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Preface

This volume contains the papers presented at SEMCCO 2019 and FANCCO 2019:
Swarm, Evolutionary and Memetic Computing Conference (SEMCCO 2019) and
Fuzzy And Neural Computing Conference (FANCCO 2019), held during July 10–12,
2019, in Maribor, Slovenia. SEMCCO 2019 was the 7th international conference of
this series, where SEMCCO 2010 was successfully organized at SRM University,
Chennai, SEMCCO 2011 at ANITS, Visakhpatnam, SEMCCO 2012 at SOA
University, Bhubaneswar, SEMCCO 2013 at SRM University, Chennai, SEMCCO
2014 at SOA University, Bhubaneswar, and SEMCCO 2015 in Hyderabad, India.
FANCCO 2019 was the 5th international conference of this series, collocated and
co-organized with SEMCCO. These conferences aim at bringing together researchers
from academia and industry to report and review the latest progresses in cutting-edge
research, focusing on Swarm, Evolutionary, Memetic, Fuzzy, and Neural computing to
explore new application areas and to design new bio-inspired algorithms for solving
specific, hard optimization problems, and finally to create awareness of these domains
to a wider audience of practitioners. Therefore, researchers are encouraged to submit
their contributions in both theoretical and practical aspects. This year, the General
Chair of the conference was Aleš Zamuda, the General Co-chairs were Swagatam Das
(also Program Chair), Ponnuthurai Nagaratnam Suganthan (also Steering Committe
Chair), and Bijaya Ketan Panigrahi (also Publication Chair).

There were 31 submissions. Each submission underwent a single-blind review by at
least 3, and on the average 3.0, Program Committee members. The committee decided
to accept 18 papers for this post-conference proceedings. The conference program also
included an invited talk by Ponnuthurai Nagaratnam Suganthan from Nanyang Tech-
nological University on “Differential Evolution for Numerical Optimization,” an
invited talk by Benjamin Doerr from the Max-Planck-Institut für Informatik on “From
Theory to Better Algorithms,” and a tutorial by Aleš Zamuda from the University of
Maribor on “Differential Evolution Applicability.” The conference included 5 sessions
with paper presentations, a benchmarking panel discussion chaired by Aleš Zamuda,
and was combined with 4 social events. The conference also included competitions on
numerical optimization with entries for the 100-Digit Challenge.

We take this opportunity to thank the authors of all submitted papers for their hard
work, adherence to the deadlines, and patience with the review and publishing process.
As the quality of a refereed volume depends largely on the expertise and dedication
of the reviewers, we thank the Program Commitee members who produced excellent
reviews. We would also like to thank our sponsors and acknowledge Springer, the
University of Maribor, IEEE Slovenia, COST, and EasyChair for their support of this
conference. We thank Management and Administrations (faculty colleagues and
administrative personnel) of the University of Maribor at the Faculty of Electrical
Engineering and Computer Science. We would also like to thank the participants of this
conference. Finally, we would like to thank all the volunteers for their tireless efforts in



meeting the deadlines and arranging every detail to make sure that the conference ran
smoothly. We hope that the readers of these proceedings find the papers inspiring and
enjoyable.

November 2019 Aleš Zamuda
Swagatam Das

Ponnuthurai Nagaratnam Suganthan
Bijaya Ketan Panigrahi

vi Preface
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Cooperative Model of Evolutionary
Algorithms and Real-World Problems

Petr Bujok(B)

University of Ostrava, 30. dubna 22, 70200 Ostrava, Czech Republic
petr.bujok@osu.cz

Abstract. A cooperative model of efficient evolutionary algorithms
is proposed and studied when solving 22 real-world problems of the
CEC 2011 benchmark suite. Four adaptive algorithms are chosen for this
model, namely the Covariance Matrix Adaptation Evolutionary Strat-
egy (CMA-ES) and three variants of adaptive Differential Evolution
(CoBiDE, jSO, and IDEbd). Five different combinations of cooperat-
ing algorithms are tested to obtain the best results. Although the two
algorithms use constant population size, the proposed model employs an
efficient linear population-size reduction mechanism. The best perform-
ing Cooperative Model of Evolutionary Algorithms (CMEAL) employs
two EAs, and it outperforms the original algorithms in 10 out of 22
real-world problems.

Keywords: Evolutionary algorithm · CoBiDE · jSO · IDEbd ·
CMA-ES · Cooperation · Real-world problems

1 Introduction

In this paper, a cooperative model of Evolutionary Algorithms (EA) is proposed
and studied. The main idea is to employ different evolutionary approaches of pop-
ulation development to achieve better results. Although EAs provide an accept-
able solution in reasonable computational time due to the stochastic character,
they cannot guarantee an acceptable solution in a finite computational time.

One of the most widely used EA in the last decades is admittedly Differential
Evolution (DE) algorithm [14]. The main reason for the high popularity of the
DE algorithm is in its simplicity and efficiency. Therefore, a lot of variants are
the leading optimisers and DE has been developed very intensively [8,10,13].

Although DE is very efficient, there is still no optimisation algorithm which
is the most efficient for all the global optimisation problems (No Free Lunch
theorem [18]). One of the well-performing ‘non-DE’ algorithms is the Evolution
Strategy with Covariance matrix adaptation approach (CMA-ES) [12]. In 2016,
Bischl et al. proposed an approach to select a proper optimisation method to
solve different tasks [1]. Here, a cooperation of several EAs is studied.

The rest of the paper is organised in the following manner. The newly pro-
posed cooperative model of Evolutionary Algorithms is presented in Sect. 2.
c© Springer Nature Switzerland AG 2020
A. Zamuda et al. (Eds.): SEMCCO 2019/FANCCO 2019, CCIS 1092, pp. 1–12, 2020.
https://doi.org/10.1007/978-3-030-37838-7_1
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Experimental settings and the achieved results are represented in Sects. 3 and 4.
The paper is briefly concluded in Sect. 5.

2 A Cooperative Model of Evolutionary Algorithms

In a latter study [7], newly proposed model employing four various well-known
optimisation algorithms – CoBiDE [17], IDEbd [3], CMA-ES [12], and jSO [2]
was introduced. The main goal is to use the most successful EA to develop the
population in the current moment of the search process. In other words, the
method providing better results is more prioritised in the next generation. The
success of employed EAs is based on a number of new-good individuals in the
preceding stages. When a presently used EA has to be displaced using more
successful one, the development of the population is carried out by a new EA.
The mechanism of competition of employed EAs was introduced in 2006 by
Tvrd́ık, where several various DE parameters settings are used to be selected in
the development of the population [16].

Other models of cooperation of various optimisation algorithms were studied
in our recent research. The cooperative model of six different state-of-the-art DE
algorithms was proposed in 2012 [6]. The cooperation of the employed DE vari-
ants was studied more deeply when it solves 22 real-world problems CEC 2011 [5].
The model using cooperation of eight various nature-inspired algorithms was
applied to 22 real-world problems [4].

Although the proposed cooperative model uses a mechanism for the compe-
tition of four EAs, several combinations of employed algorithms are applied. A
more proper subset of algorithms will be selected studying the real successes of
the employed techniques. Because, two out of four employed algorithms (jSO and
IDEbd) are used in the final model, these methods are discussed in more detail.
The two remaining employed algorithms are described briefly, more details are
provided in the original papers.

2.1 CoBiDE

In 2014, a new DE variant with ‘covariance-matrix learning’ called CoBiDE was
proposed [17]. CoBiDE adds two new aspects to a classic DE. The crossover in
CoBiDE employes a covariance-matrix learning approach. This approach is used
for rotation of the coordinate system. The rotation controls an adaptation of the
dependencies in the population. In addition, it promises higher efficiency on the
rotated objective functions. Similarly, the CMA-ES algorithm uses a rotation-
invariant approach, and it is employed in the studied cooperative model.

The second element newly used in CoBiDE is the bimodal sampling of Fi

and CRi parameters, which distinguishes between exploration and exploitation.
The initial values of Fi and CRi are set for each ith individual using the Cauchy
distribution:

Fi =
{

randc(0.65, 0.1) if rand(0, 1) < 0.5
randc(1.0, 0.1) otherwise, (1)



Cooperative Model of Evolutionary Algorithms 3

CRi =
{

randc(0.1, 0.1) if rand(0, 1) < 0.5
randc(0.95, 0.1) otherwise. (2)

CoBiDE uses the most popular original rand/1 mutation [14]. After the muta-
tion, the covariance-matrix based crossover is applied to the whole population
with probability controlled by the parameter pb. In other cases, the standard
binomial crossover is used to whole population in the current generation. The
values of Fi and CRi are re-sampled if the new ith trial solution is not success-
ful. Before each generation, Eigenvalues (D) and Eigenvectors (B) are extracted
from the covariance matrix (C) of current population.

C = BD2BT . (3)

Then, a trial point y′
i is computed in a new ‘eigenvector’ coordinate system

employing the transformed parent and mutation vectors:

x′
i = B−1xi = BTxi, (4)

u′
i = B−1ui = BTui. (5)

Then, a binomial crossover is used to develop a trial solution in a new coordinate
system. A new individual y′

i is transformed back into a standard coordinate
system:

yi = By′
i. (6)

This method achieves better results for problems where the population is
strongly correlated. The authors of CoBiDE recommended to employ this app-
roach occasionally, controlled by the parameter pb. The Eigenvectors and Eigen-
values are extracted only from a part of individuals with a lower function value
of the population. The portion of the selected individuals of the population is
controlled by the second parameter ps.

2.2 Individual-Dependent Approach

The second DE algorithm employed in the studied cooperative model is an
enhanced variant of the original IDE algorithm (IDEbd) proposed in [3]. Despite
the original IDEbd applies diversity-based population size control, the coopera-
tive model employs IDEbd without this mechanism. The search process of the
original IDEbd algorithm [15] is divided into two stages – more explorative and
more exploitative. A parameter F influences the size of the searching area of the
base individual xo (Eq. (9)). The population of IDEbd is sorted with respect
to the objective function values. The individuals are distributed into two sets -
superior S (smaller objective function) and inferior I (higher objective function).
The values of the parameters F and CR are sampled by (7) and (8):

Fo =
o

N
, (7)



4 P. Bujok

CRi =
i

N
, (8)

where o is an index of a base point of mutation, i represents an index of the
current point, and N denotes the population size. The index of the base vector
depends on the stage, o = i in the first stage of the search, and o is selected
randomly in the second stage. Values of F and CR are modified by normal
distribution with variance 0.1, until they are in the interval (0, 1).

The IDEbd variant enhances the original IDE mutation scheme as shown in
Eq. (9). The first part of the mutation uses a base individual (xo) as the current
point of the population at the exploration phase, and the base vector selected
randomly is used in the second exploitation stage. It can increase the diversity
of the population in the early stage and accelerate convergence in the last phase.

ui =

⎧⎨
⎩

xo + Fo ∗ (xr1 − xo) + Fo ∗ (xr2 − xr3) if o ∈ S

xo + Fo ∗ (xbetter − xo) + Fo ∗ (xr2 − xr3) if o ∈ I,
(9)

where o is denotes the base individual, r1 �= r2 �= r3 �= o are indices selected
randomly from [1, N ], and better represents a randomly selected index from the
superior portion of the individuals S.

The value of ps controls the part of superior population, and it is adapted
using:

ps = 0.1 + 0.9 × 105×( g
gmax

−1), (10)

where g is the current generation, and gmax is the maximum number of genera-
tions.

The last individual in the mutation, xr3 , is further perturbed with small
probability pd. It enables the base vector extricate from the local area.

xr3,j =

⎧⎨
⎩

aj + rand(0, 1) × (bj − aj), if randj(0, 1) < pd

xr3,j otherwise,
(11)

where pd = 0.1 × ps and aj , bj are the boundaries of the jth coordinate. Then,
standard binomial crossover is applied to generate new individuals.

2.3 CMA-ES

The Evolutionary Strategy with Covariance Matrix Adaptation (CMA-ES) algo-
rithm used in the studied model was proposed by Hansen and Ostermeier in [12].
A new trial point xN is generated using only a mutation strategy. It adds a ran-
dom vector to the current point xE :

xN = xE + σBN(0, I). (12)

A part BN(0, I) represents a linear transformation of N(0, I) for arbitrary
matrix B with size of D×D. Choosing B in a propoer way, arbitrary normal dis-
tribution with a zero mean vector can be generated by the transformation (12).
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A parameter σ controls the variance in the mutation. More details of the well-
performing CMA-ES algorithm are provided in [12].

The population in CMA-ES is developed differently than in DE. Only a
weighted ‘centre’ of the present population is used as a seed in the next gen-
eration. Therefore, the whole population in a new generation is generated from
the same base position. However, each individual is generated using the muta-
tion (12). Such a difference between DE and CMA-ES approaches originates a
special condition when EAs are changed to develop the population.

2.4 jSO

An efficient DE variant derived from the successful JADE, SHADE, L-SHADE,
and iL-SHADE is called jSO [2]. The jDE algorithm was introduced in 2017 at
the CEC 2017 competition when it took the second position. jSO uses historical
circle memories of the control parameters of length 5, initialised by the mean
values μF = 0.3, and μCR = 0.8 (the last settings are replaced with the values
F = 0.9 and CR = 0.9). The authors of jSO proposed to prioritise higher values
of CR in the first half of the search and keep values of F under 0.7 in the first 60%
of evaluations. These restrictions make jSO very efficient; nevertheless, there is
no more place to improve this method.

The jSO algorithm uses an updated current-to-pbest mutation strategy,
which is controlled by a weighted F parameter:

ui = xi + Fw(xpBest − xi) − F (xr1 − xr2), (13)

where

Fw =

⎧⎨
⎩

0.7F, FES < 0.2maxFES
0.8F, FES < 0.4maxFES
1.2F, otherwise,

(14)

where FES is the current number of function evaluations, and maxFES denotes
the maximal allowed number of function evaluations. Individuals for mutation
are selected as follows – xi is the current point, xpBest is selected randomly from
p × 100% best points of P , and xr1 and xr2 are randomly selected points from
P and P

⋂
A, respectively. An archive A of the size N × 2.6 is used to store

good old solutions.
Then, a standard binomial crossover is used. The values of F and CR are

computed from the recent successful settings using a weighted mean. A linear
reduction of the population size is used with the initial population size N =
25×√

D× log D. The parameter p is linearly decreased from 0.25 to 0.125. More
details about the jSO algorithm are provided in the original paper [2].

2.5 Competitive Mechanism and Population-Size Reduction

After initialisation and evaluation of the population, the control parameters of
involved EAs are initialised. Besides this, probabilities to use of each hth EA are
set equally to qh = 1/H, and H denotes the number of employed EAs.
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A selection of the algorithm to evaluate the population is performed ran-
domly, using the probabilities qh. Simply, an algorithm with higher probability
qh has a higher chance to be selected in the next generation, and vice versa. If
a currently used algorithm generates successful individual (f(yi) ≤ (xi)), the
count of new successful individuals is increased by one. At the end of generation,
the probabilities qh are updated for the next generation:

qh =
nh + n0∑H

j=1(Nj + N0)
, (15)

where nh is the current count of the hth EA successes. The input parameter
n0 = 2 is used against a dramatic primacy of qh by one random successful use
of the hth parameter setting. The current values of qh are initialised qh = 1/H
if any value qh decreases below the input limit δ = 1/(5 ∗ H).

Beside the competition mechanism, the population size mechanism from jSO
is also used in the proposed model. At the end of generation, the proper popu-
lation size is updated, and the population size is reduced:

N = round[(
Nmin − Ninit

maxFES
)FES + Ninit], (16)

where FES is the present number of function evaluations, Ninit represents the
initial population size, Nmin denotes the population size at the end of run when
the allowed number of maxFES function evaluations is achieved.

The studied cooperative model of Evolutionary Algorithms with a linear pop-
ulation size reduction is denoted CMEAL, in the presentation of results abbre-
viated variant CM is used.

3 Experimental Settings

In this paper, several cooperative CMEAL variants are studied, based on success-
fully generated individuals. At first, two models using all four EAs are proposed
with a different population size at the end of the search, Nmin = 5, 20, and they
are called CM4N5 and CM4N20. Next model uses only three EAs (CMA-ES,
IDEbd, jSO) and the value of Nmin is set according to D – Nmin = 5 if D < 20;
Nmin = 10 if 20 ≤ D < 40; Nmin = 20 if D ≥ 40 (CM3D). Further model
(CM3DE) uses only three DE variants (CoBiDE, IDEbd, jSO) and the same set-
tings of Nmin based on D. The last proposed model uses only two most successful
DE versions IDEbd and jSO, and the same setting of Nmin – CM2D. The only
control parameter of CMEAL is a number of employed EAs, H = 2, 3, 4. Then,
δ = 1/(5 ∗ H) = 0.1, 0.066, 0.05.

The experimental comparison is based on a test suite of 22 real-world tasks
from the CEC 2011 competition in the Special Session on Real-Parameter
Numerical optimisation [9]. The computational complexity of the problems is
various, as soon as the dimensionality of the search space (D ∈ (1, 240)). The
experiments are for each algorithm and problem repeated in 25 independent
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runs. The algorithm stops when it achieves the given number of function eval-
uation, MaxFES = 150000. For more complex analysis, the results of the algo-
rithms at MaxFES= 50000 and MaxFES= 100000 were kept. The solution of
the algorithm on the problem is represented by the individual from the terminal
population with the least function value.

The algorithms use a linear population-size reduction with initial value
Ninit = round(25 × log(D) × √

D). For problems with a low dimension level
D < 6, the initial population size is computed from value D = 6. All parameters
of the four used Evolutionary Algorithms are set to values recommended by the
authors.

The CMEAL algorithm is implemented and experimentally tested in Matlab
2017b. All computations were carried out on a standard PC with Windows 7,
Intel(R) Core(TM)i7-4790 CPU 3.6 GHz, 16 GB RAM.

4 Results and Discussion

In this paper, five variants of the proposed CMEAL algorithm are compared with
the four original EAs using a set of 22 real-world problems. At first, the Friedman
test is used to compare the performance of all nine algorithms. The Friedman test
provides the mean ranks of the algorithms using the median values of achieved
function values. The mean ranks regarding each algorithm and dimension are
in Table 1. The null hypotheses on equal efficiency of all nine algorithms were
rejected for all three stages of the run with an achieved significance level p <
5 × 10−5.

Table 1. Results of the comparison of the cooperative model from the Friedman tests.

FES CM2D jSO CM3D CM4N5 CM3DE CM4N20 IDEbd CMAES CoBiDE

50000 4.7 5.5 4.8 5.7 6.3 6.6 3.3 3.5 4.6

100000 4.0 4.3 4.4 5.8 5.8 6.1 4.1 4.4 6.3

150000 3.1 3.4 3.8 4.4 4.5 5.6 6.2 6.9 7.2

The achieved mean ranks show the variance of performance with increasing
computational time (measured by FES ). The algorithms in Table 1 are ordered
based on their performance in the final stage.

In the first stage, three original algorithms are the best performing. From the
second stage (FES= 100, 000), the best performing algorithm in the comparison
is cooperative model of jSO and IDEbd. Promising results are also provided by
a cooperative model of jSO, IDEbd, and CMA-ES. Three out of four original
EAs are the worst performing algorithms regarding all 22 problems.

The Kruskal-Wallis non-parametric one-way ANOVA test was applied to each
test problem separately to see more details. It is clear that the performance of
all the algorithms in the experiment significantly differs. Moreover, the Dunn’s
method was applied for multiple comparison (see Table 2). In the third column,
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Table 2. Results of the comparison of new CMEAL variants from the Kruskal-Wallis
tests.

Fun D p Best Worst

T01 6 ∗ All except → CM3D

T02 30 ∗ ∗ ∗ CM4N5, CM3D CM4N20

T03 1 ≈
T04 1 ∗ ∗ ∗ CM3D, CM3DE, CM2D CM4N5, CM4N20

T05 30 ∗∗ CM4N5, CM2D, CM3DE CM3D, CM4N20

T06 30 ∗ ∗ ∗ CM4N5, CM3DE, CM2D CM4N20

T07 20 ∗ ∗ ∗ CM2D, CM4N5, CM3DE CM3D, CM4N20

T08 7 ≈
T09 126 ∗∗ CM3D, CM2D, CM4N20 CM3DE, CM4N5

T10 12 ≈
T11.1 120 ∗ jSO, CM3DE CM3D, CM4N5, CM4N20

T11.2 240 ∗∗ CM3D, CM2D, CM3DE CM4N5, CM4N20

T11.3 6 ∗ CM2D, CM3DE, CM4N20 CM4N5, CM3D

T11.4 13 ≈
T11.5 15 ∗∗ CM3D, CM2D CM4N5, CM4N20, CM3DE

T11.6 40 ≈
T11.7 140 ∗ ∗ ∗ CM2D CM4N20, CM4N5

T11.8 96 ∗ ∗ ∗ jSO, CM3D CM3DE, CM4N5, CM4N20

T11.9 96 ∗ ∗ ∗ jSO, CM3D CM3DE, CM4N20, CM4N5

T11.10 96 ∗ ∗ ∗ jSO, CM3D CM4N5, CM3DE, CM4N20

T12 26 ∗∗ CM3DE, CM2D, CM3D CM4N5, CM4N20

T13 22 ∗ CM3DE, CM4N5 CM4N20, CM3D, CM2D

Table 3. Significant wins and loses of all algorithms from the Kruskal-Wallis tests.

# CM2D CM3DE CM3D CM4N5 jSO CM4N20 CoBiDE CMAES IDEbd

Wins 10 9 9 5 4 2 0 0 0

Loses 1 5 6 10 0 14 0 0 0

there are the significance values of the Kruskal-Wallis test denoted as follows:
‘***’ (p < 0.001), ‘**’ (p < 0.01), ‘*’ (p < 0.05), and ‘≈’ otherwise. The signif-
icantly best performing algorithms are in column ‘best’, the worst performing
algorithms are in column ‘worst’. In the 5 out of 22 problems, there is no signifi-
cant difference between the nine algorithms. In other cases, the CMEAL variant
mostly achieves the best results, occasionally shared with adaptive jSO. On the
other hand, some of the proposed models are occasionally the worst performing
methods. The counts of the best positions and the worst positions of the Dunn
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test are in Table 3. The algorithms are ordered from better performing to worse
performing. It is clear that although the original jSO is never the worst perform-
ing, the cooperative model of jSO with IDEbd achieves the best results in 10
out of 22 problems, and it is the worst performing only in one problem.

A comparison of all proposed CMEAL variants with the winner of CEC 2011
competition (GA-MPC [11]) provides the following results. Variant CM4N20 per-
forms better in 9 problems and worse in 11 problems; variants CM4N5, CM3D,
and CM3DE perform better in 10 and worse in 10 problems; CM2D performs
better in 11 and worse in 9 problems.

The fundamental information to the development of CMEAL models is pro-
vided in a study of successes of employed EAs. The real successes of employed
algorithms in each task are represented in percentage values in Table 4. The dis-
tribution of the values is changed with problems. Therefore, the total average
successes of the employed CMEAL models are computed in the last rows of these
tables. It is clear that in CM4N5 and CM4N20, the best performing EAs are jSO
and IDEbd (34% and 35%, respectively). The CMA-ES algorithm is success-
ful only in 11% of the reproduction process and CoBiDE in ≈20%. Variants of
CMEAL with three EAs provide very similar results, the best performing EA
is jSO (44% and 40%, respectively), and the second most efficient algorithm is
IDEbd (41% and 36%, respectively). This evolution of reduction of the employed
EAs in the cooperative model results in the last model where the most efficient
jSO and IDEbd are employed. The successes of these EAs in CM2D model are
very similar (≈50%).

Fig. 1. Estimated time complexity of algorithms in the comparison.

It can be noted that the cooperative model should substantially increase the
time complexity. In this paper, the time complexity is estimated by a simulation
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on three problems with various dimensionality (T01 with D = 6, T02 with D =
30, and T11.2 with D = 240). The resulting estimated time complexity in a semi-
log scale is depicted in Fig. 1. It is obvious that the most complex method is jSO
in the problem T11.2 with high dimension. The average complexity from three
problems was also computed and methods in the legend of this figure are sorted
from the most complex (IDEbd) to the least complex (CoBiDE). The higher
time complexity of IDEbd is given by the population-size control mechanism.
On the other hand, the small time complexity of CoBiDE is surprising, regarding
the Eigenvector crossover mechanism.

5 Conclusion

The newly proposed cooperative model of the four efficient Evolutionary Algo-
rithms provides very good performance. Some CMEAL variants significantly out-
perform the original EAs in a set of real-world problems. The best performing
CMEAL called CM2D was developed in the gradual study of the four employed
EAs, and it uses jSO and IDEbd algorithms. The results show that this model
provides very good performance as it achieves the best results in 10 out of 22
problems, and it is the worst performing only in one problem. The best perform-
ing jSO is the best performing only in four problems. Besides the efficiency of
the mentioned model, there are variants of CMEAL that provide worse results
(CM4N20 or CM4N5). Studying the estimated time complexity of the proposed
models, there is no significant increase in computational demands. This infor-
mation is crucial for further research in this area. The proposed CMEAL model
will be studied in more detail, and another EAs will be employed in future work.
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Abstract. In this article, we describe the design and implementation
of a variant version of SOMA named SOMA Pareto to solve ten hard
problems of the 100-Digit Challenge. The algorithm consists of the fol-
lowing operations: Organization, Migration, and Update. In which, we
focus on improving the Organization operation with the adaptive param-
eters of PRT and Step. When applying the SOMA Pareto to solve ten
hard problems to 10 digits of accuracy, we achieved a competitive result:
85.04 points.

Keywords: Self-organizing migrating algorithm · Optimization
function · SOMA Pareto · Swarm intelligence · 100-digit challenge

1 Introduction

The Self-organizing migrating algorithm (SOMA) is a class of swarm heuristic
[3], which has been used for stochastic optimization. Ever since first proposed
in 1999, SOMA has been used to solve many real domain problems such as
engineering application [11], aircraft wing and mechanical part optimization,
robot [1], and games [17,18].

Concurrently with technology development, problems arising in practice are
increasingly sophisticated and more diverse. Therefore, new improvement for
existing algorithms is a need to deal with these new problems. In the case of
SOMA, researchers developed different versions of this algorithm to enhance
its performance such as CSOMA [12], C-SOMGA [5], M-SOMAQI [13], M-NM-
SOMA [14], DSOMA [4], MOSOMA [10], SOMA T3A [8], SOMA Pareto [7] and
others. However, to keep pace with the dramatic change of technology, more
advanced versions of SOMA are necessary to adapt and solve new problems.

In our previous study [7], we have proposed an algorithm based on SOMA
named SOMA Pareto, which proved that it outperformed to previous version of
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SOMA. In this work, we uses this algorithm to compete in 100-Digit Challenge
competition. This version of SOMA consists of three operations: Organization,
Migration, and Update, in which we focus on improving the Organization oper-
ation with the adaptive parameters of PRT and Step.

The rest of this paper proceeds as follows. Section 2 gives a briefly describes
SOMA. Section 3 presents the SOMA Pareto algorithm, which applied to solve
the 100-Digit Challenge. Sections 4 and 5 present the experiment setting and
results, respectively. Finally, we conclude our work in Sect. 6.

2 The Self-organizing Migrating Algorithm

In this section, we briefly present the SOMA, which is a background for the pro-
posed algorithm later. SOMA [2,15,16] belongs to a class of Swarm Intelligence,
a branch of bio-inspired computation based on the emergence of collective intelli-
gence [6] which inspired by the behavior of agents in nature such as ant colonies,
honey bees, fireflies, and bird flocks. This algorithm is based on collaborative
searching (migrating) the area of all possible solutions (search area). During the
search process, the individuals influenced by each other to reach global optima
of a problem.

The process starts with randomly generating the individuals in the whole
search area. At each iteration, the individual that has the highest fitness value
become a Leader and the others become the Migrant (traveling individuals). The
Migrant jump step by step in the direction of leader. SOMA algorithm executes
in migration loops and in each loop the Migrant travels a certain distance towards
the leader in n steps of defined length. Before the traveling individuals jump
towards leader, a PRT vector is created. Based on the PRT parameter, the
Migrant will jump in the N − k dimensional subspace instead of proceeding
directly to the Leader. Equation 1 describes the jumping process.

xMLnew
n,j = xML

c,j + (xML
L,j − xML

c,j ) t PRTV ectorj (1)

where:

– t ∈ < 0 , by Step to, PathLength>,
– xMLnew

n,j : the new position of an individual,
– xML

c,j : the current position of an individual,
– xML

L,j : the leader position.

3 SOMA Pareto

In this section, we briefly introduce an SOMA-based strategy named SOMA
Pareto. Figure 1 illustrates the whole operation of this algorithm. First, a pop-
ulation consist of candidate solutions to the problem is generated. Next, the
provided fitness function will evaluates the population. After that, the algo-
rithm executes the migration loop with three primary operations: Organization,
Migration, and Update.
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Fig. 1. Flowchart of the algorithm.

3.1 The Organization Operation

The Organization is responsible for choosing the Migrant (traveling individual)
and the Leader. The Migrant will then proceed towards the Leader to discover
the better locations during the movement.

To select Leader and Migrant, we present a choosing method based on the
Pareto Principle, which more detail can be found in [7]. Figure 2 illustrated the
process of Organization.

100% Popsize 
P

F
it

n
es

s 
va

lu
e

the worst
individual

the best
individual

20%
Popsize 

A

80%
Popsize 

B

RandomC

Random
D

Leader

Migrant

Move toward

Fig. 2. The organization operation.

3.2 The Migration Operation

The Migration operation is responsible for searching for a better position by
moving the Migrant towards the selected Leader. In this algorithm, the authors
suggest tuning PRT and Step, as pointed in Eqs. 2 and 3 to keep maintaining
the diversity of the population, and avoiding to be stuck in a local minima.
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PRT = 0.08 + 0.90(
FEs

MaxFEs
) (2)

where:

– FEs: the current function evaluations,
– MaxFEs: the maximum of function evaluations.

Step = 0.02 + 0.05 cos(0.5π10−6FEs) (3)

3.3 The Update Operation

The Update operation is responsible for updating the position of the Migrant.
Technically, a given fitness function will evaluate all positions of the individual
while jumping. After that, one of the best position is chosen to compare with
the initial position of that Migrant. If the new position is better than the old
one, it will substitute the initial position. On the contrary, the Migrant remains
unchanged.

Algorithm 1 describe the complete operation of SOMA Pareto [7].

Algorithm 1. SOMA Pareto
1: Generate and evaluate the initial population
2: while stopping condition not reached do
3: Update PRT and Step
4: Sorting the population
5: Selecting the Migrant and the Leader
6: The Migrant jump to the Leader
7: Checking boundary
8: Re-evaluate fitness function
9: Updated position of the Migrant

10: end while
11: return

4 Experiment Setup

4.1 Hardware and Software Environment

We implemented our SOMA Pareto algorithm in Matlab to optimize ten func-
tions from the 100-Digit Challenge of the SEMCCO 2019 & FANCCO 2019
competition. A full description of all ten test function can be found at: [9].
Table 1 lists the functions used in competition. The experiment is performed
on the Intel Core i7 8750H computer with 16 GB RAM, under the Windows
10 64-bit operating system, using Parallel Computing Toolbox of Matlab 2018b
version.
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Table 1. The 100-Digit challenge basic test functions

No. Functions Fi∗ = Fi(x∗) Dimensions Search range

1 Storn’s Chebyshev Polynomial
Fitting Problem

1 9 [−8192, 8192]

2 Inverse Hilbert Matrix
Problem

1 16 [−16384, 16384]

3 Lennard-Jones Minimum
Energy Cluster

1 18 [−4, 4]

4 Rastrigin’s Function 1 10 [−100, 100]

5 Griewangk’s Function 1 10 [−100, 100]

6 Weierstrass Function 1 10 [−100, 100]

7 Modified Schwefel’s Function 1 10 [−100, 100]

8 Expanded Schaffer’s F6
Function

1 10 [−100, 100]

9 Happy Cat Function 1 10 [−100, 100]

10 Ackley Function 1 10 [−100, 100]

4.2 The Parameters

In our experiment, we used three type of parameters as following.

– The fixed parameters that are population size, and the number of jumps of
each individuals. The Table 2 present the values of these fixed value.

– The adaptive parameter is Step as present in Eq. 3.
– The tuned parameter is PRT as present in Eq. 2, which its value correspond-

ing to each problem are given in Table 3.

Table 2. The fixed parameters

Parameters Value

The population size 1000

The number of jumps 100

4.3 Stopping Criterion

The evolution will ceases when one of the two following criteria is met:

– Reaching the 10-digit level accuracy.
– Reaching the Maximum number of function evaluations (MaxFEs = 6 ∗ 108

for all functions).
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Table 3. The tuned parameters

Function PRT

1 FEs/6 ∗ 106

2 FEs/6 ∗ 108

3 FEs/5 ∗ 107

4 FEs/5 ∗ 106

5 FEs/107

6 FEs/3 ∗ 106

7 FEs/108

8 FEs/2 ∗ 108

9 FEs/2 ∗ 108

10 FEs/107

4.4 How to Score Points

The algorithm will be run 50 consecutive times for every function, and the total
number of correct digits in the 25 trials that have the best values will be counted.

For each function, the score is the average number of the correct digits in
that 25 best trials. For example, the algorithm reaches more than 50% of the
trials achieving all ten digits, then the score of that function is 10 points. The
best score for the ten functions in total is 100 points.

5 Simulation Results

Table 4 representative the calculation results for ten functions in the 100-Digit
challenge competition. In this table, the first column lists the sequence number
of functions. The next columns indicate the number of trials (in total 50 times
run) achieved n correct digits, where n = 1 to 10. The final column presents the
average number of correct digits in the best 25 runs for each function, which is
also the score for that function. The total score (the sum of the scores for all ten
functions) is in the bottom-most right-hand of the table.

In this table, our algorithm accomplished 50 over 50 runs achieving ten cor-
rect digits from function 1, 2, 3, 4, 5, 6, 7, 10. According to the competition rule
as defined in [9], we got the highest score for these functions. In the case of func-
tion 8 and 9, we achieved score 2 and 3.04 points, respectively. Accurately, with
function 8 we reach two correct digits in 50 times, and there are no times in 50
runs that the algorithm achieves above 3 correct digits. Likewise, with function
9 we had 49 times reaching 3 correct digits, and just 1 out of 50 reaches further
correct digits. In total, we achieved the score points 85.04 out of 100.

During the simulation, we discovered that the algorithm stuck in local minima
and unable to go beyond the local subspace with function number 8 and function
number 9. Furthermore, the function number 2 is more sophisticated than the
others, so the algorithm needs more FEs to evaluate so that it can reach ten
correct digits.
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Table 4. Fifty runs for each function sorted by the number of correct digits

Function Number of correct digits Score

0 1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0 50 10

2 0 0 0 0 0 0 0 0 0 0 50 10

3 0 0 0 0 0 0 0 0 0 0 50 10

4 0 0 0 0 0 0 0 0 0 0 50 10

5 0 0 0 0 0 0 0 0 0 0 50 10

6 0 0 0 0 0 0 0 0 0 0 50 10

7 0 0 0 0 0 0 0 0 0 0 50 10

8 0 0 50 0 0 0 0 0 0 0 0 2

9 0 0 0 49 1 0 0 0 0 0 0 3.04

10 0 0 0 0 0 0 0 0 0 0 50 10

Total: 85.04

6 Conclusion

In this paper, we proposed an algorithm, namely SOMA Pareto, to compete
in the 100-Digit Challenge competition. As a result, we got 85.04 points when
solving the ten functions of this competition. The SOMA Pareto consists of
the Organization, Migration, and Update operations. In which, the crucial fac-
tor is the application of the Pareto Principle to choose the Migrant and the
Leader for raising the performance of the algorithm. The adaptive PRT and
Step parameters help the algorithm avoid stuck in the local minima and achiev-
ing the excellent score in 8 out of 10 functions, except function number 8 and
9. Further research needs to be done to improve the other parameter as well as
adapting the PRT , and Step for a better result in the future.
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Abstract. In this paper we examined how the population size affects
the performance of the differential evolution algorithm. First, we tested
the original differential evolution algorithm, and then the improved self-
adaptive differential evolution algorithm, on ten benchmark functions,
that have been proposed for the CEC 2019 competition. We used six
different population sizes. Afterwards, we tested the newly created algo-
rithm with population reinitialization. The results show that the popula-
tion size affects the algorithm’s efficiency, and that we need to tune it to
obtain the best results. In the paper, we demonstrate that the newly cre-
ated algorithm with reinitialization gives better, or at least comparable,
results than the two algorithms without reinitialization.

Keywords: Global optimum · Differential evolution ·
Reinitialization · Population size

1 Introduction

Evolutionary computing is a research area inspired by natural evolution [3]. The
main feature of natural evolution is the survival of the fittest. In evolutionary
algorithms, the initial population is generated randomly and the fitness of every
individual is calculated. The best ones survive and reproduce, and so evolution
progresses [3]. Because of simplicity, in evolutionary algorithms, the population
size NP is constant, but we are aware that this is not the case in nature. Instead,
the number of individuals in a population varies in different generations. Adap-
tive population size is still a challenging task, and, for now, we wanted to see
how the population size affects the algorithms.

We briefly discus the related work in Sect. 2. The original differential evo-
lution algorithm and its improved self-adaptive version are described in Sect. 3.
A new algorithm is proposed in Sect. 4. Section 5 presents our experiments and
results. In Sect. 6 we conclude our work briefly.
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2 Related Work

In the paper [6], the authors investigated how different population sizes affect
the differential evolution algorithm. The paper considered the effect of the pop-
ulation sizes 2D, 4D, 6D, 8D and 10D (D - dimension of the problem) with two
different mutation strategies on problems chosen from the CEC 2005 Special Ses-
sion on Real-Parameter Optimization. They found that a smaller population size
with a greedy strategy converges fast but premature convergence and stagnation
are more pronounced. A large population, with a strategy having good explo-
ration capacity, does not prematurely converge or stagnate but it can converge
very slow.

The same authors in another paper [5] have proposed a differential evolution
algorithm with an ensemble of parallel populations having different population
sizes, in which a more suitable population size takes most of the function evalu-
ations adaptively. Although this paper uses multiple populations, it is related to
our work in the manner that it explores how the population size affects the con-
vergence. They found that the multi-population differential evolution algorithm
was more efficient in obtaining better quality solutions than the conventional
differential evolution algorithm.

A review article on the study of how the population size affects differential
evolution [9] emphasizes that the inappropriate choice of the population size may
seriously impede the performance of each differential evolution algorithm.

All those papers are considering the adaptation of population size in the
conventional differential evolution algorithm, with other parameters (crossover
and mutation rates) kept constant. Besides that, we are investigating the effect
of changing population size along with adapting other parameters.

3 Background

3.1 Differential Evolution (DE)

In the DE algorithm [2,4,7,8,11,12], population or candidate solutions are rep-
resented by real-valued vectors with D components (genes) [3]

x
(G)
i = x

(G)
i,1 , x

(G)
i,2 , ..., x

(G)
i,D , (1)

where i = 1, ...,NP and NP is the population size. G represents a generation. The
offspring are created through the mutation and crossover. The initial population
is generated randomly between lower and upper bounds, which are defined by
the problem. An evolutionary cycle starts with random selection of 3 vectors
xr1,xr2,xr3 from the initial population. A mutation vector is then obtained by
adding a perturbation vector to the first of those random vectors

v
(G+1)
i = x

(G)
r1 + p(G). (2)
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The perturbation vector p is the difference between two other randomly
selected vectors multiplied by the scaling factor F

p(G) = F (x(G)
r2 − x

(G)
r3 ). (3)

The scaling factor is a positive number, and has values F ∈ [0,∞]. In most
cases, the scaling factor occupies values between F ∈ [0, 2]. The second step in
the reproduction is usually a binomial crossover, which has one parameter, the
crossover probability CR ∈ [0, 1]. It creates a trial vector, combining elements of
the mutation vector and the corresponding parent vector as

u
(G+1)
i,j =

{
v
(G+1)
i,j , if rand(0, 1) ≤ CR or j == jrand,

x
(G)
i,j , otherwise.

(4)

CR determines the probability that the trial vector takes a component from
the mutation vector, and jrand is a randomly chosen integer in the range 1, ...,D
which provides that at least one component of the trial vector is changed in
regard to the previous generation. A selection of the offspring that will proceed
to reproduction in next generation comes at the end of the evolutionary cycle.
The fitness value of the trial vector is compared to the fitness value of the
previous population member, the parent vector. The fittest member is allowed
to be reproduced further

x
(G+1)
i =

{
u
(G+1)
i , if f(u(G+1)

i ) ≤ f(x(G)
i ),

x
(G)
i , otherwise.

(5)

3.2 Self-adaptive Differential Evolution (jDE)

DE has three parameters, namely F , CR, and NP , and their tuning can improve
the performance of the algorithm greatly. In the original DE these parameters are
specified before the evolutionary cycle, and remain fixed during each generation
of the algorithm. That is in contrast with the dynamic nature of evolutionary
computing itself. Furthermore, different values of parameters can be optimal at
different stages of the evolutionary process. A better approach is to use self-
adapting parameters. In an improved algorithm, that the authors named jDE
[1], all population members are extended by the control parameters F and CR.
Adaptive changes of the control parameters should give better individuals, in the
sense that they will have better fitness values. In jDE new control parameters
are calculated as

F (G+1)
i =

{
Fl + rand1 ∗ Fu, if rand2 < τ1

F (G)
i , otherwise

(6)

and

CR(G+1)
i =

{
rand3, if rand4 < τ2

CR(G)
i , otherwise.

(7)
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Algorithm 1. Self-Adaptive Differential evolution with Restarts
Input: NP , Fl , Fu , τ1, τ2, α, ε
Output: Best found solution

1 Initialization;
2 while not stopping criteria met do
3 count ← 0;
4 for i ← 1 to NP do
5 Use Eq. (6) for obtaining new value of Fi ;
6 Use Eq. (7) for obtaining new value of CRi ;
7 Use Eq. (2) for creating new mutant vector vi, where F = Fi and

CR = CRi ;
8 for j ← 1 to D do
9 Use Eq. (4) for crossing over component j;

10 end

11 Use Eq. (5) for selection between individual x
(G)
i and x

(G+1)
i ;

12 if f(xb) < f(x
(G+1)
i ) then

13 xb ← x
(G+1)
i ;

14 end

15 if |f(x
(G+1)
i ) − f(xb)| < ε then

16 count ← count + 1;
17 end
18 end
19 if count ≥ NP · α then
20 Population reinitialization;
21 end
22 end
23 return xb;

Here, τ1 and τ2 represent small probabilities when control parameters should
be changed, and randj , j = (1, 2, 3, 4) are uniform random numbers in the range
[0, 1]. Fi,G+1 and CRi,G+1 are computed before the mutation, so they have an
impact on mutation, crossover and selection operations when making offspring.

4 Self-adaptive Differential Evolution with Restarts
(rjDE)

Our main work is based on the newly created algorithm, called rjDE, that is
presented in Algorithm 1. The algorithm is designed for tackling CEC 2019
problems proposed in the technical report [10] for the 100-Digit challenge. The
proposed rjDE algorithm is derived from the jDE algorithm, so it uses the same
technique for control parameters adaptation over each evolutionary step.

The jDE algorithm can have the same problem as the DE algorithm.
Both algorithms have fast convergence, and can be trapped into local optima.
When the basic DE converges to some local optima, its population diversity is
decreased. In order to avoid that, we added Line 15 to Algorithm 1 that checks
if the i-th individual fitness value is close to that of the best individual. If this
condition is true, we increase the counter. When some individuals obtained simi-
lar fitness values as the best one, we can assume that population diversity is also
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Table 1. Fifty runs of DE for each function sorted by the number of correct digits.

Function Number of correct digits Score

0 1 2 3 4 5 6 7 8 9 10

F1 0 0 0 0 0 0 0 0 0 0 50 10

F2 0 0 0 0 0 0 0 0 0 0 50 10

F3 4 42 0 1 0 0 0 0 0 0 3 2.16

F4 48 2 0 0 0 0 0 0 0 0 0 0.08

F5 0 0 35 9 0 0 0 0 0 0 6 4.28

F6 1 34 0 0 0 0 0 0 0 0 15 6.4

F7 49 1 0 0 0 0 0 0 0 0 0 0.04

F8 35 15 0 0 0 0 0 0 0 0 0 0.6

F9 0 18 32 0 0 0 0 0 0 0 0 2

F10 50 0 0 0 0 0 0 0 0 0 0 0

Total: 35.56

decreased. Therefore, a reinitialization of the population takes place. A restart
in rjDE i.e. population reinitialization, occurs when the fitness values of α · NP
individuals differ from the best fitness value by less than a very small value ε.

5 Experiments and Results

We experimented on CEC benchmark functions [10] and followed their rules for
computing scores. In [10] there is no limit on the maximum number of function
evaluations (MaxFEs), but in this work we set MaxFEs = 107.

We analyzed three different algorithms: DE, jDE, and rjDE on population
sizes NP = 50, 100, 200, 400, 800, 1600.

We show results for population size 100 first, and, later, compare results for
all population sizes, on all 10 functions, including all 3 algorithms.

5.1 Results for NP = 100

Table 1 shows the results for all benchmark functions using the original DE
algorithm. Other parameters that we used in this algorithm are F = 0.5 and
CR = 0.9. It can be seen that DE obtained 10 correct digits for functions F1
and F2, while for function F10 it obtained no correct digits. Functions F4, F7
and F8 also have scores almost equal to zero, from which we can see that the
original DE algorithm is not suitable for solving those functions when using a
population with size 100.

The jDE algorithm solved functions F1, F2 and F4 to 10 correct digits. For
all other functions, scores were bigger than one correct digit. Those results are
shown in Table 2. Parameters used in this algorithm are Fl = 0.1, Fu = 0.9,
τ1 = τ2 = 0.1. Initial control parameters were F = 0.5 and CR = 0.9. It is
obvious that jDE is better for solving single objective optimization problems
than the simple DE.
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Table 2. Fifty runs of jDE for each function sorted by the number of correct digits.

Function Number of correct digits Score

0 1 2 3 4 5 6 7 8 9 10

F1 0 0 0 0 0 0 0 0 0 0 50 10

F2 0 0 0 0 0 0 0 0 0 1 49 10

F3 0 39 0 0 0 0 0 0 0 0 11 4.96

F4 2 2 0 0 0 0 0 0 0 0 46 10

F5 0 17 12 0 0 0 0 0 0 0 21 8.88

F6 0 31 0 0 0 0 0 0 0 0 19 7.84

F7 13 31 6 0 0 0 0 0 0 0 0 1.24

F8 0 47 3 0 0 0 0 0 0 0 0 1.12

F9 0 0 49 1 0 0 0 0 0 0 0 2.04

F10 36 0 0 0 0 0 0 0 0 0 14 5.6

Total: 61.68

Table 3. Fifty runs of rjDE for each function sorted by the number of correct digits.

Function Number of correct digits Score

0 1 2 3 4 5 6 7 8 9 10

F1 0 0 0 0 0 0 0 0 0 0 50 10

F2 0 0 0 0 0 0 0 0 0 0 50 10

F3 0 0 2 24 19 0 0 1 0 0 4 5.04

F4 0 0 0 0 0 0 0 0 0 0 50 10

F5 0 0 0 0 0 0 0 0 0 0 50 10

F6 0 0 0 0 0 0 0 0 0 0 50 10

F7 2 3 1 0 0 0 0 0 0 0 44 10

F8 0 48 2 0 0 0 0 0 0 0 0 1.08

F9 0 0 50 0 0 0 0 0 0 0 0 2

F10 0 0 0 0 0 0 0 0 0 0 50 10

Total: 78.12

Table 3 shows the score for each function for the rjDE algorithm. The highest
score 10 was obtained for 7 out of 10 functions. Parameters used here were the
same as for the jDE algorithm, along with two additional parameters, ε = 10−16

and α = 0.5. Functions F3, F8, and F9 seem to be the difficult ones for rjDE.
Total scores for DE, jDE and rjDE are 35.56, 61.68 and 78.12, respectively.

5.2 Results for Different Population Sizes

In Table 4 we present the performance of the DE algorithm on all 10 benchmark
functions and all 6 population sizes. It is obvious that performance of DE is
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Table 4. Scores for each function and different population sizes using DE.

Function Population size

50 100 200 400 800 1600

F1 10 10 10 10 10 10

F2 2.04 10 10 10 10 6

F3 3.52 2.16 1 1.08 1.28 1.52

F4 0.08 0.08 0.52 2.08 0 0

F5 3.16 4.28 3.36 6.04 2.44 1

F6 5.32 6.4 6.76 7.48 10 10

F7 0 0.04 0 0 0.12 0.44

F8 0.2 0.6 1.04 1.2 0.28 0

F9 1.76 2 2 2 2 2

F10 0 0 0.4 2.8 1.56 0

Total 36.08 35.56 35.08 42.68 37.68 30.96

not increasing nor decreasing continuously when the population size increases,
but we can observe that it has by far the best score for NP = 400. Observing
all particular functions, it can be seen that the best performance was for the
function F1, namely 10 correct digits were obtained for every population size.
For the function F2, DE obtained 10 correct digits for population sizes NP =
100, 200, 400, 800. Too small and too big population sizes obviously have a bad
impact on this function, but too small an NP is still worse than too big. For
function F6, the DE algorithm reached 10 correct digits for NP = 800, 1600,
and all other scores were bigger than 5. Functions F3, F5 and F9 all have scores
equal to or greater than 1, while for the remaining functions, zero correct digits
were obtained 2 or 3 times. The best total score, equal to 42.68, was obtained
for NP = 400.

Performance of the jDE algorithm is shown in Table 5. It is obvious that
this algorithm has better performance than the previous one. The best score (10
correct digits) was obtained 17 times out of 60 possibilities. For function F1 jDE
obtained 10 correct digits for every population size, for F2 and F5 4 times and
for F4 3 times. Zero correct digits were obtained only 4 times. The algorithm
performed worst on function F7. The best total score, 66.48, was obtained again
for population size 400.

Table 6 presents results for the rjDE algorithm. This algorithm reached 10
correct digits 37 times out of 70, which is 52.85% of overall performance. The
worst result, zero correct digits, was reached only once, for function F10 and
population size 1600. The best total score, 78.6, was obtained for population
size of 50.

It is obvious that the population size affects the performance of all differen-
tial evolution algorithms. For the jDE and rjDE it seems that the total score
increases when we increase the population size until it reaches the maximum
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Table 5. Scores for each function and different population sizes using jDE.

Function Population size

50 100 200 400 800 1600

F1 10 10 10 10 10 10

F2 1.92 10 10 10 10 10

F3 2.08 4.96 6.4 7.72 10 0.2

F4 6.76 10 10 10 1.44 0.08

F5 6.92 8.88 10 10 10 10

F6 8.92 7.84 7.12 8.56 9.28 10

F7 0.8 1.24 1.88 0 0 0

F8 1.12 1.12 1 1 0.96 0.2

F9 2.04 2.04 2 2 2 2

F10 5.6 5.6 8 7.2 2.76 0

Total 46.16 61.68 66.40 66.48 56.44 42.48

Table 6. Scores for each function and different population sizes using rjDE.

Function Population size

25 50 100 200 400 800 1600

F1 10 10 10 10 10 10 10

F2 0.04 5.08 10 10 10 10 9.36

F3 10 10 5.04 3 2.48 2 1.2

F4 10 10 10 10 10 4.88 2.2

F5 10 10 10 10 10 10 5.96

F6 10 10 10 10 10 10 10

F7 5.88 10 10 8.6 1 0.64 0.04

F8 1.2 1.52 1.08 1 1 1 1

F9 2 2 2 2 2 2 2

F10 10 10 10 10 10 4.16 0

Total 69.12 78.6 78.12 74.6 66.48 54.68 41.76

for some NP , and then decreases for bigger population sizes. For the DE algo-
rithm, we can notice a small deviation from that observation. The maximum for
different algorithms is obtained for different population sizes: For DE the best
population size is 400, followed by 800, for jDE the best population sizes are 400,
200, and for rjDE 50 and 100. Obviously, some algorithms perform better on big-
ger populations, while the others give better results for smaller population sizes.
Mean numbers of restarts for all runs, for each benchmark function and each
population size are shown in Table 7. The restarts were most frequent for small
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Table 7. Mean number of restarts for 50 runs and different population sizes.

Function Population size

25 50 100 200 400 800 1600

F1 0.16 0.00 0.00 0.00 0.00 0.00 0.00

F2 0.74 0.02 0.00 0.00 0.00 0.00 0.00

F3 0.96 0.16 0.00 0.00 0.00 0.00 0.00

F4 1.06 0.00 0.00 0.00 0.00 0.00 0.00

F5 2.26 0.30 0.00 0.00 0.00 0.00 0.00

F6 0.02 0.00 0.00 0.00 0.00 0.00 0.00

F7 13.72 2.90 0.46 0.02 0.00 0.00 0.00

F8 1.62 0.40 0.00 0.00 0.00 0.00 0.00

F9 0.02 0.04 0.00 0.00 0.00 0.00 0.00

F10 0.04 0.00 0.00 0.00 0.00 0.00 0.00

population sizes NP = 25, 50 while for the population sizes NP = 400, 800, 1600
there were no restarts at all.

We followed the rules that were suggested for the CEC 2019 competition.

6 Conclusion

We analyzed three algorithms: DE, jDE and rjDE on the CEC 2019 benchmark
functions with different population sizes, in order to see how the population size
affects their performance. We followed the rules of the CEC 2019 competition.
Our analysis shows that the population size affects the performance of those
algorithms in the manner that it increases the total score until it reaches max-
imum. Further increment of the population size decreases the total score. The
self-adaptive differential evolution with reinitialization has proven to have the
best results when performing on selected benchmark functions. For the future
work, we plan to run the algorithms with a greater maximum number of func-
tion evaluations. We also plan to investigate linear population reduction methods
such as L-SHADE [13].
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Abstract. In wireless communication arise various forms of optimiza-
tion problems including channel assignment problem. There are many
possible ways to assign channels to wireless links and our goal is to find
the assignment that minimizes channel interference. For that purpose we
have developed an ant colony optimization algorithm based on general
guidelines of MAX-MIN Ant System and implemented it in C++ lan-
guage. The algorithm was tested on problem instances and the results
showed that the proposed algorithm is learning about instances that is
solving and that way improves solution quality with the increase of iter-
ations. Results confirmed that the proposed algorithm is an appropriate
approach for solving channel assignment problem in cellular networks.

Keywords: Wireless networks · Combinatorial optimization ·
Computational intelligence · Metaheuristics

1 Introduction

Combinatorial optimization problems arise in many practical applications.
Although modern computers can perform computations very fast, some problems
like those belonging to NP-hard class still cannot be solved by exact algorithms,
unless for very small problem instance or some special cases. Therefore heuristical
algorithms are commonly used since they are often able to find good solutions in
a reasonable time. In wireless networking, it is important to provide a good qual-
ity of service that includes communication with minimal interference. It is also
beneficial to maximize the number of available channels, minimize the required
number of frequencies, etc. There are various versions of channel assignment
problem (CAP) and they can be challenging to solve.

Computational intelligence algorithms are successfully applied for versatile
demanding optimization problems. They use heuristical approaches and learning
techniques to solve problems. Ant colony optimization is a swarm intelligence
approach where artificial ants construct solutions. Their construction is guided
by pheromone trails associated with solution components. Pheromone trails are
maintained to exploit experience gained by previous successful solutions. Infor-
mation about less successful solutions is filtered out by forgetting mechanism:
pheromone evaporation. ACO efficiently solves problems similar to CAP (QAP).
c© Springer Nature Switzerland AG 2020
A. Zamuda et al. (Eds.): SEMCCO 2019/FANCCO 2019, CCIS 1092, pp. 31–42, 2020.
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In the paper, we present an ant colony optimization algorithm for a variant
of channel assignment problem where the goal is to assign channels to links in
a way that overall interference is minimized. Our algorithm learns about the
problem that is being solved and provides promising results.

Heuristic and approximate approaches are rather popular for solving vari-
ous channel assignment problems, also known as frequency assignment problem.
Luna et al. proposed (1, λ) evolutionary algorithm for real-world GSM network
[10]. Optimization of deployment parameters for indoor office wireless local area
network based on IEEE 802.11 standard was presented in [3]. A multi-objective
genetic algorithm hybridized with game theory ideas for CAP was studied in [8].
Shukla et al. proposed a heuristic algorithm that uses a technique of increas-
ing the co-site interference depending upon the adjacent channels interferences
[15]. Ghosal and Ghosh proposed a differential coloring technique using predic-
tion based and random coloring [4]. Sharma and Chaudhari proposed a way to
reduce CAP to satisfiability using graph k-colorability and solve it using proposi-
tional satisfiability (3-CNF-SAT) [14]. Leu and Liu proposed concentric hexagon
oriented multi channel assignment (CHOMA) with APs and channels arranged
in concentric hexagon groups to reduce interference among APs [9]. Buttar, Goel
and Kumar propose an algorithm based on wild dogs using intelligent strategies
when hunting their prey [1]. Marappan and Sethumadhavan proposed solving
channel allocation problem using new genetic algorithm with clique partitioning
method [11]. Peter and Olusegun proposed a scheme combining neural network
easy convergence ability and genetic algorithm global search ability for optimal
dynamic channel assignment in mobile networks [13]. Valdivieso et al. proposed
CAP solution based on a centralized simulated annealing algorithm [16]. Kari,
Shashidhar and Kentros propose online soft edge coloring model for solving CAP
in wireless networks [7]. Novillo, Valdivieso and Velasquez propose a centralized
simulated annealing algorithm (CSA) in opportunistic spectrum access WLAN
with channel prioritization and channel bandwidth restrictions [12]. Chatterjee
and Das proposed ACO variant for routing in mobile Ad-hoc network [2].

The rest of this paper is structured as follows. Section 2 explains the vari-
ant of channel assignment problem (CAP) that is studied in this research, fol-
lowed by description of our algorithm for CAP based on ant colony optimization
metaheuristic in Sect. 3. Experimental results are presented in Sect. 4 and final
conclusions are given in Sect. 5.

2 Channel Assignment Problem

In various wireless communication applications, in military, satellite, wireless
local area networks, TV and radio broadcasting, and cellular mobile networks
there are hard optimization problems related to channel assignment or frequency
assignment. This study focuses on channel assignment in cellular mobile net-
works.

In cellular mobile networks, each mobile network provider has a limited fre-
quency band [fmin, fmax] assigned by the authority in a particular country. This
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frequency band is divided into N channels of the same width (difference between
frequencies of adjacent channels). Hence, the set of channels assigned to provider
can be marked C = {1, ..., N}. To establish a two-way communication between
two points, two channels sufficiently separated must be used per connection.
Usually, frequency band is divided into two sub-bands C1 = {1, ..., N/2} and
C2 = {1 + s, ..., N/2 + s} where s is a distance needed to avoid interference.

Provider positions base stations (cell towers) in a way that enables efficient
communication between adjacent base stations and to maximize base station
area of coverage. Each base station (i.e. cell) uses a set of channels (frequencies)
that can be used to establish a connection. Number of channels assigned to a cell
is estimated by the demand of that area. More densely populated areas require
a higher number of channels per cell as more people may communicate at the
same time.

As available frequency band is limited, with increase of number of commu-
nicating devices, probability of interference occurring between two connections
increases. Interference between two connections occurs if two connections use the
same or near frequency for communication and two connections are geographi-
cally close to each other. Interference will occur at the place where transmitting
energy is approximately the same for both signals.

Mobile network operators have to distribute available channels among cells
in their network in such a way that: 1. each cell receives enough channels to
satisfy the demand for that area 2. each channel in a cell is sufficiently separated
from other channels within the same cell to avoid interference 3. each channel
in a cell is sufficiently separated from channels used in adjacent cells to avoid
interference.

A measure of separation between two channels is called distance between two
channels. E.g. if two channels have a distance of 3, this means they are separated
by 3 channel widths (3 × Δ). If first channel operates at 800 MHz and Δ is 20
MHz, the second would operate at 860 MHz. Distance between channels within
the same cell must be greater than distance between channels in adjacent cells.
As power of the cell signal decreases with distance, distance between channels
used in two remote cells can be smaller. If two cells are sufficiently distanced from
each other, the same channel can be used in these cells. In practical applications,
the required distance between channels can be calculated from measurement of
the power of cell signal at various locations.

It is not always possible to find an arrangement of channels among cells
to completely avoid interference. This depends on number of cells within a net-
work, distances between cells and number of channels available. The studies have
shown, that channel assignment problem belongs to group of NP complete prob-
lems. Mobile network operators have devised a number of strategies to achieve
better results. The goals can be to minimize interference, maximize the number
of available links, minimize the number of required channels, minimize required
frequency band etc.
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Fig. 1. Cell tower arrangement and demand (nr. of links) per cell

Our study is focused on a variant of CAP where for a given set of cells for
mobile communication and the set of available channels the goal is to find an
arrangement for which total interference in the system is minimized.

Problem can be formulated as a set of channels C = {1, ..., N} that can be
assigned to links in mobile network cells. Each cell within a network contains
a number of links that corresponds to demand for that area. E.g. if demand
for a cell 1 is 12 this cell will contain 12 links, if demand for a cell 2 is 20
this cell will contain 20 links. In this way, demand for each cell is introduced
in model. Figure 1 displays an example of cell tower arrangement and demand
per cells (instance s400). To avoid interference, channels have to be assigned to
links in such a way that channel distance constraints are respected: for channels
in the same cell, distance must be greatest, and for neighboring cells distance is
lowered as cells are farther apart. In our example, channels assigned to the same
cell should be separated by at least 5 channels; channels assigned to adjacent
cells should be separated by at least 2 channels, and channels assigned to a
second and third ring of cells should be separated by at least 1 channel. (i.e.
they must not be the same). Other cells may use the same channel, i.e. distance
is 0. Figure 2 shows distances for cell 7. Channels assigned to cell 7 have to be
separated by a distance of 5, channels in adjacent cells (1, 2, 8, 12, 11, 6) have
to be separated by a distance of 2, channels in second ring of cells (3, 9, 13, 18,
17, 16) have to be separated by a distance of 1, channels in third ring of cells
(4, 10, 14, 19) have to be separated by a distance of 1 and channels in all other
cells (5, 15, 20) may use the same channels as cell 7 (distance between channels
is 0).

Fig. 2. Required distances between channels assigned to cell links for cell 7
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For a two-way connection, pairs of channels with a fixed distance s are used
which ensures that there is no interference between two channels used in the same
connection. Hence, it is enough to determine one channel x ∈ C1 per connection
as the other channel is calculated as x + s.

In our study, the problem is given by following input data: number of cells,
with given demand vector, number of available channels and channel distance
vector D. Input data produces channel distance matrix derived from cell locations
and respective channel distances.

Our study uses modified quadratic assignment problem (QAP) approach
using MAX-MIN ants system (MMAS) to find an arrangement of channels per
cells such that total interference in the system is minimized. Our study uses app-
roach similar to QAP by allocating channels to links, but differs in a way that
there may be more or less channels than links available and the same channel
may be reused by two or more links.

To demonstrate how algorithm works, let’s assume that we have a small
problem with 6 cells, with demand vector V = 1, 2, 1, 1, 2, 1 which produces 8
links, 6 available channels F = 1, 2, 3, 4, 5, 6 and distance vector D = 2, 1, 0.
Let cells be arranged in following way (Fig. 3):

Fig. 3. Cell arrangement and demand per cell of a small CAP

This results in link distance matrix 8 × 8 presented in Table 1. From this
matrix we can read that channel in link 1 (row 1) has to be at least 1 unit

Table 1. Small CAP channel distance matrix

– Cells 1 2 2 3 4 5 5 6

Cells Links 1 2 3 4 5 6 7 8

1 1 2 1 1 0 1 1 1 0

2 2 1 2 2 1 0 1 1 1

2 3 1 2 2 1 0 1 1 1

3 4 0 1 1 2 0 0 0 1

4 5 1 0 0 0 2 1 1 0

5 6 1 1 1 0 1 2 2 1

5 7 1 1 1 0 1 2 2 1

6 8 0 1 1 1 0 1 1 2
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distanced from channels in links 2 and 3 (columns 2 and 3); and 0 units distanced
from channel in link 4 (column 4), i.e. the same channel may be used. We can
also see that channel in link 2 (row 2) has to be at least 2 units distanced from
channel in link 3 (column 3) which resides in the same cell (cell 2).

For a problem of such small scale, MMAS quickly finds an optimal solution
where total interference in the system equals 0 (Fig. 4).

Fig. 4. Optimal solution (with no interference) of a simple problem

Complex problems contain large number of links and channels. With number
of links and channels, number of possible solutions increases exponentially. In
some instances, a solution with no interference cannot be found. In these cases,
we aim to find a solution with minimum interference.

3 Proposed Algorithm

To deal with CAP we have devised an algorithm that belongs to the class of ant
colony optimization (ACO) and more specifically if follows the general frame-
work of MAX-MIN ant system (MMAS) [5,6]. The algorithm iteratively performs
procedures as described in Algorithm 1. By using pheromone trails and heuristic
information, ants construct solutions in each iteration of the algorithm. This
is followed by pheromone evaporation and pheromone reinforcement. The algo-
rithm goes through multiple iterations until stopping criteria are not satisfied.

Algorithm 1. The General Procedures of Proposed Algorithm
1: initialization()
2: while (number of steps is not reached) and (threshold value is not reached) do
3: for k = 1 to m do
4: construct solution()
5: end for
6: perform local optimization() � optional
7: evaporate pheromone trails()
8: reinforce pheromone trails()
9: end while

Pheromone trail is associated with pair (link, channel). The pheromone trails
can be conveniently stored into a matrix of dimension (number of links) × (num-
ber of channels). Each channel can be assigned to any link and even to multiple
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links. The heuristic information is calculated dynamically whenever channel j
is considered to be assigned to link i by using expression (1). The interference
between pair (k, l) and (i, j) is denoted by function interference(ckl, cij) and
SP is partial solution that contains all already selected solution components.
The pheromone trail τij and heuristic information ηij are used by random-
proportional rule of MMAS defined by expression (2) to add solution component
into partial. The set C contains all available channels.

ηij =
1

1 +
∑

ckl∈SP interference(ckl, cij)
(1)

pij =
τα
ij · ηβ

ij
∑

i,k

(
τα
ik · ηβ

ik

) ,∀k ∈ C, (2)

After ants have finished with solution construction, the pheromone trails
of all components are evaporated by multiplying with (1 − ρ) as defined with
expression (3). The parameter ρ is evaporation rate chosen to be from interval
[0, 1〉, L is the set of links and C is the set of channels. The value of τij must
not fall below the lower pheromone bound τmin.

τij = max{τmin, (1 − ρ) · τi,j},∀i ∈ L,∀j ∈ C, (3)

The pheromone evaporation is followed by the pheromone reinforcement pro-
cedure where only the pheromone trails τkl of the best solution are increased by
adding additional value to a pheromone trails by using expression (4)

τkl = min{τmax, τkl +
1
ρ
},∀τkl ∈ sbest (4)

The initial value for all pheromone trails τ0 and the upper pheromone bound
τmax are set to equal value by using expression (5).

τ0 = τmax =
1
ρ

(5)

4 Experimental Research

4.1 Experimental Settings

In order to evaluate and analyze behaviour of our algorithm we have performed
experimental research. For testing purposes we have used eight problem instances
listed in Table 2. These problems model mobile networks with 20 cells but with
different number of links per cell, different number of total links and different
number of available channels that can be assigned to links.

For this research we have implemented proposed algorithm in C++11 lan-
guage and compiled the program with g++ compiler under Linux environment.
For each problem instance we have repeated experiment eleven times and cal-
culated statistical values. For all reported results in the following subsection,
except in few cases when it is explicitly specified otherwise, we have used the
same parameter setting. Each algorithm was allowed to execute 2000 iterations,
each colony had 50 ants, other parameters was set to α = 1, β = 4, ρ = 0.2,
τ0 = 1/ρ, τmax = 1/ρ, τmin = 0.001.
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Table 2. Problem instances used in this research

Problem
instance

Number
of cells

Links in the
smallest cell

Links in the
largest cell

Total num.
of links

Num. of
available
channels

t100f65 20 5 5 100 65

s100f80 20 3 10 100 80

t200f130 20 10 10 200 130

s200f160 20 4 20 200 160

t300f180 20 15 15 300 180

s300f240 20 6 28 300 240

t400f240 20 20 20 400 240

s400f310 20 8 40 400 310

4.2 Results

At the beginning, the algorithm is not expected to find good solutions unless
the problems are trivial, but it is interesting to observe some statistics in order
to compare it with the results at the end of execution. Some basic statistics
about observed best solutions in 10th iteration of the algorithm is presented
in Table 3. For each problem instance minimum solution, maximum solution,
arithmetic mean, and median solution are provided. This data shows that for
smaller problem instances, with smaller number of cells and links, cumulative
interference is smaller and it generally grows with the size of the problem.

To investigate the benefits of learning mechanism in the proposed algorithm,
two typical executions on t100f65 are presented in Fig. 5. In the case where
parameter α is set to 0, which effectively disables the learning mechanism, the
algorithm randomly fluctuates with solution quality mostly between 250 and
300. For the case when parameter α is set to 1, the algorithm achieves good
progress from solution with fitness around 300 towards a solution of fitness 10.
As expected, at the beginning, the best solution in current iteration fluctuates
similar to the case without learning, but as the pheromone values accumulate
more information about successful solutions in the previous iterations these fluc-
tuations are much smaller.

Although, the proposed algorithm can achieve rather good results for smaller
problem instances even without additional guidance provided by heuristic infor-
mation η, as in case in Fig. 5, where heuristic information was disabled by setting
β = 0, for larger instances the algorithm converges too slowly. This is shown in
Fig. 6. When parameter β = 0, algorithm does improve solution quality with
increase of algorithm iterations, but this becomes too slow and does not reach
good quality solutions. When provided with α = 1 and β = 4, the algorithm
starts with better solutions and converges much faster and closer to optimal (in
this case also the ideal) solution.
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Fig. 5. Solution quality for t100f65 with parameter β = 0

The final results after 2000 iterations are presented in Table 4. In addition
to values provided in Table 3, 0.2-quantile and the percentage of executions that
obtained ideal solutions are also reported. The results show that for most prob-
lem instances the proposed algorithm did find ideal solutions in some executions
of the algorithm, and depending on the problem instance, this happened between
18% to 46% of repetitions. The average performance of the algorithm in those
cases is such that arithmetic mean and median solution are rather close to ideal
solution. Although in one execution of the algorithm it is not expected to obtain
ideal solution, by repeating the algorithm multiple times it is reasonable to
expect to obtain an ideal solution. For problem instances t300f180, t400f240,
and s400f310 the algorithm did not obtain any ideal solution. Although it is
important to note that optimal solutions are not always equal to ideal solu-
tions because due to available channels and required constraints ideal solutions
are sometimes impossible. For those harder problem instances, improvement of
arithmetic mean of best obtained solution with regard to iterations is presented
in Fig. 7. It is evident that the algorithm slows down with improvement after
around 100 iterations, but the improvement in solution quality continues until
the end of execution suggesting that for more iterations algorithm might improve
solution further. In comparison to results from the beginning of the algorithm,
the final results show considerable improvement.
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Fig. 6. Solution quality for t200f130 for proposed algorithm with and without heuristic
information

Table 3. Solutions obtained at the beginning of the algorithm (after 10 iterations)

Problem instance MIN MAX MEAN MEDIAN

t100f65 20 38 32.2 33

s100f80 30 44 38.2 39

t200f130 72 92 85.8 87

s200f160 82 106 100.94 98

t300f180 164 204 186.8 188

s300f240 124 156 146.4 149

t400f240 248 266 260.2 264

s400f310 224 258 242.4 244

Table 4. The final results obtained after 2000 iterations

Problem instance MIN MAX MEAN MEDIAN Q0.2 Ideal solutions

t100f65 0 4 1.4 1 0 45.5%

s100f80 0 4 1.6 2 0 27.3%

t200f130 0 4 1.8 2 1.6 18.2%

s200f160 0 6 3.4 4 1.6 18.2%

t300f180 18 32 27 27 24 0.0%

s300f240 0 6 2.6 2 1.6 18.2%

t400f240 20 40 27.8 27 21.6 0.0%

s400f310 10 16 14.6 16 13.6 0.0%
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Fig. 7. Arithmetic mean of best found solutions for harder problem instances

5 Conclusion

Optimization in wireless communication is important to keep high quality of
service, minimize resource usage and allow as many of serviced users as possible.
To solve a variant of channel assignment problem (CAP) we have devised and
implemented an ant colony optimization algorithm. Although the problem seems
similar to the quadratic assignment problem (QAP), because of different objec-
tives and different constraints our design choices are somewhat different from
those usually used in ACO for QAP. In ACO for QAP the heuristic information
are not commonly used, but in our algorithm for CAP heuristic information
showed to be an important component in order to cope with problem instances
of greater size. In performed experimental research our algorithm demonstrated
learning capabilities and proved to be a viable approach in solving CAP. In
future work our plans are to add local optimization and perform parameters
exploration to improve the algorithmic behaviour as well as comparison with
other channel assignment schemes based on GA, PSO and other metaheuristics.
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Abstract. The self-organizing migrating algorithm (SOMA) is a popular
population base metaheuristic. One of its key mechanisms is a perturbation of
the individual movement with a binary-valued perturbation (PRT) vector. The
goal of perturbation is to improve the diversity of the population and exploration
of the search space. In this paper, we study a variant of the SOMA algorithm
with non-binary PRT vector. We investigate the effect of introducing a third
possible value, a negative (repulsive) element, into the PRT vector. The aim is to
slow the population convergence and prolong the exploration phase. The
inspiration is taken from previous successful implementations of repulsive
mechanics in another swarm-based method: the Particle Swarm Optimization.

Keywords: Self-organizing migrating algorithm � SOMA � Repulsivity �
Perturbation

1 Introduction

Swarm intelligence based metaheuristics [1] such as Particle swarm optimization [2]
and Ant colony optimization [3] have gained significant popularity in the past decades
and have inspired numerous new bio-inspired algorithms, especially in the field of
continuous optimization [4]. The usefulness of these methods is that a solution for very
complex optimization problems can be obtained in a reasonable time. As new and more
complex optimization challenges emerge daily, the demand for new and more powerful
optimizers is constant.

The self-organizing migrating algorithm (SOMA) is a population-based meta-
heuristic that was originally proposed in 2000 [5]. Subsequently, several strategies for
population migration were proposed [6]. Over time, the “All-to-One” and “All-to-All”
strategies became the most popular and widely used [7]. SOMA has been successfully
applied in various areas [8–10]. Other researchers proposed hybrid variants of SOMA,
e.g. the C-SOMGA [11] a combination of SOMA and genetic algorithm (GA) to solve
constrained nonlinear optimization problems. Another hybrid of SOMA and GA was
proposed in [12].

More recently, SOMA has been used in obstacle avoidance for swarm robot [13],
noise removal [14] or pupil localization [15]. Further, SOMA has been subject to recent
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theoretical studies such as [16] where the centrality measures were employed to
compare various runs of SOMA algorithm.

One of the main inner mechanisms of SOMA is so-called perturbation. It fulfills the
role of random mutation, similarly to other methods. A random vector of zeros and
ones multiplies the movement-guiding vector of an individual, effectively blocking
movement in random dimensions. The PRT parameter controls the probability of zero
and one. This mechanism is mainly aimed to improve the diversity of the population
and prevent premature convergence into local sub-optima, and it does succeed in
fulfilling this role, to some degree [17].

One of the promising methods to further improve population diversity in swarm
methods is a repulsive mechanism [17, 18]. In the repulsive strategy, the general
guidance vector of an individual is multiplied by a negative number or vector of
numbers, leading to movement from the given attraction point (varies by the algo-
rithm). In [7], the negative value for PRT vector is discussed as a possibility. However,
no study on this matter has been published.

Thus, the original contribution of this paper can be summarized as:

• Investigation of the possibility of the repulsive mechanism implementation into
SOMA algorithm and presentation of related experiments results.

• Detailed numerical as well as graphical analyses of the above-mentioned case study.
• A total of 209 combinations of control parameters settings have been tested.

The rest of the paper is structured as follows: In the following section, the SOMA
algorithm is introduced. The experiment methodology is described in section three, and
the results presented in the following section. The paper concludes with the discussion
of the results.

2 Self-organizing Migrating Algorithm (SOMA)

SOMA is a population-based metaheuristic method that utilizes the traditional cross-
over and mutation operators in a modified manner simulating a social group of
individuals.

In the original and most common SOMA variant (strategy) called All-to-One [6, 7],
utilized in this study, the algorithm follows these steps: At the start of each iteration
(called migration loop; ML), a Leader is elected based on the cost function (CF) value
(individual with the lowest CF value becomes the leader). Each remaining individual
then moves in the direction towards the Leader in the search space. The movement
consists of jumps determined by the Step parameter until the individual reaches the
final position given by the PathLength parameter.

Each step is evaluated using the cost function, and the best position (including the
initial position of a given individual) is chosen as the new position of the individual in
the next migration loop. The exact position of each step is calculated according to (1)

xMLþ 1
i;j ¼ xML

i;j;START þðxML
L;j � xML

i;j;STARTÞ � t � PRTVectorj ð1Þ
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Where:

xMLþ 1
i;j -value of i-th individual’s j-th parameter, in step t in migration loop ML + 1,
xML
i;j;START -value of i-th individual’s j-th parameter, Start position in actual ML,
xML
L;j -value of Leader’s j-th parameter in migration loop ML,
t - step 2 <0, by step to, PathLength>,

PRTVector (Perturbation Vector) represents the D-dimensional vector of ones and
zeros dependent on user predefined PRT value. This value can be understood as a
threshold constant. For each dimension component in the perturbation vector, a random
number r from interval <0, one> is generated. If r < PRT, then one is saved to
PRTVector. Otherwise, zero is saved into the PRTVector.

New PRTVector is constructed before each step of a given individual, and further,
as a rule, there has to be at least one zero in the vector. An example of possible
individual trajectories is given in Fig. 1. The red dot represents an active individual; the
leader is represented by the green dot.

3 Experiment Setup

In the experimental part, a PRTVector construction is altered to introduce the repulsive
force. A pair of control parameters for perturbation (PRT1 and PRT2) is introduced,
following the pattern PRT2 � PRT1 + 0.05. During the construction of PRTVector, if
random number r < PRT1, a value of −1 is assigned, if r � PRT2, the value of +1 is
assigned. Otherwise, into the corresponding position in PRTVector is assigned a zero.

Fig. 1. The perturbation and the individual movement SOMA [10] (Color figure online)
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Using this mechanism, we conduct a tuning experiment for PRT1 from 0 to 0.9 and
PRT2 from 0.05 to 1, by step 0.05 for both parameters, keeping the PRT2 �
PRT1 + 0.05 rule, leading to 209 combinations. For each setting, the SOMA algorithm
is repeated 30 times, with random population initialization.

With accordance to general recommendations [1, 6, 7] and the focus of this study,
the algorithm was set up as follows:

Pop. Size: 30; Migration loops: 100;
Step = 0.11; PathLength = 3;
D = 15;

The following set of three well-known benchmark functions (2)–(4) [19] was used
for the experiments presented in this paper. We have selected a limited number of
simpler functions due to the high number of possible parameter combinations and
complex results analyses. Also, those simpler well-known functions increase the
understandability of gained results and direct links into the behavior of the SOMA
algorithm under different scenarios.

Rastrigin’s function.

f6ðxÞ ¼
XD

i¼1

½x2i � 10 cosð2pxiÞþ 10� ð2Þ

Search Range: [−5.12, 5.12]D; Glob. Opt. Pos.: [0]D

Rosenbrock’s function.

f3ðxÞ ¼
XD�1

i¼1

½100ðx2i � xiþ 1Þ2 þð1� xiÞ2� ð3Þ

Search Range: [−10, 10]D; Glob. Opt. Pos.: [0]D

Schwefel’s function.

f5ðxÞ ¼ 418:9829 � D�
XD

i¼1

�xi sinð
ffiffiffiffiffi
xj j

p
Þ ð4Þ

Search Range: [−512, 511]D; Glob. Opt. Pos.: [420.96]D

We investigate if the implementation of repulsive force into the perturbation
operation in SOMA might improve the performance of the algorithm on such problems.

4 Results

As was outlined in the previous section, a tuning experiment the SOMA algorithm with
non-binary PRTVector containing a repulsive mechanism was performed in this paper.
A total number of 209 different scenarios (parameter settings) were tested.
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4.1 Performance Visualization

In Figs. 2, 3 and 4, an overview of the results is given in the form of a 3D array plot,
depicting the average CF value for 30 runs depending on PRT1 and PRT2 setting.
Extremely high objective function values (CF) were clipped for clarity.

According to Fig. 2, an extreme increase of CF value is happening for values of
PRT1 and PRT2 nearing their upper bound. In such cases, the repulsive mechanism is a
dominant role (the number of generated −1 s is higher than the number of +1 s), and
the individuals disperse. A similar trend is presented in Figs. 3 and 4.

For better clarity, we present a series of cross-views in Figs. 5, 6, 7, 8, 9, 10, 11, 12,
13 and 14 as an example or the case of Rastrigin function (the first scenario depicts a
situation for original SOMA with no repulsively present). In all cases, it is clear, that a
value of PRT2 over 0.8 leads to a sharp increase of the objective function value and
therefore worse performance of the method.

Fig. 2. Average CF value for 30 runs – 3D visualization – Rastrigin function

Fig. 3. Average CF value for 30 runs – 3D visualization – Schwefel function
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Fig. 4. Average CF value for 30 runs – 3D visualization – Rosenbrock function

Fig. 5. Average CF value for 30 runs – 2D
detailed look – PRT1: 0

Fig. 6. Average CF value for 30 runs – 2D
detailed look – PRT1: 0

Fig. 7. Average CF value for 30 runs – 2D
detailed look – PRT1: 0.2

Fig. 8. Average CF value for 30 runs – 2D
detailed look – PRT1: 0.3
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At first glance, it might seem that repulsive force implementation is not beneficial to
SOMA; however evidence of opposite is presented in Table 1.

Fig. 9. Average CF value for 30 runs – 2D
detailed look – PRT1: 0.4

Fig. 10. Average CF value for 30 runs – 2D
detailed look – PRT1: 0.5

Fig. 11. Average CF value for 30 runs – 2D
detailed look – PRT1: 0.6

Fig. 12. Average CF value for 30 runs – 2D
detailed look – PRT1: 0.7

Fig. 13. Average CF value for 30 runs – 2D
detailed look – PRT1: 0.8

Fig. 14. Average CF value for 30 runs – 2D
detailed look – PRT1: 0.9
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Table 1. Statistical overview of the results – Rastrigin function

PRT1 PRT2 Mean. Std. dev. Min PRT1 PRT2 Mean. Std. dev. Min

0 0.05 3.70E+01 1.16E+01 1.95E+01 0.3 0.35 2.74E+01 1.11E+01 1.28E+01
0 0.1 3.77E+01 1.18E+01 2.22E+01 0.3 0.4 2.51E+01 8.05E+00 1.44E+01
0 0.15 4.28E+01 8.98E+00 2.39E+01 0.3 0.45 2.38E+01 9.89E+00 1.11E+01
0 0.2 3.71E+01 1.12E+01 1.90E+01 0.3 0.5 1.67E+01 5.77E+00 6.88E+00
0 0.25 3.63E+01 1.21E+01 1.55E+01 0.3 0.55 1.49E+01 5.53E+00 5.50E+00
0 0.3 3.99E+01 1.38E+01 2.22E+01 0.3 0.6 1.02E+01 3.35E+00 5.37E+00
0 0.35 3.64E+01 1.11E+01 1.76E+01 0.3 0.65 1.07E+01 7.17E+00 3.48E+00
0 0.4 4.16E+01 1.24E+01 1.40E+01 0.3 0.7 6.79E+01 2.46E+01 1.95E+01
0 0.45 4.75E+01 1.13E+01 2.60E+01 0.3 0.75 2.11E+02 5.55E+01 1.27E+02
0 0.5 4.94E+01 1.39E+01 2.62E+01 0.3 0.8 7.35E+02 3.34E+02 1.46E+02
0 0.55 4.65E+01 1.17E+01 2.70E+01 0.3 0.85 3.81E+03 1.97E+03 2.08E+02
0 0.6 4.59E+01 1.09E+01 2.96E+01 0.3 0.9 1.93E+04 1.07E+04 1.90E+02
0 0.65 4.84E+01 1.09E+01 2.56E+01 0.3 0.95 6.28E+04 2.59E+04 2.76E+04
0 0.7 5.05E+01 1.09E+01 3.14E+01 0.3 1 2.12E+05 1.38E+05 1.89E+02
0 0.75 4.50E+01 1.15E+01 1.81E+01 0.35 0.4 2.28E+01 7.90E+00 9.58E+00
0 0.8 4.63E+01 1.11E+01 3.06E+01 0.35 0.45 1.65E+01 6.18E+00 6.77E+00
0 0.85 4.34E+01 1.10E+01 2.33E+01 0.35 0.5 1.43E+01 4.72E+00 4.09E+00
0 0.9 4.50E+01 1.09E+01 1.51E+01 0.35 0.55 1.06E+01 4.65E+00 4.32E+00
0 0.95 1.10E+02 3.25E+01 5.52E+01 0.35 0.6 8.84E+00 3.06E+00 4.94E+00
0 1 2.69E+02 4.31E+01 1.96E+02 0.35 0.65 4.41E+01 2.54E+01 1.19E+01
0.05 0.1 3.72E+01 1.60E+01 1.89E+01 0.35 0.7 1.95E+02 6.59E+01 9.64E+01
0.05 0.15 3.96E+01 1.31E+01 1.51E+01 0.35 0.75 6.34E+02 2.94E+02 1.32E+02
0.05 0.2 3.47E+01 1.01E+01 1.80E+01 0.35 0.8 3.12E+03 1.04E+03 1.34E+03
0.05 0.25 3.73E+01 1.45E+01 1.80E+01 0.35 0.85 1.45E+04 7.11E+03 3.61E+03
0.05 0.3 3.37E+01 9.55E+00 1.67E+01 0.35 0.9 6.02E+04 4.79E+04 1.75E+02
0.05 0.35 4.01E+01 1.15E+01 1.79E+01 0.35 0.95 2.09E+05 2.28E+05 1.60E+02
0.05 0.4 3.84E+01 1.21E+01 1.78E+01 0.35 1 5.34E+05 3.81E+05 1.74E+02
0.05 0.45 4.29E+01 1.15E+01 2.46E+01 0.4 0.45 1.23E+01 5.08E+00 4.37E+00
0.05 0.5 4.34E+01 1.19E+01 2.21E+01 0.4 0.5 8.90E+00 3.72E+00 3.83E+00
0.05 0.55 4.44E+01 1.22E+01 2.08E+01 0.4 0.55 7.43E+00 2.38E+00 2.17E+00
0.05 0.6 4.08E+01 1.23E+01 1.91E+01 0.4 0.6 3.22E+01 1.80E+01 9.64E+00
0.05 0.65 4.08E+01 1.06E+01 2.13E+01 0.4 0.65 1.60E+02 4.47E+01 8.35E+01
0.05 0.7 4.14E+01 8.71E+00 2.22E+01 0.4 0.7 5.70E+02 2.83E+02 1.56E+02
0.05 0.75 3.31E+01 8.86E+00 1.54E+01 0.4 0.75 2.43E+03 2.06E+03 1.55E+02
0.05 0.8 2.95E+01 6.89E+00 1.85E+01 0.4 0.8 1.15E+04 5.06E+03 4.22E+03
0.05 0.85 3.06E+01 1.61E+01 8.26E+00 0.4 0.85 4.45E+04 2.18E+04 1.54E+04
0.05 0.9 6.09E+01 2.41E+01 1.56E+01 0.4 0.9 1.87E+05 9.02E+04 9.35E+04
0.05 0.95 1.22E+02 3.55E+01 5.40E+01 0.4 0.95 5.04E+05 3.17E+05 1.57E+02
0.05 1 8.92E+02 2.40E+02 5.83E+02 0.4 1 1.53E+06 8.34E+05 2.00E+02
0.1 0.15 3.46E+01 8.23E+00 1.60E+01 0.45 0.5 7.72E+00 2.66E+00 2.00E+00
0.1 0.2 3.36E+01 1.21E+01 1.40E+01 0.45 0.55 2.81E+01 1.49E+01 8.78E+00
0.1 0.25 3.49E+01 1.15E+01 1.61E+01 0.45 0.6 1.41E+02 6.27E+01 3.94E+01

(continued)
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Table 1. (continued)

PRT1 PRT2 Mean. Std. dev. Min PRT1 PRT2 Mean. Std. dev. Min

0.1 0.3 3.93E+01 1.16E+01 1.70E+01 0.45 0.65 4.00E+02 1.21E+02 1.35E+02
0.1 0.35 3.68E+01 1.27E+01 1.67E+01 0.45 0.7 2.12E+03 1.94E+03 1.46E+02
0.1 0.4 3.76E+01 1.22E+01 1.46E+01 0.45 0.75 1.00E+04 6.60E+03 2.04E+03
0.1 0.45 3.84E+01 9.36E+00 2.09E+01 0.45 0.8 5.61E+04 5.44E+04 1.80E+02
0.1 0.5 4.16E+01 1.33E+01 1.91E+01 0.45 0.85 1.58E+05 1.10E+05 1.46E+02
0.1 0.55 3.81E+01 1.19E+01 1.59E+01 0.45 0.9 5.01E+05 2.69E+05 2.24E+02
0.1 0.6 3.95E+01 1.15E+01 1.93E+01 0.45 0.95 1.63E+06 9.18E+05 2.20E+02
0.1 0.65 3.41E+01 8.46E+00 1.88E+01 0.45 1 4.16E+06 2.54E+06 1.60E+02
0.1 0.7 3.02E+01 8.72E+00 1.67E+01 0.5 0.55 1.14E+02 4.39E+01 5.61E+01
0.1 0.75 2.23E+01 6.08E+00 8.88E+00 0.5 0.6 3.67E+02 1.51E+02 1.29E+02
0.1 0.8 1.91E+01 9.26E+00 8.50E+00 0.5 0.65 1.28E+03 1.02E+03 1.69E+02
0.1 0.85 3.29E+01 1.42E+01 1.49E+01 0.5 0.7 8.97E+03 9.41E+03 1.68E+02
0.1 0.9 1.11E+02 2.69E+01 4.97E+01 0.5 0.75 3.73E+04 2.79E+04 1.46E+02
0.1 0.95 5.23E+02 1.64E+02 1.46E+02 0.5 0.8 1.40E+05 7.56E+04 1.88E+02
0.1 1 2.74E+03 1.22E+03 2.02E+02 0.5 0.85 5.13E+05 4.75E+05 1.49E+02
0.15 0.2 3.84E+01 1.08E+01 1.41E+01 0.5 0.9 1.56E+06 8.26E+05 2.09E+02
0.15 0.25 3.68E+01 1.20E+01 1.75E+01 0.5 0.95 4.88E+06 3.06E+06 2.15E+02
0.15 0.3 3.97E+01 1.43E+01 1.55E+01 0.5 1 1.29E+07 7.18E+06 2.25E+02
0.15 0.35 3.99E+01 1.26E+01 1.50E+01 0.55 0.6 8.94E+02 4.28E+02 1.90E+02
0.15 0.4 3.86E+01 1.04E+01 2.26E+01 0.55 0.65 6.62E+03 5.26E+03 1.53E+03
0.15 0.45 3.51E+01 8.03E+00 2.06E+01 0.55 0.7 3.51E+04 3.36E+04 1.57E+02
0.15 0.5 3.17E+01 1.00E+01 1.29E+01 0.55 0.75 1.31E+05 7.68E+04 1.63E+02
0.15 0.55 3.70E+01 9.70E+00 1.92E+01 0.55 0.8 4.50E+05 2.87E+05 1.96E+02
0.15 0.6 2.97E+01 8.15E+00 1.14E+01 0.55 0.85 2.00E+06 1.18E+06 3.66E+05
0.15 0.65 2.58E+01 7.13E+00 1.46E+01 0.55 0.9 4.10E+06 2.53E+06 1.90E+02
0.15 0.7 2.03E+01 5.28E+00 1.10E+01 0.55 0.95 1.53E+07 1.56E+07 2.12E+02
0.15 0.75 1.30E+01 4.05E+00 7.91E+00 0.55 1 3.33E+07 2.01E+07 1.65E+02
0.15 0.8 3.24E+01 2.03E+01 6.90E+00 0.6 0.65 3.34E+04 2.30E+04 7.87E+03
0.15 0.85 8.65E+01 2.79E+01 3.10E+01 0.6 0.7 1.10E+05 6.12E+04 2.17E+02
0.15 0.9 4.12E+02 9.09E+01 2.07E+02 0.6 0.75 4.66E+05 2.95E+05 1.61E+02
0.15 0.95 2.06E+03 6.14E+02 1.23E+03 0.6 0.8 1.47E+06 8.78E+05 2.01E+02
0.15 1 8.47E+03 3.44E+03 2.04E+02 0.6 0.85 4.77E+06 3.67E+06 1.59E+02
0.2 0.25 3.18E+01 8.92E+00 1.77E+01 0.6 0.9 1.28E+07 7.56E+06 3.54E+06
0.2 0.3 3.24E+01 8.65E+00 1.70E+01 0.6 0.95 4.37E+07 3.89E+07 2.06E+02
0.2 0.35 3.35E+01 1.02E+01 1.83E+01 0.6 1 1.03E+08 8.12E+07 1.87E+02
0.2 0.4 3.37E+01 1.02E+01 1.97E+01 0.65 0.7 3.53E+05 2.70E+05 5.12E+04
0.2 0.45 3.22E+01 9.01E+00 1.68E+01 0.65 0.75 1.28E+06 7.84E+05 2.00E+02
0.2 0.5 3.42E+01 9.10E+00 1.98E+01 0.65 0.8 3.89E+06 2.39E+06 2.14E+02
0.2 0.55 2.69E+01 7.50E+00 1.28E+01 0.65 0.85 1.38E+07 1.35E+07 1.62E+02
0.2 0.6 2.35E+01 6.71E+00 1.16E+01 0.65 0.9 3.44E+07 1.86E+07 2.15E+02
0.2 0.65 1.68E+01 4.43E+00 9.09E+00 0.65 0.95 1.21E+08 8.72E+07 1.68E+02
0.2 0.7 9.88E+00 4.35E+00 4.26E+00 0.65 1 2.78E+08 1.81E+08 8.81E+07

(continued)
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4.2 Numerical Results

In the following Table 1, the full numerical results for Rastrigin function are presented.
For each combination of PRT1 and PRT2, an average (mean) results are given,
alongside with standard deviation, and minimal (best) result among the 30 runs.

The best mean result is given in bold number, the best five mean results (and
corresponding parameters) are highlighted by grey color. It is clear that when compared
with non-repulsive SOMA (PRT1 = 0), the performance of some repulsive variants is
improved notably. Further, none of the best five results on Rastrigin function was
achieved by SOMA algorithm without repulsivity.

Further, in Table 2, the best five results for every function are presented. According
to a performed Friedman, rank test (alpha 0.05), the top five results do not differ with
statistical significance.

As supplementary material, the full numerical results for all functions and the
Friedman rank results visualization are provided at the A.I.Lab resource webpage
(https://ailab.fai.utb.cz/resources/) and are not included in this paper for space limita-
tion reasons.

Table 1. (continued)

PRT1 PRT2 Mean. Std. dev. Min PRT1 PRT2 Mean. Std. dev. Min

0.2 0.75 1.99E+01 1.35E+01 7.25E+00 0.7 0.75 3.59E+06 3.32E+06 1.70E+02
0.2 0.8 8.55E+01 2.53E+01 4.56E+01 0.7 0.8 1.18E+07 1.06E+07 1.66E+02
0.2 0.85 3.50E+02 7.23E+01 2.52E+02 0.7 0.85 3.73E+07 2.75E+07 1.30E+02
0.2 0.9 1.29E+03 4.03E+02 7.04E+02 0.7 0.9 1.07E+08 5.99E+07 1.74E+02
0.2 0.95 5.76E+03 3.12E+03 1.65E+02 0.7 0.95 3.07E+08 1.73E+08 1.98E+02
0.2 1 2.22E+04 1.51E+04 1.55E+02 0.7 1 7.96E+08 4.70E+08 1.95E+02
0.25 0.3 3.34E+01 1.07E+01 2.03E+01 0.75 0.8 2.62E+07 2.30E+07 2.00E+02
0.25 0.35 3.24E+01 7.17E+00 1.60E+01 0.75 0.85 1.04E+08 8.05E+07 1.90E+02
0.25 0.4 2.99E+01 1.05E+01 1.65E+01 0.75 0.9 2.89E+08 1.80E+08 2.11E+02
0.25 0.45 2.88E+01 1.04E+01 1.26E+01 0.75 0.95 7.28E+08 4.28E+08 2.03E+02
0.25 0.5 2.54E+01 9.49E+00 1.03E+01 0.75 1 2.02E+09 1.38E+09 1.85E+02
0.25 0.55 2.12E+01 6.48E+00 9.93E+00 0.8 0.85 1.96E+08 1.22E+08 1.71E+02
0.25 0.6 1.53E+01 4.48E+00 7.62E+00 0.8 0.9 6.46E+08 4.68E+08 2.00E+02
0.25 0.65 9.21E+00 3.49E+00 3.08E+00 0.8 0.95 2.34E+09 1.46E+09 2.07E+02
0.25 0.7 1.22E+01 6.45E+00 4.40E+00 0.8 1 4.65E+09 2.77E+09 2.07E+02
0.25 0.75 7.17E+01 2.09E+01 2.65E+01 0.85 0.9 1.17E+09 8.48E+08 1.83E+02
0.25 0.8 2.94E+02 9.99E+01 1.67E+02 0.85 0.95 3.75E+09 1.78E+09 2.15E+02
0.25 0.85 1.09E+03 4.28E+02 1.46E+02 0.85 1 1.22E+10 6.85E+09 1.90E+02
0.25 0.9 4.82E+03 2.19E+03 2.11E+03 0.9 0.95 9.39E+09 4.72E+09 2.15E+02
0.25 0.95 1.96E+04 1.18E+04 6.93E+03 0.9 1 2.63E+10 1.36E+10 1.93E+02
0.25 1 7.93E+04 4.02E+04 1.78E+02
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4.3 Parameter Pool Visualization

In this section, we provide a parameter pool visualization for the top performing variants
presented in Table 2. In Figs. 15, 16 and 17, the standard Box and Whiskers plot for the
best performing setting of SOMA is presented. For each parameter (15 parameters,
D = 15) the plot depicts the median, max, min and lower and upper quartiles (25% and
75%). The data are combined from the results of all 30 repeated runs.

Fig. 15. Parameter pool visualization – Rastrigin function

Table 2. Statistical overview of the best five results

PRT1 PRT2 Mean Std. dev. Min Max

Rastrigin
0.25 0.65 9.21E+00 3.49E+00 3.08E+00 1.86E+01
0.35 0.6 8.84E+00 3.06E+00 4.94E+00 1.75E+01
0.4 0.5 8.90E+00 3.72E+00 3.83E+00 1.89E+01
0.4 0.55 7.43E+00 2.38E+00 2.17E+00 1.11E+01
0.45 0.5 7.72E+00 2.66E+00 2.00E+00 1.43E+01
Schwefel
0 0.8 1.01E+06 3.05E+05 4.91E+05 1.92E+06
0 0.85 9.89E+05 2.38E+05 5.55E+05 1.49E+06
0 0.9 9.33E+05 2.08E+05 6.08E+05 1.38E+06
0 0.95 9.36E+05 2.03E+05 5.76E+05 1.39E+06
0.05 0.9 1.00E+06 2.15E+05 7.22E+05 1.45E+06
Rosenbrock
0.25 0.75 4.73E+01 3.00E+01 4.87E+00 1.24E+02
0.3 0.7 4.61E+01 3.24E+01 4.94E+00 1.46E+02
0.4 0.6 5.25E+01 3.07E+01 1.64E+01 1.49E+02
0.45 0.5 5.47E+01 3.34E+01 5.20E+00 1.68E+02
0.45 0.55 5.38E+01 2.50E+01 1.71E+01 1.35E+02
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Fig. 16. Parameter pool visualization – Schwefel function

Fig. 17. Parameter pool visualization – Rosenbrock function
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Finally, in Fig. 18, it is presented the PRT1 and PRT2 setting for the best five
results for each function.

5 Conclusion

In this work, we present a detailed numerical evaluation and visualization of the
performance and inner dynamic of SOMA algorithm with non-binary perturbation
vector. In traditional variants of SOMA, the perturbation vector consists only from
zeros and ones. We argue that implementation of repulsive force using third possible
state (−1) in the perturbation vector might be beneficial for the algorithm. We have
presented the computationally exhaustive tuning experiment and highlighted promising
parameter settings.

The repulsive has been previously successfully implemented into other meta-
heuristics, mostly swarm based. This study aims to show that such implementation into
SOMA might also benefit its performance and encourage further research in this
direction.

Based on the above presented experimental results, we conclude with the following
discussion points, observations, and recommendations:

Introducing a repulsive mechanism into the SOMA algorithm seems likely to
improve its performance on various problems, and further research in this direction is
needed.

• The exact ratio between repulsive and attractive force probability in the perturbation
is affected by the fitness landscape. However it seems that the approx. 40:50 ratio is
promising.

• The repulsive variant did manage to outperform a nonrepulsive SOMA on two
functions, but a more complex study is needed to support these encouraging initial
findings.

• Given the computational expensiveness of this study, its scope is limited. We plan
(as future research) to expand upon this study with more experiments using various

Fig. 18. The best five result - parameter setting
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benchmark functions and dimensionality setting. Despite that, we hope that this
study provides useful insight and encouragement for researches interested in SOMA
and repulsivity mechanics in swarm-based methods in general.
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Abstract. This paper is focused on the influence of boundary strategies for the
popular swarm-intelligence based optimization algorithm: Self-organizing
Migrating Algorithm (SOMA). A similar extensive study was already per-
formed for the most famous representative of swarm-based algorithm, which is
Particle Swarm Optimization (PSO), and showed the importance of related
research for other swarm-based techniques, like SOMA. The current CEC’17
benchmark suite is used for the performance comparison of the case studies, and
the results are compared and tested for statistical significance using the Fried-
man Rank test.

Keywords: Self-organizing Migrating Algorithm � SOMA � Boundary �
CEC17 � Friedman Rank test

1 Introduction

Almost every parameter, defined for an optimization task, is set within some boundary
limits. These boundaries often exist as consequences to an optimized real-world
problem (i.e., length of a screw must be only in positive numbers). The behavior of a
metaheuristic optimization algorithm can lead to a trial solution that lies outside of the
area of the feasible solution. In those cases, metaheuristic algorithm relies on some
mechanism or method that address these violations and fixes the trial solution. Over the
years, many different approaches were created. Some method can be universally used
for almost every algorithm; others are strictly tuned for a specific problem or algorithm.
The paper focuses on a few rather universal techniques and their influence on one
selected metaheuristic optimization algorithm.

The research in the area of possible border methods and their influence on per-
formance was already extensively carried out for another well-known optimization
technique, which is the Particle Swarm Optimization (PSO) [1]. As the provided
studies suggesting, it could be a challenging task [2, 3]. Similar research, to uncover the
boundary methods influence, was also done for a Firefly Algorithm with exciting
results [4].
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Furthermore, No Free Lunch (NFL) theorem [5] states that an algorithm which
performs better on one type of optimization problems might be outperformed on a
different kind of problems by another algorithm. This theorem also influences that one
boundary method may not work well for the different optimization algorithm. There-
fore, the development and testing of different boundary methods are crucial part of
metaheuristic optimization algorithms tuning and effective set up.

The Self-Organizing Migrating Algorithm (SOMA) was initially developed in 1999
by Zelinka [6, 7]. SOMA takes inspiration in other swarm-based algorithms and also
includes several different techniques. Namely, the discrete perturbation vector mimics
the well-known mutation process that is used, for example, in evolution strategies and
other classical evolutionary computing techniques. Another technique prepares SOMA
for easy scalability due to the self-adaptation of movement over the search space.
SOMA was already successfully used for continuous and discrete domains [8]. The
possible universality of SOMA was used in the creation of its modification for solving
multi-objective [9] or constrained optimization problems [10]. Like most of the other
metaheuristic, the overall performance of SOMA depends on several user-defined
parameters [11]. Again, as for almost other metaheuristic algorithms, the optimal set-
tings of these parameters can vary over different optimization tasks.

This study is focused on as to how the canonical SOMA can handle the roaming
individuals and what most common options exist and if they have any impact (and how
significant) on the SOMA performance. Four relatively common borders methods are
implemented and compared on well-known CEC’17 benchmark suite [12] and statis-
tically evaluated using the Friedman Rank test [13]. The previous studies on PSO show
the importance of the careful selection of the border method.

The paper is structured as follows. The canonical SOMA is described in the next
Section. The implemented border methods are explained in Sect. 3. The experiment
setting and results are presented in Sects. 4 and 5. Lastly, the conclusion of this study is
presented in Sect. 6.

2 Self-organizing Migrating Algorithm

The main idea behind SOMA is based on the cooperation of individuals. Hence, an
individual x is, in fact, also a solution to a defined optimization problem. The coop-
eration of these individuals should eventually lead to a global optimum. The so-called
cooperation amongst individual is, by author, defined as a migration (1) of one par-
ticular individual from population towards another member of the whole population.

xkþ 1
i;j ¼ xki;j þ xkL;j � xki;j

� �
� t � PRTVectorj ð1Þ

The xkþ 1
i;j represent a new position of an i-th individual in j-dimension for a next

iteration step k + 1. Accordingly, the xki;j is a position of the same individual in k iter-

ation. The xkL;j is the position of a leader, which is selected based on the chosen SOMA
strategy (SOMA strategies are described at the end of this section). Individual discrete
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steps between an i-th individual and selected leader xkL;j are represented by t parameter.
The best-found solution on this path is then transferred into a new generation. The
t parameter is a collection of values starting from 0 to Path with increment (or step size)
of Step. Both parameters Path and Step are user-defined; values for these parameters
have a significant influence on the algorithm performance. However, some recom-
mended values exist according to study [11], which are suitable for most optimization
tasks.

The PRTVectorj mimics the mutation process and should be generated (2) for all the
t steps. This vector determines in which dimensions j the i-th individual will migrate
towards a leader and which dimensions stay unchanged. From the Eq. (2) is clear that
the user-defined parameter prt has a direct impact on the resulting PRTVectorj and on
the strength of a mutation during the migration. This prt parameter can be considered as
a threshold value and is chosen in the range from 0 to 1 of a uniform distribution.

PRTVectorj ¼ if randj\prt; 1
otherwise; 0

�
ð2Þ

Original SOMA describes several different strategies (most strategies affect only
how the leader individual xL is selected). For the purpose of this paper, two common
types of strategies are described.

Strategy All-To-One. This easy to implement strategy will select for each migration
cycle (one iteration of algorithm) one leader. The leader is selected based on its
objective function value. All the remaining individual then migrate towards the leader.
The pseudocode of this canonical SOMA is shown in Algorithm 1 SOMA – AllToOne.

Strategy All-To-All. The selection process of a leader is different for this strategy.
One individual migrates towards all other individuals. After the end of the migration of
a selected individual, this individual returns to its original position, and the process is
repeated for the next individual. The migration cycle ends after all the individuals in
population migrated towards each other, and all individuals then update their positions.
This strategy shows stronger exploration abilities.

Algorithm 1 SOMA - AllToOne
1: SOMA initialization
2: while iteration < max_iteration do
3: select leader xL from population
4: for i = 1 to NP do
5: for t = Step to Path do
6: generate PRTVector
7: migrate xi to xL
8: end for
9: save best xi to new population
10:end for
11:record the best solution
12:end while
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3 Boundary Methods

During each migration, the trial solution must be checked if it lies in the space of
feasible solution (boundaries or range that is given to each dimension of a particular
solution). If the solution, or rather a dimension of a solution, lies outside the defined
boundaries, a specific correction has to be made. As being stated in Sect. 1, various
approaches of how to handle infeasible solutions exist. Based on the similar research
for PSO and FA algorithms [3, 4], these boundary methods may have a direct impact
on the algorithm performance. Therefore, careful selection of the most suitable methods
should be a priority for most applications. Also, if one process works well for one
particular algorithm, there is no guarantee that the procedure will work for another
optimization algorithm. For this paper, the most common methods were selected and
compared together to show how they could affect the SOMA on different benchmark
functions.

3.1 Clipping Method

For this method, the individual cannot cross the given boundaries in each dimension.

x
0
i;k ¼

buk ; if xi;k [ buk
blk; if xi;k\blk
xi;k; otherwise

8
<

: ð3Þ

Where xi;k is the position of i-th individual in k-th dimension before boundary check,
the x

0
i;k is a newly updated position after the boundary check and the buk and blk are the

upper and lower boundary given to each dimension.

3.2 Random Method

If a particular dimension of an individual violates the given boundaries, the new value
(position) for that dimension is newly generated between the lower blk and upper buk
boundary (U stands for uniform distribution).

x
0
i;k ¼ U blk; b

u
k

� �
; if xi;k [ buk OR xi;k\blk

xi;k; otherwise

�
ð4Þ

3.3 Reflection Method

The reflection method [2] resembles the behavior of a simple mirror. The violating
dimension of an individual is reflected in the feasible space of solution.

x
0
i;k ¼

buk � xi;k � buk
� �

; if xi;k [ buk
blk þ blk � xi;k

� �
; if xi;k\blk

xi;k; otherwise

8
<

: ð5Þ
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3.4 Periodic Method

The last selected method takes advantages of an infinite space of solution. This endless
space is achieved by mapping the individual back to the available area of solution using
modulo function.

x
0
i;k ¼ blk þ xi;k mod buk � blk

� �� � ð6Þ

4 Experiment Setting

The benchmark set CEC’17 [12] was selected for the experiment. This benchmark
includes 30 test functions divided into unimodal, multimodal, hybrid, and composite
categories. However, the authors of the benchmark set recommend skipping the test
function f2 due to some technical difficulties. Only 10 and 30 dimension sizes were
tested. The benchmark specifies the maximum number of function evaluations as
10 � 000 dim (dimension size). The benchmark also defines the boundary limits for all
parameters as lower limit bl = −100 and upper limit bu = 100. Each test function was
repeated for 51 independent runs, and the results were statistically evaluated.

The parameters of SOMA were set as NP = 100 (number of individuals), prt = 0.3,
Step = 0.11 and Path = 3 according to the Authors [6, 7, 11].

The algorithm was programmed in C++ language (C++11) and executed on a PC
with 64-bit Windows 10, AMD A8-7600 Radeon R7 3.1 GHz CPU and 4 GB RAM.

5 Results

In this section are presented the results of the performed experiments for both SOMA
strategies (All-To-One and All-To-All). Firstly, the results overviews and comparisons
are shown in Tables 2, 3, 4 and 5, which contain the simple statistic mean and standard
deviation values.

The statistical significance was computed by the Friedman Rank test [13]. The null
hypothesis that the mean is equal is rejected at the 5% level based on the Friedman

Table 1. P-values of Friedman Rank tests

Dimension size/strategy All-To-One All-To-All

dim = 10 7.41E−09 4.60E−04
dim = 30 4.22E−08 5.36E−10
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Table 2. Statistical results for dimension 10, strategy All-To-One (mean, std. dev.)

f Clipping Random Reflection Periodic

1 6.16E+09 3.52E+09 5.10E+08 3.17E+08 2.30E+09 1.30E+09 1.75E+09 1.16E+09
3 1.15E+04 6.40E+03 5.97E+03 3.17E+03 7.25E+03 4.23E+03 6.70E+03 3.85E+03
4 4.08E+02 1.17E+01 4.06E+02 2.64E+00 4.06E+02 4.81E+00 4.08E+02 1.10E+01
5 5.07E+02 3.18E+00 5.07E+02 2.26E+00 5.07E+02 2.54E+00 5.07E+02 2.04E+00
6 6.00E+02 6.75E−02 6.00E+02 8.28E−02 6.00E+02 7.11E−02 6.00E+02 7.63E−02
7 7.19E+02 2.83E+00 7.18E+02 3.08E+00 7.20E+02 3.42E+00 7.19E+02 3.14E+00
8 8.07E+02 2.33E+00 8.08E+02 3.14E+00 8.07E+02 2.34E+00 8.07E+02 2.79E+00
9 9.00E+02 2.17E−01 9.00E+02 1.66E−01 9.00E+02 3.24E−01 9.00E+02 1.88E−01
10 1.29E+03 1.38E+02 1.28E+03 1.50E+02 1.27E+03 1.63E+02 1.24E+03 1.41E+02
11 1.17E+03 2.33E+02 1.12E+03 3.23E+01 1.15E+03 1.87E+02 1.13E+03 7.00E+01
12 4.99E+07 5.72E+07 3.92E+06 2.66E+06 8.23E+06 6.08E+06 6.42E+06 5.43E+06
13 3.04E+05 5.29E+05 1.96E+04 2.87E+04 5.47E+04 8.03E+04 5.24E+04 8.68E+04
14 2.71E+03 2.13E+03 1.79E+03 6.83E+02 2.07E+03 1.28E+03 2.01E+03 1.25E+03
15 5.60E+03 5.09E+03 2.04E+03 7.25E+02 3.56E+03 2.46E+03 3.82E+03 2.80E+03
16 1.62E+03 3.88E+01 1.61E+03 2.47E+01 1.61E+03 2.32E+01 1.61E+03 3.27E+01
17 1.71E+03 9.10E+00 1.70E+03 3.25E+00 1.70E+03 4.93E+00 1.70E+03 5.64E+00
18 5.74E+05 1.72E+06 1.43E+04 1.01E+04 6.88E+04 1.19E+05 4.59E+04 4.74E+04
19 2.66E+04 3.91E+04 3.39E+03 2.01E+03 6.33E+03 9.19E+03 8.17E+03 1.05E+04
20 2.01E+03 1.76E+01 2.00E+03 6.12E−01 2.00E+03 4.82E−01 2.00E+03 3.04E+00
21 2.25E+03 5.59E+01 2.21E+03 1.47E+01 2.23E+03 3.89E+01 2.21E+03 2.13E+01
22 2.30E+03 2.35E+01 2.29E+03 3.06E+01 2.29E+03 2.57E+01 2.29E+03 2.96E+01
23 2.61E+03 3.62E+00 2.61E+03 9.87E+00 2.61E+03 3.59E+00 2.61E+03 6.32E+00
24 2.71E+03 8.16E+01 2.56E+03 4.89E+01 2.65E+03 1.00E+02 2.58E+03 8.25E+01
25 2.93E+03 2.11E+01 2.92E+03 2.10E+01 2.92E+03 2.05E+01 2.92E+03 2.73E+01
26 2.92E+03 7.97E+01 2.88E+03 9.23E+01 2.91E+03 5.02E+01 2.91E+03 7.25E+01
27 3.09E+03 1.98E+00 3.09E+03 2.83E+00 3.09E+03 2.83E+00 3.10E+03 2.75E+00
28 3.24E+03 1.16E+02 3.13E+03 5.13E+01 3.26E+03 6.97E+01 3.14E+03 4.39E+01
29 3.16E+03 1.25E+01 3.17E+03 1.06E+01 3.16E+03 1.26E+01 3.17E+03 1.18E+01
30 2.19E+06 3.28E+06 2.78E+05 4.01E+05 3.70E+05 6.91E+05 5.02E+05 6.47E+05

Table 3. Statistical results for dimension 10, strategy All-To-All (mean, std. dev.)

f Clipping Random Reflection Periodic

1 9.73E+09 4.16E+09 7.64E+09 3.91E+09 8.75E+09 3.71E+09 8.69E+09 3.21E+09
3 1.51E+04 5.23E+03 1.48E+04 4.90E+03 1.53E+04 5.09E+03 1.36E+04 5.05E+03
4 9.43E+02 2.65E+02 1.04E+03 4.31E+02 9.77E+02 2.80E+02 1.11E+03 3.69E+02
5 5.87E+02 1.69E+01 5.92E+02 1.61E+01 5.86E+02 1.71E+01 5.83E+02 1.56E+01
6 6.55E+02 1.20E+01 6.54E+02 9.81E+00 6.53E+02 9.41E+00 6.53E+02 9.25E+00
7 9.70E+02 7.10E+01 9.45E+02 7.00E+01 9.58E+02 6.08E+01 9.73E+02 6.09E+01
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Table 3. (continued)

f Clipping Random Reflection Periodic

8 8.79E+02 1.23E+01 8.76E+02 1.28E+01 8.75E+02 1.41E+01 8.78E+02 1.29E+01
9 2.31E+03 4.54E+02 2.12E+03 3.34E+02 2.19E+03 3.97E+02 2.18E+03 4.70E+02
10 2.61E+03 1.80E+02 2.56E+03 2.07E+02 2.50E+03 2.07E+02 2.51E+03 2.06E+02
11 2.05E+03 6.11E+02 2.06E+03 7.83E+02 2.09E+03 1.10E+03 2.01E+03 1.26E+03
12 2.40E+08 2.37E+08 1.90E+08 1.43E+08 2.46E+08 2.60E+08 2.13E+08 1.93E+08
13 1.24E+06 1.66E+06 1.18E+06 2.57E+06 1.55E+06 3.92E+06 8.88E+05 2.75E+06
14 2.17E+03 7.55E+02 2.00E+03 6.15E+02 1.99E+03 3.64E+02 1.94E+03 4.71E+02
15 7.52E+03 5.09E+03 5.86E+03 3.09E+03 6.43E+03 4.31E+03 6.07E+03 3.38E+03
16 2.06E+03 1.63E+02 2.01E+03 1.30E+02 2.01E+03 1.30E+02 2.00E+03 1.41E+02
17 1.92E+03 9.35E+01 1.90E+03 5.42E+01 1.89E+03 6.97E+01 1.90E+03 5.95E+01
18 4.68E+06 6.90E+06 5.52E+06 1.84E+07 1.79E+06 1.62E+06 2.25E+06 3.52E+06
19 1.52E+04 1.34E+04 1.29E+04 1.87E+04 1.33E+04 2.05E+04 1.18E+04 1.18E+04
20 2.22E+03 7.19E+01 2.21E+03 7.20E+01 2.22E+03 7.15E+01 2.19E+03 7.90E+01
21 2.30E+03 5.30E+01 2.29E+03 4.55E+01 2.30E+03 4.31E+01 2.28E+03 4.60E+01
22 2.97E+03 3.03E+02 2.99E+03 3.06E+02 2.98E+03 3.04E+02 2.91E+03 2.78E+02
23 2.71E+03 2.62E+01 2.71E+03 3.95E+01 2.72E+03 2.99E+01 2.72E+03 2.76E+01
24 2.83E+03 6.11E+01 2.82E+03 5.21E+01 2.80E+03 6.40E+01 2.82E+03 5.70E+01
25 3.44E+03 2.74E+02 3.30E+03 1.79E+02 3.44E+03 3.02E+02 3.38E+03 2.32E+02
26 3.85E+03 3.35E+02 3.76E+03 3.22E+02 3.86E+03 3.35E+02 3.73E+03 3.04E+02
27 3.19E+03 3.41E+01 3.19E+03 3.39E+01 3.19E+03 2.80E+01 3.20E+03 2.88E+01
28 3.63E+03 1.32E+02 3.59E+03 1.40E+02 3.59E+03 1.31E+02 3.57E+03 1.52E+02
29 3.37E+03 6.91E+01 3.35E+03 6.04E+01 3.34E+03 6.13E+01 3.35E+03 6.34E+01
30 6.17E+06 4.38E+06 6.41E+06 4.47E+06 5.15E+06 3.81E+06 6.98E+06 4.90E+06

Table 4. Statistical results for dimension 30, strategy All-To-One (mean, std. dev.)

f Clipping Random Reflection Periodic

1 6.54E+10 1.26E+10 2.47E+10 6.11E+09 4.96E+10 9.39E+09 3.55E+10 8.00E+09
3 1.22E+05 2.31E+04 9.03E+04 1.99E+04 1.05E+05 1.96E+04 9.19E+04 2.13E+04
4 5.21E+02 3.05E+01 5.12E+02 2.18E+01 5.15E+02 2.20E+01 5.17E+02 2.50E+01
5 5.66E+02 2.02E+01 5.62E+02 2.20E+01 5.65E+02 2.21E+01 5.69E+02 2.60E+01
6 6.02E+02 8.55E−01 6.02E+02 1.10E+00 6.02E+02 6.57E−01 6.02E+02 9.74E−01
7 8.24E+02 2.81E+01 8.19E+02 2.66E+01 8.28E+02 2.82E+01 8.22E+02 3.03E+01
8 8.65E+02 2.25E+01 8.64E+02 2.53E+01 8.63E+02 2.38E+01 8.62E+02 2.00E+01
9 1.07E+03 1.99E+02 9.72E+02 7.41E+01 1.01E+03 1.12E+02 9.74E+02 6.70E+01
10 5.80E+03 8.76E+02 6.07E+03 7.19E+02 5.90E+03 9.09E+02 6.09E+03 8.92E+02
11 5.23E+03 4.66E+03 2.11E+03 1.14E+03 3.09E+03 2.45E+03 2.74E+03 1.66E+03
12 1.01E+10 3.68E+09 1.32E+09 6.59E+08 4.77E+09 1.83E+09 3.37E+09 1.35E+09
13 4.88E+09 3.28E+09 4.08E+08 4.25E+08 2.30E+09 1.56E+09 1.71E+09 1.80E+09
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Table 4. (continued)

f Clipping Random Reflection Periodic

14 7.17E+05 1.60E+06 1.03E+05 1.02E+05 1.82E+05 2.72E+05 1.84E+05 2.67E+05
15 2.87E+08 2.96E+08 7.64E+06 1.42E+07 6.53E+07 9.49E+07 4.51E+07 6.71E+07
16 2.28E+03 2.00E+02 2.30E+03 2.06E+02 2.29E+03 2.64E+02 2.27E+03 2.26E+02
17 1.90E+03 1.20E+02 1.85E+03 8.57E+01 1.84E+03 9.37E+01 1.83E+03 6.93E+01
18 5.48E+06 7.60E+06 1.01E+06 6.42E+05 1.61E+06 1.64E+06 1.28E+06 1.31E+06
19 5.05E+08 4.40E+08 1.43E+07 1.70E+07 1.17E+08 1.45E+08 6.86E+07 7.13E+07
20 2.21E+03 1.28E+02 2.17E+03 8.82E+01 2.18E+03 1.03E+02 2.17E+03 8.49E+01
21 2.38E+03 2.86E+01 2.37E+03 2.47E+01 2.38E+03 2.51E+01 2.37E+03 2.17E+01
22 4.70E+03 2.66E+03 2.31E+03 4.88E+00 2.73E+03 1.28E+03 2.42E+03 7.33E+02
23 2.72E+03 1.59E+01 2.71E+03 1.79E+01 2.72E+03 1.91E+01 2.71E+03 1.88E+01
24 2.96E+03 2.98E+01 2.95E+03 3.77E+01 2.96E+03 3.42E+01 2.93E+03 3.94E+01
25 2.92E+03 2.29E+01 2.91E+03 1.91E+01 2.92E+03 2.37E+01 2.92E+03 2.01E+01
26 4.22E+03 4.48E+02 4.25E+03 3.36E+02 4.28E+03 3.78E+02 4.30E+03 3.06E+02
27 3.22E+03 1.05E+01 3.22E+03 1.08E+01 3.21E+03 1.40E+01 3.23E+03 1.12E+01
28 3.28E+03 3.01E+01 3.27E+03 2.78E+01 3.29E+03 1.69E+01 3.28E+03 2.82E+01
29 3.56E+03 2.72E+02 3.58E+03 2.28E+02 3.55E+03 2.14E+02 3.51E+03 1.17E+02
30 4.36E+08 3.83E+08 2.00E+07 1.48E+07 1.30E+08 1.20E+08 6.28E+07 4.93E+07

Table 5. Statistical results for dimension 30, strategy All-To-All (mean, std. dev.)

f Clipping Random Reflection Periodic

1 6.40E+10 1.31E+10 6.24E+10 1.37E+10 6.25E+10 9.93E+09 5.86E+10 1.01E+10
3 1.24E+05 1.69E+04 1.14E+05 1.63E+04 1.19E+05 1.69E+04 1.10E+05 1.58E+04
4 1.56E+04 4.98E+03 1.52E+04 4.11E+03 1.54E+04 4.51E+03 1.43E+04 3.97E+03
5 9.53E+02 3.36E+01 9.39E+02 3.90E+01 9.31E+02 3.33E+01 9.34E+02 3.89E+01
6 6.90E+02 7.98E+00 6.84E+02 8.74E+00 6.86E+02 9.38E+00 6.87E+02 8.26E+00
7 2.26E+03 2.23E+02 2.27E+03 2.22E+02 2.32E+03 2.07E+02 2.21E+03 2.02E+02
8 1.21E+03 3.22E+01 1.20E+03 2.56E+01 1.19E+03 3.08E+01 1.19E+03 3.05E+01
9 1.52E+04 2.38E+03 1.51E+04 2.47E+03 1.53E+04 2.16E+03 1.52E+04 2.50E+03
10 8.21E+03 3.28E+02 8.14E+03 2.85E+02 8.08E+03 3.16E+02 8.17E+03 2.75E+02
11 1.01E+04 2.58E+03 8.75E+03 2.30E+03 8.61E+03 2.03E+03 8.79E+03 2.53E+03
12 9.24E+09 2.56E+09 8.05E+09 2.52E+09 8.53E+09 2.88E+09 8.55E+09 3.04E+09
13 5.89E+09 2.24E+09 4.91E+09 2.95E+09 5.20E+09 2.07E+09 4.97E+09 3.11E+09
14 1.05E+06 5.59E+05 7.13E+05 3.53E+05 8.39E+05 4.94E+05 1.01E+06 6.21E+05
15 5.91E+08 5.02E+08 5.39E+08 3.21E+08 4.58E+08 3.58E+08 5.50E+08 4.15E+08
16 4.71E+03 4.03E+02 4.56E+03 3.56E+02 4.65E+03 3.97E+02 4.69E+03 4.18E+02
17 3.32E+03 4.13E+02 3.14E+03 2.93E+02 3.22E+03 3.44E+02 3.17E+03 2.71E+02
18 1.24E+07 7.54E+06 9.49E+06 5.24E+06 1.15E+07 7.28E+06 1.05E+07 5.83E+06
19 6.81E+08 4.65E+08 5.85E+08 4.92E+08 5.64E+08 3.76E+08 5.59E+08 3.50E+08
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Rank test. The corresponding p-values of Friedman Rank test are presented in Table 1.
If the p-value is lower than 0.05, the further Friedman rankings are relevant.

In Fig. 1, the results of Friedman ranking are shown for combinations of both
SOMA strategies, and both tested dimension sizes 10 and 30. The lower the rank is, the
better is the performance of the labeled strategy. The Nemenyi Critical Distance post-
hoc test for multiple comparisons was used to compute the critical distance for each
Friedman rank set. The critical distance is represented as a dashed line from the best-
ranked boundary method. The critical distance (CD) value for this experiment has been
calculated as 0.656757; according to the definition given in (7) and value qa = 2.56892;
using k = 4 boundary methods and a number of data sets N = 51 (51 repeated runs).

CD ¼ qa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k kþ 1ð Þ= 6Nð Þ

p
ð7Þ

Based on the obtained ranks for All-To-One strategy, Random and Periodic
methods are the most promising ones. For All-To-All strategy, the situation is similar
with one exception that even the Reflection method seems to be also promising to use.
From the ranks, it is clear that the worst option is the Clipping method.

Two distinct groups of methods can be observed. The first group (Clipping,
Reflection, and Periodic) keep the consistent migration of individual over the search
space without a loss of information from the previous positions. The second group,
including only one Random method, more resembling the stochastic search opti-
mization [14]. This method may help to SOMA escape some traps of a local minimum.
This behavior seems to be the best work solution for both tested SOMA strategies.
Although the remaining Periodic method has a slightly worst ranks, the individuals are
keeping their movement directions and search patterns; thus, this method may be an
exciting choice for some modern SOMA modifications.

Table 5. (continued)

f Clipping Random Reflection Periodic

20 2.91E+03 8.67E+01 2.85E+03 9.59E+01 2.88E+03 9.64E+01 2.85E+03 1.03E+02
21 2.71E+03 3.16E+01 2.70E+03 3.05E+01 2.70E+03 3.92E+01 2.69E+03 2.75E+01
22 9.38E+03 5.27E+02 8.92E+03 1.06E+03 8.97E+03 1.02E+03 8.96E+03 6.38E+02
23 3.29E+03 8.79E+01 3.27E+03 6.98E+01 3.30E+03 7.05E+01 3.30E+03 8.40E+01
24 3.48E+03 9.66E+01 3.49E+03 1.03E+02 3.54E+03 9.84E+01 3.51E+03 8.58E+01
25 7.95E+03 1.29E+03 7.34E+03 1.30E+03 7.70E+03 1.36E+03 7.44E+03 1.16E+03
26 1.05E+04 8.74E+02 1.03E+04 8.95E+02 1.04E+04 8.54E+02 1.04E+04 8.36E+02
27 3.85E+03 1.43E+02 3.85E+03 1.40E+02 3.77E+03 1.70E+02 3.90E+03 1.39E+02
28 7.47E+03 1.04E+03 7.16E+03 8.10E+02 6.93E+03 8.16E+02 7.04E+03 9.98E+02
29 6.05E+03 4.95E+02 5.76E+03 4.48E+02 5.90E+03 5.22E+02 5.93E+03 4.42E+02
30 6.69E+08 3.93E+08 4.88E+08 3.14E+08 4.81E+08 2.54E+08 4.49E+08 2.54E+08
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6 Conclusion

In this study, the influence of four selected border methods on the performance of
canonical SOMA is tested and evaluated. Due to the increasing complexity of opti-
mization problems, it is essential to focus not only on the development of new algo-
rithms but also on deeper insights, analyses and improvement of existing and effective
algorithms. The new benchmark set CEC 2017 was selected for the performance
comparison because it should represent the most recent collection of artificial opti-
mization problems. Based on the obtained results, it may be concluded that the Random
and Periodic methods are the most promising ones and that the Random method is
probably introducing more stochastic behavior to SOMA.

On the other hand, the Periodic method is keeping the movement directions and
search patterns of individuals, thus resulting in a more natural and predictable response
according to the original population dynamics model. Based on the obtained results, it
is clear that the worst method for canonical SOMA, both for All-To-One and All-To-
All strategies, is Clipping method. This may be caused by the fact that in some cases,
the individuals have tendencies to move to the next trial solution, but it is forced to stay
on the fixed borders of feasible space—all of the observations suit for both dimension
settings with almost the same results.

a) dim = 10; All-To-One b) dim = 10; All-To-All

c) dim = 30; All-To-One d) dim = 30; All-To-All

Fig. 1. Friedman Rank tests for selected border methods
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The results presented here are useful as an empirical study for researchers dealing
with SOMA. This research will continue in the future on related topic lies in analyzing
the frequency of the violations of given boundaries by individuals and their spread over
the hyperspace of solution.
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Abstract. Pareto based selection techniques are extensively implemented in the
multi-objective evolutionary algorithms (MOEAs), to tackle the many-objective
optimization problems (MaOPs). In Pareto-dominance based MOEAs
(PDMOEAs), nondominated sorting (NDS) plays a prominent role in preserving
the elite solutions during mating and environmental selection. Although, NDS is
an inevitable procedure in the evolution of PDMOEAs, computational com-
plexity issues enhances the difficulty to adopt NDS approaches. Various
methodologies were suggested in literature to overcome complexity issues, but
these approaches deteriorate drastically for higher objectives. Recently, an
approximate efficient NDS, (AENS) is proposed that utilize three objective
comparisons to establish the dominance relation. In this paper, we propose an
improved version of AENS, in which maximum two objective comparisons are
required to determine the dominance relation. To evaluate the performance of
our algorithm, experiments are done on seven different test problems and the
experiment results have proved the effectiveness of proposed method in
improving the convergence of different MOEAs.

Keywords: Approximate Non-dominated Sorting � Sum of normalized
objectives � Convergence � Diversity

1 Introduction

Multi-objective optimization deals with multiple conflicting objectives that ought to be
solved simultaneously and the problems associated with multiple objectives are termed
as multi-objective optimization problems (MOPs). While handling MOPs, a set of
nondominated solutions, termed as Pareto-optimal solutions are to be obtained instead
of single optimum solution due to the conflicting nature of the objectives [1]. Evolu-
tionary algorithms (EAs) became popular in solving the MOPs, as they have the ability
to obtain Pareto-optimal solutions in one single run. The goal of MOEAs is to achieve
proper trade-off between convergence and diversity among the obtained Pareto-optimal
solutions which can be considered as a difficult task [2, 3].

To achieve set of Pareto-optimal solutions with balanced convergence and diver-
sity, several selection strategies were proposed in the past, among which, the Pareto-
dominance based approaches have proved to be effective as they assign more priority to
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the solutions with better Pareto rank. In other words, in PDMOEAs, the candidate
solutions are ranked based on their dominance relationship and solutions that are
nondominated are assigned high priority during mating and environmental selection
process [2, 3]. In addition, among the solutions that have same rank, solutions that are
well separated or diverse are given priority. However, the performance of PDMOEAs
is effective in solving the problems with two and three objectives and gradually
deteriorates as the objectives increases i.e., for MaOPs. The deterioration in the per-
formance of the PDMOEAs is due to rapid increase in the ratio of nondominated
solutions as the number of objectives increase. Therefore, PDMOEAs rely on the
secondary selection criterion that promotes diversity but not convergence leading to
performance degradation [3–5]. In literature, various approaches are proposed to
overcome this problem but few works were dedicated to deal with the complexity
issues of the NDS approach.

In PDMOEAs, to overcome the computational complexity associated with non-
dominated sorting, various methods such as fast non-dominated sort [6], climbing sort
and deductive sort [7], corner sort [8], efficient non-dominated sorting (ENS) [9] and
nondominated sorting based on sum of objectives [10] have been proposed. These
methods try to reduce the number of unnecessary objective comparisons during NDS
procedure. However, in [11], an approximate efficient NDS approach (AENS) was
proposed for PDMOEAs to solve MaOPs. In AENS, the initial population is sorted on
the first objective function and the solutions are assigned to the fronts in the sorted
order. In addition, to determine the dominance relationship between two solutions, a
maximum of three objective comparisons are performed. In case, if dominance relation
cannot be established within the three comparisons, the solution is assumed to be
dominated by the solution that is already assigned to the fronts. Hence, with the
reduced objective comparisons, PDMOEAs with AENS demonstrate better conver-
gence characteristics [11]. The improved convergence can be attributed to the reduced
number of nondominated solutions. In other words, AENS can segregate solutions
effectively and helps prioritizing nondominated solutions with better convergence.

In this paper, we propose an improved approximate NDS based on sum of nor-
malized objectives (ASNDS) with reduced complexity of AENS. In the proposed
approximate NDS approach, the solutions are sorted based on sum of normalized
objectives and at most two objective comparisons are required to determine the
dominance relation between two solutions. Similar to AENS, if the dominance relation
cannot be determined after two objective comparisons the solution in the fronts is
assumed to be dominating the solution to be assigned. Hence, the proposed approxi-
mate NDS approach is computationally less expensive and improves the convergence
at the cost of diversity.

The rest of the paper is organized as follows. In Sect. 2, we have explained the
proposed methods in detail. In Sect. 3, experimental results are presented and the
Sect. 4 concludes the paper.
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2 Proposed Method

In this section, a detailed explanation about the proposed approximate NDS is pre-
sented. In the proposed algorithm, the candidate solutions are sorted based on the sum
of the normalized objectives and the solutions are assigned to the fronts according to
the sorted order. The main objective of sorting solutions based on sum of normalized
objectives is that a particular solution cannot dominate a solution with less value in
terms of sum of normalized objectives than that solution. However, the range-
dependence of the solutions is removed with the help of normalization.

2.1 Proposed Approximate NDS Based on Sum of Objectives

In this section, we have presented briefly the proposed approximate NDS based on sum
of normalized objectives. This approach mainly consists of the two steps. First, all the
candidate solutions in the population are sorted in an ascending order according to sum
of normalized objectives. Second, the proposed algorithm performs at most two
objective comparisons between the solutions to determine the dominance relation. The
comparisons are performed in the sorted order of the population and the solutions are
assigned to the non-dominated fronts one by one, starting from the first solution to the
last one. If the algorithm fails to determine the dominance relation among two solutions
within the two objective comparisons, then the solution that has already been assigned
to a non-dominated front will be considered to dominate the one to be assigned to the
front. The dominated solution will be checked for nondomination in the next fronts and
if it is dominated by the solutions in all the fronts than the corresponding solution is
assigned to the new front. This procedure repeats until all solutions in the population
are assigned to a front.

Normalization of objectives is done as mentioned below. Let X is a solution with M
objectives and the normalized objective value of solution X in ith objective is given as
follows [12]

Xnormi ¼
Xi � fminð Þ
fmax � fminð Þ

where Xnormi and Xi are the normalized and actual objective value of solution X in ith

objective, fmin and fmax are minimum and maximum values in ith objective.
The detailed description of the proposed approximate NDS is explained through the

Figs. 1 and 2. Let us consider a 4-objective minimization problem to be optimized by
an MOEA as shown in Fig. 1. At first, all the objectives are normalized and solutions
are sorted based on sum of the normalized objectives as shown in Fig. 1. From the
Fig. 1, we can observe that the solution S4 is first solution in the sorted order, con-
sidered as the nondominated solution and assigned to the first front. To assign the
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solution S2 to the nondominated front, it has to be compared with the solution pre-
ceding to solution S2 in the sorted order, solution S4. Form the Fig. 2(a), we can
observe that both the solutions are compared based on two objectives, minimum
objective value in solution S2 and maximum objective value in solution S4. As the
solution S4 is unable to dominate the solution S2 in both the objective, the solution S2 is
considered as the non-dominated solution and assigned to the first nondominated front.
From the Fig. 2(b), comparison between the solutions S4 and S8 are presented and by
comparing them on both the objectives, we can observe that solution S4 dominates
solution S8 on both objectives.

Therefore, solution S8 is considered as dominated solution irrespective of other
objectives and assigned to the next nondominated level, second front. In Fig. 2(c) &
(d), the comparison between solution S3 with solutions S4 & S2 respectively is pre-
sented. It can be noted that both the solutions are unable to dominate the solution S3
and hence the solution S3 is considered as nondominated solution and assigned to first
front. The similar procedure is followed until all the solutions are assigned to the fronts.

Fig. 1. Example demonstrating proposed approximate NDS method.
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3 Experimental Results and Simulation Results

In this section, to depict the performance of the proposed method, comparisons are
done with the existing Efficient NDS (ENS) [9] and approximate ENS (AENS) [11].
These three approaches are incorporated into the framework of existing PDMOEAs
such as NSGA-III [13] and KnEA [2] and tested on popular test suite namely DTLZ
benchmark problems (DTLZ1-DTLZ7) [14]. In this section, KnEA-ENS, KnEA-AENS
and KnEA-SNDS refer to the KNEA [2] algorithm with ENS, AENS and ASNDS
respectively. The parameter settings for DTLZ problem test suite are employed
according to [5] and population size N is set as 120, 132, 156, 276 for the 4-, 6-, 8- &
10-objectives. The number of generations adopted in the experiments is 700 for DTLZ1
problem, 1000 for DTLZ3 problem and 250 for the remaining problems (DTLZ2 &
DTLZ4-DTLZ7). All the algorithms considered for comparison are simulated for 30
runs and the final obtained populations is preserved for the comparison.

To demonstrate the effectiveness of proposed ASNDS, three performance indicators
namely Hypervolume (HV) [15, 16], Spread [17] and Generational Distance (GD) [18]
are used. HV indicator considers both the convergence and diversity whereas Spread
and GD accounts for diversity and convergence respectively. Algorithm with higher HV
and lower Spread and lower GD is regarded as the best performing approach. We have
reported the mean and standard deviation values of the performance indicators such as
Hypervolume, Spread and Generational distance in the Tables 1 and 2. For an accurate
comparison, we have conducted significance test, highlighted the best performing
approach in grey shade, and bold and the second best approach with grey shade.

Fig. 2. (a) Comparison between the solutions S4 and S2; (b) Comparison between the solutions
S4 and S8; (c) Comparison between the solutions S4 and S3; (d) Comparison between the solutions
S2 and S3;
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Table 1. Mean and standard deviation values of hypervolume results of the proposed method
with ENS and A_ENS by incorporating them in existing KNEA

8 0.6938    
0.4377

0.9877    
0.0501

0.9804    
0.1013

1.5158    
0.1739

1.0569    
0.1240

1.0249    
0.0534

7.8655    
3.4792

0.2093    
0.5088

0.1165    
0.3075

10 1.0000    
0.0000

0.9995    
0.0006

0.9998    
0.0005

1.4835    
0.0734

1.0146    
0.0207

1.0024    
0.0059

3.6133    
1.6086

0.0639    
0.0943

0.0216    
0.0533

DTLZ4 4 0.5522    
0.0053

0.5471    
0.0256

0.5348    
0.0274

0.3015    
0.1050

0.3857    
0.0730

0.7710    
0.0951

0.0050    
0.0003

0.0046    
0.0003

0.0030    
0.0002

6 0.7423    
0.0102

0.7478    
0.0070

0.7358    
0.0148

0.1961    
0.1325

0.3713    
0.1171

0.7300    
0.0930

0.0054    
0.0017

0.0043    
0.0004

0.0028    
0.0004

8 0.9819    
0.0015

0.9819    
0.0009

0.9823  
0.0008

0.1939    
0.1597

0.3487    
0.1192

0.7027    
0.0872

0.0077    
0.0035

0.0045    
0.0004

0.0028    
0.0005

10 0.9998    
0.0001

0.9999    
0.0000

0.9999    
0.0000

0.1555    
0.0466

0.3533    
0.0758

0.6452    
0.0721

0.0126    
0.0074

0.0061    
0.0003

0.0047    
0.0004

DTLZ5 4 0.7667    
0.0053

0.7671    
0.0041

0.7149    
0.1297

0.3674    
0.0657

0.5272    
0.0573

0.9688    
0.0654

0.0087    
0.0011

0.0094    
0.0009

0.0074    
0.0032

6 0.8442    
0.0054

0.8405    
0.0068

0.8358    
0.0149

0.4253    
0.0694

0.7173    
0.0853

0.8715    
0.0826

0.0223    
0.0036

0.0148    
0.0014

0.0138    
0.0021

8 0.8248    
0.0054

0.8054    
0.0174

0.8189    
0.0114

0.8396    
0.1396

1.0771    
0.0387

1.0687    
0.0599

0.0100    
0.0030

0.0057    
0.0014

0.0083    
0.0018

10 0.8635
0.0052

0.8321    
0.0233

0.8543    
0.0128

0.8545    
0.1432

1.0884    
0.0814

1.0731    
0.1087

0.0110    
0.0022

0.0066    
0.0013

0.0085    
0.0012

DTLZ6 4 0.9232    
0.0052

0.9217    
0.0090

0.8053    
0.1326

0.5981    
0.0721

0.6505    
0.0793

0.8747    
0.1894

0.0535    
0.0059

0.0500    
0.0055

0.0643    
0.0180

6 0.9735    
0.0068

0.9742    
0.0046

0.9735    
0.0029

0.7450    
0.1167

0.8711    
0.0911

0.8668    
0.0866

0.0521    
0.0223

0.0401    
0.0175

0.0355    
0.0173

8 0.9801    
0.0041

0.9796    
0.0032

0.9790    
0.0044

1.0136    
0.1128

1.1099    
0.0672

1.0374    
0.0935

0.0547    
0.0227

0.0163    
0.0078

0.0177    
0.0067

10 0.9823    
0.0024

0.9808    
0.0012

0.9798    
0.0026

0.9752    
0.0960

1.1086    
0.0782

1.0948    
0.0871

0.0364    
0.0152

0.0179   
0.0051

0.0278    
0.0052

DTLZ7 4 0.1890    
0.0060

0.1815    
0.0084

0.1527    
0.0085

0.4350    
0.0708

0.5319    
0.0681

0.8111    
0.0697

0.0089    
0.0011

0.0084    
0.0011

0.0077    
0.0005

6 0.1530    
0.0104

0.1522    
0.0148

0.1403    
0.0105

0.3081    
0.0542

0.6739    
0.1054

0.7942    
0.0791

0.0126    
0.0018

0.0126    
0.0011

0.0111    
0.0007

8 0.5784    
0.0072

0.6050    
0.0211

0.6105    
0.0072

0.3834    
0.0586

0.6815    
0.0699

0.9145    
0.0424

0.0551    
0.0133

0.0155    
0.0011

0.0132    
0.0013

10 0.0379    
0.0094

0.1368    
0.0106

0.1080    
0.0349

0.4258    
0.0881

0.6359    
0.0966

0.9397    
0.0790

0.0282    
0.0012

0.0138    
0.0011

0.0113    
0.0034

Problem M Hypervolume Spread GD
KnEA KnEA KnEA

ENS AENS ASNDS ENS AENS ASNDS ENS AENS ASNDS
DTLZ1 4 0.6684    

0.1406
0.7418    
0.0780

0.5502    
0.0392

0.8435    
0.5759

0.9511    
0.6026

0.9634    
0.1993

0.0856    
0.1661

0.1017    
0.1954

0.0126    
0.0517

6 0.5293    
0.0949

0.6317    
0.0928

0.4846    
0.0462

1.7288    
0.3632

1.1822    
0.4390

1.1519    
0.1703

0.6182    
0.5425

0.1478    
0.3012

0.0222    
0.1144

8 0.5691    
0.3000

0.5720    
0.3743

0.6863    
0.2770

1.7526    
0.2564

1.0683    
0.2374

1.0399    
0.0634

1.1705    
1.0190

0.0400    
0.1483

0.0028    
0.0102

10 0.8981    
0.1734

0.7282
0.3429

0.8213    
0.2450

1.5294    
0.0695

1.0108    
0.0281

1.0008    
0.0009

2.7057    
0.6118

0.0311    
0.0920

0.0022    
0.0044

DTLZ2 4 0.5491    
0.0055

0.5463    
0.0060

0.5206    
0.0164

0.2970    
0.0797

0.4553    
0.0857

0.7781    
0.0842

0.0048    
0.0002

0.0044    
0.0003

0.0028    
0.0003

6 0.7079    
0.0108

0.7107    
0.0105

0.6938    
0.0174

0.1914    
0.0933

0.4534    
0.0885

0.8033    
0.1077

0.0051    
0.0004

0.0044    
0.0005

0.0025    
0.0004

8 0.9448    
0.0053

0.9436    
0.0026

0.9422    
0.0029

0.1483    
0.1172

0.4121    
0.0882

0.7082    
0.1050

0.0071    
0.0043

0.0046    
0.0003

0.0035    
0.0006

10 0.9779    
0.0133

0.9989    
0.0001

0.9988    
0.0001

0.2379    
0.1057

0.4673    
0.0887

0.7651    
0.0820

0.0433    
0.0100

0.0054    
0.0005

0.0043    
0.0005

DTLZ3 4 0.4251    
0.0732

0.3804    
0.0722

0.2795    
0.0522

1.2991    
0.4752

1.2521    
0.4321

1.2069    
0.2395

0.4304    
0.6395

0.4478    
0.8026

0.0711    
0.2627

6 0.9984    
0.0035

0.7938    
0.3115

1.0000    
0.0002

1.4710    
0.0716

1.0681    
0.1131

1.0029    
0.0008

6.7077    
4.0270

0.4479    
0.8582

0.0030    
0.0045
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Table 2. Mean and standard deviation values of hypervolume results of the proposed method
with ENS and A_ENS by incorporating them in existing NSGA-III

8 0.8349    
0.0678

0.8478    
0.0688

0.8237  
0.0741

0.3270    
0.2825

0.5182    
0.1728

0.9348    
0.1012

0.0052    
0.0004

0.0056    
0.0007

0.0048    
0.0007

10 0.8497    
0.1124

0.9171    
0.0780

0.8975    
0.0683

0.4897    
0.3126

0.4563    
0.1055

0.9273    
0.0757

0.0055    
0.0017

0.0060    
0.0008

0.0051    
0.0006

DTLZ3 4 0.5679    
0.0047

0.4202    
0.1239

0.2451    
0.0786

0.1468    
0.0051

1.1576    
0.4953

1.2521    
0.2828

0.0050    
0.0000

0.3201    
0.6600

0.1606    
0.4797

6 1.0000    
0.0000

0.9989    
0.0019

0.9980    
0.0027

0.9482    
0.1865

1.2726    
0.2236

1.0874    
0.1679

0.1058    
0.3266

0.4987    
0.5547

0.1582    
0.3192

8 1.0000    
0.0000

1.0000    
0.0000

1.0000    
0.0000

1.2203    
0.2699

1.1755    
0.1102

1.0550    
0.0769

0.7172    
0.9587

0.3309    
0.3542

0.0874    
0.2259

10 1.0000
0.0000

1.0000    
0.0000

1.0000    
0.0000

1.2576    
0.2011

1.2218    
0.0853

1.0255    
0.0488

1.0615    
0.6874

0.2625    
0.2761

0.0070    
0.0151

DTLZ4 4 0.4253    
0.1467

0.3963    
0.1421

0.4366    
0.1447

0.6255    
0.4076

0.7845    
0.2591

0.9061    
0.1053

0.0041    
0.0013

0.0037    
0.0013

0.0028    
0.0004

6 0.7126    
0.0882

0.6517    
0.1058

0.6519    
0.0975

0.5625    
0.4008

0.8261    
0.2324

0.9820    
0.1376

0.0050    
0.0006

0.0044    
0.0007

0.0039    
0.0010

8 0.8147    
0.0730

0.8121    
0.0443

0.8258    
0.0601

0.6892    
0.4258

0.7671    
0.2237

0.8885    
0.2254

0.0046    
0.0007

0.0050    
0.0010

0.0044    
0.0009

10 0.9124    
0.0494

0.9283    
0.0298

0.9237    
0.0370

0.6741    
0.4242

0.6415    
0.2825

0.8391    
0.2410

0.0049    
0.0016

0.0052   
0.0011

0.0044    
0.0014

DTLZ5 4 0.3909    
0.0044

0.3917    
0.0041

0.3885    
0.0082

1.0567    
0.0436

1.0689    
0.0494

1.0457    
0.0222

0.0012    
0.0003

0.0011    
0.0001

0.0014    
0.0008

6 0.4559    
0.0026

0.4617    
0.0030

0.4561    
0.0057

1.0029    
0.0753

1.0744    
0.0646

1.0889    
0.0567

0.0017    
0.0005

0.0016    
0.0004

0.0025    
0.0011

8 0.4755    
0.0065

0.4751    
0.0114

0.4706    
0.0153

0.9428    
0.0675

1.1019    
0.0661

1.1201    
0.0708

0.0021    
0.0003

0.0013    
0.0005

0.0046    
0.0022

10 0.5641    
0.0135

0.5433    
0.0176

0.5350    
0.0317

0.7049    
0.1015

1.0869    
0.0468

1.0882    
0.0552

0.0037    
0.0009

0.0020    
0.0007

0.0042    
0.0016

DTLZ6 4 0.8687    
0.0009

0.8642    
0.0009

0.8491    
0.0046

0.9854    
0.0417

1.0097    
0.0689

1.1045    
0.1093

0.0064    
0.0006

0.0067    
0.0004

0.0073    
0.0017

6 0.9702    
0.0070

0.9691    
0.0025

0.9542    
0.0264

0.8016    
0.0421

0.8895    
0.0555

1.0048    
0.0695

0.0220    
0.0077

0.0235    
0.0030

0.0193    
0.0057

8 0.9741    
0.0065

0.9674 
0.0075

0.9480    
0.0233

0.7982    
0.0392

0.9795    
0.0426

1.0133    
0.0605

0.0172    
0.0108

0.0189    
0.0024

0.0169    
0.0057

10 0.9750    
0.0030

0.9707    
0.0051

0.9546    
0.0129

0.7287    
0.0497

0.9848    
0.0475

1.0303    
0.0441

0.0146    
0.0030

0.0223    
0.0041

0.0174    
0.0055

DTLZ7 4 0.1872    
0.0041

0.1853    
0.0125

0.1585    
0.0137

0.6311    
0.0445

0.6700    
0.0438

0.9135    
0.0919

0.0097    
0.0046

0.0083    
0.0006

0.0068    
0.0008

6 0.1411    
0.0079

0.1561    
0.0088

0.1468    
0.0134

0.6427    
0.0641

0.6504    
0.0507

0.8566    
0.0657

0.0154    
0.0040

0.0137    
0.0007

0.0122    
0.0009

8 0.1057    
0.0216

0.1578    
0.0112

0.1472    
0.0168

0.5986    
0.0656

0.6727    
0.0655

0.9450    
0.1789

0.0144    
0.0014

0.0156    
0.0010

0.0130    
0.0021

10 0.1243    
0.0242

0.1610    
0.0097

0.1457    
0.0193

0.5563    
0.0561

0.6177    
0.0738

0.8741    
0.1518

0.0166    
0.0020

0.0152    
0.0009

0.0119    
0.0023

Problem M Hypervolume Spread GD
NSGA-III NSGA-III NSGA-III

ENS AENS ASNDS ENS AENS ASNDS ENS AENS ASNDS
DTLZ1 4 0.9122    

0.0005
0.8766    
0.0211

0.3786    
0.1307

0.0095    
0.0109

0.8833    
0.4733

1.1527    
0.1745

0.0021    
0.0000

0.0755    
0.1824

0.0018    
0.0027

6 0.9800    
0.0019

0.6635    
0.2902

0.2470    
0.0839

0.1667    
0.2970

1.2243    
0.4333

1.1220    
0.0645

0.0144    
0.0622

0.1464    
0.3273

0.0005    
0.0005

8 0.9300    
0.1693

0.3321    
0.2411

0.2604    
0.1004

0.4883    
0.5912

1.3017    
0.3373

1.0916    
0.0775

0.0649    
0.1793

0.0567    
0.1415

0.0007    
0.0020

10 0.9564    
0.1018

0.3153    
0.1708

0.2610    
0.0956

0.5054    
0.6040

1.2594    
0.2927

1.0819    
0.0491

0.0702    
0.1654

0.0194    
0.0407

0.0005    
0.0016

DTLZ2 4 0.5704    
0.0008

0.5655    
0.0014

0.5197    
0.0122

0.1420    
0.0046

0.3593    
0.0489

0.8293    
0.0763

0.0055    
0.0001

0.0052    
0.0002

0.0031    
0.0003

6 0.7459    
0.0008

0.7342    
0.0053

0.6753    
0.0475

0.1617    
0.0064

0.4433    
0.0637

0.9140    
0.0713

0.0048    
0.0001

0.0043    
0.0004

0.0041    
0.0006
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From the experimental results presented in the Table 1 and 2, we can observe that
the proposed method ASNDS when incorporated into the existing PDMOEAs, KnEA
and NSGA-III, exhibits significant results in terms of the GD which emphasizes the
improvement in the convergence of the algorithm. In other words, the proposed
approach when incorporated into the PDMOEAs significantly improves the conver-
gence of the PDMOEA. From the results presented in the Table 1, we can clearly
notice that the proposed ASNDS, performing better for all the problems from DTLZ1-
DTLZ7 in terms of GD indicator when incorporated in the KnEA algorithm. Whereas
from the results presented in the Table 2, it is clear that for except the problem DTLZ5,
the proposed method performs better corresponding to the GD indicator when incor-
porated in the NSGA-III algorithm.

In terms of the Spread, the proposed ASNDS is outperformed by the ENS approach
but comparable to the AENS approach that indicates need for the improvement of the
diversity performance when ASNDS is incorporated into PDMOEA. From the results
presented in Table 1, we can observe that for the problems DTLZ2, DTLZ4 and
DTLZ7 the proposed ASNDS is performing poorly in terms of spread indicator when
incorporated in KnEA. When incorporated in NSGA-III, the proposed method per-
forms worse in accordance to spread indicator for the problems, DTLZ2, DTLZ4 and
DTLZ6-DTLZ7 as depicted in the Table 2. According to the Hypervolume results, we
can observe that the proposed ASNDS performs comparable to the ENS and AENS
approaches, which depicts that the proposed approach improves the convergence at the
cost of the diversity.

4 Conclusion

In this paper, we propose an approximate Nondominated sorting approach based on
sum of the normalized objectives (ASNDS) which requires only two objective com-
parisons to establish the dominance relation. We have compared the performance of the
proposed approach with the existing Efficient NDS (ENS) and approximate ENS
(AENS) by incorporating them into the existing PDMOEAs. The experimental results
demonstrate that the proposed method improves the convergence of the algorithms and
on the other hand affects the diversity. The proposed ASNDS reduces the computa-
tional complexity of the NDS approach as it only considers two objective comparisons
irrespective of total number of objectives considered for optimization where the
existing AENS uses three objective comparisons and other NDS approaches require all
the objectives to establish dominance relation between the individuals. In future, we
would like to include epsilon concept to the proposed approximate NDS approach to
improve the diversity.

Acknowledgement. This study was supported by the BK21 Plus project funded by the Ministry
of Education, Korea (21A20131600011).
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Abstract. The heat sink is one of the most widely used devices for
thermal management of electronic devices and automotive systems. The
present study approaches the design of the heat sink with the aim of
enhancing their efficiency and keeping the material cost to a minimum.
The above-mentioned purpose is achieved by posing the heat sink design
problem as a bi-objective optimization problem where entropy genera-
tion rate and material cost are the two conflicting objective functions.
The minimum entropy generation rate reduces irreversibilities inherent
in the system, thus leading to improved performance, while the reduc-
tion in material cost ensures its economic feasibility. This bi-objective
optimization problem is solved using Non-dominated Sorting Genetic
Algorithm (NSGA-II) in the presence of geometric restrictions and func-
tional requirements. Heat sinks with two different flow directions, namely
flow-through air cooling system and impingement-flow air cooling sys-
tem, are optimized to identify the best geometric and flow parame-
ters. Subsequently a knowledge extraction exercise is carried out over
non-dominated solutions obtained from the multi-objective optimization,
to establish a relationship between the objective function and involved
design parameters. The knowledge extracted has significant potential to
simplify the calculations performed by thermal engineering experts in
the selection of the heat sink for a specific application.

Keywords: Evolutionary computation and Bi-objective optimization ·
Knowledge extraction · Electronic and automotive cooling · Plate-Fin
Heat Sink

1 Introduction

Every electronic device and automotive system need to dissipate a certain
amount of heat to maintain its temperature within its operational range. This
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activity of controlling the heat to be rejected is known as thermal management.
One of the most significant ways to achieve thermal management is to reduce
thermal resistance. This can be ensured by increasing the surface area of the
interfacing surface between heat generating devices and the cooling medium.
The simplest way to enhance cooling under cost, space, and weight constraints
is to use a heat sink with the fin. Plate-Fin Heat Sinks (PFHS) are generally
integrated into electronic devices that cool by blowing-out the heat. The PFHS
is in principle a heat exchanger component that cools the device by dissipating
heat to the surrounding cooling medium. The PFHS consists of two major parts
- one part is a flat plate which is intended to make good thermal contact with
the electronic device, and the other part is an array of comb-like protrusions to
increase the surface area in contact with the cooling medium.

There have been several efforts to understand, apply, and improve the func-
tioning of PFHSs. In the modern era, when every design has to pass through
the philosophy of sustainable development, the design of the heat sink cannot be
an exception. Bar-Cohen [2] observed that the sustainable development of the
PFHS involves a subtle balance between a superior thermal design, minimum
material consumption, and minimum pumping power. Bejan and Morega [4]
introduced the concept of the minimization of the entropy generation. Culham
and Muzychka [8] presented simultaneous optimization of PFHS design based on
minimization of the entropy generation associated with heat transfer and fluid
friction. Chen et al. [6] considered the minimization of entropy generation rate
to be the objective function which is able to account for air resistance as well as
the heat transfer resistance simultaneously. Mohsin et al. [12] applied Genetic
Algorithm (GA) to minimize entropy generation rate due to heat transfer and
pressure drop across pin fins. Culham et al. [7] highlighted the importance of the
contribution made by all thermal resistance elements including contact resistance
and spread resistance etc. between the heat source and the sink to the entropy
generation. Ndao et al. [13] performed multi-objective [3] thermal design opti-
mization and comparative study of various cooling technologies like continuous
parallel micro-channel PFHSs, inline and staggered circular pin-fin PFHSs, off-
set strip fin PFHSs, and single and multiple submerged impinging jet(s). Mohsin
et al. [12] used Genetic Algorithms (GAs) to minimize the entropy generation
rate and demonstrated that geometric parameters, material properties, and flow
conditions can be simultaneously optimized using GA. Sanaye and Hajabdollahi
[14] carried out a thermo-economic optimization of the plate fin heat exchanger
using genetic algorithms. A hybrid method was proposed by Ahmadi et al. [1]
which is known as Genetic Algorithm Hybrid with Particle Swarm Optimization
(GAHPSO) for design optimization of a plate-fin heat exchanger. The algorithm
is able to handle both continuous and discrete variables. Another study of plate-
fin heat exchangers was proposed by [11] using biogeography-based optimization
(BBO). Wang and Li [17] proposed a method to address the problem of decrease
in heat transfer performance and increase of pressure drop arising due to inap-
propriate surface selection and layer pattern. Ventola et al. [16] developed a novel
thermal model of the PFHS, validated it experimentally, and demonstrated its
superior accuracy.
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The principle of the minimum entropy generation rate produces PFHS
designs which are not only thermodynamically efficient but also have better
geometric and topological features. This paper proposes a multi-objective opti-
mization approach of PFHSs that are used as a cooling mechanism in electronic
devices. The different variables of the optimization study are number of fins,
height of the fin, spacing between the fins, and incoming air velocity. In addition
to the restrictions on the lower and upper bounds of the design variables, there
are also a few non-linear constraints from geometrical dependency, design speci-
fications, and functional requirements. Two configurations such as PFHS with a
flow-through air cooling system and PFHS with an impingement-flow air cooling
system are considered in the present work. The PFHSs with impingement flow
are used to obtain high local and area averaged heat transfer coefficients in the
convective heat transfer process. Therefore, this configuration is used where heat
flux density is significantly high, like cooling of turbine blades. The PFHS with
flow through configuration is used when the constraint on the space availability
is relatively relaxed. The conflicting objectives of multi-objective optimization
are entropy generation rate and cost [9]. Minimum entropy generation rate will
ensure better cooling. However, the solutions might not be economical. The
minimum cost will ensure a design that works better from the economic point
of view.

The structure and scope of the rest of the paper are organized as follows:
Sect. 2 presents the details about the PFHS along with the heat sink design as
a multi-objective problem defining design variables, constraints, and objective
functions. The optimization results and the corresponding plots are discussed in
Sect. 3. In Sect. 4, knowledge extraction methodologies are applied to the results
obtained from the optimization study to establish a knowledge base for future
reference. Finally, the concluding remarks and future development scope of the
study are presented in Sect. 5.

2 Plate-Fin Heat Sink (PFHS)

There exists a large number of analysis tools for the determination of the ther-
mal performance of PFHSs, provided design conditions are well defined. A model
proposing a relationship between entropy generation and material cost with
PFHS design parameters can be optimized in such a manner that relevant design
parameters attain a value which combines to produce the best possible PFHS
performance for a given set of constraints [15]. Two different configurations of a
PFHS are considered in this paper. The first one is the flow-through air cooling
system in Fig. 1 and the second one is the impingement-flow air cooling system
in Fig. 2. The first flow configuration is used where a relatively large space is
available as cooling fluid flows along the PFHS and not directly on the hot sur-
face. The impingement-flow air cooling system (shown in Fig. 2) is suitable for
the applications where large electronic component density exists and high heat
flux needs to be dissipated. In this cooling arrangement, the goal is achieved by
impingement of high velocity cooling fluid directly on the surface to be heated.
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Fig. 1. PFHS with flow-through cool-
ing.

Fig. 2. PFHS with impingement-flow
cooling.

2.1 Multi-objective Optimization Problem Formulation

In the present work, an attempt has been made for simultaneous minimization
of two conflicting objectives, the entropy generation rate (thermal performance)
and the material cost (economy). This problem is adopted from Chen and Chen
[5]. The multi-objective optimization design problem can be formulated as fol-
lows:

Cmat = (w × L × tb + N × H × b × L) × ρ × Cost.

Ṡgen = Rsink ×
(

Q̇

Tamb

)2

+
Fd × Vf

Tamb
.

(1)

Where Cmat is the cost of material from which the PFHS is made, w width of
the fin, L length of fins, tb base length of fins, N number of fins, H height of the
fin, b spacing between fins, ρ density of the cooling fluid, Ṡgen entropy generation
rate, Rsink overall PFHS thermal resistance, Q̇ represents heat generation rate,
Tamb absolute surrounding temperature, Fd fluid friction in the form of drag
force, and Vf uniform stream velocity. The overall PFHS resistance as defined
in the case of flow-through air cooling systems and impingement-flow air cooling
systems are given by:

Rsink =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1(
N

Rfin

)
+ (heff × (N − 1) × b × L)

+
tb

k × L × w
, for flow-through air inlet,

1
heff × A × ηfin

, for impingement-flow air inlet.

(2)

where Rfin is the thermal resistance of a single fin, heff is the effective heat
transfer coefficient (the fins being assumed as straight fins with an adiabatic
tip), k is the thermal conductivity, A is the total surface area of PFHS and
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other exposed surfaces, and ηfin represents the total heat dissipation efficiency.
The objective functions are subjected to the following constraints:

g1 : 0.001 −
(

w − tw
N − 1

− tw

)
≤ 0,

g2 :
(

w − tw
N − 1

− tw

)
− 0.005 ≤ 0,

g3 : 0.001 −

⎛
⎜⎜⎝ H(

w − tw
N − 1

)
− tw

⎞
⎟⎟⎠ ≤ 0,

g4 :

⎛
⎜⎜⎝ H(

w − tw
N − 1

)
− tw

⎞
⎟⎟⎠ − 194.0 ≤ 0,

g5 : 0.0001−

√√√√
(

w − tw
N − 1

− tw

)
Vch

ν
×

(
w − tw
N − 1

− tw

)
L

≤ 0.

(3)

The first two constraints, g1 and g2, put a limit on the fin gap, and according
to these constraints the fin gap should lie in the range of 0.001 m to 0.005 m. The
other two constraints deal with design specifications (g3 and g4) that arise due
to limited space for installation. According to these constraints, the fin aspect
ratio (ratio of height and thickness of the fin) should lie in the range of 0.01 and
194. The constraint g5 is simply to avoid getting a zero Reynolds number. Beside
these constraints, the design parameters can attain only those values which fall
in the admissible limits. These admissible values of the design parameters are as
follows:

2 ≤ N ≤ 40,
0.014 ≤ H ≤ 0.025,
2 × 10−4 ≤ b ≤ 2.5 × 10−3,
0.5 ≤ Vf ≤ 2,

N × b ≤ 0.05.

(4)

3 Optimization Results

In the present work, an attempt has been made to simultaneously minimize
of two conflicting objectives - the entropy generation rate (from the thermal
performance perspective) and the material cost (from the economic perspec-
tive). It is observed from Eq. 2 that in case of flow through configuration, the
thermal resistance of the PFHS is inversely proportional to number of fins. As
increase in the number of fins also translates into enhanced exposed surface area,
in case of impingement flow also, the inverse relationship between the thermal
resistance and the number of fins remains valid. As a result, in both flow con-
figurations increase in number of fins apparently leads to decrease in entropy
generation rate (Ṡgen). However, it is pertinent to note that the increase in
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number of fins also results in increased drag force being offered to the fluid flow.
This increase in drag force has a consequential effect of increase in the entropy
generation rate (Ṡgen). The simultaneous interaction of both PFHS resistance
and viscous dissipation must be taken into account in the PFHS optimization
procedure in order to establish optimal operating conditions. All variables of
interest, namely number of fins (N), height of the fin (H), spacing between fins
(b), and incoming air velocity (vf ), have been constrained between their lower
and upper bounds, hence providing a simultaneous optimization of all design
variables. The multi-objective optimization problem of the PFHS is solved using
Non-dominated Sorting Genetic Algorithm-II (NSGA-II [10]). Two different con-
figurations of the PFHS (a) PFHS with a flow through air cooling system and
(b) PFHS with an impingement flow air cooling system have been considered
in the present work. The formulations of these two configurations are adapted
from Chen and Chen [5] and the function evaluations are set similar to them.
The following parameters are used for all the optimization tasks in the present
work:

– Population size = 100,
– Generations = 100,
– Crossover probability (Simulated Binary Crossover) = 0.9,
– SBX index = 10,
– Mutation (Polynomial mutation) probability = 1/number of variables,
– Mutation index = 100.

The Pareto-optimal solutions obtained from NSGA-II are shown in Fig. 3.
Figure 3 consists of the comparative performance of our method with Chen and
Chen [5] for a PFHS with a flow through air cooling system. The non-dominated
solutions in the figure clearly show that the performance of the present method
is better than results by Chen and Chen [5].

Non-dominated Sorting Genetic Algorithm-II
Direction-based Genetic Algorithm
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Fig. 3. Non-dominated solutions between rate of entropy generation and cost for flow-
through

The entropy generation rate varies between 0.002898 W/k and 0.008558 W/k.
The lowest cost is 1.132713NTD whereas the highest cost is 33.920260NTD.
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Table 1. Non-dominated solutions along with variable values for PFHS with flow
through

Rate of entropy
generation
(W/k)

Cost
(NTD)

Number
of fins

Height
of the fin
(mm)

Spacing
between fins
(mm)

Incoming
air velocity
(m/s)

0.002898 33.920260 18 0.124923 0.001144 1.186749

0.002934 21.023040 22 0.089170 0.001130 1.507174

0.003002 14.888590 25 0.072592 0.001143 1.757355

0.003149 9.480572 29 0.055671 0.001135 2.0

0.003552 5.350479 36 0.043285 0.001077 2.0

0.004296 2.956553 40 0.032595 0.001084 2.0

0.005281 1.876195 40 0.027582 0.001169 2.0

0.006376 1.420160 40 0.025001 0.001214 1.999995

0.007512 1.227456 40 0.025 0.001238 2.0

0.008558 1.132713 40 0.025 0.001250 1.999499
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Fig. 4. Non-dominated solutions for rate of entropy generation and cost for
impingement-flow

Table 1 shows two extreme values and some intermediate values of the objec-
tive function along with corresponding design variables. It can also be observed
from Table 1 the number of fins is directly proportional to the rate of entropy
generation. The number of fins attains its highest value (40) when the entropy
generation rate ranges from 0.004296 W/k to 0.008558 W/k. The incoming veloc-
ity achieves its highest value (2 m/s) when entropy generation rate reaches
0.003149 W/k. We can observe that with further increase, the number of fins
and incoming air velocity entropy generation will increase.

The resulting non-dominated solutions between rate of entropy generation
and cost for the PFHS with an impingement flow air cooling system are shown in
Fig. 4. The entropy generation rate ranges from 0.005247 W/k to 0.008879 W/k
and the cost varies between 1.132710NTD and 2.771404NTD. The extreme
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and intermediate values of objective functions for this configuration along with
design variables are shown in Table 2. The table clearly shows that number of fins
always takes its highest bound (40) and height of the fin is always 0.025 mm. The
incoming air velocity is fixed at its upper bound i.e. 2 m/s. Table 2 also shows
that three variables out of four are fixed for all non-dominated solutions. The
only variable that causes different non-dominated solutions is spacing between
the fins.

In the present work, in addition to solving the above mentioned two configu-
rations, knowledge extraction has been carried out from the obtained solutions
of multi-objective optimization. The motivation of the knowledge extraction
is to establish a relationship between input design variables and output non-
dominated solutions of the multi-objective optimization problem. This knowl-
edge will help the user to select the fin for specific application.

4 Knowledge Extraction

The non-dominated solutions of multi-objective optimization were shown in the
previous section. Next, the solutions are analyzed thoroughly to extract knowl-
edge from the obtained non-dominated solutions. The motivation is to estab-
lish the existence of meaningful relationships between objective functions and
decision variables. These relationships will help the decision maker select the
appropriate configuration of the PFHS based on the specific and customized
needs.

4.1 PFHS with Flow Through Air Cooling System

All the decision variables were plotted along with the first objective function
(rate of entropy generation) to visualize the relationships between objective func-
tions and design variables. As the two objective functions considered in this case
are conflicting, it would be sufficient to establish the relationship of the design
variables with any one of the objective functions. The dependence on the other
objective function with design variables can be predicted by exploiting the fact
that both the objective functions are conflicting. However, it can be argued that
analytical relationships between the objective functions and the design variables
are obtained for both the objective functions separately so that the exact depen-
dence on the design variables can be understood.

The change in the rate of entropy generation (Ṡgen) with the variation in the
number of fins (N) is shown in Fig. 5. Existence of two distinct zones is visible
in Fig. 5. The first zone shows that as Ṡgen decreases, there is a corresponding
decrease in number of fins. This plot also gives the exact relationship between
Ṡgen and N in Zone 1 as shown in Eq. 5:

N = −1963.96 + (1.69185e6Ṡgen) − (4.79851e8Ṡ2
gen) + (4.56218e10Ṡ3

gen). (5)

In Zone 2, the number of fin attains its maximum allowable value of 40
corresponding to a critical value of entropy generation rate, the value being
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Table 2. Non-dominated solutions along with variables for PFHS with impingement
flow.

Rate of entropy
generation
(W/k)

Cost
(NTD)

Number
of fins

Height
of the fin
(mm)

Spacing
between fins
(mm)

Incoming air
velocity
(m/s)

0.005247 2.771404 40 0.025 0.001042 2.0

0.005380 2.173199 40 0.025 0.001118 2.0

0.005551 1.935973 40 0.025 0.001148 2.0

0.005828 1.717386 40 0.025 0.001176 2.0

0.006183 1.548827 40 0.025 0.001197 2.0

0.006628 1.414482 40 0.025 0.001214 2.0

0.007165 1.308253 40 0.025 0.001228 2.0

0.007726 1.232049 40 0.025 0.001237 2.0

0.008302 1.175486 40 0.025 0.001245 2.0

0.008879 1.132710 40 0.025 0.001250 2.0
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0.0039 w/k. Once this critical value is achieved, there is no change in the number
of fins in the design with any further increment in the entropy generation rate.
It should be noted that if any design calculation gives N as a non-integer value,
it should be approximated with the nearest integer value. In the second zone,
the number of fins is always fixed at its upper bound.

Figure 6 shows variation in height of fin (H) with entropy generation rate
(Ṡgen) as obtained from the Pareto-optimal solutions of optimization results.
The two zones do not have very clear distinction in Fig. 6. However, two different
zones have been identified to have uniformity in the discussion. In the first zone,
the variation in H with entropy generation rate, Ṡgen, has a steep slope. However,
the variation in H with respect to Ṡgen, is very minimal in the second zone
compared to the first zone. The relationship plot can be approximated by the
cubic polynomial (Eq. 6):
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H = 0.618 − 305.676Ṡgen + 50881.1Ṡ2
gen − 2.741e + 06Ṡ3

gen. (6)

Figure 7 shows the relationship between variation of entropy generation rate
(Ṡgen) and spacing between the fins (b). The observation can be divided into two
different zones. The first zone ranges from 0.002 W/k to 0.0038 W/k whereas the
second zone lies from 0.0039 W/k to 0.86 W/k. An inverse proportionality exists
in the first zone. The variation in the first zone can be approximated using a
linear equation of the form as given in Eq. 7 (Zone 1).

Zone 1 Zone 2

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.002  0.003  0.004  0.005  0.006  0.007  0.008  0.009

Sp
ac

in
g 

be
tw

ee
n 

fi
ns

 (
m

m
)

Rate of entropy generation

Fig. 7. Variation of space with (Ṡgen)
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In the second zone, it is observed that Ṡgen bears higher order proportionality
with b. The variation can be closely approximated with the help of a cubic
polynomial of the following form (Eq. 7 (Zone 2)):

b =

⎧⎪⎪⎨
⎪⎪⎩

0.0015 − 0.1106Ṡgen, Zone 1,

7.32236e − 05 + 0.41382Ṡgen

−50.2806Ṡ2
gen + 2105.77Ṡ3

gen, Zone 2.

(7)

The junction of Zone 1 and Zone 2 shows zeroth order continuity where
values are continuous but the derivatives are discontinuous. Figure 8 shows the
variation of entropy generation rate (Ṡgen) with incoming air velocity (vf ) as
obtained from the result of post optimal analysis. The variation can be classified
into two distinct zones. However, these two zones are dissimilar to the other three
zones. In the first zone the entropy generation rate, Ṡgen, varies linearly with
incoming air velocity, vf . This linear variation has a very high slope indicating
that for a small change in entropy generation rate there is significant change in
incoming air velocity. The linear variation ceases to exist at the critical value of
entropy generation rate, which is 0.0033 W/k. The incoming air velocity attains
its allowable maximum limit of 2m/s at the critical rate of entropy generation of
0.0033 W/k and after that it remains unchanged with further variation in entropy
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generation rate in Zone 2. The analytical relationship between entropy genera-
tion rate (Ṡgen) and incoming air velocity (vf ) in Zone 1 can be approximated
as follows (Eq. 8):

vf = −11.076 + 4269.79Ṡgen (8)

4.2 PFHS with Impingement Flow Air Cooling System

In an interesting observation, the rate of entropy generation (Ṡgen) varies only
with fin spacing parameter (b) while being invariant with the other three design
variables (Figs. 9(a), (b), and 11). To analyze how one optimal solution differs
from the other optimal solutions, all four design parameters have been plotted
against rate of entropy generation, Ṡgen (Figs. 9 and 10).
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For a lower entropy generation rate, the fin spacing parameter should be
small and with any increase in entropy generation rate, the fin spacing param-
eter increases monotonically with (Ṡgen). This variation can be explained from
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the practical observation that for a fixed plate dimension a small fin spacing
parameter would result in a larger number of fins. This increase in the number
of fins would eventually result in a lower entropy generation rate. Therefore,
if better fin performance is desired, it is advisable to design a PFHS with a
lower value of fin spacing parameter and to keep all the other design variables
at their prescribed constant values as discussed below. Hence, it can be inferred
from this knowledge extraction methodology that if an optimal PFHS is to be
designed with four design parameters (N,H, b, and vf ), the three parameters
namely N,H, and vf must be fixed whereas b can be adjusted to obtain the
desired trade off among various chosen objectives. The relationship between the
rate of entropy generation (Ṡgen) and b from Fig. 10 is shown below (Eq. 9):

b = −0.0002 + 0.367Ṡgen − 23.4294Ṡ2
gen (9)

Therefore, knowledge extraction not only is useful for design of optimal
PFHS, but also allows the designer to make some well informed predictions
about the behavior of the system with any possible change in design.

5 Conclusion

The optimization of PFHSs plays a meaningful role in the efficient resource uti-
lization for a given cooling objective. A multi-objective evolutionary algorithm
is applied to solve the optimization problem due to the existence of non-linear
constraints and objective functions. NSGA-II is used due to its potential to
deal with non-linear constraints and objective functions in multi-objective opti-
mization problems. It is evident from non-dominated solutions that NSGA-II has
successfully generated well-spread non-dominated solutions. The non-dominated
solutions of a PFHS with a flow-through air cooling system are compared with
the results obtained by a multi-objective real-coded genetic algorithm using a
direction-based crossover operator by Chen and Chen [5], and it is shown that the
NSGA-II results outperform the other method. The non-dominated solutions of
both cases are analyzed to obtain the interrelationship that may exist among the
variables and objective functions. The knowledge extraction results showed that
the relationship is simpler in the case of the PFHS with an impingement-flow air
cooling system compared to the PFHS with a flow-through air cooling system.
These relationships can provide a deep insight to the users and designers.

The present study took into consideration four variables (number of fins,
height of fin, space between number of fins, and incoming air velocity) in the
optimization study. Another direction of research could be to increase the num-
ber of constraints and objective functions and solve for both configurations as
many objective optimization problems. A generalized formulation for the above
two configurations can be designed which can assist designers in the develop-
ment of a PFHS used for cooling electronic devices based on their specific needs
in terms of cooling rate, space availability, and material cost. The PFHSs can
also be integrated with smart materials to introduce adaptability in their geom-
etry and performance. This would enable fins to vary their geometry and heat



Evolutionary Bi-objective Optimization for Electronic Cooling 91

flux rate in response to change in the value of the thermal parameters of the
surrounding cooling medium. The present study can further be used to find the
right combination of conventional and smart materials to yield the optimal value
of thermal performance, material cost, and operational cost.
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Abstract. Predicting the trend of stock price movement accurately
allows investors to maximize their profits from investments. However,
due to the complexity of the stock data, classifiers often make errors,
which cause the investors to lose money from failed investments. This
study attempts to reduce such risks by focusing on easy-to-classify cases
that have the highest chances of success. Therefore, we propose a method
which selects only the predictions that have the highest confidence. In
an experiment on 50 stocks, each learning model is trained on each stock
data and evaluated based on the classification accuracy over a moving
time window. The models which have the highest confidence are selected
to predict the trend for that stock the next day. The experiment results
shows the classification accuracy has improved significantly when the top
10% of predictions were used.

Keywords: Stock price forecasting · Time series classification ·
Ensemble methods

1 Introduction

Over the years, the popularity of machine learning for stock price forecasting
has gathered more interest from economic experts, traders and companies in
the financial market. By analyzing the historic stock data, experts can recognize
patterns and trends which helps investors to make good investment strategies.
However, forecasting stock prices movement is an extremely challenging task
even if the task is simplified into 2 classes (‘up’ or ‘down’). Stock market prices
can be affected by many factors, including economy condition, government poli-
cies and the interest of investors [1,11]. As a result, stock data are often com-
plex in nature and contain highly non-linear and non-stationary patterns, which
makes the time series difficult to classify without using other informative sources.
In addition, the large amount of noise present in such time series poses a big
challenge for forecasting the trend of its movement.

A number of stock forecasting methods have been proposed with varying lev-
els of success. Statistical-based time series methods such as linear regression [23],
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A. Zamuda et al. (Eds.): SEMCCO 2019/FANCCO 2019, CCIS 1092, pp. 93–104, 2020.
https://doi.org/10.1007/978-3-030-37838-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37838-7_9&domain=pdf
http://orcid.org/0000-0003-3082-6746
http://orcid.org/0000-0003-0901-5105
https://doi.org/10.1007/978-3-030-37838-7_9


94 W. X. Cheng et al.

Holt-Winters exponential smoothing [14] and Autoregressive Integrated Moving
Average (ARIMA) [17] uses classical statistical theories and mathematical for-
mulas to predict the trend of the stock price.

Machine learning methods learns from the time series signals and make data-
driven predictions. Such models includes Support Vector Machines (SVM) [5],
Support Vector Regression (SVR) [8], Artificial Neural Networks (ANN) [6], and
Random Forests [3].

Recently, works on Deep Neural Networks has published to explore the effec-
tiveness of such algorithms on stock price forecasting. Such algorithms include
Long Short Term Memory (LSTM) [13], Convolutional Neural Network (CNN)
[20] and Deep Belief Network (DBN) [12]. In [7], the authors uses CNN and
neural tensor network to model the relationship between influencing events and
the stock price.

Random Vector Functional Link (RVFL) [21,22] network is a type of neural
networks which randomizes the weights instead of optimizing them. Since RVFL
optimizes the output weights using close-form solution in place of the Backward
Propagation, a lot of training time is saved, allowing the model to be trained at
a much shorter time than traditional neural network. A similar method, single
hidden layer neural network with random weights (RWSLFN) [32], is different
from RVFL by removing the direct links. However, [30,35] shows that including
the direct link can significantly improve the performance of the classifier.

Ensemble learning methods combines several techniques together to improve
the classification capabilities. Such methods has two different strategies to com-
bine the results of each model: sequential and parallel [31]. In a sequential ensem-
ble model, the output of several models is connected as inputs the next model
[2,26]. On the other hand, a parallel ensemble model first breaks the signal into
several sub-signals. A model is then built on each sub-signal to perform classifi-
cations. Such methods include Empirical Mode Decomposition (EMD) [16] and
Wavelet Decomposition [10,15]. Two different ensemble models have been pro-
posed to perform electrical load forecasting, one combining EMD with DBN [27]
and another combining Discrete Wavelet Transform (DWT), EMD and RVFL
[29]. In [28], authors uses a DWT-EMD-RVFL-SVR model to forecast stock
prices of various power related companies.

While such state-of-the-art classifiers can be accurate in forecasting the trend
of stock price movements, classifiers often misclassify the trend of the stock price
movements due to the complexity of the historical stock price data. This would
cause stock investors to lose money when they invest on stocks that are wrongly
classified as ‘increase’. One strategy to reduce such risks is to make forecasts on
a wide range of stocks and then keep only the forecasts (say 10% of the total
number of forecasts) that has the highest chance of success.

This work presents an new approach which reduces the risks of making wrong
classifications by focusing on easy-to-classify stocks. For each stock, a learning
model will be trained and evaluated based on the classification accuracy over
a moving time window. The models which has the highest accuracy are then
selected to predict the trend for that stock the next day. The efficiency of the
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proposed approach and the effect of selecting only the best classifiers are explored
with the experiment on 50 United States stocks.

The rest of the paper is organized as follows: Sect. 2 describes the theoretical
background of various methods. Our proposed method is described in Sect. 3.
Section 4 presents our experiment setup and the results. Finally, Sect. 5 concludes
the paper.

2 Theoretical Background

2.1 Wavelet Transform

Wavelet Transform [9] is a decomposition method which works in a similar way
as Fourier Transform. The main difference between the two transformations is
the representations. Wavelet Transform uses a library of wavelet functions to rep-
resent the original time series while the traditional Fourier Transform expresses
the time series as a set of sine and cosine waves [19].

A variant of Wavelet Transform, Maximal Overlap Discrete Wavelet Trans-
formation (MODWT) [24], decomposes the time series signal using high-pass
and low-pass filters for every level. This variant has some advantages over the
original Wavelet Transform. Firstly, MODWT is highly redundant and non-
orthogonal, which enables better comparison between the time series signal and
their decomposition [25]. In addition, MODWT is well defined in all sample
sizes unlike Wavelet Transform, which is only defined when the sample size is a
multiple of j levels [19,25].

2.2 Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) [16], also known as Hilbert-Huang trans-
form, was developed based on the assumption that every signal comprises of sev-
eral simple intrinsic oscillation modes known as Intrinsic Mode Functions (IMF),
Each IMF has only one zero-crossing between two local extrema. The residue
signal is obtained by subtracting all the IMFs from the main signal.

Since stock price forecasting is a complex problem where the time series signal
comprises of many individual components. Therefore, EMD can be applied to
improve the classification performance. The original time series can be easily
reproduced by summing all the IMFs and the residue.

However, “Mode Mixing Problem” is common for EMD decomposition and
researchers are working on ways to fix this issue. Such works includes combining
EMD and DWT sequentially such as the ensemble models in [28,29].

2.3 Random Vector Functional Link

Random Vector Functional Link (RVFL) is one variant of artificial neural net-
works which differs from traditional neural network in 3 ways: the input layer is
connected directly to the output layer, the weights between the input layer and



96 W. X. Cheng et al.

its hidden layers are randomized and a closed form least squares method is used
in place of a back propagation method [21,22].

Each neuron in the hidden layer takes a weighted sum of the inputs and
applies an activation function to produce an output, which is then used in the
output layer. The weights of its hidden layer Wh are fixed at a random value
between K and −K, where K is a tune-able parameter. With Wh and the acti-
vation function fixed, the weights of the output layer can be easily estimated
using the Least Squares method.

2.4 Stock Market Indicators

Stock Market Indicators (SMI) are indicators which aids in the prediction of
stock market movements. Such indicators are first used in [18] as features to
classify Istanbul Stock Exchange and later used in [28] as part of the feature set
of the Support Vector Regression.

From the works from [28], the authors mentioned 4 important indicators
for stock price forecasting: Moving Average Convergence Divergence (MACD),
Relative Strength Index (RSI), Stochastic Oscillator and Commodity Channel
Index (CCI). The mathematical formulas of 10 stock market indicators used in
this work are given in [18].

2.5 DWT-EMD-RVFL-SVR Model

The DWT-EMD-RVFL-SVR Model is an ensemble technique which combines
several techniques to predict future values [28]. This method employ a divide-
and-conquer concept where the algorithm first divides the complex problem into
several smaller problems and then build prediction models to solve smaller prob-
lems.

Firstly, the closing stock price are decomposed by using both MODWT and
EMD, where MODWT may aid in preventing the “Mode Mixing Problem” com-
monly present for EMD-decomposed signals [4,34]. Next, each decomposed signal
are modeled using RVFL to perform predictions on the decomposed signal. The
outputs of each RVFL model are then combined with 10 SMIs and the current
closing price to train the Support Vector Regression (SVR) to predict the closing
price for the next day.

3 Proposed Method

Stock price forecasting is often a challenging task with many factors affecting
the direction of stock price movements. While data extracted from historical
stock data can be very useful, historical stock data are often complex or shows
no relationships towards future trends. In the worst case scenario, no useful
information can be extracted and the classifier can only achieve approximately
50% accuracy. In such cases, predictions can be as good as random guessing.
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To reduce the risk of misclassification, we propose a method which focuses
on predicting the easy-to-classify cases. The main idea of this method is to train
prediction models for a large number of stocks (50 stocks in this work), and
consider only a few stocks (say 10% of the 50 stocks) with the highest confidence
of making the correct prediction. The remaining 90% of the stocks are ignored.
In this way, investors can choose to forecast only on stocks that has the highest
chance of success.

For this work, we look at 50 US stocks. The historical data of each stock
are treated as separate datasets. In each stock, a classifier will be trained and
evaluated on the historical data of this stock. Since we looked at 50 stocks, this
will generate 50 classifiers, with each classifier trained on each stock.

As for the method used in forecasting the direction of stock price movements,
it is important to use an accurate forecasting model for the proposal to work.
For this, the ensemble method proposed in [28] was used in this study as the
ensemble method performed better than other state-of-the-art methods.

Since the forecasting model predicts the closing price for the next day x′
t+1,

the predictions made by each model will then be converted to class labels y′
t

based on the equation below:

y′
t =

{
+1, if x′

t+1 > xt

−1, otherwise (1)

where x′
t+1 is the predicted closing price for the next day and xt is the current

closing price.
Next, for each day, each model will be evaluated using samples taken from

the past D days, where D is the length of the moving time window (time window
is set to {50, 100, 150, 200, 250, 300} days in this work). The trained models will
be ranked based on their classification accuracy in the descending order. This
means the model with the highest accuracy will be ranked 1 and the model with
lowest accuracy will be ranked 50. Once the ranking is obtained, we pick the
best classifiers (we use the top {25, 20, 10, 5, 4, 3, 2, 1} classifiers in this work)
to predict the direction of stock price movement for the next day. Table 1 shows
the algorithm of our proposed method.

Algorithm 1. Algorithm for our Proposed Method
Input: Trained Model, Input data X, Labels Y and Predicted Train Labels Y ′

Output: Predicted Test labels y′
t+1, ...

1: for Each Day t do
2: for Each Stock do
3: Predict the next day’s closing price x′

t+1.
4: If x′

t+1 > xt, set Y ′
t+1 = 1. Otherwise, set Y ′

t+1 = 0.
5: Evaluate the accuracy of the classifier using samples from the past D days.
6: end for
7: Rank the models based their accuracy in the descending order.
8: end for
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4 Experiment

4.1 Datasets

The closing prices from 50 United States stocks are used to analyze the effec-
tiveness of the algorithms1.

For each stock, daily stock prices from 08/12/2016 to 07/12/2018 are used.
Each stock contains the closing price for the same set of days. The training
and testing splits is performed as follows: The first 70% of the data is used for
training while remaining 30% of data is used for testing.

In this experiment, each sample are labeled as one of the 2 classes based
on the closing price of the stock. Each sample is labeled as ‘+1’ if the closing
price increases the next day and ‘−1’ otherwise (See Subsect. 4.2). The class
distribution of 50 datasets are recorded in Table 1.

4.2 Experimental Setup

In this experiment, we will be following the experiment setup based on [28].
Classifiers are tasked to predict whether the closing price increase the next day.
We set the input vector Xt = [xt−25, xt−24, ..., xt] as the closing stock prices for
the past 26 days. The corresponding class label Yt is set to ‘+1’ if the closing price
for the next day is higher than the closing price for day t and ‘−1’ otherwise. In
other words, the corresponding class label is set based on the equation below.

yt =
{

+1, if xt+1 > xt

−1, otherwise (2)

where xt+1 is the closing price for the next day and xt is the closing price of day
t. All data points in each dataset are linearly scaled down to range [0, 1].

The ensemble learning method was implemented based on the works in [28].
Experiments are conducted using MATLAB. To test the efficiency our pro-
posed method, we select the predictions with top {50, 25, 15, 10, 5, 4, 3, 2, 1} con-
fidence. Selecting the top 50 models indicates that no selection has been done
(which means all stocks are considered). To test the effect of selecting different
time windows, we repeat the experiment with the time window set to the past
{50, 100, 150, 200, 250, 300} days.

In addition to the classification accuracy, F1 Score are used in this paper.
This performance matrix is useful in this study as it gives emphasis in getting
true positives. Suppose investors were to make investments whenever they fore-
casts an increasing trend. True positives (TP ) indicate a good investment, false
positives (FP ) indicate a poor investment and false negatives (FN) indicates a
wasted opportunity. The definition is stated in the equation below [33]:

F1score =
2 × TP

2 × TP + FN + FP
(3)

1 The stock prices can be downloaded from Yahoo Finance at http://www.finance.
yahoo.com/.

http://www.finance.yahoo.com/
http://www.finance.yahoo.com/
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Table 1. Class distribution of 50 datasets

Stock Train samples Test samples Stock Train samples Test samples

Positive Negative Positive Negative Positive Negative Positive Negative

AAPL 193 140 111 33 MA 162 171 104 40

ABB 160 173 63 81 MSD 149 184 59 85

ADBE 173 160 110 34 MSFT 191 142 120 24

AT 99 234 44 100 MSI 155 178 69 75

AMD 156 177 66 78 NATI 155 178 57 87

AMZN 142 191 61 83 NDAQ 152 181 70 74

BA 184 149 122 22 NFLX 209 124 125 19

BB 171 162 73 71 NOK 160 173 65 79

CAJ 163 170 66 78 NVDA 245 88 142 2

CVX 149 184 77 67 ORCL 146 187 66 78

DAL 159 174 64 80 PEP 152 181 64 80

DOX 150 183 63 81 PRU 164 169 71 73

DVMT 138 195 56 88 PTR 160 173 87 57

F 156 177 76 68 QCOM 155 178 69 75

FB 155 178 68 76 RDS-B 148 185 69 75

GE 161 172 85 59 S 179 154 67 77

GOOGL 158 175 62 82 SGTZY 120 213 60 84

HMC 151 182 74 70 SNE 145 188 71 73

HP 161 172 82 62 STX 143 190 60 84

HPQ 269 64 142 2 T 160 173 69 75

IBM 163 170 75 69 TSLA 174 159 61 83

INTC 156 177 66 78 V 210 123 138 6

K 161 172 73 71 VZ 153 180 76 68

KINS 160 173 64 80 WDC 164 169 68 76

LOGI 143 190 59 85 XOM 160 173 74 70

Positive Class indicates closing price increases the next day
Negative Class indicates closing price does not increase the next day

4.3 Results and Discussion

Before analyzing the efficiency of our proposed method, we first check the clas-
sification performance of the classifier on individual stocks to determine if the
classifier has any potential of delivering good classification performance. The
classification performance for on 50 stocks is presented in Table 2.



100 W. X. Cheng et al.

Table 2. Classification performance on 50 stocks

Stock Accuracy (%) F1 score Stock Accuracy (%) F1 score

Training Testing Training Testing Training Testing Training Testing

AAPL 61.0 71.5 0.688 0.827 MA 61.6 70.8 0.602 0.828

ABB 62.2 52.1 0.616 0.601 MSD 61.6 45.8 0.584 0.512

ADBE 62.5 76.4 0.625 0.863 MSFT 64.0 81.9 0.707 0.901

AT 60.4 54.2 0.557 0.353 MSI 56.8 48.6 0.463 0.630

AMD 64.0 55.6 0.610 0.549 NATI 61.9 38.9 0.561 0.560

AMZN 61.9 49.3 0.482 0.605 NDAQ 66.4 54.9 0.597 0.404

BA 61.6 76.4 0.650 0.857 NFLX 68.2 84.7 0.755 0.917

BB 70.3 49.3 0.732 0.618 NOK 59.2 47.9 0.585 0.510

CAJ 59.5 49.3 0.574 0.592 NVDA 76.3 98.6 0.851 0.993

CVX 61.9 55.6 0.557 0.584 ORCL 64.6 50.7 0.607 0.632

DAL 68.5 54.2 0.677 0.431 PEP 66.1 50.0 0.641 0.532

DOX 67.6 45.1 0.662 0.586 PRU 58.3 53.5 0.570 0.599

DVMT 61.6 48.6 0.508 0.507 PTR 61.0 50.0 0.561 0.446

F 63.1 56.3 0.602 0.512 QCOM 64.9 51.4 0.626 0.533

FB 61.9 47.2 0.567 0.638 RDS-B 65.5 53.5 0.602 0.362

GE 58.9 44.4 0.519 0.245 S 66.4 60.4 0.687 0.565

GOOGL 67.0 45.1 0.628 0.568 SGTZY 67.9 54.9 0.616 0.463

HMC 68.2 54.2 0.639 0.560 SNE 57.4 50.0 0.496 0.636

HP 66.1 50.0 0.641 0.486 STX 59.8 53.5 0.518 0.496

HPQ 83.2 97.9 0.901 0.989 T 62.5 54.2 0.603 0.154

IBM 62.8 47.9 0.635 0.272 TSLA 65.8 47.9 0.672 0.566

INTC 64.3 57.6 0.607 0.358 V 71.8 95.8 0.795 0.979

K 65.5 56.9 0.625 0.404 VZ 59.2 46.5 0.547 0.374

KINS 64.3 47.9 0.629 0.576 WDC 61.3 50.7 0.608 0.553

LOGI 67.9 41.0 0.640 0.536 XOM 63.1 59.7 0.599 0.525

From the results in Table 2, we observe that the testing accuracy for indi-
vidual stocks varies between 38.9% and 98.6%. The F1 Score shows a similar
trend as the classification accuracy, having a large variance in F1 Score across
50 stocks. Hence, it is evident that classifier does not show a consistent classifi-
cation performance for stock price movements.

Although the classification performance are generally poor, the classifier does
well in some stocks. The Fusion Learning Method achieves high testing accuracy
and F1 Score for some datsets such as MSFT and NVDA, which indicates a good
potential for classifying the movement of stock market.

With these observations, it is important that the classifier chooses a only
subset of stocks to predict such that its potential is maximized and the errors
are minimized. The classification performance of our proposed method and the
effect of adjusting the window length are presented in Tables 3 and 4.
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Table 3. Classification accuracy on test set

Top ranked no. of stocks Window length (days)

50 100 150 200 250 300

50 56.8 56.8 56.8 56.8 56.8 56.8

25 62.6 63.4 63.3 62.9 62.5 62.7

15 69.6 70.4 69.4 69.2 68.8 68.3

10 77.3 79.0 78.0 76.3 75.5 74.4

5 90.0 90.4 90.8 89.6 88.5 88.9

4 93.4 93.9 93.9 93.2 92.7 92.9

3 97.5 97.5 97.5 97.5 97.5 97.5

2 97.9 98.3 98.3 98.3 98.3 98.3

1 97.2 97.9 97.9 97.9 97.9 97.9

Bold values indicate optimal window length for the number of
stocks selected.

Table 4. Classification F1 score on test set

Top ranked no. of stocks Window length (days)

50 100 150 200 250 300

50 0.632 0.632 0.632 0.632 0.632 0.632

25 0.702 0.704 0.704 0.699 0.697 0.702

15 0.788 0.791 0.777 0.778 0.770 0.766

10 0.861 0.872 0.864 0.847 0.837 0.832

5 0.946 0.949 0.951 0.944 0.938 0.940

4 0.966 0.969 0.969 0.965 0.962 0.962

3 0.987 0.987 0.987 0.987 0.987 0.987

2 0.989 0.991 0.991 0.991 0.991 0.991

1 0.986 0.989 0.989 0.989 0.989 0.989

Bold values indicate optimal window length for the number of sets
selected.

In Tables 3 and 4, we observed that our approach works well in prioritizing
on easy-to-classify problems in the test set. Both classification accuracy and F1
Score improves when less number of stocks are selected. In addition, there are
significant improvements when only 5 (10%) or less the number of stocks are
selected. Selecting the top 2 stocks results in the best classification performance.

In addition, it shows that the window length does not show a significant effect
on classification performance. Accuracy and F1 Score remains largely the same
with different window lengths when the top {3, 2, 1} stocks are selected. Setting
the window length to 150 days would achieve the best classification result as it
produces the best results when 5 of less stocks are selected, where it achieves
significantly better results as compared to other cases which uses 10 or more
stocks.
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5 Conclusion and Future Work

In this paper, we proposed a new approach which allows the ensemble learning
model to further improve its effectiveness in predicting the direction of stock
market movements. The proposed approach involves training and evaluating
the classification models on many stocks and prioritizing on the easy-to-classify
stocks to maximize the potential of state-of-the-art classifiers. Experiments on 50
United States stocks showed that the classification performance improves when
the classifier prioritizes on a smaller subset of stock.

This work can be extended in some ways. Firstly, more efficient models can
be experimented in place of the ensemble learning method used in this work.
For example, using an incremental ensemble learning model which updates
itself when new samples becomes available. The experiment can be expanded
to include more stocks and longer historical data. In addition, work can also
be extended to other applications such as foreign currency exchange rates and
commodity prices. Lastly, the experiment can be improved by applying cross-
validation on training-testing splits and including other performance matrices
such as AUC to give a more complete review on the learning performance of the
algorithm.
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Abstract. Aerofoil self-noise can affect the performance of the overall
system. One of the main goals of aircraft design is to create an aerofoil
with minimum weight, cost, and self-noise, satisfying all design require-
ments from the physical and the functional requirements. Aerofoil self-
noise refers to the noise produced by the interaction between an aerofoil
and its boundary layer. This paper describes how the prediction of the
self-noise of an aerofoil at the early stage of the design phase can help
select the best design of the aerofoil, which in turn reduces the lead time
as the design process becomes more robust with respect to cost effective-
ness. In the present work, the prediction of the self-noise of the aerofoil
is addressed using Neural Networks (NN). Different architectures are
used along with various proportions of training and testing to select the
best architecture and best training-testing ratio. The results from NN is
compared with linear, quadratic, and cubic polynomial regression. There-
after, Principal Component Analysis (PCA) is integrated with NN for
further improvement of prediction results. Our experimental results indi-
cate that neural networks outperform regression. Moreover, PCA inte-
grated with NN outperforms even the best neural network result.

Keywords: Neural network · Back propagation · Design of aerofoil ·
Principal Component Analysis (PCA) · Regression

1 Introduction

Aerofoil is the cross-sectional shape of a wing, blade, or sail [6]. An aerofoil
shaped body moving through fluid produces an aerodynamic force [9,18]. The
component of this force perpendicular to the direction of motion is called lift.
The component parallel to the direction of motion is called drag [13,15,19].
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Aerofoils are used in aircraft as wings to produce lift or as propeller blades
to produce thrust. While designing aircraft, design requirements for wings or
propeller blades are fixed initially. Many parameters are taken into consideration
[4,10]. In case of the design of the wing, parameters considered are lift, drag,
Critical Mach Number, angle of attack, coefficient of lift, etc. For the design of the
blade parameters considered are lift, drag, pressure difference, flow rate, power
generated, efficiency, angle of attack, etc. After freezing the design requirements,
we need to choose suitable aerofoils that fulfil all the design requirements. Some
research on aerofoil design optimisation is available in [7,12]. Self-noise is the
noise produced by one’s own body. Self-noise of an aerofoil is generated by its
boundary layer turbulence interacting with the trailing edge of the blades or
wings. Aerofoil self-noise reduces blade efficiency and increases flutter in case of
wings, thus affecting system performance and integrity [3,17]. It is important
to predict aerofoil self-noise before finalizing the design of wings or blades to
prevent any unwanted overall behaviour of the system as a whole. Another study
by Vathylakis et al. [3] performed a study to determine different variables which
affect the self-noise reduction of an aerofoil. Chong et al. [17] performed an
experimental study to reduce aerofoil self-noise.

There is no standard method available to predict aerofoil self-noise as the
relationship between the input parameters and the output self-noise is random in
nature. In our present experiment, an effort is made to model input parameters
against output using different machine learning methods. We applied linear,
quadratic, and cubic regression; neural network model [2,16], and neural network
with PCA [5,8] to predict aerofoil self-noise.

The organisation of the rest of the present paper is as follows. Section 2
discusses the description of the self-noise dataset, provides the details of the
method, and the simulation results. The future scope along with the conclusion
is in Sect. 3.

2 Proposed Method and Simulation Results

2.1 Self-noise Dataset Description

An existing open source dataset [1] is used for the present study to predict
the self-noise of the aerofoil where the output is sound pressure level in decibel
with five inputs. There are millions of aerofoils available which are pre-designed.
Among them, more than one design may satisfy specific design requirements.
Our aim is to select the most suitable aerofoil from available designs which
satisfies all the design requirements and produces minimum noise (scaled sound
pressure level). There is no standard mathematical formulation to determine the
noise level of an aerofoil from given input data. We used Neural Network to
achieve that goal. Some earlier studies that used the same dataset can be found
in [11,14]. Our input parameters are:

1. Frequency in Hertz
2. Angle of attack in degree
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3. Chord length in meter
4. Free stream velocity in meter per second
5. Suction side displacement thickness in meter

Our output is scaled sound pressure level in decibels. In this experiment, our
effort is to predict aerofoil noise to select the aerofoil with minimum noise that
satisfies all the design requirements.

2.2 Proposed Method

The neural network model is suitable when there is a nonlinear and random
relationship between input and output variables. From the scatterplot matrix in
Fig. 1, it is clear that different input parameters in our present experiment have a
nonlinear and random relationship to the output. So, we used a neural network
to predict the output against input combinations. The prediction problem is
solved using multilayer feed forward back propagation network. The proposed
Neural Network (NN) is considered to have five inputs (frequency in Hertz,
angle of attack in degree, chord length in meter, free stream velocity in meter
per second, suction side displacement thickness in meter).
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Fig. 1. Scatter plot matrix of input and output variables for visual representation.

Regression analysis is suitable to model the relationship between independent
variables and dependent variables when the dependent variable is continuous in
nature. In our present experiment, the dependent variable is aerofoil self-noise,
which is a continuous variable in nature. So, we applied regression to model
the relationship between the input and output parameters. Principal component



108 P. Pal et al.

analysis is used to transform input variables into a set of linearly uncorrelated
variables. It is also a process of dimensionality reduction where less important
components can be ignored while modelling the principal components against
the output. In our experiment, we ignored the last component as its proportion
of variance is negligible.

2.3 Simulation Results

In this section we explain the simulation results. Figure 1 presents a scatter plot
matrix between five input variables with the output variable.

This plot gives an insight about visual representation of the data along with
correlation between variables. The figure of the scatter plot matrix clearly shows
a random relationship between the different parameters. As a result, a neural
network is appropriate to handle the prediction problem.

In our experiment, first of all we shuffled the data rows. Thereafter, we scaled
the whole data set using Max-Min scaling to have all the attribute values lying
between zero to one. We ignored the data cleaning step as data already was
cleaned. We used different Neural Network architectures to compare the results.
Values represent number of neurons in each layer. We also tested all the network
architectures against different proportion (60% – 40%, 70% – 30%, 75% – 25%,
80% – 20%) of training-testing ratio. Mean Squared Errors (MSE) are calculated
for all the different Neural Network architectures against all the above mentioned
training-testing ratio. We calculated MSE both on scaled output and on the
output after unscaling. The results using different architectures are tabulated in
Tables 1, 2, 3 and 4. Table 1 contains the results with a training-testing ratio 60%
– 40%, Table 2 with 70% – 30%, Table 3 with 75% – 25% and Table 4 contains
the training-testing ratio with 80% – 20%. All four tables show that the better
results can be achieved using a greater number of hidden layers.

Table 1. Different NN architectures, regressions, and Principle Component Analysis
(PCA) with NN in terms of MSE for sound pressure level prediction for aerofoil design

Training – Testing Method Architecture Scaled MSE Unscaled MSE

60% – 40% Neural Network 5 — 3 — 1 0.0073 12.8172

5 — 3 — 2 — 1 0.0097 13.7662

5 — 4 — 3 — 2 — 1 0.0032 5.2197

5 — 5 — 3 — 2 — 1 0.0043 6.4114

5 — 4 — 4 — 3 — 2 — 1 0.0042 6.2937

Regression Linear 25.61517

Quadratic 21.39708

Cubic 18.93659

PCA with NN 4 — 6 — 4 — 2 — 1 0.0037 5.5179

4 — 6 — 4 — 4 — 2 — 1 0.0021 4.0452

4 — 6 — 4 — 3 — 2 — 1 0.0025 4.6141

4 — 6 — 5 — 4 — 2 — 1 0.0033 5.7024
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Table 2. Different NN architectures, regressions, and Principle Component Analysis
(PCA) with NN in terms of MSE for sound pressure level prediction for aerofoil design

Training – Testing Method Architecture Scaled MSE Unscaled MSE

70% – 30% Neural Network 5 — 3 — 1 0.0062 10.7369

5 — 3 — 2 — 1 0.0055 8.1798

5 — 4 — 3 — 2 — 1 0.0039 6.6042

5 — 5 — 3 — 2 — 1 0.0031 5.0883

5 — 4 — 4 — 3 — 2 — 1 0.0033 5.3859

Regression Linear 25.53724

Quadratic 25.11363

Cubic 20.08023

PCA with NN 4 — 6 — 4 — 2 — 1 0.0037 5.4129

4 — 6 — 4 — 4 — 2 — 1 0.0027 4.7193

4 — 6 — 4 — 3 — 2 — 1 0.0028 4.1058

4 — 6 — 5 — 4 — 2 — 1 0.0037 5.2964

Table 3. Different NN architectures, regressions, and Principle Component Analysis
(PCA) with NN in terms of MSE for sound pressure level prediction for aerofoil design

Training – Testing Method Architecture Scaled MSE Unscaled MSE

75% – 25% Neural Network 5 — 3 — 1 0.0056 10.5351

5 — 3 — 2 — 1 0.0054 10.2200

5 — 4 — 3 — 2 — 1 0.0044 6.7297

5 — 5 — 3 — 2 — 1 0.0036 5.3320

5 — 4 — 4 — 3 — 2 — 1 0.0028 4.3825

Regression Linear 23.78459

Quadratic 19.87766

Cubic 18.71646

PCA with NN 4 — 6 — 4 — 2 — 1 0.0024 3.6856

4 — 6 — 4 — 4 — 2 — 1 0.0024 3.6856

4 — 6 — 4 — 3 — 2 — 1 0.0034 5.1138

4 — 6 — 5 — 4 — 2 — 1 0.0021 3.2747

We also modelled the same dataset using regression (linear, quadratic and
cubic). MSE in all of these cases are calculated. The results of regressions are
also tabulated in Tables 1, 2, 3 and 4 along with NN results. From the results in
Tables 1, 2, 3 and 4, it is clear that Neural Network outperforms regression.

According to our study, the best configuration is with 5-4-4-3-2-1 network
architecture with training-testing ratio as 75% – 25%. The worst neural network
performance is better than the best regression model.

Finally, we used principal component analysis to find out the principal com-
ponents and the results are tabulated in Table 5. From the table it is clear that
the first four components are important as the cumulative proportion of the first
four components is as high as 96%. Figures 3 and 2 present the importance of
various principal components. After using the first four principal components as
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Table 4. Different NN architectures, regressions, and Principle Component Analysis
(PCA) with NN in terms of MSE for sound pressure level prediction for aerofoil design

Training – Testing Method Architecture Scaled MSE Unscaled MSE

80% – 20% Neural Network 5 — 3 — 1 0.0070 12.3160

5 — 3 — 2 — 1 0.0052 7.8561

5 — 4 — 3 — 2 — 1 0.0055 9.4192

5 — 5 — 3 — 2 — 1 0.0042 7.9350

5 — 4 — 4 — 3 — 2 — 1 0.0032 4.9800

Regression Linear 23.87245

Quadratic 19.85895

Cubic 22.41482

PCA with NN 4 — 6 — 4 — 2 — 1 0.0023 3.9487

4 — 6 — 4 — 4 — 2 — 1 Non convergence

4 — 6 — 4 — 3 — 2 — 1 0.0035 5.0018

4 — 6 — 5 — 4 — 2 — 1 0.0024 4.0019

Table 5. Importance of components

PC1 PC2 PC3 PC4 PC5

Standard deviation 1.452374 1.060189 0.9573568 0.8220337 0.4175374

Proportion of variance 0.421880 0.224800 0.1833100 0.1351500 0.0348700

Cumulative proportion 0.421880 0.646680 0.8299800 0.9651300 1.0000000
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Fig. 2. Variance of the five principal components.

input to our neural network, results are improved. Among four different archi-
tectures against four training-testing combinations for each, in nine cases the
PCA neural network hybrid outperformed the best neural network result.
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Fig. 3. Scree plot to show the variance of different principal components.

3 Conclusion

The self-noise of an aerofoil may lead to structural failure of a wing or a fan
blade. It drastically reduces the fan blade efficiency, and further it affects the
environment by producing aerodynamic noise. Predicting aerofoil self-noise is a
very important task as the overall behaviour of a system where blades or wings
are used depends on it. In this paper we made an effort to apply different machine
learning techniques. From our experiment it is obvious that a neural net performs
much better than regression. Among regression techniques, quadratic regression
performs better than linear and in most of the cases, cubic performs better than
quadratic. After applying PCA and using only the important components in the
neural network to predict aerofoil self-noise, performance becomes better than
even the best neural network result. Although in our experiment we obtained
significant results, there is scope for further experimentation. Regression with
PCA can be used to compare results with ordinary regression. While applying
PCA on the neural network, we ignored only the last component as the first four
components have cumulative proportion of 97%. For further experimentation,
the last two components can be ignored as the first three components have 83%
of cumulative proportion. After that, results can be compared to draw further
conclusions. In our present experiment, as the best result produces output with
really high accuracy, the proposed method could be implemented practically to
predict aerofoil self-noise. Overall this methodology has many advantages over
conventional prediction methodology as this model can be used for any sets of
aerofoils whether for a wing design or a rotor blade design.
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Abstract. A newly proposed variant of the efficient jSO algorithm
employing competition of eight strategies (cSO) is proposed. The main
idea is to select the most proper strategy and adapt the setting to
each solved problem. One more mutation variant and one more type
of crossover are added to jSO, and moreover, the popular mechanism of
Eigen coordinate system is applied. All eight strategies compete to be
used in the next generations based on the successes in previous genera-
tions. The proposed cSO method has more wins over jSO significantly in
more real-world problems than fails. The original jSO strategy is never
the most frequently used strategy, compared with other newly employed
strategies.

Keywords: Differential evolution · jSO · Strategy · Competition ·
Real-world problems

1 Differential Evolution

The Differential Evolution (DE) algorithm is a popular optimisation technique
proposed in 1995 by Storn and Price [11]. Against the simplicity of this method,
DE is very efficient compared with other optimisation algorithms. During more
than twenty years, a lot of enhanced DE variants with increasing efficiency have
been introduced [7]. The popularity of the differential evolution algorithm is
also evident from many competitions and real-applications [10,16]. Similarly,
ensemble strategies are widely used in various population-based algorithms [15].

One of the non-negligible milestones came in 2014 when a popular adaptive
L-SHADE variant [12] was introduced. In this method, several new elements
were joined together and provided the best results in competition CEC 2014.
Then, after three generations of this algorithm, a very efficient jSO variant [1]
was proposed and it took overall the second place in CEC 2017 competition.

The main aim of this paper is to increase the efficiency of the successful
jSO algorithm using a competition of several strategies. The inspiration was
taken from the competition of four different strategies applied to the preceding
SHADE variant, which brings significantly better results compared with the
original algorithm [6]. A newly proposed version of jSO is compared with the
original one when solving real-world problems.
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The remaining text of the paper is formed as follows. Section 1.1 provides a
brief description of the original jSO algorithm. A competition of strategies in jSO
is described in Sect. 2. Experimental configuration of problems and methods are
described in Sect. 3. Results and statistical analysis on real-world problems are
presented in Sect. 4. Section 5 concludes the paper and highlights some findings.

1.1 Adaptive DE Variant – jSO

As said, one of the latest best performing adaptive DE variant which takes a
very good position at international competitions is jSO [1]. The jSO algorithm
uses self-adaptive approach of parameters. When the user of jSO uses the rec-
ommended initial setting, this method is parameter-free.

Beside popular current-to-pbest mutation strategy, jSO uses also an archive
A of old good parent individuals. Moreover, circle memories to adaptation of the
control parameters F (μF ) and CR (μCR) are employed. The jSO algorithm uses
initial values μCR = 0.8 and μF = 0.3. When the last Hth position is selected,
the same values μCR = μF = 0.9 are used. jSO uses a linear reduction of the
population size, introduced in L-SHADE. The comprehensive description of jSO
is in the original paper [1].

Although the control parameters of the jSO variant are tuned properly, a
cooperating model of several jSO algorithms provides good performance in some
real-world problems [2]. In this paper, eight different strategies compete to be
used in the reproductive process.

2 Competition of Strategies in jSO

The original jSO algorithm uses only one combination of mutation (current-
to-pbest) and crossover (binomial). In a comprehensive study of various DE
strategies [5] was shown, that mutation variant randrl/1 provides very good
performance. Besides this, an efficient exponential crossover achieves very good
results when applied to state-of-the-art DE variants and solutions of real-world
problems [4]. The four combinations of two mutations current-to-pbest and ran-
drl/1, along with two types of crossover (binomial and exponential), compete to
be used in a population of SHADE [6].

Motivated by previously mentioned experiments, the efficient jSO algorithm
is enhanced by two different mutation variants combined with two kinds of
crossover. These four strategies are used in a standard form, and another four-
some uses the same combinations extended by Eigenvector coordinate system
for a crossover operation. Therefore, eight strategies compete to be used in the
reproduction of a population of jSO, where a more successful strategy is pre-
ferred in the next generations, and vice versa. This newly proposed competitive
variant of jSO algorithm is simply called cSO.
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2.1 Mutation Variants

The original jSO algorithm inherits a popular current-to-pbest mutation vari-
ant (1), where current point xi, randomly selected point from population xr1,
randomly selected point from union of population and archive xr2, and randomly
selected point from p best points of population xpbest are used.

ui = xi + Fi (xpbest − xi) + Fi (xr1 − xr2). (1)

Although the original jSO algorithm provides very good results, cSO also uses
the second well-performing mutation variant randrl/1:

ui = xr1 + F (xr2 − xr3) (2)

where the point xr1 is the tournament best among xr1, xr2, and xr3, i.e.
f(xr1) ≤ f(xj), j = 2, 3.

2.2 Type of Crossover

The original jSO variant uses the popular binomial crossover (3). In the proposed
cSO algorithm, a very efficient exponential crossover variant is also employed (4).

yi,j =

⎧
⎨

⎩

ui,j if randj(0, 1) ≤ CR or j = rand(1,D)

xi,j otherwise,
(3)

where rand j is a random number from (0, 1), and j is a random index from
(1,D).

yi,j =
{
ui,j for j = 〈n〉D, 〈n + 1〉D, . . . , 〈n + L − 1〉D
xi,j otherwise, (4)

where the brackets 〈〉D represent the modulo function with modulus D. The
starting position of crossover (n) is selected randomly from {1, . . . , D}, and L
consecutive elements are selected from the mutant vector ui.

2.3 Eigenvector Coordinate System

In 2014, the covariance-based Eigenvector coordinate system for a crossover oper-
ation in DE (CoBiDE) was proposed [14]. The aim was a higher efficiency in
problems with highly correlated coordinates. This crossover variant was used in
a latter study where it achieved good results [3]. A covariance matrix C from a
part of individuals (ps) is used. The matrix C is divided into two components,
Eigenvectors B and Eigenvalues D:

C = BD2BT (5)
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A mutation point ui and the current point xi are combined in the Eigen coor-
dinate system, with probability pb:

x
′
i = BTxi and u

′
i = BTui. (6)

Then, newly developed trial vector y
′
i is transformed from the Eigen coordinate

system back to a standard coordinate system.

yi = By
′
i (7)

This transformation is performed only with a probability pb, in other cases, the
crossover operation in a standard coordinate system is preferred.

2.4 Competition Mechanism

In cSO, four strategies use a standard coordinate system and four same strate-
gies are enhanced by the Eigenvector approach, i.e. trial points of the whole
population are generated using (6) and (7). All eight strategies compete to be
used in next generations. The competition mechanism was introduced in [13].
After each generation, the probability to be used qk for each of K strategies is
updated in dependency on the success of the currently used strategy in previ-
ous generations (8). A more successful strategy is preferred frequently than a
strategy which is not able to generate successful individuals.

qk =
nk + n0

∑K
j=1 (nj + n0)

, (8)

where qk is computed probability to be used of the kth DE strategy, nk is the
count of the kth strategy successes, n0 = 2 prevents a huge change in qk. The
values of probabilities are reset to the initial values if any qk value decreases
below a input parameter δ, δ > 0.

3 Experimental Settings

A test suite of 22 real-world problems used in the CEC 2011 for the Special
Session on Real-Parameter Numerical optimisation [8] is applied in this compar-
ison. The main differences between functions of this set are in computational
complexity, and the dimensionality of the search area is from D = 1 to D = 240.
Each method performs 25 independent runs on each problem. The run of the
algorithm is stopped after the prescribed number of function evaluation MaxFES
= 150000. The results of the algorithms are also recorded in one third and two-
thirds of MaxFES. The individual with the smallest function value represents
the solution of the problem.

Both compared algorithms use a linear population-size reduction with initial
value Ninit = round(25× log(D)×√

D). For problems with a low dimension level
D < 6, initial population size is computed from value D = 6. The number of
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Table 1. Results of comparison of new cSO algorithm with jSO from Wilcoxon rank-
sum test.

F D Best Worst Median Mean SD jSO (med.) p

T01 6 0 12.5353 0 1.92359 4.50575 0 ≈
T02 30 −28.4225 −26.3287 −27.1149 −26.984 0.528249 −26.295 ***

T03 1 1.15E−05 1.15E−05 1.15E−05 1.15E−05 5.19E−21 1.15E−05 ≈
T04 1 13.7708 20.9574 14.3291 15.19746 2.5553 13.7708 *

T05 30 −36.8454 −32.6504 −35.0567 −34.9945 1.079044 −36.7596 ***

T06 30 −29.1661 −21.2481 −27.4298 −26.9179 2.593203 −29.1637 ≈
T07 20 0.5 0.71221 0.53969 0.55768 0.06638 1.06219 ***

T08 7 220 220 220 220 0 220 ≈
T09 126 1141.55 2921.4 1979.1 2011.64 440.807 1803.46 ≈
T10 12 −21.8425 −11.1765 −13.8627 −15.5159 3.550713 −21.6445 ***

T11.1 120 50666.7 53375.8 52112 52059.7 723.4086 51939.1 ≈
T11.2 240 1069190 1076830 1072060 1072358 1750.415 1072290 ≈
T11.3 6 15444.2 15476.5 15444.2 15452.59 13.46269 15444.2 **

T11.4 13 18022.2 18236.6 18108.9 18113.41 45.89656 18084.7 ≈
T11.5 15 32692.4 32741.6 32692.6 32703.49 19.68271 32741.2 ***

T11.6 40 122499 126802 123794 123845 884.3795 123953 ≈
T11.7 140 1807750 1886540 1852760 1850503 17300.15 1859350 *

T11.8 96 929874 935719 931894 932289 1587.75 932304 ≈
T11.9 96 936967 946713 940209 940333 2999.30 939335 ≈
T11.10 96 930055 935881 932312 932357 1513.64 932648 ≈
T12 26 9.26196 16.4275 14.7501 14.5522 1.55348 15.7757 **

T13 22 8.60885 18.3294 14.2471 13.4264 2.45308 14.8376 *

strategies in cSO is K = 8, the parameter to reset probabilities of strategies is
δ = 1/(5 × K) = 0.025. The portion of the population to compute Eigenvectors
is set to a recommended value ps = 0.5.

4 Results and Discussion

Basic characteristics from the results of the proposed cSO algorithm are in
Table 1. On the right side, there are median values of the original jSO algorithm
to make a simple comparison. In the last column, there are the significance val-
ues of the Wilcoxon rank-sum test denoted as follows: ‘***’ (p < 0.001), ‘**’
(p < 0.01), ‘*’ (p < 0.05), and ‘≈’ otherwise. The original jSO performs better
in eight out of 22 real-world problems whereas the proposed cSO is better in ten
out of 22 problems. Focusing only on significant differences, jSO performs signif-
icantly better in four and new cSO in six out of 22 problems. In the remaining
12 problems, both methods provide similar results.
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Fig. 1. Average frequencies of using strategies in cSO on all real-world problems.

High performance of cSO results in the research question ‘Which part of the
proposed method provides better results?’. For this purpose, the frequencies of
using the eight strategies in the competition are analysed. These frequencies
estimate of the use of strategies. Percentage frequencies of the use strategies
are computed from results in three stages, FES = 50000, 100000, 150000 and
average frequencies from all problems are illustrated in Fig. 1.

The distribution of the frequencies is changed during the search. Similar
frequencies of the strategies at the early stage are gradually divided into two
groups. Strategies employing Eigenvector coordinate system are used more fre-
quently, and classic strategies are preferred rarely. Therefore the distribution of
the frequencies of the use of strategies for each real-world problem is in Table 2.
The first letter of strategies abbreviations is based on mutation variant (‘c’ for
current-to-pbest and ‘r’ for randrl/1). The second letter is given by employed
crossover (‘b’ for binomial and ‘e’ for exponential). If strategy uses Eigenvec-
tor coordinate system, more ‘e’ is at the end of abbreviation. For problems with
D < 10, mutation randrl/1 is preferred, problems with 10 < D ≤ 40, the original
mutation with exponential crossover is used most often, and for problems where
40 ≤ D, the original strategy with Eigenvector transformation is preferred.
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Table 2. Frequencies of four strategies without and with Eigenvector coordinate trans-
formation used in cSO.

F D FES=50000 FES=100000 FES=150000

cb ce rb re cb ce rb re cb ce rb re

T01 6 4.9 8.3 16.4 21.3 5 8.3 17.1 22.1 5 8.3 17.2 22.1

T02 30 6.5 33.9 6.1 23.5 9.5 27.5 7.8 17 10.5 21.2 6.7 11

T03 1 5.4 5.1 20.1 20.7 5.4 5.1 20.1 20.7 5.3 5 20.2 20.8

T04 1 5.2 5.0 21.3 20.2 5.2 5.0 21.3 20.2 5.2 5.0 21.3 20.2

T05 30 8.8 23.3 10.6 18.1 7.6 13.2 9.6 9.8 7.3 11 7.7 7.7

T06 30 5.3 17.3 17.4 11.8 5.8 9.1 10.9 6.2 5.8 8 9.4 5.8

T07 20 7.8 19.5 10.5 9.8 7 12 8.3 6.8 6.6 10.6 7.6 6.1

T08 7 6.9 15.4 20.6 26.9 6.9 15.4 20.6 26.9 6.9 15.4 20.6 26.9

T09 126 25.5 9.9 9.5 5.3 24.1 10 6.9 4.8 21.8 9.4 6.1 4.6

T10 12 5.3 7.2 12.4 13.8 5.3 6.5 10.6 11.2 5.7 6.8 10.9 11.2

T11.1 120 23.2 12.4 3.2 5.1 20.8 14.5 3 6.4 17.7 13.6 3.1 6

T11.2 240 26.4 11.6 4 4.2 24.7 12.3 3.7 4.7 20.5 12.1 3.5 4.9

T11.3 6 6.8 6.9 11.4 13.8 6.4 6.5 11.5 14.1 6.3 6.4 11.5 14.2

T11.4 13 4 4 8.4 8.5 4.5 4.4 7.3 7.1 4.8 4.7 7.5 7

T11.5 15 9.8 11.9 12.2 10 8.2 9.8 10.3 8.7 8.1 9.5 10 8.4

T11.6 40 14.5 8.2 10.4 7.1 10.6 6.5 7.6 5.7 10.2 6.4 7.3 5.5

T11.7 140 21.4 9.2 9.1 5.1 18 8.1 7.8 4.6 17 7.9 7.9 4.8

T11.8 96 18.2 8.6 9.7 6.3 14.9 7.3 8 5.2 14.3 7.1 7.7 5.1

T11.9 96 19 9.4 8 5.8 15.9 8.3 7.2 5.3 14.8 7.9 7.1 5.3

T11.10 96 13.9 8.9 9.4 6.3 10.9 7.5 7.8 5.4 10.4 7.2 7.5 5.3

T12 26 6 30.6 6.7 19.3 6.8 26.9 6.1 18.3 7.5 21.2 5.8 14.7

T13 22 8.4 24.1 11.5 14.2 8.3 20.4 9.1 10.7 8 18.8 8.2 9.3

F D cbe cee rbe ree cbe cee rbe ree cbe cee rbe ree

T01 6 6.2 6.2 18.9 17.8 5.9 5.9 18.3 17.3 5.9 5.9 18.3 17.3

T02 30 6.5 10.4 6 7.1 9.8 12.6 8.4 7.5 15.2 16 10.2 9.2

T03 1 5.8 6.1 18.4 18.3 5.7 6.1 18.6 18.2 5.6 6 18.8 18.4

T04 1 4.3 4.5 17.7 21.8 4.3 4.5 17.7 21.8 4.3 4.5 17.7 21.8

T05 30 8.7 14.4 8.7 7.5 12.1 20.6 13.3 13.9 15.8 22.6 13.9 14

T06 30 5.4 16.7 16.7 9.4 11.2 22.7 16.7 17.2 14.1 22.5 16.8 17.7

T07 20 8.6 20.2 11.9 11.8 13.1 24.2 13.4 15.3 14.6 24.8 13.3 16.5

T08 7 5.4 5 9.2 10.7 5.4 5 9.2 10.7 5.4 5 9.2 10.7

T09 126 27.6 7.9 9.1 5.2 30.6 9.2 8.6 5.7 31.2 10.8 8.9 7.2

T10 12 8.3 14.8 14.5 23.8 9.6 17 14.5 25.2 9.8 16.8 14.1 24.6

T11.1 120 24.5 18.7 5.2 7.7 23.9 18.2 5.3 7.9 24.9 19 6.7 9.1

T11.2 240 28.9 13.6 5.1 6.2 29.6 13.6 5.5 5.9 29.5 15.2 6.8 7.4

T11.3 6 9.3 10.7 17.5 23.7 8.9 10.3 17.9 24.4 8.8 10.2 18 24.5

T11.4 13 11.4 20.5 19.1 24.2 14.7 20.3 18.5 23.1 15.2 19.8 18.4 22.5

T11.5 15 13.1 15.5 12.3 15.2 14.1 18.3 12.9 17.6 14.5 18.5 13 18

T11.6 40 18.6 17 13.6 10.6 21 21.7 14.3 12.5 21.8 21.8 14.4 12.6

T11.7 140 25.9 11.5 10.8 7 25.7 15.8 10.4 9.5 25 16.5 10.5 10.5

T11.8 96 26.1 11.1 13.8 6.1 29.1 13.7 14.5 7.4 29.5 14.1 14.5 7.8

T11.9 96 24.9 8.7 16.3 8 25.2 11.4 16.4 10.2 24.7 12.2 16.6 11.3

T11.10 96 27.8 12.9 14.1 6.7 28.8 15.8 15 8.8 29.4 16.1 14.9 9.1

T12 26 6.8 16.2 5.6 8.6 9 16.6 7 9.3 13.4 18.3 8.3 10.8

T13 22 8.3 13.2 10.2 10 11.4 16.4 12 11.6 13.1 17.8 12.5 12.3
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5 Conclusion

The newly proposed variant of the efficient jSO algorithm employing competi-
tion of eight strategies (cSO) provides very good performance as it significantly
outperforms the original method in six out of 22 real-world problems, and loses
in four problems. This information is important because the original jSO belongs
to the best performing state-of-the-art methods, and the proposed mechanism
enables us to improve it. The analysis of the employed strategies provides clear
information that the original strategy is never used most frequently. For low-
dimensional problems, strategies with the newly used randrl/1 mutation are the
most successful. In the case of middle dimensionality, the newly used exponential
crossover is preferred, and for high dimension levels, the Eigenvector coordinate
system provides the best results. Comparing cSO with the winner of CEC 2011
competition (GA-MPC [9]), cSO performs better in ten problems and GA-MPC
in eight problems. In further research, a more adaptive mechanism of use and
elimination of the employed strategies during the search will be studied.
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Abstract. The dramatic improvements in computational intelligence
techniques over recent years have influenced many domains. Hence, it
is reasonable to expect that virus writers will taking advantage of these
techniques to defeat existing security solution. In this article, we outline a
possible dynamic swarm smart malware, its structure, and functionality
as a background for the forthcoming anti-malware solution. We propose
how to record and visualize the behavior of the virus when it propagates
through the file system. Neural swarm virus prototype, designed here,
simulates the swarm system behavior and integrates the neural network
to operate more efficiently. The virus’s behavioral information is stored
and displayed as a complex network to reflect the communication and
behavior of the swarm. In this complex network, every vertex is then indi-
vidual virus instances. Additionally, the virus instances can use certain
properties associated with the network structure to discovering target
and executing a payload on the right object.

Keywords: Swarm virus · Swarm intelligence · Neural network ·
Malware · Computer virus · Security

1 Introduction

Malicious software or malware is a software or program that infiltrates or damage
a computer system without consent and without informing the system owner.
Technically, researchers used this term to express a variety of forms of malicious
programs that including virus, worm, trojan horse, exploits, botnet, retrovirus
[33]. Nevertheless, the most common type of malware is computer virus, a ter-
minology given by Cohen in [9]. While the initial start of malware was just
unharmful software that causing mild annoyance, later it was created with the
financial goal or even a virtual weapon for cyberwar as discuss in [22]. Today
malware creation has become a commercial industry with revenues to billion
dollars.
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The combat between malware and anti-malware is an endless war in which
cyber-threat actors adopt new techniques to thwart detection while the cyber-
defenders try to find effective measures to prevent this. The anti-malware com-
munity continues to adopt various kind of heuristics (such as artificial neural net-
works [28]) to recognize new and unknown malicious codes. In contrast, malware
authors continuously attempt to find different methods to surpass the defense
system.

A considerable amount of literature has been published on discussing the
dynamics and spreading of malware. The primary trend in this research area is
the dynamics of malware as well as the malware behaviors in real-world networks.
As an example, the authors in [26] investigated the computer virus infection by
adapting the epidemiologically compartmental models. They have drawn a math-
ematical model and identified potential edges where contagion could occur. Mean-
while, the authors in [40] proposed a novel virus heterogenous propagation model
and its optimal control problem in which they considered the joint impact of coun-
termeasure and network topology on virus diffusion and optimal dynamic coun-
termeasure. Simultaneously, researchers in [31] presented a moderate epidemio-
logical model based on the fractional epidemiological model to describe computer
viruses with an arbitrary order derivative having a non-singular kernel.

Malware behaviors are also investigated by scientists in [23,27,30]. In [23], the
authors investigated how the infection rates affect virus propagation by combin-
ing the Susceptible Infected (SI) and the Susceptible Infected Recovered (SIR)
model then adopted this to the Barabasi–Albert network. Meanwhile, Parsaei
et al. [27] combined Lyapunov functions with the Volterra-Lyapunov matrix
properties to apply for a computer virus propagation model. In the meantime,
scientists in [30] adopted the Routh-Hurwitz criterion and Lyapunov functional
approach on a computer virus propagation model based on the kill signals called
SEIR-KS.

In other research, Noreen et al. [25], Meng et al. [24] propose the framework
for malware evolution base on the evolutionary computation to evolve com-
puter and Android malware, respectively. Meanwhile, the authors in [8] proposed
to exploit an Evolutionary Algorithm (EA) to auto-generate malware. Other
research by Kudo et al. [20,21] introduced the botnets that adopting machine
learning (ML) methods to predict vulnerabilities and evolve itself autonomously.

Recently, the fusion between malware and computational intelligence is
another research trend that concern by scientists. For example, Geigel in [15,16]
proposed to apply neural network with supervised and unsupervised learning to
encode the trojan. Meanwhile, several recent studies [1–3,17,18,35] researched
how to evade the anti-malware with ML engines. In a later study, Zelinka et al.
[38] design a swarm virus prototype, which mimics a swarm system behavior.

The objective of this paper is to outline a possible dynamics swarm malware
adopting neural network techniques as well as its structure, and functionality.
Our research’s aim is to develop a prototype of neural swarm malware instead
of fully functional one, this prototype is lacking payload, and the contagion can
be controlled.
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The remains of this article proceed as follows. Section 2 presents essential
background information. In Sect. 3, we present the neural swarm malware, its
structure, and functionality. The following sections report the setup and results
of the experiment. We conclude our paper in Sect. 6.

2 Background: Malware, Swarm-Based Intelligence, and
Neural Network

2.1 Malware

Malware is a general term for many types of malicious software, including virus,
worm, trojan horse, rootkit, spyware, ransomware, and others. In particular, the
most pervasive form of malware is the computer virus. The term “computer
virus” is derived from and is in some sense similar to a biological virus [32]. It is
an automated program capability to self-replicate and attack various host files.
The host files can be executable files, boot code, device drivers, or files that
unable to execute directly but through specific applications (Microsoft Word,
Visual Basic scripts, and others). Once the infected hosts run, it also executes
the virus code, and the virus propagates further by self-reproduce and attached
to another host.

The idea of computer virus can be traced back to John von Neumann in
the 1950s with cellular automata and self-replicating programs [14], yet the first
working computer virus appeared much later. The first recorded instance of a
self-replicating computer program is the Creeper, developed by Bob Thomas
in 1971 [8]. Later, in 1983, Fred Cohen demonstrated a program that capability
infected a computer, replicated, and spread to other computers which lead to the
born of the term “computer virus” [9]. In 1986, the first PC virus named Brain
was observed in the wild [33], it was widely considered the first real malware.

In addition to the virus, other terminologies are used to describe specific
malware, indicating their specific purpose, spreading strategy or behavior. For
instance, a worm is a virus that can spread over the network by exploiting vulner-
abilities. Trojan horses disguise as legitimate programs and executed malicious
routines or files on the host. Spywares are software used to hijacks personal and
confidential information. Adware is generic advertising-supported software auto-
matically delivers advertisements in the system. Ransomware is designed to lock
a computer system or crypt the victim’s data to extort money from the victim.
Rootkits take control of the infected machine by gaining the highest privileges
possible on the machine. Botnets are a pack of malware remotely controlled from
one server.

2.2 Swarm Intelligence

Swarm intelligence is a computational technique in which many individuals coor-
dinate using decentralized control to solve the problem. It focuses on the collec-
tive behavior exhibited by the interaction of the individuals. Swarm intelligence
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provides another way to design “intelligent” systems. [6]. Regarding advancing
in swarm-based intelligence and technologies, it is logical to expect that, shortly
swarm intelligence will be utilized in used as both attack and defenses tools
in cyberspace. Very promising algorithms (regarding malware could be deriva-
tive from) are algorithms that inspired by nature such as Genetic Algorithm
[34]. Another interesting algorithm (regarding command and control worms like
Botnets are) are swarm algorithms such as ant colony optimization (ACO) [11]
followed by Particle Swarm Optimization (PSO) [12,19] and Self Organizing
Migration Algorithm (SOMA) [10,36,39].

2.3 Neural Network

Artificial neural network (ANN), mainly known as Neural Network (NN) is a
computational model inspired by the structure and operation of the biological
neural network. The core of this paradigm is to connect the neurons (or nodes)
into a computer network that can perform complicated tasks. Each node con-
nected to another node through a connection and each link has a “weight” with
the information of the input signal. The weight represents the importance (or
strength) level of the input data and is used by the network to solve the prob-
lem. Also, each neuron has a state, which indicates that the activation capability
of that neuron. These neurons can generate an output by combining the input
signals and activation rule.

The general architecture of an ANN consists of three components: the input
layer, hidden layer, and output layer. In this architecture, the hidden layer con-
sists of neurons that receive input data from the neurons in the previous layer
and convert these inputs for subsequent processing layers. Moreover, there may
be many hidden layers in an ANN.

ANN learning paradigms can be categorized by the method of training car-
ried out as supervised, unsupervised, and reinforcement learning. Supervised
learning is a process to learn the mapping function from the input to the out-
put. Unsupervised learning model identifies the pattern class information with
only input data and no corresponding output variables. Reinforcement learning
learns by using the reward and penalty system. It learns through an interactive
environment by trial and error using feedback from its actions.

3 Neural Network Swarm Virus Creation

3.1 General Idea

Malware has advanced dramatically since the first appeared of a computer virus.
Malware authors adopted various techniques such as encryption, oligomorphism,
polymorphism, metamorphism, obfuscation [29], armouring (armoured viruses)
[13] to evade anti-malware tools. Furthermore, the latest virus can be controlled
via command and control (C&C) infrastructure as in the case of [22] virus. The
weak point of this structure is that it can be immobile if the control center was
destroyed.
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Our approach is stem from the idea of eliminating C&C center in the botnet
structure. Thus, we propose to fuse swarm base intelligence, neural network, and
a classical computer virus to form a neural swarm virus. This virus can mimic
the behavior of the biological swarm systems, which usually do not have a domi-
nant central communication point. Our research aims to develop a prototype of a
neural network swarm virus without payload while the contagion is controllable
and limited. Generally speaking, our research is differential with contemporary
research papers cited above, which based on mathematical models and numerical
simulations. In contrast, our paper is based on real experimentations with pro-
totype malware in a secured virtual environment, real-time observations, data
recording, visualizations, and some fundamental analysis.

Our idea is to present a combination of swarm base intelligence, neural net-
work, and a traditional virus to develop a new kind of virus. Technically, this
virus consists of instances (individuals of the population) that form a swarm
(population) that propagate in the computer file system. The individuals in
swarm communicate via the command line (when shifting from file to file) and
amongst themselves. Then, a network is created basing on the exchange informa-
tion mechanism and swarm motion through system file. This network represents
their physical presence on different hosts.

3.2 Spreading Mechanisms

The spreading of malware is quite complicated and mainly depend on the kind
of malware (e.g., virus, trojan, worm) and the environment (inside the computer
or network). The distribution of malicious programs has expanded beyond tra-
ditional ways such as from removable media, downloads files from the Internet,
or e-mail attachments to more sophisticated approaches like drive-by downloads
from a compromised website or using social engineering.

In fact, the malware could use various infection techniques to move inside the
PC environment such as prepending, appending, or inserting it into an executable
file. In our virus prototype, we adopt the prepending technology. With this
technology, the virus attaches itself to the start of the host so that it will execute
first when the program starts. Furthermore, the spreading strategy resembles
the classical worm called “Rabbit” [4]. In this strategy, the virus will erase its
copy on previously visited files when moving to a new one. Consequently, the
host will be recovered to the original state. In this view, the virus’s behavior is
similar to evolutionary or swarm algorithms, whose individuals jump over the
search space. This strategy controls the spread of the virus to avoid excessive
population growth, which may cause system slowdown and lead to detection.
Hence, the population of the swarm virus will remain unchanged during the
contagion.
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3.3 Virus Structure and Functionality

The NN swarm virus is a self-replicating structure, consisting of components to
do its task. In our experiments reported in this paper, the virus components are
in Fig. 1

Fig. 1. The proposed virus structure

The functionality of each component is as follows:

– Infector: This component is responsible for some tasks as follow. The first
task is copying the virus and attaching it to a suitable host. The second is
healing the host file after moving to a new location. The next one is to check
whether the file is infected or not; if the file is infected, then there no need
to infect it again.

– Propagator: This component is the most important because it decides how the
virus is propagating. It will indicate where to move (i.e., which file to infect)
by evaluating the file. The evaluating is based on neural network methods to
find fitness. In our experiments, the fitness value is calculated by the size of
the file. However, other features of the file could be used, for example, most
recently modified file, type of files, or the content of the file.

– Communication: Communication is responsible for communicating in the
swarm. The virus-instance interact with each other to decide which one should
be activated through the command line arguments. What is more, it allows the
virus updating the storing information such as locations of all virus instances,
the network topology when moving to a new file. That means, the entire
communication traffic going from virus instance to another one without the
central communication point.

– Payload: In this prototype, the payload is to test the swarm functionality. We
do not implement any destructive payload.

– Trigger: The trigger is to launch the payload at a given condition. The trigger
can be set to act on a given condition.
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3.4 Virus Behavior Patterns

The most crucial factor in observing and analyzing swarm virus is behavior
patterns. Behavior patterns are accessible data and are often part of a large
data set that records malware behavior in the system. Technically, the behavior
– movement of a virus in the PC system follow the tree structure (i.e., moving
from file to file). However, this structure consists of many dead-ends and no-
cycles, which is an unsuitable environment to move coordinately.

To overcome this issue, the other approach is to transform this tree structure
into another structure that is close to swarming dynamics nature. Such networks
can be complex networks that have been proven possible to visualize swarm
dynamics [37] and subsequently to perform an analysis of the network. Thus,
in this paper, we used a Bianconi-Barabási model [5] to create a network for
visualizing and analyzing the swarm virus behavior.

In general, the Bianconi-Barabási model works on the principle of how to
add new vertices to a small network with a basic set of vertices exists. In this
model, the new node joined to the network by setting a link to a random node
j of the network. The other links are attached to a neighbor vertex of j with
probability p, or attached to a random node with probability 1 – p. More detail
information about Bianconi-Barabási model can be found in [5].

3.5 Adopting Neural Network to Target Specific Object

Scientists have foreseen the misuse of Artificial intelligence (AI) in the report [7],
which mentioned that AI-based approaches could be used in malware. Inspired
by this idea, we adopt an AI technique in our swarm virus. In our prototype,
the use of a neural network will make the “trigger conditions” to infect a file or
not.

The virus is trained to search in the system until the intended target is
reached. Later, the neural network generates the signal needed to perform the
infection (moving). In our experiments, we use the file size to identify the target.
However, other attributes could also be used, for example, system-level features.
This method will make it difficult for malware analysts to reverse the neural net-
work reverse engineer the neural network to discover the specifics of the target.

Generally speaking, the swarm virus leverages the black-box nature of the NN
model to camouflage the trigger condition. The NN model in the malware will
replace the traditional “if-then” trigger condition so that it is tough to decipher.
Technically, this method will be an extreme challenge for malware analysts to
figure out what category of the target that malware is looking for, or what is
the specific target to trigger condition. Figure 2 illustrated the comparison of
traditional and NN-powered targeted attack.

4 Experiment Setups

In order to test our hypothesis, we developed a prototype of the virus in a high
programming language - C#, which is very convenient laboratory experiments
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Fig. 2. Comparison of traditional and NN-powered targeted attack

and research. In our experiments, we tested the virus under Windows 10 envi-
ronment in the virtual machine.

The malware behavior pattern is a significant feature when studying mali-
cious software. To record and visualize the behavior of this swarm virus, we used
a slightly adjusted Bianconi-Barabási model for creating scale-free networks. In
Bianconi-Barabási model, two parameters need to be set up is the probability p
and the number of links to attach for each new vertex m. In our experiments,
the parameter p was set at least to 0.5. The probability 0.5 means that the
ratio of connecting to neighbors or random vertex is equal. Another parameter
to set was the m parameter, which represents the number of connections it will
initially have. Experiments showed that the value higher than four would give
better performance. In the network, each edge weights 1/d, where d is the dis-
tance of the file, measured by the number of folders between files (vertices) + 1.
The complete set of recommended values are shown in Table 1.

Table 1. Recommended parameters of NN swarm virus.

Parameter Value

Number of virus instance 5–up to user

Visited host length 20–up to user

p 0.4–0.9

m 4–10

5 Results

We tested our virus prototype in Windows 10 environment on a single PC with
16 Gb RAM, Intel Core i7 8th generation. The experiment was repeated 100
times. In each experiment, the virus activities were recorded, including the file
name, path, and its behaviors (such as write a file, delete a file, movement).
The virus behavior in the system had been analyzed for networks attributes like
degree, closeness centrality, betweenness centrality, and page rank. The results
are visualized in Figs. 3, 4, 5, and in Table 2.
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Table 2. Swarm virus network centralities

Min Median Max

Degree 0 1 47

Weighted degree 0 31.666667 258.909091

Closeness centrality 0 0.177778 1

Betweenness centrality 0 222 1772.188095

Pagerank 0.003024 0.003651 0.069334

Fig. 3. Network example 1. The size of each node represents an importance of a file

In our experiments, we created a swarm consist of 5 individuals, so that means
we had five virus-instance. In each experiment, an individual jumped from file
to file (infected a file) 20 times in total. Although the population of the swarm
was small and the movement was low, we recorded and visualized a fascinating
behavior of swarm. Figures 3, 4 and 5, illustrated the behavior of the swarm. In
these figures, the node size and color presented the file importance such as file
size, or the frequency of file infections by a virus. The edges represent, which file
was visited by virus instance.

The degree of a node is the number of relation (edge) it has, which is the sum
of edges for a node. Technically, a node with a higher degree has more neighbor
than the others. In Figs. 3, 4 and 5 some nodes were bigger than other nodes,
which mean they are more important than the rest.

Similarly, the more significant node has a higher PageRank. As a result, if a
node has a higher PageRank, then it has more probability of visiting. The goal
is to visit the most critical nodes in the network.
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Fig. 4. Network example 2

Fig. 5. Network example 3

6 Conclusion

In this paper, we presented the idea of “hypothetical” computer swarm virus,
which adopting neural network to enhance its power. This research has dis-
cussed the virus structure, functionality, and capabilities. Furthermore, we have
proposed a method to visualize, measure, and analyze the behavior of the swarm-
based virus in the form of a complex network. The results of this study shall be
useful for the understanding of the behavior of new generation malware as well
as future computer technology protection.
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Abstract. Knowledge discovery in databases is a comprehensive pro-
cedure which enables researchers to explore knowledge and information
from raw sample data usefully. Some problems may arise during this
procedure, for example the Curse of Dimensionality, where the reduc-
tion of database is desired to avoid feature redundancy or irrelevancy. In
this paper, we propose a wrapper-based feature selection algorithm, con-
sisting of an artificial neural network and self-adaptive differential evolu-
tion optimization algorithm. We test performance of the feature selection
algorithm on a case study of bank marketing and show that this feature
selection algorithm reduces the size of the database and simultaneously
improves prediction performance on the observed problem.

Keywords: Data preprocessing · Feature selection · Self-adaptive
differential evolution jDE · NiaPy

1 Introduction

In the era of big data, where more and more data are analyzed, a Data Mining
(DM) paradigm [40] has been proposed to stimulate the design and analysis of
diverse DM methods to deal with sample data. A wide range of DM methods
exist nowadays, from traditional regression analysis to Machine Learning (ML)
and symbolic methods. Those can solve problems like classification, regression,
clustering, association rule mining and others, in a supervised, unsupervised or
reinforcement learning way.

The data are becoming more and more complex. The rise of the Industry
4.0 [19] and the rise of the mobile devices contribute inherently to such trend.
As a result, the analysis of data is, according to the Curse of Dimensionality [5]
becoming tougher. Typically, the range and volatility of values increases, gen-
eralization diminishes and outliers with missing data emerge. In order to avoid
these issues, a data preprocessing step is necessary, which executes the data
c© Springer Nature Switzerland AG 2020
A. Zamuda et al. (Eds.): SEMCCO 2019/FANCCO 2019, CCIS 1092, pp. 135–154, 2020.
https://doi.org/10.1007/978-3-030-37838-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37838-7_13&domain=pdf
http://orcid.org/0000-0002-9604-0554
http://orcid.org/0000-0002-9964-6957
http://orcid.org/0000-0002-6418-1272
http://orcid.org/0000-0001-5864-3533
https://doi.org/10.1007/978-3-030-37838-7_13


136 D. Fister et al.

adjustment procedures to obtain improved predictive abilities of DM methods.
Proper data preprocessing step typically tries to decrease or eliminate feature
redundancy/irrelevancy and may thus bring lower costs and higher modeling
efficiencies. In the following paper, we would like to empirically investigate the
practical worth of the data preprocessing step, i.e. what are its benefits, and list
its shortcomings.

Literature conceptualizes both the DM and data preprocessing as sub-parts of
a more comprehensive Knowledge Discovery in Databases (KDD) procedure [15].
The latter formalizes six phases as shown below:

– problem specification, where the actual problem and the estimated outcome
of the KDD are first addressed,

– problem understanding, where the problem tries to become explainable,
– data preprocessing, where the data are prepared, and the complexity is

reduced by removing redundant or irrelevant items,
– data mining, where the actual model and task are determined to mine the

preprocessed data and to extract discovered knowledge,
– evaluation, where the obtained results are interpreted and
– result exploitation, where the knowledge discovered is visualized for a report

to form inference.

The purpose of the mentioned six phases of KDD is to extract hidden
patterns, relations and interconnections among data. Data usually consist of
explanatory variables (features), i.e., inputs, and the response variables (also
target), i.e., outputs. Relations can then be studied for various inference and
analysis applications, such as student performance [25], cost reduction [35], sat-
isfying customer expectations [10], healthcare [4], forecasting [7] and others.

The more the interconnections exist in data, the more the redundancies arise.
This affects the prediction performance negatively. Feature selection (FS) is
a suitable process of eliminating some of the variables, to diminish or avoid
redundancy [41]. Three FS methods exist for the supervised tasks [1,15]: filter-
based method, wrapper-based method and embedded-based method. Filter-
based method performs the FS separately from the learning algorithm [42],
while wrappers do not. They use the learning algorithm to determine the qual-
ity of the selected subset [17]. Embedded methods, on the other hand, combine
characteristics of the previous two [38]. The following survey outlines many FS
applications [8].

Osanaiye et al. [27] show the application of filter-based method for feature
elimination in the field of cloud computing. Authors state that number of features
can be reduced efficiently from 41 to 13, by using their method. Apolloni et al. [3]
claim that their FS methods decrease the number of relevant features for more
than 99% on the microarray problem, on the basis of six datasets. Labani et
al. [18] design a novel multivariate filter-based method FS for text classification
problems, and prove that it can overcome other univariate and multivariate
methods.

Mafarja and Mirjalili [24] outline a wrapper-based method using the whale
optimization. They use the mutation and crossover operators to increase pop-
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ulation diversity and tournament selection to select best individuals. Authors
test their FS method on the 18 different datasets. For most of the datasets, they
show that their method improves other filter-based FS methods. Al-Tashi et
al. [2] deal with combining the hybrid grey wolf optimization (GWO) and parti-
cle swarm optimization (PSO) for FS problem. Ramjee and Gamal [31] experi-
ment with wrapper-based FS, where they employ the relevance and redundancy
scores. Based on their solution, they report the increase of accuracy from initial
93% to final 99% for the RadioML2016.10b dataset. Lu [23] agrees that data
heterogeneity leads to spurious classification and thus proposes the embedded
FS method as a remediation. Author uses the synthetic data and three bench-
mark datasets to confirm that his solution bears fruit, compared to traditional
embedded-, or filter-based methods. Liu et al. [21] deal with the embedded FS
on the imbalanced data, i.e. fraud detection and cancer diagnosis, where they
propose a weighted Gini index GI-FS, specifically designed to handle imbal-
anced data. ECoFFeS [22] is a comprehensive user-friendly and standalone soft-
ware intended for automated FS in drug discovery, since it incorporates a set of
single-objective and multi-objective evolutionary computation algorithms. Wang
et al. [39] shows the application of PSO algorithm for descriptor selection.

This paper is an extension of the [14], where we employed an FS proce-
dure using the logistic regression and hold-out validation. We have employed a
threshold mechanism to manipulate with the attendance matrix, and an AUC
statistical indicator. Self-adaptive differential evolution was used as optimization
algorithm. Here, the general goal is to find out whether FS can contribute to
reduce the number of marketing phone calls and thus decrease marketing costs.
We employ a custom data reduction algorithm for feature selection, and com-
pare its performance to performance of: (1) complete dataset and (2) recursive
feature elimination (RFE) method. We combine the favourable modeling charac-
teristics of an artificial neural network and valuable optimization characteristics
of a self-adaptive differential evolution. As a benchmark, we adopt a known
UCI Machine Learning dataset named “Bank Marketing Data Set” [26], com-
posed by Portuguese banking institutions during a campaign of phone calls. The
dataset consists of many features (which we even enlarge) that are divided into
three major groups: personal, social and financial. The purpose of the dataset
is to predict whether a client is willing to make (subscript) a bank deposit or
not. The problem we are facing is building a model from the dataset in a way
that would maximize prediction performance. An example of bank marketing
classification is shown in [32]. Here, we propose an automatic FS optimization
process to obtain: (1) simpler modeling problem, (2) higher prediction perfor-
mance, and (3) lower time complexity. Unlikely to [14], here we evaluate trial
solutions using the ten-fold cross-validation procedure. By cross-validating, we
avoid any random (bias) effects, which are present if the single hold-out valida-
tion is used, and thus expect that the proposed solution will actually increase
prediction performance and lower the marketing costs simultaneously.

The outline of the paper is as follows. Section 2 deals with the basic informa-
tion needed for understanding subjects that follows. Section 3 outlines the pro-
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posed method, while Sect. 4 presents the obtained results. Section 5 concludes
the paper and outlines directions for the future work.

2 Related Information

This section focuses on the background information that is needed for under-
standing the subjects that follow. In line with this, two prerequisites are neces-
sary, i.e. an artificial neural networks and a differential evolution. Additionally
to the original differential evolution, its self-adaptive variant is also illustrated.
In the remainder of the paper, the aforementioned topics are presented in detail.

2.1 Artificial Neural Network

An artificial neural network (ANN) is a common ML modelling tool, known for
its universal versatility for arbitrary approximations tasks [12]. Typically, ANN
consists of multiple layers of perceptrons, i.e. building blocks, which simulate the
behaviour of human. A perceptron consists of bias (sum), weight (scaling) and
transfer function. Many perceptrons connected into the ANN can address diverse
types of problems, such as regression, classification, clustering, dimensionality
reduction and others [20].

A two-phase process is typically employed in order to evaluate the ANN:
ANN-training (learning) and ANN-validation (evaluation). Those are run
sequentially on two non-overlapping samples of the original dataset, i.e. training
and validation samples. At first, the training is performed and then validation
is executed to derive the predictive ability of the ANN by directly comparing
the known and predicted results. However, such inference may be biased, due
to the lack of generalization or representativeness of the validation dataset. In
order to avoid this problem, a special type of validation is used, i.e. k-fold cross
validation. The latter splits the dataset into k equal folds, and uses each of them
exactly once for the validation, and the rest of the k − 1 folds for training [12].
In this way, multiple (k) training and validation processes are run to obtain k
results, which can then be averaged to form a consistent and unbiased measure
of predictive ability.

2.2 Differential Evolution

Differential Evolution is an evolutionary, population-based, nature-inspired algo-
rithm for global optimization, proposed by Storn and Price [36]. It belongs to
a family of Evolutionary Algorithms (EA). Like other stochastic population-
based nature-inspired algorithms, DE represents its candidate solutions as
D-dimensional real-valued vectors x(t)

i with elements x ∈ [0, 1], in other
words [34,37]:

x(t)
i = {x

(t)
i,1, . . . , x

(t)
i,D}, for i = 1, . . . ,NP , (1)
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where NP denotes the population size, and D is the dimension of the problem.
The principle of the algorithm bases on applying the three genetic operators:

mutation, crossover and selection, launched sequentially. The first among them,
i.e. mutation, is used to encourage genetic diversity of the solutions, and prevent
convergence to the local optimum. It is performed by taking the difference vector
between two individuals and scaling its difference to form the mutant vector. For
instance, mutation strategy, called ‘DE/rand/1/bin’, is formalized in Eq. (2):

u(t)
i = x(t)

r0 + F · (x(t)
r1 − x(t)

r2 ), for i = 1, . . . ,NP , (2)

where F ∈ (0.0, 1.0] represents the (stepsize) scaling factor and NP the popu-
lation size. Thus, indices r0 , r1 , and r2 , are the randomly selected numbers,
drawn from uniform distribution in the interval 1, . . . ,NP . Those denote the
corresponding solution that must be different from the target. Crossover is then
employed to combine the mutant vector with individuals xri to form the trial
vector wi, represented by Eq. (3):

w
(t)
i,j =

{
u
(t)
i,j , if randj(0, 1) ≤ CR ∨ j = jrand,

x
(t)
i,j , otherwise,

(3)

where CR ∈ [0.0, 1.0] means the crossover rate and j = 1, . . . , D. The third
genetic operator, i.e., selection, is used to compare the two vectors, i.e., trial wi

and target xi, and select the better between them. The selection procedure is
outlined in Eq. (4):

x(t+1)
i =

{
w(t)

i , if f(w(t)
i ) ≤ f(x(t)

i ),
x(t)
i , otherwise .

(4)

The better among trial and target vector is preserved into the candidate solution
vector xi which proceeds into the next generation.

Self-adaptive Differential Evolution. DE is a simple and very useful algo-
rithm, which can be hybridized to improve its search performance. For example,
Brest et al. propose the self-adapted version of DE (jDE) [6] that self-adapts
control parameters F and CR during the search process in order to simulate
the “evolution of the evolution”. In case of jDE, representation of individuals
changes according to Eq. (5):

x (t)
i = (x(t)

i,1, x
(t)
i,2, ..., x

(t)
i,M , F

(t)
i ,CR(t)

i ), (5)

where control parameters F
(t)
i and CR(t)

i undergo specific variation operator,
formalized in Eqs. (6) and (7):

F
(t+1)
i =

{
Fl + rand1 ∗ (Fu − Fl) if rand2 < τ1,

F
(t)
i otherwise ,

(6)
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and

CR
(t+1)
i =

{
rand3 if rand4 < τ2,

CR
(t)
i otherwise .

(7)

Here, randi=1...4 ∈ [0, 1] represent the random numbers drawn from uniform
distribution in interval [0, 1], τ1, τ2 learning rates and Fl, Fu the lower and
upper bounds for scale factor F .

3 Proposed Method

This section presents the practical implementation of the KDD procedure and
the synthesis of the proposed FS. As mentioned in the Introduction, this proce-
dure consists of six phases. In this sense, the aims of the phases are discussed in
a nutshell.

The first among them, i.e., problem specification, deals with the purpose of
the study. Here, the provided database is examined, and the final objectives
of the study are considered. The hypotheses to be checked are considered, and
the expected results discussed with the help of expert knowledge. Also, relevant
information is explored about the problem and related literature.

By completing the problem specification phase, the problem understand-
ing phase follows. Here, the data and any interconnections among the data
are checked visually to obtain basic data comprehension. After that, features
and response variable(s) are selected to form a reduced representation of the
database, i.e. dataset [13]. For continuing the study, only the dataset is relevant.

The third phase of KDD is the data preprocessing. Two sub-phases are con-
tained here, i.e. data preparation and data reduction. During the former sub-
phase, tasks like data cleaning, integration, normalization and transformation
are applied. During the latter, the original database is reduced, to eliminate
the redundancy or irrelevancy of some of the elements [15]. Here, four methods
exist: (1) feature selection (FS), (2) instance selection (IS), (3) discretization and
(4) feature/instance extraction. FS deals with eliminating the explanatory vari-
ables from the dataset in order to eliminate their redundancy, while IS deals with
eliminating the instances from the dataset. The discretization is a data reduction
principle, where the domain is simplified into discrete regions. Feature/Instance
extraction is a method where new variables are generated.

The fourth KDD phase is the data mining. It is the central and critical phase
of the KDD, where actual hidden patterns, relations and interconnections are
searched for. First, the appropriate DM task and the DM method are selected.
Typically, DM tasks are: regression, classification, clustering and others. The
more commonly DM methods are: ANNs, decision trees, support vector machines
(SVM), rule-based algorithms and others. It is known that each DM method does
not suit each problem well, and that some experimenting might sometimes be
necessary.

The fifth KDD phase is the evaluation. Here, the researcher interprets the
performance of the KDD. Typically, performance is evaluated by the model’s
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performance using a single criterion or multiple selection criteria. Many selec-
tion criteria exist, such as information, distance, dependence, consistency and
accuracy measures. Each of them defines a critical evaluation criterion - perfor-
mance (ability) of the DM.

The last step of KDD is the result exploitation, where the researcher uses the
knowledge discovered practically. Visualization, documentation and reporting
come into play here, together with comparison to the expectations set in the
first phase. Also, built knowledge discovered can be used pro-actively in the
daily routine. In the subsections that follow, the aforementioned KDD phases
are illustrated from the proposed method point of view in detail.

3.1 Problem Specification

The purpose of our study is to identify and select the best subset, which would
assure to find the maximal number of bank clients, willing to subscript the
bank deposit. We employ the dataset accessible at UCI Machine Learning, i.e.
the Bank Marketing Dataset that was collected by Moro, Cortez and Rita in
2014 [26]. The dataset comes from Portuguese banking institutions which have
been advertising their products. Using campaign phone calls, they have been con-
tacting clients and promoting bank deposit subscriptions. The institutions have
also, simultaneously, been recognizing the client’s personal, social and financial
habits, and client’s decision to subscript the deposit or not [33].

We are sure that the KDD from this dataset could help us predict interested
clients. Banking institutions can nevertheless save enormous efforts and costs of
bank marketing if they avoid contacting each client individually again and again.
In order to decrease the pool of potential bank depositors, we propose to build
a model with which clients with past information could be evaluated, and only
most potential among them would be contacted in future.

3.2 Problem Understanding

In the second KDD phase, we discuss briefly the features held in the dataset
to obtain basic comprehension of data. Actually, collected data from an original
dataset have been accumulated into a table to form an original dataset X, which
are depicted in Table 1. Besides features, a response variable deposit subscription
is added to the table also. The deposit subscription is a binary value with the
following meaning: 0 means reject, and 1 means the subscription of the bank
deposit.

Let us mention that the original dataset X consists of 20 features and 41,188
instances describing clients. Although this seems reasonable, much less than
41,188 clients are examined practically, since the majority of them are contacted
more than once during the campaign period.

As can be seen from the Table 1, the features can be either numerical or
categorical. Each numerical variable is defined with a corresponding range of
feasible values. On the other hand, the categorical variables are specified with a
set of discrete values that are also presented in the table.
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Table 1. List of explanatory and dependent variables in the original dataset X.

No Feature Type of feature Range of feature

1 age Numerical 17 – 98 years

2 job Categorical Administrator, blue-collar, entrepreneur, housemaid,

management, retired, self-employed, services, student,

technician, unemployed, unknown

3 marital Categorical Divorced, married, single, unknown

4 education Categorical basic.4y, basic.6y, basic.9y, high.school, illiterate,

professional.course, university.degree, unknown

5 default Categorical No, yes, unknown

6 housing Categorical No, yes, unknown

7 loan Categorical No, yes, unknown

8 contact Categorical Cellular, telephone

9 month Categorical March, April, May, June, July, August, September,

October, November, December

10 day of week Categorical Monday, Tuesday, Wednesday, Thursday, Friday

11 duration Numerical 0 – 4918

12 campaign Numerical 1 – 56

13 pdays Numerical 0 – 999

14 previous Numerical 0 – 27

15 poutcome Categorical Failure, success, nonexistent

16 emp.var.rate Numerical −3.4 – 1.4

17 cons.price.idx Numerical 92.201 – 94.767

18 cons.conf.idx Numerical −50.8 –26.9

19 euribor3m Numerical 0.634 – 5.045

20 nr.employed Numerical 4963.6 – 5228.1

21 deposit subscription Binary 0 – 1

3.3 Data Preprocessing

In our study, data preparation consists of two data transformations: dummifica-
tion, and normalization. Dummification is a transformation, where categorical
or numerical variables are transformed into binary features using one-hot encod-
ing. One-hot encoding is a transformation that encodes categorical variables
with multiple classes into a binary vector. Exactly one of the binary vector val-
ues is 1 and the rest of them are 0. On the other hand, normalization stands for
transformation, which modifies the values to the interval [0,1] proportionally.

Data Preparation. The explanatory variables are dummified and normalized
as presented in Table 2, where pdays although it is numerical, is modified using
the dummification. Value 0 presents the situation that the client has never been
contacted before, and vice-versa. In this way, the original dataset is widened to
70 variables that form the adjusted dataset X′ [14]. Actually, 62 binary vari-
ables and 8 numerical normalized variables are included here. All of them are
presented in the correlation analysis plot (Fig. 1). High correlation and, thus,
redundancy is reported for the age, months, day and marital binary variables.
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Table 2. Transformation of categorical and numerical variables.

Categorical transformations Numerical transformations

age 8 dummies Duration [0, 1] normalization

job 12 dummies Campaign [0, 1] normalization

marital 4 dummies Previous [0, 1] normalization

education 8 dummies emp.var.rate [0, 1] normalization

default 3 dummies cons.price.idx [0, 1] normalization

housing 3 dummies cons.conf.idx [0, 1] normalization

loan 3 dummies euribor3m [0, 1] normalization

contact 2 dummies nr.employed [0, 1] normalization

month 10 dummies

day of week 5 dummies

pdays 1 dummy

poutcome 3 dummies

Fig. 1. Correlation analysis plot of adjusted dataset X′.

In addition, high correlation is examined among the majority of numerical vari-
ables and for months binary variables. Almost perfect correlation is observed
between variables emp.var.rate and euribor3m.

Data Reduction. The proposed wrapper-based FS is implemented using the
modified WFS-jDE that is obtained from the original one by modifying the
following jDE elements: (1) representation of individuals, and (2) fitness function
evaluation. While the representation of individuals is performed according to the
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Eq. (1), the fitness function evaluation is calculated as follows: Let us assume
that an attendance vector a(t)

i = {ai,j}, corresponding to each candidate solution
x(t)
i , is given. The elements of the attendance vector are calculated according to

Eq. (8), as follows:

a(t)
i =

{
0, if xi ≤ 0 .5
1, otherwise, (8)

Then, the attendance vector a(t)
i specifies the presence or absence of specific

features in the reduced subset X∗ ⊂ X′.

g : X′ ai→ X∗ (9)

where the subset X∗ contains features with an attendance vector value of 1,
and omits the features with an attendance vector value of 0. Each subset X∗ is
evaluated using the CV, which will be described in Subsect. 3.5.

Alternative to the described FS method is the recursive feature elimination
algorithm, or shortly RFE. Here, logistic regression is used as an estimator. The
purpose of RFE is to detect and remove the least important (one or more) feature
in each iteration, using the feature ranking method. The recursive process is run
until the desired (predefined) number of features to select is obtained [30].

3.4 Data Mining

The problem to be solved is classification. By taking into account the past
explanatory variables, we try to predict whether a client is interested to sub-
script the bank deposit or not. ANN is used as the DM method. The ANN
consists of two phases, i.e., ANN-training and ANN-validation, where the latter
is used as the basis for derivation of a confusion matrix, used in the evaluation
phase.

ANN-training is an iterative procedure, where the weights and biases of the
ANN are modified by the learning algorithm. We use the supervised feed-forward
ANN. This means that the ANN-training is two-phase learning process: (1) the
ANN is forward-propagated to obtain the analogue output, and (2) the obtained
output is compared to the desired (binary) target value. The difference between
these is calculated next, which is then back-propagated to modify the weights
and biases of the ANN.

ANN-validation consists of the forward-propagation only. Here, the vali-
dation data not seen during the training are used. Each forward-propagation
gives a classification output that is compared with the actual class (client sub-
scripts/rejects the deposit). This forms four different scenarios, that are sum-
marized in the confusion matrix. ANN-validation is due to the 10-fold cross-
validation (CV) mechanism performed 10 times.

3.5 Evaluation

Performance of a classifier is evaluated in the evaluation phase of KDD. Eval-
uation of the classification results is performed on the basis calculated by the
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Table 3. An example of a confusion matrix.

True YES True NO

Predicted YES TP FP (type I error)

Predicted NO FN (type II error) TN

confusion matrix. Selected subset X∗ from the data reduction sub-phase is next
split into fixed and non-overlapping k = 10 folds for the CV calculations. Nine of
them are used for ANN-training, while the tenth for the ANN-validation. This
process is repeated until all of the folds are used exactly once for ANN-validation.
Prediction results are recorded afterwards, and saved in the form of confusion
matrix (Table 3), i.e. a tabular indicator of a goodness-of-classification, consist-
ing of four quadrants, and differentiating between true and false predictions. In
a confusion matrix, proper prediction of a deposit subscription means a true
positive prediction, while proper prediction of rejection a true negative. Two
other cases exist: A false positive for an improper prediction of rejection (type I
error), and a false negative for the improper prediction of subscription (type II
error). Since the confusion matrix is a universal statistical indicator of predic-
tion (classification) performance, many derivative measures of accuracy can be
calculated from it. Specifically, we use the confusion matrix for the calculation
of overall accuracy and sensitivity, which can be outlined by Eqs. (10) and (11).

accuracy =
TP+TN

TP+FP+FN+TN
, (10)

sensitivity =
TP

TP+FN
, (11)

where both the accuracy and sensitivity are used for a fitness function compu-
tation, as:

ff(trial solution) = 0.5 · accuracy + 0.5 · sensitivity. (12)

Variables accuracy and sensitivity present the mean (average) values of accu-
racy and sensitivity over ten folds, used in CV. We are dealing with an imbal-
anced dataset, and the accuracy may solely be a biased measure. In order to
prevent it, a combination is used with sensitivity. By taking the coefficients of
each measure 0.5 we treat both of them equally. The obtained fitness function
is next fed as a feedback loop into the optimization algorithm, and the best
candidate solution with the best subset X(best) can be extracted, as follows:

X(best) = max (f(X∗)) (13)

Results are exploited on the basis of the obtained X(best).
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3.6 Result Exploitation

The obtained result (built model) can be used on a regular basis to classify
interested banking clients. The complete WFS-jDE procedure is shown in the
use-case diagram in Fig. 2.

X *

ANN validation

CV ANN
training

TP FP
FN TN value

jDE

ai

ff

xi

X’

Fig. 2. Use-case diagram of WFS-jDE. Two loops are shown, i.e. a jDE loop, which is
controlled by a maximum number of evaluations (nFES), and a CV loop, that presents
the k = 10-fold cross-validation. First, candidate solution vector xi is generated, and
transformed according to attendance vector ai to form a trial subset X∗. This is then
trained sequentially, and validated using the CV mechanism, and the results are visual-
ized in a confusion matrix individually for each fold. Fitness function value is calculated
once all the folds are evaluated.

4 Experiments and Results

The purpose of the following section is twofold. First, we investigate if we can
predict bank clients interested in making deposits. Second, we examine if the
proposed WFS-jDE can be used for improving prediction performance.

For the experiments, the widened Bank Marketing Data Set (adjusted dataset
X′) introduced in subsection 3.3 was used. ANN was used as a modeling tool to
ensure the confusion matrix calculation and jDE as an optimization algorithm
to optimize the attendance vector.

ANN was implemented in the Python programming language using, the Keras
deep learning library [9]. The following configuration of ANN was used:

– input layer with number of input neurons Ni varying by the number of fea-
tures,

– first hidden layer with a number of hidden neurons Nh1 = 20,
– second hidden layer with a number of hidden neurons Nh2 = 20,
– output layer with a single output neuron No = 1.
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Table 4. Configuration of ANN.

Parameter Value

Number of epochs Nepochs 10

Batch size batch size 32

Learning constant lr 0.001

Loss function binary crossentropy

A sigmoid function is used in each layer. The architecture of ANN was taken
from the paper [11], which proposes 48 input neurons, 20 neurons in the first hid-
den layer, 15 neurons in the second hidden layer, and a single output neuron. An
advanced ANN training algorithm Adam [16] was used with fixed size of epochs.
No early-stopping criterion was used. Table 4 presents ANN parameter configu-
ration. The initial configuration of the jDE optimization algorithm is referenced
in the Table 5. Scikit-learn library was taken to provide RFE procedure [29].
RFE is the alternative to the proposed solution, which requires the setting of
the final number of features. An adjusted dataset X′ is used as a basis. In what
follows, two experimental tests are conducted for the adjusted dataset X′, best
subset X(best) and RFE subset X(RFE):

– basic evaluation of prediction performance,
– detailed comparison among statistical indicators.

Table 5. Initial configuration of jDE optimization algorithm.

Parameter Value

Initial scaling factor F 0.5

Initial crossover ratio CR 0.9

Self-adaptive learning rate τ1 0.1

Self-adaptive learning rate τ2 0.1

Population size NP 100

Number of evaluations nFES 10,000

First, basic evaluation of prediction performance is presented. Second, detailed
comparison among statistical indicators is displayed. Confusion matrix is used
for basic evaluation, while, for detailed evaluation, statistical indicators (mea-
sures of accuracy) are derived from the confusion matrix. Following eight sta-
tistical indicators are used: accuracy, sensitivity, specificity, precision, negative
predictive value (NPV), type I and type II errors, and F1 score. Additionally,
fitness function value (ff ) is displayed for comparison. Since the CV mechanism
is employed, average values are displayed for all of the obtained results. In the
remainder of the paper, the aforementioned experiments are explained in detail.
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Table 6. Average confusion matrix for adjusted dataset X′.

True YES True NO

Predicted YES 216.60 122.00

Predicted NO 247.40 3532.80

Table 7. Average confusion matrix for best subset X(best).

True YES True NO

Predicted YES 234.60 141.00

Predicted NO 229.40 3513.80

4.1 Basic Evaluation

Basic evaluation is performed for the adjusted dataset X′, best subset X(best)

and RFE subset X(RFE). The results of the adjusted dataset are obtained by
running the classification on the complete adjusted dataset X′. The average con-
fusion matrix is recorded in Table 6, which exhibits basic prediction performance.
In average, 216.6 clients are predicted properly for bank deposit subscription and
3532.8 clients on average for bank deposit rejection. 247.4 clients are predicted
incorrectly, since they actually wish to subscript a deposit, but the model predicts
inversely. 122 clients are predicted incorrectly as well, since the model predicts
them to subscribe, but they actually reject the bank deposit. Table 6 is thus a
benchmark predictive ability, which we would try to improve using the WFS-
jDE procedure. Table 7 exhibits results on the best subset X(best), which are
obtained by applying the iterative WFS-jDE procedure on the complete dataset
X′. The dimension is reduced from 70 features to 37, meaning that almost half
of the features are omitted. By applying the WFS-jDE, the number of prop-
erly predicted subscriptions rises to 234.6, compared to 216.6 in Table 6, and
the number of properly predicted rejections diminishes from 3532.8 to 3513.8.
Although the first characteristic is very welcome - the rise of proper predictions
provides more bank deposit subscriptions, this rise is conditioned by a fall of
proper rejection predictions. The type I error increases slightly due to that rea-
son, and the type II error decreases. The next subsection quantifies these effects.
Categorical variables that are applicable in the best subset X(best) (those that
are not omitted), are outlined in the Table 8. Alongside, the following binary
and numerical variables are present in the best subset X(best): pdays, duration,
emp.var.rate, cons.price.idx, cons.conf.idx and nr.employed.
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Table 8. List of categorical variables in the best subset X(best).

Features Feature values

age 17–25, 26–34, 44–52, 53–61, 62–70

job Management, services, technician

marital Unknown

education basic.4y, basic.9y, professional.course,
university.degree, unknown

month March, May, June, September,
October, December

day of week Wednesday, Thursday

default Yes

housing No, yes, unknown

loan Yes

poutcome Failure, success, nonexistent

contact Telephone

Listed variables in the best subset X(best) are similar to two FS studies.
Both of the studies [11,28] rank the most important feature to be duration.
[28], who use the information gain and chi-square characteristic, then rank pout-
come, month, pdays and contact. On the other hand, according to the sensitivity
analysis, ranks month, poutcome, contact and job to be the other most impor-
tant features [11]. Third evaluation is the evaluation of the feature selection
alternative - RFE method with the number of variables to select set to 35.
According to the confusion matrix Table 9, this alternative is the worst among
all. True positive instance is decreased drastically, scoring barely 85 clients. Num-
ber of false positives decreases as well, which is desired, but the false negatives
increase. True negative instance scores the highest value among all. Table 10
lists the categorical variables, used in the RFE subset X(RFE). It is noticeable
that each feature that is listed in the table, incorporates all of its feature val-
ues (except the day of week feature, where the Tuesday and Wednesday feature
values are missing).

Table 9. Average confusion matrix for RFE subset X(RFE).

True YES True NO

Predicted YES 85.30 44.40

Predicted NO 378.70 3610.40
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Table 10. List of categorical variables in the RFE subset X(RFE).

Features Feature values

age 17–25, 26–34, 35–43, 44–52, 53–61, 62–70, 71–79, 80+

job Administrator, blue-collar, entrepreneur, housemaid,
Management, retired, self-employed, services,
Student, technician, unemployed, unknown

marital Single, married, divorced, unknown

day of week Monday, Thursday, Friday

default No, yes, unknown

poutcome Failure, success, nonexistent

contact Telephone, cellular

4.2 Detailed Evaluation

The aim of this section is to provide the detailed evaluation between the adjusted
dataset X′, best subset X(best) and RFE subset X(RFE). The results displayed in
Table 11 present the mentioned statistical indicators, where NPV means negative
predictive value and ff means fitness function value. The displayed statistical
indicators are averaged for the ten folds used in the CV mechanism. Examination
of the detailed results identifies a slight drop in overall accuracy by applying
the proposed WFS-jDE solution. Substantial increase in sensitivity is indicated,
which causes fitness function value ff to increase as well. An increase of fitness
function value indicate the successfulness of the WFS-jDE. Specificity is due to
the drop of proper rejection predictions lowered marginally compared to adjusted
dataset, and thus increases type I errors proportionately. Specificity is the highest
for the RFE subset. On the other hand, type II error lowers drastically which

Table 11. Detailed evaluation of prediction results.

Avg. indicator Adjusted dataset X′ Best subset X(best) RFE subset X(RFE)

No. of features 70 37 35

Accuracy 0.9103 0.9101 0.8973

Sensitivity 0.4668 0.5056 0.1838

Specificity 0.9666 0.9614 0.9879

Precision 0.6407 0.6272 0.6572

NPV 0.9346 0.9388 0.9051

Type I error 0.0334 0.0386 0.0121

Type II error 0.5332 0.4944 0.8162

F1 score 0.5381 0.5584 0.2869

ff value 0.6886 0.7078 0.5406



Wrapper-Based Feature Selection Using Self-adaptive Differential Evolution 151

causes that far less clients are “ignored”. After all, regardless of any statistical
indicator, the number of bank deposit subscriptions increases strongly. The RFE
procedure decreases the overall accuracy and drastically decreases the sensitivity.
Due to such a low value of sensitivity and consequently fitness function value,
this FS procedure is not appropriate for our problem. A good quality of the
WFS-jDE comes in the slight increase of type I errors but significant drop of
type II errors. The dataset is imbalanced and thus biased in some way. A special
treatment is necessary, which comes in the form of fitness function. The latter
tries to take the imbalance into account at least a bit. Different fitness functions
would establish different results.

The results can be compared to those obtained in [14]. Type II error there
is remarkably lower, i.e. 27 for the “original database” and 28 for the “reduced
database”. The authors report that their accuracy increases by almost 2% by
employing the FS, while we experienced a drop in accuracy. However, the authors
there employed a simple hold-out validation and a logistic regression. Addition-
ally, they implemented a special procedure for threshold (TH ), which was used
for mapping candidate solutions. They used simultaneous optimization of thresh-
old TH during the optimization process and thus improved the reaction of FS
significantly on the imbalanced dataset. Instead of custom fitness function from
accuracy and sensitivity, they optimized the AUC score. All those changes call
for a difficult comparison between the [14] and our study. Another study that
deals with the bank marketing is [28]. The authors here compared the F1 score.
By employing several traditional FS applications, the authors show that max-
imal increase of F1 score is 0.01. In our case, an increase of more than 0.02 is
applicable.

5 Conclusion

In this paper, we have proposed a wrapper-based feature selection using the
ANN and jDE. We have tested its efficiency on a Bank Marketing Data Set. We
figured out that modeling the past information about bank clients is a suitable
task that might come handy on an everyday basis.

We have shown that the proposed FS procedure reduces the size of the dataset
successfully. From an initial 70 variables, we formed the best subset of 37 vari-
ables, i.e. almost half less variables. Such a decrease of the number of variables
not only reduces the complexity of the dataset, but also improves the predic-
tive performance of a classifier. The RFE alternative, which is more common in
practice, caused the predictive ability to suffer. Although, we can say that on
this case study, FS procedure can be used beneficially to improve the predictive
ability by eliminating some redundant or irrelevant features.

The proposed WFS-jDE is especially suitable for imbalanced datasets, due
to the arbitrary selection of fitness function. However, self-adaptation of the
threshold TH is highly desired in such cases.

In future, we would like to test WFS-jDE with the self-adaptation of TH on
several diverse datasets. We would like to employ universal fitness function, and
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run the jDE with a higher number of evaluations, to ensure the convergence.
Constrained optimization should be utilized as well, to control the number of
features better in the reduced dataset.
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weighting for improving financial decision support systems. Decis. Support Syst.
107, 78–87 (2018)

34. Simon, D.: Evolutionary Optimization Algorithms. Wiley, Hoboken (2013)
35. Srinivasan, U., Arunasalam, B.: Leveraging big data analytics to reduce healthcare

costs. IT Prof. 15(6), 21–28 (2013)
36. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global

optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)
37. Viktorin, A., Senkerik, R., Pluhacek, M., Kadavy, T., Zamuda, A.: Distance based

parameter adaptation for success-history based differential evolution. Swarm Evol.
Comput. 50, 100462 (2018)

38. Wang, S., Tang, J., Liu, H.: Embedded unsupervised feature selection. In: Twenty-
Ninth AAAI Conference on Artificial Intelligence (2015)

39. Wang, Y., Huang, J.-J., Zhou, N., Cao, D.-S., Dong, J., Li, H.-X.: Incorporating
PLS model information into particle swarm optimization for descriptor selection
in QSAR/QSPR. J. Chemom. 29(12), 627–636 (2015)

https://doi.org/10.1007/978-981-13-5934-7_28
https://doi.org/10.1007/978-981-13-5934-7_28
http://arxiv.org/abs/1905.11592
https://doi.org/10.1007/978-3-319-39384-1_50
https://doi.org/10.1007/978-3-319-39384-1_50


154 D. Fister et al.

40. Xindong, W., Zhu, X., Gong-Qing, W., Ding, W.: Data mining with big data. IEEE
Trans. Knowl. Data Eng. 26(1), 97–107 (2014)

41. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation
approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2016)

42. Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based
filter solution. In: Proceedings of the 20th International Conference on Machine
Learning (ICML-03), pp. 856–863 (2003)



SOMA T3A for Solving the 100-Digit
Challenge

Quoc Bao Diep1(B), Ivan Zelinka1, Swagatam Das2, and Roman Senkerik3

1 Faculty of Electrical Engineering and Computer Science,
VSB - Technical University of Ostrava,

17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
diepquocbao@gmail.com, ivan.zelinka@vsb.cz

2 Electronics and Communication Sciences Unit, Indian Statistical Institute,
203 Barrackpore Trunk Road, Kolkata, India

swagatam.das@isical.ac.in
3 Faculty of Applied Informatics, Tomas Bata University in Zlin,

T. G. Masaryka 5555, 760 01 Zlin, Czech Republic
senkerik@utb.cz

Abstract. In this paper, we address 10 basic test functions of the 100-
Digit Challenge of the SEMCCO 2019 & FANCCO 2019 Competition
by using team-to-team adaptive seft-organizing migrating algorithm -
SOMA T3A with many improvements in the Organization, Migration,
and Update process, as well as the linear adaptive PRT and the cosine-
based adaptive Step. The results obtained from the algorithm on the
100-Digit Challenge are very promising with 93 points in total.

Keywords: Self-organizing migrating algorithm · Optimization
function · Swarm intelligence · SOMA T3A

1 Introduction

Self-organizing migrating algorithm (SOMA), a stochastic optimization algo-
rithm, was inspired by cooperative and competitive behavior among intelligent
creatures in the population such as birds and fish, to create new individuals
that are candidate solutions to the problem. First published in 2000 [20], SOMA
received much attention from researchers. There have been some publications,
leading SOMA to not only having two initial strategies of AlltoOne and AlltoAll,
but also making it more and more diverse and widely used. SOMA Pareto, the
most recently published, is an example [8]. It applies the Pareto Principle in
selecting individuals to be Migrants and individuals to be Leader. In addition,
the adaptive control parameters have been proposed, significantly increasing the
algorithm’s performance, which has been proved by the well-known benchmark
suite tests of the CEC’13, CEC’15, and CEC’17. In addition, other variant ver-
sions of SOMA such as M-SOMAQI [17], C-SOMGA [4], SOMAQI [18], mNM-
SOMA [1], SOMGA [5], HSOMA [11], and CSOMA [16] have also confirmed
their effectiveness.
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SOMA is widely used in many fields such as avoiding multiple dynamic obsta-
cles and catching the moving target [2,9], solving large scale global optimization
problems [12], complex network analysis [3], single and double layer spiral pla-
nar inductors optimization [13], and electromagnetic optimization [15]. How-
ever, problems become more and more complicated, current variants of SOMA
are unable to solve these problems, or take a long time to achieve the required
accuracy. The 100-Digit Challenge competition is an example [14].

The competition provides 10 hard functions, each participant is allowed to
use an algorithm to solve (optimize) those functions with an accuracy of 10 digits
each, and 10 points are awarded for each completely solved function. Different
from previous CEC competitions, this year’s competition highlights the accuracy
rather than the time to solve. Therefore, the algorithm is not limited to function
evaluations and is allowed to adjust 2 control parameters in the same way for all
10 functions. This competition is a great challenge for cutting-edge algorithms,
see [14] for more detailed.

In this paper, we address 10 basic test functions of the 100-Digit Challenge of
the SEMCCO 2019 & FANCCO 2019 Competition using team-to-team adaptive
self-organizing migrating algorithm—SOMA T3A published in [6] with many
improvements. The paper is structured into the following sections: Sect. 2 briefly
describes the proposed algorithm, team-to-team adaptive SOMA, applied to
solve the 100-Digit Challenge. Section 3 describes the experimental setting. The
results are shown in Sect. 4. And finally, the paper is concluded with Sect. 5.

2 The Proposed Algorithm

2.1 Original Self-organizing Migrating Algorithm

This section briefly describes the Self-organizing migrating algorithm (SOMA),
which is a premise for the proposed algorithm presented in the next subsec-
tion. SOMA is a stochastic optimization algorithm that mimics the competitive-
cooperative intelligent behavior of creatures [10,19]. It works based on a popula-
tion consisting of a given number of individuals that correspond to the candidate
solution of the problem, and through many migration loops, these individuals
interact with each other to search the best solution.

At the beginning of the algorithm, a population is randomly generated in the
search range including a given number of individuals, as described in Eq. 1, and
then the population will be evaluated by the given problem.

Pop = x
(l)
j + (x(h)

j − x
(l)
j )rand[0, 1] (1)

where:

– Pop: the population for the first migration loop,
– x

(l)
j : the lowest value of the boundary,

– x
(h)
j : the highest value of the boundary,

– j: from 1 to the population size,
– rand[0, 1]: random number from 0 to 1.
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An individual with the best value in the population is selected to be the
Leader. All other individuals will move towards the Leader. After each finished
movement, the best position on its path is selected to compare with its original
position. If it is better, it will replace the original position. Otherwise, it will be
ignored. Their movement process is described in Eq. 2.

xML+1
n = xML

c + (xML
l − xML

c ) t PRTV ector, (2)

where:

– xML+1
n : the new position of an individual in the next migration loop,

– xML
c : the position of this migrant in the current migration loop,

– xML
l : the position of the leader in the current migration loop,

– t: jumping step, from 0, by Step, to PathLength.

The Step specifies the granularity of the migration process. The PathLength
determines how far individuals stop. By PRTV ector fixed and equal to 1, if
PathLength is greater than 1 (equal 3, for example) then this individual will
stop behind the Leader and the distance from the initial position to this position
is 3 times longer than the distance from it to the Leader. In fact, PRTV ector
can be equal 1 or 0 depending on the PRT parameter, as in Eq. 3.

if rand < PRT ; PRTV ector = 1; else, 0. (3)

The PRT causes the individual instead of moving straight to the Leader, it
will move in an N-k dimensional subspace. This helps the population preserve its
diversity. The more PRT value goes to 1, the faster the algorithm will converge,
but the higher it is to be trapped in the local minima and vice versa.

After all individuals complete the migration process, the next migration loop
is started. Here, the best individual in the population is selected, and the moving
process is continued until reaching the given stop conditions.

The mentioned strategy is named SOMA AllToOne. The strength of this
strategy is its simplicity. For simple functions with small dimensions, SOMA
AllToOne provides fast computing time and can find the global minima. But for
complex functions and a larger number of dimensions, SOMA AllToOne can be
trapped in the local minima, and no longer able to go beyond the local search
subspace to find the global, as has been pointed out in [8].

Therefore, another method was proposed to address these weaknesses and
apply it to solve the 100-Digit Challenge, named SOMA T3A [6].

Start Termination No Organization Migration Update

Stop

Initialization

Yes

Fig. 1. The SOMA T3A flowchart.
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2.2 SOMA T3A

This algorithm is divided into 4 processes: the Initialization, Organization,
Migration, and Update process as shown in Fig. 1 [6].

Initialization Process. An initial population is randomly generated similar to
SOMA AllToOne, and given in Eq. 1. After being initialized, these individuals
are evaluated by the fitness function, in this case, 10 functions of the 100-Digit
Challenge Competition.
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Fig. 2. The Organization process.

Organization Process. The mission of the Organization process is to deter-
mine which individuals will move, named Migrants, and which individual will be
the possible Leader, that is, randomly select a small group containing m individ-
uals in the population, and then select the best n out of m individuals to become
Migrants. To select the Leader for each Migrant, the algorithm randomly select a
small group containing k individuals in the population, and then select the best
one from k, this individual is the Leader. The Organization process is described
in Fig. 2.

There are two notes when choosing the Leader. First, individuals in the k
group that includes the Leader may coincident with one of the n Migrants. In
this case, the moving of this coincident Migrant is ignored. Secondly, Leader
selection is performed for each Migrant. That is, corresponding to n Migrants,
there are n times for selecting the k group and having n separated Leaders,
instead of just choosing the only Leader for n Migrants.

This organization plays an important role in balancing the two phases of
exploration and exploitation. If the values of m, n, and k are large, the algorithm
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will focus on the better individuals and tends to the exploitation phase. When
their value is equal to the population size, the algorithm returning to its original
version of SOMA AllToOne. Conversely, if their values are small, the algorithm
will deviate to the exploration phase. There are no best values of m, n, and k for
all optimization problems. Their values depend on the complexity and number
of dimensions of functions, as well as the population size.

Migration Process. The Migration process describes how Migrants jump
towards the Leader. In the SOMA AllToOne mentioned above, individuals jump
in the N-k dimensional subspace instead of jumping straight to the Leader. The
probability of each jump is determined by the PRT as in Eq. 3, and the step
of each jump is a constant number. Individuals jump with fixed steps and fixed
probability until reaching the PathLength. The restriction of two important
parameters of the algorithm lies in the point: fixed value.

To propose a suitable PRT parameter, we consider the meaning of PRT .
With the PRT parameter as close as 1, individuals have larger straight steps
towards the Leader and fewer perpendicular steps in the N-k dimensional sub-
space. If PRT is equal to 1, individuals jump directly towards the Leader. This
is suitable for use in the exploitation phase. On the other hand, the smaller the
PRT , the larger the number of jumps in the N-k dimensional subspace, and
the smaller the number of jumps straight to the Leader. This is suitable for use
in the exploration phase. Since in the beginning, the algorithm should look for
promising subspaces, and then, focus on that subspaces, so the PRT should start
with a small value and gradually increases the value according to the migration
loop. The adaptive PRT for the competition is described in Eq. 4.

PRT = 0.08 + 0.90
FEs

MaxFEs
(4)

where:

– FEs: the current number of function evaluation,
– MaxFEs: the maximun number of function evaluation.

The Step determines the granularity of the jump. With a fixed number of
steps, if the Step is large, the algorithm will search on a wider subspace, and
if the Step is small, the algorithm will search for more detail in a narrower
subspace. The adaptive Step for the competition is described in Eq. 5.

Step = 0.02 + 0.005 cos(0.5π10−7FEs) (5)

In the original version, note that the individual jumps until the PathLength
is reached. In this method, individuals jump until they reach the given number
of jumps (named Njumps), that means PathLength = Step × Njumps.

In the case of Migrants jumping out of the search range, a new random
position will be generated in the search space to replace that position.
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Update Process. The Update process is the process of updating new positions
for each Migrant after it completes its jumping process. If this new position is
better, it will replace the original position. In contrast, the Migrant remains in
the initial position.

The whole process of the algorithm is described in Algorithm 1.

Algorithm 1. SOMA T3A
1: Create the initial population
2: Evaluate the initial population
3: while stopping condition not reached do
4: Update PRT and Step values
5: Choose randomly m individuals from the population
6: Choose the best n Migrants out of m individuals
7: for i = 1 to n Migrants do
8: Choose randomly k individuals from the population
9: Choose the Leader from k individuals

10: if the Migrant is not the Leader then
11: The Migrant moves to the Leader
12: Checking boundary
13: Re-evaluate fitness function
14: Updated the better position of the Migrant
15: end if
16: end for
17: end while
18: return

3 Experiment Setup

3.1 Implementation Environment

Matlab is used for programming and solving 10 basic test functions of the 100-
Digit Challenge Competition of SEMCCO 2019 & FANCCO 2019 [14]. The test
is performed on the Intel Core i7-6700 computer with 16 GB RAM, under the
Windows 7 64-bit operating system, using Parallel Computing Toolbox of Matlab
2018a version (using 4 cores of CPU).

3.2 Functions

Table 1 lists the basic functions used in the 100-Digit Challenge. All test functions
are scalable and they were designed to have the same global minimum value of
1.0 within the search range. The dimensions and search range are also in the two
last columns in this table.
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Table 1. The 100-Digit Challenge basic test functions.

No. Functions D Search range

1 Storn’s Chebyshev Polynomial Fitting Problem 9 [−8192, 8192]

2 Inverse Hilbert Matrix Problem 16 [−16384, 16384]

3 Lennard-Jones Minimum Energy Cluster 18 [−4, 4]

4 Rastrigin’s Function 10 [−100, 100]

5 Griewangk’s Function 10 [−100, 100]

6 Weierstrass Function 10 [−100, 100]

7 Modified Schwefel’s Function 10 [−100, 100]

8 Expanded Schaffer’s F6 Function 10 [−100, 100]

9 Happy Cat Function 10 [−100, 100]

10 Ackley Function 10 [−100, 100]

3.3 Scoring

SOMA T3A has been run 50 consecutive trials for each function, and the total
number of correct digits in the 25 trials that had the best values has been
counted. The average number of correct digits in 25 best trials is the score for
that function. For example, the algorithm reaches equal or greater than 50% of
the trials achieving 10 digits, then the score of that function is 10 points. The
highest score in total is 100 points, refer to [14] for more details.

3.4 Termination Criterion

The algorithm will terminate when one of the two following criteria is met:

– achieving the 10-digit level accuracy,
– achieving the MaxFEs (MaxFEs = 109 for 10 functions).

3.5 Control Parameters of SOMA T3A

Table 2 lists fixed parameters that were held constant value for 10 functions of
the 100-Digit Challenge, containing the population size, the number of jumps,
the number of individuals of the group n. The linear adaptive PRT and the
cosine-based adaptive Step are given in Eqs. 4 and 5.

The number of individuals of the group m and k are two tuned parameters.
Their values, corresponding to each problem, are given in Table 3.

Different from the version [7] that also applied SOMA T3A to solve 10 basic
test functions of the 100-Digit Challenge, two tuned parameters of the current
version are the values of m and k instead of the PopSize and the frequency
of PRT . Besides the change of linear adaptive PRT and MaxFEs, this leads
SOMA T3A to achieve better results than the older.
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Table 2. The fixed parameters.

Parameters Values

The population size (PopSize) 1500

The number of jumps (Njumps) 100

The number individuals of group n 4

Table 3. Two tuned parameters.

Function 1 2 3 4 5 6 7 8 9 10

m 50 50 50 50 50 50 50 5 20 50

k 100 50 100 100 100 100 80 5 30 100

4 Results

SOMA T3A has achieved 93 points in total in a run of 50 times for each function.
Table 4 shows the detailed results, which the sequence number of functions are
listed in the first column, the number of correct digits columns count the number
of trials in a run of 50 times that the algorithm achieved from 1 to 10 correct
digits respective to each function. The score for each function is the average
number of correct digits of the best 25 runs that showed in the last column. The
total score of all functions is presented in the last row.

In Table 4, SOMA T3A reached 50 over 50 runs achieving 10 correct digits
on functions 1 to 6, and function 10. The score for those functions is 70 points
(10 points for each function).

Table 4. Fifty runs for each function sorted by the number of correct digits

Function Number of correct digits Score

0 1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0 50 10

2 0 0 0 0 0 0 0 0 0 0 50 10

3 0 0 0 0 0 0 0 0 0 0 50 10

4 0 0 0 0 0 0 0 0 0 0 50 10

5 0 0 0 0 0 0 0 0 0 0 50 10

6 0 0 0 0 0 0 0 0 0 0 50 10

7 0 0 2 0 0 0 0 0 0 0 48 10

8 0 0 12 0 0 0 0 0 0 0 38 10

9 0 0 1 49 0 0 0 0 0 0 0 3

10 0 0 0 0 0 0 0 0 0 0 50 10

Total: 93
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For functions 7 and 8, SOMA T3A has 2 and 12 times achieving 2 correct
digits, has 48 and 38 times achieving 10 correct digits, respectively. The score
for these functions is 20 points (10 for each of them).

Function 9 is the most difficult function for SOMA T3A when it only has 1
time achieving 2 correct digits and 49 times achieving 3 correct digits, there are
no times in 50 runs that the algorithm achieves above 3 correct digits. The score
for function 9 is 3 points.

In total, SOMA T3A achieved 93 points.
Figure 3 shows the mean function evaluations that the algorithm spent at

each correct digit level. For functions 1, 2, 4, 5, 6, 7, and 10, the algorithm spent
less than 2 × 108 FEs to achieve 10 correct digits. For functions 3 and 8, the
algorithm spent nearly 8 × 108 FEs to achieve 10 correct digits. For function 9,
the algorithm did not achieve 10 points and was not show in this figure.

From the data of Table 4 and Fig. 3, with function 9, the algorithm has been
trapped in local minima and no longer able to go beyond the local subspace. For
SOMA T3A within the current setting, function 3 and 8 are more complex than
other functions, so the algorithm needs a longer time than the others to achieve
10 correct digits.
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Fig. 3. The average number of FEs at each correct digit level (over the 25 best runs).

5 Conclusions

In this paper, we applied SOMA T3A to solve 10 problems of the 100-Digit
Challenge of the SEMCCO 2019 & FANCCO 2019 Competition and reached 93
points in total. In this algorithm, SOMA was structured into the Initialization,
Organization, Migration, and Update process. How to organize individuals in
the population to become the Migrants and the Leader, as well as the linear
adaptive PRT and the cosine-based adaptive Step parameters, are the major



164 Q. B. Diep et al.

improvements of this method beside an increment of MaxFEs to 109. This helps
the algorithm avoid being trapped in the local minima and reaching the good
score in almost functions, except the function 9.
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Abstract. The success of every stochastic population-based nature-
inspired algorithms is characterized through the dichotomy of exploration
and exploitation. In general, exploration refers to the evaluation of points
in previously untested areas of a search space, while exploitation refers
to evaluation of points in close vicinity to previously visited points. How
to balance both components properly during the evolutionary process
is still considered as a topical problem in the evolutionary computation
community. In this paper, we propose a recurrence plot visualization
method for evaluating this process. Our analysis shows that recurrence
plots are highly appropriate for revealing how particular algorithms bal-
ance exploration and exploitation.

Keywords: Exploration · Exploitation · Nature-inspired algorithms ·
Recurrence plot · Optimization

1 Introduction

Stochastic population-based nature-inspired algorithms are a kind of search algo-
rithms that are considered as a powerful tool for coping with optimization prob-
lems in continuous, as well as discrete, domains. Most of them are inspired by the
biological principles of behavior of various animals living in nature, while some of
them are even inspired by physical phenomena. Each stochastic population-based
nature-inspired algorithm consists of a population of individuals that undergo
variation operators during the evolution process and generate a new subsequent
population. Despite the popularity of this subject, a lot of different algorithms
have been developed in the past decades. Nevertheless, characteristic examples
that fit under this umbrella are: Artificial Bee Colony (ABC) algorithm [7],
Bat Algorithm (BA) [16], Differential Evolution (DE) [12], Firefly Algorithm
(FA) [15], Genetic Algorithm (GA) [5], Particle Swarm Optimization (PSO) [8].
c© Springer Nature Switzerland AG 2020
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Each algorithm starts with a randomly generated initial population that updates
over multiple generations/cycles using specific variation operators. For example,
a GA uses three variation operators: selection, crossover and mutation; while
the BA variation operator is guided by the physical phenomenon of echoloca-
tion observed in micro-bats. All of these operators influence the diversity of a
population, and balance the exploration and exploitation components [1] and,
most importantly, determine the overall quality of returned solutions. For this
reason, it is important to have deep knowledge of the manner in which parame-
ters of a particular algorithm impact on its search performance, which can help
us understand what its weaknesses and advantages are during the evolution-
ary process. Additionally, such insights can help us to decide which algorithm
is good for particular problems, as well as how to approach solving particular
problems. We propose the use of recurrence plots to visualize graphically the
evolutionary path of various nature-inspired algorithms, and reveal performance
over time in a more informative manner than by simply tracking unitary mea-
sures such as the single best solution found. To the authors’ knowledge, there
is only one study [13] that used recurrence plots for study phase transitions in
swarm optimization algorithms.

The main contributions of this paper are summarized as follows:

– to verify that there is a possibility to track the whole path of a stochastic
population-based nature-inspired algorithm during the evolutionary process
using recurrence plots,

– to investigate whether there is a possibility to observe changes between the
exploration phase as well as the exploitation phase on recurrence plots,

– to study if there is a possibility to decide which algorithm is good for a
particular problem based on the visualization of recurrence plots.

The structure of this paper is as follows: In Sect. 2 the stochastic population-
based nature-inspired algorithms that are used in our study are outlined, while
Sects. 3 and 4 present the methodology. The results of experiments are presented
in Sect. 5. Section 6 concludes the paper, with remarks for future work.

2 Stochastic Population-Based Nature-Inspired
Algorithms

The purpose of this section is to acquaint the reader with the population-based
nature-inspired algorithms1 that are being used in our experiments.

The Bat Algorithm is an example of Swarm Intelligence (SI) based algo-
rithms [4]. BA is inspired by a physical phenomenon of micro-bats called echolo-
cation. Differential Evolution is an evolutionary algorithm used widely in solv-
ing many combinatorial, continuous, as well as real-world problems. DE was
proposed by Storn and Price in 1997 [12]. The Firefly Algorithm that was devel-
oped by Yang in 2008 is an SI-based algorithm inspired by the mating behavior of

1 Sorted alphabetically.
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fireflies. The phenomenon of fireflies is regarding the flashing lights that attract
mating partners on the one hand, while, on the other, it serves as protection
mechanism. Particle Swarm Optimization is also a member of SI-algorithms that
was first presented in 1995 [8]. The inspirations of PSO lie in the social foraging
behavior of some animals, such as the flocking behavior of birds.

3 Recurrence Quantification Analysis and Recurrence
Plots

The recurrence plotting plot technique was initially invented as a technique to
display and identify patterns from time series data, specifically data from high-
dimensional dynamical systems [3]. The recurrence plot is a 2D plot where the
horizontal and vertical axes represent time series data, and individual elements
of the plot indicate times where the phase space trajectory of the system visits
the same region of phase space.

While visual inspection of recurrence plots is useful for revealing the structure
and dynamics of dynamical systems, Recurrence Quantification Analysis (RQA)
extends this technique by specifying a set of metrics designed to capture specific
features of recurrence plots [10,14]. In the 25 years following the original work
of Eckmann et al. (1987), recurrence analysis has been applied across diverse
areas including financial analysis, neural recordings, engineering, earth science
and chemistry [9].

4 Methodology

In order to analyze recurrence plots for tracking the exploration and exploitation
of population-based nature-inspired algorithms, we conducted a series of experi-
ments. All experiments are based on the optimization of continuous benchmark
functions [6] that are presented in Table 1.

Table 1. Benchmark functions used in our experiments.

f Function name Definition

f1 Sphere f(x) =
∑D

i=1 x2
i

f2 Ackley f(x) = −a exp

(

−b
√

1
D

∑D
i=1 x2

i

)

− exp
(

1
D

∑D
i=1 cos(c xi)

)
+ a + exp(1)

f3 Griewank f(x) =
∑D

i=1
x2
i

4000 − ∏D
i=1 cos(

xi√
i
) + 1

f4 Rastrigin f(x) = 10D +
∑D

i=1

(
x2
i − 10 cos(2πxi)

)

To generate a recurrence plot, a similarity measurement is required to com-
pare any two points of the time series being plotted on the recurrence plot. In the
case here, a single time point is the state of the population of the EC algorithm
for a single generation, and, therefore, the similarity measurement is designed
to measure the difference between two populations of solutions. The similarity
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measurement is based on the Euclidean distance between points in the popu-
lation. The Euclidean distance metric is a relatively straightforward metric to
calculate; given two solutions, p and q, and problem dimensionality of d, the
Euclidean distance is calculated as:

Euclidean distance(p, q) =

√
√
√
√

d∑

i=1

(pi − qi)
2 (1)

To obtain a population similarity score, Algorithm1 is applied. According to
the Algorithm 1, the algorithm returns a pairwise similarity score between any
two solutions. Algorithm 1 sums the similarity of every solution between two
populations. This sum is then divided by the population size. In line with this,
Algorithm 2 presents how final time series are being generated. The algorithm
iterates through all iterations, and calculates a similarity score for every two
generations, i.e. the current generation and one next generation are taken into
account. Finally, all points in the time series are normalized in order to get a
similarity value between [0, 1].

Algorithm 1. Population similarity score for populations P1 and P2
1: Score = 0
2: for i = 1 to NPP1 do
3: for j = 1 to NPP2 do
4: Score+ = Score (P1i, P2j)
5: end for
6: end for
7: Score/ = NP

Algorithm 2. Building time series
1: TimeSeries = ∅;
2: for i = 1 to MAX ITER do
3: Point = Calculate population similarity()
4: TimeSeries.append(Point)
5: end for
6: TimeSeries = normalize(TimeSeries(0, 1))

4.1 RQA Analysis and Generating a Recurrence Plot

Each population-based nature-inspired algorithm was run for 500 iterations, gen-
erating 20 new solutions per iteration. During the evolutionary cycle, we stored
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all solutions of each iteration. All included algorithms were run on 25 indepen-
dent runs. Let us mention that the dimension of the problem was set to 30 for
all algorithms on every benchmark function. Tables 2, 3, 4 and 5 present mean
and std. values for each algorithm over the 25 runs. RQA was calculated using
PyRQA software [11], while laminarity, divergence, trapping time and determin-
ism measures were taken into account. For generating a recurrence plot, we chose
1 single run randomly from the pool of 25 runs. Recurrence plots were generated
using the pyunicorn package [2].

RQA measures attempt to capture moments where a dynamical system under
analysis is persisting in a single point in state space, drifting from or between
different states, or randomly moving about a state space. RQA analysis is there-
fore of strong interest here due to its ability to capture aspects of convergent and
non-convergent algorithmic behaviour. Laminarity is a measure of intermittent
behaviour which will form vertical lines on a recurrence plot. Divergence is the
inverse of the maximal diagonal line length which if low would indicate that an
algorithm has converged or is moving along a cyclic trajectory through state
space. Trapping time is the average length of vertical lines, which indicates the
amount of time a system spends in a particular state, for an optimisation algo-
rithm a high trapping time would indicate exploitation behaviour. Determinism
is a percentage measure of how many recurrence points form diagonal lines. For
determinism to be low a plot will contain mostly random noise (single recur-
rence dots), rather than longer diagonal lines which would indicate convergent
behaviour, therefore low determinism indicates more exploration.

5 Discussion

For the algorithms tested we observe both qualitative and quantitatively different
results from the recurrence analysis2. The BA algorithm produced some of the
most interesting results, given that the algorithm seemed to converge within only

Table 2. RQA of BA.

Function Measure Laminarity Divergence Trapping time Determinism

f1 Mean 0.9999 0.0026 366.1704 1.0000

Std. 0.0001 0.0009 143.7695 0.0000

f2 Mean 0.9999 0.0021 474.5477 1.0000

Std. 0.0000 0.0000 20.2955 0.0000

f3 Mean 0.9999 0.0023 450.7964 1.0000

Std. 0.0001 0.0007 92.2660 0.0001

f4 Mean 0.9999 0.0021 468.0336 0.9998

Std. 0.0004 0.0000 24.5921 0.0009

2 Only selected figures are presented in this paper.
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(a) Ackley (b) Griewank

Fig. 1. Recurrence plots of BA on selected benchmark functions

a handful (10–30 iterations) leading to very large values for the RQA measures
and almost complete visual recurrence (Fig. 1). At least in the configuration of
the algorithm we used this would suggest that the BA algorithm is incredibly
quick to converge and that care should be taken in ensuring that population
diversity is maintained when in use.

(a) Ackley (b) Sphere

Fig. 2. Recurrence plots of FA on selected benchmark functions

The Firefly algorithm had the second highest values for Determinism, indi-
cating that it too behaved in a highly exploitative fashion. The visual plots for
this algorithm does reveal that this exploitation behaviour occurs mostly towards
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Table 3. RQA of FA.

Function Measure Laminarity Divergence Trapping time Determinism

f1 Mean 0.9927 0.0030 52.3893 0.9984

Std. 0.0003 0.0001 1.4192 0.0004

f2 Mean 0.9566 0.0042 20.1938 0.9943

Std. 0.0012 0.0002 0.6655 0.0021

f3 Mean 0.8857 0.0057 11.3448 0.9865

Std. 0.0053 0.0004 0.6663 0.0059

f4 Mean 0.9926 0.0029 51.6059 0.9982

Std. 0.0003 0.0001 1.0994 0.0003

the end of the algorithm run, and that the algorithm seems to move its popu-
lation slowly through state space, highlighted also by the low divergence scores
combined with high laminarity. Of all of the algorithms tested, FA tends to be
the one algorithm that tends to transition the smoothest between exploratory
and exploitative behaviours (Fig. 2).

(a) Ackley (b) Griewank

Fig. 3. Recurrence plots of DE 1/2

For the DE algorithm there was a notable difference in behaviour on F3
(Griewank), which can be seen both visually and quantitatively. On F3, DE
seemed somewhat non-convergent, seen through the lower scores for laminarity,
trapping time and determinism, and higher scores for divergence. the Griewank
function quite notably contains a vast number of closely placed local minima,
which could explain the algorithms lack of convergence (Figs. 3 and 4).
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Table 4. RQA of DE.

Function Measure Laminarity Divergence Trapping time Determinism

f1 Mean 0.9927 0.0028 39.8657 0.9916

Std. 0.0048 0.0004 20.5044 0.0078

f2 Mean 0.9859 0.0052 72.6573 0.9947

Std. 0.0140 0.0024 25.9202 0.0079

f3 Mean 0.6567 0.0453 4.6795 0.7223

Std. 0.1937 0.0461 2.4264 0.1807

f4 Mean 0.8422 0.0349 20.4438 0.8379

Std. 0.1005 0.0311 34.5553 0.1179

(a) Rastrigin (b) Sphere

Fig. 4. Recurrence plots of DE 2/2

PSO had some of the most exploratory behaviour of all of the algorithms,
with the highest divergence values, and lowest trapping time, determinism and
laminarity. The recurrence plots for PSO reveal more information though, as one
can quite clearly see how this algorithm seems to persist in distinct areas of the
state space for tens of iterations. In the case of Rastrigin’s function, it is clear
that from iteration 200 the algorithm moves back and forth between areas of the
state space creating what almost looks like a chess board pattern. Contrasted
to FA, the results of PSO look more random and chaotic, rather than smoothly
transitioning from one state to the next. In the case of the Sphere function,
the PSO algorithm exhibits what could be considered a punctuated equilibrium
effect moving from one point of state space, persisting for a time, then moving
to another completely different section of state space (Fig. 5).
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Table 5. RQA of PSO.

Function Measure Laminarity Divergence Trapping time Determinism

f1 Mean 0.6419 0.0471 4.9304 0.6690

Std. 0.1690 0.0446 1.9686 0.1788

f2 Mean 0.3901 0.1654 3.1237 0.4177

Std. 0.2301 0.2094 1.0968 0.2347

f3 Mean 0.3309 0.1769 2.8711 0.3639

Std. 0.1698 0.1992 0.8154 0.2046

f4 Mean 0.0377 0.8033 nan 0.0346

Std. 0.0409 0.3003 nan 0.0647

(a) Rastrigin (b) Sphere

Fig. 5. Recurrence plots of PSO on selected benchmark functions

6 Conclusion

In this paper, we applied a well-known visualization technique, recurrence plot-
ting, for tracking the exploration and exploitation of stochastic population-based
nature-inspired algorithms. In addition, we also included the companion mea-
sures, Recurrence Quantification Analysis, which quantify distinct visual features
of recurrence plots.

The resulting plots and RQA measures reveal much detail of the exploratory
and exploitative behaviour of the algorithms under study. In the case of PSO,
we could see much randomness, contained to a specific areas of search space,
before moments where the algorithm jumped to a new area of search space to
continue this behaviour anew. For FA, we noted a gradual shift from exploratory
to exploitation as the algorithm progressed through its subsequent iterations. In
DE disparity was seen in performance on different functions, indicating that
recurrence plotting could help reveal disparity in performance within a single
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algorithmic class on different problems. And, in the case of BA we noted an
almost instantaneous convergence behaviour, indicating an issue perhaps with
the algorithms ability to trade off between exploration and exploitation over a
single optimisation run.

These measures will benefit from more examination across more problem and
algorithm classes, however through this modest study we have shown that these
plots and measures can reveal much about the population dynamics of optimisa-
tion algorithms. The key difference between this and other unitary measures of
algorithm performance, is that by taking full account of the population makeup,
and change of this makeup over time, we can better ascertain an algorithms
trajectory through state space. Future work could also examine the impact of
different population similarity measurements on the resulting recurrence plots.

Acknowledgment. Iztok Fister Jr. acknowledge the financial support from the Slove-
nian Research Agency (Research Core Funding No. P2-0057).
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Abstract. The focus of this work is the deeper insight into arising serious
research questions connected with the growing popularity of combining meta-
heuristic algorithms and chaotic sequences showing quasi-periodic patterns.
This paper reports an analysis of population dynamics by linking three elements
like distribution of the results, population diversity, and differences between
strategies of Differential Evolution (DE). Experiments utilize two frequently
studied self-adaptive DE versions, which are simpler jDE and SHADE, further
an original DE variant for comparisons, and totally ten chaos-driven quasi-
random schemes for the indices selection in the DE. All important performance
characteristics and population diversity are recorded and analyzed for the CEC
2015 benchmark set in 30D.

Keywords: Differential Evolution � Population diversity � Chaos-driven
heuristics � CEC 2015 benchmark

1 Introduction

Ongoing research in metaheuristics algorithms is undoubtedly focused on hybridiza-
tions, extensive tuning, implementing learning strategies, and self-adaptive mechanism
[25]. Outside this major research area, deterministic chaos with its properties like
unique quasi-random sequencing and dynamics, quasi-stochasticity, self-similarity,
fractal properties, and attractor density gained popularity as a simple technique for
improving the metaheuristic algorithms performance.

The basic operation in the metaheuristic algorithms is randomness. Thus recent
research in original/unconventional randomization techniques for metaheuristics
mostly uses either directly scaled or normalized quasi-periodic sequences or a wide
spectrum of different chaotic maps replacing the traditional uniform pseudo-random
number generators (PRNGs). The importance of randomization within metaheuristics
run has been profoundly investigated in several research papers, with the main focus
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either on describing different techniques for modification of the randomization process
[2], or to influence of stochastic operations to the control parameters propagation [3].

The first study investigating the chaotic dynamic characteristics in swarm intelli-
gence algorithms [4] and [5], that was later expanded in [6] was quickly followed by
the general concept of chaos-driven genetic/evolutionary/swarm algorithms with
embedded chaotic pseudo-random number generator (CPRNG) in [7]. Later, CPSO
representing Particle Swarm Optimizer algorithm (PSO) with chaotic components [8],
together with enhanced DE [9, 10], and inertia weight based PSO [11] laid the foun-
dations of the popularity of the chaos embedded metaheuristics concept. Nowadays, it
is very frequently used especially in real problem optimizations, where it is necessary
to achieve a fine result quickly, mostly with simpler algorithms. Recently published
research utilizes chaotic swarm algorithms [12–15] and also DE [16, 17]. Further,
chaotic patterns in discrete dynamics of swarms have been investigated [18].

The next sections are focused on the motivation for this work, and differences with
previous research papers, background of the DE algorithm, simple method for
embedding CPRNG into DE, experiment setup, and detailed conclusions.

2 Related Work

The metaheuristic algorithm used in this research is Differential Evolution (DE) [1],
specifically its frequently used simple, yet very powerful adaptive variant jDE and
recent state of the art Success-History Based Adaptive Differential Evolution
(SHADE).

The focus of this paper is the deeper insight into arising serious research questions
connected with the analysis of population dynamics. The research reported here is
linking three elements like distribution of the results, population diversity, and dif-
ferences between strategies of DE versions. We have decided to track those features
since the recent research in metaheuristics is focused on distance/diversity driven
approaches [19–21] controlling search space exploration capabilities either through a
distance between individuals, or through sustaining the population diversity at higher
levels during the initial stages of the metaheuristic run.

However, the most important message of this research paper is that despite the still-
growing popularity of the fusion of metaheuristic algorithms and unconventional
randomization schemes (mostly with chaos), the majority of research papers do not
explain, as to why those schemes have been used in the first place for enhancing the
evolutionary operators like selection, mutation, crossover, or other processes (like
communication in swarm).

This paper represents an incremental follow up of results and conclusions related to
the population diversity analyses in chaotic DE published in [22, 23] and completes a
recent work partially presented in [24]. The motivation, the difference from previously
published work [24], and the originality of this paper are listed below:

• jDE and SHADE are investigated here in the dimensional settings of 30D. The
abovementioned related works were mostly utilized simplest DE strategies and
lower dimensional settings.
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• The frequently used self-adaptive DE workflows enhanced by quasi-random chaotic
sequencing as a randomization scheme is comprehensively reviewed here. This
paper, extending the research in [24], could help navigate in differences between
chaotic CPRNGs when embedded into self-adaptive DE schemes, and resulting
performances as well as population dynamics.

• Here, advanced results analysis, which includes distribution plots and statistical
rankings, is supporting conclusions.

• Direct comparisons between self-adaptive strategies and the original strategy of DE.
• The findings reported here can help build new approaches for improving explo-

ration abilities and observing/analyzing possible causes of premature convergence
through the population diversity, similarly, to the research reported in [25].

3 Differential Evolution

The generic DE [16] has several control parameters that remain static during the run
and user setting dependent. The improved variants jDE and SHADE, which have been
evolved from the generic DE algorithm, on the other hand, adapts the scaling factor
F and crossover rate CR during the optimization (evolution process).

jDE is based on the propagation of two control parameters Fi and CRi assigned to
each i-th individual of the population. The basic idea of jDE lies in the “survival” of
this parameter ensemble together with a successful solution. If an individual is trans-
ferred to the new generation, so is the parameter ensemble. If the newly generated
solution is not successful; the control parameters pair disappears together with the
lower quality solution. The above-mentioned pair of DE control parameters may be
subject to random mutation based on user-defined probability.

State of the art variant SHADE utilizes a more advanced mutation strategy, self-
adaptive mechanisms for control parameters adjustment based on historical memories
and limited capacity archive for removed inferior solutions, that is based on elitism
principle. The detailed description of essential operations in simple not-adaptive
original DE is given in [1, 26], for the jDE, please see [27], and SHADE is detailed in
[28].

4 Discrete Chaotic Systems as CPRNGs

The principle of applying the CPRNG is given by a simple exchange of the default
algorithm/programming language PRNG with the deterministic chaotic system
(preferably discrete one). This research is using the very same portfolio of chaotic maps
as in [24]. With the definitions and internal parameters settings, as in [29], systems
show expected chaotic dynamics and requested features. The example of discrete
chaotic map definition is given in (1), representing the very popular and experimentally
utilized Lozi map. The chaotic sequences of different length for the Lozi map is
depicted in Fig. 1. These two plots show the presence of self-similarity within the
chaotic sequence. Thus supporting the claim that the metaheuristics may be forced to
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neighborhood-based selection of individuals for evolutionary operators (or similarly,
for neighborhood-based dynamics for spreading of information in swarms).

Xnþ 1 ¼ aXn � Y2
n

Ynþ 1 ¼ bYn þXnYn
ð1Þ

The CPRNG workflow is as follows:

• Generating (by default algorithm/language PRNG) the starting position (X0, Y0) of
the discrete chaotic map.

• Generating a chaotic sequence. The next iteration positions (Xn+1, Yn+1) are obtained
using their current positions (Xn, Yn).

• Selection of particular sequence (x or y value, or combination of both) and re-
normalization according to (2). When only the solo sequence is used (from two
available), such a technique results in the folding of the chaotic attractor around the
axis.

rndrealn ¼ Xn

maxval

�
�
�
�

�
�
�
�

ð2Þ

Where the rndrealn is the re-normalized CPRNG value within the range of 0–1,
here, we selected x-axis, and maxval is the max. value from the whole chaotic series.

5 Experiment Setup

All executed instances (51 repetitions per instance) used the established CEC 15 test
problems suite [30] with dimension D set to 30. The budget of FES was set to the value
of 300 000 (10,000 � D), according to the general rules given in technical report for
benchmark suite [30]. The performance features and population diversity were recor-
ded for all executed variants of DE: generic DE, jDE and SHADE, further for nine
chaotic versions of C_DE, C_jDE, and C_SHADE. The parameter setting for all
algorithms is given in Table 1.

The identical set (as in [24]) of nine discrete dissipative chaotic maps were used
here as the CPRNGs. The Population Diversity (PD) was also evaluated as in [24, 31].

Fig. 1. Examples of two different CPRNG sequences, with significant patterns of self-similarity
for Lozi map (50 iterations – left, and 150 iterations – right).
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6 Results

The statistical comparisons in comprehensive tables are not given here, as this was not
the main aim of this paper. Instead, the rankings of the algorithms are presented in
Fig. 2, evaluated based on the Friedman test with Nemenyi post hoc test. Further,
distribution plots for 51 runs are depicted in Figs. 3 and 4, where the left column shows
original DE, middle one jDE and right column contents results for SHADE of CEC15;
functions from upper to bottom, f1–f7 in Fig. 3 and f8–f15 in Fig. 4.

Table 1. Parameter settings for DE variants

Parameter DE C_DE jDE C_jDE SHADE C_SHADE

NP
(NPinit)

50 50 50 50 50 50

NPmin N/A N/A N/A N/A N/A N/A
max. gen. 6000 6000 6000 6000 6000 6000
MAXFES 300000 300000 300000 300000 300000 300000
F 0.5 0.5 0.5 0.5 N/A N/A
CR 0.8 0.8 0.8 0.8 N/A N/A
H N/A N/A N/A N/A 20 20
(C)PRNG Java Linear

congruential
9 different
CPRNGs

Java Linear
congruential

9 different
CPRNGs

Java Linear
congruential

9 different
CPRNGs

Fig. 2. Ranking of all algorithms (DE – upper left, jDE – upper right, and SHADE – below
center), 51 runs, 15 functions of the CEC2015 test suite in 30D. The dashed line represents the
Nemenyi Critical Distance.
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Figures 5 and 6 show the heat maps for the population diversity recorded and
analyzed for the first 500 generations and selected subset of CEC 15 functions (where
the differences between versions are the most visible). Such an interval was selected
since we can assume that the initial stage of the evolutionary process may be critically
sensitive to the keeping of the population’s diversity at higher values securing the
search space exploration. The detailed results discussion is presented in the conclusion
section.

Fig. 3. DistributionPlots for DE (left), jDE (center) and SHADE (right) of CEC15 (f1–f7)
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Fig. 4. DistributionPlots for DE (left), jDE (center) and SHADE (right) of CEC15 (f8–f15)
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Fig. 5. Heat maps for the average population diversity, DE/jDE/SHADE variants and the
selected subset of CEC15 functions in 30D (f3, f4, f5), 51 runs; functions from upper to bottom,
DE versions from left to right: DE – left, jDE – center, SHADE – right. The x-axis is showing on
a logarithmic scale the percentage of the observed interval (the first 500 iterations).
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7 Conclusion

This paper completes a recent work [22, 24, 32] with more DE versions, higher
dimensional settings (D = 30) and different detailed processing of results. Research and
experiments with population dynamics and randomization schemes have been
addressed as of high importance and advantageous. Therefore, graphical heat maps,
distribution plots, and rankings of all used algorithms represent here a deeper inves-
tigation into the population dynamics and selection of individuals inside self-adaptive
DE variants, which are jDE and SHADE algorithms. Specifically, under the influence
of different types of quasi-random (chaotic) sequences.

The findings below may reveal alternative ways of developing new ideas and more
effective metaheuristics. The findings are suggested based on the CEC 2015 testbed.
Under other settings, of course, these might turn out different.

• The rankings of algorithms depicted in Fig. 2 indicate that the original fully stochastic
mutation scheme “Rand/1/” implemented in jDEhas proven to be the favorable choice

Fig. 6. Heat maps for the average population diversity, DE/jDE/SHADE variants and the
selected subset of CEC15 functions in 30D (f7, f13, f14), 51 runs; functions from upper to
bottom, DE versions from left to right: DE – left, jDE – center, SHADE – right. The x-axis is
showing on a logarithmic scale the percentage of the observed interval (the first 500 iterations).
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for the hybridization with original randomization mechanisms. The original (not
adaptive) DE variant seems to be also very sensitive to the driving randomization
scheme, but it lacks the parameter adaptation. According to the rankings, the not-
chaotic jDE was the 3rd, the C_jDE version with Sinai map was the best performing.

• In SHADE variant (similarly to any best-driven strategies) we can observe the
suppression of influence of quasi-random/chaotic sequencing for indices selection.
The attraction to the “pbest” solution as the essential operation in the “current-to-
pbest/1” mutation strategy and operations with external archive seems to conflict
with general simple chaos-driven metaheuristics idea. Regardless, the control
parameter self-adaptation techniques are undoubtedly highly beneficial for the
improvement of DE performance.

• Correlations of patterns in heat maps (Figs. 5 and 6), rankings (Fig. 2), and dis-
tribution plots (Figs. 3 and 4) reveals here under higher-dimensional setting similar
clustering of chaotic maps as in previous studies [24, 32]: worse performance
showing rapid progress towards test function optimum (mostly local) with prema-
ture population stagnation for Delayed logistic, Burgers, and Tinkerbell. Especially
reinforced for original DE strategy (visible from the left column in Figs. 3 and 4).
This phenomenon may be the answer to the popularity of chaotic systems in simpler
algorithms/swarm systems. Most of the C_jDE and C_SHADE have proven to be
very effective in finding a minimum of test functions (as can be seen from distri-
bution plots - Figs. 3 and 4). Further, the stable cluster of Arnold, Lozi, Sinai,
Henon, and Dissipative maps has secured for a longer time the keeping of popu-
lation diversity at higher levels. Thus this group of maps showed relatively stable
and statistically balanced results compared to the non-chaotic DE versions.

• As reported in [24, 32], the Sinai map has proven again promising characteristics
for some test cases, where the population diversity has been particularly restored
during the run of DE (and the exploration phase could be restarted).

• SHADE shows a rapid decrease in diversity (rapid convergence) and much less
sensitivity to randomization than jDE and the original DE.

• Chaotic/quasi-periodic sequencing influences the population diversity and may lead
to the creation of the sub-populations (or some quasi-periodic neighborhood indi-
vidual selection schemes [33]).

The results presented here support the development of advanced randomization
mechanisms (multi-chaotic generators [34]) or ensemble randomization systems [35],
providing the combined/selective population diversity for effective controlling of
exploration/exploitation during the run of metaheuristic algorithm.

The popular self-adaptive DE versions have been tested here, and we can observe,
that besides the adaptive/learning-based control, other approaches can be effectively
used to achieve better/desired DE performance.
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Abstract. Industrial manipulators are robots used to replace humans
in dangerous or repetitive tasks. Also, these devices are often used for
applications where high precision and accuracy is required. The increase
of backlash caused by wear, that is, the increase of the amount by which
teeth space exceeds the thickness of gear teeth, might be a significant
problem, that could lead to impaired performances or even abrupt fail-
ures. However, maintenance is difficult to schedule because backlash can-
not be directly measured and its effects only appear in closed loops. This
paper proposes a novel technique, based on an Evolutionary Algorithm,
to estimate the increase of backlash in a robot joint transmission. The
peculiarity of this method is that it only requires measurements from
the motor encoder. Experimental evaluation on a real-world test case
demonstrates the effectiveness of the approach.

Keywords: Evolutionary computation · Backlash · Robotic joint
transmission · Shaft variable stiffness

1 Introduction

In an industrial context it is of paramount importance to guarantee correct and
continuous operation of machinery, as in complex production lines—consisting
of hundreds of devices—any abrupt stop may lead to significant economic losses.
To this regard, industrial manipulators, the robots used to replace humans in
dangerous or repetitive tasks, are particularly critical: an extremely high pre-
cision and accuracy is usually required, while gears are inevitably subjected to
mechanical deterioration.

The backlash is the rotational arc clearance between a pair of mating gear
teeth, that is, the amount by which a tooth space exceeds the thickness of a
gear tooth engaged in mesh. While a small amount of backlash is intentionally
designed to ensure smooth movements, the increase of the gear play due to
wear may cause important nonlinearities and eventually limit the performance of
speed controllers, possibly causing even a permanent damage to the apparatuses.
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With industrial manipulators, an estimate of the backlash gap is useful to
foresee possible criticalities and perform the maintenance before a malfunction-
ing or a breakdown. Unfortunately in most robots the backlash appears in closed
loop and typically there is access only to the final motor speed [3].

This paper addresses the problem of estimating the increase of the backlash
in a robot joint transmission relying only on measures on the motor encoder and
estimates based on models and Evolutionary algorithms.

The paper is organized as follows. In Sect. 2 the problem of the backlash in
a mechanical transmission and the evolutionary algorithm on which its estima-
tion is based are introduced. Section 3 describes the mechanical system under
examination, its Matlab/Simulink model that allowed the analysis of the back-
lash phenomenon and its effect on the motor speed signal. Finally the set-up
for the genetic algorithm used for the backlash estimation is exposed. In Sect. 5
the results of the proposed method, applied to the case of two speed signals
measured on the real mechanical system, are presented.

2 Background

2.1 Backlash

Gears are used to transmit torque from the motor to the load. In an ideal gear
system the mating gear teeth are always in contact, perfectly transmitting move-
ment from the motor to the load. In the presence of backlash the contact between
two paired teeth is interrupted for a small angle and then it is re-established.
This can cause impacts and vibrations on the moving parts and a lower position-
ing accuracy for the robot. Many backlash mathematical models are available in
literature, the classical dead zone model and hysteresis model [3,4] are among
the most used ones.

The model we used in this work is presented in [5]. It is a modification of
the dead zone model and has been integrated into the Simulink model of the
mechanical system under test. The system is represented with the typical linear
dynamic model used for a mechanical transmission: a two-mass system with
an elastic coupling and backlash. The first mass represents the motor, with the
moment of inertia Jm, that is coupled to the load, the second mass with moment
of inertia Jl, by a shaft. The shaft is considered mass free and is modeled with a
torsional stiffness spring Ks and a damping DS . The backlash gap is δ (Table 1
and Fig. 1).

When the mating gears are in contact the motor is connected to the load,
the load torque τl is proportional to the angle difference Δθ and to the speed
difference Δω, see Eq. (1). When the gear travels the backlash gap the motor
loses contact with the load and the load torque becomes zero, see Eq. (2).

Defining

Δθ =
1
N

θm − θl

Δω =
1
N

ωm − ωl
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Table 1. System parameters.

Symbol Description Units

θm, θl Motor/Load angular position rad

ωm, ωl Motor/Load angular velocity rad

τm, τl Motor/Load torque Nm

Jm, Jl Motor/Load inertia Kg m2

Ks Shaft stiffness Nm/rad

Ds Shaft damping coefficient Nm s/rad

δ Backlash angle rad

N Gear ratio –

Fig. 1. Two mass system with elastic coupling
and backlash.

The interconnecting torque τl is

τl = KsΔθ + DsΔω (1)

and in presence of backlash Eq. (1) becomes

τl =
{

Ks(Δθ − δ · sign(Δθ)) + DsΔω |Δθ| > δ
0 |Δθ| ≤ δ

(2)

2.2 Covariance Matrix Adaptation Evolution Strategy

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a stochastic
optimization technique belonging to the family of Evolutionary Algorithms
(EAs). EAs [1] are loosely inspired by the neo-Darwinian paradigm of natural
selection, and are able to efficiently explore large and irregular search spaces. As
they are stochastic, there is no guarantee that they will find any global optimum,
but in several complex real-world problems they proved able to deliver solutions
of high quality in a reasonable amount of time, and nowadays are applied to
problems in which traditional optimization techniques fail [7].

EAs also belong to the family of local search algorithms: they starts by gen-
erating random candidate solutions to the problem, and their capability to solve
the problem at hand is measured by a fitness function. In successive iterations,
good candidate solutions are more likely to be selected to reproduce, generat-
ing new candidate solutions that are similar to the originals. The process is
repeated until a solution of satisfying quality is found, or until a user-specified
stop condition is reached.

The field of evolutionary computation can be further divided into categories
of algorithms, such as Genetic Algorithms (GAs) or Genetic Programming (GP)
– a reminiscent of their origin. Among such algorithms, Evolution Strategies
(ES) [6,8] soon emerged as a quite powerful tool for optimizing problems with
real-valued variables. CMA-ES [2] is the most effective extension of the original
algorithm available nowadays. In CMA-ES, the adaptation of the covariance
matrix amounts to learning a second order model of the underlying objective
function similar to the approximation of the inverse Hessian matrix in the Quasi-
Newton method in classical optimization. In contrast to most classical methods,
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fewer assumptions on the nature of the underlying objective function are made.
Only the ranking between candidate solutions is exploited for learning the sample
distribution and neither derivatives nor even the function values themselves are
required by the method.

3 Proposed Approach

The proposed approach is composed of five independent steps:

– The backlash phenomenon is evaluated from a theoretical perspective. A sim-
ulation model is built to assess its effect on the measured speed.

– The disturbance pattern is represented as an analytic expression with a set
of parameters.

– The disturbance pattern at increasing backlash values is generated by sim-
ulation, and a relationship between the relevant parameters and the actual
backlash value is determined.

– The real speed signal is recorded. The parameters of the disturbance pattern
are evaluated by fitting the theoretical disturbance on the measured data by
an EA.

– The estimated parameters are eventually used to assess the backlash value
affecting the real system.

A common approach to the backlash analysis of a mechanical transmission
is the use of an output (i.e. on the load side) encoder or a torque sensor. These
devices allow a direct measure of the quantities of interest. The present method
instead only relies on the encoder provided on motor side which is the standard
equipment for an industrial robot. The amount of backlash is estimated by using
the motor speed signal. By defining proper working and stress conditions it is
possible to detect the presence of a disturbance signal superimposed on the
speed signal. The disturbance has a known aspect and can be related to the
backlash phenomenon. The disturbance waveform has been identified, isolated
and validated by a test campaign on the test bench that reproduces the real
transmission of an industrial manipulator joint.

4 Experimental Setup

A Matlab/Simulink model of the entire system was created, containing a math-
ematical model of the backlash phenomenon. Through this model it was inves-
tigated how the disturbance evolves as the backlash increases. Furthermore, the
relationship that links the intensity of the disturbance to the value of the back-
lash gap was identified. Taking advantage of this relationship, it was possible
to estimate the backlash angle amplitude starting from the motor speed signal.
The estimate is performed using an evolutionary algorithm (CMA-ES).
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4.1 Test Bench

The system under test is a typical rotary joint of an industrial manipulator. It
is composed of a motor, a transmission belt and a reducer with a backlash value
exceeding the defined acceptable limits. A load consisting of a cast iron mass is
connected to the system. The only accessible measures on the system are the
motor position, provided by an encoder connected to the motor, and the current
absorbed by the motor itself (Fig. 2). The system has no additional sensors after
the transmission to obtain a direct measurement of the backlash. The distur-
bance appears as an undesirable oscillation on the speed signal measured by the
encoder.

Fig. 2. Test Bench Fig. 3. Model of the disturbance signal
induced by the backlash

The disturbance oscillations have the typical appearance of a percussive phe-
nomenon in an elastic system with damping. Similarly to what happens when
a hammer hits the string of a piano, the impact generates oscillations with an
amplitude that decays exponentially with time (Fig. 3).

For this reason it was decided to attribute the mathematical model described
by the following formula to the disturbance:

db(t) =

⎧⎨
⎩

0 t < t1
Ae−(t−t1)τ sinω(t) t1 ≤ t ≤ t2
0 t > t2

(3)

where
t1 = the stating time of the oscillation
A = the maximum amplitude of the oscillation
τ = a damping factor
t2 = the ending time of the disturbance.
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Tests were conducted by running the motor at a constant speed. Under these
conditions the system is in a steady state in which the effects of disturbances such
as static frictions and inertial phenomena are not present. In these circumstances
the backlash phenomenon is highlighted due to small impacts caused by the
action of gravity.

4.2 Matlab/Simulink Model

Once the working conditions and the input signal have been defined and the
shape of the disturbance has been identified, a Matlab/Simulink model of the
entire system was developed. The model used for the system is the one presented
in Sect. 2.1 and is composed by: a motor with an encoder, a transmission, a load
and a control loop with linear feedback from the measured motor speed/position.
The transmission is affected by backlash and the gravity effect is considered
through the load dynamics. The model is shown in Fig. 4.

Fig. 4. Matlab/Simulink Model of the system

By leveraging the simulation flexibility it was possible to analyze different
backlash conditions and to understand how the disturbance changes as the back-
lash increases. This helped to identify the relation between the intensity of the
disturbance and the value of the backlash.

Many different backlash models have been proposed, the one used in this work
belongs to the deadzone type and represents the backlash in terms of variable
stiffness [5]. Outside the backlash zone τl is proportional to the angle difference
between motor and load multiplied by the shaft stiffness. When the gear tooth
travels the backlash zone the load disengages from the driving motor and the
torque τl becomes zero.

The effect expressed by the Eq. (2) can be also achieved through a variable
shaft stiffness that becomes zero in the backlash zone:

KBL(Δθ, δ) =
Ks

π
[π + arctan(α(Δθ − δ)) − arctan(α(Δθ + δ))]
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KBL(Δθ, δ) is depicted in Fig. 5.
The model employs the arctan function to avoid abrupt discontinuities. Act-

ing on the α factor, a positive constant, it is possible to change the arctan slope.
The load torque then becomes:

τl = [Δθ − δ · sign(Δθ) +
Ds

Ks
Δω] · KBL(Δθ, δ)

Fig. 5. Variable shaft stiffness. Stiffness value is KS outside the deadzone, |Δθ| > δ,
and then goes to zero when |Δθ| ≤ δ

The model parameters used for the simulator setup were given by mechanical
data and identification experiments.

To test the Simulink model we compared the simulation output with the
measurements on the real system. Signals comparison is showed in Fig. 6. The
signals in light color are the position, the speed and the current of the motor
measured on the test bench. The signals in the darker color are the position, the
speed and the current of the motor obtained by the Simulink model. The figure
shows that the simulator is able to correctly reproduce the real behaviour of the
system with backlash.

Using simulation and varying the value of the backlash within an interval
δ = [δmin, δmax] it was noted that the amplitude A of the oscillation of the
disturbance signal (Eq. (3)) is directly linked to the backlash amount δ. It was
therefore possible to find a relationship between A and δ which allows to estimate
the value of the backlash once the disturbance amplitude has been identified.
Given the mechanical properties of our system a reasonable choice for the delta
interval was [0.0001, 0.0040] radians.

The simulation results and the relation A �→ δ are showed in Figs. 7 and 8.
The regression analysis results showed that the relation δ(A) is well described
by a cubic polynomial:

δ(A) = 10−4(−0.000009 A3 + 0.003122 A2 + 0.138764 A − 0.138809) (4)
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Fig. 6. Simulation Results with test bench signals superimposed.

4.3 Backlash Identification

EA was used to recognize the backlash pattern in the motor speed signal. The
identification relies on the minimization of the error between a measured signal
and a generalization of the model defined in Eq. (3). The CMA-ES algorithm,
described in Sect. 2.2, was used for this activity. This tool is available on GitHub1

in a Python implementation.
The main idea is to minimize the RMS error between the real signal v(t) and

the model we developed for the signal with backlash, Eq. (6). We generalized the
db(t) model, see Eq. (3), by defining a new function translated by a time offset
t0:

g(t) = db(t − t0) (5)

Since gravity acts on the system as a torque on the motor that varies sinu-
soidally, the backlash causes a pulsed periodic disturbance. The time period
corresponds to a 2π rad load rotation and contains two pulses having opposite
signs. This effect is due to the link hitting the gear and the gear hitting the link

1 https://github.com/CMA-ES/pycma.

https://github.com/CMA-ES/pycma
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Fig. 7. Disturbance appearance at increasing
backlash gap.

Fig. 8. Disturbance oscillation
amplitude, A, and backlash gap
value, δ, regression.

at the beginning of respectively the descending and the ascending phases of the
load movement. This led to the definition of the function

f(t) = g(t) − g(t + T )

Identification was performed on a sequence of 4 disturbance repetition in
order to obtain mean values for the parameter identification. So the final model
was

h(t) = vt +
4∑

i=1

f(t − i · Tw)

where Tw is the time interval that corresponds to a full load rotation and vt

is the target motor speed.
The function relies on 7 unknown parameters and can be expressed as

h(t, A, t0, τ, ω, vt, t1, t2, T, Tw) = vt +
4∑

i=1

f(t, A, t0 + i · Tw, τ, ω, t1, t2, T ) (6)

The function to be minimized is then

RMSE =

√√√√ΣN
i=1

(
v(t) − h(t, A, t0, τ, ω, vt, t1, t2, T, Tw)

)2

N

For a fast algorithm convergence, it is critical to properly define the initial
conditions for the parameters. We set up a procedure to compute the initial
values based only on the measured signal v(t) and a limited a priori system
knowledge. The procedure starts by computing the variability range of each
parameter (see Table 2) and then estimates the starting value for the mean x0

and the variance σ0 of each parameter as
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x0 =
Max value + Min value

2

σ0 =
Max value − Min value

4
With these settings and using a population size of 3500 individuals the

CMA ES algorithm converges to a good solution (i.e. error = 0.14) in about
100 iterations.

Table 2. Parameters variability range

Symbol Min value Max value Units

A −max v(t)−min v(t)
2

max v(t)−min v(t)
2

rpm

t0 min t max t s

τ 5 30 –

ω 2π 2π · 40 rad/s

vt min v(t) max v(t) rpm

t1 0 0.204 s

t2 0 0.204
2

s

T min t max t s

Tw min t max t s

NOTE: t is the time vector of the measured signal
v(t)

5 Experimental Results

Starting from two different datasets v1(t) and v2(t), acquired on the test bench
and corresponding to two different and progressive situations of wear, it was
possible to detect the increase in backlash gap through the use of CMA-ES. The
algorithm was able to recognize the known disturbance pattern within the speed
signal and to estimate the value of its parameters.

The two different identifications returned two increasing values for the oscil-
lation amplitude A:

A1 = 30.9033 [rpm] , A2 = 39.2197 [rpm]

and, through the Formula (4), the corresponding backlash values:

δ1 = 6.8539e − 04 [rad] , δ2 = 9.5394e − 04 [rad].

The results are shown in Fig. 9 and in Fig. 10.
Figure 9 illustrates how, for both datasets, CMA ES was able to obtain an

average value of the model parameters, allowing to correctly approximate the
starting signal, even if affected by a high noise. Moreover, Fig. 10 shows that the
algorithm is able to detect changes in parameter A with sufficient sensitivity to
characterize changes in the backlash gap over time. The two datasets, in fact,
were obtained from the test bench at a distance of about 4 months during a
continuous operation cycle of the device.
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Fig. 9. CMA ES identification results for dataset 1 (on the left side) and dataset 2 (on
the right side). The signals acquired on the test bench are plotted in blue color; red
plots are used for the model reconstruction relying on the parameters identified with
CMA ES. (Color figure online)

Fig. 10. Final backlash evaluation.

6 Conclusions and Future Works

A method for estimating the backlash in a mechanical transmission of a robot
joint has been presented. The strategy used was explained and the results demon-
strate the effectiveness of the proposed method. The result of the estimation
can be used to implement strategies to compensate for the disturbance deriving
from the backlash or to diagnose the operation of the robotic manipulator. The
estimation of the parameters was performed using a state-of-the-art stochastic
optimization technique, the CMA-ES.

The next step will be to embed a small device on each manipulator, able to
record data and either transmit them to a centralized server or to process them
in-situ. The required computational power is limited, as the CMA-ES may fit
the disturbance parameters starting from a previously found solution.
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Abstract. Cloud computing is rather important distributing comput-
ing paradigm and in general refers to the common pool of configurable
resources that is accessed on-demand. Resources are dynamically scalable
and metered with the basic aim to provide reliable and quality services
to the end-users. Load scheduling has a great impact on the overall per-
formance of the cloud system, and at the same time it is one of the most
challenging problems in this domain. In this paper, we propose implemen-
tation of the hybridized elephant herding optimization applied to load
scheduling problem in cloud computing. The algorithm is using CloudSim
framework, and comparison with different metaheuristics, adapted and
tested under same experimental conditions, for this type of problem
was performed. Moreover, we compared proposed hybridized elephant
herding optimization with its original version in order to evaluate its
improvements in performance over the original version. Obtained empir-
ical results prove the robustness and quality of approach that we propose
in this paper.

Keywords: Cloud computing · Swarm intelligence · Load scheduling

1 Introduction

Distributed computing, as one of the domains in computer science, studies dis-
tributed systems, which consist out of components that are implemented on
different devices in the computer network. In most cases, these components com-
municate and coordinate their processes by using a message passing mechanism.
Due to reliability, high availability, scalability, efficiency and lower costs of com-
puting resources, distributed computing has in recent decade gained significant
attention from the industry, as well as from the academic community.

One of the most important distributed computing paradigm is cloud com-
puting. In general, the term cloud computing refers to the access in on-demand
manner to a collective pool of customizable resources that are dynamically scal-
able and metered towards the basic objective of providing to the end-users qual-
ity and reliable services. Basics of cloud computing had been devised in the
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mainframe computing era, when “dump terminals” were utilizing CPU, mem-
ory and other resources from the distant mainframe system. Using a concept of
cloud computing, assets in terms of software and hardware are delivered via the
computer network (in most cases the Internet) to the consumers.

The technology of virtualization and hyper-converge infrastructure (HCL)
enable cloud computing concept. One instance of many available definitions from
the modern literature states that the virtualization represents an abstraction of
software and hardware that breaks traditional architecture of computer system.
This emerging technology has a significant role in latest computer platforms [1].
Virtualization technology provides the means of decoupling operating system
and applications, that are executing on top of the physical computer hardware,
from the hardware itself. By using virtualization, as state-of-the-art technology,
multiple virtual machines (or virtual instances) may run in a pseudo-parallel
manner on the same physical host in its own isolated environment.

The virtual machine manager (VMM), or hypervisor, is a component which is
responsible for creating, terminating and managing virtual instances, while at the
same time also performs some other functions in the virtual environment. In the
real, production environemnts, two hypervisors’ categories exist: type 1 (level 1)
and type 2 (level 2). In the modern literature, for type 1 and type 2 hypervisors,
are usually used terms bare metal and hosted hypervisors, respectively. The
basic difference between the type 1 and type 2 hypervisors is that the type 1
runs just above the physical hardware infrastructure, while the latter is executed
within the environment of host operating system. Due to its efficiency compared
to the level 2 hypervisor, most enterprise environments utilize type 1. Some of
the most representative examples of bare metal VMMs are Microsoft Hyper-v,
Xen/Citrix XenServer and VMware vSphere/ESXi, while the hosted hypervisors
such as VMWare Workstation, Parallels and Oracle Virtual Box, are commonly
used in home, as well as in small enterprise environments.

Second technology, that enables cloud computing paradigm, refers to the
software-defined computer platform, that performs virtualization of traditional
physical hardware based components. As a minimum requirements, the HCL
encompasses SDS (software-defined storage), hypervisor and SDN (software-
defined networks). Only by utilizing vritualization technology and HCL, cloud
services provider (CSP) is able to deliver quality and reliable services to the
consumers in a cost-effective way via computer network.

1.1 Cloud Computing Paradigm and Related Work

Many definitions of cloud computing can be found by surveying modern scientific
sources. According to one definition, the cloud computing is pool of virtual
hardware and software that enable and transport (deliver) various services to
the consumers [2]. One of other available definitions describes cloud computing
system as distributed elastic system where the information, software, storage
space, and other resources are scattered throughout the network and can be
approached and shared by many consumers at the same time from distant cloud
locations [3]. Due to the fact that cloud provides variety of delivered assets, the
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concept of cloud computing as a model was widely used in the industry and
academics.

Scalability and availability of assets and tasks, fault tolerance, load balancing,
services execution on demand, and resource interoperability represent only some
of the most essential cloud computing attributes. Cloud resources can be utilized
with the proper management activities of virtual resources on the cloud.

When describing the cloud computing concept, it should be noted that many
categorizations of cloud computing exist, among which two are the most impor-
tant. First categorization takes into account the models of service criteria and
distinguishes cloud services between infrastructure as a service (IaaS), platform
as a service (PaaS) and software as a service (SaaS). SaaS refers to the accessed
via standard interfaces software, such is Web-based interface, which is configured
in a hosted service form. By utilizing PaaS, that encompasses operating systems
and platforms, end-users may implement and configure requested applications
on the cloud platform. Finally, the IaaS refers to the cloud service model, that
delivers to the clients infrastructure components, such as storage space, network-
ing and CPU time. Second categorization divides cloud computing services into
public, private, community and hybrid, by utilizing the delivery models criteria.

The most basic goal of the CSPs is to obtain promised quality of service (QoS)
to the clients with a constraint that cloud computing ought to be economically
efficient way of employing computing resources for both parties, end-users and
the CSP. Computational and cost efficiency problems are the main issues with
the load or tasks scheduling and balancing which represent significant challenges
in cloud computing environment [6].

By using scheduling algorithms, near optimal, or optimal distribution (allo-
cation) of available capabilities between requested assignments can be obtained
within satisfying time range to obtain desired QoS [7]. The goal of scheduling
is to generate a plan which defines on which available resources and when every
tasks will be deployed for execution.

In cloud computing environment, the task scheduling or load balancing prob-
lem refers to the optimal allocation of submitted end-users’ tasks to the finite
set of available virtual instances. Since task scheduling is NP-hard challenge,
algorithms that can accomplish optimal feasible solution in a polynomial time
do not exist. In such cases, the best approach is to employ metaheuristics that
are able to generate reasonable solutions in a satisfying time range.

Swarm intelligence, that simulates collective behavior of organisms from the
nature, falls into the category of nature inspired metaheuristics. As population-
based, iterative optimization approach, swarm intelligence has shown great
potential in tackling NP hard benchmarks [8,9], as well as practical optimiza-
tion problems [10,11]. Some of the representative examples of swarm algorithms
include: artificial bee colony (ABC) [12], bat and cuckoo search algorithms [16],
firefly algorithm (FA) [13–15]. Based on the current state in the literature, swarm
intelligence was successfully used for solving challenges in cloud computing in
the previously conducted researches [17–19,28].
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1.2 Paper Goal and Organization

The essential goal of proposed paper is to present and use implementation of
the hybridized elephant herding optimization algorithm (EHO) for cloud com-
puting task scheduling. EHO, as relatively novel swarm intelligence approach,
was devised by Wang in 2015 [20]. We enhanced the original version of the EHO
metaheuristics by adopting crossover operator from the genetic algorithm (GA)
and devised genetic EHO (GEHO) metaheuristics.

Proposed metaheuristics was tested in the CloudSim framework environment
that is widely used as a research tool. We utilized model of task scheduling and
CloudSim parameters like in the research shown in [3], and compared the results
with different methods that were presented in [3], as well as with the original
EHO algorithm.

This paper is structured into five sections. After Introduction, Sect. 2 presents
task and load scheduling model that was employed for testing purposes of the
proposed metaheuristics. Details of the orignal EHO, as well as the hybridized
EHO (GEHO) were given in Sect. 3. Empirical results and comparative test with
other outstanding algorithms are given in Sect. 4. Finally, in Sect. 5 we present
conclusions from our research, along with the guidelines for future work.

2 Load Scheduling Optimization Model

When overlooking the topological aspect of cloud environment, every data center
in the cloud has definite number physical hosts or servers with heterogeneous
configurations. These hosts have many typical features such as identifier of a host
(ID), processing elements number, performance of processing, usable memory,
and many other characteristics and features. A server (or host) runs numerous
virtual instances (VMs) pseudo-simultaneously, providing diverse heterogeneous
applications. The request for cloud resources from end-user first comes to the
main balancer of the load, which schedules and maps cloud assets to the appro-
priate virtual machines. Each request is appointed to one available VM in the
pool. Virtual machine is assigned to the end-users’ requests and afterwards upon
the execution, it becomes accessible for another task.

Since there are numerous cloud end-users’ resource requirements that can
occur at exact same time slot, with various input tasks, the load balancing
mechanism is imperative for this purpose. The process of these requirements is as
follows: the n input assignments T0, T1, ..., Tn−1 are arranged in the assignments
queue within the cloud, which are afterwards sent to the VM manager. The
manager possess the data about the servers availability, and active VMs, that
are to be scheduled for these tasks. It is essential for the VM manager to verify
system resources available for tasks to be executed, whether they are sufficient
or not. In the case when the tasks can be executed on accessible active virtual
machines, the manager transfers those cloud assignments to the load and task
scheduler. If that’s not the case, the VM manager then makes new VMs on
physical servers that have sufficient resources.
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If NV M VMs are being employed by the system to schedule NC tasks
(cloudlets), the overall number of potential distributions of tasks to virtual
machines may be expressed as NV MNC , and that is a NP hard problem. When
tackling this type of problem, each individual from the population is determined
as the d-dimensional vector, where the number of dimensions depends on the
number of used virtual instances. Objective of the proposed metaheuristics is
achieving higher exploitation of virtual machines by the tasks, that results in
decisive load scheduling. In the model that is used in this paper, the total com-
putation cost and the total transfer time have been advised as objectives. The
objective function is defined as the computation cost along with the transfer
cost of the tasks and virtual machines. Objective function for individual i at the
moment t is presented in the Eqs. (1)–(6) [3], where:

costExec(Mj) =
∑

k

wk,j∀M(k) = j (1)

costTransfer(Mj) =
∑

k1∈T

∑

k2∈T

dM(k1),M(k2) (2)

·ek1,k2∀M(k1) = j and M(k2) �= j (3)

costTotal(Mj) = costExec(Mj) + costTransfer(Mj) (4)

totalMaxCost(M) = max(costTotal(Mj))∀j ∈ P (5)

min(totalMaxCost(M)∀M) (6)

The notations costTransfer(Mj) and costExec(Mj) present transfer
and execution costs for the j-th assignment, respectively. The total cost
costTotal(Mj), which is the addition of the transfer and execution cost, is
being determined for each task, and afterwards, the total maximum cost
totalMaxCost(M) is being minimized [3].

3 Original and Hybridized Elephant Herding
Optimization Metaheuristics

The group behavior of elephants in herds inspired the creation of elephant herd-
ing optimization (EHO) algorithm, that was devised in 2015 by Wang et al. for
tackling bound-constrained tasks [20]. There are diverse implementations of this
metaheuristics in many domains, such as practical problems as static drone place-
ment problem [21], node localization in WSNs [22], multilevel image threshold
[23] as well as implementation and testing on standard benchmark problems [24]
etc. The essential communication and social coexistence in the herd depends on
the leadership of the matriarch, where structural bond depends on matriarch’s
influence. When male calves grow, they depart but important thing to note
is that they still communicate with the herd, expanding the bond and social
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intelligence. This occurring defines the general-purpose heuristic search, which
comprises these two phenomenons in the herds change.

These environments can be divided into the first environment (updating oper-
ator), where elephants are coexisting within the leadership of the matriarch, and
the second (separating operator), in which full grown male elephants leave the
herd.

Every individual j in each clan, denoted as ci, is updated by the present
location and the fittest member of ci by using an updating operator. The first
phase is followed by improvement of the population discrepancy by employing
the separating operator in the next generations of the algorithm’s execution.

The whole population consists of the n clans. The updating operator is
denoted by changing each solution j in the each clan ci by the impact of the
fittest solution in ci which can be seen in Eq. 7:

xnew,ci,j = xci,j + α × (xbest,ci − xci,j) × r, (7)

where xnew,ci,j is the new location for the individual j in the clan ci, and xbest,ci

is the fittest solution of the ci at the time of calculation, where xci,j denotes
the previous position of the solution j that belongs to the clan ci. Parameter
α ∈ [0, 1] represents a scale indicator that designates the authority of the best
solution in ci on xci,j , and r ∈ [0, 1] is a random number. To update the best
solution in clans the following equation is used:

xnew,ci,j = β × xcenter,ci , (8)

where β ∈ [0, 1] presents the impact of the xcenter,ci on the new generated
solution.

The parameter D denotes the search space overall dimension, following is the
calculation of the clan ci center, xcenter,ci,d for problem with d − th dimensions:

xcenter,ci,d =
1

nci

×
d∑

j=1

xci,j,d, (9)

where 1 < xcenter,ci < d, nci represents the size of subpopulation in clan ci,
xci,j,d denotes the dimension d of the solution xci,j .

The separating operator can be defined as:

xworst,ci = xmin + (xmax − xmin + 1) × rand, (10)

where xmax and xmin denote upper and lower bound of the search space, respec-
tively. xworst,ci is the solution in clan ci with worst performance, and rand ∈ [0, 1]
is a random number.

By performing experimental tests with the basic EHO algorithm on standard
unconstrained and constrained benchmarks, we have observed that the perfor-
mance of the algorithm could be improved. One of the major drawbacks of the
original EHO implementation is inadequate trade-of between the exploitation
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and exploration. Balance between these two processes are of the most impor-
tance for robustness and solution’s quality of any swarm-based metaheuristics
approach, and extensive studies have been recently performed in this domain
[25–27].

In the original EHO implementation, the balance between intensification and
diversification is shifted towards intensification. The process of diversification,
that is performed by utilizing separating operator (Eq. (10)), is not enough,
and in most algorithm’s execution, the search process converges to suboptimal
regions of the search space. To overcome this deficiency, in our hybridized EHO
approach, we incorporated crossover operator from the GA. As already noted
above, in this way we developed genetic EHO (GEHO) metaheuristics.

To enhance the exploration power, in each iteration of GEHO execution, two
worst solutions are being replaced. The first worst solution is replaced with the
new random solution obtained by utilizing separating operator, as in the original
EHO approach. The second worst solution is replaced with the offspring solution
from GA.

Algorithm 1. Pseudo-code for the proposed GEHO algorithm
Initialization. Create solutions in population; separate population into n number
of clans; calculate objective function for every individual; set iteration counter t to
1, and limit iteration number to MaxIter.
while t < MaxIter do

Perform sort by fitness of all solutions
for all ci clans do

for all solution j in the ci do
Upgrade xci,j and create xnew,ci,j using Eq. 7
Designate better individual between xci,j and xnew,ci,j

Upgrade xbest,ci and create xnew,ci,j using Eq. 8
Choose and keep better solution between xbest,ci and xnew,ci,j

end for
end for
Sort population according to fitness
for all ci clans in the population do

Replace first worst solution in clan ci using Eq. 10
Replace second worst solution by applying GA’s uniform crossover
operator

end for
Analyze and calculate fitness of all solutions

end while
return the best solution in the whole population

For the purpose of generating offspring solution, we introduced another con-
trol parameter (break point - bp), that controls the process of generating offspring
solution. Before the bp number of iterations, the offspring solution is created by
combining worst solution and pseudo-random solution from the population by
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utilizing the GA’s uniform crossover operator with crossover probability (cp).
However, in later iterations of algorithm’s execution (after the bp number of
iterations), with the basic expectation that the region with the optimal solution
has been found by the algorithm, offspring solutions is generating by combining
best and pseudo-random solution from the population, In this way, we did not
only improve the balance between exploitation and exploration, but we have also
enhanced the exploitation in later iterations by performing precise search in the
promising search space region. For more information about uniform crossover
operator, please refer to [25].

4 Empirical Experiments and Analysis

As it was already stated in Sect. 1, for testing purposes we utilized CloudSim
environment, and EHO and GEHO control parameters were set to the same
values as in [3]. This way we wanted to make a comparative analysis with other
approaches that were simulated under same experimental conditions and under
same problem instance more realistic. In [3], cloudy gravitational search algo-
rithm (Cloudy-GSA) was proposed for solving load scheduling problem in the
cloud systems.

For more information of task scheduling model that was utilized in simula-
tions, please refer to Sect. 2.

CloudSim proved to be robust and elastic simulator of cloud environment
and such it has been widely used by the researches. In experimental simulations,
we replaced CloudSim pre-built scheduling algorithms with the EHO and GEHO
metaheuristics.

In all conducted simulations we employed 25 solutions for dynamically
scheduling execution of 10 tasks on 8 VMs. Specific characteristics and features
of VMs and cloudlets are determined statically (hard coded) in the CloudSim
simulator. Characteristics such as bandwidth, MIPS, execution cost and transfer
cost have been used for determination of the total computational time. Similar,
as in the case of Cloudy-GSA [3], EHO and GEHO utilize all functionalities of
the system, yielding the total time complexity of O(n2). Results of simulations
are generated same as in [3] where iteration set of values was from 10 to 100 and
from 100 to 1000. Both approaches, EHO and GEHO are started 30 times. The
reporter results represent the average value of the total cost objective as well as
the transfer time.

The CloudSim environment parameters and GEHO control parameters that
are used in experiments are summarized in Table 1.

With the goal of measuring real improvements of GEHO over EHO meta-
heuristics, the basic EHO, that was validated with the same parameters as the
GEHO, was included in comparative analysis. Comparative analysis was per-
formed with Cloudy-GSA, Simulated Annealing (SA), Genetic Algorithm (GA),
Tabu Search (TS), Min-Min (MM), first come first served (FCFS) and particle
swarm optimization (PSO). Results for all methods included in comparisons are
taken from the [3].
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Table 1. Parameter values in conducted experiments

Parameter Value

GEHO parameters

Number of clans (n) 5

Population size 25

Scale factor α 0.5

Scale factor beta 0.1

Total iterations (MaxIter) 10–100 and 100–1000

Breakpoint (bp) MaxIter*0.8

Crossover probability (cp) 0.5

CloudSim configuration

(x,y) coordinates 0–7

Number of VMs 8

Cloudlet number 10

RAM size 2048

Bandwidth of network 10000

Storage capacity 10000

Number of datacenters 2

Number of VMs in each data center 4

In conducted research, we executed two different experiments. First, we exe-
cuted our metaheuristics with the goal of minimizing the transfer time objec-
tive. Later, as an objective function we took the total cost objective. For each
experiment, the minimal and maximal value, mean and standard deviation in 30
independent runs of the proposed GEHO algorithm were reported. Comparison
of the transfer times are presented in Table 2 while the Table 3 reports total cost
objectives. The best results are printed in bold (lower values are better).

According to the comparison results, we conclude that in average, the GEHO
metaheuristic has better performances in comparison with the other state-of-the-
art methods. As an example, the Cloudy-GSA approach achieved better values
than the GEHO only in the case of the mean for the transfer time and minimum
of the total cost objectives. Also, the PSO performed better than the GEHO only
in hte case of maximum indicator for total cost objective minimization. Also,
from the presented tables, it is evident that GEHO obtains better performance
than the original EHO in both tests and for the all performance metrics.

Visualization of methods comparison for the minimum indicator of transfer
time and total costs objectives is provided in Fig. 1.
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Table 2. Transfer time objective results and comparative analysis

Indicator TS SA GA FCFS MM PSO Cloudy-GSA EHO GEHO

Mean 62768.22 63255.019 57502.225 59000 58000 54170.38 50995.59 53608.77 51513.34

Std. 0 7068.0319 2926.831 0 0 2505.163 3624.817 2850.107 2512.052

Maximum 62768.22 72822.8 62075.51 59000 58000 57759.06 58166.84 59613.22 57619.91

Minimum 62768.22 52661.52 51562.33 59000 58000 48525.77 43632.41 52302.53 43117.51

Table 3. Total cost objective results and comparative analysis

Indicator TS SA GA FCFS MM PSO Cloudy-GSAEHO GEHO

Mean 160665.4160423.0 154617.62 159662.3156066.6 150759.4 148137.5 157320.5 147905.1

Std. 2.99E-11 7494.170 4192.32832.99E-112.99E-11 2290.429 2764.070 2932.115 2117.389

Maximum160665.4176870.7 163806.78 159662.3156066.6154132.5 155176.8 163250.1 154602.3

Minimum 160665.4149520.3 147935.8 159662.3156066.6 146814.2 142157.8 149295.6 142411.5

Fig. 1. 3D bar chart for minimum indicator of the transfer time objective (left) and
minimum indicator of the total cost objective (right)

5 Conclusion and Future Work

In this paper we presented implementation of the elephant herding optimiza-
tion (EHO) metaheuristics hybridized with the uniform crossover operator from
the genetic algorithm for tackling load balancing challenge in cloud computing
environment. Our approach, genetic EHO (GEHO), enhances the exploration-
exploitation balance of the original EHO implementation.

Proposed approach was tested in the CloudSim framework, and two objec-
tives were taken into account: transfer time and total cost. Comparative analysis
was performed with other state-of-the-art metaheuristics that were tested in the
same environment and under same experimental conditions. Obtained testing
results proved that the GEHO is able to successfully tackle load balancing in
cloud environment. In the future research, we plan to adapt and to test the
proposed approach on other challenges from the cloud computing domain.

Acknowledgment. This paper was supported by Ministry of Education, Science and
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