the set of all points in R? where the maximum defined
by the polynomial is achieved at least twice. Again, we denote this tropical surface

T (p).

Example 12 Let p(x, y, z) = x®y®z®0. The tropical surface .7 (p) is illustrated
in Fig.25. It consists of the origin (0, 0, 0); four rays, pointing in the directions
(—1,0,0), (0,—1,0), (0,0,—1), and (1, 1, 1); and six two-dimensional pieces,
each obtained as the positive linear span of two of the rays. Such two-dimensional
pieces of a tropical surface are called two-dimensional cells. Because of the form of
p(x, v, z), we call 7 (p) a tropical plane.

3.1 Tropical Surfaces and the Duality Theorem

The Duality Theorem still holds for tropical polynomials in three variables and
the surfaces they define.!> This time, instead of a Newton polygon we consider
a Newton polytope, the convex hull of all exponent vectors appearing in the
polynomial. (We will assume that the Newton polytope is three-dimensional to avoid
certain degenerate cases.) To find an induced subdivision, we again associate heights
to each lattice point of the Newton polytope; this time, however, we must compute
our upper convex hull in four-dimensional space. We then have the following
correspondence between parts of the tropical surface S = 7 (p) and the subdivision
of Newt(p):

15Indeed, a Duality Theorem holds for all tropical varieties defined by a single equation in any
number of variables; see [39, Proposition 3.1.6].
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e Vertices in S correspond to 3-dimensional polytopes in the subdivision.
e Raysin S correspond to boundary two-dimensional faces.

* Edges in § correspond to interior two-dimensional faces.

* Unbounded two-dimensional cells in S correspond to boundary edges.
* Bounded two-dimensional cells in S correspond to interior edges.

As was the case for tropical plane curves, the relationships and geometry of all
these pieces of the tropical surface are dictated by the subdivision. For instance, two
vertices are joined by an edge if and only if the corresponding polytopes share a
face; and that edge is perpendicular to the shared face.

We say that a subdivision of a polytope is a unimodular tetrahedralization if
all polytopes in the subdivision are tetrahedra of volume é, which is the smallest
possible volume. We say that a tropical surface .7 (p) is smooth if the induced
subdivision of Newt(p) is a unimodular tetrahedralization. If Newt(p) is the
tetrahedron with vertices at (0, 0, 0), (d, 0, 0), (0, d, 0), and (0, 0, d), we say that
p(x,y,z2) has degree d.

Example 13 Let
fx,y,2)=@yQ) @ (-420xy) ®x @y ®z & (—42), (14)

and let P = Newt( f). The polytope P looks like a cube with two tetrahedra sliced
off, as illustrated to the left in Fig. 26. Every term has coefficient 0, except for the
(0,0,0) and (1, 1, 0) terms, which have a very negative coefficient. This means
that in the subdivision, we will end up with two smaller tetrahedra with vertices
at (1,0,0), (0,1,0), (1,1,0), and (1,1, 1); and at (0,0, 0), (0,0, 1), (1,0,0),
and (0, 1,0); as well as a larger tetrahedron at (0,0, 1), (1,0, 0), (0, 1,0), and
(1,1, 1).'6 This is illustrated in Fig. 26.

The tropical surface .7°(f) has three vertices, corresponding to the three
tetrahedra. We can find their coordinates by computing the four-way ties.

e From —42 = x = y = z, we have a vertex at (—42, —42, —42).
e Fromx =y =z =x+4 y+ z, we have a vertex at (0, 0, 0).
e Fromx =y=-42+4x+y=x+ y+ z, we have a vertex at (42, 42, —42).

The vertex at (0,0,0) connects to the other two vertices by a line segment.
The vertex (—42, —42, —42) will have three rays, pointing in the directions
(—1,0,0),(0, —1, 0), and (0, 0, —1). The vertex (0, 0, 0) will have two rays, point-

16To prove this rigorously, we would need to show that the hyperplane in R* containing the points
(1,0,0,0), (0,1,0,0), (1,1,0,0), and (1, 1, 1, —42) lies strictly above the points (0, 0, 1, 0) and
(0, 0,0, —42); as well as two other similar such statements, one for each of the other tetrahedra.
(In fact, the hyperplane we get from the middle tetrahedron in (x, y, z, w)-space is just defined by
w = 0, and certainly the other two lifted points (0, 0, 0, —42) and (1, 1, 0, —42) lie below this
hyperplane.)
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Fig. 26 The subdivided (1,1,1)
Newton polytope from T
Example 13
(1,1,0)
(0,0,0) (1,0,0)
Fig. 27 The
one-dimensional pieces of the (0,0,0)
surface from Example 13
(—42,-42, - 42)
(42,42, - 42)

ing in the directions (1, —1, 1,) and (—1, 1, 1, ). Finally, the vertex (42, 42, —42)
will have three rays, pointing in the directions (1, 0, 0),(0, 1, 0), and (0, 0, 1). Ignor-
ing the two-dimensional pieces, our tropical surface looks as pictured in Fig. 27.

We fill in two-dimensional pieces between adjacent rays and edges. This will
give a total of 12 unbounded two-dimensional pieces, corresponding to the 12 edges
in our tetrahedralization. All are unbounded, since all edges in the tetrahedralization
are exterior.

Note that this tropical surface is not smooth. Even though our induced subdivi-
sion is a tetrahedralization, it is not unimodular since the tetrahedra do not all have
volume %: the tetrahedron in the middle has volume 1/3.

Challenge Problem 11 Show that the tropical polynomial of degree 2 defined by

f=(30)@(-40x) @xz@ (70" @ (20 y2) 15)
B-102)Bxdyd(—202) & (-7
is a smooth tropical surface. Determine how many vertices, edges, rays, bounded
two-dimensional cells, and unbounded two-dimensional cells there are. Do the same
for the tropical polynomial of degree 3 defined by
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g=(20)®(150x%) B (-70x%2) & (—150xy?) ®xyz ® (-3 © x2%)
B(-250) @ (-60)*2) @ (-100yz") & (-2002) & (-20x7)
B(—60xy) B (—10x)B(-140y) B yz® (-907) & (-110x)
B(-40y)®(-902) & (-21).
(16)
You will almost certainly want to use a computer to help with this! After you try this
Challenge Problem, you should check your counts against the following theorem.

Theorem 7 (Theorem 4.5.2 in [39]) A smooth tropical surface of degree d has

o d3 vertices,

o 2d%*(d — 1) edges,

e 442 rays,

e d(d—1)(7d — 11)/6 bounded two-dimensional cells,
o 6d? unbounded two-dimensional cells.

Its Euler characteristic'” is w + 1.

Research Project 12 Study the geometry of smooth tropical surfaces. For
instance:

* A smooth surface of degree 3 has 10 bounded two-dimensional cells, each
of which is a polygon, say with n; sides for the ith polygon. What are the
possible values for nq, ..., n10? How can these 10 polygons be arranged
relative to each other?

* A smooth surface of degree 4 has Euler characteristic 1, and so contains
one polytope bounding a three-dimensional region. Can we characterize
which polytopes are possible? (How many faces, how many edges, etc.)

* Moving on to smooth surfaces of degree greater than 4, which have Euler
characteristic greater than 1, there are multiple polytopes that are part of
the surface. How can these polytopes be arranged? (This is the surface
analog of asking what the skeleton of a smooth tropical plane curve can
be.)

3.2  Tropical CurvesinR?

In usual geometry, if we intersect a pair of two-dimensional surfaces in R3, we
expect to get a one-dimensional curve. This also holds in tropical geometry, if we
are willing to assume stable intersections to avoid the overlap of two-dimensional

"ntuitively, this is the number of bounded regions of R? encapsulated by part of the surface.
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pieces. There is still a Duality Theorem for tropical curves in R? that arise as the
intersection of two tropical surfaces, although it requires a bit more machinery.

Given two lattice polytopes P, Q C R", place P and Q in (n + 1)-dimensional
space by giving every point in P an extra coordinate of O and every coordinate of
Q an extra coordinate of 1. The Cayley polytope of P and Q, written Cay(P, Q), is
the convex hull in R"*! of this arrangement.

Example 14 If P = Q = conv({(0,0,0),(1,0,0), (0,1,0), (0,0, 1)}), then
Cay(P, Q) is the convex hull of the eight points (0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0),
0,0, 1,0), (0,0,0,1),(1,0,0, 1), (0,1,0, 1), and (0,0, 1, 1) in R*.

Suppose p(x,y,z) and g(x, y, z) are tropical polynomials in three variables,
defining tropical surfaces S and S, with intersection curve C = S; Ny S2. Let
P = Newt(p) and Q = Newt(g). As we did with Newton polygons and Newton
polytopes of single polynomials, we can find an induced subdivision of Cay(P, Q).
Each lattice point of Cay(P, Q) is either a lattice point of P with an extra coordinate
of 0 or a lattice point of Q with an extra coordinate of 1, so we assign to each such
lattice point a “height” based on the corresponding coefficient from the relevant
polynomial. We can then compute the induced subdivision of Cay(P, Q) by looking
at the upper convex hull in R of these lifted points. This subdivision then splits
Cay(P, Q) into 4-dimensional polytopes. Some of these polytopes have one vertex
from P and all others from Q, or vice versa; the other polytopes, with at least two
vertices coming from each of P and Q, are called the mixed cells of the subdivision.
The Duality Theorem for complete intersection curves, stated fully in [39, §4.6],
then says that the vertices of C correspond to the mixed cells of this subdivision.

If all cells in the Cayley subdivision have the minimum possible volume (which
turns out to be 1/24), we call the tropical curve smooth. In this case it turns out
that P Ng; Q = P N Q. We can still talk about the skeletons of tropical curves in
RR3, retracting rays and leaves to obtain the desired graph. Again we still refer to the
genus of the graph, although since it might not be a planar graph we need to define
genusas E —V 4 1.

Theorem 8 (Theorem 4.6.20 in [39]) Let f(x,y,z) and g(x,y,z) be tropical
polynomials with degrees d and e, respectively, such that C = T (f) N T (g) is
a smooth tropical curve. Then C has

o d%e + deé? vertices,

e (3/2)d*e + (3/2)de? — 2de edges,

* 4de rays, and

* genus equal to (I/Z)dze + (1/2)de2 —2de + 1.

Example 15 Let p(x,y,2) = (-1 0x)® (-1 0 y)®z® 1 and g(x,y,2) =
(—20x)(10y)® (1 ©z) @ (—1). Then Newt(p) and Newt(g) are P and Q
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from Example 14. Using the Macaulay2 package Polyhedra,'® we compute
the subdivision of Cay(P, Q). It consists of four cells:

Ay = conv({(0, 0,0, 0), (1,0,0,0), (0,1, 0,0), (0,0, 1,0), (0, 1,0, H}) a7
Ay = conv({(0, 0,0, 0), (1,0,0,0), (0,0, 1,0), (0,1,0, 1), (0,0, 1, H}) (18)
Az = conv({(0, 0,0, 0), (1,0,0,0), (1,0,0, 1), (0, 1,0, 1), (0,0, 1, H}) (19)

A4 = conv({(0,0,0,0), (0,0,0, 1), (1,0,0, 1), (0, 1,0, 1), (0,0, 1, 1))}

(20)
Each cell has volume 1/24, so the tropical intersection curve is smooth; as the
intersection of two tropical planes, we call it a tropical line in R3. Of the four cells,
only A; and A3 are mixed cells. This means the line P N Q has two vertices. The
vertex (a, b, ¢) coming from A; arises from a three-way tie between the (0, 0, 0),
(1,0,0), (0,0, 1) terms of p and a two-way tie between the (0, 1, 0) and (0, 0, 1)
terms of g. Written in conventional notation, we have | = —1+a =c¢,s0a = 2
andc = 1. Wealsohave 1 +b = 1 + ¢, so b = ¢ = 1. Thus there is a vertex at
(a,b,c) = (2,1, 1). In the next exercise, you will find the other vertex, as well as
the rest of the line.

Exercise 15 Draw the tropical line from the previous example. Be sure to check
your answer against Theorem 8 withd = e = 1.

Challenge Problem 12 Show that the tropical surfaces from Challenge Problem 11
intersect in a smooth tropical curve. Show that the skeleton of the curve is the
complete bipartite graph K3 3.

Research Project 13 Which graphs of genus 4 arise in smooth tropical
curves that are the intersection of a tropical surface of degree 2 and a tropical
surface of degree 3? For instance, are any of these graphs sprawling?

More generally: which graphs of genus (1/2)d%e + (1/2)de* — 2de + 1
arise as the skeleton of a smooth tropical curve that is the intersection of a
surface of degree d with a surface of degree e?

(You can approach these questions considering the graphs either combina-
torially, or as metric graphs.)

18The Polyhedra package defaults to the min convention rather than the max. This means we have
to negate all the coefficients before we find the decomposition.
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Research Project 14 Let Q1 and O, be two smooth tropical surfaces of
degree 2. Study the possibilities of the intersection Q1 Ny Q2, possibly
through a similar lens as [21]. (If the intersection is a smooth curve, then
it has genus 1 by Theorem 8, and we understand its combinatorial properties
very well. What other intersections are possible?)

One noteworthy difference between classical geometry and tropical geometry
is that in tropical geometry, not all planes look the same. In the previous section,
we studied tropical curves as a subset of the usual plane R2. But this plane is
combinatorially different from, say, the tropical plane from Example 12. A natural
question is then whether or not there are “tropical plane curves” besides those we
studied in Sect. 2; that is, whether certain tropical skeletons appear on tropical planes
in R3 that did not arise from tropical curves in R2. (We could ask the same for 2-
dimensional tropical planes in R*, or R?, or in general R”".)

Recent work shows that the answer is yes! Recall that only 29.1% of all graphs
of genus 3 appear in tropical curves in R2. It is shown in [26] that every metric graph
of genus 3, besides a family of measure zero, appears as a tropical curve in a tropical
plane in R3, R*, or R>. For example, they show that the lollipop graph appears as a
tropical curve on a tropical plane in R>. It is not known if their result is sharp; for
instance, it is an open question if there are any graphs of genus 3 that do not appear
on a tropical plane in R3.

Research Project 15 Can the lollipop graph be realized on a tropical plane
in R3 or R*? More generally, which graphs can be realized on a tropical plane
in R”, for different values of n?

4 Tropicalization

In this section we present the connections between algebraic geometry, which
studies solutions to usual polynomial equations, and tropical geometry, which
studies solutions to tropical polynomial equations. See [39] for a more complete
treatment of this connection, and [17] for an undergraduate introduction to algebraic
geometry.

Let k be a field, and let k[x1, . . ., x;,] be the polynomial ring in n variables over k.
For anideal I C k[xy, ..., x,], the affine variety defined by I is

V() ={(ai,....an) | f(@i,...,ay) =O0forall f eI} Ck" 1)
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Given f1, ..., fs € k[x1, ..., x,], we can also define

Vifi,.... fs) ={(a1,....,an) | fiai,...,a;,) =0foralli} C k". 22)
It1 = (fi, -, fs), then V{I) = V(f,..., fy). By Hilbert’s Basis Theorem
[28]%° every ideal in k[x1,...x,] has a finite set of generators, so these two

characterizations of affine varieties are equivalent.

Sometimes it is useful to work within the ambient space of the algebraic torus
(k*)*, where k* = k \ {0}. To do this we can let our ideal I be a subset of
K[x, ..., xE', so that V() € (k%)™

4.1 Fields with Valuation

We will work with fields with an additional structure called a valuation. A valuation
on a field k is a function val : k — (R U {oc0}) such that

e val(a) = oo if and only if a = 0.
e val(ab) = val(a) + val(b).
e val(a 4+ b) > min{val(a), val(b)} with equality if val(a) # val(b).

Every field has an example of a valuation called the trivial valuation, defined by
val(0) = oo and val(a) = 0 for all @ # 0. Let us find some nontrivial valuations.

Exercise 16 Let QQ be the field of rational numbers, and let p be a prime number.
Define the p-adic valuation on Q by

val, (ﬂ‘%) =k, (23)

where a and b are integers that are not divisible by p. Show that this is a valuation

on Q.

Research Project 16 Study the sequences obtained by applying p-adic val-
uations to sequences of integers. For instance, applying the 2-adic valuation
to the sequence of Fibonacci numbers

1,1,2,3,5,8,13,21,34,55, ... (24)

(continued)

YFor a presentation in English, see [17, §2.5].
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gives the sequence
0,0,1,0,0,3,0,0,1,0,... (25)

We can think of this as tropicalizing sequences of integers. See [1,36,40] for
work done in this direction.

Exercise 17 Let K be a field and let K ((¢)) be the field of Laurent series over K,
the nonzero elements of which are power series in ¢ with integer exponents that are
bounded below:

amtm + Clrrz+llm+1 + am+2tm+2 +-, (26)

where m € Z, a; € K for all i, and a,, # 0. We define a valuation on K ((¢)) by
reading off the exponent of the smallest nonzero term:

val (amtm + am+1r”’+1 + am+2t’"+2 4. ) =m. 27
Show that this is indeed a valuation on K ((¢)).

Challenge Problem 13 It turns out that the field K ((¢)) is not algebraically closed,
even if K is. For an example of an algebraically closed field with a nontrivial
valuation, we turn to the field of Puiseux series over K, written K {{t}}. A nonzero
element of this field is of the form

Amt™"™ 4 @yt TV gy oD (28)

where m € Z,n € 77, a; € k for all i, and a; # 0. Note that the value of n can
vary between different elements of K {{t}}, so we could equivalently define a single
Puiseux series as a power series in ¢ with rational exponents, where there is a lower
bound on the denominator of the exponents. Again, we can define a valuation by
reading off the lowest exponent:

val (amtm/” Ay 1D g Dy ) =m/n. (29)

Show that if K is algebraically closed and char(K) = 0, then K {{¢}} is algebraically
closed.

Valuations have a similar flavor to tropical arithmetic, at least if we use the min
convention instead of the max convention: they introduce an infinity element oo,
they turn multiplication into addition, and they turn addition into a minimum (except
possibly when the valuations tie). They also justify the notation of “vanishing” as
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being connected to a minimum or maximum being achieved at least twice, as you
will show in the following exercise.

Exercise 18 Let val be a valuation on a field k, and let ay,...,a, € k with
n > 2. Show that if a; + a2 + --- + a, = 0, then the minimum value among
val(ay), ..., val(a,) occurs at least twice.

4.2 Two Ways to Tropicalize

To stay consistent with the rest of this chapter, we will continue working in the
max convention.”’ We now explore two ways of taking a variety V(1) C (k*)" and
moving it into R”. One way is to take coordinate-wise valuation of points in V (/)
and append a minus sign onto each coordinate. That is, we consider the set image
of V(I) under the map

—val: (k%" - R", (30)
—val(ar, -+, ay) == (—val(ar), - - - , —val(ap)). (3D
The other way is to consider polynomials f € I, and to turn them into tropical

polynomials. Given f € I with f = Y, cax{"---x%", consider the tropical
polynomial

trop(f) := @(—Val(ca)) OxNO---Ox%. 32)

Since V(I) = ﬂfel V(f), we consider ﬂfel T (trop(f)) as a tropical version of
V(I). We call this intersection the tropicalization of V(I).

Exercise 19 Let k = C{t}}, and define f € k[x, y] by

flx,y) = (@ﬁ P VE ) x2 + 1000xy

(33)
HA =258 4 x +y 4 (V5 —1190),

Find the tropicalization of V(f).

Example 16 Let k = C{{t}} where C is the field of complex numbers, and consider
the set V(I) C (k*)?> where I is generated by the single polynomial x 4 ty +
2 € k[x, y]. A point (a,b) € V(I) is sent to (—val(a), —val(b)) by the map —val.
Note that if (a, b) € V(I), then a = —tb — 2. This means that either val(a) =

20Because we are working in the max convention, there are many instances when we have to
consider —1 times a valuation. In the min convention, we can just consider valuations.
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min{val(—zb), —2} = min{val(b) + 1, 0}, or val(a) > min{val(b) + 1,0} with
val(b) + 1 = 0. Equivalently, either —val(a) = max{—val(b) — 1, 0} or —val(a) >
max{—val(b) — 1, 0} with —val(b) — 1 = 0. So, all points (A, B) in —val(V (1)) fall
into one of three classes:

* A=B-1<0
* A=0<B-1
* B-1=0<A

So, the minimum between A, B — 1, and O is achieved at least twice. In other words,
—val(V(I)) C T(x & (—1 © y) @ 0). We do not have equality, since all points
in —val(V(7)) have rational coordinates; we leave it as an exercise to show that
—val(V(I)) = T (x @ (-1 0y) ®0)NQ?

Note that trop(x +ty+2) = x®(—10y) @0. All polynomials in I are multiples
of x + ty + 2, which means that ﬂfel T (trop(f) =T x®(—10y) ®0). So,
the tropicalization of V([) is the tropical line defined by x & (—1 © y) & 0.

These two constructions gave us similar, but not identical, subsets of R2: we had
containment of —val(V (7)) in the tropicalization of V(I), though these sets were
not equal.

Exercise 20 Show that we always have —val(V(I)) C [ fel T (trop(f)).

It turns out that, as long as we are working over an algebraically closed field,
these two sets are equal up to taking a closure in the usual Euclidean topology
of R”.

Theorem 9 (The Fundamental Theorem of Tropical Geometry) Let k be an
algebraically closed field with a nontrivial valuation val, and let I be an ideal of
k[xft, . ,xnﬂ]. Then

—val(V(D)) = () 7 (trop(f)). (34)

fel

This fact is a key result of tropical geometry, originally proved by Kapranov in
an unpublished manuscript when [ is generated by a single polynomial. A proof of
the more general result appears in [39, Theorem 3.2.3].

Given X = V(I) C (k*)", let Trop(X) denote the set —val(V(7)). Understand-
ing the relationship between X and Trop(X) is one of the core themes in tropical
geometry.
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4.3 Tropical Intersections

Let X and Y be varieties in (k*)". Let us consider how Trop(X N Y) and Trop(X) N
Trop(Y) relate to one another.

Exercise 21 Show that we always have Trop(X N'Y) C Trop(X) N Trop(Y). (This
is mostly an exercise in set theory.)

The question then becomes whether we have an equality of these sets. If we do,
then every tropical intersection point in Trop(X) NTrop(Y) “lifts” to an intersection
point in X NY. One core result from [44] is that if Trop(X) and Trop(Y) intersect in
components of the expected dimensions, then indeed the points do lift; if n = 2 and
Trop(X) and Trop(Y) are tropical plane curves, this means they intersect in isolated
points. Not only that, these points lift with the expected multiplicity! If Trop(X) and
Trop(Y) intersect in higher dimensional components, the story is more complicated.

Example 17 Let k = C{t}}, and let f, g € k[x, y] be defined by f(x,y) = ax +
by + c and g(x, y) = dx + ey + f, where val(a) = val(b) = val(c) = val(d) =
val(e) = val(a) = 0. Let X = V(f) and Y = V(g) be the two lines defined by
these equations. Then Trop(X) = Trop(Y) = J(x @ y @ 0), the tropical line in
Fig. 3. This means Trop(X) N Trop(Y) = Z(x @ y & 0). Unless X and Y are the
same line, at most one of these infinitely many tropical intersection points can lift
to an intersection point of X and Y. Let us determine which point might lift.
Assume that XNY consists of one point. We can solve the equations ax+by+c =

dx + ey + f = 0 to find the intersection point as (;Z:?; , Z{;:Z‘j ) So we know that

ce—bf af —cd
bd —ae’ bd — ae

1 ce — bf 1 af —cd
)})—{( val(———). —val(, ——)).

(35)
If there is no cancellation in ce—bf, bd —ae, af —cd, and bd —ae, then Trop(XNY)
is {(0, 0)}, which is the stable tropical intersection Trop(X) Ng; Trop(Y). However,
there are cases that give different values for Trop(X NY). Let r be a positive rational

number, and note that:

Trop(XNY)=Trop({ (

e If f=x+4+2y+ (1+1t")and g =x + y + 1, then the intersection point X N'Y
is (—1 +1¢", —t"), which is sent to (0, —r).

e If f=2x+y+ (1+1t")and g =x + y + 1, then the intersection point X N Y
is (—t", —1 4+1¢",), which is sent to (—r, 0).

e If f=Q2+4+¢)x+2y+1and g =x + y + 1, then the intersection point X N Y

is (tl,, 1;2”) = (t", 7" (1 +1")), which is sent to (r, r).

This means if all we know about X and Y is that Trop(X)NTrop(Y) = 7 (x®yD0),
then any point in .7 (x @ y @ 0) N Q? could be the image of the intersection point
of Xand Y.
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Challenge Problem 14 Leta, b, c,d, e, f € k = C{{t}}, where val(a) = val(b) =
val(c) = val(d) = val(e) = 0 and val(f) = 1. Consider the two polynomials
f, & € k[x, y] defined by
fx,y) =ax +by+c, 36)
glx,y) =dxy+ex+ fy. (37
Let X = V(f),and Y = V(g). What are the possible configurations of Trop(X NY)
inside Trop(X) N Trop(Y)?

Research Project 17 Study the possibilities for Trop(X N Y) inside
Trop(X) NTrop(Y), for plane curves or in higher dimensions. Some resources
to check are [35,43-45].
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1 Critical Groups

The primary object of interest in this chapter will be a finite abelian group that is
associated with a graph. This group has been studied from a variety of different
perspectives, and as such it goes by several different names, including the sandpile
group, the component group, the critical group, or the Jacobian of a graph. We will
give definitions and some results about critical groups of graphs and pose some
questions that we think would be interesting for an undergraduate to tackle. For
additional background and motivation for this topic as well as a more in-depth
treatment, we recommend the books by Klivans [48] and Corry and Perkinson [32].

We will highlight several significant contributions to the study of critical
groups made by undergraduates—papers with at least one undergraduate author are
highlighted in red in the bibliography—and we will discuss some open problems
that would make excellent topics for future undergraduate research.

1.1 Definitions and Examples

Part of what makes the study of critical groups such a good topic for undergraduate
research is that the definitions are very concrete and one can get started computing
examples right away.

Let G be a connected, undirected graph with vertex set V (G) of finite size n and
edge set E(G). Choose an ordering of V(G): vy, ..., v,. We define the adjacency
matrix of the graph G to be the n x n matrix A where the entry a; ; in the i t row
and j" column of A is the number of edges between v; and v j- We also define the
matrix D to be the diagonal matrix where the entry d; ; is equal to the degree of v;.
Finally, we let L(G) be the matrix D — A; this matrix is referred to as the Laplacian
matrix, or combinatorial Laplacian, of the graph G. We often write L for this matrix
when the graph is clear from context.

Note We defined the adjacency matrix A of G by saying that a; ; is the number of
edges between v; and v, implying that this number can be greater than 1. For most
of this paper we focus on the case of simple graphs (at most one edge between any
pair of vertices), with no self-loops (edges from v; to v;), that are connected (for
any pair of vertices v;, v; there is a path from v; to v; in G), and where edges are
undirected. In this case we will denote an edge between v; and v; as v;v;. Much of
the theory of critical groups carries over to more general settings, but we find that it
is most helpful to first focus on this simplest case.

Example 1 We will consider the graph below:
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V1

V3

V2

V4

One can see that the adjacency matrix, degree matrix, and Laplacian of this graph
are given by

0111 3000 3 —1-1-1
1001 0200 -12 0 -1
A= 1001 [’ b= 0020 |’ L= -1 0 2 -1
1110 0003 -1-1-13

It follows from the definition of the Laplacian matrix of a graph that the entries
in any row or in any column sum to 0. This implies that the vector consisting of all
ones, 1, is in the null space of the matrix. In fact, we have the following result:

Theorem 1 For any finite connected graph G, the null space of the Laplacian
matrix of G is generated by the vector 1.

Proof Since 1 s in the null space, all multiples of it are as well. Letx = (xq, ..., x)
be a vector in the null space of L, so that Lx = 0, the all zero vector. Note that this
implies that x” Lx = 0. One can check that

x/ Lx = Z (xi—xj)z.

viv;€E(G)

Each of these terms is nonnegative so the entries of x corresponding to any pair of
neighboring vertices must be equal. Because G is connected we must have that for
any vector in the null space all of the entries in x are equal, concluding the proof.

More generally, we can determine the number of connected components of G in
terms of its Laplacian.

Proposition 1 For any finite graph G, the dimension of the null space of the
Laplacian matrix of G is the number of connected components of G.

Exercise 1 If G is a graph with ¢ connected components, describe ¢ linearly
independent vectors in the null space of L. Mimic the proof of Theorem 1 to show
that the dimension of the null space is, in fact, c.
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This result is the first of many results relating the Laplacian matrix of a graph
to other seemingly combinatorial properties of the graph. The eigenvalues of the
Laplacian turn out to be particularly interesting, and the area of spectral graph
theory is largely dedicated to studying this relationship. We refer the interested
reader to the survey article [67] or the book [22].

In order to discuss our main object of interest, we note that any n x n integer
matrix A can be thought of as a linear map A: Z" — Z". The cokernel of A,
denoted cok(A), is Z" /Im(A). Theorem 1 implies that if L is the Laplacian of a
connected graph G then dim(Im(L)) = n — 1, so cok(L) = Z @ K for some finite
abelian group K. This group K is the critical group of the graph G. We will denote
it by either K or K (G) depending on whether the graph is understood by context.

The main goal of this article is to outline problems about critical groups. What
interesting information does K (G) tell us about G? In Sect. 1.5 we will see that the
order of K (G) tells us about the subgraphs of G, in particular, that |K(G)| is the
number of spanning trees of G. In the next section we will introduce divisors on G
and see that the structure of the finite abelian group K (G) tells us something about
how these divisors on G behave under chip-firing operations.

1.2 Divisors on a Graph and the Chip-Firing Game

We started by giving an algebraic description of the critical group as the torsion part
of the cokernel of the Laplacian matrix of G, but one can also approach it from a
more combinatorial point of view via the chip-firing game, which was originally
introduced by Biggs in [14]. In order to define this game, we set some notation. A
divisor on a graph G is a function §: V(G) — Z, which we think of as assigning an
integer number of chips to each vertex of G. We can think of a divisor as an element
of ZIV(OI The degree of a divisor is defined by deg(§) = Y, 8(v). We define an
addition of divisors by (81 + 82)(v) = 81(v) + J2(v). In this way, we see that the
set of all divisors on G, denoted Div(G), is isomorphic to a free abelian group with
|V (G)| generators. We let Div’(G) denote the subgroup of all degree 0 divisors on
G. One can see that DivO(G) is isomorphic to a free abelian group with |V (G)| — 1
generators.

Exercise 2 Describe a set A of |V(G)| — 1 divisors on G so that Div?(G) is
isomorphic to the free abelian group on A.

We next define two types of transitions between divisors, which are called chip-
firing moves. In the first, we choose a vertex and borrow a chip from each of its
neighbors. The second is an inverse to the first, where we choose a vertex and fire
it, sending a chip to each one of its neighbors. We will treat these two as inverses
in an algebraic sense, so, for example, when we say “perform —2 borrowings at v”’
one should think of it as the same as “perform 2 firings at v.” Note that each one
of these chip-firing moves preserves the degree of a divisor. Two divisors D and
Dy are equivalent if we can get from D; to D; by a sequence of chip-firing moves

(Fig. 1).
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Fig. 1 A divisor on the cycle

graph C3, followed by the —2 0

divisor obtained by first

“firing” at the lower-left ‘ ‘ ‘

vertex and then “borrowing”

at the upper-left vertex 2 — 1 0 —— 2 -1 — 1

The set of divisors that are equivalent to the all zero divisor is exactly Im(L(G)).
Starting with a divisor 8, which we think of a column vector in Z!V(@! firing
v; corresponds to subtracting the i th column of L(G) from this vector. Similarly,
borrowing at v; corresponds to adding i column of L(G). This gives a second
interpretation of the critical group.

Proposition 2 Let G be a finite connected graph. The critical group K(G) is
isomorphic to Div'(G)/ ~, the set of all degree 0 divisors of G modulo chip-firing
equivalence.

Example 2 Let G be the cycle on three vertices. Consider any divisor é of degree
zero on G. Let § be the divisor attained after performing & (v3) borrowing operations
at vy, so in partlcular 8(1)3) = (. Because the degree of § is zero we must have that
8(v2) = —8(1)1) so0 in particular Sisa multiple of the divisor §; 2 which is defined
by setting §1,2(v1) = 1,81,2(v2) = —1, and 81 2(v3) = 0. This implies that every
element of DivO(G) is equivalent to a multiple of §; . Therefore, K (G) is cyclic.
One can also show that 3§ > is chip-firing equivalent to the zero divisor, but that
81,2 and 268 2 are not. We conclude that K (C3) = Z/3Z.

Remark 1 These definitions are in parallel with a family of ideas in algebraic
geometry, and many recent results in the field have come from trying to better
understand this analogy. In particular, given a curve C defined as the solution set
to a polynomial equation f(x,y) = 0, algebraic geometers define a divisor on
the curve to be a formal finite linear combination )  a; P; of points on the curve.
The degree of the divisor is defined to be the sum ) a;, and the set of divisors of
degree zero is denoted by Div’(C). The Jacobian of the curve is then defined to be
DiVO(C )/ ~, where two divisors §; and &, are said to be equivalent if §; — §5 is the
divisor corresponding to a rational function on C. For more details about Jacobians
in algebraic geometry, we recommend [43].

Exercise 3 Show that if § is a divisor of degree zero on the graph from Example 1,
then § is equivalent after some number of firing/borrowing operations to a divisor
§ so that § (v3) = $ (v4) = 0. This result implies that every divisor of degree zero
is equivalent to a multiple of the divisor &1 » which is defined by setting 81 2(v1) =
1,812(v2) = —1, and §; 2(v3) = 81,2(v4) = 0.

Next, show that the order of §1 2 in K(G) is 8, proving that the critical group of
this graph is Z/8Z.
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1.3 Smith Normal Forms

We have defined the critical group of a connected graph G as the torsion part of the
cokernel of the Laplacian matrix of G, but it is not so clear how to determine the
structure of this finite abelian group. Linear algebra provides a nice solution.

Proposition 3 Let L be a n x n integer matrix of rank r. There exist matrices U
and V with integer entries so that det(U) = £det(V) = £l and S = ULV isa
diagonal matrix where sy 41 41 = Sr42,r42 =+ = Sp.n = 0 and s; i | Si41,i+1 for
all 1 <i < r. The matrix S is called the Smith Normal Form of L.

Moreover,

cok(L) = cok(S) = (Z/s11Z) ® (Z/5222) ® - - & (Z/5,,2) ® L.

In particular, one can read off the critical group of G directly from the Smith
normal form of L(G). The hard part here is showing the existence of the invertible
matrices U and V. For a proof see [32, Theorem 2.33]. Once one knows that U
and V satisfying these properties exist, the fact that the cokernels are isomorphic
follows from the commutative diagram below. Note that the fact that U and V have
determinant £1 means that they define isomorphisms Z" — Z".

1 s 7T > 7" S > 7" > cok(S) —— 1
I lU VT
1 > 7" s gn —L oy gn > cok(L) —— 1.

Finally, it is straightforward to determine the cokernel of a diagonal matrix, so
the last claim follows.

Example 3 Consider the graph G below:

We can see that

2 -10-10 0
-14 -1-1-10
0-12 0-10
—1-10 4 —-1-1}’
0 -1-1-14 -1
0 0 0—-1-12

L(G) =
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and can write

0-1000 O 14-110 101 100000

00 —-100 O 010 2 31 010000

00 10-10 000 1 21 001000
ULV = 00 10-11 L 001 =3—-11| Joo0300 =5

12 304 -7 000 0 11 0000180

11 111 1 000 0 01 000000

In particular, U and V both have determinant —1, so S is the Smith normal form
of L. This implies that the critical group of the graph is Z/3Z & Z/18Z.

How do we actually compute the Smith normal form of a matrix? One useful fact
(see, for example, [68, Theorem 2.4]) is the following:

Theorem 2 Let L be an n x n integer matrix of rank r whose Smith normal form
has nonzero diagonal entries sy, ..., sy where s; | si11 forall 1 <i < r. For each
i <r, we have that s1s2 - - - s; is equal to the greatest common divisor of all i X i
minors of L.

Example 4 Consider the complete graph K,, on n vertices. One sees that

n—1 -1 —1 - —I
1 n—1 -1 - -1

L(K,) = -1 -1 n—-1.-- -1
-1 -1 -1 ---n—-1

The greatest common divisor of the entries of this matrix is 1, sos; = 1. The 2 x 2
submatrices of this matrix are all of the following form:

-1 -1 n—1-1 -1 -1

—1-1)'\ -1 -1)’'\n-1-1)"

-1 -1 —1n-1 n—1 —1

—1n—-1)'\-1 -1 )\ -1 n—=1)"
In particular, the 2 x 2 minors are all in the set {0, £n, n? — 2n}, and the greatest
common divisor of these values is n. This implies s, = n, which in turn tells us that
n | s; forall2 <i < n— 1. The determinant of the (n — 1) x (n — 1) matrix that we

get by deleting the last row and column of L(K,) is n”~2. We conclude that s; = n
for each 2 <i < n — 1. This implies that the Smith normal form of the Laplacian is
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100---00
0n0---00
00n---00
S=1.... ..
000---n0
000---00

and therefore the critical group of the complete graph is (Z/nZ)" 2.

Exercise 4 Verify that the determinant of the (n — 1) x (n — 1) matrix that we get

by deleting the last row and column of L(K}) is n" 2.

Theorem 2 gives an explicit (if not very effective) way to compute the Smith
normal form, and thus the critical group, of any graph by computing many
determinants of submatrices and their greatest common divisors. However, it can
also be used in other ways to tell us about the structure of the critical group.
For example, using the notation from Proposition 3, if G is a connected graph
with n vertices, then the product sq - - - 5,7 is the greatest common divisor of the
(n —2) x (n — 2) minors of L(G). So if any one of these minors is equal to 1, then
S1--+Sp—2 = l and |K(G)| = s,,—1. This gives the following result:

Corollary 1 Let G be a connected graph on n vertices. If there exists an (n — 2) X
(n — 2) minor of L equal to 1, then the critical group of G is cyclic.

We have defined the critical group of a connected graph as the torsion part of
the cokernel of the Laplacian matrix, but it is often convenient to think of the
critical group as the cokernel of an invertible matrix. Let the reduced Laplacian
of a connected graph G be the matrix Lo(G) (or just Lo when the graph is clear
from context) that we get from deleting the final row and column of L(G). Because
all of the rows and columns of L sum to 0, the torsion part of cok(L) is equal to
cok(Ly). In fact, it is a special property of Laplacian matrices that one can remove
any row and column from L and the cokernels of the matrices will be isomorphic.
See [32, Section 2.2.1] or [13, Chapter 6] for more detail. The following result then
follows from Theorem 2.

Corollary 2 Let G be a graph on n vertices. For any i, j satisfying 1 <i,j <n,
let L'"J be the (n — 1) x (n — 1) matrix that we get by deleting the i'" row and j™"
column of L(G). Then K (G) = cok(L"/). In particular, the order of K (G) is equal
to the determinant of the reduced Laplacian L'/

As mentioned earlier, the algorithm suggested by Theorem 2 is not very efficient.
There are much more efficient algorithms for computing Smith normal forms that
proceed similarly to how one row reduces matrices into reduced echelon form in a
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linear algebra class. In particular, one can put any # X n integer matrix into a unique
matrix in Smith normal form by a sequence of the following operations:

. Multiply rows or columns by —1,

. Swap two rows,

. Swap two columns,

. Add any integer multiple of one row to another row, or

. Add any integer multiple of one column to another column.

Wn AW =

Just as when putting matrices into reduced echelon form there are many choices
one makes along the way which may speed up or slow down the process. For details
of how to optimize this procedure, we refer the reader to [39] and [69]. There are
efficient implementations of these algorithms in most computer algebra systems
including Sage, Maple, and Mathematica.

Example 5 Consider again the graph from Example 1. Let us use row and column
reduction in order to find the Smith normal form of the Laplacian of this graph.

3-1-1-1\ ., (-1 2 0-1\ ,.,5 (-1 2 0-1
1 2 0-1| 7| 3-1-1-1|—] 0 5-1-4
—1 0 21| mn |1 0 2-1] n-n 0-2 2 0
~1-1-1 3 0-1-3 4 0-1-3 4
i (172 0-1 iz, (17201

— o 1 3-4 0 13-4

- 0-2 2 0 s |0 08 -8

0-1-3 4 0 00 0

oi2e, (1000 o3, (1000

—— 0134 — o100

G- 0088 cotdertes [ 0080

000 0 “\0000

It is often interesting to look at specific families of graphs and ask how to
compute their critical groups. As an example, the complete bipartite graph K, ,,
has vertex set {x1, ..., Xy, y1, - . ., y»} and edge set consisting of the edges between
each x; and y; and no others.

Exercise 5 Find the critical group of K3 3 by computing the Smith normal form of
its Laplacian matrix. How would your results generalize to other complete bipartite
graphs K, ,?

We note that a formula for the critical groups of all complete multipartite graphs is
given in [45].
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Fig. 2 The circulant graphs
Ce(1,2) and C12(2, 3)

Many authors have worked on problems about computing critical groups for
other special families of graphs. For example, the critical groups of wheel graphs
are described in [14, §9], rook graphs are considered in [35], and Paley graphs in
[20]. Much of this work has been done by undergraduate students, and there are
many families of graphs that one could still explore!

We close this section by discussing one family of graphs where there are still
many open questions about the critical groups, the circulant graphs. To be explicit,
the circulant graph Cy(ay, ..., ax) is formed by placing n points on a circle and
drawing the edges from each vertex to the vertices that are ay, ay, . .., a; positions
further in the clockwise direction. Two examples are given in Fig. 2. Some graphs
of this form have been analyzed in several papers, [40,44,59,60], where results like
the following are shown:

Theorem 3 Let F, be the n'" Fibonacci number and let d = gcd(n, Fy). Then the
critical group of C,(1,2) is isomorphic to Z/dZ @ L] F,Z & Z/(nF, /d)Z.

Exercise 6 Write down the Laplacian matrix for the graph Cg(1, 2). Verify that the
critical group of this graph is Z/6Z @ (Z/13Z)>.

An unpublished note [26] argues that in general the critical group of the circulant
graph C,(a, b) can be generated by at most 2b — 1 elements. The authors also
describe explicit calculations giving a library of the critical groups of all circulant
graphs with at most 27 vertices.

Research Project 1 Compute the critical groups of C,(1,3) for n < 10,
either by hand or using a computer algebra system. Try to find patterns.
Compare your results to [59, Theorem 2].

What kinds of patterns can you find for other families of circulant graphs?
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1.4 Elements of the Critical Group

In the previous section we saw how to determine the critical group of a graph by
computing the Smith normal form of the Laplacian of G. We also have seen how
equivalence classes of divisors on a graph give elements of the critical group.

Question I How do we write down representatives for the elements of K(G)? In
particular, we know that K (G) is isomorphic to the group of all classes of degree 0
divisors on G under chip-firing equivalence. How do we make a “good choice” of
one divisor from each class? How do we determine if two divisors are in the same
class?

There are several different approaches to choosing a representative from each
class, and we will give one here. Let 6 € Div(G) and v € V(G). We say that v is
in debt if 6 (v) < 0. We fix a vertex g € V(G) and define a divisor § € Div(G) to
be g-reduced if §(v) > 0 for all v # g and, moreover, for every nonempty set of
vertices A € V(G) \ {gq}, if one starts with the divisor § and simultaneously fires
every vertex in A, then some vertex in A goes into debt.

Example 6 Once again we consider the graph from Example 1. We denote the
upper-left vertex as ¢ = v1, the lower-left as vy, the upper-right as v, and the lower-
right as v4. In order for a divisor § to be g-reduced, one first notes that § (v) < deg(v)
for all v # ¢ to account for the situation when A is a single vertex. On the other
hand, if we fire all three of the vertices in A = {v3, v3, v4}, then § decreases by one
at each of these vertices, so if firing at each vertex of A causes one of the vertices to
go into debt we know that the value of § is zero for at least one of them (Fig. 3).

Firing both vertices in A = {v,, v3} decreases the value of the divisor at each of
these vertices by two, which will already make both of the values negative by our
above reasoning. If A = {v2, v4}, then firing both vertices in A decreases 6(v2) by
one and §(v4) by two. In particular, if §(v4) = 2, then §(vp) = 0 and if §(v2) = 1,
then §(v4) = 0 or 1. Considering A = {v3, v4} gives the analogous results for v3.

Combining these facts, one can see that there are eight g-reduced divisors of
degree zero on this graph, given by the 4-tuples (8 (v1), §(v2), §(v3), 8(v4)):

Fig. 3 Two divisors on the graph from Example 1. The first is g-reduced, as one can see by firing
each of the seven nonempty subsets of {v}, v2, v3}. The second is not g-reduced, as one can see by
noting that firing all of the vertices in {v, vy, v3} will not put any of these vertices into debt
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{(01 07 Oa 0)7 (_1s 19 07 O)? (_17 01 1» 0)! (_1» Oa 01 1)1
(_27 ]s ]9 0)1 (_27 la Os 1)1 (_21 07 ]s ])a (_21 O» 27 O)}‘

Exercise 7 Show that if we had chosen ¢ to be the vertex v; instead of v; that there
would still be eight g-reduced divisors of degree zero.

As was suggested by the previous example, the number of g-reduced divisors
does not depend on the choice of vertex g, even though the specific set of divisors
certainly does. In fact, a much stronger result is true:

Theorem 4 ([7, Prop 3.1]) Let G be a finite connected graph and q € V(G). Then
every divisor class in K (G) contains a unique q-reduced divisor.

Checking whether or not a divisor is g-reduced directly from the above definition
is difficult for large graphs as there are exponentially many subsets A one needs
to check. However, there is a fast algorithm due to Dhar known as the Burning
Algorithm that verifies whether a divisor is g-reduced by checking only a linear
number of firing sets. We will not give the details of this algorithm but refer the
interested reader to [48, Section 2.6.7]. It is worth noting that g-reduced divisors
were independently developed under the name of G-parking functions in order to
generalize what are now called classical parking functions; for more details about
this story, we refer the reader to [48, Section 3.6].

1.5 Spanning Trees and the Matrix Tree Theorem

A spanning tree of a connected graph G is a subgraph 7 consisting of all of the
vertices of G and a subset of the edges of G so that the graph .7 is connected and
contains no cycles. It follows from elementary results in graph theory that if G (and
hence .77) has n vertices then .7 will have n — 1 edges.

Example 7 Consider the cycle on n vertices, C,. We get a spanning tree by deleting
any single edge. Thus, C,, has n spanning trees.

The graph from Example 1 consists of 4 vertices and 5 edges, so any spanning
tree will be obtained by deleting two of the edges from the graph. However, in this
case we cannot just delete any two edges; for example, deleting the edges viv;
and vpv4 will leave us with a graph that is both disconnected and contains a cycle
(see Fig.4). In particular, if we delete the edge viv4, then we can delete any of
the remaining edges as our second edge. Otherwise, we must delete exactly one edge
from {vv3, v2v3} and one from {v1v3, v3v4}. In particular, there are eight spanning
trees of this graph.

In general, it might appear to be a difficult question to ask for the number of
spanning trees a given graph, but there is a nice answer given in terms of the
Laplacian of the graph. The result is often attributed to Kirchhoff based on work
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V3 Vi V3 Vi V3

vy V4 vy V4 V) V4

Fig. 4 Three subgraphs of the graph from Example 1 which each have three edges. The first one
is not a spanning tree but the other two are

he did as an undergraduate in the 1840s. Many different proofs have been given
over the years. For a discussion of the history of this theorem as well as a proof and
some related results, see [47] and [13, Chapter 6]. Recall that the reduced Laplacian
L/ (G) of a graph G is the matrix we get by deleting the i’ row and j* column
from L(G).

Theorem 5 (Matrix Tree Theorem) The number of spanning trees of G is equal
to | det(L"/ (G))| for any i, j.

Combining this theorem with the discussion in Sect. 1.3 gives us the following
result which we will make use of repeatedly:

Corollary 3 The order of the critical group K (G) is the number of spanning trees
of G.

In fact, Cori and Le Borgne give an explicit bijection between spanning trees of
a graph and reduced divisors in the critical group in [27]. In [9], Baker and Shokrieh
reformulate the question in terms of minimizing energy potential to generalize these
results further. We will not discuss these refinements here.

Corollary 3 immediately tells us that any tree has trivial critical group, a fact
that we will give a different proof of in Corollary 5. It also tells us that the critical
group of a cycle on n vertices has order n and that the critical group of the graph in
Example 1 has order 8, although it does not help us pin down the group exactly. We
will return to critical groups of cycles in the next section.

Exercise 8 Consider the “house graph” pictured here:
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Show that there are 11 different spanning trees of this graph, and conclude that the
critical group must be Z/11Z. More generally, what can we say about the critical
group of the graph consisting of two cycles sharing a common edge?

At the beginning of Sect. 1.4 we noted that there are several approaches to
choosing one divisor from each divisor class and then discussed the example of
g-reduced divisors. Another interesting choice comes from the theory of break
divisors, which are defined in terms of the spanning trees of G. An, Baker,
Kuperberg, and Shokrieh use these divisors to give a decomposition of Pict(G),
the set of all divisors of degree d on G modulo chip-firing equivalence [3]. This
leads to a “geometric proof” of Theorem 5.

1.6 How Does the Critical Group Change Under Graph
Operations?

To this point, we have used techniques from linear algebra to compute critical
groups. One can also often use combinatorial properties of graphs to help with these
computations. In this section, we will consider several such approaches.

The Dual of a Planar Graph A graph G is planar if it can be drawn on a sheet
of paper without any edges crossing. The dual graph G is defined as follows.
Choose a drawing of G. The vertices of G are in bijection with the planar regions
of the drawing. There is an edge connecting two vertices of G precisely when the
corresponding regions of the drawing of G share an edge. Two examples are given
in Fig. 5. We note that the dual of a planar simple graph may have multiple edges
between two vertices.

This definition of the dual depends on a choice of embedding into the plane. In
particular there are graphs where different embeddings into the plane lead to non-
isomorphic dual graphs. That said, we have the following result of Berman [12,
Proposition 4.1] that was rediscovered by Cori and Rossin [28, Theorem 2], and by
Bacher, de la Harpe, and Nagnibeda [6, Proposition 8].

Theorem 6 If G is a planar graph and G is its dual graph, then K (G) = K(G).

Fig. 5 Two planar graphs
and their duals. The vertices
of the original graphs are
given in gray and the edges
are solid. The vertices of the
dual graphs are given in black
and the edges are dashed
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Corollary 4 The critical group of the cycle graph Cy, is 7./ nZ.

Proof The dual graph to C,, consists of two vertices (one representing the inside of
the cycle and one representing the outside) with n edges between them, as illustrated

in Fig. 5. Therefore,
A n —n
L(Cp) = ( > .
—n n

We easily deduce that K (én) = Z/nZ. The result follows from Theorem 6.

In this argument we took the dual graph of a cycle and got a graph that had n
distinct edges between our pair of vertices. As we noted earlier, standard facts about
critical groups work in this more general multigraph setting— it is a good exercise to
check that you believe us!

There is a construction similar to the dual graph known as the line graph of a
graph G. In particular, the line graph of G is the graph G; whose vertices are in
bijection with the edges of G and two vertices in G, have an edge between them
if and only if the corresponding edges share a vertex. For information on critical
groups of line graphs see [11].

The Wedge of Two Graphs Let G| and G, be two finite graphs with designated
vertices v1 € G1 and v2 € G. The wedge of G and G is the graph G consisting

of the two graphs G1 and G, with the vertices v; and v, identified.

Example 8 Let G be the wedge of two triangles, as shown below.

One can check that

2 -1-10 0
-12 -10 0
LG)=]-1-14 —1-1
0 0 —-12 -1
0 0 —-1-12

Deleting the third row and third column of L(G), gives block matrix consisting of

two copies of the 2 x 2 matrix _2 —1). It is straightforward to see that each of
Y 12 g

these blocks is the reduced Laplacian of a single triangle graph, and therefore the
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reduced Laplacian of the original graph can be reduced through row and column
operations to

1000
0300
0010
0003

By Corollary 2, the critical group of G is Z/37Z & Z./3Z.
This example generalizes, as shown in the following theorem:

Theorem 7 Let G| and G; be two finite graphs and let G be the wedge of G| and
Gs. Then K(G) = K(G1) @ K (G»).

Exercise 9 Give a proof of Theorem 7 in the spirit of the previous example. In
particular, if G is the wedge of G; and G,, determine the relationship between
L(G), L(G1),and L(G>) and use this to compute the cokernel of L(G) in terms of
cok(L(G1)) and cok(L(G?)).

The following result follows immediately from Corollary 3, but we will give an
additional proof illustrating the ideas of this section.

Corollary 5 Let G be any tree. Then the critical group K (G) is trivial.

Proof If H is the graph consisting of two vertices and a single edge, then L(H) =
( jl ’11 ) In particular it is clear that K (H) is trivial. Any tree can be constructed as
the successive wedges of graphs isomorphic to H and therefore the critical group of
a tree is itself trivial.

Adding/Subtracting an Edge The fundamental theorem of finite abelian groups
tells us that any finite abelian group H can be written uniquely as a direct sum

HZZ/mZOZ/mZ®- - &Z/n,Z,

where n; | nj41 for all i and n, > 1. The n; are the invariant factors of H, and the
integer r is the rank of H, the minimum size of a generating set of H. Let G be a
finite connected graph and G’ be a graph on the same set of vertices where we have
added one additional edge. Lorenzini shows that the rank of K (G) and the rank of
K (G”) differ by at most 1 [54, Lemma 5.3].

Lorenzini uses this result to give an upper bound for the rank of the critical group
of a connected graph G. Since K (G) is isomorphic to the cokernel of an (n — 1) X
(n — 1) matrix, it is clear that the rank of K (G) is at most n — 1. This bound is in
general not good, and in fact we will see evidence in Sect. 1.9 that most graphs have
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cyclic critical groups. Recall that the genus of a graph is the number of independent
cycles that the graph contains; in particular, it can be computed as g(G) = |E(G)|—
V(G| + L.

Theorem 8 ([54, Proposition 5.2]) Let G be a connected graph and let h(G)
denote the rank of K (G). Then h(G) < g(G).

One can see that this bound is sharp by considering the graph formed as the
wedge of k copies of the triangle C3z. This graph has genus k and critical group
(Z/3Z)*. In general, finding a minimal set of generators is an open problem. We
will return to this question in Sect. 1.8.

Subdividing an Edge Let G be a graph with v, v € V(G) and viv; € E(G).
Let G’ be the graph whose vertex set is the same as G except with the edge vjv;
replaced with a path of k edges. We see that V (G’) consists of V(G) together with
k — 1 new vertices along this path.

Subdividing a single edge of a graph can have all kinds of different effects on
the critical group; If you subdivide an edge on a path, then it does not change the
critical group, as it will still be trivial, but if you subdivide an edge on the cycle
C,, replacing it with a path of length 2, it changes the critical group from Z/nZ to
Z/(n + 1)Z. Subdividing an edge can change not only the order of K (G), but can
also change whether or not this group is cyclic, as illustrated in Fig. 6.

The following result from [21] shows that after a suitable choice of subdivisions
one can always make the critical group cyclic.

Theorem 9 Let G be a graph of genus g > 1. Then there is a choice of at most
g — 1 subdivisions after which the critical group becomes cyclic.

Exercise 10 Show that Theorem 9 is true in the case where G is the wedge of
two cycle graphs C,, and C,. In particular, this graph has genus two so you should
show that either K (G) is already cyclic or K(G) can be made cyclic after a single
subdivision. Can you generalize this argument to the wedge of three or more cycles?

(a) K ~7,/47.6:7,/47 (b) K = 7,/207Z (©) K ~7/47.67,/6Z

Fig. 6 Pictured above is (a) a graph with critical group Z/4Z @ Z/4Z, (b) a graph with critical
group Z /47 @ 7./57. = 7Z/207Z obtained by subdividing the previous graph, and (c) a graph with
the noncyclic critical group Z /47 @ Z/6Z obtained by another subdivision
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In a different vein, one can explicitly describe what happens after simultaneously
subdividing all edges. We begin with an example:

Example 9 Let G be the graph consisting of the wedge of the cycles C3 and Cjy.
We have already seen that the critical group of G is K(G) = Z/37Z & 7./47Z. Note
that if we subdivide each edge of G into k edges then the new graph G4 will be
the wedge of the cycles C3; and Cyg and therefore has critical group K (Gg) =
Z)3kZ ® 7.]4kZ.

It turns out that the previous example generalizes in a natural way. Recall that
Theorem 8 tells us that if g is the genus of a graph G, then the critical group of G
can be written as Z/m1Z ® . .. ® Z/mgZ, where it may be the case that some of the
m; = 1. We can use this decomposition to get the following result:

Theorem 10 ([56, Proposition 2]) Let Gk be the graph obtained by subdivid-
ing each edge of G into k edges. Then, writing

KG) ZEZ/mZ®...®ZL/mZ
as above we see that
K(Gsub(k)) = Z/kaZ D...0D Z/kng

Exercise 11 Let G be the graph from Example 1 and let Ggp(2) be the graph
obtained by subdividing each edge of G into two edges. Compute the critical group
of Gsup(2) both by using Theorem 10 and by using results about the Laplacian matrix
of Gsup(2)-

The Cone Over a Graph The join of two graphs G and H consists of disjoint
copies of G and H together with edges uv for all pairs u € V(G) and v € V(H).
The n™ cone over G, denoted G,, is the join of G and the complete graph K,,.
Several authors have studied how the critical group of G, is related to the critical
group of G [1,19]. The following result of Goel and Perkinson builds on these earlier
efforts.

Theorem 11 ([41, Theorem 1]) Let G be a connected graph on k vertices, n > 2
be a positive integer, and G,, be the n™ cone over G. Let 1 denote the k x k matrix
whose entries are all 1.
1. We have

K(G,) = (Z)(n+ k)Z)" > @ cok (nly + L(G) +1).

2. The group cok (nly + L(G) + 1) has a subgroup isomorphic to 7./ (n + k)Z.
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3. We have

(n+ k)",

K(G)| = IPL(G;(—H)I

where py (G) is the characteristic polynomial of L(G).
The last of these statements is Corollary B in [19].

Example 10 Let G be the path graph on two vertices. One can see that L(G) =

(_1l _11 ) so that py)(t) = 2 — 2¢. The third statement of this theorem therefore

implies that | K (G,)| = (n+2)" for all choices of n. This does not tell us the specific

group structure, although in this case we can see from the first statement that
K(Gp) = (Z/(n +2Z)" > ® cok ("% ,0,) = (Z/(n +22)".

When the graph is more complicated, Theorem 11 is more useful in determining
the order of the critical group of the cone of a graph than in determining its group
structure, something which [19, Question 1.2] asks about in a slightly different form.
Goel and Perkinson show that this involves understanding when Z/(n + k)Z is a
direct summand of cok(nl; + L(G) + 1). This question is analyzed for the path on
4 vertices in [41, Example 5].

Research Project 2 How much more can one say about the structure of
K (G,) for a general graph G and positive integer n, where G, is the n™
cone over G?

Functions Between Graphs There are various results that look at the functorial
properties of the critical groups of graphs. One particularly nice example is given
by Harmonic morphisms between graphs, which Baker and Norine use to prove a
graph-theoretic analogue of the Riemann—Hurwitz formula from algebraic geometry
[8]. These morphisms induce different kinds of functorial maps between divisors on
graphs and between their critical groups. Reiner and Tseng examine the situation
where one has a map between two graphs ¢ : G — H that satisfies certain technical
conditions and show that this induces a surjection of the critical groups K (G) —
K (H) whose kernel can be understood [64]. Other papers look at graphs that admit
automorphisms and what one can say about either |K (G)| or the structure of K (G)
in relation to its quotients. For examples related to reflective symmetry see [23] and
for dihedral group actions see [40].
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1.7 Which Finite Abelian Groups Occur as the Critical Group of a
Graph?

Up to this point, we have primarily been concerned with the situation where we are
given a graph G and try to determine K (G). One could also ask how to construct
graphs that have a given critical group. Combining Theorems 4 and 7 implies that
we can construct a graph with critical group

Z/mIZEB...@Z/de

by taking the wedge of cycles Cy,,, Cinys .., Cpry-

Research Project 3 Let H be a finite abelian group. We know that there is
some graph G with K(G) = H. This G is clearly far from unique. What is
the graph G with the smallest number of vertices and given critical group?

This is related to a problem of Rosa, which asks for the smallest number of vertices
of a graph with a given number of spanning trees. Even this simpler sounding
problem is not well understood. See [65] for partial results.

There is a technical detail related to our discussion so far. If any of the m; are
equal to 2, this construction taking a wedge of cycles C,,; does not result in a simple
graph. In fact, it is not difficult to show that there is no simple graph G with K (G) =
7./27.. Suppose G were such a graph and let .7 be one of its spanning trees. There
must be some ¢ € E(G) so that 7 U{e} contains a cycle. Since G is a simple graph,
this cycle has at least three edges. Removing any edge in this cycle gives a spanning
tree of G. Therefore, G has at least three spanning trees, so |K(G)| > 3. In [38],
the authors significantly strengthen these ideas, and prove that there are no simple
connected graphs with any of the following critical groups:

727 & TJAZ, (Z)27)* & ZJAZ, 7.J27 & (Z/AZ)?, or (Z/2Z)* for any k > 1.
Moreover, they show the following:

Theorem 12 Let H be any finite abelian group. There exists some positive integer
ky so that there are no connected simple graphs with critical group H & (Z./27,)*
forany k > kp.

Research Project4 Let H = Z/8Z. For what values of k is there a
connected simple graph with critical group Z/8Z & (Z/27)*?

(continued)
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More generally, for other finite abelian groups H, what can we say about
the value of kx ? One approach to constructing such graphs might be to find
graphs of a given genus and critical group and then subdividing each edge
into two edges and using Theorem 10.

So far in this section we have asked only about the existence of a simple graph
with a given critical group. We can ask stronger questions about the existence of
graphs with additional properties and given critical group. For example, a graph G
has connectivity at least k if G remains connected even if one deletes any set of
k — 1 vertices and all edges incident to a vertex in this set. In particular, a graph is
said to be biconnected if it remains connected after deleting any single vertex and
all edges incident to it. The authors of [38] show that if a graph is biconnected and
has maximum vertex degree §, then the critical group must contain some element
whose order is at least §. This result is one of the ingredients in proving that there
are no simple graphs with critical group (Z/27)*. These observations lead them to
make the following conjecture.

Research Project 5 Is it true that for any positive integer 7, there exists k;,
such that if k > k,, there is no biconnected graph G with critical group
(Z./nZ)*?

1.8 Generators of Critical Groups

In Sect. 1.9, we will study properties of critical groups of random graphs and see
that we often expect these critical groups to be cyclic. The simplest possible nonzero
divisor on G is of the form dyy where x, y € V(G), 8xy(x) =1, 8xy(y) = —1 and
dxy(v) = 0 at all other vertices.

Question 2 Let G be a connected finite graph with K (G) cyclic. When does K (G)
have a generator of the form &y, ?

In [10], the authors give a number of examples of graphs with cyclic critical groups
and generators of this form, and also give examples of graphs with K (G) cyclic that
do not have a generator of this form. They propose a general criterion for when a
graph G has such a generator. This conjecture was proven in [17].

Theorem 13 Let x and y be vertices on a finite connected graph G and let G' be
the graph obtained by adding Xy if xy & E(G) and deleting xy if xy € E(G). Let
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dxy be defined as above and let S C K (G) be the subgroup of the critical group of
G generated by §,y. Then we have the following relationships:

« [K(G): S]divides gcd(|K (G)], |K (G)])
e gcd(IK(G)|, |K(G")]) divides [K(G) : S

In particular, 8,y is a generator of K(G) if and only if gcd(|K (G)|, |K(GH]) = 1.

Research Project 6 Theorem 13 gives a way of testing whether a given pair
of vertices x, y gives a divisor 8y, that generates K (G). Is there a simple
way to test whether there exists a pair of vertices x, y such that é,, generates
K(G)?

For example, the wedge of a triangle, square, and pentagon has critical
group Z/60Z, but there is no pair of vertices x, y such that dy, generates
K(G).

Research Project 7 What happens when the critical group of G is not
cyclic? For example, is there a way of testing whether two divisors dy, y, and
Ox,y, generate K (G)?

1.9 Critical Groups of Random Graphs

In Sect. 1.7, we saw that every finite abelian group occurs as the critical group of
a graph if we allow multiple edges between vertices, and that every finite abelian
group of odd order occurs as the critical group of a simple graph. Instead of asking
whether a group occurs as K (G) for at least one graph G, we could ask about which
kinds of groups occur often as the critical group of a graph. Throughout this section
we restrict our attention to simple graphs.

Question 3 What can we say about critical groups in families of “random graphs”?

Here is one way to make this question precise. There are ('21) possible edges

between vertices vy, ... v,, so there are 2(2) labeled simple graphs on this vertex
set. As a warmup, we can ask the following.

Question 4 How many of these 2(2) graphs are connected and have trivial critical
group?
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Corollary 3 implies that a connected graph has trivial critical group if and only if
itis a tree. It follows from Example 4 that the number of labeled trees of n vertices
is n 2. So the proportion of graphs on n vertices that are connected and have trivial
critical group is n" "2/ 2()), which goes to zero as n goes to infinity. This tells us that
the size of K (G) is not often equal to 1, but does not tell us how large we should
expect it to be.

In order to determine the average size of the critical group of a graph on n
vertices, we introduce some ideas from probabilistic combinatorics. There are n” 2
trees on n vertices, and each tree has exactly n — 1 edges. Fix a choice of a spanning
tree .7 on n vertices. The number of graphs on n vertices containing 7 as a
subgraph will be 2G)—@=1 since, for each edge not in .7, we can choose whether
it is present in our graph. This implies that the probability that 7 is contained in
a random graph is 1/2"~!. It then follows from linearity of expectation that the
expected number of spanning trees of a graph on n vertices is n*~2/2" 1. It is easy
to check this formula in small cases.

Example 11 There are 8 graphs with vertex set {vi, vz, v3}, and 4 of these are
connected: the complete graph K3, which has 3 spanning trees, and 3372 = 3 trees,
which have 1 spanning tree each. We conclude that the average number of spanning
trees of a graph on 3 vertices is 3/4.

A graph G on n vertices is not connected if and only if it does not contain any of
the n" 2 spanning trees of the complete graph with vertex set V (G).

Exercise 12 Show that as n goes to infinity, the proportion of graphs on n vertices
that are connected goes to 1.

Here is one approach: A graph G with n vertices is connected if every one of
the (;) pairs of vertices v;, v; € V(G) share a common neighbor. What is the
probability that vy is a common neighbor of both v; and v;? What is the probability
that v; and v; do not share a common neighbor?

For the rest of this section, when we ask about the proportion of graphs G on
n vertices for which K (G) satisfies some property, what we really mean is the
proportion of graphs G that are connected and such that K(G) has this property.
By Exercise 12, as n goes to infinity the proportion of connected graphs goes to 1,
so we do not need to keep writing this extra assumption.

Since n"~2/2"~! goes to infinity with n, we see that the average size of K (G)
gets large as |V (G)| gets large. In fact, something stronger is true:

Proposition 4 Let X be a positive integer. The proportion of graphs G on n vertices
for which |K (G)| < X goes to 0 as n goes to infinity.

Note that if G has at most X spanning trees, then we can make G disconnected by
removing at most X edges, so X has edge connectivity at most X. We leave the proof
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of this proposition as an exercise, but refer the interested reader to [37, Chapter 4]
for results on connectivity of random graphs.

A consequence of Proposition 4 is that for any particular finite abelian group
H, the probability that K(G) = H goes to 0 as |V (G)| goes to infinity. Instead
of asking for K(G) to be isomorphic to a particular group, we can ask for the
probability that this group has some chosen property.

Question 5 What proportion of the 2(2) graphs on n vertices have K (G) cyclic?

This question has been the subject of much recent research including work of
Wagner [70], Lorenzini [57], and Wood [72]. One nice thing about this type of
question is that it is not so difficult to do large experiments using a computer algebra
system, for example Sage, and to get a sense for what to expect. Building on work
of [25], the authors of [24] make the following conjecture.

Conjecture I We have

. #{Connected graphs G with |V(G)| =n and K(G) cyclic}
im

n— 00 2(;)

=3¢ e @ e - & 7935212

In this conjecture, {(s) = Y oo, n~* denotes the Riemann zeta function. Wood
has proven that this conjectured value is an upper bound for the probability that the
critical group of a random graph is cyclic [72, Corollary 9.5]. Showing that equality
holds appears to be quite difficult.

It is also interesting to ask questions about other properties of the order of the
critical group, such as the following:

Question 6 What proportion of the 2() graphs on n vertices have | K (G)| odd?

That is, we would like to understand the following limit:

lim #{Connected graphs G with |V(G)| =n and |K(G)| odd}

One of the main ideas that goes into the study of these questions is that a finite
abelian group H decomposes as a direct sum of its Sylow p-subgroups. Recall
that the Sylow p-subgroup of a finite abelian group H is the subgroup of all of its
elements of p-power order. We denote this subgroup by H,,. We can interpret many
questions about K (G) in terms of the Sylow p-subgroups K (G) . For example, a
connected graph G has a cyclic critical group if and only if K(G), is cyclic for
each prime p. Similarly, G has an odd number of spanning trees if and only if
K (G), is trivial. This suggests that a good starting place is to try to understand how
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the Sylow p-subgroups of critical groups of random graphs behave. The following
result of Wood answers this question.

Theorem 14 ([72, Theorem 1.1]) Let p be a prime and H a finite abelian p-group.
Then

i #{Connected graphs G with |V(G)| =n and K(G), = H}
im
n—00 2(;)

_ #{symmetric, bilinear, perfect pairings ¢: H x H — C*} l_[(l _ p—zk—l)
|H||Aut(H)] '

k>0

We will discuss pairings on finite abelian p-groups and this theorem in more
detail in Sect. 1.10. In the meantime, taking p = 2 and H equal to the trivial group,
we see that the probability that a random graph has an odd number of spanning trees
is [Tre (1 —27%~1) & 0.4194, answering Question 6.

Critical Groups of Random Graphs and Cokernels of Random Integer Matri-
ces Questions about critical groups of random graphs are closely connected to
questions about random symmetric integer matrices. When R is equal to either Z
or Z/pZ, we let Sym,, (R) denote the set of n x n symmetric matrices with entries
in R. To see the connection between random graphs and matrices, we note that half
of the 2(?) graphs G with V(G) = {v1, ..., v,} have ;v; € E(G). So choosing
one of these 2(2) graphs uniformly at random is the same as flipping a coin for each
of the (g) potential edges of the graph to decide whether to include it. This implies
that choosing a random graph on n vertices and computing its critical group is the
same as the following process:

1. Choose a random matrix A € Sym,, (Z) with all diagonal entries equal to 0 by
taking each pair 1 < i < j < n and setting a; ; = 0 with probability 1/2 and
a; j = 1 with probability 1/2.

2. Compute the diagonal matrix D with (i, i)-entry equal to the negative of the sum
of the entries in the ;™ row of A. Let Lo be the (n — 1) x (n — 1) matrix that we
get by deleting the last row and column of D — A.

3. Take the cokernel of L.

Many questions about properties of random graphs can be phrased as questions
about this family of random integer matrices. For example, we have seen that a graph
G is connected if and only if Ly(G) has rank n — 1, so the proportion of graphs with
n vertices that are connected is the same as the probability that a random matrix L
chosen by the procedure above has rank n — 1.

We will use the fact that K(G), only depends on the entries of Lo(G) modulo
powers of p.
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Exercise 13 Let G be a connected graph.

(a) Prove that K (G) is trivial if and only if p t det(Lo(G)).
(b) Conclude that K(G) is trivial if and only if we reduce the entries of Lo(G)
modulo p and get a matrix with entries in Z/pZ of rank n — 1.

How often should we expect K (G), to be trivial? Exercise 13 suggests that a good
first step is to compute the proportion of all matrices in Sym,,_(Z/pZ) that have
rank n — 1.

Theorem 15 ([S8, Theorem 2]) The number of invertible matrices in
Sym,_, (Z/pZ) is

=4

p® [T a-p2).
j=1

We leave the proof as a nice exercise in linear algebra over finite fields.

As we take n to infinity, Theorem 15 implies that the proportion of invertible
matrices in Sym,,_;(Z/pZ) approaches []2,(1 — p~2~1). This is the same
probability that we get by taking the trivial group in Theorem 14, the probability that
the number of spanning trees of a large random graph is not divisible by p. Wood’s
theorem demonstrates a deep type of universality for cokernels of random matrices.
Even though the reduced Laplacian of a random graph does not give a uniformly
random element of Sym,_(Z/pZ), as n goes to infinity the probability that the
reduced Laplacian modulo p is an invertible matrix is the same as the proportion of
matrices in Sym,,_;(Z/ pZ) that are invertible.

In order to understand the Sylow p-subgroup of cok(L((G)) p, we must consider
not only the entries of Lo(G) modulo p, but also modulo higher powers of p. There
is a nice algebraic setting for these questions. Instead of thinking about Lo(G) as
a matrix with integer entries, we think of it as a matrix with entries in the p-adic
integers, which we denote by Z,. A p-adic integer consists of an element of Z/ p*z
for each k that is compatible with the canonical surjections Z/p*Z — Z/p*~'Z.
For any prime p, Z C Z, since the integer n corresponds to choosing the residue
class n (mod p) for each k. There is a nice description of how to choose a random
matrix with p-adic entries that comes from the existence of Haar measure for Z,,.
We do not give details here. For an accessible introduction to p-adic numbers, we
recommend Gouvea’s book [42].

Clancy, Leake, and Payne performed large computational experiments about
critical groups of random graphs and made conjectures based on their data [25].
Motivated by these conjectures, these authors together with Kaplan and Wood
determine the distribution of cokernels of random elements of Sym,(Z,) as n
goes to infinity [24]. Theorem 14 is a consequence of a much stronger result of
Wood about cokernels of families of random p-adic matrices [72]. Wood proves
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that for a large class of distributions on the entries of such a matrix the distribution
of the cokernels does not change. This class is large enough to include reduced
Laplacians of random graphs, so even though these matrices are very far from being
uniformly random modulo powers of p, the distribution of their cokernels matches
the distribution in the uniformly random setting.

Choosing a Random Graph So far in this section we have chosen a random graph
by choosing one of the 2(2) graphs on n vertices uniformly at random. It is common
in the study of random graphs to allow the probability of choosing a particular
graph to be weighted by its number of edges. Let 0 < g < 1. An Erdds—Rényi
random graph on n vertices, G(n, q), is a graph on n vertices vy, ..., v, where
we independently include the edge v;v; with probability ¢g. That is, G(n, q) is a
probability space on graphs with n vertices in which a graph with m edges is chosen
with probability

q"(1— gD,

We see that our earlier model of choosing a random graph corresponds to G (n, 1/2),
in which each graph is chosen with equal probability.

The conjectures in [24, 25] and the results of [72] apply in this more general
Erd6s—Rényi random graph setting. That is, if we choose an Erd6s—Rényi random
graph G on n vertices with edge probability equal to some fixed constant g (for
example, 1/2, or 2/3, or 107190, as n goes to infinity the probability that K (G) pis
isomorphic to a particular finite abelian p-group H is given by the right-hand side
of Theorem 14, no matter what value of g we choose. Again, this is a consequence
of Wood’s universality results for cokernels of random matrices [72].

An active area of current research involves allowing the edge probability ¢ to
change with n. Linearity of expectation implies that the expected number of edges
of a random graph G(n, q) is ('zl)q Therefore, if we allow g to go to 0 as n goes to
infinity, but not too fast, this random graph will still have an increasing number of
edges.

Exercise 14 Show that the probability that an Erdés—Rényi random graph
G(n,n~'?) is connected goes to 1 as n goes to infinity, even though n~!/2
to 0.

This exercise is more challenging than Exercise 12. We again refer the interested
reader to [37, Chapter 4].

It is likely that a version of Theorem 14 holds when ¢ is allowed to go to O or
1 as n goes to infinity, as long as it does not approach O or 1 too fast. Determining
the threshold where the behavior of the critical group changes is an interesting, and
likely very challenging, open problem. For work in this direction see the recent
paper of Nguyen and Wood [63].
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Question 7 What can we say about Sylow p-subgroups of critical groups in other
families of random graphs?

We give two concrete examples to show what Question 7 is all about. A graph
G is bipartite if we can divide its vertex set V(G) into disjoint sets V; and V5 so
that every edge in G connects a vertex in V| to a vertex in V2. We can choose a
random bipartite graph with vertex set V(G) = V; U V, as follows. Fix 0 < g < 1.
Independently include each of the |V1||V;| possible edges between a vertex in Vi
and a vertex in V, with probability ¢.

Research Project 8 Consider a random bipartite graph with edge probability
q and |V1| = | V2| = n. As n goes to infinity, how are the Sylow p-subgroups
of the critical groups of these graphs distributed?

Koplewitz shows that if the sizes of the vertex sets V| and V,, are too
“unbalanced,” that is |V1|/|V2| < 1/p, then the resulting distribution of Sylow p-
subgroups of the critical groups of these random bipartite graphs does not match the
distribution given in Theorem 14 [51].

To give a second example, a graph G is d-regular if every v € V(G) has degree
d. Fix a positive integer d > 3. Choose a d-regular graph on n vertices uniformly at
random. Mészaros has recently shown that as n goes to infinity, the distribution of
Sylow p-subgroups of critical groups of random d-regular graphs is the same as the
one given by Theorem 14, except when p = 2 and d is even, in which case we get
a different distribution [61].

These are just two examples of a large family of problems to investigate.

Research Project 9 Choose your favorite graph property P. Is it true that
the distribution of Sylow p-subgroups of large random graphs with property
P matches the distribution of Sylow p-subgroups of all random graphs? For
example, what is the distribution of Sylow p-subgroups of large random
planar graphs? What about random triangle-free graphs?

1.10 The Monodromy Pairing on Divisors

The expression on the right side of Theorem 14 contains a term that involves the
number of symmetric, bilinear, perfect pairings on a finite abelian group H. This
is because the critical group of a graph comes with extra algebraic structure. More
precisely, our goal is to explain a result of Bosch and Lorenzini [16] that the critical
group of a connected graph comes equipped with a symmetric, bilinear, perfect
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pairing. In order to explain this result, we introduce some additional material about
divisors on graphs closely following Shokrieh’s presentation in [66].

We first show that the group of degree zero divisors on G comes with a pairing,
that is, a function (-, -): Div%(G) x Div’(G) — @, and then, that this pairing
descends to a pairing defined on K (G). Much of the following terminology for
divisors on graphs is motivated by the analogy with divisors on algebraic curves
that we first mentioned in Remark 1.

Recall that a divisor on a graph G is a function §: V(G) — Z. Let .# (G) denote
the abelian group consisting of integer-valued functions defined on V(G), that is,
A (G) =Hom(V(G),Z).Let f € #(G).Forv € V(G), we define

ordy (/)= Y (f@) = fw).

weV(G)
vweE(G)

The divisor of the function f, denoted div(f), is defined by setting (div(f))(v) =
ord, (f) for any v € V(G). Every div(f) has degree O, but not every degree 0
divisor is the divisor of a function f. We say that a divisor is principal if it is equal
to div(f) for some f € .#(G) and denote the group of principal divisors on G by
Prin(G).

Example 12 Consider the graph consisting of a cycle on three vertices {u, v, w}. For
any function f € .#(G) we see that ord, () =2 f(u) — f(v) — f(w), ord,(f) =
2f(w)— f(u) — f(w),and ordy, () = 2f(w) — f(v) — f(u). Itis clear that these
three numbers sum to zero for any choice of f. On the other hand, if we set § to be
the divisor of degree zero with §(u) = 0, §(v) = 1, §(w) = —1 then in order for §
to be principal, there would have to be an integer-valued function so that

2f () — f(0) — fw) =0
2f (W) — fu) — f(w) = 1
2f(w) — f(v) = fu) = —1.

It is a simple exercise in linear algebra to see that this cannot happen.

Exercise 15 For the cycle from the previous example, describe which divisors of
degree zero are principal and which are not.

Exercise 16 More generally, let G be any connected graph. If we identify Div(G)
with column vectors of length |V (G)| that have integer entries, we have seen
that a divisor D is chip-firing equivalent to the all zero divisor if and only if it
is in the image of L(G). Show that D is chip-firing equivalent to the all zero
divisor if and only if it is principal. Use this characterization to see that K (G) =
Div’(G)/Prin(G).



136 D. Glass and N. Kaplan

We now describe the monodromy pairing on divisors on the critical group of
a connected graph G, which is a graph-theoretic analogue of a notion called the
Weil pairing on the Jacobian of an algebraic curve. Let Dy, D; € Div’(G) and let
m1, my be integers such that m| Dy and my D, are principal. (Such integers must
exist because K (G) is finite.) In particular, there will be functions f1, f» € .#(G)
such that m D1 = div(f1) and my D, = div(f2).

Exercise 17 Show that

1 1
— Y. DWHW=— 3 DA

veV(G) veV(G)

We define a pairing (-, -): Div?(G) x Div’(G) — Q by

1
(D1, Do) = — 3 Di(v) fo(v).

veV(G)

By the previous exercise, (D1, D;) = (D3, Dy) for all D1, D, € Div(G), that is,
this pairing is symmetric. It is also not difficult to check that it is bilinear, meaning
that (aD{ + bD,, D3} = a{Dy, D3) + b{D,, D3) for all divisors D, D,, D3 and
all rational numbers a, b.

A symmetric bilinear pairing on a finite abelian group H is non-degenerate if the
group homomorphism defined by 7 — (h, -) is injective. If it is an isomorphism,
the pairing is called perfect. We write D for an element of K (G) if D is the divisor
class of D in K (G). The following theorem of Bosch and Lorenzini states that the
pairing on Div?(G) descends to a well-defined perfect pairing on K (G) [16]. For
consistency with our notation in this section, we give the statement of this result
from [66, Theorem 3.4].

Theorem 16 The pairing (-, -): K(G) x K(G) — Q/Z defined by

- — 1
(D1, Do) = — 3 Di(w) o(v) (mod 7),

veV(G)
where my Dy = div( f>) is a well-defined, perfect pairing on K (G).

This pairing is called the monodromy pairing. Shokrieh gives a concrete proof of
Theorem 16 in [66, Appendix A].

The same underlying finite abelian group may have different perfect pairings
defined on it. Let G be a finite abelian group and (-, -)1 and (-, -)» be two pairings
defined on G. We say that these pairings are isomorphic if there exists ¢ € Aut(G)
such thatforallx, y € G, (x, ¥)1 = (¢(x), ¢(y))2. The following exercise contains
some of the basics of the classification of pairings on finite abelian groups. For much
more on this topic see [62,71].
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Exercise 18 Let p be an odd prime and r be a positive integer.
(a) Show that every non-degenerate pairing (-, -): Z/p"Z x Z/p"Z — Q/Z is of
the form

axy

r

(x’ y)a =

for some integer a not divisible by p.
(b) Show that (x, y), is isomorphic to (x, y), if and only if the Legendre symbols

%) and (%) are equal.
(c) Show that every finite abelian p-group with a perfect pairing decomposes as an

orthogonal direct sum of cyclic groups with pairings.

Like many things in algebra, the prime p = 2 behaves in a special way. The
classification of perfect pairings on finite abelian 2-groups is significantly more
complicated than in the case where p is odd. See [38, Section 2.4] for a discussion of
these issues. For any finite abelian group H, this material can be used to compute the
term #{symmetric, bilinear, perfect pairings ¢: H x H — C*} from Theorem 14;
see equation (2) of [72, p. 916].

We can now revisit the material from each of the previous two sections and ask
not only about finite abelian groups that occur as the critical group of a graph, but
also about finite abelian groups with a chosen perfect pairing. In [38], the authors
use a construction based on subdivided banana graphs to show that odd order groups
with pairings occur as critical groups.

Theorem 17 ([38, Theorem 2]) Assume the generalized Riemann hypothesis. Let
I' be a finite abelian group of odd order with a perfect pairing on I'. Then there
exists a graph G such that K (G) = I' as groups with pairing.

It may seem surprising that the generalized Riemann hypothesis (GRH), one of
the major unsolved problems in number theory, would play a role in a problem
about critical groups of graphs. The connection comes via the existence of small
quadratic non-residues that satisfy additional properties. In [38], the authors explain
how a positive answer to the following conjecture would remove this dependence
on GRH.

Conjecture 2 Let p be a prime. There exists a prime g < 2,/p withg = 3 (mod 4)
such that g is a quadratic non-residue modulo p.

Theorem 14 gives the probability that the Sylow p-subgroup of the critical group
of an Erd6s—Rényi random graph G (n, ¢) is isomorphic to a particular finite abelian
p-group. Clancy, Leake, and Payne give the analogous conjecture for a finite abelian
p-group together with a perfect pairing [25].
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Conjecture 3 Fix 0 < g < 1.Let I" be a finite abelian p-group and (-, -) be a perfect
pairing on I". Then, as n goes to infinity, the probability that the Sylow p-subgroup
of the critical group of the Erdés—Rényi random graph G (n, ¢) is isomorphic to I”
with its associated monodromy pairing isomorphic to (-, -) is

l_[zoil(l _pl—2i)
|C'] - [Aut(T, (-, DI

where Aut(I, (-, -)) is the set of automorphisms of I" that preserve the pairing (-, -).

We defined the critical group of a connected graph G as the cokernel of its
reduced Laplacian L, so we should also be able to understand the pairing on K (G)
in terms of this matrix. In fact, this pairing is an instance of the pairing taking values
in Q/Z defined on the cokernel of any nonsingular symmetric integer matrix A
induced by

(x,y) =yl A7 x.

See [16, Section 1] and [24] for a discussion of the pairing on the cokernel of
a symmetric matrix. In particular, Theorem 2 of [24] shows that Conjecture 3
is consistent with Sylow p-subgroups of critical groups of random graphs being
distributed like Sylow p-subgroups of cokernels of random elements of Sym,, (Z,)
with their associated pairings. Conjecture 3 is likely to be very difficult since it
implies Theorem 14, the proof of which was a significant achievement that required
the introduction of several new ideas into the study of critical groups.

1.11 Ranks of Divisors and Gonality of Graphs

We next introduce additional material about divisors on graphs that is motivated
by connections to Brill-Noether theory, an important topic in algebraic geometry.
A divisor § on G is effective if §(v) > O for all v. This property is not invariant
under chip-firing. We have seen examples of divisors that are not effective but are
chip-firing equivalent to divisors that are effective; for another example, see Fig. 7.

A divisor 8 has positive rank if for any v € V(G) the divisor §’ we get by setting
8 (v) = 8(v) — 1 and &' (1) = 8(u) for all other vertices u is chip-firing equivalent

Fig. 7 Two divisors on the

graph from Example 1 that -1 2 1 0
are chip-firing equivalent.
The first is not effective, but
the second is
2 =2 0 0




Chip-Firing Games and Critical Groups 139

to an effective divisor. The gonality of G, denoted gon(G), is the smallest degree of
an effective divisor with positive rank.

Example 13 Consider the following graph:

If § is an effective divisor of degree one, then we may assume without loss of
generality that §(u) = 1 and §(v) = 8(w) = 0. One can show that the divisor &’
givenby 8’ (u) = 1, 8’ (v) = —1, 8 (w) = 0 is not equivalent to any effective divisor,
which implies that § does not have positive rank. We will leave it as an exercise to
show that no effective divisor of degree two has positive rank, either. On the other
hand, the divisor with §(u) = §(v) = 6(w) = 1 is a degree 3 divisor of positive
rank, showing that the gonality of this graph is 3.

Several authors have studied ranks of divisors and the gonality of graphs. For
example, de Bruyn and Gijswijt connect the gonality of a graph to the notion of
treewidth, an important concept in graph theory [33]. The authors of [34] study the
gonality of Erd6s—Rényi random graphs and prove the following theorem.

Theorem 18 ([34, Theorem 1.1]) Let p(n) = c(n)/n, and suppose that log(n) <
c(n) <K n. Then the expected value of the gonality of an Erdds—Rényi random graph
G (n, p(n)) is asymptotic to n.

Related work of Amini and Kool in the setting of divisors of metric graphs leads to
the similar results, but with bounds that are not as tight [2].

Theorem 18 gives the expected value of the gonality of one model of a random
graph, but there are many other questions to consider. Amini and Kool show in [2]
that random d-regular graphs on n vertices have gonality bounded above and below
by constant multiples of n. Connections to tropical geometry led the authors of [34]
to ask about the gonality of random 3-regular graphs. Dutta and Jensen prove a lower
bound for the gonality of a regular graph G in terms of the Cheeger constant of G,
one of the most studied measures of graph expansion [36]. They also give a lower
bound for gonality of a general graph G in terms of its algebraic connectivity, the
second smallest eigenvalue of L(G). As a consequence they prove the following.

Theorem 19 ([36, Theorem 1.3]) Let G be a random 3-regular graph on n
vertices. Then

gon(G) > 0.0072n
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asymptotically almost surely.

Research Project 10 Can we improve the results about the expected gonality
of a random k-regular graph? What can we say about the expected gonality of
other families of random graphs?

There are several additional interesting directions in the Brill-Noether theory of
graphs and metric graphs that have been the subject of successful research projects
with undergraduate coauthors. See, for example, [29,46, 52, 53].

1.12 Chip-Firing on Directed Graphs

Throughout this section, we have assumed that the graphs we consider are undi-
rected. However, one can define a similar situation on directed graphs by considering
the directed Laplacian matrix I =D— A, where D is a diagonal matrix with
(i, i)-entry equal to the outdegree of v;, and the entries of the adjacency matrix A
correspond to the number of edges from v; to v;. The critical group of this directed

graph is the torsion part of the cokernel of L.

Example 14 Let us consider the following version of the graph from our running
example where we consider some of the edges as being unidirectional:

Vi —— V3

L\

V) — V4

The adjacency matrix, degree matrix, and directed Laplacian of this graph are
given by

0111 3000 3 -1-1-1
A= 1001 . D= 0200 L= -1 2 0 -1
0001 0010 0 0 1 -1
0100 0001 0 -10 1

One can compute from the Smith normal form of L that cok(i,) = Z, so the
associated critical group is trivial.
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The notion of critical groups of directed graphs was first introduced in [15] and
further developed in an unpublished note by Wagner [70]. However, there are still
many questions to be considered.

Research Project 11 Consider a finite connected undirected graph G. For
each edge of G make a choice of how to orient it. What can we say about the
critical groups that occur as we vary over all possible choices? For starters,
consider the graph from the previous example.

We can ask many of the questions considered in previous sections in this directed
graph setting. For example, for information on critical groups of Erd&s—Rényi
random directed graphs see work of Koplewitz [50] and Wood [73].

2 Arithmetical Structures

In this section we consider a generalization of the Laplacian matrix and critical
group of a graph that leads to interesting new enumerative problems. The Laplacian
of G is defined by L(G) = D — A where A is the adjacency matrix of G and D is
the diagonal matrix whose entries consist of the degrees of the vertices of the graph.
One generalization of this idea is to allow the entries on the diagonal of D to be
other positive integers. This leads to the notion of arithmetical structures, the topic
of this section.

2.1 Definitions and Examples

Let G be a finite connected graph with adjacency matrix A. We define an
arithmetical structure on G by a vector d € Z” , so that there exists a vectorr € Z
with (D — A)r = 0, where D is the diagonal matrix with the entries of d along the
diagonal. We will sometimes write D = diag(d).

Exercise 19 In Sect. 1, we saw that for a connected graph G with |V (G)| = n, the
Laplacian matrix L(G) = D — A has rank n — 1. Show that for any arithmetical
structure on G, the matrix diag(d) — A has rank n — 1.

This exercise shows that the null space of diag(d) — A is 1-dimensional, so there
is a unique vector in it up to scalar multiplication. Unless stated otherwise, we will
use r to denote the vector in Null(D — A) whose entries are all relatively prime
positive integers. This choice of r uniquely specifies an arithmetical structure on G.
As such, we often refer to the pair (r, d) as an arithmetical structure, even though
each one is uniquely determined by the other. We denote the matrix diag(d) — A
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by L(G, r). In Sect. 1 we studied one arithmetical structure at length, (1, d), where
d is the vector consisting of the degrees of the vertices of G. This is the Laplacian
arithmetical structure on G. In this case, L(G, 1) = L(G).

The r-vector of an arithmetical structure has another interpretation based on
elementary number theory. In particular, one can think of an arithmetical structure as
a labeling of the vertices of G with relatively prime positive integers so that the label
of any given vertex is a divisor of the (weighted, if necessary) sum of its neighbors.

Example 15 Consider again the situation from Example 1:

0111
1001

= s A=
¢ \ 1001
1110

Letd = (563 l)T.The null space of the matrix
5 —-1-1-1
-1 6 0 -1

L(G,x)=D— A=

G0 10 3 -1
—1-1-11

is spanned by the vector r = (3 249 )T, so (r, d) is an arithmetical structure on G.
If we label the graph as below, then the label of each vertex is a divisor of the sum
of the labels of its neighbors.

3 — 4
N
2 — 9

Exercise 20 Find more arithmetical structures on the graph from this example. As
a hint, there are a total of 63 structures, and the largest entry of any r that occurs
is 18.

Just as we defined the critical group of a graph G to be the torsion part of the
cokernel of L(G), we can define the critical group associated with any arithmetical
structure (r, d) to be the torsion part of the cokernel of L(G, r). We denote this
critical group by 2 (G; r). We described how to compute cok(L(G)) by finding
its Smith normal form and can proceed similarly in the more general setting with
the matrix L(G, r). If we do this for the matrix from Example 15, we see that the
associated critical group is trivial. In Sect. 2.3 we will analyze the structure of this
group in more depth.
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The concept of arithmetical structures on graphs was originally developed by
Lorenzini in [54] as a way of trying to understand the Néron models of certain
algebraic curves where components might appear with multiplicity greater than one.
Explaining these applications is beyond the scope of this note, but we refer the
interested reader to [55]. We also refer the reader to [5, Section 4] where Asadi and
Backman show that chip-firing on arithmetical graphs can be interpreted as a special
case of the chip-firing for directed multigraphs that we introduced in Sect. 1.12, but
do not pursue this perspective further here.

2.2  Counting Arithmetical Structures

In [54] Lorenzini proves that any finite connected graph has a finite number of
arithmetical structures. However, the proof is nonconstructive and in general does
not give an upper bound for the number of these arithmetical structures. In recent
years, several authors have become interested in trying to count the number of
arithmetical structures on certain types of graphs.

One general approach to counting arithmetical structures comes from the fol-
lowing observation. We first introduce some notation. Let G be a graph and (r, d)
be an arithmetical structure on G. For v € V(G) we write r, for the value of r
corresponding to v and d,, for the value of d corresponding to v.

Theorem 20 Let G be a graph and let (r,d) be an arithmetical structure on G.
Assume that v is a vertex of degree 2 with neighbors u and w so that r, > r, and
ry, >ry. Thenr, =r, +1y.

Moreover; if one defines the graph G’ to be the graph whose vertex setis V(G') =
V(G) \ {v}, and whose edge set is E(G') = E(G) U {uw} \ {uv, vw}, then one gets
a new arithmetical structure on G’ by defining ¥’ to have the same values as r on all
remaining vertices.

Exercise 21 Verify that this theorem holds for the structures that you found in
Exercise 20.

Proof The proof of the first claim follows from the fact that if we have such an
arithmetical structure we know that r, | (r, + ry). If we know that r, > r, and
ry, > Iy, thenr, +r, < 2r,, which implies that r,, + r,, = r,.

The proof of the second claim is straightforward and can be best understood by
considering a picture such as the one in Fig. 8, and making the observation that if
ry | ((ru +ry) + Zri)» then r,, | (ry + Zri)~

We refer to the operation of removing a vertex of degree 2 corresponding to
a local maximum of r, such as the one described in the previous theorem, as
smoothing at vertex v. One can also define a smoothing operation at a vertex of
degree 1; in particular, if v is a vertex of degree 1 that is adjacent to the vertex u
and if r, = r,, then one gets a new arithmetical structure on a smaller graph by
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rufrvfrw/ \ rw/

Fig. 8 Pictures showing the “smoothing” operation at a vertex of degree two

Fig. 9 Pictures showing the \ \

“smoothing” operation at a

vertex of degree 1 / /

removing the vertex v, as illustrated in Fig. 9. An arithmetical structure (r, d) on G
is smooth if there are no vertices of G at which we can apply a smoothing operation.

These smoothing operations are reversible, and in particular the number of ways
that one can take an arithmetical structure and subdivide it can be described in terms
of certain ballot numbers. (For details, see [ 18] and [4]). The approach taken in those
papers is to count the number of smooth structures on smaller graphs and then count
the number of ways they can be subdivided into general arithmetical structures on
G. In particular, one can show theorems of the following type:

Theorem 21 We can count the number of smooth structures on certain graphs in
the following way:

1. The only smooth structure on a path is given by the Laplacian arithmetical
structure on a single vertex. The total number of structures on a path of length n
is given by the (n — 1)* Catalan number, C,_1 = %(2(""__11) .

2. The only smooth structure on a cycle of length n is given by the Laplacian
arithmetical structure. The total number of structures on a cycle on n vertices
is given by the binomial coefficient (2;__11).

3. Letn > 4 and P, be the path graph on n vertices where the first edge is doubled.
The number of smooth structures on P, is 4, and the total number of structures

is4Cp_1 — 2C; 5.

In general it appears to be quite difficult to count precisely the number of smooth
arithmetical structures on a graph. For example, even for a bident graph, a path plus
one additional vertex connected only to the second vertex on the path, it is only
known that the number of smooth arithmetical structures is bounded between two
cubic polynomials in the number of vertices [4].

Research Project 12 Consider the graph Cy obtained by taking the cycle Cy4
and adding a second edge between two consecutive vertices.

1. How many smooth arithmetical structures are there on C4?

(continued)
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2. How many total arithmetical structures are there on C4?
3. What if we instead consider bigger cycles or add more edges?

In the definition of smoothing at a vertex v of degree 2 or 1, we have d, = 1. One
might wonder whether this idea could be generalized to vertices v of larger degree
at which d, = 1. These smoothing operations are special cases of the clique-star
transform defined in [30]. This operation replaces a subgraph that is isomorphic to
a star graph, the complete bipartite graph K ,, by the complete graph on n vertices.

As an example, let us consider arithmetical structures on the complete graph K,.
Every such arithmetical structure is uniquely determined by a vector of relatively
prime positive integers r = (1, ..., r,) where each r; divides the sum Z?:l Ti.
The star graph K1, consists of a vertex vy connected to n other vertices, each of
which has degree 1. If an arithmetical structure on this graph has d,, = 1, then rg =
ZL] r; (Fig. 10). Therefore, such arithmetical structures on K , are in bijection
with the set of all arithmetical structures on K,,. It is interesting to further consider
the remaining structures on K , that have d,, > 1.

To further consider the set of arithmetical structures on K,, we note that the
definition of an arithmetical structure implies that for each i:

d,'l’l' = er
J#
(di + Dri = er

J

Fig. 10 The complete graph

K and the star graph K ¢ V3

V3
AN
V2 V4 %) V4
\ . /
0
/ \
Vi Vs Vi Vs
~0 L
V6

V6
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In particular, if we sum over all i, we get that

n

1

— =1

Lodgi+1
i=1

The arithmetical structures of K, are therefore in bijection with ways of writing 1
as a sum of reciprocals of n positive integers. Finding the number of ways of doing
this is a difficult problem in additive number theory.

Exercise 22 Classify all sets of positive integers {a, az, a3, as} so that ) al = 1.
For each one find the corresponding arithmetical structure on Kj.

In general, there is no known formula for this number, but we do have a lower
bound that is doubly exponential in n [49]. Corrales and Valencia get similar results
for all structures on star graphs [31]. We close this section with a conjecture from
[30], which is based on the observation that vertices with higher degree seem to lead
to more arithmetical structures.

Research Project 13 Show that for any simple connected graph G with n
vertices the number of arithmetical structures on G is at least the number on
the path P, and at most the number on the complete graph K,,.

2.3 Critical Groups of Arithmetical Structures

We have already seen that it is difficult to enumerate all arithmetical structures
on a given graph. However, it might be easier to say something about the critical
groups that occur associated with this set of arithmetical structures. For example, it
is shown in [18] that every arithmetical structure on a path leads to a trivial critical
group; we will give an alternative proof of this fact below. Recall that we define the
critical group J# (G; r) of an arithmetical structure (d, r) to be the torsion part of
the cokernel of L(G, r) = diag(d) — A.

To set our notation, let G be a finite multigraph with V(G) = {vy, ..., v,}. Let
x;,j be the number of edges between v; and v;. Since G is a multigraph we note that
x;,j may be larger than 1. Let (r, d) be an arithmetical structure on G. We define G
to be the graph with the same vertex set, V(G), and with x; jr;r; edges between any
two vertices v; and v;. We leave the proof of the following lemma as an exercise in
linear algebra:
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Lemma 1 We have L(Gy,1) = RL(G, r)R, where R = diag(r).

Let L(G, )"/ be the matrix we get from L(G,r) by deleting its i row and
7™ column. Similar to the situation in Corollary 2, the determinant of L(G, r)"/ is
given by r;r;|# (G; r)|. From this, one can compute

| A (Gr; D] = det(L(Gr, D)
= det((RL(G,r)R)""1)
= det(R"1) det(L(G, r)""!) det(R"1)
= (r2...r)°r}|#(G; 1)l

On the other hand, we know from Corollary 3 that |.Z (Gy; 1)| is the number
of spanning trees of Gr. So, we can determine the order of . (G; r) by counting
spanning trees of the graph Gy.

Let us first consider the special case where the skeleton of G is a tree. Let
V(G) = {v1,...,v,}. The skeleton of a multigraph G is the graph G that has
the same vertex set as G and has min(1, x; ;) edges between any pair of vertices
v;, v;. Intuitively, this is what happens when you remove all “repeated” edges. If G

is a tree, then it is easy to see that the number of spanning trees of G is l_[ X j-

Xi, j;ﬁo
Moreover, it is clear that Gy is also a tree and therefore that the number of spanning
trees of Gy is given by

n
deg(v;
|L%/(Gl'y 1)| = 1_[ x,',jr,'rj = 1_[ xi,jl_[rieg(U).

x;,j70 xi,j 70 i=1
In particular, this proves the following result of Lorenzini [54, Corollary 2.3].

Corollary 6 Let G be a graph with V(G) = {vy, ..., v,} so that G is a tree and
let (d, r) be an arithmetical structure on G. Then

n
| (G;r)| = 1‘[ Xi ] H,;ieg(v,-)—z_

xi, j#0 i=1

More generally, one can count spanning trees of G, by noting that a spanning
tree of G that includes an edge v;v; will lead to r;r; spanning trees in Gy, as we
can choose any of the related edges. In particular, a spanning tree .7 of G leads to
IL r;j eg.7 (vi) spanning trees of G, where deg 5 (v;) denotes the degree of the vertex
v; in the tree .7. This discussion proves the following theorem:
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Theorem 22 Let G be a graph with V(G) = {vi,...,v,} and let r give an
arithmetical structure on G. Then we have

n

d i)—2

|#(G;1)| = Z (H’i eg 7 (vi) ) ’
TG \i=l

where the sum ranges over all spanning trees of the graph G.

Example 16 If G is a path on n vertices, then there is a single spanning tree given
by G itself. It follows from [18, Lemma 1] that any arithmetical structure on a path
has r; = r, = 1. Therefore one computes that

n
d =2
FACHIEDY (]‘[rfgff(”) )
TCG \i=l1
z 1
_ Hr;iegc(vi)*z _ -1
ryrp

i=1
This gives an alternative proof to the first claim in [18, Theorem 7].

Example 17 Let G be a cycle on n vertices. A spanning tree of G corresponds to
removing a single edge. In particular, Theorem 22 implies that

n

FACEIEDY

v :
i=1 1 i+1

If r # 1 then the arithmetical structure has some vertex v; with r; = r;i_1 +ri11, SO
we can smooth the structure at this vertex. In particular, we note that

1 1 1 1 1

+ = + = :
ricyri riripr rict(riey +rie)  rig (i Hrig)  ricirig

This shows us that smoothing the structure at this vertex will not change the order
of the critical group. Any arithmetical structure (r, d) on C, can be smoothed to the
Laplacian arithmetical structure on some Cj with k < n. For this value of k we see
that

|2 (Cp; )| = | (Cr; D = k.
Understanding the structure of the group 2 (G;r) rather than just its order

requires a more careful analysis. The following theorem is a restatement of
Proposition 1.12 in [54].
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Theorem 23 We have the following two short exact sequences:

1—>@Z/riZ—>E—>%(G;r)—>l

1> E— 4 (G 1) — @Z/r,-z -1,
where E is a specific quotient group.

In general, these short exact sequences do not split but they do give us insight
about the structure of J# (G, r) if we know the structure of 7 (Gy; 1).

Research Project 14 What are the possible critical groups associated with a
given graph G as we vary the arithmetical structures (r, d)?

Answers to this question are known only in a few cases. We have already seen
what happens with paths and cycles. Critical groups associated with arithmetical
structures on bident graphs D, are analyzed in [4, Section 5]. In particular, the
authors show that for any r, the matrix L(G, r) has an (n —2) x (n —2) minor equal
to 1 and use Corollary 1 to show that J# (G; r) is cyclic. An analysis similar to the
one leading to Corollary 6 shows that the biggest possible order will be 2n — 5 and
completely characterizes the smaller critical group orders that occur.

There are natural generalizations of many of the problems from Sect.1 to
arithmetical graphs. For example, see [16, Section 5] for results on a realization
problem for arithmetical graphs.
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1 Introduction

Tiling problems deal with covering a region (often a rectangular region formed from
squares) through the use of a collection of basic shapes (tiles) with the rule that the
entire region is covered and no two tiles overlap in their interiors. This naturally
lends itself to many interesting types of questions including the following:

1. Existence: Is it possible to cover the region with the prescribed tiles? (For
example: Is it possible to cover an 8x8 chessboard with opposite corners
removed using only dominoes as tiles?)

2. Enumeration: How many ways are there to cover the region with the prescribed
tiles? Can an explicit formula be given? How about a recursion?

3. Qualitative: What can be said about the tilings, and particularly what properties
should a random tiling have? (See the Arctic Circle Theorem for tilings of the
Aztec diamond using dominoes as an example (see Elkies et al. [5,6].)

4. Generation: How can we generate a random tiling of the region?

5. Interpretation: Can the tiling be connected to another combinatorial object
through bijection? What combinatorial properties of the tilings exist?

We will mainly focus on the enumeration aspect of tiling, but this list should
give an indication that there is a large collection of questions to explore about tiling.
Throughout this paper we will assume that our tiles can be rotated to any orientation
as well as turned over (reflected), but this assumption can be readily dropped if
desired.

1.1 A First Example

As a warmup, let us start with the following classical problem: Determine the
number of ways to tile the 2xn board using dominoes (). For reference the first
few cases are shown in Fig. 1.

Let us label the number of possible tilings of the 2xn board as F, forn > 0
(there is one way to cover the 2x0 board, namely use no tiles). Now every tiling of
a board with length at least 2 must end in one of two ways, a vertical tile or a pair of
horizontal tiles. The number of such tilings is F,,—1 and F,,_», respectively, and this
covers all possibilities exactly once. So we have the recurrence F,, = F,,_1 + F,_».
Combined with the initial conditions (e.g., in Fig. 1) we can now find the first few
terms to be

1,1,2,3,5,8,13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, .. ..

Fig. 1 Tilings of 2xn for | | | | H | | H
n=1273
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Fig. 2 Tilings of 4xn for
n=12

These numbers should look familiar, they are the Fibonacci numbers! The
numbers so nice that they have their own journal dedicated to their study.!

If for some reason we did not recognize these numbers, we could have also used
the On-Line Encyclopedia of Integer Sequences (OEIS) [10] to search for what
they could be by entering the first few terms, and in this case find this is sequence
A000045 which lists hundreds of facts and references about these numbers.2

1.2 A Second Example

Let us change the problem slightly: Determine the number of ways to tile the 4xn
board using dominoes (). For reference the first two cases are shown in Fig. 2.

If we look back at the 2xn approach we saw that there were essentially only two
ways for the structure to end. It is now easy to see that there are more possible
endings (arguably infinitely many!) and so it is not immediately clear how to
proceed. Indeed, this problem is nontrivial and was a problem in the Monthly in
2005 (Problem 11187). So if we are to make progress we will need a different idea
than “group by how they end.”

1.3 A First Example, Revisited

Let us go back and think about a different way to approach the enumeration of
the tiling of 2xn board.? This time we will not focus on the tiling at the end, but
rather shift our focus to what is happening between consecutive columns. This can
be thought of as a zen approach to tiling by shifting focus from the tiles to what
is happening between the tiles.* When the only tiles we have are dominoes, there
are four possibilities of how dominoes can cross between consecutive columns: no

"The Fibonacci Quarterly.

2In general the OEIS is one of the best resources for people working on counting problems as it
gives a way to see if other people have produced similar counts and opens up new avenues for
exploration. We will give an example of this later.

30ne might object that we have already done it once, and that doing it a second time will only give
the same answer. But the important thing is not the answer, it is the process. A different approach
might yield better insight and allow for a better generalization.

4 Another way to think about this is akin to the character from The Hobbit, “Column, column,. . . my
sweet, my love, my precious transitions-esss.”
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Fig. 3 Ways that dominoes

can cross between two I__I

columns for boards with I I

height 2 0 1 9 12

C Io

Fig. 4 An auxiliary graph used to count tilings of 2xn board with dominoes. And an example of
a 2xn tiling and corresponding sequence of column crossings

6 0 0 12 0 12 06 0 0 12 0

crossing, one crossing on the top, one crossing on the bottom, two crossing. These
are shown in Fig. 3 along with labels (the labeling here indicates which rows cross).

When we are considering the tilings of the 2xn board with dominoes we have
only two possible crossings of the type shown in Fig. 3, namely ¢ and 12. This can
be seen by parity, if only one domino crossed between a particular pair of columns,
then this crossing cuts the board in half and on each side of the board would leave
an odd number of squares to cover using dominoes, which is impossible.

So now we come to the key idea, look at which column crossings can occur
consecutively. Let us denote @ — b to mean that column crossings corresponding
to a can be immediately followed in the next column by a column crossing
corresponding to b. We now have ¥ — @, # — 12, and 12 — (). We can represent
this situation by the directed graph shown in Fig. 4.5 The figure also contains a tiling
of the 2xn board and underneath each column crossing we have marked which type
of crossing occurs.

Every tiling of the 2xn board begins on the left with the ) column crossing, then
has n different column crossings ending with the ¢ column crossing. As we move
from column to column in the tiling we can follow the same action in the graph (try
this with Fig. 4). So we have a bijection between walks® with n steps that start and
stop at ) with the tiling problem. This allows us to transform our counting problem
into the following: How many ways are there to start at ), take n steps (i.e., move
along n edges) and end at 7 This can be answered with the following tool.

SFor our purposes it suffices to know that a directed graph consists of a collection of objects
(vertices) and connections between the objects (edges). In our case our vertices will be possible
column crossings and edges will indicate which pair of columns can occur consecutively (order
matters).

5A walk in the graph is a sequence of moves along edges, repetition is allowed and the direction
of edges must be respected.
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Theorem 1 (Transfer Matrix Method) Given a directed (multi-)graph G, let T
be the matrix with rows and columns indexed by the vertices of G with T, ., equal
to the number of directed arcs from u — v. Then (Tk)u,v is equal to the number of
walks of length k which start at u and end at v.

Exercise 1 Use induction to prove Theorem 1.

The transfer matrix method is a powerful tool for enumerating any process which
can be described sequentially. For a more thorough background on the method and
examples of its use see Stanley [11, Ch. 4.7].

For the tiling of the 2xn board using dominoes, the matrix would be

g1l
T=12[10] )

where on the left we have indicated the associated vertices. So by Theorem 1 we
have that the number of tilings of the 2xn board is (T")y 4. In a later section we
will see how we can take this matrix and use this to find the recurrence relationship,
generating functions, and give an explicit closed-form solution to our counting
problem.

1.3.1 A Second Example, Revisited
We are now ready to take on the problem of counting the 4 xn board using dominoes.
So we start as in the 2xn case by looking at all sixteen possibilities that dominoes
can cross between columns and seeing which columns can occur consecutively. Let
us label these as some combination of 1, 2, 3, 4 (the numbers being the rows from
top to bottom), then the vertices and the possible transitions for the directed graph
are as shown in Fig. 5 (verify this!).

Note that in this case we do not need the whole graph as we only need to take the
vertices which we can reach in a walk starting and ending at ¥, of which there are
six vertices left: @, 12, 23, 34, 14, 1234. This leads to the matrix

5]

%%% RK—K——sk—3]

Fig. 5 An auxiliary graph used to count tilings of 4 xn board with dominoes
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g [110111]
12 100100
23 000010
34 110000
14 1101000
1234 [ 100000

Making a list of (T™)y ¢ we have that the number of tilings for the 4 xn board using
dominoes is

1,1,5,11, 36, 95,281, 781, 2245, 6336, 18061, 51205, 145601, 413351, 1174500, . . ..

Putting this into the OEIS [10] we see that this is sequence A005178; confirming
our approach.’

2 General Approach

We now outline the basic underlying approach to counting tilings on m xn boards
where one of the dimensions, say m, is fixed.

1. Find all possible ways that the tiles can cross between two consecutive columns
of height m.

2. Construct a (directed) graph where each vertex corresponds to a crossing between
two columns, and directed edges between pairs of crossings for each way that two
columns can occur consecutively in a tiling.

3. Produce the adjacency matrix of this directed graph associated with some matrix
T and look at the appropriate entry of 7".

Exercise 2 Produce the matrix T for tiling the 2xn board where the permissible
tiles consist of dominoes and bent triominoes (= and [4: remember that we
allow all possible rotations). Use this to find the number of such tilings for n =
1,2,...,20. (Hint: there are eight different ways to cross columns.)

This approach reduces the problem of tiling enumeration to understanding local
behavior (column crossings) and how to transition between local behavior. This also
avoids the problem that can occur of having to look at the rich structure that can
occur in putting tiles together and accounting for many large global possibilities. In
addition, by turning the problem into counting walks, we are able to count many
possibilities in parallel allowing us to get values for these counts that could never
be achieved by going through backtracking or case-by-case analysis.

7Woohoo!
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For small cases with few tiles and small fixed height, it is possible to construct
the graphs and transitions by hand. As the number of tiles or height of the board
grows, so to does the computational demands. So in these situations it is helpful
to have a computer to automate the process. We will give an example of one such
program later.

In some sense the reader can stop now, go pick a favorite set of tiles and start
working on counting tilings of the rectangular board using appropriately designated
tiles. We mention a few possibilities to get started.

e Tiling the mxn board with dominoes (—9) or dominoes and monomoes
(@ and O). This has been well studied as it can be rephrased in terms of
matchings in a graph and there is even a closed-form expression (see Kasteleyn
[9]) which involves the cosine(!) function. This can be a good warmup to develop
the skills and intuitions of working on tiling problems.

» Tiling the m xn board using monomoes and bent triominoes (O and 4. (Com-
pare with the results from Chinn et al. [4].)

* Tiling the mxn board with triominoes (— and [5). There is less theoretical
results known about this situation and for boards of a reasonable size it requires
some programming. This type of tiling is the basis of Project Euler Problem 1613
which asks for the number of tilings of the 9x 12 grid using triominoes.

e There is no reason we have to assume tiles are formed by gluing squares on
edges; now tackle the previous problem but now triominoes can be formed by

gluing on corners giving us: —J, E], :P, [Fb, and DEP 9

As we start introducing triominoes we get to the situation where a single tile can
span several columns. This is easily handled by keeping track of where you intersect
a tile and making sure that the next column is one which intersects it one slice over.

2.1 Using Linear Algebra Tools
Before we start to explore the variations of problems that we can do with our

technique, we will take a moment to see how to use linear algebra tools to give
us information about our enumeration problems.

8https://projecteuler.net/problem=161. Project Euler is a collection of mathematically based
problems that require computational tools to solve them. Working through the collection of these
problems becomes a good way to develop mathematical programming skills.

9The analogous problem for dominoes where we allow gluing on edges or corners is equivalent to
counting the number of perfect matchings in chess king graphs. This has been tackled by Shalosh
B. Ekhad, a frequent collaborator of Doron Zeilberger.
http://sites.math.rutgers.edu/~zeilberg/tokhniot/oKamaShidukhim3.
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2.1.1 Recurrence Relationships and Generating Functions

Our enumeration comes from entries in a transition matrix 7', so to find a recurrence
it suffices to find a recurrence for those entries. Recall that for any (square) matrix
T there is a monic polynomial, pr(x), called the minimal polynomial with the
property that pr(T) = O (the zero matrix). It is known that the minimal polynomial
is a divisor of the characteristic polynomial.

Lemma 1 For a matrix T let pr(t) = ik — ak_ltk_l — .-+ — aq be the minimal
polynomial, and let q, = (T"); ; (for i and j fixed). Then for r > k, we have

qr = Ak—19r—1 + - -+ aoGr—k-

Proof Forr > k we have

Gr — @Gk—1Gr—1 — - —aogr—k = (T" —ax 1 T" " — - —agT"%); ;
=TT —aq T = —aD))ij = 0i =0.
=0

So the minimal polynomial gives a recurrence, but not always the best recurrence,
we will explain why in just a moment. In some sense to find the best recurrence, and
so much more, we should find the generating function for our count.

A generating function is a way to store the values of our enumeration as
coefficients of a series. Given sg, 51, 52, . .. we form the series

S(x) = Zskxk =50+ s1x + s0x7 4 -+ .
>0

For problems where these coefficients satisfy a linear recurrence (which from
Lemma 1 includes our tiling problems) we can condense the expression for S(x)
into a rational function. This is done by multiplying both sides by an appropriate
polynomial, in our case a modified form of the polynomial from Lemma 1. We then
have

k—1 k—1 ¢
1

Fpr/08e) =Y nxt so S(x) = ==
= pr(x)

The key to this is that the polynomial x* p7(1/x) will combine coefficients into
recurrences that zero out everything with degree k or more (we have to reverse the
order of the coefficients in the polynomial to match the recurrence). So to find the #,
terms it suffices to expand (so+- - -+ Sp_pxk1 )xka(l/x) and only keep the terms
with power at most k — 1.
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We should check to see if S(x) can be simplified, e.g., common factors, and if
so carry out the simplification. Note that the polynomial in the denominator for the
simplified S(x) gives in essence the recurrence.

Applying this to our examples from before we have that for tiling the 2 xn strip
with dominoes

prx) =x*—x—1,
2 _ 2 _ 9,2
x“Pr(1/x)(so+s1x) =1 —-x—x)1+x)= 1 2x°,

1

S = .
x) 1 —x—x2

Doing the same for the 4 xn strip with dominoes we have
pr(x) =x0 - —ext+6x%+x— 1,
xﬁPT(l/x)(so—i—slx) = (1—x—6x2+6x4+x5 —x6)(1+x—|—5x2—|—11x3+36x4+95x5)
= 1-2x%4x* —281x0—500x74222x84+595x7 +59x10—95x 11
———

1 —2x2 4 x4 _ 1—x?
—x—6x2F6x x5 —x0 1 —x —5x2 —x34 x4

Sx) = 1

This last one gives a demonstration that it is possible to get some cancellation of
terms when finding the generating function.

2.1.2 Closed-Form Solutions from Projection
In some cases we can use linear algebra to find closed-form solutions. Suppose that
we have a matrix 7 which has full geometric multiplicity, in other words a full set
of eigenvectors. Then the matrix can be expressed in the form
T=)»1P<l)+"'+)\jp(j),
where P is the projection matrix onto the i-th eigenspace. The key here is that the
projection matrices satisfy P@P® = 0 ifa # b and P P@ = P@ in other
words they are idempotent. It follows that
7" =3PV 4. 4 2PV
Now reading off the appropriate entry, say the (1, 1) entry, in each matrix we have

) .
gr = (T)11 = (W Py +~~~+X;Pj)1,1 = )Lqu(’l) _}_..._{-)L;Pl(’Jl).

In practice, this is usually not carried out because finding the explicit eigenvalues,
let alone the projection matrices, is usually nontrivial. But in theory it works great!
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This idea gives insight into why we might get cancellation when forming the
generating function. Namely, it might be the case that Pl(’i} = 0 and in this case that
means we do not need to have A; as part of the solution and so it reduces the degree
of the polynomial.

In some cases it is possible to carry this out explicitly. For example, for the 2xn

case we have

P _1EV5 | g6+vS)  5V5 | 1=V5 | g5 -v5)  —345
O ) V5 56-v5) 2 -5 H6+VH)

so that a closed-form solution for the number of tilings (and hence Fibonacci
numbers) is

1 1+/5\" 1 1—+/35\"
E(”ﬁ)( 5 )*E(S‘ﬁ)( 5 >

3 Using More Entries of the Matrix

It would seem that we go through the trouble of computing a large matrix to turn
around and then throw most of the matrix away and grab a single entry. However,
depending on the situation we can find value in more entries.

As an example, if we let T be the matrix of all possible column transitions for
a fixed height m then if we look at the trace of 7" that would consist of all tilings
where the left and right ends line up. In particular, we could join the left and right
ends and then we have the tilings of a cylinder of height m with n units around.
As an example if we go back to the tilings of the 2xn board and wanted to look at
tilings when we wrap around we would have

411100
T=12 1000
1 10001
2 L0010

and then the number of tilings would be trace(7") which gives A068397 in the
OEIS [10], a near variant of the Lucas numbers.

If instead of looking at columns of being height m (i.e., a path-like structure) we
allowed the columns to be cycles of length m, then we could repeat the above and
get tilings on a torus.

We can do even more weird stuff! For example, we could put some twists into
our tilings. The way this is done is to look at how the ends meet up and insist that
we have the reverse of what we started with (so now we really need to make sure
we grab the right terms). This means we can tile Mobius strips and Klein bottles.
Examples of how this was done can be found in Butler and Osborne [3].
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Research Project 1 Adapt your favorite tiling problem to tiling on a Mobius
strip.

4 Tiling with Statistics

One popular variation of tiling is to do statistics, and also to introduce colors. This
can readily be adapted to the technique we have discussed.

As an example, suppose for each tiling of the 2xn board with monomoes and
dominoes we assign it a value x’ y¥z¢ where i are the number of monomoes, k the
number of vertical dominoes, and £ the number of horizontal dominoes. One way
to interpret this is that if we assign x possible different colors to the monomoes, y
possible different colors to the vertical dominoes, and z possible different colors to
the horizontal dominoes, then this value is the number of different colorings that can
result. Note if we set x = y = z = 1 then this reduces to what we have done before.

We are now going to introduce a pair of matrices, one for what happens between
two column transitions (the one we have been using so far) and one that happens
on a column transition (this has been implicit in our work so far as it has been the
identity).

1000
1 {0z00
2100z0
12000 z2

—————
=A =B

and

S - O =
S O = =
S O O =

The x2+ y term in the first matrix comes from the fact that between two consecutive
columns with no crossing we can either stack two monomoes (x2) or a single vertical
domino (y). The z which come from tiles which cross are in the second term which
involves what happens in column crossings.

We are interested in understanding the upper left entry that comes from B(AB)".
Since the first B will not change the upper left entry it suffices to understand the
upper left entry of (AB)". So this gives us the following data:

((ABM), |

1

x2 +y

x*+2x2y +2x2z 4+ 32 + 22

X0 4 3xty + dxtz 4 3x2y% + 4xyz + 4x222 + yP 4 2y

WIN = O3
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From this we can now get more insight into the structure of our tilings. As an
example for n = 3 we see that the coefficient of x?yz is 4 which means that there
are four different ways to tile the 2x3 board with two monomoes, one vertical tile
and one horizontal tile (verify this and the remaining coefficients).

Note that the minimal polynomial approach still can be used to get a recursion
for these polynomials. For example, if we let r, = r,(x, y, z) be the polynomial
associated with the tilings for any 7, then we have

rm=(y+ x2)rn—1 + (2x2z + 212)’31—2 + (XZZZ - yZZ)Vn—3 —Tn—4.

One thing that we can capture from this is how many of each tile was used.
For instance, we might be interested in tilings with one square missing, and so we
can have a monomoe as a tile and then keep track of the statistic of how many
monomoes are used and only keep the coefficient of the term corresponding to a
single monomoe being used.

Research Project 2 Given an m xn board, determine the number of vertical
dominoes k and the number of horizontal dominoes ¢ that maximize the
number of different tilings with exactly k vertical and £ horizontal dominoes.
What can you say about the relationship between the values k£ and £ and the
values m and n.

5 Using Other Boards for Tiling

So far we have been tiling with rectangular boards, and at first glance it seems
like we are destined to continue tiling with polyominoes. The key in the process
is to realize that what is important is a consistent transition. Once we understand
this, there are many different boards that can be considered. One simple variation
is where we have a “shifted board” and as we add on to the board we do so as a
diagonal strip (see Fig. 6a); we can also consider Aztec rectangles (found by taking
triangles out of a square board and rotating the result; see Fig. 6b).

Fig. 6 Variations of boards (a) | (b)
to tiles made from combining
squares
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5.1 Boards Formed from Triangles

We can form a board out of equilateral triangles by stacking them together to form
a parallelogram which is m triangles in height and » triangles in width. An example
is shown for m = 4 and n = 10 in Fig. 7.

Bodeen et al. [2] explored the special case of the 2xn board where the tiles are
a single triangle (») and four triangles glued together to make a larger triangle (/).
This was done by finding recursions (in the spirit of our first example), but could
also have easily been done by looking at how we cross between columns. Namely,
there are four possible ways to cross between columns as shown in Fig. 8 which
leads to the matrix

g 1111
T:A 1010
B 11000
AB L1000

The matrix 7 has the characteristic polynomial x* — x3 — 3x? — x and so the

entries of T satisfy the recursion r, = r,—1+3r,_2+r,—3. One interesting variation
that was noted in Bodeen et al. [2] is when one triangle is glued on the end as shown
in Fig.9. The number of ways to tile this board with the two types of triangles
considered is the Pell numbers (sequence 2000129 in the OEIS [10])!

It might not be immediately obvious that our tools can be used to count this
situation in that the left and right ends do not match. But we can readily salvage
the situation by looking at what happens in the first diagonal (e.g., the one past the
glued triangle). We are in one of two situations, either there is no crossing or there is
a crossing of type B. So we now combine both situations and conclude that the Pell
numbers are (T")g g + (T") p.p. This approach can handle any situation where we
have something “sticking out the end.”

Fig. 7 A board for tiling
problems composed of
equilateral triangles

0 A B AB
Fig. 8 The possible crossings arising from the Bodeen et al. [2] tiling

Fig. 9 A tiling board that
relates to the Pell numbers %%
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This example illustrates the advantage of playing around with small perturbations
of the problem. Sometimes it might seem that the numbers being generated are
random, but a small change and then it connects to previous work. In a similar
fashion, look at the data and see if it has any nice properties. For example, do the
numbers factor nicely, or are there nice modular conditions. If you spot a pattern,
try and prove it!

Tiling based on the triangular board have been studied in the case when the tiles
consist of two triangles glued together (). These are known as “lozenge tilings”
and have connections to finding matchings as well as plane partitions (see the cover
on Winkler’s book [12]).

Research Project 3

(a) Determine the number of tilings of a board formed from triangles where
the tiles are formed by gluing three triangles together (o).

(b) Determine the number of tilings of a board formed from triangles where
the tiles are formed by gluing four triangles together in all possible ways

(=, 2\, and &9).

5.2 Boards Formed from Hexagons

We can form a board out of hexagons by stacking them together with n hexagons
glued in a row and then stacked m high. (Note there are two possible variations,
where we consistently offset the next row in each direction and where we go back
and forth.) This is shown in Fig. 10.

Fig. 10 Different boards
which can be formed from
hexagons
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Research Project 4

(a) Determine the number of tilings of a board formed from hexagons where
the tiles are single hexagons (O) or two hexagons glued on an edge (CO).

(b) Determine the number of tilings of a board formed from hexagons where
the tiles are formed by gluing three hexagons together in all possible ways
(Cco, (52'), and o ).

53 Three Dimensional Boards

Up to this point we have looked at boards in the plane and what happens as we
transition between columns. The basic idea still works in a higher dimensional
setting. Namely, we look at the possible transitions between layers. We illustrate
this by an example. Suppose we want to look at all tilings of the 2x2xn box
using 1x1x2 blocks (equivalent of dominoes). Then we can think of transitioning
between 2x2 layers. Because of parity and consistency there end up being six
possible ways to cross between two consecutive layers (shown in Fig. 11).
This leads to the following matrix

g [2111117]
AB 100100
BC 100010
CD |110000
AD 101000
ABCD 100000 |

Reading off (T")g.¢ gives
2,9,32,121,450, 1681, 6272, 23409, 87362, 326041, 1216800, 4541161, ....

This is sequence 2006253 in the OEIS [10] (confirming our ability to count tilings
in three dimensions).

0 AB BC cD AD ABCD

Fig. 11 Different ways to cross between two consecutive layers



168 S.Butler et al.

Fig. 12 A tiling of 3x3x2 using “L” shapes

The assortment of tiling problems in three (and higher) dimensions has not been
well mined, so almost any interesting tiling problem that involves three dimensions
nontrivially has not been done. The tiling with 1x1x2 tiles are good places to
start.'0 Of course there are many more possibilities, for example, the number of
ways to tile the 3x3xn box using three cubes glued together to form an “L”
shape. One of the 432 ways to do this for n = 2 is shown in Fig. 12, together
with a decomposition going from upper left counter-clockwise where we alternate
crossings between layers and a layer between crossings.

Research Project 5 Pick a favorite tile (or tiles) and count the number of
ways to tile the px g xn box where p, g are fixed.

Research Project 6 Explore looking at tilings where the board is based
on other shapes which tessellate three (or higher dimensional space). One
example of where to start is the rhombic dodecahedron.

10As an example, as of this writing the number of ways to tile the 4 x4 x4 cube with 1x1x2 tiles
is not in the OEIS or found via an internet search engine.
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( (b)

Fig. 13 (a) Examples of tilings with skinny rectangles of a step pyramid using 9 blocks. (b)
Examples of shadings of a slanted pyramid with no two shaded cells sharing an edge using 10
blocks

6 Using Abstract Tiles

We begin this section with the following puzzle. In Fig. 13 we give examples of two
combinatorial objects. In Fig. 13a we have examples of tilings of a step pyramid by
rectangles where at least one dimension is 1 (we can call these “skinny” rectangles).
In Fig. 13b we have examples of shadings of a slanted pyramid where no two shaded
cells share an edge. The puzzle: are there more ways to tile the step pyramid with
skinny rectangles or to shade the slanted pyramid?

We strongly encourage the reader to pause and see if they can figure this out.
Bonus points for figuring out without resorting to actually counting the number of
ways to do these. (A solution follows analogous to a result later in this section).

6.1 Squaring a Square

A classic problem in mathematics is “squaring the square” which refers to finding a
way to take a square of integer length and to tile it with smaller squares of integer
length, each square being a distinct size. The smallest number of squares needed to
do this is 21 and involves decomposing a square with side length 112.!!

When it comes to enumeration, we can drop the requirement that all squares have
distinct lengths and ask instead how many ways are there to take a square of integer
length and decompose it into smaller squares each of integer length. This can be
counted by the method we have outlined here using as tiles all possible squares up to
a given order (the key is to remember that when we look at how a column intersects
a square we also need to understand how far into the square we are intersecting).
The counts for small cases are given as A219924 and A045846 in the OEIS [10].

Research Project 7 Determine the number of ways to triangle a triangle.
That is, take an equilateral triangle of integer length and count how many ways
there are to decompose it into smaller equilateral triangles, each of integer
length.

"For more information on squaring the square visit the website http://www.squaring.net/.
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6.2 Rectangling a Rectangle

Let us consider a simple variation where squares become rectangles, so now we are
dividing a rectangle with integer lengths into small rectangles of integer length. In
principle we can approach the same as squaring the square, namely we load in all
possible rectangles as our tiles and then we keep track of how far into the rectangle
we are slicing. This, however, will lead us into a fundamental problem, namely that
the number of possible tiles will continue to grow even as we keep one dimension
fixed; meaning every board we could consider would become a new problem to
perform (while this might be fun, it becomes prohibitive in enumerating).

Alternatively let us change our view on how to approach the problem. We no
longer think of our tiles as rectangles of fixed height and width, but rather of a
rectangle with only fixed height. By this we mean that we look at how rectangles of
various heights can cross between columns and make sure that we get consistency
of heights between columns (if we have a rectangle of a given height at a column
crossing, then in the next column crossing it must be either a rectangle of the same
height at the same location, or no crossing occurring at all). So this changes the
problem to working with a collection of abstract tile shapes. Using this approach
leads to the sequences A116694 and A182275 in the OEIS [10].

Research Project 8 Find the number of ways to tile mxmxn box with
rectangular boxes with integer lengths for fixed m.

6.3 Tiling with Skinny Rectangles

Let us take a moment to look at the special case of tiling with skinny rectangles
(rectangles where at least one of the dimensions is one). We begin with the following
code written in sage.

def M(L1,L2,n):
tally = 0
for i in range(n-1):
if (not i in L1l) and (not i in L2):
if (not i+1 in L1) and (not i+l in L2):
tally += 1
return 2%tally

def count tilings(n,m):
ind = {}
counter = 0
for C in Combinations (n) :
ind[counter] = C
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counter += 1
v = [0] xcounter
v[0o] =1
for t in range (m) :
new v = [0] xcounter
for i in range (counter) :
for j in range (counter) :
new v[i] += v[jl+M(ind[i],ind[j],n)
vV = new v
return v[0]

Running the code count _tilings (n,m) will produce the number of tilings
of the m xn board with skinny rectangles. So it will be useful to understand how this
works to see how similar problems can be explored.

The first thing to note is that in many of these tiling problems, the size of the
matrices grows very fast and gets to the point where it becomes unmanageable to
store the matrix.'> Now recall that our approach not only needs the matrix, but often
we care about the matrix to a high power which will have large entries. So this
would appear to be an unavoidable obstacle in our enumeration problem. But we
have one small saving grace: we do not need the entire matrix, we only need one
entry (or a few entries). If we lete; = (100 --- 0)7, then we have

(A" = €A% = e (A(A(--- A(Aer) -+ +))).

Notice that this allows us to transform the task of computing a matrix to the n-th
power to performing a series of n matrix-vector multiplications which are simpler.
Moreover, we do not even need to ever store A in memory! Instead we can find a
way to produce entries on the fly as they are needed. So we can reduce the amount
of storage tremendously, down to a single vector.

With the preceding in mind we can see how the code works. Namely, we look
at all possible ways that we can cross columns and look at these as sets (i.e., which
rows are crossed) and use this as an indexing set for reference. We now initiate a
vector v and carry out matrix multiplication m times, every time we need an entry
from the matrix we generate it in a separate routine (so the matrix is never stored).
Once we have finished our multiplication we then grab the first entry of the vector
(this corresponds to the no crossing between columns) and return the result.

One other thing to notice is that the entries in the matrix are powers of 2, and
particularly some entries are large. This can happen when we have two consecutive
columns with coinciding runs of no crossing occurring, in particular this means

12For example, when the authors were using this approach to count the number of ways to fill up a
10x20 board using Tetris pieces (the board sized used in the game) they had 447426747 different
crossings to keep track of which would create an exceedingly huge matrix that even the largest
computers would have a hard time working with. On a side note, the number of such tilings is:
291053238120184913211835376456587574
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that there are multiple ways to connect what is happening between two column
crossings.

We now have a way to generate the data, which leads to the important question:
Has this been done before? Thanks to the OEIS [10] and powerful search engines it
is relatively easy to answer this question. This leads to three possibilities:

1. This has never been counted before. Time to double check our work, and then we
can stake our claim to immortality by recording it in the OEIS and/or writing up
the result.!?

2. This particular tiling problem has been counted before. This means we are
doing a great job of counting stuff, and now we start thinking about ways to
modify/enhance our counts to get something new. (This is often easier than it
sounds, e.g., add colors to the tiles (statistics), modify the board, add restrictions
to pieces, and so on).

3. These numbers have been involved in a counting problem before, but not by
tiling. This is often the most interesting because it leads us to figuring out why
these objects are related, and in particular looking for a bijective proof between
these objects. (We should still make a note of this in the OEIS, once a proof has
been found of correctness, to help those who follow after. This is also the most
publishable of outcomes).

For this particular problem it turned out that it was in the third case; these
numbers had been counted before in a paper by Zhang [13], but not in terms of
a tiling (see A254414 and A254127 in the OEIS [10]). This particular counting
problem dealt with counting independent sets in Aztec rectangle graphs. Let G,
be the graph with vertex set V(G) = {(i,j) : 1 <i <2m—1,1 < j <2n— 1}
and edge set E(G) = {{(i, j), (', j)} : i+ jodd, |i —i'| =|j — j’| = 1}. The
graph Ge 3 is shown in Fig. 14a. Moreover, in the graph we have filled some vertices
which are an independent set (an independent set of vertices is one in which no two
are connected by an edge).

Theorem 2 The number of independent sets in G, ,, is the number of ways to tile
an mxn board with skinny rectangles.

Proof We show how to go back and forth between these two objects (a bijective
proof). The key is to think of tiling not as putting pieces down on the board, but
rather to think of it as removing edges out of our picture. For each internal vertex of
the m xn board we associate it with a vertex of a graph, and we connect two edges
if removing both of them would result in something which is not a skinny rectangle.
The resulting graph is G, ,. Now we see that every independent set in G, , is

13For publication you will be expected to go beyond the enumeration, look for interesting
characteristics and properties that you can prove about these numbers.
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Fig. 14 An example of Gg 3
with a marked independent
set and a tiling of the 6x3
board with skinny rectangles.
To see the relationship
between them, try crossing
your eyes

(@) (b)

associated with a unique tiling of the m xn board and conversely every tiling of the
mxn board produces a unique independent set.

This is illustrated in Fig. 14.

Research Project 9 Find the number of ways to tile the m xm xn box with
“skinny” boxes (where at least two of the three dimensions is 1). Find and
describe the graph where the number of independent sets in the graph is equal
to the number of tilings.

What happens if we only require one of the dimensions to be 1?

Research Project 10 For any tiling board that was discussed before, repeat
the process for counting with skinny strips. For the triangular board, is there
an interpretation in terms of independent sets? What about other possible
interpretations?

7 A Global Constraint on Tiling

Our approach on focusing on counting by looking at what happens when we cross
columns gives a simple local way to carry out the computation. The trade-off to
this local approach is that sometimes there is a global constraint which our local
approach can have a difficult time capturing.

We will call a tiling of an m xn board fault-free if between any two consecutive
columns and any two consecutive rows some tile crosses. These were introduced by
Graham [7].
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Exercise 3

(a) Produce a fault-free tiling of the 5x 6 board using dominoes ().
(b) Show that there is no fault-free tiling of the 6 x 6 board using dominoes ().

Because we have been focusing on column crossings it is simple to adapt our
approach to count the number of tilings with no vertical faults. Namely, we remove
the vertex corresponding to no crossings () and take n — 1 steps on the graph. We
then look at how we can go into the graph from @ and from the graph go to the @ to
grab the appropriate entries.

Alternatively, one can approach this via generating functions by recognizing we
can break any tiling up into a union of consecutive tilings with no vertical faults. If
we let

F(x) =) fux", and  G(x) =) gux"

n=0 n>1

where f, is all tilings for the mxn board and where g, is all vertical fault-free
tilings of the m xn board, then we have

F(x) =14 Gx)F(x).

In other words if we want to count all tilings (the F(x)) we either have the empty
tiling (the “1”) or we split it into the first vertical fault-free part (the “G(x)”’) and
then the remainder which is some tiling (the F(x)). From this we conclude that

F(x)—1

Gx) = ——.

F(x)
Note that for tiling problems where we can find the characteristic polynomial of the
matrix used to generate the data that we have ways to get the generating function,
and so this method gives a quick approach (and as added bonus we already have
the generating function). A good introduction to the manipulation of generating
functions is in Graham et al. [8, Ch. 7], which also contains an interesting discussion
about generating functions and tilings.

There are many questions about fault-free tilings that can be asked, and we lift
the following from the paper by Graham [7].

It is typical of this business that one answer leads to n more questions. For example, how
many fault-free tilings does a rectangle have? What if we can use two sizes of tiles instead
of just one? What about these same questions in 3 (or more) dimensions? ... We encourage
the interested reader to explore this fascinating byway of geometry and discover the gems
which must surely lie waiting to be discovered.
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Research Project 11 Pick a board and a tile (or set of tiles) and determine
the number of fault-free tilings of the board.

Some enumeration (without details) of the fault-free tilings of the square with
dominoes is given as A124997 in the OEIS [10]. There has also been work
done in the enumeration of fault-free tilings using triominoes (L5), see A084477,
A084479 and 2084481 in the OEIS [10] and references therein.

8 Concluding Remarks

A surprising amount of mathematics can be connected to tilings. The wonderful
book by Benjamin and Quinn [1] give examples of how to use tilings to establish
properties of Fibonacci and Lucas numbers through interpreting tilings.'#

So tilings are not just fun to play with, they can have mathematical power. Even
in the answering of some of these “toy” questions we often develop tools that can
in turn be used to solve other problems. The main method used here (the transfer
matrix method) has applications all throughout combinatorics and can be adapted to
many settings.

We are counting on you to help further push our knowledge about tilings.
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McNuggets: An Invitation to Numerical
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Abstract
We give a self-contained introduction to numerical semigroups and present
several open problems centered on their factorization properties.

Suggested Prerequisites Linear algebra, Number theory

1 Introduction

Many difficult mathematics problems have extremely simple roots. For instance,
suppose you walk into your local convenience store to buy that candy bar you more
than likely should not eat. Suppose the candy bar costs X cents and you have ¢
pennies, ¢ nickels, c3 dimes, and c4 quarters in your pocket (half dollars are of
course too big to carry in your pocket). Can you buy the candy bar? You can if there
are non-negative integers xi, . .., x4 such that

X1+ 5x0 4+ 10x3 +25x4 > X

with 0 < x; < ¢; foreach 1 < i < 4. Obviously, this is not difficult mathematics;
it is a calculation that almost everyone goes through in their heads multiple times
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a week. Now, suppose the cashier indicates that the register is broken, and that the
store can only accept the exact amount of money necessary in payment for the candy
bar. This changes the problem to

X1+ 5x0 4+ 10x3 +25x4 = X

with the same restrictions on the x;’s.

Given our change system, the two equations above are relatively easy with which
to deal, but changing the values of the coins involved can make the problem much
more difficult. For instance, instead of our usual change, suppose you have a large
supply of 3-cent pieces and 7-cent pieces. Can you buy the 11-cent candy bar? With
a relatively gentle calculation, even your English major roommate concludes that
you cannot. There is no solution of 3x; 4+ 7x» = 11 in the non-negative integers.
But with a little more tinkering, you can unearth a deeper truth.

Big Fact: [n a 3—7 coin system, you can buy any candy bar costing above 11 cents.

The Big Fact follows since 12 =3-4,13 =1-7+4+2-3,14 = 2 -7, and any
integer value greater than 14 can be obtained by adding the needed number of 3 cent
pieces to one of these sums. But why limit the fun to coins? Analogous problems
can be constructed using postage stamps and even Chicken McNuggets. The key to
what we are doing involves an interesting mix of linear algebra, number theory, and
abstract algebra, and quickly leads to some simply stated mathematics problems
that are very deep and remain (over a long period of time) unsolved. Moreover,
these problems have been the basis of a wealth of undergraduate research projects,
many of which led to publication in major mathematics research journals. In order
to discuss these research level problems, we will now embark on a more technical
description of the work at hand. As our pages unfold, the reader should keep in mind
the humble beginnings of what will become highly challenging work.

A numerical semigroup is a subset S C Zx¢ of the non-negative integers that

1. is closed under addition, i.e., whenever a, b € S, we also havea + b € S and
2. has finite complement in Zx.

The two smallest examples of numerical semigroups are S = Zx>p and S = Zx>o\{1}.
As is usually tacit in the literature, we assume that O € S which in fact makes S an
additive monoid. We will drift between the use of the term semigroup and monoid
throughout the remainder of this work.

Often, the easiest way to specify a numerical semigroup is by providing a list of
generators. For instance,

(nl,...,nk)={a1n1+~-~+aknk:a1,...,akeZZo}

equals the set of all non-negative integers obtained by adding copies of ny, ..., ng
together. The smallest nontrivial numerical semigroup S = Zx¢ \ {1} can then also
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be written as S = (2, 3), since every non-negative even integer can be written as
2k for some k > 0, and every odd integer greater than 1 can be written as 2k + 3
for some k£ > 0. It is clear that generating systems are not unique (for instance,
(2,3) = (2,3,4)), but we will argue later that each numerical semigroup has a
unique generating set of minimal cardinality. Note that problems involving the 3—7
coin system take place in the numerical semigroup (3, 7).

Example 1 Although numerical semigroups may seem opaque, there are some very
practical ways to think about them. For many years, McDonald’s sold Chicken
McNuggets in packs of 6, 9, and 20, and as such, it is possible to buy exactly n
Chicken McNuggets using only those three pack sizes precisely whenn € (6, 9, 20).
For this reason, the numerical semigroup S = (6, 9, 20) is known as the McNugget
semigroup (see [9]). It turns out that it is impossible to buy exactly 43 Chicken
McNuggets using only packs of 6, 9, and 20, but for any integer n > 43, there is
some combination of packs that together contain exactly n Chicken McNuggets.

By changing the quantities involved (be it with coins or Chicken McNuggets)
yields what is known in the literature as the Frobenius coin-exchange problem.
To Frobenius, each generator of a numerical semigroup corresponds to a coin
denomination, and the largest monetary value for which one cannot make even
change is the Frobenius number. In terms of numerical semigroups, the Frobenius
number of § is given by

F(S) = max(Z \ S).

Sylvester proved in 1882 (see [22]) that in the 2-coin problem (i.e., if S = (a, b)
with ged (a, b) = 1), the Frobenius number is given by F(S) = ab— (a+b). To date,
a general formula for the Frobenius number of an arbitrary numerical semigroup (or
even a “fast” algorithm to compute it from a list of generators) remains out of reach.

While deep new results concerning the Frobenius number are likely beyond the
scope of a reasonable undergraduate research project, a wealth of problems related
to numerical semigroups have been a popular topic in REU programs for almost
20 years. To better describe this work, we will need some definitions. Assume that
ni, ..., ng is a set of generators for a numerical semigroup S. Forn € S, we refer to

k
Z(n) = {(xl, oL Xk) s n= inni}
i=l

as the set of factorizations of n € S, and to

k
Lm)={§:m:(mw.”m)ezm4
i=1
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as the set of factorization lengths of n € S. Each element of Z(n) represents a
distinct factorization of n (that is, an expression

n=xny+---+ xpng

of n as a sum of ny, ..., ng, wherein each x; denotes the number of copies of n;
used in the expression). The local descriptors Z(n) and L(n) can be converted into
global descriptors of S by setting

Z(S)=1{Z(n) : ne S}
to be the complete set of factorizations of S and
Z(S) ={L(n) : ne S}

to be the complete set of lengths of S (note that these are both sets of sets).

Hence, while we started by exploring the membership problem for a numerical
semigroup (i.e., given m € Zsgo, is m € S§7?), we now focus on two different
questions.

1. Given n € S what can we say about the set Z(n)?
2. Given n € S, what can we say about the set L(n)?

We note that the set of factorizations of an element n € S is known as the
denumerant of n. This notion is related to the idea of a Hilbert series and the
interested reader can find more information in [19]. We start with a straightforward
but important observation.

Exercise 1 If S is a numerical semigroup and n € S, then Z(n) and L(n) are both
finite sets.

Example 2 Calculations of the above sets tend to be nontrivial and normally require
some form of a computer algebra system. To demonstrate this, we return to the
elementary example S = (2, 3) mentioned earlier. As previously noted, any integer
n > 2isin S. In Table 1, we give Z(n) and L(n) for some basic values of n € .

Example 3 Patterns in the last example are easy to identify (and we will return to
Example 2 in our next section), but the reader should not be too complacent, as the
two-generator case is the simplest possible. We demonstrate this by producing in
Table 2 the same sets, now for the semigroup S = (7, 10, 12). We make special note
that while the length sets in Table 1 are sets of consecutive integers, L(42) = {4, 6}
in Table 2 breaks this pattern. We will revisit the concept of “skips” in length sets at
the end of the next section.
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Table 1 Some basic values of Z(n) and L(n) where S = (2, 3)

n Z(n) L(n) n Z(n) L(n)

2 {(1,0)} {1} 11 {(1.,3),(4.)} {4,5}

3 {01} {1} 12 {(6,0),(3,2),(0.4)} {4,5,6}
4 {(2,0)} {2} 13 {(5,1),2,3)} {5,6}

5 {11} {2} 14 {(7,0), 4.2), (1.4)} {5.6,7}
6 {(3,0), (0,2)} {2,3} 15 {(6,1),(3,3),(0,5)} {5,6,7}
7 {21} {3} 16 {(8,0).(5,2),2,4)} {6,7.8}
8 {(4,0),(1,2)} {3,4} 17 {(7,1),(4,3),(1,5)} {6,7,8}
9 {(3,1),(0,3)} {3,4} 18 {(9,0), (6,3), (3,4), (0,6)} {6,7,8,9}
10 {(5,0),(2,2)} {4,5} 19 {(8,1), (5,3), (2,5)} {7.8,9}

Table 2 Some basic values of Z(n) and L(n) where S = (7, 10, 12)

n Z(n) L(n) n Z(n) L(n)
7 {(1,0,00} {1} 30 {0,300} {3}
10 {(0,1,0)} {1} 31 {(3,1,0),(1,0,2)} {3,4}
12 {(0,0,1)} {1} 32 {(0,2,1)} {3}
14 {(2,0,0)} {2} 33 {(3,0,1)} {4}
17 {(1,1,0)} {2} 34 {(2,2,0),(0,1,2)} {3,4}
19 {(1,0,1)} {2} 35 {(5,0,0)} {5}
20 {(0,2,0)} {2} 36 {(2,1,1),(0,0,3)} {3,4}
21 {(3,0,0)} {3} 37 {(1,3,0)} {4}
22 {(0,1,1)} {2} 38 {(4,1,0), (2,0,2)} {4,5}
24 {(2,1,0),(0,0,2)} {2,3} 39 {(1,2,1)} {4}
26 {(2,0,1)} {3} 40 {(0,4,0),(4,0,1)} {4,5}
27 {(1,2,0)} {3} 41 {(3,2,0),(1,1,2)} {4,5}
28 {(4,0,0)} {4} 42 {(6,0,0), (0,3,1)} {4,6}
29 {(1,1,1)} {3} 43 {(3,1,1), (1,0,3)} {4,5}

Much of the remainder of this paper will focus on the study of Z°(S) and Z(S),
the complete systems of factorizations and factorization lengths of S. The next
section presents a crash course on definitions and basic results. We will review some
of the significant results in this area, with an emphasis on those obtained in summer
and yearlong REU projects. Section 3 explores the computation tools available to
embark on similar studies, and Sects. 4 and 5 contain actual student level projects
which we hope will pique students’ minds and interests.

2 A Crash Course on Numerical Semigroups
We start with a momentary return to the notion of minimal generating sets alluded to

in Sect. 1. Let S be a numerical semigroup, and m > 0 its smallest positive element.
We call a generating set W for S minimal if W C T for any other generating set
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T of S. We claim any minimal generating set for S has at most m elements (and in
particular is finite). Indeed, for each i with 0 < i < m, set

M;i={neS :n>0andn =i modm}.

Note that by the definition of S, each M; # @ (in fact, each is infinite). Moreover,
for each n € M;, we must have n +m € M; as well since S is closed under addition.
Hence, setting

n; = min Ml'

for each i, we can write each M; = {n; + gm : g > 0}. This implies N =
{no, ..., n,y—1} is a generating set for S, i.e.,

S=(N)=(no,...,"nm-1),

since the remaining elements of S can each be obtained from an element of N by
adding m = ng sufficiently many times (note that this is precisely the argument used
to justify the Big Fact at the beginning of Sect. 1). As a consequence, any minimal
generating set for S must be a subset of N. The generating set is often referred to in
the literature as the Apéry basis.

Example 4 While the elements of N are chosen with respect to minimality mod-
ulo m, the generating set N may not be minimal. For instance, if

S =1{0,5,8,10, 13, 15, 16, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, .. .},

then N = {5, 16, 32, 8, 24}, and while § = (5, 8, 16, 24, 32), the fact that 16 = 2-8,
24 =3-8,and 32 =48 yields § = (5, §).

Using Example 4, we can reduce N to a minimal generating set by setting
N={neN:né¢(N\(n}.

We note that the minimal generating set can also be expressed as (S*+5*)\ $* where
S* = S\{0}. The following is a good exercise, and implies that every numerical
semigroup has a unique minimal generating set.

Exercise 2 If S is a numerical semigroup and 7 is any generating set of S, then
N C T. In particular, N is the unique minimal generating set of S.

Exercise 2 and the argument preceding it establish some characteristics of a
numerical semigroup S that are widely used in the mathematics literature. The
smallest positive integer in S is called the multiplicity of S and denoted by m(S).
The cardinality of N above is called the embedding dimension of S and is denoted
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by e(S). By the argument preceding Exercise 2, e(S) < m(S), and additionally
the elements of N are pairwise incongruent modulo m(S). Moreover, note that
gcd(N) = 1, as otherwise Z>¢ \ S would be infinite.

Example 5 Using Exercise 2, we can set up several obvious classes of numerical
semigroups which have garnered research attention. Suppose thatm > 2 and d > 1
are integers with gcd(m, d) = 1. Given k with 1 <k <m — 1, set

Ar={m,m+d,...,m+ kd}.

Using elementary number theory, it is easy to see that Ay is the minimal generating
set of the numerical semigroup (Ag), which is called an arithmetical numerical
semigroup (since its minimal generating set is an arithmetical sequence). This
is a very large class of numerical semigroups, which contains many important
subclasses:

 all 2-generated numerical semigroups (i.e., k = 1);

 all numerical semigroups generated by consecutive integers (i.e., d = 1); and

* numerical semigroups consisting of all positive integers greater than or equal to a
fixed positive integer m (i.e.,d = l,k =m—1,and S = (m,m+1, ...,2m—1)).
In the literature, these numerical semigroups are referred to as ordinary.

The latter subclass consists of all numerical semigroups for which F(S) < m(S).

Just as we factor integers as products of primes, or polynomials as products of
irreducible factors, we now factor elements in a numerical semigroup S in terms
of its minimal generators (in this context, “factorization” means an expression of
an element of S as a sum of generators, and as we will see, many elements have
multiple such expressions). In terms of S, we have already defined the notation
Z(n),L(n), Z(S), and .Z(S). Let us consider some further functions that concretely
address structural attributes of these sets. We denote the maximum and minimum
factorization lengths of an element n € S by

£(n) =minL(n) and L(n) = maxL(n).

These functions satisfy the following recurrence for sufficiently large semigroup
elements; we state this result now and revisit it in much more detail in Sect. 3.

Theorem 1 ([2, Theorems 4.2 and 4.3]) If S = (ny,...,ng) withny; < --- < ng,
then

Ln+ng) =Ln)+1 and Ln+n;)=Ln) +1

foralln > ng_ng.
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The elasticity of a nonzero element n € S, denoted p (n), measures the deviation
between £(n) and L(n) and is defined as

p(n) = L(n)/t(n).

The elasticity of S is then defined as

p(S) =sup{p(n) :n € §}.

The elasticity of a semigroup element measures the “spread” of its factorization
lengths. One of the advantages of defining the elasticity of an element n as the
quotient of the maximum and minimum lengths (as opposed to, say, their difference)
is that one cannot obtain larger elasticity values “for free” by simply taking multiples
of n. Indeed, if £(n) = 3 and L(n) = 5, then 2n has factorizations of length 6
and 10 obtained by concatenating factorizations of n of minimum and maximum
length, respectively. The only way for p(2n) to exceed p(n) is for 2n to have “new”
factorizations not obtained from those of n.

We introduce two more terms before exploring an in-depth example. When the
supremum in this expression is attained (i.e., there exists n € S with p(n) = p(S))
we call the elasticity of S accepted. We say that S is fully elastic if for every rational
g € QNI[1, p(9)) (or [1, co) if the elasticity is infinite), there exists a nonzeron € S
such that p(n) = g.

Example 6 We return to the basic semigroup S = (2, 3) in Example 2 to offer some
examples of the calculations thus far suggested. Hence, each factorization of n € S
has the form

n=2x; + 3x.

Table 1 suggests that factorizations of a given element of S are far from unique in
general. Notice that in S, the longest factorization of an element n € S contains
the most possible copies of 2 and the shortest the most possible copies of 3. This is
the intuition behind Theorem 1: for large semigroup elements, a maximum length
factorization for n 4+ 2 can be obtained a maximum length factorization for n by
adding a single copy of 2.

Using this fact and some elementary number theory, explicit formulas for all the
invariants discussed to this point can be worked out for arbitrary elements of S.
For instance, for all n € S we have that

) = (’ﬂ and L(n) = SJ

and thus

o= (3] T3]
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Fig. 1 Elasticity values for elements of S = (7, 10, 12)

Using the fact that 2 copies of the generator 3 can be exchanged for 3 copies of the
generator 2 in any factorization in S, we obtain for n > 4 that

o = {[2][2] e [2] -1 2]

Using the notation [x, y] = {z € Z | x < z < y} for x < y integers, we conclude

28 = {1, [131. 131]. [131. 131 -}

Moreover, it is easy to verify that p(n) < 3/2 for all n € § and that p(n) = 3/2 if
and only if n = 0 mod 6. Thus p(S) = 3/2 and the elasticity is accepted.

Though a comparable analysis of elasticities for S = (7, 10, 12) is out of reach,
we offer in Fig. 1 a graph of the elasticity values for S = (7, 10, 12) to give the
reader a feel for how the elasticity behaves for large elements of S.

Many basic results concerning elasticity in numerical semigroups are worked
out in the paper [6], which was a product of a summer REU program. We review,
with proof, three of that paper’s principal results, the first of which yields an exact
calculation for the elasticity of S.

Theorem 2 ([6, Theorem 2.1]) Let S = (ny, ..., ng) be a numerical semigroup,
wheren) < ny < --- < ny is a minimal set of generators for S. Then p(S) = ny/n
and the elasticity of S is accepted.

Proof If n € Sandn = x1ny + ... + xgng, then

n nj ng ni ni n
—_—=—x1+...+—xr <x1+...+x, < —x1+...+ —xp = —.
ng ng ng ni ni ni

Thus L(n) < n/ny and I(n) > n/ny for all n € §, so we can conclude p(S) <
ni/n1. Also, p(S) > p(ning) = ny/n1, yielding equality and acceptance. |
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We now answer the question of full elasticity in the negative.

Theorem 3 ([6, Theorem 2.2]) If S = (ny,...,ng) is a numerical semigroup,
where2 <njy < --- < ngand k > 2, then S is not fully elastic.

Proof Let N = nx_1ny + ning. By Theorem 1, for each n > nj_1ng, we have

Lint+nmng) L)+ L) _
Lm+ning) L) +n — Ln)

p(n+ning) = p(n)

since p(n) < ng/n; by Theorem 2. As such, for each r < ny/ny, there are only
finitely many elements with elasticity less than r, so S cannot be fully elastic. O

The proof of Theorem 3 can be used to prove a result which is of its own interest.
For a numerical semigroup S, let

R(S) ={p(n) : ne S}.

Corollary 1 ([6, Corollary 2.3]) For any numerical semigroup S, the only limit
point of R(S) is p(S).

Proof Letn; < np < --- < nj be a minimal set of generators for the numerical
semigroup S = (ny, ..., ng), where k > 2. If n = a(niny) 4+ ny fora € Z>o, then
L(n) anip—+1
pln) = o=
L(n) any + 1

It follows that p(n) < ny/n; for all a € Z>o and lim,—, » p(n) = ni/ni, making
ni/n1 a limit point of the set R(S). Additionally, by Theorem 1, for n > ni_inj
and a > 1 we have

L(n + annyg) . L(n) 4+ any
In+aning) ~ L(») +an;’

p(n+aning) =

meaning R(S) is the union of a finite set (elasticities of the elements less than
nx—1ng + ning) and a union of n1n; monotone increasing sequences approaching
ny/ni. As such, we conclude ny/n is the only limit point. m]

The original proofs in [6] did not use Theorem 1 and were much more technical.
The proofs given above are a consequence of a complete description of R(S) in [2],
a recent paper with an undergraduate co-author in which Theorem 1 first appeared.

The elasticity does lend us information concerning the structure of the length set,
but only limited information. While it deals with the maximum and minimum length
values, it does not explore the finer structure of L(n) (or more generally of Z(n)).
There are several invariants studied in the theory of non-unique factorizations that
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yield more refined information—we introduce one such measure here, which is
known as the delta set.

Let S = {(n1,...,n;) be a numerical semigroup, where ny,...,n;y € N
minimally generate S and k > 2. If L(n) = {£y, ..., £;} with the ¢;’s listed in
increasing order, then set

An)={; — i1 :2<i<t)
and

A(S) = U An).

O<neS

Our hypothesis that t > 2 ensure A(S) # @, since (for instance) if n = njn,, then
both ny and ny € L(n). Also, for each n € S, since |L(n)| < oo by Exercise 2, we
clearly have |A(n)| < oo as well.

Example 7 We use the calculations already presented in Example 6. For § = (2, 3),
our formula for L(n) yields for all n € S that

A(n) = {1} andthus A(S) = {1}.

Calculations for § = (7, 10, 12) in Example 3 require advanced techniques. From
Table 2 we have that A(24) = {1} while A(42) = {2}. Thus

A(S) 2 {1, 2}.
Using [3, Corollary 2.3], we obtain max A(S) < 2, which yields equality.

Many basic results concerning the structure of the delta set of a numerical
semigroup can be found in [3] (another paper that is the product of an REU project).
The publication of [3] led to a long series of papers devoted to the study of delta sets
and related properties in numerical semigroups, which approach delta sets from both
theoretical and computational standpoints. In our bibliography, we offer a subset of
this list of papers that include undergraduate co-authors [1,4,5,7-9,20].

Before proceeding, we will need two fundamental results. While we state these
results in terms of numerical semigroups, they are actually valid for any affine
semigroup (i.e., a subset S C Z‘i closed under vector addition and finitely
generated). We omit the proofs, but invite interested readers to construct proofs
specifically for the numerical semigroup setting. The first merely establishes the
finiteness of A(S); proofs can be found in both [3, Proposition 2.3] or [5, Theorem
2.5]. Another proof can be constructed using our still to come Theorem 5.

Proposition 1 If S is a numerical semigroup, then |A(S)| < oo.
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The second result is a deeper structure theorem concerning delta sets, due to
Geroldinger, and a general proof can be found in [18, Lemma 3].

Proposition 2 If S is a numerical semigroup, then
min A(S) = ged A(S).
Hence, if d = gcd A(S), then
A(S) c {d, 2, ..., ad}
for some a € Z~y.

Proposition 2 raises two interesting questions, both of which were addressed by
the authors of [3].

* Given positive integers d and k, can one construct a numerical semigroup S with
A(S)=1{d,2d, ..., kd}?

e Must the set containment in Proposition 2 be an equality?

Prior to [3], all examples in the literature of delta sets (albeit in different settings—
primarily in Krull domains and monoids) consisted of a set of consecutive multiples
of a fixed positive integer d. For numerical semigroups, on the other hand, the
answer to the first question is yes, but the answer to the second is no.

Proposition 3 ([3, Corollary 4.8]) For eachn > 3 and k > 1 with gcd(n, k) = 1,
the numerical semigroup

S=mn,n+k, (k+1n—k),

is minimally 3-generated and

n+k—1
A(S) = {k,Zk,..., \\k—HJk}

Hence, for any positive integers k and t, there exists a 3-generated numerical
semigroup S such that A(S) = {k, 2k, ..., tk}.

Proposition 4 ([3, Proposition 4.9]) For each n > 3, the numerical semigroup
S=mn+1,n*—n—1),
is minimally 3-generated and

AS)=1{1,....,n—2}U{2n - 5).
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The semigroups in Propositions 3 and 4 have fairly intuitive minimal generators.
For instance, in Proposition 4, n? —n — 1 is the Frobenius number of (n,n + 1),
and in Proposition 3, S reduces to (n,n + 1,2n — 1) when k = 1. Note also that
Proposition 4 gives a “loud” no to the second question, as it shows that one can
construct as large a “gap” as desired in the set {d, 2d, . .., kd}. After the publication
of [3], the delta sets for all numerical semigroups of embedding dimension three
were determined. The interested reader can find the details in [15] and [16].

While some fairly deep results have been obtained, a good grasp on the general
form for the delta set remains out of reach. We will do such a computation for
arithmetical numerical semigroups (i.e., when S = (a,a +d, ...,a + kd) for 0 <
k < a and gcd(a, d) = 1). This result was originally proved in [3, Theorem 3.9], but
we present a much shorter self-contained proof which later appeared in [1], another
product of an REU. We begin with a lemma.

Lemma 1 ([1, Lemma 2.1]) Let S be an arithmetical numerical semigroup with a,
d, and k defined as above. If n € S, then n = cja + cpd with c1, ¢y € Z>o and
0<c <a.

Proof Any n € § can be written in the form cja + c2d for some ¢y, ¢3 € Z>¢. Write
cy=qa+rwithO) <r <a.Nown =cia+ cod =a(c; +qr) +rd. m]

Theorem 4 ([1, Theorem 2.2]) If S is an arithmetical numerical semigroup with
a, d, and k defined as above, n = cia + cod € S with0 < ¢ < a, and

_cz—clk
 a+kd’

then we have
L(n) ={c1 +jd: K < j <0}.

Proof Suppose [ € L(n). Now la = n = cja (mod d), and thus L(n) C c¢| + dZ.
Writing [ = c¢1 + jd for j € Z, we see

a(ci+ jd)=al <n < (a+kd)l = (a+kd)(c1 + jd),

SO

¢ —crk n—ci(a +kd) . n—cla c
(a +kd) (a + kd)d

ad a

This means L(n) C {¢; 4+ jd : K < j <0}
It remains to locate a factorization of length ¢ + jd for each j € Z with K <
Jj <0.Writeco — j =gk +rforg,r € Zwith0 <r < k. We have
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n=a(ci+jd)+dcy—j)=alg+1+c1+jd—1—q)+dgk+r)
=qla+kd)+(a+rd)+(c1+jd—1-¢q)a,

which is a factorization of n of length ¢; + jd. Thus ¢; + jd € L(n), as desired. O
An obvious corollary to this theorem follows.

Corollary 2 If S is an arithmetical numerical semigroup and a, d, and k are as
defined above, then A(S) = {d}. Moreover,

* ifny > ny > 1 are relatively prime integers, then A((ny,ny)) = {ny —ny}
e ifn > landk are integerswith1 <k <n—1, thenfor S = (n,n+1,...,n+k)
we have that A(S) = {1}.

Additionally, Theorem 4 can be used to show that .Z(S) is not a perfect invariant,
that is, one cannot in general recover a given numerical semigroup S from .Z(S).

Challenge Problem 1 Use Theorem 4 to find two numerical semigroups S1 and S
so that Z(S1) = Z(S) but S| # S».

We close this section with another REU related result that appears in [7]. Writing
the elements of a numerical semigroup § in order as s, 53, ..., where s; < s;41 for
all i > 1, we now consider the sequence of sets

A(s1), A(s2), A(s3), ...

In the case where S is arithmetical, then for large i this sequence is comprised solely
of {k}, which is not too interesting. Using Table 2, one can construct the beginning
of this sequence for § = (7, 10, 12):

b,9,...,0,{1},9,9,9,9,0,{1}, 9,9, {1}, 4, {1}, 4, {1}, 4, {1}, {1}, {2}, {1}, ...

While the beginning behavior of these sequences is in some sense “chaotic,” in the
long run, they are much more well behaved. This can be better demonstrated with
some graphs. Figure 2 represents the sequence of delta sets for S = (7, 10, 12),
while Fig. 3 does so for the Chicken McNugget semigroup. On these graphs, a point
is plotted at (n, d) if d € A(n).

Using data such as the above, it was conjectured shortly after the publication
of [3] that this sequence of sets is eventually periodic. Three years later, this problem
was solved, again as part of an REU project.

Theorem 5 ([7, Theorem 1]) Given a numerical semigroup S = (ny, ..., ng) with
np<ny<---<ngand N = angn% + nng, we have
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Fig. 3 Delta set values for S = (6, 9, 20)

An) = A(n — ning)
for everyn > N. Hence,

A(S) = U An).

nesS, n<N

The importance of Theorem 5 cannot be overstated, as it turns the problem of
computing A(S) into a finite time exercise. The bound N given in Theorem 5 has
been drastically improved in [14] (Table 1 in that paper shows exactly how drastic
this improvement is). An alternate view of the computation of A(S) using the Betti
numbers of S can be found in [5], which is also an REU product.

3 Using Software to Guide Mathematical Inquisition

One of the most reliable tools when working with numerical semigroups is computer
software. We will give an overview of using the GAP package numericalsgps.
GAP (Groups, Algorithms, Programming) is a computer algebra system used in
a variety of discrete mathematical areas, and numericalsgps is a package
for working specifically with numerical semigroups, including over 400 pre-
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programmed functions to compute numerous invariants and properties of numerical
semigroups. Full documentation can be found in [11] and on the GAP website.
https://www.gap-system.org/.

We begin by providing a brief overview of the functionality related to the topics
covered in the previous section. Once GAP is up and running, you must first load the
numericalsgps package.

gap> LoadPackage ("numericalsgps") ;
true

Once this is done, you can begin to compute information about the numerical
semigroups you are interested in examining, such as the Frobenius number.

gap> McN:= NumericalSemigroup(6,9,20) ;

<Numerical semigroup with 3 generators>

gap> FrobeniusNumber (McN) ;
43

Many of the quantities the numericalsgps package can compute center
around factorizations and their lengths. Given how central the functions that com-
pute Z(n) and L(n) are, these functions have undergone numerous improvements
since the early days of the numericalsgps package, and now run surprisingly
fast even for reasonably large input.

gap> Factorizations (50, McN) ;

rrs,0 11, [02,2,11]1
gap> Factorizations (60, McN) ;
({110, 0,01, [ 7, 2, 01, [ 4, 4, 01,
[1, 6, 01, [0, 0,311
gap> LengthsOfFactorizationsElementWRTNumericalSemigroup (60,

McN) ;
[ 3, 7, 8, 9, 10 ]
gap> LengthsOfFactorizationsElementWRTNumericalSemigroup (150,
McN) ;
[ 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 ]

The numericalsgps package can also compute delta sets, both of numerical
semigroups and of their elements. The original implementation of the latter function
used Theorem 5 to compute the delta set of every element up to N, and only more
recently was a more direct algorithm developed [17].

gap> DeltaSet (60, McN) ;

(1, 4]

gap> DeltaSetOfNumericalSemigroup (McN) ;

[ 1, 2, 3, 4]

One of the primary goals is to use these observations to formulate meaningful
conjectures among these concepts, and even to aide in the development of a proof.
In what follows, we hope to give a better sense of this process by walking through a
specific example.

Suppose we decide to study maximum factorization length. We begin by using
the numericalsgps package to compute maximum factorization lengths for
elements of S = (7, 10, 12) from Example 3.
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gap> S := NumericalSemigroup(7,10,12) ;

<Numerical semigroup with 3 generators>

gap> Factorizations(60,8S) ;

[[o, 6,01, [4, 2,11, [2,1, 31, [0, 0,511

gap> Maximum (

> LengthsOfFactorizationsElementWRTNumericalSemigroup (60,S)) ;
7

Using built-in GAP functions, maximum factorization length can be computed for
several semigroup elements in one go. We first compute a list of the initial elements
of S (this avoids an error message when attempting to compute Z(n) when n ¢ S).

gap> elements := Intersection([1..60], S);

[ 7, 10, 12, 14, 17, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30,31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60 ]

Next, we compute the values of L(n) for semigroup elements n < 100.

gap> List (elements, n -> Maximum(

> LengthsOfFactorizationsElementWRTNumericalSemigroup (n,S))) ;

[1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 4, 3, 3, 4, 3, 4, 4, 5,
4, 4, 5, 4, 5, 5, 6, 5, 5, 6,5, 6, 6, 7, 6, 6, 7, 6, 7,7,
8, 7, 7, 8, 71

Well-chosen plots can be an incredibly effective tool for visualizing such data.
Figure 4 depicts the values output above; the repeating pattern in the right half of
the plot is undeniable. This is what we call a quasilinear function, that is, a linear
function with periodic coefficients. For our particular S and n > 26, we have

L(n) = yn +a(n),

where a(n) is a periodic function with period 7 (for instance, a(n) = — % whenever
n = 4 mod 7, so that L(60) = %(60) — ]7] = 7). The resulting plot resembles 7

parallel lines, each with slope % Another way to express a quasilinear function with
constant linear coefficient is via constant successive differences, i.e.,
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Fig. 4 Maximum factorization length values for elements of § = (7, 10, 12)
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Lin+7) —Ln)=1

for all n > 26. Notice that this is precisely the relation claimed in Theorem 1.

In addition to elucidating the quasilinear pattern, computations can also be used
to help us work towards a proof. We begin by asking numericalsgps to compute
the factorizations of maximum length for n = 44, 51, and 58 (each 7 apart).

gap> LengthsOfFactorizationsElementWRTNumericalSemigroup (44, S) ;
[ 4, 51

gap> LengthsOfFactorizationsElementWRTNumericalSemigroup (51, S) ;
[ 5, 61

gap> LengthsOfFactorizationsElementWRTNumericalSemigroup (58,S) ;
[ 5, 6, 71

gap> Filtered(Factorizations (44,S),

> f -> (Sum(f)=5));

[ L2 3 011

gap> Filtered(Factorizations(51,8S),

> f -> (Sum(f)=6));

[ [ 3, 3, 011

gap> Filtered(Factorizations(58,S),

> £ -> (Sum(£f)=7));

Notice the only change in the factorizations is the first coordinate, which
increases by exactly 1 each time the element n increases by exactly 7. Intuitively, this
is because longer factorizations should use more small generators. This identifies
where the period of 7 and the leading coefficient of % originate. However, this does
not yet explain why the quasilinear pattern does not begin until n = 26. After testing
our conjecture on several more numerical semigroups, we come across an example
that provides some insight behind this final piece of the puzzle.

gap> S2 := NumericalSemigroup(9,10,21);

<Numerical semigroup with 3 generatorss>

gap> Factorizations(41,S2);

[ Lo, 2,111

gap> Factorizations(50,8S2);

(ro, 5 01, [1, 2, 111
gap> Factorizations(59,8S2);
[ [1,5 01, [2,2,11]1

Here, we see the longest factorization of n = 50 in S = (9, 10, 21) does not
use any copies of the smallest generator. As it turns out, this phenomenon can only
happen for small semigroup elements, as once 7 is large enough, any factorization
with no copies of the smallest generator can be “traded” for a longer factorization
that does. This highlights the key to proving Theorem 1: determining how large n
must be to ensure all of its factorizations of maximal length have at least one copy
of the smallest generator.

We invite the reader to use the ideas discussed above to obtain a rigorous proof
of Theorem 1 (indeed, the proof appearing in [2] utilizes these ideas).

Challenge Problem 2 Prove Theorem 1.
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4 Research Projects: Asymptotics of Factorizations
The length of a factorization coincides with the £1-norm of the corresponding point.
Much like Theorem 1, several other norms that arise in discrete optimization appear
to have EQP behavior. The following was observed during the 2017 San Diego State
University Mathematics REU and motivates the research project that follows.
In what follows, fora € Z¥ and r € Z>1, let
lall, = (@] + - +ap'/”
and
“a”OO = max(ala cet ak)a
which are known as the ¢,- and £,-norm, respectively.
Challenge Problem 3 Let S = (ny, ..., ng). Prove the function

loo(n) = minf[lallec : a € Zg(n)}

is eventually quasilinear with period ny + - - - + ng.

Research Project 1 Determine for which fixed r € [2, co) the functions
M; (n) = max{(|lall,)" : a € Zs(n)}
and
m, (n) = min{(l|a]l,)" : a € Zs(n)}
are eventually quasipolynomial.
Given a numerical semigroup S = (ny,...,ng) withn; < --- < ng, one can
define
N =|{neS:telLm},
which counts the number of elements of S with a given length £ in their length set.
Unlike many functions discussed above, which take semigroup elements as input,

N takes factorization lengths as input. Since each semigroup element counted by
N (£) must lie between n1£ and ni £, we see that
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N) < (ng —n1)e,

so N (£) grows at most linearly in £. This yields the following natural question.

Research Project 2 Fix a numerical semigroup S. Determine whether
NU®)=|{neS:Leln}

is eventually quasilinear in £ > 0.

One of the running themes of results in the numerical semigroups literature is
that the factorization structure is “chaotic” for small elements, but “stabilizes” for
large elements. Typically, the latter is easier to describe, as evidenced by the word
“eventually” in several of the results presented above. Broadly speaking, it would
be interesting to determine how much of a numerical semigroup’s structure can be
recovered from that of its “large” elements. The following project is an initial step in
this direction, and at its heart is the question “does the eventual behavior of a given
factorization invariant uniquely determine its behavior for the whole semigroup?”

Research Project 3 Given a numerical semigroup S = (n1, ..., ng) satisfy-
ingny < --- < ng, Theorem 1 implies

Mg (n) = %n +as(n) and  mg(n) = ﬁn + bs(n)

for some periodic functions ag(n) and bg(n). Characterize the functions ag(n)
and bg(n) in terms of the generators of S. For distinct numerical semigroups
S and 7, is it possible that ag(n) = ar(n) or bg(n) = br(n) for all n?

Most of the invariants introduced thus far (and indeed, most in the literature)
are derived from “extremal” factorizations. In a recent REU project, “medium”
factorization lengths were studied. More precisely, the length multiset

Ls[n]l = {{lal : a € Zs(n)}}

was defined, wherein factorization lengths are considered with repetition, and the
following quantities were considered:

e s(n), the mean of the elements of Lg[[»n]] and
e ns(n), the median of the elements of Lg[[n]).
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Fig. 5 Histograms of the length multiset Lg[1400] for S = (5, 7, 8) (left) and the length multiset
Ls[[3960] for S = (5, 8,9, 11) (right)

Notice that Lg[[n] has the same cardinality as Zg(n), since factorization lengths are
counted with repetition in Lg[[x].

Example 8 The length multiset of n = 1400 in S = (5,7, 8) is depicted in Fig. 5,
wherein a point at (£, m) indicates the length £ appears exactly m times in L[[n].
The lengths in L[[r]] range from 175 to 280 (as predicted by Theorem 2), and the
mode length(s) occur around /7 (note that 7 is the middle generator of S). In this
case, as n — 00, the histogram approaches a triangular distribution. The second
histogram in Fig. 5 is for the length multiset of an element of S = (5, 8,9, 11) and
has a visually different shape. Indeed, the limiting distribution of the length multiset
is only triangular for 3-generated numerical semigroups.

The following result will appear in a forthcoming paper, and implies that
although 1 (n) is not itself (eventually) quasipolynomial, it can be expressed in terms
of quasipolynomial functions.

Theorem 6 Fix a numerical semigroup S = (ny,...,nk). The function u(n)
equals the quotient of two quasipolynomial functions, and

lim “S(”)=1<i+-~-+i>.

n—oo n k \ny ny

Median factorization length has proven more difficult to describe in general.
The limiting distribution of L[[n]] is characterized for 3-generated numerical semi-
groups in [13], yielding the following theorem regarding the asymptotic growth rate
of median factorization length in this case.

Theorem 7 Fix a numerical semigroup S = (n1, no, n3), and let

_ ni(n3 —ny)

na(n3 —ny)

(called the fulcrum constant). We have
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1 1—-F 1 [1—-F . 1
—(1=y/—— )+ ——— ifF =<3y,
. 7ms(n) ni 2 n3 2
lim =
n—oon 1 |F 1 F . 1
— =+ — 1— - lfFZz,
nV2 nj3 2

the value of which is irrational for some, but not all, numerical semigroups.

Theorem 7 is a stark contrast to many of the invariants discussed above,
since if the limit therein is irrational, then n(n) cannot possibly coincide with a
quasipolynomial for large n (indeed, this follows from the fact that any linear
function sending at least 2 rational inputs to rational outputs must have rational
coefficients). As such, studying the asymptotic behavior of median factorization
length requires different techniques than previously studied invariants.

As the histograms in Fig.5 demonstrate, the limiting distribution of the length
multiset for 3-generated numerical semigroup elements differs drastically from
semigroups with more generators. Students interested in the following project are
encouraged to begin by reading [13], wherein the limiting distribution is carefully
worked out in the 3-generated case.

Research Project 4 Fix a numerical semigroup S. Find a formula for

5 n(n)
im —,

n—oo n

the asymptotic growth rate of the median factorization length of n.

5 Research Projects: Random Numerical Semigroups

Suppose someone walks up to you on the street and hands you a “random” numerical
semigroup. What do we expect it to look like? Is it more likely to have a lot of
minimal generators, or only a few? How large do we expect its Frobenius number
to be? How many gaps do we expect it to have? Such questions of “average” or
“expected” behavior arise frequently in discrete mathematics, and often utilize tools
from probability and real analysis that are otherwise uncommon in discrete settings.

The general strategy is to define a random model that selects a mathematical
object “at random,” and then determine the probability that the chosen object has
a particular property. One prototypical example comes from graph theory: given
a fixed integer n and probability p, select a random graph G on n vertices by
deciding, with independent probability p, whether to draw an edge between each
pair of vertices v; and v. A natural question to ask is “what is the probability G is
connected?” (note that the larger p is, the more edges one expects to draw, and thus
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Fig. 6 Scatterplots recording the number of connected graphs sampled as a function of p for
n = 20 and n = 100, respectively. Sample size is 20,000 for each plotted value of p

the higher chance the resulting graph is connected). This is a difficult question to
obtain an exact answer for, although estimates can be obtained for small n (with the
help of computer software) since there are only finitely many graphs with n vertices.
That said, it turns out that for very large n, there is an € > 0 so that

* if p <log(n)/n — €, then G has low probability of being connected and
* if p > log(n)/n + €, then G has high probability of being connected,

where € — 0 asn — o0o. Here, the phrases “low probability” and “high probability”
mean probability tending to 0 and 1, respectively, as n — oo. This kind of
bifurcation (illustrated in Fig. 6 for varying values of ) is a phenomenon known as
a threshold function, and occurs frequently when answering probabilistic questions
in discrete mathematics.

The authors of [10] introduce a model of selecting a numerical semigroup at
random that is similar to the above model for random graphs. Their model takes
two inputs M € Z>; and p € [0, 1], and randomly selects a numerical semigroup
by selecting a generating set A that includes each integer n = 1,2, ..., M with
independent probability p. For example, if M = 40 and p = 0.1, then one possible
setis A = {6, 9, 18, 20, 32} (this is not unreasonable, as one would expect 4 to be
selected on average). However, only 3 elements of A are minimal generators, since
18 = 94 9 and 32 = 20 + 6 + 6. As such, the selected semigroup § = (A) =
(6,9, 20) has embedding dimension 3.

Regarding the expected properties of numerical semigroups selected in this way,
two main results are proven in [10]. First, the threshold function for whether or not
the resulting numerical semigroup S has finite complement is proven to be 1/M.
More precisely, for each large M, there exists € > 0 (withe — 0as M — 00) so

e if p <1/M — €, then Z>¢ \ S is finite with low probability and
e if p > 1/M + €, then Z>¢ \ S is finite with high probability.
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One expects |A| = 1 on average when p = 1/M, meaning for large M, the selected
numerical semigroup is most likely to either have finite complement (if p > 1/M)
or equal the trivial semigroup {0} (if p < 1/M).

The remaining results in [10] provide lower and upper bounds on the expected
number of minimal generators of the selected semigroup S. More precisely, a
formula is obtained for E[e(S)] in terms of p and M (though it is computa-
tionally infeasible for large M), and derives from it lower and upper bounds on
limys— 0 E[e(S)] for fixed p. It is also shown that

lim E[e(S)] = —2— lim E[g(S)],
M— 00 l1—p Mo

thereby providing lower and upper bounds on the expected number of gaps as well.

Asymptotic estimates of this nature can be useful, for instance, in testing
conjectures in semigroup theory. Suppose a researcher has a conjecture regarding
numerical semigroups with exactly 150 gaps. They could test their conjecture on
a small number of “larger” numerical semigroups selected using a random model,
choosing the parameters so as to maximize the chances of selecting a numerical
semigroup with 150 gaps.

This random model is just one of many possible models for randomly selecting
numerical semigroups, and using different models is likely to yield different
expected behavior for the resulting semigroups. Given below are some alternative
models that have yet to be explored. The first adds a new parameter to the existing
model, namely the multiplicity of the semigroup, yielding more control over which
semigroups are selected. The second selects oversemigroups (that is, semigroups
containing a given semigroup) instead of generators, and takes their intersection.

Research Project 5 Study random numerical semigroups selected using the
following model: given M, m € Z>1 and p € [0, 1], select the semigroup

S=({m}UA)U (M +1,00) NZ)

by selecting a random subset A C [m + 1, M] N Z that includes each integer
the original model discussed above.

Research Project 6 Study random numerical semigroups selected using the
following model: given N € Z=1 and p € [0, 1], select the semigroup

S= ) (a.b),

2<a<b<N

(continued)
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where each numerical semigroup (a, b) with ged(a, b) = 1 is included in the
intersection with independent probability p.

For each of these projects, a natural starting place would be to use computer

software to produce a large sample of numerical semigroups and compute the
average number of minimal generators, Frobenius number, etc. as estimates of their
expected value for varying choices of the parameters.
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that greatly improved this manuscript. They would also thank Nathan Kaplan for his discussions
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Lateral Movement in Undergraduate Research:
Case Studies in Number Theory

Stephan Ramon Garcia

Abstract

We explore the thought processes, strategies, and pitfalls involved in entering
new territory, developing novel projects, and seeing them through to publication.
We propose twenty-one general principles for developing a sustainable under-
graduate research pipeline and we illustrate those ideas in three case studies.

Suggested Prerequisites Number theory

1 Introduction

This paper is an account of how an operator theorist began supervising under-
graduate research projects in number theory, a field far removed from his original
research area. We explore the thought processes, strategies, and pitfalls involved
in entering new territory (with no formal training), developing novel projects with
students, and seeing them through to publication. We propose twenty-one general
principles (Sect. 2) for developing a sustainable undergraduate research pipeline and
we illustrate those ideas in action through three case studies (Sects. 3—5). We hope
that the following account will be accessible enough for readers to translate the
author’s experiences and ideas into their own personal domains.
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The author was trained in function-related operator theory, the study of certain
operators on Banach spaces of holomorphic functions. The questions studied in that
field require graduate-level analysis, complex analysis, and functional analysis to
state. Although the author had supervised a few undergraduate-research projects
in operator theory and matrix analysis [5, 18, 19, 38—43, 45], he felt the need to
branch out in order to meet the demands of his department’s mandatory senior thesis
requirement (Pomona College is an elite liberal arts college at which around 10% of
the student body majors in mathematics). Given the background of the typical senior
thesis student (no exposure to complex variables or advanced linear algebra and
only a first course in analysis), dabbling in number theory made sense. Questions
in number theory are often less abstruse and more easily stated than in other areas
and they are sometimes amenable to computation. Both of these properties were
crucial for developing new research threads capable of supporting a pipeline of
undergraduate research students.

We track the development of three independent research threads in number
theory. Each program consists of several interrelated papers written by the author
and his collaborators (most of whom were students at the time) over a period of
several years. A simple flowchart accompanies each program (Fig. 1).

A few important disclaimers are required before we begin.

*  We do not provide the complete details of every individual project, although we
do this to the extent necessary to illustrate our guiding principles.

e The author is a pure mathematician and his experiences might not translate
perfectly outside of this sphere. Nevertheless, we hope that the guiding principles
set forth below have some universal value for readers in the mathematical
sciences.

Research

\

| conducted by

New idea i others, but
: directly inspired
i by project
Collaborator Research project
{Research project with student (s)}
{ Initial impetus ]—{Research project}

Expository
project

to do Future re-
search project

Research project
with student(s)

Collaborator
(name)

Fig. 1 Sample project flowchart. Time flows approximately from left to right. Initial problems or
external inflows of knowledge are in yellow. Collaborators coming on board are in purple
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*  Most of the projects discussed stem from academic-year research, often as part
of a senior exercise. Readers focused on summer-research programs with short
timeframes (but perhaps more time to work on mathematics) may encounter
different issues than those considered by the author.

e The author’s philosophy and goals might not correlate exactly with those of the
reader. The author has focused on producing papers for publication in respectable
journals. However, there are other markers of success in undergraduate research.
These range from poster presentations and technical reports to retention and
recruitment of students from historically underrepresented groups. Research
experience can also help prepare students for a variety of careers.

e There is a human dimension to undergraduate research. The author is not
qualified to provide advice upon how to handle psychological or emotional
adversity. This article focuses exclusively on the mathematical side of the
equation: how, as a supervisor of undergraduate research, you can direct the
student to fruitful research topics and shepherd subsequent results through to
publication.

* The following case studies concern the personal recollections and experiences of
the author. Consequently, we often lapse into the first person (“I”’). We trust that
the reader will not find the overall tone too conversational or informal.

* Although it is neither egalitarian nor consistent, I will often refer to students by
their first names and to professional mathematicians by their last names.

With these caveats and disclaimers out of the way, we may proceed to our guiding
principles (Sect.2). These are general precepts suggested by the author’s personal
experience and reflections. The three case studies (Sects.3-5) that follow it are
written in a loose narrative format that we hope is amenable to the illustration of
our principles while also remaining true to the evolution and chronology of events.

2 Guiding Principles

The author has not significantly reflected, until the present moment, on his precise
strategy for supervising undergraduate research. His philosophy grew organically
from long experience mingled with trial and error. We would like to take the
opportunity to share what has been distilled from our reflections on this endeavor.

1. Time is a luxury you don’t have. A Ph.D. student trains for years in a specific
area assigned by the advisor, a leading expert on the subject. A supervisor of
undergraduate research is not so fortunate. Their preferred subject matter might
be unrealistic for a student to grasp in the time allotted. You must be flexible.

2. You are not an old dog. You can learn new tricks. Graduate school is not the
only time to learn new math. Be open to new ideas and areas. Attend workshops,
seminars, and colloquia. You might get new ideas or meet new collaborators.

3. You know more than they do. You have an advanced degree in the mathemati-
cal sciences. With your training and experience, you can stay a few steps ahead
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of your students, even in an area that you are not an expert in. Your ideas and
perspectives may be useful in a new area.

. You can be human. You do not have to be an expert in the subject that you

and your students are investigating. This shows students how a mathematician
learns new mathematics. We are human and it is not bad for students to see that.

. Follow their passions. Students have more energy and enthusiasm for projects

they love than for projects they view as tedium. Let them work on projects they
want to work on, rather than doggedly assigning them a single, fixed problem.

. Search for fertile ground. Find a topic that has not been combed over by

experts. Students need fertile ground that spawns low-hanging fruit. Competing
against generations of dedicated experts is difficult. Find your own niche and
master it.

. Your students are not Andrew Wiles. Students lack our experience and

instinct. They cannot tell which problems are too difficult and which are realistic
for them. Be prepared to pivot and shift to more tractable problems if necessary.

. Focus more broadly.! Have your students skim through a few papers in the

area. Ask them to return with a list of ten or twenty questions, perhaps only
vaguely related to the subject at hand. Even if only 10% of them pan out, it is a
success.

. Everything is negotiable. No question is set in stone. Feel free to change

the context or the hypotheses. Turn your problems around and invent new
variations. You only need traction on one problem before the results start
pouring in.

Complement your research. Undergraduate research need not be distinct
from “real” research. Your problems might have versions suitable for students.
Conversely, student projects may suggest new problems for your own research.
The computer is your friend. A few moments on the computer can save a lot of
pencil-and-paper time. If counterexamples exist, the computer might find them.
Symbolic manipulation takes care of tedious algebra. Moreover, computational
tasks can get students started on a project almost immediately.

Build upon previous success. An apparently straightforward generalization
may lead to unexpected results. Usually some new complications turn up that
make things less transparent and more difficult. Look at this as good news:
complications make for more interesting follow-up projects.

Turn lemons into lemonade. A disproved conjecture or a failed proof does
not mean that the situation is unsalvageable. Perhaps the counterexamples are
more interesting than the conjecture itself. Perhaps the proof broke down in an
interesting way. Always seek ways to turn a negative into a positive, failure into
success.

Feel free to hand wave. Heuristic arguments and informal reasoning can lead
to better student intuition. A skeleton of an argument can be fleshed out later.

1A grant reviewer once admonished a colleague to “focus more broadly.” Although oxymoronic
and unintentionally humorous, this feels like the appropriate phrase.
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Perhaps you are close to the finish line but don’t know it. A colleague or
collaborator may see how to turn an informal argument into a rigorous one.
You don’t have to go it alone! Mathematicians love to talk about their work.
I “met” many of my frequent collaborators via e-mail. Most mathematicians
appreciate it when someone asks about one of their papers. Feel free to write to
someone out of the blue if their work is relevant. In the worst case, they won’t
answer. In the best case, you might learn something or gain a future collaborator.
Know your audience. Who works on problems like yours? What journals do
they publish in? If your paper is more of a curiosity or an oddball result, the
chances of acceptance are lower. Relate your work to the existing literature.
Do not drag your feet. Make sure that the paper gets written, posted on the
arXiv, and submitted to a journal. Do not sit on it for months. Graduate-school
applications may hinge on whether or not a publication comes through in time.
Is there an opportunity for exposition? Have you run into a topic for which
key results are strewn throughout dozens of obscure articles? There may be an
opportunity to write a much-appreciated survey article (or monograph) on the
subject. These can be excellent opportunities for student research since a proper
exposition may require detailed examples, fully flesh-out proofs, computer
investigations, and so forth. Each piece might provide a small project for a
student.

Modularity principle. An instructive example might not be publishable, nor
might be a minor improvement on a known result. But both might form a
“module” in a larger work. A paper need not be the product of a single
undergraduate research collaboration. It may take several years and a few
“generations” of students before enough results can be assembled into a
compelling research paper.

Reach out to new communities. If projects pull you in new directions, make an
effort to meet people in the area. Attend local seminars and meet some experts.
Sign up for talks in appropriate special sessions and get your name out there.
Getting recognized. Perhaps your students published in a good journal. Maybe
a student won a prize? If there is a compelling story to tell, your institution’s
communications staff wants to know. They are always on the lookout for good
stories that highlight student research. Get to know your communications staff.

The author’s personal experiences as an undergraduate-research supervisor have

been distilled and abstracted, to the extent possible, into the preceding list. We hope
that the following three case studies illustrate these principles in action.

3

Case Study I: Quotient Sets

Our first case study begins with a senior thesis that set the author on the path to
number theory. This research line eventually involved a dozen students and several
mathematicians from across the globe (Fig. 2).
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Fig. 2 Flowchart for the quotient set project

A Folklore Theorem An old folk theorem asserts that the set of quotients of
prime numbers dense in R™, the set of positive real numbers (see [20, Ex. 218],
[25, Ex. 4.19], [44, Cor. 5], [58, Thm. 4], [69, Ex. 7, p. 107], [70, Thm. 4], [79,
Cor. 2]). In other words, if 0 < a < b, there exist prime numbers p, g such that
a < p/q < b. The proof depends on the prime number theorem:

m(x) _

60 x/logx
in which 7 (x) denotes the number of primes at most x. If 0 < a < b, then
lim (7(bg) — 7(aq)) = oo,
q~>oo

in which ¢g is any sequence of primes that tends to infinity. In particular, for g large
enough there is a prime p € (aq, bq); thatis,a < p/q < b.

I had asked “is the set of quotients of prime numbers dense in the positive real
numbers?” as a bonus problem in a real analysis class. This was a question that I
had seen somewhere, perhaps in the MONTHLY. My thesis student, Noah Simon,
learned of the “folk theorem” from students in my class. “I want to do my thesis
on this!” he declared, abandoning all interest in the linear algebra project he was
working on.

It is often best to go where a student’s passion leads, even if it requires one to
learn new material. I agreed to Noah’s request, even though there was not enough
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substance in the folk theorem itself to constitute a proper senior thesis. It was more
of a one-off result, so we’d have to improvise and find new angles to explore.

Quotient Sets and Diophantine Equations A search through a stack of number
theory books eventually turned up a few references. Ratio sets

R(A) ={a/d :a,a e A},

in which A € N = {1, 2, 3, ...}, had been studied over the years and the quotients-
of-primes result rediscovered several times. Most importantly, we had identified
some key publications on the subject and journals that were open to the topic.

I encouraged Noah, and a few other students who later became involved, to come
up with a host of questions of their own. Some were easy, some were hard, and some
(we would learn) had already been solved. Nevertheless, they were a place to start.
Working through them gave us experience and instructive examples.

It took a couple years and extensive use of the “modularity principle,” but the
quotient-set investigations spurred by Noah came to fruition. With the combined
efforts of several students, we soon had amassed a compelling array of examples
and general theorems. Moreover, we had an “application” (if it could be so called)
of quotient sets to certain Diophantine equations. The key observation arose from
an incidental discussion about Mobius transformations and their mapping properties
[44,Lem.2].If U,V € N, a, b,c,d € N, and ad — bc = 1, then the system2

ax + by =u,
cx +dy=wv,

has a solution (x, y, u, v) € NxNx U x V if and only if there exists (u, v) € U x V
such that % < 3 < %. With this elementary observation, we could cook up some

diabolical examples. For example, we could show that the system

21x + 17y = 16p* + 5p%q + 13p> +24pg”> + 9pg + 7¢* + 7,
58x + 47y = 44p* + 15p%q + 36p> + 66pg® + 25pq + 21¢™* + 20,

in which p = 83 (mod97) and ¢ = 59 (mod 103) are primes and x, y € N, has
infinitely many solutions [44, Example 15].

Since the MONTHLY already had a history of publishing material on quotients
sets [56,58,68,79], it seemed the natural place to try our luck. The paper had a new
angle on an old topic and plenty of cute examples, so it was accepted [44]. All of
this was spawned from the original “folk theorem” about quotients of primes.

2The requirement that x, y € N (instead of x, y € Z) makes this problem more difficult than it first
appears. This system can be thought of as a simultaneous Frobenius coin problem.
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v

Fig. 3 Gaussian primes a + bi satisfying |a|, |b| < 50 and |a|, |b| < 100, respectively

Gaussian Primes and Number Fields A Gaussian prime is a prime in the ring
Z[i1 = {a + bi : a, b € Z} of Gaussian integers; here i = —1 (Fig. 3). The short
note [28] proves that the set of quotients of Gaussian primes is dense in the complex
plane. Although this was a solo piece, it is a project that I would not have undertaken
had not my students pushed me to consider quotient sets. Moreover, the background
reading required for the original project [44] had exposed me to the variants of
the prime number theorem necessary to tackle the Gaussian integer case. This led
to further work by Brian Sittinger [78], a lecturer at Cal State Channel Islands,
who extended the folklore theorem to general number fields. Student research can
suggest new research avenues for you and your colleagues.

Four Quotient Set Gems My senior thesis student, Michael Dairyko, wanted to do
a senior thesis in analysis. Since the paper [44] left open a lot of loose ends and since
many additional questions emerged over the years, I sent Michael off with a couple
papers and asked him to return with a list of questions inspired by the reading.

The set of all natural numbers whose base-10 representation begins with the
digit 1 is “fractionally dense,” in the sense that its ratio set is dense in R* [44,
Example 19]. Michael asked “what happens for other bases?”” Some initial work on
Mathematica suggested a peculiar phenomenon: the set of all natural numbers
whose base-b representation begins with the digit 1 is fractionally dense for b =
2,3,4, but not for b > 5 (Fig.4). Once we “knew” the answer, the rest was a
matter of working through the details. However, we would not have known about
this interesting phenomenon without first checking it out on the computer. A little
preparatory work on the computer goes a long way.

This result, of course, was a one-off curiosity. The modularity principle was
necessary to package it with other results into something that could be published in
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Fig. 4 (a)—(c) Approximate depiction of the quotient sets for b = 4,5, 6, respectively. (d)
Quotient set for b = 4 with more terms added; compare with (a)

a journal such as the MONTHLY. Another student worked through the details of del-
icate proofs from a rich central European literature (including a paper coauthored by
Paul Erdés) that had been overlooked in the MONTHLY [14,15,71,72,83, 84]. This
was an opportunity for exposition. Two other students worked on problems related
to arithmetic progressions and asymptotic density.? The final paper, published in the
MONTHLY, eventually contained the following four quotient set “gems” [11].

1. The set of all natural numbers whose base-b representation begins with the digit
1 is fractionally dense for b = 2, 3, 4, but not for b > 5.

2. For each § € [0, %), there exists a set A C N with d(A) = § that is not
fractionally dense. On the other hand, if d(A) > %, then A is fractionally dense
[83].

3. One can partition N into three sets, each of which is not fractionally dense.
However, such a partition is impossible using only two sets [15].

4. There are subsets of N which contain arbitrarily long arithmetic progressions, yet
that are not fractionally dense. On the other hand, there exist fractionally dense
sets that have no arithmetic progressions of length > 3.

Items (2) and (3) are due to Strauch and To6th [83, Thm. 1] and Bukor et al.
[15], respectively. Two new results and the exposition of two beautiful, but under-
appreciated theorems, made our paper a perfect fit for the MONTHLY [11].

3The lower asymptotic density of A C N is d(A) = liminf,_, o |A(n)|/n, in which A(x) =
ANT[1,x]and |A(x)| denotes the number of elements in A that are at most x.
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Quotients of Fibonacci Numbers A summer-research student, Evan Schechter,
was searching for new questions about quotient sets. “What about p-adic numbers?”

he asked, “I just heard about them in analysis and they seem interesting”.*

Fix a prime p. If x = p"a/b is a nonzero rational number, in which n, a, b € Z
and a, b, p are pairwise relatively prime, then the p-adic absolute value of x is

0 ifx =0,

el =1

if x = p"a/b as above.

The p-adic metric on Q is dp(x, y) = |Ix — yllp. The field Q, of p-adic numbers
is the completion of Q with respect to the p-adic metric [50, 63].

One of the instructive examples from [44, Example 17] concerns the Fibonacci
numbers, defined by the recurrence F,,+» = F,, 41 + F, with initial conditions Fy =
0 and F; = 1. Binet’s formula (see [53, X.10.14])

e (5 - (55

and the fact that I%(l — V/3)| < 1 ensure that the only accumulation points of
{F,/Fn : m,n > 1} are the integral powers of the golden ratio %(1 + V/5).
Consequently, the set of quotients of nonzero Fibonacci numbers is not dense in
the positive real numbers. On the other hand, Florian Luca’ and I proved that the set
of quotients of nonzero Fibonacci numbers is dense in Q,, for each prime p [28].
This first foray into the p-adic setting inspired several other authors to explore
the topic [66, 67, 75]. Although [28] did not have undergraduate coauthors, it
demonstrated that the p-adic quotient set avenue was viable for further research.

p-Adic Quotient Sets In 2016, I assembled a team of three students to work on
p-adic quotient sets for a semester. I instructed them to skim through the existing
literature on quotient sets and then formulate twenty questions that we might attack
in the p-adic setting. These are the sorts of results and observations that emerged:

4Unforeseen circumstances forced Evan to withdraw from research that summer, but his idea was
a great one. He did prove a couple useful lemmas that appeared in [29], which he is a coauthor of.

SDon’t be afraid to ask questions! Several years ago, I had a project in which some rather specific
results about Lucas numbers (a Fibonacci-like sequence generated by the recurrence Ly = 2,
Ly =1,and L,42 = L,4+1 + L, [86]) were required [16, Thm. 19]. My students and I needed to
prove thatif p > 5 is an odd prime, then p — 1 divides L . I asked a few colleagues who work with
Fibonacci-flavored number theory, and they all referred me to Florian Luca. This led to our first
coauthored article [16]. Since then Florian and I have collaborated on five or six papers on various
topics [16,29,33-35]. Our collaboration has been entirely online: we have never met in person.
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1. For each set P of prime numbers, there is an A € N such that R(A) is dense in
Qp ifand only if p € P.

2. A concrete example exists for each of the four statements of the form “R(A) is
(dense/not dense) in every Q, and (dense/not dense) dense in Rt>

3. There exists an A € N that contains no arithmetic progression of length three
and such that R(A) is dense in each Q.

4. Foreach o € [0, 1), there is an A C N such that d(A) > « and R(A) is dense in
no Q.

5. We determined precisely when the ratio set of A, , = {a € N:a =x{ +x] +
-4 x5, xi > 0} is dense in Q, forn =2 and 3.

6. We extended the Fibonacci result [33] to a wide variety of second-order linear
recurrences.® For example, the set of quotients of nonzero Lucas numbers is
dense in Q,, if and only if p # 2 and p|L, for some n > 1.

7. Let p be an odd prime, let b be a nonzero integer, and let

A={p/:j=0tu{p/:j>0l

Then R(A) is dense in Q, if and only if b is a primitive root modulo p?. For
example, if A = {5/ : j > 0}U{7/ : j > 0}, then R(A) is dense in Q7 but not in
Qs since 5 is a primitive root modulo 72 but 7 is not a primitive root modulo 52.

This last item was elaborated on by Florian Luca, who proved that there are infinitely
many pairs of primes (p, g) such that p is not a primitive root modulo ¢ and ¢ is a
primitive root modulo p?. This yields infinitely many prime pairs (p, ¢) such that
the ratio set of {p/ : j > 0} U {qk : k > 0} is dense in Q, but not in QQ,. The final
paper was coauthored with four students (Evan included), Sanna, and Luca [29].

The “modularity principle” was on full display here. The students had tackled
a variety of wide-ranging problems. Their collected work, combined with the
observations of my colleagues and I, was greater than the sum of the parts. We
had observed a variety of interesting phenomena and laid the groundwork for future
explorations of p-adic quotient sets [66,67].

Quadratic Forms Chris Donnay had just spent the summer working on quadratic
forms at an REU and he was eager to continue exploring the topic for his senior
thesis. A result from the previous project begged for a generalization [29, Problem
44]1.If A = {x2 + y% : x,y € Z}\{0}, then R(A) is dense in Q) if and only if
p = 1 (mod4). When is the quotient set

R(Q) ={0X)/Qy) :x,y € Z", Q(y) # 0}

generated by a quadratic form Q dense in Q,?

5Carlo Sanna, who wrote a paper [75] generalizing the Fibonacci result [33], read the arXiv
preprint and extended our arguments. Thus, he came aboard as a coauthor on the final paper.
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Fig. 5 How to decide if R(Q) is dense in Q,. Here Q is an integral, binary, and primitive quadratic
form of discriminant p¥¢, in which ged(p, £€) = 1. Here (¢/ p) denotes a Legendre symbol

Chris had not worked over the p-adic numbers before and I had never gotten my
hands on quadratic forms, so this would be a learning experience for both of us.
Over the course of the year, Chris and I managed to prove a complicated web of
results that mostly solved the problem (Fig.5). Our proofs were long and tedious
and contained some repetition. They worked, but they were inelegant. Moreover,
the prime p = 2 stuck out as an annoying special case. Chris’ former REU advisor,
Jeremy Rouse, later helped us unify our approach and taught us a few facts from
Serre [76] that simplified things immensely. The three of us submitted a paper that
provided a complete answer to the quotient set problem for quadratic forms [22].

Future Work The study of quotient sets provided my students and I with a host
of accessible projects [11,22,28,29, 33,44] Although there is much to be said for
moving on before a subject becomes stale, we cannot completely close the door on
returning to quotient sets if new inspiration arrives.
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4 Case Study II: Primitive Roots, Prime Pairs, and the
Bateman-Horn Conjecture

Our second case study stems from a question posed by a student in the author’s
Spring 2017 introductory number-theory course (teaching a subject is often the best
way to learn it). This launched a research program that resulted in several papers,
some publicity, and an award for the student (Fig. 6).

An Innocent Question The Diffie-Hellman key exchange protocol is a standard
topic in elementary number-theory courses, the author’s being no exception.
Although the technical details do not concern us, we should say that the method
permits two entities, traditionally named Alice and Bob, to agree on a secret key
without meeting “in person” and while communicating over an insecure channel.
To perform this feat, Alice and Bob require the use of primitive roots [53, 59, 63].

A primitive root modulo a prime p is a generator g of the multiplicative group
(Z)pZ)*; that is, g, g2, el gp_1 are congruent modulo p to 1,2,...,p — 1, in
some order. An old theorem of Gauss ensures that each prime p possesses exactly
¢ (p — 1) primitive roots (modulo p), in which

o) =|{ae{1,2,....,n}: ged(a,n) = 1}|

is the Euler totient function.

In highlighting the Diffie—-Hellman key exchange protocol and the practical value
of primitive roots, I displayed a table of data to illustrate the unpredictability of
primitive roots (Fig. 7). What happened next launched an entire research thread.

Values of Euler

Collaborator
totient near

(@) primes [34]
Other projects?
Student TG0 - i
observation Primitive Primitive Expository paper
of twin prime roots of twin roots of prime on Bateman—
P primes [31] pairs [35] Horn [1]

phenomenon

\/ Monograph on
Bateman—Horn?

Promotional Collaborator
material (Fukshansky)

Fig. 6 Flow chart for the prime-pairs project
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primitive roots modulo p

p
211
312
5123
713.5

11{2,6,7,8

1312,6,7,11

1713,5,6,7,10,11,12,14

1912,3,10,13,14,15

23/5,7,10,11,14,15,17,19,20,21

29(2,3,8,10,11,14,15,18,19,21,26,27

31|3,11,12,13,17,21,22,24

37(2,5,13,15,17,18,19,20,22,24,32,35
4116,7,11,12,13,15,17,19,22,24,26,28,29,30,34,35
4313,5,12,18,19,20,26,28,29,30,33,34
47(5,10,11,13,15,19,20,22,23,26,29,30,31,33,35,38,39,40,41,43,44,45
53(2,3,5,8,12,14,18,19,20,21,22,26,27,31,32,33,34,35,39,41,45,48,50,51
59(2,6,8,10,11,13,14,18,23,24,30,31,32,33,34,37,38,39,40,42,43,44,47,50,52,54,55,56
61(2,6,7,10,17,18,26,30,31,35,43,44,51,54,55,59
67(2,7,11,12,13,18,20,28,31,32,34,41,44,46,48,50,51,57,61,63
71\7,11,13,21,22,28,31,33,35,42,44,47,52,53,55,56,59,61,62,63,65,67,68,69

Fig. 7 A student noticed that for most twin-prime pairs (p, p + 2), the first prime has at least as
many primitive roots as the second (the original table shown in class was black and white)

After looking at the data for a few seconds, Elvis Kahoro asked “is it true that for
twin primes, apart from 3 and 5, the first one has at least as many primitive roots as
the second?” In other words, if (p, p + 2) is a pair of twin primes with p > 5, is

¢(p—1D=¢(p+1)? (@)

The limited numerical data on hand made the conjecture seem plausible. I said that
I would have to give the matter more thought.

I wrote a Mathematica program to test the conjecture. The computer found
several counterexamples, the first of which is the twin-prime pair (2381, 2383).”
The results were convincing. Asymptotically, 98% of twin-prime pairs (p, p + 2)
seem to satisfy (2) and a stubborn 2% seem to violate it (Fig.8). This was an
opportunity to make lemonade [new theorems] from lemons [a false conjecture].

Primitive Roots for Twin Primes Numerical evidence suggested that the over-
whelming majority of twin-prime pairs satisfy (2). However, we do not know if
infinitely many twin primes exist. The assertion that there are the fame twin prime
conjecture. Sometimes the best remedy is to be nédive, wave your hands, and invite
some friends along. Over the course of a few days and a flurry of e-mails with
Florian Luca, a path forward emerged. The product formula

"By chance, my office number is 2383.
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Fig. 8 The horizontal axis denotes the number of twin-prime pairs surveyed. The vertical axis is
the running ratio of twin-prime pairs (p, p +2) for which ¢(p — 1) > ¢(p + 1). Apart from some
initial fluctuations, the ratio settles down to somewhere around 98%

$(n) 1
C-I0-3) ®

qln

in which g runs over all primes that divide 7, holds the key. If p and p+2 are prime,
then 2|(p — 1),3 ¢t (p — 1), and 6|(p + 1). Thus,

pp—D 1 1 ¢p+hH _ 1 1
p—1 2 [1 (1 ) and p+1 3 [1 (1 q>

1
p gl(p—1) 4 gl(p+1)
q>5 q>5

“)

and hence

p(p—1 _¢(p+1

5
p—1 = p+1 )

should hold most of the time. Why? Experience suggests that the primes behave
“randomly” and hence the two products in (4) should be comparable in size.
Thus, the first expression in (4) should tend to be larger than the second because,
quite simply, 1/2 is larger than 1/3. If p is sufficiently large, then replacing the
denominators in (5) with p should cause no harm and hence we predict that the
inequality (2) holds most of the time. This heuristic argument, although plausible, is
no proof. Moreover, it does not explain why a stubborn percentage (approximately
2%) of twin-prime pairs satisfy the reverse inequality ¢(p — 1) < ¢(p + 1).
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The key to putting this heuristic reasoning on solid footing was the Bateman—
Horn conjecture, an important conjecture in analytic number theory (discussed in
detail later on). Indeed, a conjecture at least as strong as the twin prime conjecture
is necessary to get the project off the ground.

A few months after Elvis spurred the project with his question, we had found
a family of counterexamples, reframed the original question, partnered with a
distant colleague, and produced our main results [31]. Assuming the Bateman—Horn
conjecture, the set of twin-prime pairs (p, p + 2) for which (2) holds has lower
density (as a subset of twin primes) at least 65.13%; the set of twin-prime pairs for
which the reverse inequality holds has lower density at least 0.47%. Thus, a definite
bias exists and the dominant inequality is reversed for a small percentage of twin
primes. The paper spurred several other projects, which we describe below.

Elvis’ story was a compelling one, so I contacted our communications office to
see if they were interested in hearing more about it. They loved the story and ran a
web-banner and an article in the Pomona College Magazine based upon it (Fig. 9).
Elvis later earned third place in a poster session at Emory University.

Primitive Roots for Prime Pairs The first prime in a twin-prime pair tends to
have more primitive roots than does the second (if we assume the Bateman—Horn
conjecture). It is natural to consider whether other prime pairs (p, p + k) exhibit a
similar bias. What about k = 4 (cousin primes), k = 6 (sexy primes), and so forth?

Tim Schaaff, a community-college transfer student, had recently graduated from
Pomona and was looking for a summer-research project before heading off into the
“real world.” Although he had no number theory background, he had taken several
analysis courses and abstract algebra. He was at the right level to wade through and
adapt the arguments from the twin-prime project [31] to the prime-pair case.

Although there are some similarities, many new complications arise when
passing from (p, p + 2) to (p, p + k) with k > 4. Several complicated parameters
needed to be introduced and a difficult asymptotic lemma was required. Moreover,
the tolerances are tight for certain k: among the first twenty million primes, each
prime pair (p, p + 70) satisfies ¢(p — 1) < ¢(p + 69). Nevertheless, a positive
proportion (at least 1.81 x 10720) of such pairs satisfy the reverse inequality!

Let’s create something.

Together.

T

Fig. 9 (Left) Promotional material from the Pomona College website. (Right) Pomona College
Magazine article, Spring 2018


https://www.pomona.edu/sites/default/files/styles/in_content_slide/public/images/paragraphs/elvie_kahoro_-_1500px_72dpi.jpg?itok=7htHhWGP
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In reality, these complications were good news. A simple-minded, straight-
forward generalization of an existing result is usually not worth publishing in a
reputable journal. However, a broad generalization that requires new approaches
and greater technical skill is often publishable. So obstacles are not necessarily bad.

Tim and I worked through most of the details over the summer, occasionally
checking in with Florian Luca. This resulted in the paper [35]. This tale is
noteworthy for at least two reasons. First of all, it illustrates how an apparently
straightforward generalization need not be simple in practice. Second, the added
complications inherent in some generalizations can be turned into a positive. Simply
put, the project would not have resulted in a decent paper if it were simply a matter
of changing every occurrence of +2 in the first paper to +k.

Behavior of the Euler Totient Near Primes Were these sorts of results truly about
prime pairs? Or was there a bias inherent in the Euler totient function near prime
values? Would the bias disappear if we assume only that p is prime?

Through a complicated argument, Florian Luca and I were able to prove
unconditionally that for each £ > 1, the difference ¢p(p — £) — ¢(p + £) is
positive for 50% of odd primes p and negative for 50% [34]. Although there was
no undergraduate collaborator on this paper, it would not have been possible had
not the original line of research been initiated by Elvis. Undergraduate research,
which need not be distinct from “research” itself, can provide new problems for
one’s own research. Questions posed by students can lead to new avenues for your
own research.

One Conjecture to Rule Them All The Bateman—-Horn conjecture is a far-
reaching conjecture, widely supported by numerical evidence, that provides asymp-
totic predictions for the number of prime values simultaneously assumed by families
of polynomials. The precise statement is quite a mouthful [1,6,7].

Bateman-Horn Conjecture Letr fi, f2,..., fx € Z[x] be distinct irreducible
polynomials with positive leading coefficients and let

QUf1, fo, s fiox) = #n < x: fi(n), fa(n), ..., fi(n) are prime}.
Suppose that f = f1f>--- fi does not vanish identically modulo any prime. Then

L CU fos o fi) [T de

Q(fls f2a"'7fk;‘x) Hf:ldegfl 2 (logt)k’

in which

—k
C(fi, foreos fi) = ]‘[(1_%) <1_ wf(p)> ©

p
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and w ¢ (p) is the number of solutions to f(x) = 0 (mod p).

We content ourselves here with a worked example. Let f1(r) = ¢ and f>(t) =
t + 2. Then f1(¢) and f>(¢) are simultaneously prime if and only if ¢ is the lesser
element of a twin-prime pair. Let f = f1 f>. Then f(#) = 0 (mod p) if and only if
t(t —2) =0 (mod p), and hence

1 ifp=2
wr(p) = _
2 ifp=>3.

The corresponding Bateman—Horn constant (6) is C( f1, f2) = 2C,, in which

S PP =2 1660161815

_ 2
953 (p 1)

is the twin primes constant. The Bateman—Horn conjecture predicts that

o~ [ A
O(f1. fr: %) 2/2 st

an asymptotic prediction that was first proposed by Hardy and Littlewood [52].
When Florian introduced me to the Bateman—Horn conjecture, I could guess
at how many of the seminal theorems and famous conjectures in number theory
would follow from it, but I never chased down the precise details. For example, the
Bateman—Horn conjecture should tell us something about the Ulam spiral (Fig. 10)

17 16 15 14 13
18 5 4 3 12
19 5 2 11
20 7 8 9 10
24 22 23 24 25

Fig. 10 (Left) The Ulam spiral is produced by enumerating the natural numbers in a spiral
pattern. Squares corresponding to prime numbers are colored. (Right) Curious diagonal features
are suggested by the Ulam spiral when one looks at larger scales
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and Euler’s “prime-producing” polynomial n2 4+ n + 41. It should imply the Green—
Tao theorem (the primes contain arbitrarily long arithmetic progressions [51]) and
the prime number theorem for arithmetic progressions. This seemed like the perfect
topic for a senior thesis. The Bateman—Horn conjecture was just too interesting,
broad-reaching, and exciting not to study some more.

I assigned one of my senior thesis students, Soren Aletheia-Zomlefer, to the task.
We found few accounts of the conjecture in the literature, the most notable being
Lang’s brief survey [65]. This lack of sources was a blessing in disguise. There was
a hole in the literature that needed to be filled. This was another opportunity to turn
lemons [lack of information] into lemonade [a much-needed survey paper].

As an expository paper on the conjecture began forming in early 2018, another
problem emerged. Why does the infinite product (6) converge? Soren and I never
tackled this question since we had been focused on deriving consequences of the
conjecture. The convergence of the product was assumed in all sources, most of
which pointed to each other for explanations. The sketch provided in [7] was
referred to in most subsequent papers, although Bateman and Horn left many details
out. Although I have no doubt that leading experts could reconstruct the argument
in detail, a thorough exposition was in order.

Although I was able to work out most of the argument, there were some algebraic
number theory issues that still puzzled me. Fortunately, my neighbor and frequent
collaborator, Lenny Fukshanky, is a number theorist who teaches a topics course
in algebraic number theory on occasion. The three of us eventually completed the
expository paper [1], building upon Soren’s host of examples.

This illustrates the “modularity principle”: the student does not need to be
involved in all aspects of the project. It was sufficient for Soren to work through
dozens of applications, without dealing with the technical convergence issue.
We received valuable feedback on the arXiv preprint from several top number
theorists. This sharpened the manuscript and indicated that the survey was widely
read. It also put me in touch with top names in the field, something valuable for a
“newbie.”

Future Work The primitive roots project, initiated by a student’s question,
spawned a minor industry. Several additional projects inspired by the project are in
the works.

1. We know ¢(p — 1) < ¢(p + 1) is possible, although rare, for twin-prime pairs
(p, p + 2). How extreme can this inequality be for twin primes? Assuming a
standard conjecture, a recent preprint coauthored with two undergraduates shows
that {¢p(p + 1)/¢p(p — 1) : p, p + 2 prime} is dense in the positive reals [36].

2. What happens for prime triples, such as (p, p+2, p+6)? Does one of the primes
tend to have more primitive roots than the others? How much more?

3. Can similar results be proved about primitive roots modulo odd prime powers?



222 S.R. Garcia

4. Other arithmetic functions, such as the sum-of-divisors function o (n) = din d,
enjoy product representations reminiscent of (3). How do these functions behave
near prime arguments?

5. Fukshansky and I plan are writing a monograph on the Bateman—Horn conjec-
ture, using the expository paper [1] as a skeleton.

The primitive-roots program is alive and well. A good question, numerical
experimentation, and a frequent collaborator got the initial project off the ground.
Once the ball was rolling, new questions emerged and provided work for students
while also inspiring a couple projects for my collaborators and I.

5 Case Study Ill: Supercharacters and Exponential Sums

Our final case study involves the theory of supercharacters, a novel generalization
of classical character theory that was developed by P. Diaconis and I.M. Isaacs
(building upon seminal work of C. André [2—4]) to explore the character theory of
certain intractable groups [21]. When applied to finite abelian groups, connections to
analytic number theory, discrete Fourier analysis, and additive combinatorics arise.
Many of these links furnished undergraduate research projects (Fig. 11).

Collaborator
(Katz) Nonvanishing
minors
project [32]

Heilbronn
sums [37]

AIM Workshop

Discrete cosine
and sine
transforms [48]

Collaborator Superchargcters Gauss’ hidden
(Karaali) am el menagerie [30]
groups [12] & :

/ > moments of

~ Gaussian periods

Gaussian

REUF Workshop periods [23]

Ramanujan
sums [27]

Bridges
Generalized Proceedings [17]
Supercharacters Kloosterman
from symmetric sums [16]
groups [13]

Sixth moments
of Kloosterman

sums [26] / sums [47]
/'

‘ Collaborator ‘

Kloosterman

IPAM Semester (Todd)

Fig. 11 Flowchart for the supercharacter theory project
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A Research Experience In 2009, the author had the good fortune to attend the
Research Experiences for Undergraduate Faculty (REUF) program at the American
Institute of Mathematics (AIM). This program brings faculty members, many of
whom are from groups underrepresented in the mathematical sciences, together “to
provide faculty participants with a research experience investigating open questions
in the mathematical sciences” and “to equip participants to engage in research with
undergraduate students at their home institutions.”

Several topics were proposed by the four team leaders. I gravitated towards the
one described by Phil Kutzko, from whom I would learn a great deal. The sum

p-! X+ ux—1
K= D)
x=1 p

in which p is a prime, x~1 denotes the inverse of x modulo p, and e(x) =
exp(2mix), is a Kloosterman sum. Exponential sums of this form play an important
role in analytic number theory [60-62]. Phil proposed an elementary method,
inspired by one of his early papers [64], to prove the Weil bound: |K,| < 2./p
for p t u [80, 81, 87]. Although we did not accomplish this,® we found a simple
proof of a nontrivial bound, obtained new identities, and found a connection with
Ramanujan multigraphs [26].

How does this relate to undergraduate research? First, it highlights the impor-
tance of the REUF program for invigorating research programs. Although not quite
an “old dog” at that point, I was able to learn “new tricks.” Most importantly, I
acquired new tools that would later spawn several undergraduate research projects.

Ramanujan Sums In 2010, my wife (Gizem Karaali) attended an AIM workshop
on supercharacters and combinatorial Hopf algebras. She became convinced that
supercharacters would simplify the messy computations from our REUF project
[26]. Instead of considering characters and conjugacy classes of a finite group, as in
classical character theory, one studies certain sums of characters (supercharacters)
and compatible unions of conjugacy classes (superclasses) [8, 12,21,27, 57]. Just
as in classical character theory, where one has a character table that enjoys certain
orthogonality relations, in supercharacter theory one has a supercharacter table (a
“compression” of the original character table) with similar orthogonality properties.

Chris Fowler, an undergraduate student co-advised by Karaali and I, computed
the supercharacters on Z/nZ that arose from the multiplication action of the unit
group (Z/nZ)*. The intriguing expressions produced were Ramanujan sums

8 A colleague and I recently made a key step in this direction using supercharacter theory [47].
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n

cp(x) = Z e(%).

j=1
ged(j,n)=1

The three of us developed the basics for supercharacter theory on abelian groups in
the process. In order to set the stage for what follows, we need to jump forward a
bit to a later incarnation [12, Thm. 2] of one of the early results [27, Thm. 4.2].

Theorem 1 Let I' = I'" be a subgroup of G Lq(Z/nZ), the invertible d x d matri-
ces over Z/nZ, let {X1, X2, ..., XN} denote the set of I'-orbits in G = (Z/nZ)d
induced by the action of I', and let 01,07, ...,0N denote the corresponding
supercharacters

=Y e(=2). )

xeX;

in which X -y denotes the formal dot product of two elements of (Z/nZ)* and
e(x) = exp(2mix). For each fixed z in Xy, let ¢; j x denote the number of solutions
(X;,yj) € X; X X to the equationX +y = Z.

1. c; j is independent of the representative z in Xy that is chosen.

2. Each o; is a superclass function: o;(x) depends only upon the X ; that contains
X.

3. The N x N matrix

N
bl [m(xjmxn} ®

Vel | VIXi

i,j=1

is complex symmetric (U = U7 ) and unitary. It satisfies U* = 1.
4. The identity

N
0i(X0)oj(Xe) = Y cijxok(Xe)
k=1
holds for 1 <i, j,k,£ < N.
5. The matrices Ty, Ts, . .., Ty, whose entries are given by
ci jhN 1 Xkl

[Tiljx =

JIXi

each satisfy
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U =UD;,
in which
D; = diag (0i(X1), 0i(X2), ..., 0;i(XN)).

In particular, the T; are simultaneously unitarily diagonalizable.

6. Each T; is a normal matrix (T;*T; = T;T;*) and the set {T\, T, ..., Ty} forms
a basis for the commutative algebra of all N x N complex matrices T such that
U*TU is diagonal.

Although we did not have this exact result available, we were able to use
something similar [27, Thm. 4.2] to convert statements about certain exponential
sums, such as Ramanujan sums, into statements in linear algebra. We provided a
unified treatment of Ramanujan-sum identities and proved many new identities too
[27].

The Graphic Nature of the Symmetric Group In the summer of 2012, I ran an
8-week, Claremont-based REU that involved four undergraduate students and one
graduate student. I gave an introductory lecture on the representation theory of finite
groups and a brief survey of supercharacter theory. There was no fixed agenda and
I encouraged the students to come up with questions of their own. This was fertile
territory and almost any question they asked would be novel and unexplored.

We investigated multiple threads to keep the group operating at peak efficiency
and to increase our chances of making a breakthrough. A couple students looked
at G = (Z/nZ)* with Sy, the symmetric group on d letters, acting upon G by
permuting entries. When we plotted the values of the corresponding supercharacters
ox : G — C, defined by (7), a host of beautiful images appeared (Fig. 12). Many
of the images suggested higher-dimensional phenomena. Others seemed to enjoy a
high degree of symmetry but were, in fact, not so symmetric after all.

We dropped everything for a couple weeks in order to study the complex
relationship between the parameters, the combinatorics of the symmetric group, and
the qualitative appearance of the resulting images. This led to the paper [13].

Supercharacters on Abelian Groups The Ramanujan-sum project required the
development of a substantial portion of supercharacter theory for abelian groups
[27]. Building upon this, the REU group abstracted and formalized the approach,
which crystalized into Theorem 1. The students worked through many illustrative
examples and important computations too. The resulting paper [12] had six student
coauthors from several “generations” along with my collaborators from [27].

Gaussian Periods The Ramanujan sum and symmetric group projects indicated
that even the most elementary groups were fair game. I assigned Bob Lutz, my
senior thesis student, to investigate another family of examples. If G = Z/nZ and
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(@) n=173,d =3,X = 55(1,2.170) (b)n=47,d=4,X = 5,(0,1,1,45)

(C)n=24,d=5X=55(1,1,2,2,2) (dyn=12,d=7.X=5(1.1,1.1,1,1.6)

Fig. 12 Images in C of supercharacters oy : (Z/nZ)? — C arising from the permutation action
of Sy on (Z/ nZ)? for various moduli n, dimensions d, and orbits X. Observe that (¢) and (d) do not
enjoy the full rotational symmetry suggested by their large-scale structure. The symmetry groups
of (c) and (d) are the dihedral group D3 and Z/2Z, respectively

I' = (w) is a cyclic subgroup of (Z/nZ)*, then the corresponding supercharacters
(7) assume values that are Gaussian periods [9,30]. For example, if n» = p is an odd
prime and w has order d in (Z/pZ)*, then (7) produces expressions like

d—1 a)]y
>e(%2).
= P

If d = (p — 1)/2, then these are, more or less, quadratic Gauss sums.
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The supercharacter plots were even more amazing than those produced in the
symmetric group project (Fig. 13). Bob had the great idea to paint each point ox (£)
according to the residue class of & (modc), in which ¢ is a small divisor of the
modulus n. This revealed subtle structures and suggested a host of new theorems,
which we eventually proved. Still, there were some deeper properties that eluded us.

In 2013, I gave a talk on supercharacter theory and exponential sums at the UCLA
combinatorics seminar. One of the attendees was number theorist William Duke.
He realized that the right way to approach the emergent properties Bob and I were
witnessing (Fig. 14) was with equidistribution theory, a technique that my students

(a)

Fig. 13 Images in C of supercharacters ox : Z/nZ — C arising from the action of a cyclic
subgroup I' € (Z/nZ)*. Here X = I'l is the orbit of 1 and ox (&) is colored according to
& (mode). (@)n =3-5-17-29-37, I' = (184747), ¢ = 3 -17. (b) n = 5 - 251 - 281,
I' = (54184), c =5

(a) (b) (©

Fig. 14 Images in C of supercharacters oy : Z/pZ — C arising from the action of a
cyclic subgroup I' € (Z/pZ)*. A hypocycloid gets “filled out” if the parameters are chosen
appropriately. Observe that the images are not rotationally symmetric. (a) p = 2791, I = (800).
(b) p =27011, I" = (9360). (¢) p = 202231, I" = (61576)
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and I later used to prove similar results about “generalized Kloosterman sums” (see
below). This collaboration resulted in [23], largely based on Bob’s senior thesis.
In particular, this fruitful opportunity highlights the importance of presenting one’s
work. New opportunities for collaboration can arise from chance meetings.

Heilbronn Sums Bob worked on another supercharacter project before leaving for
graduate school. If G = (Z/pZZ), then I' = {17,27,..., (p — 1)P}, the set of
perfect pth powers modulo p?, is a subgroup of (Z/p?Z)*. The corresponding
supercharacter theory produces Heilbronn sums [54, 55, 77], a curious exponential
sum connected to Fermat congruences ax” + by? = cz” (mod p?). A few months
of work provided explicit formulas for the first few power moments of Heilbronn
sums [37].

Getting Noticed The Gaussian-periods project was a good story: a senior thesis
student had discovered remarkable new phenomena in centuries-old expressions
introduced by Gauss. I alerted our communications office about the story. They
interviewed Bob and wrote an article for the Pomona College Magazine (Fig. 15).

Editors of popular mathematics outlets are always on the lookout for well-
written, eye-catching articles of general interest. I had already published a short
historical piece in the Notices of the AMS, coauthored with an undergraduate, on a
problem solved by Erdds [46]. Thus, I had my “foot in the door” with the editor
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Fig. 15 Fall 2013 Pomona College Magazine article about Bob Lutz’ senior thesis



Lateral Movement in Undergraduate Research 229

of the Notices, Steven Krantz. I wrote to him and proposed an article on Gaussian
periods. He liked the images and said that the idea had promise. Bob and I got
to work right away (Duke became department chair around this time and did not
participate).

The computational aspects of the project were daunting. We wanted bigger
pictures, with more color than those in [23]. Bob (now at Michigan) said that his
fellow graduate student, Trevor Hyde, was good with computers and number theory
in general. I was happy to have another eager student join the project and the three
of us put together the expository article [30], which appeared in the Notices in 2015.

Building Bridges I soon had a new generation of undergraduate students to work
with. We met once a week to bounce around ideas until something stuck. Typically
students would take turns explaining what they worked on, with appropriate
feedback and questions from myself and the other students. We would often crowd
over a laptop to see the latest code in action. After a brainstorming session, we found
another family of exponential sums that exhibited new phenomena. Suffice it to say
that [16], coauthored with four students, was my first encounter with Florian Luca,
who we met in the previous case studies (p. 212).

Around this time, another opportunity for exposition arose. A good deal of energy
had been spent cooking up visually appealing examples [13,16,23,30], so I gave a
talk at the 2015 Bridges conference, which celebrates “mathematical connections to
art, music, architecture, education and culture.” Several students and I submitted a
proceedings paper highlighting some of the images we had produced [17].

Discrete Cosine Transform If we apply Theorem 1 to G = Z/nZ and I" = {1},
then the matrix U, defined by (8), is the conjugate of the discrete Fourier matrix

1 1 1 1
1 1 é— é—2 R g-n—l
Ll 22 SRR et _ .
N . : ) : , ¢ =expmi/n),

1 ¢n=l g2m=D g(wl)z

of order n. Theorem 1 recovers the fact that a matrix is diagonalized by the discrete
Fourier transform (DFT) if and only if it is a circulant matrix:

co ... ¢ C]
Cl 0 2

Ch—2 ... €C1 (o
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If welet I' = {—1, 1}, then U is a discrete cosine transform (DCT) matrix

1 1 1 1
NG /2 2
JT JT n—1)mw
2 \/_E COS e COS I COS n
1 4 8w 2=
> COS COoSs COoSs n : (9)
N I . .
1 (n—Dm 2(n—Dm (n—1)27
i COoS COS 7 COSs n ]

here depicted for n odd [12, Sect. 4.3]. The DCT is a staple in modern software. For
example, the MP3 and JPEG file formats both make use of it [49].

What is the analogue of the circulant result for the DCT? Undergraduate Sam Yih
and [ used Theorem 1 to produce a novel description of the algebra diagonalized by
the DCT that has a simple combinatorial interpretation. In addition to recapturing
known results (see [10,24,73,74]) in a systematic manner, we were also able to treat
the discrete sine transform (DST) as well [48].

Nonvanishing Minors All of this work on signal processing and number theory
had exposed me to a lot of finite Fourier analysis. I also tried to keep up, to the
extent possible, with some of the exciting developments in additive number theory.

In 2006, Terence Tao provided a new proof of a beautiful result of Chebotérev:
every minor of the n x n Fourier matrix is nonzero if and only if n is prime [82,85].
He used this to provide a new proof of the Cauchy—Davenport inequality

|A+ B| > min{|A| + |B| — l,p} for nonempty A, B C Z/pZ

from additive combinatorics. After spending so much time on the discrete cosine
transform with Sam, it was natural to investigate whether a similar Chebotérev-type
theorem holds for the DCT or DST. A few numerical experiments suggested that this
was the case. A year of on-and-off work with two collaborators eventually provided
a broad generalization of Chebotirtev’s result, which encompassed the DCT, DST,
and many other examples, along with applications to additive combinatorics [32].
Although this work involved no undergraduate students, it would not have been
possible without the experience I had built up guiding many undergraduate research
projects. I would never have been in a position to think of, or work on, such
problems, without having supervised many student research projects on the area.

Future Work The supercharacter program is still up and running. For example,
my current senior thesis student, Brian Lorenz, is applying Theorem 1 to investigate
the moments of the Gaussian periods modulo a prime p. Another group of students,
jointly supervised by Karaali and I, are in the beginning stages of their research.
There is no doubt that supercharacter theory is fertile ground for student research
and we have no plans to let up while so many theorem wait to be proved.
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6

Conclusion

We have outlined twenty-one general principles for fostering long-term, sustainable
undergraduate research programs (2). The author hopes that the three case studies
in number theory presented above (Sects. 3-5) have illustrated these principles. In
particular, we hope that the reader will find the prospect of guiding students into
new territory a little less frightening.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

Soren Aletheia Zomlefer, Stephan Ramon Garcia, and Lenny Fukshansky. One conjecture to
rule them all: Bateman—Horn. Expo. Math. (in press). https://arxiv.org/abs/1807.08899.
Carlos A. M. André. Basic characters of the unitriangular group. J. Algebra, 175(1):287-319,
1995.

Carlos A. M. André. The basic character table of the unitriangular group. J. Algebra,
241(1):437-471, 2001.

. Carlos A. M. André. Basic characters of the unitriangular group (for arbitrary primes). Proc.

Amer. Math. Soc., 130(7):1943—-1954 (electronic), 2002.

. Levon Balayan and Stephan Ramon Garcia. Unitary equivalence to a complex symmetric

matrix: geometric criteria. Oper. Matrices, 4(1):53-76, 2010.

. Paul T. Bateman and Roger A. Horn. A heuristic asymptotic formula concerning the distribu-

tion of prime numbers. Math. Comp., 16:363-367, 1962.

. Paul T. Bateman and Roger A. Horn. Primes represented by irreducible polynomials in

one variable. In Proc. Sympos. Pure Math., Vol. VIII, pages 119-132. Amer. Math. Soc.,
Providence, R.1., 1965.

. Samuel G. Benidt, William R. S. Hall, and Anders O. F. Hendrickson. Upper and lower

semimodularity of the supercharacter theory lattices of cyclic groups. Comm. Algebra,
42(3):1123-1135, 2014.

. Bruce C. Berndt, R.J. Evans, and K.S. Williams. Gauss and Jacobi sums. Canadian Mathemat-

ical Society series of monographs and advanced texts. Wiley, 1998.

Dario Bini and Milvio Capovani. Spectral and computational properties of band symmetric
Toeplitz matrices. Linear Algebra Appl., 52/53:99-126, 1983.

Bryan Brown, Michael Dairyko, Stephan Ramon Garcia, Bob Lutz, and Michael Someck. Four
quotient set gems. Amer. Math. Monthly, 121(7):590-599, 2014.

J. L. Brumbaugh, Madeleine Bulkow, Patrick S. Fleming, Luis Alberto Garcia German,
Stephan Ramon Garcia, Gizem Karaali, Matt Michal, Andrew P. Turner, and Hong Suh.
Supercharacters, exponential sums, and the uncertainty principle. J. Number Theory, 144:151—
175, 2014.

J. L. Brumbaugh, Madeleine Bulkow, Luis Alberto Garcia German, Stephan Ramon Garcia,
Matt Michal, and Andrew P. Turner. The graphic nature of the symmetric group. Exp. Math.,
22(4):421-442, 2013.

J. Bukor, P. Erdés, T. Sal4t, and J. T. T6th. Remarks on the (R)-density of sets of numbers. II.
Math. Slovaca, 47(5):517-526, 1997.

Jozef Bukor, Tibor Saldt, and Jénos T. T6th. Remarks on R-density of sets of numbers. Tatra
Mt. Math. Publ., 11:159-165, 1997. Number theory (Liptovsky Jan, 1995).

Paula Burkhardt, Alice Zhuo-Yu Chan, Gabriel Currier, Stephan Ramon Garcia, Florian
Luca, and Hong Suh. Visual properties of generalized Kloosterman sums. J. Number Theory,
160:237-253, 2016.

Paula Burkhardt, Gabriel Currier, Mathieu de Langis, Stephan Ramon Garcia, Bob Lutz, and
Hong Suh. An exhibition of exponential sums: visualizing supercharacters. Proceedings of
Bridges 2015: Mathematics, Music, Art, Architecture, Culture, pages 475-478, 2015.


https://arxiv.org/abs/1807.08899

232 S.R. Garcia

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Alice Zhuo-Yu Chan, Luis Alberto Garcia German, Stephan Ramon Garcia, and Amy L.
Shoemaker. On the matrix equation XA + AXT = 0, II: Type 0-1 interactions. Linear Algebra
Appl., 439(12):3934-3944, 2013.

Jeffrey Danciger, Stephan Ramon Garcia, and Mihai Putinar. Variational principles for
symmetric bilinear forms. Math. Nachr., 281(6):786-802, 2008.

Jean-Marie De Koninck and Armel Mercier. /001 Problems in Classical Number Theory.
American Mathematical Society, Providence, RI, 2007.

Persi Diaconis and I. M. Isaacs. Supercharacters and superclasses for algebra groups. Trans.
Amer. Math. Soc., 360(5):2359-2392, 2008.

Christopher Donnay, Stephan Ramon Garcia, and Jeremy Rouse. p-adic quotient sets II:
Quadratic forms. J. Number Theory, 201:23-39, 2019.

William Duke, Stephan Ramon Garcia, and Bob Lutz. The graphic nature of Gaussian periods.
Proc. Amer. Math. Soc., 143(5):1849-1863, 2015.

Ephraim Feig and Michael Ben-Or. On algebras related to the discrete cosine transform. Linear
Algebra Appl., 266:81-106, 1997.

Benjamin Fine and Gerhard Rosenberger. Number Theory: An Introduction via the Distribution
of Primes. Birkhéuser, Boston, 2007.

Patrick S. Fleming, Stephan Ramon Garcia, and Gizem Karaali. Classical Kloosterman
sums: representation theory, magic squares, and Ramanujan multigraphs. J. Number Theory,
131(4):661-680, 2011.

Christopher F. Fowler, Stephan Ramon Garcia, and Gizem Karaali. Ramanujan sums as
supercharacters. Ramanujan J., 35(2):205-241, 2014.

Stephan Ramon Garcia. Quotients of Gaussian Primes. Amer. Math. Monthly, 120(9):851-853,
2013.

Stephan Ramon Garcia, Yu Xuan Hong, Florian Luca, Elena Pinsker, Carlo Sanna, Evan
Schechter, and Adam Starr. p-adic quotient sets. Acta Arith., 179(2):163-184, 2017.

Stephan Ramon Garcia, Trevor Hyde, and Bob Lutz. Gauss’s hidden menagerie: from
cyclotomy to supercharacters. Notices Amer. Math. Soc., 62(8):878-888, 2015.

Stephan Ramon Garcia, Elvis Kahoro, and Florian Luca. Primitive root bias for twin primes.
Exp. Math., 28(2):151-160, 2019.

Stephan Ramon Garcia, Gizem Karaali, and Daniel J. Katz. On Chebotarév’s nonvanishing
minors theorem and the Bir6—Meshulam—-Tao discrete uncertainty principle. (submitted).
https://arxiv.org/abs/1807.07648.

Stephan Ramon Garcia and Florian Luca. Quotients of Fibonacci numbers. Amer. Math.
Monthly, 123(10):1039-1044, 2016.

Stephan Ramon Garcia and Florian Luca. On the difference in values of the Euler totient
function near prime arguments. In Irregularities in the distribution of prime numbers, pages
69-96. Springer, Cham, 2018.

Stephan Ramon Garcia, Florian Luca, and Timothy Schaaff. Primitive root biases for prime
pairs I: Existence and non-totality of biases. J. Number Theory, 185:93-120, 2018.

Stephan Ramon Garcia, Florian Luca, Kye Shi, and Gabe Udell. Primitive root bias for twin
primes II: Schinzel-type theorems for totient quotients and the sum-of-divisors function. J.
Number Theory, 208:400-417, 2020.

Stephan Ramon Garcia and Bob Lutz. A supercharacter approach to Heilbronn sums. J.
Number Theory, 186:1-15, 2018.

Stephan Ramon Garcia, Bob Lutz, and Dan Timotin. Two remarks about nilpotent operators of
order two. Proc. Amer. Math. Soc., 142(5):1749-1756, 2014.

Stephan Ramon Garcia and Daniel E. Poore. On the closure of the complex symmetric
operators: compact operators and weighted shifts. J. Funct. Anal., 264(3):691-712, 2013.
Stephan Ramon Garcia and Daniel E. Poore. On the norm closure problem for complex
symmetric operators. Proc. Amer. Math. Soc., 141(2):549, 2013.

Stephan Ramon Garcia, Daniel E. Poore, and William T. Ross. Unitary equivalence to a
truncated Toeplitz operator: analytic symbols. Proc. Amer. Math. Soc., 140(4):1281-1295,
2012.


https://arxiv.org/abs/1807.07648

Lateral Movement in Undergraduate Research 233

42.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

63.

64.

65.

Stephan Ramon Garcia, Daniel E. Poore, and James E. Tener. Unitary equivalence to a complex
symmetric matrix: low dimensions. Linear Algebra Appl., 437(1):271-284, 2012.

Stephan Ramon Garcia, Daniel E. Poore, and Madeline K. Wyse. Unitary equivalence to a
complex symmetric matrix: a modulus criterion. Oper. Matrices, 5(2):273-287, 2011.
Stephan Ramon Garcia, Vincent Selhorst-Jones, Daniel E. Poore, and Noah Simon. Quotient
sets and Diophantine equations. Amer. Math. Monthly, 118(8):704-711, 2011.

Stephan Ramon Garcia and Amy L. Shoemaker. On the matrix equation XA + AX”T = 0.
Linear Algebra Appl., 438(6):2740-2746, 2013.

Stephan Ramon Garcia and Amy L. Shoemaker. Wetzel’s problem, Paul ErdGs, and the
continuum hypothesis: a mathematical mystery. Notices Amer. Math. Soc, 62(3):243-247,
2015. (part of Erdds retrospective).

Stephan Ramon Garcia and George Todd. Supercharacters, elliptic curves, and the sixth
moment of Kloosterman sums. J. Number Theory, 202:316-331, 2019.

Stephan Ramon Garcia and Samuel Yih. Supercharacters and the discrete Fourier, cosine, and
sine transforms. Comm. Algebra, 46(9):3745-3765, 2018.

Rafael C. Gonzalez and Richard E. Woods. Digital image processing. Pearson, 2017. Fourth
Edition.

Fernando Q. Gouvéa. p-adic numbers. Universitext. Springer-Verlag, Berlin, second edition,
1997. An introduction.

Ben Green and Terence Tao. The primes contain arbitrarily long arithmetic progressions. Ann.
of Math. (2), 167(2):481-547, 2008.

G. H. Hardy and J. E. Littlewood. Some problems of ‘Partitio numerorum’; III: On the
expression of a number as a sum of primes. Acta Math., 114(3):215-273, 1923.

G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Oxford University
Press, Oxford, sixth edition, 2008. Revised by D. R. Heath-Brown and J. H. Silverman, With a
foreword by Andrew Wiles.

D. R. Heath-Brown. An estimate for Heilbronn’s exponential sum. In Analytic number theory,
Vol. 2 (Allerton Park, IL, 1995), volume 139 of Progr. Math., pages 451-463. Birkhiduser
Boston, Boston, MA, 1996.

D. R. Heath-Brown. Heilbronn’s exponential sum and transcendence theory. In A panorama
of number theory or the view from Baker’s garden (Ziirich, 1999), pages 353-356. Cambridge
Univ. Press, Cambridge, 2002.

Shawn Hedman and David Rose. Light subsets of N with dense quotient sets. Amer. Math.
Monthly, 116(7):635-641, 2009.

Anders Olaf Flasch Hendrickson. Supercharacter theories of cyclic p-groups. ProQuest LLC,
Ann Arbor, MI, 2008. Thesis (Ph.D.)-The University of Wisconsin - Madison.

David Hobby and D. M. Silberger. Quotients of primes. Amer. Math. Monthly, 100(1):50-52,
1993.

Kenneth Ireland and Michael Rosen. A classical introduction to modern number theory,
volume 84 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition,
1990.

Henryk Iwaniec and Emmanuel Kowalski. Analytic number theory, volume 53 of American
Mathematical Society Colloquium Publications. American Mathematical Society, Providence,
RI, 2004.

. Nicholas M. Katz. Gauss sums, Kloosterman sums, and monodromy groups, volume 116 of

Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1988.

H. D. Kloosterman. On the representation of numbers in the form ax? 4 by? + cz* +dt>. Acta
Math., 49(3-4):407-464, 1927.

Neal Koblitz. A course in number theory and cryptography, volume 114 of Graduate Texts in
Mathematics. Springer-Verlag, New York, second edition, 1994.

Philip C. Kutzko. The cyclotomy of finite commutative P.IR.’s. Illinois J. Math., 19:1-17,
1975.

Serge Lang. Math talks for undergraduates. Springer-Verlag, New York, 1999.



234 S.R. Garcia

66.

67.

68.

69.

70.

71.
72.

73.

74.

75.

76.

1.
78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

Piotr Miska, Nadir Murru, and Carlo Sanna. On the p-adic denseness of the quotient set of a
polynomial image. J. Number Theory, 197:218-227, 2019.

Piotr Miska and Carlo Sanna. p-adic denseness of members of partitions of N and their ratio
sets. Bulletin of the Malaysian Mathematical Sciences Society. (in press) https://arxiv.org/abs/
1808.00374.

Andrzej Nowicki. Editor’s endnotes. Amer. Math. Monthly, 117(8):755-756, 2010.

Paul Pollack. Not Always Buried Deep: A Second Course in Elementary Number Theory.
American Mathematical Society, Providence, RI, 2009.

Paulo Ribenboim. The Book of Prime Number Records. Springer-Verlag, New York, 2nd
edition, 1989.

T. Sal4t. On ratio sets of sets of natural numbers. Acta Arith., 15:273-278, 1968/1969.

T. Salt. Corrigendum to the paper “On ratio sets of sets of natural numbers”. Acta Arith.,
16:103, 1969/1970.

V. Sanchez, P. Garcia, A. Peinado, J. Segura, and Rubio A. Diagonalizing properties of the
discrete cosine transforms. /[EEE Transactions on Signal Processing, 43(11):2631-2641, 1995.
Victoria Sanchez, Antonio M. Peinado, Jose C. Segura, Pedro Garcia, and Antonio J. Rubio.
Generating matrices for the discrete sine transforms. IEEE Transactions on Signal Processing,
44(10):2644-2646, 1996.

Carlo Sanna. The quotient set of k-generalised Fibonacci numbers is dense in Q,. Bull. Aust.
Math. Soc., 96(1):24-29, 2017.

J.-P. Serre. A course in arithmetic. Springer-Verlag, New York-Heidelberg, 1973. Translated
from the French, Graduate Texts in Mathematics, No. 7.

L. D. Shkredov. On Heilbronn’s exponential sum. Q. J. Math., 64(4):1221-1230, 2013.

Brian D. Sittinger. Quotients of primes in an algebraic number ring. Notes Number Theory
Disc. Math., 24(2):55-62, 2018.

Paolo Starni. Answers to two questions concerning quotients of primes. Amer. Math. Monthly,
102(4):347-349, 1995.

S. A. Stepanov. The number of points of a hyperelliptic curve over a finite prime field. Izv.
Akad. Nauk SSSR Ser. Mat., 33:1171-1181, 1969.

S. A. Stepanov. Estimation of Kloosterman sums. Izv. Akad. Nauk SSSR Ser. Mat., 35:308-323,
1971.

P. Stevenhagen and H. W. Lenstra, Jr. Chebotarév and his density theorem. Math. Intelligencer,
18(2):26-37, 1996.

Oto Strauch and Janos T. Téth. Asymptotic density of A C N and density of the ratio set R(A).
Acta Arith., 87(1):67-78, 1998.

Oto Strauch and Janos T. T6th. Corrigendum to Theorem 5 of the paper: “Asymptotic density
of A C N and density of the ratio set R(A)” [Acta Arith. 87 (1998), no. 1, 67-78; MR1659159
(99k:11020)]. Acta Arith., 103(2):191-200, 2002.

Terence Tao. An uncertainty principle for cyclic groups of prime order. Math. Res. Lett.,
12(1):121-127, 2005.

S. Vajda. Fibonacci & Lucas numbers, and the golden section. Ellis Horwood Series:
Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley
& Sons, Inc.], New York, 1989. Theory and applications, With chapter XII by B. W. Conolly.

André Weil. On some exponential sums. Proc. Nat. Acad. Sci. U. S. A., 34:204-207, 1948.


https://arxiv.org/abs/1808.00374
https://arxiv.org/abs/1808.00374

l‘)

Check for
updates

Pamela E. Harris, Erik Insko, and Katie Johnson

Abstract

Domination theory is a subfield within graph theory that aims to describe subsets
of the vertices of a graph which satisfy certain distance properties. The original
domination problem asked one to find subsets of the vertices of a graph (with
minimal cardinality) so that every vertex in the graph was either in the set or
adjacent to a vertex in the set. Since its development, thousands of papers on
domination theory and its many variants have appeared in the literature. We
focus our study on (¢, r) broadcast domination, a variant with a connection
to the placement of cellphone towers, where some vertices send out a signal
to nearby vertices (with the signal decaying linearly along edges according to
distance), and where all vertices must receive a minimum predetermined amount
of this signal. The overall goal is to minimize the number of tower vertices
needed to have all vertices receive the appropriate amount of signal reception.
We summarize our past work with students and present many remaining open
problems in this field. We end the chapter by providing some advice on how we
continue to develop new research projects with and for students; although the
mathematical content of the chapter is in domination theory, the suggestions can
be implemented in any area.
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Suggested Prerequisites Discrete mathematics and a proof writing course. In
addition, a first semester abstract algebra course or graph theory is preferable, but
not required.

1 Introduction

Akira, Luke, and Gemma are working on a math project together and are taking a
break in order to attend a dinner, where they and five friends will sit around a large
rectangular table that sits four people on each of the longer sides. This is illustrated
in Fig. 1. They want to enjoy the dinner and, in order to not be tempted to continue
discussing their project, they agree to not sit next to each other nor directly across
from each other. Is it possible for Akira, Luke, and Gemma to sit around this table
in order to satisfy their constraints?

One example of a seating arrangement that would leave them unable to directly
interact with each other has Akira sitting at spot 1, Luke at spot 4, and Gemma at 7.
In this case they would neither be next to each other nor directly across from each
other. So there is at least one way to sit so that they are able to enjoy time off from
their project and interact with others at the dinner.

Let us shift our focus and study this toy problem through graph theory. The
configuration of the seats around the table can be thought of as a graph, where
the spots to sit (numbered 1 through 8) are the vertices of the graph and the edges
connect two of these vertices if they are either next to each other or directly across
from each other. This set up yields the graph of Fig. 2.

The seating arrangement where Akira sits at vertex 1, Luke at vertex 4, and
Gemma at vertex 7 has an additional interesting property. When Leif, Luke’s
younger brother and one of the other dinner attendees, arrives and sits in any open
seat, he must end up sitting at a distance of 1 from Akira, Luke, or Gemma. In this
example, a distance of 1 means that Leif would sit either next to or directly across

Fig. 1 Dining table with
sitting arrangement for eight \ | / \ | / \ | / \ | /
) &) &) )

Fig. 2 Graph associated with
seating arrangements of Fig. 1
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from one of them. In this example, we would then say that the set of vertices (seats)
taken by Akira, Luke, and Gemma constitutes a dominating set!

Let us make this mathematically precise. Let G be a (typically finite) graph with
vertex set V(G) and edge set E(G). The classical graph domination problem seeks
to find a set S C V(G) such that every vertex v in V(G) is either contained in
S or adjacent to an element of S. Such a set is called a dominating set of G. In
the case of Fig.2 notice that the set {1, 4,7} forms a dominating set, as we saw
previously, while another dominating set consists of all of the vertices of the graph
{1,2,3,4,5,6,7, 8}.

Of course, it is natural to feel that taking the entire set of vertices to form a
dominating set would be a waste of resources. For example, suppose that the vertices
of the graph illustrated in Fig. 2 represent street corners, the edges the streets, and we
want to place fire hydrants at the vertices so that every street corner either has a fire
hydrant or is one block away from a fire hydrant. In this case, placing fire hydrants at
every single corner is certainly a wasteful expense. In a resource allocation problem
like this we want to minimize the resources used, i.e., the number of vertices in a
dominating set. This is what we call the domination number of a graph.

The domination number of the graph G, denoted y(G), is the minimum
cardinality among all dominating sets of G. For example, in Fig. 3, the set of colored
vertices of Fig. 3a, b are both dominating sets, whereas the colored vertices in Fig. 3¢
do not dominate G. One can verify that the graph in Fig. 3 cannot be dominated with
a single vertex. Hence we conclude that y (G) = 2 in this instance.

The domination number problem on graphs was introduced by Berge in 1958, but
the name “domination number” was coined by Ore in his 1962 book [2]. Since the
publication of these books, approximately 2000 research papers have been published
on domination in graphs and more than 80 domination related parameters have been
defined in these papers. Most of these parameters are listed in the excellent survey
text on this subject by Haynes et al. [17].

A classical domination theory problem is to determine the domination number
for grid graphs. The domination numbers of 2 x n, 3 x n, and 4 x n grids were
first calculated by Jacobson and Kinch [18]. Chang and Clark found domination
numbers for 5 x n and 6 x n in 1993 [7]. Notice that our previous dinner example
implies that the domination number of the 2 x 4 grid graph is no more than 3, but
showing that the domination number is not 2 requires us to show that none of the
(g) = 28 choices of two vertices from eight form a dominating set. In this case a
computer implementation would prove helpful; this is a great exercise for a student
who is learning to code for the first time.

Fig. 3 Two dominating sets J—o\ Q- I o—o\
for G and a non-dominating L1 o 12 [
set I—@—J Q-0 J—I—J

(a) (b) ()
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We continue with a brief history on the domination numbers for the grid graphs
as it will motivate some of our future research projects. In his 1992 Ph.D. thesis
Chang [6] proved that any large grid G, , has domination number satisfying

(0

Y (Grn) < LWJ a4

5

and Chang also conjectured that

2

Y (Gon) = {WJ 4

5

when m and n are sufficiently large. Chang proved this result by constructing a
dominating set of the infinite grid Z x Z that uses % of the vertices in any row or
column. He realized that for sufficiently large m and n an optimal dominating set
for an m x n grid would be close to the one he constructed for the infinite grid; in
particular, to dominate the m x n grid using his set, it sufficed to simply restrict it to
the (m 4 2) x (n + 2) grid. He then showed that in condensing the dominating set of
the (m +2) x (n + 2) grid to the m x n grid, one could eliminate a vertex at each of
the four corners. Thus he arrived at his well-known conjecture in (2). The examples
below illustrate this procedure.

| I
- L
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|
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— -

— o—

— 7 —%%—? —r—
T T Ty T

Concurrently, a number of mathematicians and computer scientists worked on
dominating grid graphs. Algorithms for computing domination numbers of grid
graphs were described by Hare et al. [15], and Fisher [13], but these algorithms
were still not efficient to handle grids when m,n > 21 [14]. However, Chang’s
conjecture remained an open problem until 2011 when Gongalves, Pinlou, Rao, and
Thomassé finally proved the conjecture for m, n > 16 with a computer-aided proof
[14].

This history illustrates that domination related problems often break down into
subproblems that follow a fixed hierarchy of difficulty, and this is one of the reasons
we feel domination related problems are great for undergraduate research projects!
Students can typically construct a minimal dominating set (pattern) that gives a
near optimal upper bound on the domination number of a graph very quickly.
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Generalizing that pattern to a larger family of graphs usually takes a little more
work, but is also very doable. Finding a combinatorial formula for the number of
vertices in the pattern as the number of vertices in the graph grows is a fun challenge,
where the students may use recursions, inductions, or even generating functions.
Finally, proving that the pattern they have identified is optimal is often very difficult,
but can sometimes be achieved using analytic arguments or a computer-aided proof.

The above results are also just a glimpse of this very fruitful area of study
for graph theorists and computer scientists. In fact, there are many directions
for possible research in this field. Most domination problems fall into one of
two categories. The first is to consider variants of the domination parameter or
domination number. The second is to consider specific families of graphs and
compute domination numbers for those graphs. Our work will do both of these by
focusing our study on the following domination parameters:

¢ domination numbers,
e distance-k domination numbers,
e (¢, r) broadcast domination numbers.

We will consider certain families of finite graphs, including grid graphs, triangular
matchstick graphs, trees, and even infinite graphs such as tessellations of the
Euclidean plane.

We now describe the organization of this chapter. Section 2 contains the
necessary background on the domination parameters mentioned above and includes
exercises for you, our brave reader, to undertake in order to gather the needed
experience to work on the research projects we present. In Sect.3 we detail our
past work on (z, r) broadcast domination, including Insko and Johnson’s original
work with students on small grid graphs. This is followed by Harris’s work with
students on efficient (¢, r) broadcasts of the infinite square and triangular grid
graphs. We will state some of the results precisely and give some of the proofs
in detail to illustrate the kinds of techniques that are needed to begin working on
the open projects we present. We also scatter challenge problems throughout. These
exercises are more difficult, but we provide references to where detailed solutions
are found. Throughout the chapter we incorporate open problems after we have
presented enough background for students to begin undertaking their study.

There is great value in also discussing how we have developed some of the
research project ideas presented in this chapter. Hence, we present Sect. 4, which
provides a short guide to faculty and students who would like to develop further
research projects. We focus on how to do this for domination theory since these
types of problems lie at the heart of discrete mathematics, have many applications,
and are of interest to mathematicians and computer scientists alike. However, the
ideas presented there can be used to develop research ideas in other fields. Our goal
is to leave the reader with the correct impression that mathematics continues to be a
vibrant and lively field to which all can contribute.
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2 Background

Throughout the remainder of the chapter G will be a finite connected simple graph,
V(G) its vertex set and E(G) its edge set. Let us begin this background section with
the definitions, examples, and some exercises for the dominating graph parameters
we study.

2.1 Distance Domination

A distance-k dominating set is a subset S C V(G) such that every vertex in V (G)
is within distance k of one vertex in S. The minimum cardinality among all distance-
k dominating sets of G is called the distance-k domination number and is denoted
¥k (G). Notice that if k = 1, then a distance-k dominating set is just our old friend,
a dominating set. So the distance-k domination parameter is a generalization of the
domination parameter.

Example 1 The Petersen graph is illustrated in Fig. 4. The red vertices in Fig. 4a—
give a dominating set, a distance-2 dominating set, and a distance-3 dominating set,
respectively.

Exercise 1 Prove that the distance dominating sets given in Example 1 are the best
possible (of smallest cardinality), or give other sets and prove that they are the best
possible.

2.2 (t, r) Broadcast Domination
In 2015, Blessing et al. [3] introduced a generalization of the domination number
and distance-k domination number of a graph called the (¢, ) broadcast domina-

tion number, which depends on two fixed nonnegative integer parameters ¢ and r.
Their definition of this domination parameter was motivated by the idea of placing

|J

O—L

I
0

\ /J J\ /J

k

/ / \ / \

Fig. 4 The Petersen graph with a dominating set, a distance-2 dominating set, and a distance-3
dominating set highlighted in red
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cellphone towers on the vertices of a grid graph such that each tower sends a signal
to all vertices within distance ¢ of the tower, and the signal decays linearly as it
traverses an edge. We then ask what is the minimal number of towers of signal
strength 7 needed to guarantee that every vertex in the graph receives a required
minimal signal reception, which we denote by r. Notice that tower vertices give
themselves signal 7.

Example 2 Throughout this example let » = 2. We denote the locations of the
vertices on the 3 x 5 grid graph as we would on a matrix, by specifying the row
and column position of the vertex. Figure 5 presents the 3 x 5 grid graph with a
t = 3 tower placed on the colored vertex located at position (1, 1) on the grid graph
along with the signal received by nearby vertices. Our goal is to make sure that
every vertex on the graph receives a signal of at least 2 from the tower vertices in
the graph. As one can see from Fig. 5 there are many vertices receiving signal 0. So
we must place a second tower vertex somewhere within the graph.

Let us introduce an additional = 3 tower at the vertex in position (3, 3). Then
the signal sent out from this new tower vertex is added to all of the surrounding
vertices, as depicted in Fig. 6. Again some vertices are receiving no signal—just
like those pesky bad reception locations in real life!

We still need another ¢+ = 3 tower. Let us place it on the grid graph at position
(1, 5). The result of this is depicted in Fig. 7. With this third tower we now note that
every vertex in the graph is receiving a signal strength of at least 2 from the tower
vertices.

You may wonder about the vertex in Fig. 7b that is highlighted in blue. While all
other non-tower vertices are receiving exactly signal strength » = 2, the blue vertex

Fig. 5 At = 3 tower placed °

on the 3 x 5 grid graph at the | \T) \l) \) J
position (1, 1) ‘9_\9_\9_\9_‘9
L |
9

Fig. 6 The 3 x 5 grid graph
with ¢ = 3 towers placed at 07‘?73797‘(9 O_Q_Q)_Q_Q
positions (1, 1) and (3, 3) | CoL L L]

P WD I VIV I3I2IVV

| LT T L T ]
PIOIV 2DV
Fig. 7 The 3 x 5 grid graph e e
with ¢ = 3 towers placed at o \2) \29 \2) ° Q—Q \9_0

itions (1, 1), (3, 3), and N [ |
TS L3509 00009
‘ ] \ |

P9 9W 20000
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at position (1, 3) is receiving more signal than it needs. Of course if this was our
cell phone we would be happy about having a stronger signal! However, if sending
out more signal than is needed is costly, or if this is modeling water levels in an
irrigation canal system, then we could consider whether there was a better way to
arrange the tower vertices to avoid having this waste. Maybe we could even arrange
the tower vertices differently so that only two were needed.

Exercise 2 Show that the vertices of the 3 x 5 grid graph cannot receive at least 2
worth of signal from only two ¢ = 3 towers.

We now provide a precise definition of the concepts we illustrated in Example 2.

Throughout we let ¢ € N := {1,2,3,...} and given two vertices u, v € V(G)
the distance between u and v, denoted d(u, v), is the minimum length of the paths
connecting u# and v. We say that v € V(G) is a broadcast vertex of transmission
strength ¢ if it transmits a signal of strength t — d(u, v) to every vertex u € V(G)
with d(u,v) < t. Given a vertex v and integer ¢, we define the distance ¢
neighborhood of v to be

N:(v) ={w e V(G) : d(w, v) < t}.

If v is selected to be a broadcasting vertex, then we call N;(V) the broadcasting
neighborhood of v. Given a set of broadcast vertices S C V(G) each with
transmission strength ¢, we say that the reception at vertex w € V(G) is

rw)= Y (t—dw,v)).

veSNN; (w)

That is, the reception r(w) is the sum of the transmissions from its neighboring
broadcast vertices in S. Then a set S C V(G) is called a (¢, r) broadcast
dominating set if every vertex w € V has a reception strength r(w) > r. For a
finite graph G, the minimal cardinality among all broadcast dominating sets of G is
called the (¢, r) broadcast domination number of G and is denoted y; ,(G).

Example 3 'We continue our previous example of the 3 x 5 grid graph G withr = 3
towers at the vertices vy, va, and v3 located at (1, 1), (3, 3), and (1, 5), respectively
(see Fig. 7). In this case we have shown that S = {vy, v2, v3} is a (3, 2) broadcast
dominating set, and that y3 2(G) < 3.

Note that the (¢, ) broadcast domination parameter generalizes both domination
and distance-k domination, since a (2, 1) broadcast dominating set is a dominating
set, and a (k+1, 1) broadcast dominating set is a distance-k dominating set. Because
of this, we focus now only on the study of (¢, ) broadcast domination as doing so
will yield general results.
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3 Projects in (¢, r) Broadcast Domination

In this section we summarize our work on (¢, r) broadcast domination, on which
we collaborated with students. This work is organized by the type of graph family
involved: finite grid graphs, infinite square and triangular grid graphs, and triangular
matchstick graphs. We scatter exercises and research problems throughout.

3.1 Grid Graphs

One great way to start thinking about projects in the area of broadcast domination
is to attempt to recover patterns of tower placement on small grid graphs. In fact
several of the first papers in this area were dedicated to identifying the domination
numbers of 2 x n, 3 x n, and 4 x n grids [8, 18].

Exercise 3 Verify that the domination numbers of the 3 x 5 and 5 x 7 grids are 3
and 9, respectively.

Blessing et al. established the (z, r) broadcast domination numbers for small grid
graphs with (¢,r) € {(2,2),(3,1),(3,2),(3,3)}, and provided upper bounds
for these broadcast domination numbers for arbitrarily large grid graphs [3]. We
summarize the results below.

Theorem 1 (Theorems 2.1, 2.4, and 2.6 [3]) Ifn > 3, then

4n n n+1
12.2(G3n) = [?_‘ v3,1(G3 ) = b—‘ and y32(G3p) = [ > —‘ .

Theorem 2 (Theorem 2.2, 2.5, and 2.7 [3]) Ifn > 4, then

n—=6
12,2(G4p) =2n — ’7 1 —‘ ,

+5 +3 +1
y3,1(04,n)=v J+V J+V J+1,and

7 7 7
n+4 n+2 n
y3,2(64,n)—[ : Wﬂ : J+[§J+1.

2
Theorem 3 (Theorem 2.3 [3]) Ifn > 5, then y,2(Gs.,) = 2n + {” J7r W

We provide the proof to the first part of Theorem 1, as it appeared in [3], in order to
illustrate the types of arguments typically used to solve these broadcast domination
problems.
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Proof (Part 1 of Theorem 2.1 [3]) Let n > 3. We want to show that the (2, 2)
broadcast domination number of the 3 x n grid is

G . 4n
12.2(G3 ) = 3|

To establish an upper bound, we will describe how to construct a dominating set,
denoted D,,, for the grid G3 ;. For each column of the grid, D,, will contain either the
vertex in the second row or the vertices in the first and third rows. When describing
a pattern, we simply use the number of vertices included from that column.

For each n > 3, the dominating set D,, will always start with the pattern 1-2 and
end with the pattern 2-1, i.e., {(1,2), (2,1),(2,3),(n —1,1),(n — 1,3), (n,2)} <
D,,. Starting with the second column, the middle pattern will repeat -2-1-1- as many
times as necessary, until column n — 1 is reached. See Figs. 8 and 9 for a variety of
examples.

It is clear that the set D, dominates G3,. It remains to show that D, is the
smallest dominating set for G, proving | D, | = y¥2,2(G3,,). Then we will still need
to compute the cardinality of D,, to arrive at the result.

Notice that each D, uses the pattern 2-1-1 as often as possible, so the only way a
dominating set could possibly be more efficient would be if it used the pattern 2-1-
1-1. Figure 10 demonstrates why this will not be possible. Any pattern that includes
-2-1-1- will have two vertices (circled in red) that only have reception strength 1.
Hence, we must dominate them using two vertices from the following column, and
a 2-1-1-1 pattern would be insufficient. As an additional check for this and future
patterns, our students wrote a computer program in SAGE called MPS (minimal
pattern search) that searched over every pattern which begins 2-1-1, and it found
that the fourth column must then contain two vertices for a dominating set.! Hence,

t 853 HH 3 30

Fig. 8 Dominating sets D,, for G3 ,

BR23823R23823823023020823838,

Fig. 9 Dominating set D29 for G329
Fig. 10 Pattern containing
2-1-1 %,

IThe SAGE code for the minimal pattern search algorithm is available as a supplemental document
on the Discrete Applied Mathematics website for Blessing et al.’s article [3].

ba
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no dominating set of G3, can contain the pattern 2-1-1-1. Similarly, the program
also shows that the patterns 2-1-0 and 1-1-1 are not dominating subpatterns. This
proves our construction for D,, is the smallest dominating set for G3 .

Next, we use complete induction to show that |D,| = (%-‘ We will need

three base cases, consisting of D3, D4, and Ds. The reader can (and should!)
check that the equality holds, using the graphs in Fig. 8. By the principle of strong
mathematical induction, assume that for all k < n the cardinality of the set Dy is

given by the formula |Dy| = {%_I Now consider the set Dj1. It can be built up

from the set D,,_» by using D,_» to dominate columns 4 through n 4+ 1 of G341
and using the pattern 1-2-1, i.e., that of D3, for the first three columns of G3 ;4.
Thus the cardinality of D, is

4(n —2 4 1
|Dpt1l = |Dp—2| + | D3| = [MT)W +4={ (n3+ )—"

O

Although Theorems 1-3 are all results that have appeared in the literature, it is
worthwhile to challenge yourself and work through some of those proofs. With this
in mind we pose the following.

Challenge Problem 1 Construct dominating sets whose cardinalities are the (¢, r)
broadcast domination numbers for 3 x n grid graphs as given above. That is, provide
ways to select the placement of the towers within the grid graph, so that they create
a (¢, r) broadcast dominating set of the correct cardinality.

It is often straightforward to construct efficient dominating sets that give upper
bounds on (¢, ) broadcast domination numbers for the family of graphs you are
studying, and programming is a useful tool for checking large cases. This leads us
to our first open problem.

Research Project 1 Find formulas for the (¢, r) broadcast domination num-
ber for grid graphs G,, , with m € {2,3,4,5}, n € N, and (¢, r) different
from (2, 2), (3, 1), (3, 2), (3, 3).

For smaller grids, the (¢, r) broadcast domination is not yet well-understood and
is much more unpredictable than it is for large grids. It would be interesting if one
could develop a web app game to crowd-source the problem of finding optimal
broadcast dominating sets for m x n grids when m and n are relatively small.
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As we mentioned, finding closed formulas for (¢, r) broadcast domination
numbers for large grid graphs can be rather difficult. Another way to discover new
results is by focusing on computing upper bounds of (¢, r) broadcast domination
number for large m x n grid graphs. Doing a good job will require the power of
abstract algebra!

Our students Michael Farina and Armando Grez improved the known upper
bounds established by Fata et al. [12] for the distance-k broadcast domination
number of large grid graphs [11]. Their main result follows.

Theorem 4 (Theorem 1 [11]) Assume that m and n are greater than 202k% 4+ 2k +
1). Then the k-distance domination number of the m x n grid graph G, ,, is bounded
above by the following formula:

(G < L(m+2k)(n+2k)J ~

2k2 4+ 2k +1

The proof of Theorem 4 described an embedding of the grid graph into the integer
lattice Z* and the k-distance neighborhood of the graph. By describing a family
of efficient dominating sets for Z? as the inverse images of a ring homomorphism,
and showing that for sufficiently large m and n they could remove at least one vertex
from each corner of the grid graph, they were able to show the resulting set remained
a dominating set, while having smaller cardinality, thereby providing an improved
upper bound.

Using similar algebraic techniques, Tim Randolph, another one of our students,
expanded Armando and Michael’s work by establishing an asymptotically optimal
upper bound for the (¢, 2) broadcast domination number of the grid graph when
t>3.

Theorem S (Theorem 1 [21]) If G, is the grid graph with dimensions m X n,
andt > 3, then

e a (G < L(m+2(t —2)(n + 2(t _2))J'

2(t — 1)2

In light of this work we now provide an open problem first posed in [21].

Research Project 2 The authors of [3] and [11] systematically improve their
bounds for the (¢, 1) broadcast domination numbers by a constant value of
4 by adjusting vertices at the corners of the grid graph G, ,. Are similar
constant improvements possible for the upper bounds on the (#, 2) broadcast
domination numbers of Theorem 5?
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3.2 The Infinite Square Grid Graph

As we saw at the end of the last section, working with the infinite grid graph, also
known as the square lattice or integer lattice, allows us to pull back information
about the (z, r) broadcast domination numbers for subgraphs, in this case the finite
grid graphs. Thus another direction for research is to consider methods to (¢, r)
dominate infinite graphs “efficiently,” that is, with minimal wasted signal. Recall
that we discussed wasted signal in Example 2, where the blue vertex in Fig.7b
received more signal than it required.

This approach was originally explored by Chang for regular domination theory
and Blessing et al. and Drews, Harris, and Randolph in (¢, ) broadcast domination
theory [3, 6,9]. In order to state those results we first need to define the density
of a (¢, r) broadcast. The density of a (¢, r) broadcast is defined intuitively as the
proportion of the vertices to lattice points needed in a (¢, r) broadcast dominating
set of the infinite grid graph, which we denote by G .

Suppose that S7 and S, are (z, r) broadcast dominating sets of the infinite grid
graph, with densities d; and d», respectively. If di < d>, then when bounding
the (¢, r) broadcast domination number for a finite grid graph we should use the
dominating set S; since this is “less dense” and so might require fewer vertices
to dominate the finite grid graph. This shows that computing the density of (¢, r)
broadcast dominating sets allows us to determine which sets are more optimal. There
are only a few known results on the density of (¢, r) broadcasts on the infinite square
grid graph. We summarize them below.

Theorem 6 (Theorems 1, 2, and 3 [9])

1
e Ift>1,th Gx)=—5—""—.
o [ft > 2, then VZ,Z(GOO) = m

o Ift > 2, then ¥;3(Goo) < ¥i—1,1(Goo).

First, note that the bounds in Theorem 6 are only for » = 1, 2, 3. Second, note
that part 3 of Theorem 6 has not been proven to be optimal but only a bound. These
observations lead us naturally to the following.

Research Project 3 Determine the optimal (¢, 3) broadcast density on the
infinite grid graph.
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Research Project 4 Determine the optimal (7, r) broadcast density on the
infinite grid graph for r > 3.

As information about the density of a (¢, r) broadcast on the infinite grid graph
allows us to provide bounds for the finite grid graphs, we pose the next problem.

Research Project 5 By a method similar to that employed in [21], take the
bound for the density of the (¢, 3) broadcast as given in Theorem 6 and use it
to give an upper bound on the (¢, 3) broadcast domination number for finite
grid graphs.

Note that since the + = 3 bound presented in Theorem 6 (Part 3) has not been
proven to be optimal we know that the resulting bounds for finite grids may be off by
an amount proportional to the size of the grid. Hence we also ask: can we improve
the bound for the finite grid graphs?

3.3 Infinite Triangular Grid Graph

Let us now turn our attention to another infinite graph: the infinite triangular grid
graph, denoted T,. The vertex set of T, can be placed in correspondence with the

points (x, y) = (%a — b, */T§a>, where a, b € 7, and we connect two vertices only

when their corresponding coordinate entries are a Euclidean unit distance apart.

Figure 11 illustrates the triangular lattice with + = 3 towers at the red vertices.
The black hexagonal outline denotes the locations where the center red tower sends
a signal of 1 to the vertices lying on this outline. Vertices outside of these boundaries
do not receive any signal from those particular towers.

In 2018, Pamela Harris and her students Dalia Luque, Claudia Reyes Flores, and
Nohemi Sepulveda [16] considered the triangular lattice and presented a complete
description of where to place tower vertices in order to efficiently (¢, ) broadcast
dominate the triangular lattice. Efficient broadcasts are those (¢, ) broadcasts on
the infinite triangular lattice that minimize wasted signal in the sense that every
vertex that is far from broadcast towers receives exactly the signal strength needed
and no more, while those vertices close to a tower only get their signal from that
tower and from no other. To state our condition of an efficient (¢, r) broadcast
precisely we give the following.
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Fig. 11 Triangular lattice v \ /

with ¢ = 3 tower vertices
*

RN

Definition 1 A (¢, r) broadcast dominating set S for T, is said to be efficient if

r ifd(u,v)y >t —rforallvesS
r(u) = , (3)
t —du,v) if0<d(u,v) <t —rforexactlyonev € S.

Notice that Fig. 11 provides a placement of towers that efficiently (3, 1) broadcast
dominates T,. We refer to such a placement of tower vertices as a (¢, r) broadcast
domination pattern.

Exercise 4 Determine a placement of towers on Ty, to efficiently (3, 2) and (3, 3)
broadcast dominate To,. Are there multiple efficient (3,2) and (3, 3) broadcast
domination patterns?

As we mentioned, the main result in [16] provides a concrete description of where
one should place towers to efficiently (¢, r) broadcast dominate T,. This result is
very general as it not only holds for all values + > r > 1, but also it does so in a
way that is efficient.

Theorem 7 (Theorem 4.1 [16]) Leta; = (1,0) and ay = (‘Tl, @) fr>r>1,
then an efficient (t,r) broadcast domination pattern for T, is given by placing
towers at every vertex of the form

[Qt —r)x + ( —r)ylog + [tx + 2t — r)ylan @)
withx,y € Z.

Challenge Problem 2 Fix values of + > r > 1 and prove that placing tower
vertices as described in Theorem 7 efficiently (¢, r) broadcast dominates T .
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Challenge Problem 3 Prove Theorem 7.

A second efficient (¢, r) broadcast domination pattern for T, is acquired by the
reflection of the pattern presented in Theorem 7 across the line through the origin
and the point o1 + a». This gives the following result.

Corollary 1 Ift > r > 1, then a second efficient (t,r) broadcast domination
pattern is obtained by placing towers at every vertex of the form

[tx + 2t — )yl + [2t —r)x + (¢ — r)ylaz (%)
withx,y € Z.

Figure 12 illustrates efficient (¢, r), broadcast dominating patterns for T, when
t = 4and 1 < r < 4. Having found two efficient (¢, ) broadcast domination
patterns for T, we pose the following problem, first appearing in [16].

Research Project 6 Determine whether or not there are other efficient (¢, r)
broadcast dominating patterns for Tw.

It was interesting to have found these efficient (¢, r) broadcast dominating
patterns. We wonder whether this is unique to the infinite triangular lattice or if
there are other families of graphs which have efficient (¢, r) dominating patterns for
allr >r > 1.

Research Project 7 Find families of graphs (finite or infinite) that can be
efficiently (¢, r) broadcast dominated for all ¢+ > r > 1.

Theorem 7 allowed Harris, Luque, Reyes Flores, and Sepulveda to compute
upper bounds for the (¢, r) broadcast domination numbers of triangular match-
stick graphs, denoted 7;,, which are subgraphs of T, with vertex set

1 3
{(yl—b,%d) ta,beZ,0<b<a<ny.

Figure 13 illustrates the triangular matchstick graphs 7, forn = 1, 2, 3, 4.

To find upper bounds for the (¢, r) broadcast domination numbers for 7, we first
must figure out when the pattern given in Theorem 7 repeats along a horizontal
line in the lattice. In other words, if we have a tower at the origin we want to find
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(a) (b)

(c) (d)

Fig. 12 Efficient (a) (4, 1), (b) (4, 2), (¢) (4, 3), and (d) (4, 4) broadcast dominating sets on T

Fig. 13 Triangular
matchstick graphs 71, Tz, T3,
and Ty § 2

the closest instance where a tower is placed on a point of the form may, that is a
point with coordinates (m, 0). This value then allows us to tile 7, using the smaller
triangles of size T, (with possibly some portion of 7;, unaccounted for as n = km +
b, where 0 < b < m — 1). Then we count how many towers are needed to dominate
T, and multiply this by the number of occurrences of 7;, needed to tile most of, if
not all of 7,,. By subtracting some of the double counting along the interior edges of
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the 7;,,’s as they tile 7},, and accounting for the number of towers needed to dominate
the missing portion of 7;, which was not tiled by 7,,’s we get an upper bound for
the (¢, r) broadcast domination number of 7,,. Using this technique we established
bounds for y; ,(7,), when (¢,r) € {(2,1),(3,1),(3,2),4,1),4,2),4,3), ¢, 1)}
[16].

What this technique does not account for is a potential rearrangement of the
towers along the outer boundary of 7,, that would allow us to decrease the number
of towers needed. It is possible that this would give a better bound for the (¢, r)
broadcast domination number of 7}, which leads to the following open problem.

Research Project 8 Accounting for a rearrangement of the tower vertices
on the boundary of 7,, will likely give better bounds for y; ,(7;,) for (¢,r) €
{2,1),3,1),3,2), 4, 1), 4,2),4,3), (¢, t)}. More generally, by using the
technique presented in [16] and by reducing the number of towers needed on
the boundary of 7}, find sharper bounds for y; ,(73), fort > r > 1.

34 Other Families of Graphs

We now present open (z, r) broadcast domination problems on a variety of graphs.

Research Project 9 Consider the family of graphs called trees and find the
(¢, r) broadcast domination number of these graphs.

As before, if finding closed formulas is difficult, then one can resort to finding
upper bounds for these domination numbers. We also could further specialize the
trees. For example, one could restrict to full binary trees, trees in which every vertex
other than the leaves (degree one vertices) has two children. See Fig. 14 for an
example of a full binary tree. These graphs have a lot of symmetry that one could
exploit in order to establish results.

Fig. 14 An example of a full .

binary tree ) / \J
VANVAN
L4

J J
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We could also consider (¢, r) broadcast domination numbers for hypercubes.
Recall that the vertices of an n-dimensional hypercube are the n-tuples of 0’s and
1’s, and two vertices # and v are connected by an edge if ¥ and v differ only
in a single coordinate. For example, the two-dimensional hypercube has vertices
v; = (0,0),v2 = (1,0),v3 = (0,1),va = (1, 1), and there are edges from v;
to vy, from v; to v3, from v3 to v4, and from vy to vy, as expected since the two-
dimensional hypercube is just a square.

Research Project 10 For varying values of ¢ and r, determine (¢, r) broad-
cast domination numbers (or bounds) for the n-dimensional hypercube.

Fun fact: A four-dimensional hypercube is called a tesseract. The previous
research problem is asking you to “dominate” the tesseract. We hope you use that
power only for good!? Figure 15 illustrates a tesseract that has been projected from
four-dimensional space to three-dimensional space, by using a Schlegel diagram
[19].

A famous family of graphs are the generalization of the Petersen graph we
presented in Fig.4. The generalized Petersen graphs are defined by two positive

Fig. 15 A tesseract projected

kY
0
into 3-space as a Schlegel - /29

diagram

100)

000, 001

010!

011
0000} 001 \

2Tesseracts appear often in fiction as ways to time travel, including A Wrinkle in Time and Marvel
comics.
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integer parameters n > 3 and 1 < k < L%J and are denoted P(n, k). The
parameter n denotes the number of sides for the outer regular polygon, which is
a cycle graph on n vertices, and also the number of vertices of the interior star
polygon, while the parameter k denotes how the vertices of the inner star polygon
are connected: each vertex in the interior star polygon is connected to the kth vertex
to its left and right. We also then identify corresponding vertices in the inner and
outer polygons and connect them with edges. Note that the Petersen graph is P (5, 2)
since both the exterior and interior polygons have five vertices, and the interior star
polygon has edges connecting every other vertex. See Fig. 16 for other examples of
generalized Petersen graphs.

Research Project 11 For varying values of ¢ and r, determine (¢, r) broad-
cast domination numbers (or bounds) for the generalized Petersen graphs
P(n, k).

For another research direction, let us return to thinking about the infinite square
and triangular grid graphs. These graphs are in fact regular tilings of the Euclidean
plane. So we could consider other tilings of the Euclidean plane and think of them
as graphs! One starting case is to study the remaining regular tiling of the plane: the
hexagonal lattice.

Research Project 12 Consider the hexagonal lattice and determine the
placement of towers to efficiently (¢, r) broadcast dominate the hexagonal
lattice for different values of ¢ and r.

However, there is no reason to restrict our work to only regular tilings of the
Euclidean plane. In fact we could consider any tessellation: a tiling of a plane
using one or more geometric shapes with shapes neither overlapping nor leaving

J

%
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\\J g
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[ /\—/ /\ \ T

/\ \/ \ \/\/\/ . [/J
(a) (© (d

A~

Fig. 16 Examples of generalized Petersen graphs. (a) P(3,1). (b) P(6,2). (¢) P(8,3). (d)
P(11,5)



Projects in (z, r) Broadcast Domination 255

any gaps. By interpreting a tessellation as a graph, as we did in the regular square
and triangular tessellation of the plane through the infinite square and triangular grid
graphs, we can then work on the following project.

Research Project 13 For any tessellation of the plane, determine the place-
ment of towers to efficiently (¢, ) broadcast dominate the graph associated to
this tessellation for different values of # and r.

For a concrete example take the tessellation of the plane presented in Fig. 17,
which is a semiregular tiling of the plane and has one type of vertex (notice all
vertices have degree 3), but has more than one type of faces (in this case a square
and an octagon). We remark that the many symmetries of these tessellations should
allow one to find patterns to exploit in any arguments and supporting proofs. Also
the sheer number of tilings of the plane creates numerous research projects for
students to undertake. For some of the tilings of the plane we recommend seeing [1].

There is also no reason to restrict ourselves to tessellations of the plane. We can
go wild and study any space-filling polyhedron! For concrete projects we state the
following.

Research Project 14 Compute densities for (7, r) broadcast dominating sets
of 7.

Of course the above project may be very difficult, so one could restrict the values
of (¢,r) or set n = 3. Then one could use these densities to give bounds for the
three-dimensional grid graphs of dimension £ x m x n.

Fig. 17 A semiregular tiling
of the plane with regular
octagons and squares
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Research Project 15 Find (¢, ) broadcast dominating patterns for the three-
dimensional triangular lattice. Are these patterns efficient? Use these patterns
to give bounds on the (¢, r) broadcast domination number for tetrahedrons
whose base is the triangular matchstick graph 7;,.

We end this section by mentioning a few other possible directions for research:

e Introduce a cost of a tower, which depends on ¢ the strength of the broadcast,
with the idea that stronger towers are more expensive than weaker towers. If
we fix r and allow towers with varying broadcast strengths, i.e., costs, how do
we minimize the cost of providing every vertex with reception r? This would
generalize the broadcast domination parameter that was introduced by Dunbar et
al. [10].

* Consider directed graphs on which signal only flows in certain directions. What
would be the directed (z, r) broadcast domination number for grid graphs? This
would generalize the directed domination numbers of graphs which have been
previously studied by Caro and Henning [4, 5].

¢ Mix and match approach: Use multiple types of towers on directed graphs.

The only constraint in finding new research problems in this area is time, which
unfortunately is finite.

4 Developing Accessible Research Projects

As faculty members we often have an idea of a project we would like to work on,
yet this problem, even if accessible, might not be something the student is interested
in working on. When considering a student research project involving domination
theory, or any other field for that matter, we recommend you first spend time with
students brainstorming original variations of problems in the field. Many of our most
interesting projects have arisen in this manner, as the students will have ideas that
would never occur to us with our expert blind spots.

One common way that our students have gained experience developing research
projects is through an honors contract or a similar coursework modification that
delves deeper into the material. One of these course-enriching experiences for
mathematics students might be to read extra research papers that go above and
beyond the usual course material. The student may also conduct their own research
project, which would be limited to a single semester, but this could develop
into a senior project or honors thesis. However, at our institutions, as at many
others, a mathematics honors thesis often takes the following form: the faculty
mentor/research advisor chooses a problem they would like to work on, they provide
the student several papers to read to catch them up on background material, and
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finally the student and faculty member plan meetings to begin working on proving
new results, which may require writing code to make some initial conjectures to
explore.

While the described system can provide a valuable experience, we suggest
considering the following alternative, which is especially relevant for young
mathematicians. The professor shows the student a game or puzzle such as the
original domination problem. (Even better, the student chooses a problem they
found especially interesting!) They may then discuss some simple applications such
as cops patrolling a downtown grid of streets, security guards in an art gallery, or
radio broadcast towers. The student is then asked to brainstorm a question without
too much guidance from the mentor. Otherwise, it is too easy to accidentally push
a student towards a problem that has already been studied. Naturally, these are the
ones we gravitate to as experts, because we know of them.

In this way, our students have developed questions such as minimal patrolling
domination (where cops can move) and limited attention span domination (where a
guard can only look in k directions at a time). These are both interesting questions
that, as far as we know, were previously unstudied. They are described in more detail
in Sect. 4.2.

Next, the student does a literature review. This can be tricky because the
student will probably develop different notations or use their own names for certain
definitions that could already exist in the literature. Hence, this is the time for a
research advisor to offer guidance. As the student searches for papers based on
keywords that are somewhat related to the problem they have developed, students
are learning the background for their problem! They are not reading papers a
professor has assigned to them as required. Instead, they are finding the papers,
skimming them, maybe choosing to read more in-depth, and then summarizing them
to share with the faculty mentor.

Flipping the usual relationship between faculty and student in this manner can
be extremely beneficial to both parties. The student feels empowered, as they have
control over what to read based on what they find interesting and relevant. They are
starting to develop their identity as a researcher and mathematician. On the other
side, the faculty mentor is provided with new inspiration. They are introduced to
new papers they may not have read before, conveniently summarized by the student.

Throughout, the student should write what they have learned. Using the research
they have found and the standard notation they have encountered along the way, they
can now state their problem in a clear and mathematically precise way. If, as part
of their reading, they discover that their problem has been solved, then they have
learned something new, regarding a problem in which they were keenly interested.
In fact, this is wonderful! They are already thinking like a real mathematician,
proven by the fact that they developed a problem on which other mathematicians
have published.

If they have developed a new problem, then this is also wonderful! At this
point, they may even get started on working to find a solution. As an alternative,
and depending on the situation and time constraints, consider repeating the above
process for three or four different problems. Why should this be done rather than
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working on the new problem? Working on a new problem is always exciting, but the
student—faculty pair should consider how much progress can actually be made on the
particular problem. Sometimes, this is seen more clearly with a little distance from
the problem. Developing, researching, and writing up three or four problems gives
the student the opportunity to choose their longer research problem from a selection
of interesting problems. If they will be working on this problem for multiple
semesters, it is critical that they choose something that can hold their attention, and
that contains a lot of different questions that can be attacked. Moreover, developing
a set of possible research projects is helpful to both the faculty (as they work with
future students) and to the student (perhaps the first project does not work out or
they publish and need a new topic!).

Finally, this process more closely imitates what career mathematicians actually
do. It is worth reconsidering why we do research with students in the manner that
we do. Likely, we want to give them the same (presumably inspiring) experience we
had as undergraduates that motivated us to pursue a graduate degree. But we should
also work to inspire them as individuals capable of productive research. Giving them
the power to develop their own problems allows them to exercise their mathematical
creativity in a way that is often missing from standard coursework. Helping them
improve their abilities regarding literature reviews and written communication is
one of the most versatile skills we can provide them.

This is another reason it is ideal to repeat this process multiple times. It is difficult
to learn a new skill by only doing it once. If students can undergo the process in
Fig. 18 a few times, then what they have learned will help them develop a skill
needed beyond any one academic course.

4.1 Sample Honors Contract

Below we present a copy of part of an Honors Contract at Florida Gulf Coast
University, as inspiration to what such a proposal might entail.
[...] Thus, [student] will practice learning to think like a mathematician by

. developing her own questions that build on material learned in class,

. researching what is currently known about the question through a literature
search, and

3. writing up a summary of findings to share with the class.

N =

Literature
Review

Brainstorm
Problem

Write-Up | - > Research Project

Fig. 18 An alternative method to the standard undergraduate research project
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As many math majors do graph theory research for their senior capstone project,
this experience will not only help [student] prepare to tackle her own project, but
will likely lead to research ideas for other students.

The learning outcomes include navigation of arXiv and research materials,
applications of graph theory, a deeper understanding of research methods and how
research develops, and the scope of how graph theory applies to the world and other
fields.

One unique result of this experience will be developing the skill of “asking the
right question,” which is not usually covered in college course. Students are always
being given a problem to solve, not asked to develop and research one on their own
(or in this case, at least five).

4.2 Student Developed Projects

We now summarize some projects developed by students under the honors contract
as detailed in Sect. 4.1.

A common application of domination on grids is that of police officers guarding
a downtown grid of streets. This is a natural fit for (¢, r) broadcast domination,
as officers can see a certain distance, and if an officer is farther away from an
intersection, we would likely want multiple officers able to respond, which would
mean the reception at every vertex, i.e. intersection, should be at some minimum
level. Past students wondered what might happen if officers were allowed to
patrol/move along the edges of the graph, or in fact if they were required to patrol
through the graph.

The simplest approach to add the requirement that the officers must be constantly
moving along the edges of the graph would be to find two domination sets that are
“adjacent” to each other, i.e., two sets such that there is a bijection between the
domination sets that maps vertices to adjacent vertices. This led our students to
pose the following.

Research Project 16 Find the patrolling domination number for grids and
other graphs, i.e., the minimum number of vertices in a dominating set that
has an adjacent dominating set of the same cardinality.

The last variation we share is inspired by the same application. Suppose a group
of cops is guarding a set of intersections represented by a graph. At any given
moment, each cop can only see in a limited number of directions. In light of this,
students proposed a “limited attention span” domination problem, where each vertex
may only dominate a limited number of other vertices besides itself, say €.

In particular, define a function s : V' — V that maps vertices to vertices so that
s(v) = w means w dominates or watches v. Let the security set S be the set of all
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vertices that map to themselves, i.e., S = {v € V | s(v) = v}. (Due to restriction
(2) below, S = Range(s).) To be a limited attention span dominating function, the
function must have the following properties:

1. If s(v) = w, then vertices v and w must be adjacent.

2. If s(v) = w for some vertex v, then s(w) = w; in other words, if w watches
some vertex, then it must be part of the security set.

3. Each vertex in the security set watches at most £ vertices besides itself, i.e.,
Is~Hw)| < €+ 1.

Then, the goal is to minimize the size of the security set over all valid limited
attention span dominating functions. For an example, see the grid in Fig. 19, where
the arrows represent the function s by indicating the directions the security set is
watching.

In addition, one could expand this to broadcast domination by requiring that
each vertex in the dominating set is given strength ¢, but looking farther in a single
direction requires more strength, as the cop would be focusing. For this variation,
the restriction described in item (1) above would be removed, and restriction (3)
would be changed to:

3. Each vertex in the security set uses total strength at most £, where watching a ver-
tex at distance d requires a strength of d units; specifically, Y 1 w) 4, w) =
£ for every vertex w € S.

Note that this inequality also implies that a cop cannot watch an intersection at a
distance greater than £. This leads to the following problem.

Research Project 17 Explore the limited attention span domination problem
by changing the parameter £ and determining how the size of the security
set S increases. Consider both the domination and the broadcast domination
variants. When £ = A(G), the maximum degree of any vertex, this will be
the standard model of domination or broadcast domination. When £ = 0, we
must include all vertices. What happens in between?

Fig. 19 The 3 x 4 grid and a

limited attention span

security set with £ = 2. The

arrows indicate the directions A
the guards are watching

—

—
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Note that a variation of this problem is described by Mamidisetty, Ghamande,
Ferrara, and Sastry in [20] from a topological perspective. They provide fascinating
applications to data aggregation and bandwidth limiting, as a network may have
connected computers but limited capabilities to transmit data.

Acknowledgements We end by remarking that our students have been the research leaders for
these and many other projects. As faculty, we believe that it is our responsibility to guide them
and support them, but not to impose on them a problem to solve. Students are inquisitive and
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lifetime! We are thankful for having been part of our students’ experience in research and for their
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Abstract

We can define the traditional trigonometric functions in several different ways:
via differential equations, via an arclength definition on the unit circle x4 y> =
1, or via an analytic approach. In this project, we adapt these approaches to define
analogous functions for a unit squircle |x|? + |y|? = 1, p > 1. As we develop
these functions using only elementary calculus, we will ponder the importance
and role of m, and glimpse some very deep ideas in elliptic integrals, special
functions, non-Euclidean geometry, number theory, and complex analysis.

Suggested Prerequisites Knowledge of basic trigonometric functions, differential
and integral calculus are a must. Some knowledge of differential equations is
helpful, but not essential.

1 Introduction
The circle is a “perfect” object, and our familiarity with it can cause us to lose sight

of just how remarkable it is. It is one of the first geometric shapes we encounter in
school; children can identify it easily. The unit circle can be described as the set of
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points (x, y) in the plane satisfying the equation x> + y> = 1. The sine and cosine
functions emerge as natural functions with which to describe it.

In this project, we look to enhance appreciation of the circle’s perfection
by introducing some imperfection, by developing an analog of trigonometry for
something that is not quite a circle.

Our primary model is the unit p-circle, or “squircle,” a superellipse defined as the
set of points (x, y) in the plane satisfying the equation |x|” 4 |y|? = 1 for some real
p > 1. This generalizes the Euclidean circle which emerges as the case p = 2 (note
that we can drop the absolute values when p is a rational number whose reduced
fraction has an even numerator). We will examine the p = 4 case quite closely for
examples.

2 Defining Trigonometric Functions
We often define the sine and cosine functions in one of three ways:

 via differential equations,
+ geometrically, as coordinates of points on the unit circle x> + y> = 1,
 analytically, via the use of definite integrals.

Conveniently, all three definitions yield the same functions. Let us examine these
three methods separately, as these will be the directions for our generalizations to
squigonometric functions.

2.1 Differential Equations Approach

This approach is inspired by methods discussed in [6] and [7] of using initial value
problems (IVP’s) to develop transcendental functions in a first-year calculus course.

Recall from calculus that % cost = —sint and j—t sint = cost. We view these
as defining properties for the cosine and sine functions. By choosing to start the
parameterization on the x-axis, we further adopt the initial conditions cos 0 = 1 and
sin0 = 0. Thus we can say that cosine and sine are the functions satisfying

x'(@t) = —y()

y'(t) = x(1) 0
x(0) =1

y(0) =0,

where x corresponds to cosine and y to sine. This is an example of a coupled
initial value problem (or CIVP). It turns out problems like these always have unique
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solutions [5]. Therefore, we may define cosine and sine to be the unique solution
to (1).

Exercise 1 Consider the function f(¢) = u()? + v(r)%, where u(r) = cos(¢) and
v(t) = sin(r). Use the properties (1) to show that f/(¢) is identically 0 and that
f(0) = 1. Conclude that f(z) is identically 1 and thus cos?t + sin?7 = 1 forall 7.

Exercise 2 Use similar techniques to show that cosine is even and sine is odd.

2.2 Unit Circle Approach

The unit circle is the set of points (x, y) that are exactly 1 unit from the origin. Such
points satisfy the equation x2 + y? = 1.

Any line through the origin intersects the unit circle at a point ¢ units away from
(1, 0) as measured along the arc of the circle. We define the radian as a measure
of angle such that one radian subtends an arc of the unit circle of length 1. Thus
the line passing through our point subtends an angle of ¢ radians, and we define the
cosine and sine of ¢ to be the x- and y-coordinates, respectively of our intersection
point (Fig. 1). Thus we have that cos? 7 + sin’ 7 = 1 forall 7 € R.

As a full circuit of the unit circle subtends 2 radians, each point on the unit
circle is associated with infinitely many angles, all multiples of 2 radians apart. In
particular, this means that the cosine and sine functions are periodic—they repeat
their values every 27 radians:

cos(t + 2m - k) = cost

sin(t + 27 - k) = sint

Fig. 1 The first quadrant of Y
the unit circle i

:

(cost,sint)

Y
>
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forall k € Z.

The parameter ¢ in cosine and sine thus simultaneously specifies both the
arclength and the angle. It also determines the area of the sector. We see that a
sector traced out by ¢ radians has an area of # times the area of the whole circle,
or ﬁ x m = L. Thus the angular, arclength, and areal parameterizations all lead to
the same functions. We will come to appreciate this remarkable feature of Euclidean
geometry when we lose it in the geometries we will soon explore.

23 Analytic Approach

We can also define the sine and cosine functions as solutions to integral equations.
The sine function is the function S(¢) such that

S@) 1
——du=t. 2
,/(.) V1 —u?

In a similar manner, we can define the cosine function to be the function C(¢) such
that

1
1
————du=1. 3)
/C(z) V1 —u?

Suppose that (1) holds. The result of Exercise 1 shows that cos? ¢ + sin® ¢ = 1 and
we have the sine and cosine functions from our unit circle approach.

Now let S(z) and C(t) be, respectively, the sine and cosine functions defined
in Egs.(2) and (3). We first claim that C(t) = /1 — S2(¢) (and thus S(t) =
V1 —C2(t) and C%(t) + S*>(t) = 1). If we substitute s = /1 — u2 into Eq. (2),
then u = V1 — 52, du = ——=— ds and

AV 1—-s2
S(t) 1 A/ 1=582(1) 1 —s 1 1
/ ——du = —'—ds=/ ——=ds =1t.
o V1-u? 1 s J1—5s2 V1520 V1 — 52

Comparing this last integral to (3), we see that C(t) = /1 — S2(¢). Furthermore,
Egs. (2) and (3) show that S(0) = 0 and C(0) = 1.
Taking the derivatives across Egs. (2) and (3), we obtain

1 1
l=—— .5 — .
V1= 820 © V1= C2(1) ©
and so S'(t) = /1 — S2(1) = C(t) and C'(t) = —/1 — C2(t) = —S(¢). Thus S

and C fulfill the CIVP (1) and must be the same cosine and sine functions found
there.
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Once again, we see these three approaches inevitably yield the same cosine and
sine functions.

Exercise 3 Deduce (2) and (3) directly from CIVP (1).

3 Squigonometric Functions

We will now develop an analog of trigonometry for the unit p-circle, the set of
points (x, y) in the plane satisfying |x|? 4 |y|” = 1, p > 1, depicted in Fig. 2. The
absolute values are necessary in the defining equation, as our next exercise shows.

Exercise 4 Use a computer algebra system to implicitly plot the equation x3+y3 =
1 where x ranges from —2 to 2. Do the same for x> 4 y> = 1.

3.1 Differential Equations Approach

We first generalize our differential equations approach in order to define our
squigonometric functions. Consider the function g(¢t) = u(¢)? + v(¢)? for some
p > 1. We will design a CIVP whose solutions u(¢) and v(z) will make g(z)
constant. To wit:

x'(t) = —y(t)P~!
y(t) = x(@)P!
x(0) =1

y(0) = 0.

“)

Fig. 2 Unit squircles 1
|x|” + [y|P =1 for
p=1,2,5, and 10
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Thus if u(¢) and v(¢) are the solutions to (4) then

@) =p-u®P @)+ p-v@)? W (@)
=—p-u®? @)+ p-v@)P u@P ! = 0.

so g(r) must be constant. Since g(0) = 1, we then have that g(¢) = 1, as desired.

We denote cos,(t) = x(¢) and sin,(f) = y(t) to be the unique pair of
functions that solve (4). (The cosquine and squine functions, if we prefer.) Note
that COSZ )+ sinZ (t) = 1. For p = 2 or any other positive even integer, we get the
entire unit squircle from this equation. Otherwise, we can either take absolute values
(as Exercise 4 showed, | cos,, (t)|” +| sin, (t)|? = 1 works), or we can deftly restrict
the interval of solution for Egs. (4) and then extend the solutions by symmetry. We
will see how to do this shortly.

We can define the other squigonometric functions through the usual definitions
using ratios of the squine and cosquine functions:

tan,(t) = sin (1) sec,(t) = !
P cosp (1)’ P cosp(1)’

_ cos, (1) _ 1 _ 1
coty () = siny (1) tan,(t)’ esep() = sing, (1)

It is here that we abandon whimsy for practicality and refer to these functions by
referencing p, so, for example, tan,, is simply the p-tangent.

Exercise 5 Prove that 1 + tang (1) = secg (t)and 1 + cotg (t) = cscg (1).

Exercise 6 Use the quotient rule along with our initial derivative formulas for
sin, (¢) and cos, (¢)to obtain

d d _
o tan, (1) = seci(t), p secp(t) = secf, (1) sinﬁ 1(t), ®))
d d _
o coty(t) = —cscf,(t), o cscp(t) = —cscf,(t) cosﬁ 1(t)
(see [9]).

3.2 The Many Values of =

If we look at a graph of, say, sing(¢) and coss(f), we notice that, much like the
squircle, the graphs resemble those of our usual sine and cosine functions, but
flattened out a bit (Fig. 3).
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2t

4L
(a) (b)

Fig. 3 Plots of y = sing(?) (a, dashed), y = cos4(?) (a, solid), and y = tany(¢) (b)

We also notice that the period of these sine and cosine functions is longer than
the usual 27, and that the first vertical asymptote in the tangent graph is far beyond
the classical + = 7 /2 & 1.57. We can find this new value of 7 by first defining
inverse functions for our squine and cosquine functions.

Let x = sin,(y). Then dx/dy = cosh '(y) = (1 — xP)P=V/P_ This 