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1 Introduction

Facial recognition technology aims to recognize the face of a (human or animal)
subject by using biometrics to map facial features from a picture. This recognition
is usually achieved through artificial intelligence techniques, mainly deep learning.

Deep learning is a subfield of machine learning which is based on hierarchical
learning architectures for data representation [25]. It includes a set of methods that
represent data with a high level of abstraction through nonlinear transformations.
One of the strengths of deep learning lies in its ability to exploit technological
advances in computing power. Today, deep architectures based on convolutional
neural networks (CNN) form the basis of most facial biometrics technology, and are
very robust [27, 29, 34, 37, 38, 38–41].

Many CNN models can achieve close to 100% accuracy on standard benchmarks
such as Labeled Faces in the Wild (LFW), MegaFace, or YouTubeFace (YTF).
However, these models cannot guarantee the same performance in a realistic
environment which is uncontrolled. Facial recognition remains a big challenge
when it is in a non-constrained scenario or without the cooperation of the subject.
Indeed, the face of a person can be very different observed on images taken
in various poses, lighting conditions, at different ages, with makeup or different
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facial expressions. These hazards lead to a great intra-personal variability which
is the major difficulty of facial recognition without constraint. In particular, lighting
variations can significantly reduce the performance of face recognition systems. The
present chapter tackles this issue by using data augmentation that makes it possible
to overcome the problem of intra-personal variability by inserting more diversity in
the facial recognition data. Lighting compensation allows facial recognition models
to better capture the dynamics of lighting and greatly improves recognition.

This chapter is organized as follows. Section 2 describes elements of the system
design, including the image processing techniques used for introducing lighting
variation as well as techniques used to train the CNN. Section 3 describes the
evaluation of the approach using a convolutional neural network model inspired by
VGGNet-16 [35], that was trained on the LFW dataset and then tested on the YaleB
and ORL databases. Section 4 presents and discusses the results of the experiments
described in Sect. 3; and Sect. 5 gives some concluding remarks.

2 Facial Recognition System Design Elements

2.1 Overview

The implementation of our improved facial recognition system can be divided into
two main tasks: data augmentation and CNN training. These two main tasks may be
subdivided as follows.

Data augmentation is accomplished by modifying images in the training set so as
to simulate the effects of different lighting situations on the appearance of the face
in the image. This simulation requires first that a 3D reconstruction of the face be
inferred from the image and then a lighting model applied to the 3D reconstruction
to perform a pixel-by-pixel alteration of the apparent brightness of the image pixels.

CNN training involves using training sets to train the CNN to make a correct
identification when presented with a facial image of one of a limited number of
subjects that are known to the CNN. This training also proceeds in two stages.
First, a large training set from a wide variety of faces is used to train the CNN
to recognize distinguishing “features,” which help to uniquely identify the image.
This dataset is augmented by the data augmentation procedures described above, to
improve the CNN’s robustness to variations in lighting. After this, a smaller dataset
containing only images of the specific subjects to be identified (in various poses
and lighting conditions) is used to familiarize the CNN so that it can make specific
identifications.

The techniques used in the steps outlined above are described in the following
subsections.
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2.2 Data Augmentation

2.2.1 Data Augmentation Overview

Data augmentation attacks the problem of lighting variation from a different angle.
Rather than modifying the original image before attempting recognition, data
augmentation uses the unmodified image but increases the variation in the training
set. This makes the system training more rigorous, and the trained network is better
able to cope with lighting variations.

Early versions of augmentation for lighting variations used 2-D methods. The
2012 AlexNet and 2014 VGGNet systems for image recognition used principal
component analysis (PCA) on the set of RGB values for all pixels and all images in
the training set. Based on the eigenvalues and eigenvectors from PCA, a (mean-zero
multivariate Gaussian distribution) was constructed in RGB space, and additional
images were generated from a given training image by selecting a single vector
from this distribution and adding it to the RGB values for all pixels of the given
image [22, 35].

More recently, data augmentation methods for lighting compensation have been
based on 3-D reconstructions, which enable more accurate estimation of the effects
of lighting variation. Examples include Paysan et al. [30] and Jiang et al. [19]. Sixt
et al. [36] propose a new framework called RenderGAN that can generate large
datasets of realistic labeled images by combining a 3-D model and a GAN model.

2.2.2 3-D Face Reconstruction

3-D face reconstruction from a 2-D image is an important, long-standing problem
in facial recognition. Apart from lighting compensation, 3-D facial surface models
have been used in other applications such as 3-D facial expression recognition [42]
and facial animation [31].

Point Clouds

Point clouds are the simplest type of surface representation, and forms the basis for
most 3-D object representation methods. A point cloud consists of an unordered set
of 3-dimensional vectors that represent points lying on the surface. As described
below, more descriptive surface representations (e.g., mesh representations) are
typically constructed based on point cloud representations.

Polygonal Meshes

In 3-D research in general and 3-D facial recognition in particular, most researchers
represent the surfaces of 3-D objects as meshes. A mesh is essentially an unordered
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set of vertices (points), edges (connections between two vertices), and faces (sets of
edges with shared vertices) that together represent the surface explicitly. Generally,
the faces consist of triangles, quadrilaterals, or other simple convex polygons,
which simplifies the rendering. The task of building a mesh from a cloud of points
is commonly called the surface reconstruction problem. Several techniques exist,
many of which are based on the classic method of Delaunay triangulation [26].

Polygonal mesh surface representations provide several distinct advantages over
point clouds. They enable much clearer representations of the surface using 3-
D plotting software. Numerous ray tracing, collision detection, and rigid body
dynamics algorithms have been developed for polygonal meshes. They provide
explicit knowledge of connectivity, which can be used to calculate the geodetic
distance between points on the surface. This is particularly useful in face recogni-
tion, because geodetic distances are more invariant than Euclidean distances under
changes of expression by the subject [7]. Some researchers have exploited this by
directly comparing point to point distances, or by using isogeodesic curves [18].

Meshes do have a significant drawback in that they may have errors such as
cracks, holes, T-junctions, overlapping polygons, duplicate geometry, and auto-
intersections. These defects may impede the mesh path and affect the quality of
rendering. To correct these problems, either a local or global approach may be used,
depending on the seriousness of the defects[2]. The local approach locates each
specific defect in the mesh and tries to fix it while conserving the model unchanged,
and consequently preserves most of the mesh information unchanged. It is suitable
when meshes have rare defects and consist of operations such as triangulation for
cracks, or filling holes [15], etc. On the other hand, the global approach takes
into account both individual defects and the mutual relations between defects, and
requires some adjustment for most or all mesh elements.

In cases where lighting of the surface is being considered, the mesh must include
orientation information of the mesh faces. The orientation of a flat face is given
by a vector of unit length that is normal (i.e., perpendicular) to the face. Any face
has two unit normal vectors that point in opposite directions. In cases when the
mesh is describing a human face, one normal points “outward” and the other points
“inward.” As we shall see in Sect. 2.2.3, the brightness of a surface depends on
the angle between the surface’s outward normal and the lighting source. It follows
that in order to correctly predict brightness, the outward normal must be correctly
identified. Algorithms have been designed to consistently identify outward normals:
for example, Borodin et al. [6] propose and verify an algorithm for consistently
orienting the normals of a boundary representation, even in the presence of gaps,
T-junctions, and intersections.

3D Morphable Models

3D morphable models (3DMM) were introduced in 1999 by Blanz and Vetter [5].
They first created a database of 200 3-D face scans in standardized position using
CyberwareTM laser scan technology, which captures comprehensive 3-dimensional
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geometric and textural data. The i’th face in the database is represented as a pair of
3n-dimensional vectors (Si , Ti ), where Si and Ti capture the geometric and texture
(RGB) information, respectively. Additional faces can then be modeled as “morphs”
of the faces in this database, which represented as linear combinations of the face
vectors in the database. The mathematical expression is

(Smorph, Tmorph) = (

m∑

i=1

aiSi ,

m∑

i=1

biTi ), (1)

where m is the number of faces in the database, and {ai} and {bi} are sets of
coefficients such that

∑m
i=1 ai = ∑m

i=1 bi = 1 (coefficients can be positive or
negative). The two sets of coefficients reflect the fact that geometry and texture are
modeled independently.

UV -Mapping and 3D Face

3D models must contain both 3D shape and texture information. Typically, the
shape information is given by a 3D mesh as described above. Since the texture
information describes properties of a surface, the texture information is inherently
two-dimensional and may be stored in a two-dimensional array. However, since the
surface is not flat, a mapping from R

2 to R
3 is required to associate two-dimensional

points with the actual positions in 3-dimensional space. This mapping parametrizes
the facial surface in terms of a pair of coordinates, which are generally denoted as
(U, V ). The texture values (R,G,B) are then stored as functions of (U, V ). Feng
et al. [12] have developed a facial recognition system that uses a CNN to regress the
(U, V ) position map directly from unconstrained 2D images. Their approach attains
state-of-the-art performance, with much lower processing times than other methods.
In their system, the reconstructed 3D face is represented by:

• 43868 3D vertices, where each vertex has x, y, z coordinates.
• 43868 UV mapping coordinates corresponding to the 3D vertices.
• 86907 triangular faces, which form a triangulation of the 3D vertices.
• UV texture information of size 256 × 256 × 3 (RGB values for a 256 × 256 grid

in the UV plane).

2.2.3 Lighting Variation

In this section we describe the modification of images used to augment the dataset
in order to account for lighting variations. We assume that our face surface is a
Lambertian surface, so can reflect the light following the Lambert reflectance model
[4]. The overall process for introducing lighting variation is shown in Fig. 1.

The first step in the process shown in the figure is to calculate the normal vectors
at all vertices of the 3D triangulation, which may be used to calculate the light
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Fig. 1 Process of illumination variation

Fig. 2 Fusion of the mesh and the UV-texture

intensity at each vertex. Lighting values at surface points on the triangular faces
can then be interpolated based on vertex values using barycentric coordinates. In
order to be able to calculate the vertex normals, we first calculate unit normal
vectors (i.e., perpendiculars) to the triangular surfaces that meet at the vertex. For
a triangular surface F of vertices (v1, v2, v3), a normal vector to the plane of F

may be calculated as a cross product of two edge vectors, Nf = −−→v1v2 × −−→v1v3 (the
vertices in the mesh must be correctly ordered so that the outward rather than the
inward normal is produced, as discussed in Sect. 2.2.2).

Given Nf , the unit outward normal vector to a surface is found as

N̂f = Nf

|Nf | . (2)

We estimate the unit normal at the vertex vi by the normalized sum of the normals
to the surfaces containing vi as follows:

Nvi
= N(vi) =

∑
N̂f

| ∑ N̂f | for allf such that vi ∈ f. (3)

To calculate the intensities at the vertices, we merge the 3D shape and the UV-
texture by using the UV-mapping. This consists in associating the vertex vi to the
corresponding pixel (Ui, Vi) in the UV plane (Fig. 2). The intensity information
I (Ui, Vi) is used as the initial intensity for vertex vi .

Compute the Intensities

In 3D space, we randomly choose a point Lx,y,z as a lighting source. The unit

direction vector from L to the vertex vi is denoted by li = −→
Lvi/|−→Lvi |. We then
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apply the Lambert reflectance model, so that the modified intensity of vi is given
by

I (vi) = I (Ui, Vi) · Ili cos(θ), (4)

where Ili is the relative intensity of the lighting source and θ is the angle between li
and Nvi

. In our model, Ili was chosen as the constant value 1.5 independent of i.
The cosine function is a decreasing function. If the angle between θ is too large,

the intensity will vanish or even become negative. To avoid the loss of information,
we add to the new intensity 50% of the initial intensity.

I (vi) = I0(vi)Ili cos(θ) + 1

2
I0(vi) (5)

This equation was used to compute the intensity for all vertices. For each
triangle in the mesh, 13 additional points P1, . . . P13 are created within the triangle
according to the equation:

Pi =
3∑

j=1

wijvj = 1, i = 1 . . . 13, (6)

where v1, v2, v3 are the vertices of the triangle and {wi1, wi2, wi3}i=1,...13 represent
13 sets of barycentric weights where wij ≥ 0 and

∑3
j=1 wij = 1, i = 1 . . . 13. The

intensity at point Pi is then calculated as

I (Pi) =
3∑

j=1

wij I (vj ). (7)

The 3D face has three coordinates (x, y, z), where z represents the depth. Given
that the 3D face is aligned, the coordinates (x, y) give a 2D plane containing the
face (Fig. 3).

2.3 CNN Training for Classification

2.3.1 Overview

Face recognition (and object classification in general) can be separated into two
steps: features extraction and classification. The two tasks can be performed
separately: using transfer learning, a pre-trained feature extractor can be used,
associated with an MLP or another classifier for classification, as described in the
following subsections.
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Fig. 3 Illustration of illumination variation

2.3.2 Features Extraction

Features extraction consists of finding a set of quantities calculated from a dataset
(called features) that capture the datasets’ essential characteristics. Classical meth-
ods of feature extraction include PCA [20] and linear discriminant analysis (LDA)
[3]. CNN has recently emerged as the most successful feature extractor for images
[44], etc. With CNN, an image is passed through a succession of filters arranged in
layers which successively transform and reduce the data, creating representations
of the image called feature maps. These feature maps can be concatenated or
“flattened” into a single vector, called a features vector.

Classification

The classification step assigns the image to a predefined class, based on the features
vector that is calculated by the features extractor. Classifiers in the literature include
k-nearest neighbors (KNN) [43], support vector machines (SVM) [10], decision
trees [32], and multilayer perceptron (MLP) [11]. In this work we use the MLP,
which is a classifier based on neural networks, where the neurons of one layer are
fully connected to those of the next layer.

Transfer Learning

A challenge of image classification (and classification tasks in general) is to train a
classifier for images from a particular source domain when representative training
data is scarce. Sometimes it is possible to find a related domain where sufficient
training data is available to develop an effective classifier. In such cases, it is
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reasonable to suppose that a feature extractor that works well in a related domain
will also work well in the source domain of interest. All that remains is to replace
the classifier for the related domain with another that is particularly adapted to
the source domain. This technique of reusing feature extractors is called transfer
learning [28], and is a widely used strategy in the field of machine learning.

3 Experimental Setup

3.1 Computational Platform

For our system we used the Google Colaboratory platform [8], which is a cloud
service based on Jupyter Notebooks designed support machine learning. It provides
a fully configured runtime environment for deep learning, as well as free access
to a robust graphics processor and TPU (tensor processing units). Currently it
has NVIDIA GPUs with a preinstalled CUDA environment and several machine
learning frameworks including TensorFlow, Theano, and scikit-learn. We used
the TensorFlow framework [1] to train our model. TensorFlow is a programming
framework for numerical computation that was made open source by Google
Brain in November 2015. By 2017, TensorFlow was the most popular open source
machine learning project on GitHub, even though it had only been available for little
over a year [23]. To date it is one of the most powerful tools for Deep Learning,
largely because of the ease of manipulation of tensors and their parallelization by
tools such as CUDA.

Dlib-ml [21] is a state-of-the-art C++ toolkit containing machine-learning
algorithms and data analysis tools, intended for both engineers in industry and
researchers. We used Dlib to detect and extract the area of the face. This detector
offers two methods for face detection: histogram of oriented gradients and support
vector machine (HOG + SVM), and CNN-based detection. We used CNN-based
detection: despite the heavy computing power required, since it is more suitable
for non-frontal face detection. Results from [9] showed that the cascade algorithms
with a CNN was superior to HOG + SVM or Haar Cascade methods in terms of
both accuracy and speed criteria in unconstrained face detection problems.

PRNet (position map regression network) is an implementation of the system
of Feng et al. [12] for regression of 3DMM model parameters. Initially this
TensorFlow-based library was designed for pose estimation, facial alignment, and
texture editing on the basis of 3D representation of the face. We use PRNet for 3D
reconstruction of the different faces of the LFW dataset.
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3.2 Description of CNN Model

We use a CNN for features extraction, therefore a stack of convolutional layers
alternated with the pooling layers.

3.2.1 Inputs

We worked with grayscale images of size 100 × 100. All outputs from all
convolutional layers undergo linear rectification using the ReLU activation function.

3.2.2 Filters

We use 2D convolutional filters of size 3 × 3, since the inputs are not very
large. Small filters make it possible to detect highly localized patterns. The first
convolutional layer has 64 filters applied to the input image, and the number of
filters is doubled after each pooling layer. This process was inspired by the VGG16
[35] network of the group Visual Geometric Group which has a similar architecture.
Unlike VGG16, we added a batch normalization [17] before every convolutional
layer to avoid internal covariate shift which can slow down training and degrade
performance. We also used dropout for regulation and greater robustness. Since [14]
specifies that dropout has limited benefits when applied to convolutional layers, we
applied dropout only on the first fully connected layer.

3.2.3 Subsampling (Pooling)

The feature extractor is subdivided into five blocks of convolutional layers separated
by pooling layers. The first two blocks have two convolution layers followed by
a pooling layer, because these layers produce larger feature maps and require
more pooling. After this, subsequent blocks stack four convolutional layers before
pooling. We chose to use 2×2 max pooling, which decreases each dimension of the
feature maps by two (Fig. 4).

For identification, we use two fully connected layers of 1024 units each. A final
softmax layer produces outputs in the interval [0, 1]: the number of neurons in the
final layer is equal to the number of labels in the dataset. The outputs are interpreted
as posterior probabilities of each individual. After the first fully connected layer we
insert a dropout function that randomly eliminates 25% of the layer’s outputs.

System hyperparameters are summarized in Table 1.
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Convolution(64, 3 x 3) :ReLU

Convolution(64, 3 x 3) :ReLU

Pooling(2x2)

Convolution(128, 3 x 3) :ReLU

Convolution(128, 3 x 3) :ReLU

Pooling(2x2)

Convolution(256, 3 x 3) :ReLU

Convolution(256, 3 x 3) :ReLU

Pooling(2x2)

Convolution(256, 3 x 3) :ReLU

Convolution(512, 3 x 3) :ReLU

Convolution(512, 3 x 3) :ReLU

Pooling(2x2)

Convolution(512, 3 x 3) :ReLU

Convolution(512, 3 x 3) :ReLU

Convolution(512, 3 x 3) :ReLU

Pooling(2x2)

Convolution(512, 3 x 3) :ReLU

FC(1024, ReLU)

Drop-out(0.25)

FC(1024, ReLU)

Softmax

Flatten

Features extraction

Full-connected

Classifier

Fig. 4 Proposed model of convolutional network. The number of softmax outputs is set equal to
the number of distinct individuals to be identified
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Table 1 Setting of CNN Hyperparameters Details

Activation ReLU

Initialization of weights Random uniform

Optimizer Adam

Number of iteration on LWF 1000

Number of iteration on YaleB and ORL 500

3.3 Datasets Used

3.3.1 Labeled Faces in the Wild (LFW)

This dataset is a collection of JPEG images of the faces of famous people collected
on the internet [16, 24]. These faces were extracted from various online websites
by face detectors based on the Viola–Jones model. LFW is commonly used to
evaluate the performance of facial recognition systems. It contains 13,233 250×250
images of 5749 tagged celebrities, where each image is centered on a single face.
In our experiments, the LFW dataset was used for pretraining the model. The
data augmentation described in Sect. 2.2 was applied to these images to improve
robustness of the feature extractor to lighting variations. The feature extractor was
retained, and the classifier was replaced with classifiers for the smaller datasets
described below. Since the smaller datasets have grayscale images, the LFW images
were converted to grayscale using the function cv2.cvtColor from openCV.

3.3.2 ORL Database

The ORL Database [33] from the University of Cambridge contains 400 112 ×
92 pixel images of 40 people, with 10 images per person. The images were taken
at different times, with differing lighting and facial expressions. All the images
were taken on a dark and homogeneous background, the subjects being in a frontal
position, with a tolerance for certain lateral movements. In our experiment, the ORL
database, like the YaleB database, was used for retraining the classifier.

3.3.3 Yale Face Database B

YaleB [13] was developed to allow systematic testing of facial recognition methods
under wide variations in lighting and pose. It contains 5760 640 × 480 pixel images
of 10 subjects viewed each in 576 viewing conditions (9 poses × 64 lighting
conditions). For each subject in a particular pose, an image with ambient lighting
(background) was also captured. In our experiment, a selection of images from
YaleB was used for retraining the classifier, according to the transfer learning
methodology described in Sect. 2.3.
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3.4 Experimental Training and Testing Configurations

3.4.1 Experiment 1: LFW Without Data Augmentation

For the first experiment, we randomly selected 12,600 images from the LFW
database for training, corresponding to 5749 subjects. For the initial feature extractor
and classifier training, a classifier with 5749 softmax outputs was trained over 1000
iterations. Of the training set images, 10% (1260 images) were used for cross-
validation.

After this, the classifier was removed and replaced by a classifier for ORL data
and then for YaleB data. The new classifiers had the same number of layers as the
original, but fewer softmax outputs (40 outputs for ORL, 10 outputs for YaleB). For
training the ORL classifier, from the 400 images in the database 300 images were
used for training and 100 for validation over 500 iterations. For training the YaleB
classifier, 8 images per subject were used for training and 3 images per subject were
used for validation, over 500 iterations. The three images chosen for evaluation had
very uneven light distributions: one illuminated only on the left, one only on the
right, and a third image with a central lighting.

3.4.2 Experiment 2: LFW with Data Augmentation

The second experiment differed from the first only in the training set used for the
initial feature extractor + classifier training. The training set used 700 images from
LFW of 28 subjects (25 images per subject). Each of these images was subjected
to 18 different lighting conditions (representing a range of lighting directions, from
left to right), for a total of 12,600 images. Since 28 subjects were used, the classifier
in this case had 28 outputs. As in Experiment 1, after pretraining the classifier was
replaced with a classifier of 40 outputs for ORL and with a classifier of 10 outputs
for YaleB.

4 Results and Interpretation

4.1 Evaluation on ORL

Figures 5 and 6 show the training and testing accuracy curves for ORL data
in Experiment 1 (without augmentation) and Experiment 2 (with augmentation),
respectively. The figures show roughly 10% improvement in accuracy when aug-
mented data is used for pretraining.
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Fig. 5 Accuracy curve using
ORL data for the model
pretrained with plain LFW
data (Experiment 1)
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Fig. 6 Accuracy curve using
ORL data for the model
pretrained with augmented
LFW data (Experiment 2)
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4.2 Evaluation on YaleB

Figures 7 and 8 show the training and testing accuracy curves for YaleB data
in Experiment 1 (without augmentation) and Experiment 2 (with augmentation),
respectively. In this case, the improvement in test accuracy when augmented data is
used for pretraining is about 20%.

Table 2 summarizes the results from the two experiments. For the evaluation of
the model on test data, we observe a gain of accuracy of 9% on ORL. This finding
confirms the enhanced effectiveness of pretraining that uses more images of fewer
subjects taken under variable lighting conditions. The 18% improvement on YaleB
shows that the performance improvement is further amplified in cases where the
system is applied to images that also have variable lighting. In both experiments,
the accuracy on YaleB is lower than the corresponding accuracy on ORL: this is
probably due to the greater variability of both position and lighting for images in
YaleB, as well as the smaller size of the dataset used in our experiments.
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Fig. 7 Accuracy curve using
YaleB for the model
pretrained with plain LFW
data (Experiment 1)
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Fig. 8 Accuracy curve using
YaleB for the model
pretrained with augmented
LFW data (Experiment 2)
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Table 2 Summary of accuracies and average errors observed for the ORL and YaleB data sets,
with and without data augmentation

ORL YaleB

Accuracy Average error Accuracy Average error

Simple data 74% 1.78 35.56% 6.03

Augmented data 83% 0.72 53.33% 3.12

5 Conclusion

This chapter demonstrates a practical method for improving deep facial recognition
using data augmentation. Specifically, we employed 3D lighting variation as a
method of data augmentation, using the Lambert reflectance model to model the
dynamics of ambient lighting in 3D space. The improvement was verified on two
different datasets possessing different degrees of image variability. Accuracy gain
due to data augmentation ranged from 9% to 18%, with the greater gain observed in
the dataset that showed more variability. We conclude that lighting variation using
the Lambert reflectance model is well suited to data augmentation for deep facial
recognition under unconstrained lighting conditions.
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