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1 Introduction

Genetic algorithms (GAs) are widely used computer-based search and optimization
algorithms based on the mechanics of natural genetics and natural selection [1–5].
In the decade between 1950 and 1960 many researchers worked on evolutionary
systems with the idea that evolution could be used as optimization approach for
many engineering problems [4]. J. Holland introduced the concept of genetic
algorithm in 1960 [5]. Usually genetic algorithms are based on two-parent genetic
processes; however, some literature on multi-parent recombination can also be
found in [6–9]. Mühlenbein and Voigt [6] presented the concept of gene pool
recombination (GPR), and applied it to find solutions in a discrete domain. Eiben
and Van Kemenade [7] proposed the concept of diagonal crossover as generalization
of uniform crossover in GA and applied it to numerical optimization problems. Wu
et al. [8] proposed multi-parent orthogonal recombination and applied it to find out
the identity of an unknown image contour. The crossover operators used in those
areas enabled significant improvements in search ability, although improvements
were found to be highly problem dependent. Eiben et al. [9] proposed two multi-
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parent recombination mechanisms, namely gene scanning and diagonal crossover.
They extensively tested their multi-parent algorithm on a variety of problems in
numerical optimization, constrained optimization (traveling salesman problem) and
constraint satisfaction (graph coloring). Compared to two-parent recombination,
their algorithm achieved superior performance in optimizing the first four test
functions of De Jong. For other problems the results were mixed; multi-parent
crossover sometimes performed better and at times worse than classical two-parent
recombination.

The parallel three-parent genetic algorithm presented in this chapter is based
upon three-parent genetic processes in medical science and is very different from the
approaches available in the literature. In medical science, a three-parent process has
been used to prevent mitochondrial diseases in children of mothers with defective
mitochondria [10–13]. In 2015, Dr. John Zhang and his team at the New Hope
Fertility Center in New York City replaced the nucleus of a donor’s egg cell
with the nucleus of original mother, which was then fertilized with the father’s
sperm and implanted in the mother. The child that was subsequently born inherited
mitochondrial DNA from the donor, besides nuclear DNA from the father and
mother [13]. The concept of this three-parent genetic process is shown in Fig. 1.
The P3PGA algorithm is in some respects a mathematical analogy of this practical
process.

This chapter includes two different but related research investigations. The first
is an evaluation of the performance of P3PGA on functions from an established
test suite and comparison with other well-known recent algorithms. The second
investigation concerns the application of P3PGA to an important and challenging
practical problem, namely routing in wireless mesh networks (WMNs) [14].

This chapter is organized into six sections. Section 1 presents the motivation for
this work; Section 2 discusses the working of P3PGA algorithm; Section 3 describes

Fig. 1 3-Parent Process adapted from Zhang et al. [13]



Parallel 3-Parent Genetic Algorithm with Application to Routing in Wireless. . . 3

the simulation and performance of P3PGA on the 2014 Congress on Evolutionary
Computation (CEC-2014) test bench suite compared to 16 other algorithms; Section
4 proposes a P3PGA-based minimal cost route evaluation approach for WMNs;
Section 5 presents its implementation and performance on WMNs as well as a
performance comparison with eight other algorithms found in the literature; and
Sect. 6 summarizes conclusions.

2 P3PGA Algorithm

The Parallel 3-Parent Genetic Algorithm (P3PGA) is a multi-population algorithm
in which evolution process takes place on several populations in parallel. It is based
upon the single-population three-parent genetic algorithm (3PGA) [15, 16].

A pseudocode for the proposed P3PGA approach is as given in the listing below
in Algorithm 1. In this algorithm we initially create several populations of equal
size: these are called 2-parent populations. To generate a 3-parent population from
a 2-parent population we applied the “mitochondrial change” to each individual by
adding a small random number to each gene of each individual in the population.
The fittest individual (best solution) within a population is called the local elite of
that specific population. The best of all local elites is called the global elite. All
genes for all individuals in all the populations are moved towards the corresponding
gene of the global best candidate solution with low probability. This guides every
candidate solution towards the global best solution.

For the better understanding of the algorithm, we describe its operation on a
very simple example where we wish to search a 4-digit quantity such that the sum
of 4 digits is maximal, given that each digit is an integer between 0 and 9 (the
obvious answer is 9999). We proceed in such a way that the reader will be able
to track progress towards this solution as the algorithm progresses. The algorithm
parameters are chosen as shown in Table 1.

Step 1 Randomly create 3 two-parent populations, where each population consists
of three candidate solutions and each candidate solution is an array of four digits
(genes) having the form (d1, d2, d3, d4):

TwoParentPop(1): [(3,6,1,7), (5,2,6,3), (4,6,5,3)]
TwoParentPop(2): [(5,3,6,2), (5,6,7,8), (8,2,7,6)]
TwoParentPop(3): [(7,4,5,1), (5,6,1,3), (3,8,4,9)]

We may rewrite these three populations in matrix format, for example:

TwoParentPop(1) =
⎡
⎣

3 6 1 7
5 2 6 3
4 6 5 3

⎤
⎦

TwoParentPop(2) and TwoParentPop(3) may be expressed similarly as
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Algorithm 1: P3PGA algorithm
begin
Generate NP populations each of size N candidates randomly, every candidate consisting of
NG genes;
for gen = 1:Number of generations do

for i = 1:NP do
Effect Mitochondrial Change to ith 2-parent (2-P) population to Generate an ith 3-Parent

(3-P) population
Combine the 2-P and 3-P populations and select the N best individuals.
Find and record the globally best solution.
Generate a new 2-P population using general genetic process (using GA)

(a) Select fit individuals for recombining/breeding.
(b) With high probability recombine parents/perform cross-over.
(c) With low probability mutate offspring.
(d) Select the N best individuals from among parents and offspring...

Check bounds violation and correct if needed.
end for (i)
Check the fitness of all the individuals of all the populations and select/update the globally best
gbest candidate and its fitness;
for i = 1: NP do

for j = 1: N do
for k = 1: NG do

With a fixed small probability replace gene k of individual j in population i with
(individual(j,k) + gbest(j,k))/2;

end for (k)
end for (j)

end for (i)
end for (gen)
end

Table 1 Parameter values for illustrative example of P3PGA

Parameter description Symbol Value

Number of populations NP 3
Population size N 3
Number of genes in each individual NG 4
Gene values dj (j = 1 . . . 4) 0 thru 9
Crossover probability 0.9
Mutation probability 0.1

TwoParentPop(2) =
⎡
⎣

5 3 6 2
5 6 7 8
8 2 7 6

⎤
⎦
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and

TwoParentPop(3) =
⎡
⎣

7 4 5 1
5 6 1 3
3 8 4 9

⎤
⎦

Step 2 For each gene of every individual in each of the populations, effect a
mitochondrial change by adding a random number to each gene. In our case, each
gene change is generated as a uniformly distributed random integer between −2 and
2. This may be implemented by generating a change matrix for each population,
adding the change matrix to the population matrix, and truncating so that the gene
values remain within the range from 0 to 9. For example, suppose the change matrix
for the first population is given by:

Change(1) =
⎡
⎣

2 0 −2 1
1 −1 2 1
0 2 2 2

⎤
⎦

Let us further assume that the randomly generated mitochondrial changes for the
second and third populations are as given below:

Change(2) =
⎡
⎣

−2 0 −1 1
1 2 2 −1
0 2 2 2

⎤
⎦ ; Change(3) =

⎡
⎣

−2 0 −1 2
1 2 2 −1
0 1 −2 2

⎤
⎦

Using 2-parent population and Change matrices for each population we compute
the 3-parent populations as follows:

3_Parent_Population(n) = 2_Parent_Population(n) + Change(n)

Whenever this formula produces an entry in 3_Parent_Population(n) that is less
than 0 or greater than 9, it is replaced with 0 or 9, respectively.

Step 3 The three-parent populations are then combined with their corresponding
two-parent populations to form populations that are twice as large. In our example,
these combined populations are given by three 6 × 3 matrices (matrix rows are
separated by semicolons)

Population 1: [3 6 1 7; 5 2 6 3; 4 6 5 3; 5 6 0 8; 6 1 8 4; 4 8 7 5]
Population 2: [5 3 6 2; 5 6 7 8; 8 2 7 6; 3 3 5 3; 6 8 9 7; 8 4 9 8]
Population 3: [7 4 5 1; 5 6 1 3; 3 8 4 9; 5 4 4 3; 6 8 3 2; 3 9 2 9]

We choose the three individuals for each population with highest fitness, which
are then sorted in decreasing order of fitness. Table 2 shows the results of this
operation.
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Table 2 Populations, individuals, and their Fitness

Pop. No. Individual No. Individual Fitness Pop. No. Individual No. Individual Fitness

1 1 4 8 7 5 24 3 1 3 8 4 9 24
2 5 6 0 8 19 2 3 9 2 9 23
3 6 1 8 4 19 3 6 8 3 2 19

2 1 6 8 9 7 30
2 8 4 9 8 29
3 5 6 7 8 26

Fig. 2 Single-point
crossover operation

Step 4 The conventional genetic algorithm operations of recombination (crossover)
and mutation are now performed within the resulting populations.

Step 4a. Usually fitness of an individual is used as selection criterion for crossover.
Various selection strategies may be used, including roulette wheel selection,
stochastic universal sampling, truncation selection, tournament selection, and
so on (interested reader may refer to [17–19] for details). We have used
stochastic universal sampling (SUS) for selection of parents for recombination.
In our example, we may suppose that individuals 1 and 3 in population 1 are
selected, and a crossover operation is performed on the two individuals with
high probability (usually between 0.75 and 0.9). A typical example of a crossover
operation is shown in Fig. 2.

The operation shown is a single-point crossover with crossover point after first gene.
Crossover can be single point, two point, or n-point. If crossover does not take
place, then both individuals are passed on as offspring.

Step 4b. Following crossover, mutation is performed. In the case of real-valued
genes, one way to perform mutation involves replacing the current gene with a
randomly generated value from within the universe of discourse of that gene with
a low probability. Both the probability of mutating a gene (mutation rate) and the
distribution of changes for each mutated gene must be specified. For example,
the change may be determined as a uniform random number in an interval [−a,
a]. In our example, we have taken a = 2 and the mutated genes are rounded off
to the nearest integer.

Step 4c. Following crossover and mutation, the offspring are grouped together with
their parents for each population, and the three fittest from each population are
chosen as the next generation. Note each generation of each population always
has the same number of individuals (equal to N, which is one of the algorithm’s
basic parameters). Let us assume that the individuals 4 8 7 5 and 5 6 0 8 were
selected for recombination assuming the crossover point was after first two genes.
Thus, the combination produced two offspring, i.e., 4 8 0 8 and 5 6 7 5. Let
us further assume that individual 6 1 8 4 was passed as it is as an offspring.
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Table 3 Evolving new population after crossover and mutation

Current
population

Offspring (after crossover and
mutation)

New population (weak individuals
replaced with stronger offspring)

4 8 7 5 (24)
5 6 0 8 (19)
6 1 8 4 (19)

4 8 0 7 (19)
5 8 7 5 (25)
6 0 8 4 (18)

5 8 7 5 (25)
4 8 7 5 (24)
5 6 0 8 (19)

Table 4 Local best (elites)
and global best

Population number Local best (�best)/Elite Fitness

1 5 8 7 5 25
2 6 8 9 7 30
3 5 9 2 9 25

Let us further assume that the mutation operator mutated first offspring to 4 8
0 7, second offspring to 5 8 7 5, and the third offspring to 6 0 8 4. Replacing
the weaker parents with the stronger offspring produces the results as shown in
Table 3.

Step 4d. Compute elites (local best) and global best:

Global best (gbest) candidate solution after one generation is: “6 8 9 7” with
fitness values of 30 (6 + 8 + 9 + 7 = 30). The computation of elite (local best) is for
better understanding of the algorithm only. For better code efficiency we can directly
compute global best from the evolved generations. However, for algorithm 2, which
is based upon algorithm 1, computation of elites (local best of each population) is
essential (Table 4).

Step 5 After a predetermined number of generations, with a given probability we
replace ith gene of every individual with a gene whose value is the average value of
the ith gene of individual and ith gene of gbest, i.e.,

individual(i) ← (individual (i) + gbest(i)) /2

Table 5 summarizes the results of first iteration of computer implementation of
example using the P3PGA algorithm.

Continuing further execution of the program we find that our algorithm reached
the best result in about 15 iterations. Figure 3 shows number of generations
(iterations) versus fitness for our example.

3 Simulated Performance, Results, and Discussion

We implemented the proposed P3PGA algorithm in MATLAB on a Core i7 @
2.2GHz based laptop with 8GB RAM and tested its performance on 30 functions
from the CEC-2014 test bench. To evaluate the performance of P3PGA we used
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Fig. 3 Generation number versus fitness of globally best result for simple P3PGA example

N = 10 populations and NC = 20 candidate solutions. Our P3PGA results
were compared to results obtained from CEC-2014 for 16 other algorithms: the
United Multi-Operator Evolutionary Algorithms (UMOEAS) [20], LSHADE [21],
Differential Evolution with Replacement Strategy (RSDE) [22], Memetic Differ-
ential Evolution Based on Fitness Euclidean-Distance Ratio (FERDE) [23], Partial
Opposition-Based Adaptive Differential Evolution Algorithms (POBL_ADE) [24],
Differential Evolution strategy based on the Constraint of Fitness values clas-
sification (FCDE) [25], Mean-Variance Mapping Optimization (MVMO) [26],
RMA-LSCh-CMA [27], Bee-Inspired Algorithm for Optimization (OptBees) [28],
Simultaneous Optimistic Optimization (SOO) [29], SOO+ Bound Optimization BY
Quadratic Approximation (SOO + BOBYQA) [29], Fireworks Algorithm with Dif-
ferential Mutation (FWA-DM) [30], algorithm Based on Covariance Matrix Leaning
and Searching Preference (CMLSP) [31], Gaussian Adaptation Based Parameter
Adaptation for Differential Evolution (GaAPADE) [32], Non-Uniform Mapping in
Real-Coded Genetic Algorithms (NRGA) [33], and DE_b6e6rlwithrestart [34]. The
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MATLAB code for the compared algorithms and the link to algorithm performance
results may be obtained from http://www.ntu.edu.sg/home/EPNSugan/index_files/
CEC2014/CEC2014.htm. For P3PGA we conducted 20 trials for each of the 30
functions, and took the mean error of all 20 trials as the performance measure.

The performance of P3PGA along with 16 other algorithms is given in Table 6
(see Appendix 1). Results of the comparison between algorithms are summarized in
Table 7. P3PGA gave the unmatched best performance for 12 functions (f5, f9, f10,
f11, f14, f15, f16, f19, f21, f24, f25, and f27) (Table 8). For f3 the performance
of P3PGA was equaled by UMOEAS, RSDE, FCDE, DE_ b6e6rlwithrestart,
LSHADE, MVMO, FWA-DM, and GaAPADE algorithm; and for f8 P3PGA’s per-
formance was matched by UMOEAS, FERDE, DE_b6e6rlwithrestart, GaAPADE,
LSHADE, MVMO, OptBees, and RMA-LSCh-CMA. Altogether, P3PGA was the
top-ranked algorithm, while UMOEAS was second.

4 P3PGA for Minimal Cost Route Evaluation

A wireless mesh network (WMN) can be mathematically represented as a set of
“nodes” or points in the two-dimensional plane. These nodes represent the positions
of clients, routers, and gateways that receive and retransmit communications signals.
Naturally, the devices represented by nodes all have limited communication range.

Table 7 Comparative performance of P3PGA on CEC-2014 benchmarks

Algorithm Best (unmatched) Best (matched) Total best Rank

P3PGA 12 2 14 1
UMOEAS 1 8 9 2
LSHADE 2 4 6 3
DE_b6e6rlwithrestart 1 5 6 3
GaAPADE 1 4 5 4
SOO + BOBYQA 0 5 5 4
MVMO 1 3 4 5
RMA-LSCh-CMA 0 4 4 5
SOO 0 4 4 5
FCDE 0 3 3 6
RSDE 0 3 3 6
CMLSP 0 3 3 6
FERDE 0 2 2 7
POBL_ADE 1 0 1 8
FWA-DM 0 1 1 8
OptBees 0 1 1 8
NRGA 0 0 0 –

http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2014/CEC2014.htm
http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2014/CEC2014.htm
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Table 8 Number of functions for which P3PGA gave the best performance

Functions for which P3PGA was a clear winner f5, f9, f10, f11, f14, f15, f16, f19, f21, f24,
f25, f27

Function for which P3PGA was a joint winner f3, f8

In order to send a signal from a source node to a destination node, a route (or
path) consisting of intermediate nodes must be found such that the signal from
the source node can be successively received and retransmitted until it reaches the
destination node. The process of determining the end-to-end route between a source
node and a destination node is referred to as “routing.” An optimal route will be
one that minimizes cost, where cost is defined in terms of a routing metric. There
are many possible routing metrics that appear in the literature, including minimum
hop count, per hop Round Trip Time (RTT) [35], Per-Hop Packet Pair Delay
(PktPair) [36], Expected Transmission Count (ETX) [37], Expected Transmission
Time (ETT), Weighted Cumulative ETT (WCETT) [38], Expected Transmission
on a Path (ETOP) [39], Effective Number of Transmission (ENT) and Modified
Expected Number of Transmissions (mETX) [40], Metric of Interference and
Channel Switching (MIC) [41], Bottleneck Link Capacity (BLC) path metric [42],
cross layer link quality and congestion aware (LQCA) metric [43], and interference
aware low overhead routing metric [44]. In this chapter, we use an integrated link
cost function to evaluate route cost: for details see [45].

The adapted P3PGA algorithm that was used for finding optimal routes for
WMNs is outlined in Algorithm 2 below. The algorithm follows all the steps of the
general P3PGA algorithm described in Algorithm 1 in the previous section. These
steps are described in more detail in the following paragraphs.

The first step in the algorithm is to determine initial populations of possible
routes. This is done by means of an adjacency matrix, which is a (number of nodes)
by (number of nodes) square matrix of 0’s and 1’s. The (i,j)th entry of the matrix is
1 if nodes i and j have a possible connection, and 0 otherwise. Using the adjacency
matrix a set of route populations is generated, where each population has the same
number of routes. These are the initial 2-parent populations. Next, we generate a 3-
parent population from each of the current 2-parent populations and combine these
two populations as in Algorithm 1. The new population is evolved from the old
population using the crossover approach as given in [46]. Each 3-parent population
is obtained by applying the following rules to all routes in the 2-parent population:

(a) Beginning with second node, check the location of the NDth node of the local
elite in the current path, where ND is defined so that nodes 2 . . . ND-1 of the
local elite are not in the current path, but ND is in the current path.

(b) If the NDth node lies in first half of the current path, then follow the steps as
given below:
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I. Retain nodes of current individual up to ND and call it partial route1.
II. From the elite extract all nodes from the node after “ND” to the terminal

node and call it partial route2.
III. Combine partial route1 and partial route2 to form a new path.

(c) If the “NDth” node of the local elite lies in the second half of the current path,
then follow the steps as given below:

I. Retain the local elite up to “ND” and call it partial route1.
II. From the current path extract all nodes from the node after “ND” to the

terminal node and call it partial route2.
III. Combine partial route1 and partial route2 to form a new route.

For example, in a WMN, let node number 1 represent the source node and
node number 10 represent the terminal node. Suppose that the following two-parent
population of routes exists between source and terminal node:

2-parent population 1 : [1 4 5 8 9 10; 1 3 2 7 12 8 11 9 10; 1 6 7 4 13 12 5 9 10]

In this population the local elite (shortest path) is: 1 4 5 8 9 10
Since the local elite is the fittest route (minimal cost path as per hop count

method) we would not apply mitochondrial change to this elite route.
In the second route (2-parent route 2) we find that node 8 is the first node in the

route that is shared with the local elite. This node lies in the second half of 2-parent
route 2. Hence, we would retain the local elite up to node 8 and denote it as partial
route 1:

Partial route 1 : [1 4 5 8]

From the current route (2-parent route 2), we extract all nodes starting from the
node after 8 up to the terminal node, and denote it as partial route 2:

Partial route 2 : [11 9 10]

After combining partial route 1 and partial route 2 we get a new 3-parent route:

3-parent route 1 : [1 4 5 8 11 9 10]

Similarly, we make the mitochondrial change in 2-parent route 3 as follows. We
first identify that the first node in the route that is shared with the elite is node 4,
which lies in the first half of the current route. So we retain current route up to node
4 and denote it as partial route 1:

Partial route 1 : [1 6 7 4]
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From the elite we extract all nodes after node 4 up to the terminal node, and
denote it as partial route 2.

Partial route 2 : [5 8 9 10]

After combining partial route 1 and partial route 2 we obtain a second 3-parent
route as follows:

3-parent route 2 : [1 6 7 4 5 8 9 10]

We combine the 2-parent routes with the newly evolved 3-parent routes into a
single combined population:

[1 4 5 8 9 10; 1 3 2 7 12 8 11 9 10; 1 6 7 4 13 12 5 9 10; 1 4 5 11 9 10;
1 6 7 4 5 8 9 10]

The algorithm then evaluates the fitness of all routes in this combined population,
dropping the weaker individuals and retaining the fittest N individuals, thus
maintaining a constant population size.

Once this is completed, the standard genetic processes of crossover and mutation
can be performed just as demonstrated in Algorithm 1, to obtain optimal solutions
for all populations. The optimum of these local optima gives the current global
optimum, which may then be used to update the routing table entry for the given
source and destination node, so that subsequent data transfer between these two
nodes may take place on the minimal cost routes. Being parallel in nature the
convergence time of this algorithm is expected to be quite small.

5 Implementation and Performance of the Proposed
Approach

To evaluate the comparative performance of the proposed P3PGA-based minimal
cost route evaluation approach for WMNs, we implemented all the approaches in
MATLAB and simulated for 100, 500, 1000, 2000, and 2500 node client WMNs.
Parameters for the different WMNs are shown in Table 9. For each WMN, node
locations were randomly generated within the specified area. To evaluate the
performance of all approaches on 100, 500, 1000, and 2000 node client WMNs we
conducted 10 trial sets, one set for a given timing constraint. On 2500 node client
WMNs we considered 17 trial sets. For all networks, each trial set consists of 20
trials: to test algorithm performance in a dynamic environment, the node locations
were randomly regenerated for each trial. In total, 1340 trials were conducted.
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Algorithm 2: P3PGA approach for dynamic optimal cost route evaluation
Begin
/* Adjacency matrix: matrix of neighbor nodes of each node */
/* Variables:

pop_mat: Populations of routes;
path_mat: Matix whose rows are the routes in a given population;
NP: Number of populations,
N: Number of routes per population
Path_nodes: Number of nodes in a route.

*/
Calculate N routes using adjacency matrix.
Evaluate fitness of all routes in all populations.
Determine the local best routes �best(i), i = 1 . . . NP for all populations i.
Record the global best (gbest) route from amongst all the local best routes;
for Gen = 1: Number of Generations do

for pop = 1: NP do
/* 3 Parent Population generation starts */
3P_path = pop_mat(pop).path_mat
local_elite = �best(pop)

for i = 1:N do
SE = number of nodes in local_elite

if 3P_path(i) ! = local_elite then
for j = 2:SE-1 do

LOE = location of local_elite(j) in 3P_Path(i).
if LOE > 0

if LOE > path_mid then /* path_mid = half of ith path*/
partial_route1 = first j nodes of local_elite
partial_route2 = nodes from LOE+1 to target node in 3P_path(i)

else
partial_route1 = first LOE nodes of 3P_path(i)
partial_route2 = nodes from j + 1 to target node in local_elite

end if
new_3P_path = concatenation of partial_route1 and partial_route2
Append new_3P_path to 3P_path
Break

end if
end for (j)

end if
end for (i) /* 3 Parent Population generation Ends */
/* Generation of 2-parent population from 3-parent population starts */
Evaluate fitness of all paths in 3P_path, sort from best to worst and select the N best paths
Select the fit paths for recombining/breeding;
With high probability recombine parents/perform cross-over.
With low probability mutate paths.
Evaluate fitness and select local_best.
Replace weak paths by stronger paths keeping the path_mat size fixed at N;
pop_mat(pop).path_mat = 3P_Path;

end for (pop) /*Generation of 2 Parent Population from 3 Parent Population Ends */
From amongst the NP local best candidates select the global best candidate gbest;
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/*move all routes of all populations towards global best*/
for i = 1:NP do
for j = 1:N do

for k = 1:Path_nodes(j) do
With a given probability replace kth node of jth route with a node of gbest using

combination operation.
end for (k)

end for (j)
end for (i)
end for (gen)

Table 9 Architectural details of client WMNs used in simulations

No. of nodes Area (m2) Radio range Timing constraint (in seconds)

100 500 × 500 150 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
500 500 × 500 150 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0
1000 1000 × 1000 250 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0
2000 2000 × 2000 250 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5
2500 2000 × 2000 250 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5,

7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0

5.1 Comparative Performance of 100 Node Client WMNs

For 100 node client WMNs we evaluated the performance of nine approaches.
The unmatched performances of all the nine approaches are shown in Table 10
and Fig. 4. Table 10 shows the total performance (matched and unmatched) of
nine approaches. From the results, we observe that ACO and DSR are unreliable
protocols for the given network scenarios because most of the time these protocols
failed to discover any feasible routes between source-terminal pair. Being a
proactive approach, the BAT approach successfully discovered feasible routes but
failed to produce an unmatched optimal cost route in any of the trials.

Table 10 shows that for the timing constraint of 0.1 second, AODV produced a
minimum cost route 7 + 5 = 12 times, where the first operand (7) indicates that 7
times AODV generated an unmatched optimal cost route, and the second operand
(5) indicates that 5 times other algorithms obtained the same minimum cost (in this
case, the other algorithms are GA, BBBC, FA, and P3PGA). The second and third
place algorithms were BBBC (5 + 5 = 10 times) and P3PGA (3 + 5 = 8 times).

For the timing limit of 0.2 second, P3PGA produced minimum cost route
8 + 2 = 10 times, AODV 6 + 2 = 8 times, BBBC 3 + 2 = 5 times, and BBO
produced minimum cost route 1 + 2 = 3 times. Figure 4 shows that for 100
node networks and for timing constraints less than 0.5 s (except 0.2 s) AODV
performs better than all other algorithms. For timing constraint of 0.5 and 0.6 s
the performance of GA is best. For timing constraint of 0.7 s BBBC and P3PGA
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Table 10 Comparative performance of P3PGA on 100 node client WMNs

Timing constraints

Algorithm 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
AODV 7 + 5 6 + 2 5 + 9 5 + 5 1 + 9 2 + 10 2 + 11 2 + 10 4 + 0 3 + 9
DSR 16

FAIL
17
FAIL

7
FAIL

15
FAIL

1 + 4
FAIL

10
FAIL

FAIL 4
FAIL
+2

12
FAIL

9
FAIL

ACO 19
FAIL

12
FAIL

16
FAIL

13
FAIL

8
FAIL

2
FAIL

5
FAIL

3
FAIL

5
FAIL

11
FAIL

GA 0 + 5 0 + 2 0 + 9 2 + 5 3 + 12 4 + 10 1 + 11 1 + 10 1 + 1 2 + 9
BBO 0 + 1 1 + 2 0 + 2 0 + 5 1 + 0 0 + 10 1 + 0 0 + 10 1 + 0 0 + 9
BBBC 5 + 5 3 + 2 2 + 9 4 + 5 1 + 9 1 + 10 3 + 11 1 + 10 3 + 1 1 + 9
FA 0 + 5 0 + 1 0 + 9 1 + 1 1 + 9 1 + 10 0 + 9 0 + 10 2 + 1 0 + 9
P3PGA 3 + 5 8 + 2 4 + 9 3 + 5 2 + 12 2 + 10 3 + 11 4 + 10 7 + 1 5 + 9
BAT 0 + 1 0 + 0 0 + 2 0 + 0 1 + 0 0 + 10 0 + 5 0 + 10 0 + 3 0 + 6
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Timing Constraints Vs Best Performance Frequency
(Total number of trials in a set = 20)

Number of Nodes : 100, Area : 500m × 500m

GA P3PGA AODV BBO BBBC FA

Fig. 4 Comparative unmatched best performance of 100 node client WMNs

both give best performance. As the timing constraint is further increased, more
computing time is allocated to the P3PGA algorithm, so that results improve
with increasing timing constraint. In terms of producing optimal cost routes, for
timing constraints of 0.2, 0.8, 0.9, and 1.0 s, P3PGA algorithm outscores all other
algorithms.
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5.2 Comparative Performance of 500 Node Client WMNs

For 500 node client WMNs we evaluated the performance of all given 9 optimal
route evaluation approaches. The performance results of the all approaches are given
in Table 11 and Fig. 5. Figure 5 shows the unmatched performance of all nine
approaches and Table 11 shows the total performance of all considered approaches.
From results we observe that on the given WMN scenario up to 3.5 s timing
constraints the AODV routing protocol outperforms all its competitors. But after

Table 11 Comparative performance of P3PGA on 500 node client WMNs

Timing constraints

Algorithm 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
AODV 16 10+ 1FAIL+ 5 15 14 9 19 11 6 10 4
DSR – – – – – – – – – –
ACO – – – – – – – – – –
GA 0 0 + 5 1 + 1 0 4 + 1 0 0 1 + 2 0 2
BBO 0 0 + 5 0 0 0 0 0 1 + 2 0 1
BBBC 0 1 + 5 1 2 4 1 2 1 + 2 0 3
FA 0 1 + 5 0 1 0 0 1 0 + 2 0 0
BAT 0 0 + 5 0 0 0 0 0 0 + 2 0 0
P3PGA 4 3 + 5 2 + 1 3 2 + 1 0 6 9 + 2 10 10

“–” means failed to produce route in any of the trials
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Fig. 5 Comparative unmatched best performance of 500 node client WMNs for different timing
constraints
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3.5 s all other approaches also started to perform. On the timing constraint of 4.0 s
P3PGA produced minimum cost route 9 + 2 = 11 times, AODV 6 times, BBBC
1 + 2 = 3 times, Firefly 1 + 2 = 3 times, and GA produced minimum cost route
1 + 2 = 3 times only. With 5 s timing limit P3PGA generated minimum cost route
10 times, AODV 4 times, GA 2 times, BBO 1 time, and BBBC produced minimum
cost route 3 times.

5.3 Comparative Performance of 1000 Node Client WMNs

Table 12 and Fig. 6 present the simulated performance for 1000 node client WMNs.
From the performance we observe that DSR and ACO approaches failed to discover
the route for the given timing constraint in any of the trial sets. Up to 2 s timing
limits AODV also failed to discover any of the routes. As shown in Fig. 6, P3PGA
outperforms other 8 approaches for the timing constraints of 0.5, 1.0, 1.5, 2.5,
and 3.0 s. With timing constraint of 2.0 s P3PGA and BBBC gave the same best
performance. Further, we also observed that after the 3.0 s timing constraint the
performance of AODV improved considerably to the extent that it outperformed
all other 8 approaches. Hence, for the given WMN scenarios AODV is unsuitable
approach if the network size is 1000 node with allowable computing time less than
2 s. If timing constraint could be relaxed beyond 3 s, then the AODV gives the best
performance.

5.4 Comparative Performance of 2000 Node Client WMNs

We simulated the performance of all the nine approaches on the timing constraints
of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, and 5.5 s. The performance results

Table 12 Comparative performance of P3PGA on 1000 node client WMNs

Timing constraints

Algorithm 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4 4.5 5
AODV – – – – 5 6 8 10 14 19
DSR – – – – – – – – – –
ACO – – – – – – – – – –
GA 3 2 3 2 2 1 2 0 1 0
BBO 0 0 0 0 0 0 0 0 0 0
BBBC 7 8 6 8 4 3 3 4 1 0
FA 1 0 4 2 1 1 0 0 1 0
BAT 0 0 0 0 0 0 0 0 0 0
P3PGA 9 10 7 8 8 9 7 6 3 1

“–” means failed to produce route in any of the trials
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Fig. 7 Comparative unmatched best performance of 2000 node client WMNs

of all approaches are shown in Fig. 7 and Table 13. The results clearly indicate
the supremacy of P3PGA approach over all other approaches for every timing
constraint.



20 A. Singh et al.

Table 13 Comparative performance of P3PGA on 2000 node client WMNs

Timing constraints

Algorithm 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
AODV – – – – – – 0 3 4 1
DSR – – – – – – – – – –
ACO – – – – – – – – – –
GA 1 3 4 3 4 3 3 2 1 3
BBO 0 0 0 0 0 0 0 0 0 0
BBBC 5 2 2 4 6 4 3 0 1 1
FA 0 0 1 1 0 0 2 1 0 0
BAT 0 0 0 0 0 0 0 0 0 0
P3PGA 14 15 13 12 10 13 12 14 14 15

“–” means failed to produce route in any of the trials

Table 14 Comparative performance of P3PGA on 2500 node client WMNs

Timing constraints

Algo 2 2.5 3 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 8. 8.5 9. 9.5 10
AODV – – – – – – – – – – – – – – – – –
DSR – – – – – – – – – – – – – – – – –
ACO – – – – – – – – – – – – – – – – –
GA 3 7 6 8 3 5 6 6 2 4 3 3 4 2 3 2 2
BBO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BBBC 5 3 4 1 3 3 3 4 5 3 5 4 6 6 2 4 4
FA 0 1 2 1 0 2 0 1 1 1 1 2 2 1 0 1 2
BAT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P3PGA 12 9 8 10 14 10 11 9 12 12 11 11 8 11 15 13 12

“–” means failed to produce route in any of the trials

5.5 Comparative Performance of 2500 Node Client WMNs

We also evaluated the performance of all nine approaches on 2500 node client
WMNs. To test the performance of all approaches we considered 17 trial sets with
each set consisting of 20 trials. Here we have considered more trial sets as compared
to the previous network scenarios because the network is larger and here is the need
to evaluate the performance of the network on larger timing constraints also. The
simulation results of all approaches are shown in Table 14 and Fig. 8. From the
results we observe that the P3PGA approach outperforms all other approaches on
all the timing constraints. We also observed that AODV, DSR, and ACO approaches
fail to discover the route in any of the trial set. Table 15 shows that out of 340 trials,
P3PGA has given the best unmatched performance 188 times, BBBC 65 times, and
GA produced the best performance 69 times.
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Table 15 Overall comparative performance of P3PGA

Timing constraints
Number of
nodes Trials P3PGA FA BBBC BAT AODV BBO GA DSR ACO ALL EQUALS

100 200 41 5 24 0 37 1 14 2 0 76
500 200 49 3 15 0 114 2 7 0 0 10
1000 200 68 10 44 0 62 0 16 0 0 0
2000 200 132 5 28 0 8 0 27 0 0 0
2500 340 188 18 65 0 0 0 69 0 0 0
Total 1140 478 41 176 0 221 3 133 2 0 86

5.6 Overall Performance Considering all Networks

In order to evaluate the performance of all 9 approaches, overall we conducted total
of 1140 trials. The overall performance of the 9 approaches are given in Fig. 9 and
Table 15. From the simulation results, we observe that out of total number of 1140
trials P3PGA provided the unmatched best optimal cost route 478 times, AODV 221
times, BBBC 176 times, GA 133 times, Firefly 41 times, BBO 3 times, and DSR
produced optimal cost routes only 2 times. 86 times multiple approaches produced
the same best performance. Also, the ACO and BAT approaches failed to produce
the optimal cost route in any of the trial sets. Figure 9 shows that as the size of the
WMN becomes 1000 node P3PGA algorithm gives best performance but the margin
is small. As the WMN size increases to 2000 nodes and above, P3PGA gives the best
performance with a very large performance lead over its counterparts.
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6 Conclusions

This chapter proposes a new nature inspired, P3PGA-based multi-population global
optimization algorithm. The proposed algorithm extended the 3PGA approach by
adding the parallel evolution behavior. We implemented the proposed algorithm
in MATLAB, simulated its performance on 30 benchmark functions from CEC-
2014, and compared its performance with 16 other algorithms. P3PGA gave the
best unmatched performance for 12 functions out of the 30 benchmark functions.
On two other functions the best performance of P3PGA was equaled by some of
the other algorithms. Hence, overall out of the 30 functions of CEC-2014 test suite,
P3PGA gave the best performance on 14 functions. The performance of P3PGA was
followed by UMOEAS, which gave unmatched best performance on one function
and equaled best performance on eight functions totaling nine functions with best
performance. LSHADE algorithm followed on the third place.

This chapter also proposed a P3PGA-based new optimal cost or near shortest
route evaluation approach for WMNs. The approach was compared with eight other
approaches, namely AODV, DSR, BBBC, ACO, BBO, BAT, GA, and Firefly-based
optimal cost route evaluation approaches. From the simulation results we conclude
that the proposed approach is very suitable for large WMNs with sizes greater than
1000 nodes.

The authors further suggest that the proposed P3PGA algorithm can be used in
other applications such as for rule base extraction from numerical data for the fuzzy
logic-based systems and for identification of fuzzy and ANN models from the given
training data set.
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